直接噴射 LPG 燃料における噴霧・燃焼特性に関する研究

Mixture formation and combustion characteristics of directly injected LPG spray

2003年3月

李 晟旭

Lee Seang-Wock

目 次

第1章 序論	1
1.1 研究の背景と目的	1
1.2 従来の研究	3
1.2.1 可視化に関する従来の研究	3
1.2.2 高効率・低公害エンジンに関する	3 従来の研究 6
1.2.3 数値シミュレーションの動向	9
1.3 研究方法	10
1.4 本論文の構成	12
第2章 実験装置および方法	13
2.1 実験装置	14
2.1.1 定容燃焼器	14
2.1.2 燃料噴射系	15
2.1.3 光学系	17
2.1.4 供試燃料	24
2.2 各種予備実験	25
2.2.1 エチレンによる予備燃焼実験	25
2.2.2 噴射量および噴射率測定	26
2.2.3 蛍光剤選定実験	28
第3章 LPGの噴霧特性	31
3.1 シュリーレン法による計測	32
3.1.1 LPGの自由噴霧計測	32
3.1.2 衝突噴霧の計測	35
3.1.3 プロパン・ブタンの自由噴霧	37
3.1.4 噴射圧による比較	39
3.1.5 LPG燃料の温度による噴霧特性	41
3.1.6 近接拡大撮影	44

3.2	レーザシート光による噴霧計測	45
3.3	LIF法による計測	52
3.3		52
3.3	3.2 衝突噴霧	54
3.4	まとめ	56
第4章	LPGの燃焼特性	58
4.1	化学平衡と状態変化計算による OH特性	59
4.2	LIF 法による LPG の燃焼可視化	61
4.3	自発光によるLPGの燃焼可視化	64
4.4	LPGの燃焼と排出ガス特性	71
4.4	4.1 EGR の影響	72
4.4	4.2 噴射圧による影響	74
4.5	まとめ	75
第5章	3次元数値計算モデルによる解析	76
5.1	解析方法	77
	1.1 燃料物性値の推算	79
5.	1.2 計算メッシュの生成	82
	1.3 初期条件および計算条件	85
	1.4 Wave モデル	86
5.	1.5 燃焼モデリング	88
5.2	定容燃焼器内での計算	93
5.2	2.1 雰囲気条件による LPG 噴霧特性	93
5.2	2.2 燃料物性値の噴霧特性に及ぼす影響	95
5.2	2.3 各種条件における計算結果	98
5.3	まとめ	102

第6章	数	(値計算によるエンジン燃焼系の最適化	103
6.1	LPO	G エンジンの概要	104
6.2	LPO	Gエンジンの最適化	107
6.	2.1	内部流動解析	107
6.	2.2	基本運転条件における計算結果	112
6.	2.3	EGR による影響	120
6.	2.4	スワールによる影響	123
6.	2.5	噴射圧による影響	126
6.	2.6	噴霧パターンによる影響	128
6.	2.7	燃焼室形状による影響	130
6.	2.8	噴射方向による影響	137
6.3	まと	とめ	143
第 <i>7</i> 章	結	i 論	145
7.1	結	論	145
7.2	今後	後研究の発展	148
参考文	て献		150
謝	辞		156
研究業	美績		157
英文概	要		160
履	歴		171