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FEMA DI, ERADOTILEEOHSTES (b o tRETHE, £EOT V) %
RolrcgEEHRzZ T IV,

BEGi)id, BAbb=l BIU G HOF —FT—N%k, bhOERIBEEZTAT
WCREAIIR DI TEIRZIDLIENTELLLIE, FFRALT— N bk, F—FDE
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i “hi =G | BY EHWT B ICEEMRZTIVWI L 2EDbY. [FHEHORIED (b
DEFICEEL 5212 1THIET 55, TRIIEROBE A~y Fr FICHIRE S
TWBZ L2 EBRT D, HHEHORE Vi ey NV =01, T—FOEEHHOREH
2, FILWERTEZED o TWAZ L 2RI 5. HEHFOH LT —-FIT—IVIZH
WAR7OZS AP, FREH, i “h:-Gi | B EEATVWT IV LIZEE.
A (iii) (&, BT - VdEIC, FEORKEBEORGREICEMTSZ L 28
RTW5b,

INLOHANSEBIZEL DT LFHEDL, FERBEORANKTH L. 2F D,
bL (B,C):V — (B,CV: V' %6, C'D2CHV' OV ERIIEILTS.

1.2.3 Z#WH

Flat GHC O 7 0¥ 5 L% BT 5121k, 707 I 208HBLITT - VEICHET L H
—bT -V OFEEREAL, TEEDEERLEHEZ T LIICL TBLEFHETHS:

() = FIZIZE LT — VAL v

(i) HOXRT 4 DE—bT —VIL, vi=t,...,vp=t, EVIBTHS. 2721
o Ko ld, BOESICHNLZMHELR 2EHK
o Zuild, t1,.. ., tp 10, R4 OMOT —VIZH AL 2w
e bL DDt BEREELIE, FRALEIMIHHHATS

T—VERCx L T, & (i) T BLUCERIR T, &M (i) 1E, Bt -z bakw
TEEEWRTL. &MU )PFDHEOT, REUTCHICH T -V EFolk 124,
FBIH—ALRF 1TV 2I/TLNDET S,

H4izh00, BEELGEZHLTLIOETES745FVT0WE, 2E2ITH12D
TUy 5L LEEETH L. BEE TRV O T A, DTO X)L TEET Rl
BACEWRT 5, 70y L0E%

h:-GuUGxN | By UBn

YLXS. 22T, hIRER, Gy 3B —th —FT Lo VFEE, Gy i3I EE—1t
H—FT—NO<TNVFES, By RBE—LEF 1T — VO FEE, By dIEE—(bR
FAT—NDIVFELSTHA. bL GuUBy PR 2T, EdEEbcas
W, EELTERVEE D DOTES T LADE— FBINEEL VW L ET 5,
ErboBAE, 9 Gr i “Ef LT, Bix TiD L )IEET 5:

ho:- Gyo | Byo U Byo

TITold, BUAHBR Gy ORNFEL mguTdh 5.
Kio, B—{bRF 1T =V Byo % “E47" 5. 0%, FTRO&MEHZT L%, Byo
DARFE mgu (vt DO EDEATER) LT 5:

V(v+1t) €0 (v € Vo Nt € Var =t € Vp,)



nt_node([], s =y L,R) :- true | L=[], R=[].
nt_node([search(X,V){Cs],K, Vi,L,R) :- true |
V=Vi, nt_node(Cs,K,V1,L,R).

nt_node([search(K,V)|Cs],K1,V1i,L,R) :- K<K1 |
L=[search(X,V)|L1], nt_node(Cs,K1,V1,L1,R).
nt_node({search(¥X,V)|Cs],K1,V1i,L,R) :- K>K1 |
R=[{search(K,V)|R1], nt_node(Cs,K1,V1,L,R1).
nt_node([update(X,V)|Cs],K, _, L,R) :- true |
nt_node(Cs,K,V,L,R).
nt_node ([update(K,V)|Cs],K1,V1,L,R) :- K<K1i |
L=[update(X,V)|L1], nt.node(Cs,K1,V1i,L1,R).
nt_node ([update (K,V)|Cs],K1,V1,L,R) :- K>K1 |
R=[update(XK,V) |R1], nt_node(Cs,K1,Vi,L,R1).

t_node ([] ) :- true | true.
t_node([search(K,V)|Cs]) :- true | V=undefined, t_node(Cs).
t_node ([update(X,V)|Cs]) :- true |

nt_node(Cs,K,V,L,R), t_node(L), t_node(R).

Bl 1.2: 70t A0 25K ERL 2T 0T T L

BV AL, 0FDOVILIEHRE HLOKEED, ho FOEHE, ho DHIZRVEK
WEEHBRZ A2 LE . COWER 2T mgu 8%, Byoc DEEDORFHR mgu %
b LICHET X 5 [43)]. '
RANDT7 b L a~DHIR%Z g, LELS. THIERDLHITERSN 5:

Mo ={(et)enlveVe}

F72, nINRFET, U {viet}DBELTALE, [ CEIAER

n

U{vi=t:}
=1
ERDLY. CNEHALPI, NFEL mgun & b0,
EC, O, 22 DL, TNRCOHDBNE—LERDL TWE I Ebh b, £
T, HOEERL

hU:—GNUIEE;UBNUH

Yk,
RAGEH —FICBAL 2 (TEIW I EIEBELTEL Y. ZH, B— R «
T—VEFEFTHEZZET—FOEFHFR-TLE TV EDPLTH A,
T —VE
:- By U By
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2L 21213, B By % “EA7 T XV, b L By 7 BE bR E, B
mﬁmf%&w.ﬁ%éo&%u,%@%@%u

:- Byn0

b, Z2TOE, ByoRFE L mguTH 5.

1.3 EF—K#&%

Flat GHC 0 — F R0 B, [ 7 — # 0 8o o Eds b L AE LT 2251,
roT— VBT A0 RHERTLIILTHL. TN, o — VIR L BRRR LS
BB |30 BAR(LIREE % Heda 3 5 OASHMOE — F T [11] &3, BMERICT L.
DE— F R, %110 HiTilH-~<5 & 912, PARLOG [8] ¥ DEC-10 Prolog [3] € —
K e bIEMIZRL 5. Flat GHC 07200 — F 4RI [44] TRACRE SN, £
DFEBEREME, UM, BTONEELTLEMREELTH L.
HADE—FERIBOEFTENL TWHDT, $XTOEEKRTE WV Flat GHC
TUY 5 LDF—F DRNE BT S LIEIATRTH %, FZTHAZ, TUTTV
RAFROTOUTTIVY - AT AN EFoTWEDDERET 5!

(Ufmkxﬁ@%ﬁ,%%%fu&<%ﬁ%ﬁ@5.oib,fﬂfﬁA@%ﬁ¢K
ﬁD%ﬁ®w<O#®ﬁﬁﬁﬁ%ntt§,%mﬁBwéxﬁtlﬁﬁ,byiv
AV OBEBEER RETE AHAMET, BYRTRTANHBEATHE. BV
2L, TV, BOCHIONLOTHN, ERAOBIVELIZLSTHEDL
NELOTHN, FERIOE L HE LEOHMNHEREZ 6.

(2) T—N g DHOEROBBDE-FF, g DABFELT L, FOMBEELTNTOH
DEMBEE (TN R AL T L IER) ORKFL TiRES. ZOZLE, i
%@mﬁw%de~%%K&i%%®®,@ﬁwﬂﬁ@%~Fu,%®%ﬁﬁE
BT AMCEREL I B LERL TS, FlZIE, H1207 07 T AICH
N 3a<> K search(K,V) & update(K,V) #EX THIL ). woB I VOE—F
u,:VVF%KWELT%ioT%iMWE‘37VF%’lof%&é)ﬁ,%
1B K OEICRAEL Tid 2 & v, FSE B — ko 7o O#AREE =" T, hil
SWTIHHE (L) S & IE— F Ao TWTh X v, iBFE =i, ZORIRT
E—FHBHETH 5 (overloaded) &> 7.

Flat GHC ~DE— F RO EAL, EEWIC M%GHC®#7%/L®ﬂE 2% o
TWwh, ZO¥ Tty k% Moded Flat GHC &\ 7. BIEIE, Z DfbikbE/ s GHC 7
aysIvsIE o %ﬁ%%%&&fﬁkﬁ#?%%ﬁ,:niT%#ntﬁt&
E@GHC7D77A1,Lﬁ@x&%»?%#ﬂfw%#,Lﬁ@x&%»mﬁ%ﬂ%
X3 LI EHNTES, 2O—DOOFANE, GHC TIIAFT 1 DH—(LHRMT % L A
FBEIENWILIZES,

ﬁ%o)uﬁbf,%ﬁmfmﬁﬁA@$mm,“7$w%%%”&&%ﬁotﬁmﬁ
BB LI SINTEBLLEND L. ZOHER, W OPDT YA, .. ,po EBY
BHETLEL DI, v EEATAER ICOVWTABLTBE, 5 p %, 0T T
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LAPEFEE RO T VW EHBL A To® ciCBEKILT 5, EWnHbDTHAE, §
RTD p; B vz BFALT BN H 5705, H—LOERKTEEZ R 2. ZDOLI%T
075 L% IRE Q) KCE2RATANITE—D2DFKER, njlBOT7T—-¥ s 7%
EHLTBE, He0pid, MRZLEHEBL O v cCBMET2X910, 7

KBTI 2L 0w bD0THE, TOLHIRT—EFiX, Ay E—UVRELETAZ
ENTRRR CERTE L [46)].

R (2)ICRT A7 8775 3HE N, 1207105 5 AOHDIE search(K,V)
& update (K,V) & £/ EMN [search,K,V] & [update,K,V] ICEXMZ 52 LI10LoT
NBHNANED Z LA TE L., ZOKEEZ KT &, search & update 25K X VDD FL
FBTRZEL > TL IV, 2203/ FOFIBOE-FPRHUTE L RE, 2FD
WE (2) 13, 77 IIIBRODHEBEFSLITEMHI L HicsE, JALOEHY
HECLHRNFD L. INODRER, BWE—FFENLTEEICT S22 T <, B
GHC7UZ 7 LD E L THRILDTHS ).

ST, 7075 L0RABRETITN ) REE, B, R FTO GLERTERL W)
EBE5TFNFN Pred, Fun, Var &L X 9. F72 Pred, Fun, Var »S1ESN L7 b+ A4
CHDOEET FNEFN Atom, Term L EL.

ny SIEBD & pe Pred iIZxL, N, THEE{1,2,...,np} ZEDT. & f€PunlltFL T
FIRRIC Ny 2 ERT 5. 510, INXDES Prepm (BH) & Paom (7 F 2 H) %, KEF
Al (dependent type) & HWTRD & HIZEHKT 5:

Prerm déf Z Nf)*7 Patom (!___gf Z Np) X PTerm
fEFun pEPred
Prerm @E?Ciﬁ” <f17j1> cee <fna.7n> T, EQ Patom @giﬁ:‘i <p77:>q (qEPTerm) &%Eﬁf
ED. Prom DERTHHZEHNL, e LEL NAOHMIE, HP7 b ARZENL O HEELR
(instance) & HHLT 5 LHGL X WML HET 52 L Thb. £2T, BADHLL
T, FOBBEEICSAZHNTT 22 AT 570Dt Prom — Var UFunU{L}
(Lid ks £ 2bT) & TR0 & 5 1 w8kT

Rag{f,tﬁfmw”Jw®%@&§

t, FNRUS (DF ) e HFEHDL &)

“f>)dd{(@,tﬁfmw”mJ@%ijN}@ké
J 4, znbso L &

7 LAOHRILEICT 7 AT BB FEICERET S,

KADHHMTIE, NRADOKEREZKFRCTRIAT A LT L oC, BEEL TR
FERBIORLTWA, T, HRT7 P ADOTRNTOWRELR BARROMKILEFICT7 7 &
ATEDLEINITAHLDOTHA.

HKBIZE-FZ2EHRTSH. TE—ROEEMIT

M Ppiom — {in, out}

EERENDL, 2 Tin#out EIETAH. TOEHIT, §XTOT—VDOFTRTDOT
BB BAEOTXTONZIHL T, ind out DTN EE NS TELDOTH 5.
RCIRDEFEALD 7012, UTO L )LEEDEDTBI )

9



e E—F meM E/NApE Puayorm WXL, m/pld, KDL LWHEHZYT Prerm
5 {in, out} ~DOBEEE EDT:

Vq € Prerm ((m/p)(q) = m(pq))
TRE mOBHE—K LIRS, HHE—FOHSE—F bFEMKICERT 5.
o F—F mOME—Km&i,

Vp € Patom (Mi(p) # m(p))
TR CH L. BHE-FOME—F QFAMRICERT 5.

e IN%
Vg € Prerm(IN(g) = in) -

s TEsE— RN &L, OUT % IN LEFET 5.

1.4 TE—NK

E-FEHAOBME, 7OV 54 P EFREREET AT —VE G & OXNPHEIHIC
W BT STOHR (BTHIE) 2WETE-—FmeME2RkDHIETHL. bLLD
LIREFAHLLLIE, PL GOifE well-moded TH 5 &\, m%E DD
well-moding &\ 5. Well-moded &\ ) #E&id, P& GOERENR, &5 RIS
(7U75Aituj~w)%@%%wjuﬁiAwﬁﬁkwiﬁmﬁbf%ﬁﬁmm%
T 5.

a5 AOERE, welkmoded THWI & bdH B, Thi, HLH/SADE—FHEN
in L out DTEHIEHENTEE, HEVIEHESADE—FENFZNE-FEEHL
HBOMBICHBENIZEEREIEE S,

F 72, well-moded 27 07 7 ADOWHIE, BHELHD well-moding Z b 2. ZHI,
EABRAELZDBEILL 22D THZ DR VSAIIE, EbbDE— FEx 52 TbH
FhhuhbThs, #THhA, T—FiBAHREEHE TR, E-FHHOK
EDORTEHAT 5.

BT RS CERRE D L, FREBEHLLY, HRESTEEL SO G T R
LoD d 272 008RERT VT Y XD BEE 55, LL, SWERT VT XA
DT E—F AR EHOMETH Y, F16HBIUELTHTRNDI L LTS,

e FEAND, EERBOT OS5 AR TR . BECE AR, 12350
W (i) 13— FBRICRED b O TR\, LA L ZhIZE 2T, well-moded
RGBT HT T L, BWEELZTIC wellmoded 27 07 T MIERTEDLI LN DS,
FUY 5 ADEFIT L HEEE ORERES NI —VENE, St () RS20
LRaws SIEELTIEL Y., Shud, FEE—bT -V oEBRZIC L o> THLT —
VEERENEPD LNV RLTHS.

FUT S AR EEL TH L UANOERE LT, B = 0E—FOLREIIILT S
i, FOFTRCOBEN =, =y, ... EEFITOATVELDEALT. ZOHw
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BHELZ O, Flat GHC Tk, BLRABALRT AT VR LLE-F 2 OO0
CUSBLEDLTHD, FWIILT, ORI Lo THRAPHEREICRLZ L3k, &
E = DERD;RT o TWT, FOFIHEDE—FIIZRVEHI 2259256 THA (Tid
DOHF (BU) BH8). &b, T VEHOBTHRIBIERL 72BE—LT —id, 70754
BT A BE—LBREORTEMATLLDETS.

ETUTFTIE, 7075 20WEFOKE CO5ET A2HWE Rz 5L CiE, “h:-G |
B (7975 4f) F/2id “- B (T—VE) LV IBELTWA, FETFAMREL R
TREINE, BTFOTCoMuEBAT 245, 7 A MBGECHL TiE, (HF)HV)(GV)
DAEBAT B2, T—VEEHT —F 2% 0w0T, (BU)(BF)(BV) DA EHIN5.

(HF) Vp € Patom(h(p) € Fun = m(p) = in)
(h D plld B 5 BEGEE T % 513 m(p) = in)

(HV) Vp,p' € Pasom (h(p) € Var Ah(p) = h(p') = m/p = IN)
(hHD plld BFH05, hHiC 2 EL EEBHT AEK LT
Vq € Prerm(m(pq) = in), 2% 1) m/p = IN)

(GV) Vp,p' € Patom Va € G(iNL(p) € Var A ﬁ(p) = a(p)
= Yq € Prerm(m(p'q) = in = m(pq) = in))
(FMLEEFAFDp L GHO P ITHET S 61T
Vq € Prerm(m(p'q) = in = m(pq) = in))

(BU) Vk > 0Vt to € Term((t1 =k tg) € B = m/<=k, 1) = m/(=k,2))
(BT 1T - VD o055, £HEDFSE—F 2 D)

(BF) Vp € PayomVa € B(a(p) € Fun = m(p) = in)
(RF 4T =D pild b et BEEL T % 51 mp) = in)

(BV) ZH v, h&E BOWIZE 38 n (G DE, pr,...,pn ISHBL, 2055 A
U)ijﬁiﬁpl,...,pk (kZO) f?)ét'ﬁ—é :@éﬁ%

{R({T/_p_l_,-.-,m/pn}), k=00k &
R({m/p1,m/pr+1,-..,m[pn}), k>0DLE

2L RERITGHER 2 EbL2ODT, MO5E-FOTILFESIIHL
TRDOEHICEHZEIN5:

R(S) % Vg € Prorm 35 € S(s(q) = out A Vs' € S\{s} (s'(q) = in))

H# (BV)id, vOARNTO2EEPLOHBE, GHOTXTOHBPALHHTLZ &
WHEE., FnDS D 0 ORBE, FyxVHREIEE. $/2, EORDERT, shig

YE# 0 & H (HF)(HV)(GV)(BU)(BF)(BV) 1, head function, head variable, guard variable, body
unification, body function, body variable & ZNEFN KD T,

% (BU) & (BF) 17 A M BRRICILEAATERTH 255, TTTOESL BV) 2#HAL VLW
ITLTHS.
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CARAEL THE B LI b IR B (BY) REBIICIE, oL Y 5 BRBIBO I H
By 2L ORBHELE S, v OHBED I LOEND—OFRET 52 LEBNTS.
BERITITEOL Y LHBELH T

R({s}) & s=OUT (1.1)

R({s1,32}) & s1=32 (1.2)

RUINYUS) & R(S) (1.3)
R({OUT}US) & Vs €S(s' = IN) (1.4)
R({s,s}US) & s=INAR(S) (1.5)

R({5,s}US) & Vs eS(s=IN) (1.6)

RUFIUSH AR({s}USs) = R(S1USy) (1.7)
R(Ui<icnisi)) = R(Ui<icn{si/a}), 4 € Prerm (1.8)

AR ASTH A, MHE (1.7) 12, Robinson DEAFEHELHLObDTH 5.

MWHE (1.1) & (1.2) 1F, v OF ¥ RIVIBDE 4 207k 51, HI# (BV) 259 o LIS
HBIEERLTVES, o0b e HEZE, pr & p F ¥ ANVHET A2 —FN0 &b F
BTH DL EIE, BV)IE, FASO—FSEBICHENLLY, THELRF 1 IZHLS
P oT, m/pr=m/ps 723 m/py =m/py LHEME LD, IHIF, vdT 13 1EE
LN TWAEZ A ERT S, B od 1EEY, pllF vy 2VHBT 5561, (BV)
X, FORBESEEORIEFT 4B LoT, m/p=IN 7213 m/p= OUT &%
b,

1.5 HlF9ARRIDIRHAL

BIEIC BT 72 6 D E— F ORI DOV TS, FTIHT AP BFEILSLEZ S
ZEEL, TAMBERIEL EL2UHEEROOTHABTHI L LTS,

WATmBI O I I/ TIR, RF 4T =)V (&) EREICE, RF4T VLo TE
Hahs7otR)id, EFAMBEILoTERSN, WFELMHIN B EHROMALDTZ
b o BB L AL TIENTEL, B, 2OHBAEILEZES LR (n >0)
DFEF X ANTHY, ZOHEAOHBEIL, T VOWMTFICHEEINTVWDLEEZ LT L
NTEL, 7OV I LEHOBELERT 1 OWHICHHAT LKL, 2OEHEF vy F§
BT =)k, ¥ 7TV OHTHRT ELRF v AV EET IV, BEGEESE,
45 (atomic) TEHO FEHT (outlet, K7 1 (ICHRDOBHE) F3BHAL (inlet, FHARS
HBOBE) & LTHRET S, BRROLTVwT 72 L. BREHEDT v 4V
RETIL, SO EHIEEE SO, BRADF X ANVRHFIRIANTHEEY DD, OF
D, p1, ..., o 0B BIMFEERERI, p1g, ..., Pnq (¢ € Prerm) £ O L bHFAE.

T VOWFIRLTEFENH 2. FE LT - VOIFRL @O plld 2 ¥ OHF
X, PO SR (B0 ORUBFHCS 5T Thb. FhEALT—VOE 1
BIBRD (=4, 1)q 12 H BT OMFEL, FE25 18D (=, 20q D 2HTTHE. T—VOE
B2k, MEOEHESHLL WM THOEEEER LI ENTES.
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E-FHIFE, () FrAvRN, BIU () HT BT A BHROMNAOFANIEHL T
&Lt%@f%% BHAUOBERICH HEARFEHIL, ROZOTH 5:

G) Fr AN (PFDER) P nlOWT (9 bHOEMICH HDIEIHA—D2) T HEHiL T
wék% ZFDHIHLDL L HE—OPFROFBHEOTH Y, MIRIPAOTHS. D
T, HiOHIZ BT vy AVHETLERE, 1 (n- 1) BECEDLNS.

anj~»@ﬁikotwm%®7%,%;7& —OWFHROBEHOTH Y I %A
AT 5.

FPHIK (BV) 1, EHHE () 25 RTWE, BROBETICBIT 5 A () B3I
HOMED S BIUTHEHROBER (BA) OEEZ LI ENTE L, 079, #lf (BV)
REZDHEEID, HIICETAE-FN 2 MRS LD TH 5. §ilf (BV) &, EfvDHE
%@&ﬁ@v%@ DLAPERL Vv, FUEBPEBICEREFEA LD, 23y |
AL @ﬁﬁ%ﬁ&vﬁ%@%%&%f@b a3y MBI, FOEENRT 112D
ﬁfEL’CTT 4 T = VIR E ERDP BT VEEE L 5.

B (HF) B L8 (HV) 1B (i) 25 R TWA, FFE LT - ZonTE, H5H
THRA p DEEBRET A b AN VE Zid mp) OEZ in IZHFL 20T RS 2w,
L LIDL ) RBREL, T-VORTHEEW O, FROFEHIITITLRITE
oV ALTHE. (HV) O HIFIE, HOEERIC Wﬁ#@ﬁ@&ﬁ?%téi 3
N (T LY {—DEEZ R LA» 0 ZTHL 21T Iz 5%, &) Flat
GHC DEMGwmHN LR TV A

%Mﬂmni@ﬂ@n%% fERT 4 T—VICEAL 720 DI %56 %\, — 05|
BB D/8A (=, i)g D HMAGL 72EIE, WHOFIHDOMIEST 53R (54,3 —4)g 25 H
T 5.

H# (BF) B (i) 225 R TV b, T VoL OB SE, HROWALIZ
LAHBTER W, 2825 Z0OMEIZOWTOFEHRIMICT A EHOPL HTOW 56
THhh.

ET, FAMNBESEET LT —FT—=VIZOWTOHIK (GV) 2 Z 2 TAHRL 5. EAY
REZFZ, T gL 2EHON — F T = AHFRET 55 0 AN vy i, in
ZHFT B, LW bOTH L. HIK (GV) DRI 2REIL, Y€ Prerm(m(p'q) =
in=mpg) =in) Db VI, bolBWEm/p =m/pefIt v )dbDTHA).
LHL, FAMBERE—FICEL THBETH ARNET, RADOHIFHEENL, FETF AT
WEED S 7 A M BENIHSERL 2V EHILEZX TS,

2L AET_TD Flat GHC DLERAIL, H—FIT— V2 #AAZD T A N akzEOI:H

LICHIBRL TWwa . Zis oaiiiid, KA

6>5 :- true | true

DEIGHOEETERL ThHbEALZL, FNOOEHIIHNL TE-FNHKEE2 T
T,

H—FT— Vi be Xid, Hif (BV) 2B THIEHNTEL, B, HCO
BEEREH —F T —VORFICHBETHLEL L. THLEFRLOFN —FT -V, [H 5B
TP CIZIIv M L72E X2, v2dAEEREBEICEHILL TS ] Z 2%
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FEL T s dahi v, FlziE, O
pX, ...) :- X>0 |

EVIHFEOLEF, X3 Iy PRICEERICEKILL TWwERTTHE. 20X %
Q,AX@,>@erWWQ)kﬂ?éﬂ%uéﬁf@b,R@%%Kﬁnéiﬁ%
ﬁ@ﬁd,:h%@ﬂX@L%@(Z%i&w
—HBALL XD, HOKET, %, HiC 03Iy FHIZoA L) ) BEEALEEL
L, Pp, TH£4
Prerm \{P € Prerm | ¥t € T, (¥(p) = 1)}

¥ EbY. HEMICIZ, Pp 3EBEERE SR (D) EBRATLLDOTHS. 2D P,
VAL, REROERERDLIIICAHLERTE 5:

R(S) ¥ Vg e Pp, 3s € S(s(q) = out A Vs' € S\{s} (s'(¢q) = in))

bL Ty = Term 2 51E, 2D v D&Y AEICEL TT S HES 2T X, Pp, i3
Prom EFILTH A LITEEL TIEL V. —F, X>008I0 k512, T, £ L TEHD
oD A B L ARTE A% BIE, P, BB LBORS (o) L4250, NERT, %
ROFAHZEITED, E—FBITRY, TEELZE-FHKEZRL TERDH LT Ty
7A%?3FV?TZ)@’2|§73<“C&75§’C‘§Z> L2L, ®18HEHICHARS LI 7%, well-moded
70T AR EITHEERE, SO T ABRRPELWT, 2EORY, FOXH%
T, &5 2l Jiﬁfﬁé%kﬂii?%.

1.6 HIHOEIEEBRE

KRETIE, B 707 7 L0F—- RIS FELES 7 7 TRRATE, ZOHE—IZL -
TEETEAHLILZ, BIEHWTRT. ZOFIDTHN—L 2V —OEEIIDVTIE, X
HTEZSD.

1307075013, BHGEAY Yy 270 AEFDOR FIANDERTH 53, kiE
terminate (X, A% v 7 THUL ADKTEIZ, A%y JHRILE - EZTWHETA7-D
DHDTHAH, COTUTTLTIE, A v 7% EEEE (R OB Tw572017
DT, terminate (FHICTRTCOEEZHBTATTI W, LiL, A%y 708, 48
OTALRIZDEBoTWAAMN Y=L EMLTVALILERE, Ry s7at
ADHTHCFES/ZA M) — L% HLC, FE7UAPSKTTEL LI 2ITHIE
o,

ZO7uy T L6, B—bDANI Z0DMARBEE =:=", ‘=\=, subtract ZffioTWw
DT, FNOVBRTLE-NHNEHALENSH L., INOPEKNTIEIR L, BH
REIBICE BLIRET AL, E—FHPITLEOE) TH 5!

m((=im,0)) = m((=\=, 1)) = in, i=1,2
m((subtract, 1)) = m((subtract,2)) = in, m((subtract,3)) = out

Sstack D 251 (A% v 2 BHREEA) 1) A MERT 2o Ty, ZiuE, A1) =22l T
FHANORBE HTRBERIBVTE, ALY —L2OBETFEEAL U - L7 — 5 OBHRF L ERIT 54
ENPHLI L BELDOTH S, LEALE-FEITCELRET L, $2518C) A M ERFE2 -
Th, BT E o7z CEER R W,
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4 N
drive(M,S) :- M=:=0 | S=;[]. (i)
drive(M,S) :- M=\=0 |

S=9[push(M) ,pop(N) |S1], subtract(N,1,N1), drive(N1,S1). (ii)
stack([], D ) := true | terminate(D). (iii)
stack([push(X) |8],D ) :- true | stack(S,p(X,D)). (iv)
stack([pop(X) IS], p(Y,D1)) :- true | X=3Y, stack(S,D1). (v)
terminate(D) :~ true | true. (vi)

. J

K 1.3: Ay Z2EFDRK T AN

ZTHEVY AN OBBREE . TRLT LI b L, B drive 25 HEB LN
2= FHI#IEROBE) Th 5

(1) m((=:=,1)) = in = m({drive, 1)) = in ((GV) % &i (i) ® MIZHE )
(2) m/(=1,1) =m/(=1,2) (BU) & & (i) @ ‘= 128 H)
(3) m((=1,2)) = in ((BF) =& (i) @ [1 @)
(4) m/{drive,1) = IN ((BV) Z&i (i) D MIZEH)
(5) m/(drive,2) = m/(=1,1) (BV) % Hi (i) » S IZH#H)
(6) m((=\=,1)) = in = m((drive, 1)) = in ((GV) & 8 (i ) D MIZHEA)
(7) m/(=2,1) = m/(=2,2) ((BU) & & (ii) @ ‘=" (= #H)
(8) m((=2,2)) = in ((BF) % i (i) DM D < 12 # H)
(9) m((=2,2)(.,1)) = in ((BF) #% i (i) ® push {238 )
(10) m((=2,2)(.,2)) = in ((BF) & & (ii) OO <. (2@ )
(11) m((=2,2){.,2){.,1)) = in ((BF) % #i (ii) @ pop ()
(12) m((subtract,2)) = in ((BF) % &i (i1) ® 1 (2@ H)
(13) m/(drive,1) = m/(=9,2)(.,1)(push, 1) ((BV) % i (i1) ® M 2@ )
(14) m/(drive,2) = m/(=q,1) ((BV) % i (i) ® S IZ @)
(15) m/{=2,2)(.,2)(.,1){pop, 1) = m/(subtract,1) ((BV) % # (ii) O N IZ# )
(16) m/(subtract,3) = m/(drive, 1) ((BV) % i (ii) ® N1 1258 )
(17) m/(=9,2)(.,2){.,2) = m/{drive,2) ((BV) % #i (ii) ® S1 128 H)

R = RHMOHABRFFEORM A HET S L, m/(drive,1) & m/(drive,2) iZxf ¥ 5%
TEROHIFIHELN S

m/{drive,1) = IN
m((drive,2)) = out
m({drive,2)(.,1)) = out
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m/{drive,2)(.,1){push,1) = m/(drive,1)
m((drive,2)(.,2)) =
m({drive,2)(.,2)(.,1)) = out
mi(drive,2)(.,2)(.,1)(pop, 1))
m/(drive,2)(.,2){.,2) = m/{drive,2)

out

= 1in

Bl z1E, m((drive,2)) = out ¥ (2), (3), (6) »5HEhN, m/(drive,2)(.,2)(.,2) =
m/{drive,2) i (7), (14), (17) »HE»I;N 5.
bL, MOMEFEHLINE 51X M=:=0 & M=\=0 "IN L 2\ 2 & & BHTRD A - T\ e
5, (4) D m/{drive,1) = IN O D2, H# (BV) DFGRE (5 1.5 i) 5 m((drive,
) =inxBLIEHFTEL, ZhiE, (GV) 2 LEITAHIHELEHA—TH5.
FARIC stack 6 1T, Tpaﬂ)fﬁljf/]ﬁ‘ b b:
m((stack,1)) = in
m((stack,1)(.,1)) = in
m/(stack,1)(.,1)(push,1) = m/(stack,?2)(p,1)

)
)

)
m/(stack,1)(.,1)(pop,1) = m/(stack,2)(p,1)
2)

)

2)

1)

m/(stack, 1)(., = m/(stack,1)
m(({stack,?2)
m/(stack, 2)(p,

m/(terminate,

= m
= m/(stack,2)
= m/(stack,2)

IS TRTCOFFDOES (conjunction) 13, M 14D & 512, (AT, V=% 5Hh
%%n?,#L%#§Lh&vq%§777na&bf§ﬁ¢% EDRTEDL LI LENR
WET R TS, ChEE-—RTS5T7E0n9,

FADOEBHTIE, THRBEOBMAOEWL, REFTLRIBEEEESLF05IMUELD
WTHY, M14TRADOITANNVE L TRLTH S, EHROFIE, FAOE—FEROE
BRIZCBWT L, VI 7HRHEERIIBVWTY, XA%EIL S, VI 70HRIE, £
DEHRTRDLNADE-NEZ TNV ELTLDI LD D 5.

BEDODWIlZ, “E—-F IR ATH L. NAOHIZHFEBEDE— N LEdrs 5 &
X, FONRRIREL TWW5HE WV, FORADKEIRIZOVT WS E— Nli% RS T#E
Ry s, 20X, NAPOE—F KEEIOHE, SAOBME b 5. m/pr = m/ps
WL m/py # m/py OFE L EHBREFKIE, =2 (LLL) o A% b oG
BTERBETXS, o0 ATIOBMIEL 5 E &21F, HAHARAERITHIGL, FH
e E23ENTdind 5.

m/p = IN %2\ LiZ m/p = OUT OO EHRERKIL, “HBE &v) TNV DD
WEEIETERET A, “BE SNVODOWEEIE, ZORETHRDLTRTHO/IIAR,
FOHEEBoTHRITIIETETRTDONADE-FEE, in W LIT out IZHIF
T5. in& ot DELLIIHRADIE, TOFSICESLFTTIZEBL 28— F ELOK
PEEPHFE,ICL->TET 5,
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@O@‘-‘cco»mn

: drive

: stack

: terminate

: pop

: push

P

: list constructor
. mode inversion
: input

: unknown yet

: input down to
ground level

[ 1.4: drive & stack 2» 5B LN 5 E— Nl
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X 1.5: #F-tlfr el 2Bm0E— Nl

E-Fm&, M1A4DEIBRE-FTF71, 7TMAEEKD N v T LNV OE— FHIZ
BT 2BHMEEN TR EARTIENTE L, 7 2ORERFITFEICFHL @R
DEDT, TPADF vy T LRV DE—FEIIFEICin LEX DI ENTELNLTHS.

E-FmDTS7ERApHEIONEE, pllHBHEiHL, £I00EETRRR
FTRTCOHERLHAE, BFTE—Fm/pe2RbLITHIT 772 Ah. TNZm/pD
BAE—FRTIT7 LY, plld bzt IO E—F 77 70REN ).

M 1.4 O drive DE—FART L I, RAOBMTIE, AP —LDELLEEN
VFLBRLE—FHRZT b OLEIT RV,

m({stack,1)(.,1)(push,1)), m((stack,1)(.,1){pop,1)), B LT m((stack,?2)(p,1))
O BB, stack PP SRETHI LI TER V., ITNHIZHRFE stack AMFEDLILS
CHRR°, terminate DEHBREZ GR A LI oTHOTHRT L, 2k 21X, T—IVE%R
Wl 7 1 s 5 AFH, KF 4T —)V drive(10,8) & stack(S,none) X H, SHF
FOEHOMOBIHICIIERLZWEL LS., Z0E &, Z2o0FHSE—F m/{drive,2)
& m/(stack, 1) IIEEICHEDE-FIZHFIN D, £ T m((stack,1)(.,1)(push,1))
& m({stack,2){(p, 1)) {X in &%V, m((stack,1)(.,1)(pop,1)) 1T out L2 %. TNLD
ML 72E—F7 2 72K 1.5 I1Z7R7.

REE terminate 1X, ¥ (BV) 25

m/(terminate, 1) = IN

EVIBVWE-FHFEET L. COHBETRISDE-—FZ7 7 7I2HETHE, K16
DE-NTTT7L25,

BEEDOE—FIL, UREZELICHZTD —BIIHRE L LEBEL . LaL, AP
PEEF 5013, 2~ FARICERL T AEHRETTH S, 728 213 m((drive, 2)(f,
iYg) DAL, O LSLOBBES f, i€ Nj, g€ Prepm PV HHIIHL THRILR
WS, TRTHASZ i3,
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B 1.6: b ) —2fl#EHEL 72BROET— FHIK

MEBRTERLZAER, ChETHRRLFETFOTIH/IENTE, HoF
xR BT ALEIX 2\, NACESTCE—FEKRIL, AVY—2DARN)—L53D
CENTEL, ROHEEZTHRELS.

create_stack's([SISs]) :— true |
stack(S,none), create_stacks(Ss)

ZDHEIPHIX,

m/(create_stacks,1)(.,1) = m/(stack,1)

m/{create_stacks,1)(.,2) = m/(create_stacks,1)

BEoNnb, L7223 oT, create_stacks D5 L THET A AN -2 DHEHRIT,
stack D 158 L THET LA N ) — DS E-F LELBOHSTE—-F 2 b D,

Well-moded 2707 J L% T — VETTRE)T 5 & 213, T —VEIVRT 5 E— Fil%y
B, TUTTLDE-FEFFELEVWLE I 0x FTHREL 2T RS 2w,

1.7 FROSEE

AEHTR, E-FHETOMERIIOVWTERET L. ITREMEPERLLEN0E
A&, BAIZHE, FEFAMBFICERETHT, TLROIELEEZRET 5:

o FOEIYHT —FIT—-NVELEWV

o FOEHYL, SEULOF Y ANEEE L OEEBE LW
IS DIRER, E-FiHED, TioBORRBE—-R&EHOESE L TRHETE A2
&R RAET A
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m(p) = in (£ 7213 m(p) = out)
m/p1 = m/pe (F72dm/p1 # m/ps)
m/p = IN (£721F m/p = OUT)

BAOERIE, T=FZ7570HIIBWTIE, plidbHisE in L TNV TFTBHIET
RHTES., 200, BHiHOEFIZLI-oTRBETES, =00, plldsiiat &
B E TRV DIF BT ETRATE S, HIAOERIL, BEORKIEL 7232 % HnwTEk
BHT&5., L oT, WEEZTWATUTFLD7 T AL Tid, F16EHTH
BHLAE-FZ7 570 BEN TR CHLTE S, BA0EBE—FHME, FhBES,
FEFICHMLE-F /S 7 CEHATEILILICHDEELTIL Y., M14~ 1613, B
E-FHERDLZBMLE-F I 724 HBEL R THALEEZ LI LNT

x5,

1.71 ZOOE—-KRITST70OHE

M14~16D5RET S5 L2, E=FFI 7L L TERHELZTo0F - NHIRELD
fFEix, FUT 7 70HE L [18] LIFITUTEBY, L2 o THBEHO B~ [15] &
bIEE I,

ZZRLENDH L., FHUE, VI 7BETE LT AT TR L, WILT H/SADE—
FEE I L%, RADBBEHEOTNVOME2EZERBL oo —bLL Z2TE %o %
WEWAHZ ETHA.

ENDI, B TNVDDOWHEOBWIIEREZ T ALESH L. 7, “&
ﬁ”ﬁ&w%%0”5~9#%&%%ﬁ%~kﬁﬁ785L@émm&,%h%@“ﬁf”

HiEICE BN ADBESFILHE AP o T, BIT /LK T 5. KIZ, “BE &
ﬁl@#%&%%ﬁ% b777gﬂ;ﬁﬁwﬁﬁ””ﬁféw%ﬁ% F757 Gy &
i, G DT RTOEEE “BJE & TNV TIT 5 (FLEDOTET) 2Ltk ->THE—1L
TED. ZOLE, Freh TR, TTIEOWTWE I (b LaHE) & FIEL %
WZ ki, bEAAMPOBLLEND L. FHl EE L IO EENS O
i, HIBL T v, FRIZI > TIRTOATN LR Lo FHEETIER Y, £2
PHDOHITABEL L HICHIBRL TLw, 72720, G OEEOHRIZIE, oS ANE F|
ERZLOFHLEPbHN V. 20X ) RHFITILEFIZ, IEL L (F) 700
DL T 6w,

WHEITERLZ R TA0H7:oC, 7, Z2o0FUS 7 7DH AL, /77 T7DK
SSUICHLTEEAEHREOFERTHZ YERNLTNT )X LS5 L xRl
THL[L, 15 BEALHBLIE, a7 v h—< Y BROMEKEL T, O(l-a) T
HbHEVHZETHA, ZOE—L7NT ) XL, union-find 7 VT ) XL TEET
SEATHAEAL T (K14~ 1.6 TIEHITRL T w) F HWT, HBHO®EZ2EHT
5., BREFEANT 72ATHLE, TRNOORTHRRA Y %7250 L NGO T,
TANT VAL EAEBETRH LD, TEIERIIE RS2 VDTH 5.

L72doT, dLIZOD7 I 7BECHAOHFEHL, HaoHEOP % HHT S
ZolE, FEIEZ I 7ORESICEHL CIRIZHRETH L. HETRESST7ORE &I

CHEIEE X, 2OESHOEEDVERESTHE L%, ARIIEROKE SOETH S [9].
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TUFILATHETAT - I BEOERS (F- I/ BEOBRNEROKRE ITHELS) I
WIS 5D, fEONBF —FHEOKESICIEKFEL v, 72&21E, AP —LDX
FY—aiE, EROANY —L XD LT - EETH B,
E-FFIT7OKREEE, 7O FLOKRIECOGEKET S, K& 7ar 7 hli
YL ORELEEMFITHAIDNSTHA, LrL, 7077508 kdHEMLR
F— Y HEEOBHERIZ, 7O FANKRELBAHICL D o THRL VR LAV,
22T, FoOTANT ) XL0HEERE, b0l S DT Ao TEILET
L &9

o ZODE-FIFIENENITHBYT B Py TLNVORE (DF D (p,i) (p€ Pred,
i €np) DILDOFEME) D wy, wy

e FELDE-FRFIFITIZHHBTAN y L NIVOEEDOE ¢

o (p,i) DIEDISA (p€ Pred, i €ny) (CHSEHERE T HIHIET-—F 7T T7ORK
DKESd

w lE7 AT FLADREERML, diZ7T— ¥ BEORKOBEMES 2 L 52 LITTF
HELTIEL, Ny Y a® BT 72 AH) L) A MES (E7 72 AM) 20ALTH v
TUNRVOFERDESGEPERTAHILIZED, Z2o0E—-F 77 720867 5 PHEHR
B2 O(min(wy, ws) +cd-a(l)) £ % 5. Hmin(wy,w) & b v TNV OERDOESZ G
ETHFRERL, Hed o) ZHBO L v 7L NVERE D OESE-FT T 72
ETAHFBE BT 5, Ha() 3ATHER A2 5572 2FMERBTH0%, aldd&b
DTWoL D ELPHALEZVDOT, TOHEFIZLAEEREEZ TI.,

E-F75 7088, FHTI 7OELLOMENIL, BEFHEEIZIEEL2
v, EF, BEOITANVEBoBEE, He0BE S BE SITERRBTER) Z &N
T&5%., 372, “BE 5V DOVIEEORAPHEFEEZ MRS E LI L bR,
%L, 1EO YERE MBS R 7EMOr 57 E0EMLIE, BREDS
57%, NaRA V52 YODORSERBEHRET L L EAREMIIFAETH L5,
NEERROBMEBERETIT 2 ) B TEE0HLTH 5.

1.7.2 7077 L2E0OH%EHN

IHT, 05T LEHEOE - FEROMMIEEL EET L MMEI Ko 2. ART
FE7, B1LTHOEETARR SODIREE Tl o TV 5.

TR, TH7 5 ADET L EGT - FROBIE, BEoRMCHl-77 1
FILDKESEnELT, O(n) THAHI LI L TB . S,

o HOTOB L OWBGET T EEHIZHL, B (HF), (HV), (BF), (BV)0Z
NENEE AL EOERE—FHHLIEL VI L L,

o Hil# (BU) 3K 4 DB —~{LT -V ZhEHICEREIN L Z &

PP TH L, 72, BADERE—FHRHIZE, E42H0 v 7LV FEEL B
HBELZWI LI EEL TBL.
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ZODE-R T 7 OMELER, Zo0fEENAICEL L. BRAICINS D O(n)
BOL v TUNVEBRDEESOHEGEEL, RICHKEBDO L v 7L RV ERE HOBSE—
RIS 20HEEEZ 5.

T, OM)ED L v TV RVEMRDEEOHAOBEFERIION) Th b, k5,
RELw BIP w, D00 EA% AT 5EHIT O(min(w1,ws)) TH Y, min(wy,ws) <
2REDHTHS. LhL, RELTUT T LOBITE, Be0Tar 4 - TV a—)
DE-—FTF7%FEIIRDTEE, FROZRICEBDIEFTHESL L 255004
N, A7V AV INRTOr S LBRTIE, KELT Oy F A% ERY O BT
L7 2w 6THE. by TV RV ERDESE EHHET L0, HFET500%
FOREEHFVOLIILALFLTH A L I RIFEFTHAEL TW L &, FMIZ O(nlogn)
bbb,

KR, BOGE-—F 77 7OHAEOFEEEZL. 5L v T LANVEM (), kIE
DFIRT—-FHIFOPICHEATLLE L L. T5E, (pi)iidsHiziRs TAHSE—
K77 700613, ToDFEHBEE— FHROBEGOIEFESE I THoThH, k-1 4T
292l B kIZOMN)THY, FBEATOD L v T LAV EMEAE 4 DFIEE —
FHIBOFIZHIRT 572045 0T, BF5E—F 75 7 0#EEZEILET OR) BETH
5. ADHEREORBFERIL, dEHETNERAKOTITE-—FI/ST7DOKRERL
LT, O(d-a(n)) Thb. Ha(n)id, REECEERL TLARTHE A ¥ ¥ DD O(n)
THb FEHE) Z L2 KL TWE, Zhohs, BEE—F 7T 7050 FREIL,
T O(nd-a(n)) L\VHZ Ltk b,

DEzTewsl, $_XTOFEMBE-FHINE —BICHET S L 21T, BFOFMIZ
O(nd-a(n)) THY, TNLZEEDIEFCTHAT S L X212, FHIX O(nlogn+nd-a(n))
THo. LELBEOHETY, Hnlogn DFMAKIINT 5553, Hnda(n) OF
BIZHRTIEBPINES VTR S,

CCTHEBLTVDATOT 2D 2T AIIONTIE, FOBWTANT YR LDEIEY
i3, EREE Lo TVEHENT T TOE—LT7 VT Y X LDEELE 1] H5IZLALE
HLICELZENTEL.

1.7.3 —MRDIFE

T, A—=FIT—N%b08%, SEULOFYy A VHEL L OEHKE b OHIZE D &
ICHEAIT I NTHA I H?

BRI — F T = Ve FEOBAE, B8 (GV) bEA 2T NE RO R, F—FIT =
D= P ORI RB LR A OV T TR0 L Tk wgds, £ X, TiErsd
RTEY LOBEEEZ NI H5TH 5:

o H—FIT—=WiZTXT, HAHADT X M BEEOIHEL TH 5

¢« ZNLDFAMNBEDE—FZ 5 7DKE SREZRZN O(d) (L7 > THE) T
5

o TNELEDE-FZI 7%, T AP BREOEFOBICKTFoTVES
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IR DGR TEAE, EHOp & — N0 p [ZHBT HER v (T 55
(GV) i,

1.m/p DEFE-F 770D —%EY,
2. BoNa¥—k, m/p DPREDHFTE—FTF I 7L 2HET S

ZETEBTES., K201, BT A P BENEET 5ORHC LT
B, CHIEOW) BETTESD. (FAMNBEDE-RNZ I 7RLRARTHLA 5 %
HoHLORVTELLIENTELDS, FIRFA Y5072 VRIEI I TRAE
Thb. ) 51T, HH(GV) EEEL TS, BETNE Ly T LAV REOHIMED
5F 0(m) Thb. LdoT, i (GV)id, L72HTROZIEMFEREL HENSE
R\,

HHEHD, HomT IEULEOF ¥ AVHBE b OGEIE, TORBLRT 2
(BV) P HE—LTHEHBLICHBLZIEIEZTER Y, LrLEL DR, FDO LD EE, b
DERIOBIT 2 ) T IHE T HEOHK QA 2L 1 KON L D RRL 7 Wi
) IZfRME T &, ZOBEIIAR L A (generate-and-test) 12 & % well-moding DR
ELER G, EREICE, BEAETRTOBEENIRIZENSTLERAZITHEL TS,
22 RNE, AUANTF =5 2 EL I HBORHT 0L A q & ERT D100 BEp
i, TEOX I 2E%Eb0THAS:

pX, ...) == ... | g%, ...), p(X, ...)

ZOFHPHIE, BREpDE-—FPFZFOTRCOBHLICHKETSH S5 & v ) BEEOHIN %
oT, EbiZm/(ql)=IN 2#@mTE%. —F, MPE—F m/(p,1) DEE T o7
CHE N2,

ZIT, HERCERE LTI, BETI G THOHBERDIIHEE, £ TRV
HGOBIRNE BESEL0OBEETHLE VI T LI L, BELHNL, ABERE
W EkaEEY, HAVEZHEU EORHKER BN EEHNHENEES AL )T Us T
L nblrTlE v, DFIZRY, wellmoded TR WEHEAVEEDO—HFITH %:

pl :- true | r(X), s(X), t(X)
p2 :- true | q(X), s(X), t(X)
p3 :- true | q(X), r(X), t(X)

p4 :- true | q(X), r(X), s(X)

LALED LI R P EEDL, BT 070528 DCLPLETEL, 20F
A EEOBNICRAELLEVWTHAS ). FREIVEELICAEERTEHIE, 7ar 7
<212, 3L EDF ¥ AN HBEEFOLERSHBET A2 LR WX ZDESTE— N,
AOEPDORTEELTLL I ET, AREBEICLABERLTEITHIT L L) K
ThHsHY. TNRBIIAL 725D TH L. Rk, TLAROERL 2, HOHIZ3
B EF v R VBT A 3%, L2 EFRO6OEHE, 1T ASEICHMZER
OFENED L, FOESIBEHTHAINLTHA.
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1.8 IEHmMEERERE

AEHTIE, TTT-NVEHD1RAT v TOEHL—oF VIR —bT - V2 H LT T
FLAEDERTFT ATV CEEIBZ LEE, 3BT - VOEFTICETLERE
MERLCHHT 5.

WE1 m%ZHC D wellmoding & L, t1=; ta % COFDE L (KF )T =L &F
B.F5E, () m((=ki) = out THY, 20 (i) t; PERTHB L % i T D,

() 12604 (BU) 2 b B HICBAN, (i) 1 (i) & I (BF) OHES 5 B 51281}
3. (EBI)

VERY, tZHET A AP vEFTHED, t05 v ELEE, v & tOHOE—1L
DHRHIRIRE (extended occur check) 275K T 2 &9,

EE1 m%, THSIAP LT —VE G D wellmoding £ §5%. GAT1AF v 7K
LINT, T-NVHG kol ThE, mizP &G @ wellmoding TdbdH 5. 7272
L, SSTETINLT -V ge G, HHRHBEREICERTAE LT -V Tl w
LT 5.

BB —onEANh L. REEERICTLSD, JITET-LVEE, FOT L
BEDORF AT VO N FELSE 5 F—HET 5.

a1 ZofeTid, FFE-LT—NVg%k, “hi-... | B OEDOE CeP (FHLw
EHTHRBLLLLD) TEEHZ /.

GHC OFEIDKANC L, g = 0 THE L HILRAOBHY, T2, G' = G\
{g}UBOTHAH. ZZTN LV IdENEN, SVFEEOELNE L DHEETH 5.
BADPKE L I NE RS 20D, ge GIZHBT 2L HT 55# (BV) &, 6
L oTBO(eG)ICFHEAIN-BEOBE (ThoDHBIZ, TOBBDglzBT5
HBCHEFET L DD TH D) R T 518 (BF) TH 5. G FOMOEEAHT 5514
&, GHOBBOMOBE (N 61T T, G\{g} »BOHIZH>bDTH5) )
AT A, BAHRLETE oK FALTHENLEZ LTIV, 2T, gOFDHL
B, 2F0 gp) # L EWTEI7% G(p) (p € Pagom) WPV TEZ B

A gp) BB f THA%E. OB,

Q) h(p) = FTH B, SbiiFu

(i)p = pgTHY, BOAP)VFEE (v T2)THDEI% p € Pagom BED

q € Prepm V5D,

() DHER, TOHBIIEHERCHZ 20T, §% (BF) @HIhiw, £2
T (i) DHELTEZNT L. (G) TR, FORBDS BOICHIZHLATN LT
BUYrHSL. v, BRI (>0 E, r, ..., ICHBATHEL, g; %, r; 1B
FHHBABTAT—VEL LY. ThE, GIIBYT, gl(rig)=f(G=1,...,
n)WWLT B EZERT L. mdS G O well-moding TH 5720121, #Hl# (BF)
D6, mrig) = in BB M2 RS v, LAL, THIZMDTD X I 12#EL
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ZENTES:

(1) m(p) = (G fIZHI¥ (BF) Z#H)
2 R {m/P } U Uicicn{m/ri}) (CHD v %Uf'? (BV) % &H)
(3) R({m/p} U Urcicnim/ria}) ((2) LHEE (1.8) °5)
(4) m(rig)=1in, 1<i<n (1) & (3) 25)

B. §(p) B EH w TH Y, wid gl (> 1), pi(=p), ps, ..., pm CHBEL, G\{g}

iEm (2 0) [, pryt, e ppm CHETAEHE. g=h0THEL ) RAIDD
EDT, %p (1<i<DIZOWT, p=pig THY, 22 h(p) EH (v; £ T5)
THbH L) %ISR ph € Payom BEV ¢ € Prerm WHAET 5. v 13 Biln; (>0) H,
Tily ooy Tin, WCHBTHETH, ZDEE

(1) R(Ui<i<iam{m/pi}) (G H D w iZHlF (BV) & #EH)
(2) R({m/pi} U Urcjecndm/rijai}), 1 << ~
(CHD v IZBEAL 7-61% BV) &, HWH (1.8) »5)
(3) R(UlgiglUlgjgni{m/Tijqi} U Ul+1§i§l+m{m/pi})
(1), (2), HHE (1.7) »5)

ZZTET, Dy b, AHIZ2EDERNZWEEEER L), ZO%E, wid
BOHIZng+---+n A, T4 (1<i<,1<j<ny) IZHN B, éﬁ( )&,
¥(BV)Z GHOwlZ#HALZLDIZEDRE LR\,

Kz, BB o BRI 2RI EHRETIEELEERZ D, FOL I EOEST K
ET A, ZOBA, wORBREEEn +- 4 LWLV EN L. g D
wD_oDOHEE, h ORI ERORL ZHBEFZITIA L, #1513 BOIZHIL
REBLAINLWELTHS. Lo,

(4) m/p, =IN, keK (C HD v IZHIF (HV) Z#EH)

(5) RUM/p} U Uricjcn, Am/Tes}), k€K

(CHD HrﬁJf’J( V) & #H)
(6) m/ry; =IN, k€K, 1<j<ny ((4), (5), THE (14) 25)
(1) m/rejage=1IN, keK, 1<j<my ((6) &)
SR, G RO w BT B E (BV) 1, v (k€ K) 45 BOTHBRAL w o

FEAHLTH LVI LA BT 5. BER S —HIC, R(SU{IN}) & R(S) 475
FOMSThH D (MHE (13). —H

) %
) 7

(8) R(Ui<ict,igk Ur<j<n Am/miigi} U Urii<i<iem{m/pi})
((3), (1), THE (1.3) 25)

ZhE, GO wil, v, (k€ K)HBAAR w BB Z ERL THIK (BV) %@
HLZ2bDIIZI3 07 640,
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542 SOMMLTIE, B—fbT - ty= t A ETLZ. WEL LY, 4 FEHTD
D, m((=x,i)) = out TH DL I B i VFET S, —HBEKRIZ LR, i=1THAb
(0%, BbidE, ELOEY~ORATHS) LREL T L. HIRHBIRED
IREWC LD, Higtd, Bt BEP, FRESCHTEZ V., L7205 T 0= {t; 12}
Yok, G = (G\{ti=x )0 TH D, B t; %, GHIMIIn (Z0)H, r, ...,
ro BT 2 EREL ). UTTE, & h0is, $4bbiq# L TddEH%k
£2(q) (4 € Prepm) ICPWVTEZTW

A t(q) PEIEGLE f OBE.

(1) m({=x,2)q) = in (¥)% (BF) 2 5)
(2) m({=x,1)q) = out (1) & %% (BU) 2 5)
(3) m(rig) =1in, 1<i<n (2) &, GHot (CBEAL 72H# (BV) 2 5)

ti=p b FEFTHE, FIRG HPITHS, rg, ., rag CHEATH LR B, L
BLEHEL L 510, midShs OmBIAET 5§14 (BF) 277

B. t~2(q) fﬁ%‘éiﬁ’w (75 tl) ’Ci) V), w i t1 =k to q:l@:l (Z 1) @, p1(= <=k,2)q), P2, -y
P Kﬂjfﬁl/, G\{t1=k tg} b:bi m (Z 0) @, Di+1s -5 Pl+m b:ﬁjﬁj—%i%{‘j\ q;
(1<i<D%, (=, 0q=p W-TLIRNSALTE. ThHE

(1) R(U1§i§l+m{m/pi}) (G H D wIZHil# (BV) z#EH)
(2) R({m/(=x, @i} U Ur<j<a{m/rja}), 1<i<I

(G ¢ (AL 78l (BV) &, ME (1.8) 2°5)

(3) m/(=k, )i = m/pi, 1<i<I (=4 12 H# (BU) % @)
(4) R(Ur<i<tUi<jnim/riait U Uisicj<iym{m/pi})

(1), (2), (3), HHE(1.7) »b)

UL, HH (4)13, 5145 (BV) % G o w i@ L 72 DI2iZn e b v, (GEBI)

EH L, EfFLET L gDl u=v DO L EFHRY MoV EITEERL TEL v,
ROYEeELTHL):
G: :- p(A,8), q(B)
P: {p(X,Y) :- true | X=Y}

TUZIAPIEm/(p, 1) =m/(p,2) LVIHBERT LD, ThET—VE GOERK
ACEAL 72%# (BV) & 2 MAEDEDLE m/(q,1) =IN %155, LoL, p(A,A) %
FIFL, DWTHERL 2% 7T — b A=A B ETTIIL, T VEIE

:= q(A)

Yhh, SHEEHm/(ql) =IN KT A, S TOMBENE, v=vOBOT -V E
ET DL, 3000 ORBINER BT A2 &R, v ORTTRBFEATLI I L
2B, FWILT, v=o DBOE—LT —ViE, WL BZERNLET TS T LTHME
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Sz ridhv. S50, WERE PFEEINTWELELIE, £h) 2P LIRT 5721
TINLDT—VEBSHIIRETLI LN TE S,

YL, BESHORIZ 3EMUEF ¥ FVHET A LERIET AR50, v=vDED
T E2IADTOERINRIT L. LaL, SORFITOEH2TIZ) L @04,
s ] b, T — VENCEE L 72K (BV) £ 45, wellmoded %7 07T A, L5k
WEBRAICERL ZRVEY, $13HOBHEIIRLAT U IIV T - AT AV EFoT
WAHZEPRIESIND.

#1582, HE BV) DFVEERL 245, ShE ATy, ERINOEREIR .
WE L EE 1SS, (BRI L > TEBWR) T VEHROE LT - iz, DRl
BHEEE OB —LTH LI ENbRY, 2200 FTOERELRRNFET 5:

Tl FUr5LETNEOWD wellmoded TH Y, IIRBIRELKEL 202 b
2, TOMEE—L(EFF 1TV OXRBEFIEFRI T EE V.

v=u DBOHE—LT — Vi HERT 2L, b ) —2BNEERNHELN:

T AT OSTAPET—IVE GO well-moding & T 5. G DEITH, ILikHHA
BEORKEBIZRITIERRGLI (2FEY G5, T—NVOEOIVFEEITH
BILTER) & T HE, FOEFTHIC, GHROLDEHvIZHL TH, v=t DI (m((=,
1)) = out), F7zid t=v DI (m((=k,2)) = out) D AT — VHAEFTENLETT
H5.

SRR # (BV) 5, v GHICH O L 1EOBIHBEE O, TOWRAE O —
VE gL, pk, Glp) =v2mp) = out XillZT L) R/INALL L. — it
B3 nl, PBEY GHOTRTOBE—LT =L T, m((=¢,1)) = out 7*
DOEREL TV, GAZEEZ O IE BRSSPI Y LoD T, WTFTE G 2%
THRETHEIL 2L HET S, GORMOBIRALIC I o TT—VE G FRonizL TS
L, ZOEMLTRONODBEISTETE b:

() TN g o=kt DK (2E D p=(=4,1)) T, TOBFMLTIL g FITL 7.

(il) T—IV gD w=t DIBT, tH v DHIBBES S (DENH D g€ Prem LT
p= (=, 2q PBD IB), TOMMILTIE g #ETL. wh G\ {w=xt} Plln
(GO0 E, r, ..., KHBETZELE). T,

(1) m({=,2)q) = out (RED5)
(2) m((=x,1)q) = in (1) & #il% (BU) 2 5)
3) R({{m/(=x,1),m/[r1,...,m/Tn}) (G D w Tl (BV) %@ H)
(4) 3k < n(m(reg) = out) ((2) & 3) 75)
(5) n>0 ((4) 2 5)

wDINED n FOHEY, BHICLoTHIZEERIONLDT, Giidd %L
Eh 1, vASHEET 5.

27



(iii) T—V g 3BT — LT, ZOMRLTR g% “h:- ... | B W THY
fbL7:. 2L &, p=pqTLDd @) PEB (wkT5)ThHbLIR/NX
p'EPAtom ﬁl(quPTermﬁ§3)%ﬁif'f§)Z>. whB Blln (Z 0) B, r, ..., n &
HMETHEL LS. T8 :

(1) m(p'q) = out (RED» S )
(2) RUm/p',m/r,...,m/ry}) (“h:=... | B” HO w ZH# (BV) = #H)
(3) 3k < n(m(req) = out) ((1) & (2)7n)
(4) n>0 ((3)25)

vid, @ TR rg, ..., ;g CHBET (50T, GIZiZARES 1, v H
By 5.

(iv) S OERHIETIE, g oT - ¢ ZFETL 72, v ORIHEHRE S ODIL g DT,
gIREFNEL VI LICFEEL TIEL Y. oML TRER3EFEEIRION
LT LWV, ERs, vOMIHEEZ LD, vt OFEOE LT — VDA, v
RFEIMALILDTELLLTHL, LN oT G It g BRBLY &, 21U
v OB ZE &L,

INZEHTHE, Ghb G ~DEHETIE

(a) v=p t TGO (LT — WA FAF SN2, F 713
(b) G’ 45 v DI SIHE A 1R - 7=

e A, mid G @ wellmoding ThH DT, (b) DA, LoERIE G BN
WKHLTHBEHTES, LPALRELY, GREERMICET - VDOZEOTLVFEEIE
FEEINTWE, L2 oT (a) DBEDPOPERE/ZIZTTH 5. (FERR#%)

EH 205, TRRORV»ET 5:

%2 FH2OREDTT, B—AL (K7 4) T —WHFERL 2TXTORADKEIL, G
ROFRTOERE HEFICESHR S,

HMEE ZZThH, PHOTRTOE—~LT—MIZOWT m((=, 1) = out LIRET . &
Ho2Hp6, GHRICHRTHIEDER vIZOWTH, v=xt DBOT = (m({=,1)) = out)
WETSN, vt ICEFSBRIONTZRTTHE. IhE ZOo0BEIITHET 5:

(a) tPEEHD L &, ZOHBHFEI ORI 2R Y ST,
(mtﬁl@ui@%ﬁmwuﬂm%aﬁ.3“vat%§ﬁbt@d,j“W%GW)
kDL ETH o7 L &), (—FBROCFEFTL 2O o=t Tholcl &, *
LTEDLEEDA, GGEIGHEITHA. ) €125, mit G D well-moding T
HAhH, L7 oT, TORP v, ..., o, BEOP G L THEY L% 6IE, vB &
WAL TOR Y LD,

Mol ThH B, (b) 0B 3 FRFERERE 22 Lids ) Ak, LihsT,

28



H—AbT — W2 FEATTH I LIS L o TERL 2§ X TORADHIR, BRI v & B
HICESRR 2T THS, (REBI#)

SO X, ERBEREOT IR, BlEErS, BREOREMENIRHETE A,
T@;v& HOWDS, BR2DORBN o TWADTIRBWRERIADP LR~ LN

Zrvo:
:- p(4)

p(X) :- true | X=£f(Y)

LALEADE-FHERIE, TOLIRHEFHFEL TR, BERLT —VEDHIK
m/(p,1) = OUT 23 5—HT, 7077 LEIIHK m/(p,1)(f,1) = IN ZHT 5
5 ThHB. LOFIE wellmoded i2F 2101, 7oL RIFUTO LI, YERMET S
T— Vw52 2 TE% D v

:- p(R), qB)
p(X) :- true | X=£f(Y)
q(£(Y)) :- true | Y=g

1.9 KL1~O#EH

RETZE-FHTE, BFOKLL 707 7 2EET 256, RO L) 2&ROH
WEREY B LED D b

LD E o —FT—n

2. BANEE

3. B—{bAT e DA

4. EEONEFED VT HERE & 77 — F E D BREAT

5. functor, arg FIZ L HTHDOHAE

6. NZFRLAN) T L EDEAE

7. HEE

8. A7)

9. BRERE (7Y & L THFIET DB — N D, 5IHA~DEH)

INSDI L, EREEAES R SEEIC oW, THICKREL Tw (. EREEiEIZ oW

TIE 253 THL 5.

HBAETIE, - F B ITBREORTHE-FHEIXTERATHY), H—
fLRF 4 T =V EFRRIC, EeADFHL OF—F (L EIOFIK & BEEOHIF» S &
BYERBILTEZLODET S,

1.9.1 HAs5|IEEH DA —FIT—I
Flat GHC TiZ, 7107 5 ADEKHZ B LL , BITRERE BRI T L2010, F—

FT— V%7 AMREOMELICREL, ¥ —FIT—UP205| 8% BARLd 5tk
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TRESCHICHERRL T b, L2 LBAED KL1 T, BIEE B LT A5 —F T — L%
(ODPRBOTVWEDT, #No DBFIEIIONWTER B,

58z BT AT - FT -V 2BOBE 0T ik, EF A P REBEOIRHL % 3D
HEWHZETHL, LHL,

o MAEL 2EHE EMPFIBICELTHCHTIRY, KT 505, BIUHHE
BOMEHE 7% 5HDS, A5 —EITkT 5

o A= FIT—VHDOT — ¥ KFEW (B~ F BTN ThD 5) PMEBRLTBLT, 215
DO L ORDOIIEFCTERIICETTE S

DG E W, B EBLUERE, Flat GHC O®REHES % A& (BT 2 b
DTRZRV, L2L, 58 BT A —FT—A2hbbe, 2RLOHF—FT—)
VIR EBE BT 2 HE 2 /ORI R o v E VI EESEL 5, Zh
ITCRFBRZE-FARIZ, EROBBESHIAN TS 5 & I REIZETVT W,
FTOREZBR LT IR OB R BDITTHS.

7ol ZAX, arg2(t,ti,tp) %, 25| BOEtDE1BIM%E t, &, E28 5% ¢, L Bt
TAHET—-NVEL L), arg2id

arg2(f(X1,X2),Y1,Y2) := true | Yi1=X1, Y2=X2
DD (f € Fun) DEF N TEHEL THLEELLN, LA oT o Db i

m/{arg2,1)(f,1) = m/(arg2,2), f€ Fun (1.9)
m/{arg2,1){(f,2) = m/(arg2,3), f¢& Fun (1.10)

EW S IR 5.
IDEE,

p(X,Y) :- arg2;(X,T,.), arg2;(Y,_,T) | ...
DA—=FIZ, XOELFIHE YOE25 I8P R L ELE I D2 BRELTBY, LdoT
m/{p, 1)(f,1) = m/(p,2){(9,2) = IN, f,g€ Fun (1.11)

THEETHA. Lsic, (1.9) ~ (1.11) &

m/(p,1) = m/{arg2,,1) (XIZBT 5 WHM) (1.12)
m/(p,2) = m/(arg2y, 1) (YIZBIY 5 RFAME) (1.13)
m/(arg2,,2) = m/(arg2,,3) (T 2T 5WHFM) (1.14)

EINTHAZTLILE-F mi3FEL BV, 722 21T (1.12) & (1.13) #7237 61,
(1.9) ~ (1.13) 25

m/(arg2,,2) = m/(arg2,,3) = OUT (1.15)
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PEIFLPLTHL. T2,
q(X) :- arg23(X,h(¥),.) | ...
2%
m({q,1){f,1)) = in, f€ Fun - (L.16)
LRI RETH B, HlF(1.9) &
m(({arg2s,2)) =in ((BF) Z A — F I — )V |ZHEH) (1.17)
6t
m({arg2;,1)(£,1)) = out, f €& Fun (1.18)

AR, AU (L16) &

m/(q,1) = m/(arg2;,1) (X (ZBIY 5 HaME) (1.19)
oS
m((arg2;,1)(£,1)) = in, f€ Fun (1.20)
EFBETA.
FO—FT, Hi

r(X) :- arg2(X,T,.), T>5 | .

DL, TRTCOEHDO BB I TH B LV IRETE-FIOFFREIGED
FETAH. 20, #8 BV) 2 #HBIIRL THF - FIT—-VICEHTEZ ) RgEL,
FITHRWIERLDVHEDITTHS.

bRz BT 572012, #UIC, #lHBV) Z TROLIICEHELZEL L)

(GBV) Z# v, h, G, BOHFIZHLxrHE n(> 1) H, p,...,p [CHHL, 209
HhHOHBENp,...,p (E>0)THEETH, DL E

R({m/p1,-..,m/pg,m/DPrs1,---,Mm/Pn})

COXIRHMEEET L, LREOBHED, q0 LI, H—FT VOB -
THBT A BE— LT —VOETH, HE»rLZTWoEOREL & L5EII AT EH
LA, 72,

r{X,X) :- true | ...

DX 1T, FECE LB BT 2 8510 BV T O AREEDEL 5.

FIT, TNLOBAEBHIRETAILEELTCALY. £, RO LI RME
B W72 Patom U {fun} LORMERIR = (RGTH, e, HEBBAB) LOMR) %
EZ b
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L &5KED, FLEHOTN - N8O p & py EIZHBTEHE, pr=p2

2.H—FT = geGDEMICL o TERL 5 BH—LT — V2%, gHD/SZp & py
EERBEALT B5E, p 2 p2

3. —FT— geGOMMICL o TERL ) HHE—LT =7, g OISR p & IR
BUECBHLT 254G, p= fun

7o 213 ERROBEEp BT

(P, 1{f,1) = (arg2,1)(f,1) = (arg2;,2) = (arg2y,3)
= (arg2,,1){g,2) = (p,2)(9,2)
A, HEME, BRI, ToonAE L, Fdd AR L BERES LT,
EEHREC [228s0dnhw] ZxEbT. BR‘S 2HAVAE, ERROARHS
A3, BOEIO/NNZp, P IZOWT, pp T p fun PR Y LOBEICHET
BEWHTENTES,

CHOLXIHIT, BHOEMONZp, p o0 Tp=p Thidp = fun THAHEIIH
LT, ## (GBV) CBETHRFINEE-FIDITOHRMEED LD L —DDFE T%
5.0, TE-FOTORAZTELZTHMLL, FISBEERZBT LI, pyp T
Bp=fun THDEL )RS AZEICOOEHZELELCLEHIETHIPFIeAS. 20,
EM TR o 7 HOMAER, BEIBICHRL BT T % D HENE, TR
BOLOORELIFNHRL THL I LH)CTELITTH S,

BRI, MR T oK FA—THAZ L BETAHARE (==L T5), B&
UCHADFBBELEVPR—THAI L ERELLDOL, 2OI0T A5 8L )L 2 H—
bd BHLAREE (‘7= &%) 2 HEL, #Fp, q rBliZEREN

p(X,Y) :- arg2;(X,T1,.), arg2y(Y,_,T2), Ti==T2 | ...
q(X) :- arg2;(X,T1,.), T1?=h(Y) | ..
r(X1,X2) :- X1==X2 | ...

EECLITTIT I,

2L, FEEOHEAY, HIAREE == BI U 2= DX — FOFEFE L THIRY
Kb DT, 7ur I vOBERFHECRLL, EEBNOEOHRGEEDS £h T
N—2il%%. ZOt&, T-FHFHRANTIRD X 5 ITELT 5.

o #li (BV) T2 T, (GBV) 2 #H¥ 5

o HIF (GV) b, [ 7 —F CIRIHTEEDT - FIREEA] L VI RO T TR, (8
1.5 Bi Tl 7z KRB ORIBEICEEL % < TX Vv T) (GBV) IKKRILT & z)

o HMICHEA—EBFEHEHHT b0 EEILT 2720, Hif HV)PAEIR S

72720, BV)IIHBL CREL 72 F ¥ A VHBOBMAYBIEL 21T UL 52w, 4
2, 7APMBREOELICHETAEHICOVWTIE, T4 - FHKIFTEINZW
ZEVHEDT, LT EDLLEND D, Fiz, H1L5HT (BV) DFFVREE
271205, FNHIET S D, (GBV) L THEZLIEHFTEL ).

%8B, LEDEEIHETYH, p=p IhdipfunTHAH L)%/ A p, p ¥H
HHIZR W EOBMELZRIREL TWE I EICEEL TIZL W,
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1.9.2 HMTER
B FRE/ N EROBEE Y SHRICERT 570012, KLL Tk, =D& 9 2fUAR
BEORDR, == DL ) L HBAEOELICEMREZES I L2RBOTVA5,
mgfm:®;5&@%%77naLTE%wa5®f ~ 7 uREAOKIZE-F
A TAIELELZONS, LIL, INOLOBEN 7 UTERIN TV IE0ED
H,ﬂﬁ%ﬁ&&&ﬁ%b%:tﬁ%f%é#%,77U§%m®7D¢§A%®§@
L Th E— Fdﬁﬁféé’kﬁwibw
CCTHEE A0, EREEUEMAICHETAERMRTH L. DTFTR =%
BN L o THET 5%, BERRNETIHBIC L AMOBRFETH F L ERIED LD,
BRRII VLS TOHEBETH Y HIBDT, $_TCO =" DIFHLIIHL THR—DE—
FEG2EHET5E, mﬂ—m—JNkL&Hﬂf&%&w IhiE, 2%X+1 D XD
R ERRDO P OB XV ETHCENRCEMET LI L2052 01E, SHAL )
HWThhH, UL, XPBEBEIEKLETEZ L LLBEDRVOTHNL, EEDOE-F
R VEL RICmTELI L &% 5. :@:&@iuﬁ?‘yf«@%@ , BRI
AL KEL W ETFEEIN LYY, X YHENTEENZ HER Omfm
BAeDIHL Z 1, BEEEHIRET 5E— FHHEZ 5 IR T a% 31%575
DFY, vise DIEOT—AHFHY, e DHIZEBES n b, (:=42)q, ..., (:=£,2)gn IZ
HET 5546, =13
m({:=k,2)qg;) =in, 1<i<n
BIU
m({:=x, 1)) = out

EVIFRDAERT LI EILTEIDITTH S,

1.9.3 H—{LARA[REMORE
KL1 T, [ Zo0EAKRICE L TE R | T dRbTHARE = HEL T
w5, 7ok 2R,

p(X) - X \=£(V) | ...
DH—FiE, [p DIFHL OF I X O EBEHEF £ Thwv] TEEREL TB), Zh
b ok

pi(Y) - X =£() | ...

DH —F EHOB R oTWE, Tz,
q(X,Y) = X \=£(Y) | .

DH = K&, [p DE IBHDOERBESH £ THY, 90 £ DE 13 IBOMEN p DK 2]
BEF—Thb| 2R BVIEOMEZL TWT, AR

qdE&,Y) (- X=£ | ...

SH—{tihEE = OBFBEE, B 2HLSERLE-FEAFTHLILZZTTHY, HeoliE =y
HEHRT LK (BU) E% IFTRCEALTH 5.
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0)737~]\“ﬁ‘—0)7;5%’ &o’(\ﬂ%
i q DB BEFENICE-F 252 5L 70T

m/(\=,1) = m/(\=,2) = IN

ETRETHAHI LI 5. BEBEN= 2 EETIHESTRMEIICELTY, AL
BEX B, LAL, TREHK (GV) L2 MAEDLESE, WEEp 2L THIK m/(p,

D=INTRINBZ LI E, TNEIRETILEDLZVISADE-F 4L THB
D, PBITETEBHTH L. diEp DX — FO BT 2L L TEHENZDIE, m((p,
U)szﬁb,;ﬂibﬁwé@iT%Aféé.

—DDNEL, = DEFELFER, \= 1220w Th, FIKICEL CTHREBEDE— F
KWEELBZ kf%% L»L, “="DBELRRY, FENZE-FFIKIE, Tor
JLAFICEPNT N\ OFBBEEL TSRO LIENFTER Y, FTRLOWLOLOD
Bl%EZ THRTIZL

p(X) - XN\=£(Y) | ...
qa(X,Y) - X\=£(Y) | ..
r(X,Y) :- X\=£f(4), Y\=g(4) | ...

s(X,Y) :- arg2(X,A, ), Y\=f(h) | ...
t(X,Y) :- A:=X+1, Y\=f(4A) | ..

FHREIL WD, oD LbRBZ L3, \= DFIKOFOERDIH — F il
WCHRTE2E,, EOXJICHBTANICE T, \2 HEDEREITREE—-F2%bo
TLBEVWHIZETHAB.

DEDESENS, \=" OBEEL, T FETOBEr O3B NTELEERES %
B, \= OERRIZ, FENEZOBLALLIBATE L LV IEREND ), BRE
DLENH 5.

ZIT, BH—URIBEEOKRED 72DI121%, BEN\= IR T, L) ERWLEiEL
PRALS 5 2 L2 REL 72w, BRI, W5 IO ERBELENRELL L S IIHDT S
BEE(\?7=" & T5) 2 EATEDLIITH L. 2 )T, #ifpid,

p(X) - X \7= £(Y) | ..

EQAES
pX) = X \7= £(0) | ...

EFECIENTES., \7= OFET B HI#T

m((\?=,1)) = m({\?=,2)) = in
E3THaOT, pllld & 2HMIMEHET 52 L1375 % 55,

SKLIC # 3 D \=' 1, ABRHOBRELRBL TFO LS MBI > TV 5,
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1.9.4 EIOIEFE DITHEEE H — K BOZEREST

KL1 T3, BB EHT2EIC BV O FETIEFLEATSHI LA TE S, —DI3ER
ik otherwise Th b. HAHT — Vi EHLT ADIC, MFEEFRDH TH/RiE otherwise
D% HIZENTEHIL, BICEVWEHZ B0 EOEKRICATRZHEICOAR SN
5. b9 —DI3$E/R3E alternatively Th 5. IE/Rak alternatively DR AIZEH W/
i, BHCEWEE HOAEH S ESICEATRZEEICOARIN S,

IO DITRIEL, T-FBTOL JICEHBEICERL TLw, 2¥%5, IhHDf
TREHEWE T NEREZETLIZ L3R VL, BREFS - TH R TH, /R
DD LI EPRT AT -FHHEEDLL LWL THS.

F&REE otherwise DEAIZE VI, BICEBVLHON — FPRET 5 5&HOGE
%, BROZMGELTHoTWAEEEZBLILNTESL, LIL, HAEGORLELH
REL:ODIHBETLINO LN RN ADES L, FOFBHOBEEDHILE D520
BETALD LNGWSADESIIF—THY), otherwise DFFIEIZ L - TE— Nl
PR AZ X,

{6755 alternatively i3, BAERED DO RETHY), T NEHDO LI %,
Tay I LADEFHECLS B WHEOHRITEIREITZEL 2w,

KL1Tid, EEFOHHBICEY, TV EEHEREDY Y F 0 72 EO5 8004
W&, FH—FT-VEFRIFIEREWTELOANEETTAHI LIZL TS, D
3, HOH - FETEREFL TS, 20 L) EFHER, Flat GHC Tld -7 ¢
FiZE% . Flat GHC 3 W — FEOBRET X FFT L I IZHEL TH 5.

L2 L KL1IZI387R3E othervise S 728, HiOH — F A BRICETL 72856
EWTFETLIZEEE TR, 7US T 00BHIEboTL A5 eNHbH. BATETL
AT SN LR, BRETTIZHRO/ZDIZHKEICHED ST, otherwise
DBBIZEBVWEHPFHEIN G b ENHLDTH S, F7/2KLL TEA —FTHF
A N RENSIEN B 555, FROPBEULEMEFECTEA TR WE, BTETTIIERDT
HHON, KEIIHHILTLEIZ LV H 5.

IhEDZ &, E-FEFTOFECEETHODOTIE R . LiL, BT —F&
DEBERETHIIRE T B2 51F, otherwise DL I [F7+— NV bOBE] #BET
HEEBEIL, Do LHIRL 2B THEATAEENRINVWTHA ). 2F 0, HOH— FHEE
REFTHDBITFETTAIPICL ST, TUT I LADOEHPIEALL VL )R TEA
THIENREFEL W,

FD—o0DFiElL, otherwise %, T— D H /3 ADME (ML T) IC X 25650
FIZLEA R VEIICTALDTH S, - 2E, AV —LADORHEERIZLLEE
ST, HL7TOX AT ) e EILN S,

M170BE1~30L912, CHEHOHHITOVTIE, 1EDFHOPIZEHDE
AT AL EAD, RFAOPTCRMATEL LT HDOPHHETHAS ). £
72, CHFEBHHEDEFEII DOV TIIBRIIEOT, 205 [#r R % 5KB (EFITHEX)
TZIRY, >OEBATRCTRAEFNLZMEI) LT HE, E-FIOTOBHANS
HIFEHAETHD., TT7 4= FOBESIIOVTIE, bLAART A DPTEHC~DT
Y ARFTULEND L. EROLILERCBET S E, HEOHFFEVE STV
FrIVINEL, HABRENED L VEEIRIETELEVWIFLELD 5.
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p(lcics], 3V D5 -

switch(C, (
9,10,82 -> K7 1y; % HE1
48..57 > K7 49; % BE2
65..90 > K7 13; % BE3
error(X) -> K7 44; % HhE 4
otherwise;
KT 15 ))
b J

1.7 AN —LDEHEEZRIZX BEE5T

ZHDENZ, —ElDT Iy MEEDLOIZITE S HENE, TEXASTEEARICL, &
MRS NIEREOD I 9 MEECOLIT TR I LR TOrS I 7 d iRt~
XTHA.

1.9.5 functor, arg FIZ L 2IENIRE

KL1iZik, HOFBEBETE AL 72001 EE functor, 5 EEKELEY b 7230
EEL 720 DR FE new_functor, HOBEDFIKICT 7 L AT A7 DikiE arg, 5
HEWEDFIMOMBELE TSR bEEVED 2D DIBEE setarg Hd 5.

INSOMARTFELZHELTY, ZNO2 AL W05 T ACRLER E— F§]
FIBE 2T B 2 Lk, AL Z2BEIC, Ho 2 HEAKED S OF — K Hl#dis
PHIETTHS.

—RUZ, HARFEDOE—F 2 EZ 5121k, FhO 2 ERTHWENLHESE£L, #
NGB NHIfIZZEZ UL L. 728 ZITBEE arg DAL, RO LD 82, 1
SIBDOER25IBDE 2L O LT 2T NTOBERLS GIROBEFEL LS, Bh b
BEGRTTHD)IIHL THESNTWALEZ LI LN TS,

arg(1,£(A4),X) :- true | X=A
arg(1,f(A,B),X) :- true | X=A
arg(2,£(A,B),X) :- true | X=B

m/(arg,2) = IN, m/(arg,3) = OUT
EVIBVEIRIERT 5. B25IROBAHDT T M, $351HEB—1Lsh
LMD H BRI —DEFE—F 2 b2 E bR wE, £250B, &3
DADLITTELPF ¥ AVHBEL 2 WEES BOHREET 595 ThHb. TAT
bERHEORDOKG I I REHEN 2 wh, BEEL L o L BRIV L
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bdHA ). ik setarg IZOWTH,

setarg(1,£(4),X,T) :- true | T=£f(X)
setarg(1,f(A,B),X,T) :- true | T=f(X,B)
setarg(2,f(A,B),X,T) :- true | T=f(A,X)

St E— FHEROD L, arg DR L AROBET

m/(setarg,2) = m/(setarg,3)=IN
m/(setarg,4) = OUT

EVIH RN DB LN DR S, TS EEOHRIC, FTHARKEDOD LIV HL L,
HOHIKB PP LEDTH S,

INSOBFBEOE-FHIPLIH TR, [T BEZREL D LR, TXTD
F =g 2 ETTIFHLA~NEY ] L) iyhid kv, Thillg, Lﬁ@mg@s%ag
ARRZT, TRROLIBEHTERLY, 551D setarg ¥ HETIT LW

setarg(1,f(A),X0,X,T) :- true | XO0=A, T=£f(X)
setarg(1,f(A,B),X0,X,T) :- true | X0=A, T=f(X,B)
setarg(2,f(4,B),X0,X,T) :~ true | X0=B, T=f(A,X)

Z D setarg |2 L THH %€ — F Hl#E

m(({setarg, = in

1)
m((setarg,2)) = in
m/(setarg, 2

m/(setarg,2)(f,1

m/(setarg,3

= m/(setarg,4), f€ Fun, i€ Ny

)
)
) = m/{setarg,5)
)
) = m/(setarg,4)

BIRTTHY, arg R 451D setarg IZHAIUTFG. F72, arg X 4 518D setarg
i3, 255D setarg & VT

arg(K,T,X) :- true | setarg(X,T,X,0,.)

setarg(K,T,X,T) :- true | setarg(X,T,_,X,T)

EEDHIIERTEDLDT, 558D setarg @, WEHDTEADT 7 £ ADFEREEL
2z, arg R 451D setarg T REHBAHDBED /2O DOEME AL TOVELRTH 5.
LD 45 setarg DEHRTIE, XICBEBAONLIBERZ BITHETTWAHEDY, FOEE
BEBEHTZWHEZ, BTAHRCAL2rDS —If—2 a Y UHE2TLLBNH LD
TH5.

KiZ, WFE functor i,

functor (£ (X,Y,Z,W),F,N) :- true | F=f, N=4
TKLIC % 3 Bl® setarg i3, RAREFOBEEL KL TZ0 L) AL TS,
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DEIREHOEETERL THEHEEZTIV. LA T,

m/(functof,l) = IN
m((functor,2)) = m({functor,3)) = out

&% %, % m/{functor,1) = IN IF5\VH DTH 5%, functor DFE% H&IL
p(T) :- true | functor(T,F,N), p.args(T,N)

£, HTOZSBIZOWTOME 0N E477% ) R, £O518EEZ R~
:35)6 COXIBEITIETIZIEEHAL, Lard m/(functor,l)-—IN’Ca%%@
T, m/({p,1) & m/(p_-args,1) ICi&, m/(p,1) = m/({p-args,1) E VI HHL »2H»5H
TV, TRRERLFHEFRICTH 5.

iR EE new_functor i,

HS

new_functor(T,f,4) :- true | T=f(X,Y,Z,W)
DEIBHOEESTERL THALLEZ LI ENTEXBS, T,

m((new_functor,1)) = out

m((new_functor,2)) = m({new_functor,3)) = in
IZ, %% (BF), (BU), (BV)»5
m/(new_functor, 1){(f,i) = IN, 1<i<4

EVI)EVEIRERT S, THIEIHEOECHINTH 5.

new_functor CIEK T 2 HAHDL | HUL, arg TEMEILT 2D o & b KB HE
Ths9. EE, il BV)»5, ChHD5 I8 THLERITE, LI EORIGIED &
NI 62w, LL, B5Earg DE— F KNI

m/(arg,2) = IN, m/(arg,3) = OUT

THolzhb

new_functor(T,f,4),
arg;(1,T,a), arge(2,T,b), args(3,T,c), args(4,T,d)

EWV) I RFNHERTELR NI LR A,
T, 558D setarg 2 o726 E IR B THAH I N ?
new_functor(T,f,4),

setarg;(1,T,a,A,T1), setargy(2,T1,b,B,T2),
setarg; (3,T2,c,C,T3), setargy(4,T3,d,D,T4)

8Z Ui new_functor DB WOHKETH S, KLIC 4 3 B new_functor I3, FBETOREEE KL C
FDX IR L oTVD,
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YEBHRIEIZLEY, TOBMEEMKLL TWITA. LA L, 558D setarg ZfE9 &,
THRBMALT 2750 TR <, BERIZ, HtBEAETL (=1£(4,B,C,D)HBTETLE).
ZOBATEIGE - T L b setargy D 5 5I1HUCIE, ¥ TL, T2, T3IIET 5 (BV)
&, WEE setarg ([ZBY B HlHY

m/(setarg,2) = m/(setarg,5)
Y55, new_functor D 15| EFLE—-FHlK, 2%V
m/(setargs,5)(f,i) = IN, 1<:1<4

DHHB. BT I, 53D setarg 2 &, b LOBEGHIBEKLETEI S 00,
BALL 2T UE R S B WHZ 2 EEFEORTLE IDIT TH S, Thi, 551H
O setarg b, new_functor CIEHL ZZMAHD BAEIZEIAHETH S I L ERL
TwW5h,

22T, VIV E—FH% b O nev_functor DEMEEZ TA L. T, 1EK
TLBAEOETHE, TR (e RAIZ0) THMELTLEIEE I RLETHAINT Z
DX ) e % b Ol EE% new_functor_out & &£ 0T A, BIOMEZ FIEIC S DBEEHT
VERLL 72\ & %1%, $7 new_functor_out CHAZMEHL TH 5, setarg THHED—
R BE P ERTIUL L. new_functor_out (&

new_functor_out(T,f,4) :- true | T=£(0,0,0,0)
DEIRBOESTERELTHAEEZLNLDT, E-FH{EL T
m/({new_functor,1)(f,4) = IN, 1<i<4

Db NI
m({new_functor_out,1)(f,7)) = out, 1<1<4

MBI, ZBIHOFN v T LRV L PREIED2 PO BB 5E. £2T,
..., new_functor_out(T,f,10), setarg(1,T,E,NE,NT), ...

DEIZL T setarg CHBIEDEF# 5L &, HLKGRAAHENEWK DS, Py T LA
WPAMIEE = F IRk 5.

LEICIE, BBIEON v T UVNRABANE-FOBEEHEEERL TRL2VWI ELDH
b LN, S, fERL 2EEEY, REHAAN Y —20RFE L THENZWY
BALLIIREX L, SEABONHMEEERTLE, TOLIBRBEDIZOIL, HED
E — F ##%% new_functor_out & (L DMATREL HEL TBLOPFHLTHA ). &b
DL % new_functor_in & L, THAHS

m({nev_functor_in, 1)(f,i)) =in, 1<:1<4

I HEVEIRE L nE DI T AR, e

new_functor_in(T,f,4) :- true |
T=f(X,Y,Z,W), close(X), close(Y), close(Z), close(W)
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close([]) :- true | true

EPHBLTHBEEZNT L. L2 L, new_functor_out 21 LAHEL 2L TY,
EEOWFTE-—F A2 07— 5 t #HWEELSHL ANRT B LIIARTEETER Y. F—
FEtHEZHLANTSOTEL, t%EL% 15 HBHES h&T5) TLALER®G)
ZPHLANT S I 2T, Py T L ANRLVOE— REIZET % new_functor_out Dl
Kzl enNTELNLTH D,

1.9.6 XT7APIAMNYLTEZTOERE

NRIFBIPAMN )7, EHLEEbLOTEELR KL1 OBETHE. AN 7id
R YDEHRLRGELEZAZENTELDT, LTFTTERI FIZOWTERET 5,

IHkD KL1 Tid, X7 % {f,a,b} LHEH£(a,b) LEFA—MTAHZ LiZh > T/,
FICHEIIHLT, XIFELTT 7 ALV EREELTTFZ7EALLNT A7 0y
T LDEFT S ARTEETIE Z VDS, NADOBSICED (£ - FERORHK IS+ o0E»¢
TWEWIRESH 7. LAL, MELTRNTL%01E, Xy y0FE, T-F#
BT S ZfEE X728 %0,

N7 ZiE, T-F@EFO LT, FHIGBHEEES2 D OBEAHLEZ 2O EYTH
5., COBBEEENDICSVEC’ &L XD, T5&, N7 &% AEKT 5ikiEnew_vector
i,

new_vector(V,L) :- true | new_functor_out(V, ‘$VEC’,L)

YEHELCHLLEX DI LN TEDL,
NI YDEFRIIT 72 AT HEEL LTI, vector_element &, 2FM D set_vector_
element NHE SN TWA, ZhEIZFNFR,

vector_element(V,K,E) :- true | K1:=K+1, arg(K1,V,E)
set_vector_element (V,K,NE,NV) :~ true |

Ki:=K+1, setarg(K1,V,NE,NV)
set_vector_element (V,K,E,NE,NV) :- true |

K1:=K+1, setarg(K1,V,E,NE,NV)

EEFRLTHAEEZLIENTEL, ZO0OHTHEHKELZLZDIT, 558D set_vector_
element(V,K,E,NE,NV) TH V), MUIREKELERL TH5XI7 7DD E Rz
w5,
DEDOHAREIHORT A TORIFHL WTRELR b DTH o7z, #—F Tid, Ht*
RZIPE I PEHET S vector(t), N7 ¥DEIDPEFHEL I ETFOEZZ I
BY vector((,D) WHEL THA. ZOHbHBEIIT AN RETH AHHH — F TR
BT OWHELETH ALY, BEBEOKEEL functor IZXIBT A DT, FF 4 THHETAHD
ZRAETRETH 5.

EDOEETIE, N7 R, FRBEERS SVEC’ * b OBAHEE X .. LA LB
D KL1EARTIE, X750 [ EEHELS ] % functor TROD &, FONRT ¥ HEN
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BEoTL A, M2, "y &% [ KBS £ L THDH% new_functor TEAHZ &3
TEZ\V. ZOMAMIE, T FBINCEIEEZES 2V DD, BEORMESHS ).

KLICLHEATIX, X7 ¥ ZFHA 7Y = 7+ (generic object) BREZ o THEEL T
W55, PLAATY =7 PRI, SEMEOIRICAEN TH L L & HIT, WEEA~
7 x— AL LTHMER B, MSFETHAL 72BEOHARD, KL1 OBAMTHHATE,
FNUZ well-moding  5-2 5 Z &8 TE A% 6L, £~ FBITIIKEITZ 2.

LB, NIZHITHERGEL L TL, BERORHLREEDIINIC, NI FD5E
BEZLND. 72k 21T vector_split(v,k,v1,v) LWV IOBEZHEL, XJ5vD
BEEZOMITE 018, FEERIUEL 0w IZETOTHS, T-5E0FRETHS
R Y OBEERIEDVLEL LA, Iho OBAEIL, 551% set_vector_element & [f]
B, AURE-FHIHEZRTLI L (RBETE, T-FBTOBS,SI3MO RELR
V., RZIYOHPIREDPLEGN 7 ) MTRESL, WYL s loNy ¥ T
BERZLHBELHELTH Lvs, X7 5058, ERBELHAEGHLETHLTES,

N7 FICET A 5BORGREL L T}, EXTR7905H5H. KLL TiE, 2RTD
RO %, RZFOR7FELTCTUTIALTWAS, LaL, BEiExEHAT,s7as
AT, BRIANZ I EFR—FLEINFTOTIIVIDHETOHNEOHRTLE
FTH B, ZRICEFNI AT 5 EREBDKEr, CORRMERE, BILIUTE—FN#EFIZ,
BREC, EHELPEELRFIRETH 5.

1.9.7 HE

KL1 T, 7025 20EFTOBME SO0, FREBEE [42] 2REL T3,
FOBEEOFEMIZ, PIM EO KL1 LB R & KLIC Tk B2 ->TL AL FRENLD, &
BEARELBDEDHLHgET NV E R L THETTAHEE, 2% ) Prolog D call(g)
WAL BAERETH B .

D calliZDOWTid, &~ @ LORMEZ R, E-F@EFTIE, 787 54Tk
IT—IEEDTXTOL ML, BRIFEROTENZEET 50T,

m/(call, 1)(f,i) = m/(fp(f),i), [ € Fun, i€ Ny

ERGZFITXIDTH L, 7272 22 Thpid, call o> T b Fun 25 Pred ~DH.
5Thb.

HEDS ) —oBERMEEL LT, SIVMLERKES S L. PIM LD KL1IZ, W%
BIAVLEEREL Do TB Y, FIZIENERZ LT VoD IEEDT - VE S
Z, TOFFHEOEFT2HMET L ENTESL, LaL, T 0l L
&, E-F#zE3L0L35707 5 LT, TICED (RELeHEECTS. 7
07 g LR REILDOEEEE (122 ALY RO L), BIIMLEERE L ZETT 5 D5t
IWwthHr 9,
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1.9.8 AHH

KLIDAMHDERIA LY - AHIITH L, T—FERL, SEAvE—V%
BIAN V= LIZOHRL TBY, CELTHEMO AR, REHOHN, BIUNy
77 DERLEFDLOOHE A v £ —ViIconTIE, TR FTIBRRZBETHS 2
FEATOIRE TS 5.

BEL20NER S 2 wolk, EREZEGPL LML V—BOFEDANTH S, —H
DEEANTH720OD Ay =TI L LT, PIM L KLIBEATIE, 2v+—3 getwt
(ATJE%, “wrap SN2, D VBB CHS N 2EEHRL &2 mML 72 BR,
TRT) &, gett (ANHEBEOHEDETIEY. Prolog M read (ZHFIE) #$2HEL T
72[19]. 2D B getutid, BoTL B bDPREETH 255 RHA VS, gett (T3
JEREXRL 2 VWHE BT, Avt— gett 1L T wellmoding ¥ 52 5L 35&,
DAY= VHFWHIAL I DBANTOEZAHFDINZ piZDnT, m/p(gett,1) = OUT &
LanE 5%\, gett BFRRHEDOAL ST, HOWAHEHEEL J 515 THh
5. LHL, m/p(gett,1) = QUT THbETHL, EH2ML, AHEOTOEKRD
B3 gett X vt —VOREEIMBT L LI o TR TIEEL BV, ZDk®,
BIZANEZET 15180 gett 121%, well-moding 52 52 AT E L\,

EZHHPIM EDKLLICIX 251D gett 758 ), ANHEDIERIA - 725D T —
W (F—F2ER7TOEA)~NDAMN)—L%, AHBEEEBICERTIENTEL, &
D25HD gett HHRIL, ANEHDVEBU M > 2 BB T —VRHTT 72 AL, #h
LR RMLTHI LY, BREMITEANHE REHICBEMRLT A LM TES, L
1230 T, BE=FBTOBEDILIE, TO25IHD gett ¥ HEALTRETHLENVZ 5.

L, BET—NVEFE- P T B Avtb—VTFaband LT, 7L HEOFTRT
DEBERY HIEEPLETH L. ChbsoTorar s LT, HEDLHOEK
ERYHIEEBEY R - P LTO LD, 727 ALRERE S —MIET L 270
FanvdhbE, BTEBLE-FHIRIPPoTLED. Tr/EALEHITLTIDY
HMLTLEI I BT O aNMIBETRETHS .

getwt X gett ld, T—H7 077 APICEHNZVEEGEEY b OEEETIELHY
7%, LLZOBEESTR, H13HOCEISES Fun DEHETH Y, ThETIC
BRIZZE-FRERTHEADOCODTH S, TLZOBEBEEIE, 2—H7T0sJ 42
BHNZ TS, ANXFFI»OHE MR T 5 BEEORBHEZROPICIIHEN TV AR
TThH5.

RBKLLIZ, 07T LDF Ny 7 DFdICBWERIZES C ARSI TWw 278,
ANT =5 2 BEHICBEEL TBIHE, I OEENE—- FBIFOXREICI R 52 L1
R\, FEREHE ANT HBEOS R OUT, BT AREDSIE IN L2 kv
DTHAH.

1.10 EE
PLETREL 25— FBATFEIL, FEISEEIC X 5 MBMBUC 55 CRiT —

T U—Th L, BADT OT T AEDRAICET AT - FERICETVTWS, &
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iE, RELRT U7 I L0583 0 84V EREIICHES LW E2ERL T, 72
EaEa Y S A NOBE, RWICE-FPFRETELRVWE—~(bDa—-Fid, Y 7k
252 BUERSH L, b HI—o0HELELT, LVELOENIT RIS VI
BETEB IO, ABWGREDE-FEZEELTHHIZEbERLNL ). 2D
B, VY 70T FNENIE, EELHRNOESFEROBREL L THRET S, &
DL, HHIcESCE—NERIE, E-FEE, T-FRE, T-MHRDOLOD
e Rt 5.

I I T E— F AR, PARLOG [8]0E— FHEREIE 72 R4 4. PARLOG
DE—F i, EARMIIE, Kernel PARLOG ~® 3 ¥ 73 A VIEHZ D E—1b% K7 112
ByOOLDOTHY, T—VOHE5MPBANEEELTHoThH, £DIT —VIL
DEIBOEMEGE B R REL ZWEIRRO W, 227U T T4

mode p(?). (P IEANEEDT)
p(X) :- true : X=5.

2IFELWPARLOG 7u27 3 4ThHY, GHCT T T A
p(X) :- true | X=5

WZHRIRT 5.

DEC-10 Prolog [3] DE—F b 72, Fo72 W TH Y, T—VIFHLELDOFIHKD
B LIRES BETHL0TH L. —F, HADE—FRRIERMIC, BWHIKFL
BWHEERFoTWE, LidE-TYH, T— VORI ADMENFMEHL B TEAEL
TWhrWweEWn) ZERFEIFL TH SN DD

E—NENE, 7077 20RBILCERZERY b0 7. L, R 7 10—
VOGS ESEY KIBICHELT A2 LA TE S, HK [44, 45, 46] TREL TWwh A
- UM AR, BbE Ay b=V REIZT A NTEEDT, £ FIEH
Do THMOTHREL Z ARBILEETH A, T-FEHOL ) —2>EELMEE, &
A5 47 - a—FOERY L OVBEMILTNBEIETH D, (I47) mBEMSHETHE,
EATRHCRE X 2 X F & F R FNORICAILL 20T RS R0z, 24T 47 -3
FOFBIEHTVHENTEVWEEZ LN TS,

TN, TRy FORDICLAENTH S, GHCTRT I IV T TH, oozl
FLDF ¥ RVHEL ZWERSH L E, FOEEZN —F THREL TWARWVIRD, 70
75 AHBESTWAIEEESIEFEICE ., ThIEFIZIE, Tur vk B8atEIH-
AR - -

p(X0, ...) :- ... | q(X0,X1), p(X1, ...) (XD XODEZFD)

TORE, ZODOKEEX0 L X0 FmvElK, 20 m/(p,1) =IN & m/{q,1) = OUT
T 5, CHOLRBIELWELSBONIHE m/(p, 1) =m/{q,1) LIFFRIIR->THE
D, fOE»SBLNBHIFEFET 5 RS IFEFISE .

Fiz, TR ITREL, FuKoz AN — a2 L ENRS:

pC0, Ys) :- true | true (K7 ik ¥s=[] DESZHY)
p([XIXs1],Ys) :~-... | Ys=[...|¥s1], p(Xs1,Ys1)
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CHIZE-F OB ELTHRIBENSE. (-o7) EHRBEHVHIK m/(p,2) = IN % T
xtl, BREE m((p,2) = out ¥ BT HELLTH B,

% 1.8 HIOFEHHIZ, #4 (HF) ® (GV) 2 ffioTwi v, b LE— FEHO BN, &
1.8 BiCRFBAL 72 AU E AR T A L 2D 5% 61E, ThHDHHITVS v
TEIZRA, LAPL, BIEHTHEGL-L DI, INSDHWTETLI LI iFFETMS‘
bV, 7urIr0RYEFRL) ZHD Lo E BEHLL 2D T A0 RICLD
LHfFTE 5,

RELE-FERY, HBERROHMTHEHBTLIZ L LTRTH S AT, Hiick
TLEBHDIIIDPGLAHMTHI YR TWEEL 5. MBMRTIE, BRU7 07 S
LOWEZRZ H7:DICAEHOBRLEELITR A, Fald, H1LIHOEETHN
1e7ursIvy c AFANICETAERECL T, $ELEFETR{E~LIZL-T
%—F%%fﬁf%%l’) LTw3
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Strong moding is turning out to play fundamental roles in concurrent logic program-
ming (or in general, concurrent constraint programming) as strong typing does but
in different respects. “Principal modes” can most naturally be represented as feature
graphs and can be formed by unification. We built a mode analyzer, implementing
mode graphs and their operations by means of concurrent processes and streams (rather
than records and pointers). This is a non-trivial programming experience with compli-
cated process structures and has provided us with several insights into the relationship
between programming with dynamic data structures and programming with dynamic
process structures. The mode analyzer was then applied to the analyzer itself to study
the characteristics of the mode constraints it imposed and of the form of large mode
graphs. Finally, we show how our framework based on principal moding can be ex-
tended to deal with (1) random-access data structures, (2) mode polymorphism, (3)
higher-order constructs, and (4) various non-Herbrand constraint systems.

2.1 Strong Moding in Concurrent Logic/Constraint Pro-
gramming

Historically, two different notions of modes have been studied in logic programming.
Modes of the first kind are concerned with reasoning about temporal properties (i.e.,
time-of-call/exit instantiation states) of variables, and are used for answering questions
such as “Is X unbound when p(X) is called?” They are usually analyzed using abstract
interpretation and necessarily depends on “computation rules.” Modes of the second
kind, which are less well-known and we are going to deal with here, are for reasoning
about non-temporal properties of variables, and are intended to answer questions such
as “Which occurrence of X in the configuration p(X), q(X), r(X) may instantiate X
eventually?” They are independent of how goals are executed and thus can be regarded
as a language construct.

Variables in logic programming languages can be viewed as communication channels.
A variable may in general have many writers and many readers (blackboard commu-
nication), but in most cases variables are used for cooperative communication, namely
point-to-point communication (one writer, one reader) or multicasting/broadcasting
(one writer, many readers). In both logic programming and concurrent logic program-
ming, it seems important to be able to distinguish between competitive and cooperative
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communication and, for the latter case, to infer the communication protocols used.

From our experience, we are strongly confident that variables in concurrent logic
languages can be restricted to cooperative communication without loss of expressive
power. Rather, by doing so, we will benefit very much from strong moding, as we do
from strong typing in many other languages:

e [t helps programmers understand their programs better.
e It detects a certain kind of program errors at compile-time.
o It establishes some fundamental properties statically:

— Well-moded programs do not collapse due to unification failure (failure of
unification body goals).

— All variables are guaranteed to become ground terms upon termination.

— It distinguishes between data with a single reference and those with multiple
references. This provides us with basic information for compile-time garbage
collection.

e It provides basic information for program optimization:

— elimination of various runtime checks,
— (much) simpler distributed unification,

— message-oriented implementation [46][45].

e It encourages modular programming by making programmers better aware of
module interface.

Since the mode system for Flat GHC was proposed [44][46], some attempts have been
made to implement the system [30], but no attempts have been made to implement a
mode analyzer based on the unification of mode graphs as it appeared in [44]. In this
chapter, we describe our first experiences with the graph-based mode analyzer. Also,
we show how our framework based on principal moding can be extended to deal with (1)
random-access data structures, (2) mode polymorphism, (3) higher-order constructs,
and (4) various non-Herbrand constraint systems.

We assume familiarity with the basic idea of the mode system, though it will be
described briefly in Section 2.2. Full detail of the mode system, with proofs of the
fundamental properties, can be found in [46]. Implications of the mode system are
discussed in [36], which contains informal introduction to concurrent logic programming
and the mode system as well.
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2.2 The Mode System

As discussed in [36], a logical variable with exactly two occurrences can be compared
to a signal cable which has a certain structure (e.g., array of wires) and conveys infor-
mation under some established protocol. A piece of information flowing into the n-th
pin of the plug at one end of a cable will come out from the n-th pin at the other end
of the cable, which means that two ends/occurrences of a cable/variable should have
exactly inverse (i.e., complementary) polarity structures.

A variable with three or more occurrences in a run-time configuration will be used
as a hub for one-to-many communication. The polarity structures of the terminals of a
hub should be given so that for each set of corresponding positions in those structures,
exactly one of them is the inlet of information and the others are outlets.

We call variables with exactly two occurrences linear variables and other variables
non-linear variables, where we do not count the second and subsequent occurrences of
a variable in a clause head or any of the occurrences in guard goals. We call clauses
not containing non-linear variables linear clauses and clauses containing non-linear
variables non-linear clauses.

An argument of a goal can be compared to a socket of a device. To be compatible, a
plug and a socket should have opposite polarity structures when viewed from outside.

The purpose of our mode system is exactly to assign polarity structures to the argu-
ments of predicates defining the behavior of goals, so that each part of data structures
will be determined cooperatively, namely by ezactly one goal. If the part has more than
one writer goal, the communication is competitive and hence not cooperative. If the
part has no writer at all, the communication is not cooperative, though not competitive,
because the readers will never get a value.

A mode is a function from the set of paths specifying positions in data structures
occurring in goals, denoted Pasom, to the set {in,out}. Paths here are not strings
of argument positions; instead they are strings of (symbol, argument-position) pairs in
order to be able to specify positions in data structures that are yet to be formed.

Formally, the sets of paths for specifying positions in terms and atomic formulas are
defined, respectively, using disjoint union as:

PTerm:( Z Nf)* s PAtom::( Z Np)XPTerm<'7
f€Fun pE€ Pred

where Fun and Pred are the sets of function and predicate symbols, respectively, and
Ny ‘and N, are the sets of positive integers up to and including the arities of f and p,
respectively.

Mode analysis tries to find a mode m : Payom — {in, out} under which every piece of
communication will be performed cooperatively. Such a mode is called a well-moding.
A well-moding is computed by constraint solving. Function symbols in a program/goal
clause will impose constraints on the possible polarities of the paths at which they
occur. Variable symbols may constrain the polarities not only of the paths at which
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(HF) Vp € Patom (h(p) € Fun = m(p) = in)
(if the symbol at p in h is a function symbol, m(p) = in)

’

(HV) Vp € Patom (h(p) € Var A3p' #p(h(p) = h(p')) = m/p = IN)
(if the symbol at p in h is a variable occurring elsewhere in h, then m/p = IN),

(GV) Vp,p' € Pasom Va € G(h(p) € Var A h(p) = G(p))
= Vq € Prerm(m(p'q) = in = m(pg) = in))
(if the same variable occurs both at p in A and at p’ in G, then
Vg e PTerm(m(pIQ) =1in = m(pQ) = m’))

(BU) Vk > 0Vty,ty € Term((t1=xt2) € B = m/{=¢,1) = m/{=k,2))
(the two arguments of a unification body goal have complementary submodes)

(BF) Vp € PysomVa € B(a(p) € Fun = m(p) = in)
(if the symbol at p in a body goal is a function symbol, m(p) = in),

(BV) Let ve Var occur n (> 1) times in h and B at pq, ..., pp, of which the occurrences
in h are at py,...,px (k > 0). Then

{RHmMuuqmmdL k=0;
’R’({m/plvm/pk—}-l’ R ’m/pn})a k> 0;

where the unary predicate R over finite multisets of submodes represents “co-
operative communication” between paths and is defined as

R(S) % Vg € Premn 3s € S(s(q) = out A Vs' € S\{s} (s'(q) = in))

Fig. 2.1: Mode constraints imposed by a clause h:- G | B.

they occur but of any positions below those paths. The set of all these constraints
syntactically imposed by the symbols or the symbol occurrences in a program does not
necessarily define a unique mode because the constraints are usually not strong enough
to define one. Instead it defines a ‘principal’ mode that can best be expressed as a
mode graph, as we will see in Section 2.3.

Constraints imposed by a clause h:- G | B, where G and B are multisets of atomic
formulae, are summarized in Figure 2.1. Here, Var denotes the set of variable symbols,
and @(p) denotes a symbol occurring at p in an atomic formula a. A submode of m at
p, denoted m/p, is a function (from Prperm to {in, out}) such that (m/p)(q) = m(pq).
IN and OUT are submodes that always return in or out, respectively. An overline,
“—7, inverts the polarity of a mode, a submode, or a mode value.

Unification body goals, dealt with by Constraint (BU), are polymorphic in the sense
that different goals are allowed to have different modes. To deal with polymorphism, we
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give each unification body goal a unique number. General treatment of polymorphism
will be discussed in Section 2.5.2.
As an example, consider a merge program:

merge([1,Y,2) :-true | Z= Y.
merge(X,[1,Z) :- true | Z=2X.
merge ([A]X],Y,Z0) :~ true | Z0=3 [A|Z], merge(X,Y,Z).
merge (X, [A1Y],20) : - true | ZO=4 [A|Z], merge(X,Y,Z).

From the third clause, for instance, we obtain the following eight constraints, where
“.” stands for the constructor of non-empty lists:

m({merge,1)) = in by (HF) applied to “.”
m/(=3,1) = m/(=3,2) by (BU) applied to =3

m((=3,2)) = in by (BF) applied to “.”
m/(merge,1){.,1) = m/(=3,2)(.,1) by (BV) applied to A
m/{merge, 1)(.,2) m/{merge, 1) by (BV) applied to X
m/(merge,2) = m/(merge,2) by (BV) appliedtoY
m/(merge,3) = m/(=3,1) by (BV) applied to Z0
m/(=3,2)(.,2) = m/(merge,3) by (BV) applied to Z

From the entire set of clauses, we obtain 24 constraints, of which 6 are of the form
m(p) = in, 12 are of the form m/p; = m/p2, and 6 are of the form m/p; = m/p,.
Elimination of the constraints on =, however, leaves only four constraints:

m((merge,1)) = in
m/(merge,1)(.,2) = m/(merge,1)
m/(merge,2) = m/(merge,1)
)

m/(merge,3) = m/(merge,1)

We could handle these constraints as logical formulae, but mode graphs described
below allow us to represent and manipulate constraints efficiently.

2.3 Mode Graphs and Principal Modes

It turns out that most of the mode constraints are either of the six forms: (i) m(p) =
in, (i) m(p) = out, (ili) m/p = IN, (iv) m/p = OUT, (v) m/p1 = m/pz, or (vi)
m/p1 = m/pa. We call (i)~(iv) unary constraints and (v)—(vi) binary constraints.

A set of binary and unary mode constraints can be represented as a feature graph
(feature structures with cycles), called a mode graph, in which
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Fig. 2.2: Mode graph of the merge program.

1. paths represent paths in Piom,

2. nodes may have mode values determined by unary constraints,

3. arcs may have “negative signs” that invert the interpretation of the mode values
beyond those arcs, and

4. binary constraints are represented by the sharing of nodes.

Figure 2.2 is the mode graph of the four constraints from the merge program.

An arc of a mode graph represents the pair of a predicate/function symbol (abbrevi-
ated to its initial in the figures) and an argument position. The pair exactly corresponds
to a feature of a feature graph. A sequence of features forms a path both in the sense
of our mode system and in the graph-theoretic sense.

A node is possibly labeled with a mode value (in shown as “}”, or out shown as “1”)
to which any paths p;, ps, ... terminating with that node are constrained, or with a
constant submode (IN shown as “}” with a grounding sign (as in Figure 2.4), or OUT)
to which the submodes m/p;, m/ps, ... are constrained.

An arc is either a negative arc (bulleted in the figures) or a positive arc. When a path
passes an odd number of negative arcs, that path is said to be inverted, and the mode
value of the path should be understood to be inverted. Thus the number of bulleted
arcs on a path determines the polarity of the path.

A binary constraint of the form m/p; = m/p;y or m/p; = m/p, is represented by
a shared node with two (or more) incoming paths with possibly different polarities.
When the polarities of the two incoming paths are different, the shared node stands for
complementary submodes; otherwise the node stands for identical submodes.

Figure 2.2 has a node, under the arc labeled (., 1), that expresses no information at
all. It was created to express binary constraints, but all its parent nodes were later
merged into a single node by other constraints.

As another example, consider a program that simply unifies the two arguments:

[p(X,Y):-—true | X=Y. ]
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<p,1>| <p,2>

Fig. 2.3: Mode graph of the unify program.

The program forms a simple mode graph shown in Figure 2.3. This graph can be viewed
as the principal mode of the predicate p, which represents many possible particular
modes satisfying the constraint m/(p,1) = m/(p,2). In general, the principal mode of
a well-moded program, represented as a mode graph, is uniquely determined, as long
as all the mode constraints imposed by the program are unary or binary.

Constraints imposed by the rule (BV) may be non-binary. Non-binary constraints
are imposed by non-linear variables, and cannot be represented as mode graphs by
themselves. However, by delaying them, most of them will be reduced to unary/binary
ones by other constraints, as we will see later. In this case they can be represented in
mode graphs, and the programs that imposed them have unique principal modes (as
long as they are well-moded).

Theoretically, some non-binary constraints may remain unreduced, whose satisfia-
bility must be checked eventually. However, a much more practical solution is to let
programmers declare the modes of the paths where non-linear variables occur.

The union (i.e., conjunction) of two sets of constraints can be computed efficiently
as unification over feature graphs. For instance, adding a new constraint m/p; = m/py
causes the subgraph rooted at p; and the subgraph rooted at py to be unified. A good
news is that an efficient unification algorithm for feature graphs has been established
[1].

Figure 2.4 shows the mode graph of a quicksort program using difference lists. The
head and the tail of a difference list, namely the second and the third arguments of
gsort, are constrained to have complementary submodes.

Figure 2.5 shows the driver of a demand-driven sequence generator that receives
messages done or more from an I/O stream and keeps sending requests to the sequence
generator until done is received. The figure shows how mutual recursion can be dealt
with: driver calls checkinput after sending a message and checkinput calls driver
after sending two messages. These two predicates form a cycle with three nodes in the
mode graph.

2.4 Implementing Mode Analysis

We have implemented a mode analyzer for Flat GHC, and have extended it to deal
with most features of KL1 [42]. The analyzer is itself a well-moded program entirely
written in KL1. Mode analysis proceeds as follows:
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quort([] R Ys0,Ys ) :-true | Ys=YsO.
gsort ([X]Xs],¥s0,Ys3) :- true |

part(X,Xs,S,L), gsort(S,Ys0, [X{Ys2]), gqsort(L,Ys2,Ys3).
part(_, {1, S, L ):-true | S=[],L=[].
part (4, [X|Xs],sO,L ) :- A>=X | SO=[X|S], part(A,Xs,S,L).
\part(A, [X|Xs],s, LO):~ A< X | LO=[X|L], part(A,Xs,S,L).

<g,1>] <q,2>] <q,3>] <p,1>] <p,2>| <p,3>
<p,4>

Fig. 2.4: A quicksort program and its mode graph.

driver(Fs,I0s0) :- true | I0s0=[gett (X) |I0s1], checkinput(Fs,I0s1,X).
checkinput (Fs, I0s, done) :- true | Fs=[], I0s=[].
checkinput (Fs0,I10s0,more) : -~ true |

FsO=[N|Fs1], 10s0=[putt(N) ,n1]|I10s1], driver(Fs1,I0s1).

<d,1> <d,2>\ <C,1>| <c,2> <C,3>]
/

Fig. 2.5: A mutually recursive program and its mode graph.
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1.

Constraint generation

(a) KL1 clauses are translated into their normal forms [46].
(b) Calls to polymorphic built-in predicates are identified and numbered.
(c) A symbol table is generated, which records all the occurrences of predicate,

function, constant, and variable symbols.

(d) Constraints imposed by symbols, occurrences of symbols, and built-in predicates

are generated according to the rules in Figure 2.1.

2. Constraint solving

(a) The constraints are put into an empty mode graph to form a graph representing

their conjunction.

(b) If successful, the final graph state is retrieved; otherwise, failure and its reason

are reported.

2.4.1 Constraint Generation

Since the first part, constraint generation, is simply the syntactic manipulation of a
given program, we only note that KL1 differs from Flat GHC in the following aspects,

which are all handled appropriately.

1.

KL1 supports modularization; a predicate is identified by the pair of the module
it belongs to and the predicate name.

. A program commences execution by calling the nullary predicate main in the mod-

ule main.

. KL1 supports vectors. A vector is denoted {elements,...,element,}, which is

regarded as a structure with a special function symbol indicating that the term is
a vector of length n.

. KL1’s guard built-in predicates may have output arguments (e.g., functor), which

is not allowed in Flat GHC. They are treated as a source of information like input
arguments in the head. Output arguments in a clause guard may be used both
for providing values to be used in the body (cooperative communication) or for
checking the applicability of the clause (competitive communication).

. KL1 features character strings and string operations, but a string can be treated

as a constant because it cannot contain uninstantiated variables.

2.4.2 Constraint Satisfaction

Our constraint solver represents mode graphs using processes and streams. Although

not shown in the figures, each mode graph has a root node corresponding to the empty

path.! New constraints are added by sending messages to the root node. Retrieval of

! Patom does not contain an empty path ¢, but we could extend the domain of modes to Pasom U {€}
and let m(e) = in.
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mode information can be done by sending messages as well.

Process representation is interesting in its own right as an experiment of program-
ming complicated process structures. We must deal with (1) graphs with node sharing
and cycles and (2) the merging of graph nodes. It is not clear whether they can be pro-
grammed in a strongly moded framework and how much parallelism can be exploited.

One alternative to the process representation would be to use rational trees for repre-
senting mode graphs. Unfortunately, even if the underlying language features rational
trees, we cannot rely too much on the built-in unification but must define unification for
feature graphs ourselves. One reason is that the unification procedure should be able
to report failure explicitly. Another obvious alternative would be to represent mode
graphs using arrays of nodes and arcs, modifying them as new constraints are added.
The sequential nature of this approach can make global operations such as termination
detection easier to implement. However, we chose the process approach to explore the
viability of process representation of dynamic data structures and to be able to exploit
parallelism in future (Section 2.4.4).

The node process representing an ordinary node contains the following arguments:

. an input stream for receiving messages,

. a node identifier used for the equality checking of nodes,
. a mode value (unconstrained, input, or output),

. a list of features corresponding to output streams,

. a list of output streams, ,

. a termination variable shared by all node processes, and

~ D U W ON

. a flag for the retrieval of the graph state.

When there is more than one incoming arc (stream) to a node, they are merged using
frontend merge processes. A negative arc is represented using an inverter filter process
that inverts the interpretation of mode values contained in messages.

A node is created by sending a message to the node server, which provides each
node with its identifier. Unlike in procedural languages, the identity of nodes cannot
be checked by pointer comparison but this capability should be provided explicitly by
the process. Assignment (pointer copying) and equality checking (pointer comparison)
are provided as basic operations in many programming languages, but there are cases
where they should not be allowed.

A node whose submode is constrained to IN or OQUT is represented by a gnode
process, which contains four of the above seven arguments: 1, 2, 3, and 7.

Operating on Mode Graphs

All operations on mode graphs are provided as messages to the root node, which
are delegated to appropriate processes. The delegation of messages corresponds to the
dereferencing of pointers in procedural languages.
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Operations (i.e., messages) accepted by a node process include the following:

. examine the state of the node,
. instantiate the mode value of the node,
. add a new outgoing arc to the node,

1
2
3
4. create and return a new input stream to the node,
5. unify the node with another node,

6. examine the state of the (sub)graph rooted at the node, and
7

. forward the above requests to an offspring node.

Operation 4 corresponds to pointer assignment in procedural programming.

Unification of two nodes is a ‘symmetric’ operation that the object-oriented pro-
gramming style is not very good at. The operation is divided into two phases: It first
accesses one of the nodes to obtain an input stream to it, and then sends a unify_with
message to the other node. Care must be taken so that the second phase does not start
until the first phase reaches the target node. Otherwise the second phase may reach its
target node earlier, blocking the first phase to be delegated to its target node. This was
actually the most awkward error we first made in implementing the constraint solver.

Thanks to the monotonicity of the constraint framework, however, the first and the
second phases of the unification operation can be intervened by another operation.

The unify_with message takes the input stream to, and the identifier of, the partner
node to its own target node. If the two nodes turn out to be the same, unification
simply succeeds or fails depending on whether the polarities of the two paths are the
same or not. Otherwise it examines the state of the partner node. If the two nodes
have compatible mode values, they are unified by (1) merging the input streams of the
nodes and directing the result to one of the nodes, (2) terminating the other node, and
(3) merging the two sets of outgoing arcs, unifying corresponding arcs from each set
recursively.

Retrieval of Graph States

Retrieval of the state of the whole graph is not straightforward due to the circularity.
We have prepared two messages for the purpose: examine and examined. The examine
message is propagated over the graph, splitting itself at nodes with two or more outgoing
arcs and turning the flag of each node on, until it reaches nodes with the flags on, and
collects the states of the nodes using difference lists. The examined message is simply
for turning off all the flags. We could dispense with the examined message by employing
toggling flags rather than set-reset flags.

For a snapshot of the dynamically changing cyclic graph to be meaningful, no mes-
sages that may alter the graph should be issued before the processing of examine
terminates. This will not cause a performance problem because snapshots will not be
taken so often.
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Termination

Termination of a circular process structure turned out to be not so straightforward.
Stream closing corresponds to the removal of a pointer in procedural programming.
However, because of the circularity, propagating the stream closing operation from the
root node to child processes is not enough to close all the streams and thus terminate
all the node processes. So we decided to have all the node processes share a termination
variable, which will be instantiated to abort when the graph is to be terminated.

However, each node process cannot simply terminate itself when it finds that the
termination variable has been instantiated. Since the input stream of a node has a
sophisticated protocol that may require backward communication, the node cannot
discard it freely but must wait until it is closed: This is an example of the ‘data-
as-resource’ moral enforced by strong moding. Upon instantiation of the termination
variable, each process closes its own output streams, waits until its input stream is
closed, and only after that it terminates gracefully. '

2.4.3 An Experiment—Analyzing the Mode Analyzer

As an experiment, we analyzed the constraint solver of our mode system, which had
190 clauses.

Those 190 clauses imposed 2464 constraints in total, which were classified as Table 2.1
according to the forms of the constraints and the rules that imposed the constraints.
“Built-in” stands for the constraints imposed by calls to built-in predicates.

The most remarkable thing about these statistics is that, of 1392 constraints imposed
by Constraint (BV), more than 90% were of the form m/p; = m/ps or m/p; = m/ps.
Thus we can say that the clauses analyzed are highly linear. Only 5% of the variables
were singletons, and 3% had more than two occurrences and imposed non-binary con-
straints. 2% of the variables had their values examined in guards, for which Constraint
(BV) were weakened to a form m(p) = in [46].

All of the 42 non-binary constraints were reduced to unary or binary constraints using
other unary or binary constraints. Actually they were reduced to 6 constraints of the
form m/p; = m/py and 72 constraints of the form m/p = IN. This means that non-
linear variables were all used under simple, unidirectional communication protocols.

The final mode graph contained 162 nodes and 938 arcs. Table 2.2 shows the depth
of the nodes from the top node. Considering that the program analyzed used quite
complicated protocols, this result suggests that mode graphs are, in general, very shal-
low and wide. The program used complicated protocols (e.g., streams of messages
containing other streams), but it defined various local procedures that had access to
and handled various parts of the protocols. Mode graphs obtained by larger programs
will be wider due to many top-level features corresponding to predicate arguments, but
they will not be too deeper.

Of the 938 arcs, 814 went from the top-level node and were labelled with predicate
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Table 2.1: Constraints imposed by the mode constraint solver.

Type Rule Number of constraints
m(p) = in (BF) 453
(HF) 288
(GV) 54
(BV) 24
Built-in 22
m(p) = out Built-in 18
m/p=IN (BV) 69
(GV) 2
(HV) 4
m/p1 =m/pz (BV) 1074
m/pr =m/p2 (BV) 183
(BU) 231
Non-binary (BV) 42

Table 2.2: Depth of the nodes of the mode graph of the mode constraint solver.

Level Number of nodes

0 1
1 124
2 22
3 15
>3 0
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arguments, while 124 went from non-top-level nodes and were labelled with function
arguments. Of the 814 arcs sharing 124 level-1 nodes, 462 were by polymorphic unifi-
cation body goals and 36 were by arithmetic goals which were also polymorphic. The
remaining 316 arcs were those corresponding to the arguments of user-defined predi-
cates. '

Of the 161 non-top-level nodes, 122 had no outgoing arcs and the remaining 39 nodes
had the total of 124 outgoing arcs. The node representing the path of the messages
to the input stream of the predicate node had 54 outgoing arcs, while the other 38
nodes had less than two arcs on average. This means that hash tables should be
used for maintaining the set of outgoing arcs of the top-level node, while simpler data
structures can be used for other nodes.

2.4.4 Parallelism

Although mode analysis is not a highly computation-intensive task, it is worthwhile
to explore the possibility of parallel speedup. One prominent feature of our mode
system is that inter-procedure global analysis is done simply as incremental constraint
solving which has much potential for parallel execution.

The first phase of mode analysis, constraint generation, is a highly parallel task
because each clause yields its own mode constraints independently.

The second phase, constraint solving, is worth closer look. An important advantage
of the constraint framework is that constraints can be merged in any order. Moreover,
in our case, the order will not affect the performance too much. Thus the simplest and
the most practical way of parallel execution is to exploit coarse-grain parallelism by
creating a mode graph for each procedure or each module independently and merging
them later.

Fine-grain parallelism that could be obtained by the pipelined processing of messages
is subtler. Firstly, as we saw in Section 2.4.3, mode graphs are not deep anyway. Sec-
ondly, as we saw in Section 2.4.2, unification of two nodes imposes certain sequentiality.
However, it is still important for mode graphs to be able to prdcess messages concur-
rently, because imposing too much sequentiality between messages leaves less freedom
(on the part of implementation) in the scheduling of message handling and can lead to
lower sequential performance. Optimizing compilers may well exploit independence of
primitive operations to gain performance.

Fortunately, in most cases, a message can be sent to mode graphs before the previous
message finishes processing. Because a mode graph becomes “constrained” monoton-
ically, concurrent instantiation of nodes and concurrent unification of nodes will not
lead to an incorrect state as long as the atomicity of primitive operations such as the
instantiation of node values and the merging of nodes is guaranteed. A message may
enter a mode graph even if the previous one causes a mode error. Its effect is simply
that when some message causes and reports a mode error, subsequent messages may
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Fig. 2.6: The predicate set_arg and its mode graph.

already have given additional constraints to the mode graph.

2.5 Extension of the Mode System

2.5.1 Arrays

There have been a number of proposals of mutable array constructs that hide side
effects at the language level but exploit them in implementation; some early work
include [10], [12], and [41]. Not a few symbolic languages lack array constructs, but
they are essential in many real-life applications.

KL1 supports several built-in operations for accessing and updating the elements of
vectors and compound terms. In general, the semantics of built-in predicates can be
explained by means of a possibly infinite number of virtual clauses, and the princi-
pal modes of built-in predicates can be obtained by considering the mode constraints
imposed by those virtual clauses.

For array constructs, mode analysis tells us that the most basic element access op-
eration, namely the operation that has the most general principal mode, is

set_arg(I, TO, X0, X, T).

This operation receives an index value I and a (compound) term TO, and returns
through X0 the Ith value of TO. In addition, it returns through T a compound term
which is identical to TO except that the Ith element is replaced by X. A similar operation
is defined for vectors as well [36]. Figure 2.6 shows the operation and the mode graph
of set_arg, where (?,7) stands for a wildcard that matches any feature. Note that
different elements of an array are constrained to have identical modes, but the mode
of the elements itself is not constrained at all.

Strong moding is deeply concerned with the number of access paths to each variable.
As a result, data structures have an aspect of resources in general, whose access paths
should not be copied or discarded freely. As can be seen in Figure 2.6, an array element
should, by default, be removed from the array once accessed, and the resulting blank
should be filled with another value..

Array creation is another fundamental operation. In Prolog, functor initializes the
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arguments of the created structure with distinct fresh variables, which are instantiated
afterwards if necessary. However, strong moding tells us that the arguments should be
initialized with constants and be updated by set_arg.

Strong moding is particularly important in array processing because it may enable
update-in-place. Let the nodes of a mode graph have a shared /non-shared flag as well as
mode values. Shared /non-shared means that the paths ending at the node may/won’t
be used for one-to-many communication, respectively. To see at which paths shared
data may occur, we set the flags of all the nodes at the paths where non-linear variables
occur, and of all the nodes below the nodes with the flags on. Then we can see what
paths will be used only for one-to-one communication, and arrays occurring at those
non-shared paths can be updated in place.

Aliasing is recognized as an awkward phenomenon in procedural programming, in
which ale;] and alez] may or may not denote the same variable depending on whether
e; and ez evaluate to the same value. However, accessing two elements of a non-shared
array using set_arg will not create new, implicit sharing. To access the Ith element
and the Jth element of an array A, one will call set_arg twice:

set_arg(I, A, AI, AInew, A1), set_arg(J, A1, AJ, AJnew, A2).

The array Al does not contain the original Ith element any more, so AI and AJ cannot
be the same unless AI and AInew happens to be the same. However, AI and AInew
cannot be the same as long as the array elements occur only at non-shared positions.
For them to be the same, AI must occur in a goal for equating it with AInew in addition
to the occurrence in set_arg, but then, we cannot ‘use’ AI through its third occurrence
because it does not exist by the ‘non-shared’ assumption. AI and AJ could be the same
if one replaced A1 in the second call by A, but then the array itself would become a
shared array. '

2.5.2 Polymorphic Modes

A unification body goal is polymorphic in the sense that its different occurrences in
program text may have different modes as long as they obey Constraint (BU). Con-
straint (BU) here is considered to represent the ‘principal mode scheme’ for unification,
and different occurrences may have different instances of it.

Array operations, stack processes, and stream merging are examples of generic pro-
grams in the sense that they do not constrain the modes of elements. Different arrays,
stacks, or stream mergers should be able to accept elements with different protocols,
where the necessity of polymorphic modes arises.

Although not yet implemented, polymorphism could be incorporated easily. For
polymorphic predicates, their principal mode schemes (i.e., mode graphs) are com-
puted first. To allow different instantiations of a principal mode scheme, a copy of the
mode graph representing the principal mode scheme will be created for each call to a
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polymorphic predicate, which will be merged into the mode graph of the whole pro-
gram. (In the monomorphic case, the original graph of the predicate is simply merged
into the mode graph of the rest of the program.)

It seems that polymorphic predicates should be declared so in some way. Such a dis-
tinction was done also when introducing type polymorphism into functional languages.
In ML, for instance, (Az.A)F and let z = E in A have different meanings if types are
taken into account.

The above treatment of polymorphism requires that the mode schemes of polymor-
phic predicates be obtained before analyzing the rest of the program that uses the
polymorphic predicates. So polymorphic predicates should be stratified so that mode
analysis can start from the ‘most polymorphic’ predicates that depend on no other
predicates and end with the analysis of the whole program.

2.5.3 Higher-Order

There are two possible ways to allow a goal to dynamically determine the predicate
to be called: One is call (analogous to eval in Lisp) and the other is apply.

Let call(G) be a goal that interprets G as a goal (by interpreting the principal
function symbol as the predicate to be called) and executes it. The moding of call is
straightforward; it simply imposes the constraint m/(call, 1) = m.

In contrast, apply needs extension to the mode system. Suppose apply(P,X,Y)
is a goal that executes a binary predicate P with the arguments X and Y. P may
be either a function symbol representing a predicate to be called, a list of clauses (in
which bound variables are represented by constants), or a compiled code with mode
information. In either case, P is a ground term, but should have a mode as a predicate
as well. The mode of apply could be represented as the left graph of Figure 2.7.
Here, dotted lines represent the constraint that, when the first argument of apply is
interpreted as a program, the first/second argument of that program must have the
identical mode as the second/third argument of apply, respectively.

Then consider a predicate that applies P to X twice:

twice(P,X,Z) : - apply(P,X,Y), apply(P,Y,Z).

If apply is monomorphic, applying Constraint (BV) to the variables X, Y, and Z will
result in the right graph of Figure 2.7 (where the constraints on apply is omitted).

2.5.4 Non-Herbrand Constraint Systems

Concurrent constraint programming generalizes concurrent logic programming by
allowing data types that are not based on syntactic equality over the Herbrand universe
(set of finite ground terms). Here we consider three extensions.
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Fig. 2.7: Moding higher-order predicates.
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Fig. 2.8: Constraints imposed by an associative and commutative operatbr U.

Rational terms: Our path-based mode system can quite naturally deal with non-
finite rational terms. Readers may have noticed the similarity between the way
our mode is defined and the way infinite trees are represented as functions.

Numerical constraints: Numerical constraints can be dealt with in a moded frame-
work if dataflow can be determined statically. For instance, if the constraint goal
X=Y+1 is used always for determining Y from X or always for determining X from
Y, it can be moded. However, dataflow caused by solving simultaneous equations
will not be that simple in general.

Equational theories: Syntactic equality can be replaced by various equational the-
ories, and a lot of work has been done on unification under equational theories.
Here we focus on simple built-in theories; associativity, commutativity and idem-
potency.

Associativity and commutativity have the property that rewriting based on those
preserve the number of occurrences of symbols. Actually they can be included
naturally into the mode system. For instance, bags (multisets) enjoy the proper-
ties t1 Utg = to Uty and 1 U (82 Utg) = (t1 Ute) Uts. So the paths where bags may
occur should obey the constraint shown in Figure 2.8. That is, any subterm of a
bag whose parent symbols are all U (the bag constructor) must have an identical
mode whose top-level is in.

On the other hand, idempotency (¢ = t opt) says that terms can be freely copied
and two identical terms can be freely contracted. This is not very compatible with
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the data-as-resource view, and any path which is an inlet/outlet of an idempotent
operator will be constrained to IN/OUT, respectively.

2.6 Related Work

Tick and Koshimura implemented and compared several algorithms for mode analysis
[30]. One of them uses process structures to represent mode graphs, but their mode
graphs have many differences from the graphs in [44] and [46]. They form ‘initial
mode graphs’ and minimize them to form the final graphs, while we add many simple
constraints (in the form of messages) to an empty mode graph to form the final graphs.
Their graphs deal with non-binary constraints, while we delay non-binary constraints
to avoid complication. Their graphs require additional information called ‘partition
node sets’ to maintain the node identifiers, which we need not have. They implement
the unification of cyclic structures using marking, while we dispense with marking by
implementing it using incremental redirection of streams.

2.7 Conclusions

We implemented a mode analyzer for Flat GHC and KL1, itself described as a
strongly moded KL1 program. The analyzer was applied to the analyzer program it-
self, which used fairly sophisticated communication protocols, to see if automatic mode
analysis worked well for non-trivial KL1 programs. We also discussed how the cur-
rent moding framework could be extended to deal with random-access data structures,
polymorphic modes, higher order, and general constraint systems.

Our implementation of the mode system employs quite sophisticated process struc-
tures, namely feature graphs with cycles and node sharing. Concurrent operations
on such data structures involve nondeterminism and make programs harder to debug.
Also, operations on graphs include a rather unusual operation: the merging of two
nodes. We succeeded in describing all these in a strongly moded framework and made
sure that strongly moded concurrent logic programming was expressive enough for quite
complicated programs. Rather, we benefited much from the mode system in debugging.

In spite of complicated process structures formed, debugging was not so difficult.
Bugs had to be found manually at first, but most of them were those which could be
detected by mode analysis. Many of the bugs we removed later were detected by the
mode analyzer itself.

Not all bugs were identified easily, however. The most awkward one was perpetual
suspension resulting from the misunderstanding of causality between messages han-
dled concurrently in a nondeterministic program. However, exploiting concurrency is
important both for parallel execution and efficient sequential execution.

Self-application of the mode analyzer has confirmed our conjectures that (1) most
variables are used for one-to-one communication (i.e., are linear) and (2) non-binary
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constraints will be reduced to unary/binary constraints. However, these points require
further study because programs written by other people may be less linear.

For the mode system to be more practical, it should generate a user-friendly error
messages to non-well-moded programs. The current system simply reports the con-
straint that finally caused inconsistency and the mode graph immediately before the
inconsistency was detected. However, a more user-friendly system should find as con-
cise and intuitive an ezplanation of inconsistency as possible. The next chapter will
report an algorithmic approach to the diagnosis of non-well-moded programs.
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Strong moding and constraint-based mode analysis are expected to play fundamental
roles in debugging concurrent logic/constraint programs as well as in establishing the
consistency of communication protocols and in optimization. Mode analysis of Moded
Flat GHC is a constraint satisfaction problem with many simple mode constraints, and
can be solved efficiently by unification over feature graphs. In practice, however, it
is important to be able to analyze non-well-moded programs (programs whose mode
constraints are inconsistent) and present plausible “reasons” of inconsistency to the
programmers in the absence of mode declarations.

This chapter discusses the application of strong moding to systematic and efficient
static program debugging. The basic idea, which turned out to work well at least for
small programs, is to find a minimal inconsistent subset from an inconsistent set of mode
constraints and indicate the symbol( occurrence)s in the program text that imposed
those constraints. A bug can be pinpointed better by finding more than one overlapping
minimal subset. These ideas can be readily extended to finding multiple bugs at once.
For large programs, stratification of predicates narrows search space and produces more
intuitive explanations. Stratification plays a fundamental role in introducing mode
polymorphism as well. Our experiments show that the sizes of minimal subsets are
small enough for bug location and do not depend on the program size, which means
that diagnosis can be done in almost linear time.

3.1 Introduction

One of the prominent features of concurrent logic/constraint programming languages
is that they allow us to describe interprocess communication with complicated protocols
quite easily. Data structures with complicated dataflow, such as streams of messages
with reply boxes and streams of streams, can be expressed without any extensions to
their simple, basic computation model.

However, most implementations of concurrent logic languages detect fundamental
bugs, such as connecting two streams with different communication protocols, as run-
time errors. These should ideally be detected statically. Static type systems, if avail-
able, may detect some of those bugs, but do not suffice to ensure the consistency of
communication protocols used in a whole program. Thus we need a framework of in-
formation flow analysis—a mode system. Mode analysis is very useful for program
optimization as well as for the static detection of bugs [46].
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Most frameworks of mode analysis proposed so far for concurrent and ordinary logic
programming languages were based on abstract interpretation. In contrast, the mode
system proposed by one of the authors [46] is constraint-based, that is, mode analysis
means to solve a system of mode constraints imposed by individual symbols or symbol
occurrences in a program. Since the analyzer does not have to trace execution paths,
the framework is particularly useful for the analysis of parallel and concurrent languages
in which primitive operations are only partially ordered. Another advantage is that it
is inherently amenable to the separate analysis of large programs.

Moded Flat GHC [46] takes those advantages of the constraint-based mode system
and incorporates it as a language construct rather than just as a framework for program
analysis.!

An efficient algorithm of mode analysis has already been established for well-moded
programs [46]. However, it was not clear how to find, for a non-well-moded program,
a plausible “reason” of mode errors efficiently. Since the principal mode of a program
is determined by the conjunction of all mode constraints, non-well-modedness means
that the conjunction is inconsistent (that is, there are no modes satisfying all the
constraints). However, simply reporting that the conjunction of all the mode constraints
is inconsistent does not help debugging large programs. The purpose of this chapter is
to propose practical algorithms that locate the reasons of mode errors as precisely and
efficiently as possible.

One may wonder how many of the bugs can be detected by rather simple mode
analysis, but our experience has shown that that surprisingly many of them can [37].
Bugs which cannot be identified by mode analysis are likely to be related to problems
with algorithms.

3.2 Strong Moding and Mode Analysis

This section outlines the mode system of Moded Flat GHC and the associated mode
analysis. Due to space limitations, readers unfamiliar with Moded Flat GHC are re-
ferred to [36] for introduction and [46, 37] for technical details and proofs of fundamental
properties.

The purpose of the mode system of Moded Flat GHC is to assign to each predicate
argument a polarity structure that defines the direction of information flow of each part
of data structures. The polarity structure is computed by mode analysis so that each
part of data structures will be instantiated cooperatively, namely by ezactly one goal.

A mode in our mode system is a function from the set of paths for specifying each
“part” of data structures to the two-valued codomain {in, out}. Paths here are strings
of pairs, of the form (symbol, arg), of predicate/function symbols and argument posi-

!Strong moding can be incorporated in ordinary logic programming languages as well [29], but it is
particularly important in concurrent logic programming because most concurrent logic programs have
fixed dataflow and make more restricted use of unification. However, the diagnosis technique proposed
in this chapter is quite general. B
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tions. Formally, the set Preqy, of paths for terms and the set Py, of paths for atomic
formulae are defined using disjoint union as:

PTerm:( z Nf)*7 PAtom:( Z Np) X Prerm
fEFun p€ Pred

where Fun/Atom are the sets of function/predicates symbols, and N;/N, are the sets
of possible argument positions (numbered from 1) for the symbols f/p.

The purpose of the mode system is to find a mode m : Payom — {in, out} under
which every piece of communication is cooperative. Such a mode is called a well-
moding. Intuitively, in means the inlet of information and out means the outlet of
information.

Well-modings can be computed by solving mode constraints imposed by (i) the oc-
currences of function symbols and (ii) the variable symbols in a program and an initial
goal clause. A program does not usually define a unique well-moding but has many
of them. So the purpose of mode analysis is to compute the set of all well-modings in
the form of a principal (i.e., most general) mode. Principal modes can be expressed
naturally by mode graphs, as described later in this section.

Given a mode m, we define a submode m/p, namely m viewed at the path p, as
a function satisfying (m/p)(q) = m(pq). We also define IN and OUT as submodes

[

always returning in and out, respectively. An overline inverts the polarity of a
mode, a submode, or a mode value.

A Flat GHC program is a set of clauses of the form h :- G | B, where h is an atomic
formula and G and B are multisets of atomic formulae. Constraints imposed by a
clause h:~ G | B are summarized in Figure 3.1, where a(p) means a symbol occurring
at the path p in an atomic formula a, Var is the set of variable symbols, and Term
is the set of terms defined over Fun and Var. Rule (BU) numbers unification body
goals because the mode system allows different body unification goals to have different
modes. This is a special case of mode polymorphism we will discuss in Section 3.6.

As an example, consider the following program for stream merging:

m([],Y,Z):-true | Z=1 Y.
m(X,[],Z):-true | Z=9X.
m([A|X],Y,Z0):- true | Z0=3 [A|Z],m(X,Y,2).
m(X,[A}Y],Z0) :- true | Z0=4 [A1Z],m(X,Y,2).

The third clause, for example, imposes the following eight constraints (“.” stands
for the constructor of non-empty lists):
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(HF) Vp € Patom (h(p) € Fun = m(p) = in)

(If a function symbol occurs at p in h, m(p) = in.)

(HV) Vp € Patom(h(p) € Var A3p' #p(h(p) = h(p')) = m/p = IN)
(If the symbol at p in h'is a variable occurring elsewhere in h, m/p = IN.)
(GV) Vp,p' € Patom Va € G(h(p) € Var A h(p) = a(p') = Vq € Prerm(m(p'q) = in =

m(pq) = in))
(If the same variable occurs both at p in h and at p' in G, then m{pg) = in if the path

m(p'q) is examined in a guard goal.)

(BU) Vk > 0Vity,ta € Term((t1=kt2) €B = m/(=k, 1) = m/(=k,2))
(The two arguments of a unification body goal have opposite submodes.)

(BF) Vp € PayomVa € B(a(p) € Fun = m(p) = in)
(If a function symbol occurs at p in a body goal, m(p) = in.)

(BV) Let v be a variable occurring exactly n (> 1) times in h and B at p1,...,pp, of
which the occurrences in h are at pi,...,pg (k> 0). Then

{R({%,...,m/pn}), if k = 0;
R({m/p17m/pk+1v v 7m/pn})7 if k > O;

where the unary predicate R over finite multisets of submodes represents “coop-
erative communication” between paths and is defined as

R(S) ¥ Vg € Prerm 3s € S(s(q) = out A ¥s' € S\{s} (s'(q) = in)).

Fig. 3.1: Constraints imposed by a clause h:- G | B.
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m((m, 1)) = in by (HF) applied to “.”
m/(=3,1) = m/(=3,2) by (BU) applied to =3

m((=3,2)) = in by (BF) applied to “.”
m/(m,1){.,1) = m/{=3,2)(.,1) by (BV) applied to A
m/(m,1)(.,2) = m/(m, 1) by (BV) applied to X
m/{m,2) = m/(m,2) by (BV) applied to Y
m/(m,3) = m/(=3,1) by (BV) applied to Z0
m/(=3,2)(.,2) = m/{m,3) by (BV) applied to Z

From the entire definition, we obtain 24 constraints. Elimination of the constraints
on =, however, leaves only four constraints:

m((m7 1)) = in, m/<mv 1)('72> = m/<m7 1)7
m/(m,2) =m/(m 1), m/(m,3) =m/(m,1).

We could regard the above set of constraints itself as representing the principal mode
of the program, but the principal mode can be represented more explicitly in terms of a
mode graph (Figure 3.2). Mode graphs are a kind of features graphs (feature structures
with cycles) [1] in which

1. paths represent paths in Pgiom,

2. the node corresponding to the path p represents the value m(p),

3. arcs are labelled with the pair (symbol, arg) of predicate/function symbols and
argument positions, and may have “negative signs” (denoted “e” in Figure 3.2)
that invert the interpretation of the mode values of the paths beyond those arcs,
and

4. binary constraints of the forms m/p; = m/ps and m/p; = m/py are represented
by the sharing of nodes.

Mode analysis proceeds by merging many simple mode graphs representing individ-
ual mode constraints. Thus its decidability is guaranteed by the decidability of the
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unification algorithm for feature graphs. The principal mode of a well-moded program,
represented as a mode graph, is uniquely determined, as long as all the mode con-
straints imposed by the program are unary (i.e., constraint on the mode value of, or
the submode at, a particular path) or binary (i.e., constraint between the submodes at
two particular paths).

Rule (GV) in Figure 2.1 contains a conditional mode constraint. However, we assume
that guard goals are calls to built-in predicates whose mode graphs have been obtained
beforehand. Thus the constraints actually imposed by Rule (GV) will be of the unary
form m(p) = in or m/p = IN. The rule will become simpler by allowing polymorphic
guard goals, as will be discussed in Section 3.6. ,

Rule (BV) may impdse constraints between three or more constraints, which cannot
be represented as mode graphs by themselves. However, by delaying them, most of
them can be reduced to unary/binary ones by other constraints [37]. Theoretically,
some non-binary constraints may remain unreduced, for which it is most practical to
let programmers declare the submodes of relevant paths.

The cost of mode analysis is almost proportional to the size n of the program and
to the size d of the subgraph of the entire mode graph rooted at each predicate argu-
ment [46]. The size d reflects the complexity of communication protocols used in the
program. To be precise, the time complexity is O(nd-a(n)), where « is the inverse of
the Ackermann function.

We have analyzed various GHC/KL1 programs including the mode analyzer itself
[37]. We have observed that, although larger programs have larger mode graphs because
they use more predicate symbols, the value of d does not become so large (say several
tens of nodes) even for programs using quite complicated communication protocols.
Thus we expect that the mode graphs of very large programs are, in general, wide and
shallow, which is to say most nodes can be reachable within several steps from the root.

3.3 Non-Well-Moded Programs

Programs that do not have well-modings are called non-well-moded. Since Moded
Flat GHC programs must observe the principle of cooperative communication, non-
well-modedness indicates that the communication protocols specified by the program
are faulty. For instance, the following quicksort program is non-well-moded:

gsort(Xs,Ys) : - true | gsort(Xs,¥s,[1).

gsort ([], Ys0,Ys ) :- true | Ys=; Ys0.

gsort ([X1Xs],¥s0,Ys3) :- true |
part(X,Xs,S,L), gsort(S,Y¥s0,¥sl1), Ys2=9 [X|Ys1], gsort(L,¥s2,Ys3).
(the unification goal should have been Ys1=9 [X|Y¥s2])

The first clause imposes the constraint (among others)
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(1)  m({gsort,3)) = in by (BF) applied to “[1”,

while the second clause imposes

(2) m/(=1,1) = m/{gsort,3) by (BV) applied to Ys,
(3) m/(=1,2) = m/{=1,1) by (BU) applied to =1,
(4) m/(gsort,2) = m/(=1,2) by (BV) applied to YsO.

The third clause is first normalized to

gsort ([X|Xs],Y¥s0,Ys3) : - true |
part(X,Xs,S,L), gsort(S,Ys0,Ys1), gsort (L, [X]¥s1],Ys3).

and imposes
(5) m/{gsort,2) = in by (BF) applied to“|”.

The set of those five constraints are inconsistent. Constraints (1)—(4) together entail
m({gsort,2)) = out, which is clearly inconsistent with Constraint (5).

We consider explaining the reasons of mode errors in terms of minimal inconsistent
subsets of the set of mode constraints, because such subsets will be useful for locating
errors. If we find multiple inconsistent subsets that are disjoint, they are considered as
indicating different bugs in the program. Thus the technique can be used for locating
multiple bugs at once.

Let us get back to the quicksort example. Observe that all proper subsets of Con-
straints (1)-(5) are consistent. Hence the five constraints form a minimal inconsistent
subset. Since the quicksort program imposes 53 constraints in total, including con-
straints from the predicate part, we have succeeded in finding an adequately small
subset.

Once a minimal inconsistent subset is found, how can one pinpoint a bug? It is
reasonable in a moded framework to assume that programmers have intended modes of
their programs (though not declared explicitly). In the above example, the programmer
should be able to find that Constraint (5) is wrong because the second argument of
gsort is intended to return the result of sorting. The analyzer tells what symbol
occurrence in what clause imposes that constraint, which is the exact location of the
bug.

A programmer may not always find it easy to tell whether each single constraint in
a minimal subset conforms to the intended mode. However, the analyzer can present
various consequences of a minimal subset of constraints as follows: Suppose the minimal
subset S contains constraints from n (> 1) clauses. Then, it can be divided into n
disjoint subsets Sy, ..., S, based on what clauses imposed what constraints. Because S
is minimal, each of S,..., S, is consistent. So we can form a mode graph for each 5;
to make the consequences entailed by S; explicit and find what clause contains a bug.
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The mode constraints imposed by a program usually have redundancy. That is, a
single bug could be explained by many possible minimal inconsistent subsets. How-
ever, a subset corresponding to a local portion of a program is likely to be a better
explanation than a subset corresponding to a larger or scattered portion, because it
reflects the program structure better and facilitates debugging. So, after describing
basic algorithms in Section 3.4, we consider in Section 3.5 how to divide programs into
layers based on the structure of process definitions and search minimal subsets locally
within each process definition.

3.4 Finding Minimal Subsets

We consider various algorithms for finding a minimal inconsistent subset of a inconsis-
tent set of mode constraints C = {c,...,c,}. This section presents simple algorithms
for finding a single inconsistent subset and extend them to find multiple disjoint subsets.

3.4.1 The Basic Algorithms

Let C = {c1,...,cn} be an inconsistent set of constraints. Algorithm 1 below finds a
single minimal inconsistent subset from C. In the algorithm, the merging of constraint
sets and the checking of consistency are realized as the unification of mode graphs and
the checking of its success/failure. Although the algorithm is quite general, its efficiency
hinges upon the fact that there is a pair of efficient algorithms for computing the union
of constraint sets and checking its consistency.

e Algorithm 1
S {}

while S is consistent do
D+ 851+ 0
while D is consistent do
i 1+1; D+ DU{¢}
end;
S+ SuU {Cz}
end

The set S thus obtained is a minimal inconsistent subset. To see why, let S;/D;/i;
be the values of S/D/i at the end of the jth iteration of the outer loop, and k be the
size of S. It suffices to show that the set Sk \ {ci;} = {ciy--+sCij_11Cijprs--+Ciy} 18
consistent for any 4;, but it is easy to see that

e D;j\{c;} is consistent (because the inner loop was not exited when D = D;\

{ci; 1), and
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o Sp\{ci;} = {cil,...,cij_l,cijﬂ,...,cik} C Dj\{c;,}, because

- D]\{CZJ} = Sj—l U {Cl,CQ, e 7Cij—1}7
_ Sj—l = {cil)ci27' .. 7Cij~1}7 and

= {Cij+1,... 7C'L'k} - {61,62,...,Cij_1} (because 1> >...> ik).

Hence all proper subsets of S are consistent.

Now we consider the complexity of the above algorithm. As explained in Section 3.2,
it takes O(nd-a(n)) time to merge n mode constraints. The time complexity of finding
a minimal subset with k elements out of n mode constraints is O(nkd - a(n)), because

e in each iteration, we must merge at most n constraints until inconsistency arises,
and

e it takes k iterations until a minimal subset with k elements is obtained.

Usually, k is a small value independent of the program size, as we will see in Section 3.7.

A variant of the above algorithm will compute a better minimal subset. Let C' =
{c1,...,cn} be such that ¢ < j implies that the symbol (occurrence) imposing ¢; occurs
textually before the symbol (occurrence) imposing c¢;. Then it is likely that a minimal
subset can be formed from a rather small range of the sequence cy,...,c,, and such a
local subset is considered a good explanation. If this is the case, scanning S in alternate
directions will be more efficient and compute a better solution:

4 N
e Algorithm 1’
S—{}; i< 0; j+ 1
while § is consistent do
D+ S,
while D is consistent do
i+1i+7; D+ DU{c}
end;
S« Su{c}; j+«—J
end

3.4.2 Finding Multiple Independent Minimal Subsets

Algorithms 1 and 1’ compute a single minimal inconsistent subset S of C. To com-
pute multiple, independent minimal subsets, we can simply re-apply the algorithms
after removing the elements of S from C. This enables the analyzer to detect as
many independent bugs as possible at once. Note that Algorithm 2 below uses a self-
contradictory constraint as a sentinel.
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o Algorithm 2

co + false;
while true do
let ci1,...,¢p be the elements of C;
iem+1 j« —1; S+« {}
while § is consistent do
D« 5,
while D is consistent do
1 1+7 D+ DU{q}
end;
S+ Sufel; j«—J
end;
if i = 0 then exit
else
report(S); C «+ C\S
fi
end

3.5 Diagnosing Stratified Programs

# Algorithms il Section 3.4 find minimal subsets from the entire set of constraints
without reference to the logical structure of the programs to be analyzed. However,
the set of constraints can be very large. If we divide the set of constraints taking the
problem domain (= program analysis) into accoégnt and analyze the obtained subsets
separately, we may be able to reduce the amount of computation and obtain more
useful information for debugging. ’

3.5.1 Call Graphs and Process Graphs

When dividing Flat GHC programs according to their logical structures, clauses

defining a concurrent process by means of self or mutual recursion can be considered
to form a process definition.
A program defines a directed graph, called a call graph, that describes the caller-
callee relationship between predicates. A call graph is a directed graph such that each
node v corresponds to a Flat GHC predicate, and an arc e from a node v to a node v’
means that the predicate v calls the predicate v’ directly from a clause body.

The strongly connected components of a call graph exactly correspond to process
definitions in the above sense. Processes defined by mutual recursion are naturally
recognized in this way. A non-recursive predicate that spawns one or more subproceéses
" is regarded as a process by itself.
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It is well-known that division into strongly connected components is uniquely deter-
mined and can be done in O(n + a) time, where n is the number of nodes and a is the
number of arcs in the graph.

Division into strongly connected components is regarded as the division of graph
nodes into equivalence classes. The quotient graph obtained by contracting the arcs
inside strongly connected components is called a process graph. A process graph is a
dag representing the dependency relation between processes. Henceforth we confuse a
node of a process graph with the process definition represented by the node.

3.5.2 Program Stratification

Since the process graph G of a program is acyclic, the partial order defined by G can
be used for stratifying the program. We define the layer number L(v) of the node v as:

L(v) = max({L(v') | v/ € AdjT(v)}U{0}) +1 ,

where Adj™ (v) means the set of destination nodes of the arcs from v. Note that the
above definition assigns 1 to nodes without outgoing arcs.

3.5.3 Finding Relative Minimal Subsets

Bugs of stratified programs can be classified into (1) those within each layer and (2)
those across layers. Since bugs of the first kind can be found simply by checking each
node of a process graph independently, we consider how to deal with bugs of the latter
kind, assuming that each process definition is well-moded.

How to find a minimal subset from a stratified program depends on how we consider
non-well-modedness across layers. We adopt bottom-up analysis, that is, we choose to
check process definitions from lower layers (those with smaller numbers). Bottom-up
analysis lends itself to the analysis of large programs that may use existing program
libraries.

Suppose bottom-up analysis has found an inconsistency in an attempt to merge
constraints from the kth layer and those from lower layers. Since each process definition
in the kth layer is consistent by assumption and different process definitions in the
same layer are independent, the kth layer itself is consistent. Hence the reason of
inconsistency can be attributed to either (or both) of the following:

e The kth layer wrongly uses the lower layers.

e The lower layers, though well-moded, have an unintended principal mode.

It is rather difficult to tell which, but a reasonable solution is to ask the programmer
to check the kth layer first before suspecting lower layers. This is reasonable because a
concise explanation should be considered first. Locating bugs inside well-moded layers
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is somewhat beyond the principal scope of mode analysis, though their mode graphs
will provide useful information.

Bottom-up analysis considerably limits search space by finding from a process defini-
tion a minimal subset of constraints that are inconsistent with the set B of constraints
from lower layers. Such a subset is called a minimal subset relative to B. In the follow-
ing algorithm, C(v) initially holds the set of constraints imposed by the node v of the
process graph.

~
e Algorithm 3

for k£ + 1 to the highest layer number do
for each v in {v | L(v) = k} do
B Uyeagi+w) C0);
apply Algorithm 2’ (shown below);
C(v) + BUC(v)
end
end

a

Algorithm 2’ reports and removes minimal inconsistent subsets of the set C(v) of
constraints relative to B:
T 2
e Algorithm 2’

cg + false;
while true do
let ¢y, ..., cm be the elements of C(v);
i+ m+1; j+ —1; S+ B;
while S is consistent do
D+ S,
while D is consistent do
i+ 1i+7; D+ DU{c}
end;
S+ 8SU{c}; j——j
end;
if i = 0 then exit
else
S «+ S\B;
report(S); C(v) « C(v)\S
fi
end
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In an actual implementation, S and D are represented during iterations as mode
graphs which are destructively updated by the set union operations. The results to be
reported should be represented again by the set of constraints, but this can be obtained
efficiently by recording what ¢;’s have been added to S by the assignment S + SU{¢;}.

3.6 Stratification and Mode Polymorphism

When two or more processes share a process definition in a lower layer, Algorithm 3
may cause a problem.

Consider a program that uses a “generic” (or polymorphic) predicate such as stream
merging (Section 3.2) in various modes. When such a predicate is called from different
places, the process graph will contain a shared node. Suppose a process definition at
the node v and another definition at v’ use a predicate p polymorphically. Then the
analyses of the node v and of v’ will succeed because they are independent, but the
analysis of a higher-level node that uses both v and v will detect the inconsistent use
of p as an error.

However, we can regard predicates at lower layers as polymorphic when called from
higher layers. To allow stratification-based polymorphism, we need to create a copy of
the mode graph of a polymorphic predicate for each call to that predicate. This can be
achieved by indexing each polymorphic call (as we have done for unification goals) and
creating a copy of the mode graph for each polymorphic call, modifying their paths
according to the indices.

So, we assume that

1. for each polymorphic predicate p, the preprocessing phase numbers all calls to p
from higher layers from 1 upwards, and

2. the first element of each path in Py, is of the form (ps,¢), where s is a sequence
of natural numbers and can be omitted if empty.

Also, let Cx(v) be a modified copy of the mode constraints C (v) such that the first
elements of the paths are changed from the form (ps,!) to (psg, ).

e 2
e Algorithm 3

The same as Algorithm 3, except that the assignment B < U, ¢ agj+(») C (V')
is replaced by:

B« {}

for each indexed (i.e., polymorphic) body goal g in v do
let k£ be the index of g;
let v be the node defining the polymorphic predicate;
B + BUCg(v")

end
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Although we have focused on the stratification of predicates called from clause bodies,
the same idea could be applied to test predicates called from guards. This is useful
for introducing polymorphism to test predicates, under which Rule (GV) in Figure 2.1
does not have to use implication any more to avoid the “back propagation” of mode
constraints to generic guard predicates.

3.7 Experiments

We have made some initial experiments to see how the basic algoiithms help bug
location and how large minimal subsets can be.

First, we applied Algorithm 1’ to 20 erroneous programs, each containing a single
near-miss bug such as |

1. “tell” unification specified in a clause head (as in Prolog) rather than in a body,
2. misspelling of a variable name, and '
3. wrong order of arguments.

All those bugs will impose constraints inconsistent with those from correct clauses.

Sixteen of the 20 programs we used were small and imposed less than 100 constraints
each, while the remaining four programs imposed about 500 constraints each. The sizes
of the minimal inconsistent subsets varied from 2 to 8, with the average being 3.75. The
sizes of minimal subsets were independent of the total number of constraints. Thus we
have ascertained that the parameter k in the complexity measure in Section 3.4.1 is a
rather small constant. '

We have also ascertained that multiple bugs can be detected at once if they are not
too close to each other. However, since our algorithm removes some correct constraints
together with incorrect constraints when finding the first bug, it is possible that the
second bug does not cause inconsistency any more. Fortunately, this will not happen so
often because the mode constraints imposed by a program usually contain redundancy
and the number of removed correct constraints is usually small.

We have not yet analyzed very large programs, but thanks to the constraint-based
approach, large programs can (and will) be analyzed in smaller pieces. Stratification
will automatically divide a program into pieces, too. Thus we can expect that our
positive results will apply to larger programs quite well.

It would be unrealistic to search for all minimal inconsistent subsets covering a single
bug because it requirés much more éomputation. However, it will be less unrealistic
to compute several inconsistent subsets which share some constraint. If the program
contains a single bug, a constraint shared by all minimal subsets is likely to indicate
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the bug. For instance, suppose we wrote the stream merging program as:

m([],Y,2):-true | Z=1Y.

m(X,[]1,Z):- true | Z=9X.

m([AlX],Y,Z20) :- true | Z0=3 [AlZ], m(X,Y,Z0).
(the final goal should have been m(X,Y,Z))
m(X,[A]Y],Z20) :- true | ZO=4 [AlZ], m(X,Y,2).

The mode analyzer first normalized the program, converting the third clause to
m([AlX],Y,Z0) :- true | Z0=3 [A|Z], m(X,Y, [AIZ]).

and then found that it had at least four minimal subsets (with 5, 5, 4, and 4 elements).
The only constraint included in all of those subsets was m({m,3)) = in, which was
imposed by Rule (BF) applied to the list constructor occurring in the third argument
of the recursive goal of the (normalized) third clause. Thus we succeeded in pinpointing
the exact location of the bug in this case. It is a subject of future work how to compute
a sufficient number of overlapping subsets efficiently to pinpoint a bug.

3.8 Related Work

As mentioned in Section 1, most previous work on the mode analysis of (concurrent)
logic languages was based on abstract interpretation, and focused mainly on the rea-
soning of program properties assuming that the programs were correct. In contrast,
constraint-based mode analysis can be used for diagnosis as well as optimization by
assuming that correct programs are well-moded.

Concurrent logic languages Doc [14] and Janus [25] let programmers distinguish be-
tween input and output occurrences using annotations. These annotations can be
regarded as mode declarations, the consistency of which needs to be checked statically
or dynamically. So the technique proposed in this chapter applies also to those lan-
guages. The purpose of the mode system of PARLOG is quite different, as discussed
in [46].

Somogyi [28] proposed another framework of strong moding independently and stud-
ied its implications in depth. His framework shares some features with ours, such as the
principle of cooperative communication and the capability of dealing with bidirectional
communication. An advantage of our constraint-based framework is that, besides be-
ing simple, it provides a unified framework for mode declaration, mode checking and
mode inference. This makes it realistic to analyze existing programs and still enables
programmers to declare intended modes that can be used as correct mode constraints
in finding minimal subsets.

Mercury [29] is another recent strongly moded language. Being a purely declara-
tive logic language, however, its mode system is very different from the mode system of
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Moded Flat GHC; the former deals with the change of instantiatedness, which is a tem-
poral property, while the latter deals with polarity, which is a non-temporal property
[37].

Chen et al. [4] proposed an algorithm for finding maximal unifiable subsets and
minimal non-unifiable subsets of a set of equations. They use hypergraph structures
that record the reasons of (non-)unifiability during unification. Our algorithms use
mode graphs that do not retain reason information and reconstruct them repeatedly
to find minimal subsets. Although this simple approach turned out to work quite well,
it is a subject of future work to compare our approach with the hypergraph approach.

Analysis of malfunctioning systems based on their intended logical specification has
been studied in the field of artificial intelligence [23] and known as model-based diag-
nosis. Model-based diagnosis has similarities with our work in the ability of searching
minimal explanations and multiple faults. However, the purpose of model-based diag-
nosis is to analyze the differences between intended and observed behaviors. Our mode
system does not require that the intended behavior of a program be given as mode
declarations, and still locates bugs quite well.

3.9 Conclusions

We have proposed algorithms for diagnosing non-well-moded concurrent logic pro-
grams based on the searching of minimal inconsistent subsets of mode constraints. Once
minimal subsets are found, it is straightforward for the system to indicate suspected
symbol( occurrence)s in the program and/or to show logical consequences a (consis-
tent) subset of the minimal inconsistent subsets entails. We have also shown how we
can obtain “good” (i.e., local) explanations of mode errors by dividing programs based
on their logical structures. All these techniques are very systematic for static error
analysis and are efficient as well.

It is not realistic or helpful to search all minimal inconsistent subsets, but it might
be reasonable to find several of them because, if some mode constraint is shared by all
the minimal subsets, it is likely to indicate the exact location of a bug. This means to
take advantage of the redundancy of mode constraints to guess the exact location of a
bug. By pinpointing erroneous constraints this way, the ability of detecting multiple
bugs will be improved further.
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We study how constraint-based static analysis can be applied to the automated and
systematic debugging of program errors.

Strongly moding and constraint-based mode analysis are turning to play fundamental
roles in debugging concurrent logic/constraint programs as well as in establishing the
consistency of communication protocols and in optimization. Mode analysis of Moded
Flat GHC is a constraint satisfaction problem with many simple mode constraints,
and can be solved efficiently by unification over feature graphs. We have proposed a
simple and efficient technique which, given a non-well-moded program, diagnoses the
“reasons” of inconsistency by finding minimal inconsistent subsets of mode constraints.
Since each constraint keeps track of the symbol occurrence in the program that imposed
the constraint, a minimal subset also tells possible sources of program errors. The
technique is quite general and can be used with other constraint-based frameworks
such as strong typing.

Based on the above idea, we study the possibility of eutomated debugging in the
absence of mode/type declarations. The mode constraints are usually imposed redun-
dantly, and the constraints that are considered correct can be used for correcting wrong
symbol occurrences found by the diagnosis. As long as bugs are near-misses, the au-
tomated debugger can propose a rather small number of alternatives that include the
intended program. Search space is kept small because constraints effectively prune
many irrelevant alternatives. We demonstrate the technique by way of examples.

4.1 Introduction

This chapter proposes a framework of automated debugging of program errors under
static, constraint-based systems for program analysis, and shows how and why program
errors can be fixed in the absence of programmers’ declarations. The language we are
particularly interested in is Moded Flat GHC [44][46] proposed in 1990. Moded Flat
GHC is a concurrent logic (and consequently, a concurrent constraint) language with a
constraint-based mode system designed by one of the authors, where modes prescribe
the information flow that may be caused by the execution of a program.

Languages equipped with strong typing or strong moding® enable the detection of
a type/mode errors by checking or reconstructing types or modes. The best-known

Modes can be thought of as “types in a broad sense,” but in this chapter we reserve the term
“types” to mean sets of possible values.
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framework for type reconstruction is the Hindley-Milner type system [20], which al-
lows us to solve a set of type constraints obtained from program text efficiently as a
unification problem.

Similarly, the mode system of Moded Flat GHC allows us to solve a set of mode
constraints obtained from program text as a constraint satisfaction problem. With-
out mode declarations or other kinds of program specification given by programmers,
mode reconstruction statically determines the read/write capabilities of variable occur-
rences and establishes the consistency of communication protocols between concurrent
processes [46]. The constraint satisfaction problem can be solved mostly (though not
entirely) as a unification problem over feature graphs (feature structures with cycles)
and can be solved in almost linear time with respect to the size of the program [1].
As we will see later, types also can be reconstructed using a similar (and simpler)
technique.

Compared with abstract interpretation usually employed for the precise analysis of
program properties, constraint-based formulation of the analysis of basic properties has
a lot of advantages. Firstly, thanks to its incremental nature, it is naturally amenable to
separate analysis of large programs. Secondly, it allows simple and general formulations
of various interesting applications including error diagnosis.

When a concurrent logic program contains bugs, it is very likely that mode con-
straints obtained from the erroneous symbol occurrences are incompatible with the
other constraints. We have proposed an efficient algorithm that finds a minimal in-
consistent subset of mode constraints from an inconsistent (multi)set of constraints [7].
A minimal inconsistent subset can be thought of as a minimal “explanation” of the
reason of inconsistency. Furthermore, since each constraint keeps track of the symbol
occurrence(s) in the program that imposed the constraint, a minimal subset tells pos-
sible sources (i.e., symbol occurrences) of program errors. Our technique can locate
multiple bugs at once. The technique is quite general and can be used with other
constraint-based frameworks such as strong typing.

Since the conception of the above framework of program diagnosis and some exper-
iments, we have found that the multiset of mode constraints imposed by a program
usually has redundancy and it usually contains more than one minimal inconsistent
subset when it is inconsistent as a whole. Redundancy comes from two reasons:

1. A non-trivial program contains conditional branches or nondeterministic choices.
In (concurrent) logic languages, they are expressed as a set of rewrite rules (i.e.,
program clauses) that may impose the same mode constraints on the same predi-
cate.

2. A non-trivial program contains predicates that are called from more than one place,
some of which may be recursive calls. The same mode constraint may be imposed
by different calls.

We can often take advantage of the redundancies and pinpoint a bug (Sect. 4.3) by
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assuming that redundant modes are correct. The next step worth trying is automated
error correction. We can estimate the intended mode of a program from the parts of
the program that are considered correct, and use it to fix small bugs, which is the main
focus of this work.

Bugs that can be dealt with by automated correction are necessarily limited to near-
misses, but still; automated correction is worth studying because:

e serious algorithm errors cannot be mechanically corrected anyway,

o if the algorithm for a program has been correctly designed, the program is usually
“mostly correct” even if it doesn’t run at all, and

o real-life programs are subject to a number of revisions, upon which small errors
are likely to be inserted.

Our idea of error correction can be compared with error-correcting codes in coding
theory. Both attempt to correct minor errors using redundant information. Unlike
error-correcting codes that contain explicit redundancies, programs are usually not
written in a redundant manner. However, programs interpreted in an abstract domain
may well have implicit redundancies. For instance, the then part and the else part of
a branch will usually compute a value of the same type, which should also be the same
as the type expected by the reader of the value. This is exactly why the multiset of
type or mode constraints usually has redundancies.

It is not obvious whether such redundancies can be used for automated error cor-
rection, because even if we correctly estimate the type/mode of a program, there may
be many possible ways of error correction that are compatible with the estimated
type/mode. The usefulness of the technique seems to depend heavily on the choice
of a programming language and the power of the constraint-based static analysis. We
have obtained promising results using Moded Flat GHC and its mode system, with the
assistance of type analysis and other constraints.

The other concern in automated debugging is search space. Generate-and-test search,
namely the generation of a possible correction and the computation of its principal
mode (and type), can involve a lot of computation, but we can prune much of the
search space by using ‘quick-check’ mode information to detect non-well-modedness.
Types are concerned with aspects of program properties that are different from modes,
and can be used together with modes to improve the quality of error correction.

4.2 Strong Moding and Typing in Concurrent Logic Pro-
gramming

We first outline the mode system of Moded Flat GHC. The readers are referred to
[46] and [37] for details.
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In concurrent logic programming, modes play a fundamental role in establishing the
safety of a program in terms of the consistency of communication protocols. The mode
system .of Moded Flat GHC gives a polarity structure (that determines the informa-
tion flow of each part of data structures created during execution) to the arguments
of predicates that determine the behavior of goals. A mode expresses this polarity
structure, which is represented as a mapping from the set of paths to the two-valued
codomain {in, out}. Paths here are strings of pairs, of the form (symbol, arg), of pred-
icate/function symbols and argument positions, and are used to specify possible posi-
tions in data structures. Formally, the set Preqy, of paths for terms and the set Patom
of paths for atomic formulae are defined using disjoint union as:

PTermz( Z Nf)*, PAtomz( Z Np) X PTerm »
f€Fun p€ Pred

where Fun/Pred are the sets of function/predicate symbols, and Ny/N, are the sets of
possible argument positions (numbered from 1) for the symbols f/p. The purpose of
mode analysis is to find the set of all modes (each of type Paom — {in, out}) under
which every piece of communication is cooperative. Such a mode is called a well-moding.
Intuitively, in means the inlet of information and out means the outlet of information.
A program does not usually define a unique well-moding but has many of them. So
the purpose of mode analysis is to compute the set of all well-modings in the form of
a principal (i.e., most general) mode. Principal modes can be expressed naturally by
mode graphs, as described later in this section.

Given a mode m, we define a submode m/p, namely m viewed at the path p, as
a function satisfying (m/p)(q) = m(pg). We also define IN and OUT as submodes

{3

returning in and out, respectively, for any path. An overline inverts the polarity
of a mode, a submode, or a mode value.

A Flat GHC program is a set of clauses of the form h :- G | B, where h is an
atomic formula and G and B are multisets of atomic formulae. Constraints imposed
by a clause h :- G | B are summarized in Fig. 4.1. Rule (BU) numbers unification
body goals because the mode system allows different body unification goals to have
different modes. This is a special case of mode polymorphism that can be introduced
into other predicates as well [7], but in this chapter we will not consider general mode
polymorphism because whether to have polymorphism is independent of the essence of
this work.

For example, consider a quicksort program defined as in Figure 4.2. From the entire
definition, we obtain 53 constraints which are consistent. We could regard these con-
straints themselves as representing the principal mode of the program, but the principal
mode can be represented more explicitly in terms of a mode graph (Fig. 4.3). Mode
graphs are a kind of feature graphs [1] in which

1. a path (in the graph-theoretic sense) represents a member of Pgtom,
2. the node corresponding to a path p represents the value m(p) ({ = in, T = out),
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- N
(HF) m(p) = in, for a function symbol occurring in h at p.

(HV) m/p = IN, for a variable symbol occurring more than once in s at p and
somewhere else.

(GV) If some variable occurs both in h at p and in G at p/,
Vq € Prerm(m(p'q) = in = m(pq) = in).

(BU) m/(=x,1) = m/{(=,2), for a unification body goal =.
(BF) m(p) = in, for a function symbol occurring in B at p.

(BV) Let v be a variable occurring exactly n (> 1) times in h and B at py,...,pn,
of which the occurrences in h are at py,...,px (k> 0). Then

R({m/plam/pk+17'"am/pn})7 1fk>07

where the unary predicate R over finite multisets of submodes represents
“cooperative communication” between paths and is defined as

§ R(S) ¥ Vg € Prom 35 € S(s(q) = out A Vs' € S\{s} (s'(q) = in)). )

Fig. 4.1: Mode constraints imposed by a program clause h :- G | B or a goal clause
i~ B.

quicksort (Xs,Ys) :- true | gsort(Xs,Ys, []).
gsort ([], Ys0,Ys ) :- true | Ys=; Ys0.
gsort ([X|Xs],¥s0,Ys3) :- true |
part(X,Xs,S8,L), gsort(8,Ys0,Ys1), Ys1=9 [X|Y¥s2], gqsort(L,Ys2,Ys3).
part(_,[], S, L ):-true | S=3[],L=41].
part (A, [X|Xs],S0,L ) :- A>=X | SO=5 [X|S], part(A,Xs,S,L).
part (A, [X|Xs],S, LO) :- A< X | LO=¢ [X|L], part(A,Xs,S,L).

Fig. 4.2: A quicksort program.
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<q,1>| <q,2>} <q,3>| <p,1>] <p,2>| <p,3>
<p,4>

. /

Fig. 4.3: The mode graph of a quicksort program. q stands for gsort and p stands for
part. The mode information of the toplevel predicate and unification goals is omitted.

3. each arc is labeled with the pair (symbol, arg) of a predicate/function symbol and
an argument position, and may have a “negative sign” (denoted “e” in Fig. 4.3)
that inverts the interpretation of the mode values of the paths beyond that arc,
and

4. a binary constraint of the form m/p; = m/p; or m/p; = m/p, is represented by
letting p; and ps lead to the same node.

Mode analysis proceeds by merging many simple mode graphs representing individ-
ual mode constraints. Thus its decidability is guaranteed by the decidability of the
unification algorithm for feature graphs. The principal mode of a well-moded program,
represented as a mode graph, is uniquely determined, as long as all the mode con-
straints imposed by the program are unary (i.e., constraint on the mode value of, or
the submode at, a particular path) or binary (i.e., constraint between the submodes
at two particular paths). Space limitations do not allow us to explain further details,
which can be found in [37].

A type system for concurrent logic programming can be introduced by classifying
a set Fun of function symbols into mutually disjoint sets Fy,...,F,. A type here is
a function from Patom to the set {Fi,..., F,}. Like principal modes, principal types
can be computed by unification over feature graphs. Constraints on a well-typing 7 are
summarized in Fig. 4.4. The choice of a family of sets F1, ..., F}, is somewhat arbitrary.
This is why moding is more fundamental than typing in concurrent logic programming.

Mode and type analyses have been implemented as part of klint, a static analyzer for
KL1 programs [39].
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ﬁ
((HBFT) 7(p) = F;, for a function symbol occurring at p in h or B.

(HBV;) 7/p = 7/p/, for a variable occurring both at p and p' in h or B.

(GV;) Vq € Prerm(m(p'q) = in = 7(pq) = 7(p'q)), for a variable occurring both
at pin h and at p' in G.

(BU;) 7/{=k,1) = 7/(=k, 2), for a unification body goal =. )
-

Fig. 4.4: Type constraints imposed by a program clause h :- G | B or a goal clause
- B.

4.3 Identifying Program Errors

When a concurrent logic program contains an error, it is very likely (though not
always the case) that its communication protocols become inconsistent and the set of
its mode constraints becomes unsatisfiable. A wrong symbol occurring at some path
is likely to impose a mode constraint inconsistent with correct constraints representing
the intended specification.

A minimal inconsistent subset of mode constraints can be computed efficiently using
a simple algorithm?. Let C = {c1,...,cn} be a multiset of constraints. Algorithm
1 below finds a single minimal inconsistent subset S from C when C is inconsistent.
When C is consistent, the algorithm terminates with S = {}. false is a self-inconsistent
constraint used as a sentinel.

4 .
Algorithm 1:
Cn+1  false;
S {}
while § is consistent do
D« 8;i+0;
while D is consistent do
i+—i+1; D+ DU{c}
end while;
S+« Su {Cz}
end while;
ifi=n+1then S « {}

-

The readers are referred to [7] for a proof of the minimality of S, as well as various
extensions of the algorithm. Note that the algorithm can be readily extended to finding
multiple bugs at once. That is, once we have found a minimal subset covering a bug,

*The algorithm described here is a revised version of the one proposed in [7] and takes into account
the case when C' is consistent.
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we can reapply the algorithm to the rest of the constraints.

In the algorithm, the merging of constraint sets and the checking of their consis-
tency are realized mostly as the unification of mode graphs and the checking of its
success/failure. Although the algorithm is quite general, its efficiency hinges upon the
fact that there is a pair of efficient algorithms for computing the union of constraint
sets and checking its consistency.

Our experiment shows that the average size of minimal inconsistent subsets is less
than 4, and we have not yet found a minimal inconsistent subset with more than 11
elements. The size of minimal subsets turns out to be independent of the total number
of constraints, and most inconsistencies can be explained by constraints imposed by a
small range of program text.

Because we are dealing with near-misses, we can assume that most of the mode
constraints obtained from a program represent an intended specification and that they
have redundancies in most cases. In this case, one can often pinpoint a bug either

1. by computing a maximal consistent subset of size n—1 and taking its complement,
or

2. by computing several overlapping minimal inconsistent subsets and taking their
intersection.

Algorithm 2 described below combines these two alternative policies of pinpointing.
To reduce the amount of computation, we do not compute all minimal subsets; instead,
for each element (say s;) of the initial inconsistent subset S, we execute Algorithm 1
after removing s; from C, which will lead to another minimal subset if it exists. Thus
Algorithm 2 simultaneously computes constraints suspected by the two policies. V

Let S = {s1,...,5m} be a minimal subset obtained by Algorithm 1, and getminimal(C)
be a function which computes a minimal inconsistent subset from a multiset C' of con-
straints using Algorithm 1 above:

4 0
Algorithm 2:

T+ S,
for j + 1 tomdo
S’ + getminimal(C'\{s;});
if S’ = {} then
output {s;} as a solution of Policy 1
else T« TUS;

4 {
L end for D

Here, T is a multiset of constraints what serves as counters of the numbers of con-
straints occurring in S and (various versions of) §’, and U is a multiset union operator.
T records how many times each constraint occurred in different minimal subsets. Under
Policy 2, constraints with more occurrences in T' are more likely to be related to the
source of the error.
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Algorithm 2 is useful in locating multiple bugs at once. That is, once we have obtained
a minimal inconsistent subset S, we can apply Algorithm 2 to refine the subset and
remove only those constraints in the refined subset from C.

When Policy 1 outputs a single constraint imposed by an erroneous symbol occur-
rence, we need not consider Policy 2. However, there are cases where Policy 1 outputs
no constraints or more than one constraint, in which case Policy 2 may better tell which
constraints to suspect first.

Algorithm 2 is not always able to refine the initial set S, however. For instance, when
S is the only minimal inconsistent subset, the algorithm will output all the elements of
S by Policy 1 and will find no alternative subset by Policy 2. Fortunately, this is not
a serious problem because S is usually quite small.

4.4 Automated Debugging Using Mode Constraints

Constraints that are considered wrong can be corrected by

¢ replacing the symbol occurrences that imposed those constraints by other sym-
bols, or

¢ when the suspected symbols are variables, by making them have more occurrences
elsewhere (cf. Rule (BV) of Fig. 2.1).

In this work, we focus on programs with a small number of errors in variables and
constants; that is, we focus on errors in terminal symbols in abstract syntax trees.
This may seem restrictive, but concurrent logic programs have quite flat syntactic
structures (compared with other languages) and instead make heavy use of variables.
Our experience tells that a majority of simple program errors arise from the erroneous
use of variables, for which the support of a static mode system and debugging tools are
invaluable.

An algorithm for automated correction is basically a search procedure whose initial
state is the erroneous program, whose operations are the rewriting of the occurrences
of variables or constants, and whose final states are well-moded programs®. This can
be regarded also as a form of abductive reasoning which, from a presumably correct
mode constraint B and the moding rules of the form “if A then B” (or “B for A”) as
shown in Fig. 2.1, infers a syntactic constraint A that is considered correct.

The symbols to be substituted in the correction are chosen from the constants or
other variables occurring in the same clause. When the symbol to be rewritten occurs
in the head, we should also consider replacement by a fresh variable. We don’t have
to try to form the mode graphs of all the alternative programs; from the set C'\ S,
we can derive a replacement guideline, namely simple constraints to be satisfied by the

3Here, we assume that errors can be corrected without changing the shape of the abstract syntax
tree, though we could extend our technique and allow occurrences of terminal symbols to be simply
added or deleted.
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substituted symbol. Any replacement that violates the guideline will not lead to a
well-moded program and can be rejected immediately.

Error.correction may require the rewriting of more than one symbol occurrence. We
perform iterative-deepening search with respect to the number of rewritings, because
the assumption of near-misses implies that a simpler correction is more likely to be the
intended one. These ideas have been partially implemented in the kima analyzer for
KL1 programs [38].

4.5 Using Constraints Other Than Modes

When error correction requires the rewriting of more than one symbol occurrence, the
iterative-deepening search may report a large number of alternative solutions, though
they always include an intended one.

Using both the mode system and the type system reduces the number of alternatives
greatly. Modes and types capture different aspects of a program, and rather few of
well-formed programs are both well-moded and well-typed. We can expect that there
are only a small number of well-moded and well-typed program syntactically in the
‘neighborhood’ of the given near-miss program.

The reason why a type system alone is insufficient should become clear by considering
programs that are simple in terms of types such as numerical programs. The mode
system is sensitive to the number of occurrences of variables (rule (BV) in Fig. 2.1) and
can detect many errors that cannot be found by type analysis. However, even when the
programs are simple in terms of types, types can be useful for inferring what constant
should replace the wrong symbol.

Other heuristics from our programming experiences can reinforce the framework as
well:

1. A singleton variable occurring in a clause body is highly likely to be an error.
2. A solution containing a variable occurring more than once in a clause head is less
likely to be an intended one.

These heuristics are not as ad hoc as it might look; indeed they can be replaced by a
unified rule on constraint strength:

e A well-moded solution with weaker mode constraints is more likely to be an
intended one.

A singleton variable occurring at p in a clause body imposes a constraint m/p = OUT,
which is much stronger than m(p) = out. Similarly, a variable occurring more than
once at pi, po, ... in a clause head imposes a constraint m/p; = IN.

We could use more surface-level heuristics such as the similarity of variable names,
but this is outside the scope of this work.
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4.6 Experiments and Examples

We show some experimental results and discuss two examples of automated debug-
ging. The examples we use are admittedly simple but that can be justified. First, we
must anyway start with simple examples. Second, we have found that most inconsis-
tencies can be explained by constraints imposed by a small range of program text, as
we pointed out in Sect. 4.3. So we strongly expect that the total program size does not
make much difference in the performance or the quality of automated debugging.

4.6.1 Experiments

We applied the proposed technique to programs with one mutation in variable occur-
rences. We systematically generated near-misses (each with one wrong occurrence of
a variable) of three programs (there are many ways of inserting a bug) and examined
how many of them became non-well-moded, whether automated correction reported an
intended program, and how many alternatives were reported. Table 4.1 shows the re-
sults. In the table, the column “total cases” shows the numbers of cases examined, and
the column “detected cases” shows how many cases lead to non-well-moded programs.
For non-well-moded programs, we examined how many well-moded alternatives were
proposed by the automated debugger by depth-1 search. In this experiment, we did
not apply Algorithm 2 to refine a minimal inconsistent subset.

The programs we used are list concatenation (append), the generator of a Fibonacci
sequence, and quicksort. We used the definitions of predicates only, that is, we did not
use the constraints that might be imposed by the caller of these programs.

The row “mode only” indicates the results using mode constraints only, except that
when correcting errors we regarded singleton variables in clause bodies as erroneous. In
this experiment, minimal inconsistent subsets, when found, always included constraints
imposed by the wrong symbol occurrence, and the original, intended programs were
always included in the sets of the alternatives proposed by the algorithm.

A bug due to a wrong variable occurrence often results from misspelling (say the
confusion of YS and Ys), in which case the original variable is likely to be replaced by
a variable not occurring elsewhere in the clause. The row “new variable” shows the
statistics of this case, which tells most errors were detected by mode analysis.

The row “mode & type” shows the improvement obtained by using types as well.
The column “detected cases” shows that some of the well-moded erroneous programs
were newly detected as non-well-typed. Note that the experiments did not consider the
automated correction of well-moded but non-well-typed programs. For fibonacci and
quicksort, we assumed that integers and list constructors belonged to different types.
For append, we employed a stronger notion of types and assumed that the type of the
elements of a list could not be identical to the type of the list itself.

The results show that the use of types was effective in reducing the number of alter-
natives. More than half of non-well-moded near-misses were uniquely restored to the
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Table 4.1: Single-error detection and correction.

Program Analysis Total Detected Proposed alternatives
cases cases 1 2 3 4 5 6 7 28
append mode only LY4 33 16 4 1 0 5 4 2 1
new variable 13 1 7 0 0 1 1 2 0 0
mode & type 57 4 19 3 2 5 1 3 O 0
fibonacci mode only 84 43 28 7 0 O O 2 3 3
new variable 15 4 6 3 0 0 0 2 2 1
mode & type 84 57 34 2 0 2 2 3 O 0
quicksort mode only 245 148 84 33 2 3 1 8 7 10
new variable 45 43 24 2 0 3 2 4 3 5
mode & type 245 189 93 33 5 9 0 5 2 1

original program. Thus, programmers can benefit much from the support of constraint-
based static analysis by writing programs in a well-moded and well-typed manner.

4.6.2 Example 1 — Append

As an example included in the above experiment, we discuss an append program with
a single error. This example is simple and yet instructive.

R; : append([], Y,Z ):-truel| Y=;Z.
Rs : append([AlY],Y,20) :- true | Z0=9 [A|Z], append(X,Y,Z).
(The head should have been append([A|X]1,Y,Z0))

Algorithm 1 computes the following minimal inconsistent subset of mode constraints:

Mode constraint Rule Source symbol
(a) m/(append, 1){.,2) = IN (HV) Y in Ry
(b) m/{append, 1) = OUT (BV) X in R

This tells that we should suspect the variables X and Y in Clause Rs. The search
first tries to rewrite one of the occurrences of these variables (iterative-deepening), and
finds six well-moded alternatives:

(1) Ry : append([A|X],Y,Z0) :~ true | Z0=9 [A|Z], append(X,Y,Z).
(2) Ry : append([AlY],X,Z0) :~ true | Z0O=5 [A|Z], append(X,Y,Z).
(3) Ry : append([AlY],Y,Z20) :- true | Z0=, [A|Z], append(Y,Y,Z).
(4) Ry : append([A|Y],Y,Z0) :~ true | Z0=; [A|Z], append(Z0,Y,Z).
(5) Ry : append([AlY],Y,Z0) :~ true | Z0=9 [A|Z], append(A,Y,Z).
(6) Ry : append([A|Y],Y,20) :-true | Z0=9 [A|Z], append(Z,Y,Z).
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Types do not help much in this example, though Alternative (5) can be eliminated
by an implicit type assumption described in Sect. 6.1 that list constructors and the
elements of the list cannot occupy the same path. Alternatives (3), (4), (5) and (6) are
programs that cause reduction failure for most input data, and can be regarded as less
plausible solutions because of the two occurrences of Y in the clause heads that impose
stronger constraints than intended.

What are Alternatives (1) and (2)? Alternative (1) is the intended program, and
Alternative (2) is a program that merges two input lists by taking their elements alter-
nately. It’s not ‘append’, but is a quite meaningful program compared with the other
alternatives!

In this example, Algorithm 2, if applied, will detect Constraint (b) as the unique
result of Policy 1. This means that there must be some problems with the variable X,
which in turn means that X must either be removed or occur more than once. Search
of well-moded programs finds the same number of alternatives, but the search space
is reduced because we do not have to consider the rewriting between Y and variables
other than X.

4.6.3 Example 2 — Quicksort
Next, we consider a quicksort program with two errors.

R; : quicksort(Xs,Ys) :- true | qsort(Xs,Ys, [1).
Ry : gsort([], Ys0,Ys ) :-true | Ys={Ys0.
Rs : gqsort([X|Xs],Ys0,Ys3) :~ true |
part(X,Xs,S,L), gsort(S,Ys0,¥Ys1),
Ys2=9 [X|Ys1], gsort(L,Ys2,Ys3).
(the unification should have been Ys1 =5 [X|Ys2])

Algorithm 1 returns the following minimal inconsistent subset:

Mode constraint Rule Source symbol
(a) m({gsort,3)) = in (BF) “[1” in Ry
(b) m/(=1,1) = m/{gsort,3) (BV) Ys in Ry
(c) m/(=1,2) = m/(=1,1) (BU)  =1in Ry
(d) m/(gsort,2) = m/( 2) (BV) YsO in Ry
(e) m((=,2)) = (BF)  “.”in R3
() m/(= 2,2) /( ;1) (BU) =2 in R3
(g) m/(=9,1) = m/{(qsort,2) (BV) Ys2 in R

This subset is inconsistent because two inconsistent constraints can be derived from
1t:

m({(gsort,2)) = out, by (a), (b), (c) and (d),
m({gsort,2)) = in, by (e), (f) and (g).
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It is worth noting that this example is rather difficult—the minimal subset is rather
large and Algorithm 2 does not find an alternative minimal subset. That is, there is
no redundancy of mode constraints in the formation of the difference list representing
the result.

Thus we cannot infer the correct mode of the path (gsort, 2) and other paths, and
automated debugging should consider both of the possibilities, m({gsort, 2)) = in and
m({gsort,2)) = out.

We consider the correction of both constants and variables here. It turns out that
all depth-1 corrections are non-well-moded. There are six depth-2 corrections that are
well-moded:

) Line 1: quicksort (Xs,Y¥s) : - true | gsort (Xs,Zs,Zs).
2) Line 1: quicksort(Xs,Y¥s) :- true | gsort(Zs,Ys,Zs).
) Line 1: quicksort (Xs,Ys) :- true | gsort(Xs,c,¥s).
4) Line 1: quicksort (Xs,Ys) :- true | gsort(c,Y¥s,Xs).
5) Line 5: Ys2=9 [X|Ys2], gsort(L,Ysl ,Ys3).
6) Line 5: Ys1=9 [X|Y¥s2], gsort (L,Ys2,Ys3).

Here, c is some constant. ~

Typing doesn’t help much for this example. The assumption that integers and list
constructors should not occupy the same path does not exclude any of the above alter-
natives.

However, usage information will help. Suppose we know that quicksort is used as
m({quicksort,1)) = in and m({quicksort,2)) = out. This excludes Alternatives (1),
(2) and (4). We can also exclude Alternative (5) by static occur-check (Ys2 occurs on
both sides of unification).

Of the remaining, Alternative (6) is the intended program that sorts items in ascend-
ing order. It is interesting to see that Alternative (3) is a program for sorting items in
descending order by choosing ‘[1’, the simplest element of the list type, as the constant
c. This is not an intended program, but is a reasonable and approximately correct
alternative which should not be rejected in the absence of program specification.

4.7 Related Work

Most previous work on the mode analysis of (concurrent) logic languages was based
on abstract interpretation, and focused mainly on the reasoning of program properties
assuming that the programs were correct. In contrast, constraint-based mode analysis
can be used for diagnosis as well as optimization by assuming that correct programs
are well-moded.

Analysis of malfunctioning systems based on their intended logical specification has
been studied in the field of artificial intelligence [23] and known as model-based diag-
nosis. Model-based diagnosis has similarities with our work in the ability of searching
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minimal explanations and multiple faults. However, the purpose of model-based diag-
nosis is to analyze the differences between intended and observed behaviors. Our mode
system does not require that the intended behavior of a program be given as mode
declarations, and still locates bugs quite well.

Wand proposed an algorithm for diagnosing non-well-typed functional programs [47].
His approach was to extend the unification algorithm for type reconstruction to record
which symbol occurrence imposed which constraint. In contrast, our framework is
built outside any underlying framework of constraint solving. We need not modify the
constraint-solving algorithm but just call it. Besides its generality, our approach has
an advantage that static analysis does not incur any overhead for well-moded/typed
programs. Furthermore, the diagnosis guarantees the minimality of the explanation
and often refines it further.

Comparison between Moded Flat GHC and other concurrent logic/constraint lan-
guages with some notions of moding can be found in [7].

4.8 Conclusions and Future Work

We studied how constraint-based static analysis could be applied to the automated
and systematic debugging of program errors in the absence of mode/type declarations.
We showed that, given a near-miss Moded Flat GHC program, our technique could in
many cases report a unique solution or a small number of reasonable solutions that
included the intended program.

If a programmer declares the mode and/or type of a program, that information can
be used as constraints that are considered correct. In general, such constraints are
useful in obtaining smaller minimal inconsistent subsets. However, our observation is
that constraints implicitly imposed by the assumption of well-modedness (and well-
typedness) is strong enough for automatic debugging to be useful.

It is a subject of future work to extend our framework to the correction of non-
terminal program symbols (i.e., function and predicate symbols), mainly in terms of
search space. It is yet to see whether the proposed framework works well for other pro-
gramming paradigms such as typed functional languages and procedural languages, but
we would claim that the concurrent logic/constraint programming paradigm benefits
enormously from static mode/type systems.
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HHE WHRREBEANDIGH

The KLIC system has achieved both high portability and extensibility by employing
C as an intermediate language and featuring generic objects that allow users to define
new classes of data. It is also efficient for an untyped and unmoded language with fine-
grained concurrency, but its flexibility incurs runtime overhead that could be reduced by
static analysis. This chapter studies how constraint-based static analysis and abstract
interpretation can be used to reduce dynamic data checking and to optimize loops. We
applied the proposed technique to the optimization of floating-point numbers and their
arrays. The optimized KL1 programs turned out to be only 34%-70% slower than the
comparable C programs.

5.1 Introduction

The KLIC system [5] compiles KL1 [42] programs into efficient C programs, leaving
low-level details of optimization to the underlying C compilers. Thus KLIC achieves
high portability, and at the same time it is quite efficient as a symbolic processing lan-
guage with tagged data representation. However, it is our belief that parallel symbolic
processing is fully justified only with static program analysis, because the (costly) effort
of parallelization is easily cancelled out by insufficient effort to improve single-processor
performance. Also, real-life parallel symbolic applications (such as machine learning)
may involve a lot of numerical computation. We anticipate that future symbolic lan-
guages should provide certain support of high-performance computing.

We developed a constraint-based mode system for GHC programs [46] and adapted
it to deal with the features of KL1. The implementation of our mode analyzer is called
klint [39]. The mode system deals with the direction of information flow and checks if
every piece of communication is cooperative. A well-moded program is unification-safe,
that is, it will not cause the failure of unification body goals (except due to occur-check).
In the terminology of Concurrent Constraint Programming [24], this means that a tell
operation will not make the constraint store inconsistent.

Constraint-based analysis can be used also for type analysis and linearity analysis,
both partly supported by the current klint system [39]. Our implementation technique
builds upon these three analyses, plus abstract interpretation of the instantiation states
of variables, as described in Section 5.4.

In this chapter, we study how static program analysis improves the performance of
the current KLIC implementation. Both for pedagogical and practical reasons, we take
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simple numerical computation as an example to demonstrate the technique.

5.2 Number Representation in KLIC

KLIC employs 32-bit representation for scalar data. To accommodate tag bits, each
integer is represented using the most significant 28 bits of a word, accompanied by a
tag “0010”. Floating-point numbers (64-bit long in KLIC) are implemented using data
objects, one of the three kinds of generic objects [5]. A data object is represénted as
a pointer to a record containing the value (or a reference to the value) and a pointer
to the table of methods available to the data. Vectors (one-dimensional arrays) are
represented as data objects as well. ‘

Although data objects are a natural and flexible means of defining new classes of
data, accessing and operating on data objects involve the checking of tag values and
the dereferencing of a couple of pointers. Another problem is that, since data objects
are basically pointers to records, floating-point numbers not accessed any more become
garbage. Integers do not have the garbage problem, but still involve the manipulation
of tags—checking, removing (for arithmetic operations), and/or attaching.

Arrays that allow constant-time access and update are essential in many efficient
algorithms. KLIC provides one-dimensional arrays called vectors. Vectors in a single-
assignment language such as KL1 are necessarily immutable at the language level, so
KLIC implements them as multi-version data structures in which old element values
are preserved in an association list while the latest values are stored in random-access
arrays [12]. In many programs, however, old element values thus preserved are not
accessed later, in which case the management of an association list turns out to be an
overhead. Also, KL1 vectors can store any values including uninstantiated variables,
which means that before operating on a vector element, one must check if it is already
instantiated and has the intended data type.

It is highly desirable to be able to identify a class of programs which, with static
analysis, can be executed without tag operations for the checking of types and the
availability of data. In addition to the compile-time techniques, we have designed and
implemented an array class for instantiated numbers, which is intended to be used in
combination with static analysis.

5.3 Constraint-Based Static Analysis

One of the novelties of our optimization technique is that it is largely based on
constraint-based static analysis, which has a lot of advantages:

Simplicity. The mode system has been designed so that it is accessible to program-
mers. In other words, its purpose is not only for compilers to analyze programs
but also for programmers to understand their programs better.
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Efficiency. Mode analysis is a constraint satisfaction problem with many simple mode
constraints, and can be solved efficiently by unification over feature graphs [1].

Modularity. Thanks to its incremental nature, it is naturally amenable to separate
analysis of large programs.

Generality. It allows simple and general formulations of various interesting appli-
cations including the diagnosis of non-well-moded programs (7] and automated
debugging [2].

We have designed three constraint-based systems for static analysis: mode, type,
and linearity systems. Of these, the mode system provides the most fundamental
information in the sense that it is referred to by type and linearity systems. Because
mode analysis has been described in detail in the literature [46, 36, 37}, we outline our
type analysis and linearity analysis below.

5.3.1 Type Analysis

There may be a number of ways to introduce a type system into concurrent logic
programming, but we chose to have a type system very similar in structure to the
mode system. That is, a type tells what function symbols (including constant symbols)
can occur at what positions in data structures. To mention a “position”, we define the
notion of a path as a sequence of pairs, of the form (symbol, arg), of predicate/function
symbols and argument positions. Let P4, be the set of paths for specifying positions
in a goal, and Premy the set of paths for specifying positions in a term. For example,
in a goal p(f(a,b),C), the symbol b occurs at (p,1){£,2) € Pasom- The set Fun
of function symbols are assumed to be appropriately classified into mutually disjoint
subsets Fi,...,F,. For instance, all integers may form one subset while all floating-
point numbers may form another subset.

Formally, a type is a function from Py to the set {Fy,..., F,}. Like principal
modes, principal types can be computed by unification over feature graphs. A program
and/or a goal clause is said to have a type 7 if it satisfies all the typing constraints
summarized in Figure 5.1. The choice of a family of sets Fi,...,F, is somewhat
arbitrary. This is another reason why moding is more fundamental than typing in
concurrent logic programming.

5.3.2 Linearity Analysis

The purpose of linearity analysis (Chapter 6 and [40]) is to distinguish between data
structures possibly referenced by two ore more pointers and those referenced by only
one pointer. We call the former shared data and the latter nonshared data. Nonshared
data structures can be recycled as soon as they are read by the sole reader (compile-time
garbage collection).
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. N
(HBF,) 7(p) = F;, for a function symbol in F; occurring at p in h or B.

(HBV,) Vq € Prerm(7(pg) = 7(p'q)), for a variable occurring both at p and p’ in
hor B. '

(GV,) Vg € Prerm(m(p'q) = in = 7(pg) = 7(p'q)), for a variable occurring both
at pin h and at p' in G.

L (BU,) Yq € Presm(7({=x,1)q) = 7({=k,2)q)), for a unification body goal =j.

Fig. 5.1: Type constraints imposed by a program clause h :- G | B or a goal clause
:- B.

Sharing of a data structure is caused by nonlinear variables defined as follows: An
occurrence of a GHC variable is called a channel occurrence unless it is the second or
subsequent occurrences in a clause head or an occurrence in a guard. A variable in a
program clause or a goal clause is called linear if it has two or less channel occurrences
in the clause, and nonlinear if it may have three or more channel occurrences. Mode
analysis guarantees that exactly one of the channel occurrences of a variable is the
writer occurrence and all the others are reader occurrences, so communication with
a linear variable is one-to-one (or one-to-zero), while communication with a nonlinear
variable is one-to-many. Readers are encouraged to see that surprisingly many of the
variables in existing concurrent logic programs are linear.

To distinguish between nonshared data and shared data in structural operational
semantics, we extend the semantics and attach either of the annotations 1 or w to
every function symbol f occurring in the bodies of program clauses and goal clauses.
Suppose a substitution operation {v+t} is implemented by pointer assignment. Then
#¢(...) means that the structure f(...) is possibly shared and f!(...) means that f (...)
is never shared. The annotations are managed as follows:

1. Annotations in program clauses and initial goal clauses are given according to how
the structures are implemented. For instance, suppose two processes p and q in a
goal clause

i P([1,2:3] ,X) ’ q( [1,2,3] :Y) .

share a single list [1,2,3] in an actual implementation. Then the eight function
symbols in the textual representation of the goal clause must have the annotation
w. If two separate lists are created at runtime, the annotations can be either 1 or
w. All function symbols occurring in a term with a principal function symbol with
w must have the annotation w (closure condition).

2. In the extended operational semantics, the annotations are handled as follows.
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[ (BF)) A(p) = shared, for a function symbol f¥ occurring at p in B, )
(LV,) For a linear variable with two occurrences at p1 and po,
Vq € Prerm(m(p1q) = in A Mp1q) = shared = A(p2g) = shared)
(when p; is a head path)
Vq € Prerm(m(p1g) = out A M(p1q) = shared = A(p2q) = shared)
(when p; is a body path),

(NVy) For a nonlinear variable occurring at p (and elsewhere),
Vq € Preym(m(pq) = out = X\(pq) = shared) (when p is a head path)
Vq € Prerm(m(pq) = in = A(pq) = shared) (when p is a body path)

(BU,) For a unification body goal =,

Vg € Prerm((=k,1)q = shared < (=;,2)q = shared) )
N

Fig. 5.2: Linearity constraints imposed by a program clause h:~ G | B or a goal clause
:- B.

Suppose an assignment {v « t} takes place in a goal reduction. This happens either
by the execution of a unification goal v =t or by the reduction of a non-unification
goal p(...¢...) using a clause of the form p(...v...):= G | B (renamed using fresh
variables).

e When v is nonlinear, all the annotations in ¢ are first changed to w in order
to indicate that multiple readers have (direct or indirect) access to all the
subterms in t. Then the other occurrences of v (if any) are replaced by
(modified) .

® When v is linear, the other occurrence of v (if any) is replaced by t without
changes of annotations.

The annotation can be viewed as modeling a 1-bit reference counter [6], though it is
to be compiled away.

Linearity of a well-moded GHC program can be characterized by a linearity function
At Payom — {nonshared, shared}. A program clause h:- G | Bora goal clause : - B is
said to have a linearity X if it satisfies all the linearity constraints shown in Figure 5.2.
The linearity constraints can be trivially satisfied by a function that always returns
shared, but such a linearity function provides no useful information. The purpose of
linearity analysis is to find which paths can have the value nonshared.

The main result about linearity analysis is the Subject Reduction Theorem, which
guarantees that when a program P and a goal clause G satisfies A and G is reduced to
G' using P, then G also satisfies \. It follows from this theorem that all data structures
occurring at nonshared paths have an annotation 1.
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5.4 Abstract Interpretation

Constraint-based program analysis nicely captures implementation-independent prop-
erties of programs, and provides basic information for optimization. However, it cannot
capture time-dependent or implementation-dependent properties. An example of such
properties is the instantiation state of the arguments of goals. It depends on both
when it is observed (possibilities include when it is created, when it starts execution,
and when it is finished) and how the goals are scheduled.

The analysis of instantiation states enables a compiler to form a thread, namely a
sequence of (fine-grain) goals that can be executed sequentially without suspension
checking (except upon entry into the thread). The form of a thread we are particularly
interested in is a sequence of built-in body goals possibly followed by a tail-recursive
call. The analysis can be done using an abstract domain {bound, unbound} and proceeds
as follows:

1. reorder body goals in each program clause using mode information to form a po-
tential thread, and

2. perform abstract execution of the main program (or the top-level program of the
program module being analyzed) according to the obtained control flow until the
instantiation state of goal arguments reaches a fixpoint.

If the abstract interpretation guarantees the sequential execution of reordered goals
to determine all the necessary values of input arguments, we have succeeded in forming
a thread and can proceed to loop optimization described in the next section.

5.5 Loop Optimization

One of the most important applications of constraint-based analysis and abstract
interpretation is the optimization of loops programmed as simple or mutual tail recur-
sion.

Since tail-recursive calls usually have more statically available information about
their arguments than the initial call to the predicate, it is reasonable to have two entry
points for each predicate, one for external calls and the other for the tail-recursive loop.
The purpose is to eliminate

1. tag operations and
2. general procedures for accessing generic objects

from the loop and to cache KL1 data using C variables while looping.

Abstract interpretation may not guarantee that all the data examined in clause
guards in a loop have been instantiated and fully dereferenced when the loop is en-
tered. In this case, a compiler may insert a synchronization code outside the loop to
guarantee that all the data examined inside the loop have concrete values and thus
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to reduce the number of synchronization operations performed at runtime. It is not
always possible to move a synchronization point out of the loop because it may block
the execution of unification body goals whose results are otherwise observable from
other concurrent processes. However, in many cases we can prove that this won’t block
the publication of any output data.

5.6 Number Arrays

Loop optimization is effective for both scalar and vector computation. However,
vectors in KLIC are not as efficient as they could be to represent homogeneous arrays
of instantiated data (Section 5.2). To achieve performance competitive with programs
written in procedural languages, we have implemented arrays of 64-bit floating point
numbers and arrays of 32-bit integers as KLIC’s data objects. They are supposed to
be used with static analysis and have the following features:

1. All the elements of an array must be of the same type (64-bit floating-point numbers
or 32-bit integers).

2. The values to be stored into arrays must be instantiated.

3. Linearity analysis must guarantee that multi-version control can be safely omitted.

4. Allocated on a special area not under management of the garbage collector. This
is to avoid copying of large arrays by garbage collection. In an implementation on
a shared-memory parallel computer we are currently working on, arrays may be
allocated on shared memory.

5. No bound check of index values. It would be more reasonable to separate array
bound checks from access operations so that static analysis may eliminate checks
that are known to succeed.

6. Split and join operations with no copying. Suppose we want to let processes access
and update different parts of an array concurrently and without interference. This
can be done by splitting the original array and giving the resultant subarrays to the
processes. The subarrays finally returned by the processes can be rejoined without
copying, aslong as they have been updated in place.

5.7 Experiments

To demonstrate the effect of our optimization techniques, we took two examples,
one to compute Y 12'%(1/k2) and the other to compute the product of two 100 x 100
matrices, and compared the performance of

e the C code generated by KLIC (version 3.002),
e optimized, hand-compiled intermediate code (in C) we have designed, and

e programs directly written in C.
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Table 5.1: Optimization of floating-point numbers and loops.

without opt.  with opt. C

32.6 msec. 4.47 msec. | 2.63 msec.
(12.4) (1.70) (1.00)

Table 5.2: Arrays vs. vectors.

KLIC vector double array  double array C
with loop opt.
8.66 sec. 6.54 sec. 0.772 sec. 0.576 sec.
(15.0) (11.4) (1.34) (1.00)

The results are shown in Tables 5.1 and 5.2. The measurements were done using
Sun Ultra Enterprise 4000 (MPU: 168MHz), and the numbers shown are the execution
times of the main loops. All the C programs were compiled using gcc -02 ~fomit-
frame-pointer. The results show that loop optimization and array types were both
effective, and the optimized KL1 programs turned out to be only 34%-70% slower than
the comparable C programs. One of the remaining sources of overhead is the polling of
external events in each iteration, without which a thread executing a tight loop might
run indefinitely.

5.8 Conclusions

We have shown that static analysis can make the performance of KLIC, an implemen-
tation of a “pure” concurrent logic language, quite close to C for numerical computation.
The most important future work is to build an optimizing KLIC compiler that makes
use of the output of the static analyzer. Another important direction is to extend our
array objects to allow parallel processing on shared-memory parallel computers.

A key feature of concurrent logic languages is (and should be) that parallelization
can be achieved with very low additional programming effort. We hope our research
will open up a new approach to high-performance computing and new application of
concurrent logic programming.
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£6E WITHETOT T L0OSBEERIF

REASHLRUEMSELIILO LTSNS, AE S HEEEL RI
DEBEIC LT, TUSFIVIOESEE AT BRBOREBYERL T2, B
b oL bR HELN TV ABEIEIZTY ~I2 & 5T I4E® (copying garbage collection)
ThHY, SFSEFLREFLVHEERZ - TWAE. 7225, L7 U5 LEfRICRE AT
BHOFMNTCEIICBEL THNER (= 3V /SA VD) BRSTENE, FEEsfls
U7 0L EEEOT R E2ERT LI EHNTES, F 720055 E0E R i
RBO/-OIZIE, TIEDIZEL LW EEESTRL SO 7407 5 ANFETE
HIENFHHICEETH S, WATMERZFE Moded Flat GHC 12 BT 520 & 5 2 @A
DERWZFEE LT, SHREBTORMAZ IREL, BINOREMY AT 2. BB
T L, HEOBBEA V5205957 — v HiEL, B—0BBREA L5 7
BWT—IHEEL R, BT O ILABFICEoTRTA2DDTHY, BB T
TN NVET IRORRIEEO HHTHEFIA (local reuse) DS REE %2 5. $2ET 5
Fdid, DANCREL 728 — F L L [k, #Icso Cefibe isme LBy,
T TIZ, KL1 BT R Klint 45 2 JROBRED —D & L TESWICEE STV 3,

6.1 XL &I

70T AEHEOLRIE, REFRERD L CHRTREASZ LTS,
EHEBEFRELTRAL,

o (HBF, BHNZ) 2 MEZMRAT B Z EHREIFIEL,
o (MBDWBH, BHIC) ZDER FAMT LS 1HET 5

—EAASNIER, KORAZL o TEREINBENC!, 1EDEFAH SN 5055
BTHA, brIHE 1AEGAM SN DHEIT 11 8E, 20L LHEAB SN 2IE41T 1
MHEBEET Lo TVBEERRTIENTE S,

BESNDNEP AN T — OB FFIIEETH 575, HBEM (structured value)
DHFEE, Thee—7 LIERL T, R4V IOBZIIL o CTEEX AL I I L%
V. 2O L) REEED OO, [REOFHATF] PSUBRICEHL 20, B
MICEALZZDLTO 2 Ebhwds, Sh2ERTL-0I0E, HAOEROZH L &
TERS, TOEBOBEDMECHET 2 [REDFHL | THADEINbh o T e
WiTwv, —RIZIEC OBITIIHEETH 50T, T I40 (garbage collection) 2 & -
T —T7ORBEEHEEITR )2 L2780,

TH—RABBOBER, VoA o2 HIIRRASEESNL 2 Lidi v,
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(FarZ s 4) Pu=COES (1)
(7ar s ,E) Cu=A:-|B (2)
(K7 1) Bu=GOIVFESE (3)
(=) Gu=T1=T, | A (4)
(FEB—~bT =) Au=pT,...,Ty), p#‘= (5)
() T == (—FbFEREE F) (6)
. (T—VE) Qu=:-B (7) )

E&LGHC@%ftyb@%ﬁ

L2L, dL [H2EHI 11 EBEILLHVTwEV] Ewv) 2 EDSBNERT
BRIETED, FOEBOMELEFAML /AT, BRED LD 5 BT LB RITE
HLZZYBRELZNTAHIERTEL. BT7 079 IV 7 EFETIE, 1AZBEEOS
EO [BEOFATF] 2 FET ST LITREZD, 13 1BELHIT, H—DHRATFHIR
BOFZATTHL0, @EOSHHEICE S,

KL T, B—RAEH GREZR) AW CBELT2 ) PIrRBMEREIBY
T, Z0EH% [Ix1BFEE INEBEOXA], TobbBREBHEITZ ) 200D
BRI A IRFET 5. BN SREL L Tid, ME— FH4%R% > Moded Flat GHC
[46] & Fv: 5. ZhiE, 7Y ORNPEHNICHERTE2EH/OHY, #N2SREER
MBI TEENLTH S,

INFTREPNTELETRBET U T LE2BIETLHE, TUT T LPDORERD
L, 11 BEICHCTY A [37). B, REEA Y-V RAM—LDA N —
LY, RO o E L OBER, ZIZTRTHTIM1IEETH L. LizhioT,
SREETIEREROREMICRER IO PRI 5.

6.2 UFTHIEBTIOT 5 LOSERE

GHC%Z, 61D &) RERLEELE L OWITHBERSETH S (KL TILeFEr B
MIZT A0, F—FT—Miiewndorts).

GHC 7y 5 LDFEFIE, T —LVEISHBT S, T—IVEHOEH (reduction) D
MoREL TH A, T VEHOBEHIZIX

o EHE LTV (T —~o) B (RAOEH=%1F)

o H—bT— Vo (RADER=%E)

DUEFENH L. T—VHGEHIE G ~D1AT v T O ONTEBEICEERL TBL.

o FB—tI—NgecG & “h:-| B ODWOHCecP (FHLWVWEHTRAEAL
HD) THHL BE. GHCORBOBAILS, g=h0TH 5 LI LRRAIND

SWATRBE S OF 9 LORKFEEF MOV THEHRT A L %13 GHC LY, KL1 BHOBEEIC>WT
BRTALELERTAZEILT A,
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D, G'=G\{g}UBO&%%b. 2T\ & U ERTH, YVTFEGOELME
LHHHETH 2.

o Bi— kT —JU (t;=t) e G ERERIL HIBE. 61 Lty LOBE—LIZI o THELN B
f& A (most general unifier) ¥ 8 £ T 5 &, G' = (G\(t1 =12))0 &%= 5. H—LIZ
—HRIIE I B L EBES 2 WvDS, wellmoded 27 15 7 AT, HHEE (occur
check) 1Z&ML 2R Y BII§ % [46].

EHEL08ES, BRI, BICER (v&T5) ~NDH (LT D) DILABRME
Wb b, 2%, EE-ALT - VOBEKECIE, TO7 T LAEOFRORRER (2
renaming L 72% @) ~“ORANRLE, BT - VORI, T VEOHROEE
ANORANKRE S, 22T, FN5 OEESBEBOGAFHB FHO%E, BlkoT —
VEID t ~NOSREA 1 L LB 53, SBEMITE L, 0L ) ZREBOFBAFIE
WY 2WEEHOH L7 — 50, EORBEOLDFIENFED D 2T — ¥ HBEDE OEZIC
WL ) 20 % BB TA200TH 5.

1S BEDTDDERPSIBENLBEL L 2VEHIE, BESRLEL LI PR
{, REIZRBIAIVIB AV IS VERHZIBBTE S, £2°C, H—XVIL 73
W ESFICREEEO R FANHE TR )T LN TES,

6.3 HEOESE

GHC 702 I AOEMOMBO ) b, WEMIZBIT 5 2 BEUEOMB®, & —F
T—NIZBITAHBEEBRCHEBE, F v XIVHE (channel occurrence) &9, —f%
2 GHC 0 & #1%, 1[EFR Y #/E (one-shot communication), 72 A M1 —L@8E%
EFOBRL BEOBEREEZEZ LI ENTEDLY, Fy¥ AV HBITBEROWS L Al
TIENTEA,

TG LERT -V (T -V, SHEASEAZROT - VEOW ) & &)
OHIZ2EELTFL 2T ¥ A VHBL 2\WEHE linear B E & FY, 3 MU ETF v £V
HHL TW B REMD S 5 A % nonlinear K EH & P45,

Well-moded %2 7' W75 AT, HADERNE N I BT — S EEDFEHIZONWT, £
DEZRD DL ENFTESHHB (FEFHR) 3b s )8 —2THLI LRSS
DT, brHiE2@FrANVHETLEVIZ &, 11 BEICHHALTVwAE WS T
EERBEWRLTWS, T, 1RAL2F YA VHEBELZ2WERE 13 08E, 2Fh7—%
DEEFEZBRL T 5.

F 72, (symbol, arg) DD, B/ BT & 5B E L O & 72D DE IS LI
K. Ppiom %, T—VOHDEGDHBRETEET B7ODNADREE L, Progm %, H
DHOTFOMBARIET B720D/ADEEETH. 12X IXT — )V p(£(a,b),0) D
biX, /XA (p,1)(£,2) € Pagom \ZHHRT 5.

SKmMLTIE, BEAOEH~ORAE, B L ARATERCHFIZLIBNALL>TITE S bDL
BET %.
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6.4 SHRRPUES

HB—BBO7— 7B BBEROT7 - s BEL T 572010, T—VE, BIU
TOY T AHORT 4TV PpOFTRTOBKES f 12 ﬂi#ifwwiv I, 1F7:
B wDERE DT AL EEZ HL

EREHICIE, TV OBHRIGES DRARE (vt} 2, t~NDFEA X FDORAILE
TERLLBE, BEROFA VI »LBENITHREDOS DBERFELw 2 F: D, %
—DRAVIDOLPIREND L ORVIEERIER 12 F>. 1€y FOBRYY >
% (reference counter) # EFNVLL 72 DEEIT L L TZX 5.

COERIIROLHIICEHEINS.

1. 707 5 08B LU0 T - VEHOROBEBEEOERDIL, FNOFERT SHEE
BEREDIHITERTAIPICLIEZN-TOIT S, 128 2T,

Hi P([1,2,3,4,5] ’X) > Q([1,2,3,4:5] ,Y) .

EVIHIT—VERED-725E, bLET—VOEIFIHOY A2 £ETLE 51T,
FHBEHC w23 2 ER o2, A0 A EERL TET 256, £
FEEHELTH v,

B, Eitw D EEEEES (principal function symbol) % & 2HOHIZHIHT 5
BEGEE R}, TRTELwz b > TuRiTE R s 2w (Baskn) . 72745, Bl
DEBEE T D OHOPICHHAT ABKEFOERIE, LTL L1 THLH LR
b\,

2. T =V OMBRHEFICAARE (vt} PEE B LT 5.
@Nﬂﬁmﬁmm&%ﬁ@%ﬁ,C®ﬁlﬁﬁ@ﬁﬁ@@v@&ﬁ%tﬂ%%ﬁ?é
DT, tIIBRESWELD (2F ), TORABELZ t DK A FOAAIZX

TEHTLE, t DRV IPRBAEON D) . £ Tt OHI Aihé?«
TOHEKIEESRICEL 2L BRAL, ZoBERTELTHEGL T2 w i
WLALET, oDt ~OFEBZ X177 ).

(b) v % linear R ERDOHENEL, RABRIE (vt} id7E—oD v 2 BRILT 5720 %
DT, TORAREC Lo TSRESHMT LI Lid v, 22T, thFb->Tw
LIEFAREETIC o DENDERR 172 ).

6.5 ZRRLHIK

Well-moded %2 710 7 5 L DML, BT X : Paom — {nonshared, shared} iZ £ o
THHOTAZLEER S, :

ZOEMEL, o EEOBMBRKEED T - S BENEND L) BRIV <‘: Z9HThw
INZAFEIIZEGNT B LB 5. [ A(p) = nonshared TH 5B & H7%/3Z pil, wiBEiLD
BMEEL D oo F — Iy ENBEN L LA w] 2 EPEEHT AT, nonshared 7
NACENDT — I HEOTRAFR, SBROT -V eRETHIENTE S,

L ORI, 16,31 Db ERAL .
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(BF)) BHDO/NA p il BGES f@ IR T 5L &, A(p) = shared

(LV)) Linear %284 p; & po ICHHT B L &, ’
Yq € Prerm(m(p1q) = in A AM(p1q) = shared = A(p2q) = shared)
(p1 EEO/SZAD & X )
Vq € Prerm(m(p1g) = out A A(p1q) = shared = A(p2q) = shared)
(P BRF 4T —NVDNRADE &)

(NV)) Nonlinear 2 ZEH /I X p IZHAT B L &,
Vq € Prerm(m(pq) = out = \(pq) = shared) (pDSHHERD/NAD & &)

Vq € Prerm(m(pq) = in = A(pg) = shared)
(pSRTFT AT —NDIRADE X)

(BUy) =, KT 1 DHE kTN ET 5L,
Vq € Prerm({(=k,1)q = shared < (=4,2)q = shared)

6.2: Hih:-| BART 5 SHEHH

70y g nfih:-1 BERT - VEi - BAS, SEREEEDTEECHRT 56
(BREHL) 13, M620@Y L35, ZOBREEE, 707 7L50%-F (BHK
mTEH) 2BHL Tn5b. E— FHIKHH[46] 3K 6.3 IRL TBL. m%&, 7075
LEKDE—FEEDTERETLEE, m%E/SR p DB SBRDFTE—F m/p
%, (m/p)(q) = m(pg) XMW= THKE L CTEETS. T/, INBLF OUT %, 21
N, BllinBLP out x BT L H % TE-FEERTSH., BT F (£—F, ¥
TE-F, FRFE-NED) BYEET 25 TH L.

F—FHRSREFHGOBER T, B—(bT—NVIIEFEEZ2 5o TWAEDIE, B LH
AT VDR BE-NRBREE O L (FHMN) RFHTLOTH S,

6.2 DEBEEIFIE, TTDI/NA plZDWnT )\(p) = shared & $THIEEHWPIZ
ENs., LHLENTRBREREBTOHWI RS kv, SREETOEWE, ki
DHFZ W TRADANE KDL ETHA., 22T (R Lid, Z2o0SBEEHK
A1, Ag DO ENEFEE %

M < A2 & VD€ Patom(Ai(p) = shared = Ao(p) = shared)

EEDE EDORNMEE EFRT L. (B/NESHFETADPE IPEEHL Z20NE %5 %
WZEERE, T TIANEWI ST S

6.6 TEREFTEIR
TEORAEEA Y 7O,

FEHE1  (EEBMA, subject reduction) A4S, 7157 7 L P &I —)VHI G OSBEEHF
eWeTEdThH GRLAT v THHINT, T-VEG IZho2b§hE, NXG D

109



(HF) h D32 p Il RS S BN 5% 518 m(p) = in

(HV) R HD/SZ2 pis, hHICHEBEMBES 2 EBA BN 5% 51 m/p = IN
(BU) = 2 K7 1 DM—ALT = &F 5 & m/(=y, 1) = m/{=x,2)

(BF) K7 4 - T—VOHDOSZ p lZBHEGEEDVHN 5% 5L m(p) = in

(BV) ZH oA hBLY BHIZ n(> 1), pi,...,pe (CHEL, 55 hHOH
B pr,....pr (k20)ThAETE, TOLERS) &, EDNAg IS
DT h Is€ S(s(g) = out A Vs € S\[s} (s'(q) = in)) Rl TiBAHL ¥
5E&,

R({m/p177m/pn})7 k:OO)i;%/E,\,
R({m/plam/pk+17~'"m/pn}), k>0®i%/f}

6.3: Bih:-| BT AE—NHIH

ZEEHER bWz, 7220, SITEFEINAT - geG iR, HRMBIRA (extended
occur check) IZkMT HH kT~ (0F Y, F—EHKELHL, FLRIEHEZDOE
BESOLHELZEMLL LD ETHT V) Tldhwed5,

EERE BASIIDERICZVDT, W OPDTFELREEIIOWTEHARL, Y (IR
2R 5,

BROBEIC L o TZOoDHEIHT 5. BERHBICT S0, T2 TIET—I)VE
&, FOT—VEREDORF AT VOV FEESLZR—HT 5.

a1 COEHT, EET Vg%, “h:-| B> ORDOH CeP (HLVWEKTH
BIBALbD) TEIMRITEA.

FADMRE L BTN R SR VDIL, geGITHBT 2EEAHET S50 (LV,), (NV,)
&, 0128 oTBI(EG) ICHLATNEBOMBE (ZhoDmBUL, O gIC
BUYLHMBICHERT2b0THS) PET A5 (BF)) Thb. G FOMOERAIH
THHKE, G HFOBBOMOMI (FR5IETTIZ, G\{g} »BDOPIZHo72bD
ThbH) WETHHEE, BONEEoAKFALTHEPLHERR(TLV. 22T, ¢
HIZEN B &L HIIOVWTER 5.

1. 782 p ICBIBGEE S fF (k€ {L,w}) PHBRT 254, OB,

(a) H DN p DFLEN f2Thhh, &dRFE

L) p EpDT L7142 AETE (DF) p=1q, p'€ Patom, € Prerm % % q O FF
T 5ET5) &, HFONRAp IZEH (v&§5) PPHETA.

la DFEE, ZTOHBIIEOERCHEZ 50T, #il# (BF,) 3@EHINEZW, 22T
1b OBALFEZ T L. 1b TIE, ff OHBY B (eG) \H-IlHELATH
BLEEEMA D S, v S, BHICn (>0)E, r, ..., CHEHATEEL, g; %, rj I
BIFAREMRBETAT—NVEL LD, T— g0 DIXA rgllit s fA0HRTHT
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bl s

(a) n <1 (v linear ZEE) DHBE n=1DRHEDAEZNETTITH L, bL
k=wZbiX, Ariq) = shared T&H’i’t b, LA
Le=wkbld, G (BF,) 2T L v IIKENrS A(p) = shared
ii. & — F##HRE (BF) 25 m(p) =
iii. (LVy) & 1(a)ii 225, A(p) = shared = \(r;q) = shared
iv. I(a)i & 1(a)iii 225 A(riq) = shared
(b) n > 1 (v %" nonlinear %2 %) O D 6.4 HIOHBAI 2205, g;0 DIXA piq D
e, frE%B. —H,
i E— FHI%HA (BF) 205 m(p) =
ii. 1(b)i & E— FHIFHRE] (BV) 25 m(riq) = in
iii. 1(b)ii & (NV,) 2*5 A(r;q) = shared
LoT, WFhOBES, G (BF)) 2 #7.
2N A pCEB wlEHRT G, wid g2l (> 1), pi(=p), po, ..., p WHH
L, G\{g} 3 n (G0 E, py1, - ., pryn WCHBETEET S,
g=h0 THHELILMRAOFHEDT, &£p (1<i<)IZ2PVT, HHD/I p
BEH (v £T5) THELIGp, DTV T 127 Ap,€ Payom &, pi = phg; ¥ A7
'@‘(]i € Prerm BHETA. v; 13 B2 14 (Z 0) =], Tily -« Tin, 6:&3,%’9”7@ £ 5,
TAHEwRBIPD, ryq (1<i<,1<j<m) IZBHNBEI LIT%
T, 5 v; 2 nonlinear ZEHNDEE, G D w i nonlinear 72 % iﬁ( il
Wb, wik

erig (1<i<1,1<j<n;) (BOIZLBRHAA)

DIty ooy Ditn (G\{g} 25 DT )

CHBTADT, SROEDNAETL 7 47 RS DA DONWTHRET 5.
TTRRIZDOWTIE,

o fii C % (NVy) Ziii729 Z &5 m(rijqiq) = in = A(rijqiq) = shared
L72HoT, BOIZ Lo THEBAFN/z w OMBVSRIZEL T (NVy) idim7- sh b,
FIZHREITDOWTIE

(a) m(pg) = in D&
LARE & E— FHIK (BV) 225 3k < n (m(prirg) = out)
. 2(a)i 5 3k < n(mlpykg) = in) = n>1, 20 Ik < n(mprg) = in)
% 6lE, B wid G T nonlinear
iii. 2(a)ii & (NV)) 25 Vk < n(m(pakq) = in = Mpi1rq) = shared)
(b) m(pg) = out >2> wH* G HT linear ZEKDEHE (ZDBFENL1TH D)
LB CAY(NV)) 2732 &h0

Vq € Prerm(m(pg) = out = A(pq) = shared

Sw BBEEEE m + 4 LSRRV EN R, gD w DT ODOREE, hHOHEL ERD
B ZHBENZUTWAE, FN 513 BOICHVICRELEAIA WSS TH S, 1205, SO LRUTOS
RICITEEL 2w,
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il. 2(b)i &ARED D A(pg) = shared
iii. 2(b)ii LIRE L (LV)) 2*5 Vk < n(A(piyxq) = shared)
(c) m(pq) = out 7>2 w A% G T nonlinear 2B DB E
LHICAY(NVy) zim/zy 2 &hn

Vk < n(m(piikg) = in = Mpi+kq) = shared)

EoT, G\{g} BO5IEHNIZ w DB DONTH (NV,) iz sn 5.
FRTCD v; B linear L EBDBEEIL, wht G BT linear 2 51 wit G FTH linear
T& Y, G ¥T nonlinear 2 51& G' 1T b nonlinear TH 5. FNENDHEITD
WC, FEFRICHELDDIENTES.

B2 ZOMRTIR, B—bT =) t; = t 2EATL 72, well-moded TH % &\ ) IIE
25, m((=k,1) = out THH L IR IHFHFET S, —BHEEI LR, i=1TH5
(0%, B—LiZ 812, BLOER~OMRATHS) LREL TLv. REBIRED
REIZEY, i ld, T84 B, FhrECHETRRWV. LB oTo={t;+ 12}
Y3nE, G =(G\{t1 =k 20 TH 5. Bt 75, GHITMIIn (>0, ri, ...,
WHBETALIEEL LY. Z0EE, GICIE, to FOZRE nET ORESINTHE
T5. FITINL DIV BIREEIR (BF)), (LVy), (NV)) 2358 ) 22 BE
FThE L,

1.ty DS A g IZBIBGLS fr BT 2354, H1 (BF)) ONBED D, k=wDHED

HEZ T L.

(a) (BFy) 25 A({=k, 2)q) = shared

(b) 1la & (BU)) 2*5 A((=k, 1)q) = shared

(c) E— N H#l# (BF) 25 m((=¢,2)q) = in

(d) 1c & E— F#l (BU) 5 m((=k, 1)q) = out

(e) 1d £ E— F## (BV) 2°5 m(rig) = in(1 <i<n)

(f) t1 % linear D & &%, 1b, 1d & (LVy) %, A(riq) = shared

(g) t1 % nonlinear M & Z i3, le & (NV,) 5, A(rig) = shared(1 <i<n)
Tt = o DEFICEY, fPRG HDrg, ..., rpg CHFZICHBET AL )I%
B, LPLEIZRT I, M3 oMBEIET A50% (BF)) 2W/EL Tw5b.

2.ty DN g BB w (# 4) FHETZHE. widT =)V ty=; to 21 (> 1) H,

pi(= (=£,2)q), P2, .., pWCHBL, G\{t1=4 to} K m (2 0) B, pry1, .-, Prom
CHBTAET A, T ty= tg DETICEY, widHZl rig, ..., rpg BLY
TPiy -y Tapi (1 <4 <D ICHBT 5. NS DNRADOSREEIR T FAIUL .
t; 75 G ¥C nonlinear 2 K DHAIE, G' D w b nonlinear (27 I REED H 5. L
ZAB AT BHIR (NVY) 225, K5 (1 <j < n)il2WT Vs€ Prepm(m(rys) =
in = A(r;s) = shared TH 5. L7 >T G HD w OF/zHRWEHRIL, TT(NV))
AT,
t; A5 G HT linear ZEHOHB AL, w' G P T linear 251X G' TH linear TH 5.
I=1, $&bbGHDOwDd ) —2DHHEN, RID t, HICHIHEDAEER
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MET3THB. 752 51290V T m((=x,2)gs) = out A A((=¢,2)gs) = shared 1R
ET DL,
(a) E—FHl# (BV) & (LV,) 225

m((=k, 2)p2s) = in A A({=x, 2)p2s) = shared)
(b) 2a & E— F#l# (BU) & (BU,) 75
m({=k, 1)p2s) = out A A\({=g, 1)p2s) = shared)

(c) 2b & (LV,) 25 A(rip2s) = shared
EIHNFINE, G PDOEE wHlET HHR (LV)) OBREICIENRS Zv,
t1 %% G T linear, w#% G *C nonlinear D&, wid G HTH (—##12) nonlinear
THbH. COBEDI i& AEFERIZLT, G EF’O)%B”;&%JW#% G FOEH w A
T LHHIR(NV,) 2 B2 eHTE B, (FEBEAZ)

6.7 ZRHEENOICH
BREIRHICIX, DX0 LI RIEHNED 5.

L. 77— 2B&OBMWEBHE — 7 s BEOH—DFAFIL, FAKR WS OHE
WA, BT - FBEOERD L DICERT A &#T%%.:hﬁiof,ﬁ
BERADEEE 722 WEREICLBWT, RHEARDL NV TIEF — & #iE0 update
in place 2 #EIZ 7% 4. Lisp @ nconc %° rplacd D & J) G#kie% 70 s 9 <l Rt
LLELRL RS,

HEERMESHTRIILELZIT, ) B, ERIWERSREELY )5 %01F, (o -1
FEILWICE % O T) S (multi-version) 7 — ¥ D L ) L EEEL L LXK 2
@z, L L, B—SBRUSRIETENE, ZHEEREALEN b, L
2hoT, BHSREEINT, ESESECBT 28 FE0ORFLED D12 KYE
FICEZETH 5 [39)].

BRI AT 9 &, —D2OEF % in-place TOEPEET A LTI Y, B
FNDFER BERT % WHNCHEH T 5 L 5 R MB L TEIC R 5.

2. DRIE — S A PR FELDERA VIR E—BROLDIZEETHIENTE L
£ L HAEIEHTIE, KBMLT ILOPAREILY, L0 7 OHHAER
bRIBCHEMILEN G, Lo T, BEREBEDAY NI =2 7Uuy 5307~
DBEAD, L WBENLIDOER S,

3. REREALIE — 0Ky FoORIELE, (FUERTO) LBOEREME ET 570
FILTIE, TIEDICLANBORWHARIEE L. TV VET IEDIZD
DREFEICATT 5 — DDk L 2 5.

Tz, ZREEITE, 7007 A0FFILELREREOHNICOANTH 5 L
FTa 5.
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e I
:- module main.
gsort(Xs,Ys) :- true | gsort(Xs,Ys,[]).

gsort([], Ys0,Ys ) :~ true | Ys=YsO.
gsort([X}Xs],¥s0,Ys3) :- true |
part(X,Xs,S,L), gsort(S,Ys0,Ys1), Ys1=[X|Y¥s2], gsort(L,Y¥s2,Ys3).

part(_,[], S, L) :~ true | S=[], L=[].
part(A,[X|Xs],S0,L ) :- A>=X | SO=[X|S], part(A,Xs,S,L).
part (A, [X{Xs],S, LO) :- A< X | LO=[X|L], part(4,Xs,S,L).

M64d: 74—+ 707 7 A

6.8 EX&KklintZE2kR

KL1 707 5 A EEMATH klint 55 2 BT [39] 13, F— F @A TEIBEEN & B
RTERREZ D o T\ 5.,
klint 45 2 OB BEMBITTIE, #I% (LVY) O»b iz, XY EETHIIZ2HK

e (LV)) VYq € Prerm(A(p1q) = shared < A(p2g) = shared)

AL TwA., klint 2T, SRESHEZ, SRES 77 LWHINLHE LT T 7
(feature graph) #1EA Z LIZ X o THWTWAELS, TP LY, linear ZZERICHE
THEBEEIKDS, I TOEHBEE I LOBEAMUC Lo THRIT A LR 20HTH 5.
S22, (LVY) = (LV)) DD LD, ZOEMETR TS, REBOT TS T 4
Tit, B—BRONSZAORBICEEIZEL v, L, BAZHEEL L THY 5E
DI, VEERICEE—SBBEEIRINELOD, FOBRSESRICEL 5L )%
F - ZHEEICOVWTIE, EROEPESTL DL, WEMLRSL SEBHRTH D & OHE S
hTLE.

BlELT, M6ADZ Ay 7y —7 075 5%, klint (251 2R % LLTFICRT.

*x% Linearity Graph ***

node(0): (unconstrained)
<(main:qgsort)/2,1> ---> node(24)
<(main:qgsort)/2,2> ---> node(16)
<(main:qsort)/3,1> ~==> node (24)
<(main:qgsort)/3,2> ---> node(16)
<(main:qsort)/3,3> ---> node(16)
<{(main:part)/4,1> ---> SHARED
<(main:part)/4,2> ---> node(24)
<(main:part)/4,3> ---> node(24)
<(main:part)/4,4> ---> node(24)
node(24): (unconstrained)
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<cons,2> ~--> node(24)
node(16): (unconstrained)

<cons,1> ---> SHARED

<cons,2> ---> node(16)

L, BBNDEEXSEES 7 7 L TERLZBDTH A, SHARED & EpL/z/8
A, Thbb

e part D1 5%,
o 258D qsort DE25|HD A DEKEFE, BLU
o 35D qsort DE2, 3FIHDV ALDEER

X, 258D qsort DE1BIEISDAN) A N BE—-SELEBSEI I H S,
BMEBSBRIZR A, L2LINED SR, [T b b BIEHTIC & o TEEM
LhbANT—THAILWbLADTHELR Y., —F, 20707 I L08EHKT 5
ALDERE, PHREDANIVAMNVE—BRTHALRY, B—BHTH LI LR
EEN B,

6.9 RIEMZE

AT A S FE Flat GHC OMLHERIZOWTIE, MRB (multiple reference bit) & I
a1y FBEAY Y Y ZEMICEET 2 R RESN G, EFH#RH~> v Eo
KL1 BRI EFE SN [21]. KX TRET 5 SHEEMME, KErCE2IE, &
DIy VERAY VY OEXBNICHENTHIEICED, BBV I ORECER
RARBIITAFETHLEERA.

CHR [21]1243, A 2 ¥ D ARRLEAD S E A7 b (weighted export count-
ing) ZIIL O ETHHATHEREFEOSUERDO I FL FLHEDPREIN TV ST,
BEEBRIDSTIRE 7 — 713, SW% KIBIC BT A2 &8 TE 5,

JCER [16] T13, EATEHEOERNLHMATH S 7 5tHE (pi-calculus) 12, BIRHE
W R L BB ES T EAL, ZOBITHELTIREL TWwA. Moded Flat GHC @€ —
FEARLSRERASE, NEMIIZEBADIEICIIN R S .

BB SEONATIX, R [31] T, ik ) BIC SRS R MAL T, Z0mATHE
EREL TS, BERIEREZ O A SR AHCOFELELTH LY, MEAISE
BT AZEEEATIIFMBREONT 27 1 L ERBEROMB R ECHL X850, it
TR S AR BT B BRMAT MR BROTNZ ) L 2 AITHL S45 5.

6.10 ERESHEDOERE
AT A 53 Moded Flat GHC O BEBET OO ORREIEL , LEREHEHR
XRL 7z, BN T F @RS SRS 21 kY, WimETres s

Lph, L) FREBEFIEVI—FERERTEL I )RS, F72, BHISTIRE

115



DI, TOTTADIA VAN ENVHEL WEITRECELIAKN LT BT T L%,
WATHBRSEO L JICHMZ BERIBIEL 2D -2 WHETEETREL B RREL, &
B BHIRANTIC & o THOBEIT S B EEMDY, BEDL DL -TE . 41iF, Zh
L DERBATIEREZ E» L T, BTmBREEOBNEECOIGIE~DEHT K-
TWE 7\,
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