		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
"k" grid block index	18 17 16 15	L L L	L L L	L L L	L L L	L	L	L	L	L	L	L	L	L	L		
	14	ĸ	K K	K	К	K	K	K	K	K	K	K	F	F	нЧ	B5 B5	X X
	12	к	ĸ	ĸ	F	F	F	F	F	C/E3	C/E3	C/E3	C/E4	C/E4	C/E4	B5	x
	11	C/E1	C/E1	C/E1	C/E2	C/E2	C/E4	C/E3	C/E3	C/E3	C/E3	C/E3	C/E4	C/E4	C/E4	B5	х
	10	C/E1	C/E1	C/E1	C/E2	C/E2	C/E4	C/E3	C/E3	C/E3	C/E3	C/E3	C/E4	C/E4	C/E4	B5	х
	9	C/E1	C/E1	C/E1	B2	B2	B4	B3	B3	B3	B3	B3	Β4	B4	B4	B5	х
	8	C/E1	C/E1	C/E1	B2	B2	B4	B3	B3	B3	B3	B3	Β4	B4	B4	B5	х
	7	C/E1	C/E1	C/E1	B2	B2	B4	В3	В3	B3	B3	B3	Β4	B4	B4	B5	х
	6	C/E1	C/E1	C/E1	B2	B2	B4	B3	B3	B3	B3	B3	Β4	B4	B4	B5	х
	5	C/E1	C/E1	C/E1	Z2	Z2	Z3	Z3	В3	B3	B3	B3	Β4	B4	B4	B5	х
	4	Z1	Z1	Z1	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	х
	3	Z1	Z1	Z1	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	х
	2	Z1	Z1	Z1	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	x
	1	Z1	Z1	Z1	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Z3	Х
	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
								'j" gı	rid bl	ock i	ndex						

Scale bar : 1000 m

図5.2 南北断面における岩石分割

図5.5 フィードポイント圧力における実測値と計算結果のマッチング結果

図5.10 1994年から1995年における重力変動の計算結果[A]と、実測値 (Sugihara and Ishido, 1998) [B]の比較 . 陰影部は正異常部を示す .

図5.12 AA3層及びMV3層の鉛直方向の浸透率をパラメータとしたCl濃度変化の感度解析. [A]及び[B]は、それぞれ深部及び浅部のフィードポイントの違いを示す.

図5.13 AA3層及びMV3層の鉛直方向の浸透率をパラメータとした重力変動の感度解析. [A]及び[B]は、それぞれ生産領域及び還元領域の違いを示す.

図5.14 マトリックス部の絶対浸透率 (k_m) とフラクチャースペーシング () を パラメータとした比エンタルピーの感度解析 (SA-4坑)

図5.15 SA-1坑及びSA-4坑の生産ブロックにおけるフラクチャーゾーンとマトリックス部(中心部) における温度、圧力及び蒸気飽和度の経時変化

図5.19 生産開始前と17年後の貯留層の温度、圧力、二相領域、及び流束分布の比較 (赤線:温度、青線:圧力、緑領域:二相領域、矢印:流束)

表5.1 岩石物性値の一覧

[A] Formation absolute permeability

No.	Formation		E-W	N-S	Vertical	[×10 ⁻¹⁵ n	n ²] Type
1	Yakeyama Volcanics	(L)	2	2	2		POROUS
2	Ishigedosawa Formation	(K)	0.01	0.01	0.01		POROUS
3	Zenikawa onsen Formation	(F)	4	4	4		POROUS
4	Toroko Formation (upflow)	(C/E1)	0.5	0.5	0.5		MINC
5	Toroko Formation (southern production)	(C/E2)	1	1	0.5		MINC
6	Toroko Formation (production-reinjection)	(C/E3)	40	40	5		MINC
7	Toroko Formation (peripheral)	(C/E4)	1	1	1		MINC
8	Toroko Formation (recharge)	(C/E5)	2	2	5		POROUS
9	Takaishizawa Formation (upflow)	(B1)	1	1	1		MINC
10	Takaishizawa Formation (southern production)	(B2)	20	20	1		MINC
11	Takaishizawa Formation (production-reinjection)	(B3)	20	80	5		MINC
12	Takaishizawa Formation(peripheral)	(B4)	1	1	1		MINC
13	Takaishizawa Formtion (recharge)	(B5)	2	2	5		POROUS
14	Granodiorite (upflow)	(Z1)	20	20	20		POROUS
15	Granodiorite (upper)	(Z2)	50	50	1		MINC
16	Granodiorite (lower)	(Z3)	0.5	0.5	0.5		POROUS
17	Dacite intrusion	(X)	0.5	0.5	1		POROUS

[B] Properties of pore-free rock grain materials

No.	Formation		Porosity	Density	Specific heat	Thermal condu
1	Yakeyama Volcanics	(L)	11 %	2.64 g/cc	1.00 J/(gK)	1.9 W/
2	Ishigedosawa Formation	(K)	34 %	2.69 g/cc	0.98 J/(gK)	2.9 W/
3	Zenikawa onsen Formation	(F)	15 %	2.64 g/cc	0.94 J/(gK)	3.0 W/
4-8	Toroko Formation	(C/E1-5)	10 %	2.66 g/cc	0.91 J/(gK)	3.3 W/
9-13	Takaishizawa Formation	(B1-5)	4 %	2.73 g/cc	0.83 J/(gK)	2.5 W/
14-16	Granodiorite	(Z1-3)	2 %	2.71 g/cc	0.75 J/(gK)	3.0 W/
17	Dacite intrusion	(X)	15 %	2.64 g/cc	0.94 J/(gK)	3.0 W/

uctivity /(mK) /(mK) /(mK) /(mK) /(mK) /(mK)

表5.2 境界条件の一覧

Location	Content	Remark
Surface to outside	Impermeable, insulated boundary	
Southernmost lowest blocks (1 ~ 10,1,1)	Total inflow rate +5kg/s Internal energy 2,620~2,800kJ/kg	Total 13.5MW
Lowest blocks	(1~11,1~13,1) Heat flux 0.11~1.00W/m ²	Total 5.2MW
Northernmost block (11,15,10)	outflow rate -5kg/s	
Uppermost blocks	Constant (30 、3bar)	Center of block

表5.3 フラクチャーパラメータの一覧

Rock type	Symbol	Fracture volume fraction [-]	Fracture spacing [m]	Absolute permeability of matrix [m ²]	Number of cell in
Toroko Formation(upflow)	C/E1	0.10	30	1×10^{-19}	4
Toroko Formation(southern)	C/E2	0.10	30	1×10^{-19}	4
Toroko Formation(production-reinjection)	C/E3	0.10	200	1×10^{-18}	4
Toroko Formation(peripheral)	C/E4	0.10	200	1×10^{-18}	4
Takaishizawa Formation(upflow)	B1	0.10	100	1×10^{-18}	4
Takaishizawa Formation(southern)	B2	0.10	100	1×10^{-18}	4
Takaishizawa Formation(production-reinjec	B3	0.10	600	1×10^{-18}	4
Takaishizawa Formation(peripheral)	B4	0.10	600	1×10^{-18}	4
Granodiorite(upper)	Z2	0.10	200	1×10^{-18}	4

n matrix

生産井、及び還元井の座標、並びに生産指数(Vstar)の一覧

Productio	n well								
No.	Well	Х	V	Z	i	i	k	rock type	Vstar (× 10 ⁻¹² m ³)
1	SA-1	-4979	-2793	-620	2	5	8	B2	15
2	SA-2a	-4252	-3149	-342	5	4	9	C/E2	1
3	SA-3	-4987	-2792	-599	3	5	8	B2	5
4	SA-4	-4736	-2648	-145	3	6	10	C/E2	1
5	S-4	-4332	-2763	-416	5	7	8	B3	2
6	SB-1	-4685	-2294	-617	3	8	7	B3	0.5
7	SC-1d	-3842	-2616	-1228	7	6	5	C/E3	10
8	SC-1s	-3865	-2649	-1047	7	6	7	C/E3	5
9	SC-2d	-3539	-2610	-782	9	6	7	C/E3	1
10	SC-2s	-3697	-2684	-267	8	6	9	C/E3	1
11	SC-3d	-4084	-2770	-1143	6	6	5	C/E3	2
12	SC-3s	-3945	-2747	-378	7	6	9	C/E3	2
13	M-1				4	5	6	B3	1
14	M-2				6	5	6	C/E3	1
15	M-3				8	5	6	C/E3	1

<u>Reinjectio</u>	on well								
No.	Well	х	у	Z	i	i	k	rock type	Vstar (× 10 ⁻¹² m ³)
1	SB-2	-4454	-1855	-230	4	10	9	B3	
2	SB-3	-4126	-1957	174	6	10	11	C/E3	
3	SB-4s2	-4409	-2204	-1334	5	9	4	Z2	Į
4	SD-1	-3680	-2063	-475	8	9	8	B3	
5	SD-2	-3798	-1711	-461	8	11	8	B3	
6	SD-3	-3549	-2161	54	9	9	11	C/E3	Į
7	SD-4	-3515	-2108	151	9	9	11	C/E3	:
8	SE-1	-4855	-1285	-356	2	13	9	B4	0.5
9	SE-2	-4836	-1878	-512	2	10	8	B3	0.5
10	SE-3	-4371	-1714	90	5	11	11	C/E3	0.5
11	SE-4	-4115	-1219	-679	6	13	7	B4	0.5
12	SE-5s	-3939	-1466	-478	7	12	8	B4	
13	SE-5d	-3803	-1439	-1129	7	12	5	B4	0.5
14	SN-8R	-3716	-1235	-316	8	13	9	B4	0.5

_ _ 5 5 h 5 5 .5 .5 .5 .5