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Kij(2) 0z;0z; + ( Oz, B ox; Kij(z) Oz; =0
LS &HABRET 5% 518, Plo) 10T A HRERE
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ON QUANTIZATION OF SYSTEMS WITH ACTIONS UNBOUNDED
FROM BELOW

O. L. Zavialov,'! M. Kanenaga,? A. I. Kirillov,! V. Yu. Mamakin,! M. Namiki,?
I. Ohba,? and E. V. Polyachenko!

We consider two possible approaches to the problem of the quantization of systems with actions unbounded
from below: the Borel summation method applied to the perturbation expansion in the coupling constant
and the method based on the kerneled Langevin equation for stochastic quantization. In the simplest case
of an anharmonic oscillator, the first method produces Schwinger functions, even though the corresponding
path integral diverges. The solutions of the kerneled Langevin equation are studied both analytically and
numerically. The fictitious time averages are shown to have limits that can be considered as the Schwinger
functions. The examples demonstrate that both methods may give the same result.

1. Introduction

Let Gi(z), Ga(z1,22), ..., Gn(z1,...,2s), ... be the Schwinger functions of some quantum field. In
practice, they are defined by the path integrals as follows:

Gu(z1s. .., 20) =N/ga(x1)...<p(z,,)e*4fvl Do, (1)

where A is the normalizing factor and A[-] is the Euclidean action functional.
For example, for the scalar field ¢,

Alg] = -;—/[(8,,90)2 +m?p?] d¥z + 2/(p4 diz. (2)

Among the various mathematical problems involved in path integral calculation (2), there is a special
problem that appears when A is negative. There, action A[-] is not bounded from below and, obviously,
the path integral (1) diverges. Systems with such action functionals are called bottomless.

In classical mechanics, there are many models where the energy is unbounded from below which also
Possess regular dynamic behavior. The quantum Heisenberg description of the related models also has no
principal drawbacks. Thus, one can infer that Schwinger functions might exist (in some sense) for systems

with actions unbounded from below. In this paper, we discuss the two following approaches to bottomless
systems:

1. Analytic continuation in X;

2. Stochastic quantization.

The perturbation expansion in A for G, is well defined in every order, irrespective of the sign of the
coupling constant. As the perturbation series is apparently divergent, we apply the Borel method to sum
the asymptotic expansions.

The simplest stochastic quantization scheme is not applicable in our case because the solutions of the

torresponding Langevin equation blow up, i.e., go to infinity during some finite time period. Therefore, we
\—*—___
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use the kerneled Langevin equatxon instead. In this paper, we restrict ourselves to a toy model, considering
the N = 1 matrix model in D = 0 configuration space and we employ both of the above methods to
calculate the Schwinger functions. Then the path integral (1) is reduced to an ordinal integral of the form

oo 2 4 '
Gn =N/ ¢" exp (—% - A—‘Z—) de. (3)

The paper is organized as follows. In Secs. 2 and 3, we discuss the methods of Borel summation and
stochastic quantization. Next, we present the results of computer simulations (Sec. 4) and, finally, (Sec. 5)
the concluding remarks.

2. Borel summation method

The idea of applying the Borel summation method to divergent series of perturbation theory first
appeared in [1], where an anharmonic oscillator was studied. Later, it turned out that some asymptotic
expansions in the P(p),-theory in infinite volumes are Borel-summable [2]. Borel summability for the
Zeemann effect was proved in [3]. Here we revisit this subject for the bottomless case.

Let us consider a power series in A, formally defined by the integral

oo 2 4
Sak(A) =/ ¢** exp (-% ~/\%-> dep.

-0

It is easy to check that
(o]

(V) ~ 3 (=1)"an(k)A", 4)
n=0
where 1 (47 + 2k — 1)1
an(k) = \/5;.;(__"__‘*_’.2_5;:;_)_

Following Borel, one defines an auxiliary function as

he(w) =Y an(k) n (5)

Then the sum of the asymptotic expansion is

Szk(/\) = /(;oo e"”hk(——/\v) dv. (6)

This expansion of function hg(u) converges inside the circle |u| < ;. We need to know, however, the

function hg(u) for all real u > 0 when A < 0, and for all u < 0 when A > 0, in order to calculate Sak by (6).
This means that we are to contlnue this function analytically outside the circle of convergence.
Inside the circle fu| < i, power series (4) converges to

hi(u) = V2r(2k - DUF (2'“:' 1,%-;3; 1;4u) , (M)

where F(a, 8;7: z) is the Gaussian hypergeometric function (see Sec. 2.1.1 of [4]). This function is analytical
in z in the complex plane with the cut Rez > 1, Imz = 0.
To obtain Sax(A), one has to calculate the integral

Sa(A) = V2 (2k - 1)”/00 e F <2k: 3
' 0

2k+3
4

1 —4/\v> dv. (8)

1380
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When A > 0, this formula is well defined. But, in the bottomless case A < 0, principal problems arise
because, then, —4Av falls on the cut of the function F. Therefore, we have to choose which of the boundary
values we should use while integrating in (8). 1t is also possible to use a linear combination of the integrals
over different sides of the cut for the Schwinger functions Sy (). o

In this oversimplified model, the analytical continuation in A could be done without using the Borel
summation method. In particular,

2k4-1

225

1 : 1 2%k+1 1 1
= - I — [ —_ ] —
Sak(A) = V2r(2k 1)..(4A) {r(z’;l)@( 7 ,2,“)

1
2 1\2 2k+3 3 1
“rEy (a) © (5 ) ©)

In this formula, ®(a, ¢; z) is the degenerate hypergeometric function, which is integer in arguments z and a
of Sec. 6.7.1 of [4]. One may use (9) to define the functions S2k(A) in the domain A < 0. Unfortunately, these
functions have four branches due to the factors A(*+1)/4 304 A=1/2. Since each S3¢(A) has a nonvanishing
imaginary part on either side of the cut, one is forced to consider linear combinations. Thus, we conclude
that one needs some guiding principle to remove the ambiguities and to make the coefficients uniquely
determined.

3. Stochastic quantization

In the stochastic quantization scheme, the Schwinger functions are defined as the equilibrium limits of
the expectation values

Ga(z1,...,z,) = Am Eoy(z1)¢:(22) ... o1 (z0), (10)

where ¢ is the so-called “fictitious” or “computer” time, E denotes the mathematical expectation, and ¢, (z)
is a solution to the stochastic Langevin equation

dye(z) = _g—s—t[z_pl% dt + \/-Z_dwt(:t:). (11)

Here w, is the standard Wiener process in the configuration space of the quantized system.
In our case, the Langevin equation (11) can be written in the following form:

dor = = (9 + Ao3) dt + V2 du,. (12)

When A < 0, there is a nonzero probability that a solution of Eq. (12) goes to infinity during some finite
time period. To make sure, let us find the lifetime T of a solution P

Denote 7% as the time at which a solution of ‘Eq. (12), satisfying the condition ws = z, leaves any
bounded region. This 7° is a random value and it is also possible that %% = co. It is obvious that 7
is the lifetime T'. If there exists a positive bounded smooth function Vs, z) such that for some ¢ > 0,

o o 4 8
{5;-4-5;—(2:4—/\2: )EE}VZCV (13)

is valid, then by Theorem 3.4.2 of (5], the following estimate for 7% holds:

i

1 supV
Prob{r** - s < —Iog—-:l—lg——-i-e >0, (14)
c Vs, z)
Where ¢ is any positive number.
1381
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Let V (s, z) = exp[—p(z? + 1)~}], where p is some positive number. Then (13) is equivalent to
(=A =)z + (=20 =1 = 4y)z® + (-2 =5 - 67)z* = 3+ 4y)z2 + (1 — ) + 2pz” > 0,

where v = ¢/(2p). Thus, inequality (13) holds if ¥ < min{-A,1} and p is a sufficiently large positive
number. Doing this from (14), one obtains that

Prob {T < —%(wf-l— -t +s+e} > 0.

In other words, for any initial conditions, the sample paths of some of the solutions to Eq. (12) go to infinity
during some finite time period. Circumstantially, this can be seen from the behavior of the moments Eg}.

By Ito's formula,
deoy

dt
Therefore, for all n such that (n+1)? < ~4An?(n - 1), inequality dE¢} /dt > E¢? holds, i.e., EgP > e'Eypp.
This inequality proves that limits of type (10) do not exist.
Thus, the standard procedure of stochastic quantization cannot be applied in our case.
To calculate the Schwinger functions, we need solutions @¢ that are well defined for all t > 0. To
overcome this problem, the author of [6] proposed the so-called kerneled Langevin equation (7], which has
the form

— / . dA[p:] K (z,z';¢04)
dpe(z) = /ddz; {[—K(x,x ’(’at)&pg(x’) + Sou(e)

E

=nEcp;‘“2(—/\tp;‘ - @l +n- 1).

} dt + V2K Y% (z, 7', ;) dw,(z") } (15)
Following [8], we denote

K(z,2';9) = 6(z — z’) exp[hp*/4].
Then (15) takes the form we use below instead of (12):

dr = —p: exp[Ap; /4] dt + V2 exp[ Ao} /8] duw. (16)

By Theorem 3.4.1 of (5], solutions of this equation have infinite lifetimes both for A > 0 and A < 0.
Moreover, the solutions are recurrent, l.e., they visit every interval of the real axis infinitely many times.
This allows us to define the time Ty,,5(7) that the process spends in (a,b] fromt=0uptot=r. Obviously,
Tap(r) < 7 and T_oo, 400 (7) = 7. It follows from (16) that the limit below exists: '

b
i Lea(m) _ Joexp (—39* ~ 10?) do
PRI Feo e b ae

(17)

This property maintains the connection of the kerneled Langevin equation to our problem. Unfortunately,
though relation (17) indicates the existence of a stationary distribution of ¢; as t — oo, this distribution
proves to be non-normalizable in the case A < 0.

The principal distinction between the A 2 0 and A < 0 cases can be seen if one considers the mean
time T4 5(7)/7 in the limit when 7 goes to co. If A > 0, then

Tas(r) _ Jpexp (=30* - 10?) dp
2

e T2 exp (=30t = 10?) dy >0
When A < 0,
lim T2l g (18)
TS0 T
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Due to this distinction, the solutions in the case A > 0 are called “non-null,” whereas.if (18) h(?lds the
solutions are called “null.” The “null” solutions are known to have some specific ergodic properties that
we discuss below. A . .

Denote by p the stationary di.iribution of e that is established when ¢ — co. Since it is not a
stationary distribution, u-integrable functions rapidly decrease, roughly speaking. On the other. hand, by
Eq. (16), the process ¢, spends too much time far from the origin because the dumping aCtIOIjl of th.e
drift term -, exp(Apf/4) in (16) is small for large || (recall that A < 0). Therefore, if function fis
p-integrable, then, with considerable probability, f(w¢) = 0. More precisely (5],

Too T
This shows that if A < 0, the ergodic equality

T
/ 1(¢) duly) = Jim 1 /0 F(ie) dt

between the expectation value and the time average becomes invalid. For some functions, the expectation
value may not exist while the time average may. Hence, one can generalize the method of stochastic
quantization using the time averages instead of the expectation values. In this way, the Schwinger functions
should be calculated as

1 /T
Gn(z1,Z2,...,2,) = lim -—/ Ecpt(xl)(pt(xz)...wt(xn)dt,
0

T
lim l/ f(#e)dt =0 almost definitely. (19)
0

Taoo T

rather than as in (10). Obviously, this formula is equivalent to (10) in the ergodic case.
In studying the time averages, one should pay attention to the ¢, visits to far-off regions. Such visits

are called excursions above the high level. Such excursions may happen only after the time interval [r,7]
such that

!

’/ e vi/8 dw,

The probability of the appearance of such time intervals is low when A < 0 and high when A > 0.

Since the drift term in the bottomless case is small when |p,| 3> 1, the process ¢ may return from an
excursion only after another time interval [7,7'] when condition (20) is satisfied. However, the probability
of the appearance of such a time interval is low. Therefore, one should expect long excursions when A < 0.
It follows from (16) that if le] > 1, then do, /dt = 0, provided |n| is not large. Thus, @¢ =~ const during
each excursion.

Oppositely, if A > 0, the probability of fulfilling condition (20) is much greater than if A < 0. Therefore,
the excursions are frequent and short. The mathematical expectation of the recurrence time is finite when
A 20 and infinite when A < 0 (5]. _ *

In the bottomless case \ < 0, we fix some level L (a positive number) and denote by sk, ex the random
times when the kth excursion above I begins and ends. Then the contribution of the excursions to the
time averages can be separated as follows:

> 1. (20)

1 /7 1 [T 1 &
lim — t= lim — d im — Ye; — s
Am T/o flpe)dt = lim — , f(bdt+ lim o J;f(a;)(eg 5;); (21)
Wwhere 3, is the process confined to the region [~L, L] by reflections at the points —L and L, T = e; —
Zf___l(ej —5;) is the time when |¢,] < L during the period [0, e;], and each a; is a random number equal to
the value o, takes during excursion number j. The first limit on the right-hand side of (21) exists because of
the good ergodic properties of the 1, process. The existence of the second limit and, hence, the existence of
the time average (21). depend on the stochastic properties of the random numbers aj, sj, and e;. The fact
that the excursions are few and far between hinders its observation in computer simulations and. therefore.

One runs the risk of obtaining a wrong value for the time average because of an inaccurate evaluation of the
Excursion term on the right-hand side of (21).
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Fig. 1. Typical sample path of the ¢; process.
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Fig. 2. The part of Fig. 1 with an excursion.
4. Numerical Results

The first data provided by computer simulation of a bottomless system were presented in [8], where
Eq. (16) was examined in the bottomless case A < 0. The existence of some limits (as t — oo) was reported.
The simulations were continued in order to obtain the information one needs to understand the nature of
these limits.

We solved Eq. (16) numerically with A = —0.06, using the standard algorithm of the Langevin sim-
ulation. The fictitious time step we chose was At = 0.01 and the number of steps was 3 - 108, A typical
sample path of the , process is shown in Fig. 1.

To estimate the level of the excursions, notice that if At = 0.01, A= —0.06, then the value of

4 8
|Ap:| 2 || exp (i\-?—) At + exp (%) V2AL
is equal to 1.3- 1073 when |@,] = 5, 8.47-10~% when el = 6, and 2.13 - 10~° when |p,| = 7. Therefore.
when |p;| > 6, the value of the solution barely changes. That means that in this case, the value of the
excursions is approximately six.

An excursion did take place during the simulation shown in Fig. 1. One can see this in Fig. 2, where
part of the sample path in Fig. 1 is presented.

It is obvious that an incidental, huge, random peak or a sequence of large random peaks can drive the
System to an excursion. The first term on the right-hand side of Eq. (16) returns the process to the origin.
Therefore, two quantities are of great interest: the threshold value of the peak that drives the process on

an excursion and the relaxation time, which is the length of the period between going on the excursion and
returning to the origin. -
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Fig. 3. The ¢ process after a large noise was added.
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Fig. 4. The ¢ process after a sequence of large noises with intervals of 600 steps was added.

To check the existence of the threshold value for a single, large, random peak, we artificially added
Gaussian noise with values larger than 20.0 to we. During these numerical simulations, the system often
went on excursions and we estimated the threshold value as 30.0. In Fig. 3, the solutions of Eq. (16) with
A= —0.06 and A = 0 are correlated. In both cases, we added a Gaussian process with Awy = 30 to wy.
When A = 0, the drifting force in (16) plays an important role. Therefore, in this case, the excursions are
short. In Fig. 3, bottom, the excursion appears as just a narrow peak. However, when A = —0.06, the
drifting force is relatively small and an excursion lasts for quite a long time (see Fig. 3, top).

Clearly, there is an extremely small probability that the value of the random noise in the usual numerical
simulation takes a value larger than 30.0. Thus, we may confirm that excursions will not occur from a single,
huge, random peak. :

To estimate the relaxation time, we added an auxiliary Gaussian noise with values about 20.0 to w;,
L.e., lower than the threshold value. This impinging noise was added to the Langevin simulation three times
at certain update intervals. Changing these update intervals from 100 to 1000 steps, we can see that the
excursion occurs until the update interval becomes 500. In other words, the drift force cannot deal with
impinging impulses of such frequency. When the impulses are less frequent, the excursions disappear. It is
interesting to notice that when the update intervals are greater than 600, the excursions sometimes appear
again.

In Fig. 3, the process of developing an excursion is presented. A random sequence of large noise values
Causes the system to drift from the origin. One may see that, at the beginning, the process is “trying” to
get back, but the next large value of the white noise does not allow the process to return from the excursion.

Let us examine the mathematical expectation E(pf". To estimate these values, we used different parts
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Fig. 5. Mathematical expectations E((ptZk) (left) and their time averages (right) for k¥ = 1,2, 3, 4, 5.

of the trajectory in Fig. 1. These parts were treated as independent sample paths in the same time interval
[0,150s]. Results obtained in this way are shown in Fig. 5. Plots of the t — Ep?* functions are on the left
and it is apparent that these functions are very chaotic. This agrees with the above-stated fact that they
do not have a limit when t — oo. However, the functions

£ % Eg?* ds (22)

seem to have limits when t — co (see Fig. 5, right).
In Fig. 6, the graph of the function
1 rt
[ / 503 ds
t Jo

is shown, where ¢; is the same as in Fig. 1. This figure supports our idea that the limits

1 t
lim = | ¢¥*ds
t—roo t 0
may exist with a probability 1 and that we have no need to take the expectation values as in (22).

To compare the Borel summation and stochastic approaches, we calculate the A-dependence of G in
the range —0.08 < A < 0.00. Such a dependence, obtained in the stochastic approach and based on time
averages, is presented in [8]. Among the four values that G2()) takes on the cuts, we chose those with
a positive imaginary part. We found that the values Re G2(A) + Im G2()) are almost the same as those
obtained by the stochastic approach.
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Fig. 6. Time average of the process we? for the samplé path from Fig. 1.
5. Conclusions

We have shown that when employing the Borel summation method and the stochastic approach, one
may obtain some results when calculating integrals like (3) in the bottomless case. The Borel method works
for any value of the coupling constant A and order n of the Schwinger function. However, the method does
not give uniquely definite results and one has to combine four values for each A and n. The sum of the real
and imaginary parts of the value G, takes on one edge of the cut appears to be a good candidate.

The stochastic approach, based on the kerneled Langevin equation, reproduces the distribution
exp[—?/2 — Ap?/4] for any value of A\. The ergodic equalities between the expectations and time av-
erages are not valid in the bottomless case; the Schwinger functions appear to be the time averages.

The excursions above a high level are important in the bottomless case. The probability of excursions
increases when (—\) increases. Therefore, the case of large (—A) is more suitable for computer simulations
than that of small (—A), where the excursions are rare and one runs the risk of losing their contributions.
In (21), neglecting the excursions is equivalent to using a cut-off for the values of ¥. Relation (21) can be
used to test the accuracy of the calculations.

The ambiguity of the Borel summation method appears to be related to the possibility of using different
kernels in the stochastic approach. It would be interesting to find an exact form of such a relationship. After
that, one might initiate a study of the matrix model with N > 1. The first results obtained by stochastic
simulation are presented in [9]. Also, the study of an anharmonic oscillator with different values for the
coupling constant is of great interest. This model has been examined by the Borel summation method and
its treatment by stochastic quantization would be useful in understanding the bottomless system.

This paper was prepared in the framework of the Japan Society for the Promotion of Science project
of the Japan~Former Soviet Union scientific collaboration. The financial support of the JSPS is gratefully
acknowledged.
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Abstract

The short-time scaling behaviour of the critical dynamics for the two-dimensional Ising model
and Potts model are investigated with both the heat-bath and the Metropolis algorithm. Special
attention is drawn to universality. We observed that the microscopic time scale tmic after which
the universal scaling behaviour appears is not always negligibly small. Taking carefully the effect
of tmic into account, the critical exponents are extracted from the power law behaviour of the
observables in the beginning of the time evolution. All the results are consistent and therefore
universality and scaling are confirmed.

PACS: 64.60.Fr; 02.70.Lq; 05.70.Jk; 64.60.Ht .
Keywords: Shon-time dynamics; Ising system; Critical phenomena; Monte Carlo method

1. Introduction

It is well known that the critical behaviour of a statistical system in and near equi-
librium is characterized by a universal scaling form. This is more or less due to the
infinite spatial and time correlation lengths. It has long been discussed whether universal
behaviour may also be found in a system far from equilibrium.

Let us consider that the Ising model initially in a random state with a small magne-
tization is suddenly quenched to the critical temperature and then evolves according to
the dynamics of model A. Janssen, Schaub and Schmittmann [1] have recently argued
with the O(N) vector model by an e-expansion up to two-loop order that, besides the

! E-mail: schuelke@ pollux.physik.uni-siegen.de.

0550-3213/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved.
PII S0550-3213(96)00615-3

20



728 K. Okano et al./Nuclear Physics B 485 [FS] (1997) 727-746

well-known universal behaviour in the long-time regime, there exists another universal
stage of the relaxation at macroscopic early times, the so-called critical initial slip,
which sets in right after the microscopic time scale fmic. The authors predicted that the
magnetization undergoes a critical initial increase, and introduced a new independent
dynamic critical exponent @ to describe the power law increase of the magnetization.

So far numerical simulations support the above predictions. Previously § has been
measured with Monte Carlo simulation in the two-dimensional Ising model somehow
indirectly from the power law decay of the autocorrelation [2,3], and recently in the
three-dimensional Ising model and the two-dimensional Potts model direct/y from the
power law increase of the magnetization [4,5]. More interestingly, based on the scaling
relation in the initial stage of the time evolution, a new promising way for measuring
also the exponents z, 8 and v has been proposed [6-8]. This indicates a possible broad
application of the short-time dynamics since the universal behaviour of the short-time
dynamics is found to be quite general [9-14].

Even though the short-time dynamic scaling behaviour has numerically been studied
by several authors, up to now one important question remains untouched: are the ex-
ponents extracted from the short-time dynamics really independent of algorithms (heat
bath, Metropolis etc.) and/or the lattice type (square. triangular etc.), and so on? In
other words, is the short-time scaling behaviour really universal? Giving a rigid and
decisive answer to this question is overdue. In this paper, we will show an interesting
numerical evidence for the universality by the comparison of the results obtained from
the heat-bath and the Metropolis algorithm. This confidently serves as the first step
approach in this direction.

In the literature, almost all the numerical simulations of the short-time dynamics have
been performed with the heat-bath algorithm. In this case, the power law behaviour of
the magnetization surprisingly shows up almost from the first Monte Carlo time step.
We claim in this paper that this happened rather by chance and that it is not always
the case. Even though universal behaviour is expected in the macroscopic early time,
in general, the dynamic system needs a certain microscopic time period to get rid of
the microscopic short-wave effects and to enter the macroscopic quasi-stable state. Such
a time period is called the microscopic time scale fmic. It is only for t > tyc that
the exponents extracted from the short-time dynamics will be universal, i.e. will be
independent of the algorithms and other microscopic details. We will show that for the
Metropolis algorithm the microscopic time scale is around #mic ~ 20 and is not as small
as for the heat-bath algorithm. For the heat-bath algorithm, it is only a good luck that
I'mic is negligibly small. This also shows, however, that for the numerical study of the
short-time dynamics the heat-bath algorithm is more efficient.

In the first part of this paper, therefore, we present numerical results for the two-
dimensional Ising model for both the heat-bath and Metropolis algorithm in order to
understand the universality for short-time dynamics. It turns out that the behaviour of
the magnetization, autocorrelation and the second moment depend, sometimes seriously,
on the dynamics when ¢ is small in the microscopic sense. However, we observe a
clear evidence for universality after the microscopic time scale fq;c, which is big enough
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in the microscopic sense, but is still in the macroscopic early time regime. The pre-
cise knowledge of . is essential for the high precision measurement of the critical
exponents.

In the second part of this paper we further analyse the short-time critical dynamics
for the two-dimensional Potts model. Preliminary results for the Potts model with the
heat-Bath algorithm have already been published in Ref. [5]. In the present paper
the results will be refined by taking the microscopic time tp;c into account carefully.
Furthermore the data have been extended to bigger lattice size L = 576 for the simulation
of mg = 0.0 and smaller initial magnetization mg = 0.02 for the measurement of 4 in
order to clarify some unclear points with respect to the finite size effect and the finite
mg effect. Among the values of z for the Potts model given in the literature [15-18],
our results confidently support relatively smaller ones [15,16].

Our paper also aims to present a systematic description for the numerical simulation
of the short-time dynamics since almost all the relevant existing papers are of letter type.
Our detailed analysis reveals the fine structure of the short-time scaling behaviour for
the critical dvnamics and demonstrates how one should confidently extract the critical
exponents.

In Section 2 we briefly recapitulate the scaling behaviour for the short-time dynamics,
which will serve as the theoretical base of the numerical simulation. In Section 3 we
describe the result of a simulation for the Ising model in two dimensions, concentrating
our attention to universality. In Section 4 the results for the three state Potts model are
presented. Conclusion and further remarks are given in Section 3.

2. Scaling for the short-time dynamics

Let us consider a dynamic system of model A. Janssen, Schaub and Schmittmann have
shown [1] that when a system initially in a state with very high temperature T > T.
is suddenly quenched to the critical temperature and then evolves according to a certain
dynamics, besides the well-known universal behaviour in the long-time regime, there
emerges another universal stage of the dynamic relaxation at the macroscopic short-time
regime, which sets in right after a microscopic time scale fmi. For the O(N) vector
model the renormalization of the Langevin dynamics with initial conditions has been
investigated with e-expansion up to two-loop order. An interesting observation is that a
new divergence is induced in the short-time dynamics which should be renormalized by
the initial magnetization. Taking this point into account, a generalized dynamic scaling
relation has been derived,

M® (1, 7,mg) = b~ MB (b2, b7, b%mg), (1)
where M® is kth moment of the magnetization, 7 is the dynamic relaxation time, 7 is

the reduced temperature, the parameter b represents the spatial rescaling factor, and in
addition xg is the anomalous dimension of the initial magnetization my. It is shown that
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Xo 1s a new independent exponent, i.e. it can not be expressed by other known critical
exponents.

As an example, let us now consider the time evolution of the magnetization in the
initial stage of the dynamic relaxation. From the above scaling relation (1), taking 7 = 0
and b =113,

M(t,mg) = 7P/ M (1, 15 2 my) (2)

In our notation M = M) and the argument 7 has been omitted. Assuming the initial
magnetization my to be small, the time evolution of the magnetization may be expanded
according to my

M(t,my) =moF (1) +0(m(2)). (3)

Here the condition M (t,mg = 0) = 0 has been used. From Egs. (2) and (3) one can
easily realize that the time evolution of the magnetization obeys a power law

M(t) ~mot?, (4)
where the exponent @ is related to xq by

0= (x0-B/v)/z (3)

Here we should stress that the power law behaviour is valid only in case that t%/2pmy is
also small enough. Therefore the universal behaviour shown in (4) is expected in the
initial stage of the time evolution. Its time scale is tg ~ m(‘)'z/‘“’. However, in the limit
of mg = 0 the time scale 1y goes to infinity. Hence the initial condition can leave its
trace even in the long-time regime [19,12,20]. Interestingly, for the O(N) vector model
(N =1 corresponds to the Ising model) it has been shown by e-expansion that xo > 8/v
and therefore 6 > 0, i.e. the magnetization undergoes a critical initial increase. This
has also been confirmed by numerical simulation for the three-dimensional Ising model
directly and also by the study of damage spreading [21].

As the spatial correlation length in the beginning of the time evolution is small, for a
finite system of dimension d with lattice size L the second moment M? (¢, L) ~ L9,
From the finite size scaling one can deduce

M(z)(t) ~ td=2B/v)/z_ (6)

Furthermore careful scaling analysis shows that auto-correlation also decays by a power
law [9]

A(t) ~ 1mdl248, (7)

The new dynamic exponent @ enters also the auto-correlation. Actually the first numerical
estimation of @ is from the measurement of the exponent 6 — d/z [2,3]. Taking the
exponent z as an input, one obtains §. However, usually z is not known so accurately.
Since 6 is normally much smaller than z as well as —d/z + 6, a small relative error of
z and —d/z + 6 may induce a big error for 4.
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Therefore our strategy is that we first measure the exponent 6 directly from the power
law increase of the magnetization, then taking it as an input we estimate the exponent
z from the auto-correlation, and with z in hand we finally obtain the static exponent
2B/v from the second moment. Such a procedure can provide strong confirmation for
the scaling relation for the short-time dynamics.

Traditionally the exponent z is defined in the long-time regime of the dynamic pro-
cess and normally measured from the exponential decay of the auto-correlation or the
magnetization of the systems. This measurement is difficult due to critical slowing down.
However, if we can obtain 8 from the direct measurement of the initial increase of the
magnetization (4), z obtained from the scaling behaviour of the auto-correlation in 7
can be quite rigorous. One may also expect that the measurement is to some extent free
from critical slowing down, since all of these quantities are measured in the short-time
regime of the dynamic process.

3. The Ising model and universality

In this section we analyse the short-time dynamics of the Ising model for the heat-bath
and the Metropolis algorithm and investigate the universality of the short-time dynamics
with these two algorithms. In the same time we try to formulate a proper way to measure
the critical exponent taking into account the effects of the microscopic time scale f;.

The Hamiltonian for the Ising model is

H=JYSS, S==I, (8)
{ij)
with (ij) representing nearest neighbours. In equilibrium the Ising model is exactly
solvable. The critical point locates at J. = log(1 + 1/2)/2. In principle any type of
dynamics can be given to the system to study the non-equilibrium evolution process. In
this paper we concentrate our attention on the Monte Carlo heat-bath and the Metropolis
algorithm, both of which belong to the dynamics of model A.

3.1. Magnetization

We study the short-time behaviour of the dynamical process starting from an initial
state with zero correlation length and small magnetization. Such’ initial configurations
can easily be generated numerically [4,5]. Starting from those initial configurations, the

system is updated both with the heat-bath and Metropolis algorithm. We measure the
time evolution of the magnetization

M(t):—]%,- ZS,-(:) . (9)

where N is the number of the lattice sites and the average (...) is taken over the
independent initial configurations and the random force. The total number of independent
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initial configurations is 150 000 for mq = 0.08, 0.06 and 0.04 and 300 000 for mg = 0.02.
Errors are estimated by dividing the data into five groups.

In Fig. 1a and 1b the time evolution of the magnetization is displayed in double log
scale with mo = 0.02 for different lattice sizes for the heat-bath and the Metropolis
algorithm, respectively. For the heat-bath algorithm, one can clearly see that the initial
power law increase of the magnetization starts from a very early stage of the time evo-
lution, i.e. the microscopic time scale fc is negligibly small. On the other hand, for the
Metropolis algorithm, this is not the case. The power law increase of the magnetization
becomes stable only after certain time steps, say ¢t ~ 20 to 30. In other words, for the
Metropolis algorithm t;. ~ 20 to 30, which is much bigger than that for the heat-bath
algorithm. In order to see this more clearly, we plot in Fig. 2 the exponent 6 as a func-
tion of the time ¢ for both the heat-bath and the Metropolis algorithm from mg = 0.02
to 0.08. The lattice size L = 128 has been used. Here, “d at time ¢~ is measured from
the slope of the curve in the time interval of [t,¢ + 15] by least square fitting.

As expected, the exponent 8 for the heat-bath algorithm is quite stable from the very
beginning of the time evolution but not that for Metropolis. Taking into account the
errors as well as the fluctuation along the time direction, however, the exponents 6 from
both algorithms become the same after t > tmic ~ 30. This is a real indication of the
universality in the short-time dynamics.

From these results, a criterion to measure the critical exponent # and also other
exponents can be obtained.

(1) We first scan the data by the exponent measured at each time ¢ by least square
fitting in the time interval of [t,t 4+ 15]. We call this “15-scan” in the following. Of
course, the number of data for the least square fit can differ from 15 which is used here.

(i1) Using the figure obtained from the 15-scan, we can estimate Imic from which the
exponent becomes stable. If we perform a simulation with different algorithms, we can
compare these results and see that universality is valid after the microscopic time fy;c.

(iii) Finally we perform the least square fit in the time interval of [fmc, 7] to obtain
the final values for the exponents. Here 7 can normally be the maximum updating time
where finite size effects and the finite mq effect have not shown up. But sometimes we
may take 7 a bit smaller in order to escape big fluctuations due to the lack of statistics.
This can be judged by an inspection of the result of the 15-scan.

In Fig. 2. one can observe a tendency that t,;. decreases as my gets smaller. We should
also stress that the errors estimated here can not completely represent the fluctuations
in the time direction due to the large time correlation length and also other systematic
errors, e.g. those from the random numbers. In Table 1, results for 6 measured from a
time interval [30,100] are listed. A detailed analysis of the data reveals that the finite
size effect is quite small for a lattice size L = 128.

From myp = 0.08 down to mg = 0.02 the measured 6 shows a smooth linear increase.
By definition the exponent § should be measured in the limit of mgy = 0. Following
the procedure in the previous paper [5] we have carried out a linear extrapolation
to mp = 0 and listed the results also in Table 1. The value § = 0.191(1) from the
heat-bath algorithm is well consistent with the value § = 0.191(3) obtained from
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Fig. 1. Time evolution of the magnetization in double log scale for the Ising model with my = 0.02 for the

heat-bath algorithm and for the Metropolis algorithm.
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Table 1
The short-time dynamic exponent § measured for lattice size L = 128 with different initial magnetization for
the Ising model

mgy 0.08 0.06 0.04 0.02 0.00
HeatB 0.173(1) 0.179(1) 0.183(1) 0.187(1) 0.191(1)
MetroP 0.173(1) 0.182(1) 0.187(1) 0.192(1) 0.197(1)

damage spreading [21] and those obtained from auto-correlation before [2,3]. For the
Metropolis algorithm, our first direct measurement 6 = 0.197(1) is very close to that for
the heat-bath algorithm and gives strong support for universality. The slight difference
of @ for the heat-bath and the Metropolis algorithm may arise from the finite size effect,
finite mg effect or other systematic errors. To check this point, simulations with higher
statistics for smaller mo and bigger lattice size or even for longer updating time may be
needed.

In closing this subsection, we would like to mention that the numerical values for
the exponent # obtained above are roughly consistent with that extrapolated from the
perturbative calculations based on the continuum ¢* theory [1], in one-loop 4 = 0.167
and in two-loop 8 = 0.356. Here one should remember that the perturbative theory
is only valid for dimensions bigger than two and smaller than four and therefore the
coincidence cannot be too precise in two dimensions.

3.2. Auto-correlation

Now we set myg = 0. The auto-correlation is defined as

1
A=~ Zs,-(m&(r) : (10)

We have performed simulations with both the heat-bath and Metropolis algorithm for
lattice size L = 256. The number of independent initial configurations for the average is
35 000.

In order to see the universality and the possible effect of f;. as well as the fluctuation
in the time direction, we again perform the 15-scan and display in Fig. 3 the exponent
6 — d/z as a function of time ¢ for both the heat-bath and the Metropolis algorithm.

After a microscopic time scale f;c ~ 30, the results from both algorithms agree well
and are presenting a quite stable power law behaviour. This again supports universality.
Within the errors both algorithms give almost the same results. However, the error for
Metropolis is much bigger than that for the heat-bath algorithm.

In Table 2 the exponents d/z —6 measured from the time interval [30, 100] are listed.
They are consistent with the previous measurement [22], but the errors are much smaller.
The dynamic exponent z obtained by taking § measured in the previous subsection as
input are also given in Table 2. For the heat-bath algorithm, the value z = 2.155(3)
is in good agreement with z = 2.153(2) measured from the finite size scaling of the
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Fig. 3. 8 — d/z vs. t for the Ising model.

Table 2
The exponents measured for lattice size L = 256 with initial magnetization my = 0.0 for the Ising model
djz -8 z (d=28/v)/z 28/v
HeatB 0.737(1) 2.155(03) 0.817(7) 0.240(15)
MetroP 0.739(5) 2.137(11) 0.819(5) 0.250(14)

Binder cumulant [7]. The value z =2.137(11) for the Metropolis algorithm is slightly
smaller but roughly consistent within the errors. Actually in Ref. [7], depending on the
observables and the dynamic processes used for estimating z, the values for z from the
finite size scaling are also varying within 1%. To get more accurate z still requires high
precision numerical measurement.

3.3. Second moment

For mg = 0, the second moment is defined by

2
1»1”"(:):-1\-1[2— <[Zsi(z)} > (11)

For the heat-bath algorithm the exponent (d — 28/v)/z is quite stable after tmjc ~
20 to 30. However, for the Metropolis algorithm, tmic seems to be somewhat bigger,
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tmic ~ 60. In order to obtain more reliable results, we have extended the number of
time steps for the Metropolis algorithm up to 150. In Table 2 the measured values
for (d —28:v)/z together with the exponent 2p3/v deduced by taking the value of z
from the previous subsection as input are given. All the results are consistent and are
confirming universality.

We should point out that the determination of the exponent 23/v is not very accurate
here since the exponent 28/ is much smaller than 4 and Z, and therefore small relative
errors in < and (d —2/v)/z will induce big errors for 28/v.

Summarizing this section, we have investigated the universality in short-time dynamics
for the Ising model. In the numerical simulations, we observed that the microscopic time
scale e is not always negligibly small. Universal behaviour appears only after t > 1.
We have also found that t,y is different for the different algorithms, Metropolis or heat-
bath algorithm. Precise knowledge about #m;. will be very important in high precision
measurements of the critical exponents in short-time dynamics.

4. The Potts model

In order to confirm the picture for the universality drawn in the last section, further
investigations for different models are needed. In this section we present numerical
results for the short-time dynamics of the Potts model. Two of us (L.S. and Z.B.) have
already reported preliminary results in Ref. [5]. In that letter, however, the simulation
has exclusively been performed with the heat-bath dynamics and for the measurement
of the exponent € the smallest initial magnetization is taken to mg = 0.04. The effect of
the microscopic time scale tp. has not been considered seriously. On the other hand,
in the measurement of the auto-correlation an extrapolation to infinite lattice size was
carried out. It is not so clear whether this extrapolation is really necessary for the
lattice size already up to L = 288. Therefore the purpose of this section is to give final
numerical values for the critical exponents of the Potts model, taking carefully the effect
of the microscopic time tnyc into account and using bigger lattices and smaller g with
increasing statistics.

The Hamiltonian for the g state Potts model is given by

H=UY 850, oi=1,....4q, (12)
{if:
where (i) represents nearest neighbours. It is known that the critical points locate at

Je =1log(1+ 7). The Ising model is the two-state (g = 2) Potts model. In this section,
we investigate the three-state (¢ = 3) Potts model in two dimensions.

4.1. Magnetization

We measure the time evolution of the magnetization defined as
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Fig. 4. The time evolution of the magnetization in double log scale for the Potts model with mg = 0.04.

3 1
M) = o <Z <5m(,),l - §>> (13)

i

The total number of the independent initial configurations used for taking the average is
80000 for mgy = 0.06 and 0.08 and 600000 for mg = 0.02 and 0.04. Similar to the case
of the Ising model, errors are estimated by dividing the data into two or four groups.

In Fig. 4 the time evolution of the magnetization is displayed in double log scale
with initial value my = 0.04 for different lattices size and for both the heat-bath and
Metropolis algorithm. Somewhat different from the case of the Ising model, the view
of the curves from the heat-bath and Metropolis algorithm appears very different. For
the curves from the heat-bath algorithm the power law behaviour starts right at the
very beginning of the time evolution as in the case of the Ising model. This means
the microscopic time scale t;c is negligible. However, for the Metropolis algorithm the
magnetization first decreases and then increases after some time steps. Later analyses
show that the power law behaviour becomes stable after around 20 updating time steps,
i.e. tmic ~ 20.

As mentioned above, in Ref. [5] the simulation was carried out using the heat-bath
algorithm only. Due to the fact that the error at the beginning of the time evolution
is the smallest, the exponent has been measured from the first 15 time steps only.
However, the results of the simulation for the Metropolis algorithm indicate that one
should carefully analyse the data, with special attention to the effect of ty;.. We plot
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Fig. 5. 8 vs. t foi the Potts model with mg = 0.04.

in Fig. 5 the exponent 6 vs. t, obtained by the 15-scan for both the heat-bath and .
Metropolis algorithm with initial magnetization mq = 0.04. It is clear that 6 from the
heat-bath algorithm is quite stable from the very beginning of the time evolution but
for the Metropolis this is apparently not the case. However, as was the case of the Ising
model, the exponent @ from both the heat-bath and Metropolis algorithms coincide after
t > tmic ~ 20, showing again the universality in short-time dynamics.

The reason why for the Metropolis algorithm the magnetization decreases at the very
beginning of the time evolution is not clear to us. However, the decline only lasts for
a few Monte Carlo time steps. As discussed in Section 1, we believe that this is a
typical microscopic behaviour within the microscopic time scale tyic. Immediately after
the decrease, however, the magnetization increases quickly and a power law universal
behaviour is soon stabilized. This strongly shows that there exists universality in the
short-time dynamics. Here it should also be stressed that the non-universal behaviour
within the microscopic time scale fmic can, in general, not be investigated in contin-
uum models as e.g. the ¢* theory corresponding to the Ising model, since in such a
continuum model the information within the microscopic time scale has already been
lost. For the Potts model, the corresponding continuum model has even not yet been
found.

In Table 3 the values of 6 measured from the time interval [20,100] are listed.
In principle for the heat-bath algorithm the measurement may be carried out from the
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Table 3
The short-time dynamic exponent # measured for lattice size L = 72 with different initial magnetization for
the Potts model

my 0.08 0.06 0.04 0.02 0.00

HeatB 0.110(1) 0.100(1) 0.092(2) 0.084(3) 0.075(3)

MetroP 0.100(1) 0.092(1) 0.084(1) 0.077(2) 0.070(2)
0.12 T T T T

HH
F—B—-i

I———)(——-—-l

%

ZX%% ‘
0.08 =am % @m% {(% )} -
0.06 ’ ' L “
0.04 Heat bath, my, =0.02 i
"_ 0O L=72
0.02 x L =144

0 10 20 30 40 50 60 70 ¢ 80 90
Fig. 6. 6 vs. 1 for the Potts model with mg = 0.02 and L = 72, 144 for the heat-bath algorithm.

beginning. However, for reasons of comparison we treat both algorithms in the same
way.

In order to see the finite size effect, we have plotted in Fig. 6 the results of lattices
L =72 and L = 144 with initial magnetization mg = 0.02 for the heat-bath algorithm.
Within the errors they are overlapping. Therefore we are satisfied with the lattice size
L =72 for the measurement of . In Table 3 the averaged values of § for both algorithms
still show some slight difference even though for smaller mq it looks as if it can be
covered by the errors. Similar to the case of the Ising model this may be the remnant
of the finite size or finite mq effects, or other systematic errors.

From mg = 0.08 down to mg = 0.02 the measured  shows also a smooth linear
decrease. Therefore we carry out a linear extrapolation for @ to the initial magnetization
mg = 0. Since here we have measured & in a different time regime, the result given
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Fig. 7. 8 — d/z vs. t for the Potts model.

in the previous paper [5] for 6 has slightly been modified. Due to the extra data for
mg = 0.02 the result extrapolated to mg = 0.0 is more reliable.

Finally we would like to point out that for the Ising model, the measured @ deceases
when mg increases, however, for the Potts model it is opposite. This shows that the
non-linear (or off-fixed point) correction for the exponent # when mq deviates from the
fixed point mg = 0 are in different directions for these two models [23].

4.2. Auto-correlation

The auto-correlation for the Potts model is given by

AW = <Z (aa,.w).mm - §>> . (14)
It is known that the dependence of the auto-correlation on the lattice size is bigger than
that of the magnetization. Detailed analyses show that we need at least L = 144 to
observe a clear convergence to the power law decay [5]. This size is bigger than that
needed for the magnetization, L = 72, by which a nice power law increase has already
been observed for the Potts model [S].

In Fig. 7 we present the exponent § — d/z obtained by the 15-scan for L = 288
as a function of time r for both the heat-bath and the Metropolis algorithm. We ob-
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Table 4
The exponent d/z — ¢ measured for different lattice sizes with initial magnetization my = 0.0 for the Potts
model. The last column gives the values for z

L 144 288 576 00 z
HeatB 0.839(1) 0.834(1) 0.835(1) 0.836(2) 2.196(08)
MetroP 0.849(3) 0.831(2) 0.843(6) 0.841(5) 2.198(13)

serve that the microscopic time scale is quite small, ry. ~ 5. This is also consistent
with the tendency discussed in the last section, that the smaller the initial magneti-
zation my is, the shorter the microscopic time scale fy. becomes. For t > fp. the
data obtained from both algorithms well coincide and indicate a quite stable power law
behaviour of A(¢) in Eq. (7), although the fluctuations for ¢ > 50 become very big.
Within the errors both algorithms give almost the same results. However, we should
point out that the error for Metropolis is much bigger than that for the heat-bath
algorithm. All this shows that for the study of short-time dynamics the heat-bath al-
gorithm is more efficient. In Table 4 the exponent d/z —  measured from the time
interval [5.50] is listed. To avoid too big fluctuations we have only measured up to
t = 50. In the previous paper [5], from lattice size L = 144 and L = 288 a lin-
ear extrapolation to infinite lattice size was carried out. However, the result for lattice
size¢ L = 576 does not go in this direction. Actually the difference between the re-
sults for lattices L = 144,288,576 is already very small as was also pointed out in
the previous paper. Therefore in this paper the result for infinite lattice is given as a
simple average over the three lattices. The situation for the Metropolis algorithm is
less satisfactory. Anyway we also give the same average over the three lattices. From
these values as well as those for 8 in the previous subsection we can obtain the expo-
nent z.

One can now realize what was mentioned in Section 2. A quite rigorous value for
z can be obtained from the measurement of the auto-correlation if the exponent @ is
known.

In the literature there are several numerical measurements of z [15-18], which predict
values for : being distributed between z = 2.2 and z = 2.7. Our result is supporting
a relatively smaller z [15,16]. The results for both algorithms coincide very well.
Compared with the results for the Ising model, it seems that the fluctuations in the
numerical simulation for the Potts model are smaller.

4.3. The second moment

The second moment for the Potts model is defined by

2
) 9 <& 1
M (1) = i }; > (5(,,(,),, ~ 3) : (15)

i
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Fig. 8. (d ~2B/v)/z vs. t for the Potts model.

Here we have taken the average over g different components of the variable o;(t).2

We plot the exponent (d —283/v)/z for each time step ¢ in Fig. 8. Again it can be
realized that the microscopic time scale for heat-bath is smaller than that for Metropolis.
However, the exponents for both algorithms coincide after fy;c ~ 30. In Table 5 the
measured values for (d —28/v)/z are given. For the heat-bath algorithm one may start
the measurement from ¢ ~ 10. However, for the reason of comparison we perform the
measurements for both algorithms within a same time interval [35,100]. The results
for the lattice L = 576 are a bit fluctuating and not given in Table 5. Since the finite
size effect is already smaller than the statistical fluctuation, the value of (d —28/v)/z
for infinite lattice is given as a simple average over L = 144,288.

5. Conclusions and further remarks

We have numerically simulated the short-time critical dynamics for the Ising model
and Potts model with special attention to universality. We systematically performed all
the simulations with both the heat-bath and Metropolis algorithm in order to investigate
universality. By the comparison of those results, we observed that the microscopic time

2 In the simulation of the magnetization M(r) in Section 4.1, we could also have taken the similar average,
in principle. However, we did not do so since the quality of the power law behaviour for different components
is not exactly the same.
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Table 5
The exponent (d — 28/v)/z measured for different lattice sizes with initial magnetization mg = 0.0 for the
Pouts model. The last column gives the values for the exponent 28/v

L 144 288 oo 2 B/v
HeatB 0.789(2) 0.787(2) 0.788(1) 0.269(07)
MetroP 0.787(7) 0.789(9) 0.788(6) 0.269(16)

scale fmic is not always negligibly small. Universal behaviour appears only after ¢ > Lrmic-
Taking carefully the effect of fp; into account, we obtained reliable critical exponents
from the power law behaviour of the observables in the beginning of the time evolution.

For the two-dimensional Potts model, two of us (L.S. and B.Z.) have already reported
preliminary results in a previous letter [5], exclusively using the heat-bath algorithm. We
have completed the simulations and refined the values of the various exponents, taking
seriously the effect of ty. into account. Among the distributed values of the dynamic
exponent : for the Potts model [15-18], our result confidently supports relatively
smaller ones [15,16].

Traditionally the exponent z is defined in the long-time regime of the dynamic pro-
cess and normally measured from the exponential decay of the auto-correlation or the
magnetization of the systems. This measurement is difficult due to critical slowing down.
However, we can obtain the exponent § from the direct measurement of the initial in-
crease of the magnetization, cf. Eq. (4), therefore the exponent z obtained from the
scaling behaviour of the auto-correlation in Eq. (7) is quite rigorous. One may also
expect that the measurement is to some extent free from critical slowing down, since all
of these quantities are measured in the short-time regime of the dynamic process.

Here we should mention that not all the models will have a positive 8. For example,
for the Potts model with g = 4 the exponent 6 is likely negative or very close to zero.
In this case the measurement of 8 will become more difficult. On the other hand, how
to determine the exponent » as well as the critical point from the power law behaviour
of the observables in the short-time dynamics is also very interesting [8].

Finally we would like to point out that the investigation of the short-time dynamics
for statistical systems may be extended to the dynamic field theory, e.g. the stochas-
tically quantized field theory where a fictitious dynamic process is introduced and the
conventional field theory is approached in the equilibrium [24,25]. Detailed investiga-
tions have been performed, especially for gauge theory and complex systems [26,27].
However, up to now all these studies are only concentrated to the long-time behaviour
of the dynamic process and its equilibrium. It would be very interesting whether the
properties of the conventional field theory could also be obtained from the short-time
behaviour of the dynamic system. This will be important for_the numerical simulation
of the lattice gauge theory.
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Note added

After the revised version of the paper was completed, we received two preprints from
Li and Liu [28] and Ritschel and Czerner [29]. In those papers, some discussions about
universality with respect to lattice types and updating schemes are also presented even
though the numerical simulation is carried out with relative small lattice sizes where the
critical exponent can not confidently be extracted.
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