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F1. PEEBEO U —A VY TEIEE L U3 T BITE O H R

- Physical o:mBQm:m.ﬂ_om of rowers

and walkers
All Subjects Rowing Walking — HZ#{E
n=23 n=15 n=~8
Age e  67.0%4.0 66.31+36 685+45 50~69
Height m  170.7+5.6 172.7+34 *166.8+70  163.9
Weight &  67.1+6.6 69.8+5.9 *x 62.0+4.7 62.5
BMI  Ge/m2 23.0422 234+20 224424 233
Body Fat ® 224+438 226+48 22.1+50 —
© LBM 52.0-+5.2 53.9+4.8 * 48.3+4.1 —
FM e 15.1+3.9 158+41 13.7+35 —

Values are means=+SD.

BMI : body mass index, LBM :

lean body mass, FM : fat mass

HEE BRNRUEBARAADREREE — W%% LANEE — LY

* 1 vs <<m=¢3m group p<0.05 % : p<0.01



#£2. PEEREOu—A VI EREEL X TEFED

¥ - IREARBICE T 5 A ERRERER

Biochemical parameters of glucose
and lipid metabolism in rowers and walkers

All Subjects  Rowing Walking

n=23 n=15 n=§"

Glucose (me/di) 102+14 10615 9649
"HbA1c (%) 0.01+06 9.1+0.7 4.84+05

- Insulin  (uu/mn 719450 7.8+£48  83*55
HOMA—Ra) 2.03%+1.3 20714 1.95+13
Total-Cholesterol (me/d) 209+34 213136 202-+29
LDL-Chol (mg/dl) 128430 130432 126126
HDL—Chol (me/d) 57+*12 58+10 55415
LDL-/HDL- 2.37+0.8 232+08 246+08
Total-/HDL~ 3.834+1.0 3.79+10 391%10
Triglycerides (mg/di) - 122+42 - 12848 111£25

Values are means =SD.

a) HOMA-R = Glucose * ch:s / 405
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... Characteristics of Male Rowers and Untrained Men

Rowing-Trained Untrained Men
(n=11) (n=10)
unit mean Sb mean  S.D.

Age , (yr) 64.7 2.9 66.0 34 N.S.
Height (cm) 172.1 3.5 172.6 3.7 -N.S.
Weight - (kg) 712 4.6 70.1 7.2 N.S.
BMI (kg/m’) 241 2.0 235 21 N.S.
Percent of Body Fat (%) 200 4.8 22.6 33 N.S.
Fat Free Mass (kg) 56.9 4.2 54.2 4.5 N.S.

Maximal Oxygen Uptake (VO,) (/min) 270 038 2.22  0.28 *

(ml/kg/min) 37.9 4.2 31.8 3.8 *
Leg Extension Power W) 1601 240 1456 230 N.S.
(W/kg) 22.4 2.8 21.0 4.3 N.S.

Maximum Aerobic Power (W) 194 31 162 26 *

{(Wikg) 272 0.40 231 037 *

Values are means &= 8.D.

* 1 Siguificantly different between Rowing-Trained and Untrained Men, p <0.05
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: Cross—‘Sectional Areas of Leg, Arm and
T runk in Male Rowers and Untrained Men

Rowing-Trained  Untrained Men

(n=11) (n=10)
mean SD mean SD

Leg - »» N
Total 202 18 199 22 N.S.
Muscle 158 15 144 19 N.S.
Fat 38 12 48 13 N.S.
Arm ' '
Total 60 9 59 6 NL.S.
Muscle 41 7 35 4 N.S.
Fat 15 4 19 3 *
Trunk
Total 353 46 367 56 - N.S.
Muscle 118 10 104 18 *
Fat 166 41 169 61 N.S.

Values are means (cmz) + S.D.

- ¥ : Significantly different between Rowing Trained
and Untrained Men, p <0.05
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Abstract This study evaluated whether the heart rate
(HR) response to exercise depends on body position and
on the active muscle mass. The HR response to ergom-
eter rowing (sitting and using both arms and legs) was
compared to treadmill running (upright exercise involv-
ing mainly the legs) using a progressive exercise intensity
protocol in 55 healthy men [mean (SD) height
176 (5) cm, body mass 71 (6) kg, age 21 (3) years].
During rowing HR was lower than during running at a
blood lactate concentration of 2 mmoll™ [145 (13)
compared to 150 (11) beat-min™', P<0.05], 4 mmol1™
[170 (10) compared to 177 (13) beat-min™*, P<0.05], and
6 mmoll”! [182 (10) compared to 188 (10) beat-min™,
P<0.05]. Also during maximal intensity rowing, HR was
lower than during maximal intensity running [194 (9)
compared to 198 (11) beatmin™*, P <0.05]. These results
were accompanied by a higher maximal oxygen uptake
during rowing than during running [rowing compared to
running, 4.50 (0.5) and 4.35 (0.4) I'min™’, respectively,
P<0.01]. Thus, the oxygen pulse, as an index of the
stroke volume of the heart, was higher during rowing
than during running at any given intensity. The results
suggest that compared to running, the seated position
and/or the involvement of more muscles during rowing
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facilitate venous return and elicit a smaller HR response
for the same relative exercise intensity.

Keywords Exercise - Oxygen uptake - Oxygen pulse

Introduction

Oxygen uptake (V0,) increases as the muscle mass in-
volved increases (Secher et al. 1974, 1977; Mitchell
1990). During arm-and-leg exercise V'O, is higher than
during exercise involving only the arms or only the legs
(Secher et al. 1974, 1977). Also, maximal oxygen uptake
(VOamax) is higher during rowing than during running
(Secher 1983). Rowing involves both upper and lower
body exercise, while running mainly involves the legs
(Secher 1983; Clifford et al. 1994).

It is controversial whether the magnitude of the heart
rate (HR) response to exercise follows VO, For exam-
ple, during two-legged exercise HR is higher than during
one-legged exercise (Davis and Sargeant 1974; Klausen
et al.1982). The magnitude of the HR response to iso-
metric leg extension (Leonard et al. 1985) and handgrip
(Mitchell et al. 1989; Mitchell 1990) depends on the
amount of the active muscle mass taking part. On the
other hand, HR for combined arm and leg exercise is
similar to that elicited during leg exercise (Toner et al.
1983). An indication of an influence of specific training
on the HR response to exercise is that in arm-trained
subjects, the HR response to arm, leg, and combined
arm-and-leg exercise is different (Secher et al. 1974).
Thus, it is not clear which type of exercise elicits the
highest HR response. An increasing active muscle mass
facilitates venous return, and thereby increases the
central blood volume and therefore reduces the HR
response (Ray et al. 1993; Van Lieshout et al. 2001).
Differences in posture affect HR by way of the central
blood volume (Ray et al. 1993; Wilmore and Costill
1999; Van Lieshout et al. 2001).

We examined the HR response to both rowing and
running at various intensities and also determined V'O,
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as an index of the amount of the active muscle mass
(Secher et al. 1974, 1977, Savard et al. 1989).

Methods

Subjects

We examined the HR and 7O, responses to two periods of pro-
gressive exercise, rowing on an ergometer (Concept 11 model C,
Morrisville, Vt., USA) and running at an incline of 3.0% on a
treadmill. A group of 55 male subjects were thoroughly informed
of all methods and procedures and consented to participate in this
study as approved by the Ethics Committee at the National Insti-
tute of Health and Nutrition. The same subjects took part in both
types of exercise and none had any cardio-respiratory illness or
injury. Percentage body fat was derived according to the equation
of Brozek et al. (1963) using body density determined by the BOD
POD system (Life Measurement Instruments, Concord, Calif,,
USA; Dempster and Aitkens 1995). The physical characteristics of
the subjects were as follows [mean (SD)] height 176 (5) cm, body
mass 71 (6) kg, body fat 11 (3)%, age 21 (3) years].

Protocol

The subjects performed a discontinuous incremental intensity
protocol on a rowing ergometer. The initial intensity was 150 W
and was increased by 50 W every 2 min. The subjects stopped
rowing for 20 s between each stage so that blood samples could be
drawn. Exercise was terminated when the subjects were no longer
able to maintain the required intensity. On another day, the sub-
jects exercised on a treadmill, The initial velocity was 160 m-min?
and increased by 20 m'min~' every 2 min. Exercise was terminated
when the subjects could not complete a given running speed.

It was required that each subject met each of the following
criteria to ensure that VOypna Was reached:

1. A plateau in FO, against exercise intensity

2. A respiratory exchange ratio exceeding 1.15

3. Blood lactate concentration exceeding 8~9 mmol 1!

4, Achievement of age-predicted maximal HR (HR n.y)

5. A rating of perceived exertion of 19 or 20 (Bassett and Howley
2000)

The expired gas was collected in Douglas bags during the last
1 min of each stage, and the volume was measured using a dry gas
meter and the concentrations of O, and CO, were determined
(Respiromonitor RM-300i, Minato Medical Science Co., Tokyo,
Japan). The HR was determined electrocardiographically (Nihon
Kohden Co., Tokyo, Japan). Blood samples were taken using
heparinized glass capillaries from the fingertips immediately after
each stage and at the termination of exercise. Blood lactate con-
centration ([La’y) was analysed by an enzymatic membrane
method using a 1500 Analyser (Yellow Springs, Ohio, USA).

Statistics

Data are reported as means and standard deviations (SD). The
oxygen pulse (VO/HR) was calculated as an index of stroke
volume (Heath et al." 1981). For comparison of variables between
rowing and running, a paired Student’s r-test was used. Statistical
significance was set at P<0.05.

Results

At rest HR was lower when sitting on an ergometer than
when standing on a treadmill {70 (12) compared to

78 (11) beatmin™, P <0.05; Fig. 1]. During rowing HR
was also lower than during running [145 (13) compared
to 150 (11) beatmin™ at a [La’), of 2 mmol1™, 170 (10)
compared to 177 (13) beatmin™ at 4 mmoll™, and
182 (10) compared to 188 (10) beatmin™ at 6 mmol 1™,
all P<0.05]. Also, during rowing HR ;.. was lower than
during running [194 (9) compared to 198 (11) beatmin™,
P<0.05.

Whereas V'O, at rest was similar for the two postures,
during rowing VO, was higher than during running
[2.79 (0.7) compared to 2.42 (0.8) I'min" at a [La’, of
2 mmol1™, 3.89 (0.5) compared to 3.65 (0.7) I'min~' at
4 mmol 1™, 4.18 (0.5) compared to 4.01 (0.5) l-minwl at
6 mmoll™, all P<0.01]. Also, during rowing ¥ Oospmax
was higher than during running [4.50 (0.5) compared to
4.35 (0.4) I'min™", P<0.01; Fig. 2]. Immediately after
the maximal effort, [La}, was higher following rowing
than following running [10.6 (1.5) compared to
9.3 (1.9) mmoll™, P<0.05]. The oxygen pulse was
higher during rowing than during running at any [La’},
and also during maximal exercise (Fig. 1).

Discussion

The main finding was that during rowing HR was lower
than during running at both submaximal and maximal
exercise intensities. Thus, the results indicate that the
mode of exercise and/or the muscle mass affect the HR
response to exercise.

During rowing, subjects use both arms and legs while
during running they use mainly their legs (Secher 1983;
Hagerman 1994). Also, during rowing, the upper body is
used with the involvement of trunk, back, and abdominal
muscles (Secher 1983; Clifford etal. 1994). The finding of a
higher VO, during rowing than during running supported
the contention that rowing involved a larger muscle mass
than did running (Secher et al. 1974, 1977; Sarvard et al.
1989). This study was conducted to evaluate the HR
response to exercise involving an increase in the active
muscle mass that could be of importance by way of
enhancing central blood volume. At the same time, it was
considered that the central blood volume would be larger
during the seated position of rowing than during running.
These assumptions of a larger central blood volume dur-
ing rowing than during running seemed to be confirmed as
the oxygen pulse, as an index of the stroke volume of the
heart, was larger during rowing than during running.

Active muscle mass is a powerful pump and provides
a force to assist returning blood to the right ventricle of
the heart during exercise (Sheriff et al. 1993; Van Lie-
shout et al. 2001). Additionally, during dynamic exercise
an increase in active muscle mass leads to an increased
venous return and central blood volume (Davis and
Sargeant 1974; Klausen et al. 1982; Toner et al. 1983).
Standing up displaces blood from the chest to lower
parts of the body by gravity, blood pressure is aug-
mented as sympathetic nervous activity increases HR,
and vascular resistance increases (Pedersen et al. 1995;
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Fig. 1. Relationship between heart rate and oxygen pulse and
oxygen uptake during rowing and running. *P <0.05 Significantly
different between rowing and running

Tanaka et al. 1999; Wilmore and Costill 1999). During
seated leg exercise (Ray et al. 1993) and upright leg
exercise (Ten Harkel et al. 1994; Van Lieshout et al.
2001), the central blood volume increases due to an
effect of the muscle pump with a resulting decrease in
sympathetic nerve activity.

By the Frank-Starling mechanism, enhanced venous
return stretches the ventricle, which results in an aug-
mented stroke volume (Ray et al. 1993; Tate et al. 1994;
Wilmore and Costill 1999). An elevated central blood
volume enhances central venous pressure and stretches
the venous and arterial vessels, and this stimulates the
cardiopulmonary baroreceptors to slow HR and dilate
the peripheral vasculature (Gabrielsen et al. 1993; Ray
et al. 1993). This is so because an elevated central blood
volume is accompanied by a decrease in sympathetic
nerve activity (Ray et al. 1993; Saito et al. 1993;
Van Lieshout et al: 2001). Thus, it is considered that
increasing the active muscle mass during exercise may
fﬁevate the central blood volume and stroke volume as
indicated by oxygen pulse, and thereby attenuate the
increase in HR during rowing.

During rowing, mean blood pressure is similar to
other types of exercise including running (Clifford et al.
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Fig. 2. The responses of oxygen uptake at a given blood lactate
concentration and maximal effort during rowing and running.
*P<0.05 Significantly different between rowing and running

1994), and the exercise-induced increase in blood pres-
sure is not affected by posture or by gravity (Ray et al.
1993). It is unlikely that the arterial baroreflex was of
major influence on the HR response in this study. Me-
taboreceptors may sense an increase in [La’l, and pH,
which induce sympathetic nerve activity and increase
HR (Mitchell 1990; Mostoufi-Moab et al. 1998; Ray
1999). To avoid the complications of the metaboreflex in
the present study, the HR responses to rowing and
running were compared at submaximal intensities at
similar [La’l, instead of at similar percentages of
VOomax. During rowing %V Oy Was higher than
during running at any submaximal [La’},. However, HR
was lower during rowing both at any given submaximal
intensity and at maximal intensity despite a higher [La’,
compared to running. During rowing a Valsalva-like
manoeuvre is used to stabilize the upper body while both
legs are vigorously extended and this could diminish the
ventricular preload (Cunningham et al. 1975; Rosiello
et al. 1987). In spite of this oxygen pulse was higher
during rowing than during running.

This study showed that the HR response to (seated)
ergometer rowing is attenuated compared to (upright)
treadmill running. This finding was accompanied by a
higher 7O, and thus oxygen pulse during rowing com-
pared to running. The results suggest that compared to
running, the seated position and the involvement of
more muscles during rowing facilitate venous return and
elevate the central blood volume.
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Abstract We evaluated effects of age and rowing on
concentrations of lipids and lipoprotein cholesterols in
the blood. Maximal oxygen uptake (VOspay), and con-
centrations of total cholesterol (TC), triglyceride (TG),
low-density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C) were measured
in 17 oarsmen [mean (SD)] [age 64 (4) years, body mass
69 (6) kg] and in sedentary men [age 65 (3) years, body
mass 70 (7) kg] who were matched on the basis of body
size. Also the variables were obtained from young
oarsmen [age 22 (2) years, body mass 70 (4) kg] and
young sedentary men [age 22 (3) years, body mass
69 (7) kg]. The percentage body fat of the older oarsmen
was lower than that of the older sedentary men [18 (4)%
compared to 23 (4)%, P <0.05], but it was similar to
that of the young sedentary men [17 (4)%]. Although
older oarsmen possessed a lower ¥ Oy, than the young

oarsmen [3.0 (0.4) I'min~" compared to 4.1 (0.3) I'min”",
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P <0.01], they showed a ¥Osmay similar to that of the
young sedentary men [3.1 (0.5) l'min~'] but a higher
value than obtained from the older sedentary men
[2.2 (0.3) I'min™*, P <0.05]. Although the indices of risk
factors for coronary artery disease in the older oarsmen
were higher than those in the young oarsmen [LDL-C/
HDL-C 1.7 (0.2) compared to 1.3 (0.4), TC/HDL-C
3.1 (0.2) compared to 2.6(0.4), P <0.05], they were lower
than those in both the older [2.1 (0.3), 3.6 (0.3), P <0.05]
and the young sedentary men [2.1 (0.4), 3.5 (0.4), P<
0.05]. The results suggest that rowing is an appropriate
type of exercise for the promotion of health.

Keywords Rowing - Aerobic capacity -

Low density/high density lipoprotein cholesterol -
Total cholesterol/high density lipoprotein cholesterol -
Life expectancy

introduction

Dyslipoproteinaemia is a primary risk factor for coro-
nary artery disease, i.e. elevated concentrations of total
cholesterol (TC), triglyceride (TG), and low-density
lipoprotein cholesterol (LDL-C), and a reduced high-
density lipoprotein cholesterol (HDL-C) (Thompson
et al. 1995). Age is a secondary risk factor, but age-
related changes in blood lipids are less clear. The TC and
TG increase from puberty through middle age, but
reach a plateau or even decline in the final years of life
{(Hazzard and Ettinger 1995). In cross-sectional studies,
the death of older people with hypercholesterolaemia
may affect the artherosclerosis indexes (LDL-C/HDL-C
or TC/HDL-C) (Thompson et al. 1995). Also, physical
inactivity is a risk factor for coronary artery disease
(Blair et al. 1995). This study was undertaken to evaluate
the interaction between age and physical activity on
blood lipid concentrations in men of similar body size.

The consideration that the rigorous training required
for rowing and the sustained exertion of the race bring
about serious damage and occasional early death had



been widespread until Morgan (1873) indicated that
oarsmen lived about 2.0 years longer than the British life
expectancy at that time. Later investigations have con-
formed to Morgan’s report. Oarsmen participating in
the Oxford-Cambridge boat race livéd 2.0 years longer
than typical of the British life expectancy (Hartley and
Llewellyn 1939) and equally the Harvard University
crew members lived 2.9 years longer than typical of the
American life expectancy (Meylan 1904). Also, varsity
oarsmen from the Harvard and Yale crews, when com-
pared with a random control group, lived 6.3 years
longer (Prout 1972).

Rowing involves both the lower and upper body, e.g.
almost all the muscles in the body, and consists of
thythmical muscle contractions and demands a high
aerobic capacity (Secher 1983). In the American College
of Sports Medicine Position Stand (1998), activities with
such characteristics are recommended. This study was
undertaken to evaluate the serum concentrations of lipid
and lipoprotein cholesterols, body composition, and
maximal oxygen uptake (VOopma) of older men trained
for rowing and the results were compared to those ob-
tained in older and young sedentary men and young
trained men.

Methods

Subjects

A group of 17 older trained men [mean (SD)] [age 64 (4) years,
height 172 (6) cm, body mass 69 (6) kg, percentage fat 18 (4)%]
were matched to both older sedentary [age 65 (3) years, height
172 (7) cm, body mass 70(7) kg, percentage fat 23 (4)%] and to
young trained men [age 22 (2) years, height 174 (5) cm, body mass
70 (4) kg, percentage fat 12 (4)%] on the basis of body size. Also
the older oarsmen were matched to young sedentary men [age
22(3) years, height 172 (6) cm, body mass 69 (7) kg, percentage fat
17 (4)%] for body size and composition. The older trained men had
rowed for 40-50 years, and they rowed 2 days a week on the water
or on an ergometer, each session lasting 90-120 min including
warm-up, 12-16 km of rowing, and recovery. The young trained
men rowed at least 3-5 days a week on the water or on an erg-
ometer (median training distance, 60-100 km-week™). All subjects
provided informed consent as approved by the Ethics Committee
of the National Institute of Health and Nutrition. None of the
subjects had any known cardiovascular disease or took any medi-
cation and none of them smoked.

Procedure

Percentage body fat was derived according to Brozek et al. (1963)
(BOD POD system, Life Measurement Instruments, Concord,
Calif., USA; Dempster and Aitkens 1995). Fat free mass was taken
as the difference between the body and fat masses.

The young sedentary men underwent treadmill running while the
other three groups of subjects rowed on an ergometer (Concept II
model C, Morrisville, Vt., USA). During treadmill running the initial
speed was 120 mmin~' and it was increased by 120 mmin™ every
2nd min. During ergometer rowing the initial intensity was 100 W
and it wasincreased by 50 W every 2nd min. Exercise was terminated
when the subject could not maintain a required intensity.

Expired gas was collected in Douglas bags during the last minute
of each stage. The volume of the expired gas was measured using a dry
gas meter, and the O, and CO, content of the gas were analysed

229

(Respiromonitor RM-300i, Minato Medical Science Co., Tokyo,
Japan). The heart rate (HR) was monitored using an electrocardio-
gram. The rating of perceived exertion (RPE) was noted at every
stage of the test. To ensure that the F'Osp,., Was reached, each subject
was required to meet each of the following criteria;

1. A plateau in oxygen uptake (V'O,) against exercise intensity
2. A respiratory exchange ratio exceeding 1.15

3. A blood lactate concentration exceeding 8-9 mmol-™

4. Achievement of age-predicted maximal heart rate (HR a0
5. An RPE of 19 or 20 (Bassett and Howley 2000).

Blood samples were taken in heparinized glass capillary tubes from
a fingertip at the termination of exercise. Blood lactate was ana-
lysed using an enzymatic membrane method (1500 Analyser, Yel-
low Springs, Ohio, USA). Oxygen pulse (V¥ 0,/HR) was calculated
as indication of the stroke volume of the heart (Heath et al. 1981).

Each subject completed a 3 day food log using food scales. A
dietitian reviewed the food records with each subject upon their
completion. A computerized dietary assessment was used to cal-
culate daily energy intake, and the percentage of nutrients from
carbohydrate, fat, and protein.

Following a 12 h overnight fast, blood was collected from an
antecubital vein in the early morning and the plasma was separated
by centrifugation to be used for the lipid analysis. The TC was
analysed using an enzymatic method (L-type Wako), HDL-C using
a selective inhibition method (Daiich Chemical Pharmacy), and TG
using an enzymatic method (L-type Wako). The LDL-C was cal-
culated according to Friedewald et al. (1972) and the ratios of
HDL-C to LDL-C and that of TC to HDL-C were calculated.

Statistics

Data are presented as mean (SD). Comparisons were performed
using a one-way analysis of variance with Turkey’s post-hoc vali-
dation. A P value <0.05 was considered significant.

Resuits

The HR,., of the older oarsmen was lower than for
both young oarsmen and young sedentary men [176 (13)
compared to 198 (8), and 201 (9) beatmin™, P<0.01],
but itwas higher than that of the older sedentary men
[166 (9) beatmin™', P<0.05]. The ¥Oymay of the older
oarsmen was lower than that of the young oarsmen

3.0 (0.4) I'min™" compared to 4.1 (0.3) lmin™', P<

0.01], but it was similar to that in the young sedentary
men [3.1 (0.5) I'min"] and it was higher than that of the
older sedentary men [2.2 (0.3) I'min”}, P < 0.05] (Fig. 1).
Also, in the older oarsmen oxygen pulse was higher than
in both young and older sedentary men. Older oarsmen
possessed a lower rowing performance than the young
oarsmen [2,000 m ergometer rowing time 489 (16)
compared to 451 (12) s, P<0.05].

The TC and LDL-C of the older oarsmen were higher
than for the young oarsmen, but they were similar to
those of both the young and the older sedentary men
(Table 1). The TG and HDL-C of the older oarsmen
were not significantly different from those of the other
three groups of subjects. Although in the older oarsmen
the indices of risk factors for coronary artery disease
were higher than those in the young oarsmen [LDL-C/
HDL-C 1.7 (0.2) compared to 1.3 (0.4), and TC/HDL-C
3.1 (0.2) compared to 2.6 (0.4), P<0.05], they were
lower than those in both the older [2.1 (0.3), 3.6 (0.3),



230

140 +

220 T
o~ A
- »
c 4
S 180 + F %° %
g oxmP
8 a'gb@
=4
s 160 +
2 %D o
®
E
x
o]
=

® older oarsmen
T O older sedentary men
A young oarsmen
A young sedentary men

6,0

50 + A

..
30 4 vy “, a
A
20 $og

Maximal oxygen uptake (I'min™)

40 50 60 70 80
Age (yr)

Fig. 1. Maximal heart rate and maximal oxygen uptake related to
age

P<0.05] and the young sedentary men [2.1 (0.4),
3.5 (0.4), P<0.05] (Fig. 2).

Energy intake of the older oarsmen was similar to that
of both older and young sedentary men [2,887 (187)
compared to. 2,822 (197), 2,912 (198) keal-day™], but it
was less than that of the young oarsmen
[3,724 (205) kcal-day™, P<0.01]. In the older oarsmen,
70% of energy intake came from carbohydrate, 13%
from fat, and 17% from protein, and this nutrient
profile was similar to those of the other three groups of
subjects.

Discussion

The main findings of this study are that in the older men
trained in rowing risk factors for coronary artery disease

45 T
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Fig. 2. Atherosclerosis indices (the ratio of low density lipopro-
tein, LDL-C, to high density lipoprotein-cholesterol, HDL-C, and
that of total cholesterol, TC, to HDL-C). *P<0.05 difference
between oarsmen and sedentary men in the same age groups,
#p<0.05 difference between older oarsmen and young oarsmen,
$p<0.05 difference between older oarsmen and young sedentary
men

were lower than those obtained in both older and young
sedentary men. Second, the older oarsmen possessed an
aerobic capacity similar to that of young sedentary men
but had a higher aerobic capacity than obtained in the
older sedentary men. These findings indicate that row-
ing, which is an aerobic type of exercise and involves a
large muscle mass (Secher 1983), is associated with a low
risk factor index for coronary artery disease. The results
therefore support the suggestion that rowing is associ-
ated with a prolonged life expectancy (Morgan 1873;
Meylan 1904; Hartley and Llewllyn 1939; Prout 1972).
The ratio of LDL-C to HDL-C or that of TC to
HDL-C is relevant for evaluating individual risks for
coronary artery disease because LDL-C is implicated in
plaque formation in blood vessels, while HDL-C is in-
volved in plaque removal and transport to the liver to be
metabolized (Gordon et al. 1977). Physical exercise in-
fluences the lipid profile by changes in the activities of
hepatic lipase and lipoprotein lipase of adipose tissue
that control the rates of synthesis, transport, and clear-
ance of lipids and lipoproteins from blood (Patch et al.
1987). Regular physical exercise increases muscle lipo-
protein lipase activity, which is an important factor in
the down-regulation of triglyceride rich lipoproteins and
the up-regulation of HDL-C (Leaf et al. 1997). For older
people, physical exercise induces a reduction of risk
factors with an increase in ¥ Oomax (Schwartz et al. 1992)

Table 1. Mean (SD) profiles of

. ; . TC TG LDL-C HDL-C
serum lipid and lipoprotein - - — -
concent&tions,. TpC 13Fotal (mmol D (mmol1™) {mmol D (mmol )
cholesterol, TG triglyceride,

LDI-C low density lipoprotein Older oarsmen 5.2 (0.4) 1.4 (0.4) 2.9 (0.4) 1.7 (0.2)
- Older sedentary men 5.2 (04) 1.3 (04) 3.0 (0.6) 1.5 (0.2)

cholesterol, HDL-C high a.b a,b
density lipoprotein cholesterol Young oarsmen 4.1 (0.6) 0.9 (0.3) 2.0 (0.7) 1.6 (0.3)
Young sedentary men 4.8 (0.6) 0.9 (0.5) 2.9 {0.7) 1.4 (0.2)

2P <().05 difference between oarsmen and sedentary men in the same age groups
bp < (.05 difference between older oarsmen and young oarsmen



and it also increases fat oxidation at rest because of an
increase in the activity of the sympathetic nervous sys-
tem (Poehlman et al. 1994).

The decay in cardiorespiratory function with age is
reflected in the decline in VOsp,y (Héath et al. 1981;
Pollock et al. 1997). As the daily demands of living re-
main unchanged throughout life, a decrease in aerobic
capacity results in a decrease in capacity above the daily
demands for older people, which increases the risk of
injury (Wilmore and Costill 1999). However, the older
oarsmen possessed a similar level of aerobic capacity as
the young sedentary men. Endurance exercise enhances
aerobic capacity in older people through an increase in
stroke volume (Heath et al. 1981; Hagberg et al. 1985),
in blood volume (Hunt et al. 1998), in the arterio-venous
difference in O, concentration (Spina et al. 1993), and in
endothelium-dependent vasodilatation (Rinder et al.
2000). In older men, the cardiorespiratory function adapts
to training to the same extent as in young men (Proctor
and Joyner 1997). Also, the oxygen pulse of the older
oarsmen was higher than that of both the young and
older sedentary men perhaps because the left ventricular
mass of the older oarsmen exceeded that of age-matched
sedentary men (Gustafsson et al. 1996). The results
indicate that rowing attenuates the decline of VO, by
maintaining oxygen pulse to compensate for a decline of
HRmax-

The HR ;a5 1s commonly used in both medicine and
physiology (Wilmore and Costill 1999; Tanaka et al.
2001) and is often predicted as HR . =220 minus age
in years, but the equation has been modified to HR 5=
208 minus 0.7 age (Tanaka et al. 2001). The HR .. of
the older oarsmen was higher than the value estimated
by the traditional equation (160 beatmin™ at age of
60 years, Wilmore and Costill 1999), but it fitted the
modified equation (Tanaka et al. 2001). The decrease in
HRpax with age may have been brought about by a
decrease in the activity of the sympathetic nervous
system and to alterations in the cardiac conduction
system (Wilmore and Costill 1999; Tanaka et al. 2001).

Rowing uses almost all muscles including those of
the legs, arms, back, and trunk, and it is an aerobic
type of exercise (Secher 1983; Gustfsson et al. 1996).
Subjects can easily modify rowing intensity by
cthanging speed and strength of each stroke. Body
mass is supported by the seat of the ergometer or boat
(Secher 1983), and rowing is therefore unlikely to
induce serious damage or injury, e.g. to the knee. The
tesults of this study suggest that rowing is an appro-
priate type of exercise for health promotion with
Iespect to the risk factors associated with coronary
artery disease.
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Abstract We evaluated the effects of rowing on the mor-
phology and function of the leg extensor muscle in old
people. The area and the power of the leg extensor muscle
were measured in 15 oarsmen — age [mean (SD)] 65
(3) years; height 171 (4) cm, body mass 68 (6) kg —and in
15 sedentary men — age 66 (4) years, height 170 (4) cm,
body mass 67 (7) kg — who were matched on the basis of
their body size. The leg extensor muscle area of the oars-
men was larger than that of the sedentary men [77.8 (5.4)
vs 68.4 (5.1) cm?, P<0.05]. Also the bilateral leg exten-
sion power of the oarsmen was larger than that of the
sedentary men [1,624 (217) vs 1,296 (232) W, P <0.05].
Thus, the leg extension power per the leg extensor muscle
area was not significantly different between two groups
[20.9 (2.0) vs 19.9 (2.1) W-cm™) and leg extension power
was correlated to the leg extensor muscle area (59-89 cm?,
r=0.74, P<0.001). Also the 2,000-m rowing ergometer
time of the oarsmen [495 (14) s; range 479-520 s] was re-
lated to leg extensor muscle area (68-89 cm?, r=0.63,
P<0.01). The results suggest that rowing prevents age-
related muscle wasting and weakness.

Keywords Aging - Leg extensor muscle - Leg extension
power '
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introduction

With age, leg muscle size declines with subsequent de-
crements in leg muscle functional ability (Kraemer et al.
1999; Martin et al. 2000; Goodpaster et al. 2001; Klein
etal. 2001). For older people, the ability of the leg extensor
muscles to develop power is important for tasks of daily
life such as climbing stairs, walking, and recovering bal-
ance, and the decline in the leg extensor muscle increases
the risks of falls and limb disability (Rubenstein et al.
2000; Lamoureux et al. 2001). Falling, fracture, and limb
disability leads to premature morbidity and mortality
(Tseng et al. 1995; Larsson et al. 2001).

Oarsmen live 2-3 years longer than the British
(Hartley and Llewellyn 1939) or the American (Meylan
1904) life expectancy. Also, rowing has favorable effects
on lowering risk factors of coronary artery diseases in
old people (Yoshiga et al. 2002). As rowing involves
rhythmical muscle extensions of both legs (Secher 1983;
Gustafsson et al. 1996), it may have a positive influence
not only on risk factors for coronary artery diseases but
also for limb disability and falling. This study was un-
dertaken to evaluate effects of rowing on the morphol-
ogy and strength of the leg extensor muscle in old
people.

Methods

Fifteen elderly trained men — age [mean (SD)] 65 (3) years, height
171 (4) cm, body mass 68 (6) kg, percent fat 19 (4)%] —~ were
matched for their body size to older sedentary men — age 66
(4) years, height 170 (4) cm, body mass 67 (7) kg, percent fat 21
(5)%]. The trained men had rowed for 40-50 years and they rowed
2 days week™ on water or on an ergometer (12-16 km day™). The
subjects were carefully informed about the procedure and possible
risks of this study and provided written informed consent. This
study was approved by the Ethics Committee of the National In-
stitute of Health and Nutrition. Subjects were free from any known
neuromuscular disease and were taking no medication.

Percentage body fat was derived according to Brozek et al.
(1963) using body density (BOD POD system, Life Measurement
Instruments, Concord, Calif., USA). The cross-sectional area of the
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mpain leg extensor, the quadriceps femoris, was measured by pro-
jon-magnetic resonance imaging (AIRIS II Comfort System 0.3-T,
gitachi Medico Co., Tokyo, Japan) and analysed with NIH Image
software (Yarasheski et al. 2001). Subjects were supine within the
MR imager. With a T1-weighted spin-echo sequence, the middie of
(e thigh was evaluated between the greater trochanter and the
pteral condyle (Yarasheski et al. 1993).

Maximal bilateral leg extension power was determined using a
dynamometer (Anaeropress 3500, Combi Co., Tokyo, Japan; Ka-
wakami et al. 1993). The apparatus is suitable for evaluation of bi-
pteral leg extension power in healthy people aged 6-90 years. All
qbjects were familiar with this apparatus and they were able to press
e applied load with both legs. After a warm-up, the subjects were
ated and pressed their feet as hard as possible horizontally onto a
plate until their legs were fully extended. The velocity of the move-
ment was measured using a rotary encoder attached to a wheel that
«t a constant load to the footplate through a wire. The bilateral leg
extension power (W) was the set load (N) times the velocity (ms™).

On a separate day, all subjects completed an all-out 2,000 m
row on an ergometer (Concept II model C, Morrisville, Vt., USA)
designed to simulate the duration, intensity, and stroke rate of an
wctual race on the water (Secher 1983). All subjects were familiar
with- the rowing ergometer.

Data are presented as mean (SD). Comparisons were performed
using a one-way analysis of variance with Turkey’s post hoc vali-
dation. Linear regression analysis was used to evaluate the rela-
tionship between leg extension power and leg extensor muscle area
and between 2,000-m ergometer rowing performance and leg ex-
ensor muscle area. A P value <0.05 was accepted as being sta-
tistically significant.

Resuits

The leg extensor muscle of the oarsmen was larger than
that of the sedentary men [77.8 (5.4) vs 68.4 (5.1) cm?
(Figs. 1, 2). Also, the bilateral leg extension power of the
oarsmen was larger than that of the sedentary men
[1,624 (217) vs 1,296 (232) W]. Thus, the leg extension
power per leg extensor muscle area was not significantly
different between the oarsmen and the sedentary men
[20.9 (2.0) vs 19.9 (2.1) W-em ™.

Leg extension power was related to the leg extensor
muscle area (59-89 cm?, r=0.74, P<0.001, Fig. 3). For
the oarsmen as well, 2,000-m rowing ergometer time [495
(14) s; range 479-520 s] was related to the leg extensor
muscle area (68—89 cm?, r=0.63, P<0.01).

Discussion

The main finding was that in older oarsmen both mor-
phological and functional risk factors for falling or limb
disability were lower than in sedentary men. With age,
the decline in leg muscle size and power are related to
decline in the quantity and/or intensity of daily physical
activity (Izquierdo et al. 1999, 2001). The older oarsmen
possessed a larger leg extensor muscle area and power
than the sedentary men. The results indicate that rowing
involving extension of both legs (Secher 1983) favour-
ably affects the condition of the leg extensor muscles of
older people.

Skeletal muscle size declines with advancing age and
also there is a lower protein turnover in aging muscles
(Campbell et al. 1995; Short and Nair 2001). With age,

185 B f-F

Fig. 1. Representative magnetic resonance images of an elderly
trained rower (upper) and an elderly sedentary man (bottom)
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Fig. 2. Area of the leg extensor muscle and leg extension power.
*P < 0.05 difference between elderly oarsmen and elderly sedentary
men

the plasma concentrations of anabolic hormones and
growth factors including growth hormone, testosterone,
and insulin-like growth factor-I are diminished
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(Lambers et al. 1997; Kraemer et al. 1999). These
changes are considered to influence the decrease in
muscle size of 3-5% per decade after the age of 30 years
and over the age of 60 years the decline accelerates
(Tseng et al. 1995).

Even in old people skeletal muscles adapt to physical
activity by metabolic and hormonal processes. Physical
activity enhances the synthesis rate of the major muscle
contractile protein (Schulte and Yarasheski 2001; Short
and Nair 2001), nitrogen retention, and muscle protein
metabolism (Campbell et al. 1995). Also, physical ac-
tivity increases serum testosterone in older men (Kra-
emer et al. 1999). Because of a loss of type II muscle
fibres with age, muscle hypertrophy relies on hypertro-
phy of especially type I muscle fibres in older people
(Larsson 1982). However, after the age of 60 years, the
type II fibre area is reported to increase with physical
activity (Campbell et al. 1999). In the current study, the
oarsmen possessed a 14% larger muscle area than the
sedentary men. Also, the muscle area of the leg extensors
in the oarsmen was larger than in middle-aged men
(Hikkinen et al. 1998b; Izquierdo et al. 2001). The larger
leg muscle fibre areas of young oarsmen compared to
sedentary men (Larsson and Forsberg 1980; Secher
1983) indicate that hypertrophy of muscle fibres was
manifest in the older participants of this study.

Not only the decrease in leg muscle size (Goodpaster
et al. 2001; Klein et al. 2001) but also the deterioration in
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the neuromuscular function (Héakkinen et al. 1998b;
Klein et al. 2001) affect the decrease in the power of the
legs. During leg extension, there may be an increase in
the neural drive to the antagonist muscles with ad-
vancing age (Hikkinen et al. 1998a, b; Izquierdo et al.
1999). Also, the decline in daily physical activities with
age influences leg muscle power (Hikkinen et al. 1998b;
Goodpaster et al. 2001; Klein et al. 2001). In this study,
the bilateral leg extension power of the oarsmen was
25% greater than that of the sedentary men. The finding
indicates that rowing, which activates both legs (Secher
1983), attenuates the decline in leg extension power.

In older people, the force (Hikkinen et al. 1998a, b;
Kraemer et al. 1999; Izquierdo et al. 2001) and torque
(Goodpaster et al. 2001; Lamoureux et al. 2001) of knee
extensors increase as the area of leg muscle mass in-
creases. We found a correlation between leg extension
power and extensor muscle area, supporting the finding
that muscle weakness with age is paralleled by a reduc-
tion in muscle size (Goodpaster et al. 2001; Lamoureux
et al. 2001; Schulte and Yarasheski 2001).

In young men, Larsson and Forsberg (1980) and
Secher (1983) reported a relation between rowing per-
formance and morphological muscle characteristics. The
type I and II fibre areas of the legs are larger in oarsmen
competing at international level than at national level.
Also, in the elderly oarsmen there was a relation between
rowing performance and leg extensor muscle area. Both
findings support the hypothesis that the legs develop a
large proportion of rowing power as rowing involves
almost all the muscles in the body (Secher 1983;
Gustafsson et al. 1996).

The loss of leg muscle power increases the depen-
dence on others to accomplish routine activities of daily
life and furthermore contributes to a loss of self-value
and satisfaction (Martin et al. 2000; Schulte and Ya-
rasheski 2001). The maintenance of the morphology and
function of the leg extensor muscle is significant for a
healthy and independent life in older people.

Physical exercise is the only non-pharmacological
treatment for a reduction of muscle size (Short and Nair
2001). The effect of physical exercise on muscle size and
function is considered an intervention to offset the
effects of aging (Schulte and Yarasheski 2001; Short and
Nair 2001). Rowing activates almost all muscles (Secher
1983; Yoshiga and Higuchi 2002) and is unlikely to
cause serious injury as the body is supported by the seat
of the ergometer or the boat (Secher 1983). Also, rowing
might maintain or enhance lipoprotein lipase activity in
skeletal muscle of old people (Yoshiga et al. 2002). The
results suggest that rowing prevents age-related muscle
wasting and weakness.
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For older people exercise intensity is often determined based on heart rate (HR) or
the percentage of maximal HR (%HR,,,,). This study evaluated oxygen uptake (VO,)
and HR during ergometry rowing (combined arm and leg; sitting exercise) and
treadmill running (leg; upright exercise) for 15 older people [age, (mean * SD)
62 * 3 years]. The HR was lower during ergometry rowing than during treadmill
running at a blood lactate concentration of 4 mmol 177 (151 * 4 beat min™"' versus
160 £ 5 beat min™', P<0-05) and at a maximal effort (171 % 7 beat min”~" versus
177 £ 7 beat min™', P<0-0S). This was the case although the VO, was higher
during ergometry rowing than during treamill running both at a blood lactate
concentration of 4 mmol 17" (3-0 + 0-4 1 min™' versus 27 * 04 1 min™}, P<0-05)
' versus 3'1 £ 0-3 1 min~', P<0-05].
%HRpma and %HR reserve were lower during ergometry rowing than during

and at a maximal effort (34 = 04 1 min~

treadmill running. The results suggest that, in prescription of rowing for older
people, the relation between HR and VO, for rowing and the attenuated HR
response to rowing should be taken into consideration.

Introduction

In prescription of exercise heart rate (HR) is accounted for (Pate
et ., 1991; American College of Sports Medicine,1998),
assuming that there is a given relation between percentage of
maximal HR (%HRp.y) and the percentage of maximal oxygen
uptake (%VOym,,) (Pate et al., 1991; Londeree et dl., 1995) and
between percentage of heart rate reserve (%HR reserve) and
percentage of oxygen uptake reserve (%VQ, reserve) (Panton
et d., 1996; Rotstein & Meckel, 2000). Direct measurement of
HR,pax OF VOqpmay is often not feasible for older people because
they tend to be unable to work at a maximal effort. Thus,
exercise may be terminated when the subject reaches an
arbitrary percentage of their age-predicted HR,,,, as expressed
by the equation of 220 — age (Astrand & Rohdahl, 1986; Pate
et al., 1991; Bassett & Howley, 2000) or the exercise intensity is
determined based on. the age-predicted HR,,, (American
College of Sports Medicine, 1998; Wilmore & Costill, 1999).
Besides exercise involving the legs such as treadmill running,
other modes of activity are used including arm cydling or
combined arm and leg exercise or ergometer rowing. The
relation between %HR,., and %VOym.. is different among
exercises for young (Londeree et al., 1995) and older men
(Aminoff et dl., 1998). Also, the HR response to exercise is
affected by the central blood volume and sympathetic activity

that are influenced by the muscle mass engaged during exercise
(Ray et al., 1993; van Lieshout et dl., 2001). This study evaluated
the relation between HR and VO, during ergometry rowing and
treadmill running for older people.

Methods

Fifteen older men [age, (mean  SD) 62 = 3 years; height,
172 £ 004 m; body mass, 70 % 5 kg; percentage body fat,
17 £ 4%)] received a comprehensive explanation of the pro--
posed study, methods and procedures, its benefits, inherent risks
and expected commitments with regard to time. After explan-
ation, the participants signed an informed consent document.
The study protocol was approved by the Ethics Committee at the
National Institute of Health and Nutrition. We examined the HR
and VO, responses to progressive rowing on an ergometry
(Concept I model C, Morrisville, VT, USA) and running at an
incline of 3-0% on a treadmill. All subjects were familiar with
both types of exercise and none had any cardio-respiratory
illness or took any medication. Percentage body fat was derived
according to Brozek et al., (1966) using body density (BOD POD
system, Life Measurement Instruments, Concord, CA, USA).
Subjects performed a discontinuous incremental intensity
protocol, in random order, both on a rowing ergometry and on
a treadmill running. The initial intensity on a rowing ergometry

© 2003 Blackwell Publishing Ltd « Clinical Physiology and Functional Imaging 23, 1, 5861



is yet small, no chest pain or ECG changes have been provoked.
However, we have excluded subjects with dysrythmia (2-3% of
this population}, so that constitutes a limitation of this method.

Thus, taken together, the results in the present study indicate
that changes in the height of the IP of the radiﬂéartery pulse wave
obtained by applanation tonometry following P2-adrenergic
stimulation with terbutaline could be used as an index of NO
production, making this minimally invasive measurement an
attractive way to explore endothelium-dependent vasodilation in
different patient groups or to investigate the effects of drugs on
the NO system. As the technique is simple and fairly fast to
perform (20 min), it is also suitable for large-scale epidemio-
logical studies.
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was at 100 W and it was increased by 25 W every second
minute. Subjects stopped rowing for 20 s between each stage so
that a blood sample could be drawn. Exercise was terminated
when the subjects were no longer able to maintain.the required

mntensity. On another day, the subjects exercised on a tréadmill. ~

The initial velocity on a treadmill was 100 m min~' and it was
increased by 20 m min™" for every second minute. Exercise was
rminated when the subjects would not complete a given
running velocity.

It was required that the subject met each of the following
criteria to ensure that VO, was reached: (1) a plateau in VO,
despite increasing exercise intensity; (2) a respiratory exchange
matio exceeding 1+15; (3) a blood lactate concentration exceed-
ing 89 mmol I""; (4) achievement of age-predicted HRp,;
and (5) a rating of perceived exertion of 19 or 20 (Astrand &
Rohdahl, 1986; Animoff et al., 1996; Bassett & Howley, 2000).
The expired gas was collected in Douglas bags during the last
t min of each stage and the volume was measured using a dry
gas meter and the concentrations of oxygen and carbon dioxide
were determined (Respiromonitor RM-300i, minato Mediccal
Science Co., Tokyo, Japan). The HR was determined by an ECG
(Nihon Kohden Co., Tokyo, Japan). Blood samples were taken in
heparinized glass capillaries from the fingertips immediately
after each stage and at termination of exercise. Blood lactate
concentration [La—];, was analyzed by an enzymatic membrane
method using a 1500 Analyzer (Yellow Springs, OH, USA).

Data are reported as mean and SD. %HR reserve was calculated
HR,es, and
%VOZ reserve was as the percentage of VO, - \'fomst from
VOsmmax = VOarest {Rotstein & Meckel, 2000). Comparisons
were performed using a one way analysis of variance with

s the percentage of HR — HR,. from HR_,, —

Turkey’s post hoc validation. Linear regression analysis was used
to evaluate the relationship between HR and VO,, %HR,,,, and
%VOymas and %HR reserve and %VO, reserve. A significant
level of P<0-05 was used.

Results

At rest HR was lower when sitting on a rowing ergometry
than when standing on the teadmill (72 * § beat min™" versus
80 & 4 beat min™"'), while VO, was similar (0-4 %+ 0-2 1 min™").
The HR was also lower during rowing than during running
(118 £ 4 beat min~' versus 128 * 4 beat min~' ata fLa~], of
Ymmol I}, 151 * 4 beat min~! versus 160 £ 5 beat min~
it a [Lla-], of 4mmoll™!, 160 * 6 beat min™'
171 % 4 beat min~" at a [La—], of 6 mmol 1™, Also, during
towing HRp,, was lower than during running (171 %

VEersus

7 beat min™" versus 177 £ 7 beat min~") (Fig. 1).

The VO, at rest was similar for two postures, sitting and
standing (04 % 02 Imin™' versus 04 * 0-2 1 min™"). The
0, was higher during rowing than during running
(22 £ 031 min™" versus 19 £ 04 lmin™" at a [La—], of
tmmol I7!, 30 + 04 L min™" versus 27 & 04 I min™" at a
la-]y of 4mmoll™, 32+ 021min™" versus 29 +
4 Imin~' at a [La~], of 6 mmol I, P<0:05). Also, during
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Figure 1 Relation between heart rate and oxygen uptake, between
percentage of maximal oxygen uptake (%VOyp,,) and percentage of
maximal heart rate (%HR ), and between percentage of heart rate
reserve (%HR reserve) and percentage of oxygen uptake reserve (%VO,
reserve). ¥P<0-05 difference between rowing and running.

rowing VO, was larger than during running (34 +
04 1 min™"

maximal exercise a [La—], was higher following rowing

versus 3'1 * 03 1 min™"). Immediately after

than following running (84 % 1-5 mmol 1™} versus 80 %
19 mmol 1”'). The relation between HR and VO, were as
follows for ergometry rowing HR (beat min™!) = 30.9-VO,
(Imin")+614 (r = 0:99) and for treadmill running HR
(beat min~') = 34.2-VO, (L min™") + 663 (r = 0-99).
During both rowing and running, the HR,,,, was higher than
the age-predicted HRp,, using the equation of 220 — age
(17147, 177 £ 7 beat min™' versus 158 * 5 beat min™').
During rowing both VO, and %VO,,,,, were larger than during
running. On the other hand, %HR ., was lower during rowing
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than that during running when using the HR,,, measured in
this study and the age-predicted HRy,., (Fig. 1). The relation
between %HR,. and %VO,ma was as follows for ergometry
rowing %HRpay = 0°61% VO + 359 (r=099) and for
treadmill running %HR ey = 0-62:% VO e + 37°5 (T = 0:99).

During rowing %VO, reserve was larger than during running.
On the other hand, %HR reserve was lower during rowing
than during running (Fig. 1). The relation between %HR
reserve and %VO reserve was as follows for ergometry rowing
%HR reserve = 0-98-%VO, reserve — 3-98 (r = 0-99) and for
treadmill running %HR reserve = 1:01°%VO, reserve —1-50
(r = 099).

Discussion

The primary finding was that the HR responée to ergometry
rowing was attenuated’ compared with treadmill running in
older individuals, accompanied with a higher VOZ during
ergometry rowing than during treadmill running. Secondly,
%HR,, and %HR reserve during ergomery rowing was lower
than during treadmill running in older people. The HR is used
often for monitoring exercise intensity because it reflects the
work of the heart (e.g. myocardial oxygen consumption and
coronary blood flow) (Wilmore & Costill, 1999). Thus, the HR
response to exercise has clinical implications for older people.

In older healthy men, at the level of 50%VO, . during arm
cranking, HR is lower than during leg cycling, but at the level of
75%VO5.05, HR is higher during arm exercise than during leg
exercise (Aminoff et d., 1998). In this study for older men,
during ergometry rowing HR was lower than during treadmill
running both at submaximal and maximal exercise intensity. In
young people, during exercise in which body mass is supported
(e.g. rowing, cycling and arm exercise), the relation between
%HR ey and % VO, is different from that obtained during
body mass bearing exercise (i.e. exercise in which subjects have
to lift their body mass on their feet such as running or skiing)
(Londeree et al., 1995). Also, during arm cycling %HR reserve is
higher than during running in young men (Rotstein & Meckel,
2000). In the present study of older people, during ergometry
réwing YoHR oy and %HR reserve were attenuated cormpared
with during treadmill running.

Subjects use both arms and legs during rowing while during

running they use mainly their legs (Secher, 1983; Yoshiga &

Higuchi, 2002). A higher VO, during ergomery rowing than
during treadmill running supports that rowing involves a larger
muscle mass than running (Secher et dl., 1974, 1977, Yoshiga &
Higuchi, 2002). During dynamic exercise the active muscle
mass works as a pump and facilitates venous return and thereby
enhances the central blood volume (Toner et dl., 1963; Davies &
Sargeant, 1974; Klausen et al., 1982; van Lieshout et al., 2001).
Enhanced venous return results in an augmented stroke volume
of the heart (Ray et d., 1993; Wilmore & Costill, 1999). Also an
elevated central blood volume enhances central venous pressure
and deactivates the cardiopulmonary baroreceptors to slow HR
(Ray et al., 1993; Ray, 1999) as sympathetic activity during

exercise is reduced (Ray et al., 1993; Wilmore & Costill, 1999).
The results indicate that the mode of exercise and/or the
involved muscle mass affect the HR response to exercise for
older people.

The heart volume is well maintained with age but HR.4
declines as a result of changes in the sinus node and conductive
system of the heart (Astrand & Rohdahl, 1986; Wilmore &
Costill, 1999; Yoshiga et d., 2002a). The limitation of the
formula, the age-predicted HR,,, = 220 — age, is that older
individuals often exceed the age-predicted HR,., (Lester e dl.,
1968; Bruce et d., 1974; Londeree & Moeshberger, 1582;
Astrand & Rohdahl, 1986; Whaley et al., 1992; Tanaka et dl,,
2001; Yoshiga et d., 2002a). The difference between measured
HRpax and the age-predicted HR o has a clinical implication for
older people. The results suggest that a prescription of aerobic
exercise based on the age-predicted HR,,, results in a target HR
below the intended intensity that would be considered optimal
for producing health benefit. As VO, is commonly estimated
by extrapolating submaximal HR to the age-predicted HR,, .«
(/gxstrand & Rohdahl, 1986; Pate et al., 1991, Tanaka et dl., 2001),
the present findings also indicate that using the age-predicted
HRyyay results in an underestimate of aerobic power for older
people.

Rowing contributes to aerobic fimess (Secher, 1983; Boland
& Hosea, 1991; Shephard, 1998; Yoshiga et al., 2002a) and has a
low injury rate (Budgett & Fuller, 1989; Shephard, 1998). Use
of larger muscle mass during combined arm and leg exercise
than during leg exercise allows a greater cardio-respiratory
training effect (Hoffman et al., 1996). Rowing involves both
arms and legs, whereas walking and running involve mainly legs
(Secher, 1983; Yoshiga & Higuchi, 2002). A rowing ergomerty
is not as expensive as a walking and running treadmill (Boland &
Hosea, 1991; Seiler et al., 1998). Like running and swimming,
senior and master rowing has a large and growing participants
in the world, with national and world veteran championships
conducted annually (Gustafsson et al., 1996; Seiler et al., 1998;
Yoshiga et al., 2002a,b). Subjects row not only on an ergometry
but also on the water (Secher, 1983; Yoshiga et dl., 2002a,b) and
make rowing trips travelling along familiar and unknown waters
(Fritsch, 2000). Also, rowing is one of the social sports that
provides the individual contact with the social environment,
recognition from and with others (Fritsch, 2000). Thus older
people may be encouraged to row (Boland & Hosea, 1991).
Aerobic exercises that use large muscle groups are o be
recommended as prescribed modes of exercise and rowing is
included in such types of exercise (American College of Sports
Medicine,1998; Wilmore & Costill, 1999). Older oarsmen
possess higher left ventricular imass and myocardial wall
thickness (Gustafsson et al., 1996), larger aerobic power
(Yoshiga et al., 2002a), larger leg muscle area (Yoshiga et dl.,
2002b) and more favorite lipoprotein profile (Yoshiga et dl.,
2002a) than age-matched sedentary men.

The findings of this study provide information about exercise
prescription using a rowing ergometry for older people. Despite
larger VOz, %VOqmay and %VO, reserve during ergometry
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sowing than during treadmill running, the HR, %HR,,,, and
%HR reserve were lower during rowing than during running in
older individuals. The present study indicates that this lower HR
fesponse to ergometry rowing compared with treadmill running
should be taken into consideration when prescribing ergome-
wery rowing for older people. o
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This study evaluated the rowing performance of female
and male rowers with regard to their body size. Body
height, body mass, fat-free mass, maximal oxygen uptake
(VO2max), and “2000-m» rowing ergometer performance
were measured in 71 females (age range 18-24 years, height
153-173 cm, body mass 43-69 kg, fat-free mass 34-55 kg;
VOomax 2.1-3.9Lmin "% 2000-m time 437-556s) and
120 males (age 18-24 years, height 164-193cm, body
mass 58-95kg, fat-free mass 50-81kg; VOppnx 3.4—
5.6 L min " *; 2000-m time 378484 s). Rowing performance
was correlated to body height (» = — 0.81, P < 0.001), body

mass (r = - 0.85, P<0.001), fat-free mass (= — (.91,
P<0.001), and VOypqy (r = —0.90, P<0.001). However,
rowing time was slower in the females than in the males with
a similar body height (by ~10%) and body mass (by
~9%), but the sex difference was smaller when the fat-free
mass (by ~4%) and VOypay (by ~4%) were matched. This
study suggests that individuals with large body size and
aerobic capacity possess an advantage for a 2000-m row on
an ergometer. However, among females and males the
variation in body size and aerobic capacity cannot explain
the entire sex difference in ergometer rowing performance.

For women, the international rowing championships
were established in 1954 and the distance was
inereased from 1000 to 2000m in 1983, which is
the distance rowed by men (Secher, 2000). When
competing in similar events, for women the rowing
time on the water is about 10% longer than for men
(Secher, 2000). Equally, on the basis of the World
records for “2000-m” rowing on an ergometer,
the winning time for the females is about 16%
slower than for the males. This gap of athletic
performance among females and males is observed in
other sports, although it becomes smaller as the
number of female athletes increases (Wilmore &
Costill, 1999).

During rowing, body mass is supported by the
sliding seat in the boat or on an ergometer, and large
individuals possess an advantage (Secher, 1983,
2000; Secher & Vaage, 1983). Obviously, female
athletes are in general lighter than their male
counterparts (Ingjer, 1991; Jensen et al., 2001), and
it was hypothesised that rowing performance for
females is influenced by their small body size.
Rowing involves almost all muscles (Secher, 1983,
2000) and rowing performance is related to the size
of the leg muscles (Yoshiga et al., 2002b). In general,
the fat-free mass for females is smaller than that
for males (Hunt et al., 1998), and it was considered
that the slow rowing time for the female rowers
results from their small fat-free mass.

A direct relationship exists between the average
maximal oxygen uptake (VOam,,) of the crew and
their placing in an international regatta (Secher
et al.,, 1982; Secher, 1983, 2000). The VO, relates
to body size (Secher, 1983; Secher et al., 1983; Jensen
etal., 2001), and the VO, for female rowers is about
20-27% below that of male rowers (Secher, 2000;
Jensen et al., 2001). Accordingly, it was also assumed
that the rowing performance of females lags behind
that of males because of their smaller VOpzy.

Methods

Seventy-one female rowers (age range 18-24 years; mean (SD)
19 (2) years, body height 153173 cm; 163 (5)cm, body mass
43-69kg; 57 (6) kg, 2000-m time 437-5565; 498 (32) ) and
120 male rowers (age 18-24 years; 21 (2) years, body height
164-193cm; 176 (5)om, body mass 58-95kg; 70 (7) kg, 2000~
m time 378-484s; 424 (19)s) volunteered for this study. Both
the female and the male subjects rowed at least 5 days a week
on the water or on an ergometer (median training distance 60—
100km per week; Yoshiga et al., 2001, 2002a). All subjects
received a comprehensive explanation of the study and si gned
an informed consent. This study was approved by the Ethical
Committee of the National Institute of Health and Nutrition
in Japan. None of the subjects had any known cardiovascular
disease or took any medication.

The percent body fat was derived according to Brozek et al.
(1963) with evaluation of body density (BOID POD, Life
Measurement Instruments, Concord, CA, USA; Dempster &
Aitkens, 1995). The fat-free mass was the difference between
the body and the fat mass.
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The subject completed an all-out 2000-m row on an
ergometer (Concept II model C, Morrisville, VT, USA)
designed to simulate an actual race on the water (Secher,
1983). On a separate day, the subjects performed a progressive
run on a treadmill. The initial velocity was 140mmin~? for
the females and 160mmin ™! for the males and, at an incline
of 3.0%, increased by 20mmin~' every second minute
(Hermansen & Saltin, 1969; Yoshiga et al., 2000, 2002a;
Yoshiga & Higuchi, 2002). Exercise was terminated when the
subjects could not complete a given running speed. It was
required that each subject met each of the following criteria to
ensure that VO, was reached: (1) a plateau in VO, against
exercise intensity; (2} a respiratory exchange ratio exceeding
1.15; (3) achievement of an age-predicted maximal heart
rate (HRumex); and (4) a rating of perceived exertion (RPE) of
“19” or “20” (Astrand & Rodahl, 1986; Basset & Howley,
2000). The expired gas was collected in Douglas bags during
the last 1min of each stage. The volume of the gas was
measured with a dry gas meter and O, and CO, were
determined (Respiromonitor RM-300i, Minato Medical
Science Co., Tokyo, Japan). The HR was determined
electrocardiographically and RPE was expressed every second
minute (Borg, 1982).

Duata are reported as mean (standard deviation) with range.
Comparisons were performed using a one-way analysis of
variance with Tukey’s post hoc validation. Linear and curvi-
linear regression analyses were used to evaluate the relation-
ship between rowing performance and body size, fat-free mass,
and VOqp.y. Also, comparison of the linear and curvilinear
tegression equations was performed by a general F-test
(Kleinbaum & Kupper, 1978; Seiler et al., 1998, Montgomery
& Runger, 1999). Statistical significance was set at P«<0.05.

Resulis

The average body height and mass were smaller
for the female than for the male rowers (P<0.01)
and rowing performance was correlated to both
body height (r= —0.81, P<0.001) and body mass
(r= —0.85, P<0.001; Fig. 1). Also, the average fat-
free mass was smaller for the female than for the
male rowers (45.1 (4.4) (34.0-55.2) vs. 61.7 (5.5
(50.2-80.8) kg, P<0.01) and rowing performance
was related to the fat-free mass (r= —0.91,
P<0.001). Equally, the average VOiny., was lower
for the female than for the male rowers (2.9 (0.4)
(2.1-3.9) vs. 4.3 (0.4) (3.4-5.6)Lmin~"', P<0.01)
and rowing performance was related to VO,
(r=—091, P<0.001).

Regarding the relationship between rowing per-
formance and body mass, a curvilinear regression
provided a better fit to the variances of rowing
performance compared to a linear regression (77%
of the variance “explained” compared with 73% for
the linear regression; F> F1gg). Similarly, curvi-
linear regressions fitted rowing performance to body
height, fat-free mass, and VQOyp,., better than linear
relationships (F > Fy 1g5).

In order to evaluate whether there was a difference
in rowing performance between the female and male
rowers of similar body size, fat-free mass, and VOorax,
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the results for selected subjects were compared. In
such comparisons, rowing performance was slower
for the females than for the males with a similar body
height (females, n = 26; height 168 (3) (164-173) cm;
rowing time, 478 (20) (437-537)s; males, n=25;
height 170 (3) (164-173)cm; rowing time, 433 (18)
(357-480) s} (Fig. 2). Also, rowing performance was
smaller for females than for males with a similar
body mass (females, n= 37, body mass 62 (3) (58
69 kg, rowing time, 477 (21) (437-337)s; males,
n=57; body mass 63 (3) (58-69)kg; rowing time 436
(16) (409-487)s).

Equally, there was a difference when the subjects
were matched with regard to both fat-free mass
(females, n=10; fat-free mass 51 (2) (50-55)kg;
rowing time 466 (20) (437-511)s; rnales, »=20;
fat-free mass 52 (2) (50-55)kg; rowing time 446
(17) (419-484)s) and VOgu,, (females, n=11;
VOsmax 3.5 (0.2) (3.4-3.9)kg; rowing time 460 (15)
(437-490)s; males, n=27; VOomax 3.7 (0.2) (3.4~
3.9) kg; rowing time 441 (17) (414-484)s). Thus, the
difference in the rowing time between the females
and the males with a similar fat-free mass and
VOomax was about half that obtained when the
subjects were matched based on body size.

Biscussion

The main finding of this study is that rowing
performance increased with body size. More speci-
fically, a large fat-free mass and a large VOonayx
resulted in a high level of rowing performance,
supporting the fact that rowing is an aerobic type
of exercise that demands activation of almost all
muscles in the body (Secher, 1983, 2000; Yoshiga
et al, 2003). However, differences in body size
and aerobic capacity did not explain the entire
difference in rowing performance between the female
and the male rowers. There remained about 10%
difference in rowing performance when the subjects
were matched with regard to body size. However,
the sex difference in rowing performance was
reduced to about 4% when the fat-free mass and
VOima, were taken into consideration.

Secher (1975) reports that isometric rowing
strength is correlated to body height in male rowers,
but in a relatively homogeneous group with less
than 30 rowers, rowing performance is not related to
body height (Kramer et al., 1994; Jensen et al., 1996;
Russell et al., 1998; Cosgrove et al., 1999). However,
the present findings including 191 rowers support the
fact that tall height is beneficial for the level of
rowing performance. This finding supports the fact
that tall height secures a long length of the rowing
stroke (Secher, 1983) and a long stroke length is
related to a high level of rowing performance
(Ingham et al., 2002).
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Fig. 1. Relationship between rowing performance and body height, body mass, fat-free mass and VOzyay.

Also, Secher (1975) reports that the body mass of
internationally competitive rowers is larger than that
of club rowers and that isometric rowing strength is
correlated to body mass. This is because during
rowing the sliding seat in the boat or an ergometer
bears body mass (Secher, 1983, 2000; Secher &
Vaage, 1983). On the other hand, no relationship has
been reported between rowing performance and

body mass (Kramer et al., 1994; Jensen et al., 1996;
Cosgrove et al., 1999). As for body height, the present
results support the fact that a large body mass has a
favourable influence on rowing performance (Secher,
1975; Secher & Vaage, 1983; Russell et al., 1998;
Yoshiga et al., 2000; Ingham et al., 2002).

During rowing almost every muscle is used
{Secher, 1983, 2000) and performance is related to
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Fig. 2. Comparison of rowing performance between the female and the male rowers with similar physiological characteristics.

* difference between the female and the male rowers, P<0.05.

fat-free mass (Cosgrove et al., 1999; Yoshiga et al,,
2000). A correlation between rowing performance
and fat-free mass may be because there is an
association between the fat-free mass and blood
volume and stroke volume of the heart, i.e., a large
fat-free mass is associated with a high aerobic
capacity (Hunt et al., 1998). Also, the fat-free
mass relates to the mass of the skeletal muscles,
which represent a large vascular bed and facilitate
venous return by the muscle pump during exercise
(Van Lieshout et al., 2001). Also, rowing demands a
large cardiac output (Secher, 2000). Accordingly,
these findings suggest that an enhanced venous
return and the increased central blood volume via
the muscles pump might influence rowing perfor-
mance so as to secure cardiac output and enough
blood flow to active skeletal muscles.

Secher et al. (1982) found that the VOqp.y, of the
first place was 6.1 Lmin ™' and that of the 13th place
was 5.1Lmin~"' in an international regatta. Also,
the correlation between 2000-m ergometer rowing
results and VO, for rowers is reported (Secher
et al., 1983; Kramer et al., 1994; Russell et al., 1998;
Cosgrove et al., 1999; Pripstein et al., 1999; Yoshiga
et al., 2000; Ingham et al, 2002). In the present
study, VOoma, was determined during treadmill
running and therefore expected to be about 3%
lower than the value obtained during ergometer
rowing (Yoshiga & Higuchi, 2002; Yoshiga et al.,
2003). Yet, the findings of this study support the
relevance of VO, for rowing performance.

Even when matching the female and the male
rowers based on their body size, the females
maintained a 9% slower rowing performance time
than the males. Part of this difference was because
the female rowers had a lager body fat content than
their male counterparts (22 (3)% vs. 11 (2)%). A
large body fat content deteriorates 2000-m ergometer
rowing performance (Secher, 1983; Ingham et al.,
2002). Thus, the sex difference in rowing perfor-
mance among the subjects of similar body mass was
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in part because the female rowers had a smaller fat-
free mass and also VO,,,,, than the male rowers (48
(3) vs. 58 (3)kg; 3.0 (0.3) vs. 4.0 (0.3) Lmin ™ Y).

Matching the female and the male rowers with
regard to their VO, the body mass for the
females was similar to that for the males (63 (3) vs.
63 (4)kg) and the sex difference in rowing per-
formance was reduced to about 4%, However,
after matching VOop,ax, the fat-free mass and body
height were smaller in the females than in the males
(49 (3) vs. 57 (M) kg; 165 (3) vs. 173 (5) cm). Equally,
matching the female and the male rowers based on
their fat-free mass, the VO, and body height were
smaller in the females than in the males (3.4 (1.4) vs.
3.8 (1.4)Lmin~"; 166 (3) vs. 171 (3)cm).

The difference in body size between the female and
the male rowers explains a large part of the sex
difference in rowing performance. Yet, a lower
haemoglobin concentration may also account for a
lower aerobic capacity of women than of men after
considering differences in body and fat-free mass,
reflecting that testosterone stimulates the production
of haemoglobin (Keller & Katch, 1991; Wilmore &
Costill, 1999).

It is also to be considered that rowing consists of
rthythmical extensions of both legs (Secher, 1983) and
that rowing performance is associated with the size of
the leg muscle (Yoshiga et al, 2002b). In general,
women possess smaller leg muscle compared to men
(Wilmore & Costill, 1999). Thus, although body size
and aerobic capacity are major determinants of rowing
performance, the performance of the female rowers
remains inferior to that of the male rowers when the
major determinants are taken into consideration.

Perspectives

The findings support the fact that large body
dimensions and a high aerobic capacity provide an
advantage in rowing (Secher, 1983; Y oshiga et al.,
2000; Ingham et al., 2002). Thus, a large part of the



difference in rowing performance relates to the fact
that women are smaller and possess a lower maximal
oxygen uptake than men. Yet, some influences of sex
on ergometer rowing time remain after considering
the differences in body dimension and aerobic
capacity between female and male rowers.

Key words: body height; body mass; fat-free mass;

maximal oxygen uptake.
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This study evaluated if the ventilatory response to exercise is
impaired by the cramp position of rowing. Maximal exygen
uptake (VOzy,), maximal expiratory volume (Vipay), and
maximal heart rate (HR,,.,) during rowing and running
were compared in 35 males (age, mean =+ SD, 21+ 3 years;
height 176 +5cm; body mass 72+6kg) and 18 females
(age 20 12 years; height 164 15 cm; body mass 61-+4kg).
Vme was larger during rowing than during run-
ning (males, 15716 vs. 147+13 Lmin~ 1; 11449 vs.
105£11Lmin~", P<0.01). Also VO, was larger
during rowing than during rubning (males, 4.5+0.5 vs.
4.3+0.4L min~Y; females, 3.3+0.4 vs. 3.2 +0.4Lmin "7,
P <0.01). However, HRy,,, was lower during rowing than
during running (males, 19448 vs. 198+ 11 beats min ~;

females, 19246 vs. 196+ 8 beatsmin ~*, P < 0.05). Vimax
was correlated to body mass apd fat-free mass, as was
YO2umax- Thus, the oxygen pulse (VO HRpay) was larger
during rowing than during running, while the ventila-
tory equivalent for oxygen (Vima/VOumax) was similar,
We showed that bending the body during rowing does not
seem to impair ventilation either in males or in females. The
results indicate that Vegg and VOp., relate to body
size and fat-free mass for both females and males. The
findings indicate that the involvement of more muscles,
the entrainment, and the bedy position during rowing
facilitates ventilation and venous return and lowers maximal
heart rate.

Periodic contraction of muscles and movement
during rowing elevates pleural pressure (Rosiello
et al, 1987; Siegmund et al., 1999). An increased
pleural pressure reduces venous return, end-diastolic
volume, and the stroke volume of the heart
(Cunningham et al., 1975; Rosiello et al., 1987,
Wilmore & Costill, 1999). Also the increased intra-
abdomen pressure impairs ventilation at stroke catch
(Cunningham et al., 1975) or stroke finish (Siegmund
et al,, 1999). These physiological changes are con-
sidered to impair the expiratory volume (Vg) and
oxygen uptake (VO,) at maximal rowing effort
(Cunningham et al., 1975; Rosiello et al., 1987).

On the other hand, during the drive phase the knee
and hips extend and ventilation is assisted (Siegmund
et al,, 1999). During rowing a high ventilatory res-
ponse is elicited (Szal & Schoene, 1989) and ventila-
torylocomotion coupling appears to lead adequate
ventilation (Siegmund et al, 1999). Rowing involves
both upper- and lower-body exercise, while runmning
mainly involves the legs (Secher, 1983; Clifford et al.,
1994). VO, increases as the muscle mass involved
increases (Secher et al., 1974; Secher et al., 1977).
We hypothesized that ventilation and oxygen

consumption during rowing are larger than during
running.

Specifically, Vg is reported to be limited during
rowing in females (Mahler et al., 1987). As both the
maximal expiratory volume (Vgyay) and maximal
oxygen uptake (VOjyyax) depend on body size
(Secher et al., 1983; Rodgers et al,, 1995; Jensen
et al., 2001), the low Vg of females was considered to
reflect their small body size rather than the position
used during rowing,

In both males and females we examined Vgmay,
VOsumax, and the maximal heart rate (HR ) during
ergometer rowing and treadmill running. Also,
the maximal oxygen pulse (VOpmu/HRpay) was
calculated as an index of stroke volume of the heart
(Heath et al., 1981). We also hypothesized that the
cardiorespiratory response to exercise is similar
between males and females, but that body size
affects the response.

Methods

We studied 55 males (age mean+SD, 2143 years; height
176 + Som; body mass 72+ 6 kg, percentage body fat 11+ 3%)
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and 18 females (age 20 42 years; height 164 45 cm; body mass
61+4kg; percentage body fat 22+4%). The subjects were
informed of the design and risks of the study and provided
written informed consent. This study was as approved by the
Bthical Committee of the National Institute of Health and
Nutrition, and provided written informed consent.

All subjects completed two bouts of exercise: progressive
running on a treadmill and rowing on an ergometer (Concept
I model C, Morrisville, VT, USA). All subjects are regularly
running on a treadmill and rowing on an ergometer and were
familiar with both type of exercise. During treadmill run-
ning, the initial speed was 160mmin~! for the males and
140m mm~l for the females, and it was increased by
20mmin~* every 2min with a 3.0% incline of the treadmili.
Exercise was terminated when the subjects could not complete
a given running speed. During ergometer rowing, the initial
load was 1350 W for the males and 125 W for the females, and
it was increased by 50 W for males and by 25'W for females
every 2min. Exercise was terminated when the subjects were
no longer able to maintain the required intensity. It was
required that each subject met each of the following criteria to
ensure that VO, was reached: (1) a plateau in VO, against
exercise intensity; (2) a respiratory exchange ratio exceeding
1.15; (3) blood lactate concentration exceeding 89 mmolL ™7
{4) achieverent of age-predicted HR,,,x; and (5) the rating of
perceived exertion of 19 or 20 (Bassett & Howley, 2000).

The expired gas was collected in Douglas bags during the
last 1 min of each stage, and the volume was measured using a
dry gas meter and the concentrations of oxygen and carbon
dioxide were determined (Respiromonitor RM-300i, Minato
Medical Science Co., Tokyo, Japan). The HR was determined
electrocardiographically (Nihon Kohden Co., Tokyo, Japan).
The rating of perceived exertion was expressed every 2min
(Borg, 1982). Blood samples were taken using heparinized
glass capillaries from the fingertip at the termination of
exercise. Blood lactate concentration was analyzed by an
enzymatic membrane method using a 1500 Analyzer (Yellow
Springs, OH, USA).

Percentage body fat was derived according to the Brozek
equation (Brozek et al., 1963) using body density determined
by the BOD POD air displacement system (Life Measure-
ment Instruments, Concord, CA, USA; Dempster & Aitkens,
1995).

Data are reported as mean + standard deviations (SD). The
ventilatory equivalent for oxygen (Vimax/VOsmax) Was cal-
culated (Wilmore & Costill, 1999). Student’s ¢-test was perfor-
med for comparison of data obtained in males and females
between rowing and running. Linear regression analysis was
used to evaluate the relationship of each variable between row-
ing and runuing. The level of significance was set at P<0.05.

Resuits

The rating of perceived exertion during rowing
was similar to during running (19.541.2 vs. 1944 1.3).
VEmax Was larger during ergometer rowing than
during treadmill running (males, 157+ 16 vs. 147 +
13Lmin~"; females, 114+9 vs. 105+ 11 Lmin "},
P<0.05). Also VO, was larger during rowing
compared to during running (males, 4.5+0.5 vs. 4.3+
0.4Lmin~%; females, 3.340.4 vs. 3.2+ 0.4 L min !
P <0.05).

Vemax during rowing was correlated to Vggpay
during running (r = 0.74, P<0.001; Fig. 1). Vemax
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during rowing was correlated to body mass (r=
0.78, P<0.001; Fig. 2) and fat-free mass (r = 0.84,
P<0.001; Fig. 3). Also Vg, during running was
correlated to body mass (r = 0.67, P<0.001) and fat-
free mass (r = 0.77, P<0.001).

VOzmax during ergometer rowing was correla-
ted to VOZmx during treadmill running (r = 0.96,
P<0.001). VOyp,, during rowing was related to
body mass (r=0.82, P<0.001) and fat-free mass
(r=0.86, P<0.001). Also VOyy,, during running
was related to body mass (r = 0.80, Z<0.001) and
fat-free mass (r = 0.89, P<0.001).

The ventilatory equivalent for oxygen during
rowing was similar to that derived during running
(males, 34.941.6 vs. 33.8+2.1; females, 34.1+2.2
vs. 32.6+3.7), and there was no significant gender
difference. Also, the ventilatory equivalent for oxy-
gen during rowing was correlated to that obtained
during running (» = 0.47, P<0.001; Fig. 1).

HRax was lower during ergometer rowing than
during treadmill rumming (males, 19448 vs. 198+ 11
beatsmin " !; females, 192+6 vs. 19648 beats
min~!, all P<0.05), and there was no gender
difference. HR ., during rowing was correlated to
that obtained during running (r =0.67, P<0.001;
Fig. 1).

Oxygen pulse was larger during rowing than
dunng running (males, 23.24+2.9 vs. 22.0+2. 8mL
beat ™ '; females, 17.4+ 1.8 vs. 16.74+1.9 mL - beat
P<0. 05} The oxygen pulse during rowing was corre-
lated to that achieved during running (r=0.95,
P<0.001; Fig. 1). Oxygen pulse during rowing was
correlated to body mass (r = 0.78, P< 0.001; Fig. 2)
and fat-free mass (r = 0.86, P<0.001; Fig. 2). Also
oxygen pulse during running was correlated to body
mass (7 = 0.76, P<0.001) and fat-free mass (r = 0.83,
P<0.001).

Discussion

It has been suggested that the cramp position of
rowing might impede the contraction of the dia-
phragm, attenuate the decrease in lung pressure
during inspiration, and thereby also decrease preload
of the heart, resulting in not only impaired breathing
but also a reduced cardiac output (Cunningham
et al., 1975; Rosiello et al., 1987). Also, during
rowing the Valsalva-like maneuver used to stabilize
the upper body while both legs are extended (Clifford
et al., 1994) could diminish the ventricular preload
during rowing (Cunningham et al, 1975; Rosiello
et al,, 1987). However, the findings of a higher Vgmax
and VOzm&x during rowing than running irrespective
of sex do not support these suggestions.

During rowing, locomotion drives ventilation and
this phenomenon is called entrainment (Siegmund
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response that is a product of a lower tidal volume
and a high respiratory frequency, resulting in a high
Ve (Szal & Schoene, 1989). The position during
rowing increases in central respiratory drive (Szal &
Schoene, 1989). The entrainment as well as the
position used during rowing causes hyperventilation
(Szal & Schoene, 1989; Siegmund et al., 1999).

The Frank—Starling mechanism indicates that
enhanced venous return, i.e. enhanced preload,
stretches the ventricle and augments stroke volume
(Tate et al., 1994; Wilmore & Costill, 1999). The
oxygen pulse is an index of stroke volume of the
heart . (Heath et al., 1981). Therefore, the higher
oxygen pulse during rowing than running does not
support the suggestion that preload of the heart is
lower during rowing than during running (Cunning-
ham et al., 1975; Rosiello et al., 1987).

HR 1s reported to be stable during rowing
(Secher, 1983). HR, ., does not seem to be affected
by sex (Wilmore & Costill, 1999). In this study there
were no significant differences of HRp.. between
females and males during the two types of exercise.
HRyax does not depend on the type of exercise
(Wilmore & Costill, 1999). However, we observed a
lower HR,ax during ergometer rowing than during
treadmill running, During rowing the subjects use
both the lower and upper body, while during running
they use mainly their legs (Secher, 1983). A higher
VOomax during rowing than duri ing running supports
the fact that rowing involved a larger muscle mass

Savard et al., 1989). During exercise, an increase in
active muscle mass enhances venous return and
central blood volume because of the muscle pump
(Davies & Sargeant, 1974; Klausen et al., 1982;
Toner et al., 1983), which enhances stroke volume
of the heart (Tate et al., 1994). Also, an elevated
central blood volume slows HR with a decrease
in sympathetic activity due to the cardiopulmo-
nary reflex (Ray et al, 1993; Van Lieshout et al.,
2001).

Body size affects Vg and aerobic capacity (Secher
et al., 1983; Rodgers et al., 1995; Jensen et al., 2001),
and this was observed regardless of sex. In this
study Vemax and VOamay increases as fat-free mass
increases. Fat-free mass is related to blood volume
and to stroke volume of the heart, indicating that a
large fat-free mass is associated with a high aerobic
capacity (Hunt et al., 1998). Also, oxygen pulse as
an indication of stroke volume of the heart (Heath
et al., 1981) was correlated to body mass and fat-free
mass independent of sex. The results are consistent
with the data from West et al. (1997).

For females their breast has been considered to
pressurize air in the lung while bending the body
forward during rowing (Cunningham et al., 1975;
Mahler et al., 1987). However, females possessed a
ventilatory equivalent for oxygen similar to that of
the males during both types of exercise, indicating
that a mechanical impairment on ventilation is not
substantiated.
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We showed that bending the body during rowing
does not seem to impair ventilation either in males or
in females. The findings suggest that ventilation,
oxygen consumption during exercise, and delivery of
blood to active muscles relate to body size and fat-
free mass rather than to the sex of the subjects. The
results of this study showed that the cardiorespi-
ratory response to (seated) ergometer rowing is
enhanced compared to (upright) treadmill running.
Also ergometer rowing attenuates an increase in
maximal heart rate compared to treadmill running,
The findings indicate that the involvement of more
muscles, the entrainment, and the position during
rowing facilitates ventilation and venous return for
both females and males.

Perspective

The present study indicates that rowing does not
impair the Vemax, VOimax, and oxygen pulse at
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maximal effort. These findings do mnot support
suggestions that the contraction of the diaphragm
and abdominal muscles during rowing reduces
ventilation and oxygen consumption (Cunningham
et al., 1975; Rosiello et al., 1987). Our findings are in
part explained by the fact that the locomotion and
ventilation coupling elicits high ventilation during
rowing (Siegmund et al., 1999). This study also
indicates a lower HRy.x and & higher oxygen pulse
during (seated) rowing compared to (upright) run-
ning. The findings are not in agreement with the fact
that the movement during rowing elevates a pleural
pressure and reduces venous return and the stroke
volume of the heart (Rosiello et al., 1987). Our results
appear to be responsible for the fact that the
involvement of more muscles increases venous return
as a muscle pump (Klausen et al., 1982), ephances the
stroke volume (Tate et al., 1994), and slows HR due
to the cardiopulmonary response (Ray et al., 1993;
Van Lieshout et al., 2001). The current study also
showed that cardiorespiratory response to rowing
related to body size irrespective of the sex of subjects.

Key words: rowing, cardiorespiratory responses, heart
rate, oxygen pulse, venous return, muscle pump,
locomotion and ventilation coupling, body size.
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We evaluated the impact of bilateral leg extension power and fat-free mass on 2000 m rowing ergometer
performance in 332 young oarsmen (age 21+2 years, height 1.76 +0.05 m, body mass 62+ 6 ke; mean5).
The 2000 m rowing petformance time was correlated with height (1.62-1.93 m; R®=0.23, P < 0.001), body
mass (53-95 kg; R*=0.53, P <0.001), fat-free mass (47-82 kg; R*=0.58, P<0.001) and bilateral leg
extension power (1202-3302 W; R?=0.38, P < 0.001). Multiple regression analysis selected fat-free mass and
bilateral leg extension power as regressor variables. Fat-free mass explained 58% of the variability in rowing
performance and the inclusion of bilateral leg extension power improved the power of prediction by 5%. The
results suggest that rowing involves almost every muscle in the body and that bilateral leg extension power is very

important during this activity.

Keywords: lower limbs, muscle mass, rowing.

Introduction

During rowing, the activated muscle mass is larger than
during leg exercise (e.g. running), since rowing engages
both the upper and the lower body musculature
(Secher, 1983, 2000). In particular, rthythmic exten-
sions of the leg muscles produce the propulsive power
required during rowing (Secher, 1983, 2000). This
involvement is illustrated when the strength of one- and
two-legged extension is compared. For both sedentary
males and active males who engage in physical activities
other than rowing, bilateral leg strength is lower than
the sum of the left and right leg strength, denoted the
‘bilateral strength deficit® by Secher (1975, 1983).
However, oarsmen possess the unique ability to develop
a bilateral leg strength that exceeds the sum of the
strength of the two legs (Secher, 1975, 1983). In the
light of the rowing motion, we hypothesized that the
ability to produce a high bilateral leg extension power
and a large fat-free mass are important for rowing.

* Address all correspondence to Chie C. Yoshiga, Department of
Anaesthesia, Rigshospitalet 2041, University of Copenhagen, Bleg-
damsvej 9, DK-2100 Copenhagen @, Denmark.

e-mail: yoshiga@rh.dk

Methods
Participants

Altogether, 332 young oarsmen [age 19-24 (21 +2)
years, height 1.62~1.93 (1.76+0.05) m, mass 53-95
(70 1 6) ke; range (mean + 5)] volunteered to participate
in this study. The participants had 2-8 years experience
of rowing and had trained 5 days a week on water or on
a rowing ergometer (16-20 km rowed each day;
Yoshiga ez al., 2002a). The participants were free from
any known neuromuscular disease and were not taking
any medication. All participants were informed of the
procedure and possible risks of the study before signing
a consent form. The study was approved by the Ethics
Committee of the National Institute of Health and
Nutrition.

Procedures and apparatus

Percent body fat was derived by the equation of Brozek ez
al. (1963) using body density (BOD POD System, Life
Measurement Instruments, Concord, CA, USA; Demp-
ster and Aitkens, 1995). Fat-free mass was assessed as the
difference between body mass and fat mass.

Mazximal bilateral leg extension power was deter-
mined using a dynamometer (Anaeropress 3500,
Combi Co., Tokyo, Japan). This movement involves
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knee and hip extensions in a coordinated manner. The
apparatus is suitable for evaluation of bilateral leg
extension power in healthy people based on evaluation
in individuals aged 6~90 years (Yoshiga et al., 2002b).
The participants were familiarized with the apparatus
for 8 weeks before evaluation and were able to press the
applied load using both legs. After a warm-up session
involving submaximal exercise, the participants as-
sumed a seated position with back supported. The
hips, knees and ankles were flexed 90° with the arms
resting on a bar. The participants were instructed to
press as hard as they could in a horizontal direction
against the plate, with the movement continuing umntil
both legs were fully extended. The power of this
bilateral leg extension was calculated from the set load
and the velocity averaged for the best two of five trials.
The time between trials was 20 s. If the two values
differed by more than 5%, the participant was requested
to repeat the trial.

On a separate day, the participants completed an all-
out 2000 m row on an ergometer {Concept II Model C,
Morrisville, VT, USA) designed to simulate the
duration, intensity and stroke rate of a race on water
(Secher, 1983). All participants were familiar with the
rowing ergometer from their daily training.

Statistical analysis

The data are reported as the mean +standard deviation
(s). Linear regression analysis was used to evaluate the
relationship between rowing performance time and the
physiological characteristics of the rowers. Forward
stepwise multiple regression analysis was used to
determine independent physiological correlates of row-
ing performance time. Comparison of linear and curvi-
linear regression equations was performed using a
general F-test (Kleinbaum and Kupper, 1978; Seiler ez
al., 1998; Montgomery and Runger, 1999). Additionally,
as rowing speed provides a more plausible regression
model than rowing performance time (Ingham et al,
2002), both linear and curvilinear regression analyses
were performed to examine the relationship between
rowing speed and the physiological characteristics of the
rowers. Statistical significance was set at P < 0.05.

Results

The range of 2000 m rowing performance times on the
ergometer was 378-498 s (425 4 20 s). Rowing perfor-
mance was related to height (r= -0.48, P <0.001),
body mass (r=-0.73, P<0.001), fat-free mass
(6246 kg, range 47-82 kg; r= —0.76, P <0.001) and
bilateral leg extension power (2260+367 W, range
1202-3302 W; r= —0.62, P <0.001) (Fig. 1).

Yoshiga and Higuchi

Multiple regression revealed that fat-free mass was
the strongest independent predictor of rowing perfor-
mance. Bilateral leg extension power accounted for an
additional 5% of the variance in rowing performance,
while body height and mass were not selected as
regressor variables. Thus, 2000 m rowing time (s) was
predicted as 598 minus 2,24 times the fat-free mass (kg)
minus 0.02 times the bilateral leg extension power (W)
(R*=0.63, P <0.001).

For the relationship between rowing performance
and bilateral leg extension power, a curvilinear regres-
sion provided a better fit to the variance in rowing
performance than a linear regression (41% of variance
‘explained’ by the curvilinear regression compared with
38% for the linear regression; F > Fy 309). Similarly, a
curvilinear regression showed an improvement in the
relationship between rowing performance and body
height, mass and fat-free mass (F > F} 320).

The range of rowing speeds over a 2000 m ergometer
row was 4.06-5.29 m-s™* (4.714+0.22 m-s™!). Row-
ing speed was related to height (r=0.49, P <0.001),
body mass (r=0.74, P <0.001), fat-free mass (r=0.77,
P <0.001) and bilateral leg extension power (r=0.63,
P <0.001) (Fig. 2). Also, a curvilinnear regression
revealed an improvement in the relationship between
rowing speed and body height, mass, fat-free mass and
bilateral leg extension power (F > F} 32q).

Discussion

Our results suggest that rowing requires the involve-
ment of almost all muscles in the body, including those

" in the legs, arms, back and trunk (Secher, 1983, 2000;

Yoshiga ez al., 2003). The rhythmic extensions of both
legs are a unique attribute of rowing (Secher, 1975,
1983). The main finding of this study is that both fat-
free mass and bilateral leg extensionn power were
independent physiological correlates of 2000 m erg-

- ometer rowing performance in young oarsmen.

Successful oarsmen tend to be tall with long arms and
legs so as to secure the length of the stroke (Secher,
1975, 1983). However, studies including less than 30
oarsmen have not yvielded a relationship between rowing
petformance and height (Jensen et al., 1996; Russell et
al., 1998; Cosgrove et al., 1999). In the present study,
we assessed a large cohort of young oarsmen and our
results demonstrate the advantage of being tall for high-
level rowing petformance.

For weight-bearing physical activities such as long-
distance running, a large body mass hinders exercise
performance (Hagberg ef al, 1985; Sjodin and Sve-
denhag, 1985). However, the results of the present
study indicate that a large body mass contributes to
favourable rowing performance, possibly because the
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body is supported during rowing (Secher, 1983).
Moreover, Secher and Vaage (1983) concluded that a
23 kg larger body mass gained an advantage of 10 sina
2000 m international rowing competition. These find-
ings confirm that body mass contributes to a favourable
rowing performance on an ergometer. It is believed that
the beneficial influence of body size on rowing
performance is due to the volume of the respiratory
system (West et al., 1997; Jensen ez al., 2001), which is
important because rowing is a type of physical activity
that requires the maintenance of a high ventlation
(Secher, 1983; Volianitis er al., 2001).

Secher (1983) noted a significant difference in fat-
free mass between winning oarsmen at international
regattas and internationally competitive oarsmen (87 vs
77 kg). Similarly, the present study involving 323 young
oarsmen provides supporting evidence that a large fat-
free mass helps an individual achieve a good perfor-
mance on a rowing ergometer {Secher, 1983; Cosgrove
er al., 1999; Yoshiga et al., 2000; Ingham e al., 2002).
This finding relates to the fact that more muscles are
involved in rowing (combined arm and leg exercise)
than in running (leg exercise) (Secher, 1983; Yoshiga
and Higuchi, 2002; Yoshiga ez al., 2003). Not only is

fat-free mass an indication of muscle mass and,
therefore, the energy source duting exercise (Khosla,
1983; Nevill and Holder, 1997; Wilmore and Costill,
1999), but it is also related to blood volume and to
stroke volume of the heart (Hunt e al., 1998). Thus
rowing enhances fat-free mass in both young and old
individuals (Yoshiga et al., 2001, 2002a,b). Equally,
rowing increases the volume and the wall thickness of
the heart in both young (Kuel ez al., 1982; Pelliccia et
al., 1991) and older oarsmen (Gustafsson e al., 1996).
Unlike running and cycling, which activate the legs
alternately, rowing combines intense dynamic exercise
with a need for the development of a large power output
during each stroke and, in particular, rowing involves
the simultaneous extension of both legs to develop
propulsive power (Secher, 1983, 2000). Physical
activity consisting of bilateral leg extension increases
bilateral leg strength so that it exceeds the sum of the
values obtained for unilateral leg stremgth (Secher,
1975; Shantz et al., 1989). As a result of regular rowing,
the bilateral leg extension strength and power of
oarsmen are greater than those of young (Secher,
1983; Yoshiga et al, 2001) and older sedentary
individuals (Yoshiga et al., 2002b). Moreover, there is
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a notable difference in bilateral strength between elite
and club oarsmen (Secher, 1975, 1983). These
observations help to explain why there is no significant
relationship between rowing performance and unilateral
leg strength or power (Secher, 1975, 1985; Kramer et
al., 1994) but there is an association between rowing
performance and bilateral leg extension power. The
results of the present study suggest that the ability to
produce power by engaging both legs together is a
requirement for successful rowing performance (Se-
cher, 1975, 1983, 2000) and that the major portion of
the propulsive phase takes place during the leg drive
among cxperienced oarsmen (Secher, 1983; Jensen et
al., 1996).

In conclusion, both 2000 m rowing performance and
bilateral leg extension power are correlated with the size
of the leg extensor muscles in oarsmen (Yoshiga et al.,
2002b). Qualified oarsmen tend to possess many slow-
twitch fibres and muscle fibres of large size in their leg
extensor muscles (Larsson and Forsberg, 1980; Secher,
1983, 2000; Roth et al., 1993). The findings of the
present study demonstrate the relevance of bilateral leg
extension power and fat-free mass for rowing perfor-
mance.
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