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Introduction

By a polarized manifoldve mean a paifX,L) consisting of a smooth complex pro-
jective varietyX and an ample line bundleon it. If L is very ample, then a member
of the complete linear serigk| is nothing but a hyperplane sectionXfmbedded by
the morphism associated fio.

In studies on the structures of polarized manifoldsL), it has been considered
that the nature of an ample divisar= |L| strongly influences that of the ambient space
X. Based on this philosophy, several kind of classification problems of polarized man-
ifolds whose ample divisors have special properties have been considered by several
authors (e.g. [Se], [SV], [Fa], [LPS 3], [BFS]).

In this thesis, we first study the case where a hyperplane section has a finite map
of low degree ontd", as indicated in the thesis subject. Next we investigate the case
where an ample divisor has a maximal sectional genus with respect fAogenus
and degree; A variety with this property is said to be a Castelnuovo variety though
explained later.

This thesis consists of three chapters. In Chapters 1 and 2, we shall deal with the
former case, and classify the polarized manifddsL) with very ample line bundles
L in the cases where the degrees of the finite map are 4 and 5. In Chapter 3, we shall
treat the latter case. There we raise a classification problefX af) whose ample
divisors A are Castelnuvo manifolds, and provide a classification of those polarized
manifolds in the case where the degreé\a$ smaller than its dimension.

In Chapters 1 and 2, we consider the following

Problem 1 (A. Lanteri—-M. Palleschi-A. J. Sommese [LPS 1]l et(X,L) be a polar-
ized manifold such that its line bundleis very ample. Fix an integet > 2. Assume
that there exists a smooth memb®e |L| such that there exists a finite morphism
. A— P" of degreed. Then classifyX,L).



The beginning of this problem goes back to the studies on the structures of projective
surfaces by the Italian school in the late 19th century. In fact, this problem originated
in G. Castelnuovo’s work [CaZ2] on the classification problem of projective surfaces ad-
mitting a hyperelliptic curve among their hyperplane sections. In 1980s, the revisions
of Castelnuovo’s result were made by F. Serrano [Se] and Sommese—A. Van de Ven
[SV].

In 1994, Lanteri—Palleschi-Sommese (LPS, for short) were inspired by the revi-
sions, and they raised and solved Problem 1 in the cases wher2andn >d =3
([LPS 1], [LPS 2]). For the cases af> d = 4 and5, there was an attempt by Lanteri
[Lan] to classify(X,L). After my paper [A2] was submitted, | was informed about
Lanteri’s paper by the referee. But his results, obtained by using freely the method of
LPS, give an only partial answer to the classification problemslfer4 and5 cases
because they contain doubtful cases.

Here the method of LPS is the way to determine the structufXdf) by using
the A-genus theory, i.e. T. Fujita’s classification theory of polarized manifolds (e.g.
[Fu 5, Chapter I]), for( X, 5#) after investigating the possible values of the following
three invariants: the degreX,.77’), theA-genusA(X,.7), and the sectional genus
g(X,s#), wheresZ is a line bundle oiX such that’Z’ |5 = " 0p(1). For the cases of
d < 3, theA-genus theory applies well in classifyiri¥, L) since the possible values
of the three invariants turn out to be small. However, in the casds>o#, the situa-
tion is rather complicated because the range of the possible values of their invariants
go beyond the applicable one of thegenus theory (e.gA(X, 7)) = d(X,5¢) =1
andg(X, ) > 3). The parts that thé-genus theory does not apply have remained
unsettled in Lanteri’s results [Lan, Theorems 3.4 & 3.5]dcee 4 and5 cases.

In Chapter 1, we discuss the cas@of d =5, and provide a complete classification
of (X,L) by resolving the unsettled parts positively.

Theorem 1.1.1Let X be a smooth complex projective variety wiiinX =n+1> 7.
Then the followindl) and(Il) are equivalent.

(I) There exists a very ample line bundle ¥nL, such thatL| contains a smooth
memberA endowed with a finite morphism: A — P" of degreeb.

(1) (X,L) is one of the following
(i) (P 05(5));



(i) (HXL, Ong(1)), whereH 1 is a hypersurface of degresein P2,
(iii) (Y1,5.2), where(Y1,.Z) is a del Pezzo manifold of degree one

(iv) (Wi, Owy,(5)), whereWyg is a weighted hypersurface of degré@in the
weighted projective spad®(5,2,1"1); or

(V) (Wag, O,y (5)), whereWsg is a weighted hypersurface of degr@é in
P(5,4,1"1),

It turns out that the pairs (iv) and (v) newly show up by comparing our result for
d = 5to the results fod < 3 by LPS. Moreover the existences for those new pairs are
verified (see Section 1.3).

One of the key ingredients of our proof in the degfeease is to describe the
structure of the polarized manifold in questiafX,.7#’), which is of A(X,.7) =
d(X,2) =1andg(X,.7) = 6 (Theorem 1.6.2). Although the polarized manifolds
with these invariants are yet to be classified, we can successfully determine the struc-
ture of (X, 7#) in question by focusing attention on certain ring-theoretic properties of
the graded ring

R(X, ) :== PH(X,i2).
i=0

We use the ladder method to find the generatofR(&f,.7#’) and the relations among
them. By using the Riemann—Roch theorem for a smooth cireeX cut out by|.77|,
we first describe the structure 8(X1,.7#|x,) in terms of generators and relations.
After that, we prove thaR(Xz, 77 |x,) is a Cohen—Macaulay ring, wheXe is a smooth
surface cut out by.7#|. It enables us to use a vanishing theorem Hd(1 77 |x,).
Consequently it is lead th@X, L) coincides with a weighted hypersurface of type (v).

In Chapter 2, we classifgX,L) completely in the case af > d = 4. Indeed, we
obtain the following

Theorem 2.1.1l et X be a smooth projective variety withmX = n+1 > 6. Then the
following (I) and(Il) are equivalent.

(I) There exists a very ample line bundle ¥nL, such thatL| contains a smooth
memberA endowed with a finite morphism: A — P" of degrees.

(1) (X,L) is one of the following



() (P™, 0p(4));

(i) (HF™, O, (2));

(i) (V1,42);

(iv) (Wi2, Ow,(4)), whereW, is a weighted hypersurface of degrée in
P(4,3,1"1);

(V) (Q"1,00(2)), whereQ"1 is a hyperquadric irfP"*?;

(
(
(
(

(Vi) (V334 Oy,,(1)), whereV,'3 1 is a complete intersection of two hyperquadrics
in P"*3: or

(vii) (Y2,20), where(Y2,L) is a del Pezzo manifold of degr@e

Compared to Theorem 1.1.1, Theorem 2.1.1 includes new pairs (v)—(vii). The ex-
istences of those new pairs are immediately verified.

Note that a complexity is caused by the compositeness of the degrfale finite
mapTt. In the case where is prime, the birationality oA andq(A) plays a key role to
classify(X,L), whereq is the morphism associated [tw* 0pn(1)|. On the other hand,
in the case wherd is composite, by the diagram belotv. £ dim|rT* Opn(1)| — n), we
immediately see that the birationality of those varieties dussalways hold, which
complicates the analyses Of,L).

A— = q(A) C P
\ i p: The projection from -1
in P with q(A) NP1 = 0.
T
Pn
In Theorem 2.1.1 (vii), the case whehéas not birational tag(A) really occurs.

We lead Theorem 2.1.1 by using a technique different from that in Theorem 1.1.1
although we use thA-genus theory in some parts. In fact, the key ingredient of our
proof in the degreel case is to show the nonexistence of the polarized manifolds
(X,.2) with A(X, 72) =d(X,. ) = 2,9(X, ) = 3and withL = 2.7 (Proposition
2.3.2). Although the polarized manifolds with these invariants are yet to be classified,
we can lead a consequence that contradicts the very amplene&y afsing the dou-
ble point formula for a surface cut out by?’|, therefore we successfully show the
nonexistence of those, 7).

In Chapter 3, we treat the classification problem of polarized manifofds?)
such that.Z| contains a Castelnuovo manifold In 1990, for a polarized variety
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(A, 2¢) with a birationally very ample line bundle?’, Fujita [Fu 5, (16.3)] gave an

upper bound for the sectional gera{#\,, .7¢) in terms of itsA-genus and degree. More-

over he called a polarized varieff, .7) whose sectional genus attains the maximum

a Castelnuovo varietgfter Castelnuovo’s study [Cal] on curves of maximal genus.
We first pose the following

Problem 2 Let (X,.Z) be a polarized manifold of dimension- 1. Assume that?’|
contains a membek such that(A,.77) is a Castelnuovo manifold with some line bun-
dle 5# € Pic(A). Then classifyX,.Z).

The structures of Castelnuovo manifolds themselves have been studied by Fujita [Fu 5,
§16] and S. Mukai [Mu]. However, to the best of my knowledge, it seems that the
problem is raised for the first time.

The main result of this chapter is to give an answer to this problem in the case of
d(A, ) < n. Precisely speaking we have the following

Theorem 3.1.1Let X be a smooth complex projective variety of dimengianl. As-
sume thad < d < n. Then the followingl)—(lll) are equivalent

(I) There exists an ample line bundle ¥n.Z, such tha.#| contains a membeh
such that(A, 77) is a Castelnuovo manifold of degrdevith somesZ € Pic(A).

(1) There exists an very ample line bundle ®n ., such that|.#| contains a
memberA such that(A,.7) is a Castelnuovo manifold of degrelewith some
€ € Pic(A).

(1) (X,2) is one of the following
(i) (Wy, Ow(l)) with some positive integédividingd, whereW is a weighted
hypersurface of degresin P(I,1"2);

(i) (Woq/2, Ow(l)) withl = 1,2 0r | dividingd/2, where the gived is an even
number> 4, andW, 4 is a weighted complete intersection of ty@ed,/2)
inP(1,1"3); or

(i) (Wo22,0w(l)) with| =1 or 2, whereWs 5 5 is a weighted complete inter-
section of typé2,2,2) in P(l, 1M4).



Moreover, for each of the ligt)—(iii) , £ |a = % holds if and only il = 1.

Note that if (X,.%) is a Castelnuovo manifold then so(i&,.Z|a). In this case,
Z|a= o holds. Meanwhile, Theorem 3.1.1 indicates that polarized manifXdg’)
which are non-Castelnuovo manifolds do appear. In fact, the existences of (i)—(iii) with
| £ 1 are verified.

Besides, by this theorem, it turns out that a polarized manifold which contains a
Castelnuovo manifold of small degree as an ample divisor is confined to be a weighted
complete intersection, which is what | would like to stress. The consequence would be
interesting in the point of view of characterization of weighted complete intersections
(e.g. [Laz 2, 3.2.B], [LV]).

Finally, in the proof of Theorem 3.1.1, we successfully classify the Castelnuovo
manifolds (A, 7)) of the first kind, i.e. (A,.%2) with d(A,2¢) > 2A(A,5¢), under
n > d(A, ) although the structures of Castelnuovo manifolds of the first kind are
still unrevealed in general (cf. [Fu 5, (16.7)]). By using Barth’s theorem (see [Laz 2,
Corollary 3.2.3] ), which is valid under > d(A, 5#’), we prove that those Castelnuovo
manifolds are confined to be Fano manifolds of coindex at rdo3therefore we can
describe the structures of those Castelnuovo manifolds explicitly unded (A, 57)
by utilizing classification results (e.g. [Fu 5, (8.11)]) of those Fano manifolds. Here is
our result.

Proposition 3.4.1Let (A, 7¢) be ann-dimensional Castelnuovo manifold with>
d(A,27). Then the followindl) and(ll) are equivalent.

() (A,22) is of the first kind.

(1) (A,.72) is one of the following

(I)( : ()),
(

v)

(G (5 2) ﬁer( 1)), whereGr(5, 2) is a Grassmann variety parametrizing the
2-dimensional linear subspace @P.



Conventions Throughout this thesis, we work over the complex number figldVe

adopt the standard notation from algebraic geometry ddémnt]. By a manifoldwe

mean a smooth projective variety. The words “Cartier divisors”, “line bundles” and
“invertible sheaves” are used interchangeably, and “vector bundles” and “locally free
sheaves”, too. The tensor products of line bundles are denoted additively, while we use
multiplicative notation for intersection products in Chow rings.



Chapter 1

Polarized manifolds admitting a
five-sheeted cover oP" among their
hyperplane sections

1.1 Introduction

Let X be an(n+ 1)-dimensional smooth complex projective variety aravery ample
line bundle onX. Consider the following condition:

(x)g There exists a smooth memb&Ee |L| such that there exists a branched covering
. A— P" of degreed.

Needless to say, the following “obvious” paif¥,L) satisfy (*)q: (P"1, Gpni1(d))
and(HJ 1, Opa(1)), whereH[ ™ is a smooth hypersurface of degien P"+2,

The study of(X, L) satisfying(x)q is a natural generalization of a classical problem
of CastelnuovdCaZ. The classical problem is to classify the paiks L) satisfying
(¥)g whenn = 1 andd = 2, and was solved by F. Serrafféd, Sommese—A. Van de
Ven [SV], independently. When =1 andd = 3, M. L. Fania[Fd studied the pairs
(X,L). Incasesn>d =2 [LPS 1, n > d = 3 [LPS 2, Lanteri—Palleschi-Sommese
(LPS, for short) classified the pairs.

Surprisingly, in case > d € {2, 3}, it turns out that the results of the classifications
are simple; this relies on topological restrictions impo3ebty A. In fact, in case
d = 2, the “non-obvious” pairs never arise in the classification. In chse3, the
“non-obvious” pair is only(Y;,3.Z), where(Y1,.Z) is a del Pezzo manifold of degree
1, i.e., a polarized manifold satisfyingKy, = n.¥ and.#"1 = 1.
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So, what kind of “non-obvious” pairsX, L) arise in case > d > 4 ? We shall deal
with the case ofl = 4 in Chapter 2.

The purpose of this chapter is to give a complete classification of the (&iks
that satisfy(x)s undern > 6. Our result here is as follows:

Theorem 1.1.1Let X be a smooth projective variety withmX =n+1> 7. Then
there exists a very ample line bundlen X that satisfies the conditiofx)s if and only
if (X,L) is one of the following

(i) (™, Gpnia (5));
(i) (I, Gy (1);
(i) (Y1,52);

(iv) (Wio, Oy, (5)), whereWsois a weighted hypersurface of degrEgin the weighted
projective spac@®(5,2,1"1); or

(V) (W, G, (5)), whereWkg is a weighted hypersurface of deg@@in P(5,4,1M1).

Two “non-obvious” pairs (iv) and (v) newly show up. Moreover the existences of those
new pairs are verified (see Section 1.3).

LPS ([LPS 1], [LPS 2]), in cases > d € {2,3}, use the classification theory of
polarized manifolds by means of sectional genera.

The difficulty in our study is that a polarized manifol¥,.77”) with A(X,7) =
d(X,2) = 1 and sectional genus 3 arises; the classification problem of polarized
manifolds with these invariants is yet to be solved completefly[Fu 5, (6.18)]).

Our study involves a new strategy although the starting point of the proof is inspired
by the ideas of LPS. The key ingredients of the proof are twofold

(I) To show the very ampleness 6fy,,(5) (Propositionl.3.3).
(I) To characterize(X,.s#) with invariantsA (X, #) = #™! = 1, g(X,#) = 6
and withL = 557 (Theoreml.6.2).

For (1), after finding a basis df®( G, (5)), we check that the freeness, the separation
of points and the separation of tangent vectors g, (5)|.
For (I1), our strategy is to find the generators of the graded ringkof7”)

R(X, ) = éHO(X,L%”),
i=0
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and the relations among them. Using the ladder method, we reduce this to describ-
ing the structure oR(X1,.7|x,) in terms of generators and relations, wheis a
smooth curve section of that is an intersection af-general members q7|. By

the Riemann—Roch theorem and some ring-theoretic arguments, we can describe the
structure oR(X, .7#") successfully.

This chapter is organized as follows: In Section 1.2, we give some notation, def-
initions and general facts. In Section 1.3, we prove (l), consequently the ‘if’ part in
Theoreml.1.1is proved. From Section 1.4 to 1.6, we concentrate on proving the ‘only
if’ part. In Section 1.4, we prove a basic resultidiiA, 71" &pn(1)). Section 1.5 is de-
voted to the cases (i) and (ii) in Theorelrl.1. Section 1.6 is devoted to the proof
of (1) (Theorem1.6.2), as a consequence we see that the polarized manifolds (ii))—(v)
actually show up.

After Theorem1.1.1 had been obtained, | found Lanteri’s result on a classification
of the pairs(X,L) in question [Lan, Theorem 3.5]. However, his classification result
contains one doubtful case: In fact, his result says that the cases (i)-(iv) in our Theorem
1.1.1 arise. But he gave only a numerical characterization and invariants for the case
(v). In contrast, | determine the structure of a unique polarized manifold appearing in
that case, completely.

1.2 Preliminaries

A branched covering of degreakmeans a finite surjective morphism of degreeA
manifoldmeans a smooth variety. A line bundle on a variety is said tepgagnedf it
is generated by global sections.

A polarized varietymeans a paifV,.Z) whereV is a projective variety and” is
an ample line bundle o¥i. Setm=dimV.

A member of|.Z| is called arung of (V,.Z) if it is an irreducible and reduced
subscheme of. A rung D of (V,.%) is said to beregular if the restriction map
HOV,#) — HO(D,.Z|p) is surjective. A sequencé =V D Vi1 D --- D Vy of
subvarieties oV is called aladderof (V,.2) if eachV; is a rung of(Vj;1,.Zj1) for
] > 1, where.Z] is the restriction ofZ to V.

The A-genusof (V,.%) is defined byA(V,.Z) = m+d(V,.£) — hO(V, &), where
d\V,Z) := ZMis thedegreeof (V,.£). For a manifoldV, the sectional genusf
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(V,.Z), denoted byy(V, %), is defined by the formula
29(V,.Z) -2 = (Ky +(m-1).2). ™1

A polarized variety(V,.Z) is called ascroll overa smooth curve if it is of the
form (P(&),H(&)) for some locally free sheaf onC, whereH (&) denotes the tau-
tological line bundle of?(&).

For an integer > 1, a line bundleZ onV is said to be-generatedf the graded
ring R\V,.2) = @ oHO(V,i.%) is generated by the global sections®t...,r.Z. In
particular.Z is said to besimply generated it is one-generated.

The following is used in the study of polarized manifolds with srdaljenera.

Proposition 1.2.1 (Fujita) Let (M,.¥) be anm-dimensional polarized manifold hav-
ing a ladder. Assume that=g(M,.¢) > A(M,.¥) =: A and.£™ > 2A + 1. Then?
is simply generatedy = A andH9(M,t.¥) = O for any integerg,qwith0 < g < m.

For the proof, we refer t@Fu 5 Chapter 1(3.5)].
The following lemmais trivial but useful in studying the structures of graded rings.

Lemma 1.2.2 Let (V,.¢) be a polarized varietyD a rung of (V,.Z) defined byd €
HOV,.Z), andpr: HO(V,t.%) — HO(D,t.Z|p) the restriction map. TheKer(p;) =
SHO(V, (t —1).2).

A weighted projective spad@&ep, .. .,en) is defined to b&roj(Clso, . .., Sn]), where
Wt(So,...,S\) = (€n,...,en) € N®(NTD A projective varietyW is called aweighted
complete intersectionf type (ay,...,a) in P(ey,...,en)(W.c.i., for shorj if the fol-
lowing two conditions are satisfied

(1) W=Proj(Clso,...,sn]/(F1,...,F)), where(F, ..., F) is aregular sequence and
eachF is a homogeneous polynomial of degege> 0O;

(2) Vi (Fi,...,Fe) N (Urk(sj = 0| k{ ))) = 0in P(ep, .. en).
We putS(ep,...,en) := U1k(sj =0 k1gj).

Proposition 1.2.3 (S. Mori) Let D be an effective ample divisor of andimensional
projective manifoldM. Assumé is a w.c.i. of typgay,...,ac) in P(ey,...,en). Then
the following hold.

13



(1) If m>4,Mis aw.c.i. of typgay,...,a) in P(ep,...,en,a), wherea > 0O is an
integer such thaty (D) ® 0p = Op(a).

(2) If m= 3 and there exists a positive integarsuch thatoy (D) ® 0p = Op(a),
thenM satisfies the same conclusion(dj.

For the proof, see [Mo, Corollary 3.8 & Proposition 3.10].

1.3 Polarized manifolds ofA = d = 1 and special examples: the ‘if’
part

In this section we consider the three special classes (iii)—(v) of polarized manifolds
appearing in Theorerh.1.1. These classes are constructed from polarized manifolds
(M, Z)of AM,.Z)=dM, %) =1

We begin with the following fact

Fact 1.3.1Let(M,.#) be anm-dimensional polarized manifold df(M,.¢) = ™ =
1, and letH;, ...,Hn-1 be general members ¢¥’|. For each integed < k < m-—1,
we putXy ;= k<j<m_1 Hi. Then the following hold.

(1) The base locuBs|.Z| consists of a single point.

(2) The linear systenb*.# — E| defines a flat surjective morphism M — ™1
whereb: M — M is the blowing up aBs|.#Z| and E is the exceptional divisor
lying overBs|.Z|. The seE is a section off, and every fiber of is an integral
curve of arithmetic genug(M,.Z) > 1.

(3) X is ak-dimensional submanifold &fl, andX; C --- C Xn_1 C M is a regular
ladder of(M,.Z).

For the proof, we refer tfFu 4 813.

Proposition 1.3.2 Let (M,.Z) be as in Factl.3.1, and letd > 2 be an integer such
that L := d.% is spanned. Then there exists a smooth menbef |L| with a finite
surjective morphism of degrek

mA—P™1
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Proof. From Fact1.3.1 (2), we obtain the flat surjective morphisin M — P™ 1,
SinceL is spanned, there exists a smooth men#bef |L| not passing througBs|.Z|.
SinceH' (M, (1—d).#) = Ofor i = 0,1 by the Kodaira vanishing theorem, we see that
hO(A,Z|a) = m, especially.Z || = |-Z|a. Therefore, combining these ard|?* =
d, we see thatZ|a| gives a branched covering of degek&rom Ato P™1, [

Example 1 Let (X,L) = (Y1,5.Z), where(Y1,.Z) is an(n+ 1)-dimensional del Pezzo
manifold of degred, i.e.,—Ky, = n.Z with "1 = 1. We seeA(Y;,.#) = 1. The very
ampleness db.# follows from the fact tha.# is spannedFu 4 814 and3.% is very
ample[LPS 2 (1.2)]. Hence, by Propositioft.3.2, there exists a smooth five-sheeted
cover of P" that is a member d6.7|.

Example 2 Let (X,L) = (Wio, Gy, (5)), whereWig is an(n+ 1)-dimensional smooth
weighted hypersurface of degré@ in P(5,2,1""1). We see thaf\ (Wio, Gy, (1)) =
Owy(1)"1 = 1. Moreover, it follows fromg(Wag, G, (1)) = 2 that (Wao, Gi,e(1)) is

a sectionally hyperelliptic polarized manifold of type ) [Fu 4 815 and 16 There-
fore Ow,,(5) is very ample due tdLaf, Theorem 33]. Consequently we obtain a
smooth five-sheeted cover Bf in |G, (5)].

Example 3 Let (X,L) = (Wao, Oy, (5)), whereWyg is an(n+ 1)-dimensional smooth
weighted hypersurface of degra@in P(5,4,1"1). Since we havé (Wag, G, (1)) =
Owe(1)™1 = 1, we get a five-sheeted coverBt in |G, (5)| from the following:

Proposition 1.3.3 The line bundlef,,(5) is very ample.
Proof. We prove the conclusion with the following steps:
(@) BS| Gy (5)| = 0
(b) the morphismp associated withéiy,,(5)| is injective;
(c) the linear systenviy,,(5)| separates the tangent vectors.

By combining5-generatedness éfy,,(1) and[Laf, Theorem 22], the rational map
¢ is an embedding outside the single pgint= Bs| O, (1)|.

Letx,y,2o,...,Zy generate the graded riiRj\Wao, O\, (1)), Wherededx,y, 2o, .. ., zn) =
(5,4,1,...,1).
(a) We see thatl%( G, (5)) is generated by the sections
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X Y20, .Y, Zj; - Zjs, WItNO < jg <--- < s <,

Therefore it follows that

Bsrﬁwzo<5>\=<x=o>n( N <a=o>),

0<i<n

which is empty sinc&\bg does not meet the loct®5, 4,1™+1).

(b) Suppose thap (p) = ¢(q) for someq € Woo. Then we see that (q) = O for
any0 <i <n, which indicates) € Bs|O,,(1)|. Thereforep = q.

(c) Lett be a non-zero tangent vectorip(Wag). We need to show that there exists
a sectiono € HO( Ry, (5)) satisfying the following conditions:

o(p) =0anddo (1) # 0.

We claim thatg; := yz satisfies the above conditions for so®el i < n. The
former condition is satisfied for atl; sincez(p) = 0. We prove that the latter holds.
Suppose that there exists non-zera Ty(Wsg) such thatdoi(t) = 0 for all i. Since
doi(1) = y(p)dz(1) andy(p) # 0, we see thatlz(t) = O for all i. Hence it follows
that

T € Tp(M), wherel := () (z=0).
1<i<n
Fromdz(1) = 0, we havel - Gy,,(1) > 2, which contradictsiy,,(1)™! = 1. This
concludes the proof. |

1.4 The ‘only if’ part

We are now going to classify the polarized manifolds in question.

Suppose thatX, L) satsifies(x)s andn > d = 5. Let m: A — P" denote the finite
morphism of degre&. Then a Barth-type theorem of R. Lazarsflldz 1 Theorem]
implies thatH?(A, Z) = H2(P",Z) = Z andH'(A, 0a) = 0. ThereforePic(A) = Z,
generated byt*0pn(1). The Lefschetz hyperplane section theorem impghes$X) =
Z. We denote by’ the ample generator &fic(X); we haves?’|a = " Opn(1). Com-
bining the ampleness of”’|4 and the fact thaf\-genus is non-negative for every po-
larized manifoldFu 5 Chapter 1(4.2)], we see

n+1<h%A #|p) <n+5.

In fact, we have the following
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Proposition 1.4.1 hO(A 7 |p) =n+1or n+2.

Proof. At first, supposéi®(A, 77 |a) = n+ 5. then we have (A, 57| a) = 0. Therefore,
by [Fu 5 Chapter I(5.10)], (A, 7 |a) is either (a)P", Opn (1)), (b) (Q", Ogn(1)) or (c)

a scroll overP!. Cases (a) and (b) cannot occur bg|x = 5. Case (c) also cannot
occur because d?ic(A) = Z.

Secondly, suppod® (A, 7 |a) = n+4. Then we obtaid (A, 77 |5) = 1. By Propo-
sition 1.2.1, we haveg(A,.7|a) = 1. Therefore it follows from[Fu 5, (12.3)] that
(A, 77 |a) is either a del Pezzo manifold or a scroll over an elliptic curve. The latter
case is ruled out becauseic(A) = Z. The former case is also ruled out by the fol-
lowing reason if (A, .77 |a) is a del Pezzo manifold of degréethen we see that is
the Grassmann variety parametrizing line®fh Gr(5,2), by combining the result of
[Fu 5 (8.11)] and our assumption > 5. But Gr(5,2) cannot be ample divisors ot
by virtue of [Fu 2 (5.2)].

Lastly, we supposk®(A, #4) = n+ 3. By Propositior.2.1, we see thag(A, /%) =
A(A, 7 |p) = 2 and s |a is simply generated, hence very ample. Accordingtove
havedimA < 4, which contradicts our assumption. |

From now on, we will discuss the cab®A,.7#|) = n+ 2 in Section 1.5 and the
casen’(A, /#|a) = n+1in Section 1.6.

1.5 The case of%(A, 7 |p) =n+2

In this section we treat the cas¥(A, J#’|a) = n+ 2. The aim of this section is to prove
the following

Proposition 1.5.1 If h%(A, Z|a) = n+ 2, then (X,L) is either (P"*, Gpni1(5)) or
(HQH,ﬁHgH(l))-

The following lemma is a special case[dPS 1, (1.3)]:

Lemma 1.5.2 (Lanteri-Palleschi-Sommesdf h°(A J#|a) = n+ 2, then the mor-
phismq: A — P"*! associated td.57 || is birational and its imagey(A) is a hyper-
surface(possibly singulay of degrees in P+,

17



Remark 1.5.3 By virtue of the Bertini theorem, we obtain a smodtaimensional
rungAy of (Axy1,7|a,,,) inductively, withA, := A. PutC := A;. Then one can easily
obtain an inequality

9(C,.#|c) > A(C, . |c). (%)

Lemma 1.5.4 The laddeiC C Ay C --- C A, is regular.

Proof. It suffices to proved (A, Op,) = Oforall k > 2. By the Lefschetz hyperplane
section theorenfFu 5 (7.1.4)], we haveH! (A, Op ) 2 HY(Ac_1, Op_,) forallk > 3.
Combining these and (A, Op) = 0, we obtain the assertion. [ |

By Lemmal.5.2, the smooth curv€ is the normalization of|(C), which is a plane
quintic curve of arithmetic genu& Sinceh®(A,. 1, H|a,,) = K+ 3for all k by virtue
of Lemmal.5.4, we haveA(C, 77 |c) = 3.

Lemma 1.5.5 The line bundle’”’|c is simply generated.

Proof. We prove thay(C, 7#|c) = 6 as follows: We have inequalities
3<9(C,#|c) <6

Indeed, the right inequality is obvious and the left is obtained by combifihgnd
A(C,|c) = 3. We haveKa = r7|5 for some integer due toPic(A) = Z. By the
sectional genus formula

20(A, 7 |p) —2= (KA—|—(n—l)%]A)-%|R‘1:5(r+n—1),

we see thag(A, .7 |a) — 1is divisible by5. Combining this and the above inequilities,
we obtaing(C, 7#|c) = 6.

It follows from g(C, .77 |c) = 6 = pa(q(C)) thats#|c is very ample, i.,eC = q(C).
Moreoverq(C) is a smooth plane curve. Therefof€|c is simply generated. [

Proof of PropositioriL.5.1. By combining Lemmad.5.4, 1.5.5and[Fu 5 Chapter I(2.5)],
we see that?’|a is very ample. Thus

(A7%|A) = (Hgv ﬁHQ(l))

We can writeL = 1.2 with some integet > 1. It follows from 5 = 77|} = |.#"*1
that (I, #"1) is either(1,5) or (5,1).
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The case of(l, ") = (1,5) The laddeC C --- € AC X is regular, hencad (X,L) =
3. Therefore, fronh®(X,L) = n+ 3, it follows (X,L) = (H21, Oppa(1)).

The case of(l,.#"1) = (5,1) SinceH' (X, —4.#) = Ofor i = 0,1 due to the Kodaira
vanishing theorem, we see th&(X,.7#) = n-+2, hence we hava (X,.7#) = 0. Since
A" =1, we obtain(X,L) 2 (P™?1) Gpn:a(5)). |

1.6 The case oh%(A, 7 |a) =n+1

In this section, we deal with the cab®A, 7#|s) = n+ 1. The heart of this section is
to prove Theorem.6.2.

Lemma 1.6.1If h%(A, 2 |a) =n+1, thenwe have =57, s#"! = 1andA (X, #) =
1

Proof. We see that = |77 for | # 1 as follows. Supposk= 1. Then|.7Z|a| gives an
embedding ofA into P", which contradictslegrr = 5. From this, we sek+# 1.

Therefore(l, #"1) = (5,1). Furthermore, from the Kodaira vanishing theorem,
it follows hO(X,.#) = hO(A, #|a) = n+ 1. Hence we obtaid (X,.5#) = 1. u

Let Hy,...,Hn be general members ¢f7’|, and putXy := Nx<j<,Hi for all 1 <
k < n. Recalling Factl.3.1 (3), we see thak is ak-dimensional manifold. We put
p:= Bs|.77|.

We now consider the morphism associate¢L{o

¢ X — P(IL]),

which is an embedding of, and¢, (X;) is a smooth curve of degrée Then we obtain
9(X,.2) =09(¢L(X1)) =0,1,2 or 6 (see[Hart, p.354).

The case ofg(X,##") = 0 From[Fu 5 (12.1)], we seeA (X, #’) = 0, which is absurd.

The case ofg(X,.7”) = 1 By virtue of a result of FujitgFu 5, (6.5)], We see that
(X,2) is adel Pezzo manifold of degréehence we are in the case of (i) in Theorem
111

The case ofg(X,.7’) = 2 From [Fu 4,515 & Appendix 1] andn > 6, (X, %) is a
sectionally hyperelliptic polarized manifold of tyge-), which is also classified by
Fujita. We are in the case (iv).
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The case ofg(X, 7)) = 6 Then we see thaf; is isomorphic to a smooth plane quintic
curve. What we are going to prove is the following

Theorem 1.6.21f hO(A, .27 |s) = n+1andg(X,.#) = 6, then

(X, ) = (Wao, Gingo(1))-

We will use the ladder method to prove this, where the key is to describe the struc-
ture of R(Xz, 7 |x,) explicitly. In fact, in order to get the conclusion, we need the
description of the structure &¥(X;,.7|x,) and the surjectivity of the restriction map

p: R(Xz,%|x2) — R(Xl,%‘xl).
We first describe the structure B{X1, .7 |x, ) :

Proposition 1.6.3 Under the assumption of Theorel6.2, there exists an isomor-
phism
R(Xlaf%ﬂ‘)ﬁ) = C[X7y7 Z]/<F20)7

wherewt(x,y,z) = (5,4,1) and Fyg is an irreducible weighted homogeneous polyno-
mial of degree20.

Proof. Using the Riemann—Roch theorem ¥ar, we find the generators &(Xy, 77|, )
and the relations among them. We proceed in three steps.

Step 1We show that the dimension bf°(1.57 |y, ) for | > 1is as follows:

l hO(L%p‘Xl) l h0<|%yxl)
1 1 6 3
2 1 7 3
3 1 8 4
4 2 9 5
5 3 10 6
andh%(1.#|x,) =1 —5 for all | > 11. Indeed, by the Riemann-Roch theorem, we

obtain
h(1|x,) = (10— 1)7#|x,) +1 -5,

which implies the latter assertion. We prove the former. Noteth@&7 |, ) = 3 since
IL|x,| gives an embedding of; into P2. By Fact1.3.1 (3), we seeh®(#|x,) = K in
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particularh®(.#|x, ) = 1, thush®(9.57|x, ) = 5. From the well-known fact that a smooth
plane quintic curve has neithg} nor g3, we haveh?(257|x,) = h%(3¢|x,) = 1, thus
hO(857|x,) = 4,h0(7#|x,) = 3. Then we sed®(6.7|x,) = 3 andh?(4.7|x,) = 2.
Therefore the former assertion is proved.

Let z be a basis 0H%(#|x,). Choosey € HO(4.#|x,) such thatH®(4.7|x,) =
{y,Z*). Moreover, choosg € HO(5.7|x,) such thaH%(5.7|x,) = (x,yz,2°).

Step 2We claim that the graded rinB(Xy,.%|x,) is generated by,y,z. Indeed,
it suffices to prove that there exist some monomials, i1z which form a basis of
HO(1.#|x,) for eachl. Note that

W21 1) — h2((1 — 1) #]x,) = & € {0,1}.

The cases 06 < | < 11 We may assumé = 1: otherwise, we havel®(1.7|x,) =
zHO((1 — 1).57|x,). Therefore we only consider the cades 8,9,10. Each mono-
mial in x,y contained inH%(1.7#|x,) has a pole of order exactlyat p. Comparing
their orders of poles, we see from Step 1 that the following monomials are linearly
independent for ead®i< | < 10, hence form a basis fo1°(1.57|x, ) :

| monomials inH(1.27|x,)

8 V2. X2,y 2

9 Xy, Y2z, x2',y2, 2°

10 X2, xyzy?Z,x2,y2, 710,
Therefore the assertion holds in these cases.
The cases of > 12 We seed = 1 from Step 1. We prove the assertion by induction.
Whenl = 12, it is easy to see that the following monomials are linearly independent
as before, hence form a basisttf(127|x,):

V222 xyZ Y22 xZ yP, 72,

Supposé > 12 and that the assertion holds for 1. It is easily shown that

for two coprime positive integers b and an integer with | > (a—1)(b—
1), the equatiorai+bj =1 has at least one solutidin j) of non-negative
integers.

Set(a,b) = (5,4). Then, sincd > 12, there exists at least one section written as
X'yl (i, j > 0) in HO(1.27|x,), not contained imHO((1 — 1).57|x, ). HenceH%(1.7|x,) =
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CxXy! @zHO((I — 1)2#|x,). From the assumption of induction, the assertion holds.
This proves our claim.

By Step 2, there exists a surjective homomorphism of graded rings

®: C[X,y,Z] - R(Xla%bﬁ)'

Step 3We show that there exists an irreducible homogeneous polynéggiaf degree
20in C[x,y, 7 such thatker(®) = (Fy0). Indeed, there exist no relations of degree
| < 20because the equati@n+ 4j = | has at most one solutidgin, j) of non-negative
integers. Fot = 20, there are exactl§6 monomials ofx,y,zin H%(20#|x,). On the
other handh®(207|x,) = 15. Hence there exists one relatiBsy of degree20, which

is written as

F20 = X4 + y5 + ZLIJ19<X7 Y, Z)

after we replacex andy by suitable scalar multiples, whergg is a homogeneous
polynomial ofx,y,z of degreel9. The irreducibility ofFq is proved as follows: One
can easily show that* + y® is irreducible. WriteFog(X, Y, 2) = P(X,Y, 2)P2(X, Y, 2) with
somePy, P € C[x,Y,Z. Then we may assuni&(x,y,0) = 1 without loss of generality.
HencePy(x,y,2) = 1+ z& and P, = x* 4+ y° + z&,, whereé&;, & are polynomials in
X,Y,z. We obtain that

Wr9(X,Y,2) = E (X + Y +282) + &2

It follows thaté; = 0. Indeed, otherwise, the highest term of the right-hand side has
degree> 20, which is absurd. Thereforg) is irreducible. Furthermore, combin-
ing this and the fact thatt(Ker(®)) < dimC|[x,y,z] — dimR(Xy, 7 |x,) = 1, we see
Ker(®) = (Fo). |

Next we will show the surjectivity of the restriction map Lets= {sp,..., sy} be
a minimal set of generators 8 Xy, .7|x,). Then there exists an isomorphism

R(X27%|X2) = C[S()v"'as'\l]/(Fl»---th),

whereF, ..., R, are homogeneous polynomials@isy, . ..,sn]. Putls:= (Fy,...,F,).

It follows from Fact1.3.1 (3) that the vector spacel®(#|x,) is of dimension
2, hence has a basis,t} such thatp(s) = zand (t)p = X;. We may assume that
contains these two elements.
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Lemma 1.6.4 The sequences contained inm := R(Xp, .77 |x, )+ is regular.

Proof. Let mbe a homogeneous element of degagr R(X», .7#|x,) such thatm =
0. We see thaR(Xz, 7 |x,)+ has no zero-divisors sinc& = Proj(R(Xz, 7|x,)) is
integral. Hence, ifa > 0, then we obtain= 0. If a =0, then the minimality ofs
implies thatls has no generators of degree one. Thus we nave0. Thereforet is
R(X2,-#|x,)-regular. By the same argument, we see gaR(Xp, .7|x,)/(t)-regular
sinceX; = Proj(R(Xz, #|x,)/(t)) is integral. Consequently the assertion holdsl

In order to prove Propositioh 6.6, we need some information about generators of
ls. Let
i HO(12]x,) = HO(172|x,) / (t) — HO (1L |x,)

denote the restriction map. Here we show the following

Lemma 1.6.5 The idealls has no generators in degreesb.

Proof. We first prove that

Im(ps) = H2(5.¢x,)- (1)
It follows that rank(ps) > 3. Indeed, the morphisng |x,: X1 — P(Im(ps)) is an
embedding of a curve of genis Consequentlyt) follows by virtue of Step 1 in the
proof of Propositiori.6.3.

Subsequently, we find a basistef(1.77|x,) for 1 <1 < 5 by using Lemma..2.2.

Forl = 1, there exist no relations iH°(.#|x,) because of the minimality af

For | = 2, there exist no relations. In fact, it followd®(27|x,) = (s?,st,t?).
Indeed, letn € HO(27|x,). We can writepy(n) = cZ with somec € C. Then,
from Lemmal.2.2, it follows thatn is a linear combination of?, st,t2. These three
monomials are linearly independent because each order of pole ¥jafiffers from
that of the others.

Forl = 3, there are no relationswe see thaH®(3.7|x,) = (s, s, st?,t3) by the
same argument as in the cdse 2.

As for | = 4, we note thatl < rank(ps) < h°(47|x,) = 2. We first suppose
rank(pg) = 1. ThenH®(4.7|x,) = (s*,$%, s%2, st3,t4) holds, which implies that there
exist no relations. ByT), there exist sections,v € H%(557|x,) such thatps(u) =
X, p5(v) = yz Since it follows from Lemmd.2.2 that

HO(5.7x,) = (u,v,s, s, 2, $2t3 st t0),
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there exist no relations iIH®(5.57|x, ).
Next we supposeank(ps) = 2. Letw denote a section such thai(w) =y. Then
we see

HO(4.2|x,) = (w, s* S, s°t2, st t4),
HO(S%’XZ) = <U,SWtW,SS,S4t,S3t2,SZt3,St4,t5>,

whereu is a section such thais(u) = x. Therefore there exist no relations. [
Proposition 1.6.6 The restriction map

p: R(X2, 7|x,) — R(X1,5|x,)
is surjective.

Proof. It suffices to prove thatl1(1.7#|x,) = 0 for everyl > 0, which is equivalent to
showing thaR(Xp, 7 |x,) is a Cohen—Macaulay ring (s¢#&/, (2.4)]).

We find a regular sequence of lendtleontained inm. The sequencesis regular
by Lemmal.6.4. Letuc H9(5¢|x,) denote a unique section such timg{u) = x.
We assert that is R(Xp, .7 |x,)/(t,s)-regular. IndeedProj(R(Xz, .7 |x,)/(t,s)) is an
integral schemep because o;f%”|>2<2 = 1. Thus we see thdR(Xp, 7 |x,)/(t,s))+ has
no zero-divisors. Lein be a homogeneous element of degrgr R(X2, 77|x,)/(t,S)
such thaum= 0. If a > 0, then we haven = 0 obviously. Ifa= 0, then we have
m=0by Lemmal.6.5. Thereford, s,u form a regular sequence. |

At last, we can prove Theorefn6.2 as follows:
Proof of Theorenl.6.2. Combining Propositiori.6.3 and1.6.6, we see thak; is a
weighted hypersurface of degrg8in P(5,4,1?). Furthermore, the assertion follows
from Propositionl.2.3. |
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Chapter 2

Polarized manifolds admitting a
four-sheeted cover ofP" among their
hyperplane sections

2.1 Introduction

Let X be an(n+ 1)-dimensional smooth complex projective variety aravery ample
line bundle onX. Consider the following condition:

(x¥)g There exists a smooth memb&E |L| such that there exists a finite surjective
morphismrt: A — P" of degreed.

Needless to say, the following “obvious” paif¥,L) satisfy (*)q: (P"1, Gpni1(d))
and(HJ 1, Opa(1)), whereH[ ™ is a smooth hypersurface of degien P"+2,

It is an interesting subject to investigate, for a fix@dwhat kind of the “non-
obvious” pairs show up. In fact, for small prime numbdyshe pairg(X,L) satisfying
(¥)g andn > d have been classified completelyord = 2 and3, Lanteri—Palleschi—
Sommese|[PS 1, [LPS 2) classified the pairs. Fat =5, we classified the pairs in
Chapter 1.

Letq be the morphism associated 1 Opn(1)|, and assume:= hO(A, 1" Opn (1)) —
n—1> 0. Then we have a factorization afas follows:

q
A——q(A) C Pt
p: The projection from -1
n in P with q(A) NP1 = 0.

}P}ﬂ
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In the case wherd is a prime, it immediately follows thatis birational onto its image
g(A), which is a variety of degre@. This plays a key role in the classification problem
for a smalld.
Now then, for a composite numbel there may exist pairéX,L) with a non-
birational morphisng. Therefore it is natural to study the structures of these pairs.
The purpose of this chapter is to provide a complete classification of thg Balrs
in casen > d = 4. Our result is

Theorem 2.1.1Let X be a smooth projective variety withmX =n+1 > 6. Then
there exists a very ample line bundlen X that satisfies the conditiofx), if and only
if (X,L) is one of the following

(i) (P2, Opnia(4));
(i) (H* Gpa(1));
(i) (Y1,42), where(Y1,.%Z) is a del Pezzo manifold of degree one

(iv) (Wh2, Ow,(4)), whereW, is a weighted hypersurface of degtzin the weighed
projective spac@®(4,3,1™1) with its ample invertible sheafi,,(1);

(v) (Q", 0gni1(2)), whereQ™ 1 is a hyperquadric iP";

(vi) (V331 Oy (1)), whereV,'J ! is a complete intersection of two hyperquadrics in

Pn+3; or
(vii) (Z,20), where(Z,L) is a del Pezzo manifold of degr@e

There are five “non-obvious” pairs. By comparing this theorem to Theorem 1.1.1,
it turns out that no fewer than three pairs (v)—(vii) newly show up. In particular, the
pair (vii) is a unique one with a non-birational morphigmin fact, we see thag(A)
is a smooth hyperquadric in this case.

Our basic strategy is to reduce to Fujita’s classification theory of polarized mani-
folds, which leads us to study the structure(¥fL) with a non-birational morphism
Q.

The strategy is roughly summarized as follows: As we will see in the se8fion
it follows that Pic(X) = Z[.7¢], wheresZ is the ample generator. And we can show
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that invariants of(X,.7’) are small. Therefore the classification theory is applica-
ble except certain polarized manifolds with sectional geéra /) = 3, A-genera

and degrees (I (X, 7)) = ™1 = 1 or (Il) 2. The classification problem of polar-
ized manifolds with these invariants, in general, are yet to be solved completely (cf.
[Fu5(6.18)&(10.10))).

As for (1), it turns out that(X,.7#) is not sectionally hyperelliptic. Furthermore,
we find that a curve which is an intersectionmme§eneral members ¢0f#’| is a smooth
plane quartic. In this case, we can determine the structu(¥,o#’) by using a new
method provided in Section 1.6.

As for (1), we can prove that this case is ruled out by using the Riemann—Roch
theorem for curves and the double point formula for surfaces, successfully (see Propo-
sition 2.3.2).

After Theorem 2.1.1 had been obtained, | found Lanteri’s result [Lan, Theorem
3.4], which is similar to ours. But his result contains one doubtful casefact, for
the case (iv) in Theorer@.1.1, his result has given only some invariants. In contrast,
our theorem reveals the structure of a unique polarized manifold appearing in the case.
So our classification result is complete.

2.2 Three special examples: the ‘if’ part

In this section the ‘if’ part of Theorer.1.1 is proved. We only consider the three
special classes (iii), (iv) and (vii) of polarized manifolds appearing in Theorem because
one can easily check that the other classes (i), (ii), (v) and (vi) satisfy the assertion.

Example 1 Let (X,L) = (Y1,4.%), where(Y1,.Z) is an(n+ 1)-dimensional del Pezzo
manifold of degred.. We haveA(Y;,.#) = 1. As in the proof of [LPS 2, (1.2)], we see
that4.Z is very ample. Therefore it follows from Proposition 1.3.2 that there exists a
four-sheeted cover d" that is a member 0#.Z|.

Example 2 Let (X,L) = (Y2,2L), where(Y2,L) is an(n+ 1)-dimensional del Pezzo
manifold of degree, i.e.,—Ky, = nL with L"*1 =2, Then, from[Fu 5 (8.11)], (Y2,£)
is a double covering dP"*1 branched along a smooth hypersurface of degraed L
is the pull-back of¢pni1(1). The graded rindR(Y2, L) is 2-generated sincérz, L) is
a smooth weighted hypersurface of degéda P(2,1"2). We obtain thaL is very
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ample by combining the spannednesslocand [Laf, Corollary 2.3]. Therefore there
exists a smooth membére |2L| that is a double covering @". By projectingQ"
from a point ofP*1\ Q" to P", we see thah is a four-sheeted cover &f".

Example 3 Let (X, L) = (Wi2, Ow,(4)), whereWsz is a smooth weighted hypersurface
of degreel2in P(4,3,1"1). By easy calculations, we obtain th&tWi,, G, (1)) =
Ow,(1)™1 = 1. From [Fu 4§ 13], we see thaBs| Gy, (1)| consists of a single point,
which is denoted by. We obtain a smooth four-sheeted covei8fthat is contained
in |Gw,,(4)| by combining Proposition 1.3.2 and the following

Lemma 2.2.1 The line bundle&i,,(4) is very ample.

Proof. We obtain the conclusion with the following steps
(2) BS|Ging,(4)] = O,
(b) The morphisny := ¢€W12(4) associated t@y,(4) is injective
(c) The linear systenviy,,(4)| separates the tangent vectors.

From the4-generatedness &(\Wi 2, O\w;,(1)) and [Laf, Theorem 2.2]p is an em-
bedding outside the single poipt Letx,y,z; (0 < j <n) generate the graded ring
R(Wi2, O, (1)), wherewt(x,y, z;) = (4,3,1) for all j.

(a) It follows thatHO( G, ,(4)) is generated by the sections

nyZOa---aer1;Zj1"'Zj4,WithOS JlS S j4§n-

Therefore we see that

Bl (4] = (=0 ( ] =0)).
0<j<n
which is empty sinc&V;, does not meet the singular pointsi#@, 3,1"+1).
(b) If we assumep (p) = ¢(q) for someq € W», then we find thag; = 0 for any
0 < j < n, which impliesq € Bs|Gw,,(1)|. Thusp=q.
(c) For a non-zero tangent vectoe Ty(Wi2), we need to show that there exists a
sectiono € HO(Gy,(4)) satisfying the following conditions:

o(p) =0anddo (1) #0.
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We show thatoj := yz; satisfies the above conditions for soec j < n. The
former holds becausg(p) = 0 for all j. We prove that the latter holds by contradic-
tion. Assume that there exists a non-zere Tp(Wio) with doj(t) = 0for all j. Since
doj(t) =y(p)dz(t) andy(p) # O, we see thatlz;(1) = O for all j. Thus we have

T € Tp(T), wherel := (] (z=0).
1<j<n
It follows from dz (1) = O thatT - Giw,(1) > 2, which contradictsii,, (1)1 = 1.
This completes the proof. |

2.3 The ‘only if’ part

Let (X,L) satisfyn > 5 and (x)4. And let m: A — P" denote the finite morphism
of degree4. Then a Barth-type theorem of Lazarsfeld [Laz 1, Theorem 1] implies
thatH?(A,Z) = H?(P",Z) =2 Z andH1(A, 0a) = 0. Therefore we haveic(A) = Z,
generated byt 0pn(1). The Lefschetz hyperplane section theorem impHe$X) =~

Z. We denote by# the ample generator &fic(X); we haves?’|s = " Opn(1). Thus

we can writel = |57 with somel > 0. Sincel #"1 = 7|} = 4, we see that

M =1 2o0r4

Combining the ampleness 6|4 and the fact thaf\-genus is non-negative for every
polarized manifold [Fu 5, Chapter | (4.2)], we see

n+1<ho(A 7|p) <n+4
In this section, we investigate the polarized manifolds in question case by case.

The case ofh?(A, 77|a) = n+4 SinceA(A,./7|a) = 0 and Pic(A) = Z, it follows
from [Fu 5, Chapter | (5.10)] thatA, 57 |a) is either (P", Opn(1)) or (Q", Ogn(1)).
Moreover, since’Z’|} = 4, we get a contradiction. Hence this case does not occur.

The case 0h?(A, 77 |a) = n+3 We see thatA, 7 |5) has a regular ladder by the argu-
ment as in the proof of Lemma 1.5.4. Then we obtain ¢t&t 77’ |a) > A(A, 7 |a) =

1 by the Riemann—Roch theorem. Therefore we gg&.7’|a) = 1 by combining
4=} > 2A(A, 7 |p) = 2and [Fu 5, Chapter | (3.5.3)]. This implies thH#&t 7 |a)

is a del Pezzo manifold of degrdewhich is(VZ’jz, ﬁvgz(l)) due to [Fu 5, (8.11)].
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For (I, ") = (1,4), L = 2 gives an embedding of into P"*3, Hence it
follows from [Mo, Corollary 3.8] thatX,L) = (V;3%, Oygs1(1)). We are in the case
(vi) in Theorem 2.1.1.

For (1,1 = (2,2), we see thah®(X,.7#) = n+ 3 from the Kodaira vanishing
theorem. Sinced(X,.#) = 0 and.#"™! = 2, we have(X,L) = (Q", Ggn+1(2)).
Hence we are in the case (v).

For (1,#™1) = (4,1), we see that this case does not occur as follows: Since
hO(X,.#) = n+ 3, we obtain thatd (X,.#°) = —1, which is absurd.

The case oh?(A, J7|a) = n+2 For (I, 2"1) = (1,4), we haven®(X, ) =n+3
by the Kodaira vanishing theorem. Hence we obtain th@,.7#) = 2. Combining
dimX > 5and [Fu 5, (10.8.1)], we see th@f,L) = (H; ™, ﬁH2+1(1)). Thus we are in
the case (ii) in the Theorem.

For (I, ™1 = (2,2), we haven®(X, 7#) = n+2, henceA(X,.»#) = 1. It follows
from [Fu 5, (6.13)] thatX,L) = (Y,,2L). Thus we are in the case (vii).

For (I, #™1) = (4,1), we haveA (X, .s#) = 0. Thereforg( X, L) = (P""1 Opns1(4)),
which is the case (i).

The case 0h%(A, /#|p) = n+1 Sinces#|} = 4, we have # 1, hence
(I) AX, ) = 4" =
() AX, ) =1 =2

LetHy,...,Hn € |[2Z| be general members, and pt:= (Ny<j<, Hi for everyl <
k < n. Then eachXy is ak-dimensional submanifold oX due to [Fu 4, (13.1)] and
[Fu 3, (4.1)]. Moreover, by combining (X, &) = 0 and the Lefschetz-type theorem
[Fu 5, (7.1.4)], we see that the laddefi } 1<k<n+1 IS regular, where we pu,1 := X
Therefore we have®(Xy, 77 |x, ) = k for all 1 < k < n+ 1. Sincel|x, is very ample
and has degreg¢ we haveg(X, 7#) = g(X1) = 1 or 3. Then we argue case by case.

For the casg(X,.7#’) = 1, we are in the case (I) by [Fu 5, (12.3)] aR&t(X) = Z
Hence(X,.77) is a del Pezzo manifold of degree one, which is the case (iii) in Theorem
2.1.1.

For the casg(X,.7”) = 3 and (), it turns out that (iv) shows up. In fact, we prove
the following
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Proposition 2.3.1 Assume thag(X, .7#’) = 3and(l). Then(X, 77) = (W2, Ow,,(1)),
whereW;, C P(4,3,1"1) is a smooth weighted hypersurface of degi@e

Proof. We first note thaX; is isomorphic to a plane quartic curve becausg(¥f ) = 3.
Next, we will show that

(l) R<X174%ﬂ|xl) = C[vaa Z]/(F12)1 WhereWt<X7 Y, Z) = (47 37 1) and F12 - X3 + y4 +
211 for some homogeneous polynomifd; € C[x,y, z] of degreell; and

(2) The restriction map : R(Xg, 7 |x,) — R(X1,-#|x,) is surjective.

It suffices to prove the aboveln fact, from (1) and (2), we see th&p is a weighted
hypersurface of degrel2in P(4,3,1%), and therefore the assertion follows from [Mo,
Proposition 3.10].

(1) We find the generators &(X,.7|x,) and the relations among them by using
the Riemann—Roch theorem f¥§. By the sectional genus formula, we obt&ir, =
4.¢|x,. Therefore we have

hO(1.7|x, ) = hO((4—1)2|x,) +1 —2.
For alll > 5, we seeh’(1.2#|x,) = | — 2. Forl < 4, we get the following table because
of the well-known fact that a smooth plane quartic ha:g%no

I hO(I%,) |1 (A,
1 1 |3 2
2 1 |4 3

Let z be a basis of the vector spakf(#|x,). Choosey € H%(327|x,) such
thatH®(3.7|x,) = (y,Z°). Similarly, choosex € H%(4.7|x,) such thaH%(4.7|x,) =
(x,yz,Z*). From now on, we proceed in two steps.

Step 1We claim that the graded rirf( Xy, 77|, ) is generated by three elementy, z
Indeed, it suffices to show that there exist some monomialsyia which form a basis
of HO(1.%#|x,) for eachl > 5.

We use induction oh. By the assumption (I), we see tHa¢|.77’| is a single point
p. Note that each monomial iy contained irH%(1.27|x, ) has a pole of order exactly
| at p. Whenl =5, we see that the monomiaig yZ,2° are linearly independent by
comparing their orders of poles pthence form a basis ®1°(5.7|x,).

Suppose that the assertion holds fer 1 > 5. Note thath%(1.7#|x,) = hO((I —
1).7|x,) + 1. It is easily shown that
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for two coprime positive integems b and an integer with | > (a—1)(b—
1), the equatiorai +bj = | has at least one solutidin j) of non-negative
integers.

Set(a,b) = (4,3). Then, due td > 6, there exists at least one section written as
X'yl (i,j > 0)in HO(1.2#|x,), not contained izH%((1 —1).57|x, ). HenceH°(1.27|x,) =
CxXyl @zHO((I — 1).7#|x,). From the induction hypothesis, the assertion holds for
This proves our claim.

By Step 1, there exists a surjective homomorphism of graded rings
®: Clx,Y,2 — R(X1,5|x,)-

Step 2We show that there exists an irreducible homogeneous polyné&miaf degree
12 in CIx,y,Z such thatker(®) = (F12). Indeed, there exist no relations of degree
| < 12 since the equatiodi + 3] = | has at most one solutiof, j) of non-negative
integers. Fol = 12, there are exactlt1 monomials inx,y, z of degreel2. On the
other handh®(127|x,) = 10. Therefore there exists one relatibip of degreel?,
which is written as

Fio=x3+y*+ 2n1(X, Y, 2)

after we replacex andy by suitable scalar multiples, wherg; is a homogeneous
polynomial inx,y, z of degreel 1.

It turns out thaFy, is irreducible as follows: We can show thdt+y* is irreducible,
immediately. WriteF12 = Pi(X,y,2)P(X,y,2) with someP;, P, € C[x,y,Z. Without
loss of generality, we may assurBgx,y,0) = 1. HencePy(X,y,z) = 1+ z&; andP, =
X3+ y* + &5, whereéq, & are polynomials irx,y,z. We have

P11(x,Y,2) = E103 + Y+ 285) + &

It follows thaté; = 0. Indeed, otherwise, the highest term of the right-hand side has
degree> 12, which is absurd. Therefoi& is irreducible.
Moreover, combining this and the fact that

ht(Ker(®)) < dimC[x,y,Z — dimR(Xy, #|x,) = 1,

we obtainKer(®) = (F;2). Thus (1) is proved.
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(2) It suffices to prove tha& (X, .7 |x,) is Cohen—Macaulay, which is equivalent to
finding a regular sequence of lengimR(X, .77 |2) = 3 contained irR(Xg, 7|, )+ =
Di-oH (X, 17 x,).

Before proving this, we fix our notationLet s= {s, ..., Sy} be a minimal set of
generators oR(Xz, .7 |x,). Then there exists an isomorphism

R(X2, 7 |%,) = Clso, ..., s\]/ls,

wherels is the homogeneous ideal definiKg
First we find a regular sequence of lengtbontained irR(Xz, 7 |x,)+ as follows:
Sincen%(Xp, .57 |x,) = 2, we see thaH®(.s7|x,) has a basigs,t} satisfying

p(s) =zand(t)p = X;.

We may assume tha contains these two elements. It is easy to check tjst
R(X2,.7#|x,)+ form a regular sequence of length

Next, we find arR(Xp, 7|, )/ (t,s)-regular element. One needs some information
about generators @f. For eacH > 0, let

or: HY(152|x,) — HO(1Z]x,) / (t) — HO(1Z|x,).

denote the restriction map. We proceed in two steps.
Step 1We show that the idedk has no generators in degre€st as follows: Firstly,
we see that

Im(pa) = HO(4.]x,) (1)

combiningh®(4.7|x,) = 3, the very ampleness &f= 4.7 and the irrationality 0i;.

Subsequently, we find a basistéf(1.77|x,) for eachl < | < 4.

Forl = 1, there exist no relations iH°(.#|x,) by virtue of the minimality of.

Forl = 2, there are no relationsln fact, it follows thatH®(2.2|x,) = (s, st,t?).
Indeed, for any) € H9(2.57|x, ), we can writgop(n) = ¢Z with somec € C. Therefore
we see that) is a linear combination o, st,t2. These three monomials are linearly
independent because each order of pole akngjffers from that of the others.

Forl = 3, we note thafl < rank(ps) < h%(37¢|x,) = 2. We argue whether there
are relations or not, case by case. We first suppask ps) = 1. Then, by the same
argument as in the cage= 2, we seeH®(3.7|x,) = (s°,5%,st?,t3), which asserts
that there are no relations. BY)( there exist sections,v € H%(4.#|x,) such that
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pa(u) = x,p4(v) = yz It is easy to see that (4.7 |x,) = (u,v,s* s, 12 st3,t4),
therefore there are no relationshi?(4.57|x,) .

Next, suppose thank(pz) = 2. Letw denote a section such thag(w) =y. Then
we see that

HO(37|x,) = (w, %, 5%, sE%,t3),
HO(4.2|x,) = (u,swtw,s*, st s2, s, t4),

whereu is a section such thay(u) = x. Therefore there exist no relations. In this way,
it turns out thals has no generators in degre€4l.

Step 2We claim that there exists &(Xz, .7 |x,)/(t,s)-regular element. Lat denote
a section oH?(4.7|x,) such thatps(u) = x. We assert that is R(Xp, 7#|x,)/(t,S)-
regular. IndeedProj(R(Xz,.7|x,)/(t,s)) is an integral schemp because o;f%”|>2(2 =
1. Thus we see thaR(Xz, .7|x,)/(t,s))+ has no zero-divisors. Leh be a homoge-
neous element of degreen R(Xz, 7 |x,)/(t,s) such thaum= 0. If a > 0, we have
m = 0 obviously. Ifa= 0, then we obtairm= 0 by Step 1. Therefore our claim is
proved.

Consequently, due to (1) and (2), the proposition is proved. |

For the casg(X,.7) = 3and (Il), we have&Kx = (2—n).s#. Hence it follows that
H1(X3,m#|x,) = O for all m> 0. We also see that the restriction map

p: HO(Xo, o2 x,) — HO(Xy, mA’|x,) ()
is surjective for alim> 0.

Proposition 2.3.2 Assume thag(X,.7") = 3and(ll). ThenL = 27 is not very ample.

Proof. Using @), we obtain thath®(Xp,2.7|x,) = hO(Xy,25¢|x,) +2 = 5. Sup-
pose thaL is very ample. Then we see thig, gives an embedding of, into P4,
But the double point formula for surfaces (see [BS, Lemma 8.2])L[§, —5) —
10(g(X2, L[x,) — 1) + 12X (Ox,) — 2Kg, = 0 implies that—7+ 3pg(X2) = 0, which is
absurd. [

Therefore we see that this case cannot occur, which completes the proof of Theorem
2.1.1.
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Chapter 3

Polarized manifolds admitting a
Castelnuovo manifold among their
ample divisors

3.1 Introduction

Let.# be an ample line bundle on a smooth complex projective 1)-fold X. To de-
termine the structure of such that the complete linear serjgg| contains a “special”
variety has been an interesting subject in adjunction theory and, therefore, investigated
by several authors (e.g. [LPS 3]; [Se], [SV], [Fa], [LPS 2], [LPS 1], [Lan], [BFS] in a
more strict setting that” is very ample).

In this chapter, we shall study the case wher® contains a Castelnuovo manifold,
precisely speaking, the structures of the polarized manifd{ds”) with the following
condition:

(x) There exists a membek of |.Z| such that(A, .7#) is a Castelnuovo manifold
with some ample and spanned line bundfec Pic(A).

By a Castelnuovo manifoldie here mean a polarized manifdlél, .7#’) such that.s#’|
defines the birational morphism onto its image and that the sectional géAu”)
attains the maximuny(A, 7¢) given in terms of both thé-genusA (A, ) and the
degrees#" (for the definition ofy, see Section 3.2). This is a generalization of a
curve of maximal genus studied originally by Castelnuovo ([Cal]; cf. [GH, pp. 527—-
533], [ACGH, Chapter 11152]), to the higher dimensional cases, due to Fujita [Fu 5,
(16.7)](for other generalizations, see, e.g. [Harr], [CI]).
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Note that if (X,.%) is a Castelnuovo manifold then so (8,.Z|a) (see [Fu 5,
(16.6)]). Therefore we hav&’|a = S in this case. Now, in the case &f |p 2 7,
what kind of the pairgX,.#’) show up?

The purpose of this chapter is to provide a complete classification of the pairs
(X,Z) with (x) under the assumptian> .7". It turns out that those paifX, %) fall
into only three simple series and, moreover, that tRd$eust be weighted complete
intersections of codimension 3. To be more precise, our main result is

Theorem 3.1.1Let X be a smooth complex projective variety of dimensienl. As-
sume thad < d < n. Then the followindgl)—(lll) are equivalent

(I) There exists an ample line bundi€ on X satisfying the conditiofix) andd =
0.

() There exists a very ample line bundie on X satisfying(x) andd = #".
(i (X,.2) is one of the following

() (Wy, ow(l)) with some positive integérdividing d, whereWy is a smooth
weighted hypersurface of degré@ the weighted projective spaiél, 1"2);

(i) (Moq/2, Ow(l)) withl = 1,2 0r | dividingd/2, where the gived is an even
number> 4, andW, 4, is a smooth weighted complete intersection of type
(2,d/2) inP(1,1"3); or

(i) (Wo22,Ow(l)) withl =1 or 2, whereWs 5 » is a smooth weighted complete
intersection of typg2,2,2) in P(I,1"4).

Moreover, for each of the ligt)—(iii) , -Z|a = 7 holds if and only i = 1.

Our proof consists of two parts: (B (Ill) and (III) = (1) ((I1) = (1) is trivial).
The main part is to prove the former. We utilize Fujita’s basic structure theorem of
Castelnuovo manifolds (see [Fu 5, (16.7)—(16.14)] or Theorem 3.2.6 in this chapter).
Specifically, we shall describe the structure(¥f_#’) by classifying(A, ) in terms
of d andA(A,.77): (A) d > 2A(A, 7)), (B) d=2A(A,2¢) and (C)d < 2A(A, 7).
Castelnuovo varieties of type (A), (B) and (C) are called of the first kind, the second
kind and the third kind in [Fu 5516], respectively.

Basically the study of the case (B) reduces to M. C. Beltrametti-Fania-Sommese’s
result [BFS, Proposition 3.1] and to a classification result of Mukai manifolds [Mu].
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In the case (C), Fujita’s basic structure theorem gives explicit descriptions of the
possible types of a Castelnuovo vari¢#y, 7#’). However the theorem doemt tell
whether or noA does become an ample divisor ¥pwhence some detailed arguments
are needed to exclude certain paifs.7#’). In fact, by showing that the intersection
#a of hyperquadrics containing in P(|.77|) is neither a generalized cone over the
Veronese surface nor one over a smooth rational normal scroll anddr(see Lemma
3.4.5), we complete the proof in the case (C).

The difficulty in dealing with the case (A) is as follows: The structures of Castel-
nuovo manifoldg(A, 7)) still remain unrevealed in general (cf. [Fu5, (16.7) below
& Chapter | (3.5.3)]). By using Lemma 3.2.7, we can successfully des¢Abg”)
explicitly undern > d, reducing to classification results of Fano manifolds of coindex
< 2 (see Proposition 3.4.1).

This chapter is organized as follows: In Section 3.2, we first state two lemmas
needed in Sections 3.3 and 3.4. After that, we introduce and summarize several funda-
mental results on Castelnuovo varieties. Also we prove Lemma 3.2.7 that plays a key
role in the proof of (I)=- (lIl). In Section 3.3, for each of the list (i)—(iii) in Theorem
3.1.1, we show the very ampleness of its line bundle by using Lemma 3.2.1 and prove
that (x) is satisfied by taking an appropriat&’ € Pic(A). The latter part of the theo-
rem is immediately verified from a result tHa¥” = £ with somel > 1. Section 3.4
is devoted to proving (1= (Il).

Notation

In this chapter, we adopt the following notation.

e HJ 4 :ann-dimensional smooth complete intersection of tyde,....dr) in
PN+

o P(&) : thePS~1-bundle associated to a locally free sh&abf ranks overP?.

Wg ¢ © @ smooth weighted complete intersection of typ,....d:) in the
weighted projective spad&(l,1"") :=P(l,1,...,1) of dimensiom.
N——
n—+r
S« T : the closure of the union of all the lines passing throaghSandt € T in

P" whereSandT are subsets df".

RidgegX) := {x € X | xx X = X} for a projective varietyx C P".
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e [g] : the integer part of a rational numbge> O.

3.2 Preliminaries: Castelnuovo varieties

We begin with two lemmas needed in later. Here we simply state the results, referring
to [Laf, Corollary 2.3] for a proof of the former and to the proof of [Fu 1, (3.8)] for a
proof of the latter.

Lemma 3.2.1 (A. Laface)Let (M,L) be a polarized manifold. Suppose tHatis
spanned and that the graded rifR{M, L) := @ ;H(M,iL) is generated in degrees
<r. Then the line bundIe_ is very ample.

Lemma 3.2.2 (Fujita) Let(M, L) be a polarized manifold of dimensiom> 4 andA a
member oflL | for somd > 1. Assume thatA,L|a) is a smooth complete intersection
of type(dy,...,d;) in P™T. Then(M,L) is a weighted complete intersection of type
(dg,...,dr) in P(1,1™"*1), Furthermore divides one ofly,...,d;.

In what follows, we give a brief summary of fundamental results on Castelnuovo
varieties, referring to [Fu 516]. Let(V,L) be a pair consisting of a projective variety
V and a spanned line bundlesuch thatL | defines the birational morphisgnonto its
image. Fujita proved that the following inequality holds for arbitréryl ):

gV,L) <A(V,L)F — (d—A(V, L) —1) (;),

d—1
d—A(V,L)—1

whered := L9V andF := { } . Definey(V, L) as the right-hand side.

Definition 3.2.3 A Castelnuovo varietys a polarized varietyV,L) with its spanned
line bundleL such thatp is birational and thag(V,L) = y(V,L).

Castelnuovo varieties have distinguished properties as below. We only state the
result, referring to [Fu 5, (16.6) & (16.9)] for a proof.

Proposition 3.2.4 (Fujita) Let (V,L) be anm-dimensional Castelnuovo variety. Then
L is simply generated, hence very ample. FurthermoreZgtoe the intersection of
all the hyperquadrics containing in P(|L|), and assume that™ < 2A(V,L). Then it
follows thatdim”4, = m+1andA (74, Oy, (1)) = 0.
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From now on, we deal with only the case where a Castelnuovo vaiidty) is
smooth. Especially, in the case whe&r@™M < 2A(M, L), according to Proposition
3.2.4, one can descrild¢?\v, O'y;, (1)) by using Fuijita’s classification result of polar-
ized varieties ofA-genus zero [Fu 5, Chapter I, (5.10) & (5.15)], where a generalized
cone emerges.

Here we define a generalized cone (cf. [Fu5, (5.13)]) and fix some notation to
introduce Theorem 3.2.6.

Definition 3.2.5 Let (X,L) be a polarizek-fold with its very ample line bundlé.
Then(X,L) is said to be a@generalized conever a polarized-fold (S, %) if the fol-
lowing conditions are satisfied:

(1) s= ﬂ'j‘;ivj Cc X C P(|L]) and-Z = L|s, where eaclN; is some general member
of |L|;

(2) RidggX) # 0 andRidgeX) N S= 0; and
(3) X =SxRidgeX) C P(|L]).

Notation and Remark. If (#u, Oy, (1)) is a generalized cone oveP(&),H(S£)),

where& := @] Op1(&) with somed > 0 andr := dimRidge#u), then it follows
from [Fu 5, Chapter I, (5.15)] th&®idge(#m ), which is a linear space @y, coincides
with the singular locusing #u). Set(%?M,ﬁ,;M(l)) =(P(Z),H(%)), where.Z7 =

D ﬁ@ (r+2) . Then|H(.%)| defines a birational morphist#iy — #. Let M be the
strict transform oM on # andp: #y — P! the bundle projection.

The following theorem, obtained by Fuijita, gives a rough classification of Casteln-
uovo manifolds. For a proof, we refer to [Fu 5, (16.7)—(16.14)].

Theorem 3.2.6 (Fujita’s basic structure theorem of Castelnuovo manifolds).et(M,L)
be a Castelnuovo manifold of dimensior> 1. Then one ofA)—(C) holds.

(A) d:=L">2A(M,L);

(B) d =2A(M,L), then(M,L) is a Mukai manifold, i.e. a polarized manifold with
—Km = (m—2)L, with its simply generated line bundle or

(C) d < 24(M,L), then one of the following holds.
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(@) #m =P™1and(M,L) = (Hg, On(1)).
(b) #m = Q™1 and(M,L) = (Hp 4,2, On(1)).
(c) #u is ageneralized cone ovéP(&),H(&)), M=M € |aH(.Z) +bp* Opi (1)),
L=H(%)|m andr = —1,0,1. Furthermore we have
() a>0andl—-yMl& <b<1lifr=-1,i.e.,#u is smooth.
(i) a>0and0<b<1lifr=0.
(i) a>0andb=1ifr=1.
(d) # is a generalized cone ovéP?, 0p(2)), M € | Oy, ()| for somea > 0,
L = Oy, (1)|m andr <0, thereforedim#y < 3.

We conclude this section with the following

Lemma 3.2.7 Let (X,.Z) be a polarized manifold of dimensiory+ 1 with (x) and
d =" < n. ThenPic(A) = Z[s#] andPic(X) = Z.

Proof. We first prove the former assertion. Singé is very ampleA is embedded into
P(|]). As dimA — codimpA > n— (d—1) > 2 by virtue of our assumption > d,
Barth’s theorem [Laz 2, Corollary 3.2.3] applies, therefBigA) = Z. Moreover.s#
turns out to be the ample generator. Indeed, if not so, then we can J#fite tH
with somet > 2 and the ample generathrc Pic(A). Taking the both self-intersection
numbers, we have =t"H" > t9 > 24 which is absurd. Hence the former is obtained.
Next we show the latter. i > d > 2, then the assertion follows from the Lefschetz
theorem [Fu 5, (7.1.5)]. When> d = 1, we see thaf = P". It follows from [Fu 5,
(7.18)] thatX = P"1, hencePic(X) = Z. Thus the latter is proved. u

3.3 Proof of (1) = (Il)

Let (W, Ow(l)) be one of the list (i)—(iii) in Theorem 3.1.1. The aim of this section is
to prove thatW, Gy (1)) satisfies the conditio(x). We obtain the conclusion with the
following steps:

(@) The line bundleiy (1) is very ample;

(b) There exists a paifA,.72’) consisting of a smooth membare |Ow(1)| and an
ample and spanned line bundi¢ with J#" = d such thai.7#’| defines a bira-
tional morphism; and
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(c) ForapairA 7)) asin (b), the equalitg(A, 77) = y(A, 7¢) holds.

We first prove (a). Thanks to Lemma 3.2.1, it suffices to show AL Oy (1))
is generated in degrees| and thatfiy(1) is spanned. We show the former: Lslbe
the number of defining equations\W (e.g.s= 2 whenW =W 4 ,). We may assume
thatl # 1. SinceW is a weighted complete intersectiondiW =n+1>d+1> 2,
we infer thatPic(W) = Z[6w(1)] and that the restriction map of graded rings

r CX,Yo, -, Ynid — RW, Giw(1))

is surjective, wherevt(x,y;) = (I, 1) for each0 <i < n+s. ThereforeHO(W, Gy (1)) =
Yo, ---,¥Yn+s), andR(W, &\ (1)) is generated in degreesl. It only remains to show
that o (1) is spanned. Indeed, it is verified as follows: The base locus is

n+s
B Gw(1)| = ()% =0) cW.
i=0
SinceW does not meet the loclig; . Sc = N5 (yi = 0) C Proj(C[x, Yo, . ., Yn+s]), we
see the spannednessaf;(1), hence (a) is proved.
Next we show (b). At least one of the given defining equation#&/af P(I,1"5)
is monic in the variablex becaus&V does not meet); . S. Now defineA := (x+
fi(Yo,---,¥n+s) = 0) in W, wheref| is a homogeneous polynomial of degieeFur-
thermore Bertini’s theorem assures that |Ow(1)| is smooth if f; is chosen to be
general. Also defineZ := Ow(1)|a. The amplitude and spannedness.Jsf fol-
low from that of &y (1). We easily check that#" = d by using [Mo, Proposition
3.2]. We can verify the birationality of the majpassociated t¢#|. Indeed, we see
that¢ (A) C P"S is ann-dimensional complete intersection of type similar to that of
W. Taking the Stein factorization af, we infer thatA is birational to a finite cov-
ering T of ¢(A). The degree of this coverin@: T — ¢ (A) must be one because
d =" = deq w) degnis § (A) = ddeq ). Thusé¢ is birational, so (b) is proved.
Finally, we verify (c) with a case-by-case analysis on (i)—(iii) in Theorem 3.1.1.
For the case (1), we obtaih(A, .7#) = d — 2 due toh®(A, .7#) = n+ 2. Also we easily
check thaKa = (d —n—2).#, hence we have

g(A, ) = 1—|—%(d—3)d = (d—2)(d—1)— (dgl) = y(A ).

Consider the case (2). Write= 2k with some integek > 2. UsingA (A, 7¢) = 2k—3
andKa = (k—n— 1), we obtain
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g(A, ) =1+ (k—2)k= (2k—3)(k—1)— (kgl) = y(A, ).

We treat the remaining case (3). By easy calculations, we sed th& A (A, .77) =
andKa = (2—n)s#. Thus we havg(A, 7)) = y(A, ) = 5.
To conclude, the implication (I35 (1) is proved.

3.4 Proof of (I) = (ll)

For a givend < n, let (X,.Z) be a smooth polarizeth+ 1)-fold satisfying(x) and

d = ", where(A,7¢) is a Castelnuovo manifold with € |.Z|. In this section,
we classify the pair¢X,.#). Our proof is divided into the three parts as in Theorem
3.2.6. (A)d>2A(A7); (B)d=2A(A,¢) or (C)d < 2A(A, 7).

The case (A)
We first prove the following

Proposition 3.4.1 Let (A,.%) be ann-dimensional Castelnuovo manifold of degree
d < n. Then the followindg1) and (2) are equivalent.

(1) (A,22) is of the first kind.

(2) (A,27) is one of the following

(@) (P", Opn(1));
(b) (Q", Ogn(1));
(©) (Hs, Oh;(1));
(d) (Hz2,Oh,,(1)); or
(e)

(Gr(5,2), 0cr(1)), whereGr(5, 2) is a Grassmann variety parametrizing the
2-dimensional linear subspace @r.

Proof. Since the implication (2= (1) is immediately proved, we here prove the
converse. Since?’ is spanned, Bertini’'s theorem yields th@, .7") has a ladder
consisting of smooth rungs. Hence it follows from [Fu 5, Chapter 1, (3.5.3)] that
9(A, 7)) = A(A, ). Combining this and the assumption of the case (A), we obtain
that
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d—2>29(A #)—2= (Ka+ (n—1)5¢) - 5" 1.

Furthermore, we can writBa = r 7 with some integer thanks to Lemma 3.2.7.
Hence we havér +n—2)d < —2, therefore

—(n+1)<r<—(n-1).

Now proceed with a case-by-case analysis on the valueléfr = —(n+ 1), then
it follows from [Fu 5, (11.2)] thatA, .#") = (P", 0p(1)), hence we are in ().

If r = —n, then it follows from both [Fu 5, (11.7)] and Lemma 3.2.7 that.7") =
(Q", 0g(1)), thus we are in (b).

If r=—(n—1), then(A,7) is a del Pezzo manifold of degrée which satisfies
A(A, 7)) = 1. By the assumption of (A), we infer that> d > 3. Combining Lemma
3.2.7, the very ampleness g and a classification result of del Pezzo manifolds by
Fujita [Fu 5, (8.11)], we see th&h, 7) is one of the following: (cYHs, 01 (1)); (d)
(Hz,2, 01 (1)); or (€)(Gr(5,2), Ocr(1)). u

Claim 3.4.2 In the casg(A), the pair (X,.Z) is isomorphic to one of the following
(i) (P, 0p(1)); (i) (Wo, G (1)) with | = 1,2; (iii) (Wa, G (1)) with | = 1,3; or
(iv) Wo 0, Gy (1)) with | = 1,2.

Proof. For (a) in Proposition 3.4.1, combining> d = 1 and [Fu 5, (7.18)], we see
(X,2) = (P, 0p(1)). Thus we are in (i) of our claim. As for (b), since>d = 2,
by using Lemma 3.2.2, we see tha,.Z) = (Wo, Ow (1)) with | = 1 or 2, which is
(ii).

For (c), it follows from Lemma 3.2.2 thdiX, ) = (Ws, G (1)) with | = 1 or 3.
Hence we are in (jii). For (d), we similarly see th{a, ) = (Ws 2, G (1)) with | =1
or 2, which is (iv).

The case (e) cannot occur. Indeédmust beGr(5,2) sincen > d =5. On the
other hand, it is impossible th&r(5,2) is contained as an ample divisor on a smooth
projective varietyX because of [Fu 2, (5.2)]. Thus we are done. |

The case (B)

Claim 3.4.3 In the casgB), the pair (X,.%) is isomorphic to one of the following
(i) (P, 0p(4)); (i) (Q™L,00(3)); (i) (Hz, On(2)); (iv) (Wa, G (2)), whereW, C
]P’(Z, 1n+2>; (V) (H2727 ﬁH (2)); (VI) (H4, ﬁH (1)); (VII) (Hz,g, ﬁH (1)); or
(VIII) (H272’2, ﬁH (1))
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Proof. Due to Theorem 3.2.6A,.%7) is a Mukai manifold with its simply generated
line bundle.7Z. Note thatnh > d > 2. Combining Beltrametti-Fania-Sommese’s result
[BFS, Proposition 3.1] and Lemma 3.2.7, we see {iat?’) is one of the following:

(a) a Mukai manifold 97, £);

(b) (#,2%), where(.#,.Z) is a del Pezzo manifold;
() (Q™1,0(3)), which is (ii); or

(d) (P, 6p(4)), which is (i).

We first use a classification of Mukai manifolds [Mu] to describe the structure of
(X,.2) explicitly in the case (a). Due to> d > 2, we see thatl = 2,4,6 or 8. Also
the very ampleness af implies that(9t, £) is one of the following:

(Vi) 9 = Hgandg = Gy (1);
(vii) M=Hpzandl = Oy (1); or
(viii) 9= Ho 22 andf = oy (1).

Next we treat the case (b). Now we utilize Fujita’s classification result of del Pezzo
manifolds. Sincéic(.#) = 7Z, we see that.#,2.¥) is one of the following possible
cases:

(b1) . is a weighted hypersurface of deg@mm P(3,2,1"1), and2.Z = & ,(2);
(iV) 4 =Wy C P(2,1"2) and2.Z = Giy(2);
(i) A4 = Hzand2.Z = 0y (2);
(V) A =Hypand2.? = 0y(2);
(b2) .# = G, alinear section o6r(5,2) C P°, and2.Z = 0(2); or
(b3) .# = P3and2.Z = 0p(4).

It is proved that the cases (b1), (b2) and (b3) cannot occur. In fact, as for (bl),
note that#" = 2 andA(A,.%#’) = 1. Since|s#| gives a double covering d" (see
[Fu 5, (6.10)]), it turns out tha#” is not simply generated, which is absurd. As to (b2)
(resp. (b3)), we have thaim.# =n+1 <6 (resp.= 3) andd = 5 (resp.8), which
contradicts the assumptiorn> d. Consequently the claim is proved. |
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The case (C)

Claim 3.4.4 In the cas€C), (X,.%) is either(i) (Wy, Gw(l)) with | dividingd > 5 or
(il) Woq/2, 6w (1)) with1 = 1,2 or | dividingd/2, where the gived > 8is even.

Proof. Let #a be the intersection of hyperquadrics containfgn P(|»#’|). Due
to Proposition 3.2.4, we see thA{#, 0y, (1)) = 0. Therefore, by using a classi-
fication of polarized varieties al-genus zero [Fu 5, (5.10)—(5.15]/a, Oy, (1)) is
isomorphic to either (&P, 0p(1)); (b) (Q™2, 0 (1)); (c) (P(£),H(&)), or agen-
eralized cone over it, wher& is an ample vector bundle ov®; or (d) a Veronese
surface(lP?, 0p2(2)), or a generalized cone over it.

In the case of (a), we sée= Hy of degreed > 5sinced < 2A(Hy, O (1)) =2(d —
2). Hence, using Lemma 3.2.2, we haWé %) = (Wy, Ow (1)) with some positive
dividingd > 5, which is (i).

In the case of (b), due @ < 2A(Hy 4/, 01 (1)) = 2(d — 3), we haveA = H; 45
with evend > 8. Therefore we see théK, ) = (Wa 4/, Ow(l)) with some positive
| dividing either2 or d/2 > 4, which is (ii).

Consequently, by the following Lemma 3.4.5, the claim is proved. |

Lemma 3.4.5 The casegc) and (d) cannot occur.

Proof. The proof is divided into two cases as follows:

The case of (CFirst, assume th&? is smooth, which is isomorphic ®(£’) for some
ample vector bundle® overP. The linear-normality of#a C P(|0y,(1)|) (see [EH,
§3 (1)]) yields that®(#a, Oy, (1)) = h°(A, /7). Therefore, since

dim#a —codimp( ;) #a= (N+1) - (d-2-A(A, 7)) =n—d+3+A(A, ) > 2,

the Barth theorem [Laz 2, Corollary 3.2.3] implies tifa¢(#a) = Z, which is a con-
tradiction.

Next we assume th&a is singular. Remind tha®ing(#a) = Ridgeg#4). It fol-
lows from Theorem 3.2.6 that:= dim(Ridgg#a)) is eitherO or 1. First, suppose
thatr = 0. SetR:= Ridgg#a), which is the vertex of the con&a. Then we have
two possibilities:R ¢ A; or R e A. For the formerA is a smooth member 00y, (a)|
for somea > 0. Furthermore#j is projectively normal inP(|.7#|) since 0y, (1) is
simply generated. Therefore, puttidd:= @i ; Op1(&) with somed > 0 for each
1 <i < n, we obtain
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d = degA — adeg/a — (3", 5) =1,

which contradictsn > d. For the latterR € A, using notation in§2, we haveA
|aH(.#) + p*0p1(1)|, which is ample by virtue of [BS, Lemma 3.2.4]. Hence, by the
Lefschetz theorem, we get a contradiction:

Z = Pic(A) = Pic(A) = Pic(#p) = 752,

Next we treat the cage= 1. Then we obtain thak € |aH(.% ) + p* Op1(1)| with some
a > 0, which is an ample Cartier divisor. Again, due to the argument similar to that in
the case = 0, we get a contradiction. Therefore the case (c) does not occur.

The case of (d)SinceA € |0y, (a)| for somea > 0 according to Theorem 3.2.6, we
similarly have

2>n>d=adeg#a=4a,
which is absurd. Thus we are done. |
We sum up the above case-by-case arguments as follows:

Proof of (I) = (lll) in TheorenB.1.1 We will show that any paifX,.Z) in the above
three Claims falls into (i)—(iii) in Theorem 3.1.1. Firstly, each of cases (i)—(iii) in Claim
3.4.2is(Wy, Ow (1)), wherel dividesl < d < 3. Each of cases (i), (iv) and (vi) in Claim
3.4.3 can be viewed g8V, O (1)) with | = 4,21, respectively. Consequently, we see
that the above cases and (i) in Claim 3.4.4 fall into (i) in Theorem 3.1.1.

Secondly, each of cases (i), (iii) and (vii) in Claim 3.4.3 can be regarded as
(Wo3, Ow(l)), wherel = 3,2,1 respectively. Therefore each of the following falls
into (ii) in our theorem: (iv) in Claim 3.4.2, the above three cases in Claim 3.4.3 and
(i) in Claim 3.4.4.

Finally, it is easy to see that each of (v) and (viii) in Claim 3.4.3 can be viewed as
(Wo22, G (1)) with | = 2 and1, respectively. Hence our theorem is proved. W
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