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Chapter 1

Introduction

1.1 Introduction

The general theory of relativity is a classical theory of gravitation, which is based on the coordi-
nate invariance and the equivalence principle [1]. It is believed that general relativity describes
the large scale structure of spacetime, and it has indeed revealed the history and present states
of our universe [2]. The direct evidence for the validity of general relativity in strong gravita-
tional regime will be obtained by the observations of gravitational waves from inspiral binaries
in near future [3]. One of the outstanding features of the general relativity is that spacetime is
supposed to be a smooth four dimensional manifold [4]. Gravity is realized as the curvature of
the manifold. The picture of curved manifold is the plausible and new concept which Einstein
first introduced into the physics. At the same time, it is the fact that such a picture makes
physicists confront with the difficulty to quantize the gravitational interaction. It is unlikely
that the manifold picture holds even at arbitrarily small scale. From an easy dimensional esti-
mation, one can know that the scales of the curvature radius and the Compton wave length of a
massive particle are comparable at the order of lp, where lp ≡ (�G/c3)1/2 � 1.6×10−33cm is the
Planck length. The quantum theoretical nature of spacetime would dominate and the smooth
manifold picture would break there. Therefore, we believe that there exists a quantum theory
of gravity and it saves the situation. There has been many studies on the quantum gravity and
the unification of fundamental interactions, such as the loop quantum gravity [5] and string/M
theory [6]. These theories gradually have made us know the microscopic nature of spacetimes,
although there are many difficulties to provide the satisfactory picture of microscopic spacetime.

We can say with fairy certain that the construction of a quantum gravity theory is one
of the most important problems in the theoretical physics. This derives us to the following
questions: (i) is there situation or phenomenon in which the quantum gravitational effect of
spacetime plays a crucial role in our universe?; (ii) if there is such a phenomenon, is it detectable?
As for the former question, it may be sufficient to see that the general relativity generically
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8 CHAPTER 1. INTRODUCTION

predicts spacetime singularities under some physically reasonable assumptions, which is proven
by Hawking and Penrose [7]. For examples, the black solutions to the Einstein field equation
contain the spacetime singularities within their event horizons. Our expanding universe confronts
with the big-bang singularity at the beginning of it. Near the spacetime singularities, the
curvature radius of spacetimes can be arbitrarily small even below the Planck scale.

The latter question is still an open problem in general relativity. To give an answer to
the question is one of the main themes in this thesis. We are concerned with the visibility or
detectability of the microscopic nature of spacetime. In the first half of this thesis, we consider
the visibility of the spacetime singularities forming in gravitational collapse, i.e., we consider
the problem of the naked singularities (NSs). In particular, we focus on the role of the quantum
field theory in curved spacetime [8, 9] in the NS formation. In the latter half of this thesis, we
consider the detectability of quantum gravitational effect by the high energy particles such as the
extremely high energy cosmic rays (EHECRs). In particular, we focus on a model of quantum
gravity, which is one of the noncommutative geometry. Let us review the previous works on
above two directions in order. At the same time, we confirm our motivation.

Through this thesis, we follow the sign conventions of the textbook by Misner, Thorn, and
Wheeler about the metric, Riemann, and Einstein tensors [1]. The Greek and the Latin indices
run over 0, 1, 2, 3 and over 1, 2, 3, respectively. The units of c = G = � = 1 are used. This thesis
is based on our original papers, Refs. [10], [11], [12] and [13].

1.2 Naked singularities (NSs) and quantum effects

Relativistically important compact objects, such as black holes and neutron stars, form as the
consequence of gravitational collapse. Apart from the astrophysical interests, the physics of
gravitational collapse is related to some fundamental problems in general relativity. In particular,
the cosmic censorship hypothesis (CCH) presents one of the most important unsolved problems
in general relativity [14]. There are two versions of this hypothesis. The weak hypothesis states
that all singularities in gravitational collapse are hidden within black holes. This version implies
the future predictability of the spacetime outside the event horizon. The strong one asserts
that no singularities visible to any observer can exist. This version states that all physically
reasonable spacetimes are globally hyperbolic. Despite several attempts neither proof nor precise
mathematical formulation of the hypothesis has been available yet. On the contrary, some
solutions of the Einstein field equation with regular initial conditions evolving into spacetimes
containing NSs have been found [15, 16]. See Figs. 1.1(a) and (b) for schematic diagrams of
gravitational collapse ending in black hole and naked singularity formation, respectively.

When a NS forms in gravitational collapse, the Cauchy horizon (CH), which corresponds to
the first outgoing null ray, appears in the spacetime. For more mathematically precise definition,
see Ref. [4]. Beyond the CH, the NS is exposed to observers. Since we do not know how to impose
the boundary condition of any field at the singularity, where all known physics break down,
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the physics loses the future predictability in naked-singular spacetimes. For a naked-singular
spacetime to be a counterexample against the CCH, it is at least necessary that the CH is stable.
Although the CCH was originally stated in the classical context, CHs may be unstable due to the
backreaction of quantum effects such as particle creation, i.e., the particle creation would prevent
NSs from forming. Research on such a possibility can be traced back to the pioneering works
of Ford and Parker [17] and Hiscock, Williams, and Eardley [18]. Ford and Parker considered
the particle creation during the formation of a shell-crossing NS to obtain a finite amount of
flux [17]. On the other hand, Hiscock et al. considered the formation of a shell-focusing NS in
the collapse of a null-dust fluid to obtain a diverging amount of flux [18]. Subsequently, such
quantum phenomena have been studied in the models of a self-similar dust [19, 20, 21, 10], a
self-similar null dust [22, 10], and an analytic dust [23], for which the luminosities are found
to diverge as negative powers of the remaining time to the CHs. The analytic model is the
spherical dust collapse with an analytic initial density profile with respect to locally Cartesian
coordinates. The analyticity of initial density profile and the self-similarity are incompatible in
the spherically symmetric dust model. It is argued that the quantum radiation from a strong
NS such as a shell-focusing one must diverge as the CH is approached [19, 22], although there
is not enough evidence. In addition, such an explosive radiation by naked-singularity formation
can be a candidate for a source of the extremely high energy cosmic rays or a central engine of
γ-ray burst [24].

As the examples given above show, it is known that generic spherically symmetric self-
similar collapse results in strong naked-singularity formation [25, 26]. Among such self-similar
models, the general relativistic Larson-Penston (GRLP) solution would be one of the most
serious counterexamples against the CCH in the sense that the existence of pressure is taken
into account [27, 28]. Moreover, the convergence of more general spherically symmetric collapse
to the GRLP solution have been reported both numerically and analytically [29] as a realization
of the self-similarity hypothesis proposed by Carr [30, 31]. The discovery of the black hole critical
behavior also shed light on a self-similar solution as a critical solution (for example, see [32]).
We can say with fair certainty that self-similar solutions play important roles near spacetime
singularities. Several studies have been done resulting in a complete classification of self-similar
solutions so far (see [31] for a review).

Motivated by the above, particle creation during the NS formation in self-similar collapse
are investigated in Chap. 3. It is shown that irrespective of the details of the model, a diverging
energy flux is emitted from a naked shell-focusing singularity forming in generic spherically
symmetric self-similar spacetime. The power and energy of particle creation are calculated on
the assumption that the curvature around the singularity causes particle creation, which was
proven by [33], at least in the case of self-similar and analytic non-self-similar dust models.
Because the collapsing matter is not specified, the results can be applied to several known
models of self-similar collapse. This analysis is regarded as a semiclassical counterpart of [34],
in which the stability of the CH in self-similar collapse was tested by a classical field.

The results in Chap. 3 reveal that the particle creation in generic self-similar collapse diverges
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as the CH is approached. There is an another interesting result, leading us to the following study.
In a class of self-similar spacetimes, which seem to be non-generic, the luminosity remains finite
as the CH is approached. Indeed, it is shown that in the self-similar collapse of a massless
scalar field, described by the Roberts solution [35], the luminosity remains finite at the CH. The
results of above analysis about the self-similar collapse seems to suggest that curvature strength
of the NS along the CH is related to the amount of quantum radiation. Although NSs forming
in generic spherically symmetric self-similar spacetimes are known [25] to satisfy the strong
curvature condition (SCC) [36] along the CH, the NS appearing in the Roberts solution does
not satisfy even the limiting focusing condition (LFC) [37], which is weaker than the SCC. 1 The
relation between the curvature strength and quantum effect of NSs has already been suggested
in Ref. [23]. It showed the divergence of the quantum radiation in the analytic dust model,
in which the forming NS is known to be weak [39, 40], is mild. However, the comprehensive
understanding of the relation between the curvature strength and quantum effect of NSs is not
available yet. The purpose of Chap. 4 is to show how the amount of quantum radiation during
the formation of NSs depends on such a nature of singularities as curvature strength. This
analysis will help us obtain knowledge about the instability of CH, which would be predicted by
a full semiclassical theory, taking into account the backreaction of quantum fields to gravity. In
addition, it is shown how the coupling manner of quantized scalar fields to gravity changes the
amount of quantum radiation. The dependence on the coupling manner is important because
the CHs will suffer from the semiclassical instability, caused by all fundamental quantum fields.

1.3 High energy cosmic rays and noncommutative geometry

Recently, much attention has been paid to the extremely high energy cosmic rays (EHECRs),
which have energies above that attained in any experimental apparatus on Earth [41, 42]. It has
been pointed out that these EHECRs provide an opportunity to investigate spacetime properties
on very short length scales or very high energy scales. The most striking feature is that some of
these detections seem to be inconsistent with existing physics, in which such detections would
be restricted by the Greisen-Zatsepin-Kuzmin (GZK) cutoff [43] (see Fig. 1.2 for the spectrum
of the EHECRs). That is, if we consider the interaction between the EHECRs and cosmic
microwave background, particles with energy � 7 × 1019 eV from distant sources cannot reach
the Earth. There is also another anomalous phenomenon similar to this. That is the detections
of γ-rays above ∼ 20 TeV from distant sources (� 100 Mpc) reported in Refs. [44, 45]. These
γ-rays are expected to interact with infrared radio background (IRBG) photons and not to reach
the Earth in a standard scenario [46]. In spite of exhaustive research, near sources which can

1Following the work of Clarke and Królak [38], consider a geodesic (N), affinely parameterized by κ, with
tangent vector kμ, and terminating at or emanating from a singularity where κ = 0. If limκ→0 κ2Rμνkμkν �= 0 and
limκ→0 κRμνkμkν �= 0, where Rμν is the Ricci tensor, then the SCC and LFC are satisfied along N , respectively.
Since the quantity of Rμνkμkν for the Roberts solution indeed vanishes along the CH, the NS satisfies neither the
SCC nor LFC.
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explain such detections has not been found. Though there are many attempts to explain these
anomalous phenomena, there is no absolute solution at present [47].

This could imply an encounter with new physics. Some authors argue that the violation of
Lorentz invariance (LI) might solve the puzzle of the EHECRs above GZK cutoff [48, 49, 50, 51,
52]. The LI violation might also explain detections of γ-rays above ∼ 20 TeV. This possibility
has been argued in Refs. [53, 54, 55, 56]. In these models, the LI violation is introduced through
the modification of the dispersion relation of particles. We call the theories obtained by this
method modified dispersion relation (MDR) models.

One of the ways to modify the dispersion relation is to consider spacetime noncommutativity,
which has received attention in recent years since it naturally arises in the contexts of string/M
theories [57, 58, 59, 60, 61, 62]. It has also been argued that spacetime uncertainty which
comes from a fundamental string scale may be related to spacetime noncommutativity [63].
Apart from string/M theories, spacetime noncommutativity also arises as a result of deformation
quantization [64]. Amelino-Camelia et al. [65, 66, 67, 68] considered an interesting toy model
called κ-Minkowski spacetime where noncommutativity is introduced as [xi, t] = iλxi, where λ
is a free length scale [69, 70, 71, 72]. They obtained a severe constraint on λ through an arrival
time analysis of signals from a γ-ray burst [65, 66]. If we accept this scenario, there is no room
for detectable symptoms such as anomalous threshold to explain EHECRs [67, 66].

In general, however, it is plausible that not only a dispersion relation but also other relations
such as energy-momentum conservation laws might be altered in a Planck scale physics. To
investigate these features, we employ the κ-Minkowski spacetime model and compare a group
velocity in the κ-Minkowski spacetime with that in the MDR models. The properties of this
group velocity were also investigated in Ref. [73]. In Chap. 6, we derive a more realistic velocity
formula based on the motion of a wave packet in κ-Minkowski spacetime. With this formula,
we find that the spacetime noncommutativity does not affect the velocity of massless particles.
Motivated by this observation, we analyze reaction processes which are related to both detections
of EHECRs beyond the GZK cutoff and of ∼20 TeV photons in Chap. 7. In particular, we pay
attention to the momentum conservation law which has some ambiguities in this model. We
propose to determine the form of the momentum conservation law by deciding whether or not
spacetime noncommutativity is consistent with observations. In fact, we can exclude some forms
of momentum conservation. Though our approach is purely kinematical, our result will provide
a strong motivation to consider realistic model of spacetime noncommutativity [74].
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(a)

(b)

Figure 1.1: A schematic spacetime diagram representing the formation of (a) a black hole and
(b) a naked singularity in spherically symmetric gravitational collapse. Characteristic null rays
are depicted. In the black hole formation, the first null ray can escape to infinity. Second null ray
forms the event horizon, within which null rays cannot escape to infinity and terminates at the
central singularity. In such a black hole formation, the singularity is not visible from observers
outside the event horizon. In the naked singularity formation, before the formation of an event
horizon, null rays pass through the singularity and carry the information of the singularity to
infinity. Such a naked singularity formation violate the weak version of the cosmic censorship
hypothesis.
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Figure 1.2: The energy spectrum of high energy cosmic rays. The numbers and arrows denotes
the count of detected events and the upper bound from the observation, respectively. The dashed
curve is a theoretical plot, which assumes uniform sources outside our galaxy. The damping of
the theoretical curve around 1020eV corresponds to the GZK cutoff.





Chapter 2

Particle creation by a collapsing ball

2.1 Quantization

The formalism in this section is rather general. Therefore, it can be applied to any spherically
symmetric and asymptotically flat spacetimes in which radial null rays define a one-to-one map-
ping between past null infinity I− and future null infinity I+. For example, see Figs. 2.1 and
2.2, which represent the causal structure of a black hole and a NS in gravitational collapse,
respectively.

In the asymptotic region, let r, θ, φ, t denote the usual quasi-Minkowskian spherical coordi-
nates and time, which are related asymptotically related to null coordinates u and v by u � t−r
and v � t + r. An ingoing null ray u = const, emanating from I−, propagates through the
geometry becoming an outgoing null ray u = const, and terminates at I+ at F(v) measured by
the coordinate u. Conversely, one can trace a null ray from u = const on I+ to v = G(u) on I−,
where the function G is the inverse of F .

Let uin
ωlm and uout

ωlm be the solutions of massless Klein-Gordon equation, which are the asymp-
totical region of the form

uin
ωlm ≈ 1√

4πωr
(e−iωv − e−iωG(u))Ylm(θ, φ), (2.1)

uout
ωlm ≈ 1√

4πωr
(e−iωF(v) − e−iωu)Ylm(θ, φ). (2.2)

The above asymptotic form is independent of whether the field obeys the minimally coupled
equation, φ = 0, or non-minimally coupled one, ( + ξR)φ = 0, where R and ξ are the Ricci
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scalar and arbitral real constant, respectively. These solutions are normalized as follows:

〈uωlm, uω′l′m′〉 = δ(ω − ω′)δll′δmm′ , (2.3)
〈u∗ωlm, u

∗
ω′l′m′〉 = −δ(ω − ω′)δll′δmm′ , (2.4)

〈uωlm, u
∗
ω′l′m′〉 = 0, (2.5)

where 〈·, ·〉 is a conserved inner product, defined on a spacelike hypersurface as

〈f1, f2〉 ≡ −i
∫

Σ
(f1f

∗
2,μ − f1,μf

∗
2 )
√
gΣdΣμ. (2.6)

This inner product clearly has following properties:

〈αf1 + βf2, f3〉 = α〈f1, f3〉 + β〈f2, f3〉, (2.7)
〈f1, αf2 + βf3〉 = α∗〈f1, f2〉 + β∗〈f1, f3〉, (2.8)

〈f1, f2〉∗ = 〈f2, f1〉, 〈f∗1 , f2〉 = −〈f∗2 , f1〉, 〈f1, f
∗
2 〉 = −〈f2, f

∗
1 〉 (2.9)

for arbitrary function fi (i = 1, 2, 3), which is smooth and has a suitable support. The normal-
ization of uωlm, for example, the equation (2.3) can be shown as follows:

〈uin
ωlm, u

in
ω′l′m′〉 ≈

〈
e−iωv

√
4πωr

Ylm,
e−iω′v
√

4πω′r
Yl′m′

〉
Σt=−∞

=
−i

4π
√
ωω′

∫
YlmY

∗
l′m′dΩ
∫ [

e−iωv

r

∂

∂t

(
eiω

′v

r

)
− ∂

∂t

(
e−iωv

r

)
eiω

′v

r

]
r2dr

=
−iδll′δmm′

4π
√
ωω′

∫ ∞

−∞
dv
{
e−iωv∂v(eiω

′v) − ∂v(e−iωv)eiω
′v
}

=
−iδll′δmm′

4π
√
ωω′

[
2πiω′δ(ω − ω′) + 2πiωδ(ω − ω′)

]
= δ(ω − ω′)δll′δmm′ .

Since both {uin
ωlm} and {uout

ωlm} constitute complete sets, they can be expanded each other,

uout
ω =

∫ ∞

0
dω′(αωω′uin

ω′ + βωω′uin∗
ω′ ), (2.10)

uin
ω =

∫ ∞

0
dω′(γωω′uout

ω′ + σωω′uout∗
ω′ ), (2.11)

where same l and m are used in each side of equations. Hereafter, we omit the indices l, m, and
the region of the integration with respect to the frequency unless they are not especially needed.
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The coefficients, which are called Bogoliubov ones, are computed as follows:

αωω′ = 〈uout
ω , uin

ω′〉 (2.12)

=
1

4π
√
ωω′

∫ ∞

−∞
dv
{
ω′ + ωF ′(v)

}
e−iωF(v)+iω′v (2.13)

=
1
2π

√
ω′

ω

∫ ∞

−∞
dve−iωF(v)+iω′v, (2.14)

βωω′ = −〈uout
ω , uin∗

ω′ 〉 (2.15)

=
1

4π
√
ωω′

∫ ∞

−∞
dv
{
ω′ − ωF ′(v)

}
e−iωF(v)−iω′v (2.16)

= − 1
2π

√
ω′

ω

∫ ∞

−∞
dve−iωF(v)−iω′v, (2.17)

γωω′ = α∗
ω′ω, (2.18)

σωω′ = −βω′ω, (2.19)

where we use the integration by parts. One can recognize that the following relation holds,

βωω′ = −iαω(−ω′). (2.20)

Moreover, they are dependent on each other through following relations,

〈uout
ω , uout

ω′ 〉 = δ(ω − ω′),
〈uout

ω , uout∗
ω′ 〉 = 0,

〈uin
ω , u

in
ω′〉 = δ(ω − ω′),

〈uin
ω , u

in∗
ω′ 〉 = 0.

Above relations are written as∫
dω̃(αωω̃α

∗
ω′ω̃ − βωω̃β

∗
ω′ω̃) =

∫
dω̃(γ∗ω̃ωγω̃ω′ − σω̃ωσ

∗
ω̃ω′) = δ(ω − ω′), (2.21)∫

dω̃(αωω̃βω′ω̃ − βωω̃αω′ω̃) =
∫
dω̃(σω̃ωγ

∗
ω̃ω′ − γ∗ω̃ωσω̃ω′) = 0, (2.22)∫

dω̃(γωω̃γ
∗
ω′ω̃ − σωω̃σ

∗
ω′ω̃) =

∫
dω̃(α∗

ω̃ωαω̃ω′ − βω̃ωβ
∗
ω̃ω′) = δ(ω − ω′), (2.23)∫

dω̃(γωω̃σω′ω̃ − σωω̃γω′ω̃) =
∫
dω̃(βω̃ωα

∗
ω̃ω′ − α∗

ω̃ωβω̃ω′) = 0. (2.24)

We can write the Hermitian field operator in the form

φ =
∫
dω(ain

ω u
in
ω + ain†

ω uin∗
ω ), (2.25)

φ =
∫
dω(aout

ω uout
ω + aout†

ω uout∗
ω ). (2.26)
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As a consequence of the normalization of uωlm and the canonical commutation relations for the
field and its conjugate momentum, the creation and annihilation operators satisfy[

aωlm,a
†
ω′l′m′
]

= δ(ω − ω′)δll′δmm′ , (2.27)[
aωlm,aω′l′m′

]
=
[
a†

ωlm,a
†
ω′l′m′
]

= 0. (2.28)

The creation and annihilation operators for particles defined by uin and uout are related each
other as follows:

ain
ω =

∫
dω′(αω′ωaout

ω′ + β∗ω′ωaout†
ω′ ), (2.29)

aout
ω =

∫
dω′(γω′ωain

ω′ + σ∗ω′ωain†
ω′ ). (2.30)

We can define vacuum states as the states which can not be annihilated by any annihilated
operators as

ain
ωlm|0〉in = 0, aout

ωlm|0〉out = 0, (2.31)

for all ω, l, and m.

2.2 Spectrum, luminosity, and energy

We assume that the initial state of the quantum field is |0〉in. Then the expectation value of the
particle number of frequency ω on I+ is given by

N(ω) ≡ in〈0|aout†
ω aout

ω |0〉in (2.32)

=
∫
dω′|σω′ω|2 (2.33)

=
∫
dω′|βωω′ |2. (2.34)

To evaluate the luminosity and energy of particle creation, we have to specify the coupling
manner of scalar fields to gravity. Here, we consider the massless scalar fields coupling to the
scalar curvature as

( − ξR)φ = 0, (2.35)

where R is the Ricci scalar curvature and ξ is an arbitrary real constant. In particular, the
scalar fields with ξ = 0 and ξ = 1/6 are minimally and conformally coupled ones, respectively.
The stress-energy tensor of the scalar field in an asymptotically flat region is given by

T (ξ)
μν = ∇μφ∇νφ− 1

2
gμν∇αφ∇αφ− ξ∇μ∇νφ

2 + ξgμν φ2.
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The luminosity of the particle creation observed at infinity is obtained by integrating the
following component of the stress-energy tensor on a large sphere,

T t
r = −1

2
(φ,t φ,r +φ,r φ,t ) + ξ (φφ,r +φ,r φ) ,t , (2.36)

where we symmetrize the each term of the tensor. We need an estimate of the vacuum-
expectation value of the above component. A suitable regularization is required in the cal-
culation of vacuum-expectation value because the stress-energy tensor is quadratic in fields at
a same point. The regularization for minimally and conformally coupled scalar fields was given
in [17] via the point-splitting regularization scheme. We generalize the their scheme to this case,

L(ξ) ≡
∫

〈0|T t
r |0〉r2 sin θdθdφ (2.37)

=
∑
lm

L
(ξ)
lm, (2.38)

where

L
(ξ)
lm(u) =

1
4π

[(
1
4
− ξ

)(G′′

G′

)2

+
(
ξ − 1

6

) G′′′

G′

]
. (2.39)

The luminosity of quantum emission is the sum of all these modes, but it diverges because
the above luminosity (2.39) is independent of (l,m). Such divergence is due to the neglect of
the back-scattering by the potential barrier in strong gravitational fields, which will reduce the
emission for highly rotational modes. Hereafter, we shall omit the quantum numbers (l,m) and
one should keep in mind that the above expression holds only for small l. The total energy of
emitted particles is estimated by integrating the luminosity with respect to u,

E(ξ)(u) ≡
∫ u

−∞
L(ξ)(u′)du′.
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Figure 2.1: A possible causal structure of the black hole formation in gravitational collapse. The
singularity is totally spacelike and covered by the event horizon. An ingoing null ray u = const
can be traced backward in time from I+ to I−, which turns out to be an ingoing null ray
v = G(u).

Figure 2.2: A possible causal structure of the naked-singular spacetime considered in this thesis.
A singularity occurs at the spacetime point (u0, v0) and is visible from I+, where (u, v) are
suitable null coordinates. An ingoing null ray u = const can be traced backward in time from
I+ to I−, which turns out to be an ingoing null ray v = G(u). The outgoing null ray u = u0

and ingoing null ray v = v0 represent the CH and the null ray that terminates at the NS.



Chapter 3

Particle creation in self-similar NS
formation

Generic spherically symmetric self-similar collapse results in strong naked-singularity formation.
In this chapter we are concerned with particle creation during a naked-singularity formation in
spherically symmetric self-similar collapse without specifying the collapsing matter. In the
generic case, the luminosity of particle emission is found to be proportional to the inverse square
of the remaining time to the CH. The constant of proportion can be arbitrarily large in the limit
to a marginally naked singularity. Therefore, the unbounded luminosity is especially striking
in the case that an event horizon is very close to the CH because the emitted energy can be
arbitrarily large in spite of a cutoff expected from quantum gravity. The divergence of redshifts
and blueshifts of emitted particles is found to cause the divergence of luminosity to positive or
negative infinity, depending on the coupling manner of scalar fields to gravity. On the other
hand, it is found that there is a special class of self-similar spacetimes in which the semiclassical
instability of the CH is not efficient.

3.1 Spherical self-similar spacetimes admitting a NS

In this chapter a class of spacetimes which are spherically symmetric and admitting a homothetic
Killing vector field ξ, which satisfies £ξgμν = 2gμν , is considered. The line element of this class
of spacetime in an advanced null coordinate system is written as

ds2 = gvv(x)dv2 + 2gvR(x)dvdR +R2dΩ2, (3.1)

where x ≡ v/R, dΩ2 is the line element of a unit two dimensional sphere, and the homothetic
Killing vector field is of the form ξ = v∂v + R∂R. In this spacetime, the geodesic equation for

21
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an outgoing null ray is written as

dv

dR
= −2gvR

gvv
= xf(x), (3.2)

where

f(x) ≡ −2gvR

xgvv
. (3.3)

Equation (3.2) can be written also as

dx

dR
=
x (f(x) − 1)

R
, (3.4)

which is integrated to give

R

R0
= exp
[∫ x

x0

F (x′)dx′
]
, F (x) ≡ 1

x (f(x) − 1)
, (3.5)

where x0 and R0 are constants which are related as R0 = R(x = x0). The constant x0 is chosen
as x0 < x+ and x0 �= 0.

What we have to do first is to extract features of f(x), which determines the spacetime
structure. The Misner-Sharp mass in this spacetime is given by

m(v,R) ≡ R

2
(1 −∇μR∇μR) =

R

2

(
1 +

4
x2f2gvv

)
.

The regularity of the center R = 0 in the region v < 0 and the absence of a trapped or a
marginally trapped surface for 0 < R and v ≤ 0 are assumed. The latter condition is ∇μR∇μR >
0 for all x ∈ (−∞, 0], which is written as gvv < 0 for all x ∈ (−∞, 0] in the present case. The
inevitability of a curvature singularity at the origin v = R = 0 can be shown except for a
flat spacetime [34]. In this article we consider self-similar spacetimes with a globally naked
singularity, of which existence breaks the weak version of the cosmic censorship hypothesis. One
of the possible causal structures of the naked-singular spacetimes is depicted in Fig. 2.2. The
coordinate v is set to be the proper time along the regular center to remove a gauge freedom
v → V (v), so that limx→−∞ gvv = −1. When m/R3 is required to be finite at the regular center,
the function f(x) behaves as

f � 2/x as x→ −∞. (3.6)

The quantity m/R3 must be finite also in the limit v → 0 for fixed R (> 0) so that

f = O(|x|β) as x→ 0, (3.7)
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where β ≤ −1. When there are positive roots of the algebraic equation f(x) = 1, it can be
shown that the curve x = x+ is a CH, as we will see in Appendix A, where x+ is the smallest
root. The differentiability of the metric function f is assumed to be as follows:

1
f
∈ C0
(
(−∞, x+)

)
, f ∈ C2− at x = x+. (3.8)

The former condition guarantees the existence and uniqueness of geodesics in this system. It is
also assumed 1 that

f ′(x+) < 0. (3.9)

The schematic plot of the function f(x) is shown in Fig. 3.1(a).

3.2 Local map

To estimate the luminosity of particle creation just before the singularity occurs, the pole at
x = x+ should be extracted from the integrand in Eq. (3.5) as follows:

R

R0
= exp

[∫ x

x0

{
F (x′) − 1

γ(x′ − x+)

}]
exp
[∫ x

x0

dx′

γ(x′ − x+)

]

= exp
[∫ x

x0

F ∗(x′)dx′
](

x+ − x

x+ − x0

)1/γ

, (3.10)

where

γ ≡ x+f ′(x+), (3.11)

F ∗(x) ≡ F (x) − 1
γ(x− x+)

.

The constant R0 in Eq. (3.5), which parameterizes solutions, is related to the time vc ≡
v(R = 0) < 0 when the outgoing null ray emanates from the regular center as follows:

R

R0
= exp

[
−
∫ x

x0

dx′

x′

]
exp
[∫ x

x0

{
F (x′) +

1
x′

}
dx′
]

=
∣∣∣∣Rx0

v

∣∣∣∣ exp
[∫ x

x0

f(x′)
x′ (f(x′) − 1)

dx′
]
.

Taking the limit of R→ 0 (v < 0), following relation is obtained:

R0 = − vc

|x0|I , I ≡ exp
[∫ −∞

x0

f(x′)
x′ (f(x′) − 1)

dx′
]
, (3.12)

1One can prove f ′(x+) ≤ 0 with the dominant energy condition on collapsing matter and the equality is
excluded by a physically reasonable requirement on the collapsing matter at the CH [34].
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where condition (3.6) ensures the convergence of the integral in Eq. (3.12).
Combination of Eqs. (3.10) and (3.12) yields

R = C(R,x)
(
v+(R) − v

)1/γ
vc, (3.13)

where

v+(R) ≡ x+R,

C(R,x) ≡ −|x0|−1I−1
[
(x+ − x0)R

]−1/γ exp
[∫ x

x0

F ∗(x′)dx′
]
.

Before turning to the derivation of the local map, a few remarks should be made concerning the
function C(R,x). Due to condition (3.8), C(R,x) converges to some finite constant in the limit
x→ x+ for fixed R. The dependence of C(R,x) on x0 is only an apparent one as

∂C

∂x0
= 0, (3.14)

which we use in Sec. 3.5.
Now let us consider a pair of ingoing and outgoing null rays such that the latter is the

reflection of the former at the regular center. An observer who rests at R = R will encounter
the null ray twice so that we denote the time of first encounter by v1 and that of the second by
v2. The relation between v1 and v2, which we call the local map, is obtained from Eq. (3.13):

v1 =
R

C(R, x2)
(
v+(R) − v2

)α1 , (3.15)

where

x2 ≡ v2/R,

α1 ≡ −1/γ. (3.16)

The time intervals −v1 (> 0) and v+(R) − v2 are depicted schematically in Fig. 3.1(b). It is
noted that the result does not change even if we choose a small value of R. Namely, the nature
of the local map is determined by the behavior of null rays near the singularity.

3.3 Luminosity and energy

A global map v = G(u) is defined to be a relation between the moments when one null ray leaves
I− and terminates at I+ after passing through the regular center (see Fig. 2.2). Assuming
the geometric optics approximation, one can obtain the luminosity of emission as the vacuum
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expectation value of a stress-energy tensor by the point-splitting regularization from the global
map [17],

L =
1

24π

[
3
2

(G′′

G′

)2

− G′′′

G′

]

for a minimally coupled scalar field, and

L̂ =
1

48π

(G′′

G′

)2

for a conformally coupled scalar field.
Spherically symmetric self-similar spacetimes are not asymptotically flat in general. They

therefore should be matched with an outer asymptotically flat region via a proper non-self-
similar region. This matching procedure is quite straightforward for dust collapse [19]. Although
it seems to be necessary to solve null geodesic equations in such a “patched-up” spacetime, the
main properties of the global map must be determined by the behavior of null rays passing
near the point where the singularity occurs. This expectation has been confirmed in [33], at
least for the self-similar and analytic dust models. Therefore, one can safely assume that the
global map inherits the main properties of the local map, such as the value of the exponent and
differentiability. This means that from Eq. (3.15), the asymptotic form of the global map would
take the form

G(u) = v0 − (u0 − u)α G∗(u),

where the null rays u = u0 and v = v0 are the CH and the ingoing null ray that terminates at
the NS, respectively. The function G∗(u) is a regular function which does not vanish at the CH
and α is the exponent of the local map, α1 in Eq. (3.15).

In the case of α = 1, the leading contribution to the luminosity of particle creation is
calculated as

L =
2G′2∗ (u0) − G∗(u0)G′′∗ (u0)

8πG2∗ (u0)
, (3.17)

L̂ =
1

12π

(G′∗(u0)
G∗(u0)

)2

, (3.18)

so that the luminosity remains finite at the CH. Unfortunately G∗(u0) and its derivatives cannot
be known until the null geodesic equation is solved globally, so that one could not know the
luminosity of emission from only the information contained in the local map. In terms of redshift,
α = 1 corresponds to the case that the redshift of a particle remains finite at the CH, as we will
see in Sec. 3.4.
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On the other hand, in the case of α �= 1 the leading contribution is obtained as

L =
α2 − 1

48π (u0 − u)2
, (3.19)

for a minimally coupled scalar field. For a conformally coupled one, the luminosity of emission is
obtained by replacing the factor (α2−1) in Eq. (3.19) for (α−1)2. The luminosity is proportional
to the inverse square of the remaining time to the CH. If α > 1, the luminosity diverges to
positive infinity for both minimally and conformally coupled scalar fields, while if 0 < α < 1,
the luminosity diverges to negative and positive infinity for minimally and conformally coupled
scalar fields, respectively. In terms of the redshift of particles, the case that α > 1 (0 < α < 1)
corresponds to infinite redshift (blueshift) at the CH, as we will see in Sec. 3.4. The emitted
energy can be estimated as

E =
∫ u

−∞
L(u′)du′ =

α2 − 1
48π (u0 − u)

. (3.20)

Although the emitted energy diverges when the CH is approached, this divergence needs to be
regarded carefully. The semiclassical approximation would cease to be valid when the curvature
radius at some spacetime point inside star reaches the Planck scale. Here we make a natural
assumption that such a situation happens at the center of a star at v = −tQG

2. In the case
of α > 1, it can be expected that for a ray emanating from the center at v = −tQG, the time
difference u0−u would be greater than the order of tQG due to redshift, i.e., Δu ≡ u0−u > tQG.
Then energy emitted by the time u0 − Δu is

E =
α2 − 1
48πΔu

<
α2 − 1
48π

EQG, (3.21)

where EQG ≡ 1/tQG. If the factor
(
α2 − 1
)
/(48π) is on the order of unity, the total radiated

energy within the semiclassical phase is less than the order of EQG, which would be of course
much less than the mass of ordinary astrophysical stars. It would be better to say that a
collapsing star would enter the phase of quantum gravity with most of its mass intact. Therefore,
one could not predict whether a star which collapses to a NS evaporates away or ceases to radiate
at its final epoch. This has been pointed out in [75] after careful investigation. We should not
overlook that this feature is much different from that of black hole evaporation, in which quantum
gravitational effects appear after a black hole loses almost all its mass.

One can recognize, however, that if α� 1 the radiated energy could be large. This situation
is realized in the limit to marginally NS, in which the CH and event horizon coincide 3. To

2The time tQG can be regarded as the Planck time tpl;at least this is the case for self-similar dust model.
3When the CH and event horizon exactly coincide, radiation reduces to the Hawking one [17, 18]. This fact

cannot be derived with the method making use of the local map since in this case, γ = 0 in Eq. (3.10). It is not
surprising since an event horizon, which plays a central role in the Hawking radiation, is not a local object but a
global one [76].
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illustrate the unbounded increase of α in this limit, we have to look deeper into the causal
structure, which is determined by the function f . We order the positive roots of the equation
f(x) = 1 as 0 < x1 = x+ < x2 < · · · < xn, where we count multiple roots as one root. The
existence of xa satisfying limx→xa f(x) = +∞ with xn < xa and the continuity of f in the region
x1 < x < xa are assumed. In the region x ∈ (xn, xa), dR/dv > 0 along the null geodesics and
limx→xa dR/dv = 0 from Eq. (3.2). This implies that outgoing null rays in this region are to
turn back in the direction of the singularity at x = xa and that the curve x = xn is the last
outgoing null ray which can escape to infinity. That is to say, x = xa and x = xn ≡ xe are the
apparent horizon and event horizon, respectively. Hereafter, we shall concentrate on the case of
n = 2. The function f(x) would be written as

f(x) − 1 = f∗(x)(x− x+) (xe − x)m , 0 < x < xa, (3.22)

where f∗(x) is a function which satisfies f∗(x+) < 0 and m is some positive integer. The
exponent of the factor (x − x+) is restricted to unity because of the condition f ′(x+) < 0 and
the differentiability f ∈ C2− at x = x+. With Eq. (3.22), the exponent of the local map is
calculated as

α1 ≡ − 1
x+f ′(x+)

= − 1
x+f ′∗(x+) (xe − x+)m , (3.23)

to show that α1 can be arbitrarily large in the limit x+ → xe.

3.4 Redshift

The estimation of redshift of the radial null ray would help us understand the behavior of the
luminosity and would be necessary for discussing the validity of geometric optics and semiclas-
sical approximations. Hereafter the tangent vector of the null ray is denoted by kμ ≡ dxμ/dλ,
where λ is an affine parameter.

With the null condition kμkμ = 0, the v-component of the geodesic equation kμ∇μk
ν = 0

leads to

dkv

dλ
+

(kv)2

R

(
1
gvR

dgvR

dx
+
x

2
1
gvR

dgvv

dx

)
= 0.

Furthermore by using the relation

d

dλ
=
kv

R

(
1 +

xgvv

2gvR

)
d

dx
,

kv(x) is integrated to give

kv(x)
kv

0

= exp
[∫ x

x̃0

F̃ (x′)dx′
]

= exp
[∫ x

x̃0

F̃ ∗(x′)dx′
](

x+ − x

x+ − x̃0

)−(1+γ)/γ

, (3.24)
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where

F̃ (x) ≡ − 1
gvR

dgvR

dx
+

1
1 − f

(
1
x

+
1
f

df

dx

)
,

F̃ ∗(x) ≡ F̃ (x) +
1 + γ

γ

1
x− x+

.

The constant x̃0, which is set as x̃0 < x+, and the constant kv
0 are related as kv

0 = kv(x̃0).
The constant kv

0 is related to kv
c ≡ kv(R = 0) as

kv
0 =

kv
c

Ĩ
, Ĩ ≡ exp

[∫ −∞

x̃0

F̃ (x′)dx′
]
. (3.25)

Combination of Eqs. (3.24) and (3.25) yields

kv(x) = C̃(R,x)
(
v+(R) − v

)α1−1
kv

c , (3.26)

where

C̃(R,x) ≡ Ĩ−1
[
(x+ − x̃0)R

](1+γ)/γ exp
[∫ x

x̃0

F̃ ∗(x′)dx′
]
.

Now, let us consider time-like observers who rest at R = 0 and R = R (dθ = dφ = 0). The
observed frequency is given by ω̂ ≡ −uμk

μ =
√|gvv(x)|kv(x), where uμ is the four-velocity of

observer. When ω̂1 ≡ limx→−∞ ω̂(x) and ω̂2 ≡ limx→x+ ω̂(x) are defined, Eq. (3.26) yields

ω̂2

ω̂1
=

√∣∣∣∣ gvv(x+)
gvv(−∞)

∣∣∣∣C̃(R, x2)(v+(R) − v2)α1−1. (3.27)

Thus we see that if α1 > 1 (0 < α1 < 1) the redshift (blueshift) of emitted particle diverges at
the CH, while it remains finite if α1 = 1. The relation between the redshift derived above and
the local map will be presented in the next section.

3.5 Relations among the local map, luminosity, and redshift

There would be a relation between the local map and redshift because the local map describes
a kind of time delay. Since the asymptotic behavior of the local map and redshift in the limit
x→ x+ is considered here, the time dependence is omitted as C(R,x) → C(R). From Eq. (3.15),
the relation

dv2
dv1

=
γC(R)

R
(v+(R) − v2)(1+γ)/γ (3.28)
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holds to give an alternative definition of redshift. Indeed, the time dependence in Eq. (3.28) can
be replaced with the ratio of kv by Eq. (3.26) as

dv2
dv1

=
∣∣∣∣gvv(−∞)
gvv(x+)

∣∣∣∣ kv
c

kv(x2)
, (3.29)

where we set x0 = x̃0 in the evaluation of the integral in C to derive Eq. (3.29) since C does not
depend on x0 from Eq. (3.14). Equation (3.29) can be written as

dτ2
dτ1

=
ω̂1

ω̂2
, (3.30)

where dτi ≡
√|gvv|dvi (i = 1, 2) is the proper time measured by the observer. This relates the

time delay and redshift to reveal that the redshift essentially corresponds to the local map and
also to confirm the consistency of the analyses in Secs. 3.2 and 3.4.

There exists a plausible relation also between the luminosity of emission and the redshift of
particles as mentioned in Sec. 3.3. In the case of α > 1 (0 < α < 1), the luminosity and redshift
(blueshift) diverge at the CH from Eqs. (3.19) and (3.27), while the luminosity and redshift
remain finite at the CH in the case of α = 1. We may, therefore, reasonably conclude that the
divergence of the redshift or blueshift at the CH causes that of the luminosity.

3.6 Examples

In this section, we will take examples to illustrate how the features obtained in the previous
sections are realized in concrete models. Since several models are written in the diagonal form
of a metric tensor, the formulation and notations for the diagonal form of a metric tensor are
developed in Appendix B.

3.6.1 Minkowski spacetime

Although neither singularity nor horizon exists in Minkowski spacetime, one can test the for-
malism by applying it to this trivial spacetime. The line element is written as

ds2 = −dv2 + 2dvdR+R2dΩ2,

or

ds2 = −dt2 + dr2 + r2dΩ2.

From definitions (3.3) and (B.2), one obtains

f(x) =
2
x
, w±(z) = ±1

z
.
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The roots of the algebraic equations f(x) = 1 and w±(z) = 1 are given as x+ = 2 and z± = ±1,
respectively. It must be noted that the function f(x) satisfies conditions (3.6)-(3.9), which have
been assumed to derive the local map. According to Eqs. (3.11), (3.16), (B.4), and (B.8), one
can easily check that the exponents of local maps, α1 and α2, are unity. This fact just tells us
that the redshift and luminosity remain finite in a flat spacetime.

3.6.2 Vaidya solution

The Vaidya solution describes the collapse of a null-dust fluid [77]. The global map for the
self-similar Vaidya collapse was derived in [22].

The line element in the self-similar Vaidya spacetime is written as

ds2 = − (1 −m(x)) dv2 + 2dvdR +R2dΩ2,

where m(x) = 0 for x < 0 and m(x) = 2μx for x ≥ 0. The constant μ is restricted as
0 < μ < 1/16 for the nakedness, so that the spacetime with μ = 1/16 corresponds to a marginally
naked-singular one. The function f(x) is written as

f(x) =
2

x(1 −m(x))
.

The roots of algebraic equation f(x) = 1 are given as

x+ =
1 −√

1 − 16μ
4μ

and xe =
1 +

√
1 − 16μ
4μ

.

What has to be noticed is that f satisfies conditions (3.6)-(3.9). The exponent is calculated as

α1 ≡ − 1
x+f ′(x+)

=
1 +

√
1 − 16μ

2
√

1 − 16μ
.

This exponent coincides with that of the global map which was obtained in [22]. One can see
that limμ→0 α1 = 1 and limμ→1/16 α1 = ∞, where the former and latter correspond to the limits
of Minkowski and marginally naked-singular spacetime. This example is a good illustration of
the efficiency of the local map and the divergence of α1 in the limit to marginally NS.

3.6.3 Roberts solution

The Roberts solution describes the self-similar collapse of a massless scalar field [35]. The line
element is given as

ds2 = −
(

1 − 2h(x)h′(x)√
1 + h2(x)

)
dv2 +

2√
1 + h2(x)

dvdR +R2dΩ2, (3.31)
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where h(x) = 0 for x < 0 and h(x) = σx for x ≥ 0, so that the region with negative v is flat.
The constant σ is restricted here as |σ| < 1/2 for the causal structure such that the spacetime
has a time-like NS as in Fig. 3.2. The function f(x) is written as

f(x) =
2

x(
√

1 + h2 − 2hh′)
.

The conditions on f(x) are again satisfied. The algebraic equation f(x) = 1 has a positive root
x+ = 2/

√
1 − 4σ2 so that the exponent of local map is calculated as

α1 ≡ − 1
x+f ′(x+)

= 1

for |σ| < 1/2. Thus we see that the Roberts solution provides a non-trivial example of spacetime
in which the luminosity of particle creation remains finite at the CH in self-similar collapse.

3.6.4 Lemâıtre-Tolman-Bondi (LTB) solution

The Lemâıtre-Tolman-Bondi (LTB) solution describes the collapse of a dust fluid [78]. Although
both global and local maps were derived in [19] and [33] respectively for self-similar LTB collapse,
the exponent in [19] is reproduced from the formalism in Sec. 3.2.

The line element of self-similar LTB spacetime (for example, see [19]) is

ds2 = −dt2 +
[

1 − az/3
(1 − az)1/3

]2
dr2 + r2(1 − az)4/3dΩ2,

where the constant a is related to a “mass parameter” λ as a = 3
2

√
λ. The constant λ is

restricted to the range 0 < λ < 6(26 − 15
√

3) ≡ λm, where the latter inequality is imposed
by the nakedness of the singularity [15], so that the spacetime with λ = λm corresponds to
marginally naked-singular one. One obtains the function w±(z) according to definition (B.2) as

w±(z) = ± 1 − az/3

z (1 − az)1/3
. (3.32)

The required conditions on w± in calculating the local map are satisfied. When a new variable
y ≡ (1 − az)1/3 introduced, Eq. (3.32) can be written as

w2
±(z) = 1 − 4g+(y)g−(y)

[g+(y) + g−(y)]2
,

where g±(y) ≡ 3y4∓ay3−3y∓2a, so that the roots of algebraic equations w±(z) = 1 correspond
to those of g∓(y) = 0. Using the chain rule d/dz = (dy/dz)d/dy, one obtains

z±w′
±(z±) =

2(1 − 3α3∓)g′∓(α∓)
3α±g±(α∓)

,
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where α± ≡ (1 − az∓)1/3 and the prime denotes differentiation with respect to the argument of
the function. The exponent of local map is calculated as

α2 ≡ z−w′−(z−)
z+w′

+(z+)
=
α3−g′+(α+)
α3

+g
′−(α−)

to coincide with the one derived in [19, 33]. This exponent becomes close to unity as λ→ 0 and
increases monotonically with λ to diverge to infinity as λ→ λm.

3.6.5 General relativistic Larson-Penston solution

As the last example the general relativistic Larson-Penston (GRLP) solution, which describes the
self-similar collapse of a perfect fluid [27, 28], is considered. For the present, it may be useful
to review the GRLP solution and its importance, although we have mentioned them in the
Introduction. The equation of state must have the form of P = kρ from the requirement of self-
similarity, where k is a constant. The GRLP solution represents a naked-singularity formation in
the range 0 < k � 0.0105, where the upper bound is imposed by the nakedness of the singularity.
This solution is interesting because it provides the first example in which the pressure does not
prevent the formation of a NS. Moreover, the convergence to the GRLP solution of more general
solutions near the central region of stars have been strongly suggested numerically and supported
by a mode analysis [29] as a realization of the self-similarity hypothesis [30]. From the above,
the GRLP solution will be a strongest known counterexample against the cosmic censorship
hypothesis.

Because the GRLP solution is a numerical one, an explicit expression of the exponent of local
map could not obtained analytically, although it is unlikely that α is equal to unity. To show
rigorously that the luminosity of emission is proportional to the inverse square of the remaining
time to the CH and that the constant of proportion diverges in the limit to marginally NS, the
dependence of exponent α on k should be clarified numerically.

3.7 Summary and Discussion

We have been concerned with a quantum mechanical particle creation during the naked-singularity
formation in spherically symmetric self-similar collapse. The luminosity, energy, and redshift
of emitted particles are analytically calculated on the assumption that the curvature around
the singularity causes particle creation and the metric function f is C2− around the CH. As a
result, in the generic case in which the exponent of the local map α �= 1, the luminosity has
been found to diverge as L ∝ (tch − t)−2, where (tch − t) is the remaining time until a distant
observer would receive a first light ray from the NS. It is worth pointing out that the weaker dif-
ferentiability of the CH leads to a different result, i.e., the luminosity of emission has a different
time dependence, although we have not looked deeper into such a possibility in this paper. The
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square inverse proportion of the luminosity to the remaining time is due to the scale invariance
of self-similar spacetimes. The constant of proportion has been found to be arbitrarily large in
the limit to marginally NS. Therefore, this explosive radiation is especially striking in the case
that the event horizon is very close to the CH because the emitted energy can be arbitrarily
large in spite of a cutoff expected from quantum gravity. We go on from this to the conclusion
that if the back reaction to a gravitational field is taken into account, the semiclassical effect
would cause the instability of the CH and might recover the cosmic censor in this limiting case.
On the other hand, in the non-generic case in which α = 1 the luminosity remains finite at the
CH, so that the semiclassical instability of the CH seems not to be efficient for this special class
of self-similar solutions. The collapse of a massless scalar field described by the Roberts solution
indeed does correspond to this case. In addition, it has been found that the diverging redshift
and blueshift cause the divergence of the luminosity to positive or negative infinity, depending
on the manner of the coupling of scalar fields to gravity. The divergence will be a criterion for
the stability/instability of a CH in a gravitational collapse.
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(a) (b)

Figure 3.1: (a) Schematic plots of f(x) defined by Eq. (3.3) for typical collapsing spacetimes
which end in a NS or a black hole. Depending on the number of roots of f(x) = 1, which we
denote by j, the causal structure of spacetime changes. The cases of j = 0, 1, and 2 are depicted.
(i) The case of j = 2 : f(x) (x > 0) is depicted by a solid line. The two roots are denoted by
x+ and xe (x+ < xe). The geodesics x = x+ and x = xe represent the CH and event horizon,
respectively. This kind of spacetime admits a NS. (ii) The case of j = 1 : f(x) (x > 0) is depicted
by a dashed line. In this case, x+ = xe holds, i.e., the CH and event horizon coincide. This type
of singularity is called marginally naked (MN). (iii) The case of j = 0 : f(x) (x > 0) is depicted
by a dot-dashed line. In this case the collapse ends in a black hole (BH). (b) A typical spacetime
diagram of a collapsing body which ends in a naked singularity in (v,R) coordinates. A null ray
which is reflected at the regular center and characteristic null rays in respective regions divided
by horizons are depicted. The time intervals v+(R) − v2 and −v1 in Eq. (3.15) are depicted.
The dotted line is the world line of an observer at R = R.
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Figure 3.2: The conformal diagram of the Roberts solution Eq. (3.31) with |σ| < 1/2. The
region v < 0 is flat and the shading region is filled with a collapsing massless scalar field. A
time-like NS occurs at v = 0.





Chapter 4

Quantum effect and curvature
strength of NS

The aim of this chapter is to examine the relation between the curvature strength of NSs and
the number of created particles. To reach this aim, we analytically estimate the luminosity and
total energy of emitted particles during the formation of shell-focusing NSs in a wide class of
spherical dust collapse. It is found that if the NS satisfies the strong curvature condition (SCC),
the quantum radiation diverges as the Cauchy horizon is approached, where as, if the NS does
not satisfy the limiting focusing condition (LFC), the radiation remains finite. If the NS does
not satisfy the SCC but does the LFC, the radiation may be either divergent or finite. From the
viewpoint of the cosmic censorship, the finite amount of quantum emission is crucial because
the CHs will be free from the instability expected from the backreaction of quantum fields. In
addition, it is also discussed how the coupling manner of quantum fields to gravity affects the
amount of radiation.

4.1 NS in LTB spacetime

4.1.1 LTB solutions admitting a NS

The LTB solution [78], which describes the collapse of a dust ball, in a comoving coordinate
system is written as

ds2 = −dt2 +
R′2

1 + f(r)
dr2 +R2(t, r)dΩ2,

Ṙ2 =
F (r)
R

+ f(r), (4.1)

ρ =
F ′

8πR2R′ ,

37
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where ρ is the energy density, dΩ2 is the line element of a unit two-dimensional sphere, and the
prime and dot denote the partial derivatives with respect to r and t, respectively. Since we are
concerned with the collapse of a dust fluid, we require Ṙ < 0. Arbitrary functions F (r) and
1 + f(r) > 0 are twice the conserved Misner-Sharp mass and the specific energy, respectively.
Hereafter we concentrate on the marginally bound case for simplicity, which is defined by f = 0.
In such a case, Eq. (4.1) is integrated to give

R3 =
9
4
F (r) [t− ts(r)]

2 , (4.2)

where ts(r) is an arbitrary function of r. The time t = ts(r) corresponds to one when a dust
shell at r meets the shell-focusing singularity, which is defined by R = 0. It is possible to choose
as ts(r) = r by the scaling of r. LTB solutions can describe the formation of a shell-focusing
NS from regular spacetimes. It has been shown that the shell-focusing singularity occurring at
R = 0 with r > 0 is totally spacelike [79], and therefore our discussion will be confined to the
singularity at (t, r) = (0, 0).

Here, we introduce a class of marginally bound LTB solutions in which the leading term of
mass function F near the regular center takes the form of

F (r) =
4λ3

9(μ+ 1)3
r3μ+1 + o(r3μ+1), (4.3)

where μ (� 0) and λ (> 0) are constants. The nontrivial form of factor and power in Eq. (4.3) is
just for later convenience. In Appendix C, it is shown that this class of LTB spacetimes results
in the formation of a shell-focusing NS, which could be globally naked and could violate the
weak version of CCH. Radial null geodesics are described near the center by

dt

dr
= ±R′ � ±λrμF(t/r), (4.4)

where

F(z) ≡
[
1 − 3μ+ 1

3(μ+ 1)
z

]
(1 − z)−1/3 .

Here, the upper and lower signs correspond to outgoing and ingoing null geodesics, respectively.
It will be helpful for later discussion to look into the initial regular density profile of the dust

fluid near the regular center. The initial density profile at an initial time slice of t = tin < 0 is
written as,

ρ(tin, r) =
1

6πt2in

[
1 + 2
(

1 +
F

rF ′

)
r

tin
+O
(
(r/tin)2

)]
.



4.1. NS IN LTB SPACETIME 39

Therefore, in the present case, the initial density profile in terms of physical radius R ∝ rμ+1/3

takes the form of

ρin(R) = ρ0 + ρ1R
γ + · · · , (4.5)

where

γ ≡ 3
3μ+ 1

, ρ0 ≡ 1
6πt2in

, ρ1 ≡ − (3μ+ 2)(μ+ 1)3/(3μ+1)

3(3μ+ 1)πλ3/(3μ+1)(−tin)(9μ+5)/(3μ+1)
. (4.6)

Note that the parameter γ is in the region of 0 < γ � 3 for μ � 0. In particular, the analytic
and self-similar LTB models are the cases with γ = 2 (μ = 1/6) and γ = 3 (μ = 0), respectively.

4.1.2 Curvature strength of the NSs

The curvature strength of spacetime singularities is defined in a hope that weak convergence
would imply the extendibility of the spacetime in a distributional sense. In this context, Tipler
defined the strong curvature condition (SCC) [36], while Królak defined a weaker condition,
which we call the limiting focusing condition (LFC) [37]. The sufficient and necessary conditions
for the singularities in spherically symmetric spacetimes with vanishing radial pressure satisfying
the LFC or SCC are given in simple forms [40]. Here, we explain the results obtained in [40]. If
a singularity is naked, the relation between the circumferential radius R and the Misner-Sharp
mass m is given by

R � 2y0m
β (4.7)

near the singularity along the null geodesics terminating at or emanating from the NS. The
constant β is in the region of

1/3 < β � 1. (4.8)

The constants y0 and β are determined by requiring that there exist a positive finite limit of
y0 ≡ limm→0R/(2mβ) along the null geodesics terminating at or emanating from the NS. If the
geodesic satisfies the “gravity-dominance condition” [40], which the null geodesic terminating at
or emanating from the shell-focusing NS in LTB spacetime satisfies, the sufficient and necessary
conditions are summarized as the following theorem [40]: if and only if 1/3 < β < 1/2 is
satisfied, neither the SCC nor the LFC holds; if and only if 1/2 � β < 1 is satisfied, not the
SCC but only the LFC holds; and if and only if β = 1, both the SCC and the LFC hold, for the
radial null geodesic terminating at or emanating from the NS.
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In the case of the LTB spacetimes we consider, from Eq. (C.2), R ∝ rμ+1 holds along the
outgoing null geodesic emanating from the NS, i.e., along the CH 1

β =
μ+ 1
3μ+ 1

=
2γ + 3

9
. (4.9)

With the above theorem by Harada et al., the NS for 0 < γ < 3/4 satisfy neither the LFC nor
the SCC along the outgoing null geodesic emanating from the NS. The NS for 3/4 � γ < 3 does
not satisfy the SCC but does the LFC. The NS for γ = 3 satisfies both the LFC and the SCC.
See also the Table 4.1 for the relation among γ, β, and the curvature strength of NSs.

4.2 Map of null rays passing near the naked singularity

4.2.1 Local map

The global map, v = G(u), is defined as the relation between the moments when a null ray leaves
I− and when it terminates at I+ after passing through the regular center (see Fig. 2.2). The
global map plays crucial roles in the estimate of quantum radiation in the geometrical-optics
approximation. The global map cannot be obtained without solving the null geodesic equation
from I− to I+ globally.

However, the main properties of the global map for NS formation will be determined by
the behavior of null rays near the singularities, since the particle creation will be caused by
the curvature around singularities. From this point of view, Tanaka and Singh proposed an
alternative map, which we call the local map [33]. They considered an observer on a comoving
shell who sends ingoing null rays. These null rays are reflected at the regular center, and come
back to the same comoving observer. A radial null geodesic crosses a comoving shell located
at a fixed comoving radius r before and after the reflection at the center. Thus these null rays
define a map between the sending time and the receiving time measured by the proper time for
the comoving observer. See Fig. 4.1 for a schematic illustration of the local map. The local map
is expected to have the same structure as the global map because there are no singular features
in the map between the proper time on a comoving shell at a finite distance and those measured
by the null coordinates naturally defined at infinity.

This expectation has been confirmed for the self-similar dust [33, 10] and the analytic dust[33]
models. Two of the present authors generalized the local map to a general class of self-similar
spacetimes without specifying the collapsing matter, and the validity of such a local map was
confirmed for the self-similar Vaidya model [10]. Therefore, one can safely assume that the local
map has the same structure as the global map in the LTB spacetimes dealt with in this paper.

1The null ray given by Eq. (C.2) is a asymptotic solution of the null geodesic equation with the boundary
condition of t(0) = 0. In fact, Eq. (C.2) is the earliest null ray which emanates from the singularity. This was
proved by Christodoulou [79] and this proof can be easily generalized to other cases.
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In this section, we calculate the local map by solving the radial null geodesic equation for
the non-self-similar LTB spacetimes (μ > 0). The local map for the self-similar LTB spacetime
(μ = 0) was obtained in Refs. [33] and [10].

4.2.2 Outline of the calculation of local map

To make the notation simple, we change the coordinates as

r′ = λ1/μr,

t′ = λ1/μt,

and we abbreviate r′ and t′ as r and t, respectively, hereafter in this section. Then, the null
geodesic equation (4.4) becomes

dt

dr
= ±rμF(t/r). (4.10)

Before getting into a substantial calculation, it is convenient to summarize the calculation
scheme for obtaining the local map, which we will implement in the following subsections. To
obtain the local map, we have to obtain solutions of Eq. (4.10) near r = 0, which correspond to
radial null rays passing through the center at t = t(0) = −t0 (t0 > 0) and then take the limit
t0 → 0. We cannot expect, however, to have general exact solutions to this equation. Hence,
here we adopt the following scheme to obtain the local map. First, we apply three different
approximation regimes A, B and C, and find three kinds of expressions, t = tA(r), t = tB(r) and
t = tC(r), respectively. Next we show that these three regimes have an overlapping region, where
all three approximations are valid and the obtained approximate solutions can be matched with
each other. Finally, we calculate the local map, that is, we calculate the relation between the
sending time and the receiving time of the null ray at a comoving observer near the center.

In Sec. 4.2.3, we apply approximation regime A, where 0 � r < ηAt
1/(1+μ)
0 is satisfied. Here,

ηA (� 1) is a positive constant independent of t0. In this regime, we can deal with the center and
then we can relate the ingoing and outgoing null rays, which reach the center at the same time t =
−t0. In Sec. 4.2.4, we apply approximation regime B, where t0/ηB < r < ηAt

1/(1+μ)
0 is satisfied.

Here, ηB (� 1) is a positive constant. This regime is possible only when t0 < (ηAηB)(1+μ)/μ.
Although regime B is completely included in regime A, regime B enables us to have an explicit
expression for solutions and is therefore essential to obtain the local map. In Sec. 4.2.5, we apply
approximation regime C, where t/r � 1 is assumed. When we put t/r = O(ηC), where ηC (� 1)
is a sufficiently small constant, it turns out that the approximation is valid for t0/ηC � r � η

1/μ
C .

Regimes A and B trivially have an overlapping region. When we take the limit t0 → 0, regime
B and regime C have an overlapping region and regime C is still valid at a finite radius. See also
Fig. 4.2 for the illustration of regions, where each regime is valid. In Sec. 4.2.6, we implement
the matching between the approximate solutions t = tB(r) and t = tC(r) in the overlapping
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region. In Sec. 4.2.7, the local map is finally obtained for a comoving observer at a finite radius
in the region for regime C. This is the generalization of Tanaka and Singh [33].

4.2.3 Regime A: 0 � r < ηAt
1/(1+μ)
0

To find a null geodesic for 0 � r < ηAt
1/(1+μ)
0 , we put

r

t
1/(μ+1)
0

= εζ, (4.11)

r

t0
=

ζ

δ
, (4.12)

where ε and δ are constants, and ζ is variable for r. ε < ηA and ζ = O(1) is assumed. δ is
introduced for later convenience and not necessarily small in regime A. From Eqs. (4.11) and
(4.12), the following relations hold:

t0 = ε(μ+1)/μδ(μ+1)/μ, (4.13)
r = ε(μ+1)/μδ1/μζ. (4.14)

The null geodesic t = tA(r) can be expanded by ε as follows:

tA(r) = −t0 +
∞∑

n=1

ε(μ+1)(nμ+1)/μtAn (ζ), (4.15)

where tAn (ζ) (n = 1, 2, · · · ) are the functions of ζ of order unity. Substituting Eq. (4.15) into
Eq. (4.10), the following differential equations are obtained,

dtA1
dζ

(ζ) = ±δ(μ+1)/μζμF(−δ/ζ), (4.16)

dtA2
dζ

(ζ) = ±δζμ−1F ′(−δ/ζ)tA1 (ζ), (4.17)

dtA3
dζ

(ζ) = ±1
2
δ(μ−1)/μζμ−2F ′′(−δ/ζ)(tA1 )2(ζ) ± δζμ−1F ′(−δ/ζ)tA2 (ζ), (4.18)

and so on, where F ′ and F ′′ denote the derivatives of F with respect to its argument. Since
tA(0) = −t0, tAn (0) = 0 must be satisfied for n � 1. Equation (4.16) can be integrated immedi-
ately to give

tA1 (ζ) = ± 1
μ+ 1

δ(μ+1)/μζμ+1(1 + δ/ζ)2/3. (4.19)
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With tA1 (ζ) obtained above, Eq. (4.17) is integrated to give

tA2 (ζ) =
1

μ+ 1
δ(2μ+1)/μ

∫ ζ

0
ζ̂2μF ′(−δ/ζ̂)(1 + δ/ζ̂)2/3dζ̂ (4.20)

= δ(μ+1)(2μ+1)/μI2(ζ/δ), (4.21)

where

I2(y) ≡ 1
μ+ 1

∫ y

0
x2μF ′(−1/x)(1 + 1/x)2/3dx. (4.22)

This integration cannot be expressed in terms of elementary functions. In a similar way, one
can write tA3 (ζ) in an integral form,

tA3 (ζ) = ±
∫ ζ

0

[
1

2(μ+ 1)2
δ(3μ+1)/μζ̂3μF ′′(−δ/ζ̂)(1 + δ/ζ̂)4/3

+δ(2μ2+4μ+1)/μζ̂μ−1F ′(−δ/ζ̂)I2(ζ̂/δ)
]
dζ̂

= ±δ(μ+1)(3μ+1)/μI3(ζ/δ),

where

I3(y) ≡
∫ y

0

[
1

2(μ+ 1)2
x3μF ′′(−1/x)(1 + 1/x)4/3 + xμ−1F ′(−1/x)I2(x)

]
dx. (4.23)

It should be noted that we can safely take the limit r → 0 in this regime because we do not
assume δ is small.

4.2.4 Regime B: t0/ηB < r < ηAt
1/(1+μ)
0

For the approximation regime B, we will additionally For approximation regime B, we will ad-
ditionally assume that δ < ηB. This also requires that t0 � 1 from Eq. (4.13). The approximate
solution t = tB(r) can be obtained by approximating t = tA(r) with δ � 1. Hence, we define
tBn (ζ) as the function which is obtained by approximating tAn (ζ) with δ � 1. Thus, we have

tB1 = ± 1
μ+ 1

δ(μ+1)/μζμ+1

[
1 +

2
3
ζ−1δ + O(δ2)

]
. (4.24)

The approximate form of tA2 for δ � 1 can be obtained by using the asymptotic form of I2(y)
for large y in Eq. (4.22) given by

I2(y) = C2 − 2μ
3(μ+ 1)2(2μ+ 1)

y2μ+1 [1 + O(1/y)] ,
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where C2 is a constant. Except for the term of C2, all other terms are completely determined
by integrating the expanded integrand. Therefore, tB2 (ζ) is obtained as

tB2 (ζ) = C2δ
(μ+1)(2μ+1)/μ − 2μ

3(μ+ 1)2(2μ+ 1)
δ(2μ+1)/μζ2μ+1 [1 + O(δ)] . (4.25)

Similarly, the asymptotic form of I3 is given by

I3(y) = C3 +
[

2μ2 + μ+ 1
9(μ+ 1)3(2μ+ 1)(3μ+ 1)

y3μ+1 − 2C2

3(μ+ 1)
yμ

]
[1 + O(1/y)] .

and hence tB3 (ζ) is

tB3 (ζ) = ±C3δ
(μ+1)(3μ+1)/μ ± 2μ2 + μ+ 1

9(μ+ 1)3(2μ+ 1)(3μ+ 1)
δ(3μ+1)/μζ3μ+1 [1 + O(δ)]

∓ 2C2

3(μ+ 1)
δ(2μ2+4μ+1)/μζμ [1 + O(δ)] . (4.26)

Then, an approximate solution is obtained by Eqs. (4.13)-(4.15) and (4.24)-(4.26) as

tB(r) = −t0 + C2t
2μ+1
0 ± C3t

3μ+1
0

+
[
± 1
μ+ 1

rμ+1 − 2μ
3(μ+ 1)2(2μ+ 1)

r2μ+1 ± 2μ2 + μ+ 1
9(μ+ 1)3(2μ+ 1)(3μ+ 1)

r3μ+1

]
× [1 + O(δ)] . (4.27)

For later use, we have obtained the explicit expression up to the third order. It is straightforward
to compute higher orders. It should be noted that we cannot take the limit r → 0 in this
expression (4.27).

4.2.5 Regime C: t/r � 1

Suppose t/r � 1. Here, we introduce η � 1, which controls Suppose t/r � 1. Here, we
introduce ηC � 1, which controls the order of t/r, i.e., t/r = O(ηC). In this approximation
regime, we can expand f by t/r on the right hand side of Eq. (4.10) and obtain the expanded
form of solutions.

Let us consider the critical outgoing and ingoing null geodesics t = tcrit± (r), which emanate
from and terminate at the NS, i.e., t = r = 0. t = tcrit+ (r) gives the CH by definition. If we
assume t/r = O(ηC), they are obtained by expanding the null geodesic equation (4.10) with
power series of r with the boundary condition of t(0) = 0,

tcrit± (r) = ± 1
μ+ 1

rμ+1 − 2μ
3(μ+ 1)2(2μ+ 1)

r2μ+1

± 2μ2 + μ+ 1
9(μ+ 1)3(2μ+ 1)(3μ+ 1)

r3μ+1 + O(η4
C), (4.28)
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where the upper (lower) sign corresponds to emanating (terminating) null ray. For 0 < r � η
1/μ
C ,

t/r = O(ηC) is satisfied on the critical null rays and this approximation is justified. That is,
approximation regime C is valid for 0 < r � η

1/μ
C on the critical null rays.

However, we are interested in null rays which are slightly earlier than these critical null rays.
We expand the solution as follows:

t = tC(r) =
∞∑

n=1

tCn (r), (4.29)

where we assume tCn (r)/r = O(ηn
C). Substituting Eq. (4.29) into Eq. (4.10) and expanding the

right hand side, the following differential equations are obtained:

dtC1
dr

= ±rμ, (4.30)

dtC2
dr

= ∓ 2μ
3(μ+ 1)

rμ−1tC1 (r), (4.31)

dtC3
dr

= ∓ 2μ
3(μ+ 1)

rμ−1tC2 (r) ∓ μ− 1
9(μ+ 1)

rμ−2(tC1 )2(r). (4.32)

These equations are integrated to yield

tC1 (r) = D± ± 1
μ+ 1

rμ+1, (4.33)

tC2 (r) = ∓ 2
3(μ+ 1)

D±rμ − 2μ
3(μ+ 1)2(2μ+ 1)

r2μ+1, (4.34)

tC3 (r) = ∓ 1
9(μ+ 1)

D2
±r

μ−1 +
1

9μ(μ+ 1)
D±r2μ

± 2μ2 + μ+ 1
9(μ+ 1)3(2μ+ 1)(3μ+ 1)

r3μ+1, (4.35)

where D± is an integration constant which appears in the integration of Eq. (4.30). Integration
constants for Eqs. (4.31) and (4.32) are set to be zero. From Eqs. (4.29), (4.33)-(4.35), the
solution takes the following form:

tC(r) = D±

± 1
μ+ 1

rμ+1

∓ 2
3(μ+ 1)

D±rμ − 2μ
3(μ+ 1)2(2μ+ 1)

r2μ+1

∓ 1
9(μ+ 1)

D2
±r

μ−1 +
1

9μ(μ+ 1)
D±r2μ ± 2μ2 + μ+ 1

9(μ+ 1)3(2μ+ 1)(3μ+ 1)
r3μ+1

+ O(η4
C). (4.36)
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Now, we can examine in what region the solution (4.36) is valid. To justify the expansion
(4.29), tCn (r)/r = O(ηn

C) must be satisfied. This is the case if

max
(
rμ,

D±
r

)
= O(ηC).

If D± is sufficiently small, the above condition implies

D±/ηC � r � η
1/μ
C .

This is the region where approximation regime C is valid for the null geodesic passing through the
center at t(0) = −t0 < 0. The relation between D± and t0 is shown in the following subsection.

4.2.6 Matching the approximation regimes

Since we are interested in the null rays which are close to the critical null geodesics, we take the
limit t0 → 0. The region for approximation regime B is completely included in that for regime A
and the matching is trivially implemented. If we assume D± = O(t0), the region where regime
C is valid must have an overlap with the region for regime B if t0 � (ηAηC)(μ+1)/μ. This means
that we can relate the integration constants D± which appear in the regime C solution t = tC(r)
to t0 which appear in the regime B solution t = tB(r) by matching these two solutions in the
overlapping region.

Different expressions t = tB(r) and t = tC(r) for the null geodesic are obtained independently
in Secs. 4.2.4 and 4.2.5. We can see the solution t = tB(r) given by Eq. (4.27) coincide with the
solution t = tC(r) given by Eq. (4.36) in several lowest orders if the constant terms satisfy the
following relation:

D± � −t0 + C2t
2μ+1
0 ± C3t

3μ+1
0 . (4.37)

This justifies the assumption that D± is sufficiently small and D± = O(t0) in the limit t0 → 0.
This also implies that approximation regime C is valid for t0/ηC � r � η

1/μ
C . Here, let us see

the condition on t0 which must be satisfied for the matching. t0 has to satisfy

t0 < min
(
(ηAηB)(μ+1)/μ, (ηAηC)(μ+1)/μ

)
, (4.38)

so that the region for the regime B and the overlapping region for the regime B and C can exist.
It is possible to take such a small t0 because we are interested in the limit t0 → 0. See also
Fig. 4.2.
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4.2.7 Obtaining the local map

To obtain the local map for this spacetime, we consider a comoving observer at r = r0, where
r0 satisfies r0 � η

1/μ
C . As time proceeds, this observer approaches the ingoing critical null ray

t = tcrit− (r) and therefore enters the region t0/ηC � r � η
1/μ
C , where approximation regime C is

valid. Then, t±(r0) = tC±(r0) are regarded as the sending time and receiving time of the null
geodesic, where the sign ± is introduced to distinguish the outgoing and ingoing null rays. From
Eq. (4.36), the constant D± is specified as

−D± = tcrit± (r0) − t±(r0) + O(t0ηC),

where tcrit± (r0) is the moment when the observer crosses the null geodesic (4.28). Therefore, if
we take ηC to be sufficiently small, D− (D+) is interpreted as the time difference between the
moments when the observer emits (receives) the null ray and crosses the null ray terminating at
(emanating from) the NS. See also Fig. 4.1.

Since we consider a set of an ingoing null ray which reaches the center at t = −t0 and an
outgoing null ray which can be regarded as a reflected ray of the former at t = −t0, we pick up
both the ingoing and outgoing null rays with the common value for t0. When we eliminate t0
from Eq. (4.37) for both signs, we have the relation between D+ and D− as

D− � D+ − 2C3(−D+)3μ+1,

which can be rewritten in terms of the sending and receiving times t±(r0) at r = r0 for sufficiently
small r0 as

tC−(r0) � tcrit− (r0) −
[
tcrit+ (r0) − tC+(r0)

]− 2C3

[
tcrit+ (r0) − tC+(r0)

]3μ+1
. (4.39)

Equation (4.39) is the very local map, relating the moments when the comoving observer locating
at r = r0 sends the ingoing null ray and receives the reflected outgoing null rays. If we revive
λ, the final result becomes

tC−(r0) � tcrit− (r0) −
[
tcrit+ (r0) − tC+(r0)

]− 2C3λ
3
[
tcrit+ (r0) − tC+(r0)

]3μ+1
. (4.40)

Now, notice that the comoving observer must be in the region t0/ηC � r0 � η
1/μ
C λ−1/μ. It means

that the asymptotic structure of the local map in the limit t0 → 0, therefore the main feature
of the global map, is determined only by the behavior of the null rays in the small but finite
region 0 < r � η

1/μ
C λ−1/μ.
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4.3 Luminosity and energy

4.3.1 Non-self-similar LTB spacetimes: 0 < γ < 3

As described in Sec. 4.2, we assume that the local map and the global map have same structure.
It means that from Eq. (4.40), the asymptotic form of the global map will take the form of

G(u) � v0 −A(u0 − u) −Agλ3(u0 − u)3μ+1,

where u = u0 and v = v0 are the CH and the ingoing null ray that terminates at the NS,
respectively. A and g are constants. Noting that μ = (3 − γ)/(3γ), one can calculate the
luminosity of particle creation as

L(ξ) �
(
ξ − 1

6

)
3(3 − γ)(3 − 2γ)

4πγ3
gω(3−γ)/γ

s (u0 − u)−3+3/γ (4.41)

+
[
ξ − 7γ − 15

36(γ − 2)

]
27(γ − 2)(3 − γ)

4πγ4
g2ω2(3−γ)/γ

s (u0 − u)−4+6/γ (4.42)

+O
(
(u0 − u)−5+9/γ

)
, (4.43)

where we have defined the “frequency” of the NSs as

ωs ≡ λ1/μ = λ3γ/(3−γ). (4.44)

In Appendix D, we show the frequency (4.44) is equivalent to one defined in Ref. [23]. One
can easily recognize that depending on whether the scalar field couples to the scalar curvature
conformally (ξ = 1/6) or not (ξ �= 1/6), the leading term of the luminosity changes. Let us
examine the time dependence of the luminosity and total energy of emitted particles into detail
for the cases of ξ �= 1/6 and ξ = 1/6 in order.

In the case of ξ �= 1/6, the first term in Eq. (4.43) dominates except for the special case of
γ = 3/2. In the case of 0 < γ � 1, the leading term vanishes as u→ u0 as the CH is approached.
On the other hand, in the case of 1 < γ < 3 and γ �= 3/2, the luminosity diverges as the CH is
approached as a negative power of the remaining time until the CH. The special case of γ = 3/2,
in which the factor of the first term in Eq. (4.43) vanishes, is divided to two sub-cases depending
on whether ξ �= 1/4 or ξ = 1/4. If ξ �= 1/4, the second term in Eq. (4.43) survives to be a finite
constant. On the other hand, if ξ = 1/4, the factor of the second term also vanishes. Therefore,
higher order terms contribute to the luminosity, which turn out to be finite at most. Therefore,
in the both sub-cases of γ = 3/2, the luminosity remains finite at the CH. Now, let us examine
the total energy of emitted particles. In the case of 3/2 < γ < 3, the leading term in the energy
is

E(ξ) � −
(
ξ − 1

6

)
3(3 − γ)

4πγ2
gω(3−γ)/γ

s (u0 − u)−2+3/γ , (4.45)
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so that the total energy of emitted particles diverges as the CH is approached. In particular, in
the case of analytic LTB solution (γ = 2), the energy diverges as (u0 − u)−1/2, which coincides
with the result in [23]. In the case of 0 < γ < 3/2, the total energy remains finite as the CH is
approached. In the special case of γ = 3/2, the energy also remains finite. See also Table 4.1(a).

In the case of the conformally coupled scalar field, which is defined by Eq. (2.35) with
ξ = 1/6, the second term in Eq. (4.43) dominates. It is found that in the case of 0 < γ � 3/2,
the luminosity remains finite at most. While, in the case of 3/2 < γ < 3, the luminosity diverges
as the negative power of the remaining time until the CH. Let us examine the total energy of
the emitted particles. In the case of 2 < γ < 3,

E(1/6) � (3 − γ)2

16πγ3(γ − 2)
g2ω2(3−γ)/γ

s (u0 − u)−3+6/γ , (4.46)

which diverges as the CH is approached. In the case of γ = 2,

E(1/6) � 3
256π

g2ωs lnω−1
s (u0 − u)−1, (4.47)

so that the energy diverges logarithmically, which coincides with the result in [23] again. On
the other hand, if 0 < γ < 2 the energy remains finite at most. See also Table 4.1(b).

It follows from what has been seen that the radiation by the conformally coupled scalar
field is milder than that of the non-conformally coupled scalar fields for a given value of γ.
Such a consequence would result from the fact that the coupling of the conformal scalar field
to gravity is weaker than that of the other scalar fields. It has been known that a conformally
coupled scalar field must have non-zero and finite mass to be created in the early universe, while
non-conformally coupled scalar particles are created regardless of their mass [8, 80].

4.3.2 Self-similar LTB spacetime: γ = 3

The global map for the self-similar LTB spacetime ending in NS formation was derived ana-
lytically in [19]. Then, its main property was re-produced with the local-map method [33] and
chapter 3 in this thesis. The global map for the null rays passing near the CH is given by

G(u) � v0 −B(u0 − u)α
[
1 + q(u0 − u) +O

(
(u0 − u)2

)]
, (4.48)

where α, B, and q are constants. The terms in the square brackets in Eq. (4.48) is an analytic
function of (u0 − u) 2. The constant α depends only on the parameter λ in Eq. (4.3) and is

2In previous works on particle creation during NS formation in the self-similar LTB spacetime, only the constant
term in the square bracket in Eq. (4.48) was considered [19, 10, 33], which was sufficient to obtaining results. It
is easy to calculate the higher order terms by the local-map method and to show that they constitute an analytic
function near the CH. It is possible, however, that the emergence of the scale, q, in Eq. (4.48) from such a scale
invariant spacetime as self-similar LTB solution indicates the breakdown of the local-map method. What extent
the local-map method is valid leaves room for discussion.
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shown to be greater than unity for the region of λ in which the singularity is naked [19]. Using
the global map (4.48), we can compute the luminosity and energy of the particle creation as

L(ξ) � (α− 1)(α+ 1 − 12ξ)
48π

(u0 − u)−2 +
α2 − 1
24πα

q(u0 − u)−1, (4.49)

E(ξ) � (α− 1)(α+ 1 − 12ξ)
48π

(u0 − u)−1 +
α2 − 1
24πα

q ln q−1(u0 − u)−1. (4.50)

Each first term in Eqs. (4.49) and (4.50) dominates except for the special case of ξ = (α+1)/12.
Therefore, the luminosity and energy generically diverge as the inverse square and the inverse
of the remaining time to the CH, respectively. On the other hand, in the special case of ξ =
(α+ 1)/12, each second term in Eqs. (4.49) and (4.50) dominates so that the power and energy
diverge inversely and logarithmically, respectively. This case, however, should be regarded as a
non-realistic case in the sense that the coupling constant ξ is fine-tuned as to be a special value,
determined by the detail of the collapse, α. See also Tables 4.1(a) and 4.1(b).

4.4 Summary and discussion

In this chapter we have considered particle creation during the formation of shell-focusing NSs
in the wide class of spherical dust collapse, which is described by the marginally bound LTB
solutions. Each solution has different initial density profile, and the resulting NSs have a variety
of curvature strength along the CHs. The luminosity and energy of particle creation have been
estimated for each LTB solution and each scalar field that couples to scalar curvature in the
linear form. The results are summarized in Tables 4.1(a) and 4.1(b).

We first mention the validity of the approximations which have been assumed in this article.
After that, we discuss the relations between the quantum radiation and the curvature strength
of the NSs and also the coupling manner of scalar fields. Last, we discuss the implications of
the present result to the CCH.

The analysis has been based on three assumptions: the validity of the local-map method,
the geometrical-optics approximation, and the quantum field theory in curved spacetime. The
validity of each approximation seems to leave room for discussion. See Ref. [23] for the discussion
on the geometric optics approximation and Refs. [75] and [10] for the quantum field theory in
curved spacetime, respectively. Here, we focus on the local-map method, on which our analysis
is totally based. The point is that the crucial factor of particle creation, the redshift of particles,
must be determined by the geometry near the NS, while in the Hawking radiation the redshift
is determined by the event horizon, which is a global object. It is unlikely that the global map
has a different structure from that of the local map, since there is no singular feature in the
map between the moments on the comoving observer at a finite distance and that of the null
coordinates naturally defined at infinity. Indeed, in the models of the self-similar LTB [33, 10],
the analytic LTB [33] and the self-similar Vaidya [10], the local-map method provides the correct
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results, which are obtained with the global map. Therefore, we have assumed the validity of the
local-map method.

From the results, it is found that following statements hold for the generic naked-singular
LTB spacetimes: the SCC along the CH is a sufficient condition for the luminosity and energy
of the created scalar particles to diverge as the CH is approached; while, not to satisfy the LFC
is a sufficient condition for the luminosity and energy to be finite at the CH; if the NS does not
satisfy the SCC but does the LFC, the luminosity and energy can be either divergent or finite. We
only consider the dust collapse for simplicity; however, the above statements as to the curvature
strength and the quantum radiation would be independent of the collapsing matter because the
particle creation is a purely kinematic phenomenon and not directly related to the Einstein field
equations. Therefore, we conjecture that the above statements hold for spherically symmetric
collapsing spacetimes with any kinds of collapsing matter. Of course, its validity should be
verified or examined with known solutions ending in NS formation. The self-similar models
which have ever been examined, the collapse of a null-dust fluid [77, 22, 10], a massless scalar
field [35, 10], and a perfect fluid [27, 28, 10], support this conjecture. There are many examples
to be investigated: the NS formation in the counter-rotating particles [81, 40], non-self-similar
null dust [77], null strange quark matter [82], various matter fields in the critical collapse [32]
and so on. Here, we also mention the coupling manner of scalar fields to gravity. Although the
quantum radiation due to the conformally coupled scalar field is less than that of other scalar
fields, including the minimally coupled scalar field, the dependence of the amount of radiation
on the coupling manner is not so drastic as to modify the above statements.

Next, we move on to the implication of the results to the CCH. The diverging radiation
from strong NSs corresponds to an instability of the strong NS formation. The system will enter
into a phase where the backreaction from the quantum field to spacetime plays an important
role. While, the finite radiation from the weak NSs corresponds to a stability of the weak NS
formation. It is striking because the weak NSs seem to need another mechanism if they are to
hide behind horizons. Of course, we cannot dismiss the possibility that the effect of backreaction
suppresses the quantum radiation and the strong NSs appear, all things considered.

In the present analysis, we do not find a necessary and sufficient condition on the curvature
strength of NSs for the quantum radiation to be divergent or finite. We believe that a new
definition of strength of (naked) singularities should be proposed from the viewpoint of the
behavior of quantum fields on spacetimes rather than the viewpoint of the behavior of classical
particles. Such a philosophy can be seen also in the wave-probe approach to NSs [83, 84, 85],
which is based on the theory of dynamics in non-globally hyperbolic spacetimes developed first
by Wald [86]. On this point, there is room for further investigation.



52 CHAPTER 4. QUANTUM EFFECT AND CURVATURE STRENGTH OF NS

Table 4.1: The relation among the curvature strength of naked singularities, the luminosity, and
the energy of scalar fields near the Cauchy horizons (a) for the non-conformally coupled scalar
fields (ξ �= 1/6) and (b) for the conformally coupled scalar field (ξ = 1/6). The constant γ
parameterizes the initial density profile of a dust fluid. SCC implies LFC.

(a)
γ 0 3/4 1 3/2 3

Strength – Weak LFC SCC
Luminosity – Finite Divergent Finite Divergent

Energy – Finite Divergent

(b)
γ 0 3/4 3/2 2 3

Strength – Weak LFC SCC
Luminosity – Finite Divergent

Energy – Finite Divergent

Figure 4.1: A schematic spacetime diagram of the dust-filled region with the illustration of the
local map defined in Sec. 4.2. A pair of an ingoing null ray t−(r) and an outgoing null ray
t+(r) is depicted (solid line), which passes near the NS, locating at (t, r) = (0, 0) . Null rays
terminating at and emanating from the NS, tcrit− (r) and tcrit+ (r), are also depicted (dashed lines),
where the latter is the CH. A comoving observer is locating at r = r0 = constant. The local
map is defined as the relation between t−(r0) and t+(r0).
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Figure 4.2: A schematic illustration of the regions, where regimes A, B and C are valid. The
regions for regimes A, B and C are 0 � r < ηAt

1/(1+μ)
0 , t0/ηB < r < ηAt

1/(1+μ)
0 and D±/ηC ∼

t0/ηC � r � η
1/μ
C , respectively, where ηX � 1 (X = A,B,C) is a constant independent of t0. The

region for B is included in that for A. The regions for B and C exist if t0 < (ηAηB)(μ+1)/μ and
t0 < η

(μ+1)/μ
C are satisfied, respectively. The regions for B and C overlap if t0 < (ηAηC)(μ+1)/μ.

All these conditions are satisfied for t0 < min[(ηAηB)(μ+1)/μ, (ηAηC)(μ+1)/μ]. In the limit t0 → 0,
the regions for A and B shrink to zero but the region for C, where the comoving observer should
locate, remains finite.





Chapter 5

Mathematics of the doubly special
relativity

The Lorentz invariance violation which we consider in this thesis is due to the existence of a scale
in the fundamental transformation of the frame in flat spacetimes. Usually, the transformation
between the Galileian frames is given by the Poincarè algebra, which intrinsically the physical
parameter c (speed of light). On the other hand, the “κ-Poincarè algebra” intrinsically has a
more fundamental scale κ, which corresponds to the “minimum” scale of the spacetime. We
see that the dispersion relation of particles under such a spacetime symmetry is modified. We
see also that the spacetime noncommutativity appears as a “dual” property of the modified
symmetry. We review the mathematical structure of Hopf algebras (for example, see [87]),
which are regarded as a generalization of Lie algebras. Then, we introduce the κ-Poincarè
algebra as a Hopf algebra and the κ-Minkowski noncommutative spacetime as its dual.

5.1 Hopf algebra

Firs, let us see the definition of an algebra and a coalgebra, the latter is a dual structure of the
former.

5.1.1 Algebra and coalgebra

Definition 5.1.1 (Algebra) An algebra 1 (A,m, u) over C is a linear space A and linear maps,

m : A ⊗A −→ A, (product)
u : C −→ A, (unit map)

1Here, we define the algebra with an unit element. Usually, an algebra does not have to contain an unit
element.

55
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such that

m · (m⊗ id) = m · (id⊗m), 　 (associative law)
m · (id⊗ u) = m · (u⊗ id) = id. (unitive law)

Definition 5.1.2 (Coalgebra) A coalgebra(C,Δ, ε) over C is a vector space C and linear
maps,

Δ : C −→ C ⊗ C,　 （coproduct）
ε : C −→ C, （counit）

such that

(id ⊗ Δ) · Δ = (Δ ⊗ id) · Δ, 　 （coassociative law）
(id ⊗ ε) · Δ = (ε⊗ id) · Δ. 　　 （counitive law）

For algebras A and B, f ∈ HomC(A,B) 2 is called an algebra map when for a1, a2 ∈ A the
following is satisfies,

f(a1a2) = f(a1)f(a2), f(1A) = 1B ,

where 1A and 1B is an unit element in A and B, respectively. On the other hand, f is called a
anti-algebra map when the following is satisfies,

f(a1a2) = f(a2)f(a1), f(1A) = 1B .

For coalgebras C and D, f ∈ HomC(C,D) is called a coalgebra map when the following is
satisfied,

ΔD (f(c)) = (f ⊗ f)ΔC(c), εD(f(c)) = εC(c), ∀c ∈ C.

On the other hand, f is called an anti-coalgebra map when the following is satisfied,

ΔD (f(c)) = (f ⊗ f)Δ
′
C(c), εD(f(c)) = εC(c), ∀c ∈ C,

where Δ′ ≡ τ · Δ and τ(c⊗ c′) ≡ c′ ⊗ c.

5.1.2 Bialgebra and Hopf algebra

Definition 5.1.3 (Bialgebra) Now, we are the position that we can define bialgebra algebras
and Hopf algebras as a bialgebra with a antipode as follows. Suppose that B has the structures
as an algebra (B,m, u) and a coalgebra (B,Δ, ε). (B,m, u,Δ, ε) is said to be a bialgebra if it
satisfies one of the following conditions, which are equivalent each other,

2The set of homeomorphism between the linear spaces, A and B, over the field C.
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· Δ : B −→ B ⊗B and ε : B −→ C are both algebra maps　
· m : B ⊗B −→ B and u : B −→ C are both coalgebra maps

Definition 5.1.4 (Antipode) Suppse (H,m, u,Δ, ε) to be a bialgebra. If a linear map S :
H −→ H ⊗H satisfies

m(S ⊗ id)Δ = u · ε = m(id ⊗ S)Δ,

S is called an antipode.

Definition 5.1.5 (Hopf algebra（quantum group）) A bialgebra which has a antipode,
(H,m, u,Δ, ε, S), is called a Hopf algebra.

For bialgebras the folloing propositioin, which ensures the uniqueness of the Hopf algebra, holds,

Theorem 5.1.1 The antipode S for a bialgebra is unique, if any. Then, S is a anti-algebra
map and a anti-coalgebra map.

A bialgebra or a Hopf algebra is said to be commutative if it is commutative as an algebra. On
the other hand, a coalgebra, bialgebra, or a Hopf algebra is said to be cocommutative if Δ′ = Δ
holds.

5.1.3 Examples of Hopf algebra

It will be helpful to introduce some examples of Hopf algebra. Especially, we will introduce the
κ-Poincarè algebra in the following section as a deformed enveloping algebra of the Poincarè
one.

Enveloping algebra of a Lie algebra

A Lie algegra over C is a vector space over C and has a bilinear map,

[ , ] : g × g −→ g,

such that, for ξ, η, ζ ∈ g,
[ξ, η] = −[η, ξ], （anti-symmetry）

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0. （Jacobi’s identity）

For a Lie algebra g, if a tensor algebra and a bilinear map [·, ·] are difined as

T (g) =
∞⊕

k=0

T k(g),

T 0(g) = C, T k(g) =
k︷ ︸︸ ︷

g ⊗ · · · ⊗ g,

[ξ, η] = ξ ⊗ η − η ⊗ ξ, ∀ξ, η ∈ g,
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then, g is said to be an universal enveloping algebra U(g). Furthermore, for generators ξ ∈ g, if
a coproduct, a counit, and an antipode are difined as

Δ(ξ) = ξ ⊗ 1 + 1 ⊗ ξ, (5.1)
ε(ξ) = 0,
S(ξ) = −ξ,

and for other elements in U(g), if Δ and ε are extended as algebra maps and S are extended as
an antialgebra map, then U(g) becomes a Hopf algebra.

Function Hopf algebra

Suppose a group G and the set of functions on G, Fun(G), that is

Fun(G) : G −→ C. (5.2)

Fun(G) becomes a linear space if the sum and scalar multiplication are difined as

(φ+ ψ)(g) = φ(g) + ψ(g), (5.3)
(αφ)(g) = α (φ(g)) . (5.4)

Furthermore, a product, unit element, counit map, and antipode can be defined as

(φψ) (g) = φ(g)ψ(g), (5.5)
1F (g) = 1, (5.6)

Δφ(g1, g2) = φ(g1g2), (5.7)
εφ = φ(e), (5.8)

(Sφ) (g) = φ(g−1). (5.9)

Then, (Fun(G), ·, 1,Δ, ε, S) becomes a Hopf algebra. Clearly, such a Hopf algebra is commuta-
tive from Eq. (5.5). On the other hand, such a Hopf algebra is not cocommutative if the group
G is not commutatite from Eq. (5.7).

5.1.4 Dual Hopf algebra

In general, one can define a dual space V ∗ of V , which is a linear space over C. Therefore, one
can define a dual Hopf algebra H∗ of a Hopf algebra H as

H∗ : H −→ C. (5.10)
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Reflecting the structure of H as a Hopf algebra to the structure of H∗, one can make H∗ be a
Hopf algebra. For t ∈ H and x ∈ H∗, let us denote x(t) = 〈x, t〉. The dual space H∗ is a Hopf
algebra if the product, unit elment, and so on in H∗ are difined as follows:

〈xy, t〉 = 〈x⊗ y,Δt〉, (5.11)
〈1, t〉 = ε(t), (5.12)

〈Δx, s ⊗ t〉 = 〈x, st〉, (5.13)
ε(x) = 〈x, 1〉, (5.14)

〈Sx, t〉 = 〈x, St〉. (5.15)

One can see that the structure of H as an algebra and a coalgebra is reflected to the structure
of H∗ as a coalgebra and an algebra, respectively.

5.2 κ-Poincarè algebra and κ-Minkoswki spacetime

Now we can introduce the κ-Poincarè algebra as a Hopf algebra and the κ-Minkoswki spacetime
as the dual space of the κ-Poincarè algebra. Furthermore, one will see the each mathematical
structure of Hopf algebra has a corresponding physical meaning.

The generators of the κ-Poincarè algebra Pκ satisfy the following commutation relations:

[Mμν ,Mρσ] = i (ημσMνρ − ημρMνσ + ηνρMμσ − ηνσMμρ) , (5.16)
[Mi, p0] = 0, (5.17)
[Mi, pj] = iεijkpk, (5.18)
[Ni, p0] = ipi, (5.19)

[Ni, pj] = −iδij
[

1
2λ

(
1 − e2p0λ

)
+
λ

2
p2

]
+ iλpipj, (5.20)

[pμ, pν ] = 0, (5.21)

where Mi ≡ 1
2εijkMjk, Ni ≡ M0i and pμ are generators of rotation, boost and translation,

respectively. We abbreviate
∑

i p
2
i as p2. We can recover the ordinary commutation relations of

the Poincarè algebra in the limit λ→ 0. The dispersion relation is determined by the eigenvalue
of the Casimir operator, that commutes with all elements in Pκ,

2 cosh(λp0)
λ2

− p2e−λp0 =
2cosh(λm)

λ2
, (5.22)

where the rest mass m is defined as the energy with pi = 0. The coproducts Δ : Pκ → Pκ ⊗ Pκ
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of the basic generators are

Δ(Mi) = Mi ⊗ 1 + 1 ⊗Mi, (5.23)
Δ(Ni) = Ni ⊗ 1 + ep0λ ⊗Ni − λεijkpj ⊗Mk, (5.24)
Δ(p0) = p0 ⊗ 1 + 1 ⊗ p0, (5.25)
Δ(pi) = pi ⊗ 1 + ep0λ ⊗ pi. (5.26)

The above coproducts of pμ, (5.25) and (5.26), are interpreted as the non-Abelian addition law
of energy-momenta for particles 1 and 2 as

(E1,p1) +̂ (E2,p2) :=
(
E1 + E2,p1 + eλE1p2

)
, (5.27)

where we identify p0 with energy E. Note that the associativity of the addition law is given
by the coassociativity (Δ ⊗ id) ◦ Δ = (id ⊗ Δ) ◦ Δ. The coproducts of other elements in Pκ

are extended as Δ(1) = 1 ⊗ 1 and Δ(MM ′) = Δ(M)Δ(M ′),∀M,M ′ ∈ Pκ. We can check
the consistency between this extension of the coproducts as an algebra homomorphism and
the commutation relation, i.e., Δ [M,M ′] = [ΔM,ΔM ′]. This consistency guarantees that the
κ-Poincarè algebra is form-invariant for multi-particle systems.

The asymmetry of the coproducts for the permutation of particles is called noncocommuta-
tivity. The noncocommutativity of the coproducts for the translation sector T ⊂ Pκ has two
important meanings. One is that the noncommutativity of the κ-Minkowski spacetime is a direct
consequence of the noncocommutativity. Elements in the κ-Minkowski spacetime are defined as
linear functionals on the translation sector, T ∗ : T → C. The products in T ∗ is defined in terms
of coproducts in T , i.e., ∀x, y ∈ T ∗ and ∀p ∈ T ,

〈xy, p〉 := 〈x⊗ y,Δp〉 (5.28)

=
∑

a

〈x, pa(1)〉〈y, pa(2)〉, (5.29)

where we write the coproducts as Δ(p) =
∑

a pa(1) ⊗ pa(2). With the duality relations 〈xμ, pν〉 =
−iδμ

ν , this leads to the following commutation relations [72]:[
xi, x0
]

= iλxi, (5.30)[
x0, x0
]

= 0, (5.31)[
xi, xj
]

= 0. (5.32)

The other is that the noncocommutativity leads to a deformed group velocity formula [12], which
is different from the usual velocity formula dE/dp as will be shown in the next chapter.



Chapter 6

Particle velocity in noncommutative
spacetime

In this chapter, we investigate a particle velocity in the κ-Minkowski spacetime, which is one
of the realization of a noncommutative spacetime. We emphasize that arrival time analyses
by high-energy γ-rays or neutrinos, which have been considered as powerful tools to restrict
the violation of Lorentz invariance, are not effective to detect spacetime noncommutativity.
In contrast with these examples, we point out a possibility that low-energy massive particles
play an important role to detect it. In Sec. 6.1, we review the previous discussion in the
MDR models. After that, we derive the particle velocity formula in Sec. 6.2. In Sec. 6.3, we
consider the observational possibilities of time delay by comparing a particle velocity in the usual
Minkowski spacetime with that in the κ-Minkowski spacetime and MDR models. We show that
the spacetime noncommutativity does not affect the velocity of massless particles, which implies
that the arrival time analysis by γ-rays is not useful to detect the spacetime noncommutativity.
We also discuss a possibility that the spacetime noncommutativity might be detected by using
low-energy massive particles. Section 6.4 is devoted to summary and discussion.

6.1 Modified dispersion relation models

Although there are various ways to modify the dispersion relation, we consider here the form in
Ref. [65] as p2 +m2 = E2[1 + f(E/EQG)], where f is a model-dependent function and EQG is
the effective energy scale of quantum gravity. For simplicity, we assume that f is an analytic
function. Although in general, f and EQG may depend on the species and properties of the
particles [88, 52], we do not consider this possibility, which implies that the effects of quantum
gravity originate from the spacetime structure. In the low-energy limit, E � EQG, the above

61
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dispersion relation becomes

p2 +m2 = E2 +
ξEn

En−2
QG

, (6.1)

up to the lowest correction. We have chosen ξ = ±1 and n ≥ 3 is the integer, which is determined
by the form of the function f . Note that E < m for ξ = 1 in the low-momentum limit. This
type of dispersion relation also appears in the Liouville string approach to quantum gravity [89].

The velocity vMDR in this model is obtained by differentiating the dispersion relation (6.1)
with respect to p,

vMDR :=
dE

dp
=

2
√
E2 −m2 + ξEn/En−2

QG

2E + nξEn−1/En−2
QG

. (6.2)

It should be noted that vMDR depends on the energy even for massless particles because of the
correction term. We can make use of the energy dependence to restrict EQG.

Let us consider a γ-ray from the distant source. We approximate the velocity of the γ-ray
by expanding Eq. (6.2) by E/EQG to

vMDR ≈ 1 − ξ(n− 1)
2

(
E

EQG

)n−2

. (6.3)

Although the correction term may be very small, the difference of arrival time depending on
the energy of the photons may become large enough to measure if the γ-rays travel a very long
distance [90, 65, 91, 66]. The time delay is evaluated as

δt =
L

vMDR(E1)
− L

vMDR(E2)

≈ (n− 1)ξL
2EQG

n−2 (E1
n−2 − E2

n−2), (6.4)

where L, E1 and E2 are the distance from the source to the Earth, amounts of the energy of
particles 1 and 2, respectively.

One of the examples of this kind of analyses is the arrival time analysis by γ-rays from Mk
421 (∼ 150 Mpc from the Earth). It was reported that γ-rays in the energy range between 1
and 2 TeV arrived at the Earth within the time difference ∼ 200 seconds [90]. Then, EQG is
constrained to EQG >∼

[
3.6 × (n− 1)(n− 2) × 1013

]1/(n−2) × 103 GeV. Since the value of n has
been assumed to be 3 in most of the previous works, it has been concluded that EQG>∼7.2×1016

GeV. We should note, however, that n may be 4 or larger. In this case, the constraint becomes
EQG>∼1.5 × 1010 GeV for n = 4 and EQG>∼7.6 × 107 GeV for n = 5. Hence the constraint may
become quite loose compared with the previous reports.
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6.2 Velocity formula

We can define differentiation, integration and Fourier transformation [69, 70] in κ-Minkoski
spacetime. The plane wave ψ(E,p) = eip·xeiEt in the κ-Minkowski spacetime introduced in [92,
93] respects the non-Abelian addition law of energy-momenta in the sense

ψ(E1,p1)
ψ(E2,p2)

= eip1·xeiE1teip2·xeiE2t (6.5)
= ψ(E1+E2,p1+eλE1p2)

. (6.6)

From the properties of the plane wave and the κ-Minkowski spacetime introduced in Sec 5.2, we
can establish group velocity formulae. For this purpose, we consider infinitesimal changes ΔE
and Δp in E and p, respectively, as a result of adding (ΔE′,Δp′) as

(E,p)+̂(ΔE′,Δp′) = (E + ΔE,p + Δp). (6.7)

By the addition law (5.27), we have

(ΔE′,Δp′) = (ΔE,
Δp

eλE
). (6.8)

Next, we construct a wave packet by superposing plane waves. Here we only consider two waves
for simplicity, whose momenta and amounts of energy are different infinitesimally from each
other 1.

I = ψ(E−ΔE,p−Δp) + ψ(E+ΔE,p+Δp)

∼= 2eip·xeiEt cos
[

Δp

eλE
·
(

x +
eλEΔEt

Δp

)]
, (6.9)

where we neglected the terms that vanish in the limit Δp → 0. The group velocity vl of this
wave packet can be written as

vl := eλE dE

dp
. (6.10)

There remains ambiguity in constructing the wave packet because of the noncommutativity of
the spacetime. Another possibility is

(ΔE′,Δp′)+̂(E,p) = (E + ΔE,p + Δp). (6.11)

In this case, the corresponding group velocity vr is

vr :=
(

1 − λp · dE
dp

)−1
dE

dp
. (6.12)

1Strictly speaking, this is not a Gaussian wave packet. However, it is sufficient to obtain a group velocity.
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These velocities can be expressed explicitly in terms of the functions of E and m by using the
dispersion relation. By the definitions of vl and vr, we find

vl =
eλE/2
√

2[cosh(λE) − cosh(λm)]
|eλE − cosh(λm)| e, (6.13)

vr =
e−λE/2
√

2[cosh(λE) − cosh(λm)]
|e−λE − cosh(λm)| e, (6.14)

where e := p/|p|. We find that the velocities have the same direction as that of the momenta.
Note also that there is a correspondence between the transformations λ→ −λ and vl → vr.

These velocities were also investigated by Lukierski and Nowicki and the following facts were
pointed out in Ref. [73]: (i) vl := |vl|, vr := |vr| ≤ 1 for all energies, (ii) dvl/dE > 0, dvr/dE > 0,
and (iii) vr has a classical velocity addition law, i.e., the addition of parallel velocities vr1 and
vr2 becomes

vr12 =
vr1 + vr2

1 + vr1vr2
. (6.15)

If the boost generator Ni was an even function for λ, this addition law would hold even for vl

because of the correspondence mentioned above. However, this is not the case. We postpone
the interpretation of this asymmetry as future work.

Next, we discuss the application of the above velocity formulae. In the MDR models, since
the energy scale of quantum gravity EQG is introduced perturbatively (see Eq (6.3)), it is
reasonable to apply the velocity formulae under the condition on E � EQG. While if we apply
the velocity formulae in the κ-Minkowski spacetime, the energy range is not restricted.

Let us examine the case beyond the quantum gravity scale, i.e., |λE| � 1. Since we can
obtain the information about vr by using the transformation λ → −λ to vl, we only examine
vl below. We evaluate the velocity vl in the following limits (see Table 6.1.). When λ > 0
and E/m � 1, we can find that the velocity of massive particles approaches 1 much faster
than that in the Minkowski spacetime as the energy of the particle increases. However, for
λ < 0 and E/m � 1, the difference of the velocity from 1 becomes large as the mass of the
particle increases. Note that if |λ(E − m)| � 1, we obtain |λm| � 1 by using the condition

|λE| � 1. Since E −m is written as m(1/
√

1 − v2
M − 1) in the Minkowski spacetime, where

vM is the velocity in the Minkowski spacetime, we can rewrite the condition |λ(E − m)| � 1

as |λm(1/
√

1 − v2
M − 1)| � 1, which leads to vM � 1 because of |λm| � 1. Then, we find

vl � vM

√
2λm and vl � eλmvM

√−2λm for λ > 0 and for λ < 0, respectively. Thus, we
find that vl for the case |λm| � 1 is quite different from vM , which is a good approximation for
describing a velocity of macroscopic bodies in our world under the conditions we are considering.
To describe a velocity of macroscopic bodies in the κ-Minkowski spacetime, we must consider
carefully what are the energy and the momentum, since these quantities are obtained by a total
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sum of those of elementary particles according to the addition law (5.27). The above discrepancy
may be explained in this reason. Below, we only consider elementary particles and restrict the
discussion to the case |λm| � 1.

Table 6.1: Approximation of the velocity vl in the case |λE| � 1
E/m� 1 |λ(E −m)| � 1

λ > 0 1 + e−2λE
[

1
2 − cosh2(λm)

]
2
√
λ(E −m)

λ < 0 1/ cosh(λm) 2eλm
√
λ(m−E)

6.3 Arrival time analysis with massive particles

In this section, we compare vl with vMDR and discuss the possibility of detection of effective
scale of quantum gravity by observations and experiments. The behavior of the velocities is quite
different depending on the mass and energy of the particle. Hence, we consider two limiting
cases: (i) the “relativistic” case (m� E) and (ii) “non-relativistic” case (m ≈ E) 2.

In the relativistic case, m � E, and under the assumptions, E � EQG and E � |λ−1|,
vMDR and vl are

vMDR ≈ 1 − 1
2

(m
E

)2 − ξ(n− 1)
2

(
E

EQG

)n−2

, (6.16)

vl ≈ 1 − 1
2

(m
E

)2
+
λm2

2E
, (6.17)

at the lowest order of m/E and E/EQG in the MDR models and λE in the κ-Minkowski space-
time, respectively. When m = 0 in the MDR models, EQG can be constrained by the γ-rays
from the Mk 421 as mentioned in Sec. II. However, since vl = 1 for massless particles, (we can
confirm this is also true for all order of λm and λE), λ is not constrained by massless particles.
This is an important result since the result notices us that there are a wide variety of candidates
for the theory of quantum gravity, some of which the scale of quantum gravity is not constrained
by present observations. The situation changes for massive particles since the lowest order cor-
rection appears in the coupled form with the mass of the particle in the κ-Minkowski spacetime,
while that of the MDR models does not depend on the mass of the particle.

First, we consider neutrinos from supernovae with energy Eν ∼ 1010 eV to detect spacetime
noncommutativity. We assume that the mass of an electron neutrino and all the parameters
necessary to describe neutrino physics are determined by other experiments and observations,

2In the MDR models and in the κ-Minkowski spacetime, it is possible that the particle moves very slowly (fast)
even if the condition m � E (m ≈ E) is satisfied.
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and use the delay of the arrival time between the neutrinos and gravitational waves to evaluate
the scale of quantum gravity. In this case, the delay of the arrival time is

δt ≈ Lm2
ν

2Eν

(
1
Eν

+ λ

)
. (6.18)

Since neutrinos are emitted continuously during about 10 s, it is impossible to determine the
time when the neutrino is emitted more accurate than that time scale. For this reason, δt>∼10
s is necessary to detect the effect of quantum gravity. As for λ, since there is no restriction
from the arrival time analysis of γ-rays, λ may take a large value. However, by considering
reaction processes by collider experiments, we can restrict |λ|<∼10−12 eV−1 since the threshold
of the reaction will change drastically for |λ| > 1/Eth, where Eth is the threshold energy in the
Minkowski spacetime [12]. Then, L becomes far longer than the horizon scale in the present
universe even if |λ| = 10−12 eV−1. Thus, it is difficult to detect this effect in this phenomena.

Neutrinos from γ-ray bursts in fireball models have a different energy scale. In the bursts,
neutrinos with energy ∼ 1014 eV and γ-rays are expected to be radiated away in ∼ 1 s [94].
We show that we cannot detect spacetime noncommutativity even if we neglect the dissipation
of the γ-ray. In the E � 1/|λ| case, we can evaluate the delay of the arrival time of neutrinos
compared with the γ-rays from Table 6.1 as

δt ≈ L

2
e−2λE
[
1 + 2(λmν)2

]
for λ > 0, (6.19)

δt ≈ L

2
(λmν)2 for λ < 0, (6.20)

where we have used the conditions E/m � 1 and |λm| � 1. If we assume δt ∼ 1 s and
|λ| = 10−12 eV−1, the path of the particle’s travel becomes far longer than the horizon scale
in the present universe. In the E ∼ 1/|λ| case, the arrival time delay cannot be described in
a simple way. There is, however, no qualitative difference from the above case. Hence, it is
difficult to detect spacetime noncommutativity by this method.

Next, we examine the non-relativistic case, m ∼ E � EQG (or |λ−1|). The velocity in each
model are

vMDR ≈
√

1 −
(m
E

)2 ×[
1 +

ξ

2
E2(1 − n) + nm2

E2 −m2

(
E

EQG

)n−2
]
, (6.21)

vl ≈
√

1 −
(m
E

)2(
1 +

λm2

2E

)
. (6.22)

Note that the absolute value of the correction for the velocity in the κ-Minkowski spacetime
decreases with the energy, while that in the MDR model increases. Although, in the low-energy
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limit, the dispersion relation in the κ-Minkowski spacetime has the same form as that in the
MDR models, the correction for the velocity is quite different.

Because of the above difference in the correction terms, there is a possibility that the evidence
for spacetime noncommutativity can be detected in use of the low-energy massive particles. Here,
we consider the ultra-cold neutrons with energy En − mn ∼ 10−2 eV [95]. Since the mass of
a neutron mn is measured with high accuracy, we can estimate the time interval in which the
neutron travels the interval L in the Minkowski spacetime. If a time lag is obtained in an
experiment, it can be interpreted as the effect of spacetime noncommutativity. This time lag is
calculated in the κ-Minkowski spacetime as

δt =
L

vl
− L

vM
≈ L

vM

λm2
n

2En
. (6.23)

By substituting the value of the apparatus [96], L ∼ 100 m, we have

δt ∼ 10−1λmn. (6.24)

If the resolution for the measurement of the time lag is ∼ 10−10 s and |λ|>∼10−18 eV−1, we can
detect spacetime noncommutativity.

6.4 Summary and discussion

We have investigated what are the qualitative differences of the velocity formula in the κ-
Minkowski spacetime from that in the MDR models. Most of the previous papers had adopted
the MDR models since the MDR models are among the simplest ones of quantum gravity. How-
ever, many of the MDR models do not have physical foundation in how the correction terms of
naturally arise in the dispersion relation. For example, since the usual Lorentz transformation
had been used in the previous work, one could not have avoided the existence of a preferred
frame as a result. Since we have taken the standpoint that the existence of a preferred frame
is not favorable, we have considered the κ-Minkowski spacetime where the deformed Lorentz
transformation and the deformed dispersion relation arise as a result of the deformation quan-
tization.

We have found that since massless particles move in a constant speed in the κ-Minkowski
spacetime, the arrival time analyses by γ-rays are not capable to detect the difference from the
Minkowski spacetime. This example shows that it is difficult to constrain all kinds of Lorentz
invariance by a single experiment. Therefore, we need to investigate specific models individually.
We have also considered the possibility to detect spacetime noncommutativity by low-energy
massive particles. In our model, if the resolution for the measurement of the time lag is given
by ∼ 10−10 s, it is possible to constrain λ to |λ|>∼10−18 eV−1. Although these features had not
been investigated so far, it may be important.





Chapter 7

Threshold anomaly in
noncommutative spacetime

In this chapter, we discuss the astrophysical implications of κ-Minkowski spacetime, in which
spacetime noncommutativity exists. We first re-consider the velocity formula for particles based
on the motion of a wave packet. The result is that a massless particle moves at a constant
speed as in the usual Minkowski spacetime, which implies that an arrival time analysis by γ-
rays from Markarian (Mk) 421 does not exclude spacetime noncommutativity. Based on this
observation, we analyze reaction processes in κ-Minkowski spacetime which are related to the
puzzling detections of extremely high energy cosmic rays above the Greisen-Zatsepin-Kuzmin
cutoff and of high-energy (∼20 TeV) γ-rays from Mk 501. In these analyses, we take into account
the ambiguity of the momentum conservation law which can not be determined uniquely from
a mathematical viewpoint. We find that peculiar types of momentum conservation law with
some length scale of noncommutativity above a critical length scale can explain such puzzling
detections. We also obtain stringent constraints on the length scale of noncommutativity and
the freedom of momentum conservation law.

7.1 Finite boost in κ-Minkowski spacetime

We briefly review κ-Minkowski spacetime. The basic commutation relations are

[xi, t] = iλxi, [xi, xj ] = 0. (7.1)

We can define differentiation, integration [69] and Fourier transformation in this spacetime [70].
In order to define Fourier transformation consistently, the energy E and the momentum p =

69



70 CHAPTER 7. THRESHOLD ANOMALY IN NONCOMMUTATIVE SPACETIME

(p1, p2, p3) of a particle form a non-Abelian group G which can be written in a matrix form as,

(E,p) :=

⎛
⎜⎜⎝

eλE p1 p2 p3

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (7.2)

Thus, if we denote the additive operator in κ-Minkowski spacetime by +̂ to distinguish from the
conventional one, we can write as

(E1+̂E2,p1+̂p2) := (E1,p1)(E2,p2)
= (E1 + E2,p1 + eλE1p2) . (7.3)

Following Ref. [66], we describe a plane wave as

ψ(E,p) = eip·xeiEt, (7.4)

and place the t generator to the right of x generator, i.e., ψ(E,p) �= eiEteip·x. Then, the property

ψ(E1,p1)(E2,p2)
= ψp1,E1ψp2,E2 , (7.5)

is found. We can also define the wave in the reverse direction as

ψ(E,p)−1 := e−ipe−λE ·xe−iEt = e−iEte−ip·x, (7.6)

which implies that (E,p)−1 is an inversion of (E,p).
Because of these noncommutative structures, modification of Poincaré invariance is required

to describe physics in a covariant way [71]. The rotation and boost generators can be written as

Mi = −εimnpm
∂

∂pn
, (7.7)

Ni = pi
∂

∂E
−
(
λ

2
p2 +

1 − e2λE

2λ

)
∂

∂pi
+ λpipj

∂

∂pj
. (7.8)

Using (7.8), a finite boost transformation for the i = 1 direction can be obtained as [97]

p1 =
tanh(λm) sinh ξ

λ[1 − tanh(λm) cosh ξ]
, (7.9)

p2 = p3 = 0, (7.10)

E = m+
1
λ

ln
[

1 − tanh(λm)
1 − tanh(λm) cosh ξ

]
, (7.11)

where ξ is a boost parameter and we choose p = 0 and E = m, i.e., m is a rest mass of the
particle, for ξ = 0.
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Because of (7.8), the dispersion relation is altered as

λ−2(eλE + e−λE − 2) − p2e−λE = K2, (7.12)

where K is a constant with the dimension of mass. If we take a rest frame, this can be expressed
as

λ−2(eλm + e−λm − 2) = K2. (7.13)

7.2 Re-consideration of the speed of light

Here, we derive a new velocity formula which is one of the main results of this paper. The
velocity of the particle in the usual Minkowski spacetime is

v =
dE

dp
. (7.14)

If we apply this in κ-Minkowski spacetime, |v| = e−λE is obtained for a massless particle, where
we used Eq. (7.12). This formula, together with the data on γ-rays associated with Markarian
(Mk) 421 in Ref. [90] leads to the constraint |λ| � 10−33 meter [65, 66, 90]. Since this discussion
depends crucially on the form of Eq. (7.14), i.e., on what is the velocity, we reexamine the group
velocity formula by forming a wave packet in κ-Minkowski spacetime as a more realistic situation.
For this purpose, we consider infinitesimal changes ΔE and Δp in E and p, respectively, as a
result of adding (ΔE′,Δp′) as

(E+̂ΔE′,p+̂Δp′) = (E + ΔE,p + Δp). (7.15)

In this case, we can express (ΔE′,Δp′) as

(ΔE′,Δp′) ∼= (ΔE,
Δp

eλE
), (7.16)

where we keep only terms in first order in ΔE and Δp. By using Eqs. (7.5) and (7.16), we make
a wave packet as follows 1

I = ψ(E−ΔE,p−Δp) + ψ(E+ΔE,p+Δp)

= ψ(E,p)(−ΔE′,−Δp′) + ψ(E,p)(ΔE′,Δp′)

= ψ(E,p)ψ(−ΔE′,−Δp′) + ψ(E,p)ψ(ΔE′,Δp′)

= ψ(E,p)[e−iΔp′·xe−iΔE′t + eiΔp′·xeiΔE′t]

∼= 2eip·xeiEt cos
[

Δp

eλE
·
(

x +
eλEΔEt

Δp

)]
. (7.17)

1This is not a Gaussian wave packet. However, it is sufficient to obtain a group velocity. The extension for
more general wave packet will be straight forward.
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By considering |I|2, the group velocity vl can be written as

vl := eλE dE

dp
. (7.18)

We also consider a similar relation

(ΔE′+̂E,Δp′+̂p) = (E + ΔE,p + Δp), (7.19)

which is different from Eq. (7.15) due to noncommutativity. In this case, the corresponding
group velocity vr is

vr :=
dE
dp

1 − λp · dE
dp
. (7.20)

Using (7.12) and (7.13), we obtain the important conclusion that massless particles move in a
constant speed |vl| = |vr| = 1 as in the usual Minkowski spacetime for arbitrary λ 2. Therefore,
the argument in Ref. [65, 91, 66, 93, 90] does not apply. In this case, there appears the possibility
that the large value of λ (� 10−33m) may solve the puzzling problems of EHECRs above GZK
cutoff and of ∼20 TeV photons simultaneously. We investigate this possibility next. However,
we emphasis on the importance of the result not because κ-Minkowski spacetime can avoid the
constraint but because our result provides an opportunity to reconsider LI deformation models
in general.

7.3 Threshold anomaly

We first consider the two-body head-on collision of particles and subsequent creation of two
particles 1 + 2 → 3 + 4. We define the energy Ei and momentum pi of the i-th particle as those
in the laboratory frame. We denote the rest mass of the i-th particle as mi. We also assume
that m2 = 0, m3 �= 0, m4 �= 0 and pi = (pi, 0, 0). In the usual Minkowski spacetime, we use the
dispersion relation

E2
i − p2

i = m2
i , (7.21)

and the energy momentum conservation law,

p1 + p2 = p3 + p4, (7.22)
E1 + E2 = E3 + E4, (7.23)

2Recently, a particle velocity was also discussed in Ref. [98] which gives the same answer as ours for massless
particles.
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to obtain the threshold value of E1, which we denote by Eth,0. We assume that the resultant
particles are at rest in the center-of-mass frame in the threshold reaction. In the laboratory
frame, this means that the resultant particles move in the same speed, that is

p3

m3
=

p4

m4
. (7.24)

We also assume that p2 has an opposite sign against that of p1. If we neglect higher order terms
in E2, then

Eth,0 =
(m3 +m4)2 −m2

1

4E2
. (7.25)

We also define the threshold value of p1 as pth,0 which can be approximated as pth,0 ∼ Eth,0.
Next, we consider the same reaction in κ-Minkowski spacetime. Eq. (7.21) is replaced by

λ−2(eλEi + e−λEi − 2) − (pi)2e−λEi

= λ−2(eλmi + e−λmi − 2). (7.26)

If we interpret the algebra in κ-Minkowski spacetime faithfully, the energy momentum conser-
vation law is expressed as

(E1, p1)(E2, p2) = (E3, p3)(E4, p4). (7.27)

Even if it holds, one should note that we need a rule to distinguish two particles. If we consider
the collision of two particles with A, B ∈ G, respectively, does it correspond to AB, BA or
anything else ? At present, we have no way to determine it. Amelino-Camelia et al. [66, 93]
proposed to find the rule by experiments. Here, we introduce a phenomenological parameter a,
which controls the form of conservation law as follows:

a(E1, p1)(E2, p2) + (1 − a)(E2, p2)(E1, p1)
= a(E3, p3)(E4, p4) + (1 − a)(E4, p4)(E3, p3) . (7.28)

As regards plausible values for a, care must be taken. If we consider two particles of the same
species, a = 1/2 would be physically reasonable value, since if they have same energy and move
opposite direction each other, they have zero total momentum only for this choice. In fact,
the parameter a may be a function of physical quantities of two particles such as mass, charge
and/or spin for two different species. Here, we use the same value of a on the left and the right
hand sides of (7.28) for convenience. Moreover, we restrict our attention to 0 ≤ a ≤ 1 for clarity.

We also need to impose the condition that the resultant particles are at rest in the center-of-
mass frame. To obtain a relation between momenta p3 and p4, we use the boost transformation
(7.9). For the same value of ξ, we obtain

p3

tanh(λm3)
=

p4

tanh(λm4)
. (7.29)

We can solve E1 as a function of a, λ, m1, m3, m4 and E2 by using (7.26), (7.28) and (7.29).
We apply this result to two astrophysical cases.
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7.3.1 Threshold anomaly for TeV γ-rays

Here, we consider the process γ + γ → e+ + e−, which may occur when a γ-ray travels in the
IRBG. In this case, m1 = 0 and m3 = m4 = me, where me is the electron mass. If we assume the
existence of IRBG photons (0.2 � E2 � 5 eV) then the threshold is Eth,0 ∼ 1 TeV in Minkowski
spacetime. Then, the reported detection of ∼20 TeV photons from Mk501 (∼150 Mpc from the
Earth) would be difficult to explain [44].

We summarize the equation for the threshold in κ-Minkowski spacetime which is derived
from (7.26), (7.28) and (7.29) as

AB = yx(yx+ 1)2 sinh2 λme

2
, (7.30)

where

A := (1 − a)y4 − (1 − 2a)y2 − a, (7.31)
B := ax4 + (1 − 2a)x2 + a− 1, (7.32)

and x := eλE1/2 and y := eλE2/2. Since we are considering the collision of two particles of the
same species, a = 1/2 would be physically reasonable. Note that, though we have Eth,0 ≈ pth,0

for high energy particles in the usual Minkowski spacetime, this is not the case in κ-Minkowski
spacetime.

We should recall that, to estimate the energy of primary particles, we calculate the sum of en-
ergy of all secondary particles. Since energy is conserved in the usual sense even in κ-Minkowski
spacetime, we do not need to take into account the effect of spacetime noncommutativity to
estimate the energy of primary particles. Thus, the observation of ∼20 TeV photons in usual
Minkowski spacetime has the same meaning also in κ-Minkowski spacetime. On the other hand,
the usual sum of momenta of all secondary particles does not coincide with the momentum
of the primary particle in this spacetime. Therefore, if pth could be evaluated independently
of the observation of Eth, it might become important to extract information about spacetime
noncommutativity through the detection of violation of the usual momentum conservation. We
exhibit properties of both the energy and the momentum from this reason.

We first show the dependence of Eth and pth on λ > 0 in Fig. 7.1. For simplicity, E2 is
chosen as E2 = 1 eV for IRBG photons. For a = 0, Eth and pth increase with λ, compared with
the same quantities in Minkowski spacetime. In particular, Eth and pth diverge for λ := λc ∼ 4
TeV−1. That is, the universe is entirely transparent for λ > λc. For a = 1/2 and 1, pth increases
with λ, though Eth decreases.

For all a, a first-order correction in λ arises for pth. If we expand pth as pth =
∑∞

k=0
pth,k

k! λ
k,

the first-order coefficient pth,1 is written as

pth,1 = pth,0

[
pth,0(1 − a) + E2

(
a− 1

2

)]
. (7.33)
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On the other hand, the first-order correction in λ for Eth, which we denote Eth,1, is written as

Eth,1 = Eth,0(Eth,0 − E2)
(

1
2
− a

)
. (7.34)

Thus, it disappears for a = 1/2.
The reason why Eth and pth disappear for a = 0 above λc ∼ 4 TeV−1 can be understood as

follows. For λEth � 1, and λme, λE2 � 1, we can approximate Eq. (7.30) as

(1 + λE2)x ≈ λE2 − λ2m2
e

2
for a = 0, (7.35)

aE2x ≈ λm2
e

4
for a �= 0. (7.36)

In this range of approximation, since λEth,0 = λm2
e/E2 is expected to be larger than 1, Eq. (7.35)

has no real solution Eth while a real solution Eth exists for a �= 0. This means that λc for a = 0
is characterized by 1/Eth,0 ∼ 1 TeV−1.

For λEth, λme, λE2 � 1, we can summarize the results as follows. For a = 0, Eq. (7.30) is
approximated as y4x2 ∼ (yx)3eλme/4, which yields E1 = −2me + E2 < 0. This contradicts the
first assumption. So a solution does not exist. In a similar way, we can show that E1 approaches
2me +E2 and 2me − E2 for a = 1 and for a �= 0, 1, respectively.

To investigate properties for λ < 0, we replace λ with −λ. In Eq. (7.30), this corresponds
to the replacement x → 1/x and y → 1/y. We find that Eq. (7.30) becomes invariant if a is
also replaced by (1 − a).

Thus, the case a � 1, λ � 4 TeV−1, and the case 1 − a � 1, −λ � 4 TeV−1 remain as
candidate solutions for ∼20 TeV photons. On the other hand, we can exclude a = O(1) and
λ � 10 TeV−1, or (1 − a) = O(1) and −λ � 10 TeV−1 from the present experimental data.

7.3.2 Threshold anomaly for GZK cutoff

Here, we consider the interaction of ultra high energy protons with CMB photons (∼ 10−3eV)
which results in a pair production p+ γ → p + π0. In this case, m1 = m3 = mp and m4 = mπ,
where mp and mπ are the proton mass and the pion mass, respectively. Because of Eth,0 ∼
7 × 1019 eV, it is difficult for EHECRs above Eth,0 to reach the Earth from cosmologically
distant sources.

We solve (7.26), (7.28) and (7.29) numerically. We show the dependence of Eth and pth for
λ > 0, in Fig. 7.2. E2 is chosen as E2 = 10−3 eV for CMB photons. Compared with Fig. 7.1,
we find that the qualitative features for small λ are quite similar, i.e., Eth/Eth,0 > 1 for a = 0
and Eth/Eth,0 < 1 for a = 1, while pth/pth,0 > 1 for all cases.

However, we find qualitative differences from Fig. 7.1 for λ � 10−8 TeV−1. The threshold
disappears for λ > λc ∼ 2 × 10−8 TeV−1 in the a = 0 case, which can be explained as in the
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γ-ray case since λc coincides approximately with 1/Eth,0. For the case a = 1/2 and 1, Eth/Eth,0

increases with λ(� 3 × 10−8 TeV−1) and disappears for λ � 5 × 10−8 TeV−1, unlike the γ-ray
case.

In this case, there is no simple symmetry about λ → −λ, as found in the previous case.
Thus, we also show the dependence of Eth and pth for λ < 0, in Fig. 7.3. We have a crucial
difference from the γ-ray case even for λ > −10−9 TeV−1. For a = 1, there is a value Eth2

over which the reaction does not occur. We denote Eth2 by a dot-dashed line. Eth2 diverges as
λ→ −0 and merges with Eth at λ = λc ∼ −7 × 10−9 TeV−1.

We find that the behavior for small |λ| is that Eth/Eth,0 > 1 for a = 1 and Eth/Eth,0 < 1
for a = 0 as in the γ-ray case for λ < 0. For a = 1/2 and 1, Eth decreases with λ(� −5 × 10−8

TeV−1).
Thus, the a� 1 case for λ � 2×10−8 TeV−1, the a = O(1) case for λ � 5×10−8 TeV−1 and

the (1− a) � 1 case for λ � −7× 10−9 TeV−1 remains as candidate explanations for detections
of super GZK events. For (1 − a) = O(1), we can exclude λ � −10−7 TeV−1.

7.4 Summary and discussion

We have re-considered a velocity formula to describe the particle motion based on the motion
of a wave packet in κ-Minkowski spacetime. In this formula, spacetime noncommutativity does
not affect the motion of a massless particle. Thus, an arrival time analysis of γ-ray bursts in
Refs. [65, 66, 93, 90] does not exclude spacetime noncommutativity in this model. Since this
feature had not been discussed so far, it should be stressed and is one of our main conclusions
here.

Based on this consideration, we have obtained threshold values for reactions γ+γ → e+ +e−

and p + γ → p + π0 in κ-Minkowski spacetime and analyzed their relevance to the puzzling
observations of ∼20 TeV photons and EHECRs above the GZK cutoff, introducing a parameter
a to take into account the ambiguity of the momentum conservation law.

In the TeV γ-ray case, though a = 1/2 is favorable in the physical context, only a � 1 for
λ � 4 TeV−1, or (1 − a) � 1 for λ � −4 TeV−1 appear able to explain the detections of γ-rays
above ∼20 TeV. The possibilities a = O(1) for λ � 10 TeV−1, or (1 − a) = O(1) for λ � −10
TeV−1, are excluded.

In the EHECR case, we cannot assign definite values to a, because it may depend on, e.g.,
masses and/or charges of two particles. The possibilities a � 1 and λ � 2 × 10−8 TeV−1, or
a = O(1) and λ � 5× 10−8 TeV−1 remain viable. We can exclude cases in which (1− a) = O(1)
and λ � −10−7 TeV−1.

Thus, a � 1 for λ � 4 TeV−1 or (1 − a) � 1 for λ � −4 TeV−1 appear able to explain
both phenomena. Our results are important because they suggest that extremely high-energy
particles might be expected in realistic models with spacetime noncommutativity. If this is the
case, then we might have already detected symptoms of the spacetime noncommutativity.
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Figure 7.1: Threshold anomaly for TeV-γ rays for λ > 0. (a) λ-Eth, (b) λ-pth are plotted for
E2 = 1 eV. For a = 0.5 and 1, Eth decreases with λ increases for λ > 1 TeV−1, while pth

monotonically increases. The a � 0 case is only desirable to explain ∼20 TeV photons. It is
noted that Eth is invariant under the transformation λ→ −λ and a→ (1 − a).
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Figure 7.2: Threshold anomaly for GZK cutoff for λ > 0. (a) λ-Eth, (b) λ-pth are plotted for
E2 = 10−3 eV. Though qualitative features for small λ are similar to those of Fig. 1, they show
drastic difference from Fig. 1 for λ � 3 × 10−8 TeV−1.
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Figure 7.3: Threshold anomaly for GZK cutoff for λ < 0. (a) λ-Eth, (b) λ-pth are plotted for
E2 = 10−3 eV and λ < 0. Unlike the case λ > 0, the threshold vanishes only the a = 1 case for
λ � −7 × 10−9 TeV−1.





Chapter 8

Conclusion

8.1 Summary and conclusion

The naked singularities and the extremely high energy cosmic rays could carry the information of
the microscopic nature of spacetime to us. In the first half of this thesis, we focus on the problem
of the cosmic censorship hypothesis, which is related to the visibility of spacetime singularities,
from the viewpoint of quantum field theory in curved spacetime. In the latter half of this thesis,
we focus on the problem of the high energy cosmic rays, which could probe the microscopic
nature of spacetime, from the viewpoint of the noncommutative geometry.

First, we have reviewed the general theory of particle creation during gravitational collapse
in chapter 2. After that, we estimate the luminosity, energy, and redshift of particle creation
during the NS formation in self-similar collapse in chapter 3. It is found that the power of
particle creation is proportional to the inverse square of the remaining time to the appearance
of the NS. Then, it is also shown that the proportional constant of the power can be arbitrarily
large in the case that the event horizon and Cauchy horizon are very close. This result is striking
because the Cauchy horizon would suffer from the instability due to the quantum field in spite of
the cutoff expected by a quantum gravity. From the viewpoint of the self-similarity hypothesis,
the self-similar spacetimes such as the general relativistic Larson-Penston solution, the quantum
effect might cause an instability due to the backreaction. We find another interesting result in
such a spacetime. The particle creation can remain finite at the Cauchy horizon. Such a result
promotes us to investigate the relation between the curvature strength of naked singularities
and the amount of quantum radiation.

Motivated from the result of chapter 3, we investigate the curvature strength and quantum
effect of naked singularities in chapter 4. We estimate the amount of particle creation in the wide
class of spherical dust collapse. It is shown that the quantum radiation during the strong naked
singularity formation diverges as the Cauchy horizon is approached. On the other hand, the
radiation from weaker naked singularities is finite. From the viewpoint of the cosmic censorship
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hypothesis, the strong naked singularities would be subjected by the instability due to the
quantum effect. On the other hand, weaker naked singularities would not.

The mathematical preparation is done to discuss the propagation of the high energy particle
in noncommutative spacetimes in chapter 5. There, the κ-Poincarè algebra is introduced as an
enveloping algebra of a Lie algebra. Then, the κ-Minkowski noncommutative spacetime appears
as the dual Hopf algebra of the κ-Poincarè algebra. We see that in the κ-Poincarè algebra,
the dispersion relation of a particle is deformed in high energy region. That is, the Lorentz
invariance is violated in high energy region. In the Hopf algebra approach, the summation rule
of energy and momenta is also modified.

In chapter 6, we derive the velocity formula by superposing wave packets, which have slightly
different wave numbers. Then, we compare the formula with other velocity formula used in the
literature. We have shown that the massless particle moves in a constant speed in κ-Minkowski
spacetime. This shows that the arrival time analysis by γ-rays is not capable to constrain all
kinds of Lorentz invariance. Therefore, we need to investigate specific models individually. The
possibility that one can detect the spacetime noncommutativity by low-energy massive particles
is discussed.

In chapter 7, we analyze the reaction process in κ-Minkowski spacetime which are related
to the puzzling detection of extremely high energy cosmic rays above the Greisen-Zatsepin-
Kuzmin cutoff and high energy γ-rays from Markarian 501. We take into account the ambiguity
of the momentum conservation law in the theory. We find that the peculiar types of momentum
conservation law with some length scale of noncommutativity can explain such puzzling detec-
tions. These results could imply that we have already detected astrophysical symptoms of the
microscopic nature of spacetime, such as noncommutativity.

8.2 Future prospect

We have discussed the particle creation during the naked singularity formation in chapter 3 and
4. The analysis were based on some assumptions such as semiclassical and geometrical optics
approximations. The validity of the latter approximation should be examined by estimating the
spectrum of the radiation. Estimating the spectrum, however, confronts with a fundamental
problem. The task is to calculate the Bogoliubov coefficient which needs the information of
the null rays at I+ beyond the Cauchy horizon. In other words, the calculation needs the
boundary condition at the naked singularity, which procedure does not have a leading principle.
No one has succeeded the satisfactory derivation of the spectrum yet [18, 20, 23]. This point
need further investigation. In addition, chapter 3, we had not completed the analysis of the
semiclassical instability for the general relativistic Larson-Penston solution because the solution
is a numerical one. Because the solution would be the most serious counterexample against
the cosmic censorship hypothesis, the semiclassical instability/stability of the solution should
be clarified by numerical calculation as well as the classical instability due to non-spherical



8.2. FUTURE PROSPECT 83

perturbations.
We have not obtained the necessary and sufficient condition of the curvature strength of a

naked singularity for the quantum radiation to diverge or remain finite at the Cauchy horizon
in chapter 4. We argue that the new definition of the curvature strength of singularity should
be proposed from the viewpoint whether or not the Cauchy horizon suffers from the instability.
From the field theoretical viewpoint, the point-mass particles, which are usually used to define
the geodesic and hence to define the geometrical properties of spacetime, are just an approxi-
mation in which the quantum field have an extremely high frequency. As we can learn from the
history of the physics, the quantum mechanics has resolved some singularities such as the diver-
gent energy of a charged point particle. The wave function of a particle remains finite in spite
that its classical self-energy is divergent. Such a investigation that classically singular spacetime
is indeed singular quantum mechanically has been done in some literature. One of such works
is to check the essentially self-adjointness of Hamiltonian of fundamental fields in classically
singular spacetimes [83, 84, 85]. Essentially self-adjointness ensures the uniqueness of dynamics
even if there are some singularities in the spacetime [86]. The classical naked singularities can be
quantum mechanically either regular or singular, depending on the curvature potential around
the singularity. Therefore, it will be interesting to show the relation between the curvature
strength of naked singularities and their quantum mechanical regularity/singularity.

After the analysis in chapters. 6 and 7, much literature has appeared. The possibility of
detecting the Lorentz invariance violation by the observation or the collider experiment is dis-
cussed. This region has been called the “quantum gravity phenomenology”. They also pursuits
more fundamental justification of the noncommutative models. Especially, it seems interesting
to investigate the Lorentz invariance violation in the loop quantum gravity [99].
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Appendix A

Cauchy horizon in self-similar
collapse

1 We shall prove the absence of an outgoing radial null geodesic which emanates from the origin
v = R = 0 before the null geodesic x = x+. Let (v,R) be a point on a radial null geodesic l in
the region 0 < x = v/R < x+ which emanates from v = R = 0. Then, one can say that

dx

dv

∣∣∣∣
l

=
x

v
(1 − 1

f
) > 0. (A.1)

By the uniqueness of the solution of the null geodesic equation, l cannot cross x = x+ at points
other than v = R = 0. Therefore above inequality says that x decreases as v → +0 but is
bounded from below by 0. Hence the limit

x̄ ≡ lim
v→+0

x(v)
∣∣∣∣
l

(A.2)

exists and satisfies 0 ≤ x̄ < x+. In the case of 0 < x̄ < x+,

R̄ ≡ lim
v→+0

R(v)
∣∣∣∣
l

(A.3)

= lim
v→+0

v

x(v)

∣∣∣∣
l

(A.4)

= 0 (A.5)

holds, but

x̄ = lim
v→+0

v

R(v)

∣∣∣∣
l

= lim
v→+0

1
R′(v)

∣∣∣∣
l

= lim
v→+0

xf(x)
∣∣∣∣
l

= x̄f(x̄), (A.6)

1This appendix is for Sec. 3.1.
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where the l’Hopital’s rule is used in the second equality. This contradicts the assumption that
x+ is the smallest positive root of equation f(x) = 1. Next, we shall consider the case of x̄ = 0.
The fact that the solution R converges to a finite nonzero constant as x→ 0 from the condition
(3.7) contradicts the assumption that l is a geodesic which emanates from v = R = 0. Thus
the case of x̄ = 0 is also excluded. Thus we see that x = x+ is the first outgoing null ray which
emanates from the singularity.



Appendix B

Local map and redshift in diagonal
coordinates

1 The line element of the class of spacetimes discussed in Sec. 3.1 in a diagonal coordinate
system is written as

ds2 = gtt(z)dt2 + grr(z)dr2 + r2S2(z)dΩ2, (B.1)

where z ≡ t/r and S is a dimensionless metric function. The homothetic Killing vector field is
of the form ξ = t∂t + r∂r. If one defines functions w±(z) as

w±(z) ≡ ±1
z

√
−grr

gtt
, (B.2)

the roots of the algebraic equation w±(z) = 1 play important roles as do those of f(x) = 1
in Sec. 3.1. The existence of a positive (negative) root of w+(z) = 1 (w−(z) = 1) and the
uniqueness of the root of w−(z) = 1 are assumed. When the negative root and the smallest
positive root are denoted by z− and z+ respectively, the curves z = z+ and z = z− can be shown
to be the CH and the ingoing null ray that terminates at the NS. In addition, it is assumed that
w′∓(z∓) ≷ 0.

The null geodesic equations are integrated to give

r

r±0
= exp

[∫ z

z±0
W±(z′)dz′

]
= exp

[∫ z

z±0
W ∗

±(z′)dz′
](

z± − z

z± − z±0

)1/δ±
, (B.3)

1This appendix is for chapter 3.

87



88 APPENDIX B. LOCAL MAP AND REDSHIFT IN DIAGONAL COORDINATES

where

W±(z) ≡ 1
z (w±(z) − 1)

,

δ± ≡ z±w′
±(z±), (B.4)

W ∗
±(z) ≡ W±(z) − 1

δ±(z − z±)
,

and the signature + (−) corresponds to outgoing (ingoing) null geodesic. The constants z±0 and
r±0 are related as r+0 = r(z = z+

0 ) for an outgoing ray, while r−0 = r(z = z−0 ) for an ingoing one,
where z±0 is set as z±0 < z± and z±0 �= 0. The constants r±0 are related to tc ≡ t(r = 0) as

r±0 = − tc

|z±0 |J±
, J± = exp

[∫ −∞

z±0

w±(z′)dz′

z′ (w±(z′) − 1)

]
. (B.5)

Combination of Eqs. (B.3) and (B.5) yields

r = D±(r, z)
(
t±(r) − t

)1/δ± tc, (B.6)

where

t±(r) ≡ z±r,

D±(r, z) ≡ −|z±0 |−1J−1
±
[
(z± − z±0 )r

]−1/δ± exp

[∫ z

z±0
W ∗

±(z′)dz′
]
.

Now, let us consider a pair of ingoing and outgoing null rays such that the latter is the
reflection of the former at the regular center (r = 0, t < 0). An observer who rests at r = � will
encounter the null ray twice, so that we denote the time of first encounter by t1 and that of the
second by t2. By Eq. (B.6), the ingoing and outgoing null rays are matched at the center to give
the local map as

t−(�) − t1 =
[
D+(�, z2)
D−(�, z1)

]δ− (
t+(�) − t2

)α2 , (B.7)

where

zi ≡ ti/�, (i = 1, 2),
α2 ≡ δ−/δ+. (B.8)

The redshift of a radial null ray is obtained in similar way. The t-component of equation
kμ∇μk

ν = 0 is integrated to give

kt(z)
kt,±

0

= exp

[∫ z

z̃±0
W̃±(z′)dz′

]
= exp

[∫ z

z̃±0
W̃ ∗

±(z′)dz′
](

z± − z

z± − z̃±0

)−(1+δ±)/δ±
, (B.9)
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where

W̃±(z) ≡ − 1
2
(
1 − w−1

±
) {(1 − 2w−1

±
) 1
gtt

dgtt

dz
+

1
grr

dgrr

dz

}
,

W̃ ∗
±(z) ≡ W̃±(z) +

1 + δ±
δ±

1
z − z±

.

The constants z̃±0 and kt,±
0 are related as kt,+

0 = kt(z+
0 ) for an outgoing ray, while kt,−

0 = kt(z−0 )
for an ingoing one. The constants kt,±

0 are related to kt
c ≡ kt(r = 0) as

kt,±
0 =

kt
c

J̃±
, J̃± ≡ exp

[∫ −∞

z̃±0
W̃±(z′)dz′

]
. (B.10)

Combination of Eqs. (B.9) and (B.10) yields

kt(z) = D̃±(r, z)
(
t±(r) − t

)−(1+δ±)/δ± kt
c, (B.11)

where

D̃±(r, z) ≡ J̃−1
±
[
(z± − z̃±0 )r

](1+δ±)/δ± exp

[∫ z

z̃±0
W̃ ∗

±(z′)dz′
]
.

Consider again the observer who rests at r = � and the pair of ingoing and outgoing null rays.
The outgoing and ingoing null rays are matched at the center by Eqs. (B.7) and (B.11) to give

ω̂2

ω̂1
=

√∣∣∣∣gtt(z+)
gtt(z−)

∣∣∣∣D̃+(�, z2)
D̃−(�, z1)

[
D+(�, z2)
D−(�, z1)

]1+δ− (
t+(�) − t2

)α2−1
, (B.12)

where ω̂1 ≡ limz1→z−
√|gtt(z1)| kt(z1) and ω̂2 ≡ limz2→z+

√|gtt(z2)| kt(z2) are the observed
frequencies.

There exists a plausible relation between the local map and redshift. From Eqs. (B.7) and
(B.12), one obtains

dτ2
dτ1

=
ω̂1

ω̂2
,

where dτi ≡
√|gtt| dti (i = 1, 2) is the proper time of the observers.
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(a) (b)

Figure B.1: (a) Schematic plots of f(x) defined by Eq. (B.2) for typical collapsing spacetimes
which end in a NS or a black hole. Depending on the number of roots of w+(x) = 1, which
we denote by j, the causal structure of spacetime changes. The cases of j = 0, 1, and 2 are
depicted. (i) The case of j = 2 : w+(x) (x > 0) is depicted by a solid line. The two roots are
denoted by x+ and ze (z+ < ze). The geodesics z = z+ and z = ze represent the CH and event
horizon, respectively. This kind of spacetime admits a NS. (ii) The case of j = 1 : w+(z) (z > 0)
is depicted by a dashed line. In this case, z+ = ze holds, i.e., the CH and event horizon coincide.
This type of singularity is called marginally naked (MN). (iii) The case of j = 0 : w+(z) (z > 0)
is depicted by a dot-dashed line. In this case the collapse ends in a black hole (BH). (b) A typical
spacetime diagram of a collapsing body which ends in a naked singularity in (t, r) coordinates. A
null ray which is reflected at the regular center and characteristic null rays in respective regions
divided by horizons are depicted. The time intervals t+(�) − t2 and t−(�) − t1 in Eq. (B.7) are
depicted. The dotted line is the world line of an observer at r = �.



Appendix C

Nakedness of the singularity in LTB
spacetime

1 In order to determine whether the singularity is naked or not, we investigate the future-
directed outgoing null geodesics emanating from the singularity at (t, r) = (0, 0). We find the
asymptotic solutions that obey a power law near the center [100] as

t � X0r
p, (C.1)

where X0 > 0 and p � 1 are constants. The latter condition is due to the fact that the orbit of
the shell-focusing singularity is t = ts(r) = r. After some straightforward calculations, one can
find an asymptotic solution for μ > 0 as

t � λ

μ+ 1
rμ+1. (C.2)

With Eq. (C.2) and the fact that the apparent horizon, which is defined by F = R, behaves as
t = tah(r) = r− 2F (r)/3 � r for μ > 0 near the center, the singularity is at least locally naked.
In the case of the self-similar case (μ = 0), similar discussion is possible and the singularity is
known to be naked for small values of λ [100]. We consider the situation in which the collapsing
dust ball is attached to an outer vacuum region at a comoving radius r = constant, within which
the null ray (C.2) is outside the apparent horizon. Then, the singularity is globally naked and
the weak version of CCH is violated.

1This appendix is for chapter 4.
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Appendix D

Frequency of naked singularities

It will be helpful to compare the gauge of the LTB solution used in chapter 4 with one used
in much literature. Such a comparison shows that ωs defined in Sec. 4.3 coincides with the
characteristic frequency of singularity introduced in [23] except for a numerical factor.

Let us denote the comoving coordinates by (t̃, r̃), in which r̃ is chosen to coincide with the
physical radius R at the initial regular epoch of t̃ = 0, i.e., R(0, r̃) = r̃. We assume that the
mass function F (r̃) can be expanded near the regular center as

F (r̃) = F1r̃
a + F2r̃

b + · · · ,
where a and b are constants satisfying a < b. Then the initial density profile is written as

ρ(0, r̃) =
aF1

8π
Ra−3 +

bF1

8π
Rb−3 + · · · . (D.1)

Comparing Eq. (D.1) with Eqs. (4.5) and (4.6), one obtains the powers and coefficients of F (r̃)
as,

a = 3, b =
3(3μ+ 2)
3μ+ 1

,

F1 =
4

9t2in
, F2 = − 8(μ+ 1)3/(3μ+1)

9λ3/(3μ+1)(−tin)(9μ+5)/(3μ+1)
.

It is found that the power b is in the region of 3 < b � 6 for μ � 0. In Ref. [23], Harada et al.
determined the characteristic frequency of the naked singularity in the analytic model (μ = 1/6)
through physical discussion. It is easy to repeat their discussion for the general value of μ > 0.
One possible quantity, which is composed only of F1 and F2, independent of the choice of initial
time slice, and has the dimension of frequency is

F
(9μ+5)/(6μ)
1 (−F2)−(3μ+1)/(3μ) = (μ+ 1)−1/μ

(
2
3

)(9μ+5)/(3μ)(9
8

)(3μ+1)/(3μ)

ωs, (D.2)
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where we used Eq. (4.44). In terms of γ, the quantity of (D.2) is written as follows:

Ωγ(λ) ≡ F
(2γ+9)/(2(3−γ))
1 (−F2)−3/(3−γ).

In the case of the analytic LTB model (γ = 2),

Ω2(λ) = F
13/2
1 (−F2)−3,

which coincides with the frequency defined in [23] except for a numerical factor. This shows that
it is valid to define ωs ≡ λ1/μ as the frequency of singularity. In the self-similar LTB solution
(μ = 0), such a quantity does not exist because of the scale-invariant nature of self-similar
spacetimes.
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