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General abstract 

 

 Sensations evoked by thermal stimulation (temperature-related sensations) can be 

divided into two categories, “temperature sensation” and “thermal comfort”.  While several 

studies have investigated regional differences in temperature sensation, less is known about 

the sensitivity differences in thermal comfort for the various body regions.  In this study, I 

examined regional differences in temperature-related sensations with special attention to 

“thermal comfort”. 

 In chapter 2, I reported the new system for monitoring sensations of many body parts 

as well as comprehensively showing the distribution of overall skin temperature and 

temperature-related sensations.  The system’s utility was demonstrated with physiological 

experiments.  Subjects were exposed to step change of ambient temperature.  This system 

greatly facilitates the perception and analysis of spatial relationships and differences in skin 

temperature and sensation in various areas of the body.  And in the physiological 

experiments, the face tended to show stronger discomfort during heat exposure than other 

areas of the body, and the abdomen tended to show stronger discomfort during cold exposure. 

 In Chapter 3, I examined regional differences in temperature sensation and thermal 

comfort by applying local temperature stimulation for the face, chest, abdomen, and thigh 

during whole-body exposure to mild heat or cold.  The thermal comfort seen in this study 

suggests that if given the chance, humans would preferentially cool the head in the heat, and 

maintain the warmth of the trunk areas in the cold.  As for the thigh, although the skin 

temperature change was always larger than that of other areas in all conditions, thermal 

comfort was never strongest, indicating that the thigh is insensitive for temperature change.  

The head contains the brain, preference for a low facial temperature in the heat would help 

avoid heat-induced damage to the brain.  Preference for a warm trunk area would help avoid 

cold-induced disorder of the internal organs.  Because there are no important organs such as 

brain in the thigh, characteristics in thermal comfort like that of the face and trunk would not 

be necessary for the thigh. 

 In Chapter 4, regional differences in temperature sensation and thermal comfort for 

the neck, abdomen, hand, and sole are examined with the same methods as Chapter 3.  

Although there was no difference between “local” thermal comfort of the hand and neck,  
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thermal stimulation of the hand produced less effect on “whole-body” thermal comfort than 

the stimulation of the neck.  And although the hand and sole showed larger skin temperature 

change than the neck, local and whole-body thermal comfort was never stronger for the hand 

and sole than the neck.  These peripheral parts inevitably show large temperature fluctuation.  

If the peripheral parts were sensitive for whole-body comfort, we would frequently feel 

whole-body thermal discomfort, which should be very stressful.  Therefore insensitivity of 

the peripheral part for thermal comfort is advantageous.  As for the neck, the characteristic 

in thermal comfort was in between those of the face and abdomen.  Because there is no 

important organs in the neck, characteristics in thermal comfort like that of the face and trunk 

would not have been developed for the neck. 

 Regional differences in thermal comfort investigated in this dissertation cannot be 

explained solely by the density or properties of the peripheral thermal receptors, and 

consistent with the biological roles of each body part.  Therefore I speculate that a CNS map 

weighing the input from each body area would be involved in the production of regional 

differences in thermal comfort. 

 These knowledge will be valuable not only for physiological understanding but also 

for the design of a comfortable environment, and efficient clothing in such field as sports.  

The results would also be valuable for the optimization of nursing and athletic conditioning 

practices. 
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Chapter 1 

General Introduction 

 

  In daily life or in fields of sports or nursing, we often use local cooling or warming to 

reduce whole-body warm or cold discomfort.  Sensations evoked by thermal stimulation 

(temperature-related sensations) can be divided into two categories, “temperature sensation” 

and “thermal comfort” (37).  Temperature sensation is utilized by the body to obtain 

information concerning the thermal condition of external objects or the environment, and is 

evoked by signals from warm and cold receptors in the skin.  The other category of 

temperature-related sensations, thermal comfort (which in this paper also embraces thermal 

discomfort) is important for temperature regulation in that it drives an individual to search for 

the appropriate thermal environment, or to make local alterations or postural changes to 

maintain normal body temperature.   

 

1. 1 Temperature sensation 

  Temperature sensation is divided into “warm sensation” and “cold sensation”.  Painful 

hot sensation and painful cold sensation are evoked by temperature above 45ºC and below 

17ºC respectively.  Further on strong heat stimulation above 45 ºC one can feel a peculiar 

quality of cold that has been called “paradoxical cold sensation” (1, 30, 31, 37, 86).  Both 

warm and cold sensation have static and dynamic components. 

 

Static temperature sensation (adaptation) 

  While constant temperatures nearby skin temperature evoke instant warm or cold 

sensation, the temperature sensation disappear (adaptation).  The temperature range that the 

adaptation occur is called “neutral zone”.  Above or below the neutral zone, even long and 
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constant temperatures evoke cold or warm sensation.  For example, the neutral zone is 30 - 

36 ºC for the thermal stimulation of 15 cm2 to the forearm (43).  The bigger magnitude of 

skin temperature changes, the longer time required for the adaptation (36).   

    

Dynamic temperature sensation 

  To investigate the characteristics of dynamic thermal sensation, detection threshold to 

warming and cooling were often measured applying equal cooling or warming steps at 

various adapting temperature.  The dynamic thermal sensations depend on i) rate of skin 

temperature change, ii) adapting temperature, iii) stimulus area. 

  When a small cutaneous area (e.g. 20 cm2) is adapted to a temperature of 34 ºC, the 

subject will feel neither warm nor cold.  Linear temperature rises from this point of 

indifference lead to warm sensations, linear cooling to cold sensations.  The threshold of 

warm or cold sensations deviates the more from this point, the slower the temperature is 

changed.  By plotting the rate of change versus the thermal threshold, a hyperbolic function 

is obtained (Fig. 1-1) (37). 

  Starting from various adapting temperatures, the threshold for warm sensations at equal 

rates of warming increases with decreasing adapting temperature (Fig. 1-2) (37).  An 

analogous behavior has been found for cold sensations.  The fact that the warm thresholds 

increase at lower adapting temperature, while the highest cold thresholds are found at high 

adapting temperatures (35, 43). 

  Some investigations have revealed a considerable influence of stimulus area on 

threshold.  The threshold for warm sensations at equal rates of warming increases with 

decreasing the stimulus area (Fig. 1-3) (36, 37, 80). 
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1. 2 Cutaneous thermoreceptors 

  The above-noted characteristics of static and dynamic thermal sensations depend on the 

characteristics of cutaneous thermoreceptors.  In neurophysiological terms, the general 

properties of specific cutaneous thermoreceptors can be described as follows: i) they have a 

static discharge at constant temperature (T), (іі) they show a dynamic response to temperature 

change (dT/dt), with either a positive temperature coefficient (warm receptors) or a negative 

coefficient (cold receptors); (ііі) they are not excited by mechanical stimuli; (іv) their activity 

occurs in the non-painful or innocuous temperature range (37).      

  The variety of cutaneous thermoreceptors can be divided, by the criterion of their 

dynamic response, into the well-defined classes of warm and cold receptors (38).  

Irrespective of the initial temperature, a warm receptor will always respond with an overshoot 

of its discharge on sudden warming and a transient inhibition on cooling, whereas a cold 

receptor will respond in the opposite way, namely, with an inhibition on warming and an 

overshoot on cooling.  Besides this dynamic behavior there are also typical differences in the 

static frequency curves of both types of cutaneous receptors, in that the temperature of the 

maximum discharge is much lower for cold receptors than it is for warm receptors (37).   

 

Cold receptors 

  At constant skin temperature in the normal range all cutaneous cold receptors exhibit a 

static discharge with constant impulse frequency.  The static impulse frequency of individual 

cold receptors rises with temperature, reaches a maximum and falls again at high temperature.  

For various cold fibers in different species the static maxima are scattered over a temperature 

range from -5 to 40ºC.  The average static maxima of larger cold fiber populations in various 

skin areas are rather similar, ranging from 25 to 30ºC in monkeys, cats, and rats (Fig. 1-4) 

(27, 37, 42).      
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  Cold fibers show a dynamic response to cooling steps.  When equal cooling steps are 

applied at various adapting temperatures, the dynamic overshoot is a function of temperature 

and follows approximately the shape of the static activity curve (37, 44).  The higher the rate 

of cooling at a given adapting temperature, the higher is the dynamic responses (35, 57).  

Likewise the larger the magnitude of temperature decrease is, the more frequent the dynamic 

responses become (22). 

  

Warm receptors 

  At constant temperature, warm receptors exhibit a static discharge that begins in the 

range above 30ºC, increases its frequency with rising temperature and decreases again at still 

higher levels.  The maximum static frequency of individual warm receptors in various 

species is scattered over a temperature range from 41 to 47ºC (Fig. 1-4) (35, 37, 39, 42, 47). 

  Dynamic activities of warm receptors are also influenced by initial temperature, rate of 

warming, and the magnitude of temperature increase like the cold receptors (46).  

 

  These properties of cutaneous thermoreceptors should depend on function of a subset of 

the transient receptor potential family of ion channels, which are expressed in sensory nerve 

endings and in skin, respond to distinct thermal thresholds (Thermo TRPs) (24).    

 

1. 3 Distribution of peripheral warm and cold spots over the body surface 

 While it is difficult to quantitatively evaluate differences in the density of skin 

thermoreceptors in humans, the density of “warm and cold spots” would be expected to 

correlate positively with the density of warm and cold receptors (37).  The distribution of 

warm or cold spots was investigated by using pointed thermal stimulators and counting warm 

or cold sensitive points per a certain area over the various body surfaces.  The distribution of 
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peripheral warm and cold spots over the body surface is not uniform (Fig. 1-5, 6) (49, 69, 82, 

85).  The cold spots are particularly dense for the face and trunk areas, especially for the 

lips, least for the foot and lower legs, and intermediate for the upper limbs and thigh.  As for 

the warm spots, while the density is less than the cold spots, the face has particularly dense 

warm spots, on the other hand the sole has the thinnest dense.  

 

1. 4 Regional differences in temperature sensation 

  Interestingly, the sensitivity of temperature sensation is not uniform, but rather depends 

upon the body region.  The regional difference in the ability of detecting thresholds to 

warming and cooling should be related to the distribution of the warm and cold spots.  

Among the body surface the thresholds were lowest for the face, especially the lip, and 

highest for the calf and foot (79).  As for suprathreshold thermal sensitivity, although high 

enough levels of warm stimulation were estimated to feel nearly the same to all body regions, 

low to moderate levels of warm stimulation were estimated to feel warmest in the forehead, 

intermediate in the torso, and least warm in the limbs (80).  Further the forehead showed a 

much greater suprathreshold cold sensitivity, than back, lower leg, chest, thigh, and abdomen 

in a 39ºC environment (19).  However, in neutral ambient temperature, the head was least 

sensitive to cold as compared with trunk and limbs (77).  Thus, regional temperature 

sensitivity might depend on thermal conditions of environment. 

 

1. 5  Afferent innervation and receptive fields of temperature sensation  

  Neurons responding to innocuous thermal stimulation of the skin are located in the 

lamina I of the spinal cord (25, 32).  Signals from these neurons then reach the thalamus, 

mainly in the posterior part of the ventral medial nucleus (Vmpo) in primates (17).  Recent 

studies on humans that utilized positron emission tomography (PET) or functional magnetic 
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resonance imaging (fMRI) have shown that thermal signals from skin seen to reach several 

regions in the cerebral cortex, including the insula, primary and secondary somatosensory (SI 

and SII), orbitofrontal, and cingulated cortices (7, 18, 23, 76).    

 

1. 6 Body temperature regulations 

  In both the heat and cold, homeothermic animals utilize behavioral and autonomic 

effecter responses to regulate their body temperature (40, 62).  As behavioral responses, 

animals seek preferable thermal environment or change posture.  We human beings take on 

or off clothes or just turn on air-conditioner.  Behavioral thermoregulation are driven by 

“thermal comfort/discomfort”.  Because behavioral responses, when available, are quicker 

and less energetically costly than autonomic responses, the behavioral responses are activated 

before autonomic responses.  However, if these behaviors are not fully effective or do not 

fulfill the immediate thermal requirements, autonomic responses are activated.  For example, 

as an autonomic process, human beings dilate the skin blood vessels in the heat, which 

redistribute warm blood in the body core to the body surface and increase dry heat loss.  We 

also sweat to facilitate evaporative heat loss.  In the cold, human beings constrict the skin 

blood vessels, and decrease heat loss from the skin surface.  We also generate heat by 

increasing muscle tonus (shivering thermogenesis) or by activating metabolism in the brown 

fat cells (non-shivering thermogenesis), which is seen in neonates and disappears in adults.  

The autonomic and behavioral regulations in both the heat and cold are produced by signals 

from thermoreceptors of the body (40, 62).  The thermoreceptors are distributed in the skin, 

the hypothalamus and other brain areas and the body core (83).  This multiple-input/output 

system is controlled primarily by the central nervous system.  The hypothalamus in the brain 

plays a central role in autonomic thermoregulation (28).  Especially, the preoptic area (PO) 

in the hypothalamus is thought to be the most important region (40, 62).  Although we know 
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little about the mechanism involved in behavioural thermoregulation, Satinoff et al. reported 

that lesions of the lateral hypothalamus resulted in loss of behavioural thermoregulation (75).    

 

1. 7 Thermal comfort 

  As mentioned above, thermal comfort is important for body temperature regulation in 

that it drives an individual to search for a better environment to maintain optimal body 

temperature.  While temperature sensation is not affected by body core temperature, thermal 

comfort depend on the thermal state of the body (5, 6, 14, 48, 59).  For example, the hand 

warming produces a comfortable or uncomfortable feeling when the individual is 

“hypothermic” or “hyperthermic”.  A thermal stimulation is felt comfortable when it serves 

to regain appropriate body temperature, and felt uncomfortable when it worsens internal 

thermal conditions.  Humans have little problem discerning local from whole-body 

sensations for thermal comfort.  For example, during cold exposure if one dips the hands 

into warm water he/she would feel local comfort of the hand but simultaneously whole-body 

discomfort would remain. 

  The hypothermia or hyperthermia is not determined by the absolute body temperature, it 

depends on the level at which body temperature is regulated (set point).  Therefore, when the 

body temperature is lower than the set point, it is called hypothermia, and when the body 

temperature is higher than the set point, it is called hyperthermia.  In normal condition 

human body temperature is maintained around 37ºC, therefore the set point is around 37 ºC. 

  Fever has been extensively reviewed (9, 45, 54-56, 72).  During a fever’s first phase, 

autonomic effectors and thermoregulatory behaviour are all modulated to increase body 

temperature (87).  In a fever the set point shift higher level than the normal state, and body 

temperature of 37ºC is lower than the set point.  Therefore, during a fever’s first phase, even 

if our body temperature is 37ºC, such a state is hypothermia, and we feel whole-body cold and 
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uncomfortable, and we feel comfortable for warming stimuli.  Such thermal comfort during a 

fever’s first phase drives an individual to search for a warmer environment and the behaviour 

help to raise body temperature.  Fever is beneficial for the organism in that it facilitates 

activation of immune system and suppresses proliferation of bacteria (10, 15, 51, 70). 

  Experiments on rodents (20), and humans (90, 91) have shown that for low doses of 

alcohol, autonomic effectors and thermoregulatory behaviour all operate to decrease body 

temperature, it means that the set point shift to lower level.  During mild cold exposure, 

whole body sensations of cold and thermal discomfort were greatly diminished after drinking 

alcohol (Fig. 1-7) (91), and during mild heat exposure whole body sensation of hot was 

increased (Fig. 1-8) (90).  These changes of thermal sensation and thermal comfort drives an 

individual to search for a cooler environment and facilitate to decrease body temperature.  

The decrease in body temperature after alcohol administration is beneficial.  Ethanol 

increases the fluidity of cell membranes which interferes with many functional aspects of the 

cell.  This disruption can be counteracted to some extent by decreasing the temperature of 

the cell, thus returning cell membrane fluidity to more normal levels (20).   

  It could be said that thermal comfortable feeling is obtained when environmental 

condition is appropriate for keeping optimal body temperature to maintain the organismic 

functions.  

 

1. 8 Neuronal mechanism of thermal comfort 

  It is generally assumed that inputs from the same warm or cold skin thermoreceptors are 

utilized for both temperature sensation and thermal comfort, although there is no direct 

experimental evidence for this supposition.  While the neuronal mechanism of thermal 

comfort is poorly understood, the amygdala, mid-orbitofrontal and pregenual cingulate cortex, 
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and striatum, and cerebellum have been implicated in the genesis of thermal comfort (41, 71, 

84). 

 

1. 9 Previous study of regional difference in thermal comfort 

  Cotter and Taylor (16) assessed whole-body thermal comfort when local thermal 

stimulation of various skin sites was applied in mildly heat-stressed humans.  While they 

reported that the face displayed stronger sensitivity than other body regions for producing 

changes in whole-body thermal comfort, they did not analyze how the stimulated site itself 

was locally felt.  Zhang et al. (92) and Arens et al. (2) measured both local and whole-body 

thermal comfort by applying local warming and cooling in a warm, neutral or cool 

environment.  Sensitivity differences between the local areas could not be directly 

compared, however, because the size of local temperature stimulation was different among 

the areas stimulated.  Attia and Engel (4) reported that the thermal alliesthesial response in 

man is independent of the skin location stimulated using a small thermal stimulator of 55 mm 

long and 27 mm wide.  However, thermal pleasure does depend on the dimension of area 

stimulated (52).  Regional differences in thermal comfort are more likely when using a 

larger thermal stimulator.  Therefore, little is known about how the elicitation of thermal 

comfort, local as well as whole-body, differs among certain body regions.   

 

1. 10 Purpose of the thesis 

  Understanding how the elicitation of thermal comfort, local as well as whole-body, 

differs among certain body regions is the goal of this study.  The information will be 

valuable not only for physiological understanding but also for the design of a comfortable 

environment, and efficient clothing for such field of sports.  The results will also aid in the 

optimization of medical, nursing, and athletic conditioning practices.     
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1. 11 Outline of the thesis 

  To these ends, I conducted three series of experiments.  In Chapter 2 a new system for 

monitoring sensations of many body parts as well as comprehensively showing the 

distribution of overall skin temperature, temperature sensation, and thermal comfort is 

reported.  In Chapter 3 regional differences in temperature sensation and thermal comfort 

are examined by applying local temperature stimulation for the face, chest, abdomen, and 

thigh during whole-body exposure to mild heat or cold.  In Chapter 4 regional differences 

in temperature sensation and thermal comfort for the neck, abdomen, hand, and sole are 

examined with same methods as Chapter 3.  In Chapter 5 I discus the mechanisms for the 

production of regional differences in temperature sensation and thermal comfort, and 

limitation and future direction of this study.  

 

1. 12 Published papers concerned with this dissertation 

This dissertation is based on the following manuscripts and a book. 

 

1. Nakamura M, Yoda T, Crawshaw LI, Yasuhara S, Saito Y, Kasuga M, Nagashima K, and 

Kanosue K. Regional differences in temperature sensation and thermal comfort in humans. J 

Appl Physiol (in press, 2008). 

2. Yoda T, Crawshaw LI, Saito K, Nakamura M, Nagashima K, and Kanosue K. Effects of 

alcohol on autonomic responses and thermal sensation during cold exposure in humans. 

Alcohol 42: 207-212, 2008. 

3. Nakamura M, Esaki H, Yoda T, Yasuhara S, Kobayashi A, Konishi A, Osawa N, 

Nagashima K, Crawshaw LI, and Kanosue K. A new system for the analysis of thermal 

judgments: multipoint measurements of skin temperatures and temperature-related sensations 

and their joint visualization. J Physiol Sci 56: 459-464, 2006. 
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4. Yoda T, Crawshaw LI, Nakamura M, Saito K, Konishi A, Nagashima K, Uchida S, and 

Kanosue K. Effects of alcohol on thermoregulation during mild heat exposure in humans. 

Alcohol 36: 195-200, 2005. 
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Figure 1-1.  Average thresholds (∆T) of warm and cold sensations on the forearm (20 cm2) 
as a function of rate of temperature change.  Dashed lines thresholds; solid lines distinct 
sensations. (From Hensel, 1981) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-2.  Average thresholds (∆T) of warm on the hand as a function of adapting 
temperature (T) for linear temperature rises from 0.0017 to 0.017°C s-1. (From Hensel, 1981) 
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Figure 1-3.  Average thresholds (∆T) of warm sensation on the forearm for linear 
temperature rises of 0.017°C s-1 as a function of stimulus area (F).  Initial temperature 30°C. 
(From Hensel, 1981) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-4.  Average static discharge frequency of populations of cold and warm fibres as 
function of skin temperature. (From Hensel, 1981)  
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Figure 1-5.  The distribution of peripheral cold spots over the body surface. 

                                (From Lee and Tamura, 1995) 
 
 
 
 
Warm spots 
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Figure 1-6.  The distribution of peripheral warm spots over the body surface.  

                              (From Tamura and Lee, 1995) 
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Figure 1-7  Scores of subjective (A) thermal sensation and (B) thermal comfort sensation in 
the alcohol and control sessions during mild cold exposure.  (A) Positive and negative values 
indicate hot and cold sensations, respectively, and the score 0 indicates neutral (no sensation 
at all).  Maximum score is 5 and minimum score is -5.  (B) Positive and negative values 
indicate comfort and discomfort, respectively, and the score 0 indicates neutral.  The arrow 
shows the time of drinking alcohol or water.  Values are means ± S.E.M. (n = 8). *P < 0.05 
(alcohol vs. control sessions).  (From Yoda et al., 2008) 
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Figure 1-8  Scores of subjective thermal sensation (A) and thermal comfort sensation (B) 
during the alcohol and control sessions during mild heat exposure.  (A) Positive and 
negative values indicate hot and cold, respectively, and the score 0 indicates neutral. 
Maximum score is 5 and minimum score is -5.  (B) Positive and negative values indicate 
comfortable and uncomfortable, respectively, and score 0 indicates neutral.  (C, D) Values 
which are changes from the averages in the period prior to drinking (-20 to 0 min).  The 
arrows show the time of drinking alcohol or water. Values are means ± S.E.M. (n = 8).  *P < 
0.05, alcohol versus control sessions.  (From Yoda et al., 2005) 
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Chapter 2 

A new system for the analysis of thermal judgments: multi-point 

measurement of skin temperatures, temperature related sensations, and 

their joint visualization. 

2. 1 Introduction 

To investigate detailed regional sensitivity in temperature-related sensations 

(temperature sensation and thermal comfort), a global assessment of Tsk is necessary.  

However to estimate the thermal state of the body surface, skin temperature (Tsk) is generally 

measured from a limited number of points (usually less than 10) and averaged to get a mean 

skin temperature (mean Tsk).  While infrared thermography is commonly used for this 

purpose, it has limitations: e.g., it can not detect the Tsk of areas that are covered with clothes 

or that do not directly face the camera.  Multi-point measurement of sensations is also 

required to clarify the regional sensitivity of temperature-related sensations.  While verbal 

reporting is typically used to measure temperature-related sensations, this approach is 

inconvenient for a large number of skin loci which must be assessed in rapid succession.  

For the present study we developed a new system to analyse the distribution of whole body 

skin temperature and temperature-related sensations.  Therefore, I directly measured Tsk at 

50 locations and concurrently obtained measurements of local temperature sensation and 

thermal comfort at 25 locations.  I created a computer-generated display of the data in order 

to facilitate visualization and interpretation of the results.  To evaluate the system I 

conducted a physiological experiment in which human subjects were exposed to heat and 

cold.  I confirm the utility of the new system in that the overall characteristics of Tsk and 

temperature-related sensations can be easily obtained and displayed in a format that is easy to 

comprehend. 
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2. 2 Methods 

The system for monitoring sensations of many body parts 

 Temperature sensations and thermal comfort at 25 areas of the body surface (head, 

chest, abdomen, neck, back, lumbus, buttocks, as well as right and left of upper arm, forearm, 

dorsum of hand, palm, anterior thigh, posterior thigh, lower leg, instep, sole), plus those of the 

whole body are reported with a console of 52 levers (Fig. 2-1).  Levers in the upper row are 

used for the report of thermal comfort and levers in the lower row are used for the report of 

temperature sensations.  There are 26 levers in each row; one lever is used for reporting 

overall sensation and the others are used for reporting local sensations of the 25 body areas.  

The levers can be moved up and down on a 5 cm straight line.  The center of the line 

represents “neutral” (neither pleasant nor unpleasant for thermal comfort, and neither cold nor 

hot for temperature sensation).  Moving the lever up represents increasing degrees of 

comfortable or hot (depending on the lever) and moving the lever down represents increasing 

degrees of uncomfortable or cold (depending on the lever).  Increasing the distance of the 

levers from the center of the line produces increases in voltage, which are stored in a 

computer.  The voltage is calibrated to correspond to the score of the relative intensity of the 

sensations that are defined to be from -5 (the lowest point of the scale) to +5 (the uppermost 

point of the scale). 

 The data of Tsk measured from 50 sites of the body (Fig. 2-2) and local temperature-

related sensations displayed on the human body model with custom made software are 

illustrated in Fig. 2-3.  The body model is divided into 25 parts.  The data obtained from 

each body part are displayed with color coding.  The model can be rotated so that the 

distribution of Tsk and the sensations are visible from any angle. 
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Human experiment (Experiment 1 and 2) 

The experiments were done with three males (mean ± S.E.M., age 32.3 ± 9.9 years, 

W 79 ± 7 kg, H 1.76 ± 0.02 cm) and three females (age 23.3 ± 2.4 years, body weight 55.8 ± 

6.5 kg, height 1.63 ± 0.07 cm).  Each subject gave informed consent for the experimental 

protocol, which was approved by the Human Research Ethics Committee in School of Sport 

Sciences, Waseda University.  

 Subjects fasted from 7:00 AM on the day of the experiment.  They arrived at the 

laboratory at 8:30 AM, dressed in a T-shirt and short pants, and entered the environmental 

chamber which was maintained at 25°C (Experiment 1) or 30°C (Experiment 2) with relative 

humidity 50%.  Subjects rested in a sitting position while all measuring devices were 

applied.  Next, they were exposed to step changes of ambient temperature (Ta). In 

Experiment 1, the order was cold (23°C, 80 min), neutral (28°C, 80 min), and hot (33°C, 80 

min); in Experiment 2, step changes were of the reverse order but of the same duration.  

Relative humidity at each step was 50%.  Tsk at 25 sites on each side of the body (total = 50 

sites) was measured with copper-constantan thermocouples (Fig. 2-2).  Core temperature 

(Tco) was measured with a telemetry system (CoreTemp2000, HTI Technologies, Inc.).  For 

this measurement a transmitter pill was swallowed 3.5 hour before the initiation of the 

experiment.  Tsk and Tco were recorded every 30 seconds.  Temperature sensations and 

thermal comfort at 25 areas of the body surface and those of the whole body were reported by 

the subjects using the aforementioned console.  The subjects were instructed that the upper 

and lower extents of the console lever indicated the greatest sensation.  Each sensation was 

reported by subjects whenever they felt a change; the data were recorded every 30 seconds 

along with Tsk and Tco.  
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2. 3 Results 

Fig. 2-4 shows overall thermal states and overall temperature-related sensations 

averaged for the six subjects of Experiments 1 and 2.  Mean Tsk was calculated utilizing the 

formula of Hardy and DuBois (33).  Mean Tsk increased and decreased with corresponding 

changes of Ta.  Tco was maintained about 37°C throughout all experiments.  In Experiment 

1 scores of overall temperature sensation and thermal comfort were “cold” and “unpleasant” 

at a Ta of 23°C, shifted to “neutral” at 28°C, and gradually became “hot” and “uncomfortable” 

at 33°C.  In Experiment 2 the “hot” and “uncomfortable” sensation at a Ta of 33°C was 

greater than that of Experiment 1, and became “neutral” at 28°C, and immediately became 

“cold” and “uncomfortable” at 23°C.    

Fig. 2-5 shows the color coding presentation on the human model of local Tsk, scores 

of local temperature sensation, and local thermal comfort.  These values are the averages for 

the six subjects, for the last 10 minutes at each Ta level.  With this display, regional 

differences in Tsk and the sensations, and changes of them in different conditions, can be 

easily seen.  In Experiment 1, at a Ta of 23°C, Tsk decreased mainly in the distal appendages, 

and the local cold sensation and discomfort were strongest on the instep.  Interestingly, 

though the trunk area was at a higher temperature than that of the limbs, the same degree of 

cold discomfort as the limbs was shown by the abdomen.  At a Ta of 33°C in both 

Experiments 1 and 2, the difference in Tsk among body areas was small, although local hot 

sensation and discomfort were particularly strong in the head area.  In Experiment 2, at a Ta 

of 23°C, while the overall distribution of Tsk was similar to that of Experiment 1, the local 

cold sensation and discomfort extended to a wider area than in Experiment 1.  

Fig. 2-6A shows the relationships between Tsk and local thermal comfort for the 25 

body areas at the end of the Ta 23°C steps of Experiments 1 and 2.  In Experiment 1, Tsk of 

the instep was the lowest and showed the strongest cold discomfort (blue arrow in Fig. 2-6A).  
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In Experiments 1 and 2, Tsk of the abdomen shows the highest temperature, but relatively 

stronger thermal discomfort due to cold was shown (green arrows in Fig. 2-6A).  Fig. 2-6B 

shows the relationships between Tsk and local thermal comfort at the end of the Ta 33°C steps 

of Experiments 1 and 2.  The difference in the Tsk among each of the body areas was small, 

but local unpleasantness in the heat was particularly strong in the head area (red arrows in 

Fig. 2-6B). 

 

2. 4 Discussion 

The recording of verbal reports is often used to assess temperature-related sensations.  

This technique is difficult to utilize when many body regions are being monitored.  By using 

the console developed in the present study, subjects only moved the levers when they felt a 

change in the sensations at a particular body region.  In the present experiments, Ta was 

changed in steps, and maintained at each step for a long period.  When Ta was stable, 

subjects moved the levers much less frequently.  When the ambient temperature was 

changed, however, sensations changed markedly, and the subjects had to move many levers in 

rapid succession.  Nevertheless, this procedure is easier and more straightforward than 

would have been the case with recording verbal responses. 

In the present study I measured local skin surface temperatures and temperature 

sensations and thermal comfort concurrently and in detail.  Although it may seem time-

consuming to set up so many temperature sensors, if it is done systematically it takes only an 

hour and the subjects are not unduly constrained.  Since it is very difficult to interpret this 

volume of data if all numerical values are plotted against time, I developed software to 

visualize the distribution of Tsk, temperature sensation, and thermal comfort.  Infrared 

thermography is generally used to obtain such a temperature distribution of the entire body 

surface.  But, since the measured areas must be visible from the camera, many areas cannot 
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be assessed.  With the present system, the whole body surface, including areas covered by 

clothing, could be displayed on a human body model.  In addition, the distribution of 

temperature-related sensations could also be displayed on an identical model.  The resulting 

display makes it easy to perceive spatial relationships and differences in temperature and the 

temperature-related sensations of the various areas of the body surface. 

Although the present experiment was performed largely for establishing the validity 

of the new system, several interesting aspects of sensitivity in temperature sensation and 

thermal comfort were obtained and will be noted.  At the Ta 33°C step of Experiment 1, 

overall hot and uncomfortable sensations were weaker than those of Experiment 2 (Fig. 2-4).  

In Experiment 2, before the experiments started, subjects were exposed to Ta 30°C for about 

100 min.  But in Experiment 1, before the Ta 33°C step, subjects were exposed to Ta 23°C 

and 28°C.  Thus in Experiment 1, Tco tended to be lower than at the Ta 33°C step of 

Experiment 2.  This probably caused weaker hot and uncomfortable sensations in 

Experiment 1.  On the other hand at the Ta 23°C step of Experiments 1 and 2, though 

previous conditions were different (In Experiment 1, Ta before the start of the experiment was 

25°C), differences in the overall sensory estimations were not apparent.  Further, there were 

no differences in the subjects’ Tco in this case.  

At the Ta of 23°C in Experiment 1, the strongest cold and the most uncomfortable 

sensations were felt in the feet (Fig. 2-5).  However, this does not necessarily imply that the 

feet are the most sensitive for feeling cold.  Rather, it might simply be due to a large 

decrease in the local skin temperature (blue arrow in Fig. 2-6A) caused by strong 

vasoconstriction in the lower extremities.  On the other hand, while Tsk of the abdomen was 

the highest, relatively strong discomfort from cold was obtained (green arrows in Fig. 2-6A) 

in this area, suggesting that the abdomen is especially sensitive for the production of cold 

discomfort.  At a Ta of 33°C, in both experiments, Tsk was similar over the entire body 
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surface.  However, the head area subserved input for particularly hot and uncomfortable 

sensations (red arrows in Fig. 2-6B).   

In this chapter I demonstrated a new system that was useful to display the distribution 

of Tsk and local temperature related sensations.  Further regional characteristics in the 

production of thermal comfort, especially those of 7 areas, will be described in the chapter 3 

and 4.  
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Figure 2-1.  A console with 52 levers for reporting temperature-related sensations.  The 
levers in the upper row are used for the report of thermal comfort and those in the lower row 
are used for the report of temperature sensations.  Among 26 levers in each row one is used 
to report overall sensation and the others are used to report local sensations of 25 body areas. 
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Figure 2-2.  The fifty sites for skin temperature measurement. 
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Figure 2-3.  Color-coded representation of overall skin temperature.  The human body 
model can be rotated so that it is possible to see the distribution of Tsk and the sensations from 
any angle.  
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Figure 2-4.  Ambient temperature (Ta), overall mean skin temperature (mean Tsk), core 
temperature (Tco), overall temperature sensation and thermal comfort in Experiments 1 (A) 
and 2 (B).  Values are means ± SEM (n = 6).    
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Figure 2-5.  Color coded skin temperature (top), scores of local temperature sensation 
(middle) and the local thermal comfort (bottom) averaged for 10 minutes at the end of each Ta 
level in the Experiment 1 (left) and 2 (right).  Values are the average for six subjects. 
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Figure 2-6.  The relationships between Tsk and local thermal comfort for the 25 body areas 
averaged for 10 minutes at the end of the exposure to Ta 23°C (A) and Ta 33°C (B) in the 
Experiment 1 and 2.  Values are means (n = 6).   
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Chapter 3 

Regional differences in temperature sensation and thermal comfort among 

the face, chest, abdomen, and thigh 

 

3. 1 Introduction 

  In chapter 2 I developed a system to monitor temperature-related sensations of many 

body locations as well as to comprehensively depict the distribution of overall skin 

temperature (Tsk) and the local sensations (64).  In an initial experiment, subjects were 

exposed to step changes of ambient temperature from 23ºC to 33ºC and asked to assess the 

temperature sensation and thermal comfort at many surface areas.  The face tended to show 

stronger discomfort during heat exposure than other areas of the body, and the abdomen 

tended to show stronger discomfort during cold exposure.  These tendencies are interesting 

but not conclusive, since the experiment was done only with whole-body heat or cold 

exposure.  Thus, Tsk differed depending on body area, which made an accurate comparison 

of sensation in different areas difficult.   

  Understanding how the elicitation of thermal comfort, local as well as whole-body, 

differs among the face, chest, abdomen, and thigh is the goal of this chapter.  I paid special 

attention to the face and abdomen, since as noted above, these areas showed unusual 

tendencies in thermal comfort in Experiment 1 and 2.  To these ends, I examined regional 

differences in temperature sensation and thermal comfort by applying local temperature 

stimulation during whole-body exposure to mild heat or cold.  
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3. 2 Methods 

Experiment 3 (mild heat exposure) 

Subjects 

  Eleven healthy male subjects (mean ± S.E.M., age 23.0 ± 0.7 years, W 66.2 ± 1.7 kg,  

H 1.73 ± 0.02 m) participated in this study.  Each subject gave informed consent for the 

experimental protocol, which was approved by the Human Research Ethics Committee in the 

Faculty of Sport Sciences, Waseda University.  The experiments were conducted in 

accordance with the Declaration of Helsinki.  Subjects were instructed to avoid alcohol 

(from the evening of the day before the experiment), caffeinated drinks, hot food and physical 

training (on the experiment day), and eating (for at least 1 h prior to participation in the 

experiment).   

 

Experimental procedure 

  The experiments were done in the period from November to December, 2006.  

Subjects arrived at the laboratory at 9:30 a.m. or 2:30 p.m., changed to short pants (only), and 

entered a climatic chamber which was maintained at 32.5 ± 0.5 (S.E.M)ºC with a relative 

humidity of 50%.  Subjects rested in a sitting position while all measuring devices and 

thermal stimulators were applied.  About 1.5 h after arrival, the local warming and cooling 

protocol was initiated with water perfused stimulators (0.027 m2) made with vinyl tubes 7 mm 

in diameter (Fig. 3-1).  Thermally conductive sheet (GP1-0.5, Kitagawa Industries Co., Ltd.) 

of 0.027 m2 was stuck to the contacting surface of the stimulator so as to facilitate heat 

conductance.  The perfusion water for the basal condition was set at 35ºC, for warming at 

42ºC, and for cooling at 25ºC, and supplied to the stimulators from three thermostatic 

bath/circulators (Ecoline Low-temperature thermostats RE 206, LAUDA DR. R. WOBSER 

GMBH & CO. KG).  Flow to the stimulators was controlled using three-way valves.  The 
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areas stimulated were the face, chest, abdomen, and thigh (Fig. 3-2).  Each stimulus lasted 

90 s.  The interval between stimulation of different areas was 4.5 min (Fig. 3-3).  The order 

of stimulation of the four areas was randomized and the order of cooling and warming was 

balanced among all subjects.  

 

Measurements 

  Temperature sensation and thermal comfort of the stimulated area, and whole-body 

thermal comfort were reported by the subject in the period from 120 s before to 90 s after 

each local stimulation whenever any change in the sensations was felt.  The sensations were 

reported by rotating each of dials located in front of the subject and numbered from -10 

(“maximal cold” or “maximal uncomfortable”) to 10 (“maximal hot” or “maximal 

comfortable”), 0 indicated “neutral”.  The experiment was actually done with Japanese 

words.  In the scale, only the term cold (SAMUI or TSUMETAI in Japanese)” or 

“unpleasant (FUKAI)” were indicated at the number -10, “hot (ATSUI)” or “pleasant (KAI)” 

at 10, and “neutral (CHU-RITSU)” at 0.  No other word was indicated on the scale.  The 

setting of the dial was measured as a voltage every 5 s and averaged over 10 s.  Core 

temperature (Tco) was recorded with a telemetry system (CoreTemp2000, HTI Technologies, 

Inc.) every 20 s and averaged over 60 s.  For this record a transmitter pill was swallowed 1.5 

h before the initiation of local stimulation.  Tsk was recorded with copper-constantan 

thermocouples every 5 s at forehead, chest, abdomen, back, upper arm, forearm, hand, thigh, 

lower leg, and foot for the calculation of mean skin temperature (mean Tsk), and at two points 

under each stimulation device.  Mean Tsk was calculated with the formula of Hardy and 

DuBois (33) and averaged over 60 s.  The Tsk of each stimulated area was obtained by 

averaging two temperatures at the area over 10 s. 
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Statistical analysis 

  For the comparison of differences in Tco, and mean Tsk during each area’s stimulation, 

two-way repeated measures ANOVA was performed for the four stimulated areas (face, chest, 

abdomen, and thigh) and four times (start of stimulation and 1, 2, and 3 minutes after the start 

of stimulation.  The Tsk at the start of stimulation, changes in Tsk (∆Tsk), and changes in 

temperature-related sensations of the four stimulated areas were analyzed using one-way 

repeated-measures ANOVA, followed by a Tukey post hoc test.  For the comparison of 

differences in temperature-related sensations during each area’s stimulation, two-way 

repeated measures ANOVA was performed for the four stimulated areas and two times 

(before and end of stimulation).  If the result of ANOVA revealed statistically significant 

main effects for stimulated areas, Tukey post hoc test were performed for four stimulated 

areas on each time.  If the interaction of the two factors was significant, one-way repeated 

measures ANOVA on 8 conditions (4 stimulated areas × 2 times) followed by a Tukey post 

hoc test was performed.  All values are presented as means ± S.E.M. and significant 

difference was set at a level of P < 0.05. 

 

Experiment 4 (mild cold exposure) 

  The experiments were done in the period from February to March, 2007.  Ten healthy 

male subjects (age 21.5 ± 0.5 years, W 64.9 ± 1.8 kg, H 1.73 ± 0.02 m) participated in this 

study.  Subjects sitting in the climatic chamber at 21.3 ± 0.1ºC with a relative humidity of 

50% were locally cooled and warmed with the same water perfused stimulators as in 

Experiment 3.  In this condition overall skin temperature was lower than that during the mild 

heat exposure of Experiment 3.  Therefore, water temperature for the basal condition was set 

at 33ºC, 2ºC lower than for Experiment 3.  
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  In a preliminary experiment, local stimulation temperatures as in Experiment 3 (25ºC 

for cooling, and 42ºC for warming) were tested, but the subjects reported only weak 

sensations following local cooling of the four areas.  For this reason, the water source for 

local cooling was set at 22ºC, 3ºC lower than in Experiment 3.  The water source 

temperature for local warming was the same as in Experiment 3, 42ºC.  The other 

experimental methods, protocol, and statistical analysis were as in the Experiment 3.  

 

3. 3 Results 

Experiment 3 (mild heat exposure) 

Local cooling 

  Tco during the 30 min of local cooling trials was 37.3 ± 0.1ºC, and it remained unaltered 

during the period of local stimulations.  Mean Tsk was also the same (34.4 ± 0.1) when local 

cooling was initiated at each of the local areas.  Although the local basal Tsk of the 

stimulated areas differed less than 1ºC, Tsk for the face was significantly higher than for the 

chest (P < 0.05), abdomen and thigh (P < 0.01), and significantly lower for the thigh than for 

the abdomen (P < 0.05), face and chest (P < 0.01, Fig. 3-4A).  The magnitude of local ∆Tsk 

during 90 s of cooling was greater for the thigh than for the abdomen (P < 0.05), face and 

chest (P < 0.01, Fig. 3-4B). 

  Before local cooling, subjects reported “slightly hot” for local temperature sensation 

and “slightly uncomfortable” for local comfort (white bars in Figs. 3-4C left and D left).  

Neither sensation differed significantly among the four areas to be stimulated.  At the end of 

90 s of cooling, subjects reported a definite “cold” sensation (score -4.8 ± 0.3) with no 

significant difference among the four areas (black bars in Fig. 3-4C left).  Neither was a 

significant difference observed among the magnitude of change in local temperature sensation 

(∆local temperature sensation) during 90 s of cooling of the four stimulated areas (Fig. 3-4C 
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right).  The concurrent estimations of local thermal comfort, however, did depend on the 

area stimulated.  While facial cooling produced a strong “comfortable” feeling, abdominal 

cooling produced no local comfort, and the difference between face and abdomen was 

significant (P < 0.01, black bars in Fig. 3-4D left).  And chest or thigh cooling produced a 

sufficient change in comfort score to convert uncomfortable to comfortable.  The magnitude 

of change in local thermal comfort (∆local thermal comfort) during 90 s of cooling of the four 

stimulated areas was greater for the face than for the chest (P < 0.05), and abdomen (P < 0.01, 

Fig. 3-4D right). 

  As for whole-body thermal comfort, the subjects reported very similar “unpleasant” 

responses just before local cooling of each area (white bars in Fig. 3-4E left).  After local 

cooling, the changes in whole-body thermal comfort differed depending on the area cooled.  

During facial cooling “unpleasant” changed to “pleasant”.  This effect was observed also for 

thigh cooling, but not for chest or abdominal cooling (Fig. 3-4E left).  The score of whole-

body thermal comfort at the end of cooling was significantly higher for the face than for the 

abdomen (P < 0.05, black bars in Fig. 3-4E left).  The magnitude of change in whole-body 

thermal comfort (∆whole-body thermal comfort) during 90 s of cooling was greater for the 

face than for the abdomen (P < 0.01, Fig. 3-4E right). 

 

Local warming  

  Tco during the 30 min of local warming trials was 37.3 ± 0.1ºC and mean Tsk during the 

same 30 min of local warming trials was 34.3 ± 0.1ºC.  Neither value differed for any time 

period during stimulation of the four areas.  At the start of warming, local Tsk of the 

stimulated areas was significantly higher for the face than for the chest (P < 0.05), abdomen 

and thigh (P < 0.01), and significantly lower for the thigh than for the abdomen (P < 0.05), 

face and chest (P < 0.01, Fig. 3-5A).  The magnitude of local ∆Tsk during 90 s of warming 

 35



was greater for the thigh than for the abdomen (P < 0.05), face and chest (P < 0.01, Fig. 3-

5B).   

  Before local warming, subjects reported “slightly hot” for the local temperature 

sensation and “slightly uncomfortable” for local comfort (white bars in Figs. 3-5C left and D 

left).  The two types of sensation did not significantly differ among the four areas.  At the 

end of 90 s of warming, subjects reported a distinct “hot” sensation that was significantly 

stronger for the face than for the thigh (P < 0.05, black bars in Fig. 3-5C left).  The 

magnitude of ∆local temperature sensation during 90 s of warming of the four stimulated 

areas was greater for the face than for the thigh (P < 0.05, Fig. 3-5C right).  And local 

thermal discomfort increased.  This effect was stronger for the face than for the chest (P < 

0.05, black bars in Fig. 3-5D).  While the magnitude of ∆local thermal comfort was greater 

for the face, a significant difference was not observed among the four areas stimulated (Fig. 

3-5D right). 

  For whole-body thermal comfort subjects reported “uncomfortable” just before local 

warming of each area without any significant difference among the four areas (white bars in 

Fig. 3-5E left).  Local warming increased the “uncomfortable” feeling except for chest 

warming.  While this effect was stronger for facial warming, a significant difference was not 

observed among the four areas stimulated (black bars in Fig. 3-5E left, and Fig. 3-5E right).   

 

Experiment 4 (mild cold exposure) 

Local cooling 

  Tco during the 30 min of local cooling trials was 37.1 ± 0.1ºC and mean Tsk during the 

same 30 min of local cooling trials was 29.4 ± 0.2ºC.  Neither value differed for any time 

period during stimulation of the four areas.  The difference in local Tsks at the start of local 

cooling among the stimulated areas was more prominent than in Experiment 1, and significant 
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differences were observed for all combinations of the four areas (P < 0.01, Fig. 3-6A).  The 

Tsk was highest for the face (34.9 ± 0.1ºC) and lowest for the thigh (33.1 ± 0.1ºC).  The 

magnitude of local ∆Tsk during 90 s of cooling was greater for the thigh than for the other 

three areas (P < 0.01, Fig. 3-6B). 

  Before local cooling, subjects reported sensations close to “neutral” both for local 

temperature sensation and for thermal comfort (white bars in Figs. 3-6C left and D left).  

Neither sensation differed significantly among the four areas.  At the end of 90 s of cooling, 

subjects reported a definite “cold” sensation (score -4.1 ± 0.3) and no significant difference 

was observed among the four areas (black bars in Fig. 3-6C left).  The magnitude of ∆local 

temperature sensation during 90 s of cooling of the four stimulated areas was greater for the 

abdomen than for the face (P < 0.05, Fig. 3-6C right).  For local thermal comfort, while 

facial cooling produced no local uncomfortable, cooling of the other body surfaces produced 

clear “uncomfortable” feeling (black bars in Fig. 3-6D left).  Local discomfort at the end of 

cooling was significantly stronger for the abdomen and thigh than for the face (P < 0.01, 

black bars in Fig. 3-6D left).  The magnitude of ∆local thermal comfort during 90 s of 

cooling of the four stimulated areas was greater for the abdomen, thigh (P < 0.01), and chest 

(P < 0.05) than for the face (Fig. 3-6D right). 

  For whole-body thermal comfort subjects reported “uncomfortable” just before local 

cooling of each area without any significant difference among the four areas (white bars in 

Fig. 3-6E left).  The whole-body “uncomfortable” sensation was increased by local cooling, 

but significant differences between the stimulated areas were not observed (black bars in Fig. 

3-6E left, and Fig. 3-6E right).  
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Local warming 

  Tco during the 30 min of local warming trials was 37.1 ± 0.1ºC and mean Tsk during the 

same 30 min of local warming trials was 29.3 ± 0.2 ºC.  Neither value differed for any time 

period during stimulation of the four areas.  At the start of warming, significant differences 

in local Tsks among the stimulated areas were observed in all combinations of the four 

stimulated areas (P < 0.01, Fig. 3-7A).  The magnitude of local ∆Tsk during 90 s of local 

warming was greater for the thigh than for the other three areas (P < 0.01, Fig. 3-7B).   

  Before local warming, subjects reported sensations close to “neutral” both for local 

temperature sensation and local comfort (white bars in Figs. 3-7C left and D left).  Neither 

type of sensation differed significantly among the four areas.  At the end of 90 s of warming, 

subjects reported a distinct “hot” sensation (score 3.5 ± 0.2) and no significant difference was 

observed among the four areas (black bars in Fig. 3-7C left).  Nor was a significant 

difference observed among the magnitude of ∆local temperature sensation during 90 s of 

warming of the four stimulated areas (Fig. 3-7C right).  The concurrent estimations of local 

thermal comfort, however, did depend on the area stimulated.  While warming of the 

abdomen and chest produced a definite “comfortable” feeling, facial warming had only a little 

effect that was weaker than chest (P < 0.05) and abdomen (P < 0.01, black bars in Fig. 3-7D 

left).  The magnitude of ∆local thermal comfort during 90 s of warming of the four 

stimulated areas was greater for the abdomen than for the face (P < 0.01, Fig. 3-7D right). 

  For whole-body thermal comfort subjects reported “uncomfortable” just before local 

warming of each area without any significant difference among the four areas (white bars in 

Fig. 3-7E left).  Whole-body discomfort was decreased by local warming.  While this effect 

was stronger for the chest and abdominal warming, a significant difference was not observed 

among the four areas stimulated (black bars in Fig. 3-7E left, and Fig. 3-7E right). 
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3. 4 Discussion  

 In the present study, 4 body surfaces of equivalent area (0.027 m2) were heated or 

cooled and the ensuing temperature-related sensations were analyzed with special attention to 

thermal comfort in healthy male subjects.  Definite regional differences in local thermal 

comfort were observed.  During mild heat exposure, when the subjects’ whole-body 

sensation was “uncomfortable”, local cooling was most comfortable and local warming was 

most uncomfortable when applied to the face (Figs. 3-4D and 3-5D).  On the other hand, 

during mild cold exposure, in which whole-body thermal comfort was “uncomfortable”, 

neither warming nor cooling of the face had a major effect (Figs. 3-6D and 3-7D).  The chest 

and abdomen had characteristics opposite to those of the face.  Local cooling of these areas 

did not produce explicit comfort even during whole-body heat exposure (Fig. 3-4D).  But 

local warming of the chest and abdomen did produce strong comfort during whole-body cold 

exposure (Fig. 3-7D).  This effect was more prominent for the abdomen than for the chest. 

As for the thigh, although the ∆Tsk was always larger than that of other areas in all four 

conditions, thermal comfort was never strongest (Fig. 3-4, 5, 6, 7B, D, E). 

 

The effect of adapting temperature and stimulus magnitude 

 Although the areas locally stimulated were adapted to 35ºC or 33ºC before stimulation, 

local Tsks at the start of stimulation were not necessarily the same.  In the mild heat exposure 

experiment, the Tsks were in the range of 35-36ºC but were highest in the face and decreased, 

in order, from chest, to abdomen, to thigh (Figs. 3-4A and 3-5A).  While the magnitudes of 

thermal stimulation (∆Tsk) were larger in the reverse order both for heating and cooling, there 

was no significant difference among the face, chest, and abdomen (Figs. 3-4B and 3-5B).  

The difference in the ∆Tsks among the various areas is likely caused by differences in skin 

blood flow due to vasomotor status and tissue vascularity.  For the ambient temperature 
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utilized in the heat exposure (Experiment 3), the skin vessels of all areas would be expected 

to be vasodilated.  In the mild cold exposure experiment, differences in local Tsks and ∆Tsks 

were more prominent (Figs. 3-6A, B and 3-7A, B), probably due to cold-induced skin 

vasoconstriction that was stronger for the chest and thigh than for the face and abdomen.   

 When skin is warmed at a constant rate of temperature change, starting from various 

levels of temperature adaptation, the response magnitude of skin warm fibers are larger at 

higher adapting temperatures (26, 46).  Further, warm sensations are more sensitive at higher 

adapting temperatures, and cold sensations are more sensitive at lower adapting temperatures 

(37).  In the present study, in spite of differences in Tsks and ∆Tsks, we could find little 

difference in temperature sensation among the four areas (Figs. 3-4C, 3-5C, 3-6C and 3-7C).  

Additionally, the regional differences in thermal comfort never correlated with differences in 

Tsks or ∆Tsks; e.g., thermal comfort was never stronger for the thigh, although the ∆Tsk of the 

thigh was always larger than that of other areas.  Regional differences in thermal comfort 

observed in the present study, therefore, cannot be explained simply by invoking the slight 

differences in local temperature produced by the thermal stimulation. 

 

Mechanism for the regional difference in thermal comfort 

 It is generally assumed that inputs from the same warm or cold skin thermoreceptors are 

utilized for both temperature sensation and thermal comfort, although there is no direct 

experimental evidence for this supposition.  While it is difficult to quantitatively evaluate 

differences in the density of skin thermoreceptors in humans, the density of hot and cold spots 

would be expected to correlate positively with the density of warm and cold receptors (37).  

The distribution of peripheral warm and cold spots over the body surface is not uniform (49, 

69, 82, 85), and the face is one of the areas where both warm and cold spots are particularly 

dense.  While this high density might be invoked to explain the strong thermal comfort 
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produced by facial stimulation in the heat exposure experiment, the same facial stimulation 

produced only a slight change in thermal comfort during cold exposure.  Likewise, the chest 

and abdomen have particularly dense cold spots (82).  While thermal stimulation, especially 

warming, of these areas produced a distinct change in thermal comfort during cold exposure, 

the same stimulation during heat exposure had a minor effect.  Thus, the location-dependent 

effect of thermal stimulation on thermal comfort cannot be explained simply by the density of 

cold or warm spots.  Additionally, it should be noted that regional differences in temperature 

sensation were not seen with stimulation that did produce regional differences in thermal 

comfort.  The above observations make it unlikely that regional differences in thermal 

comfort can be entirely explained by the properties and distribution of peripheral 

thermoreceptors.  A more plausible explanation is that central nervous processing is 

responsible for the production of the regional differences in thermal comfort.  Feelings of 

warmth and cold correlate with neural activity in insular cortex (18, 67), and the amygdala, 

mid-orbitofrontal and pregenual cingulate cortex, and ventral striatum have been implicated 

in the genesis of thermal comfort (41, 71).  I speculate that a CNS map weighing the input 

from each body area would be involved in the production of regional differences in thermal 

comfort. 

  It is well known that thermal comfort is affected by the thermal state of the body (5, 6, 

14, 48, 52, 53, 59).  The same hand warming produces a comfortable or uncomfortable 

feeling depending on whether the individual is hypothermic or hyperthermic.  Thus, a 

thermal stimulation is felt comfortable when it serves to regain normal body temperature, and 

felt uncomfortable when it worsens internal thermal conditions.  Somehow, the CNS 

processes sensory input so that it is perceived as comfortable or uncomfortable depending on 

the thermal status of the body.  Interestingly the direction of this alteration in hedonic 

valence is not uniform for all body areas.  As I showed, feelings of comfort in the face are 
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very sensitive to local temperature stimuli in the heat, but less sensitive in the cold.  The 

abdomen demonstrates the opposite tendency.  It will be of interest to determine how this 

alliesthesia (11) occurs and how regional differences between sensation and comfort are 

created. 

 

Meaning of the regional difference in thermal comfort 

  Thermal comfort and discomfort are specific aspects of the pleasure-pain system of 

animals.  In an overall sense, comfort and discomfort (including pain) function to interrupt 

other ongoing behaviors in order to focus the organism on a particular, significant threat to its 

well being.  What is the function of the regional difference in thermal comfort?  It is well 

known that even in homeothermic animals the magnitude of temperature fluctuation inside the 

body in different thermal environments is dependent on the particular body part (3).  The 

temperature of the body core fluctuates only slightly, while that of the periphery, such as arms 

and legs, shows large changes.  The basic function of temperature regulation must be to 

maintain the temperature of the body core because the vital organs are located there.  

Regional differences in thermal comfort can be considered in this light. 

  The head contains the brain, which possesses a high, continuous rate of heat 

production.  The human brain is particularly susceptible to heat damage and can only 

tolerate temperatures up to about 40.5ºC, while organs of the torso core temperatures can 

tolerate temperatures that exceed 42ºC (89).  It is critical for organism viability that heat be 

rapidly removed from the head area, and a special systems to cool the brain are suggested to 

exist in humans (12, 61) and well documented in many animals (89).  In human, venous 

blood from the scalp and the face is posited to flow, via the emissary veins, into the brain 

during hyperthermia at a rate sufficient to produce selective brain cooling (12, 61).  A hot 
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face would further heat an already overheated brain.  Preference for a low facial temperature 

in the heat would help avoid heat-induced damage to the brain. 

  Preference for a warm abdomen likewise must reflect important aspects of the 

organism’s need to conserve and produce heat.  For most mammals, the abdomen and inner 

thighs are thinly furred areas that can be utilized to dissipate heat during exercise or in a hot 

environment.  In the cold, mammals curl up, which greatly decreases the surface area and 

shields the thinly furred areas (58).  While humans are not furred, they do benefit from a 

fetal-like position in the cold which minimizes the surface area for heat loss.  The adoption 

of this posture warms the abdomen, and the pleasant feelings that ensue must contribute to the 

initiation and maintenance of this postural adjustment.  Further, a warm abdomen facilitates 

digestion, which in the act of altering chemical energy into forms that the body can utilize to 

produce heat (and all its other functions), also releases substantial amounts of heat in the 

process (89). 

  Thermal comfort of the thigh was never particularly strong for the thigh, although the 

∆Tsk of the thigh was always larger than that of other areas in all four conditions, indicating 

that the thigh is insensitive for temperature change.  Because there are no important organs 

such as brain in the thigh, characteristics in thermal comfort like that of the face and trunk 

would not be necessary for the thigh.   

 

Thermal comfort and autonomic thermoregulation 

  Previous works have repeatedly found that, per unit area of skin, facial temperature 

exerts the largest peripheral influence on autonomic thermoregulation (8, 16, 19, 60).  The 

effect is not dependent upon the ambient temperature.  Heating the face in a warm 

environment produces a considerably greater increase in sweat rate than heating other skin 

areas (16, 60), while cooling the face in a warm environment produces a considerably greater 
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decrease (16, 19).  Belding et al. (8) also found that at low ambient temperatures, warming 

the face induced peripheral vasodilatation, while warming the same area of the chest or a 

much larger area of the leg had no effect.  Such a strong, consistent facial sensitivity might 

be explained by a high density of thermoreceptors (cold and warm spots) in the face. 

 However, for thermal comfort, the predominance of facial thermosensivity is dependent 

upon the ambient temperature.  The whole-body comfort sensation is likely the primary 

input for behavioural thermoregulation and if an individual is in a situation where feelings of 

comfort can be acted upon, it is possible to maintain without utilizing the energy and fluid 

resources necessary for autonomic regulation.  The different regional sensitivities of thermal 

comfort and autonomic thermoregulation could indicate that autonomic and behavioural 

temperature regulation are controlled separately in the central nervous system.  The ability to 

regulate body temperature by behavioural (but not autonomic) means remains in animals 

whose medial preoptic area/anterior hypothalamus has been lesioned (13, 50, 74).  Indeed, it 

has recently been reported that the afferent neuronal pathways for discriminative 

sensation/localization of a thermal stimulus and for homeostatic control of body temperature 

are separate (63). 

 

  The comfort sensations seen in this study indicate that if given the chance, humans 

would preferentially cool the head in the heat, and maintain the warmth of the abdomen in the 

cold.  And thermal comfort was never stronger for the thigh, although the ∆Tsk of the thigh 

was always larger than that of other areas in all four conditions.  These regional differences 

in the thermal comfort are consistent with the biological roles of each body part.  The 

qualitative differences seen in thermal comfort for the various areas cannot be explained 

solely by the density or properties of the peripheral thermal receptors.   
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Figure 3-1.  Thermal stimulators made with vinyl tubes.  Left is for the face and right is for 
the other areas. 
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Figure 3-2.  Locations of the areas which were thermally stimulated. 
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Figure 3-3.  Typical example of skin temperature change during local warming and cooling  
of four stimulated areas in one subject. 
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  Experiment 3 

     Mild heat exposure + Local cooling

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort

    E          whole-body thermal comfort        ∆whole-body thermal comfort
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Figure 3-4.  Local skin temperature and temperature-related sensations during local cooling of four areas in 
mild heat exposure experiment.  A: local skin temperature at the start of cooling.  B: magnitude of local skin 
temperature changes during 90 s of cooling.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of cooling of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
cooling of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E right: 
magnitude of whole-body thermal comfort changes during 90 s of cooling of areas stimulated.  In left graph of 
C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 11).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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  Experiment 3 

    Mild heat exposure + Local warming

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort

    E          whole-body thermal comfort        ∆whole-body thermal comfort
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Figure 3-5.  Local skin temperature and temperature-related sensations during local warming of four areas in 
mild heat exposure experiment.  A: local skin temperature at the start of warming.  B: magnitude of local skin 
temperature changes during 90 s of warming.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of warming of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
warming of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E 
right: magnitude of whole-body thermal comfort changes during 90 s of warming of areas stimulated.  In left 
graph of C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 11).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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  Experiment 4 

     Mild cold exposure + Local cooling

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort
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Figure 3-6.  Local skin temperature and temperature-related sensations during local cooling of four areas in 
mild cold exposure experiment.  A: local skin temperature at the start of cooling.  B: magnitude of local skin 
temperature changes during 90 s of cooling.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of cooling of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
cooling of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E right: 
magnitude of whole-body thermal comfort changes during 90 s of cooling of areas stimulated.  In left graph of 
C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 10).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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Experiment 4 

     Mild cold exposure + Local warming

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort
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Figure 3-7.  Local skin temperature and temperature-related sensations during local warming of four areas in 
mild cold exposure experiment.  A: local skin temperature at the start of warming.  B: magnitude of local skin 
temperature changes during 90 s of warming.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of warming of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
warming of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E 
right: magnitude of whole-body thermal comfort changes during 90 s of warming of areas stimulated.  In left 
graph of C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 10).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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Chapter 4 

Regional differences in temperature sensation and thermal comfort among 

the neck, abdomen, hand, and thigh 

 

4. 1 Introduction 

  In the chapter 3 I only tested thermal comfort of four areas near the trunk (65).  It 

would be valuable to examine the thermal and comfort sensitivities of other body areas and 

consider how the properties of each area’s thermal and comfort sensations are related to the 

physiological functions subserved by that particular area.  In this chapter I focus on three 

areas of the body, hand, feet, and neck.  Hand and feet are chosen because they are located 

in the periphery and shows large fluctuation of skin temperature.  As for the neck it is very 

interesting whether its characteristic of thermal comfort is similar to that observed for the 

face, or the trunk?  Understanding thermal comfort, local as well as whole-body, of the neck, 

hand and soles is the goal of this study.  To these ends I conducted local cooling or warming 

tests with the same method as the chapter 3.  To compare the results with that of the chapter 

3, I selected the abdomen as the control area in this chapter.   

 

4. 2 Methods  

Experiment 5 (mild heat exposure) 

   The experiments were done in the period from September to November, 2007.  

Eleven healthy male subjects (mean ± S.E.M., age 22.0 ± 0.5 years, W 64.2 ± 2.1 kg,  H 1.70 

± 0.02 m) participated in this study.  Subjects sitting in the climatic chamber at 33.7 ± 0.1ºC 

with a relative humidity of 50% were locally cooled and warmed.  The areas stimulated were 

the neck (rear neck and adjoining upper back), abdomen, left hand (palmar and dorsal side 

except the thumb), and both soles (Fig. 4-1).  Dimension of the stimulated areas was 0.027 
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m2 for all the areas.  Size of the stimulator for the neck and abdomen were 135 mm long and 

200 mm wide, and we used two stimulators of 200 mm long and 67.5 mm wide (half size of 

the stimulator for the neck and abdomen) for the hand and soles (for the palmar and dorsal 

side of hand, or both soles).  The other experimental methods, protocol, and statistical 

analysis were as in the Experiment 3.  Fig. 4-2 shows the typical example of skin 

temperature change during local warming and cooling of the four stimulated areas in one 

subject.  

 

Experiment 6 (mild cold exposure) 

  The experiments were done in the period from February to August, 2008.  Ten healthy 

male subjects (age 23.0 ± 0.7 years, W 67.4 ± 3.0 kg, H 1.71 ± 0.02 m) participated in this 

study.  Subjects sitting in the climatic chamber at 21.3 ± 0.1ºC with a relative humidity of 

50% were locally cooled and warmed with the same water perfused stimulators as in the 

Experiment 5.  The other experimental methods were as in the Experiment 4. 

 

4. 3 Results 

Experiment 5 (mild heat exposure) 

Local cooling 

  Tco during the 30 min of local warming trials was 37.3 ± 0.1ºC and mean Tsk during the 

same 30 min of local warming trials was 34.5 ± 0.1ºC.  Neither value differed for any time 

period during stimulation of the four areas.  Although the local basal Tsk of the stimulated 

areas differed less than 0.6ºC, Tsk for the hand was significantly higher than for the abdomen 

and sole (P < 0.01), and significantly lower for the sole than for the neck (P < 0.05, Fig. 4-

3A).  The magnitude of local ∆Tsk during 90 s of cooling was greater for the hand and sole 

than for the neck (P < 0.01, Fig. 4-3B). 
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  Before local cooling, subjects reported “slightly hot sensation” for local temperature 

sensation and “slightly uncomfortable” for local comfort (white bars in Figs. 4-3C left and D 

left).  Neither sensation differed significantly among the four areas to be stimulated.  At the 

end of 90 s of cooling, subjects reported a definite “cold” sensation with no significant 

difference among the four areas (black bars in Fig. 4-3C left).  Neither was a significant 

difference observed among the magnitude of change in local temperature sensation (∆local 

temperature sensation) during 90 s of cooling of the four stimulated areas (Fig. 4-3C right).  

The concurrent estimations of local thermal comfort, however, did depend on the area 

stimulated.  While abdominal cooling produced only a slight local comfort, cooling of the 

other body surfaces produced clear “comfortable” feeling, and the local comfort sensations 

was stronger for the hand, sole (P < 0.01), and neck (P < 0.05) than for the abdomen (black 

bars in Fig. 4-3D left).  The magnitude of change in local thermal comfort (∆local thermal 

comfort) during 90 s of cooling of the four stimulated areas was weaker for the abdomen than 

for the other three areas (P < 0.01, Fig. 4-3D right). 

  As for whole-body thermal comfort, the subjects reported very similar “uncomfortable” 

responses just before local cooling of each area (white bars in Fig. 4-3E left).  After local 

cooling, the changes in whole body thermal comfort differed depending on the area cooled.  

During cooling of the neck “uncomfortable” changed to “comfort” (Fig. 4-3E left).  While 

two-way repeated measures ANOVA demonstrated a significant interaction between the 

stimulated area and time (P < 0.05), one-way repeated measures ANOVA on the 8 conditions 

(4 stimulated areas × 2 times) followed by a Tukey post hoc test demonstrated no significant 

difference among whole-body thermal comfort of the four areas before cooling (white bars in 

Fig. 4-3E left), and among those at the end of cooling (black bars in Fig. 4-3E left).  The 

magnitude of change in whole-body thermal comfort (∆whole-body thermal comfort) during 
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90 s of cooling was greater for the neck than for the hand (P < 0.01) and abdomen (P < 0.05, 

Fig. 4-3E right). 

 

Local warming  

  Tco during the 30 min of local warming trials was 37.3 ± 0.1ºC and mean Tsk during the 

same 30 min of local warming trials was 34.5 ± 0.1ºC.  Neither value differed for any time 

period during stimulation of the four areas.  At the start of warming, local Tsk of the 

stimulated areas was significantly higher for the hand than for the abdomen, sole (P < 0.01), 

and neck (P < 0.05), and significantly lower for the abdomen than for the neck (P < 0.05, Fig. 

4-4A).  The magnitude of local ∆Tsk during 90 s of warming was greater for the sole (P < 

0.01) and hand (P < 0.05) than for the neck. 

  Before local warming, subjects reported “slightly hot” for the local temperature 

sensation and “slightly uncomfortable” for local comfort (white bars in Figs. 4-4C left and D 

left).  The two types of sensation did not significantly differ among the four areas.  At the 

end of 90 s of warming, subjects reported a distinct “hot” sensation and no significant 

difference was observed among the four areas (black bars in Fig. 4-4C left).  Neither was a 

significant difference observed among the magnitude of change in local temperature sensation 

(Fig. 4-4C right).  And local thermal discomfort was increased by local warming, but 

significant differences among the stimulated areas were not observed (black bars in Fig. 4-4D 

left, and Fig. 4-4D right).  

  For whole-body thermal comfort subjects reported “uncomfortable” just before local 

warming of each area without any significant difference among the four areas (white bars in 

Fig. 4-4E left).  While local warming increased the “uncomfortable” feeling, a significant 

difference was not observed among the four areas stimulated (black bars in Fig. 4-4E left, and 

Fig. 4-4E right).   
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Experiment 6 (mild cold exposure) 

Local cooling 

  Tco during the 30 min of local cooling trials was 37.1 ± 0.1ºC and mean Tsk during the 

same 30 min of local cooling trials was 29.5 ± 0.1ºC.  Neither value differed for any time 

period during stimulation of the four areas.  The difference in local Tsks at the start of local 

cooling among the stimulated areas was more prominent than in Experiment 5, and significant 

differences were observed for all combinations of the four areas except that between the neck 

and abdomen (P < 0.01, Fig. 4-5A).  The Tsk was highest for the neck (35.1 ± 0.1ºC) and 

lowest for the sole (31.5 ± 0.3ºC).  The magnitude of local ∆Tsk during 90 s of cooling was 

greater in the order of sole, hand, abdomen, and neck (Fig. 4-5B). 

  Before local cooling, subjects reported “slightly hot” for local temperature sensation and 

“slightly comfortable” for local comfort (white bars in Figs. 4-5C left and D left).  Neither 

sensation differed significantly among the four areas.  At the end of 90 s of cooling, subjects 

reported a definite “cold” sensation.  While two-way repeated measures ANOVA of local 

temperature sensation demonstrated a significant interaction between the stimulated area and 

time (P < 0.05), one-way repeated measures ANOVA on the 8 conditions (4 stimulated areas 

× 2 times) followed by a Tukey post hoc test demonstrated no significant difference among 

the temperature sensations of the four areas at the end of cooling (black bars in Fig. 4-5C 

left).  The magnitude of ∆local temperature sensation during 90 s of cooling of the four 

stimulated areas was greater for the abdomen (P < 0.01) and hand (P < 0.05) than for the neck 

(Fig. 4-5C right).  For local thermal comfort, while cooling of the neck produced no local 

uncomfortable, cooling of the other body surfaces produced “uncomfortable” feeling (black 

bars in Fig. 4-5D left).  Local discomfort at the end of cooling was significantly stronger for 

the abdomen than for the neck (P < 0.01, black bars in Fig. 4-5D left).  The magnitude of 
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∆local thermal comfort during 90 s of cooling of the four stimulated areas was greater for the 

abdomen than for the neck (P < 0.01, Fig. 4-5D right). 

  For whole-body thermal comfort subjects reported “uncomfortable” just before local 

cooling of each area without any significant difference among the four areas (white bars in 

Fig. 4-5E left).  The whole-body “uncomfortable” sensation was increased by local cooling, 

but significant differences between the stimulated areas were not observed (black bars in Fig. 

4-5E left, and Fig. 4-5E right).  

 

Local warming 

  Tco during the 30 min of local warming trials was 37.1 ± 0.1ºC and mean Tsk during the 

same 30 min of local warming trials was 29.5 ± 0.2ºC.  Neither value differed for any time 

period during stimulation of the four areas.  At the start of warming, significant differences 

in local Tsks among the stimulated areas were observed in all combinations of the four 

stimulated areas except that between the neck and abdomen (P < 0.01, Fig. 4-6A).  The 

magnitude of local ∆Tsk during 90 s of warming was greater in the order of sole, hand, 

abdomen, and neck (Fig. 4-6B). 

  Before local warming, subjects reported “slightly hot” for local temperature sensation 

and “slightly comfortable” for local comfort (white bars in Figs. 4-6C left and D left).  

Neither type of sensation differed significantly among the four areas.  At the end of 90 s of 

warming, subjects reported a distinct “hot” sensation that was significantly stronger for the 

hand than for the neck and sole (P < 0.01, black bars in Fig. 4-6C left).  The magnitude of 

∆local temperature sensation during 90 s of warming of the four stimulated areas was stronger 

for the hand than the neck (P < 0.05) and sole (P < 0.01), and was stronger for the abdomen 

than for the sole (P < 0.05, Fig. 4-6C right).  For local thermal comfort, local warming 
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produced a definite “comfortable” feeling, and no significant difference was observed among 

the four areas (black bars in Fig. 4-6D left, and Fig. 4-6D right).   

  For whole-body thermal comfort subjects reported “uncomfortable” just before local 

warming of each area without any significant difference among the four areas (white bars in 

Fig. 4-6E left).  After local warming, the changes in whole body thermal comfort differed 

depending on the area warmed, although the regional difference in “local” thermal comfort 

was not observed.  During warming of the neck “uncomfortable” changed to “comfort”, on 

the other hand during warming of the hand the change in whole-body discomfort was little, 

and the difference between the neck and hand was significant (Fig. 4-6E left).  While the 

magnitude of change in whole-body thermal comfort during 90 s of warming was weaker for 

the hand, significant difference among the four areas was not observed (Fig. 4-6E right). 

 

4. 4 Discussion  

 In the present study, 4 body surfaces (neck, abdomen, hand, and sole) of equivalent area 

(0.027 m2) were heated or cooled and the ensuing temperature-related sensations were 

analyzed with special attention to thermal comfort in healthy male subjects.  Definite 

regional differences in thermal comfort were observed.  During mild heat exposure, when 

the subjects’ whole-body sensation was “uncomfortable”, local abdominal cooling was less 

comfortable than the other three areas (Fig. 4-3D).  On the other hand, during mild cold 

exposure, in which whole-body thermal comfort was “uncomfortable”, cooling of the 

abdomen had a strong effect (Fig. 4-5D).  These results of abdominal stimulation are the 

same as observed in the results of the previous chapter (65).  On the other hand, while no 

regional difference in “local” thermal comfort was observed between the hand and neck, the 

magnitude of decrease in “whole-body” thermal discomfort was smaller for the hand than for 

the neck (Figs. 4-3D, E and 4-6D, E).  The regional difference in “whole-body” thermal 
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comfort without difference in “local” thermal comfort between body parts was not observed 

in the previous chapter.  And although the hand and sole showed larger skin temperature 

change than the neck, local and whole-body thermal comfort was never stronger for the hand 

and sole than the neck (Fig. 4-3, 4, 5, 6B, D, E).        

 

The effect of adapting temperature and stimulus magnitude 

 Although the areas locally stimulated were adapted to 35ºC or 33ºC before stimulation, 

local Tsks at the start of stimulation were not necessarily the same.  In the mild heat exposure 

experiment, the Tsks were in the range of 35.7-36.3ºC but were highest in the hand and 

decreased, in order, from neck, to abdomen, to sole (Figs. 4-3A and 4-4A).  The magnitudes 

of thermal stimulation (∆Tsks) were the greatest in the sole and decreased, in order, from hand, 

to abdomen, to neck both for heating and cooling (Figs. 4-3B and 4-4B).  The difference in 

the ∆Tsks among the various areas is likely caused by differences in skin blood flow due to 

vasomotor status and tissue vascularity.  At the ambient temperature utilized in the heat 

exposure (Experiment 5), the skin vessels of all areas would be expected to be vasodilated.  

In the mild cold exposure experiment, differences in local Tsks and ∆Tsks were more 

prominent (Figs. 4-5A, B and 4-6A, B), probably due to cold-induced skin vasoconstriction 

that was stronger in the periphery (hand and sole) than for the central part of the body (neck 

and abdomen) (66).   

  In the present study, while differences in Tsks and ∆Tsks were observed, the regional 

differences in thermal comfort never correlated with differences in Tsks or ∆Tsks; e.g., the 

magnitude of local and whole-body thermal comfort changes during the thermal stimulations 

were never stronger for the hand and sole than the neck, although the ∆Tsks of the hand and 

sole was always larger than that of the neck.  Regional differences in thermal comfort 
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observed in the present study, therefore, cannot be explained simply by invoking the slight 

differences in local temperature produced by the thermal stimulation. 

 

Characteristic for the production thermal comfort of the neck 

 Is the characteristic in thermal comfort of the neck similar to that of the face or 

abdomen?  Local cooling of the neck produce strong comfort sensation during mild heat 

exposure, and during mild cold exposure, produce no uncomfortable sensation (Figs. 4-3D, E 

and 4-5D, E).  This characteristic of the neck for local cooling is similar to that of the face 

obtained in the chapter 3 (Figs. 3-4D, E and 3-6D, E), and is different from that of the 

abdomen (Figs. 4-3D, E and 4-5D, E).  On the other hand, local warming of the neck 

produced the same degree of comfort as local warming of the abdomen both during mild heat 

and cold exposure (Figs. 4-4D, E and 4-6D, E), and this characteristic of the neck for local 

warming is different from the face.  Thus, for local cooling the neck is similar to the face, 

and for local warming the neck is similar to the abdomen.    

  

Mechanism for the regional difference in thermal comfort 

Dominant nerve 

  Distinct difference in thermal comfort between the face and abdomen was observed in 

the chapter 3 (65).  The face is innervated by trigeminal nerves, on the other hand, the 

abdomen is innervated spinal nerve.  This difference of the dominant nerve might be the 

origin of the regional differences in thermal comfort.  In the present study the regional 

differences were observed among the neck, abdomen, hand, and sole, all these areas 

investigated in this study are innervated by the spinal nerve.  Therefore the regional 

difference in thermal comfort cannot be explained simply by which the trigeminal or spinal 

nerve innervation. 
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Distribution of peripheral warm and cold spots over the body surface 

  The neck is one of the areas where both warm and cold spots are particularly dense 

(Fig. 1-5, 6) (49, 82, 85).  This high density might explain the distinct change of the local 

and whole-body thermal comfort by stimulation of the neck in the heat and cold exposure 

experiment.  On the other hand, the abdomen have particularly dense cold spots too (49, 82).  

While thermal stimulation, especially cooling, of the abdomen produced a distinct change in 

thermal comfort during cold exposure, the same stimulation during heat exposure had a minor 

effect for the local and whole-body thermal comfort.  Although the sole is one of the areas 

where both warm and cold spots are the most thinly dense (49, 82, 85), the warming of the 

soles produced equally strong local thermal comfort as warming of the other three areas (Fig. 

4-4D and 4-6D), and even stronger local thermal comfort produced by cooling of the soles 

than by the abdominal cooling in the heat exposure experiment (Fig. 4-3D).  Thus, the 

location-dependent effect of thermal stimulation on thermal comfort cannot be explained 

simply by the density of cold or warm spots. 

 

Regional difference in effect for “local” and “whole-body” thermal comfort 

  While no regional difference in “local” thermal comfort was observed between the 

hand and neck, the magnitude of “whole-body” thermal comfort changes during the thermal 

stimulations were smaller for the hand than for the neck (Figs. 4-3D, E and 4-6D, E).  In the 

previous study, it is reported that the limb extremities ranked as the least thermosensitive 

segment for whole-body thermal comfort (2, 16).  The densities of warm and cold spots are 

lower for the hand than for the neck (49, 82, 85).  Although the lower distribution of warm 

and cold spots might be related to the low sensitivity for “whole-body” thermal comfort, as 

mentioned above the regional difference in thermal comfort could not be explained simply by 

the distribution of hot and cold spot. 

 61



  The threshold of warm or cold sensation for change of skin temperature are lower 

when the two hands or forearms were simultaneously stimulated than when either hand or 

forearm was stimulated alone (34, 73).  In the present study, only left hand was stimulated, 

and other three areas were stimulated symmetrically.  The less change of “whole-body” 

thermal comfort during the stimulation of hand might be caused by the unilateral stimulation.  

While thermal stimulation of bilateral hand might produce bigger change of whole-body 

thermal comfort than the stimulation of unilateral hand, further experiments are required to 

answer this question. 

 It was implicated that the amygdala plays a role in the genesis of “whole-body” thermal 

discomfort due to cold (41).  On the other hand, other studies suggested that activation of the 

frontal gyrus, the striatum, and the cerebellum related to “local” thermal pleasant feelings (71, 

84), and activations in the lateral parts of the orbitofrontal cortex were correlated with the 

“local” unpleasantness of the thermal stimuli (71).  For the genesis of “local” thermal 

comfort and “whole-body” thermal comfort, the different areas in the brain might be 

involved.  Therefore the phenomenon that the regional differences in the effect for “whole-

body” thermal comfort vary from the regional differences in “local” thermal comfort could be 

programmed in the brain. 

 

Meaning of the regional difference in thermal comfort 

The extremities  

  We obtain information concerning the thermal condition of external objects mainly 

by touching it with the hand.  As for the soles, especially in ancient times humans had not 

put on shoes, and the soles touched the cold or hot ground.  Further the extremities have 

arteriovenous anastomoses (AVAs).  During hyperthermia AVAs dilate and promote 

dumping of heat as the blood passes through the cutaneous venous system, and constricted to 
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prevent heat dissipation in hypothermic condition (29).  Therefore the hands and soles 

inevitably show large temperature fluctuation.  If the peripheral parts were sensitive for 

whole-body comfort like the neck, for example we would frequently feel whole-body thermal 

discomfort, which should be very stressful.  Therefore insensitivity of the peripheral part for 

whole-body thermal comfort is advantageous.  However as noted above the hand is used to 

judge the thermal condition of external objects.  It is convincible that the hand has equal 

sensitivity for “local” thermal comfort to the other parts, although hand is insensitive for 

“whole-body” thermal comfort.  

 

The neck 

 The characteristic in thermal comfort of the face and trunk observed in the chapter 3 are 

consistent with the biological roles of each body part.  Preference for a cool face would help 

avoid heat-induced damage to the brain, and preference for a warm trunk areas would help to 

facilitate the function of the internal organs (65).  The characteristic in thermal comfort of 

the neck was just in between those of the face and abdomen.  Because there is no brain nor 

internal organs in the neck, characteristics in thermal comfort like that of the face and trunk 

would not have been developed firmly for the neck. 

   

  In summary, although there was no difference between “local” thermal comfort of the 

hand and neck, thermal stimulation of the hand produced less effect on “whole-body” thermal 

comfort than the stimulation of the neck.  And although the hand and sole showed larger 

skin temperature change than the neck, local and whole-body thermal comfort was never 

stronger for the hand and sole than the neck.  Characteristic in thermal comfort of the neck 

was similar to that of the face for local cooling, and similar to that of the abdomen for local 

warming.  

 63



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1.  Locations of the areas which were thermally stimulated. 
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Figure 4-2.  Typical example of skin temperature change during local warming and cooling  
of four stimulated areas in one subject. 
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  Experiment 5 

     Mild heat exposure + Local cooling

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort

    E          whole-body thermal comfort        ∆whole-body thermal comfort
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Figure 4-3.  Local skin temperature and temperature-related sensations during local cooling of four areas in 
mild heat exposure experiment.  A: local skin temperature at the start of cooling.  B: magnitude of local skin 
temperature changes during 90 s of cooling.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of cooling of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
cooling of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E right: 
magnitude of whole-body thermal comfort changes during 90 s of cooling of areas stimulated.  In left graph of 
C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 11).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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  Experiment 5 

     Mild heat exposure + Local warming

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort

    E          whole-body thermal comfort        ∆whole-body thermal comfort
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Figure 4-4.  Local skin temperature and temperature-related sensations during local warming of four areas in 
mild heat exposure experiment.  A: local skin temperature at the start of warming.  B: magnitude of local skin 
temperature changes during 90 s of warming.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of warming of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
warming of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E 
right: magnitude of whole-body thermal comfort changes during 90 s of warming of areas stimulated.  In left 
graph of C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 11).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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  Experiment 6 

     Mild cold exposure + Local cooling

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort

    E          whole-body thermal comfort        ∆whole-body thermal comfort
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Figure 4-5.  Local skin temperature and temperature-related sensations during local cooling of four areas in 
mild cold exposure experiment.  A: local skin temperature at the start of cooling.  B: magnitude of local skin 
temperature changes during 90 s of cooling.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of cooling of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
cooling of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E right: 
magnitude of whole-body thermal comfort changes during 90 s of cooling of areas stimulated.  In left graph of 
C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 10).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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Experiment 6 

     Mild cold exposure + Local warming

    A              basal skin temperature   B               ∆skin temperature

    C          local temperature sensation    　∆local temperature sensation

    D                local thermal comfort      　   ∆local thermal comfort
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-8

-6

-4

-2

0

2

4

6

8

neck abdomen hand sole

before stim. end of stim.

neutral

comfortable

uncomfortable

30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0

neck abdomen hand sole

T s
k (
℃

)

**
**

** ** **

0.0

1.0

2.0

3.0

4.0

neck abdomen hand sole

⊿
 T

sk
 （
℃
）

**

** **
**

-8

-6

-4

-2

0

2

4

6

8

neck abdomen hand sole

before stim. end of stim.

hot

cold

neutral

** **

-4

-2

0

2

neck abdomen hand sole

before stim. end of stim.

neutral

uncomfortable

comfortabl *

0

2

4

6

8

10

neck abdomen hand sole

**
*

*

0

2

4

6

8

10

neck abdomen hand sole

0

2

4

neck abdomen hand sole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 4-6.  Local skin temperature and temperature-related sensations during local warming of four areas in 
mild cold exposure experiment.  A: local skin temperature at the start of warming.  B: magnitude of local skin 
temperature changes during 90 s of warming.  C left: local temperature sensation of areas stimulated.  C right: 
magnitude of local temperature sensation changes during 90 s of warming of areas stimulated.  D left: local 
thermal comfort of areas stimulated.  D right: magnitude of local thermal comfort changes during 90 s of 
warming of areas stimulated.  E left: whole-body thermal comfort during the stimulation of each area.  E 
right: magnitude of whole-body thermal comfort changes during 90 s of warming of areas stimulated.  In left 
graph of C-E white bars show the sensations before stimulation and black bars show the sensations at the end of 
stimulation.  Values are means ± S.E.M. (n = 10).  *P < 0.05, **P < 0.01, significant differences among the 
four stimulated sites. 
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Chapter 5 

General discussion 

 

  In the present study, I examined regional differences in temperature-related sensations 

with special attention to “thermal comfort”.  In chapter 2, I reported a new system for 

monitoring sensations of many body parts as well as comprehensively showing the 

distribution of overall skin temperature and temperature-related sensations.  In chapter 3, 

regional differences in temperature sensation and thermal comfort among the face, chest, 

abdomen, and thigh was investigated.  The thermal comfort seen in this chapter suggests that 

if given the chance, humans would preferentially cool the head in the heat, and maintain the 

warmth of the trunk areas in the cold.  And thermal comfort was never stronger for the thigh, 

although the ∆Tsk was always larger than that of other areas in all four conditions.  In chapter 

4, regional differences in temperature sensation and thermal comfort among the neck, 

abdomen, hand, and sole was investigated.  Although there was no difference between 

“local” thermal comfort of the hand and neck, thermal stimulation of the hand produced less 

effect on “whole-body” thermal comfort than the stimulation of the neck.  In addition, 

although the hand and sole showed larger skin temperature change than the neck, local and 

whole-body thermal comfort was never stronger for the hand and sole than the neck.  And 

characteristic in thermal comfort of the neck was similar to that of the face for local cooling, 

and similar to that of the abdomen for local warming.  By combining the data obtained in the 

chapter 3 and 4, Fig. 5-1, 2, 3, 4 show magnitudes of local and whole-body thermal comfort 

changes during 90 s of thermal stimulation that are normalized with those of the abdomen.  

During mild heat exposure facial cooling and warming had great effect for thermal comfort 

(Fig. 5-1, 3).  On the other hand, during mild cold exposure the face was not sensitive and 

the abdominal cooling and warming had strong effect for producing thermal comfort among 
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the seven parts (Fig. 5-2, 4).  Meanwhile, the hand and sole did not have major effect during 

mild heat nor cold exposure.  Fig. 5-5 summarizes the regional characteristics in thermal 

comfort observed in the present study.  These regional differences cannot be explained 

solely by the density or properties of the peripheral thermal receptors, and consistent with the 

biological roles of each body part. 

 

Speculation about representation of the regional difference in temperature sensation and 

thermal comfort in the brain   

  Regional differences in thermal comfort investigated in this dissertation cannot be 

explained solely by the density or properties of the peripheral thermal receptors, and 

consistent with the biological roles of each body part.  Therefore I speculate that a CNS map 

weighing the input from each body area would be involved in the production of regional 

differences in thermal comfort. 

  Over the primary somatosensory cortex, the regional differences in tactile sensitivity 

is clearly represented as Homunculus (68).  Likewise the temperature sensitivity of all over 

the body surface might be represented in some region of the brain.  Thermal signals from 

skin seem to reach several different regions in the cerebral cortex, including the insula, 

primary and secondary somatosensory (SI and SII), orbitofrontal, and cingulated cortices (7, 

18, 23, 76).  The regional difference in temperature sensation might be represented as a 

somatotopic map in these regions.  Further studies are necessary to answer this question.        

   The regional sensitivity in thermal comfort is changed with whole-body thermal 

condition.  Therefore, the representation like the homunculus for mechanical sensation might 

be too simple for the thermal comfort.  For the production of the local thermal comfort, the 

temperature information of local body surface, overall skin, and body core should be 

integrated.  It will be of interest to determine the mechanisms how the regional differences 
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in thermal comfort are generated, because they do not depend on the regional difference in 

“temperature sensation” and are consistent with the biological roles of each body part. 

 

Regional sensitivity in pain or tactile sensation  

 Thermal sensation and pain are common in that information from the skin once 

change synapses in the dorsal horn and is conveyed through the contralateral spino-thalamic 

tract to the higher brain (21, 37).  However, the density of pain spots is very high, about 10 

times as large as that of cold spots all over the body surface (49, 81).  Strughold investigated 

distribution of the pain spots on forty two areas all over the body surface (81).  While the 

hand finger, sole, nose, and ear have thin density, the all other parts have high density of pain 

spots.  Therefore it could be said that we have high sensitivity overall the body surface with 

little regional differences.  This overall high sensitivity with little regional differences in 

pain is not similar to the regional difference in temperature sensation and thermal comfort.  

Because the sensation of pain is the invasive signal, we have to avoid the pain stimulation.  

Otherwise our body get damaged.  Therefore the high density of pain spots is important for 

us to survive.   

 The regional difference in tactile sensation is also not the same as the regional 

difference in temperature sensation and thermal comfort.  For example, while the abdomen 

has superior sensitivity in temperature sensation and thermal comfort to the other body 

regions in cold or neutral environment (Fig. 3-6, 4-5, 5-2,4) (65, 77), it have far low 

sensitivity in tactile sensation than the hand and face (78, 88).  The hands, especially the 

fingers, have definitely high sensitivity to the tactile sensation among all over the body 

surface although the sensitivity of temperature sensation is not especially high.  We obtain 

information concerning roughness, stiffness, form, and size of external objects, and make or 

manipulate various things mainly by the hands.  Superior sensitivity to the tactile sensation 
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of hands should be helpful to carry out such a task with hands.  On the other hand, the 

abdomen does not have such roles.  Therefore the high sensitivity in tactile sensation should 

not be needed for the abdomen.   

 Thus each sensory modality has the different regional sensitivity that reflects 

important aspects of the each body area’s functional roles.   

 

Limitation and future direction 

  In chapter 3 and 4, I investigated only temperature sensation and thermal comfort in 

responses to the 90 s thermal stimulation.  Neither Tco nor mean Tsk changed during the 

stimulation, and change of autonomic thermoregulatory responses, such as cutaneous 

vasomotion, non-shivering thermogenesis, shivering, sweat secretion, would be small, if any.  

It would be interesting to see how the regional differences in thermal comfort were altered, 

and how the autonomic responses change by longer periods of thermal stimulation.  As we 

tested only in mild heat and mild cold ambient temperatures, and only in male subjects, it 

would be interesting to know how these regional differences in thermal comfort might be 

changed in more severe thermal condition, during exercise, and/or in female subjects.  

Further, in the present study I did not test the back, loin, and arm.  It would be valuable to 

examine the thermal and comfort sensitivities of such body areas.   

  The mechanisms that generate the regional differences in thermal comfort could not 

be examined in this study.  Investigating regional activation of the brain during the same 

thermal stimulation as this study should become a clue to clarify the mechanisms.  These 

knowledge will be valuable not only for physiological understanding.  The results will also 

aid in efficient conditioning of thermal environment for making comfortable condition, 

prevention of heat stroke, improvement sport performance, normalization hypothermia or 

hyperthermia.  Efficient conditioning practices of thermal comfortable environment should 
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be helpful to keep our health, promote energy saving, by extension, prevent the environmental 

destruction of our planet. 
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Figure 5-1.  Magnitude of local thermal comfort changes during 90 s of thermal stimulation 
of areas stimulated during mild heat exposure normalized to that of the abdomen in the 
chapter 3 and 4.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-2.  Magnitude of local thermal comfort changes during 90 s of thermal stimulation 
of areas stimulated during mild cold exposure normalized to that of the abdomen in the 
chapter 3 and 4.     
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Figure 5-3.  Magnitude of whole-body thermal comfort changes during 90 s of thermal 
stimulation of areas stimulated during mild heat exposure normalized to that of the abdomen 
in the chapter 3 and 4.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-4.  Magnitude of whole-body thermal comfort changes during 90 s of thermal 
stimulation of areas stimulated during mild cold exposure normalized to that of the abdomen 
in the chapter 3 and 4.    
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Figure 5-5.  Regional characteristics in thermal comfort. 
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