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1. Introduction

This dissertation is concerned with statistical higher order asymptotic theory and
its applications to analysis of financial time series. In statistical analysis, because it is
difficult to use the exact distribution theory, the discussion is based on the asymptotic
theory. Itis well known that we can construct infinitely many first order asymptotically
efficient estimators for unknown parameters. Thus it is required to illuminate their
distinction, by considering higher order terms in the expansions of their asymptotic
distributions.

There has been much demand for statistical analysis of dependent observation in
many fields, for example, economics, engineering and nature sciences. Financial en-
gineering is the application of engineering methods to financial problems. Time series
analysis enables financial engineers to measure and manage their financial risks and
to design and analyze sophisticated financial contracts.

In this dissertation, using higher order approximations of the distribution of estima-
tors and tests we elucidate their higher order asymptotic properties. One of the main
topics in financial engineering is option pricing. Thus we discuss the option pricing
problems using statistical series expansion for the price process of an underlying asset.

This dissertation is organized as follows. In Chapter 2, under the existence of nui-
sance parameters, we consider a class of testhich contains the likelihood ratio,

Wald and Rao’s score tests as special cases. To investigate the influence of nuisance
parameters, we derive the second order asymptotic expansion of the distribution of
T e S under a sequence of local alternatives. This result and concrete examples illu-
minate some interesting features of influences due to nuisance parameters. Optimum
properties for a modified likelihood ratio test proposed in Mukerjee [32] are shown
under the criteria of second order local maximinity.

Chapter 3 discusses the option pricing problems using statistical series expansion
for the price process of an underlying asset. We derive the Edgeworth expansion for
the stock log return via extracting dynamics structure of time series. Using this result,
we investigate influences of the non-Gaussianity and the dependency of log return
processes for option pricing. Numerical studies show some interesting features of
them.

In Chapter 4, we consider the second order asymptotic properties of an efficient
frequency domain regression coefficient estimﬁqmoposed by Hannan [18]. This
estimator is a semiparametric estimator based on nonparametric spectral estimators.
We derive the second order Edgeworth expansion of the distributiﬁn ohen it is
shown that the second order asymptotic properties are independent of the bandwidth
choice for residual spectral estimator, which implies m}udﬁas the same rate of con-
vergence as in regular parametric estimation. This is a sharp contrast with the general
semiparametric estimation theory. We also examine the second order Gaussian effi-
ciency ofB . Numerical studies are given to confirm the theoretical results.

In Chapter 5, we investigate an optimal property of the maximum likelihood esti-
mator of Gaussian locally stationary processes by the second order approximation. In
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the case where the model is correctly specified, it is shown that appropriate modifica-
tions of the maximum likelihood estimator for Gaussian locally stationary processes is

second order asymptotically efficient. We also discuss second order robustness prop-
erties.

Finally, in Chapter 6, we place the proofs of the theorems and lemmas.



2. Second Order Asymptotic Properties of a Class of
Test Statistics under the Existence of Nuisance Pa-
rameters

2.1. Introduction

In multivariate analysis, the second order asymptotic powers of various test statis-
tics have been investigated by Hayakawa [21], and Harris and Peers [20]. Under the
absence of nuisance parameters, results on optimality are now known for the likeli-
hood ratio (LR) test in terms of second order local maximinity and Rao’s score (R)
test in terms of third order local average power (Mukerjee [33]). Under the existence
of nuisance parameters, Eguchi [17] studied the effect of the composite null hypothe-
sis from a geometric point of view. Mukerjee [32] suggested a test that is superior to
the usual LR test with regard to second order local maximinity. The test proposed in
Mukerjee [32] is motivated from the principle of conditional likelihood and also from
that of adjusted likelihood.

In time series analysis, under a set-up involving an unknown scalar parameter, Tani-
guchi [44] considered the problem of second order comparison of tests. He worked
with a large class of tests that contains LR, R and Wald’s (Wesss as special cases.
Taniguchi [45] showed that the local powers of all the modified tests which are second
order asymptotically unbiased are identical upMo'/2. Also Taniguchi [46] con-
sidered the problem of third order comparison of tests, and suggested a Bartlett-type
adjustment for the tests in the class and then, on the basis of such adjusted versions,
explored the point-by-point maximization of third order power.

Bartlett's adjustment procedure has been elucidated in various directions. Cordeiro
and Ferrari [8] gave a general formula of Bartlett-type adjustment to a¥dérfor the
test statistic whose asymptotic expansion is a finite linear combination of chi-squared
distribution with suitable degrees of freedom. Kakizawa [25] considered the extension
of Cordeiro and Ferrari’s [8] adjustment to the case of ofdek¥, wherek is an integer
k > 1. Rao and Mukerjee [34] compared various Bartlett-type adjustments for the R
statistic. Rao and Mukerjee [35] addressed the problem of comparing the higher order
power of tests in their original forms and not via their bias-corrected or Bartlett-type
adjusted versions.

In this chapter, under the existence of nuisance parameters, we consider the second
order properties of a class of tesfswhich contains LR, R and W tests as special
cases. If nuisance parameters are present, sensitivity of test statistics to perturbation
of the nuisance parameters becomes important. It is shown that the powers and sizes
of T € S are equally sensitive to perturbation of the nuisance parameter. In Section
2.3 we compare the second order local power. It is seen that the local average powers
ofall T € S are identical. It is shown that optimality properties hold for a modified
test of the LR test in terms of second order local maximinity. Section 2.4 provides a
decomposition formula of local powers for LR, R and W test statistics under local or-

3



thogonality for parameters. The decomposition consists of the sum of the three parts;
one is the local power for the case of known nuisance parameters, another represents
sensitivity to perturbation of nuisance parameters and the other part can be interpreted
as an effect of nuisance parameters in test statistics. In Section 2.5, we discuss the lo-
cal unbiasedness @f € S. The results and their examples illuminate some interesting
features of effects due to nuisance parameters. The proofs of theorems are relegated
to Section 6.1.

2.2. Asymptotic expansion of a class of tests

Suppose thalXy = (Xi,...,Xy) be a collection ofim-dimensional random
vectors forming a stochastic process. Lef(xy;60), xy € R™, be the prob-
ability density function ofX, whered = (9',...,0P%9) ¢ © an open subset
of R?T4, Letf, = (8',...,07) be the p-dimensional parameter of interest and
0, = (67*1,...,6719) be theg-dimensional nuisance parameter. We consider the
problem of testing the hypothesi$ : 6; = 6,,, wheref;, = (6;,....67)’, against
the alternatived : 6, # 6,o. For this problem we introduce a class of t&stvhich
contains LR, W and R tests as special cases. In the presence of nuisance parame-
ters, the powers and sizes 6f € S are affected by the true but unknown nuisance
parameter. Therefore we investigate the influence of perturbation by the sequence of
local alternative®) = 6, + cy'e whered] = (0!,,65,), 620 = (OF"", ..., 0079
ande = (¢!,...,e?T9). Asin Li [28], we shall use Greek lettefs, 8,y,...} as
indices that run from 1 t@ + ¢, the set of English letter§, j.k,...,q} as indices
that run from 1 top, and the set ofr, s, 1, ..., z} as indices that run fronp + 1 to
p +¢. Theindices, r anda will serve two purposes, first to denote a typical term in
a sum and second to indicate the range of a sum. For exampie, = Y27 q, X*,
aiXi = lea,-Xi anda,X’ = f:ZHa,X’.

We make the following assumptions:

AssumMPTION 2.1. (i) In(0) = log pn(Xn:0) is continuously four times differ-
entiable with respect t6.

(i) The expectation k with respect topy (xy; 6) and the partial derivativg, =
d/06“ are interchangeable.

(i) For an appropriate sequendey} satisfyingcy — +oc asN — +4o0, the
asymptotic moments (cumulants) of

Zot(e) = C]:fl aalN(e)a
Zaﬂ(e) = C]:fl [aaaBlN(e) - Ee{aaaﬂlN(e)}],

possess the following asymptotic expansions
Eo{Za(0)Zp(0)} = Iap)(0) + Ocy?),
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Eot Zu(0)Zpy(0)} = Jupy(0) + 0(c;,2 )
Eo{Za(0)Zp(0)Zy(0)} = cx' Kapy(0) + O(cy).

andJ-th order ¢ > 2) cumulants ofZ,(0) andZ,s(0) are aIIO(c;,"“).

(iv) (ivl) I4p)(0) is continuously two times differentiable with respectto

(iv2) Jo,py(8) and Kqg, (6) are continuously differentiable functions.
(v) (V1) 1(0) = {{p)(0)} is positive definite for alb € ©.

(v2) L(0) = {—c3,0pIn(0)} is positive definite almost surely for &l e ©.
~ Letd = (él, e éP+q)/ be the global maximum likelihood estimator@éfand let

6, = (51’“, el 9~1’+‘1)/ be the restricted maximum likelihood estimatorfgfgiven
61 = 610. The partitiond’ = (07, 6) induces the following corresponding partitions

é:(@) = (%)
6, €2)’
. 111(9) 112(9) _ LII(Q) LIZ(G)
0= Hol r0=[ie )
Let

£®) = tean®)} = | 12 @ 12O,

wherel;1,(0) = I11(0) — I12(0){12(0)} " 121 (6).
We consider the transformation
Wi(0) = Zi(0) — 1an(0)8"(0) Zs(6), W, (0) = Z,(0),
Wap(0) = Zap(8) — Jy.ap(0)17°(0) Z5(6),
where/*#(9) andg*?(0) are the(er, B) component of the inverse matrix #t6) and
g(0), respectively. Henceforth we use the simpler notatigs Wy, Ip), Kapy,
etc. if Z,(0), Wa(0), L) (0), Kupy(0), etc. are evaluated @t= 6,. Any function
evaluated at the poirt = 6 will be distinguished by the addition of a circumflex.
Similarly any function evaluated at the potht = 6,4, 8, = 6, will be distinguished
by the addition of a tilde. For the testing problei: 6, = 6, against the alternative
A : 01 # 649, we introduce the following class of tests:
S=AT | T = g"W;W; + cy'arg" g Wap Wi W + 2¢5' 8" g"* Wa, Wi W,
+ N S WiW Wi — ¢3! g™ g7 g Ko . Wi W; W,
—cn' 88" & (Kars + Jars) Wi W Wy + i as Wi (2.1)
+ 0,(cy'),

underH, Whereal,a’sz andag are nonrandom constamts
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This classS is a very natural one. We can show that famous tests based on the maxi-
mum likelihood estimator belong 8.

ExampPLE 2.1. (i) The likelihood ratio test LR= 2(fN—iN) belongs taS. In fact,

from Bickel and Ghosh [3], the expansion for théh component of ' (éz—éz)
is given by

C;,l (ér . ér) — nr + C;[lérszsana

1 —lars 7 @ —1 (22)
+ ECN g (Ks(xﬂ + Js,otﬂ[3])n n + OP(CN )’

wheren’ = ¢5' (67—01), 1" = —g”sf(si)r]" andJy g, [3] = Japy +J8 a0+ Jyap-
Expanding LR in a Taylor series t= 6 and noting (2.2), we obtain

Z(iN — ZN) = gin'n’ — Cﬁlzaﬂﬂaﬁﬂ

-1 1 - 7 o y -1 (23)
—CN gKaﬂy + Japy 10N + 0p(cy ).
By Taylor expansion aroung,
gij = gij + gikgkagjlglﬂ(Kocﬂy + Ja,ﬂy + Jﬂ,yoc)(ey - 9(;/) (2.4)

+ OP(CXII)-
Furthermore, the stochastic expansiomp‘f(é“ — 05) is given by
—1/)a ay _ . Ba =1 yapB 8y
ey (0% —67) = g™ Wp + ey 1™ Wp, Ws
1 _ / ’ /
— ECNI 199 gPP gV (Ko 4 Jur gy ) W W, (2.5)
+ OP(CXTI)-

Inserting (2.4) and (2.5) in (2.3) and notiays = W,z + 0,(1), we have
2y —In) = gTWiW; + o' g g P Wap Wi W + 2¢y' 878" Way Wi W,
1.

= 3n'8" 87 8" Kag, WiW; Wi

—cn' g g7P 8" Kupy Wi W; W,
— ey 88" 8" (Kars + Jars) WiWi Wy + 0p(cy)).

Hence, LR= 2(/y — Iy) belongs taS with the coefficients:; = 1, a/* =

—gi“gjﬂgk”Kaﬂy/3 andaé =0.

Similarly, we can get results (ii)—(v):
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(i) Wald's test W, = g;;7'n/ belongs taS with the coefficients:; = 2, a”/% =

g'g/P gk J, 5, andal = 0.

(i) A modified Wald's testW = g;;n'n’/ belongs taS with the coefficients;; = 2,

aizjk = —g"“g/Pg"” (Kapy + Jopy) anda} = 0.
(iv) Rao’s score test R= '/ Z;Z; belongs toS with the coefficients:; = 0,
aj* = —g"* g/ g"" (Kupy + 2Japy) andal = 0.

(v) A modified version of Rao’s score test R= g%/ Z,Zj belongs toS with the
coefficientss; = 0, 47* = 0 anda’, = 0.
Furthermore, it is shown that modified versions of the four tests W,,
R; and R which are based on the observed information belong toLet
{;;(0)} = L11200) = L11(0) — L12(0){L22(0)} 'Ly (6) and {{ (0)} be
the (i, j) component of the inverse matrix éf;;.,(0).

(vi) A modified version of Wald's test W= /;;7'n/ belongs taS with the coeffi-
cientsa; = 1, a'zjk = g'*g/Pgkv J, g, andal = 0.

(viiy A modified version of Wald's test W = 7;;1'5/ belongs taS with the coeffi-

cientsa; = 1,dy" = —g'*g/P g"" (Kopy + 2Jap,) andal, = 0.
(vii) A modified version of Rao’s score test;R= [/ Z; Z; belongs toS with the
coefficientse; = 1,a7* = —g/“g/8g"" (Kup, + 2J4.4,) anda, = 0.

(ix) A modified version of Rao’s score test,R= [/ Z; Z; belongs toS with the
coefficientss; = 1, 7% = gi*g/f gk J, 4, andd’, = 0.

(X) The test LR = LR + ¢5' 898" (Kors + Ju,rs)Z: proposed in Mukerjee [32]
belongs toS with the coefficients:; = 1, af* = —gi®g/Pghkv K,p,/3 and

Clé = giagrs(Kars + Ja,rs)-

Li [28] compared the sensitivities of LR, Mand R statistics to nuisance param-
eters. In the one-parameter case, Taniguchi [46] discussed the third order asymptotic
properties of a class of tesfs. Rao and Mukerjee [35] studied a wider clés$D S;)
which enables us to compare the various Bartlett-type adjustments available for the
members of5;. Our classS containsS; andsS,, hence the clasS is sufficiently rich.

REMARK 2.1. Test statistics in Example 2.1 are based on the maximum likelihood
estimator. From (2.2) and (2.3), these statistics can be written as

T = gijni’?j + Cxllblzaﬁnanﬂ + C]:fl (b2]€aﬁy + b3ja,ﬂy)7)a77ﬂ77y

—1p Ars g 7 a -1 (26)
+ N bsg" (Kors + Ja,rs)n + op(CN )



where the coefficients,, b,, b3, bs) € R*. For these statistics,

b]z—l, b2:—1/3, b3:—1, b4:0, for LR,

b] = —1, b2:—1/3, b3 = —1, b4: 1, fOfLR*,

b] =0, bz =0, b3 =0, b4 =0, for Wi,

b] =0, bz =—1, b3 = -2, b4 =0, for W,,

b] = -1, bz =0, b3 =0, b4 =0, for W3, (2 7)
b] = -1, bz = -1, b3 = -3, b4 =0, for Wy, '
b] = -2, bz = -1, b3 = -3, b4 =0, for R,

b] = -2, bz =0, b3 =—1, b4 =0, for R,,

b] =—1, bzz—l, b3 = -3, b4: R forR3,

b] = -1, b2 =0, b3 =0, b4 =0, for Rs.

Inserting (2.4) and (2.5) in (2.6), we obtain
T = g"WiWj + cy' (b1 +2)8" g Wog Wi W + 2¢3' "™ We, Wi W
+ ey 8¢ g (b2 Kapy + (b3 + 1) Ju,py } Wi W; Wi
— ' g g/ ¢ Kap W, W; W, (2.8)
—n' 88" & (Kars + Jar ) WiW: W,
+ ey bag"* " (Kars + Jars) Wi + 0p(ciy).
The classS in (2.1) is motivated from (2.8).

First, we give the second-order asymptotic expansion of the distribution function
of T € S under a sequence of local alternatives. This result can be applied to the
Li.d. case, multivariate analysis and time series analysis.G.gl(z) is the distri-
bution function for a non-central chi-square variate with degree of freedaand
non-centrality parameter.

THEOREM 2.1. The distribution function of" € S under a sequence of local alter-
nativesd = 6, + cy'¢ has the asymptotic expansion

3
Py otelT <zl = Gpalz) + cy ijGerzJ‘,A(Z) +o(eyh),
j=0
where
ms = ¢ apyd®dPd” + 7% giin8jj &kivd d’ d™

1 S 1
ny = _Ealzjkgii’gjj’gkk’dl d’'d" + EBaﬂKa,Bydy + Ealzjk[?’]gilgjkdl,

1 1
mi =3 wpyd®dPd? — E(Kaﬂr + Jupr + Jpar)d®dP(d" — ")

1 1 ..
— EBaﬂKaﬂydy — Ealzjk[?’]gilgjkdl
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1 rs o 1 i j
- Eg (Kars + Ja,rs)d + §a3gijdj»

1
me = _E(Kaﬁy + 3J4.p,)d%dPd”
1
+ E(Kaﬂr + Ja,ﬂr + Jﬂ’ar)dadﬂ(dr - 8r)
1 1 . ;
+ Egrs(Kozrs + Ja,rs)da - Ealg,gijdj,

jki

A =gielel d* = gijgi®e’, a3 = af* + o] + 4} and

apr _ grapr |0 0
B = -0 o]

Second, we consider the sensitivity Bf € S to the change, in the nuisance
parameter. Test statistics that are less sensitive to such changes are generally more
desirable because their sizes and powers are less affected by the estimation of the
nuisance parameter. Then we have

THEOREM 2.2. (i) For T e S, the sensitivity of the distribution function &f to
nuisance parameters is given by

P@g—i—c;,ls[T < Z] - P910+c;,181,920[T < Z]

1
= Ec]:fl(Kaﬂr + Ja,ﬂr + J,B,ar)dadﬂgr{Gp-i-Z,A(Z) - Gp,A(Z)} + O(C’]:fl)'

(i) If
28 %giing”*(Kapr + Jupr + Jpar) =0, (2.9)

Is satisfied, then the distribution function®Bfe S is asymptotically independent
of &, with an erroro(cy!).

REMARK 2.2. Note that
8rgij (0) = gii’(Q)gi/a(Q)gjj’(e)gj,a(e){Kaﬂr ) + Jo,pr ) + Jgar (0)}.
If g;;(0) is independent of,, then the condition (2.9) holds.

REMARK 2.3.Inthe case of i.i.d. observations, Li [28] gave factorizations of LR, W

and R test statistics as quadratic forms and compared density functions of these fac-
tors. Then he showed that the powers and sizes of these statistics are equally sensitive
to nuisance parameters. Form (i) in Theorem 2.2, we can see that the powers and sizes
of all T € S are equally sensitive to nuisance parameters. Hence, our results agree

with that of Li [28].



EXAMPLE 2.2. Suppose thak;,i = 1,..., N are i.i.d. random variables distributed
asNi(u,0?).

() If 6, = 0% andb, = pu, theng,;(c2, u) = (20*)~!. Hence, the condition (2.9)
holds.

(i) If 8, = p andd, = o2, theng,(n,0?) = (c?)~!. Hence, the condition (2.9)
does not hold.

EXAMPLE 2.3. Consider the nonlinear regression model
X, =a+ pcodt — A + uy, t=1,...,N, (2.10)

wheret; = B, 0, = (a, 1), A = 2xl/N (I an integer){u,} is a sequence of i.i.d.
N(0,0?) random variables. Then it follows that

1/(202) 0 B/(415?)
1) = [ 0 1/02 8/(5?) } (2.11)
B/(4la*) B/(o*) B*(8n?*—3)/(121%07?)

For our model (2.10) we calculagg(6). From (2.11)

1 3
0?2 402(8xw%l* —15)

gn(0) = )

which implies that the condition (2.9) does not hold.

2.3. Comparison of power

Takinge; = 0in Theorem 2.1, it can be seen thatlle S have sizest + o(cy').
Hence, it would be meaningful to compafe € S in terms of power up te(cy').
From Theorem 2.1, we can see that there is no test which is second order uniformly
most powerful inS. Thus we attempt to compare the testsSion the basis of their
second order power. First, we derive the explicit formula to compare the local power
of T € S. Note that the first order powers of dll € S are identical and independent
of &,. Write the power function of” € S underfy + cy'e as PT(s) = Pi(e1) +
cy' P () + o(cy'). From Theorem 2.1, we can state
THEOREM 2.3. For T; € S with the coefficienta,;, a5, al,) (I = 1,2), respec-
tively,

2
Pyl (e) = Py*(e) = ) m{Gpi27.a(2) = Gpiajra.a(2)},
j=0
where
1 ii i =/ =/ /
my = E(alzjlk — alzjzk)gii’gjj’gkk’dl d’da*,
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N Y ijk
my = z(azjl 3] _azjz [3])gilgjkdl,
1 . ) .
o = 2(ah, — g,

Note thatn’,, m| andm are independent af,. From Theorem 2.3 we have

COROLLARY 2.1. For T; € S with the coefficientay;, a5, a',)) (I = 1,2), respec-
tively,

2
P)'(e1,0) — P%(e,,0) = Zm}{Gerzj,A(Z) — Gp2j+2,4(2)},
j=1

wherem’,, m| andm, are the same as Theorem 2.3.

EXAMPLE 2.4. Suppose thak;,i = 1,..., N are i.i.d. random variables distributed

as )

Then parametric orthogonality holds.df = p and6, = pu, then

1+ p? 60 + 2p°
gll(P,M)=m, K111(P,M)Z—WZ—L,U(P,M),
(2.12)
2 2
9 = —’ K b = b
g22(p, 1) 1+ 122(p, 1) (1 + p)?

and]l’zz(p, IL,L) = 0.
For test statisticd’; and 7, in (2.7) with the coefficien(b, b1, b31,b41) and
(blz, by, b3, b42), respectively,

, 3p+ p?
my, = —m{(bzl - b22) - (b31 - b32)}(51)3v
/ 30+ p°
m = —3(1 0T pz){(bZI — b2) — (b31 — b32)}en,
1
my = 20+ p) (bar — Daz)er.

Based on the above we can compare the second order power amorigy W =
1,2,3,4),LRand LR..

(i) (1) If p > 0 ande; > 0, then
P (e) = P (e) = P (e) < Py () = P2(e) < PER(e)
< P (e) = P} (e) = P (o).
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(i2) If p < 0ande; > 0, then

P (e) = P} (e) = P(e) < PER(e) < P)2(e) = P (e)
< P (e) = PJ'(e) = P (e).

(i) LR versus LR,

PR(e) — PN (e) = - e1{Gp,a(2) = Gpi2,a(2)}

2(1 + p)
implies, fore; > 0, PR(e) < PLR"(e) and PLR"(—¢y,62) < PLR(—e1,8,)
unlessp = —1.

From (2.12) in Example 2.4, it is seen that cumulants K, andJ, ; tend to
oo asp — =+1, andg,, and K, tend toco asp — —1. Hence, we need to inspect
second order power functionsgfis close tot+1. Note the relation

Gp,a(2) = Gpt2,a(2) = 2fp12,4(2), (2.13)

where f, A(z) is the probability density function of non-central chi-square variate
with p degree of freedom and non-centrality parameétef~rom (2.12) and (2.13) it
follows that second order powers of all test statistics in Example 2.1 converge to O as
p — £1 at each fixed.

In Figure 2.1, we plottedPR (solid line), PLR" (dotted line), P (dashed line)
andP;’Vl (dash-dotted line) of Example 2.4 with= 0.05,¢; = 1 and—1 < p < 1.
Figure 2.1 illustrates that second order powers of these statistics converge to 0 as
p— *1.

In Figure 2.2, we plottedPiR (solid line), PLR" (dotted line), P (dashed line)
andP;’V1 (dash-dotted line) of Example 2.4 with= 0.05,¢; = 0.1 and—1 < p < 1.
We can see that the extreme points is closg& tan comparison with Figure 2.1.

Figures 2.1 and 2.2 are about here.

EXAMPLE 2.5. Let{X;} be a Gaussia A (1) process with the spectral density

o? .
fo) = |1 —yre™ 2.

If 6, = ¥ andf, = o2, then,

1 o6y 4y
gll(‘ﬁ,az):l_—wz, K111(1ﬁ,02)=—m, J1,11(W,02)=m,
gzz(lﬁ,az) = %, Klzz(w,gz) = Jl,zz(W’UZ) = 0.

(2.14)
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Note thatg??(K 2, + Ji22) = 0. For test statisticd’; and 7, in (2.7) with the
coefficient(by1, ba1, b3, bar) and(by, bay, biy, byy), respectively,

my = —ﬁﬁ(bzl — b2) — 2(b31 — b3x)}(e1)’,
miy = 1 iww2{3(b21 —b22) = 2(b31 — b32)}en,

my = 0.
Based on the above we can compare the second order power amorigy W =
1,2,3,4),LRand LR..
@) If v > 0ande; > 0, then
P (e) = PJ'(e) = P (e) < P(e) < PR(e) = PR (e) = P)(e)
< P)i(e) = P)" () = P(e).

(ii) If ¥ <0ande; > 0, then
P)1(e) = P (e) = PR(e) < PR(e) = PiR () = P)(e) < P(e)
< PM(e) = PY(e) = PR (o).

From (2.14) in Example 2.5, it is seen that cumulants K1, andJ; 1, tend to
oo asy — =+1. Hence, we need to examine second order poweysig close to
+1. From (2.13) and (2.14) it follows that second order powers of all test statistics in
Example 2.1 converge to 0 @as— +1 at each fixed.

In Figure 2.3, we plottedPtR (solid line), P} (dashed line) and)"* (dotted line)
of Example 2.5 withw = 0.01, ¢; = 6.5 and—1 < ¢ < 1. From Figure 2.3 we
observe that second order powers of these statistics converge i 6-as-1.

In Figure 2.4, we plottePtR (solid line), P} (dashed line) and)"! (dotted line)
of Example 2.5 withw = 0.01, &; = 0.65 and—1 < ¢ < 1. We can see that the
extreme points is close ttr 1 in comparison with Figure 2.3.

Figures 2.3 and 2.4 are about here.

EXAMPLE 2.6. Let{X;} be a Gaussiad R(1) process with the spectral density

o? 1
)\4 - .
If 6, = p andd, = o2, then
1 6p 2p

) 2 = ) K ) 2 = 55 J ) 2 = T 5y
gi(p.o%) Y 111(p,0%) (1= p?)? L11(p,07) (1= p?)?
gn(p,0%) = pyrs Ki22(p,0%) = J122(p,0%) = 0.

(2.15)
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Note thatg??(K 2, + Ji22) = 0. For test statistic§;, and 7 in (2.7) with the
coefficient(byy, ba1, b3, bar) and(byz, bas, bsa, bsy), respectively,

m/z = —ﬁ{3(b21 - b22) - (b31 - b32)}(51)3’

3
m/l = -1 P 2{3([)21 —byy) — (b31 — b32)}en,
0

[
my = 0.

Based on the above we can compare the second order power amorigy W =
1,2,3,4),LRand LR..

@) If p> 0ande; > 0, then

P2 (e) < PiR(e) = PR (e) = P} (e) = P} (e) = P)"*(e)
= P{'(e) = P2 (e) = Pi*(e) < P (e).

(i) If p <0ande; > 0, then

P (e) < PiR(e) = PN (e) = P)' (e) = P} (e) = P)*(e)
= PN (e) = P(e) = P(e) < P} (o).

From (2.15) in Example 2.6, it is seen that cumulagts, K;;; and J; ;; tend
to oo asp — +1. Hence, we need to examine second order powesdsfclose to
+1. From (2.13) and (2.15) it follows that second order powers of all test statistics in
Example 2.1 converge to O as— +1 at each fixed;.

In Figure 2.5, we plotted’;® (solid Iine),PzR2 (dashed line) ana]’;’\’2 (dotted line)
of Example 2.6 withw = 0.01, &; = 3 and—1 < p < 1. From Figure 2.5 it is seen
that second order powers of these statistics converge tpG-ast-1.

In Figure 2.6, we plotted’}® (solid line), P}> (dashed line) and’}** (dotted line)
of Example 2.6 withe = 0.01, & = 0.8 and—1 < p < 1. We can see that the
extreme points is close ttr1 in comparison with Figure 2.5.

Figures 2.5 and 2.6 are about here.

Next we consider the criterion of average povﬂgTr(sl,ez) + PZT(—sl,e:Z). Then
from Theorem 2.1 it is easily seen that for edCle S,

P (e1,62) + P} (—€1,62)
= (Kaﬂr + Ja,Br + Jﬂ,ar)dadﬂ‘gr{Gp,A(Z) - Gp+2,A(Z)}'

It is, therefore, clear that the average powers offale S are identical up ta'y'.
However, even in this situation, with a more detailed analysis it is possible to compare
tests inS in a meaningful way under suitable choice of criterion. Under the absence

14



of nuisance parameters, Mukerjee [33] showed that LR statistic is optimal in terms
of second-order local maximinity. However, in the presence of nuisance parameters,
optimality properties do not generally hold for LR test in terms of second-order local
maximinity. We can see the optimality of 'Rstatistic in terms of second-order local
maximinity. For each fixed\, let

PL(A) =minP] (), P (A)=minP¥ (e),
where the minimum is taken ovey such thatg;;s'e/ = A. Then we can get the
following result.
THEOREM 2.4. For T € S whose coefficients do not satisfy
ijk ia i ia rs
2(a3 " Blgjk + &' B Kapy) + (p + 2tds = g8 (Kars + Jars)} = 0,
(the coefficients of LRsatisfya’ “[3]g;x = —g'* BFY Kup, andal, = g'®g"* (Kops +
Jars)), there exists a positivA, such that
PL(A) < P (D),
wheneveb < A < Ay.

EXAMPLE 2.7. (i) In Example 2.4, W, W; and R, are most powerful in Example
2.1 except LR at each fixed; > 0 andp > 0 with an erroro(cy'). Hence,
we compare Wand LRY tests in terms of second-order local maximinity. Note
that the condition (2.9) holds. From Theorem 2.1 and Example 2.4,

PO = L] 162 () - G + 26100,
P = L {36780 + Gaa(0) — Gaale) + 3G1a0)}
Ty o p:)pz)sl{—Gs,A(z) T Gra)}
b 302 () ~ Gl

whereA = (g1)2(1 + p?)/(1 — p?)%. If p=1/2, A <1 anda = 0.05, then
(1-pHA'?

TSR
(1 _ ,02)A1/2

ISR

PR (A) = Pz”‘*{

PYY(A) = PZWI{

Thus we can see
PV (A) < PR (A,

wheneve) < A < 1.
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(i) If p < 0ande; > 0, then R, R; and W, are most powerful in Example 2.1
except LR with an erroro(cy'). Hence, we compare;Rand LR tests in terms
of second-order local maximinity. Then

3
PRI(e) = %(elf{g&,ﬂz) ~ Gs.a(z) — Gaal) + %GI,A(z)}
4(3p + )

(= )1 1 p1) 108l — Goa )

4 mel{G3,A(z) —G1a(2)}

If p=-1/2, A <1anda = 0.05, then

R ey pire [ (1= pD A2
e = i G )

Ry pRi [ (L= pP)AY?
P&‘ZI(A) —_— le{_W,F,‘z .

Thus we can see
PRI(A) < PR (D),
wheneve) < A < 1.

ExAMPLE 2.8. (i) In Example 2.5, W, W; and R, are most powerful in Example
2.1 at each fixed; > 0 andy > 0 with an erroro(cy'). Hence, we compare
W, and LR’ test in terms of second-order local maximinity. Fdr4(1) model
in Example 2.5, the condition (2.9) holds. From Theorem 2.1, we obtain

P (0) = s ) (G5.a() = 263.4(2) + Gra(a)h,
P 6) = (o0 =Gr(2) £ 205.4() = 262.4(2) + Gra ()
+ 2o =G3a() + Gaa )

whereA = (g1)?/(1 —¢2). If v = 1/2, A < 1 anda = 0.01, then we have
PI(A) = P{(1 =y ) PA2 gy}
PV (A) = P~ (1 —y?)2AY2 gy}
Hence,
PJN(A) < P (D),

wheneve) < A < 1.
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(i) If ¥ < 0ande; > 0, then R, R; and W, are most powerful in Example 2.1 at
each fixede; > 0 andy > 0 with an erroro(cy'). Hence, we compare;Rand
LR* test in terms of second-order local maximinity. From Theorem 2.1, we get

PRI(e) = #(elf{wm@ —Gs5.a(2) =2G2.4() + Gra(2)}
+ 6—w81{G5’A(Z) - GS,A(Z)}‘

1 —y?
If  =—1/2, A <1anda = 0.01, then
PEC(8) = P {=(1 =y 2A12 ey},
PRI(A) = PYY{—(1 -y 2AY2 6y},
Hence,
PE(B) < PT (),

wheneve) < A < 1.

2.4. Effect of nuisance parameters

In this section, we consider the case where the nuisance parafpetero,, is
known. Letd; = (9',....60%) be the maximum likelihood estimator 6f under
0, = 059. Any function evaluated at the poiét = 6, 6, = 6,, will be distinguished
by the addition of a horizontal bar. Then the corresponding statistics with that in
Example 2.1 are given by

LRy = LR} = 2(Iy — In),

Wio = Ig)t't!, Wi = Igpt't!, Wio= Lept't!, Wiy = Lept't/,

Rio=17Z:Z;, Ra=1)Z:Z;, Reo=1LYZ;Z;, Ru=1LY2,7;,

(2.16)
wheret! = ¢' (6" — 60), {L¢jy(0)} = L11(0), andI/ () and L (9) are the(i, /)
component of the inverse matrix éf; (6) andL,(0), respectively.

The stochastic expansions of test statistics in (2.16) are given by

To=17Z:Z; + ' (by + 2 1F1I'W,, 2, Z;
+ ijlIéi/l({j/l(l)ck/{sz,‘/j/k/ + (b3 + I)Ji/’j/k/}ZiZjZk + OP(CNI),

where the coefficientb;. b2, b3) is the same as in (2.7) aill); = Z;; — Ji.; 1Kz
Hence, we consider the following class of tests:

So=A{To | To =17 Z;Z; + e5'a  IIF I]'W,, Z, Z,
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+cy'ad 2,2, Zi + 0p (i),

underH, wherea; anda’sz are nonrandom constamts

For simplicity we assume the local parametric orthogonality at 6,, namely
ASSUMPTION2.2. I;, =0i=1,....p,r=p+1,....p+4q.
Then the clas$ can be written as
S={T|T=17Z,Z; + N ar [FI]' Wi Z: Z; + 2c3 1 ¢"*W;, Z, Z,
SR LYAVAY SRR (1) (L) CAVAVAVA
- C]Qllé]grtgsu(Kjrs + Jj,rs)ZiZtZu + C&Iagzi + Op(cl:ll)’
underH, Whereal,a;jk andag are nonrandom constafts

Thus the comparison betwednhand 7, with the same coefficient will illustrate
what influence nuisance parameters exert on the performance of test statistics. Then
we have the following theorem.

THEOREM 2.5. (i) UnderAssumption 2.2for T € S and T, € S, with the same
coefficient, the distribution functions &f are decomposed into

P90+CXI18[T < Z]

= P910+C;]181,020[T0 < Z]

1 — i_j.r
+ —en (Kijr + Jijr + Jjir)e el € {Gpi2.0(2) — Gp.a(2)}

2
1 o, | )
+ ECNI{I(ij)a; — 8" (Kirs + Jirs) }e'{Gpi2,a(2) — Gpa(2)} + O(CNI)-
(2.17)
(i) If
Kijr + Jijjr + Jjir =0, (2.18)
g7 (Kirs + Jirs) = 0, (2.19)

are satisfied, then the distribution function®Bfe S with 4} = 0 is equal to that
of Ty € Sy with the same coefficient & up to orderc](,l.

REMARK 2.4. The condition (2.18) agrees with (2.9) in Theorem 2.2 under Assump-
tion 2.2. If the condition (2.19) holds, then LR test is second order asymptotically
unbiased. Therefore, the third term of the right hand in (2.17) can be interpreted as
second order local bias in the usual likelihood ratio test (see Mukerjee [32]). In Sec-
tion 5, we will observe that this term can also be interpreted as an effect of nuisance
parameters in test statistics. Thus, we provide a decomposition formula of local pow-
ers for test statistics under local orthogonality for parameters.
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EXAMPLE 2.9. This example relates to the ratio of independent exponential means.
Let

P(X1, X2 f1, fla) = (MIMZ)_I eXp{—(lh_lxl + Mz_lxz)}’ X1,x2 > 0.

(i) If 6, = p1/p2 andB, = (u1p2)"?, then parametric orthogonality holds and
211(0) = (6)72/2 andg?*(K 125 + J1.22) = 0. Hence, the conditions (2.18)
and (2.19) hold.

(i) f 6, = (u1p2)'/? andb, = u, />, then parametric orthogonality holds and
211(0) = 2(0;)"* andg??(K 122 + J1.22) = (6;)~!. Hence, the condition (2.18)
holds and (2.19) does not hold.

EXAMPLE 2.10. Let{X,} be a Gaussiad RM A(1, 1) process with the spectral den-
sity
0,2 |1 _ 1peik|2
A)= ———.
(i) If 0, = o2 andb, = (p, ¥)’, then parameter orthogonality holds,

P B -1
gll(Uzv P, W) = (204)_1» IZZ(OZv P> W) = |:_((11 —Ij)ﬂ)k)_l ((11_ j;§21 ] )

2072 o2
Kixn(o?py) = T Ji220%, p, %) = T
2072 -2
K133(02,01/f) = 1_—w2, J1,33(02,p, w) = _m,
2072 -2
Ki23(0?py) = —m, 12302, p, ) = e

Hence, the condition (2.18) hold, ag® (K ,s + Ji.,s) = 20~ 2 shows that the
condition (2.19) does not hold.

(i) If 6, = (p,¥) andh, = o2, then parameter orthogonality holds,

S I R —1
Liia(p, ¥, 0°) = [ —((11 —’jﬂz)_l ((11_ ;;@21 :| ’

andg?3(K;3; + Ji33) = 0. Hence, the conditions (2.18) and (2.19) hold.

2.5. Unbiased test

We discuss the local unbiasednessfoE S. Under the absence of nuisance pa-
rameters, LR test is locally unbiased. However, under the existence of nuisance pa-
rameters, LR test is not generally locally unbiased. From Theorem 2.1, among the test
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statistics in Example 2.1, LRest is the only one which is second order asymptotically
unbiased unless;; g/*g"S (Kurs + Jars) = 0. If 2i;87%8" (Kors + Jors) = 0, then

LR = LR* + 0,(cy'). Hence, LR test is locally unbiased. SiriEes S is not gener-

ally unbiased, we consider modificationBfe Sto T* = h(0,)T + c;,lA"Zi so that

T* is second order asymptotically unbiased, whgi@ ) is a smooth function and’

is a nonrandom constant. The following theorem asserts that this is accomplished by
choosing4’ andh; (0,) = 9;h(6,) satisfy appropriate conditions.

THEOREM 2.6. Suppose thdi(0;) is a continuously two times differentiable function
with 1(6,9) = 1 and A4’ is a nonrandom constant. Then, fbre S, the modified test
T = h(él)T + c;,lA"Zi is second order asymptotically unbiased:if = £;(61¢)
and A satisfy

. ; ikl
() hi = =55 (gij87* BP Kapy + gijgmal’ [3)),
(i) A" = g"®g" (Kors + Jors) — db.

Forh(6,) andA’ satisfying (i) and (ii), respectively, in Theorem 2.6, from Theorem
2.1, we can get the asymptotic expansion of the distribution functidnof

THEOREM 2.7. Suppose that(;) and 4’ satisfy(i) and (ii), respectively, in The-
orem 2.6. Then, fofl" € S, the distribution function of the modified tegt’ =
h(O)T + cy' A'Z; under a sequence of local alternativés= 6, + cy'e has the
second order asymptotic expansion

3
Pyt T* <21 = Gpa(@) + ¢ ) m}Gpiajalz) + oley)),

j=0
where
I 1 o
m; = 6 apyd“dPd” mgijB“ﬁKaﬁyd”d’df
1 P ./ =/ / 1 .. ., ., ,
+ Ealzjkgngjfgkk/dl d’'d* — ma;jk[?)]gii/gjkgj/k/dl d’ d*,
1 o
mf=—— o . BYK . dVdd’
L i " g7 gk L ik ik
— Ealzf gigjj &rkd d d* + 0T 2)a’2’ Blgigingwd d’ dv .

* 1 1 o r r
my = 2 a:ﬂydadﬁdy o E(Kaﬂr + Jo,pr + Jpar)d dﬂ(d —¢&),

i 1
my = _E(Kaﬂy + 3Jgpy)d*dPdY

1
+ E(Kaﬂr + er,ﬁr + Jﬂ,ar)dadﬂ(dr - 5r)-
(2.20)

20



If p =1, then

- -
ay giingjy gk — a3y [31giirgjk gk = 0. (2.21)

(p+2)

In this case we observe that the coefficient§ m>, mT andmg in (2.20) are inde-
pendent ofl’ € S, and hence all the powers of the modified téStsare identical up
to second order. On the other handpift 2, then uniform results are not available.

ExamMpPLE 2.11. Consider thedA RM A(1, 1) model in Example 2.10 (ii). For test
statistics in (2.7),

a*gngjigrn = baKinn + (bs + DJi

2.22
= (1_2%(352 — b3 —1), (2.22)

and

L ij 3 ’ 1 y
_alzjkmg“gfkg“ = Zb2K1ijg”g11 + Z(b3 + 1)J1,i;31g" g1

4
3 60 4 }
=b
T =i (223
12039 — 10p2y2 — 8p% + 4y +2
(1=p)* (A =pP)p—y)
(2.22) and (2.23) show that (2.21) does not holds.

1
—(b 1
+4(3+)

We give factorizations of" € S as quadratic forms. By direct computatidn.e S
can be factorized as

T = g"T;T; + op(cy").
where
1 . ~ .
T = W + Sey'argig’* g WagWe + e 2187 2"* War Wi
I _ ikl 1 _ ;
+ —cn' gijay Wi Wy — —cn'gij g’ g P g" Kop, Wi Wi

2 2

1 _ . 1 . ~
- ECngijgjag”gsu(Kars + Joars) W Wy + chlgijag + OP(CNI).

Then the asymptotic mean @f underf = 6, is given by

| ikl 1 .
Eg,[Ti] = 50N1 gijgriay  — 50N1 2ii 878" (Kars + Jurs)

1 ; _
+ ECngija; + o(cy').
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Similarly, we consider factorizations @%, € S, as quadratic forms. The asymptotic
mean ofT;o underf = 6y, whereTo = 1/ TjoTjo + 0p(cy'), is given by

Eg[Tio] = %C?vl apTanas™ + o(cx)).
Under Assumption 2.24° in Theorem 2.6 can be written as
ey' A" =215 (Egy[Tjol = Eg,[Tj]) + o(cy)-
Note that the third term of the right hand in (2.17) is given By,[T;] — Eg,[Ti0]-

Therefore, this term (and hene€) can be interpreted as a effect of nuisance parame-
tersinT € S.
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Figure 2.1: For the bivariate normal model with correlation coeffictgnt p, both
meand), = u and both variancekin Example 2.4, second order powers of LR,%,R
R, and W, statistics are plotted PLR(¢) (solid line), PR (¢) (dotted line), Py (¢)
(dashed line) anaP;"’1 (¢) (dash-dotted line) witkk = 0.05 ande; = 1.
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second order powers

-1.0 -0.5 0.0 0.5 1.0

Figure 2.2: For the bivariate normal model with correlation coeffictgnt p, both
meand), = i and both variancesin Example 2.4, second order powers of LR,,R
R, and W, statistics are plotted PR (solid line), PsR" (dotted line), P (dashed
line) and P}"* (dash-dotted line) witkk = 0.05 ands; = 0.1.
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second order powers
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Figure 2.3: ForM A(1) model in Example 2.5, second order powers of LR, &id
R, statistics are plotted.P1® (solid line), P;N‘ (dotted line) amszRl (dashed line)
with @ = 0.01 ande; = 6.5.
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Figure 2.4: ForM A(1) model in Example 2.5, second order powers of LR, &vid
R, statistics are plotted P}® (solid line), P;N‘ (dotted line) andP2Rl (dashed line)
witha = 0.01 ande; = 0.65.
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Figure 2.5: Ford R(1) model in Example 2.6, second order powers of LR, aMd R
statistics are plottedPLR (solid line), P,'> (dotted line) andP,? (dashed line) with
o = 0.01 ande; = 3.
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Figure 2.6: Ford R(1) model in Example 2.6, second order powers of LR, aMd R
statistics are plottedPLR (solid line), P,'> (dotted line) andP,® (dashed line) with
o = 0.0l ande; = 0.8.
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3. Higher Order Asymptotic Option Valuation for
Non-Gaussian Dependent Returns

3.1. Introduction

There has been much demand for statistical analysis of dependent observation in
many fields, for example, economics, engineering and nature sciences. Financial en-
gineering is the application of engineering methods to financial problems. Time series
analysis enables financial engineers to measure and manage their financial risks and
to design and analyze sophisticated financial contracts.

One of the main topics in financial engineering is option pricing. Black and Scholes
[4] provided the foundation of modern option pricing theory. Despite its usefulness,
however, the Black and Scholes theory entails some inconsistencies. It is well known
that the model frequently misprices deep in-the-money and deep out-of-the-money
options. This resultis generally attributed to the unrealistic assumptions used to derive
the model. In particular, the Black and Scholes model assumes that stock prices follow
a geometric Brownian motion with a constant volatility under an equivalent martingale
measure.

In order to avoid this drawback, Jarrow and Rudd [23] proposed a semiparamet-
ric option pricing model to account for non-normal skewness and kurtosis in stock
returns. This approach aims to approximate the risk-neutral density by a statistical
series expansion. Jarrow and Rudd [23] approximated the density of the state price
by an Edgeworth series expansion involving the log-normal density. Corrado and
Su [9] implemented Jarrow and Rudd’s formula to price options. Corrado and Su
[10, 11] considered Gram-Charlier expansions for the stock log return rather than the
stock price itself. Rubinstein [38] used the Edgeworth expansion for the stock log
return. Jurczenko et al. [24] compared these different multi-moment approximate op-
tion pricing models. Also they investigated in particular the conditions that ensure the
martingale restriction.

As in Kariya [26] and Kariya and Liu [27], the time series structure of return series
does not always admit a measure which makes the discounted process a martingale.
Hence, we will not able to develop an arbitrage pricing theory by forming an equiva-
lent portfolio. In such a case, we often regard the expected value of the present value
of a contingent claim as a proxy for pricing maybe with help of a risk neutrality ar-
gument. In view of this, Kariya [26] considered pricing problems with no martingale
property and approximated the density of the state price by the Gram-Charlier expan-
sion for the stock log return.

In this chapter, we consider option pricing problems by using Kariya’'s approach.
In Section 3.2, we derive the Edgeworth expansion for the stock log return via ex-
tracting dynamics structure of time series. Using this result, we investigate influences
of the non-Gaussianity and the dependency of log return processes for option pricing.
Numerical studies illuminate some interesting features of the influences. In Section
3.3, we give option prices based on the risk neutrality argument. In Section 3.4, we
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discuss a consistent estimator of the quantities in our results. Section 3.5 concludes.
The proofs of theorems are relegated to Section 6.2.

3.2. Edgeworth expansion of log return

Let{S;;t > 0} be the price process of an underlying security at trading tinde
Jj-th period log returnX; is defined as

log S7,+ja —109ST,4(j—na = A+ AV2X;,  j=1,2,....N, (3.1)

whereT, is present timeN = t/A is the number of unit time intervals of length
during a periodt = T — T, andT is the maturity date. Then the terminal priSe
of the underlying security is given by

7 1/2 N
St = STO eXp{‘L’/,L + (N) ;Xj . (32)

REMARK 3.1. In the Black and Scholes option theory the price process is assumed to
be a geometric Brownian motion

St = S, exptpp + o W), (3.3)

where the procesgV;;t € R} is a Wiener process with drift and variance. From
(3.3), the log return at discreterized time point can be written as

109 S;4ja — 10981 (j—1ya = A+ AV%0v;, v ~iid N(0, 1). (3.4)
The expression of (3.1) is motivated from (3.4).

First, we derive an analytical expression for the density functiasy;ofSince from
(3.2) the distribution ofS; depends on that af y = N~!/2 ZJI.V:I X;, we consider
the Edgeworth expansion of the density functionZy§. If we assume thak’; are
independently and identically distributed random variables with mean zero and finite
variance, it is easy to give the Edgeworth expansiornAgr(the classical Edgeworth
expansion).

However, a lot of financial empirical studies show tijts are not independent.
Thus we suppose thatX;} is a dependent process which satisfies the following as-
sumption.

AssuUMPTION 3.1. (i) {X;;t € Z}is fourth order stationary in the sense that
(i1) E(X;) =0,
(12) cum(X;, X; 1) = cx2(u),
(13) cum( Xy, Xiquys Xiqu,) = cx3(ur,uz),
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(|4) Curr(XtaXt-l-ula Xt-i—uza Xt+u3) = CX)4(U1,U2, Z/l3).

(i) The cumulantsy  (u1, ..., uk—1), kK = 2, 3,4, satisfy
(o,]
Z (1 + |uj|2_k/2>|CX,k(u1, coUg—1)| < 00
UTseuny Up—1=—00

forj=1,...,k—1.
(iii) J-th order(J > 5) cumulants ofZy are allO(N ~7//2+1),
Under Assumption 3.1 (ii§ X;;t € Z} has thek-th order cumulant spectral den-

sity. Let fx x be thek-th order cumulant spectral density evaluated at frequéncy

o0

Sk =Qm)T DN (U, ug)

Ul yeuny Up—1=—00
fork =2,3,4.
First, we state the following result.

THEOREM 3.1. Suppose that Assumption 3i}-(iii) hold. The third order Edge-
worth expansion of the density functionf= (27 fx,)~'/2Zy is given by

/ /

g(z) = ¢(z){1 + %N‘”Z%Hﬂz) ~ Lyt
6 (fx.2)* 4 Jx2 (3.5)
oy Jxa 7 (Uxs)’? } i '

RN GO 3N (e By T

whereg¢(-) is the standard normal density functiofy (-) is the k-th order Hermite
polynomial and

Sr2= ) lulexa(w).

Uu=—0o0

Many authors have proposed to use different statistical series expansion to price
options (see Jarrow and Rudd [23], Corrado and Su [9, 10, 11], Rubinstein [38] and
Kariya [26]). Here we give the Edgeworth expansion for the stock log return in powers
of N71/2,

A European call option can be viewed as a security which pays atfinteholder
the amount

X7 = max(Sr — K, 0),

where K is the exercise or strike price. As in Kariya [26], we pri&g by its dis-
counted expected value;

C = exp(—r1)Er, (X3), (3.6)
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wherer is the interest rate which is regarded as a constant for the remaining period
t and Er,(-) is evaluated affy,. Evaluate (3.6) based on the density in (2.5). Then
writing

dy = (logSt,/ K + tit + 27t fx )/ Qrfr2) ',
d, = dy — (271er,2)1/2,

we obtain the following theorem

THEOREM 3.2. Leta; = exp(—rt) anda, = exp(tu + wtfx>). Then

2m)/? 1 4
C = Go+ F N fX’33 ~G3 — —N_I&Gz
6 (fx,2) / 47 Jx,2
T x4 /4 (fx3)? G-
+ =N 222G+ =N Gg +o(N 7Y,

12 (fx,2)? 36 (fx,2)?

where

Go = a{a,St,®(d;) — K&(d>)},

k-1
Gk = a1a, 8T, {Z(27TTfX,2)j/2Hk—j—1 (—=d2)gp(dy) + (2YTTfX,2)k/2q>(d1)},

j=1
fork = 2,3,4,6, whered(-) is the standard normal distribution function.

From (3.7) it is seen that the asymptotic expansion of the option price depends on
Jx2, fx o Jx3 and fx 4. Hence, we can see influences of the non-Gaussianity and
the dependency of the log return processes for the higher order option valuation.

COROLLARY 3.1. Write

C=Gy+N " Cop + N 'Co3+ N 'Cos+0o(NTY),

where
_(27T)1/2 Sx3

Cor =
V4 fX4 7T(fX3)2

Cn, = — =G — =",

S T R U T 36 )
1 fx.,

Cos = —— X2,

D,3 4]_[ fX,z 2

If {X;;t € Z} is independent, theGp; = 0. If {X,;t € Z} is a Gaussian process,
thenCG’z = CG’:; = 0.
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EXAMPLE 3.1. Suppose thak’;, j = 1,..., N, are independently and identically
distributed random variables. Let » = cxx(0), kK = 2,3,4. Note thatf)’(,2 = 0and
fxx = Qrn)~*Dey i, k = 2,3,4. The price of a European call opti@hp is given
by

Cip = Go + lN_l/2 X3 L y-1_oxa

G — G
6 (cx2)?2 T (cx2)?
1 -1 (cx 3)2 —1
— G N7,
TN (o Gt o)

whereGy, k = 0, 3,4, 6, are defined in Theorem 3.2 with » = 27) lcx.o.
If w =r—cx,/2,thena,a, = 1 so thatG, equals the Black and Scholes formula.

EXAMPLE 3.2. In Example 3.1, suppose that, j = 1,..., N, are distributed as
t-distribution withv degrees of freedom. Then, for> 4

C,=Gio+ NG5 +0o(N7Y,
where

Gio = a1{a,St,®(dy) — K®(d,)},

— ex 4 TV
a = p TI’L 2(]} . 2) ’

1/2
TV TV

d] = (logSTO/K—i_T/}“—'_sz) / (U—Z) ,

v \ /2
d, =d; —
2 1 (v—2) ,

a;a> S ’ v /2 2
— 0 . — —

o = 2n {;(v_z) iy o + (25 @(dl)}.

In order to show influences of higher order terms, in Figure 3.1, we plGited=
G, (dotted line) and’; ; = G, o+ N~'G, ; (solid line) of Example 3.2 witts7,, =
K =100, 7 = 30/365, N =30 (A =1/365),r = u =0.05and4 < v < 9. From
this, we observe that, ; diverges ag — 4.

Figure 3.1 is about here.
EXAMPLE 3.3.Let{X; :t € Z} be the ARCHL1) process
X; = htl/zm and  h; = Yo + Wlth_l,

wherey, > 0, ¥y > 0, {n, : t € Z} is a sequence of independently and identically
distributed random variables with

Em,) =0, Em) =1,
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E(®;) =0, EmH=m, m>1,

andn; is independent ok’;_;, s > 0. Then

1
Jxp = 771 1_#(1//1, Jx3 =0, Jx2 =0,
s m 1 Y2(m =3+ Smyy — 3¢, + 2myr2 — 2myr3)
T @ny (1 =913 (1 — my}) |

for ma3 < 1. Hence,
CarcH1) = GarcH@),0 + N1 GarcH),3 + O(N_l),
where

GARCH(l),O = 6116125T0q>(d1) —a K®(d,),

=]

_ Yo o '’
= (lasn/ic v 20) [ (F25)

1/2
d2=d1—( T ) ,

1=
G _ayayStym =3+ 5myy — 3¢y + 2my — 2my}
AREIDA T g 1=y (1 —my?)

’ Yo jr2 o \2
% {;(1_%) Hy_j(—dy)p(dy) + (l—wl) <I>(d1)}.

In Figure 3.2, we plottedeRCH(l),l = GARCH(l),O (dotted |ine) anCCARCH(l)’g, =
GARCH(l),O + N_IGARCH(]_),3 (SOlld ”ne) of Example 3.3 WithTO =K =100,7t =
30/365, N = 30 (A = 1/365), r = u = 0.05,m = 3, ¥ = 0.5and—1//3 <
Y1 < 1/+/3. Figure 3.2 illuminates influences of higher order terms under Gaussian
innovations. From this, we can see tldakcr(y,; diverges agy; — +1/4/3.

In Figure 3.3, we plotte@arch(),1 (dotted line) andCarcr(,s (solid line) of Ex-
ample 3.3 withS7, = 100, K = 95,7 = 30/365, N = 30,7 = u = 0.05, o = 0.5,

Y = 0.3 andl < m < 9. Figure 3.3 illuminates influences of non-Gaussian innova-
tions. From this, we observe th@ircn(1),3 decreases as — 9. The first order term
CarcH(1),1 IS @ constant because of independence from

Figures 3.2 and 3.3 are about here.
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Next we consider option pricing problems for a class of processes generated by
uncorrelated random variables, which includes the linear process and an important
class in time series analysis. Here we are concerned with the following process

o0
X, =) aje,j. 1€Z, (3.8)
j=0

where{e;;t € Z} is a sequence of uncorrelated random variables. Instead of (i) and
(i) in Assumption 3.1 we make the following assumption.

ASSUMPTION 3.2. (i") {e;:t € Z} is fourth order stationary in the sense that
(") E(e;) =0,
(i’2) Var(e;) = o2,
(I/S) Curr(gta 8t+u1 s gt-i-uz) = 68,3(1/[1 s 1/[2),

(i"4) cum(es, &rquys Ertuss Et4us) = Cea(Ur, Uz, U3).

(ii") The cumulants, x(uy, ..., ux—1), k = 3,4, satisfy
o0
Z (1 + o P75 2) eouc s, .. ug—1)] < o0,
Ut,..., Ujg—1=—00

forj=1,...,k—1.
(iii”) {aj; j € Z} satisfies
o0
> A+ 1jDlaj| < oo.
j=0

Under (if) in Assumption 3.2%¢,;t € Z} has thek-th order cumulant spectral
density. Letf. x be thek-th order cumulant spectral density evaluated at frequéncy

oo

Jer = Qm)~® DY e uk)
for k = 2,3,4. The response function ¢f;; j € Z} is defined by
AN =) aje™*
j=0

for—n <A <m.
Under ()-(iii ") in Assumption 3.2, (i) and (ii) in Assumption 3.1 hold. Hence, from
Theorem 3.1, we have
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COROLLARY 3.2. Suppose thati’)-(iii") in Assumption 3.2 andiii ) in Assumption
3.1 hold. Leta; = exp(—rzt),a = exp(r,u + %razAz) andA4 = A(0). Then

2m243 |
€ = Got 3N ™ s = N7 1126
T3 2a4 _
+ FN l_f:e,4G4 + mN ! 6?3G6 + O(N 1),

where

o0
fla=2 )" lhlajaj )
jlaj2=0

Gr,k =0,2,3,4,6, are given in Theorem 3.2 with

2
o
fX,Z == —Az.
2

EXAMPLE 3.4. Let{X;;t € Z} be AR(1) process
X[:/OXI—I_'_SI’ |,0|<1.

Note that
1 2p
A= ——, fl, = :
1—p 27 (14 p)(1—p)?

The price of a European call opti@hgr() is given by

Car) = Gar@),0 + N_I/ZGAR(l),Z + N7'Garays + o(N 7Y,
where

Gar@),0 = a1{a281,9(dy) — K&(d,)},

272
Gar),2 = Tfs,3G3,

3 27 5
Gy + 34 JeaGa+ ﬁ(fsﬂ) G,

Gar@w),3 = T1—p

ex N 702
a, = T SN

102 12¢
4= {IO(‘]’ST‘)/KJFWJr (1 —p)z} / (1 —p)’

1/2

T o
e (202)
—p

k—1 1/2

J 1/2
Z (i _Z) Hy_j_i(=dy)p(dy) + (: — Z)

j=1

k

Gy = alazSTo{ Cb(dl)},
fork =2,3,4,6.
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In order to show influences of higher order terms, in FigureGaé¢1),1 = Gar),0
(dotted "ne),CAR(]_),z = GAR(l),O + N_I/ZGAR(]_)’Z (daShed ”ne) anGCAR(l),3 =
Gar@.0 + N7V2Gar@) .2 + N 7' Garqy).3 (solid line) of Example 3.4 are plotted with
St, = K = 100, T = 30/365, N = 30 (A = 1/365), r = u = 0.05,0 = 1,
fxs = —0.1, fxs = 0.2and—1 < p < 0.75. From this, we observe thétgra)x,

k =1,2,3 diverges ap — 1.

Figure 3.4 is about here.

In Examples 3.2 and 3.3, although the third order terms diverge, the first order
terms do not diverge. On the other hand, in Example 3.4, even the first order term
does not converge as— 1. This fact is attributed to finiteness of the variances.

3.3. Martingale restriction

In the previous section, we considered pricing problems with no martingale prop-
erty. Now we recall that the theoretical price of a option is based on the risk neutrality
argument. In this section, to investigate influences of the martingale restriction. we
derive the option price based on the risk neutrality argument (see Cox and Ross [12]
and Longstaff [31]).

Let

dy = (logSt,/ K + 17 + ntfy2)/Qrtfra)'/?,
d} =df — Qutfya)'?
Then we have

THEOREM 3.3. The fair priceC* of a European call option is given by
1/2 /
(27[) / N—1/2 fX,3 G;_LN—] fX,ZG;k
6 (fx.2)3/? 4m Sx 2
2

TR a2 T8 e

C* =Gy +
(3.9)

Gl +

where

Gy = St,®(d}) — e "TKP(d3),
k-1
G; = St, Z(Zn—-[fX,z)j/sz_j_l(—d;)(ﬁ(d;k),

j=1

fork = 2,3,4 and

G; = St, |:Z(27fffx,z)j/2{H5—j (=dy) —2ntfx 2 Hs_ | (—d;)}}ﬂdik)-

Jj=1
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EXAMPLE 3.5. Suppose thaf;; ¢ e Z}is AR(1) process in Example 3.4. Then the

fair price of a European call optiofi AR(D is given by

—1/2 -1 -1
:R(l) = G,:R(l),o +N7Y G;R(l),z + N G;R(lm +o(N7),
where

G;R(l),o = STocD(d;k) - e_”Kq)(d;),

272
XR(l),Z = _303 fe,SG*’

3 4
P b/ 2
AR = _ﬁG; + g fealat ﬁ(fs,a)zG*,

102 124
d¥ ={logSt./K S
‘ {Og o/ +”+2<1—p>2}/(1—p)’

1/2

& =d _(l—p)’

k—1 1/2
G; = St,

> (=) Hk-j_l(—d;w(dr)},

j=1

fork =2,3,4and

1/2

* : o g * 702 * *
Gg = St, []X:;(: —,0) {HS—j(—dz) - mH3—j(_d2)}:|¢(dl)'

In Figure 3.5, we plotted”* = G} (dotted line),Car (1), = Gara.o T

AR(l) 1 AR(1),0
1 2 1 2 1
N~ G*R(l) , (dashed line) and’ AR @3 = G;‘(R(l) o tN™ G;R nat N~ G;R(l) 3

(solid line) of Example 3.5 withSg, = K = 100, v = 30/365 N =30 (A =
1/365), r = 0.05,0 =1, fx3 = —0.1, fxs = 02and—-1 < p < 1. Unlike
Example 3.4, we observe th@jra) .k, K = 1,2, 3 converge taSt, (= 100) asp — 1

3.4. Estimation

From (3.1),X;-n,, / = 1...., No, are available, wher&/, = T,/A. Therefore,
in this section we consider to estimate fx , f)’(’z, Jfx and fx 4 in Theorems 3.1
and 3.2 consistently based on the past observations. From (i) in Assumptiaxy3.1,
is the mean of stock log returns. Hence, a natural unbiased estimatds tife sample
mean

=< N Z{Iog Sja =109 S(j-na}, (3.10)
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The variance ofi is given by

| No—1
Var(ft) = NG Z (1 — %)CX 2(u).

O u=—(No—1) 0

Hence, under (ii) in Assumption 3.4, given in (3.10) is consistent estimator of
Moreover in order to construct consistent estimatoy pf, we define the lag win-
dow functionw(-) which is an even and piecewise continuous function satisfying the

conditions,

w(0) =1,
lw(x)| <1, for all x, (3.11)
w(x) =0, for |x| > 1.
Let
No—1
fxa= Y. lulex2(ww(Bu,u),
u=—(No—1)
wherecy »(u) is the sample autocovariance function atdag
No—|ul

Cxp(u) = ——— {109 S(j+iupa — 109 (i +u-na — AfL}
AN, (3.12)
j=1 '

x {logSja —109S¢i-1a — AL},
and By, — 0 asNy, — oo, but(By,)* Ny — oco. Then we can easily see that under
(i) in Assumption 3. 1fX , givenin (3.12) is a consistent estimator gf , .

Since fxx, k = 2, 3,4, are thek-th order cumulant spectral denS|ty evaluated at
frequencyO, using Brillinger and Rosenblatt [6, 7] formula, we construct consistent
estimatorsfx,k of fxx (k = 2,3,4). See also Brillinger [5]. Thus we can consis-
tently estimate all the quantities in Theorems 3.1 and 3.2 (€,9.; = 0,2,3,4,6.)
by the corresponding quantities replacipg fy, and fxx by f, f)/(z and fAX,k
(k =2,3,4). ’ ’

For example, we discuss a consistent estimator for New York stock exchange data.
The data are daily returns of AMOCO, FORD HP, IBM and MERCK companies. The
individual time series are the last 1024 data points from stocks, representing the daily

returns for the five companies from February 2, 1984, to December 31, 1991. We used
the window functions

2_(k_1) |f |u1|,...,|1/lk_1| S 1,
0 otherwise

W(Lll,...,uk_l) = {

for ka (k = 2,3,4) and Letw(u) = 1 for |u| < 1, wherew(u) is defined in
(3 11). Also we used the bandwidth in frequency direction witl}, = 1/50 for

fX 2, Bn, = 1/30 for fX3 and By, = 1/10 for fX4 ande2 (see Brillinger and
Rosenblatt [6, 7], and Brillinger [5]).
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Table 3.1: Values of Consistent estimators

AMOCO FORD HP IBM MERCK
n 0.235103| 0.045337| 0.133815| 0.017165| 0.481340
fX,z 0.002937| 0.016006| 0.016202| 0.003085| 0.004534
_Jx3 | _0.706149| -3.078889 8.501363| 0.470144| 2.419969
(fx.2)3/2
(fij—A)2 2.278478| -0.280973| 8.651378| 15.0914 | -2.249174
Y2
% -22.78799| -5.520428| 0.169291| 27.18047| -37.3221
X2

Table 3.1 show these values of consistent estimatoys, ofy , and fyx (k =
2, 3,4) for the five companies. From this result, we can see that the guantities in-
volved in higher order terms is quite different from the Black and Scholes model.
Therefore, in general the assumptions of the Gaussianity and the independency of
stock log returns will not hold.

Table 3.2: Option prices

MERCK

4.689151
4.495491
4.650024

HP
4.472833
4.434833
6.392765

IBM
1.699889
1.700269
1.374588

FORD
4.031663
3.979554
4.345765

AMOCO

2.776419
2.809884
2.881406

G
G
G

Table 3.2 show these values of the approximation up to thedirssecond’, and
third orderC; of the option prices withS7, = K = 100, = = 30/365, N = 30,
r = 0.05. From this result, we observe that option prices are strongly affected by
third order terms except for AMOCO and MERCK.

Table 3.3: Fair prices

MERCK

2.138307
2.124842
2.459177

HP
3.849221
3.954549

6.09142

IBM
1.80241
1.798532
1.481998

AMOCO

1.764254

1.769475
1.83751

FORD
3.827175
3.784867
4.111153

o
¢y
¢

Table 3.3 show these values of the approximation up to thedifstsecondC
and third orderC; of the fair prices withS7, = K = 100, r = 30/365, N = 30,
r = 0.05. From this result, we observe that option prices are strongly affected by third
order terms.
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3.5. Concluding remark

The Black and Scholes model assumes the Gaussianity and the independency of
stock log returns. Empirical studies, however, report that they are not Gaussian nor
independent. In this chapter, dropping these two assumptions, we derive a European
option pricing. Then, we observed that option prices are strongly affected by the non-
Gaussianity and the dependency of stock log returns. Hence, it should be noted that we
use option pricing models taking account of the non-Gaussianity and the dependency

of stock log returns.
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Figure 3.1: For-distribution withv degrees of freedom in Example 3.2, the approxi-
mation up to the first, ;, dotted line) and third ordex, ;, solid line) of the option
price are plotted wittS7, = K = 100, t = 30/365, N = 30,r = u = 0.05 and

4 <v<09.
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-0.58 -0.25 0.0 0.25 0.58

Figure 3.2: For ARCH(1) in Example 3.3, the approximation up to the gt )1,
dotted line) and third orde{arch(1),3, solid line) of the option price are plotted with
Sr, = K = 100, = 30/365, N = 30,7 = p = 0.05,m = 3, ¥, = 0.5 and
—1//3 <y < 1/4/3.
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Figure 3.3: For ARCH(1) in Example 3.3, the approximation up to the fifgtn),1.
dotted line) and third ordei{arch(1),3, Solid line) of the option price are plotted with
S, = 100, K = 95,7 = 30/365, N = 30,7 = pu = 0.05, Yo = 0.5, ¥, = 0.3 and

I <m<09.
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Figure 3.4: For AR(1) in Example 3.4, the approximation up to the fitak(),1,
dotted line), second({ar(1),2, dashed line) and third orde€{r1),3, solid line) of the
option price are plotted wit§r, = K = 100, ¢ = 30/365, N = 30,r = p = 0.05,
o=1, fx3=-0.1, fx4=0.2and-1 < p < 0.75.
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Figure 3.5: For AR(1) in Example 3.5, the approximation up to the f@k& iy
dotted line), seconot(AR 1.2 dashed line) and third ordeﬁ?(R 1.3 solid line) of the
option price are pIotted WItkﬂTO = K = 100, t = 30/365, N 30, r = 0.05,

o=1, fx3 =-0.1, fxa=02and—1 < p < I.
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4. Second Order Optimality for Estimators in Time
Series Regression Models

4.1. Introduction

The problem of efficiently estimating the coefficients in a linear regression model
has been investigated widely. When the error covariance matrix depends on unknown
parameters, the regression coefficients are often estimated by generalized least squares
(GLS), using appropriate consistent estimators of the parameters. It is well known
that standardized GLS estimators have the same limiting distribution as the best linear
unbiased estimator. Rothenberg [37] gave higher order approximations to the distri-
bution of GLS estimators. Toyooka [50, 51] derived the asymptotic expansion of the
mean squared errors (MSE). Since these methods are parametric, standa¥d root
asymptotics hold for time domain GLS estimators, wh¥re the sample size.

If the autocorrelation structure of the unobservable residuals is not parameterized,
we then construct efficient estimators by spectral methods. This technique is semi-
parametric since it relies on a nonparametric spectral estimator of the residuals.

The semiparametric method of a linear regression model was introduced by Hannan
[18], who showed that a frequency domain GLS estimator achieves asymptotically the
Gauss-Markov efficiency bound under smoothness and Grenander’s conditions on the
residual spectral density and the regressor sequence, respectively.

There are principal differences between parametric and nonparametric estimation
technique that are often given in terms of consistency and rates of convergence. Ve-
lasco and Robinson [52] derived Edgeworth expansions for the distribution of non-
parametric estimates. Taniguchi et al. [49] discussed higher order asymptotic theory
for minimum contrast estimators of spectral parameters. They established that for
semiparametric estimation it does not hold in general that first order efficiency im-
plies second order efficiency.

The semiparametric estimation entails the problem of the bandwidth selection. Ap-
plications of higher order asymptotic expansions to this problem have been studied by
many authors. Robinson [36] studied frequency domain inference on semiparamet-
ric and nonparametric models in the presence of a data dependent bandwidth. Linton
[29] investigated the second order properties of various quantities in the partially lin-
ear model. Xiao and Phillips [54] gave higher order approximations of the MSE of
the frequency domain GLS estimators. Linton and Xiao [30] derived asymptotic ex-
pansions for semiparametric adaptive regression estimators. They discussed the band-
width selection based on minimizing the (integrated) MSE. Also Xiao and Phillips
[55] discussed higher order approximations for Wald statistics in frequency domain
regressions with integrated processes.

Taniguchi et al. [47] established the rat asymptotic theory for functionals of
nonparametric spectral density estimators. This is due to the fact that integration of
nonparametric spectral density estimators recovers¥ominsistency. Since the Han-
nan estimator is based on integral functionals of nonparametric estimators, it may be
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expected that the Hannan estimator has attractive properties in higher order asymptotic
theory.

In this chapter, we will develop the second order asymptotic theory for the fre-
guency domain GLS estimator proposed by Hannan [18]. First, we give the second
order Edgeworth expansion of the distribution of the Hannan estimator. Next, we show
that the bias-adjusted version of the Hannan estimator is not second order asymptoti-
cally Gaussian efficient in general. Of course, if the residual is Gaussian, it is second
order asymptotically efficient. As in Xiao and Phillips [54], if the error is a Gaussian
process, then it holds that first order efficiency implies second order efficiency.

An interesting result in this chapter is that the second order asymptotic proper-
ties are independent of the bandwidth choice for the residual spectral estimator. This
implies that the Hannan estimator has the same rate of convergence as in regular para-
metric estimation. This is a sharp contrast with the general semiparametric estimation
theory, where it is known that the second order asymptotic properties are strongly
influenced by the bandwidth (e.g., Taniguchi et al. [49]).

This chapter is organized as follows. Section 4.2 gives the basic assumptions enter-
tained in this chapter. Section 4.3 gives a number of preliminary results and the main
results on the second order Edgeworth expansions. Section 4.4 reviews the concept of
efficiency which is introduced by Akahira and Takeuchi [1]. Section 4.5 contains the
discussion on Gaussian efficiency. Proofs are relegated to Section 6.3.

4.2. The model

We consider the following linear regression model

y(t) = B'x() +u(), t=1,...,N, (4.1)
where x(1) = (x1(¢),...,x4(t)) is a known vector and nonrandom design se-
quence,B = {Bjk} is a (g x p)-matrix of unknown regression parameters, and
u() = (u1(t),...,up(t))" is an unobserved stationary residual.

The vector process(¢) is supposed to satisfy the following assumption

AssumMPTION 4.1. (i) {u(z)}is alinear process generated by

u(t) = Y Als)e(t — ).
wheree(t) = (e1(2),...,&,(t)) are independent identically distributed random

vectors with Bs(7)] = 0, Ee(¢)e(¢)'] = G and finite absolute moments.

(i) The (p x r)-matricesA(s),s = 0, =1, ..., satisfy

>+ [sP)AB)] < oo,

§=—00
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where|| A|| is the square root of the greatest eigenvaluetdbfl and A* is the
conjugate transpose of a matrilx Then{u(z)} has the spectral density matrix

1 = —isA
F(\) = Zszzoor(s)e ,

wherel'(s) = Elu(@)u(t + s)'].
(iif) There exists a positive constapt such that
de{ F(A\)} >y, >0
for A € (—m, ).

REMARK 4.1. Assumption 4.1 (i) and (ii) are satisfied by a wide class of time series
models which contains the usual VARMA processes. Under (i) and (ii) in Assumption
4.1, the jointk-th order cumulants af;, (s), uj,(s + s1), ..., uj, (S + Sk—1)

Lo (1 ey Sk—1) = Cum(k)[ujl(s), Uj, (S +851), ..., uj, (S + Sk—1)]

exist and satisfy

oo

Y AT S skmD) <000 Jive k=1 p

§1 50005 Sk—1=—00

forl =1,...,k — 1. Then{u(¢)} has thet-th order cumulant spectral density
Fi iy oo Ak—1)

1 k—1 00 ‘
— ( ) Z T, i (s1,. .., sk_l)e—l(sl}nl+~-~+Sk—1)~k—1)_
S

27
1seees Sp—1=—00

Assumption 4.1 (i)-(iii) imply thatF(1)~! exists and has the Fourier series represen-
tation

FO)™' = % DAt T A+ IsPIA)] < oo

§=—00 §F=—00

This follows from an application of a famous theorem due to Wiener (see, for example,
[53, Section 12]).

Letd;(N) be the positive square root Qfﬁil{xj (t)y*forj=1,...,qand
Dy =diag{di(N),...,ds(N)}.

We impose some assumptions{or(z)}.
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ASSUMPTION 4.2. (i) {x(¢)} is uniformly bounded; that is, there exists a positive
constanty, such that

supx; ()| <y,, j=1,....q.

teZ
(ii) There existsy, > 0 such tha{d;(N)}* > y,N for j = 1,....q.

(ii) There existn; such that

Y x(0)
J _ arl/2 -1/2 .
—— =N i+ O(N , =1,...,q.
;:1 Z(N) nj + O( ) q
(iv) There exist regression spectral measu¥gs_ j, (A1, ..., Ax—1) such that

i xj, (X5, +11) - x5 (1 + li—1)
=1 d]l(N)d]k(N)
= N k/2+1 / / ei(ll)vl+'"+lk—1kk—1)delmjk(kl’ e e)
+ O(N7*/?)
fork =2,3,....

(v) R(0) is nonsingular. Her&R (0) is the(¢ x ¢g)-matrix given by
R() = / e amM@m), 1=0,+1,...,

whereM (L) = {M;r (1)}

REMARK 4.2. Assumption 4.2 is a higher order version for Grenander’s conditions.
For example, linear combinations of harmonic functions satisfy Assumption 4.2 (i)-
(v). Let us consider a example of and M, _j, (A1, ..., Ak—1).

EXAMPLE 4.1 (Harmonic trend) Supposex; (1) = cosv;t, j = 1,...,q, where
0 <v; <--- <y <m. From the relation

Sin(N + 1/2
Zcost { (N + /)”—1}, V£ 0,427, ...,

sinv/2

it is seen that

X](t) 1 _1/2 Sln(N+1/2)V] . } -3/2
;d(m 5N { S s oW,

which means); = 0.
It is well known thatd (A) has a jump dia@,...,0,1/2,0,...,0) (1/2 is in the
Jj-th diagonal) ak = +v;.
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To construct the Hannan estimator, we use the spectral wirligw) and the lag
window w(-) which satisfy the following assumption

ASSUMPTION 4.3. (i) The functionWy (1) can be expanded as
1 M /
1%% 2 Z Y -
v = 2m & w(M )e '

(i) w(x) is a continuous, even function with(0) = 1 andw(x) = 0 for |x| > 1,
and satisfies

lwx)[ = 1,

o l—w
lim J
x—0 |x|2

(i) M = M(N) satisfies
M/N'Y*+ NY*/M -0 asN — .

REMARK 4.3. It is easy to see that the Tukey-Hanning window and Parzen window
satisfy Assumption 4.3 (i) and (ii) (see Hannan [19, pp. 278-279]).

As in Hannan [18], we define for two sequengeés) andx () of N scalars
M N-I

Fru) = w(ﬁ) Y ymyxm + e,
M

2n N
I=— m=1+1[

where/ = max0, —/) and/ = max(0,/) for/ € Z.
This serves to define all such functions as

Fype V), Fyj (M), Fuyun V), Fyn (M), Fuyn (1)
We also use the matrix notation
Fyy) = 1{Fy M)}, Fax() = {Fane W)}, Fuuh) = {Fuyu (M)},
Fyx()‘) = {ijxk ()‘)}v Fux()‘) = {FXij ()\)}

Itis not assumed that all of them are estimates of well defined spectral density matri-
ces. Indeed,, (1) is constructed from the actualr) and not estimates of them.
We consider a frequency domain version of (4.1), viz.

ﬁyx()‘) = B,Fxx()‘) + ﬁux()‘),
which we rewrite in the tensor notation

Fox ) = {1, ® Fxx (W' }B + fux(V),
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where £, (1) = ved F,x(1)'], fux(A) = ved F.x(L)'], B = vedB], and1, is the
(p x p) identity matrix.
The Hannan estimator ¢ in an integration version is given by

3 _ 1 = -1 [ / -
:8 - [E /;n Fuu()‘) ® Fxx()\) d)‘i|

- (4.2)
x [E /_ (Fue) @ 1) fyx(k)dk].

T

Since the actual(z) is unobservable, the quanti@uu(k) is infeasible. Therefore,
we useFy, (1) for the estimate of"(1) obtained from the residuals(r) = y(r) —
B\ s'x (1), from the least squares regression. Tigp(A) can be calculated directly as

Fuu() = Fyy(h) — Fyxe(M) Bus — Bus' Fey(M) + Bis' Fax (M) Bis.

Hannan [18] showed that under very general conditigﬁnis, first order asymptot-

ically Gaussian efficient; that is, the distribution (@}, ® DN)(/S3 — ) converges as
N — oo to the multivariate normal distribution with zero mean vector and covariance
matrix given by

-1 __ 1 " —1 /_1
7 _[E/_nF(m ®dM(x)} :

(see also Hannan [19]).

4.3. Second order asymptotic theory

It is well known that integration of nonparametric estimators recoversi;oobn-
sistency (cf. Taniguchi et al. [47]). Singein (4.2) is based on integral functionals of

nonparametric estimators, it may be expected ;ﬁﬁms attractive properties in higher
order asymptotic theory. Thus we consider the second order asymptotic properties of

the estimatop. First, we give the following theorem.

THEOREM 4.1. The stochastic expansion fof, ® DN)(E — B) is given by

(I, DN)(B—B) =T7'Z, — N™V2T7Y(Z, — E[Z,]) — N™V/2T7'E[Z,]
+ N V2171 2070 7 4+ 0,(N7V?),

where
N [T _ oA
Zl = E {F()\) ! X DN l}fux()‘)d)\,
3/2 T N
Z, = {FO)T'VIOQ)FA) ™' ® D'} fux(V)d A,
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N3/2 i -1 —1 -1 7 / -1
2= [ PG Vi) © 1Dy Fran Dy,

Vi(k) = Fuu(h) — E[Fu(V)].

Next, we evaluate the asymptotic cumulantsf j = 1,2, 3 given in Theorem
4.1. Denote byZ(jk) andZ,(jk) the(j — 1)q + k-th component of the vectoi,
andZ,, respectively. Similarly, denote b¥;(j, k1, jok2) the((j1 — g + k1, (2 —
1)q + k»)-th element of the matri¥;. Then we have the following lemma.

LEMMA 4.1.

E[Z,] =0,

P
E[Z>(R) = ) Kijijn(0,0) Fjy 1, (0)mk + o(1),
J1,J2=1
E[Z;] =0,
CoZ] =T + o(N~/?),
CoMZ;. Zy] = O(M/N'/?),

CoMZ,(jiki1), Z3(jaka, j3ks)] = % _Z K jajs Ay =AMk, d My iy (M) + 0(1),
cun{Z(jik1), Z1(j2k3), Z1(j3ks)]
=N [ K G Ryt . Ra) 0N,
where
Kiki (i ha) = FI7(=hy = k) F ) F' (ha) Fyeo (—ha, =),

and F/* (1) is the(j, k)-th element of the matri¥'(1)~!. Here we use the Einstein
summation convention.

Denote byZ/1k1:72k2 the ((j; — 1)g + k1, (j» — 1)q + k»)-th element of the matrix
Z~'. From Theorem 4.1 and Lemma 4.1 the asymptotic cumularn(tg,ab Dy)(8 —
B)ik = dx(N)(Bkj — Pkj) are evaluated as follows:

E[(I, ® Dn)(B — B)j]

b
= —N~'2gika Z K123 (0, 0) Fjy 5 (0) 1,

J2,J3=1
_ | B . . T
+N 1/25111%]11(11]2/(2,]3/%[ ICjz.jljz()\»_)\)nkdeklkz()‘)
—TT

+ O(N—I/Z)
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— N—1/2Cjk + O(N—I/Z), (say),
CoM(Iy ® DN)(B — Bjuks- Up ® DN)(B = Pljai] = /1722 4 o(N7H12),

cuni(Z, ® Dn)(B — B)juy» (I ® DN)(B — B)jskss (I ® DN)(B — B)jsis]

— N~1/2 Lzhkl Tk Tiakasjoks Tisks, i3k,
2

X / / Kjr 5551, A2)d My iy i, (A1, A2)
—T J—TT
+o(N712),
— N~V2ciiki.j2kz,j3k3 +0(N_1/2), (say).
The L-th order cumulants of/, ® DN)(,é — B);« satisfy

cumD[(1, ® DN)(B — B)jrkys- -+ (Ip @ DN)(B — B)jii, ] = O(NL/2HY)

for eachL > 3.
From the general Edgeworth expansion formula (e.g., Taniguchi and Kakizawa [48,
pp. 169]) we get the following theorem.

THEOREM 4.2.
Pyl(I, ® Dn)(B—PB) <z] = f N(w : I‘l)[l + N7V2C* Hy(w, T7Y)

1 o B
+ EN 1/2C]lkl,J2k2’j3k3I_Ijlklsjzkz,jz,k,?,(w’z 1):|dw
+o(N7Y?),

wherez andw are the pg-vectors withz;, andw; in (j — 1)g + k-th place, respec-
tively,

1
Nw :Z7") = Qnr)~P4/?|7|'/? exp(—iw’Iw),

the multivariate normal distribution, and multivariate Hermite polynomials:

(-1)* oS

H; ke (w, 71 =
itk (W 270 Nw :Z-Y) dwj g, - .. dwj.z,

Nw:Z™h.

The preceding results are unexpected.

REMARK 4.4. In the context of semiparametric estimation, it is known that root-
N asymptotics in general do not hold (e.g., Taniguchi et al. [49]). However, our
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results claim that, in a linear regression model, standardXoasymptotics hold up to
second order. This means that the Hannan estimator has the same rate of convergence
as regular parametric estimation. Moreover, it is seen that our Edgeworth expansion is
independent of the bandwidth and the window type function for the residual spectra.
This is in sharp contrast with the general semiparametric estimation theory.

We examine of the performance of the second order Edgeworth expansion given in
Theorem 4.2. The model used for data generation is the following:

y() =px@) +u(), (p=qg=1)
u(t) =au(t —1) + (1),
wherela| < 1, e(t)’'s are i.i.d. Exp(0, 1) random variables with probability density
pz) =expl—(z+ 1)}, z>-—1.

In the following Figure 4.1-4.4, we plotted of the first (solid) and the second (dot-
ted) order approximation, and empirical distribution (dashes) which is obtained by
10000 times replications. From Figure 4.1-4.4, we observed that the second order
Edgeworth expansions are quite accurate in the neighborhaoée-df.

Figures 4.1-4.4 are about here.

4.4. Second order efficiency

We consider the approach of Akahira and Takeuchi [1] whose argument proceeds
as follows. LetXq,..., Xy be a sequence of random variables forming a stochastic
process, and possessing the probability meaBg}?[e], whered = (9',...,07) € O,

a subset oR?. We assume thal, = (02,...,07) is a nuisance parameter (see,
Section 1.2 and 4.4 in Akahira and Takeuchi [1]). If an estimatoof 0! satisfies the
equation

lim VN|PNVN (@' -0 <0]—1/2| =0,
thend! is called a second order asymptotically median unbiased (second order AMU)

estimator. For thi!, the asymptotic distribution functiorE9+(x)+G;(x)/Wand
Fy(x) + Gg_(x)/\/ﬁ are defined to be the second order asymptotically distribution

of VN (! — 01) if

im VT|PYIWN@' = 6" < x'1— Ff (x") = G5 (x")/v/N| =0
forall x! > 0,

Jim VN|PYIWN @' = 0" < x'1— Fy(x") — Gy (x")/v/N| =0
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forall x! < 0.

Forbp = (,....,67) € ©, consider the problem of testing hypothe&is: ' =
0l +x'/+/N (x' > 0) against alternativel : 6 = 6,. We defineg8y (x') andy, (x")
as follows:

sup limsupv'N{E[pn]— Bg (x) =y (x")/V/N} =0,  (4.3)

{pnEDP1/2} N—o0

where
Prp = (o8 B yw eV = 1724 0(1/V/N). 0 < ¢y < 1.
Then we have fox! > 0
Fe‘;(xl) < ,Bé:(xl) and G;g(xl) < )/a‘g(xl).

Also consider the problem of testing hypothe&s: 6! = 6! + x!/+/N (x!' < 0)
against alternativel : 6 = 6,. We define; (x') andy, (x') as follows:

inf liminf vVN{E}[pn]— B, (x") — v (x")/V/N} = 0.

{pNED) 2} N—oo
In the same way as for the casé > 0, we have for eachk! < 0

Fa(x') = B (x) and Gy (x') > g (x1).
Thus we make the following definition.

DEFINITION 4.1 (Akahira and Takeuchi [1])A second order AMU estimatat! is
called second order asymptotically efficient if for edch ©

N Ao = oy B G+ ye (xD/VN +o(1/V/N) forallx! =0
PIVNG -0 =)= {ﬂgo(xl) + 75, (x")/v/N +o(1//N) forall x' <0.

The above definition means that second order asymptotic efficiency implies high-

est probability concentration around the true value with respect to the second order
asymptotic distribution.

4.5. Efficiency of Hannan’s estimator

In this section we discuss higher order asymptotic efficiency of the Hannan estima-
torﬁ defined by (4.2). To discuss higher order efficiency and establish unified higher
order results we need to restrict the class of estimators to second order asymptotically
median unbiased (AMU).
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From theorem 4.2, it can be seen tfds not second order AMU. Thus we modify
B as follows:

IBA*jk — Bjk _ N—l/z(lp Q DN)—léjk
+ éN—l/Z(Ip ® DN)_I(jjk’jk)_léjk’jk’jk’
where
N 4

7= - Fuu)™' @ {DN"" Fox (V) Dy~ }dA,
T J—xn

and, C’% and C7/k-ik.jk gre the quantities replacing the cumulant spectrum by the
nonparametric spectral estimatorGi* andC/%-/%.ik  respectively.
Then we have the following theorem

THEOREM 4.3. (i) The estimatoﬁ*ik is second order AMU.
(i) The second order asymptotic distributionﬁj‘f = {B*fk} IS

Pg[(I, ® Dy)(B* — B) < z]

z 1 o
:/ N(w:I_l)[l+EN_I/szk’Jk”kij(w,I_l)

1 . . ,
4+ EN_I/zcjlkl’]ZkZ’jSksI{jlklajsz,j_?;kS (w,I_l)]dw + O(N—I/Z)_

Sinceﬁ is first order asymptotically efficient under Gaussian errors, we concentrate
our attention only the Gaussian efficiency. From Akahira and Takeuchi [1], the second
order Gaussian efficient bound distribution jdf-component is given by

ST 2) + o),

whereZ'*1/2%2 is (i k;, j,k,)-component of the covariance matfi! of the best
linear unbiased estimator. Hence, we have the following result.

THEOREM 4.4, The bias-corrected estimat(ﬁ*fk is second order asymptotically
Gaussian efficient, if and only if

cmtt— [ [ 5500 A Myt ) = . (4.4)
- J—7
REMARK 4.5. If the residual{u(¢)} is a Gaussian process, then (4.4) holds. How-
ever, in general, the bias-corrected estimgtbris not second order asymptotically

Gaussian efficient.
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REMARK 4.6. Theorem 4.3 can be employed to check whether the Hannan estimator
leads to a second order Gaussian efficient estimator. Since we do not assume the
normality of the error process, in general we haye;, ;. (A1, A2) # 0. Here, we give

four examples of the regresspr(¢)} in the case wherg = g = 1.

(i) x;(¢) =1fort =1,2,.... Thenn, = 1, M;;(}) has the jump atA = 0 and

(ii)

(iii)

(iv)

M;i11(A1, A;) has the jump atA; = A, = 0. Hence, the Hannan estimator is
second order Gaussian efficient if and onlyif;; (0) = 0.

x1(t) = cosvt, v € (0,2m/3) fort = 1,2,.... ThenM;;1(A1,A;,) has the
jump q,(N_3/2). Hence, the Hannan estimator is always second order Gaussian
efficient.

x1(t) = 1 +cosvt fort = 1,2,.... Thenn; = (2/3)"/2, M;{(}) has the
jump2/3andl/6 atA = 0 andA = +v, respectively, and/;;(1, ;) has the
jump(2/3)¥? and(2/3)%/?/2 ati; = A, = 0 and(A;, A2) = (0, £v), (£v,0),
(v,—v), (—v,v), respectively. Hence, the Hannan estimator is not second order
Gaussian efficient.

x1(t) = t/N fort = 1,2,.... Thenn, = +/3/2, M;,(}) has the jumpl
atA = 0 and My1;(A1,A,) has the jum®3/2/4 atA; = A, = 0 Hence, the
Hannan estimator is second order Gaussian efficient if and oty {f(0) = 0.
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Figure 4.1:a = 0.5 andx(¢) = 1.
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Figure 4.2:a = 0.75 andx(¢) = 1.
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Figure 4.3:a = 0.25 andx(¢) = 1 + cost.
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Figure 4.4:a = 0.5 andx(z) = 1 + cost.
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5. Second Order Properties of Locally Stationary Pro-
cesses

5.1. Introduction

There has been much discussion of the efficiency in estimation of stationary time
series. Hosoya [22], Akahira and Takeuchi [1] and Taniguchi [43] deal with higher
order efficiencies for time series analysis. Taniguchi [43] and Taniguchi and Kakizawa
[48] showed that appropriately modified maximum likelihood and quasi maximum
likelihood estimators of Gaussian autoregressive moving average processes is second
order asymptotically efficient in the sense of degree of concentration of the sampling
distribution up to second order. This concept of efficiency was introduced by Akahira
and Takeuchi [1], and these results was reviewed in Section 4.4.

Although the analysis for stationary time series is well established, there are many
cases where the stationary assumption seems to be restrictive. Because all the results
above deal with stationary processes we are led to the problem of efficiently estimating
parameters of non-stationary processes. Dahlhaus [13, 14, 15, 16] has introduced a
class of locally stationary processes (non-stationary processes), and formulated in a
rigorous asymptotic framework.

In this chapter, we investigate the problems of efficiently estimating parameters
of multivariate Gaussian locally stationary processes in the sense of Akahira and
Takeuchi [1]. In Section 5.2, we discuss second order robustness properties.

5.2. Second order efficiency of the maximum likelihood estimator
in locally stationary processes

In this section we shall show that if we appropriately modify the maximum likeli-
hood estimator in Gaussian locally stationary processes, then it is second order asymp-
totically efficient in the sense of Definition 4.1. First we give the precise definition of
multivariate locally stationary processes which is due to Dahlhaus [16].

DEFINITION 5.1. A sequence of Gaussian multivariate stochastic procegsgs=
(X, XDy (t = 1.....T) is called locally stationary with transfer function
matrix A° and mean function vectqr if there exists a representation

X = u(§) + [ extiin Az, (g0

with the following properties:

(i) £(A) is a complex valued Gaussian vector procesg-am, ] with &,(A) =

E4(—)), E£,(1) = 0 and
E{dE.(MdEp ()} = Sapn(A + p)drdp,
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wheren(}) = Z;";_oo d(A 4 27j) is the perio®x extension of the Dirac delta
function.

(i) There exist2z-periodic matrix valued functiond : [0, 1] x R — C%*¢ with
A(u,—\) = A(u, A) and

SUR A5 7 (Map — A/ T.Nap| = OT™)
t,A

foralla,b=1,...,d andT € N. A(u,A) andu(u) are assumed to be contin-
uous inu.

fu,A) ;= A(u, A\)A(u, )\)/ is called the time varying spectral density of the pro-
cess.

Throughout this section we assum@ - (u, A) = Ag,,,r(u, A) andu(u) = wg(u),
so that efficiency is discussed when the model is correctly specified.

We now set down the following assumptions.

ASSUMPTION 5.1. (i) There exisRx-periodic matrix valued functiond, : [0, 1]x
R — C%4 with Ag(u, —X) = Ag(u, 1) whose components are four times dif-
ferentiable i and

stuﬁaj.‘l_“jk{AgJ,T(k)ab — Ag(t)T, k)ab}’ =0(T™") fork=0,1,2,3,

whered% . = 9%/067/1...867x. The components off .

ferentiable inu andX with uniformly bounded derivatives.

Ag(u, ) are dif-

(i) All eigenvalues of fy(u, L) = Ag(u,k)Ag(u,k)/ are bounded from below by
someC > 0 uniformly in z andA.

(i) The components ofiy (1) are four times differentiable iG. The components of

85-‘1.__jlcﬂg(u) are differentiable in: with uniformly bounded derivatives.

Second we give the bound distributionsff (x') + ;' (x')/v/T andB; (x') +
y;: (x")/~/T defined in Section 4.4. Using the fundamental lemma of Neyman and
Pearson these are given by the likelihood ratio test. Thus we consider the problem
of testing hypothesid : 6 = 6, + x/+/T against the alternativel : 6 = 6,,
wherex = (x!,...,x?)andx, = (x?,...,x?) is an arbitrary but fixed constant. Let
X =W Xpp)op = @@/TY,...,u(T/T)) andZ7(A, B) be T x T
block matrix whoser, s) block is

[Sr(4.B)],, = | eXPiAr = 5)}Anr () Bor (- d

—TT

r,s = 1,...,T. The log likelihood function based aXi is given by
d 1 1 R
L7(0) = —3 log(2m) — T log detXy — ﬁ(g—ﬁe) Ty (X —pp). (5.1)
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whereXy = S7(45, A5). Let LR = L1 (6y) — Lr(0o + x/~/T). Using Lemma
A.8 in Dahlhaus [16], we can show that

1 1 o
Eg,[LR] = Ell-jx’xj + —T(3J,-,-,k + Kij)x'x/xk 4 o(T™),

6T

. 1 .
cumy,[LR,LR] = I;;x'x’ + —J,--,kx’x]xk +o(T™Y,
0[ ] J \/T J ( )
1 .,
— K x'xIx* 4+ o(T™h,
ﬁ 12 ( )
1 1 _— »
Egyin/yrlLRl = =5 1ijx'x! — ﬁ(&llj,k + 2Kiji)x"xx" + o(T™),
1
VT
1 .
cumy , . yrlLR. LR, LR] = ——=K;j;x'x/x* + o(T™),

JT

cumy,[LR,LR,LR] = —

cumy, 1/ vrlLR, LR] = Ljx'x’ + (Jijx + Kijr)x'x7x* 4+ o(T™),

where
1 T
15(0) =~ [ [ w10} @} 15
1 1
v [o (0! o )Y fo(ae, 0)~ 40! o () el
1 1 kg
Jga®) = == [ [ ul@ 47 @) foldrd
1
+ 5 [ 0@ fotw 07 Bhuatuta
1
4o [ 0la@Y 18] o, 07 0k o}, 7]
1 1 /4
Kie(6) = 1 / | WU G157 @) ) £ @) foldrdu
1 1
- 5 || 100y 19} foe 0 0o a3,

Here we use the Einstein summation convention and the simpler notdfjons; «,
K« etc. are evaluated & = 6,. By (4.3) and the fundamental lemma of Neyman
and Perason, the asymptotic power of the most powerful test LR is given by

(o) + ¢(0)(3Jijk + Kijk)xixjxk + o(T_l/z),

1
6v/To
where®(z) = [Z_ ¢ (u)du, ¢(u) = 2n)~"* exp(—u?/2), 0 = (I;x'x/)'/2.
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Denote byl the(i, j)-th element of the inverse matrix &f= {/;;}. The partition
x = (x!, x,) induces the following corresponding partition

Tan® Tan®)
1) = [12&9) Iﬁzii(m} '

Sincex, can take arbitrary values, then the power function of the tests is not larger
than the infimum of (5.1) with respect tg. A x, minimizing o is given byx, =
(I22)) "anx!, theno? = (1'1)~!(x")2. Thus we have the following:

THEOREM 5.1. If 8! is second order AMU and
PIINT (0" - 6)) < x']
— cp(xl(lll)—l/Z)
+ L(b(xl(111)_1/2)11i11j11k(3t]ij,k 4 Kijk)
6(1“)5/2«/7
+o(T1?)
is satisfied, thed! is second order asymptotically efficient estimator.

Let Oy = (é]{“, e éﬂL) be maximum likelihood estimator which is defined
by a value o9 that satisfies the equation

0=209;Lr(H).
Write
U'= VT @i — 600, Zi(0) = VT[d!Lr(8) — E{d! Lr(0)}],
Zi;(0) = NT[0} L1 (0) — E{0} LT (0)}].

Then we can show the following.

LEMMA 5.1.
Ui _ IijZ' + Llijlklz.kzl _ ;Iiilljj/lkk/((],, . k[3] + K 'k)Z"Zk’
—= iy, l
J «/T J Zﬁ J J J

+0,(T™'?).

Itis seen that
. 1 ..

EoolU'] = ——=T1"1¥ (Jis,; + Kjri) + o(T71?),

2T
cunmy, [U, U] = IV + o(T'/?),
cumy, (U, U7, U¥) = =T 21" 7 1% (J o o8] + 2K joie) + o(T7112),
cunp [U",... . UY]=O(T~'/**")  forJ = 3.

Applying a general Edgeworth expansion formula (e.g., Taniguchi and Kakizawa,
[48], p.168-170), we have the following theorem
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THEOREM 5.2.

PEINT By — 6o) < x]
/ ¢z, 1~ 1)[1 - fll]lkl(Jklj + Kjr)Hi(z. 17)

-2 ﬁl” I I (T o 3] + 2K joier) Hyje (2, 1 1>]dz

+o(T™'/?),

wherez = (z!,...,z?),

$(z, Q) = Qn) P2 |Q|” l/zexp( Lig )

the multivariate normal distribution, and multivariate Hermite polynomials:

2= T g9
i1.ends (25 z,
e ¢ (z, Q) x;j, ... X;,
From Theorem 5.2, it can be seen tiif, is not second order AMU. Thus we
modify §1,, as follows:

1 .oA . A A A
GML = GI{/IL + ﬁlll(QML)I]k(GML){ij,i(eML) + Kiji(Opr)}
(5.2)

- 6111T11i(éML)11j (Ore) ™ (Ore) {37574 (Orer) + 2Kiji (Onar)}-

Then we obtain
PYINT (0377, — 05) < x']
— q)(xl(lll)—l/Z)
1,2
n (x%)
6(111)5/2\/_
+o(T'?).

— —p(x' YT TR 3Tk + Kiji)

Remembering Theorem 5.1, we can see that (5.2) coincides with the bound distribu-
tion. Thus we have

THEOREM 5.3. The modified MLEéj{jL Is second order asymptotically efficient.

5.3. Higher order robustness

In this section, we discuss second order misspecified and time varying robustness of
the maximum likelihood estimator. To discuss the problem of higher order asymptotic
estimation for parameters of locally stationary processes, the following assumptions
are imposed
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ASSUMPTION 5.2. (i)

o [e] 1 (o] 1 [e]
Aer @) = Ao M)+ T Aa g (W) + 430,01,

p(u) = o).

(i) There exist2z-periodic matrix valued functiond; 4 : [0, 1] x R — C9*¢ with

Aio(u,—A) = A;g(u,A) whose components are four times differentiabl® in
and

U, (A71.r Was = Aiglt/ T R)an}| = 0T™)
t,

fork = 0,1,2,3 andi = 1,2,3. The components d}‘lmjkAi,g(u,)\) @i

1,2, 3) are differentiable in« andA with uniformly bounded derivatives.

(iii) Let

Fot) = i)+ = foo(.2) + (0. 2) +o(T 7).

Then, fio(u, A) (i = 1,2,3) fulfill Assumption 5.1 (ii).
(iv) g (u) fulfills Assumption 5.1. (iii).
We define the MLEB,, ., in the misspecified case by a solution of equation
0=0LrB), i=1,...p,

where

3 d 1 1 e
Lr(6) = —5 10g(2n) — 7 log dets, g — - (X — 1) ST (X — pz,).
andXi g = Sr(43,.45,).
Write
U' = VT —0), Zi(0)=—VT[;Lr(0) — Ee{d; L7(6)}],
Zij(0) = —VT[9}, L1 (0) — Eo{0}, L1(0)}].

where | denotes the expectation under the true model.
In the same way as the previous calculations, it follows that

L 1 1 N
U =177, —TWy - —_1ir® _ __[ifkA, (7 —TY
( J J ) ﬁ j ﬁ J ( l )
1
+ N 22 - r) 5.3
—~ ﬁf”’ﬂf’f"k’w,k[s] + Kiji)(Zy = TO)NZ = T)
+0p(T7'2).
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where
1) L[ _1
I;7(0) = — tr[(0; f1 ) f2,0]d Adu,
4 0 J—m ’
1 1 T
rg) = - / / (@, /) froldidu.

A (0) = / / (@, £ froldidu.
From direct verification, we can show that
Eo,[Z:Z)]

1 1 T | »
= Iy + n—f | [ @) a0 g M2

+ f / {0s1100 00V .00 0, 0)" fo 00 (11 0) f a1, 0) ™ {05 1, (1) bl
+ O(T—I/Z)

= I;; + Ay + o(T1/%) (say)

1
JT
Eo[Zii Zk]) = Jijx + O(T™V?),
Eo|Z:Z;Zi) = T72Kij + O(T™Y),

(5.4)

andthe/th (J > 3) order cumulantoZ;, (9)..... Zi, (6). Zj,,(0). ... Zj, k,,(6)
(J1 + J, = J) satisfies

cunt[Z;,(0)..... Zi, (0). Zjsiy (0). ... Zj, ey, (D)) = O(T /2T (5.5)

From (5.3)-(5.5), itis seen that

Llijr(z) + LlijlklA' F(l)
JT Ty

— 1T T (e B+ K TS TS

2T
1

VT
o~ . | R
CUIT]90[UI,UJ] =7IY + ﬁll I’ (Al,kl_ZAkl)

Eg,[U'] = —1T" —

T (T + Kigg) + o(T7V3),

1 R , _
+ ﬁf” LD F,ﬁ”(Jw/,k/B] + Jijrgr 4+ 2K ) + o(T712),

CU”EO[Ui, U]’ [jk] — _T—1/2Iii’1jj’1kk’(Ji/j/,k/[?)] + 2Ki/j/k/) + O(T_l/z),
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cung [U",....UY]=O(T~//*")  forJ = 4.

Applying a general formula (e.g., Taniguchi and Kakizawa, [48], p.168-170), we
have

THEOREM 5.4. If I‘l.(l) =0(@G =1,...,p), then the Edgeworth expansion of the
distribution function ofy/T (67 — 6,) is given by

PEINT (O — 6p) < z]
/ d(x, I 1)[1— fI’J{F(2)+Ik’(Jk1, + Kj)y Hi(x, I7)

; ﬁl”‘ﬂ’mlk, 2Ak0) Hij(x, I7Y)

1 IRV ’ - —
— m[” 1’7 Ikk (Ji’j’,k’[3] + 2Ki/j/k/)flijk(x, 1 1)]dx + O(T 1/2).

REMARK 5.1. The condition’{" = 0 ensures that the distribution @fT (61 — 0)
converges to the multivariate normal distribution with zero mean vectdi;.@?f: 0
is satisfied, then the bias 6§, is equal to that o#,,;, up to second order.

From
1 T
150 = o= [ [ wl@so 157 @ o fi i
1 1
v [0 B0 )Y o 11.0)~ {3, 1o ()}
1 1 1 T
— 15(0) + = / / i) S O S0 i e fr 2R
—i / / 10, fo.0) £ 0 fr.0) fi2 R dAdu

_ L / Dopts ()Y f1.6(0, 0)™" fo.6(1t, 0) fup(ur. 0 43, 1o )yl
—|—0(T_1/2)

= 11;(0) + —=02,;(0) + o(T~"?) (say)

1
JT
we have

I
IV =17 — —— %Ay 1+ o(T7V?).
1 \/T 2, ( )
Itis easy to see that!" = 0 implies2A;; — A, ;; — A,,;; = 0. Therefore, if we put

~ < 1 .. ~ ~
Oie = Ohar + 17 Our)T;” Ouar).
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then we obtain
PINT (03, — 00) < 2] = PIVT (O — 00) < 2]+ o(T /).
Thus we have

COROLLARY 5.1.If I‘;l) = 0 is satisfied, then the distribution function of the mod-

ified maximum likelihood estimato@}m is equal to that of théML with an error
o(T~1?).

If
PINT (Brr, — o) < z] = PUNT (Brgr, — 0o) < z] + o(T~1/?)

is satisfied, then we say that the estimagy; of 0 is asymptotically misspecified
robustness with an erro(7~'/2).

COROLLARY 5.2.1f T\V = I'® = 0 is satisfied, thedr is asymptotically misspec-
ified robustness with an erro(7~'/2).

If

/1 /n tr[(d} f3") foldAdu = 0
0 -7

is satisfied, then we say that the paraméter innovation-free w.r.t.fy.

REMARK 5.2. From (5.3), if the parametét is innovation-free w.r.t. fig, f2.06 =
afipandf; 9 =bfi9a,b e R, thenF}l) = F}Z) = 0 holds.

We consider the situation where all of the quantities appearing in second order
Edgeworth expansion for an estimator have the form

1 k4 1
f f g1(A,u)drdu -l-/ g2(u)du.
0 J—m 0

If g1(A,u) andg,(u) are independent af, then we say that the estimator is time
varying robustness up to second order.

COROLLARY 5.3.If

Ag(u, L) = B(u)Co(A),

wo(u) = Bu)vs. (56)

are satisfied, theéML, éML are time varying robustness.
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REMARK 5.3. If the condition (5.6) holds, then locally stationary proceskgs can
be written as

X.r = B(%) {ve +/_ exp(ikt)Cg(k)dS(k)},

¥
t :
= B(T) x { stationary process }

EXAMPLE 5.1. To observe the non-stationary effect, we consider the following

model:
t t
Xt,T+b92 ? Xt_l,T:Clgl 7 E¢, lzl,...,T,

whereag (u) = aexp{—(u — 0)?/2}, bg(u) = ub, la] < 1,0' <0,1 <!, |0? <1
ande,’s are i.i.d. (0, 1) random variables. Then the time varying spectral density is
given by

2

1 agi(u) I
JA) = — —|, 0=(0,0°.
Jolu.d) = 2o 1+ bga (u)e—i* .69
By the residue theorem, it is shown that
1 2
hlzzf{?”“w?cw, I =0,
0 agi(u)
1 a b 2
I = 0. Iy = 10202(W)}”

o 1—{bp2(u)}?

U 9yagi (u) 0%2ag (u) 3
Jm1=2/ g1 () 101 ) ) - 3 g Jits = Jiag =0,
0

agi(u) agi(u) 4
1 1 U 0,bg2(11)02b g2 (u
Jizp=Jn1 = —§K122, Jap = —§K222 +/0 21 9—2({5)922(“9)2}2 )d”,
and
Yf01a0 ()’
K = 8/ {—} du, K, =0,
0 ag: (u)
1 2 1 3
dragi(u) {02bp2(u)} {02bg2 (1)} b2 (1)

/ agi () 1= (b2 270 ) = ey

Let AS(u) be ALS in stationary case (i.ey is treated as a known parameter). We
introduce the criterion

1
D) :/ (ALS — AS(u)Y2du,
0
which measures the time varying effect in efficient estimation.
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(i) Suppose tha#! is unknown, and thai? is known. Then it is easy to show

Ls _ 31— =Y oo 1
Tia—ey @) A= 5wy

In Figure 5.1, we plotted(9!) with —2 < ! < 0 and1 < 0! < 3. From
the figure we observe that the time varying effect becomes largé ag 0 or

o1\ 1.

Figures 5.1 is about here.

(i) Suppose thaf? is unknown, and thad! is known. Then it is easy to show

s 1 1 1 A
= 6{_(92)2 + 309397 9}
33— 2(6%)%) 9 | 1+
{(9%3{1 — 007 2000t 01 9]’

AS(u) = 62

In Figure 5.2, we plotted (62) with —1 < 62 < 1. From the figure we observe
that the time varying effect becomes largg@d 7 1.

Figures 5.2 is about here.
(iii) Suppose that! is a parameter of interest, and thgtis a nuisance parameter.
Then it is easy to show
Ls _3(=6Y)t— (@Y 3 !

4(1=01)°+(0")° 401 -0")° + (')
o N 1 o 1+ 062

@22 T 207 O1-62

6! 61 1+ 92}

1 1
X [—(92)2 =269 log{1 — (6%)*} + 2(92)2 + 207 log [—o2

5
S —
A (u) = 6 —01)

(iv) Suppose thaf? is a parameter of interest, and titdtis a nuisance parameter.
FromJy;, = Ky12 = 0, itis seen that the modification term is not affected by

the nuisance parameter. Henae;S and A’ (1) are the same as the case (ii).
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ol

Figure 5.1: In Example 5.1 (i)p(#!) is plotted with—2 < 8! < 0 andl < ' < 3.
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Figure 5.2: In Example 5.1 (ii)D(0?) is plotted with—1 < 62 < 1.
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6. Proofs

6.1. Proofs of Chapter 2

In this section, we give the proofs of theorems in Chapter 2.

PROOF OFTHEOREM2.1. Since the actual calculation procedure is formidable, we
give a sketch of the derivation. First, we evaluate the characteristic functibn of

Yn(E e) = Egyy i lexptT)), T €8,

wheret = (—1)'/2¢. Let D(0) = {D,5(9)} be the unique lower triangular matrix
with positive diagonal such that

by = (%))

We consider the transformation
Y% = D*Wy,

whereD*8(9) is the(a, ) component of the inverse matrix &f(6).
DenotingL x (Xy) = pn(Xn; 0o + cy'e)/ pn(Xn; 6o), we have

Un( e) = /eXp{fT(XN)}LN(XN)PN(XN;90)dXN

(6.1)
= Eg,[expltT + log Ly (Xn)}]-
We expand lod. y (xx) in @ Taylor series iny'¢, leading to
. 1 1
109 Ly (xn) = Wie + garg"* Wie® =~ Lapye®e” + Sy Wape®e?
1 _ 1 _
+ ECNI Jyapg’ Wse®eP — chl (Kapy + Jupy[3)e%ePe?
+ 0,(cy!
p(en) (6.2)

.y 1 1
= Dije'Y’ + gorg" Ds1®Y" — Ef(aﬁ)f?“f?ﬂ + ECXII Wape®s?

1 _ I

+ ECNI Jyapg’? Dsre®sP Y — chl(Kaﬂ,, + Jupy[3])e%eP ¥
+ 0,(cyh).

Inserting (6.2) in exfy T + log L v (Xn)} we obtain, after further expansion and col-

lection of terms,

p
exp{tT + log Ly (xy)} = exp{r 2 (YD + Dije'Y! + garg™ Dyye®Y*
i=1
1 _ -
a El(aﬂ)sasﬂ}{l + ey G (Y Way)} + 0p(cy'),

(6.3)
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whereq, (-, ) is a polynomial. In view of Assumption 2.1 (iii) we can easily evaluate
the asymptotic cumulants @i®, Wp,). Since Eo{Y*(0)Wp,(0)} = o(cy'), we
derive the second order Edgeworth expansion of the distributioi*of Thus the
second order Edgeworth expansion of the distributiolf ®is given by

p+q

1
Po,(Y* < y*) = / f(y"‘){l +2n D CﬂVSHBVS(ya)}dJ’ + o(cx')
B.y.8=1
y* 1
=/ q(y*)dy* +o(cy),
—0o0
(6.4)
where
1 p+q
f(y)zme)(p{ Z(J’)}
Copy = DalagalazDﬂlﬂg'Blﬂ2DV1)’g *Kas B,y
and Hg, s (y%) are the Hermite polynomials. Note that
1 1 p+q
IZ(J} )2 + D118 y + garg"’ Dyi® y - EI(aﬂ)g ef — Z(yoc)
i=1 a 1
_! :
g1]88 ——Z{(l 2l)1/2 l—(l—z[)_l/szjEJ}z
1 p+q
- z Z {yr - goesgStDtrga}z-
r=p+1
From (6.1), (6.3) and (6.4) it follows that
Lo o 1
Un(E. e) = /eXp{f Z(yl)2 + Dije' v’ + garg" D16 y' — El(aﬂ)gaé-?ﬂ}
i=1
X AL+ ' a1 (57, 0} (0°)dyt + o(cy') 65)
. . 3 "
tgiie'e’ _ _ _
- exp( 1”_ T )(1 —21) 1’/2{1 + ey ij(l —21) ,}
j=0
+ o(cy).
Inverting (6.5) by Fourier inverse transform we can prove Theorem 2.1. O

PROOF OFTHEOREM?2.2. (i) Note thatd* is independent of,. From Theorem
2.1, forT € S we have

P00+C_18[T < Z] — P910+C_181,920[T < Z]
N N
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= %c;vl(Kaﬂ, t Jagr + Jpar)d*dPe {Gpiz i (2) — Gpa(2)} + oy,
which leads to (i).
(i) Fromd® = g;;g’%¢', clearly
(Kapr + Japr + Jpar)d®dPe’ = ging"“g;j08"* (Kapr + Jupr + Jpar)e'e’s’.

Hence, we get (ii) in Theorem 2.2.
O

PROOF OFTHEOREM 2.3 AND COROLLARY 2.1. From Theorem 2.1 we can see
that

1 N
ms = ga'{kgwgu/gkk/d’ a’d" + Cs,

1 i7 v -/ / 1 i7
my = —=ay*givgipgurd d’d* + Ea;’k

5 [Blgirgjxd’ + Cs,

> | (6.6)

m; = —zalzjk[3]g,-;gjkdl + Eaggija” + Ci,
1 . .

my = —Eaggija” + Co,

whereC,, Cy, C, andC; are independent af, a;jk andag and hence are the same

for all test statistics it5. Theorem 2.1 and Corollary 2.1 follow from (6.6). O

ijk

PROOF OFTHEOREM2.4. Letay" andd} be the coefficients of” € S. Then, we

can rewrite
PzT(S) = Ql,i/j’k’(a;jk)si/sj/sk/ + Qz,ijrsisjs’
+ %gu(g""‘BﬁVKaﬂy + a5 3181 {Gpi2.8(2) — Gpran(@}  (6.7)
F 38010~ £°8" (Kurs + Jurs )1/ 1Gp () — Gy ()}
Note that|s’| < (A/A)!/?, wherel is the smallest eigenvalue &f;.,. By (6.7)
P] (&) < Wi(A,ay YA + Wy (M)Al
+ %gl,- (8" B Kupy + a3 " Blgj)e' {Gpr2.a(2) = Gpraa ()}
F 38l — €8 Kars + Jur)}e(Gp () — Gpia a D)),

where

p p
\Ijl (A,alzjk) = Z ‘Ql,i/j/k/(alzjk) )\._3/2, \Ijzr(A) e Z |Q2,ijr})\'_1'

i",J k=1 i,j=1
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Hence, we obtain
PL(A) < W, (A,dVF)AY? 4 s (M)Al + M(A), (6.8)

where

_ 1 . N
M(A)= min [Egli(glaBﬂyKaﬂy + alzjk[3]gjk)8l{Gp+2,A(Z) — Gpya,n(2)}

gije'el =

1 . . ;
+ Egij{ag - gmgrs(Kars + Ja,rs)}gj{Gp,A(Z) - GIH—Z,A(Z)}]'

Similarly, we have
PER(A) = —W (A, —g™g P g Kopy /3) A2 — Wy, (A)AlE"]. (6.9)
From (6.8) and (6.9),
P(8) = PL(A) = —{W1(A,af") + Wi (A, —g"* g7 g Kapy /3)} )2
—2W,, (A)AlE"| — M(A).
ijk

Hence, forT" € S whose coefficients do not satisfya; " [3]g;x + g “BPY Kop,) +
(p + 2){ds — g"*g"5 (Kars + Jars)} = 0, there exists a positivA, such that

LR* T
P (A)— P,(A) >0,
wheneve < A < Ag. ]

PROOF OFTHEOREM 2.5. The distribution function ofly, € S, under a sequence of
local alternative®, = 6, + c;,‘el has the asymptotic expansion

3
Py sectennlTo < 21 = Gpa@) +cy' D mjoGpia)ja(z) + oley"),
j=0

where

1 1 ik ]
mso = (gKijk + 5y I(i’i)I(j/j)I(k’k))glejgk’

1 ik . 1 .. 1 "
myoy = _Ealzl I(i/i)l(j/j)l(k/k)z;’e’sk + EI(I)IK,-ijk + ECIIZJ [3]I(i1)1(jk)81,

1 . | 1 iik
mio = - ijkeel ek — 510 Kijre® — ) Blanlgoe

1 .
Moo = —E(Kl'jk + 3Ji,jk)818]8k.
(6.10)
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Note that, under Assumption 2.2, = 0 and

oy _ (17" 0
=" 5),

Then the coefficientsis, m,, m; andm, in Theorem 2.1 can be written as
ms3 = mMsyy,

ny = niyo,
1 o
my =myo + E(Kijr + Jijr + Jjir)e'el e
1 . .
3@ T = 87 (Kjrs + Jjro)}e. (611)
1 i_j.r
moy = Moo — E(Kijr + Jijr + Jjir)e'ele
1, . .
- E{agl(ij) — & S(Kjrs + Jj,rs)}gj'
The comparison of (6.10) and (6.11) leads to Theorem 2.5. H

PROOF OFTHEOREM 2.6 AND 2.7. Note thatZ; = W; + op(1). ExpandT* as
T* = h(0)T + cy' A’ Z;

-1 i =1 4i -1 (6.12)
=1 +cyhin')T +cpy AW +0p(cy ).
Inserting (2.5) in (6.12) we obtain
T* — gl]mm _|_ c;{lalgiagjﬁWaﬂVI/iW/} _|_ zc&lgiagrsWarmWs'
+ ey ST W W Wi — o' g g P g K, Wi W W,
_ C;flgiagrtgsu(Kars + Ja,rs)VVthWu + cx,laz"l/Vi + Op(CXrl),
where
*ijk ijk li Jjk
a =al!" +h Je
2 T TSNS (6.13)
ay' = a5+ A'.

This impliesT* € S, and hence a necessary and sufficient condition for its locally
unbiasedness is that the coefficients in (6.13) satisfy

a;ijk[3]gilgjk + gligiaBﬂyKaﬂy =0, (6.14)
aiigij - gjigiagrs(Kars + Ja,rs) = 0. (6.15)
Note that
a3’ Blgugix = a Blgugix + (hvg" g + hpg" " + hyg" g7V girgix

= a;jkB]gilgjk + (p + 2)hy.

Solving (6.14) and (6.15) with respectitpand A’, we obtain the relations in Theorem
2.6. Theorem 2.7 follows from the above argument and Theorem 2.1. O
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6.2. Proofs of Chapter 3

PROOF OFTHEOREM 3.1. First, we evaluate the asymptotic cumulantsZgf. From
(i) and (it) in Assumption 3.1E(Zy) = 0,

N-1

CUM(Zy, Zy) =N"" Y (N —l|jDexa())
j=—(N-1)

=2nfx2— N""fy, +o(N 7)),
N—-1

CUM(Zy.Zn.Zy) =N 3" (N =Sj)exa(i. o)
J1,2=—(N-1)
= N'202m)? fys +o(N7"),
where

S . — { max(| /1. |/2]) if sign(j1) = sign(j).
e min(| j1| + | /2], N) if sign(ji) = —sign( ),
and
N-1
WUMZy.Zy.Zw-ZN) =N 3 (N = Sjpp)exalin 2. o)
J1:J2,j3=—(N—1)
= N7'Q2n)’ fxa+o(N 7,
where

S = { max(|ji|. | j2. 13]) if sign(ji) = sign(j2) = sign(j»).
J17273 min{max(| ji| + | /2|) + [ /3. N} if sign(j;) = sign(j,) = —sign(j3).

Applying the general formula for the Edgeworth expansion (e.g., Taniguchi and
Kakizawa [48, p168-170]), we obtain (3.5). O

PROOF OFTHEOREM 3.2. From Theorem 3.1 an($.6),
C = e‘”/ [STO exp{/u + (2711fX’2)1/22} — K] g(2)d:z. (6.16)
_d2

Integrating by parts and using the following equality

expi— (2T fx,2) 2da}(—d2) = exp(r T fx2)$(d)),
yield

/_:o [ST0 exp{m + (27T‘L'fX,2)1/22} — K] Hi(2)¢(z)dz

k—1 . (6.17)
= a2 ST, {Z(Zﬂffx,z)]/szj1(—d2)¢(d1) + (27TTfX,2)k/2CD(d1)}

j=1

fork = 2,3,4,6. Inserting(6.17) in (6.16), we obtain(3.7). ]
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PROOF OFCOROLLARY 3.1 If {X,;¢ € Z} is independent, therfy, = 0. If
{X;;t € Z} is a Gaussian process, the¢f; = fx4 = 0. Hence, Corollary 3.1
follows. O

PROOF OFCOROLLARY 3.2. From (i)-(iii) in Assumption 3.2 and (3.8),

fxx =A% fur, k=2,34,

and (ii) in Assumption 3.1 holds. Note that

o0 o0
exp) = Var [ Y apeji, ) apervu-i

J1=0 J2=0

o0
— 2 . .
=07 ) ajdu+j-.
j=0

We can seef’, , = o f/,. From above arguments Corollary 3.2 follows. O
X,2 g,2

PROOF OFTHEOREM 3.3. From the martingale restriction,

ST = e_”ETO[ST]’

0

o0 6.18
= e_”/ ST, exp{r,u + (27rth,2)1/2z} g(z)dz. ( )
Note that
= 1/2 _ k/2
[ exp| (27t fx2) 22| Hi(2)p(2)dz = (2t fy 2"/ exp(t i)
fork = 2,3,4,6. The equation (6.18) implies that
2, 3/2 a7—1/2
l=exp(—rt+tpu+nrfxy) 4 1+ 5” 4N fx3

(6.19)

| 1 _ 2 _ _
— ETN le,z + §n3t2N "fra + §n4f3N "(fxa)? } +o(N7h.

Taking the logarithm of the equation (6.19) and using Taylor expansion, yield

2 _
p=r—mfxs— gﬂzfl/zN Y2 fx s

1. 1 _ _
+§N lfl{/’z—gT[lEN 1fX,4+0(N 1).

(6.20)
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Substituting (6.20) intdrx, £k = 0,2, 3,4, 6 in Theorem 3.2, further expansion and
collection of terms, we obtain

2
Go = G§ — 3nzﬁ/zSToN-1/2fX,3o1>(ar;“)

(1 1 2 .
+ Sg,N~! {Eff)/(,z — 7 fyra + —n4f3(fx,s)2} O(d])  (6.21)

3 9
(fx3)?
(fx,2)?

+ 2§ N7 Qrtfy2)2P(df) + o(N 7).

G3 = G + Sr,2ntfx )" ®(d})
(27.[)7/2

6
(27.[)1/2

6

St N2 frs(fr2)Y 2 ®(d])

Jx.3

—1/2
SN )

3
> @utfyp) M Hy_j(—d3)e(d})
+o(N~'?),
(6.22)

and

k—1
Gr = S, { > @rtfy ) Himj-1(=d3)p(d}) + (2mfx,2)"/2<1><d;“)} +o(1)

Jj=1

(6.23)
fork = 2,4,6. From (6.21)-(6.23), Theorem 3.3 follows. ]

6.3. Proofs of Chapter 4

In this section we give the proofs of lemmas and theorems and state some lemmas
related to the results in Chapter 4.

PROOF OFTHEOREM4.1. We decompose?uu(k) as follow:

4
Fu() = FO) + Y V;(M), (6.24)
j=1
where
Va(A) = Wn (A — ) F(wdu — F(X),

-7

VS()‘) = Fuu()‘) - Fuu()‘)’
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T

Va(h) = E[FuW)] = | Wn(L— ) F(u)dp.

The order of magnitude for each of these terms in our decomposition (6.24) is
given by the standard texts (e.g., [2, 5, 19]) and stated in the following lemma for

convenience.
LEMMA 6.1. V1(A) = Op((M/N)l/Z), V2(0) = O(M™2), V3(A) = O,(M/N),

andV,(1) = O(N7Y).
ExpandingF,,(1)~! aboutF(1)!, we obtain, after application of Lemma 6.1,

3
Fu)™ = FO)™' = FQ)™' Y Vi(WFG) (6.25)

j=1

+ F(k)_l Vi ()»)F()\)—l 17 (X)F()\)_l + OP(M_3/2N_1/2),

Let

Z = % n{ﬁw(x)—l ® Dn~'} fux(R)d . (6.26)

We then have
(I, ® Dv)B-B) =1"Z.

Inserting (6.25) into (6.26) we have

J—z Nz, _ % THFO) T VA F ()
+ FQO)'Va(W) F()™! (6.27)

— FO)TWVi)FO) Vi) FM) ™Y @ Dy~ fux (W)
+ OP(N_I/Z)’

where we used the fact that, ® Dy~") fux(X) = O,(M/N).
The order of magnitude for each of these terms in (6.27) is given in the next lemma.

LEMMA 6.2.
Zi = 0p(1), Zr= 0p,(M'?),
N G0 FOTy ® Dy fur A = 0,72,

2 J_,
X[ LFO 0 PG © Dy fux W) = O,/ ),

ﬁ ”[{F(k)—lVl ()\)F()\)_IVI()\)F()\)—l} ® DN_I]ﬁ;x()&)d)\ — OP(N_I/Z).

—7T
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Inserting (6.25) intd we have

~ N T ~
I=— | FM)'®{Dy'"Fex(\) Dy '}dr—N"2Z,

2 J_,

[0 FOY 4 FO) V0 FOY (6.29)

— FO) O FG) Vi) FO) ™ @ (D e/ Dy
+0,(N71/?),

where we used the fact thaty = £, (L) Dy ™' = 0,(M/N).
The order of magnitude for each of these terms in (6.28) is given in the next lemma.

LEMMA 6.3.

N (" A
s | FO)™' @ {DyT Fua() Dy Y dA =T + 0, (N2,

-7

Zy = 0p(M'?),

% _Z{F W) Va0 FO)™Y @ { Dy Eex(W) Dy~ Ydh = 0,(M ),

o {F W) V30)F)™"} @ {Dn ' Fun (W) Dy~ }di = O,(M/N).

% _:{F M) ViAFR) ViR FR) ™Y @ {Dy ™ Fex (W) Dy~ YdA
= 0p(N™'/%),

Theorem 4.1 follows from Lemma 6.2 and Lemma 6.3. O]

PROOF OFLEMMA 6.2. The proofs of the first four equalities follow directly by eval-
uating the absolute moments. Hence, we only give the proofs of the last equality.

Note that

E{ nll(lp ® DN_I)fux(k)llzdk] = O(M/N?)

and
E[IVi 1] = B Fuuh) — E[Fua0][*] = 0/ N)?),
(see the proof of Theorem 7.4.4 in Brillinger [5]). We have
H% / Z[{Fm—lvl WFO VIO FM) ™} & DN—l]f;xmdAH
< _ZnF(k)—lVl WFO VI FR) ™ @ I,
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(I, ® Dn~") fux (M)l dA

N 12 ( on A 1/2
<o [iroremaconar] {1, @ oy fuoldn

= N x O,(M/N) x O,(M'?/N)

= Op(N_l/z)-

]

PROOF OFLEMMA 6.3. Similarly to Lemma 6.2, we give the proofs of the first and
last equalities. The first one is evaluated as follows:

N i -1 —1 7 / —1
o FOO)7' @ {DN""Fxx(A) Dy~ }dA

-7

_ (%)2 ﬁ: A(l)w(%) ® {R(l)’ + 0(1 “]Lv“')}

2 o0
_ (%) 3 AU ® R(Y + O(M™) + O(N™)
[=—0c0

=T+ o(N~Y?).

From
"Dyt Faa G Dy P = O(MIN?),
We have B
B {m) Vi FGY Vi) FO) ™ Dy B Dy |

N

IIF(X) NP1V I Dy~ Frx (W) Dy |d A

—7T

N /4 B 1/2 i A ) B
<o [ireemar] [ 1oy Fuaty oy

= 0,(N7'/?).

1/2

Thus we complete the proofs of Lemma 6.3. O

PROOF OFLEMMA 4.1 AND THEOREM4.2. From direct verifications, it is seen that

N d - - M 2 A
€zl = (55 ) N X 7 60arie 3 w4 )u(5)

$1,82=—00 lLh=—M
N—Ip N-I;
O xr(my + 1) l
> TGN > Tjjuis(lmy —my)
m2=1+Q k m1:1+171
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(L=s1+s2—10)

4 o0 l1
_(2177) Mk Z AJJI(SI)AJZJS(SZ) Z ( )

$1,82=—00 Li=—M

Sl‘I‘Sz—ll &
w(T) Y Tjijajs(li.m) +0(1)

m=—00
M

1\* o I I,
~(50) m X a0 3 u(5p)u(57)
§1=—00 1, lh,=—M

X / FRB (e Erhmsday N 1y 55 (hom) + o(1)

T m=—0o0

= F/71(0) F}, ,,(0,0) F/273(0)n + 0o(1)

D
Z K j2(0,0) Fj, j, (0) i + o(1),

J1,J2=1
E[Z1(j1k1)Z2()2k2)]

1\° 0 y
= (2_) NTV? Z A“l(Sl)Akkl(Sz)Ak2k3(S3)
b4

§1,82,83=—00
M 11 12 N-I| N—I, N-I3

< 2ol G GH) 2 8
Ihb=—M my=1+l; my=1+Il mz=1+[l3
xj(my + 1) xp (ms + 13)

&y (N)di (V)

X Efuj, (mi){ui, (m2)ui,(my + o) — Uieyie, (1) Yutiey (m3)]

(lh=s51, L=s2+53—1)

1 6 00 3
= (2—) N7V D AT ) AR (50) A (s3)
T

51,82,83=—00C

GG 2, 8

=14l my=14+l m3=1+13
xj’(ml + 1) xg(ms3 + 13)
dj(N)dp (N)
X AT kikajs (M2 —my,my —my + I, m3 —my)
X Tjiky (my —mi) Ty, i (m3 —my — 1)
+ Ljiko (Mo —my + 1) Ty, j5(ms — ma)}
= O(M/N'?),
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E[Z(jik1)Z35(jaks, j3ks)]

1\° < : . .
—(5) ¥ X arnenarean i)
T

§1,82,§3=—00

<3 ool (3)

N-I; N-I, N-I3

x> Elua (my){uay(ma)uay (m2 + 1) — Tayay (12)}

my=141 my=1+l my=1+I3
Xp, (my + 1) Xk, (M3)Xp5 (M3 + [3)
die; (N )dje, (N )dje; (N)
(h=s1, lz3=s5+53—1)

1\¢ i . 4 .
= (ﬂ) Nk, Z AT (51) AT2%2 (5,) A% T3 (s5)

51,82,8§3=—00
M
I A I
< 2 ol (r)
L=—M

X Z Fa1a2a3(m’m + IZ)Rklkz (13) + 0(1)

1 N n

= N FIO) [ F ) F ) Fgyan (<A MM ()
+o(N7'?),
l g

=5 iy jajs Ay =Mk, d My (1) + 0(1),

and

cumZzZ(jiki1). Z1(j2k2), Z1(j3ks)]

6 M

Sl,SZ,S3=—M
5 Nil NX‘:Z Nif Xk, (M1 + 51)Xk, (M3 + 52) Xk, (M3 + 53)
dkl (N)dkz(N)dks (N)

m1=1+s71m2=1+s72m3=1+s73
X Fjl’jz’j3/(m2 —miy,ms —n/I1)
1\ M S S S
..y ..y ..y 1 2 3
— | E A]l]l (sl)Ajzjz (SZ)AJZJZ (Sz)w — Jwl = Jw| —
2 M M M
81,82,83=—M
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N 00 )
X Z Z Z Fjl’jz’j3’(m2,m3)

mp=1my=—00 m3=—0o0
% Xky (M1)Xpe, (M1 + My + 55 —Sl)xk3(m1 + m3 + 53 —51)
dkl (N)dkz(N)dkz(N)

| oo
:E/ / Ky jois Oty 22)d Miy oty (M1, A2) + 0o(N712).

+ O(N %)

]

PROOF OFTHEOREM4.3AND THEOREM4.4. ltis sufficient to show thdfg = Z +
o(N~'/2). The proof is substantially a modification of that of Theorem 5 in Hannan
[19, pp. 427], see also Theorem 10.2.7 in Anderson [2, pp. 575].

From Assumption 4.1 (i)-(iii), we can find spectral matridggA)~! and F,(1)~!
of moving average processes of ordérsuch that

0< M) '<FO)' < FM0),

Fi(M)™ = B0 < 81, (6.29)

where§ = O(M ~?). Here these inequalities are to be interpreted in the usual way as
between Hermitian matrices. In fact, let

-1 1 o ish K,
FO)™ = > Ay + il
s=—M

By = S et - K1y
2(4) _EZ (s)e YR
s=—M

then we can choose a constadtt > 0 such that (6.29) holds. Thus we have approxi-
matedF (A) by autoregressive processes of ord€r Let {u(¢)} satisfy the equation

M
Y Ci(s)ult —s5) = n(),

s=0

whereC (s) are the autoregressive matrices corresponding; t@) and then(z) are
independent and identically distributed random vectors with mean zero and covariance
matrix unity. Leti haveuy (¢) in the(t — 1) p + k-th place and™") = CoMa'ii]. Then,

we obtain

(DN '@ L)X @ [TV N (X ® I,)(Dy ' ® 1)
N M

= > D ADyT'x(t— jo)x(t — j2)' DT ® Ci(j1) Ci(j2) + Ry,
t=M+1j1,j2=1
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M

= Z {R(j1 — j2) + O(M/N)} ® C1(j1)'Ci(j2) + Rn.,
J1,J2=1

= % ' dM(A) ® Fi(=A)~" + Ry + O(M/N),

—7T

where

M
IRN]l = O(1/N) Y IIT(ji = j2)l = O(M/N).

J1:Jj2=1

Reversing the order of the indices of the tensors we obtain the result.
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