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(I) FEMIZHERL (cross-diffusion) & £ 9 EFCET VIS 5 FEEH ME

g = pA[(1 + av + yu)u] + u(a — u — cv) in Qx(0,00),

vy = vA[(1 + fu+ ov)v] + v(b — du — v) in 2 x(0,00),

gu _ v _ 0 o0 x (0 M)
on  On on < (0,00),

u(+,0) = uo(> 0),v(:,0) = vy (> 0) in Q,
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. o, B,7,0 FIFATEHETH D, VIFMESEIERE (1) (26 LT, BRI OHE
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T — 4 (ug,vp) PRE S & BRI KIE (u,v) D—BINIHFET D2 L 2R
TENRTERE GRX 7). 2 EL Vo BlE, AT AR UEREHEITER L 2
W F RO L, S HRRUIC SOV T4 Il 2 &N A h b, 3

up = pA[(1 + av 4+ yu)u] + ula — v — cv) (2)
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vy = vAv 4+ v(b— du — v) ) (3)
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w>0, v>0 in €
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Positive Solutions for Reaction-Diffusion Systems with
Cross-Diffusion and Related Topics
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YosHio YAMADA
Department of Mathematics, Waseda University

A part of this talk is a joint work with Dr. Kousuke KUTO (Waseda Uni-
versity).

1 Cross-Diffusion Model

The cross-diffusion model was first introduced by Shigesada, Kawasaki and
Teramoto [25] in 1979 to describe the habitat segregation phenomena of two
competing species. Our system consists of two reaction diffusion equations
with nonlinear diffusion terms and prey-predator interaction terms:

ur = A[(1+ ow)u] + ula — u — cv) in Q2 x (0,00),

(P) vy = A[(1+ fu)v] + v(b+ du — v) in ) x (0,00),
u=v=0 on 09 x (0, 00),
u(,0) =u >0, v(-,0) =wvy>0, in Q,

where  is a bounded domain in RY with smooth boundary 99, «, 8 are
nonnegative constants, constants a, b, ¢, d are positive except for b and wug, vy
are nonnegative functions.



In (P) u and v denote the population densities of prey and predator
species, respectively. The presence of cross-dissusion terms means that the
diffusion also depend on the population density due to the population pres-
sure from other species. The mathematical derivation of cross-diffusion can
be found in the monograph of Okubo [22]. In reaction terms, a, b correspond
to the carrying capacity of the environments and ¢, d denote the prey-predator
interaction between two species.

2 Nonstationary Problem

Mathematically, one of the most important problems is to show the existence
of global solutions for any initial nonnegative initial functions and for any
space dimension. However, this is generally an open problem. The global
existence can be proved in a very restricted case.

Theorem 1 Let N = 1,2 and assume a = 0 and 3 > 0. If (ug,vo) satisfies
Ug, Vo € W/O ’p(Q) with p > N, then (P) has a unique global solution u,v €
C([0, 00); Wy (€2)) N C((0, 00); W2#(82) N C*((0, 00); LP(£2)).-

Remark. A similar result was obtained by Lou, Ni and Wu [18] for the
competion model with the same nonlinear diffusion as (P) with N = 2. We
can follow their arguments to get some a priori estimates of || u(t) |lw2» and
|| v(t) |lw2» by the energy method.

I will give some comments on the global existence of solutions for reaction-
diffusion systems with cross-diffusion terms such as (P). The global existence
in the case N = 1 was first established by Kim [12]. In higeher dimensional
case, it will be standard to carry out the folowing procedure to show the
global existence.

1. The first step is tp prepare the local existence theorem.

2. The second step is to derive necessary a priori estimates of solutions.

3. Finally it is sufficient to combine the local existence theorem and suitable
estimates to show the globa existence.

As to the local theory for cross-diffusion systems, there are two results.
The first one is given in the framework of L*(§2) theory by Amann [ ]. For
(P), the local existence result can be stated as follows: if ug, vo € W, P with
p > N, then there exists a unique local solution of (P).

8



The second one is proved by Yagi [26]. His result is given by the following:
let N = 1,2,3 and assume uo, vy € Ho/**
a unique local solution of (P).

with some € > 0; then there exists

The global results are established for competition systems by several au-
thors, Deuring[6], Ichikawa and Yamada [9], Lou, Ni and Wu [18], Pozio [23],
Redlinger [24], Yagi[26], [27] and Yamada[30]. However, all works have some
restrictionss on space dimension, nonlinear diffusion terms or reactoin terms.
See also the recent work of Choi, Lui and Yamada [3].

3 Stationary Problem; Existence of Positive

Solutions
The stationary problem associated wuth (P) is given by
Al +av)u] +ula —u—cv) =0 in Q,
(SP) Al(1+ fuyv] +v(b+du—v) =0 in 0,
u=v=0 on 01},
u>0, v>0 in Q.

Here we are interested with nonnegative functions and, especially, possitive
solutions of (SP), that is a pair (u,v) such taht > 0 and v > 0 in .
Important subjects are to study the existence, non-existence multiplicity,
bifurcation and stality of postive solutions.

In the linear diffusion case (o = f = 0), there are lots of works concern-
ing Lotka-Volterra diffusion systems, see, e.g., Blat-Brown[2], Dancer[4],[5],
Eilbeck, Furter Lépez-Gémez [8]. Especilly, a necessary and sufficient con-
dition for the existence of positive solutions is well known (see Li [15]). The
uniqueness is shown by Lgpez-Ggmez and Parod [16] in case N = 1. For
higher dimensional case, there is a conjecture that (SP) has a unique solu-
tion. However, it is not proved yet.

In the nonlinear diffusion, a sufficient condition for the existence of posi-
tive solutions is established by Nakashima and myself [21]. However, under-
stnading of the structure of positive solutions for (SP) is far from complete.

We prepare some notation and give some basic results for positive solu-
tions of (SP). For ¢ € C(Q), denote by A;(g) the least eigenvalue of
{ —Aw+q(z)w = dw in Q,

(3.1) w =0 on 0f).

9



If ¢ = 0, then we simply write Ay = A1(0) and denote the corresponding
eigenfunction by ¢. Since A is the principal eigenvalue, ¢ can be normalized
so that it satisfies

>0 in © and /(dele.
Q

The following logisitic equation holps us to understand the cross-diffusion
model:

(3.2) { Aw +wla—w) =0 in §,

w =10 on 0,

It is well known that (3.2) has a unique positive solution 0, if and only if
a > A;. Moreover, this positive solution 6, possesses the following prperties.

Lemma 3.1 (i) The mapping a — 6, is of class C* in C(Q) and 86,/0a > 0
in 2. \
- A

(ii) Qaza - 0 +ola— A1) as a— Ay,

where o = / Yid.
. o

In what follows, we assume « = 0 for the sake of simplicity. We introduce a
new unknown function

V = (1+ Bu)v.
The original problem (SP) is reduced to the following semilinear elliptic sys-
tem:
4 V .
Au—&-u(a—u-—liﬁu):() in {2,
AV V b+d v 0 in
(SE) T e T T T8 mes
u=V =0 on 0f,
L v 20, V>0, in €.

Clearly, (SE) admits the following trivial and semi-trivial solutions:
(0,0),
(u,V) =< (6.,0) ifa>h,
(0,6,) ifb> A

10



We can construct positive solutions of (SE) from these semi-trivial solutions
by the method developed by Nakashima and the author [21].

Theorem 2  Define

b+ df,

2% ={(e.b) € R%a> b { —y <0, (cfy — a) < 0},
b+ db,

27 ={(,0) € B5a> X, A~ > 0, M (chy — a) > 0}

and set ¥ = St U™, where \(q) is defined the least eigenvalue of (8.1).
If (a,b) € &, then (SE) has at least one positive solution u,v € WP (Q) N
W2P(Q).

Remark 3.1. Define two curves I'; and I's by

Dy ={(a,b) € R%x (- &) =0},
Iy = {(a,b) € R* M\ (cby — a) = 0}.

Then ¥ in Theorem 2 a region surrouded by I'; and I'; in, ab-plane. One can
show that 'y, I’y are smooth curves. Indeed, I'; is represented as b = d(a)
with a > )1, where ® is a C'-function such that

(i) ® <0ifd> B and @' > 0if d < BAy,

(i) lim ®(a) = A; and lim ®'(a) = A — d.

a1 a1
Therefore, I'; is strictly decreasing curve if § is small (d > fA;) and strictly
increasiing if 4 is large (d < GA1).
Silimarly, ', is represented as a = ¥(b) with b > A;, where ¥ is also a

C'-function satisfying

¥’ >0, lim ¥(b) = \and lim ¥'(a) =c.
b—>A1 b—r Ay

Remark 3.2. 1 will give some biological meaning of Theorem 2. In (SE) 8
is a cross-diffusion coefficient and the presence of 3 makes predator disperse
due to the population pressure from prey-species. Therefore, assording as I}
becomes larger and larger, it brings about disadvantage to predator species.
It will becoome more difficult for predator to survive as § becomes large.

I will explain the meaning of Theorem 2 from the view-point of bifurcation
theory. Let b be fixed and regard a as a bifurcation paramater.

Suppose b > ;. We first consider the case §A; < d. Then one can find
that a* = W(b) is a bifurcation point. The local bifurcation theory implies
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that positive solutions of (SE) bifurcate from semi-trivial solution (0,6,) at
(a4, b) € T'y. The global bifucation theory assures that this branch of positive
solutions can be extended over (a,,o0) as an unbounded set of R x X x X
with X = W, ?(Q) N W?P(Q).

We next consider the case SA; > d, 1+ c¢(d — fAy) > 0 with b > Ay, In
this case curve I'y is located in the right-hand side of Gammas and one can
find a* such that b = ®(a*) and a* > a,. So there exists a branch of positive
solutions of (SE) such that the branch connects two semi- trivial solutions;
(0,0;) at (a.,b) € I'y and (0,6,-) at (a*,b) € T'y.

Finally, in case 1+ ¢(d — fA1) < 0 the situation is quite similar to the
above. We should note the location of I'; and I'y is exchanged differently
from the above case.

Remark 3.3. Theorem 2 does not give us precise information about the
structure of positive solutions of (SE). We need some device to know the
number of positive solutions and the optimal coexistence region in ab plane.

4 Branch of Positive Solutions

We will get better understanding of the structure of the set of positive solu-
tions of (SE) in a special case:

(a,b,d/B) : 1is very close to (Mg, A1, Ap)
G : 1is sufficiently large

Regarding a as a bifurcation parameter we have the following theorem.

Theorem 3  For every ¢ > 0, there exists an open set O C {(b,d,3) € R* :
b> M} such that, if (b,d,B) € O, then S := {(a,u,V,a) € R x {W;*(Q) N
W2P(Q)}2%; (u, V) is a positive solution of (SE) with a > M} contains a
smooth curve St which bifurcates from (0,6;) at a = o*(:= Y(b)) and has at
least two turning points with respect to a.

Remark 4.1. It follows from Theorem 3 that the branch of positive solutions
looks like an ‘S’ shaped curve when a,b,d/f are close to lambda; and § is
sufficiently large. Since the branch has two turning points at a = a1, a2 (a; >
as), (SE) admits at least three positive solutions when a lies in (aq, a1).

An analogous result has been obatained by Du and Lou [7]. They have
shown the S-shaped global bifurcation diagram for Holling-Tanner predator-
prey model with linear diffusion.
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The proof of Theorem 3 is very long; so we will give only the idea of its proof.
For details, see Kuto and the author [13].

1. Introduction of new variables
Let € > 0 be a small parameter and set

a= XA +a€e, b= XA +be, u=cew,

V = ez, §=A1+75, ﬂ:l

p €
With introduction of new variables ay, by, 7, v, original system (SE) is rewrit-
ten as follows for new unknown funtions U = (w, 2):

LU+ eF(U,a1) =0 in Q,
(RP) U=0 on 09,
U>0 in 2,

where L. is a principal linear term defined by

| Aw+ Mw
L= (i),

and F is a nonlinear term given by

o _cZ
w (al w 1+'yw>

Tryw (bl TyTw = 1+z7w>
_ ( F (U, al)’)
FZ(U: al) '

2. Lyapunov-Schmidt Reduction

F(U, al) L=

We will use the Lyapunov-Schmidt procedure to reduce (RP) to a suitable
system in a finite dimensional space. Set

X =W»Q)nW,?(Q) and Y =IL"Q)

with p > N and define a projection from X or Y into infinite dimensional
subspace by

Pw=w—{w,@)p for we X(orY) with (w,¢)= / wedz,
o

13



where ¢ is the eigenfunctions corresponding to A; (see (3.1)). Therefore, X
(resp. Y') is expressed as follows:

X={gp}®X (resp. Y ={p}@Y)
Every U = (w,2) € X x X can be decomposed as
U= (30T o ()40 with @,7eX
tpr + 7 t)? ’ ’

where s = (w,y) and t = (z,¢). Every element in ¥ x Y can be also
decomposed in the same manner. With use of this decomposition, (RP) is
rewritten in the equivalent form:

(4.1) LU + ePF((s,t)¢ + U, a1) = 0

/ Fi((s,t)o + U, a1)dz =0,

(4.2) _
FQ((’Svt)(p + U» a’l)(pdx = 07
Q “

where PU = (Pw, Pz) for U = (w,z) € Y x Y. It should be noted that
L is an isomorphism from X := P(X x X) to Y := P(Y x V). Hence one
can apply the implicit function theorem to (4.1) and solve U as a function of
s,t,a; and €. As a result we have

Lemma 4.1  For every (s,t,a1) with |s], |t],|a1| < C, there exists €y such
that, if |e| < €o, then (4.1) has a solution

U(s, t,a1;€) € CH{[~C,CP x [—ep, €); X)
such that @(s, t,ay;0) = 0.

Sinceiﬁ(s,t, a1;0) = 0, we may define (&,9)(s,t,a1;¢) € C*([-C,C}® x
[~ €0, €0); X) by B
U(s,t,a1;€) = (€U, €0)(s, t, a1; €).

14



Setting U = (€u, €v) in (4.2) we get the following finite dimensional problem
to solve (s,t,a1):

/Q(sgo + eu) {a1 — (sp + €ur)

c(tp+ev) ,
o 1+'y(s<p—:eﬁ) } g&d],

(4.3) Ge(s,t,a1) := / to + v
7

— {b ; u
14 (s + €u) {b + (s + )

tp+ev
~ e | el

Here we should note that @, v are smooth functions of s,¢, a1, e. Thus we
arrive at the equivalence between (RP) and

(4.4) Ge(s,t,a1) = 0.

So what we should do is to find (s,¢, a;) satisfying (4.4).

3. Analysis of Limit problem
Our strategy to solve (4.4) is to study the corresponding limit problem. Let-
ting € = 0 in (4.3) leads to

GQ(S,t, al) =
3
Y
(4.5) s (al S0 ct/§21+78(pd:c>

3 3

vy @
tb+7—b/ dx—t/—-—-——d)
(1 ( 1)91+78w o T+ ysp)2 "

Here the expression of Gg(s,t,a;) becomes simpler: so that will be easier to
find (s,t, a1) satisfying

(4.6) Go(s, t,a1) = 0.

We may expect that solutions of G.(s,t,a;) = 0 are close to solutions of
Go(s,t,a1) = 0 when € is very small. This idea was used by Du and Lou [7]
in the study of Holling-Tanner system for predator-prey interaction.

In view of (4.5), positive solutions of (4.6) are given hy

(4.7) (s,t,a1) = (s, f(7s),9(s))

15



where

i) = by + (1 —by) fQ 1T83¢dx

3
f.Q (1-§(—psg0)2 dz

3

3
dz

gls) =0 +ef(ys) [ E—

with o = / wida.

Q
We follow the arguments of Du and Lou as in [7]; then we can positive
solutions of (RP) in a neighborhood of

(z,w,a1) = (s, f(7s)p, g(s))

provided e is sufficiently small.
So our task becomes to study the profile of ¢ in order to accomplish the proof
of Theorem 3. Recall that ¢ is expressed as

9(s) = s0 + h(ys)

with
3

h(s) = cf(s)/S; 7 fs()pdaz

When 7 = 0, one can show that h has a unique local maximum. Hence, if
|7| is sufficiently small, then h has also at least one local maximum as in the
case 7 = 0. Therefore, if |7| is small and - is sufficiently large, then one can
prove that g(s) has one local maximum and one local minimum for for s close
to zero. This fact implies the the branch of positive solutions looks like ‘S’
shaped.
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u
ABSTRACT. This paper is a continuation of [3] by the same au-
thors to study the problem of global existence of strong solutions
for the Shigesada-Kawasaki-Teramoto model. We shall prove
global existence of strong solutions assuming that there arc sclf-
and cross-diffusions in the first species and there is no cross-
diffusion in the sccond species. If self-diffusion is also present
in the second species, then our result requires that the space
dimension be less than 6.

1. Introduction. In this paper, we shall prove the global existence of solutions to
the following strongly-coupled time-dependent system

( w = diA[{(l+av+yuu] +au(l —u—cv) inQx[0,00),
vy = dpA[{1+ dv)u] + bv(l — du — v) in Q x [0, 00),
J (1.1)
ou dv
5 = 5;;_0 on 6§ x {0, 00),
L u(z,0) = u(z), v(z,0) = volz) inQ,

when a@ > 0,7 > 0 and § > 0. Here, Q is a bounded region in R™ with smooth

boundary 692, 8/0v denotes the directional derivative along the outward normal

on 0%, up and vy are non-negative initial conditions, di,dz,a,b, ¢, d are positive
1991 Mathematics Subject Classification. 35K60, 35K55, 92D40.

Key words and phrases. cross-diffusion, seclf-diffusion, strongly-coupled, apriori estimates,
global existence.

20



2 Y.8. CHOI, ROGER LUI AND YOSHIO YAMADA

constants, a is the coefficient of cross-diffusion of the first species and +y,d are the
coefficients of self-diffusion for the first and second species, respectively. Since ¢
and d are positive, u, v denote the population densities of competing species. The
system is strongly-coupled because of the coupling in the highest derivatives in the
first equation. Strongly-coupled systems occur frequently in biological and chemical
models and they are notoriously difficult to analyze.

System (1.1) is a special case of a model proposed by Shigesada, Kawasaki and
Teramoto in 1979 ([12]). Over the past ten years, many mathematicians have
attemnpted to prove the global existence of solutions for this model. See [11] for a
list of references for the time-dependent case and [9], [10] for the steady-state case.
In [3], the authors have shown that global solutions exist for (1.1) if y = 0,6 = 0
and a < a* where @* > 0 is a constant depending on || vg ||z=(n). The purpose
of this paper is to remove this smallness assumption and show the global existence
result for {1.1). The main result is stated as follows.

Theorem 1.1. Let v > 0 and suppose thot ug > 0,10 > 0 satisfy zero Neumann
boundary conditions and belong to C?*t*(1) for some A > 0. Then (1.1) possesses
a unigue nonnegative solution u,v € C*TMEN/2(Q x [0, 00)) if either (i) § = 0 or
(ii)d > 0 and n < 6.

Let Qr = Q x [0,T). Standard notations similar to those in [7] are adopted
throughout this paper. In particular, u &€ qu’l(QT) means that u, Uz, Uaz;,

473 = 1,...,n and w are in LY Qr), Hu)]L,,q(QT) = [fg (fn ]u(z,t)gP dz)‘Z/P dt]l/q
and ”u”Vz(Qr) = SupOStST ”u(','ﬁ)”Lz(g) -+ ”V’U.HLZ(QT). In addition, U € qu(ﬂ)
means that 4 and Vu are in LI(Q).

The organization of this paper is as follows. In §2, we collect some well known
results and prove two new lemmas that are needed in §3. The main part of the proof
is to show that there exists a constant Ci1(g,T) > 0 such that ||ju||pa(g,) < Ci1{g, T)
for some ¢ > {n + 2)/2. This is done in §3. In §4, we show that this estimate
implies that u is also bounded in @ and hence smooth. Our theorem follows easily
from this and Amann’s theoremn. For blow-up of solutions of nonlinear parabolic
equations, see the survey paper by Galaktionov and Vézquez [5]. Throughout this
paper, we shall assume that n > 3 since the:cases n = 2 have been solved by Lou,
Niand Wu in [11] by a completely different method. This paper also gives a correct
proof of [13].

2. Preliminaries. In {1], Amann proved that there exists a unique nonnegative
local smooth solution for the Shigesada-Kawasaki-Teramoto model if cross-diffusion
only appears in one of the species. Throughout this paper, (u, v) shall denote such
a smooth solution and T' the maximal time of existence. The following result, also
from [1], gives a criterion for the existence of global solutions to the Shigesada-
Kawasaki-Teramoto model and in particular to (1.1).

Theorem 2.1. Suppose the local solution (u,v) satisfies the conditions

sup [fu(,t)jwam) <oo  and  sup |l t)[lwaa) < oo (2.1}
0<1LT 0gt<T

for some p > n, then T = oc.

The following result is valid as long as there is no cross-diffusion for v.
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GLOBAL SOLUTIONS FOR THE SHIGESADA-KAWASAKI-TERAMOTO MODEL 3

Lemma 2.1. There ezist positive constants m = max{l, |[vo[r=(a)} end Ci(T)
such that

0<u, 0<v<m in Qr
and

sup |[u(-,)|lye) < Cu(T), ullz(or) < Cu(T).
0<t<T

Proor. The first three inegualities follow from the maximum principle. The
last two inequalities are derived by integrating the equation for u. The details are
given in [11, Lemma 2.1 and Lemma 2.2]. O

Lemma 2.2. Let wy = (1 + 8v)v. Then there exists o constant C2(T), depending
on ”'UOHW%(Q] and ”'U()HLuc(Q) such that

”wZHW,_“(Q.,) < Ca(T). (2.2)
Furthermore, Vw, € V2(Qr).

ProoF. The proof may be found in [11, Lemma 2.4}, but for completeness we
repeat it here. First, w; satifies the equation

wy = da{1l + 28v)Aw; + 1 + 2 1, (2.3)

where ¢1,¢; depend on v and are bounded functions because of Lemma 2.1. Mul-
tiplying the above equation by —Aw; and integrating by parts ver @, we have

l/- |Vw,*{z,t)de — 1‘/. |Vwgz)*(z, 0)dz + dz/ |Awg|*dzdt
2 0 2 2 Q:
< / ]A'IUzHCl + Cz’ul dedt
T

Here the right-hand side of the above inequality is bounded from above by
| AwzllLz(qr)ller + caullLzgr) < mallAwzlliagr) (1 + |ullzz(qx))

d; 5 m2{1 + C{T))?
_<_ '—Z—-HA'UJZHLZ(QT) ‘+‘ —————-é:{z———————————
with some m; > 0. Rearrranging,
sup /}Vw2|2(m,t)dz+dz/ | Aws|?dzdt < ma
o<t<r Ja Qr

where m; depends on ||vollw; (q) and |jvo||L=(g). Since wz € L%(Qx), we have from
the elliptic regularity estimate [11, Lemma 2.3]

/ {(w2)s;a;|2dedt <mz for 4,j=1,---,7n.
Qr

From (2.3), since ¢1, ¢z and v are bounded and u € L*(Qr), we have wz; € L¥{Qr).
Hence, w; € WZZ’I(QT). The proof of the lemma is complete. O

For the test of this paper, we shall use the inequality (a+b)? < 27(a? + bP) freely
without mentioning it.
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4 Y.8. CHOI, ROGER LUI AND YOSHIO YAMADA

Lemma 2.3. Let g > 1 and § = 2+ 4g/n{q+ 1}. Then there ezists a positive con-
stant M1 such that for any w satisfying suPg<,<r ]|w]|qu/<q+1)(n} + [|Vuwllrzgr) <
oo, we have -7

lwllLaqgr) < M {(OTET w(E) g2artasnay) 9™ Vw3 +wllpaaen} -
T (2.4)

ProoF. Since § € (2¢/(g+1)}, 2n/(n—2)), the embedding theorem [7, Theorem
2.2, p.62] implies $hat for any smooth function w satisfying the zero-mean condition
Jow dz =0, we have

[wllza@) < Call V|G, HWH}J?S(am(mw (2.5)
where
g+l _ 1
a=-2—2 e(01).
n T 2g

If the zero-mean condition is not satisfied, the corresponding result is
llwllzam) < CallVwliZza) IIwllyzsius ) + IIwllze) (2.6)

with the same & and is well known (see for example (2, Lemma 3.4]). Such result
can be derived by putting the zero-mean function w— [, wdz in place of w in (2.5)
and (2.6) leads us to conclude that

{lw(, t)”m o> < 2904 {HVW(-J)H H'w( t)Hqu/ "'“)(ﬂ) + Hw('wt)llil(n)}
Since ag = 2, the above inequality is sxmphﬁed to

) Eay < 2905Vl )| 2agy w1 o) + T Ol sy}

g, n 1
< 22CH{|| V(- 1) [Zagy Il DIt ley + 1w ) Eaa)} -
We now integrate the above over {0, T') and obtain (2.4) with My = 2C3. O

Lemma 2.4. Let ¢ > 1, § = 2 + 4¢/n{g + 1) and assume that there ezists o
0 < B < 1 such that ([, |w(-,t)/P de) /P < Cr for alit € [0,T]. Then there ezists
a positive constant My independent of w but may depend on ,é and Cr such that

ni{g+1)d 2/§
Fullster) < s {1+ 558, 1)) 00 |9, ) 27

Proor. Although ([, ]u[’§ dm)lfﬁ is not a norm for 0 < 8 < 1, we will still use
l|lull5g) to denote it. The standard interpolation theorem for L¥ spaces 16, (7.9)
on p.146) yields

[[w( Dl < w2l Taty et Dlsg, < O e t)lizay
for A = B(§ — 1)/{g - 8) € (0,1). Ralsmg the above inequality to power § and

integrating the resulting expression with respect to ¢, we obtain

- T ~ - -
”"”H%LG(QT) < C;q,/() (/{; lw(z, t)|Fde)}~* dt < C&\'qu\ (/ lw|f dzdt)* >

T

Thus
[wllznaer) < C2TM wli7io, < C2TM (EllwllLager) + Can) (2.8)
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for any & > 0 with some Cj,x > 0. Substituting (2.8) into (2.4), we obtain

llwlraery < M: {(Oi%nw(t)nw,(w(m)40/"@“)6 Ivuwlfiio.,

+ CPTMI (d)|wlze(or) + Con)} -

Finally we choose & such that §M;CAT*4 = 1/2 and (2.7) follows easily. The proof
of the lemma is complete. U

3. L9 estimates for u. Let ¢ € (0, T} and define @, = O x (0,%). In this section,
Ci,Cz,... and My, M,, ... shall denote positive constants that may depend on
£, g, n, the constants in the equations, T' (but not on t}, and the following norms
l[volly 2-211 g1 lIv0]lL= () and {[uol|zaia)-

Proposition 3.1. Lety > 0,9 > 1 and T > 0, then if either (i) § =0 or (i) 6 > 0
and g < 2(n+1)/(n—2), then there exist positive constonts Cyr and Cr such that
1w llzs(er) < Cor and || 4 flvy(or) < O

Proor. The first part of the proof is valid irrespective of whether & is positive
or not. We begin by multiplying (1.1a) by qui~1,g > 1, and then integrate by parts
to obtain

)
2 q
Bt,/g;u de

q/ﬂuq"l{dlA[(l+av+’yu)u]+au(1——u“—cv)}d:c

= q/ndlue-l{v-[(1+au+z~,u)w]+av.[uvu]}

+ avi{l —u—cv)de (3.1)
= _q(q-1)dlfnuq-2(1+au+2~yu)]vn]2dz

- {g- l)dla/ V{u?) -Vvdz+qa/ u¥(1 —u — cv)dz.
7] o}

Dropping the av term in the last expression of (3.1) and integrating from 0 to ¢,
we have

/uq(z,t)dz—-/uq(z,())dm+4d1q—1 |V (u?)? dzdt
2 2 9 Q1

glg—1
+87d; éqﬂ)z /Q |V (ulet)/2)12 dudt (3.2)

< —{g- l)dla/ V{(u?) - Vv dadt + qa/ u?(1 ~ u— ev) dedt .
@ 1

The last term in (3.2) may be estimated by
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qa/ w(l—u—cv)dedt < —gallu ]l'{,til (@y T 90 lu [|qu(Q1)
< —qaullfiho, +9aQd " [ i,
< G

for ¢ € [0, 7).

At this point, it becomes important whether § = 0 or é§ > 0 in estimating
the term [, V(uf) - Vvdzdt in (3.2). If § = 0, we can integrate by parts once
$0 obtain from Lemma 2.1 and an analogue of [7, Theorem 9.1, p. 341-342] for
Neumann boundary conditions (see {7, p. 351]),

/ V{u?) - Vvdadt| = |/ wiAvdzdt

ﬁ-‘f a+l1
< (/ u‘f“dmdt) (/ }A'ulq"‘ldzdt)
Qr T

< Cs [ wlen(qq) (” bu(l — du — v) ||pa+r(gz) + || vo [lwg—zla(m)

< Cs(|| u “Lq+1 (Qr) +1).

We have used the fact that a8 < ga¥9%1/(g+ 1)+ 89t /(g + 1) for any o, > 0
in the last inequality. Therefore, it follows from (3.2) that

9(‘1"1)/ {g+1)/2y2
ud(z,t) dz + 8vd; ——% V{u'¢ dzdi
L ( ) Y 1(9 * 1)2 Q;l ( )!

+4dlq"1/ V(w1 dadt
Q1

<Cr(llulion +1)+/nu9(:r,,0)dz. (3.3)

Since (3.3) holds for all ¢ € (0,7] with the right hand side independent of 2, we .
have

s [ e dat [ VOO dedt < Ol fihn +1) (34
0<t<T Ja

where Cg depends on ||up||pa(a)-

Set w = ulet1)/2 50 that u? = w?9/(471) and w9*? = w?. Then (3.4) becomes

sup / w9tz t)de +/ |Vw|?dzdt < Cs (1+ || w ”%Z(QT)) . {3.5)
0Lt<T JQ Qr

Recall from Lemma 2.3 that § = 2+4¢/n{g+1) so that 4/(g+1) <2 < §. Holder’s
inequality then gives

wllzar) < 1ellZaon elZoarigq (3.6)
(Q {9z}
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with
1
2
A=y (3.7
4 q
(see [6, (7.9)]). From the definition of w and Lemma 2.1, we have |[w[|ps/t+1i(@7) =

< Cy(T)9t1)/2, Hence (3.5) together with (3.6) yields

23]

€(0,1)

l
lull$i62) <
B= Sup/ 20/ a+1) (“dH/ Vil dedt < Cs (14 | w B52) . (3.8)

0<t<T

Setting 8 = 2/(g + 1) € (0,1), we have
)0y = )30, < Ca(z)?

for all £ € [0, T] because of Lemma 2.1. Applying (2.7) to (3.8}, we have
2(1-X)
B <G {1 + (a0 # {2, 1) i) T vulen)) }

ﬂ%l (1-2
(IV0lZaen) }

< Cio {1 + ( sup [PTOlpAtae: (ﬂ))
< Cro {1+ E41-2)/nd B20-2/d}
(3.9)
In other words,
E < Cio (1+ E°) (3-10)
where
g 20—2) ( + 1)

g
‘We want to show that 0 < § < 1. Obviously, 8 > 0. From (3.7} # < 1 is equivalent

4 8
+2<4

to
n nlg+1)
which is also satisfied because § = 2 + 4¢/n{g + 1) and ¢ > 1. It then follows from
(3.10) that there exists a positive constant C11 such that
E<LCn. (3.11)
Since § > 2, from (2.7) and the definition of w, we have for any ¢ > 1
2/{g+1 2/{g+1
lullzasox) = IIelFab < Crallw|ZiG < Cia (3.12)
= 2 1in (3.3) and use

It remains to show the boundedness of ||ullv,(g,). Letting ¢

{3.12), we have
sup_|[u(t)|[3zq) + I Vullizor) < Ca

for some Ciq > 0. This completes the proof of Proposition 3.1 when § = 0
‘We next consider the case § > 0. From Lemma 2.2 and the Sobolev inequality
) .

(see [8, Theorem 6.9]), we have Vw, = (1 + 28v)Vv € L2 +2)/m(Qmp). Therefore,
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V{u?) - Vudedt

IQT

=g / w1y Vudzdt
T
_ll_-:_l_ FETY
= z - dzdt
q+1 I/T ) Vuvdez
L7 q+1 ”V ) Lz(QT)”V'”HLEi?Zl(QT)
(3.13)
am1
E) i qf2
< Crs HUHLU;%M(QT) || (u® )| L3(Qx)
PESY 015
< € O VW) gy + 52 ulfumgesms
:ECISHV’U)IZ +gl—5— / 'w'_iﬁvl‘ : dzdt =
L#{Qr) 4e or
=€ ClsllV'wl L2or) T CIGH'UJ” u;xa)}r;l-i_l(QT)
where € is arbitrary and w = u{971)/? as defined earlier. Choose € such that
47q
ealis < @t 12
then substitution of (3.13) into (3.2) leads to
sup /wa%rr‘f(z,t) dz + / |Vw|? dzdt
0Lt<T /02 Qr
(3.14)

Zl'g-—ll
< Cur [ 14wl Glies

Lot (Qr)
which is analogous to (3.5). It is easily checked that for 1 < g < n(n +4)/(n* —4)
we have (g—1){(n+2)/{g-+1) < § so that B, defined by (3.8), satisfies the inequality

1)
E < Oy (1+ il )

It follows from Lemma 2.4 and the definition of £ that

H'Ul”Lﬁ(QT) < M, (1 + EZ/néEl/q) i
Combining these two inequalities, we have

£ < Cur {1 . (Mz (1 L pEimi Ellé))z(q—l)/(qﬂ)] '

Therefore,
E < Ci5(1+ E¥E”) (3.15)
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with
_ 4Hg-1) and  y o 2a=1)
~ nglg+1) T glgt+ 1)’
Since
_ 2e-1)[2
SRR PESY [n“]
1 4q
< E[n(qu)”}

= 1,

it is easy to see from (3.15) that E is bounded. Therefore, w € L¥(Qz) which
in turn implies that u € L7(Qr) with r = g{g +1)/2 = ¢+ 1 + 29/n. Since
g < n{n+4)/(n*—4), we get u & L7(Qr) withr < 2(n+ 1)/(n— 2).

Finally, observe that one can take ¢ = 2 < n(n + 4)/(n* — 4) in (3.2) for n =
2,3,4, 5 so that ||u|lv,(gz) < Cr. The proof of the proposition is complete. [

4. Proof of Theorem 1.1. The first step of the proofis to show that u € L=(Qr).

Lemma 4.1. Suppose (1) § = 0 or (ii) § > 0 and n = 2,3,4,5. Then there ezists
My > 0 such that || u ||p=(gr)< M1.

Proor. The proof of the case § = 0 is almost identical to \[\3, Lemma 3.1] so
we shall be brief here. The idea is to write equation (1.1a) as a linear parabolic
equation

ou L U
_ = = t) - 4.1
ot 1.;::1 Oz (a”(:c zj) + Z Oz; (au) au (1)
where
ai;(z,t) = di(1+av+2yu)dy; , ai(z,t) = da g—:- and &(z,t) = —a{l—u—cv)
1
with d;; = 1ifi = j and &; = 0 if 1 # j. Since u € L¥(Qr) for some ¢ > (n +2)/2,
application of the parabolic regularity result {see {7, Theorem 9.1, p. 341-342]) to
the equation for v gives ‘
v e qu’l(QT) for some g > —_;—2,

which, together with [7, Lemma 3.3, p. 80], implies that Vo € Lint2e/int2-al(Qn ).
Since ”""HVz (@) is finite by Proposition 3.1, one can apply the maximum principle
as stated in [7, Theorem 7.1, p. 181] to conclude that u is bounded in Q7.

We next consider the case § > 0 and n = 2,3,4,5. Proposition 3.1 implies
u € LQr) for ¢ < 2(n+1)/(n— 2). For n = 2,3,4,5, we have (n + 2)/2 <
2(n+1)/(n—2) so we assume that g lies in the interval ({n+2)/2, 2(n+1)/(n—2)).
The equation for v can be written in the divergence form as

ov

% = V- ((1+260) Vo) + bu(1 —du —) (4.2)
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where 1+ 26v is bounded in Qr by Lemma 2.1 and bu(l — du — v) € LY(Qr) for
g > {n+2)/2 from the above consideration. Application of the Holder continuity
result (see [4, Theorem 1.3, p. 43] or [7, Theorem 10.1, p. 204]) 1o (4.2) yields

v e CPPIHQr) withsome B> 0. (4.3)

Now let wz = (1 + dv)v as in Lemma 2.2 and recall that wp satisfies {2.3). In
(2.3), e1 + eau € L9(Qr) with ¢ < 2(n + 1)/(n — 2) by Proposition 3.1. Since
1+ 26w € CPPI2(Qr) by (4.3), the parabolic regularity theorem ({7, Theorem 9.1,
p. 341-342)) can be applied to (2.3) so that

7+ 2 2(n+1)

sz”qu,l(QT] < My for —2"' <g< ﬁ . (4.4)
Hence it follows from Lemma 3.3 in [7, p. 80] that
Vw, € Lint2e/int2-a)(Q,). (4.5)
Since Vv = Vwz /(1 + 26v), we have
Vo € L eH-0(Q)  for ”; 2 cq< 2(;‘*21) .

The rest of the proof is the same as in the case § = 0. Hence u is bounded in Q7
and the proof of the lemma is complete. I

Proof of Theorem 1.1.

We give the proof only in case § > 0 because the proof ford = 0 is essentially
the same.

Let [0,T) be a maximal existence interval of the solution (u,v) to (1.1). From
Lemma 4.1, u is bounded in Q7. Since ¢; and ¢; in (2.3) are also bounded, we have
€1 + cau € L Qq) for any g > 1 and [7, Theorem 9.1, p. 341-342] implies that w,
satisfies (4.4) actually for any g > 1. Hence it follows from [7, Lemma 3.3, p. 80]
that

wy € Cl+ﬁ"(1+ﬂ')/2(a}—) forany 0<8" <1 {4.6)
Since v = {—1 + +/1 + 46w)/24, (4.6) implies that
ve CWALOHE)/ 3@y forany 0< B <1 {(4.7)
We next rewrite the equation for v in divergence form as
%li = V- {di(1 + av + 2yu)Vu + diauVv} + f(z,1) (4.8)

where f(z,%) = au(l — u—cv) € L®(Qr). In (4.8), u,v and Vv are bounded
functions because of Lemma 2.1, Lemma 4.1 and (4.7) so that [4, Theorem 1.3 p.
43)] implies that

u € C’""’/z(-Q-;) with some (<o <1, {4.9)
We then return to the equation for v and write it as
% = dy(1 + 28uv)Av + g{z, ) {4.10)

1Theorem 10.1 in [7] is stated for the Dirichlet boundary condition and as such the Holder
norm estimates is for an interior domain with positive distance from the boundary. For zero
Neumann boundary condition, since the test function in the proof of the theorem is not required
to vanish at the boundary, we can modify the proof in [7] so that the Hélder estimate holds for

Qr.
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where g(z,1) = 2d;8[V|? + bu(1l — du —v) € C/*(Qr) by (4.7) and (4.9). Then
Schauder estimate ([7, Theorem 5.3, p. 320-321]) applied to (4.10) yields

v e Co o) 2(Qr), o = min{o, A}. (4.11)
In order to derive the regularity of u, it is convenient to introduce the function
wy = (1 4+ av +yuju (4.12)

which satisfies the equation
%f’ti = di(1 + av + 2yu)Aw; + h(s,1). (4.13)

Since di{1 + av + 2yu) € C°/*(Qr) and
h=au(l+av+ 2yu)(l —u— cv) + oudv /ot € co 1N Qr)
(see (4.9) and (4.11)), applying Schauder estimate to (4.13) gives

wy € CEHo )2 gLy, {4.14)
By solving the quadratic equation (4.12) for u, we have
u g o) T@Q ). (4.15)

We can also show that {4.11) and (4.15) are valid with o™ replaced by A, which
is the exponent concerned with the Hélder continuity of (ug,vo). For this result,
we have only to repeat the above procedure by making use of (4.11) and (4.15) in
place of (4.7} and (4.9) Y

Finally, the estimates (4.11) and (4.15) imply that the hypotheses of Theorem
2.1 are satisfied so that (u,v) exists globally in time. The proof of our theorem is
complete.
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GLOBAL SOLUTIONS FOR LOTKA-VOLTERRA COMPETITION
SYSTEMS WITH CROSS-DIFFUSION

YOSHIO YAMADA

1. PROBLEM AND RESULT

This article is concerned with the initial boundary value problem for the following
system of nonlinear parabolic equations

ug = pA[(1+ av)u] + au(l — u — cv) in Qx (0,00),

vy = vAv + bv(1 — du —v) in Q x (0,00),
®) du _9v _

o= 0 on 0 x (0,00),

u(-,0) =ug, v(-0) =1 in €,

where Q2 is a bounded domain in RY (N > 2) with smooth boundary 89, A is the
Laplacian, u,v,a,a,b,c,d are positive constants, 9/0n denotes the outward normal
derivative on 00 and wug, vy are nonnegative functions which are not identically zero.
The above system was first introduced by Shigesada-Kawasaki-Teramoto [15] as a pop-
ulation model to describe the habitat segregation phenomena between two competing
species; u and v represent the population densities. In (P), one of two species is mi-
grating under cross-diffusion effect in addition to the usual linear diffusion.

Mathematically, (P) and related problems have been discussed by many authors.
After Kim [9] showed the existence of global solutions for quasilinear parabolic systems
in case N = 1, the global solvability for (P) has been a very important subject. In
- -particular, Lou-Ni-Wu [11] have shown that there exists a unique global solution of (P)
for every initial function (ug,vy) € Wy (Q) x W7 (Q) with p > 2. (See also Yagi[17],
where the global existence is proved for similar quasilinear parabolic systems with self-
diffusion terms.) For N = 3, the global solvability of (P) has been shown by Yang [19].
However, his proof contains a serious error. So the existence of global solutions for (P)
is still an open problem for N > 3.

The purpose of the present paper is to establsih a sufficient condition for the exis-
tence of global solutions for (P) without any restrictions on space dimension N and
the amplitude of initial functions ug, vg. We will study this parabolic system in the
framework of L,(§2) x L,(2) where r is a real number satisfying

r > N. (1.1)
We assume
(A1) (ug, vg) € W,l(Q) X W,}(Q)

Date: March 25, 2003.
32



Our main result is the following.

Theorem 1.1. Assume that (ug,ve) satisfies (A.1). Morover, assume that any solu-
tion of (P) satisfies
N+2

lullions Clg,T)  withsome g2 —5—,

where Qr = Q x (0,T) and T is an arbitary positive number. Then (P) admits a
unique global solution u,v in C([0, 00); WH(§2))NC((0, 00); W2 () NCH(0, 00); L.(2))
satisfying
u>0 and v>0 in Q2x][0,00).
It should be noted that analogous global existence results have been obtained by

Pozio-Tesei[13], Redlinger[14] and Yamada [18]. These authors have discussed quasi-
linear parabolic systems of the form

uy = pA[(1 + av)u] + au(l — f(u) — cv) in Q x (0,00), (1.2)
vy = vAv + bu(l — du — v) in Qx(0,00), '
where f(u) satisfies
lim inf I_(—u_) = 00,
u—oo U7

with v > 1if N > 2 and v > 0 if N = 1. In [14] and [18], the existence of global
solutions for (1.2) with Neumann or Dirichlet boundary conditions has been established
for every N, but no information is given for (P).

The content of the present paper is as follows. In §2, we give some preliminary results
and a brief survey of procedures to accomplish the proof of Theorem 1.1. Our basic
idea is to decouple the system and study each single equation for u or v separately.
In §3 we give some remarks on the duality method to get an L,(Qr) estimate of u.
This estimate plays a very important role in §4 to derive a maximal regularity result
for v by considering the second equation of (P) as a linear parabolic equation with
inhomogeneous term. In §5 we employ the energy method to derive LP(Q) estimate
from || u ||z, (@r) estimate with some ¢ > (N+2) /2. In §6 we take an analytic semigroup
approach to study the Holder continuity of v with respect to ¢ variable as well as W} (Q)
estimate of v. The abstract theory of evolution operators is developed to get W)
estimate of u in §7.

Finally we should remark that Theorem 1.1 still holds true if we replace Neumann
boundary conditions in (P) by homogeneous Dirichlet boundary conditions. The pro-
cedure of the proof is essentially the same as in the Neumann case.

2. PRELIMINARIES

In this section we will collect some preliminary results on (P) and explain our strategy
to prove Theorem 1.1.
We begin with a local existence result for (P) due to Amann [4, Theorem] or [3,

Theorem 1].
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Theorem 2.1. Assume that ug,vo € W) for r > N. Then (P) possesses a unique
local solution (u,v) in C([0,T); WHQ)) N C((0,T); W) N CH((0,T); L (§2)), where
T is a mazimal existence time for the solution. ‘

Moreover, it is also possible to show the following result.

Lemma 2.1. Under the same assumption as Theorem 2.1, let (u,v) be the solution of
(P) in [0,T). Then

u(z,t) >0 and m>v(z,t) >0 for (z,t)€Q X [0,7),
where m = max{|| o |loo, 1} and || - ||oc denotes the supremum norm in €.

Proof. Since uy and v, are nonnegative functions, the nonnegativity of u and v comes
from the maximum principle (for details, see, e.g., Redlinger[14, Proposition 3.1]).
Moreover, it follows from u > 0 that

v; < vAv + bu(l — v) in € x (0,00).
Hence it is easy to see from the comparison principle that
v(z,t) < max{|| vo ||oo, 1}

Here note || v ||o< 00 because Sobolev’s embedding theorem implies W) c C(Q)
for r > N. O

By virtue of Theorem 2.1, it suffices to derive some a priori estimates of || u(t) lwz(q)
and || v(t) |lwz(q) to show the existence of global solutions of (P). Indeed, the following
result has been established by Amann[3], [4].

Theorem 2.2. If the solution (u,v) of (P) satisfies
| u(t) lwze< OT) and () lbwx< OT) forall te(©T)  (21)
with a positive constant C(T') depending on T, then T' = +00.

On account of Theorem 2.2, our task for the proof of Theorem 1.1 is to derive (2.1).
However, its proof is very long; so we will roughly explain the procedure to get (2.1).
For any T > 0, let (u,v) be the solution of (P) such that

u,v € C([0, T W) N C((0, T W) N CH((0, TT; Ln(€2)). (2:2)

We decouple the parabolic system in (P) and study the first equation for uw and the
second one for v separately.
We first assume

(i) L,(Qr) boundedness of u with some g > (N +2)/2.

The next step is to study the second equation for v. It is regarded as a linear
parabolic equation with an inhomogeneous term:

w=vAv+g in Qx(0,00),
dv/on =0 on 99 x (0,00),
34

(2.3)



with g(z,t) = bv(z,t)(1 — du(z,t) —v(z,t)). Denote by W;(Q2) for s > 0 and p > 1 the
fractional order Sobolev spaces (see [1, Chapt. VII]). We also define
W};Q’I(QT) = {w: Qr = Ryw,w, Vw,V?w € L,(Qr)} for p>1
with norm , '
I w lyzson=ll @ llza@e) + 11 e [l + | VO llz@0) + | VW llz,@ey - (2:4)

Since g belongs to L,(Qr) with ¢ > (N + 2)/2 by Lemma 2.1 and property (i), the
maximal regularity result holds true; one can show

(ii) W2 (Qr) boundedness of v

if v, € WZ29(Q).

In the third step we employ the standard energy method. We multiply the equation
for u by uP~! (p > 1) and integrate the resulting expression. Using Lemma 2.1 and
property (ii) one can get

(iii) boundedness of  sup{|| u(t) ||z,);0 <t < T}

for every p > 1.

In the fourth step, we study (2.3) again by analytic semi-group approach. Let B be
the L,(Q) realization of —vA + I with homogeneous Neumann boundary condition.
Then (2.3) can be rewritten in the integral form in L,(Q):

t
v(t) = e By + / e 9B (g(s) + u(s))ds. (2.5)
0
Applying B?, p € (0,1), to the both sides of (2.5) we will prove
(iv). boundedness of sup{|| Vv(t) ||z,@);0 <t <T}.

Here Lemma 2.1 and property (iii) will be used. Moreover, it is also possible to show
the Holder continuity of ¢ — BPv(t) with respect to L,(€2) norm if vy satisfies an
additional regularity condition. By Sobolev’s embedding theorem, this fact implies

(v)  Holder continuity of v(t) and Vu(t) with respect to t € [0,T] in C(£2) norm.

Finally, we focus on the first equation for u and regard v as a given function with
properties (iv) and (v). We set

Alt)u = —p(l + av(t))Au - 2uaVu(t) - Vu + wu
D(A(t)) = {u € W2(Q);0u/0n = 0 on 9Q)},

where w is a suitable positive number. By virtue of (v), one can see that {A(t)}o<i<r
generates a system of evolution operators {U(t, s) }o<s<t<r. The first equation for u is
written as

up = —A(t)u + h(t)
with

h(t) = u(t)[padv(t) —w —|~??5(1 —u(t) — cv(t)] € L. (Qr)



provided vy satisfies a regularity condition. Hence the abstract integral form associated
with the above equation is given by

12
u(t) = U(t,0)uo +/ Ul(t, s)h(s)ds. (2.6)
0
Application of V to (2.6) yields
(vi) boundedness of sup{|| Vu(t) llz.(;0 <t < T}

Summarizing (i)-(vi) we will get

with a positive constant C(T') when (u, vo) satisfies (A.1) and some additional regu-
larity conditions. These additional assumptions will be removed by smoothing effect
of parabolic equations.

3. LP— ESTIMATE FOR u

In what follows, let (u,v) be the solution of (P) with properties (2.2). So Lemma
9.1, in particular, implies that v is bounded and continuous in (z,t) € Q x [0,T]. The
important step is to derive

| ullzn< Clp,T) for p > 1 and T € (0, 00), (3.1)

with some C(p,T) > 0. However, its derivation is very difficult. When the first equation
for u includes a self-diffusion term, Choi, Lui and the author [6] have succeeded in
getting (3.1) under some conditions.

Another possibility to get (3.1) is the use of the duality method. We will briefly
explain the idea (see [19]). Let v be a continuous function in Q x [0,T]. For any
nonnegative function § € Ly(Qr) with ¢ € (1, 00) satisfying 1/p 4 1/g = 1, consider
the following backward parabolic equation

Wy = —pu(l 4+ av)Ap — 0 in Qx(0,7),
0

‘a% _ on 8Qx(0,T), (3.2)
(-, T)=0 in Q.

Let ¢ : © x [0,T] — R be a nonnegative solution of (3.2). Then
updr = / updr + / uhyda
0 Q
= / {pAl(1 + av)u] + au(l — u — cv) } Pdz
Q
— /{p,u(l + av)Ay + ub}dz.
Q

Integrating by parts and making use of Neumann boundary conditions for u, v and 9
we see that

dt Jg

%/ﬂwpdx = /Qau(l —u — cv)Ydr — / ufdz. (3.3)

Q
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Integration of (3.3) with respect to ¢ over (0,T) yields
/ ubdzdt < / uow(O)dfc+g/¢dazdt, (3.4)
Qr Q 4 Q

where we have used the nonnegativity of u, v and 1. On account of Holder’s inequality,
the right-hand side of (3.4) is bounded from above by

(3.5) w0 [|z,@l $(0) Iz, +;11—a 14 llzyc00) 1QT]™?.
I 1] 9(0) llz, (@) and || 4 ||1,(@q) are bounded from above by C || 6 | Lo(@r)» 1o,
1 lwzionS Crll 0 llzg@r,  and [} 9(0) llz,@)< Ci || 0 11,000, (3.6)

then we can get an apriori estimate for || u ||z, (o) - In Yang’s paper [19, Lemma 3.1], he
asserted that (3.6) is a consequence of a parabolic estimate by Ladyzenskaja, Solonnikov
and Ural’ceva [10, Theorem 9.1, Chapter IV]. However, their result cannnot be applied
because the modulus of the continuity of u(1 + aw(z,t)), which is the coefficient of
the highest-order term in (3.2), is not established yet. In our situation, Yang’s duality
argument is not correct.

4. MAXIMAL REGULARITY FOR v

In this section we assume (3.1) with p > 1. If we write the boundary value problem
for v in the form of (2.3) with

g(z,t) = bv(z,t)(1 — du(z,t) — v(z,1),
Lemma 2.1 implies
19 ey < bm(1 +m)|Qr[Y? + bdm || u ||1,,(qq)
for p > 1. Hence (3.1) gives ‘
19l on< Kilp, T) for p>1 (4.1)

with a positive number K (p,T) depending on p,m,T and || u L)
We now put an additional assumption on vg;

v € {v € sz"Q/p(Q); Ov/0n =0 on 90} with some p > 1. (4.2)

Recall the maximal regularity result for (2.3) with initial condition v(0) = vy (see, e.g.,
[5, §4.10 in Chap. 3Jor [10, Theorem 9.1 in Chapt. IV]):

1o [l gm< Call vo lz-2r0y + I 9 Ip@m)s (4.3)

with some Cy depending on p and 7. Here || - HWE’}(QT) is defined by (2.4).
From (4.1) and (4.3) we can show the following lemma.
Proposition 4.1. In addition to (A.1), assume (3.1) and (4.2) for p > 1. Then
| v ”ngl(QT)S Ky (p, T)
with a positive number Ky(p,T) depending on p,m, T, || v 2,00 and || vo [y
g

(@)
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5. ESTIMATES FOR ¢ BY ENERGY METHOD

In this section we will show that L,(Qr) estimtate of u with some ¢ > (N +2)/2
yields L,(Qr) estimtate of u for every p > 1. More precisely we have

Proposition 5.1. Assume (A.1) and

N+2
vy € W’;—Z/q_(Q) with some q 2> T2 nd Oug/On =0 on Of1. (5.1)
Additionally, if
iz, on< Cla,T) for T € (0, 00), (5.2)
then it holds that, for every p > 1, ‘
sup || u(t) 17, )< Kslp, T) (5.3)
0<t<T

with a positive constant K3(p,T).
Proof. We first note that Proposition 4.1 together with (5.1) and (5.2) implies
| Av [lz,en < Kalg, T) (5.4)

As a next step we employ Moser’s technique. Multiplying the first equation of (P)
by uwP~! and integrating by parts we get

1d
- Qu""da: = / wP ude
= fup‘l[,uV{(l + ow)Vu + auVo} + au(l — u — cv)ldz
Q
= —ulp—1) / (14 av)uP~?|Vul*dz — pa(p — 1) / P Vo - Vudz
o Q

+a/u”(1——u—cv)dw.
Q

, (5.5)
In (5.5), u and v are nonnegative; so that
4
/(1 + av)uP 2| Vul*ds > ——2—/ |V (uP/?)?dz, (5.6)
Q p"Ja
a/ wP(1—u—cv)ds < a/ uPdx. (5.7)
Q Q
Moreover, Grees’s formula gives
1
/ uP" Vo - Vuds = -—/ V(u?) - Vudz = L / uP Avdz.
Q bJa PJa
Hence it follows from Holder’s inequality that
1
I/up"th) - Vudz| < ’ | P ||yl Av L, ‘ (5.8)
Q

1 1
where ¢* is a number satisfying — + — = 1.
g q
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We now set w = u?/2. Making use of (5.6), (5.7) and (5.8), we see from (5.5) that

Lwe < - 22D ) Gug) |2 vap | wld) I 59)
alp - 1) [ w(®) 12, Av®) Iy
where || - || denotes Lo(£2) norm. By Gagliardo-Nirenberg inequality ([7])
lw B, @ <O Vwl+wl) | w |0 510

< 22°C{|| Vo [P w [P0 + [ w |2},

N
with k = — € (0,1). We apply Young’s inequality to || Vuw [|*] w |23~ Av ||z, @)

2q
then for any € > 0
1V [P w [P Av @< € | Vo |2 +C [ w 2] Av |55 (5.11)
with a positive constant C, > 0 depending on €. Taking € = % in (5.11) one can
deduce from (5.9), (5.10) and (5.11) Y
2w s -2 gu [P +0hiy iy | (512
with
At) = 14+ 1| Av |z, + || Av |75
Integration of (5.12) with respect to ¢ yields
@ P+ 222 [ 9wt 2 s <l w©) 1P +0 [ o) [ uls) I ds. (513

Since 2¢ > N + 2, we see
1 2q
= = < g
11—k 2q—N
so that (5.4) implies h € Ly(0,T). This fact enables us to apply Gronwall’s inequality
o (5.13):

) 1+ 222D [ ugs) 7 ds <l wi0) e (0 [ hsias) (50

for all 0 < t < T. Recalling w = uP/? we can obtain (5.3) from (5.14).

O

6. VARIOUS ESTIMATES FOR v BY SEMIGROUP APPROACH

In this section we assume (5.1) and (5.2). We will reconsider (2.3) by analytic
semigroup approach. Let r satisfy (1.1) and define a closed linear operator B in L,(S2)
by

By =-pAv+v for veD(B), (6.1)
39



where D(B) = {v € W2(Q);0v/0n = 0 on 99} is a dense domain of B. It is well
known that —B generates an analytic semigroup {e "#},50 in L, (), which satisfies

| BPe B ||, < M(r, p)t™* for p>0 and ¢t>0, (6.2)

where || - ||, denotes the operator norm in L"(€2) and B? is the fractional power of B
(see [8, Theorem 1.4.3] or [12, Theorem 6.1.3]). Note that D(B?) becomes a Banach
space with graph norm || w ||p(sey:=|| B w ||1,(5)-
We write the initial boundary value problem for (2.3) as
d .
—d—z + Bv = g1, v(0) = vy (6.3)

with g;(z,t) = g(z,t) + v(z,t). Note that, on account of Lemma 2.1 and Proposition
5.1,

sup || g1(t) ||o. ()< Ka(r, T) (6.4)
0<t<T

with Ky(r,T) = m{b(1 + m) + 1}Q" + bdmK;(r,T). We will study (6.3) in the
integral form

v(t) = e By + /t e =By (s)ds, 0<t<T, (6.5)
to show the following lemma. i
Lemma 6.1. In addition to (A.1),(5.1) and (5.2), assume
“ vo € D(B®) with some 0<o <1,
(i) For any p > 0 satisfying p < o
| B*v(t) |p. @< K,  0<t<T,

where Ky s a positive constant depending on r,m, T, p, K4(r,T) and || B7vq
(ii) For any p > 0 satisfying p < o

| B?(u(t + h) = v(t))

where 0 1s any positive number satisfying

L. (Q)-

LS Keh?, 0<t<t+h<T,

§<o—p and O<1l—p
and Kg is a positive constant depending on r,m,T, p,0, Ky(r,T) and || Bv
Proof. (i) It follows from (6.5) that

L’I"(Q> :

t
Bfuy(t) = BPe By + / Bre =984 (s)ds, 0<t<T. (6.6)
0

Since B! is bounded in L,(Q), vy € D(B?) with p < ¢ implies
I Bre By, L=l BP9 tB By, L)< M*(r) || B v
with some M*(r) > 0. Moreover, (6.2) gives

/0 | BP9, (s) |I1,0) ds < M(r, P)/O (t=9)7" [l 91(s)
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By (6.4)
t —
[ 100 oy 0 <« R
0 P
Therefore,
M(r, p)Ky(r, T)T ¢
1-p

L.(9) 48 < (6.8)

1
[ 1B )

0
Thus we have shown (i) from from (6.7) and (6.8).

(i) In order to prove the Holder continuity we note from (6.2) that for ¢ > s > 0
and p > 0

| B e B) |, =l B [ e =] [ B,

. s 6.9)
s M(r,p+1)(t—s (
S/s M(r,p+ 1)1 P dr < s/’+1) )
On the other hand, (6,2) also implies
2M
| Bet® — ) <) Bre® |, + | B o< 2E0D (s
for t > s > 0 and p > 0. Combining (6.9) and (6.10) we get’
11(0)(t — s)°
| B(e7*B — e7*B) ||, < ]\——1(-—;);(19——82— forany 0<6<1, (6.11)
where M;(8) = 2" M(r, p+ 1)* M (r, p)*~°.
We are ready to prove the Hélder continuity of ¢ — Bfv(t). From (6.6)
| t+h
BP(v(t +h) —v(t)) = BP(em M — =By, + / Bret+h=9B g (5)ds
t (6.12)

t
+/ Bp{e—(t—%—h—s)B _ e-—(t—s)B}g1 (s)ds

0

for0<t<t+h<T.
Since vy belongs to D(B?), the first term in the right-hand side of (6.12) is estimated
as follows:

t+h
“ Bp( (t+h)B _ e tB)UO llLr(Q): H Bp+1e—TB

bHh 6.13
S/ H Bp+1—oe~TBBUUO ( )

t
< Mah?7?,

L () d7‘

where My = M(r,1+p—o0) || By

L@ /(o= p)
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Application of (6.2) to the first integral in (6.12) also yields

t+h At
I / B”e_(Hh_S)Bgl(s)ds o) < M(r p)/ (t+h—=25)7"1 g1(5) llL,(o) ds
¢ ¢
< M(r, p)Ky4(r, T)R}*
—_— 1 _ p .
(6.14)

Finally, we make use of (6.11) to estimate the last integral in (6.12). Take 6 > 0
such that p 4+ 6 < 1. Then we get

4
H L Bp{e_(t+h_s)B — e_(t_s)B}gl(S>ds HIM(Q)
t

< / MyO)H(t — 5) || gu() |1y ds (6.15)
3 M, (8) Ky (r, T)T =210
- 1—p—0 '

Thus we can obtain the conclusion of (ii) from (6.13), (6.14) and (6.15). O

Since we have shown Lemma 6.1, we invoke the embedding result for D(B*) (see [8,
Theorem 1.6.1] or [12, Theorem 4.3 in Chap.8]):

_ 1 N
D(B*) c CY(Q) ifp>§+§. (6.16)
Proposition 6.1. In addition to (A.1), (5.1) and (5.2), assume
1 N
vy € D(B?) with 1>0> 5t o (6.17)

Then there exists a positive number K7 determined by r,m, T, K4(r,T) and || Bvy ||, (0,
such that
| Vo(t) fleo< K7

for0<t<T.

Proof. In view of (6.17) it is possible to choose p satisfying

LN
- —— ag.
2 Tor P>

For such p, (i) of Lemma 6.1 together with (6.16) gives the assertion. O

Similarly to Proposition 6.1, one can also show the Hélder continuity of ¢ — ()
and t — Vo (t) with respect to the supremum norm in §2 from (ii) of Lemma 6.1.

Proposition 6.2. Under the same assumptions as Proposition 6.1 there exist positive
constants 0 and Kg such that

[v(t) = v(s) llow< Kslt = sI” and || Vu(t) = Vou(s) [l Kglt — 5|’

for0<s<t<T. ‘
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7. EVOLUTION EQUATION FOR 4

In this section we assume (5.1), (5.2), (6.17) and concentrate on the study of the first
equation of (P). We regard v as a known function possessing several properties given
by Propositions 5.1, 6.1 and 6.2. The initial boundary value problem for u is written
as

up = (1 + av)Au + 2apVu - Vu

+apulv + au(l — u — cv) in 2 x(0,00),
ou ' (7.1)
57;—0 on 09 x (0,00),
u(+, 0) = uy, in Q.

We will treat (7.1) as the Cauchy problem for an abstract evolution equation in L, (£2).
Define a closed linear operator A(t) in L,(£2) by

A u = —p(l + av(t))Au = 2auVu(t) - Vu + wu
with dense domain
o
"on

where w is a sufficiently large number satisfying

D(A(t)) = D := {u € W2(Q) =0 on 00},

w > pa? sup || Vou(t) |5 /(r—1)
0<t<T 1

It is possible to choose such w by Proposition 6.1. Repeating the method in the author’s
previous paper [18, p.1404] one can show

M
IO+ A0 < 13t tE0.T) A€ (e Cilang(] < S+ (1)
and
IA®) T < My, te[0,T], (7.3)
where Ms, M, are positive constants and vy is a suitable constant satisfying 0 < v < 7/2.
Proposition 6.2 gives
| (A®) = A())u [lzoo < Malt — (| Au [|z,0) + | Vau |z} (7.4)

for all w € D, where Mjy is a positive constant depending on «, u and Kg. Here we
should recall the following regularity result for elliptic operators

w2< Cs (1 A@u @) + | v llz.@) (7.5)

for v € D, where Cs is a positive constant independent of u and ¢ (see, e.g., [2] or [7,
Part 1, Theorem 19.1]). Hence it follows from (7.3), (7.4) and (7.5) that

Il (A(t) — A(S)A(T) ™ ||, < Mgt — s|° for 0<¢t,8,7<T, (7.6)

with some Mg > 0.
Since the family {A(t)}o<i<r satisfies (7.2) and (7.6), we can apply the theory of

abstract evolution equations. According to Tanabe’s result [16] (see also [12, Theorem
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6.1 in Chapt. 5)), there exists a unique family of evolution operators {U(t, ) Yo<s<t<t-
It is also possible to show

| VU@, 8) [l < Mqjt — s|7/% for 0<s<t<T (7.7)

in the same way as the proof of Lemma 5.2 in [18]. Indeed, it is sufficient to employ
Gagliardo-Nirenberg’s inequality (see [7, Part 1, Theorem 10.1]

< Ca [l u eyl v I 5y< Cs Il A@ I3l w5y for uweD

in place of (A.12) in [18], where the last inequality follows from (7.5).
We are ready to get the following estimate.

Proposition 7.1. In addition to (A.1), assume (5.1),(5.2) and (6.17). Then there
exists a positive constant Ky such that

| Vu(?)

L)< Ky
for0<t<T.

Proof. . In terms of evolution operators {U (¢, s) }o<s<i<T, (7.1) is written in the integral
form

t
w(t) = U(t, 0)uo + / Ut 5){ha(s) + ha(s)}ds (7.8)
0
with
hi(t) = apu(t)Au(t) and  ha(t) = au(t)(1— u(t) — cv(t)).
Proposition 5.1 assures u € L,(Qr) for every p > 1. Hence repeating the arguments

in §4 we see from Proposition 4.1 that v € W2>'(Qr) for every p > 1. By Holder’s
inequality

/0 | ha®) [ dt < 0] A ol @ Moy -

Since the right-hand side of this inequality is bounded, it is easy to see h; € L.(Qr).
Similarly, hy € L,(Qr). Therefore,

h = hl + hz S L,«(QT) (79)

Define r* > 1 by 1/r +1/r* = 1. Since r > 2 by (1.1), note r* < 2. Making use of
(7.7) and (7.8) we obtain

I Vu) @ <I VU 0)u L.() ds

" /H VU, $)h(s)
< M {rw o Nl + / (t = )72 || h(s) [l oy ds} (7.10)

i | R tl/r ~1/2
<o R e L

for 0 <t < T. On the other hand, Vu(t) is continuous in t € [0,7T] with respect to
L,(£2) norm; so that

| Vu(t)

)} OStSt(J:




with some t; € (0,T). It follows from (7.9) and (7.10) that

A ll@n TR

| V) o< M; {ta”? I %

for ty < t <T. Thus we complete the proof.

Proof of Theorem 1.1.

We first assume that (ug,vo) satisfies (5.2) and (6.17) as well as (A.1). In this case
Propositions 6.1 and 7.1 enable us to verify (2.1); so that Theorem 1.1 follows from
Theorem 2.2.

We next drop conditions (5.2),(6.17) and accomplish the proof. We recall Theorem
2.1 to get

u(t),v(t) € D = {w € WA(Q); ouw _ 0 on GQ}

on
for every t € (0,T] with some T > 0. Take any to € (0,7) and fix it; then
v(te) € DC D(B?) forany o<1 (7.11)
Since r satisfies (1.1), it is easy to see
1 N
’U(to) & D(BU) for 1 _>_ g > —2‘ + —2’; (712)
from (7.11). Moreover, Sobolev-Besov’s embedding theorem ([1, Theorem 7.58]) yields
N N
W2Q) Cc WP(Q) if g>r and p=2- —+ r (7.13)
If ¢ < 7, then (7.13) is valid for every p < 2. Therefore, we see from (7.11) and (7.13)
0
o(to) € W22/4(Q) and 5%@0) =0 89 (7.14)

These facts (7.12) and (7.14) mean that the pair (u(to), v(to)) satisfies (5.2) and (6.17)
in addition to (A.1). Regarding (u(to),v(to)) as initial data we repeat the preceding
arguments for (P) with (ug,vo) replaced by (u(to),v(to)). Then we can get a priori
estimates for || Vu(t) ||z, and || Vu(t) ||z, (q) and complete the proot.

Remark. In (5.5), set p = 1; then

) Ny +a 1l 6@ IP< @ ] 6(t) o -

Therefore, Gronwall’s inequality yields

() sy +a Il u(®) 13,00 to llzae €

for 0 <t < T. In case N = 2, the above inequality assures the assumption of Theorem

1.1. Hence the global solvability in case N = 2 easily follows.
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Multiple Coexistence States for
a Prey-Predator System with Cross-Diffusion
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3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, JAPAN

1 Introduction

In this paper we study nonnegative steady-state solutions of the following strongly-
coupled parabolic system

up = A[(dy + pr2v)u] + u{ar — biu —cv)  in QX (0,00),
vy = A[(dg + pa1w)v] + viag + bou — cv)  in Q x (0, c0),
u=v=0 on 90 x (0,00),
u(+,0) =up >0, v(-,0)=v>0 in €,

(1.1)

where Q is a bounded domain in RY (N > 1) with smooth boundary 8Q; p12, pa
are nonnegative constants; d;, a;, b;, ¢; (¢ = 1, 2) are also constants, and they are all
positive except for a; which may be nonpositive. The system (1.1) is known as the
Lotka-Volterra prey-predator system with cross-diffusion effects. In (1.1), » and v,
respectively, represent the population densities of prey and predator species which are
interacting and migrating in the same habitat 2. Such a density-dependent population
model was first proposed by Shigesada, Kawasaki and Teramoto [20] to investigate the
habitat segregation phenomena.

In diffusion terms, d; represents natural dispersive force of movement of an indi-
vidual, while p;; describes mutual interferences between individuals; p1 and po; are
usually referred as cross-diffusion pressures. The above model means that, in addition
to dispersive force, diffusion also depends on population pressure from other species.
For details, see the monograph of Okubo and Levin [16]. First cross-diffusion pressure
p12 means the tendency that the prey keeps away from the predator. In a certain kind
of prey-predator relationships, a great number of prey species form a huge group to pro-
tect themselves from the attack of predator. So we assume that the population pressure
due to the high density of prey induces the diffusion of the form py; A(uv) in the second
equation. This kind of prey-predator models has also been discussed in [8, 15, 19]. The
boundary condition means that the habitat Q is surrounded by a hostile environment.
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The system with the aggregation term V(doVv — pavVu) (instead of A(dy + pa1u)v]
in (1.1)) is also an interesting model. We will discuss such a problem elsewhere. See
also [16] for the biological background.

The purpose of the present paper is to investigate nonnegative steady-state solutions
of (1.1). Thus we will concentrate on the following strongly-coupled elliptic system

A1+ av)u] +ula —u—cv) =0 in €,
(SP) ¢ A[(1 + pu)v] +v(b+du—v)=0 in €
u=v=0 on 02,

which is obtained from (1.1) by employing the rescaling

b [45] Cldz bgdl o blu h CoV

— £ = T s s _—

’ d27 Cle ’ bldz ! dl ’ d2
(1.2)

_ dap12 _ dypay 0 = ar
cdy’ bidy dy

For simplicity, we have dropped the ‘ ~ 7 sign in (SP).

We are mainly interested in positive solutions of (SP). It is said that (u,v) is a
positive solution of (SP) if u > 0 and v > 0 in Q. Among other things, we will prove
that when (o, B,b, ¢,d) belongs to a certain range, the positive solution set {(u, v, a)} of
(SP) contains an unbounded S-shaped curve with respect to a, while when (e, B,b,¢,d)
falls into another range, the positive solution set {(u,v,a)} contains a bounded S or
S-shaped curve. These results not only confirm multiple existence of positive solutions
for (SP) but also suggest that the dynamical behavior of (1.1) is quite complicate. The
stability analysis for the above coexistence steady-states will be treated in a forthcoming
paper.

When there are no cross-diffusion effect (o = 8 = 0), (SP) is reduced to the classical
Lotka-Volterra prey-predator system. This system has been discussed extensively by
many authors (e.g., [1, 4, 5, 6, 10, 11, 12, 13, 14, 17, 21]). In particular, we know
the exact range of parameter (a,b, ¢, d) for the existence of a positive solution of (SP)
(see Li [10, Theorem 1.A] or Lépez-Gémez and Pardo [13, Theorem 3.1]). So it is
possible to determine completely the coexistence region in a parameter space (a,b) (see
[13, Figure 1]). Furthermore, Lépez-Gémez and Pardo [14] have proved the uniqueness
of positive solutions for the special case when the spatial dimension is one (N = 1,
a=p§=0).

To discuss the case (@, ) # (0,0), we need some notation. Let A;(g) be the least
eigenvalue for the following eigenvalue problem

~Au+g(z)u=Xu in Q, u=0 on 09, (1.3)

where ¢(z) is a continuous function in Q. We simply write A1 instead of A1(0). It is
well known that the problem

Au+ula—u)=0in Q, u=0 on 00 (1.4)
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has a unique positive solution 6, if @ > A1 (see, e.g.[1]); moreover, a — 6, : [ A1, 00) =
C(Q) and ¢ = X (g) : C(2) — R are continuous and strictly increasing functions. Here
C(€) is equipped with the uniform convergence topology in Q. It is possible to show

that (SP) has two semitrivial solutions
(6,,0) for > Ay and (0,6;) for b> X\

in addition to the trivial solution (0,0).

Concerning the problem (SP), Nakashima and Yamada [15] have obtained a sufficient
condition of parameter (a,3,a,b,c,d) for the existence of a positive solution with use
of the index theory.

Theorem 1.1 (Nakashima and Yamada [15]). For a > )y, there exists a positive
solution for (SP) if one of the following conditions is satisfied:

ety —a —b—df,
A | e A [ ————— .
1<1+049b)<0 and 1<1+ﬂ6a><0, (1.5)

cty — a —b— df,
d M|———ro 1.
>\1<1+a65)>0 an 1<1+ﬁ04>>0, (1.6)
where it is understood that 6, = 0 for b < Aq.
For a < A1, (SP) has no positive solution.

Before stating our results, we will explain the meaning of Theorem 1.1. Regarding
a and b as parameters, we define

~b—df
i - R2 . ) = .
Sl._—{(a,b)eR 'A1<1+ﬂ9a> OfOTGZ)‘l}, (1.7)

. 2 . c&b—a - ,
Sz ——-{((I,b)ER . )\1 <1+C¥9b>—0 fOI bZAl} (18)

Lemma A.l in Appendix implies that if SA; < d (resp. M1 > d), then S; forms a
monotone decreasing (resp.increasing) curve starting from (A, A;). Lemma A.3 asserts
that S, is a monotone increasing curve which starts from (A, A1). See Fig. 1. Combining
these properties, one can deduce from Theorem 1.1 that if (a,b) lies in a region R
surrounded by S; and Sz, then (SP) has a positive solution. This R, in case a = 3 = 0,
corresponds to the exact coexistence region shown by Lépez-Gémez and Pardo [13].
Furthermore, Lemma A.5 implies that S; curve is located below (resp.above) Sy curve
near (A1, A1) if (@A +¢)(BA1 — d) < 1 (vesp. (aX; + ¢)(BA1 — d) > 1). From the view-
point of the bifurcation theory, we can see that positive solutions bifurcate from (6,,0)
when (a, b) crosses Sy curve. Similarly positive solutions also bifurcate from (0, 8;) when
(a,b) moves across Sz. We will give proofs of these bifurcation properties in Lemma
2.4. In this sense, Theorem 1.1 suggests that the structure to the positive solution set
changes at d/f = A;.
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Once Theorem 1.1 is obtained, we are led to the next interesting problems; whether
or not (SP) has multiple positive solutions and whether (SP) admits a positive solution
even if (a,b) lies in the outside of R. Regarding a as a bifurcation parameter, we set

S = {(u,v,a) : (u,v) is a positive solution of (SP), a > A{}.

Our main results are concerned with the global structure of §. The first result asserts
that for some (a, 3,0, ¢, d) with min{gb,d} > fA;, S contains an unbounded S-shaped
curve (with respect to a) which bifurcates from the semitrivial solution curve {(0,8;,a) :
a> 0} :

Theorem 1.2. Assume min{pBb,d} > ;. For any ¢ > 0, there exist a large number
M and an open set

O1=01(c) C{(a,8,b,d) : > M,0<a,d/f~A1,b— X <M}

such that 001 N {(«a,B,b,d) : d/B = A1} is not empty and, if (o, B8,b,d) € Oy, then S
contains an unbounded smooth curve

Iy = {(u(s), v(s),a(s)) € C1(Q) x C1(Q) x (A1, 00) : 5 € (0,00)},

which possesses the following properties: ‘

(i) (u(0),v(0)) = (0,6), a(0)=a*> X, a'(0) >0, where a* is a unique number
satisfying (a*,b) € S.

(ii) a(s) > a(0) for all s € (0,00) and sli)r(r)lo a(s) = oo ;

(iii) a(s) attains a strict local mazimum and a strict local minimum at some s =3
and s = s (0 < § < g), respectively.

Let @ := a(3) and a := a(s). Theorem 1.2 implies that (SP) has at least one positive
solution if a € (a*,a) U (@, o0); at least two positive solutions if @ = a or @ = @ and at
least three positive solutions if a € (a,@). Furthermore, we will show the nonexistence
of positive solutions in a € (0,a*]. We remark that a*, a, @ depend continuously on
(@, 8,b,¢,d) and, moreover, (a*,b) lies on S3. Since Theorem 1.2 implies that (SP)
possesses multiple positive solutions for any (a,b) such that («,3,b,d) € O; and a €
[a,@], a multiple coexistence region can be constructed in (a,b) space. Furthermore,
this region is contained in R, because ¢* < ¢ < @ and (a¢*,b) € S, and S, is the left
side boundary of R.

For some (a,f,a,b,¢,d) with 8b > fA; > d, S contains a bounded S or D-shaped
curve, which bifurcates from the semitrivial solution curve {(0,6,,a) : a > 0} and
connects the other semitrivial solution curve {(6,,0,a); a > A1}:

Theorem 1.3. Assume §b > A1 > d. For any ¢ > 0, there exist a large number M
and an open set

Oz = 04(c) C {(ar, 8,b,d) : B> M,0< a, Ay —d/B,b~ X < M1}
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such that if («, p,b,d) € Og, then S contains a bounded smooth curve
Iy = {(u(s), v(s), a(s)) € (@) x C1(@) x (M, ) = s € (0,C)),

which possesses the following properties:

1) (u(0),v(0)) = (0,8), a(0)=a*> X, d'(0) >0, where a* is a unique number
satisfying (a*,b) € Ss.

(i) (u(C),v(C)) = (0a(c),0), a(C) = ax > A1, where a. is a unique number
satisfying (a«,b) € Sy.

(iii) I has at least one turning point with respect to a. Furthermore, there exists
an open set 04 C Og such that 00, N {(a,B,b,d) : d/B = A} is not empty and if
(o, 8,b,d) € O, then Iy has at least two turning points with respect to a.

The above result asserts that if (a, 3,b,d) € Of, then I'; forms a bounded S-shaped

branch of positive solutions. Furthermore, it can be shown that 4 = I?&)é]d(&) >
se| 0,

max{a*, a.} if (o, 3,b,d) € Oy \ O). This fact means not only that (SP) has multiple
positive solutions for any a € (max{a.,a*},a) but also even in the right-hand out-
side of R, there exists a region where (SP) admits multiple positive solutions, because
(max{as,a*},b) lies on the right side boundary of R. In particular, for the one dimen-
sional case (N = 1), the above multiple coexistence results in Theorems 1.2 and 1.3
are very different from the uniqueness result in the linear diffusion case « = 8 = 0
(see [14]). By virtue of (1.2), Theorems 1.2 and 1.3 assert that the original model (1.1)
possibly possesses multiple coexistence steady-states in cases when f§ = dyp21/(b1dz) is
large and o = dapra/(cady),|d/B — M| = |b2/p21 — Ail, b — A1 = ag/dy — A are small
positives.

A crucial point of proofs for Theorems 1.2 and 1.3 is to construct a positive solution
curve of (SP) in the extreme case o = 0. The analysis is based on the bifurcation
theory and the Lyapunov-Schmidt reduction procedure. If § is large and b — Ay >
0,|d/8 — M| are small, then this reduction enables us to find a relationship to a suitable
limit problem. Making use of the perturbation theory developed by Du and Lou [7],
we will depict precise solution curves I of (SP) near limit solution sets. In [7], they
have obtained an S-shaped positive solution curve of a prey-predator system with the
Holling-Tanner interaction terms.

The contents of the present paper are as follows: In Section 2, we first reduce (SP) to
a related semilinear problem (EP) by employing new unknown functions U = (14 av)u
and V = (1+ fu)v. Next we give preliminary results about a priori estimates and
bifurcation properties of positive solutions to (EP). In Section 3, we will introduce a
perturbed problem (PP) for the Lyapunov-Schmidt reduction scheme. This problem
(PP) can be reduced to (EP) with o = 0 through some changing of variables and will
play an important role in proofs of Theorems 1.2 and 1.3. The solution set of (PP) will
be investigated by way of a finite dimensional limit problem in Sections 4 and 5. In
Section 6, we will accomplish the proofs of our main results. Some basic properties of
Sy and S defined by (1.7) and (1.8), which are needed in Sections 2-6, are presented in
Appendix.
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Throughout the paper, the usual norms of the spaces L?(§) for p € [1,00) and C(Q)
are defined by

ol = ([ |u<x>fpdz)l/p ond ol 3= max]ufa)]

In particular, we simply write ||u|| instead of ||u||. Furthermore, we will denote by @ a
unique positive solution of

—A® =XM% in Q, &=0 on 99, ||P|=1

2 Preliminaries

In this section, we first introduce a semilinear elliptic system equivalent to (SP). Next
we give some a priori estimates and local bifurcation properties of positive solutions to
the semilinear system.

2.1 Reduction to the Semilinear Problem

Suppose (a,3) # (0,0) in (SP). Since we are interested in nonnegative solutions, it is
convenient to introduce two unknown functions U and V by

U=(1+av)ju and V= (14 fu)v. (2.1)

There is a one-to-one correspondence between (u,v) > 0 and (U,V) > 0. It is possible
to describe their relations by

w=u(U,V) = 5% [{(1= BU +aV)? + 45U}/ + BU - oV - 1} . (22
v=v(U,V) = 51& [{(1 oV + AU + 4aVIV/? 4 6V — BU — 1} . (23)

As far as we are concerned with nonnegative solutions, (SP) is rewritten in the following
equivalent form

AU+ u(a—u—cv)=0 in Q,
(EP) ¢ AV +w(b+du—v)=0 in Q,
U=V =0 on 09,

where u = u(U, V) and v = v(U, V) are understood to be functions of (U, V') defined by
(2.2) and (2.3). It is easy to show that (EP) has two semitrivial solutions

(U, V) = (6,,0) for a> X and (U, V)=(0,6,) for b> Ay,

in addition to the trivial solution (0, 0).
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2.2 A Priori Estimates

We will derive some a priori estimates for positive solutions of (EP).

Lemma 2.1. If a < A\; or max{fb,d} < A1, then (EP) (or equivalently, (SP)) has no
positive solution.

Proof. Suppose for contradiction that (U, V) is a positive solution of (EP) for the case
max{3b,d} < fA;. Observe that, if d < 8b < SAq, then

V Vv
b —v) < - 1
1+ﬂu( + du —v) < 1+ﬁu{b(1+ﬁu) v} < bV in Q,
while, if 8b < d < Ay, then
1% av 3 d.
T I Qi - = .
1+ﬁu(b+du v) < 50+ Bu) <1+ﬁu dv) < ﬂV in Q

Then multiplying by V the second equation of (EP) and integrating the resulting ex-
pression in 2, we obtain

{!IVVH2 <b|VIE if d < Bb< B,
(2.4)

d
[VVI[? < 3 IVI?  if Bb<d< B
Since ||[VV|* > Xﬂ\VHQ by Poincaré’s inequality, (2.4) obviously yields a contradiction.

By virtue of U(a — u — ¢v)/(1 + av) < aU in Q, one can derive the assertion for the
case @ < A; in a similar manner. ]

We will give a priori estimates for positive solutions in the case a > A1 and max{#3b, d} >
BA1. '
Lemma 2.2. Let (U, V) be a positive solution of (EP). Then

a if aa<ec,
0<ufz) SU() < M(a) = § (c+ aa)?

4ac
0 < w(z) <V(z) < (1+BM(a))(b+dM(a))

if aa > c,

Jor all z € Q.

The following lemma gives other a priori estimates in the special cases.
Lemma 2.3. Let (U, V) be a positive solution of (EP). If aa < c, then
6, >U >u in Q. (2.5)

If Bb < d, then
V>6 in Q.

For the proofs of Lemmas 2.2 and 2.3, see Lemmas 2 and 3 in [15].
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2.3 Bifurcations from Semitrivial Solutions

In this subsection, we regard a as a bifurcation parameter with b fixed. We will derive
local bifurcation properties for positive solutions of (EP) from the semitrivial solution
curves

{(U,V,a) : (U,V)=(0a,0), 2> M} and {(U,V,a) : (U,V)=(0,0), a> A}

Corollary A.2 in Appendix implies that, if b > SA; > d or d > SA > b, then there
exists a unique constant a. € (A, 00) such that

M (T—”—"—d‘i—> =0, (2.6)

1 + ﬁga*
Corollary A.4 asserts that, if b > Ay, then there exists a unique a* € (A1, 00) such that
k cdy — a*
A = 0. 2.7
! ( 14 ab ) ( )
Let ¢, and ¢* denote positive functions such that
bt dba, _ ~
~Ad, — 1+ﬁ6a*¢ =0 in Q, ¢.=0 on 09, |¢ =1
and 0 .
A+ T g =0 in Q, ¢ =0 on"dQ, || =1

14+ aby
By the definition of a, and a*, such ¢, and ¢* are uniquely determined from the above
eigenvalue problems, respectively. Furthermore, for p > N, we define

{X =W (@) @) ] x (w2 @) n WP (@)
Y

(2.8)
= LP(Q) x LP(Q).

Lemma 2.4. Suppose a > A;. Then the following local bifurcation properties (i) and
(ii) hold true:

(i) Let b > BA;y > d or d > Ay > Bb. Then positive solutions of (EP) bifurcate
from the semitrivial solution curve {(6,,0,a) : a > A1} if and only if a = a.. To be
precise, all positive solutions of (EP) near (8,,,0,as) € X x R can be expressed as

{(Ba, + 59 + sU(s), s¢u +sV(s), a(s)) : 0< s <6}

for some ¢ € X and 6 > 0. Here (U(s),V(s),als)) is a smooth function with respect to
s and satisfies (U(0),V(0),a(0)) = (0,0, a.) and JoV(s)é. = 0.

(i) Let b > A1. Then positive Qolutzons of (EP) bifurcate from the semitrivial so-
lution curve {(0,05,a) : a > A} if and only if a« = a”. More precisely, all positive
solutions of (EP) near (0,0;,a*) € X x R are given by

{(s¢* 4+ sU(s), b + sx + sV (s), a(s)) : 0 < s < §} (2.9)
Jor some x € X and § > 0. Here (U(s), ( ) a(s)) zs a smooth function with respect to
s and satisfies (U(0),V(0),a(0)) = (0,0, a* df 5)¢* = 0.
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Proof. For a > Ay, set
flu,v) =ula—u—cv), glu,v)=0v(b+du-r),

where u, v-are functions of U, V' (see (2.2) and (2.3)). By Taylor’s expansion at (U*,V*),
we reduce differential equations of (EP) to the form

( AU ) + ( F(U* V=), 0(U*,V*)) )
AV gu(U*,V*),0(U*,V*))
fo BN w ow [ U-U PU-UV =V [0
(3 8)(3 3)(5% ) ()= (2)
(2.10)

where fi := fu(w(U*, V*),v(U", V")), ufy := wu(U~, V") and other notations are defined
by similar rules. Here p'(U — U*,V = V*) (i = 1, 2) are smooth functions such that
p'(0,0) = ,OZ(U,V)(O,O) = 0. Differentiation of (2.1) yields

1 0y ( 14av au uy Uy
01 /) Bu 1+ Bu vy vy |
Since u and v are both nonnegative, we have
wow L (14 fu —au ) (2.11)
vU Vv 1+ av+ fu —~fv 14 v
Let Bb > A1 > dor d> A > fb. We note that
f(04,0) =0,(a—0,) =—-Ab,, g¢(0,,0)=0.
So by virtue of (2.3), setting (U*,V*) = (6,,0) and U := U — §, in (2.10) yields

AT 1 a—20, —cb, 1480, —ab, U
AV 1+ 40, 0 b-+déb, 0 1 1%

_ (2.12)
pPU,Via) )\ 0 )

where p'(U,V;a) (i = 1, 2) are smooth functions satisfying

p%U—’V) (0,05a) = p?ﬁv)(o,o;a) =0 forall a> A;. (2.13)
Define a mapping F': X x R — Y by the left hand side of (2.12):
— — : - 208,)0, —
_ AT + (a — 20,)T — L9ate 9“ Wary 4 2TV, 0)

F(U,V,a) = b df 14 p6, . (2.14)

A V4 o2 (T, V;

VgV e (U,V;a)
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Since (U,V) = (0,,0) is a semitrivial solution of (EP), it turns out F(0,0,a) = 0
for @ > A;. It follows from (2.13) and (2.14) that the Fréchet derivative of F at
(U,V,a) = (0,0,a) is given by

(aa + ¢ = 208,)0, .lc

Ah+ (a—20,)h —
. h
k Ak 4+ + ab, 2
1+ B

By virtue of (2.6), we see that Ker F(U,V)(O’ 0, a) is nontrivial for ¢ = a, and that

Ker F(TJ',V)(O7 0, as) = span{®, ¢},
with
—1 [ (vas + ¢ = 208,,)
1 + ﬂga*
where (—=A — ax +26,,)7" is the inverse operator of —A — a, +26,, with zero Dirichlet

boundary condition on 0. (Recall that —A — a. + 26,, is invertible; see, e.g.,[4].) If
(h,k) € Range F(va)(O, 0,a*), there must exist (k,k) € X such that

.
¢:-(—A—a*+29a*) x|

(aay + ¢ — 208, )0

Ah+ (ax — 28,,)h — “k=h in Q,

bt b 1+ B0,

+ a 7 .

k4 ——=k =k

A +1+59a,k in €,
h=k=0 on 0Q.

It is well known that the second equation has a solution k if and only if fﬂ k¢« = 0. For
such a solution k, the first equation has a unique solution A because of the invertibility
of —=A — @, +26,,. Then, it holds that codimRange Fi57 v (0,0,a*) = 1. In order to use
the local bifurcation theory by Crandall and Rabinowitz [2] at (U,V,a) = (0,0, a.), we
need to verify

F(—U—,V),a(07 07 a*) ( ;/1 > g Range F(U_,V) (0, 0, a,*) .

Since p' (0,0,a,) = 0 by (2.13), it follows from (2.14) that

TV)a
(2
F(U,v),a(ﬂ)o’“*)( ¢ )
dé, 0 [(aa+c—2a8,)0,
_ (1'2 da|,_,. "[’“a—é( 1+ 66, ) =
d-pb_dbo|
(14 p0,,)% da|,_,, *
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Suppose for contradiction that there exists k € W2?(Q) N Wa?(Q) such that
b+ db,, - d—pb  db,
14 86., (14 86.,)% da

Multiplying the above equality by ¢. and integrating, we have

1 db, 2
4= | T, =
Thus it follows from the strict increasing property of 8, that d = 8b, which is impossible.
Recall that U = U — §,, one can immediately obtain the assertion of (i) by applying
the local bifurcation theorem ([2]). We note that the possibility of other bifurcation
points except a = a, is excluded by virtue of the Krein-Rutman theorem.
Next assume b > A;. Setting (U*, V*) = (0,6,) and V =V — 6, in (2.10) implies

Ak + P

A=

6, — —
AU -2 "8y 4 2N U,V a)
(86— d 2/%53391’ = ( 8 ) , (216)
AV - 22T PRI 4 (b 20,)V + p2(u, V;
LTt (02607 + P Vi)
where p'(U,V;a) (i = 1, 2) are smooth functions with Pt —(0,0;a) = 0 for all @ > X;.

- UVv)
Define a mapping G(U,V,a) from X x R to Y by the left hand side of (2.16). So it
turns out that G(0,0,¢) = 0 for a > A; and

hy 1+ ab,
Gwy(0,0,9) ( k > = (b — d — 266,)6,
Ak —
14 aby
Thus it follows from (2.7) that Ker G(U,V)(()? 0, ) is nontrivial if @ = ¢* and

Ker G 1;7)(0,0, a”) = span{¢™, x},

where :
- b—d—230,)6,
— _(ca-byam) | "l :
x=-(-A- b0y [0, (217)
Furthermore, a similar procedure to the proof of (i) yields
Gu7).(0,0,a )( X ¢ Range G(U’V)(O,O,a ).
Hence the local bifurcation theory ensures the assertion of (ii). O

Remark 2.1. Corollary A.2 in Appendix also asserts that if b > A; and d > §A;, then
A (%%‘?—) <0 forall a€ (\,o0).

So it follows from (2.15) that Fov) (0,0,a) is invertible for any a € (A,00). By the
implicit function theorem, we see that, if b > A; and d > 81, then no positive solution
bifurcates from the semitrivial solution curve {(6,,0,a) : @ > A1}.
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3 Lyapunov-Schmidt Reduction Scheme

We will carry out the Lyapunov-Schmidt reduction procedure in case a = 0: Qbserve
that, in @ = 0, (EP) is reduced to the problem

AU+U<a—U—1i;U):O in 0,
(EP)o V(i _.._V__>: ,

Av+1+ﬁU +dU 15 30 0 in Q

U=V =0 on 0f.

We introduce the following change of variables in (EP)g;
a=A+eay, b=MN+eby, d/f=X+er, f=7y/e, U=cw, V= £z, (3.1)

where € is a small positive parameter and 7 is a constant which may be nonpositive. In
what follows, we will mainly discuss the case that d/B and b (> A1) are close to A\; and
B is large. Through (3.1), (EP)g is rewritten in the form

Aw+)\1w+5w(a1—w~ i ):O in 9,
14 yw

(PP) S Az 4 A = (5 - =0
v z + 1z+1+7w 1+ Tyw T 7w ={ in €,
w=z=0 on Of0.

Note that (3.1) maps semitrivial solutions

(U, V)= (04,0) (@a> A1) and (U,V)=(0,6,) (b > A1)
of (EP)o to semitrivial ones

1 1

(w,z) = EO,\1+EM,O and (w,z) = {0, _€—0A1+5b1
of (PP), respectively. Further, it follows from Lemma 2.4 and (3.1) that in case 7 < 0,
positive solutions of (PP) bifurcate from semitrivial solution curve {(e70),1¢0,,0,0a1) :
ay > 0} if and only if

a1 = a1(€) := %(a* —A1). (3.2)

Similarly, positive solutions of (PP) bifurcate from other semitrivial solution curve
{(075—19/\1+eb1,01) : a3 > 0} if and only if

0= 6} (6) == 2 (M (i 4ut) = M), (3.3)
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In order to apply the Lyapunov-Schmidt reduction method, we will give a similar
framework to that of Du and Lou [7]. For X and Y defined by (2.8), we introduce
mappings H: X =Y and B: X x R—Y by

H(w,z) = (Aw+ \w, Az + A\1z),

cz z z (3.4)
B - —w— by + Tyw — .
(w,z,a1) (w (al w 1 'yw> Trow ( L+ Tyw ] 'Yw))

Then (PP) is equivalent to

H(w,z)+eB(w,z,a1) = 0. (3.5)

Denote by X; and Y; the L?-orthogonal complements of span {(®,0), (0,#)} in X and
Y, respectively. Furthermore, let P : X — X; and Q : Y — Y] be the L?-orthogonal
projections. Hence for each (w,2) € X, there exists a unique (s,t) € R? such that

(w,2) = (s,t)P +u, where u= P(w,z). (3.6)
Additionally, (3.5) is decomposed as

{QH((S, )P + u) + cQB((s,1)D + u,a;) = 0,
(I -QH((s,t)®+u) +e(I - Q)B((s,1)® + u,a1) = 0.

By virtue of H((s,t)®) = 0 and (] - Q)H(X;) = 0, (3.5) (that is (PP)) is equivalent to
QH(u) +eQB((s,t)® +u,a1) =0 (3.7)
and
(I-Q)B((s,t) +wu,a;)=0.

In view of (3.7), we define a mapping G : R* x X; — Y} by

G(s,t,a1,e,u) = QH(u) +eQB((s, )P+ u,a1).
Then it follows that

G(s,t,a1,0,0) =0 for any (s,t,a1) € R>.

Furthermore, it is possible to verify that

Gu(s,t,a1,0,0) = QH for any (s,t,a;) € R>;

so that Gy(s,t,a1,0,0) is an isomorphism from X; onto Y;. Therefore, the implicit
function theorem implies that for any (s',¢',a}) € R® there exist a positive constant
g/ =¢'(s,t',a}) and a neighborhood N’ of (w,z,a1,¢) = (s'@,t'P,a),0) in X x R? such
that all solutions of (3.7) in N’ are expressed as

{((s,)® + u(s,t,a1,€),a1,€) = |s— &, [t = '], |ag — al], Je| < &}
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Taking account for the compactness of {(s,t,ay) : |s|, |¢], |a;| < C?}, one can find a
positive £9 = £0(C) and a neighborhood Ng of {(s®,t®, ay,0) : |s|, [t], |a1] < C} such
that all solutions of (3.7) in Ny are given by

8

{((s,t)(ﬁ—}—u(s,t,al,g),al,e) : 15[7 ltiv Ial} < C+507 IEI < 50}' (38)

Here we note that u(s,t,a1,) is an X;-valued smooth function with u(s,t,a1,0) = 0.
Hence if we put

5U(87taa175) :U(S,t,al,?f), (39)

then U(s,t,a;1,¢) is also smooth for |s, |t], Ja;| < C + & and |¢| < 9. The above
consideration gives the following lemmas:

Lemma 3.1. Suppose that |s|, |t], |a1] < C+eqg and || < 9. Then any element of the
set defined by (3.8) ;

(w,2,a1,6) = ((s,t)® + €U(s,t,a1,¢),a1,€)
becomes a solution of (3.5) (or equivalently (PP)) in Ny if and only if
(I - Q)B((‘S?t)@ + EU(S) t 0,1,€), al) =0.

Let M = {(s,t,a1) : |s], [t], |a1] < C+e0}. For each & € [ —£¢, 0], define a mapping
Fe:M — R? by

Fe(s,t,a1)® = (I — Q)B((s,t)® + €U (s,t,a1,€),a1).
It follows from (3.4) that, if we put U(s,t,a1,¢) = (W(s,t,a1,¢), Z(s,t,a1,€)), then

FE(S,t,al)
c(tP +¢e2)
— (s —
- [ VA , tb+cZ
b -
/Q1+»y(s¢+eW) [ 1+ Ty(sP 4 W) 1+'y(sq5+sW)] e

Lemma 3.1 asserts that for each £ € [ —£0,€0], the solution set of (3.5) in Ny is identical
to Ker F©.

4 Analysis of Limiting Solution Set

In this section we investigate the structure of Ker FO(s,t,a1). It will give a lot of
important information on a set of positive solutions of (PP) when € > 0 is very small.
It follows from (3.10) that

@3
s ( ~ sl - et | )
FO(s,t,a1) = 5 ol SNCRY

t[b—(b—T)c/ ¢ t/ & ]
T T se T g T 402
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Therefore, Ker F°(s,t,a;) is a union of the following four sets:

Eo:{(O 0,a1) : a1 € R},
(a1/|®}3,0,a1) : a1 € R},
(

(s

0,b1/|15,a1) : a1 € R},

{
{
{(s,0(v9),%(s)) : s € R},

II

where

o(s) = [bl — (by—7)s /Q 1%?} (fsz (—1122@?) hl’ (4.2)

v(e) = sl + eers) | i

By the identification (s,t)® with (s,t), £1 N E_:g, L ﬂj{:g and L, N —}ES can be
regarded as the limiting sets of semitrivial solution curves {(€7'0), 4eq,,0,01) : a1 > 0},
{(0,670), +eby5a1) : a; > 0} and the positive solution set of (PP) as e — 0, respectively.
By virtue of (4.2),

(0,(0),%(0)) = (0,b1/||g]I3, cb1) € La. (4.3)
It is easily verified that in case 7 > 0,
w(s) >0 forall s€[0,c0).

On the other hand, if 7 < 0, we can find a positive constant so = so(7/b1) such that

{c,o(s) >0 for s€]0,s0), (1.4)
p(s) <0 fqr s € (sp,00).
Thus it follows that :

(s0/7, #(s50), ¥(50/7)) = (50/7,0,50/|Pl[5/7) € L1 (4.5)

provided 7 < 0.
We will study profiles of 4:

Lemma 4.1. The following properties of ¥(s) hold true:
(a) If 7> 0, then ¥(s) > ¥(0) = ¢by for all s € (0,00) and l_iJ/m P(s) = oo,
(b) there exist positive constants T = 7(c,b1) and 7 = (¢, by) such that

(i) if (r,7) € [0,7]x [¥,00), then v (s) attains a strict local mazimum and a strict
local minimum at some s =3 and s = 5 (0 < 5 < 8), respectively, and ¥ (3) > P(s);

i) if (r,y) € [=F,0) x [§,00), then v¥(s) achieves a strict local mazimum in
(0, s0/7). Furthermore, there ezists a continuous function () in [~7,0) with

¥ < A(r) forall T€[-7,0) and limj(r) = o0 (4.6)

710
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such that, if v € [3,%(1)] for 7 € [=7,0), then ¥(s) attains a strict local minimum in

(0, s0/7) and, moreover, if v € [4(7),00) for T € [—7,0), then max

56[07‘30/'7]

Jor some § € (0, s0/7).
Proof. In view of (4.2), if we define

453
his;T):=
57 i=le) [ g

= [bl ~u-s [ 13—33@} A - </g m%)l

then
¥(s) = s||P|3 + ch(ys; 7).
Recalling ||&]| = 1, one can see
. h(s;7) T
lim ——= = ,
SR TN
which immediately yields
. P(s) 3 . YT
hm —L = l|P|l5 + for any 7€ R.
=00 8 H HB quHl Yy W

In particular, from Schwarz’ inequality

» \? P P
fitw) < [otar L2 = L avom

h(s; 0) = by (1 - 5/9 1 fgsqs) /Q 1 i@ (/Q (1 fz@z)—l
; ; N
24 ([ ) (o)

=b; = h(0;0) for all s€[0,00).

so that

¥(s) = $(8)

(4.9)

It obviously follows from (4.7)-(4.9) that 1(s) > 1(0) = cb; for all s € (0, 00) provided

7 > 0. Furthermore, note

S/ &° _/(1+s@)q>2 S/ P3 _/ P?

Hence

_ ) &2 H3 &3 ~1
Jim A(s;0) =b1 SIEZ’OL 1+ s /Q 1+ sd (/Q (1+s¢)2>

=b; = h(0;0).
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Thus (4.9) and (4.10) imply that 2(s;0) attains a global maximum at some point in
(0, 00). Therefore, in view of (4.8), one can see that, if 7 = 0 and + is large enough, then
¥(s) forms a ‘~’-shaped curve in the sense of the assertion (i). Hence this property of
1 (s) is invariant for small 7 > 0 and the proof of (i) is complete.

In case 7 < 0, (4.4) and (4.7) yield

his;7) > 0 for s € [0,s0),
h{s;7) < 0 for sé€ (sg,00).

Hence, if || is sufficiently small, then h(s;7) achieves a global maximum at some
point contained in (0,s0) because of (4.9). Thus by (4.8), we may assume that if
(r,7) € [=7,0) X [¥,00), then 9(s) possesses at least one strict local maximum in
(0, 50/). Observe that 1 depends continuously on (7,7); so we get a continuous function
5(r) in [ =7, 0) with (4.6) such that, if v € [¥,5(r)) for 7 € [-F,0), then (s) forms a

‘~’-ghaped curve in (0, so/7v) and, if y € [¥(7), 00) for 7 € [-7,0), then {max/ ]@b(s) =
s€[ 0,80 /v
¥(8) for some § € (0,s0/7). Thus the proof of Lemma 4.1 is accomplished. 0

5 Perturbed Solution Set of (PP)

51 Caser >0

Let 7 > 0. By Lemma 4.1, there exist sufficient large numbers A; and C such that

A =9(C) = Jax P(s). (5.1)

In this subsection, we will prove that if € > 0 is small enough, then all positive solutions
of (PP) in the range of a; € [0, A;] form a one-dimensional submanifold near

{(w,2,a1) = (B, p(y5), (s)) : 0< 5 < C).
More precisely, we will prove the following proposition:

Proposition 5.1. Let 7 > 0. Then there exist a positive constant eo = €o(A1) and a
family of bounded smooth curves

{5(£,¢) = (s(&,€),t(€,€),a1(£,€)) € R® : (€,¢) €[0,C(e)] x [0,60]}
such that for each fized € € (0,£0], all positive solutions of (PP) with a; € (0,A;] can
be parameterized as
e ={(w(&e),z(¢e),a1(&,¢)) = ((5,6)P +eU (s,t,a1,€),a1) :

(5,0ya1) = (s(6:2), HE, s (66)) for €€ (0,.0EN, )

and

5(6,0) = (57@(75)’@&(0)? 5(075) - (07t(5)7a>{(5))'
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Here C(g) is a smooth positive function in [0,e0] with C(0) = C and a1 (C(e),e) = Ay,
t(e) = g7t fQ Oy, ren, ®, ai(e) is the positive number defined by (3.3) and U 1is the
X, -valued function defined by (3.9). Furthermore, I'® can be evtended to the range
ay € [A1,00) as a positive solution curve of (PP).

As the first step to the proof of Proposition 5.1, we will express the nonnegative
solution set of (3.5) (or equivalently (PP)) near the intersection point of £, and La;
(s,t,a1) = (0,b1/[|D]I3, cb1).

Lemma 5.2. Let F© be the mapping defined by (3.10). Then there exist a neighborhood
Uo of (0,b1/||®)13, ¢b1) and a positive constant &y such that for any e € [0, &),

KerFsﬂUoﬂ_R:B
={(s(¢,2),t(&,€),a1(€,€)) : £ €[0,80)} U{(0,t(¢), a1) € Uo}
with some smooth function (s(€,€),t(€,£),a1(&,€)) in [0,00] x [0,80] satisfying
(s(€,0),t(&,0),a1(£,0)) = (& (&), ¥(£)),
(s(0,€),£(0,¢),a1(0,¢)) = (0,t(c), ai(e))-

Proof. By Lemma 2.4 and (3.3), we recall that for any ¢ > 0, there exist a posi-
tive number § = §(¢) and a neighborhood V; of the bifurcation point (w,2z,a1) =
(0,670, 4eb; , @} (€)) such that all positive solutions of (PP) in V¢ are given by

(wazaal) = (w(§a5)7z(€15)1a1(§75))
:(5(75* +€W(§75)7 5—19/\1+551 +£X + 52(5,5), al(f)g))

for £ € (0,8]. Here x is the function defined by (2.17), (W(,¢),Z(§,¢),a1(¢,€)) is a
certain smooth function such that a;(0,¢) = aj(¢) and [, W (€,£)¢* = 0. We define an
open set U, of R® by “

U, ::{(s,t,al) : s:/w@,t:/z@, (w,z,al)eVe}.
Q Q

s(ee) = [ wlee)s, Hes) = JEGEL

By virtue of the equivalence of (PP) and (3.5), we can verify that, if € € [0,&0], then

(5.3)

and put

KerF’:ﬂUEDEB
={(s(£,€),1(¢,€),a1(&,€)) : £ € [0,6]F U{(0,2(e), 1) € Ue}-

Since (0,(¢), a3 (¢)) is a bifurcation point for any € € [0,&0], it is possible to show that
U. contains a neighborhood Uy of (0,b1/||®|[3, ¢b1) if € > 0 is sufficiently small. Thus
the proof of Lemma 5.2 is complete. O
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Lemma 5.3. Assumet > 0 and let Ay, C' be positive constants obtained in (5.1). There
evist eg = €(A1) > 0 and a neighborhood U of {(s®, ¢(ys)P,1(s)) : 0 < s < C} such
that for each fized e € (0,£0], all positive solutions of (PP) contained in UN(X x (0, 41 ])
can be expressed as (5.2).

Proof. We will prove this lemma along the perturbation theory by Du and Lou [7,
Appendix]. Define £,([60/2,C]) = {(s,o(7s),%(s)) : s € [§p/2,C]} for the positive
constant do obtained in Lemma 5.2. By (4.1) and (4.2), direct calculations lead to

453
(1+ys®)?

Let (3, 0(75),%(5)) € Lp([60/2,C]) be any fixed point. Note that ¢(y5) > 0 for 7 > 0.
Thus (5.4) implies that, if ¢’(3) # 0, then F&t)(g, ©(735),%(3)) is invertible. In this
case, the implicit function theorem gives a positive number § = §(3) and neighborhood
W of (3,¢(v5)) such that for all £ € [0,6],

det. F ) (5,0(19),6(6) = 50130/ | 54

Ker F* N Uz = {(s(a1,€),t(ar,€),a1) : a1 € (%(3) — &,%(5) +9)}, (5.5)
where Us = WX (¢(5)— 9,4 (35)+9) and (s(a1,€),t(a1,€)) is a smooth function satisfying
(s(4(5),0),t(¢(5),0)) = (5, ¢(75)).

On the other hand, if ¥/(5) = 0, then (5.4) leads to rank F(Os’t) (3,0(¥%),%(3) = 1;

so that
dim Ker F{, (5, ¢(73), $(5)) = codim Range F3 (5, ¢(45), b(s)) = 1. (5.6)

After some calculations, one can see
- N g - e
Fp, (5,0(79),(3) = < 0 > ¢ Range F{ ;) (5, 0(7%), ¥ (5)). (5.7)

According to the spontaneous bifurcation theory by Crandall and Rabinowitz [3, The-
orem 3.2 and Remark 3.3], (5.6) and (5.7) enable us to get a positive number § = §(3)
and a neighborhood Us of (3, ¢(73),%(3)) such that for each € € [0,6],

Ker F* N Us = {(s(£,€), t(€,2), a1 (€,€)) = € € (6,6} (5.8)
with a suitable smooth function (s(&,¢),t(&,€),a1(£,¢)) in [=6,8] X [0,8] with
(5(0,0),2(0,0), a1(0,0)) = (5, (75), ¥ (5)).
For each Us satisfying (5.5) or (5.8), it clearly follows that

Lp([60/2,C)) C | J{Us : 5€[d0/2,C ]}

65



Since L,([00/2,C]) is compact, there are a finite number of points {sj} ', such that
(55,(s5),%(s5)) € Lp([80/2,C]) for 1<j <k,
k
Ly([60/2,C']) C U U;, where U :=U,;.
J=1

We may assume U; N U;4; are not empty for all 0 < j < k£ — 1. Here Up is an open
set obtained in Lemma 5.2. Thus by (5.5) and (5.8), if we put §; = §(s;), then for any
€[0,6;] (1 <j<h),

Ker F* N U; = {(s(£,€),t7(€,€),a] (§,€)) : £ € (=8;,6,)} =2 J¢
with some smooth functions s7 (£, ), t/ (£, €) and a{ (€,€) which satisfy

(s7(0,0),27(0,0), a}(0,0)) = (s5,(vs;), %(s5)).-

Additionally in view of Lemma 5.2, if we set

Js =A{(s(¢,2), (&), aa(§,8)) = €€ (0,80]}

k
and U = U U;, then

7=0

k
Ker F*NUNRY = | J J§ forany £ €0, mlgké l- (5.9)
7=0

Clearly (5.9) implies that Ker F*NUNRY. forms a one-dimensional submanifold. Indeed,
with the aid of the procedure by Du and Lou [7, Proposition A3], it is possible to
construct a smooth curve S(&,e) = (s(§,¢),t(§,€),a1(€,£)) such that

k ;

75 = S(0,C()],2),

j=0 (5.10)
(5(£,0),2(€,0),a1(£,0)) = (§; 0 (7€), $(£)),
(s(0 )

5(0,¢),1(0,¢),a1(0,£)) = (0, (¢), a1 (e))

for sufficiently small € > 0 and £ € [0,C(¢) ] with some smooth function C(¢). In view
of Lemma 3.1, one can get the conclusion from (5.10). O

The next lemma means that if a; € (0, A;] and € > 0 is small enough, then (PP) has
no positive solution outside of U.

Lemma 5.4. Assume 7 > 0 and V is any neighborhood of {(s®, o(vs)®,¥(s)) : 0 <
s < C}. Then there exists a positive constant €1 such that for each € € (0,e1], any
solution of (PP) with a; € (0, A1] is given by

(w,z) = (s,t)@ +eU(s,t,a1,e) for some (sP,tP,a1) € V.
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Proof. We will prove this lemma by a contradiction argument. Suppose that for a

certain sequence {(a},&,)} satisfying af € (0,A;] and 1in}) g, =0, (PP) with (a1,¢) =
n—

(a?,£,) have positive solutions (wp, 2,) such that (wy,2z,,a7) ¢ V for all n € N. To

derive a contradiction, it suffices to find a subsequence {(wn(x), Zn(x), a?(k),gn(k))} and

a sequence {(sk,tx)} such that

{(wn(k)wzn(k)) = (Sk,tk)@ +En(k)U(Sk,tk,a?(k),éfn(k)) for all ke N, (5.11)

Llim (Sk,tk,ay(k)) = (s,0(vs),%(s)) for some s¢€[0,C].
L~ 00

We begin with a prioti bounds for {w,} and {z,}. It follows from (2.5) and (3.1) that

1 .
wy < '—9>\1+6nA1 in Q
En

for all n» € N. Recall that

2

@
lim ——— = uniformly in Q, 5.12
=N T e T .

(see, e.g., Gui and Lou [9, Proposition 6.4]) one can see that

12l -
w, <1+ A15——= =M in Q
o113

for sufficiently large n. Therefore, {w,} is a bounded sequence in C'(Q). From the
second equation of (PP), we see

—Azy = A2, + EnZn (bl + TYWy — o >

14 yw, 14 ywy,
: z
< n nin |b S A
< Aizp + €z {1%—7‘ (1+7wn)2}
Enln .
= Z, [)\1+€n(b1—§—7')-m)—2] in

for sufficiently large n. This fact implies that £,2,/(1 +yM)? is a subsolution of (1.4)
with a replaced by A; +¢£,(by + 7). Thus by the well-known comparison result, one can
obtain £,2,/(1 4+ YM)? < 0 4e, (b, 47) in 2 so that

sy v i
zng(l—f—vM)ZMli—)- in Q.

En

Owing to (5.12), we get

¢ in Q (5.13)



for sufficiently large n. Therefore {z,} is uniformly bounded in C'(Q).
Let W, = w,/||wnlleo and Z,, = z,/||2n|lco. Thus it follows from (PP) that W, and
Z, satisfy

_ _ _ cz .
— AW, = A\, + £,W, (a? — Wy — i‘;‘f’ﬂ‘};) in €,

_ _ EnZn Zn . (5.14)
—AZ, =\ L SR — Q

Zn 1Zn + 1 + Yy, ( 1 + TYWn 1 + Yy, mn 3
Wy =2, =0 on 0.

Since {(wp, 2n, a})} is uniformly bounded in C'(Q)? x R, {a} — wy, — ¢z, /(1 +yw,)} and

{b1 + Tywn — 2z, /(1 + ywy,)} are also bounded in C'(£2). With the aid of the standard
elliptic regularity theory, {w,}, {z,} are uniformly bounded in C*(Q). So one can

choose a subsequence {(Wn(x), Zn(k)s aT(k))} such that

lim (@—n(k)azn(k)aa?(k)) = (ﬂ)—737 a?) in C? (ﬁ) x C? (—Q) x R

k—o0
with some (W,Z%,a$°). For simplicity, we rewrite this subsequence by {(wy, 2., a})}.
Since le £, = 0, letting n — oo in (5.14) implies that @ and Z satisfy
n oo

~AW = \yw, —AZ= MZ in £, W=z=0 on ON.

Together with |[W]|co = ||Z]|lcc = 1, we can deduce W = Z = P/||P||c. So the boundness
of {(wn, z,)} in C?(Q)? yields

lim (w,,2,) = (s&,t®) in C(Q) x C1(Q) (5.15)

Ty OO

for some s > 0 and ¢ > 0. By virtue of (3.8) and (5.15), for sufficiently large n, (wn, z,)
must be given by
(wm zn) = (Sm tn)d) + 5nU(3n7 ny a?a En)

with some sequence {(s,,t,)} such that li_)m (8nytn) = (s,1).
—r00

To prove t = @(vs), we multiply by @ the second equation of (5.14) and integrate
the resulting expression;

[N
YW, — ———— | =
o 1+qw, \ 1777 1+ yw,

By (5.15), letting n — oo in the above equality yields

@3 3
by — (b — =t | ——

which, together with (4.2), implies t = p(7ys).




Finally we will prove a$° = 9(s). Multiply the first equation of (5.14) by ¢ and

integrate it;
cz
U,P | af — w, — ————n——> =0
/Q " ( 1 14 yw,

Letting n — oo in the above equality, we have
@3
2 — 5||®|3 — ct =0
o —slply - et | =0,

which immediately leads to a$° = 9 (s) by (4.2). Then we obtain (5.11), which completes
the proof of LLemma 5.4. O

Proof of Proposition 5.1. We have already shown (5.2) by Lemmas 5.3 and 5.4. To
accomplish the proof of Proposition 5.1, it remains to show that I'® can be extended
to the range a; € [A;,00) as a positive solution curve of (PP). Let I'® be a maximum
extension of I'® in the direction a; > A; as a solution curve of (PP). According to the
global bifurcation theorem by Rabinowitz [18], the following (i) or (ii) must hold true;

(i) ' is unbounded in X x R;

(ii) I’* meets the trivial or a semitrivial solution curve at some point except for
(0, 5_19)\14”561 s a’{)

We introduce the following positive cone

P=<(w,z): w>0,2>0in Q and -8—1&<0\:8—Z<00n(99 .
ov ov

Suppose that (@, %,d1) € ['° satisfies (#, 2) € P at d, € (4;,00). Thus it follows that
w>0,2>0forall z €2 and

w(zg)2(wg) = 0 at some 2o € Q (5.16)
or
ow, (0% ‘
E(xl)a—y(:cl) =0 at some z; € 90. (5.17)

By applying the strong maximum principle to (PP), it is possible to prove that both
(5.16) and (5.17) imply & =0 or 2 = 0.

We now recall that positive solutions of (PP) bifurcate from the semitrivial solution
curve {(0,67105, yep,,a1) : a1 > 0} if and only if a; = @} and no positive solution bifur-
cates from other semitrivial solution curve {(€710),1cq,,0,a1) : a1 > 0} if 7 > 0 (see
Remark 2.1). In addition, it is easily verified that the trivial solution is non-degenerate.
Therefore, we can deduce that (d,2,4;) = (0,5“19,\1+5b1,a’{), which contradicts (ii).
Thus (i) is excluded and (i) must be satisfied. Lemma 2.2 and (3.1) imply the bound-
ness of w and 2

w(z) <
z(z) <

|

(/\1 +5a1),
{1+ M +ea) {u +ebi + 8 +em) (M +ear)}

m[)—am
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for all z € Q. Therefore, ' must be extended with respect to a; € [ Ay, 00) as a positive
solution curve of (PP). Thus the proof of Proposition 5.1 is complete. O

Proposition 5.1 in combination with Lemma 4.1 implies that I'® forms an unbounded
S-shaped curve with respect to a; for the special case when (r,v) € [0,7] x [¥, 00) and
£ > 0 is small enough:

Corollary 5.5. Suppose that (1,7) € [0,7] X [¥,00) and £ > 0 is sufficiently small.
Then the positive solution set of (PP) contains an unbounded S-shaped curve I'® which
bifurcates from the semitrivial solution curve {(0,67105 4eby,a1) @ a1 > 0} at a; =
ai(e). Furthermore, there exist two positive numbers a1 () > a,(e) (> a3(e)) such that
1) ifag € (0,ai(e)], then (PP) has no positive solution;

1) if a1 € (af(e),ay(e)) U (T1(g), 00), then (PP) has at least one positive solution;
i) if a; = a,(€) or ay = @ (e), then (PP) has at least two positive solutions;

iv) ifa; € (a;(€),a1(€)), then (PP) has at least three positive solutions.

Proof. Let S(&,e) = (s(€,€),t(€,¢),a1(€,€)) be the smooth curve obtained in Proposi-
tion 5.1. We recall that S(£,0) = (£, ¢(£),%(€)). Additionally it is possible to verify
that #'(0) > 0if 7 > 0 and ‘

lim (£(¢,€), a1 (€,€)) = (#(&), (¢)) in C*([0,C]) x C([0,CY),

where C is the positive constant defined in (5.1). Thus it follows from Lemma 4.1
that if (7,7) € [0,7] x [§,00) and € > 0 is small enough, then ¥.(§) := a1(&,¢)
(0 < & < Cfe)) satisfies PL(0) > 0, (&) > 1(0) = aj(e) for all £ € (0,C(e)] and
achieves a local minimum and a local maximum at some £(¢) and £(g), respectively,
which satisfy ll_l;%g(a) = § and il_g!(l)§(5) = s. Here, § and s are critical points of

obtained in Lemma 4.1. Define @ (¢) := ¥, (£(¢)), a;(€) := ¥ (£(g)) and

Ke(ar) :={£ € (0,00) : (&) = a1 }.

Obviously if € > 0 is small enough, then K.(a;) has no element for a3 € (0,a3(c)];
at least one element for a1 € (aj(€),a;(¢)) U (@1 (e), A1]; at least two elements for
a; = a,(€) or @ (e); at least three elements for ay; € (ay(¢),@1(¢)). We observe that
(5.2) implies that the number of elements of K.(a1) is equal to the number of positive
solutions of (PP) provided ¢ € (0,e9] and a; € (0,A4;]. Since the extension of I'¢
implies that (PP) has at least one positive solution for a; € [A1,0), we obtain the
assertion. L

5.2 Case7T<0

For the case 7 < 0, let A; be a sufficiently large number. In this subsection, we will
prove that all positive solutions (PP) with a; € [0, A; ] lie on a bounded curve near

{(s2,0(75)®,9(s)) : 0 <'s < s0/7}

if £ > is sufficiently small:
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Proposition 5.6. Let 7 < 0. Then there exists a positive constant eq = (A1) such
that for each € € (0,£0], all positive solutions of (PP) with ay € (0, A;] are given by

I ={(w,z,a1) = ((5,t) P+ U(s,t,a1,¢),a;) :
(s:t,01) € {S(&,8) : 0 <€ < Cle)}},
where S(€,€) € R® is a suitable smooth curve for (€,¢) € [0,C(e)] x [0,e0] satisfying
S(f,O) = (f,go(f),zb(f)),S(O,e) = (O,t(s),a’{(e)),S(C’(e),e) = (5(5)701’11*(5))'

Here, t(c) = &7 [ 0x4e1, D, 5(€) = €71 [ 05, 4ear. ()@ and C(€) is a certain smooth
Junction in [0,e0] such that C'(0) = so/7.

(5.18)

It follows from (4.3) and (4.5) that if 7 < 0, then £, intersects £; and L, at
(50/7,0, 50||®||3/7) and (0,b1/|®||3, cb1), respectively. Even if 7 < 0, Lemma 5.2 re-
mains valid; so that one can obtain the expression (5.3) for all nonnegative solutions of
(3.5) near (0,b1/||®|3, cb1). We can also express all nonnegative solutions of (3.5) near

(s0/7, 0, s0]|2|[3/7):

Lemma 5.7. Let 7 < 0. Then there exist a positive number §. and a neighborhood U,
of (s0/7,0,50]|®|13/7) such that for each e € [0,6,]

o . 1 [
Ker FFNU.N Ry ={5(¢¢): £ €[0,8.)}U {(E/ 9A1+sa1@,0,a1> € Ue}
Q

with a smooth curve S(€,¢) € R® (0 < € < §8.) which satisfies

5(¢,0) = (50— &/7,(s0 — £/7), ¥(so/y — €)) and §(0,¢) = (s(¢),0, a1.(€)).

Recall that (w,z,ay) = (6—'19/\1,}_5,1“(5),0, a1.(€)) is a bifurcation point of positive
solutions of (PP) on the semitrivial solution curve {(¢710),1.q,,0,a1) : a; > 0}. So
the proof of Lemma 5.7 can be carried out by the same argument as in the proof of
Lemma 5.2.

Lemma 5.8. Let 7 < 0. So there exists a neighborhood U of {(s®, ¢(ys)®,4(s)) : s €
[0,s0/7]} such that, if € > 0 is sufficiently small, then all positive solutions of (PP)
contained in U are given by (5.18).

Proof. Let §g and &, be positive numbers in Lemmas 5.2 and 5.7, respectively. Put

Lp([d0/2,50/7 = be/2]) := {(s,0(75),%(s)) : s € [80/2, 50/ ~ 8c/2]}

Hence £, ([ 60/2,50/7~8./2]) is a compact set and both £,,([80/2, so/y~6./2])NUp and
L,([80/2, 50/ — bc/2]) N U, are not empty. Here Uy and U, are open sets obtained in
Lemmas 5.2 and 5.7. Therefore, when ¢ > 0 is small enough, a similar procedure to the
proof of Lemma 5.3 enables us to construct the solution curve of (3.5) in a neighborhood
U’ of Lp([00/2,50/7 — 6¢/2]). We note that both U’ N Uy and U’ N U, are not empty.
Therefore, together with Lemmas 5.2 and 5.7, we obtain the assertion. O

71



Lemma 5.9. Let 7 < 0 and assume that Ay > 0 is sufficient large. Let V be any
neighborhood of {(s®, p(vs)®,¥(s)) : s € [0,80/7]}. Ife > 0 is sufficiently small, then
any positive solution of (PP) with ay € (0, Ay ] can be expressed by

(w,z,a1) = (s,t)P +eU(s,t,a1,e) for some (sP,tP,a1) € V.

Proof. Let {(wn,2,)} be any sequence of positive solutions of (PP) with e = ¢, | 0
and a1 = af € (0, A1 ]. It suffices to get a subsequence {(wy(x), Za(k) a?(k),en(k))} and a
sequence {(sg,tx)} satisfying (5.11) with C replaced by sg/7v. The proof of this assertion
is almost the same as that of Lemma 5.4. We have only to note that in case 7 < 0,
(5.13) is replaced by z, < 1+ (1 +yM)26,8/)|®||3 in Q. O

Proposition 5.6 follows from Lemmas 5.8 and 5.9. Furthermore, we can employ Lemma
4.1 to obtain the following corollary about the positive solution set of (PP) for the case
when (7,7) € [=7,0) X [, 00) and £ > 0 is sufficiently small.

Corollary 5.10. Suppose that (7,7v) € [—7,0) x [¥,00) and that € > 0 is sufficiently
small. Then the positive solution set of (PP) contains a bounded smooth curve

e = {(w(€),2(£),a1(¢)) : £€(0,C(e))},

which possesses the following properties;

() (w(0),2 g) 1(0)) = (0,703,411, 41(6)), 2 (0) > 0;

( ) (w(C(e)),2(C()); a(C(e)) = (77 0x 4eara(e)s 0, 014 (6)) 5
(ili) a ttains a strict local mazimum in (0,C(e)). In particular, if (7,v) €
(7)), then ay(€) attains a strict local minimum in (0,C(g)).

G
15
[-,0) x [7.3

The proof of Corollary 5.10 is essentially the same as that of Corollary 5.5.

6 Proofs of Main Results

Proof of Theorem 1.2. We begin with the case @ = 0. The bifurcation point of I®
obtained in Proposition 5.1; (w, z,a1) = (0,670, 4.¢4,, a}(€)) is mapped by (3.1) to the
bifurcation point (U,V,a) = (0,8, A1(cfy)) on the semitrivial solution curve {(0, 8y, a) :
a > 0} of (EP)o. In view of (3.1), we define

OF = {(8,b,d) = (y/e, 1 + b, (M +e7)v/e) : (1,7) € [0,7] x [§,00)}

for sufficiently small € > 0. It follows from Corollary 5.5 that if (3,b,d) € O and ¢ > 0
is small enough, then the positive solution set of (EP)o contains an unbounded S-shaped
curve I'(gp), which bifurcates from the semitrivial solution curve {(0,6y,a) : a > 0} at
a = X (cly). To be precise, if we let

G= M\ +¢cai(e) and a= X\ +ea(e),
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then (EP)o has no positive solution for a € (0, A (cBp)]; at least one positive solution
for a € (M (chy),a)U (@, o0) ; at least two positive solutions for a = @ or @; at least three
positive solutions for @ € (a,@). By virtue of the one-to-one correspondence between
(u,v) > 0 and (U, V) > 0 through (2.1), define I = {(u,v,0a) : (U,V,a) € I'gp), } for
o = 0 and (8,b,d) € O. Hence I is contained in the positive solution set of (SP)
and possesses at least two turning points with respect to a. Therefore, Theorem 1.2 is
proved for the special case a = 0.

Next we will justify that the above S-shaped property of I’y allows a small pertur-
bation with respect to a. Define F: X x R* =Y by

F(U,V,a,0,06) = (AU +u(a — u — cv), AV 4+ (b + dv — v))

to study (EP). Here u = w(U,V, a, 8) and v = v(U,V, a, §) are given by (2.2) and (2.3),
respectively. For any (8,b,d) € 09, let (Up, V) be any positive solution of (EP)o. We
note that all positive solutions of (EP)g near (0,6,a*) are given by (2.9). By following
the procedure by Du and Lou [7, Lemma 3.14], we can prove that, if ||[Us|lp2s > §/2 for
the positive number & in (2.9), then Fiyy)(Uo, Vo, a, 0,0) is a Fredholm operator with
index 0: so that the following (i) or (ii) holds true alternatively.

(1) Fu,yv)(Uo, Vo, a, 0,8) : X = Y is an isomorphism;

i) dim Ker Fiy,vy(Uo, Vo, @, 0, 8) = codim Range Fuvy(Uo, Vo,4,0,8) =1,
i .
Fa (UQ, Vo, a, 0, ﬁ) g Ra,nge F(va) (UQ, Vo, a, 0, ﬁ)

For sufficiently large A, denote by F(Ep)olo<a§A the restriction of I'gp), in the range
0 < a < A. Thus, in the same way as the proof of Lemma 5.3, we can construct a
positive solution curve I\gpjlocaca of (EP) in a neighborhood W of I(Epy,locaga if
« > 0 is sufficiently small. By taking account for the continuity of positive solutions of
(EP) with respect to a, it can be verified that I{gp)loca<a converges to I(Epy,lo<a<a
in CY(Q) x C*(Q) x [0,A] as o | 0. Furthermore, it is also possible to prove that if
0 < a < A and o > 0is small enough, then there is no positive solution of (EP) outside
of W. With the aid of Lemma 2.2, we can extend I {gp)loca<a to the rangea € [A, 00) as
a positive solution curve of (EP) by applying the global bifurcation theorem ([18]). By
virtue of (2.1), we can get an S-shaped positive solution curve of (SP) when (8,b,d) € O
and « > 0 is small. Thus the proof of Theorem 1.2 is complete. [

Proof of Theorem 1.8. In view of Corollary 5.10, the proof of Theorem 1.3 can be carried
out in a similar way. [

A Appendix

In this section, we will give some properties of S; and S; defined by (1.7) and (1.8).
Lemma A.1. If S\ < d (resp. BA1 > d), then S1 can be expressed as
Sy ={(a,b) : a= f(b) for b< Ay (resp.b> A1)},
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where f(-) is a continuous function with respect to b in (—o0, A ] (resp.[A1,00)) and
possesses the following properties:

() F(-) i strictly monotone decreasing if fA1 < d,
i - s
strictly monotone increasing if fA1 > d;
(ii) f(M) = A1
(i) blim f(b) =00 if fA; < d and blim f(b) = o0 if fA > d.
——00 —00

Proof. If we put
—b—db,
S((l,b) = )\1 <m§:> y
then
S()\I,b) = Al(—b) = )\1 — b. (Al)

We note that for each compact set K in

. =b—df, d . . .
ali)rrgom—_- 3 uniformly in K

(see, e.g., Dancer [4, Lemma 1}). Therefore, it can be seen that for any b € R

al—i—{go S(a,b) = Al (—-—g—) = )\1 — —g— (A?)

Recall that both of the mappings ¢ = Ai(g) : C(Q) = Rand a — 8, : [A1,00) — cQ)
are strictly increasing. Therefore, by virtue of

] (—b—d9a>:(ﬂb—d da g

9a \ 1+ 36, 1+ 36.)% da

we know that

(A.3)

[ strictly decreasing with respect to a € (A1, 00) if b < d,
S(a,b) is

strictly increasing with respect to a € (A1, 00) if 3b > d.

Suppose A < d. By virtue of (A.1) and (A.2), S(A1,b0) < 0 (resp.S(A1,bo) > 0) if
bo > Ay (resp.bg < A1) and ali}rr;o S(a,bo) < 0. Since S(a, bo) is a monotone function with
respect to a by (A.3), we see that, if bp > Ay, then S(a,bo) < Oforalla € (A\1,00). On the
other hand, if by < )1, then the intermediate theorem gives a unique ag € (A1, 00) such
that S(ao,bo) = 0. Furthermore, it follows from (A.3) that Sg(ag,bg) < 0. Therefore,
by the implicit function theorem, there exists a smooth function ¢ = f(b) such that

f(b0> = ag,
S(f(b),b) =0 for all be [by— 8 bo+38]
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with some 6 > 0. Since by € (—00, A1) can be taken arbitrarily, we deduce that there
exists a unique smooth function a = f(b) such that

S(f(b),b) =0 for be (—o0,A). (A4)
Differentiation of (A.4) with respect to b implies
Sa.(f(b)v b)fl(b) + Sb(f(b)7 b) = 0.

Note that Sy(a,b) = —=A[((=b — d6,)/(1 + 56,))
f/(b) < 0for b€ (—o0,A;). It is easy to see f(A;
blim f(b) = oco. Indeed, ifblim F(b) < o0,

—5 00 —r—00

< 0. Thus from (A.3) one can see
) = A;. Furthermore, we can show

lim S(f(b),b) = lim A itﬁ&@>:+m
b——o0 ’ b= —00 1 +ﬂ0f(b) !

which obviously contradicts (A.4). Thus the proof for b < fA; < d is complete. For
the case 8b > BA; > d, a similar argument is valid to get the conclusion. 0

The following corollary immediately follows from Lemma A.1

Corollary A.2. For each b satisfying b < A < d or, b > BA; > d, there exisis a
unique a = ax € (A1, 00) such that

—b—df,.\
Al(lwoa*)‘o

—b—db, .
A1 (W) <0 forall a€ (A,00).

Ifb> X and d > B, then

We can also give an analogous property for Ss:
Lemma A.3. If S, is defined by (1.8), it can be expressed as
Sy ={(a,b) : b=g(a) for a> A1},

where g(-) is a continuous function for a € [ A;,00) and has the following properties:
(i) g¢(-) is strictly monotone increasing;

(i) g(A1) = Ars

(iii) all)rgog(a) = 00.

The proof of Lemma A.3 is essentially the same as Lemma A.1; so we omit it. The
following corollary immediately follows from Lemma A.3.
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Corollary A.4. For each b > Ay, then there exists a unique a = a* € (Ay,00) such that
By — a*
A =0
! ( 1+ ab )

We can give more information about S; and S; near (Aq, Aq).

Lemma A.5. (i) The function f(-) defined in Lemma A.1 salisfies

f(b) = Al -+ (b — /\1) + O(b - /\1) near )\1.

_r
B\ —d
(i) The function g(-) defined in Lemma A.3 satisfies

gla) = A +

ah + C(a — A1)+ ola— A1) near A

The proof is based on the local bifurcation analysis and is accomplished in the same
manner as [21, Lemmas 3.4 and 3.6].
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e, HROEMSFRNICKTSH (FRKRIT) NFEROMBIERARTICLEATESL Z L4 HK
R LIZFE U exg & LTHLHEBICE AIR TS,

p LIZOWCHREZEBIOME T, O a7 v A NVORENELZHELIEEL, EFERREIC
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