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Introduction

By a polarized manifoldwe mean a pair(X,L) consisting of a smooth complex pro-

jective varietyX and an ample line bundleL on it. If L is very ample, then a member

of the complete linear series|L| is nothing but a hyperplane section ofX embedded by

the morphism associated to|L|.
In studies on the structures of polarized manifolds(X,L), it has been considered

that the nature of an ample divisorA∈ |L| strongly influences that of the ambient space

X. Based on this philosophy, several kind of classification problems of polarized man-

ifolds whose ample divisors have special properties have been considered by several

authors (e.g. [Se], [SV], [Fa], [LPS 3], [BFS]).

In this thesis, we first study the case where a hyperplane section has a finite map

of low degree ontoPn, as indicated in the thesis subject. Next we investigate the case

where an ample divisor has a maximal sectional genus with respect to its∆ -genus

and degree; A variety with this property is said to be a Castelnuovo variety though

explained later.

This thesis consists of three chapters. In Chapters 1 and 2, we shall deal with the

former case, and classify the polarized manifolds(X,L) with very ample line bundles

L in the cases where the degrees of the finite map are 4 and 5. In Chapter 3, we shall

treat the latter case. There we raise a classification problem of(X,L) whose ample

divisorsA are Castelnuvo manifolds, and provide a classification of those polarized

manifolds in the case where the degree ofA is smaller than its dimension.

In Chapters 1 and 2, we consider the following

Problem 1 (A. Lanteri–M. Palleschi–A. J. Sommese [LPS 1])Let(X,L) be a polar-

ized manifold such that its line bundleL is very ample. Fix an integerd≥ 2. Assume

that there exists a smooth memberA ∈ |L| such that there exists a finite morphism

π : A→ Pn of degreed. Then classify(X,L).
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The beginning of this problem goes back to the studies on the structures of projective

surfaces by the Italian school in the late 19th century. In fact, this problem originated

in G. Castelnuovo’s work [Ca2] on the classification problem of projective surfaces ad-

mitting a hyperelliptic curve among their hyperplane sections. In 1980s, the revisions

of Castelnuovo’s result were made by F. Serrano [Se] and Sommese–A. Van de Ven

[SV].

In 1994, Lanteri–Palleschi–Sommese (LPS, for short) were inspired by the revi-

sions, and they raised and solved Problem 1 in the cases whered = 2 andn > d = 3

([LPS 1], [LPS 2]). For the cases ofn > d = 4 and5, there was an attempt by Lanteri

[Lan] to classify(X,L). After my paper [A2] was submitted, I was informed about

Lanteri’s paper by the referee. But his results, obtained by using freely the method of

LPS, give an only partial answer to the classification problems ford = 4 and5 cases

because they contain doubtful cases.

Here the method of LPS is the way to determine the structure of(X,L) by using

the ∆ -genus theory, i.e. T. Fujita’s classification theory of polarized manifolds (e.g.

[Fu 5, Chapter I]), for(X,H ) after investigating the possible values of the following

three invariants: the degreed(X,H ), the∆ -genus∆(X,H ), and the sectional genus

g(X,H ), whereH is a line bundle onX such thatH |A∼= π∗OP(1). For the cases of

d ≤ 3, the∆ -genus theory applies well in classifying(X,L) since the possible values

of the three invariants turn out to be small. However, in the cases ofd ≥ 4, the situa-

tion is rather complicated because the range of the possible values of their invariants

go beyond the applicable one of the∆ -genus theory (e.g.∆(X,H ) = d(X,H ) = 1

andg(X,H ) ≥ 3). The parts that the∆ -genus theory does not apply have remained

unsettled in Lanteri’s results [Lan, Theorems 3.4 & 3.5] ford = 4 and5 cases.

In Chapter 1, we discuss the case ofn> d = 5, and provide a complete classification

of (X,L) by resolving the unsettled parts positively.

Theorem 1.1.1Let X be a smooth complex projective variety withdimX = n+1≥ 7.

Then the following(I) and(II) are equivalent.

(I) There exists a very ample line bundle onX, L, such that|L| contains a smooth

memberA endowed with a finite morphismπ : A→ Pn of degree5.

(II) (X,L) is one of the following:

(i) (Pn+1,OP(5));
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(ii) (Hn+1
5 ,OH5(1)), whereHn+1

5 is a hypersurface of degree5 in Pn+2;

(iii) (Y1,5L ), where(Y1,L ) is a del Pezzo manifold of degree one;

(iv) (W10,OW10(5)), whereW10 is a weighted hypersurface of degree10 in the

weighted projective spaceP(5,2,1n+1); or

(v) (W20,OW20(5)), whereW20 is a weighted hypersurface of degree20 in

P(5,4,1n+1).

It turns out that the pairs (iv) and (v) newly show up by comparing our result for

d = 5 to the results ford≤ 3 by LPS. Moreover the existences for those new pairs are

verified (see Section 1.3).

One of the key ingredients of our proof in the degree5 case is to describe the

structure of the polarized manifold in question,(X,H ), which is of ∆(X,H ) =
d(X,H ) = 1 andg(X,H ) = 6 (Theorem 1.6.2). Although the polarized manifolds

with these invariants are yet to be classified, we can successfully determine the struc-

ture of(X,H ) in question by focusing attention on certain ring-theoretic properties of

the graded ring

R(X,H ) :=
∞⊕

i=0

H0(X, iH ).

We use the ladder method to find the generators ofR(X,H ) and the relations among

them. By using the Riemann–Roch theorem for a smooth curveX1⊂X cut out by|H |,
we first describe the structure ofR(X1,H |X1) in terms of generators and relations.

After that, we prove thatR(X2,H |X2) is a Cohen–Macaulay ring, whereX2 is a smooth

surface cut out by|H |. It enables us to use a vanishing theorem forH1(lH |X2).
Consequently it is lead that(X,L) coincides with a weighted hypersurface of type (v).

In Chapter 2, we classify(X,L) completely in the case ofn > d = 4. Indeed, we

obtain the following

Theorem 2.1.1LetX be a smooth projective variety withdimX = n+1≥ 6. Then the

following (I) and(II) are equivalent.

(I) There exists a very ample line bundle onX, L, such that|L| contains a smooth

memberA endowed with a finite morphismπ : A→ Pn of degree4.

(II) (X,L) is one of the following:
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(i) (Pn+1,OP(4));

(ii) (Hn+1
4 ,OH4(1));

(iii) (Y1,4L );

(iv) (W12,OW12(4)), whereW12 is a weighted hypersurface of degree12 in

P(4,3,1n+1);

(v) (Qn+1,OQ(2)), whereQn+1 is a hyperquadric inPn+2;

(vi) (Vn+1
2,2 ,OV2,2(1)), whereVn+1

2,2 is a complete intersection of two hyperquadrics

in Pn+3; or

(vii) (Y2,2L), where(Y2,L) is a del Pezzo manifold of degree2.

Compared to Theorem 1.1.1, Theorem 2.1.1 includes new pairs (v)–(vii). The ex-

istences of those new pairs are immediately verified.

Note that a complexity is caused by the compositeness of the degreed of the finite

mapπ. In the case whered is prime, the birationality ofA andq(A) plays a key role to

classify(X,L), whereq is the morphism associated to|π∗OPn(1)|. On the other hand,

in the case whered is composite, by the diagram below (t := dim|π∗OPn(1)|−n), we

immediately see that the birationality of those varieties doesnot always hold, which

complicates the analyses of(X,L).

A
q //

π **

q(A)⊂ Pn+t

p: The projection from aPt−1

in Pn+t with q(A)∩Pt−1 = /0.²²
Pn

In Theorem 2.1.1 (vii), the case whereA is not birational toq(A) really occurs.

We lead Theorem 2.1.1 by using a technique different from that in Theorem 1.1.1

although we use the∆ -genus theory in some parts. In fact, the key ingredient of our

proof in the degree4 case is to show the nonexistence of the polarized manifolds

(X,H ) with ∆(X,H ) = d(X,H ) = 2,g(X,H ) = 3 and withL∼= 2H (Proposition

2.3.2). Although the polarized manifolds with these invariants are yet to be classified,

we can lead a consequence that contradicts the very ampleness ofL by using the dou-

ble point formula for a surface cut out by|H |, therefore we successfully show the

nonexistence of those(X,H ).
In Chapter 3, we treat the classification problem of polarized manifolds(X,L )

such that|L | contains a Castelnuovo manifoldA. In 1990, for a polarized variety
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(A,H ) with a birationally very ample line bundleH , Fujita [Fu 5, (16.3)] gave an

upper bound for the sectional genusg(A,H ) in terms of its∆ -genus and degree. More-

over he called a polarized variety(A,H ) whose sectional genus attains the maximum

aCastelnuovo varietyafter Castelnuovo’s study [Ca1] on curves of maximal genus.

We first pose the following

Problem 2 Let (X,L ) be a polarized manifold of dimensionn+1. Assume that|L |
contains a memberA such that(A,H ) is a Castelnuovo manifold with some line bun-

dleH ∈ Pic(A). Then classify(X,L ).

The structures of Castelnuovo manifolds themselves have been studied by Fujita [Fu 5,

§16] and S. Mukai [Mu]. However, to the best of my knowledge, it seems that the

problem is raised for the first time.

The main result of this chapter is to give an answer to this problem in the case of

d(A,H ) < n. Precisely speaking we have the following

Theorem 3.1.1Let X be a smooth complex projective variety of dimensionn+1. As-

sume that0 < d < n. Then the following(I)–(III) are equivalent:

(I) There exists an ample line bundle onX, L , such that|L | contains a memberA

such that(A,H ) is a Castelnuovo manifold of degreed with someH ∈ Pic(A).

(II) There exists an very ample line bundle onX, L , such that|L | contains a

memberA such that(A,H ) is a Castelnuovo manifold of degreed with some

H ∈ Pic(A).

(III) (X,L ) is one of the following:

(i) (Wd,OW(l)) with some positive integerl dividingd, whereWd is a weighted

hypersurface of degreed in P(l ,1n+2);

(ii) (W2,d/2,OW(l)) with l = 1,2 or l dividingd/2, where the givend is an even

number≥ 4, andW2,d/2 is a weighted complete intersection of type(2,d/2)
in P(l ,1n+3); or

(iii) (W2,2,2,OW(l)) with l = 1 or 2, whereW2,2,2 is a weighted complete inter-

section of type(2,2,2) in P(l ,1n+4).
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Moreover, for each of the list(i)–(iii) , L |A∼= H holds if and only ifl = 1.

Note that if(X,L ) is a Castelnuovo manifold then so is(A,L |A). In this case,

L |A∼=H holds. Meanwhile, Theorem 3.1.1 indicates that polarized manifolds(X,L )
which are non-Castelnuovo manifolds do appear. In fact, the existences of (i)–(iii) with

l 6= 1 are verified.

Besides, by this theorem, it turns out that a polarized manifold which contains a

Castelnuovo manifold of small degree as an ample divisor is confined to be a weighted

complete intersection, which is what I would like to stress. The consequence would be

interesting in the point of view of characterization of weighted complete intersections

(e.g. [Laz 2, 3.2.B], [L’v]).

Finally, in the proof of Theorem 3.1.1, we successfully classify the Castelnuovo

manifolds(A,H ) of the first kind, i.e. (A,H ) with d(A,H ) > 2∆(A,H ), under

n > d(A,H ) although the structures of Castelnuovo manifolds of the first kind are

still unrevealed in general (cf. [Fu 5, (16.7)]). By using Barth’s theorem (see [Laz 2,

Corollary 3.2.3] ), which is valid undern> d(A,H ), we prove that those Castelnuovo

manifolds are confined to be Fano manifolds of coindex at most2. Therefore we can

describe the structures of those Castelnuovo manifolds explicitly undern > d(A,H )
by utilizing classification results (e.g. [Fu 5, (8.11)]) of those Fano manifolds. Here is

our result.

Proposition 3.4.1Let (A,H ) be ann-dimensional Castelnuovo manifold withn >

d(A,H ). Then the following(I) and(II) are equivalent.

(I) (A,H ) is of the first kind.

(II) (A,H ) is one of the following:

(i) (Pn,OP(1));

(ii) (Qn,OQ(1));

(iii) (Hn
3 ,OH3(1));

(iv) (Vn
2,2,OV2,2(1)); or

(v) (Gr(5,2),OGr(1)), whereGr(5,2) is a Grassmann variety parametrizing the

2-dimensional linear subspace inC5.
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ConventionsThroughout this thesis, we work over the complex number fieldC. We

adopt the standard notation from algebraic geometry as in[Hart]. By a manifoldwe

mean a smooth projective variety. The words “Cartier divisors”, “line bundles” and

“invertible sheaves” are used interchangeably, and “vector bundles” and “locally free

sheaves”, too. The tensor products of line bundles are denoted additively, while we use

multiplicative notation for intersection products in Chow rings.
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Chapter 1

Polarized manifolds admitting a
five-sheeted cover ofPn among their
hyperplane sections

1.1 Introduction

Let X be an(n+1)-dimensional smooth complex projective variety andL a very ample

line bundle onX. Consider the following condition:

(∗)d There exists a smooth memberA∈ |L| such that there exists a branched covering

π : A→ Pn of degreed.

Needless to say, the following “obvious” pairs(X,L) satisfy (∗)d : (Pn+1,OPn+1(d))
and(Hn+1

d ,OHn+1
d

(1)), whereHn+1
d is a smooth hypersurface of degreed in Pn+2.

The study of(X,L) satisfying(∗)d is a natural generalization of a classical problem

of Castelnuovo[Ca2]. The classical problem is to classify the pairs(X,L) satisfying

(∗)d whenn = 1 andd = 2, and was solved by F. Serrano[Se], Sommese–A. Van de

Ven [SV], independently. Whenn = 1 andd = 3, M. L. Fania[Fa] studied the pairs

(X,L). In casesn≥ d = 2 [LPS 1], n > d = 3 [LPS 2], Lanteri–Palleschi–Sommese

(LPS, for short) classified the pairs.

Surprisingly, in casen> d∈ {2,3}, it turns out that the results of the classifications

are simple; this relies on topological restrictions imposedX by A. In fact, in case

d = 2, the “non-obvious” pairs never arise in the classification. In cased = 3, the

“non-obvious” pair is only(Y1,3L ), where(Y1,L ) is a del Pezzo manifold of degree

1, i.e., a polarized manifold satisfying−KY1
∼= nL andL n+1 = 1.
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So, what kind of “non-obvious” pairs(X,L) arise in casen> d≥ 4 ? We shall deal

with the case ofd = 4 in Chapter 2.

The purpose of this chapter is to give a complete classification of the pairs(X,L)
that satisfy(∗)5 undern≥ 6. Our result here is as follows:

Theorem 1.1.1Let X be a smooth projective variety withdimX = n+ 1≥ 7. Then

there exists a very ample line bundleL onX that satisfies the condition(∗)5 if and only

if (X,L) is one of the following:

(i) (Pn+1,OPn+1(5));

(ii) (Hn+1
5 ,OHn+1

5
(1));

(iii) (Y1,5L );

(iv) (W10,OW10(5)), whereW10 is a weighted hypersurface of degree10 in the weighted

projective spaceP(5,2,1n+1); or

(v) (W20,OW20(5)), whereW20 is a weighted hypersurface of degree20 in P(5,4,1n+1).

Two “non-obvious” pairs (iv) and (v) newly show up. Moreover the existences of those

new pairs are verified (see Section 1.3).

LPS ([LPS 1], [LPS 2]), in casesn > d ∈ {2,3}, use the classification theory of

polarized manifolds by means of sectional genera.

The difficulty in our study is that a polarized manifold(X,H ) with ∆(X,H ) =
d(X,H ) = 1 and sectional genus≥ 3 arises; the classification problem of polarized

manifolds with these invariants is yet to be solved completely(cf. [Fu 5,(6.18)]).
Our study involves a new strategy although the starting point of the proof is inspired

by the ideas of LPS. The key ingredients of the proof are twofold:

(I) To show the very ampleness ofOW20(5) (Proposition1.3.3).

(II) To characterize(X,H ) with invariants∆(X,H ) = H n+1 = 1,g(X,H ) = 6

and withL∼= 5H (Theorem1.6.2).

For (I), after finding a basis ofH0(OW20(5)), we check that the freeness, the separation

of points and the separation of tangent vectors for|OW20(5)|.
For (II), our strategy is to find the generators of the graded ring of(X,H )

R(X,H ) :=
∞⊕

i=0

H0(X, iH ),
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and the relations among them. Using the ladder method, we reduce this to describ-

ing the structure ofR(X1,H |X1) in terms of generators and relations, whereX1 is a

smooth curve section ofX that is an intersection ofn-general members of|H |. By

the Riemann–Roch theorem and some ring-theoretic arguments, we can describe the

structure ofR(X,H ) successfully.

This chapter is organized as follows: In Section 1.2, we give some notation, def-

initions and general facts. In Section 1.3, we prove (I), consequently the ‘if’ part in

Theorem1.1.1 is proved. From Section 1.4 to 1.6, we concentrate on proving the ‘only

if’ part. In Section 1.4, we prove a basic result onh0(A,π∗OPn(1)). Section 1.5 is de-

voted to the cases (i) and (ii) in Theorem1.1.1. Section 1.6 is devoted to the proof

of (II) (Theorem1.6.2), as a consequence we see that the polarized manifolds (iii)–(v)

actually show up.

After Theorem1.1.1 had been obtained, I found Lanteri’s result on a classification

of the pairs(X,L) in question [Lan, Theorem 3.5]. However, his classification result

contains one doubtful case: In fact, his result says that the cases (i)-(iv) in our Theorem

1.1.1 arise. But he gave only a numerical characterization and invariants for the case

(v). In contrast, I determine the structure of a unique polarized manifold appearing in

that case, completely.

1.2 Preliminaries

A branched covering of degreed means a finite surjective morphism of degreed. A

manifoldmeans a smooth variety. A line bundle on a variety is said to bespannedif it

is generated by global sections.

A polarized varietymeans a pair(V,L ) whereV is a projective variety andL is

an ample line bundle onV. Setm= dimV.

A member of|L | is called arung of (V,L ) if it is an irreducible and reduced

subscheme ofV. A rung D of (V,L ) is said to beregular if the restriction map

H0(V,L ) → H0(D,L |D) is surjective. A sequenceV = Vm ⊃ Vm−1 ⊃ ·· · ⊃ V1 of

subvarieties ofV is called aladderof (V,L ) if eachVj is a rung of(Vj+1,L j+1) for

j ≥ 1, whereL j is the restriction ofL to Vj .

The∆ -genusof (V,L ) is defined by∆(V,L ) = m+ d(V,L )−h0(V,L ), where

d(V,L ) := L m is thedegreeof (V,L ). For a manifoldV, the sectional genusof
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(V,L ), denoted byg(V,L ), is defined by the formula

2g(V,L )−2 = (KV +(m−1)L ) ·L m−1.

A polarized variety(V,L ) is called ascroll overa smooth curveC if it is of the

form (P(E ),H(E )) for some locally free sheafE onC, whereH(E ) denotes the tau-

tological line bundle ofP(E ).
For an integerr ≥ 1, a line bundleL onV is said to ber-generatedif the graded

ring R(V,L ) =
⊕∞

i=0H0(V, iL ) is generated by the global sections ofL , . . . , rL . In

particularL is said to besimply generatedif it is one-generated.

The following is used in the study of polarized manifolds with small∆ -genera.

Proposition 1.2.1 (Fujita) Let (M,L ) be anm-dimensional polarized manifold hav-

ing a ladder. Assume thatg := g(M,L )≥ ∆(M,L ) =: ∆ andL m≥ 2∆ +1. ThenL

is simply generated,g = ∆ andHq(M, tL ) = 0 for any integerst,q with 0 < q < m.

For the proof, we refer to[Fu 5,Chapter I(3.5)].
The following lemma is trivial but useful in studying the structures of graded rings.

Lemma 1.2.2 Let (V,L ) be a polarized variety,D a rung of(V,L ) defined byδ ∈
H0(V,L ), andρt : H0(V, tL ) → H0(D, tL |D) the restriction map. ThenKer(ρt) =
δH0(V,(t−1)L ).

A weighted projective spaceP(e0, . . . ,eN) is defined to beProj(C[s0, . . . ,sN]), where

wt(s0, . . . ,sN) = (e0, . . . ,eN) ∈ N⊕(N+1). A projective varietyW is called aweighted

complete intersectionof type (a1, . . . ,ac) in P(e0, . . . ,eN)(w.c.i., for short) if the fol-

lowing two conditions are satisfied:

(1) W∼= Proj(C[s0, . . . ,sN]/(F1, . . . ,Fc)), where(F1, . . . ,Fc) is a regular sequence and

eachFi is a homogeneous polynomial of degreeai > 0;

(2) V+(F1, . . . ,Fc)∩ (
⋃

1<k(sj = 0 | k - ej)) = /0 in P(e0, . . . ,eN).

We putS(e0, . . . ,eN) :=
⋃

1<k(sj = 0 | k - ej).

Proposition 1.2.3 (S. Mori) Let D be an effective ample divisor of anm-dimensional

projective manifoldM. AssumeD is a w.c.i. of type(a1, . . . ,ac) in P(e0, . . . ,eN). Then

the following hold.
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(1) If m≥ 4, M is a w.c.i. of type(a1, . . . ,ac) in P(e0, . . . ,eN,a), wherea > 0 is an

integer such thatOM(D)⊗OD
∼= OD(a).

(2) If m= 3 and there exists a positive integera such thatOM(D)⊗OD
∼= OD(a),

thenM satisfies the same conclusion of(1).

For the proof, see [Mo, Corollary 3.8 & Proposition 3.10].

1.3 Polarized manifolds of∆ = d = 1 and special examples: the ‘if’
part

In this section we consider the three special classes (iii)–(v) of polarized manifolds

appearing in Theorem1.1.1. These classes are constructed from polarized manifolds

(M,L ) of ∆(M,L ) = d(M,L ) = 1.

We begin with the following fact:

Fact 1.3.1 Let(M,L ) be anm-dimensional polarized manifold of∆(M,L ) = L m =
1, and letH1, . . . ,Hm−1 be general members of|L |. For each integer1≤ k≤m−1,

we putXk :=
⋂

k≤i≤m−1Hi . Then the following hold.

(1) The base locusBs|L | consists of a single point.

(2) The linear system|b∗L −E| defines a flat surjective morphismf : M̃ → Pm−1,

whereb: M̃ → M is the blowing up atBs|L | and E is the exceptional divisor

lying overBs|L |. The setE is a section off , and every fiber off is an integral

curve of arithmetic genusg(M,L )≥ 1.

(3) Xk is a k-dimensional submanifold ofM, andX1 ⊂ ·· · ⊂ Xm−1 ⊂M is a regular

ladder of(M,L ).

For the proof, we refer to[Fu 4,§13].

Proposition 1.3.2 Let (M,L ) be as in Fact1.3.1, and letd ≥ 2 be an integer such

that L := dL is spanned. Then there exists a smooth memberA of |L| with a finite

surjective morphism of degreed,

π : A−→ Pm−1.
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Proof. From Fact1.3.1 (2), we obtain the flat surjective morphismf : M̃ → Pm−1.

SinceL is spanned, there exists a smooth memberA of |L| not passing throughBs|L |.
SinceH i(M,(1−d)L ) = 0 for i = 0,1 by the Kodaira vanishing theorem, we see that

h0(A,L |A) = m, especially|L |A|= |L |A. Therefore, combining these andL |m−1
A =

d, we see that|L |A| gives a branched covering of degreed from A to Pm−1. ¥

Example 1 Let (X,L) = (Y1,5L ), where(Y1,L ) is an(n+1)-dimensional del Pezzo

manifold of degree1, i.e.,−KY1
∼= nL with L n+1 = 1. We see∆(Y1,L ) = 1. The very

ampleness of5L follows from the fact that2L is spanned[Fu 4,§14] and3L is very

ample[LPS 2,(1.2)]. Hence, by Proposition1.3.2, there exists a smooth five-sheeted

cover ofPn that is a member of|5L |.

Example 2 Let (X,L) = (W10,OW10(5)), whereW10 is an(n+1)-dimensional smooth

weighted hypersurface of degree10 in P(5,2,1n+1). We see that∆(W10,OW10(1)) =
OW10(1)n+1 = 1. Moreover, it follows fromg(W10,OW10(1)) = 2 that(W10,OW10(1)) is

a sectionally hyperelliptic polarized manifold of type(−) [Fu 4,§15 and 16]. There-

fore OW10(5) is very ample due to[Laf,Theorem 3.3]. Consequently we obtain a

smooth five-sheeted cover ofPn in |OW10(5)|.

Example 3 Let (X,L) = (W20,OW20(5)), whereW20 is an(n+1)-dimensional smooth

weighted hypersurface of degree20in P(5,4,1n+1). Since we have∆(W20,OW20(1)) =
OW20(1)n+1 = 1, we get a five-sheeted cover ofPn in |OW20(5)| from the following:

Proposition 1.3.3 The line bundleOW20(5) is very ample.

Proof. We prove the conclusion with the following steps:

(a) Bs|OW20(5)|= /0;

(b) the morphismϕ associated with|OW20(5)| is injective;

(c) the linear system|OW20(5)| separates the tangent vectors.

By combining5-generatedness ofOW20(1) and[Laf,Theorem 2.2], the rational map

ϕ is an embedding outside the single pointp := Bs|OW20(1)|.
Letx,y,z0, . . . ,zn generate the graded ringR(W20,OW20(1)), wheredeg(x,y,z0, . . . ,zn)=

(5,4,1, . . . ,1).
(a) We see thatH0(OW20(5)) is generated by the sections
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x,yz0, . . . ,yzn,zj1 · · ·zj5, with 0≤ j1≤ ·· · ≤ j5≤ n.

Therefore it follows that

Bs|OW20(5)|= (x = 0)∩
( ⋂

0≤i≤n

(zi = 0)
)

,

which is empty sinceW20 does not meet the locusS(5,4,1n+1).
(b) Suppose thatϕ(p) = ϕ(q) for someq ∈W20. Then we see thatzi(q) = 0 for

any0≤ i ≤ n, which indicatesq∈ Bs|OW20(1)|. Thereforep = q.

(c) Letτ be a non-zero tangent vector inTp(W20). We need to show that there exists

a sectionσ ∈ H0(OW20(5)) satisfying the following conditions:

σ(p) = 0 anddσ(τ) 6= 0.

We claim thatσi := yzi satisfies the above conditions for some0≤ i ≤ n. The

former condition is satisfied for allσi sincezi(p) = 0. We prove that the latter holds.

Suppose that there exists non-zeroτ ∈ Tp(W20) such thatdσi(τ) = 0 for all i. Since

dσi(τ) = y(p)dzi(τ) andy(p) 6= 0, we see thatdzi(τ) = 0 for all i. Hence it follows

that

τ ∈ Tp(Γ), whereΓ :=
⋂

1≤i≤n

(zi = 0).

From dz0(τ) = 0, we haveΓ ·OW20(1) ≥ 2, which contradictsOW20(1)n+1 = 1. This

concludes the proof. ¥

1.4 The ‘only if’ part

We are now going to classify the polarized manifolds in question.

Suppose that(X,L) satsifies(∗)5 andn > d = 5. Let π : A→ Pn denote the finite

morphism of degree5. Then a Barth-type theorem of R. Lazarsfeld[Laz 1,Theorem1]
implies thatH2(A,Z) ∼= H2(Pn,Z) ∼= Z andH1(A,OA) = 0. ThereforePic(A) ∼= Z,

generated byπ∗OPn(1). The Lefschetz hyperplane section theorem impliesPic(X) ∼=
Z. We denote byH the ample generator ofPic(X); we haveH |A∼= π∗OPn(1). Com-

bining the ampleness ofH |A and the fact that∆ -genus is non-negative for every po-

larized manifold[Fu 5,Chapter I(4.2)], we see

n+1≤ h0(A,H |A)≤ n+5.

In fact, we have the following
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Proposition 1.4.1 h0(A,H |A) = n+1 or n+2.

Proof. At first, supposeh0(A,H |A) = n+5. then we have∆(A,H |A) = 0. Therefore,

by [Fu 5,Chapter I(5.10)], (A,H |A) is either (a)(Pn,OPn(1)), (b) (Qn,OQn(1)) or (c)

a scroll overP1. Cases (a) and (b) cannot occur byH |nA = 5. Case (c) also cannot

occur because ofPic(A)∼= Z.

Secondly, supposeh0(A,H |A) = n+4. Then we obtain∆(A,H |A) = 1. By Propo-

sition 1.2.1, we haveg(A,H |A) = 1. Therefore it follows from[Fu 5,(12.3)] that

(A,H |A) is either a del Pezzo manifold or a scroll over an elliptic curve. The latter

case is ruled out because ofPic(A) ∼= Z. The former case is also ruled out by the fol-

lowing reason: if (A,H |A) is a del Pezzo manifold of degree5, then we see thatA is

the Grassmann variety parametrizing lines inP4, Gr(5,2), by combining the result of

[Fu 5,(8.11)] and our assumptionn > 5. But Gr(5,2) cannot be ample divisors onX

by virtue of[Fu 2,(5.2)].
Lastly, we supposeh0(A,HA)= n+3. By Proposition1.2.1, we see thatg(A,HA)=

∆(A,H |A) = 2 andH |A is simply generated, hence very ample. According to[I], we

havedimA≤ 4, which contradicts our assumption. ¥

From now on, we will discuss the caseh0(A,H |A) = n+2 in Section 1.5 and the

caseh0(A,H |A) = n+1 in Section 1.6.

1.5 The case ofh0(A,H |A) = n+2

In this section we treat the caseh0(A,H |A) = n+2. The aim of this section is to prove

the following

Proposition 1.5.1 If h0(A,H |A) = n+ 2, then (X,L) is either (Pn+1,OPn+1(5)) or

(Hn+1
5 ,OHn+1

5
(1)).

The following lemma is a special case of[LPS 1,(1.3)] :

Lemma 1.5.2 (Lanteri–Palleschi–Sommese)If h0(A,H |A) = n+ 2, then the mor-

phismq: A→ Pn+1 associated to|H |A| is birational and its imageq(A) is a hyper-

surface(possibly singular) of degree5 in Pn+1.
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Remark 1.5.3 By virtue of the Bertini theorem, we obtain a smoothk-dimensional

rungAk of (Ak+1,H |Ak+1) inductively, withAn := A. PutC := A1. Then one can easily

obtain an inequality

g(C,H |C)≥ ∆(C,H |C). (?)

Lemma 1.5.4 The ladderC⊂ A2⊂ ·· · ⊂ An is regular.

Proof. It suffices to proveH1(Ak,OAk) = 0 for all k≥ 2. By the Lefschetz hyperplane

section theorem[Fu 5,(7.1.4)], we haveH1(Ak,OAk)∼= H1(Ak−1,OAk−1) for all k≥ 3.

Combining these andH1(A,OA) = 0, we obtain the assertion. ¥

By Lemma1.5.2, the smooth curveC is the normalization ofq(C), which is a plane

quintic curve of arithmetic genus6. Sinceh0(Ak+1,H |Ak+1) = k+3 for all k by virtue

of Lemma1.5.4, we have∆(C,H |C) = 3.

Lemma 1.5.5 The line bundleH |C is simply generated.

Proof. We prove thatg(C,H |C) = 6 as follows: We have inequalities

3≤ g(C,H |C)≤ 6.

Indeed, the right inequality is obvious and the left is obtained by combining(?) and

∆(C,H |C) = 3. We haveKA
∼= rH |A for some integerr due toPic(A) ∼= Z. By the

sectional genus formula

2g(A,H |A)−2 = (KA +(n−1)H |A) ·H |n−1
A = 5(r +n−1),

we see thatg(A,H |A)−1 is divisible by5. Combining this and the above inequlities,

we obtaing(C,H |C) = 6.

It follows from g(C,H |C) = 6= pa(q(C)) thatH |C is very ample, i.e.,C∼= q(C).
Moreoverq(C) is a smooth plane curve. ThereforeH |C is simply generated. ¥

Proof of Proposition1.5.1. By combining Lemma1.5.4, 1.5.5and[Fu 5,Chapter I(2.5)],
we see thatH |A is very ample. Thus

(A,H |A)∼= (Hn
5 ,OHn

5
(1)).

We can writeL = lH with some integerl ≥ 1. It follows from 5 = H |nA = lH n+1

that(l ,H n+1) is either(1,5) or (5,1).
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The case of(l ,H n+1) = (1,5) The ladderC⊂ ·· · ⊂A⊂X is regular, hence∆(X,L) =
3. Therefore, fromh0(X,L) = n+3, it follows (X,L)∼= (Hn+1

5 ,OHn+1
5

(1)).

The case of(l ,H n+1) = (5,1) SinceH i(X,−4H ) = 0 for i = 0,1 due to the Kodaira

vanishing theorem, we see thath0(X,H ) = n+2, hence we have∆(X,H ) = 0. Since

H n+1 = 1, we obtain(X,L)∼= (Pn+1,OPn+1(5)). ¥

1.6 The case ofh0(A,H |A) = n+1

In this section, we deal with the caseh0(A,H |A) = n+1. The heart of this section is

to prove Theorem1.6.2.

Lemma 1.6.1 If h0(A,H |A)= n+1, then we haveL∼= 5H , H n+1 = 1and∆(X,H )=
1.

Proof. We see thatL = lH for l 6= 1 as follows. Supposel = 1. Then|H |A| gives an

embedding ofA into Pn, which contradictsdegπ = 5. From this, we seel 6= 1.

Therefore(l ,H n+1) = (5,1). Furthermore, from the Kodaira vanishing theorem,

it follows h0(X,H ) = h0(A,H |A) = n+1. Hence we obtain∆(X,H ) = 1. ¥

Let H1, . . . ,Hn be general members of|H |, and putXk :=
⋂

k≤i≤nHi for all 1≤
k≤ n. Recalling Fact1.3.1 (3), we see thatXk is a k-dimensional manifold. We put

p := Bs|H |.
We now consider the morphism associated to|L|

ϕL : X −→ P(|L|),

which is an embedding ofX, andϕL(X1) is a smooth curve of degree5. Then we obtain

g(X,H ) = g(ϕL(X1)) = 0,1,2 or 6 (see[Hart,p.354]).

The case ofg(X,H ) = 0 From[Fu 5,(12.1)], we see∆(X,H ) = 0, which is absurd.

The case ofg(X,H ) = 1 By virtue of a result of Fujita[Fu 5,(6.5)], We see that

(X,H ) is a del Pezzo manifold of degree1, hence we are in the case of (iii) in Theorem

1.1.1.

The case ofg(X,H ) = 2 From [Fu 4,§15 & Appendix 1] andn≥ 6, (X,H ) is a

sectionally hyperelliptic polarized manifold of type(−), which is also classified by

Fujita. We are in the case (iv).
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The case ofg(X,H ) = 6 Then we see thatX1 is isomorphic to a smooth plane quintic

curve. What we are going to prove is the following

Theorem 1.6.2 If h0(A,H |A) = n+1 andg(X,H ) = 6, then

(X,H )∼= (W20,OW20(1)).

We will use the ladder method to prove this, where the key is to describe the struc-

ture of R(X2,H |X2) explicitly. In fact, in order to get the conclusion, we need the

description of the structure ofR(X1,H |X1) and the surjectivity of the restriction map

ρ : R(X2,H |X2)−→ R(X1,H |X1).

We first describe the structure ofR(X1,H |X1) :

Proposition 1.6.3 Under the assumption of Theorem1.6.2, there exists an isomor-

phism

R(X1,H |X1)∼= C[x,y,z]/(F20),

wherewt(x,y,z) = (5,4,1) and F20 is an irreducible weighted homogeneous polyno-

mial of degree20.

Proof. Using the Riemann–Roch theorem forX1, we find the generators ofR(X1,H |X1)
and the relations among them. We proceed in three steps.

Step 1We show that the dimension ofH0(lH |X1) for l ≥ 1 is as follows:

l h0(lH |X1) l h0(lH |X1)
1 1 6 3
2 1 7 3
3 1 8 4
4 2 9 5
5 3 10 6

and h0(lH |X1) = l − 5 for all l ≥ 11. Indeed, by the Riemann–Roch theorem, we

obtain

h0(lH |X1) = h0((10− l)H |X1)+ l −5,

which implies the latter assertion. We prove the former. Note thath0(5H |X1) = 3 since

|L|X1| gives an embedding ofX1 into P2. By Fact1.3.1 (3), we seeh0(H |Xk) = k in
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particularh0(H |X1) = 1, thush0(9H |X1) = 5. From the well-known fact that a smooth

plane quintic curve has neitherg1
2 norg1

3, we haveh0(2H |X1) = h0(3H |X1) = 1, thus

h0(8H |X2) = 4,h0(7H |X1) = 3. Then we seeh0(6H |X1) = 3 andh0(4H |X1) = 2.

Therefore the former assertion is proved.

Let z be a basis ofH0(H |X1). Choosey ∈ H0(4H |X1) such thatH0(4H |X1) =
〈y,z4〉. Moreover, choosex∈ H0(5H |X1) such thatH0(5H |X1) = 〈x,yz,z5〉.

Step 2 We claim that the graded ringR(X1,H |X1) is generated byx,y,z. Indeed,

it suffices to prove that there exist some monomials inx,y,z which form a basis of

H0(lH |X1) for eachl . Note that

h0(lH |X1)−h0((l −1)H |X1) = δ ∈ {0,1}.

The cases of6≤ l ≤ 11 We may assumeδ = 1: otherwise, we haveH0(lH |X1) =
zH0((l − 1)H |X1). Therefore we only consider the casesl = 8,9,10. Each mono-

mial in x,y contained inH0(lH |X1) has a pole of order exactlyl at p. Comparing

their orders of poles, we see from Step 1 that the following monomials are linearly

independent for each8≤ l ≤ 10, hence form a basis forH0(lH |X1) :

l monomials inH0(lH |X1)
8 y2,xz3,yz4,z8

9 xy,y2z,xz4,yz5,z9

10 x2,xyz,y2z2,xz5,yz6,z10.

Therefore the assertion holds in these cases.

The cases ofl ≥ 12 We seeδ = 1 from Step 1. We prove the assertion by induction.

When l = 12, it is easy to see that the following monomials are linearly independent

as before, hence form a basis ofH0(12H |X1) :

y3,x2z2,xyz3,y2z4,xz7,yz8,z12.

Supposel > 12and that the assertion holds forl −1. It is easily shown that

for two coprime positive integersa,b and an integerl with l ≥ (a−1)(b−
1), the equationai+b j = l has at least one solution(i, j) of non-negative

integers.

Set (a,b) = (5,4). Then, sincel > 12, there exists at least one section written as

xiy j (i, j ≥ 0) in H0(lH |X1), not contained inzH0((l−1)H |X1). HenceH0(lH |X1) =
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Cxiy j ⊕zH0((l − 1)H |X1). From the assumption of induction, the assertion holds.

This proves our claim.

By Step 2, there exists a surjective homomorphism of graded rings

Φ : C[x,y,z]−→ R(X1,H |X1).

Step 3We show that there exists an irreducible homogeneous polynomialF20 of degree

20 in C[x,y,z] such thatKer(Φ) = (F20). Indeed, there exist no relations of degree

l < 20 because the equation5i +4 j = l has at most one solution(i, j) of non-negative

integers. Forl = 20, there are exactly16 monomials ofx,y,z in H0(20H |X1). On the

other hand,h0(20H |X1) = 15. Hence there exists one relationF20 of degree20, which

is written as

F20 = x4 +y5 +zψ19(x,y,z)

after we replacex and y by suitable scalar multiples, whereψ19 is a homogeneous

polynomial ofx,y,z of degree19. The irreducibility ofF20 is proved as follows: One

can easily show thatx4 +y5 is irreducible. WriteF20(x,y,z) = P1(x,y,z)P2(x,y,z) with

someP1,P2 ∈C[x,y,z]. Then we may assumeP1(x,y,0) = 1 without loss of generality.

HenceP1(x,y,z) = 1+ zξ1 and P2 = x4 + y5 + zξ2, whereξ1,ξ2 are polynomials in

x,y,z. We obtain that

ψ19(x,y,z) = ξ1(x4 +y5 +zξ2)+ξ2.

It follows that ξ1 = 0. Indeed, otherwise, the highest term of the right-hand side has

degree≥ 20, which is absurd. ThereforeF20 is irreducible. Furthermore, combin-

ing this and the fact thatht(Ker(Φ)) ≤ dimC[x,y,z]− dimR(X1,H |X1) = 1, we see

Ker(Φ) = (F20). ¥

Next we will show the surjectivity of the restriction mapρ. Let s= {s0, . . . ,sN} be

a minimal set of generators ofR(X2,H |X2). Then there exists an isomorphism

R(X2,H |X2)∼= C[s0, . . . ,sN]/(F1, . . . ,Fh),

whereF1, . . . ,Fh are homogeneous polynomials inC[s0, . . . ,sN]. PutIs := (F1, . . . ,Fh).
It follows from Fact1.3.1 (3) that the vector spaceH0(H |X2) is of dimension

2, hence has a basis{s, t} such thatρ(s) = z and(t)0 = X1. We may assume thats

contains these two elements.
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Lemma 1.6.4 The sequencet,s contained inm := R(X2,H |X2)+ is regular.

Proof. Let m be a homogeneous element of degreea in R(X2,H |X2) such thattm=
0. We see thatR(X2,H |X2)+ has no zero-divisors sinceX2

∼= Proj(R(X2,H |X2)) is

integral. Hence, ifa > 0, then we obtainm = 0. If a = 0, then the minimality ofs

implies thatIs has no generators of degree one. Thus we havem= 0. Thereforet is

R(X2,H |X2)-regular. By the same argument, we see thats is R(X2,H |X2)/(t)-regular

sinceX1
∼= Proj(R(X2,H |X2)/(t)) is integral. Consequently the assertion holds.¥

In order to prove Proposition1.6.6, we need some information about generators of

Is. Let

ρl : H0(lH |X2) ³ H0(lH |X2)/〈t〉 ↪→ H0(lH |X1)

denote the restriction map. Here we show the following

Lemma 1.6.5 The idealIs has no generators in degrees≤ 5.

Proof. We first prove that

Im(ρ5) = H0(5H |X1). (†)

It follows that rank(ρ5) ≥ 3. Indeed, the morphismϕL|X1 : X1 → P(Im(ρ5)) is an

embedding of a curve of genus6. Consequently(†) follows by virtue of Step 1 in the

proof of Proposition1.6.3.

Subsequently, we find a basis ofH0(lH |X2) for 1≤ l ≤ 5 by using Lemma1.2.2.

For l = 1, there exist no relations inH0(H |X2) because of the minimality ofs.

For l = 2, there exist no relations. In fact, it followsH0(2H |X2) = 〈s2,st, t2〉.
Indeed, letη ∈ H0(2H |X2). We can writeρ2(η) = cz2 with somec ∈ C. Then,

from Lemma1.2.2, it follows thatη is a linear combination ofs2,st, t2. These three

monomials are linearly independent because each order of pole alongX1 differs from

that of the others.

For l = 3, there are no relations: we see thatH0(3H |X2) = 〈s3,s2t,st2, t3〉 by the

same argument as in the casel = 2.

As for l = 4, we note that1 ≤ rank(ρ4) ≤ h0(4H |X1) = 2. We first suppose

rank(ρ4) = 1. ThenH0(4H |X2) = 〈s4,s3t,s2t2,st3, t4〉 holds, which implies that there

exist no relations. By(†), there exist sectionsu,v ∈ H0(5H |X2) such thatρ5(u) =
x,ρ5(v) = yz. Since it follows from Lemma1.2.2 that

H0(5H |X2) = 〈u,v,s5,s4t,s3t2,s2t3,st4, t5〉,

23



there exist no relations inH0(5H |X2).
Next we supposerank(ρ4) = 2. Let w denote a section such thatρ4(w) = y. Then

we see

H0(4H |X2) = 〈w,s4,s3t,s2t2,st3, t4〉,
H0(5H |X2) = 〈u,sw, tw,s5,s4t,s3t2,s2t3,st4, t5〉,

whereu is a section such thatρ5(u) = x. Therefore there exist no relations. ¥

Proposition 1.6.6 The restriction map

ρ : R(X2,H |X2)−→ R(X1,H |X1)

is surjective.

Proof. It suffices to prove thatH1(lH |X2) = 0 for everyl ≥ 0, which is equivalent to

showing thatR(X2,H |X2) is a Cohen–Macaulay ring (see[W,(2.4)]).
We find a regular sequence of length3 contained inm. The sequencet,s is regular

by Lemma1.6.4. Let u ∈ H0(5H |X2) denote a unique section such thatρ5(u) = x.

We assert thatu is R(X2,H |X2)/(t,s)-regular. Indeed,Proj(R(X2,H |X2)/(t,s)) is an

integral schemep because ofH |2X2
= 1. Thus we see that(R(X2,H |X2)/(t,s))+ has

no zero-divisors. Letm be a homogeneous element of degreea in R(X2,H |X2)/(t,s)
such thatum= 0. If a > 0, then we havem = 0 obviously. If a = 0, then we have

m= 0 by Lemma1.6.5. Thereforet,s,u form a regular sequence. ¥

At last, we can prove Theorem1.6.2 as follows:

Proof of Theorem1.6.2. Combining Proposition1.6.3 and1.6.6, we see thatX2 is a

weighted hypersurface of degree20 in P(5,4,12). Furthermore, the assertion follows

from Proposition1.2.3. ¥
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Chapter 2

Polarized manifolds admitting a
four-sheeted cover ofPn among their
hyperplane sections

2.1 Introduction

Let X be an(n+1)-dimensional smooth complex projective variety andL a very ample

line bundle onX. Consider the following condition:

(∗)d There exists a smooth memberA∈ |L| such that there exists a finite surjective

morphismπ : A→ Pn of degreed.

Needless to say, the following “obvious” pairs(X,L) satisfy (∗)d : (Pn+1,OPn+1(d))
and(Hn+1

d ,OHn+1
d

(1)), whereHn+1
d is a smooth hypersurface of degreed in Pn+2.

It is an interesting subject to investigate, for a fixedd, what kind of the “non-

obvious” pairs show up. In fact, for small prime numbersd, the pairs(X,L) satisfying

(∗)d andn > d have been classified completely: For d = 2 and3, Lanteri–Palleschi–

Sommese ([LPS 1], [LPS 2]) classified the pairs. Ford = 5, we classified the pairs in

Chapter 1.

Letqbe the morphism associated to|π∗OPn(1)|, and assumet := h0(A,π∗OPn(1))−
n−1 > 0. Then we have a factorization ofπ as follows:

A
q //

π **

q(A)⊂ Pn+t

p: The projection from aPt−1

in Pn+t with q(A)∩Pt−1 = /0.²²
Pn
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In the case whered is a prime, it immediately follows thatq is birational onto its image

q(A), which is a variety of degreed. This plays a key role in the classification problem

for a smalld.

Now then, for a composite numberd, there may exist pairs(X,L) with a non-

birational morphismq. Therefore it is natural to study the structures of these pairs.

The purpose of this chapter is to provide a complete classification of the pairs(X,L)
in casen > d = 4. Our result is

Theorem 2.1.1Let X be a smooth projective variety withdimX = n+ 1≥ 6. Then

there exists a very ample line bundleL onX that satisfies the condition(∗)4 if and only

if (X,L) is one of the following:

(i) (Pn+1,OPn+1(4));

(ii) (Hn+1
4 ,OHn+1

4
(1));

(iii) (Y1,4L ), where(Y1,L ) is a del Pezzo manifold of degree one;

(iv) (W12,OW12(4)), whereW12 is a weighted hypersurface of degree12 in the weighed

projective spaceP(4,3,1n+1) with its ample invertible sheafOW12(1);

(v) (Qn+1,OQn+1(2)), whereQn+1 is a hyperquadric inPn+2;

(vi) (Vn+1
2,2 ,OVn+1

2,2
(1)), whereVn+1

2,2 is a complete intersection of two hyperquadrics in

Pn+3; or

(vii) (Z,2L), where(Z,L) is a del Pezzo manifold of degree2.

There are five “non-obvious” pairs. By comparing this theorem to Theorem 1.1.1,

it turns out that no fewer than three pairs (v)–(vii) newly show up. In particular, the

pair (vii) is a unique one with a non-birational morphismq. In fact, we see thatq(A)
is a smooth hyperquadric in this case.

Our basic strategy is to reduce to Fujita’s classification theory of polarized mani-

folds, which leads us to study the structure of(X,L) with a non-birational morphism

q.

The strategy is roughly summarized as follows: As we will see in the section3,

it follows that Pic(X) = Z[H ], whereH is the ample generator. And we can show
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that invariants of(X,H ) are small. Therefore the classification theory is applica-

ble except certain polarized manifolds with sectional generag(X,H ) = 3, ∆ -genera

and degrees (I)∆(X,H ) = H n+1 = 1 or (II) 2. The classification problem of polar-

ized manifolds with these invariants, in general, are yet to be solved completely (cf.

[Fu 5,(6.18)&(10.10)]).
As for (I), it turns out that(X,H ) is not sectionally hyperelliptic. Furthermore,

we find that a curve which is an intersection ofn-general members of|H | is a smooth

plane quartic. In this case, we can determine the structure of(X,H ) by using a new

method provided in Section 1.6.

As for (II), we can prove that this case is ruled out by using the Riemann–Roch

theorem for curves and the double point formula for surfaces, successfully (see Propo-

sition2.3.2).

After Theorem 2.1.1 had been obtained, I found Lanteri’s result [Lan, Theorem

3.4], which is similar to ours. But his result contains one doubtful case: In fact, for

the case (iv) in Theorem2.1.1, his result has given only some invariants. In contrast,

our theorem reveals the structure of a unique polarized manifold appearing in the case.

So our classification result is complete.

2.2 Three special examples: the ‘if’ part

In this section the ‘if’ part of Theorem2.1.1 is proved. We only consider the three

special classes (iii), (iv) and (vii) of polarized manifolds appearing in Theorem because

one can easily check that the other classes (i), (ii), (v) and (vi) satisfy the assertion.

Example 1 Let (X,L) = (Y1,4L ), where(Y1,L ) is an(n+1)-dimensional del Pezzo

manifold of degree1. We have∆(Y1,L ) = 1. As in the proof of [LPS 2, (1.2)], we see

that4L is very ample. Therefore it follows from Proposition 1.3.2 that there exists a

four-sheeted cover ofPn that is a member of|4L |.

Example 2 Let (X,L) = (Y2,2L), where(Y2,L) is an(n+1)-dimensional del Pezzo

manifold of degree2, i.e.,−KY2
∼= nL with Ln+1 = 2. Then, from[Fu 5,(8.11)], (Y2,L)

is a double covering ofPn+1 branched along a smooth hypersurface of degree4 andL

is the pull-back ofOPn+1(1). The graded ringR(Y2,L) is 2-generated since(Y2,L) is

a smooth weighted hypersurface of degree4 in P(2,1n+2). We obtain that2L is very
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ample by combining the spannedness ofL and [Laf, Corollary 2.3]. Therefore there

exists a smooth memberA∈ |2L| that is a double covering ofQn. By projectingQn

from a point ofPn+1\Qn to Pn, we see thatA is a four-sheeted cover ofPn.

Example 3 Let (X,L) = (W12,OW12(4)), whereW12 is a smooth weighted hypersurface

of degree12 in P(4,3,1n+1). By easy calculations, we obtain that∆(W12,OW12(1)) =
OW12(1)n+1 = 1. From [Fu 4,§ 13], we see thatBs|OW12(1)| consists of a single point,

which is denoted byp. We obtain a smooth four-sheeted cover ofPn that is contained

in |OW12(4)| by combining Proposition 1.3.2 and the following

Lemma 2.2.1 The line bundleOW12(4) is very ample.

Proof. We obtain the conclusion with the following steps:

(a) Bs|OW12(4)|= /0;

(b) The morphismϕ := ϕOW12(4) associated toOW12(4) is injective;

(c) The linear system|OW12(4)| separates the tangent vectors.

From the4-generatedness ofR(W12,OW12(1)) and [Laf, Theorem 2.2],ϕ is an em-

bedding outside the single pointp. Let x,y,zj (0≤ j ≤ n) generate the graded ring

R(W12,OW12(1)), wherewt(x,y,zj) = (4,3,1) for all j.

(a) It follows thatH0(OW12(4)) is generated by the sections

x,yz0, . . . ,yzn,zj1 · · ·zj4, with 0≤ j1≤ ·· · ≤ j4≤ n.

Therefore we see that

Bs|OW12(4)|= (x = 0)∩
( ⋂

0≤ j≤n

(zj = 0)
)

,

which is empty sinceW12 does not meet the singular points ofP(4,3,1n+1).
(b) If we assumeϕ(p) = ϕ(q) for someq∈W12, then we find thatzj = 0 for any

0≤ j ≤ n, which impliesq∈ Bs|OW12(1)|. Thusp = q.

(c) For a non-zero tangent vectorτ ∈ Tp(W12), we need to show that there exists a

sectionσ ∈ H0(OW12(4)) satisfying the following conditions:

σ(p) = 0 anddσ(τ) 6= 0.

28



We show thatσ j := yzj satisfies the above conditions for some0≤ j ≤ n. The

former holds becausezj(p) = 0 for all j. We prove that the latter holds by contradic-

tion. Assume that there exists a non-zeroτ ∈ Tp(W12) with dσ j(τ) = 0 for all j. Since

dσ j(τ) = y(p)dzj(τ) andy(p) 6= 0, we see thatdzj(τ) = 0 for all j. Thus we have

τ ∈ Tp(Γ), whereΓ :=
⋂

1≤ j≤n

(zj = 0).

It follows from dz0(τ) = 0 that Γ ·OW12(1) ≥ 2, which contradictsOW12(1)n+1 = 1.

This completes the proof. ¥

2.3 The ‘only if’ part

Let (X,L) satisfy n ≥ 5 and (∗)4. And let π : A→ Pn denote the finite morphism

of degree4. Then a Barth-type theorem of Lazarsfeld [Laz 1, Theorem 1] implies

that H2(A,Z) ∼= H2(Pn,Z) ∼= Z andH1(A,OA) = 0. Therefore we havePic(A) ∼= Z,

generated byπ∗OPn(1). The Lefschetz hyperplane section theorem impliesPic(X) ∼=
Z. We denote byH the ample generator ofPic(X); we haveH |A∼= π∗OPn(1). Thus

we can writeL = lH with somel > 0. SincelH n+1 = H |nA = 4, we see that

H n+1 = 1,2 or 4.

Combining the ampleness ofH |A and the fact that∆ -genus is non-negative for every

polarized manifold [Fu 5, Chapter I (4.2)], we see

n+1≤ h0(A,H |A)≤ n+4.

In this section, we investigate the polarized manifolds in question case by case.

The case ofh0(A,H |A) = n+ 4 Since∆(A,H |A) = 0 andPic(A) ∼= Z, it follows

from [Fu 5, Chapter I (5.10)] that(A,H |A) is either(Pn,OPn(1)) or (Qn,OQn(1)).
Moreover, sinceH |nA = 4, we get a contradiction. Hence this case does not occur.

The case ofh0(A,H |A) = n+3 We see that(A,H |A) has a regular ladder by the argu-

ment as in the proof of Lemma 1.5.4. Then we obtain thatg(A,H |A)≥ ∆(A,H |A) =
1 by the Riemann–Roch theorem. Therefore we seeg(A,H |A) = 1 by combining

4= H |nA > 2∆(A,H |A) = 2 and [Fu 5, Chapter I (3.5.3)]. This implies that(A,H |A)
is a del Pezzo manifold of degree4, which is(Vn

2,2,OVn
2,2

(1)) due to [Fu 5, (8.11)].
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For (l ,H n+1) = (1,4), L = H gives an embedding ofX into Pn+3. Hence it

follows from [Mo, Corollary 3.8] that(X,L) ∼= (Vn+1
2,2 ,OVn+1

2,2
(1)). We are in the case

(vi) in Theorem 2.1.1.

For (l ,H n+1) = (2,2), we see thath0(X,H ) = n+3 from the Kodaira vanishing

theorem. Since∆(X,H ) = 0 andH n+1 = 2, we have(X,L) ∼= (Qn+1,OQn+1(2)).
Hence we are in the case (v).

For (l ,H n+1) = (4,1), we see that this case does not occur as follows: Since

h0(X,H ) = n+3, we obtain that∆(X,H ) =−1, which is absurd.

The case ofh0(A,H |A) = n+2 For (l ,H n+1) = (1,4), we haveh0(X,H ) = n+3

by the Kodaira vanishing theorem. Hence we obtain that∆(X,H ) = 2. Combining

dimX > 5 and [Fu 5, (10.8.1)], we see that(X,L)∼= (Hn+1
4 ,OHn+1

4
(1)). Thus we are in

the case (ii) in the Theorem.

For(l ,H n+1) = (2,2), we haveh0(X,H ) = n+2, hence∆(X,H ) = 1. It follows

from [Fu 5, (6.13)] that(X,L)∼= (Y2,2L). Thus we are in the case (vii).

For(l ,H n+1)= (4,1), we have∆(X,H )= 0. Therefore(X,L)∼=(Pn+1,OPn+1(4)),
which is the case (i).

The case ofh0(A,H |A) = n+1 SinceH |nA = 4, we havel 6= 1, hence

(I) ∆(X,H ) = H n+1 = 1;

(II) ∆(X,H ) = H n+1 = 2.

Let H1, . . . ,Hn ∈ |H | be general members, and putXk :=
⋂

k≤i≤nHi for every1≤
k≤ n. Then eachXk is a k-dimensional submanifold ofX due to [Fu 4, (13.1)] and

[Fu 3, (4.1)]. Moreover, by combiningH1(X,OX) = 0 and the Lefschetz-type theorem

[Fu 5, (7.1.4)], we see that the ladder{Xk}1≤k≤n+1 is regular, where we putXn+1 := X.

Therefore we haveh0(Xk,H |Xk) = k for all 1≤ k≤ n+ 1. SinceL|X1 is very ample

and has degree4, we haveg(X,H ) = g(X1) = 1 or 3. Then we argue case by case.

For the caseg(X,H ) = 1, we are in the case (I) by [Fu 5, (12.3)] andPic(X)∼= Z.

Hence(X,H ) is a del Pezzo manifold of degree one, which is the case (iii) in Theorem

2.1.1.

For the caseg(X,H ) = 3 and (I), it turns out that (iv) shows up. In fact, we prove

the following
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Proposition 2.3.1 Assume thatg(X,H ) = 3 and(I). Then(X,H )∼= (W12,OW12(1)),
whereW12⊂ P(4,3,1n+1) is a smooth weighted hypersurface of degree12.

Proof. We first note thatX1 is isomorphic to a plane quartic curve because ofg(X1) = 3.

Next, we will show that

(1) R(X1,H |X1) ∼= C[x,y,z]/(F12), wherewt(x,y,z) = (4,3,1) andF12 = x3 + y4 +
zψ11 for some homogeneous polynomialψ11∈ C[x,y,z] of degree11; and

(2) The restriction mapρ : R(X2,H |X2)→ R(X1,H |X1) is surjective.

It suffices to prove the above: In fact, from (1) and (2), we see thatX2 is a weighted

hypersurface of degree12 in P(4,3,12), and therefore the assertion follows from [Mo,

Proposition 3.10].

(1) We find the generators ofR(X1,H |X1) and the relations among them by using

the Riemann–Roch theorem forX1. By the sectional genus formula, we obtainKX1 =
4H |X1. Therefore we have

h0(lH |X1) = h0((4− l)H |X1)+ l −2.

For all l ≥ 5, we seeh0(lH |X1) = l −2. For l ≤ 4, we get the following table because

of the well-known fact that a smooth plane quartic has nog1
2 :

l h0(lHX1) l h0(lHX1)
1 1 3 2
2 1 4 3

Let z be a basis of the vector spaceH0(H |X1). Choosey ∈ H0(3H |X1) such

thatH0(3H |X1) = 〈y,z3〉. Similarly, choosex∈ H0(4H |X1) such thatH0(4H |X1) =
〈x,yz,z4〉. From now on, we proceed in two steps.

Step 1We claim that the graded ringR(X1,H |X1) is generated by three elementsx,y,z.

Indeed, it suffices to show that there exist some monomials inx,y,zwhich form a basis

of H0(lH |X1) for eachl ≥ 5.

We use induction onl . By the assumption (I), we see thatBs|H | is a single point

p. Note that each monomial inx,y contained inH0(lH |X1) has a pole of order exactly

l at p. Whenl = 5, we see that the monomialsxz,yz2,z5 are linearly independent by

comparing their orders of poles atp, hence form a basis ofH0(5H |X1).
Suppose that the assertion holds forl − 1 ≥ 5. Note thath0(lH |X1) = h0((l −

1)H |X1)+1. It is easily shown that
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for two coprime positive integersa,b and an integerl with l ≥ (a−1)(b−
1), the equationai+b j = l has at least one solution(i, j) of non-negative

integers.

Set (a,b) = (4,3). Then, due tol ≥ 6, there exists at least one section written as

xiy j (i, j ≥ 0) in H0(lH |X1), not contained inzH0((l−1)H |X1). HenceH0(lH |X1) =
Cxiy j ⊕zH0((l −1)H |X1). From the induction hypothesis, the assertion holds forl .

This proves our claim.

By Step 1, there exists a surjective homomorphism of graded rings

Φ : C[x,y,z]→ R(X1,H |X1).

Step 2We show that there exists an irreducible homogeneous polynomialF12 of degree

12 in C[x,y,z] such thatKer(Φ) = (F12). Indeed, there exist no relations of degree

l < 12 since the equation4i + 3 j = l has at most one solution(i, j) of non-negative

integers. Forl = 12, there are exactly11 monomials inx,y,z of degree12. On the

other hand,h0(12H |X1) = 10. Therefore there exists one relationF12 of degree12,

which is written as

F12 = x3 +y4 +zψ11(x,y,z)

after we replacex and y by suitable scalar multiples, whereψ11 is a homogeneous

polynomial inx,y,z of degree11.

It turns out thatF12 is irreducible as follows: We can show thatx3+y4 is irreducible,

immediately. WriteF12 = P1(x,y,z)P2(x,y,z) with someP1,P2 ∈ C[x,y,z]. Without

loss of generality, we may assumeP1(x,y,0) = 1. HenceP1(x,y,z) = 1+zξ1 andP2 =
x3 +y4 +zξ2, whereξ1,ξ2 are polynomials inx,y,z. We have

ψ11(x,y,z) = ξ1(x3 +y4 +zξ2)+ξ2.

It follows that ξ1 = 0. Indeed, otherwise, the highest term of the right-hand side has

degree≥ 12, which is absurd. ThereforeF12 is irreducible.

Moreover, combining this and the fact that

ht(Ker(Φ))≤ dimC[x,y,z]−dimR(X1,H |X1) = 1,

we obtainKer(Φ) = (F12). Thus (1) is proved.
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(2) It suffices to prove thatR(X2,H |X2) is Cohen–Macaulay, which is equivalent to

finding a regular sequence of lengthdimR(X2,H |2)= 3contained inR(X2,H |X2)+ :=
⊕

l>0H0(X2, lH |X2).
Before proving this, we fix our notation: Let s= {s0, . . . ,sN} be a minimal set of

generators ofR(X2,H |X2). Then there exists an isomorphism

R(X2,H |X2)∼= C[s0, . . . ,sN]/Is,

whereIs is the homogeneous ideal definingX2.

First we find a regular sequence of length2 contained inR(X2,H |X2)+ as follows:

Sinceh0(X2,H |X2) = 2, we see thatH0(H |X2) has a basis{s, t} satisfying

ρ(s) = z and(t)0 = X1.

We may assume thats contains these two elements. It is easy to check thatt,s∈
R(X2,H |X2)+ form a regular sequence of length2.

Next, we find anR(X2,H |X2)/(t,s)-regular element. One needs some information

about generators ofIs. For eachl ≥ 0, let

ρl : H0(lH |X2) ³ H0(lH |X2)/〈t〉 ↪→ H0(lH |X1).

denote the restriction map. We proceed in two steps.

Step 1We show that the idealIs has no generators in degrees≤ 4 as follows: Firstly,

we see that

Im(ρ4) = H0(4H |X2) (†)

combiningh0(4H |X1) = 3, the very ampleness ofL = 4H and the irrationality ofX1.

Subsequently, we find a basis ofH0(lH |X2) for each1≤ l ≤ 4.

For l = 1, there exist no relations inH0(H |X2) by virtue of the minimality ofs.

For l = 2, there are no relations: In fact, it follows thatH0(2H |X2) = 〈s2,st, t2〉.
Indeed, for anyη ∈H0(2H |X2), we can writeρ2(η) = cz2 with somec∈C. Therefore

we see thatη is a linear combination ofs2,st, t2. These three monomials are linearly

independent because each order of pole alongX1 differs from that of the others.

For l = 3, we note that1≤ rank(ρ3) ≤ h0(3H |X1) = 2. We argue whether there

are relations or not, case by case. We first supposerank(ρ3) = 1. Then, by the same

argument as in the casel = 2, we seeH0(3H |X2) = 〈s3,s2t,st2, t3〉, which asserts

that there are no relations. By (†), there exist sectionsu,v ∈ H0(4H |X2) such that
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ρ4(u) = x,ρ4(v) = yz. It is easy to see thatH0(4H |X2) = 〈u,v,s4,s3t,s2t2,st3, t4〉,
therefore there are no relations inH0(4H |X2) .

Next, suppose thatrank(ρ3) = 2. Let w denote a section such thatρ3(w) = y. Then

we see that

H0(3H |X2) = 〈w,s3,s2t,st2, t3〉,
H0(4H |X2) = 〈u,sw, tw,s4,s3t,s2t2,st3, t4〉,

whereu is a section such thatρ4(u) = x. Therefore there exist no relations. In this way,

it turns out thatIs has no generators in degrees≤ 4.

Step 2We claim that there exists anR(X2,H |X2)/(t,s)-regular element. Letu denote

a section ofH0(4H |X2) such thatρ4(u) = x. We assert thatu is R(X2,H |X2)/(t,s)-
regular. Indeed,Proj(R(X2,H |X2)/(t,s)) is an integral schemep because ofH |2X2

=
1. Thus we see that(R(X2,H |X2)/(t,s))+ has no zero-divisors. Letm be a homoge-

neous element of degreea in R(X2,H |X2)/(t,s) such thatum= 0. If a > 0, we have

m= 0 obviously. If a = 0, then we obtainm= 0 by Step 1. Therefore our claim is

proved.

Consequently, due to (1) and (2), the proposition is proved. ¥

For the caseg(X,H ) = 3 and (II), we haveKX
∼= (2−n)H . Hence it follows that

H1(X3,mH |X3) = 0 for all m≥ 0. We also see that the restriction map

ρ : H0(X2,mH |X2)→ H0(X1,mH |X1) (‡)

is surjective for allm≥ 0.

Proposition 2.3.2 Assume thatg(X,H ) = 3 and(II) . ThenL = 2H is not very ample.

Proof. Using (‡), we obtain thath0(X2,2H |X2) = h0(X1,2H |X1) + 2 = 5. Sup-

pose thatL is very ample. Then we see thatL|X2 gives an embedding ofX2 into P4.

But the double point formula for surfaces (see [BS, Lemma 8.2.1])L|2X2
(L|2X2

−5)−
10(g(X2,L|X2)−1)+ 12χ(OX2)−2K2

X2
= 0 implies that−7+ 3pg(X2) = 0, which is

absurd. ¥

Therefore we see that this case cannot occur, which completes the proof of Theorem

2.1.1.
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Chapter 3

Polarized manifolds admitting a
Castelnuovo manifold among their
ample divisors

3.1 Introduction

Let L be an ample line bundle on a smooth complex projective(n+1)-fold X. To de-

termine the structure ofX such that the complete linear series|L | contains a “special”

variety has been an interesting subject in adjunction theory and, therefore, investigated

by several authors (e.g. [LPS 3]; [Se], [SV], [Fa], [LPS 2], [LPS 1], [Lan], [BFS] in a

more strict setting thatL is very ample).

In this chapter, we shall study the case where|L | contains a Castelnuovo manifold,

precisely speaking, the structures of the polarized manifolds(X,L ) with the following

condition:

(?) There exists a memberA of |L | such that(A,H ) is a Castelnuovo manifold

with some ample and spanned line bundleH ∈ Pic(A).

By aCastelnuovo manifoldwe here mean a polarized manifold(A,H ) such that|H |
defines the birational morphism onto its image and that the sectional genusg(A,H )
attains the maximumγ(A,H ) given in terms of both the∆ -genus∆(A,H ) and the

degreeH n (for the definition ofγ, see Section 3.2). This is a generalization of a

curve of maximal genus studied originally by Castelnuovo ([Ca1]; cf. [GH, pp. 527–

533], [ACGH, Chapter III,§2]), to the higher dimensional cases, due to Fujita [Fu 5,

(16.7)](for other generalizations, see, e.g. [Harr], [Ci]).
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Note that if (X,L ) is a Castelnuovo manifold then so is(A,L |A) (see [Fu 5,

(16.6)]). Therefore we haveL |A ∼= H in this case. Now, in the case ofL |A �H ,

what kind of the pairs(X,L ) show up?

The purpose of this chapter is to provide a complete classification of the pairs

(X,L ) with (?) under the assumptionn> H n. It turns out that those pairs(X,L ) fall

into only three simple series and, moreover, that thoseX must be weighted complete

intersections of codimension≤ 3. To be more precise, our main result is

Theorem 3.1.1Let X be a smooth complex projective variety of dimensionn+1. As-

sume that0 < d < n. Then the following(I)–(III) are equivalent:

(I) There exists an ample line bundleL on X satisfying the condition(?) andd =
H n.

(II) There exists a very ample line bundleL onX satisfying(?) andd = H n.

(III) (X,L ) is one of the following:

(i) (Wd,OW(l)) with some positive integerl dividing d, whereWd is a smooth

weighted hypersurface of degreed in the weighted projective spaceP(l ,1n+2);

(ii) (W2,d/2,OW(l)) with l = 1,2 or l dividingd/2, where the givend is an even

number≥ 4, andW2,d/2 is a smooth weighted complete intersection of type

(2,d/2) in P(l ,1n+3); or

(iii) (W2,2,2,OW(l)) with l = 1 or 2, whereW2,2,2 is a smooth weighted complete

intersection of type(2,2,2) in P(l ,1n+4).

Moreover, for each of the list(i)–(iii) , L |A∼= H holds if and only ifl = 1.

Our proof consists of two parts: (I)⇒ (III) and (III) ⇒ (II) ((II) ⇒ (I) is trivial).

The main part is to prove the former. We utilize Fujita’s basic structure theorem of

Castelnuovo manifolds (see [Fu 5, (16.7)–(16.14)] or Theorem 3.2.6 in this chapter).

Specifically, we shall describe the structure of(X,L ) by classifying(A,H ) in terms

of d and∆(A,H ): (A) d > 2∆(A,H ), (B) d = 2∆(A,H ) and (C)d < 2∆(A,H ).
Castelnuovo varieties of type (A), (B) and (C) are called of the first kind, the second

kind and the third kind in [Fu 5,§16], respectively.

Basically the study of the case (B) reduces to M. C. Beltrametti-Fania-Sommese’s

result [BFS, Proposition 3.1] and to a classification result of Mukai manifolds [Mu].

36



In the case (C), Fujita’s basic structure theorem gives explicit descriptions of the

possible types of a Castelnuovo variety(A,H ). However the theorem doesnot tell

whether or notA does become an ample divisor onX, whence some detailed arguments

are needed to exclude certain pairs(A,H ). In fact, by showing that the intersection

WA of hyperquadrics containingA in P(|H |) is neither a generalized cone over the

Veronese surface nor one over a smooth rational normal scroll undern> d (see Lemma

3.4.5), we complete the proof in the case (C).

The difficulty in dealing with the case (A) is as follows: The structures of Castel-

nuovo manifolds(A,H ) still remain unrevealed in general (cf. [Fu 5, (16.7) below

& Chapter I (3.5.3)]). By using Lemma 3.2.7, we can successfully describe(A,H )
explicitly undern > d, reducing to classification results of Fano manifolds of coindex

≤ 2 (see Proposition 3.4.1).

This chapter is organized as follows: In Section 3.2, we first state two lemmas

needed in Sections 3.3 and 3.4. After that, we introduce and summarize several funda-

mental results on Castelnuovo varieties. Also we prove Lemma 3.2.7 that plays a key

role in the proof of (I)⇒ (III). In Section 3.3, for each of the list (i)–(iii) in Theorem

3.1.1, we show the very ampleness of its line bundle by using Lemma 3.2.1 and prove

that(?) is satisfied by taking an appropriateH ∈ Pic(A). The latter part of the theo-

rem is immediately verified from a result thatlH ∼= LA with somel ≥ 1. Section 3.4

is devoted to proving (I)⇒ (III).

Notation

In this chapter, we adopt the following notation.

• Hn
d1,...,dr

: ann-dimensional smooth complete intersection of type(d1, . . . ,dr) in

Pn+r .

• P(E ) : thePs−1-bundle associated to a locally free sheafE of ranks overP1.

• Wn
d1,...,dr

: a smooth weighted complete intersection of type(d1, . . . ,dr) in the

weighted projective spaceP(l ,1n+r) := P(l ,1, . . . ,1︸ ︷︷ ︸
n+r

) of dimensionn.

• S∗T : the closure of the union of all the lines passing throughs∈ Sandt ∈ T in

Pn, whereSandT are subsets ofPn.

• Ridge(X) := {x∈ X | x∗X = X} for a projective varietyX ⊂ Pn.
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• [q] : the integer part of a rational numberq≥ 0.

3.2 Preliminaries: Castelnuovo varieties

We begin with two lemmas needed in later. Here we simply state the results, referring

to [Laf, Corollary 2.3] for a proof of the former and to the proof of [Fu 1, (3.8)] for a

proof of the latter.

Lemma 3.2.1 (A. Laface)Let (M,L) be a polarized manifold. Suppose thatL is

spanned and that the graded ringR(M,L) :=
⊕∞

i=0H0(M, iL) is generated in degrees

≤ r. Then the line bundlerL is very ample.

Lemma 3.2.2 (Fujita) Let(M,L) be a polarized manifold of dimensionm≥ 4 andA a

member of|lL| for somel ≥ 1. Assume that(A,L|A) is a smooth complete intersection

of type(d1, . . . ,dr) in Pm+r . Then(M,L) is a weighted complete intersection of type

(d1, . . . ,dr) in P(l ,1m+r+1). Furthermorel divides one ofd1, . . . ,dr .

In what follows, we give a brief summary of fundamental results on Castelnuovo

varieties, referring to [Fu 5,§16]. Let(V,L) be a pair consisting of a projective variety

V and a spanned line bundleL such that|L| defines the birational morphismϕ onto its

image. Fujita proved that the following inequality holds for arbitrary(V,L):

g(V,L)≤ ∆(V,L)F− (
d−∆(V,L)−1

)(F
2

)
,

whered := LdimV andF :=
[

d−1
d−∆(V,L)−1

]
. Defineγ(V,L) as the right-hand side.

Definition 3.2.3 A Castelnuovo varietyis a polarized variety(V,L) with its spanned

line bundleL such thatϕ is birational and thatg(V,L) = γ(V,L).

Castelnuovo varieties have distinguished properties as below. We only state the

result, referring to [Fu 5, (16.6) & (16.9)] for a proof.

Proposition 3.2.4 (Fujita) Let (V,L) be anm-dimensional Castelnuovo variety. Then

L is simply generated, hence very ample. Furthermore, letWV be the intersection of

all the hyperquadrics containingV in P(|L|), and assume thatLm < 2∆(V,L). Then it

follows thatdimWV = m+1 and∆(WV ,OWV (1)) = 0.
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From now on, we deal with only the case where a Castelnuovo variety(M,L) is

smooth. Especially, in the case whereLdimM < 2∆(M,L), according to Proposition

3.2.4, one can describe(WM,OWM(1)) by using Fujita’s classification result of polar-

ized varieties of∆ -genus zero [Fu 5, Chapter I, (5.10) & (5.15)], where a generalized

cone emerges.

Here we define a generalized cone (cf. [Fu 5, (5.13)]) and fix some notation to

introduce Theorem 3.2.6.

Definition 3.2.5 Let (X,L) be a polarizedk-fold with its very ample line bundleL.

Then(X,L) is said to be ageneralized coneover a polarizeds-fold (S,L ) if the fol-

lowing conditions are satisfied:

(1) S=
⋂k−s

j=1Vj ⊂ X ⊂ P(|L|) andL ∼= L|S, where eachVj is some general member

of |L|;

(2) Ridge(X) 6= /0 andRidge(X)∩S= /0; and

(3) X = S∗Ridge(X)⊂ P(|L|).

Notation and Remark. If (WM,OWM(1)) is a generalized cone over(P(E ),H(E )),
whereE :=

⊕n−r
i=1 OP1(δi) with someδi > 0 andr := dimRidge(WM), then it follows

from [Fu 5, Chapter I, (5.15)] thatRidge(WM), which is a linear space ofWM, coincides

with the singular locusSing(WM). Set(W̃M,OW̃M
(1)) := (P(F ),H(F )), whereF :=

E
⊕

O
⊕(r+1)
P1 . Then|H(F )| defines a birational morphism̃WM → WM. Let M̃ be the

strict transform ofM on W̃M andp : W̃M → P1 the bundle projection.

The following theorem, obtained by Fujita, gives a rough classification of Casteln-

uovo manifolds. For a proof, we refer to [Fu 5, (16.7)–(16.14)].

Theorem 3.2.6 (Fujita’s basic structure theorem of Castelnuovo manifolds)Let(M,L)
be a Castelnuovo manifold of dimensionm≥ 1. Then one of(A)–(C) holds.

(A) d := Lm > 2∆(M,L);

(B) d = 2∆(M,L), then(M,L) is a Mukai manifold, i.e. a polarized manifold with

−KM
∼= (m−2)L, with its simply generated line bundleL; or

(C) d < 2∆(M,L), then one of the following holds.
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(a) WM
∼= Pm+1 and(M,L)∼= (Hd,OH(1)).

(b) WM
∼=Qm+1 and(M,L)∼= (H2,d/2,OH(1)).

(c) WM is a generalized cone over(P(E ),H(E )), M∼= M̃ ∈ |aH(F )+bp∗OP1(1)|,
L∼= H(F )|M andr =−1,0,1. Furthermore we have

(i) a > 0 and1−∑n+1
i=1 δi ≤ b≤ 1 if r =−1, i.e.,WM is smooth.

(ii) a > 0 and0≤ b≤ 1 if r = 0.

(iii) a > 0 andb = 1 if r = 1.

(d) WM is a generalized cone over(P2,OP(2)), M ∈ |OWM(a)| for somea > 0,

L∼= OWM(1)|M andr ≤ 0, thereforedimWM ≤ 3.

We conclude this section with the following

Lemma 3.2.7 Let (X,L ) be a polarized manifold of dimensionn+ 1 with (?) and

d = H n < n. ThenPic(A) = Z[H ] andPic(X)∼= Z.

Proof. We first prove the former assertion. SinceH is very ample,A is embedded into

P(|H |). As dimA− codimPA≥ n− (d−1) ≥ 2 by virtue of our assumptionn > d,

Barth’s theorem [Laz 2, Corollary 3.2.3] applies, thereforePic(A)∼= Z. MoreoverH

turns out to be the ample generator. Indeed, if not so, then we can writeH = tH

with somet ≥ 2 and the ample generatorH ∈ Pic(A). Taking the both self-intersection

numbers, we haved = tnHn > td ≥ 2d, which is absurd. Hence the former is obtained.

Next we show the latter. Ifn> d≥ 2, then the assertion follows from the Lefschetz

theorem [Fu 5, (7.1.5)]. Whenn > d = 1, we see thatA∼= Pn. It follows from [Fu 5,

(7.18)] thatX ∼= Pn+1, hencePic(X)∼= Z. Thus the latter is proved. ¥

3.3 Proof of (III) ⇒ (II)

Let (W,OW(l)) be one of the list (i)–(iii) in Theorem 3.1.1. The aim of this section is

to prove that(W,OW(l)) satisfies the condition(?). We obtain the conclusion with the

following steps:

(a) The line bundleOW(l) is very ample;

(b) There exists a pair(A,H ) consisting of a smooth memberA∈ |OW(l)| and an

ample and spanned line bundleH with H n = d such that|H | defines a bira-

tional morphism; and
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(c) For a pair(A,H ) as in (b), the equalityg(A,H ) = γ(A,H ) holds.

We first prove (a). Thanks to Lemma 3.2.1, it suffices to show thatR(W,OW(1))
is generated in degrees≤ l and thatOW(1) is spanned. We show the former: Lets be

the number of defining equations ofW (e.g.s= 2 whenW = W2,d/2). We may assume

that l 6= 1. SinceW is a weighted complete intersection ofdimW = n+1 > d+1≥ 2,

we infer thatPic(W) = Z[OW(1)] and that the restriction map of graded rings

r : C[x,y0, . . . ,yn+s]→ R(W,OW(1))

is surjective, wherewt(x,yi) = (l ,1) for each0≤ i ≤ n+s. ThereforeH0(W,OW(1)) =
〈y0, . . . ,yn+s〉, andR(W,OW(1)) is generated in degrees≤ l . It only remains to show

thatOW(1) is spanned. Indeed, it is verified as follows: The base locus is

Bs|OW(1)|=
n+s⋂

i=0

(yi = 0)⊂W.

SinceW does not meet the locus
⋃

1<k Sk =
⋂n+s

i=0(yi = 0)⊂Proj(C[x,y0, . . . ,yn+s]), we

see the spannedness ofOW(1), hence (a) is proved.

Next we show (b). At least one of the given defining equations ofW ⊂ P(l ,1n+s)
is monic in the variablex becauseW does not meet

⋃
1<k Sk. Now defineA := (x+

fl (y0, . . . ,yn+s) = 0) in W, where fl is a homogeneous polynomial of degreel . Fur-

thermore Bertini’s theorem assures thatA ∈ |OW(l)| is smooth if fl is chosen to be

general. Also defineH := OW(1)|A. The amplitude and spannedness ofH fol-

low from that ofOW(1). We easily check thatH n = d by using [Mo, Proposition

3.2]. We can verify the birationality of the mapϕ associated to|H |. Indeed, we see

thatϕ(A) ⊂ Pn+s is ann-dimensional complete intersection of type similar to that of

W. Taking the Stein factorization ofϕ, we infer thatA is birational to a finite cov-

ering T of ϕ(A). The degree of this coveringϖ : T → ϕ(A) must be one because

d = H n = deg(ϖ)degPn+s ϕ(A) = ddeg(ϖ). Thusϕ is birational, so (b) is proved.

Finally, we verify (c) with a case-by-case analysis on (i)–(iii) in Theorem 3.1.1.

For the case (1), we obtain∆(A,H ) = d−2 due toh0(A,H ) = n+2. Also we easily

check thatKA
∼= (d−n−2)H , hence we have

g(A,H ) = 1+
1
2
(d−3)d = (d−2)(d−1)−

(
d−1

2

)
= γ(A,H ).

Consider the case (2). Writed = 2k with some integerk≥ 2. Using∆(A,H ) = 2k−3

andKA
∼= (k−n−1)H , we obtain
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g(A,H ) = 1+(k−2)k = (2k−3)(k−1)−
(

k−1
2

)
= γ(A,H ).

We treat the remaining case (3). By easy calculations, we see thatd = 8,∆(A,H ) = 4

andKA
∼= (2−n)H . Thus we haveg(A,H ) = γ(A,H ) = 5.

To conclude, the implication (III)⇒ (I) is proved.

3.4 Proof of (I)⇒ (III)

For a givend < n, let (X,L ) be a smooth polarized(n+ 1)-fold satisfying(?) and

d = H n, where(A,H ) is a Castelnuovo manifold withA ∈ |L |. In this section,

we classify the pairs(X,L ). Our proof is divided into the three parts as in Theorem

3.2.6: (A) d > 2∆(A,H ); (B) d = 2∆(A,H ) or (C)d < 2∆(A,H ).

The case (A)

We first prove the following

Proposition 3.4.1 Let (A,H ) be ann-dimensional Castelnuovo manifold of degree

d < n. Then the following(1) and(2) are equivalent.

(1) (A,H ) is of the first kind.

(2) (A,H ) is one of the following:

(a) (Pn,OPn(1));

(b) (Qn,OQn(1));

(c) (H3,OH3(1));

(d) (H2,2,OH2,2(1)); or

(e) (Gr(5,2),OGr(1)), whereGr(5,2) is a Grassmann variety parametrizing the

2-dimensional linear subspace inC5.

Proof. Since the implication (2)⇒ (1) is immediately proved, we here prove the

converse. SinceH is spanned, Bertini’s theorem yields that(A,H ) has a ladder

consisting of smooth rungs. Hence it follows from [Fu 5, Chapter 1, (3.5.3)] that

g(A,H ) = ∆(A,H ). Combining this and the assumption of the case (A), we obtain

that
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d−2 > 2g(A,H )−2 =
(
KA +(n−1)H

) ·H n−1.

Furthermore, we can writeKA = rH with some integerr thanks to Lemma 3.2.7.

Hence we have(r +n−2)d <−2, therefore

−(n+1)≤ r ≤−(n−1).

Now proceed with a case-by-case analysis on the value ofr. If r =−(n+1), then

it follows from [Fu 5, (11.2)] that(A,H )∼= (Pn,OP(1)), hence we are in (a).

If r =−n, then it follows from both [Fu 5, (11.7)] and Lemma 3.2.7 that(A,H )∼=
(Qn,OQ(1)), thus we are in (b).

If r = −(n−1), then(A,H ) is a del Pezzo manifold of degreed, which satisfies

∆(A,H ) = 1. By the assumption of (A), we infer thatn > d≥ 3. Combining Lemma

3.2.7, the very ampleness ofH and a classification result of del Pezzo manifolds by

Fujita [Fu 5, (8.11)], we see that(A,H ) is one of the following: (c)(H3,OH(1)); (d)

(H2,2,OH(1)); or (e)(Gr(5,2),OGr(1)). ¥

Claim 3.4.2 In the case(A), the pair (X,L ) is isomorphic to one of the following:

(i) (Pn+1,OP(1)); (ii) (W2,OW(l)) with l = 1,2; (iii) (W3,OW(l)) with l = 1,3; or

(iv) (W2,2,OW(l)) with l = 1,2.

Proof. For (a) in Proposition 3.4.1, combiningn > d = 1 and [Fu 5, (7.18)], we see

(X,L )∼= (Pn+1,OP(1)). Thus we are in (i) of our claim. As for (b), sincen > d = 2,

by using Lemma 3.2.2, we see that(X,L ) ∼= (W2,OW(l)) with l = 1 or 2, which is

(ii).

For (c), it follows from Lemma 3.2.2 that(X,L ) ∼= (W3,OW(l)) with l = 1 or 3.

Hence we are in (iii). For (d), we similarly see that(X,L )∼= (W2,2,OW(l)) with l = 1

or 2, which is (iv).

The case (e) cannot occur. Indeed,A must beGr(5,2) sincen > d = 5. On the

other hand, it is impossible thatGr(5,2) is contained as an ample divisor on a smooth

projective varietyX because of [Fu 2, (5.2)]. Thus we are done. ¥

The case (B)

Claim 3.4.3 In the case(B), the pair (X,L ) is isomorphic to one of the following:

(i) (Pn+1,OP(4)); (ii) (Qn+1,OQ(3)); (iii) (H3,OH(2)); (iv) (W4,OW(2)), whereW4⊂
P(2,1n+2); (v) (H2,2,OH(2)); (vi) (H4,OH(1)); (vii) (H2,3,OH(1)); or

(viii) (H2,2,2,OH(1)).
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Proof. Due to Theorem 3.2.6,(A,H ) is a Mukai manifold with its simply generated

line bundleH . Note thatn > d≥ 2. Combining Beltrametti-Fania-Sommese’s result

[BFS, Proposition 3.1] and Lemma 3.2.7, we see that(X,L ) is one of the following:

(a) a Mukai manifold(M,L);

(b) (M ,2L ), where(M ,L ) is a del Pezzo manifold;

(c) (Qn+1,OQ(3)), which is (ii); or

(d) (Pn+1,OP(4)), which is (i).

We first use a classification of Mukai manifolds [Mu] to describe the structure of

(X,L ) explicitly in the case (a). Due ton > d≥ 2, we see thatd = 2,4,6 or 8. Also

the very ampleness ofL implies that(M,L) is one of the following:

(vi) M∼= H4 andL∼= OH(1);

(vii) M∼= H2,3 andL∼= OH(1); or

(viii) M∼= H2,2,2 andL∼= OH(1).

Next we treat the case (b). Now we utilize Fujita’s classification result of del Pezzo

manifolds. SincePic(M )∼= Z, we see that(M ,2L ) is one of the following possible

cases:

(b1) M is a weighted hypersurface of degree6 in P(3,2,1n+1), and2L ∼= OM (2);

(iv) M ∼= W4⊂ P(2,1n+2) and2L ∼= OW(2);

(iii) M ∼= H3 and2L ∼= OH(2);

(v) M ∼= H2,2 and2L ∼= OH(2);

(b2) M ∼= G, a linear section ofGr(5,2)⊂ P9, and2L ∼= OG(2); or

(b3) M ∼= P3 and2L ∼= OP(4).

It is proved that the cases (b1), (b2) and (b3) cannot occur. In fact, as for (b1),

note thatH n = 2 and∆(A,H ) = 1. Since|H | gives a double covering ofPn (see

[Fu 5, (6.10)]), it turns out thatH is not simply generated, which is absurd. As to (b2)

(resp. (b3)), we have thatdimM = n+1≤ 6 (resp.= 3) andd = 5 (resp.8), which

contradicts the assumptionn > d. Consequently the claim is proved. ¥

44



The case (C)

Claim 3.4.4 In the case(C), (X,L ) is either(i) (Wd,OW(l)) with l dividing d≥ 5 or

(ii) (W2,d/2,OW(l)) with l = 1,2 or l dividingd/2, where the givend≥ 8 is even.

Proof. Let WA be the intersection of hyperquadrics containingA in P(|H |). Due

to Proposition 3.2.4, we see that∆(WA,OWA(1)) = 0. Therefore, by using a classi-

fication of polarized varieties of∆ -genus zero [Fu 5, (5.10)–(5.15)],(WA,OWA(1)) is

isomorphic to either (a)(Pn+1,OP(1)); (b) (Qn+1,OQ(1)); (c) (P(E ),H(E )), or a gen-

eralized cone over it, whereE is an ample vector bundle overP1; or (d) a Veronese

surface(P2,OP2(2)), or a generalized cone over it.

In the case of (a), we seeA∼= Hd of degreed≥ 5 sinced < 2∆(Hd,OH(1)) = 2(d−
2). Hence, using Lemma 3.2.2, we have(X,L ) ∼= (Wd,OW(l)) with some positivel

dividing d≥ 5, which is (i).

In the case of (b), due tod < 2∆(H2,d/2,OH(1)) = 2(d−3), we haveA∼= H2,d/2

with evend≥ 8. Therefore we see that(X,L ) ∼= (W2,d/2,OW(l)) with some positive

l dividing either2 or d/2≥ 4, which is (ii).

Consequently, by the following Lemma 3.4.5, the claim is proved. ¥

Lemma 3.4.5 The cases(c) and(d) cannot occur.

Proof. The proof is divided into two cases as follows:

The case of (c)First, assume thatWA is smooth, which is isomorphic toP(E ) for some

ample vector bundleE overP1. The linear-normality ofWA ⊂ P(|OWA(1)|) (see [EH,

§3 (1)]) yields thath0(WA,OWA(1)) = h0(A,H ). Therefore, since

dimWA−codimP(|H |)WA = (n+1)− (d−2−∆(A,H )) = n−d+3+∆(A,H ) > 2,

the Barth theorem [Laz 2, Corollary 3.2.3] implies thatPic(WA) ∼= Z, which is a con-

tradiction.

Next we assume thatWA is singular. Remind thatSing(WA) = Ridge(WA). It fol-

lows from Theorem 3.2.6 thatr := dim(Ridge(WA)) is either0 or 1. First, suppose

that r = 0. SetR := Ridge(WA), which is the vertex of the coneWA. Then we have

two possibilities:R /∈ A; or R∈ A. For the former,A is a smooth member of|OWA(a)|
for somea > 0. Furthermore,WA is projectively normal inP(|H |) sinceOWA(1) is

simply generated. Therefore, puttingE :=
⊕n

i=1OP1(δi) with someδi > 0 for each

1≤ i ≤ n, we obtain
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d = degA = adegWA = a(∑n
i=1δi)≥ n,

which contradictsn > d. For the latterR∈ A, using notation in§2, we haveÃ ∈
|aH(F )+ p∗OP1(1)|, which is ample by virtue of [BS, Lemma 3.2.4]. Hence, by the

Lefschetz theorem, we get a contradiction:

Z∼= Pic(A)∼= Pic(Ã)∼= Pic(W̃A)∼= Z⊕2.

Next we treat the caser = 1. Then we obtain thatA∈ |aH(F )+ p∗OP1(1)| with some

a > 0, which is an ample Cartier divisor. Again, due to the argument similar to that in

the caser = 0, we get a contradiction. Therefore the case (c) does not occur.

The case of (d)SinceA∈ |OWA(a)| for somea > 0 according to Theorem 3.2.6, we

similarly have

2≥ n > d = adegWA = 4a,

which is absurd. Thus we are done. ¥

We sum up the above case-by-case arguments as follows:

Proof of(I) ⇒ (III) in Theorem3.1.1. We will show that any pair(X,L ) in the above

three Claims falls into (i)–(iii) in Theorem 3.1.1. Firstly, each of cases (i)–(iii) in Claim

3.4.2 is(Wd,OW(l)), wherel divides1≤ d≤ 3. Each of cases (i), (iv) and (vi) in Claim

3.4.3 can be viewed as(W4,OW(l)) with l = 4,2,1, respectively. Consequently, we see

that the above cases and (i) in Claim 3.4.4 fall into (i) in Theorem 3.1.1.

Secondly, each of cases (ii), (iii) and (vii) in Claim 3.4.3 can be regarded as

(W2,3,OW(l)), where l = 3,2,1 respectively. Therefore each of the following falls

into (ii) in our theorem: (iv) in Claim 3.4.2, the above three cases in Claim 3.4.3 and

(ii) in Claim 3.4.4.

Finally, it is easy to see that each of (v) and (viii) in Claim 3.4.3 can be viewed as

(W2,2,2,OW(l)) with l = 2 and1, respectively. Hence our theorem is proved. ¥
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