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Moriya T, YoshinobuY., KouzuY. KatohA., GomiH., IkedaM., Yoshioka T., ItoharaS.
and Shibata S., The essential role of Glial Fibrillary Acidic Protein (GFAP)-expressing
astrocytes in the mouse circadian oscillation under constant lighting condition.
Eur.J Neurosci.,in press

Abstract \

In order to clarify the role of GFAP-expressing astrocytes in the circadian clock, we compared the activity
rhythms of GFAP mutant mice to those of wild-type mice in various lighting conditions. GFAP mutant
mice exhibited stable circadian rhythms both in light-dark cycles and constant darkness and showed
normal entrainment to environmental light stimuli. However, under constant lighting conditions, the
period of the activity rhythm in GFAP mutant mice was longer and more disrupted than in wild-type mice.
HPLC analysis revealed that serotonergic activity in the suprachiasmatic nucleus, which is the center of
the circadian clock, and the raphe nuclei was reduced in GFAP mutant mice. Furthermore, housing for
80 days under constant light decreased GFAP expression in the suprachiasmatic nucleus of C57BL/6J
mice while increasing GFAP expression in the intergeniculate leaflet. These results demonstrate that the
activities of GFAP expressed in astrocytes were changed in the suprachiasmatic nucleus and the
intergeniculate nucleus under constant lighting conditions. Astrocytes in the suprachiasmatic nucleus
may play important roles in the maintenance of circadian rhythms under constant lighting conditions via
regulation of serotonergic activity.

Introduction

Daily physiological rhythms, such as locomotor activity and body temperature, persist under conditions
without environmental time cues, suggesting the existence of endogenous time-keeping systems in
animals (Inouye & Shibata, 1994)., Various studies revealed that mammalian circadian clocks were
located in the suprachiasmatic nucleus (SCN) of hypothalamus (Ralph et al., 1990). Recent studies are
beginning to describe the molecular and cellular mechanisms that generate the circadian rhythm in the
SCN (Welsh et al., 1995).

SCN peurons play important roles in generating circadian rhythms, The frequency of SCN neuronal
firing shows circadian rhythm, with high during the daytime, low during the nighttime under both in vivo
(Inouye & Kawamura, 1979) and in vitro (Green & Gillette, 1982; Groos & Hendriks, 1982; Shibata et al,,
1982).  The blockade of firing in the SCN by tetrodotoxin abolished the circadian rhythm in vive
(Schwartz et al., 1987) and in vitro (Shibata & Moore, 1993) and the firing rhythm reappeared exactly on
the phase predicted by the rhythm before the administration of tetrodotoxin. Recently, it was reported
that dissociated SCN neurons displayed a circadian firing rhythm and their rhythms did not synchronize
in spite of functional synapses (Welsh et al., 1995). This evidence demonstrates that the circadian
thythm-generating system is located in individual SCN neurons.

Glial cells in the SCN may also play roles in the circadian rhythms (Van den Pol et al., 1992; Prosser



et al, 1994; Jiang et al,, 1997). Glial fibrillary acidic protein (GFAP), which is an astrocyte-specific
intermediate filament protein, is abundantly existed in the SCN (Lavialle & Serviere, 1995).
Suppression of glial metabolism or the inhibition of GAP junctions disrupted the SCN firing rhythm
(Prosser et al., 1994), and the rhythms of vasoactive intestinal polypeptide and vasopression release from
cultured SCN slices was not synchronized when antimitotic drugs were treated (Shinohara et al., 1995).
These reports suggest that astrocytes synchronize circadian rhythms individually generated in SCN
neurons. However, the role of astrocytes remain unclear because of the lack of specific agents to
manipulate astrocytes activity.

Recently, mice lacking GFAP gene were generated (Gomi et al.,, 1995). GFAP mutant mice do not
show any abnormalities in their development, reproducibility, brain structure nor the morphogenesis of
astrocytes. However, long-term depression in the cerebellum and the eyeblink conditioning were clearly
deficient in GFAP mutant mice (Shibuki et al., 1996), indicating that GFAP has neuro-modulating
functions in addition to its functions as a part of the cytoskeletal structure.

In order to clarify the role of GFAP expressing astrocytes in the circadian clock, we examined the
circadian activity rhythm of GFAP mutant mice in various lighting conditions. We also examined the
concentration of serotonin (5-hydroxytryptamine; 5-HT), an important neurotransmitter in regulating the
circadian clock (Cagampang & Inouye, 1994; Cutrera et al,, 1994; Rea et al.,1994; Moriya et al., 1996;
1998) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in GFAP mutant mice. We also
examined effects of lighting conditions on GFAP expressions in normal C57BL/6J mice to confirm the

role of GFAP in circadian systems.

MATERIALS AND METHODS

Animals

Wild-type and mutant mice (3 months old at the beginning of the experiments) were produced as
described previously (Shibuki et al., 1996). Mice used in this experiment were the littermates
intercrossed between male and female heterozygotes that have been backcrossed to C57BL/6J mice for at
least five generations. Targeting of GFAP was verified by southern blot analysis using tail DNA. We
also used male C57BL/6] mice for immunohistochemical and western blotting studies. These mice were
maintained under controlled environmental conditions (23 £2°C room temperature; 12-12 hr light-dark
cycle (LD), lights on at 8:30 A.M.) for at least 2 weeks before being used for the experiments. Light
intensity was set to 50 lux over the all experiments. Food and water were provided ad libitum.
Animals were treated in accordance with the Léw (No.105) and Notification (No.6) of the Japanese

Government,

Recording of wheel-running rhythm
Mice were housed individually in transparent plastic cages (31 x 20 x 13 cm), each equipped with a
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running wheel (10 cm diameter), that triggers a microswitch on each revolution. Wheel-running activity
was continuously recorded in 6 min epochs by a PC-9801 computer. For measurements of free-running
thythms, mice were maintained under LD conditions for at least 2 weeks and followed by constant
darkness (DD) or constant light (LL) condition for 3 and 4 weeks, respectively.  The free-running period
was determined by O periodgram. In order to examine differences in the photic entrainment, we
employed two experiments paradigms. To obtain the light pulse-induced phase shift in DD, mice were
exposed to a light pulse (50 lux, 15 min) at CT16 approximately 1 week after being released from LD into
a DD condition and their wheel-running rhythm were continuously recorded. Phase shifts were
calculated from distance between two regression lines drawn through the daily onsets of wheel-running
activity for at least 1 week before and after light pulse. For measuring re-entrainment to a 6 hr advanced
LD cycle, mice were maintained in a 12:12 hr LD cycle for at least 10 days, and the LD cycle was
advanced 6 hr.  The phase shifts 5 days after a LD shift were calculated. Both regression lines for light

pulse-induced phase shifts and the curved line for re-entrainment were drawn by a blinded observer.

Measurement of 5-HT and 5-HIAA concentration

Measurements of 5-HT and 5-HIAA contents in the SCN and the raphe nuclei were done by HPLC as
previously reported (Ono et al., 1996). The SCN and the raphe nuclei of wild-type and mutant mice
were dissected as described above. Monoamines were extracted with 250 01 of 0.5 M HCIO, by
sonication on ice. ~ After centrifugation at 15,000 rpm for 10 min at 4°C, supernatants were collected for
measurement of monoamine contents. Eicompak MA-50DS (4.6 x 150 mm) (Eicom, Kyoto, Japan) and
an electrochemical detector (ECD-300, Eicom, Kyoto, Japan) were used for 5-HT and 5-HIAA assays.
The mobile phases were as follows: 50 mM sodium-acetate-citrate buffer (pH 3.9) containing 150 mg/1
sodium 1-octanesulfonate, 5 mg/l EDTA and 10 % methanol. The data were analyzed with a
Powerchrom 2.0.6 system.

GFAP immunohistochemistry

Mice were deeply anesthetized with Nembutal (80 mg/kg i.p.) and perfused intracardially with 50 ml of
saline (37°C) containing 16 units/l heparin, followed by 50 ml of 4% paraformaldehyde in 0.1 M
phosphate buffered saline (PBS; pH 7.2; 4°C). Brains were removed from the skull and fixed with 20 ml
of 4% paraformaldehyde in 0.1 M PBS and transferred to 20% and 30% sucrose solutions in 0.1 M PBS
cach for 24 hr. Brains were cut into 30 Om slices from rostral to caudal SCN, intergeniculate leaflet
(IGL) and median raphe with a freezing microtome. Alternate sections were incubated with anti-GFAP
antibody (GF12.24, Progen Biotechnik, Heidelberg, Germany) for 24 hr at 4°C.  All sections were then
washed 3 times with 0.1 M PBS (10 min each) and incubated for 2 hr with biotinylated anti-mouse goat
antibody (diluted to 1:200 with PBS including 1% normal goat serum and 0.3% Triton X-100; Vectastain).

The sections were washed 3 times with 0.1 M PBS and incubated for 2 hr in an avidin-biotin complex
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solution (Vectastain ABC kit). After 3 washes with 0.1 M PBS, sections were visualized with
diaminobenzidine as a chromogen and mounted on gelatin-coated glass slides. All procedures were

performed at room temperature except for the incubation with the primary antibody.

GFAP western blot analysis

Wild and GFAP mutant mice were anesthetized with ether and killed by decapitation. The brain was
rapidly removed from the skull and the SCN and the IGL were dissected free and quickly frozen by liquid
N,. Then, samples were homogenized with 100 01 of following buffer: 50 mM MOPS, 400 mM KCl,
0.5 mM MgCl,, 0.1 mM EDTA, 1 mM EGTA, 0.32 M sucrose, 1 mM vanadate, 1mM DTT, 0.2 mM
ABSF, 5 UOg/ml pepstatin A, 50 Og/ml leupeptin, 100 nM calyculin A. After ceri'tﬂfugation at 15,000
rpm for 10 min at 4°C, supernatants were collected and added to 5X reducing Léemmli buffer (Laemmli,
1970) (2.4% SDS, 6% 2-mercaptoehanol) followed by boiling for 5 min. Samples were electrophoresed
on 7.5 % polyacrylamide gel and transferred to Immobilon-P membrane (Millipore, Bedford, MA), and
incubated with anti-GFAP antibody (GF12.24, Progen Biotechnik, Heidelberg, Germany) for 3 hr at room
temperature. GFAP on the membrane was visualized by an Immun-Star Chemiluminescent Protein
Detection Systems (Bio-Rad, Hercules, CA) and analyzed by an image analyzing system (GS-250
Molecular Imager, Bio-Rad, Hercules, CA).

Statistics
The data are presented as mean + SEM. Statistical analysis was conducted by Student’s ¢-test or

Fisher’s exact probability test. P values of 0.05 or less were considered as statistically significance.
Results

Wheel-running rhythm

We compared the circadian activity rhythms of wild-type and GFAP mutant mice under LD and DD
conditions. Both wild-type and GFAP mutant mice showed LD-entrained wheel-running rhythm and
their wheel-running activities were restricted to the dark period (Fig. 1). The periods of wheel-running
thythm were exactly 24 hr in both wild-type and GFAP mutant mice (Table 1). Under the DD condition,
both wild-type mice and GFAP mutant mice exhibited a stable free-running rhythm and we did not
observe a significant difference in the period of wheel-running rhythm (Fig. 1, Table 1).

We next investigated the photic entrainment of the circadian clock. Light pulses (15 min) at
circadian time 16 (CT, CT12 was defined to activity onset time) induced a phase delay of wheel-running
thythm in both wild-type and GFAP mutant mice. There was no significant difference in degree of
phase delay between wild-type and GFAP mutant mice (Wild-type mice: 84.736.58 min (n = 11),
GFAP mutant mice: 81.14%12.19 min (n = 14); p > 0.05 (Student’s f-test)). Furthermore, no

12



differences in the re-entrainment of wheel-running rhythm following a 6 hr advanced LD cycle were
observed between wild-type and GFAP mutant mice (phase shifts on 5 days after a LD shift were 3.37 %
0.29 hr (Wild-type mice; n = 9) and 3.27=0.41 hr (GFAP mutant mice, n = 7); p > 0.05 (Student’s ¢-
test)).

Under LL conditions (Fig. 2), the period of wheel-running rhythm rapidly increased in both wild-type
and GFAP mutant mice. One month of housing in LL conditions resulted in the disruption of circadian
thythmicity in some animals. [ periodgram and Fisher’s exact probability test revealed that GFAP
mutant mice tended to be significantly arrhythmic under LL conditions (Fig. 2 and Table 2).
Furthermore, GFAP mutant mice had a significantly longer circadian period compared to that of wild-type

mice when we averaged the data of only those mice that still showed circadian rhythmicity in LL.

5-HT and 5—HL4A concentration

We measured S-HT and its metabolite, 5-HIAA contents in the SCN and the raphe nuclei, that is known
to be important for circadian rhythmicity under LL condition. The 5-HIAA contents in both the SCN
and the IGL of GFAP mutant mice were significantly lower than of wild-type mice, while there was no
difference in the 5-HT content in either the SCN or the raphe nuclei (Table 3).

GFAP expression
We used male C57BL/6J mice for GFAP immunohistochemistry and western blot analysis because both
wild-type and GFAP mutant mice had the similar genetic background of C57BL/6J mice.

The SCN contained the intensive GFAP immunoreactivity within the hypothalamic nuclei. The
intensity and the expression pattern of GFAP did not show any changes through various zeitgeber times
(Fig. 3). We next examined the effect of LL on GFAP immunoreactivity in the SCN, IGL and raphe
nuclei. During LL housing for 80 days, longer free-running and more arrhythmic circadian locomotor
activity rthythms were observed if compared with LD condition (data not shown). GFAP
immunoreactivity was decreased in the SCN but increased in the IGL by LL housing for 80 days (Fig. 4).
On the other hand, there is no change in the GFAP immunoreactivity in the median raphe nuclei during
LL housing.

In order to amalyze the GFAP immunoreactivity quantitatively, we employed the western blot
analysis of the GFAP content in the SCN and IGL under LL or LD conditions, GFAP mutant mice gave
no detectable band of GFAP (50 kDa)(Fig. 5). The LL housing for 80 days significantly decreased
GFAP content in the SCN and significantly increased it in the IGL of wild mice (Fig. 5).

Discussion

We demonstrated that, under constant lighting conditions (L.L), the circadian rhythm of GFAP mutant

mice tended to be disrupted and the free-run period was found to be longer than that of wild-type mice.
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It is known that the circadian period becomes longer under LL than DD and long-term LL housing
decreased the amplitude of circadian rhythms in rats and mice and elicited the splitting into two
components in hamsters (Pickard et al.,, 1993; Pickard, 1994; Depres-Brummer et al., 1995). Since
GFAP were abundantly expressed in several brain regions including the SCN, IGL and raphe nucleus, all
which are important for regulating circadian rhythm (Morin et al., 1989; Botchkina & Morin, 1995), we
could not conclude exactly which brain regions, were crucial for the abnormality of circadian thythm in
GFAP mutant mice under only the LL conditions. However, as is well known that GFAP is very specific
protein for astrocytes, the abnormality in the neuronal behavior can be described to loss of glial activity
and consequently loss of interaction between glia and neuron.

As SCN is a main oscillator in the circadian systems, we would like to know how GFAP regulates
neuronal activity in the SCN. 1t is reported by several authors that neuronal firing rate or glucose
utilization in the SCN slice also displays disrupted rhythms when animals are maintained under LL
condition, indicating that the disruption of circadian rhythms under LL occurred in the SCN (Schwartz et
al., 1977, Shibata et al., 1984; Zlomanczuk et al., 1991; Yu et al., 1993). Thus, the SCN is involved in
the arrhythmicity under LL condition. We demonstrated that serotonergic activity in the SCN and the
raphe nuclei were markedly decreased in GFAP mutant mice. Depletion of brain serotonin by 35,7-DHT
increased the period length produced abnormalities of activity thythm under LL conditions but not under
DD conditions (Morin & Blanchard, 1991). This report is consistent with our observations. GFAP
expressing astrocytes play crucial roles in the development of serotonergic neuron via S-1000J protein
(Ueda et al., 1994a; 1994b), indicating the important interaction between astrocytes and serotonergic
neurons. Therefore, we conclude that GFAP in the SCN may be involved in the neuronal regulation of
astrocytes and lack of GFAP resulted in the decrease of serotonergic activity in the SCN followed by
disruption of circadian rhythms under LL condition.

As shown in our experiments, LL condition strongly decreased the GFAP protein expression in the
SCN. Considering GFAP mutant mice lack the activity of GFAP in the SCN, the reduction of GFAP in
the SCN may induce the arrythmicity of locomotor activity under LL condition, by unknown molecular
mechanism.

Effects of GFAP on the neuronal function was examined in another brain region, as follows. Inthe
cerebellum, GFAP mutant mice are deficient in the ability to produce long-term depression (Shibuki et al.,
1996), and long-term potentiation in the hippocampus was enhanced in GFAP mutant mice (McCall et al.,
1996). These reports suggested that GFAP played a role in regulating neuronal synaptic plasticity.
Recently, we reported that optic nerve-SCN synaptic transmission was potentiated after the tetanic
stimulation (Nishikawa et al., 1995; 1996). Therefore, one possible interpretation of our results is that
the lack of GFAP might affect synaptic plasticity ih the SCN via modulation of neuronal function, such as
serotonergic neurons, followed by disruption of circadian rhythms in LL conditions.

In addition to those, we would like to stress that the IGL also might be involved in the appearance of
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abnormal rhythmicity in GFAP mutant mice under LL condition. Retina ganglion neurons, that received
the photic signal for circadian clock, have been reported to innervate to the SCN and also to the IGL of
the thalamus. Then, IGL sends its light information to the SCN using transmitters of NPY and/or
GABA. We, in the present experiment and other groups (Morin et al., 1989) observed that GFAP was
highly expressed in the IGL. The ablation of the IGL prevents the elongation or disruption of the
circadian activity rhythm under LL conditions in hamsters (Harrington M.E. & Rusak, 1988; Pickard et
al., 1987) but not in mice (Pickard, 1994), suggesting that the IGL may be involved in limiting the light
signal to the SCN under LL conditions.

We showed that long-term LL housing led to increase of GFAP expression in the IGL. Increase of
GFAP in the IGL under LL condition might be results of compénsaﬁon to long-term light exposure.
Therefore, GFAP mutant mice exhibited the arrhythmicity under LL, because of lack of compensatory
role of GFAP on disruption of circadian locomotor rhythm under LL.

In our study, GFAP mutant mice did not exhibit any abnormality of wheel-running rhythm under LD
and DD conditions and there was no difference in the light pulse-induced phase shift nor re-entrainment
to 6 hr advanced LD cycle. These results indicate that GFAP does not have a crucial role in the
generation nor photic entrainment of the circadian clock. Although it is not so easy to show clearly the
significance of astorocytes in circadian changes, there are some reports about involvement of astrocytes in
synchronization of circadian rhythms (Prosser et al., 1994, Shinohara et al., 1995) by using inhibitors of
astrocytes metabolism and GAP junction or antimitotic drugs. These reports would appear to disagree
with our findings. It is, however, important to note that the circadian normality observed in GFAP
mutant mice do not imply the non-contribution of astrocytes to the functioning of the circadian clock,
because mice devoid of GFAP did not show apparent abnormalities in the morphogenesis of astrocytes in
brains (Gomi et al., 1995; Pekny et al., 1995; Wang et al., 1997). We can also exclude the possibility
that the compensatory expressions of other intermediate filaments rescue the effect of lacking GFAP,
since neither vimentin nor nestin was up-regulated in GFAP mutant mice (Gomi et al., 1995; McCall et al.,
1996, Wang et al., 1997; Pekny et al., 1998).

We, in the present experiment, and other groups (personal communication with Dr. Okamura in Kobe
University) observed no daily variation of GFAP expression in the mouse SCN, while other researchers
observed daily variation in hamsters (Lavialle & Serviere, 1993). The difference of animal species, such
as mice, rats and hamsters, may account for this discrepancy. Anyway in mice, GFAP possesses a
meaning role in the generation of circadian rhythmicity only under LL conditions. The physiological
significance of the changes of GFAP expression in the SCN and the IGL could be achieved by studies
using microinjection of GFAP antisence into specific brain areas. '

In conclusion, it became clear that GFAP-expressing astrocytes regulate the photic signal of LL to the
biological clock in the SCN or the IGL. We demonstrated that serotonergic activity in the SCN was
regulated by GFAP-expressing astrocytes and this may be lead to the abnormality of the circadian rhythm
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under LL condition in GFAP mutant mice, Furthermore, GFAP expressions in the SCN and the IGL are
regulated by consecutive light exposure, suggesting its important roles in the circadian clock under LL
- condition. Further studies will be required to clear the cellular mechanisms how GFAP-expressing-
astrocytes regulate the circadian rhythm in the SCN.
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Tables

Table 1. Free-running period of wheel-running rhythm of wild-type and GFAP mutant mice in LD
and DD

Wild-type Mutant
Lighting condition Period (hr) n Period (hr) n
LD 24.01£0.01 12 24.00=£0.01 12
DD 23.68+0.06 12 23.78+0.04 12

Wheel-running thythms of wild-type and GFAP mutant mice were recorded as described in the legend for
Fig. 1. Free-running periods during last 10 days (LD) or 15 days (DD) were calculated by periodgram.
Data are mean=SEM. Student’s -test revealed no significant difference between wild-type and mutant

mice,

Table 2. Difference in tendency toward the disruption of circadian rhythmicity in LL and free-
running period of wheel-running rhythm of wild-type and GFAP mutant mice in LL

Wild-type Mutant
thythmic arrythmic rhythmic arrythmic
Number of mice # 11 4 4 8
Free-running period in =~ 25.64+0.15 *26.25+0.06

LL (hr)

Wheel-running rhythms of wild-type and GFAP mutant mice were recorded as described in the legend for
Fig. 2. Mice were divided into rhythmic and arrhythmic groups using periodgrams recorded during the
last 15 days in LL. Free-running periods during the last 15 days in LL were calculated by periodgram.
Data are mean=SEM. # significant difference (p < 0.05) in ratio of number of rhythmic and
arthythmic mice between wild-type and GFAP mutant mice (Fisher’s exact probability test). *:
significant difference (p < 0.05) from wild-type (student’s -test).
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Table 3. 5-HT and 5-HIAA contents and ratio (5-HIAA/5-HT) in the SCN and the raphe nuclei of
wild-type and GFAP mutant mice

Wild-type Mutant

contents (ng/mg) or ratio n contents (ng/mg) or ratio n

SCN 5-HIAA 58.20£5.53 6 *37.39+:4.37 6
5-HT 20.85+2.85 6 21.504.26 6

Ratio 2.97£0.33 6 222+0.67 6

Raphe 5-HIAA 858.87+68.86 6 *639.03£33.75 6
5-HT 1098.93£120.39 6 983.08£33.34 6

Ratio 0.83+0.10 6 0.65£0.03 6

Mice were maintained under LD for at least 2 weeks. During the light period, the SCN and the raphe
nuclei were prepared and the monoamine content was measured by HPLC as described in Materials and
Methods. Data are expressed as mean+SEM. *: significant difference (p < 0.05) from wild-type
(student’s #-test).

Figure legends

Figure 1. Representative double-plot actograms of wild-type (A) and GFAP mutant (B) mice in LD
followed by DD conditions. Time of day is indicated horizontally and consecutive days vertically. The
open and solid bars on the top of actogram represent the light and dark period, respectively. Mice were
maintained under LD for 2 weeks followed by DD for 3 weeks and their wheel-running activity was

continuously recorded as described in Materials and Methods.

Figure 2. Representative double-plot actograms of wild-type (A) and GFAP mutant (B) mice in LD
followed by LL conditions. Details were described in the legend for figure 1. Mice were maintained
under LD for 2 weeks followed by LL for 1 months.

Figure 3. GFAP immunoreactivity in the SCN of C57BL/6J mice at various time of day. Mice
maintained under LD were perfused transcardially with saline followed by 4% paraformaldehyde at
various ZTs (A) ZT2 (B) ZT6 (C) ZT10 (D) ZT14 (E) ZT18 (F) ZT22. Coronal sections (30 Um)
through the SCN were processed for immunohistochemistry. There was no variation in GFAP
immunoreactivity among various ZTs. These experiments were conducted repeatedly 4 times. Scale

bar = 500 Om.
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Figure 4. Effect of LL housing on GFAP immunoreactivity in the SCN (A, B), the IGL (C, D) and the
raphe nuclei (E, F) of C57BL/6J mice. Mice were maintained under LD mn=6)A C,Eyor LL (n=
5)B, D, F) for 80 days and perfused transcardially and coronal sections (30 Om) through the SCN, the
IGL and the raphe nuclei were processed for immunohistochemistry. Long-term LL housing resulted in
a decrease and an increase in the GFAP immunoreactivity in the SCN and the IGL, respectively. There

were no changes in the GFAP immunoreactivity in the raphe nuclei. Scale bar = 500 Om.

Figure 5. Western blot analysis of the effect of LL housing (80 days) on GFAP content in the SCN and
the IGL of C57BL/6J mice. A: Representative western blot for the SCN (A) and the IGL (B). GFAP
contents of GFAP mutant mice (GFAP mutant), of wild mice in LD (Wild (LD)) and of wild mice in LL
(Wild (LL)) were analysed using western blot. . C: Summarized data of mice maintained under. LD (n= 4
-5)orLL (n=4-5). *: significant difference (p <0.05) from LD (student’s ¢-test).
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BARMOTTADERN S, V=T A7V XLEHTEAT P2V DEES zoWT
@Ewﬁ§%%&%%f%ot.%ﬁ,E%%@7U-5>%#meibzy%ﬁaﬁ
5328, 7V-7 U XLW 24 BEARCEESN, IOERNERE FERESY
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B, WREGHER RS BEREACEREGEEERBOBECN T2 A7 =Y 0&RETD
BN Tholr EVIHFPENHLOVTWS, %7z, Y IV BL2OFEKTHL AF VT
NS IvReT b VEEASYSREFEEEECEES TS I L HBYTE P ENRI
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2. K& Y—NTF 47 UXLADDFHEB-FXI ERITBIT 2 NVDA ZAK & RIMRES

FEICHET 2 L BRI L5 T 3.
o XESEEFELTOS VS 2 VER

BFLEOENRENL, RETHRICHBT IERX L
(Suprachiasmatic Nucleus ; SCN) &5 Rt O
WEET S, SCNESBIZMO RS & OFEERE
YL TH, £SCNEBTURRTI1 A EERL TS,
FOHBROBINEHINURHZ IBAHE TS5
FATFTUVXLERTIEMS, SCNREET BENK
HIEEENSDIEND I eNTESRLY,

HEFAO O OFRELIT RI2VBENRA SN T NS,
IDRAZEBRTHIRENSSINKEDZE/ VF TR
BT, Retinohypothalamic Tract (RHT) &3, $ 31
DIZHEENSARBRRELZBEHLUSCNIZESRE T,
. Geniclohypothalamic Tract (GHT) &\ 35, T DHREED
FERENEY, EREEENHECI > TERATINT
WBP, SMEIRIRG 2 ERAYITIE U T HRMERE O
FRZ N LB RS RN ENHEINTRY,
HEFICEERBRIZRITTH D, CGHTIEXFREHE
HULIEHAST 2REEL TR HOLERIETNT NS,

SCNAVENEREFTH 5 Z EMH S MR- TESE,
FsRZHEOYHE, TROBRETOEREENEZRFEEL
£ ETBHEVFETSNTELD, LTOL D RHE
MOREETI JERTHDIINY 2 VEBNRATIZET 3
HREZEVETHZ I EN—REZTARLRATVS,
OIEFHE R L ——2BBICEAL, RHTHEERZEFRIE
UFZiREET, VS 2 VBORERREETFEMFEL N
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FrFE RS EAR I ERH I X BATE ) X A DL RIS
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2. BE - Y—nF 4 T UXLDSTFHEIB - HRX EHITBY 5 NMDA 5K & RIEBHER

v FEONIKT S, £/, NMDAZSKED ) VE{LEEHR
LB VBRI IDF v IINVEESHGIEIND I LY
FEINTNHD,

ENERETOXERII T NS 2 B EENE - L
THELTND Z EFAICER M, 320753 >
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ROCEHRRERTDOIDTHHc-FOSEHEDREE
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TEHEIEMBRORESTNTNS,), MK-801, DGGRAPS
72 £ ONMDA SEEEFFEIZ TN 5 OFHIBEIT & B c-fos
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CEBRISAIC K S SCNBRBRRE Y XL OMEEN
ERBHMK-80LIZ K> TR END. XFEAOEKROM
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KAZBEHEOHENMENRSFOARRAICES L TR &
ZRohTns,

COXDITHRRBIC K B EMIERMT, NMDAZE
HREFRETHREIN D, LzdioT, YRNMDAZEK
R AR e K D A MER 25 2RI T
BT THD, TITEESEIMRASAAZRAN, TOTF
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MEERF L™, £9, SCNHEHEMICH T 2EHR
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BREfTV, NMDA2-deoxyglucose DER U A H 2N &
BT EERMUMZ. 9725 NMDA IS SCN MM O£
HEGE LRITBILE2HELSMITLE. £/, NMDA
DEMBEAITEL > TSCNAT-FOSEHE DREMNE &
BIINDILHER L. ARICNMDADBRBEAIZ
SCN## ) XL DMMHEL B SR I L, OMHERE

Phase shift { hr)
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BHHEAILIBESESER, BabHIAENMDA (10
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BEIOY — 7 BRI ELERIC e UTE < < uLfrsEan
# (sl (+)), B AUSHMEEBE e () TR
. NMDAWICTI4 5 THM%EE, CTRRETHiES:
BlERIY. ZOLIRMBENRn vivoDTEIY—AF
17 X LDREEE KT 3,

R E MR ESREIC L B SONERZ Y X AL HEA
X2, in vivoTORFRBIC K 2178 1) XL OB Sk
BIZENLTWE (B1). ThS0SEERHEEHBV
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2. B H—NF 4 72U XAOHTEE- R LB 5 NVMDA ZER S RITEBER

DAG —* PKC
"

Phase shift
X
1P3 p (
AT Y. Nos #NO— COMP =t
—» (Ca" —» Calmodulin — CaM Kinase— pCREB
glutamate s
Y
= Na' c-fos
Phase shift

B2 SCNY—AF 47 UXAOKRRICBIBILS I CERBEBORE
mGlu ; ARHBIY L4 3 L E2 A, NMDA : NMDAREE, AMP @ AMPA /KA
2EK, Pl KA T 7 FUNA /¥ h—Jb, DAG: Y7 ¥ Ty,
PKC : 7054 >FF—HC, P : A /¥ =)y hURY B, NOS: NOBEK

B%, NO: —HtER

MELUTOLSIcELO NS (H2), £F, Hic&oT
B S D EEES W7V 3 VERDINMDA R A
REDYLE I LBERKDERLEISEIL, 2O
SRR RICRA L7 Catas, AVEY 1) D ERIVE
Do) U kERTOFA o FF—FRER{L, CREB
BEEN) CBENS. UUBEIERKLENE
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DEMRFBETORREBEL, FEERORR
HHVIERMOU XLREREFORBEHE T2
B, RAEIORBASEIEEIEND. BE HARE
EMETHE—BHLEE NO) OARBRESEREIIX
- THFEIZ X 278 XL OMHEELSNMDAIZK S
SCNHHEIEE) ) X L DA LANH SN2 T b
NP, Lieaio T, NODEEEZNITH &EH<
cGMP D #HNAS, NMDAZAKAIEEIC LS c-FOSERE
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Nk,
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2. BR - Y—hT 4« T UUXLOSFHIE - HRX ERITHBIT 5 NMDA 5k & BIHEHRER

BRIEEAERE RN, WTFRAHD1DONMDARLH
722w b ENMDARI EHICRBE L T3 kI ER
DENF v X NEENRENBZ IS CA2Y, £/,
NMDARIH 71w MIMTBREHLHKIC LS T,
NMDAR2AY 7=y N NMDARIBH 7 1=y h &
MONMDARZ Y 712w SRS INTL B LS
EORMEEELD LT, NMDASAKITHEEDY
Iz MREELEATFOF IR —2BRLTWD 2
EAHRIEND, $£/2, NMDARZH T 2= O ALE
FURIMITIEY DB E DB & RN SEET S
NS, NMDARIARAGKE L THEET 5 L TOBR
72w b EBEL, NMDARIZHE Y 712w R &
LTz &bELSNTNS,

N DFEBRNS —> 2B THB &, NMDASEESY
Ty BN EHEEEE L TWA I L EEXE
5®, %7, NMDAR! mRNAIZHAER & D MKz RE
9§ %, —7, NMDAR2B®NMDAR2D mRNA I 54 810D
AIHERNED SN, EBRBHITHEETS, LEs-T
INSONMDARZY T L=y MMEIHRHIR D 43 b- sk
E%OHRICESEE L TNATHES 21 505,
FhITHt L TNMDAR2A ® NMDAR2C mRNA VA4 1% 17 %
BAED 51, TOMADHIZENETNEBENTH S,

SCNIZ#1F 5 NMDAZAMEH 7 22w h mRNADRE
NE=2BinsituNA TUFA -2 g Vs fENTE

- &1 SCNIZH!T 5 NMDAZ B mRNA DRIE & 4345

19 | Rat, Insitu* SCN& ki BB T

s

MicHEENTWS (F1). NMDAR] mRNAZSCNE &
KRERHALTNWSL, SCNLULOER FEESBUIC S FRkIC
RBRLTHED, TORBEISCNEEEN TR AL,
NMDAR2H 7 2= hmRNADRE /Y — L I3ERT 5
PYECRECLI->TEBEETHD, AT, @
JHFTHy PREBMEITICE > TNMDAR2B &
NMDAR2A mRNAZISCNIZ# < RE L T 3 7%,
NMDAR2C & NMDAR2D mRNA B TERWE NS #
ER, QinsiuNt TUFA ¥ -3 Vil ko T,
NMDAR2B & NMDAR2D mRNA X # H & 172 W 78,
NMDAR2C mRNA %tSCN o g 418 & & PR EIERIc iR B L
THETZENIRENZINTNBEY, £25y FTIE,
BWTNONMDARZY 722w PmRNADOREL T 5
NN ENSEED?, @NMDAR2C mRNAASCN DR
BERICHET 5L WS HENS D, —RIIC, KN
EHEMFFT D LT, SONROSEA AN R EEHE
ZLTHD, BN TRICARFEOANZ, AT
NEER TIRAENF ORIEE OB DR M ORI A~DH
HEZR->TWEEEZENTWVWS, LENST,
NMDAR2Y 71w FOSCNATOBHEIZEK BN
2LIABTHB, €75y MZBWT, ®NMDARL &
NMDAR2C mRNAENYHANEE L, AFEIMERLE
FEEITHIBENICINSOREESENT S &
BHRESTNTHO?, KARFORE, FBEICINSD

N # :

BREENT ENRMCER L THE

12 | Rat, In situ

SNEHIBEIHE, HiEoTHE | NT.

NT. | SONICBEIAE HickoTHE | . NT

g 'R“at:,‘In sit

e ‘SCN%fzc:c:%gr:é@,@, _ },f_éﬁﬁféﬁ??:

36 | Mouse, In situ NG gBCEE |

BHENT | ERERARSRE L TEE | REENT

" 24" |“Mouse, Nowhem® |

. smemE

so | wmcEE |

*; In situ Hybridization, ** : Northem Blotting, ***: Not Tested.
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Abstract

Effects of methylcobalamin (methyl-B,,), a putative drug for treating human circadian rhythm disorders, on the melatonin-induce
circadian phase shifts were examined in the rat. An intraperitoneal injection of 1~100 wg/kg melatonin 2-h before the activity onset tim
(CT 10) induced phase advances of free-running activity thythms in a dose-dependent manner (BDso = 1.3 pg/kg). Injection ¢
methyl-B,, (500 ug,/kg) prior to melatonin (1 wg/kg) injection induced larger phase advances than saline preinjected controls, while th
injection of methyl-B,, in combination with saline did not induce a phase advance. These results indicate amplification of melatonin-ir
duced phase advances by methyl-B,,. Pinealectomy abolished the phase alternating effect of methyl-B,,, suggesting a site of actio
within the pineal gland. In fact, methyl-B,, significantly increased the content of melatonin in the pineal collected 2-h after activity ons
(CT 14). In contrast, no difference in melatonin content was found at CT 10, indicating that the effect of methyl-B,, may be gated afte
the activity onset time when endogenous melatonin synthesis is known to increase. These results suggest-that methyl-B;, amplifie
melatonin-induced phase advances via an increase in melatonin synthesis during the early subjective night at a point downstream from th
clock regulation. © 1998 Elsevier Science B.V. All rights reserved. -

Keywords: Circadian phase shift; High performance liquid chromatography; Melatonin; Methylcobalamin; Monoamine assay; Pineal gland; Rat; Vitami
By,

1. Introduction results indicate a positive effect of methyl-B;, on th
. . ) ) photic entrainment pathway. In contrast, Ebihara et al. [5
' Following the accidental discovery of an 1mprov§ment reported that the circadian entrainment by daily intraper
in the non-24 h sleep—.wake syndrome by the v1tam1.n B toneal (i.p.) injections of saline are attenuated by methy.
analog, methylcobalamin (methyl-B,, ) [18], systematic ap- B,, administration. Since i.p. injections of saline induce a
proaches to understanding the mechanisms have been ex- acute elevation of motor activity, the result indicates a
amined. Methyl-B,, is also clinically e‘ffec'tive for treating inhibitory effect of methyl-B,, on the activity-depender
the delayed sle.ep phase syndrome, which is thought to be circadian entrainment which is thought to be independer
caused by the inability of the endogenous clock to entrain of the photic pathway [30]. Therefore, it seems likely th:
to environmental time cues (zeitgebers) [26]. Light-induced methyl-B,, modulates circadian entrainment depending o
circadian phase shifts are amplified by the administration the type 01% zeitgeber.
of methyl-B,, in rats and humans [10,12,14]. Field poten- The pineal hormone, melatonin, is an endogenous zei
tials recorded in the hypothalamic suprachiasmatic nucleus geber. Single or daily melatonin administration induce
(SCN) evoked by the optic nerve stimulation are potenti- circadian phase shifts of locomotor rhythms in mammal

ated by the application of methyl-By, in vitro [25]. These  [5 29341 "Since melatonin is normally synthesized in th
pineal only during the dark phase [6] and the diurn:

* Comresponding author, Advanced Research Center for Human Sci- administration O.f I_nela?:onm induces wakefulness (qms e'k
ences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama vates motor aCth1ty) in nocturnal rodents [11], circadia
359, Japan. Fax: + 81-424-67-4377; E-mail: msikeda@mn.waseda.ac.jp entrainment by melatonin is thought to be related to bot
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photic and activity-dependent entrainment pathways. How-
ever, circadian entrainment by melatonin is essentially
independent of these pathways since the effective time
window to induce circadian phase shifts by melatonin is
different from the windows for photic and activity-depen-
dent entrainment pathways. Melatonin induces phase ad-
vances late in the resting phase (subjective day) [1], while
photic stimulus induces phase shifts in the active phase
(subjective night) [28] and evoked motor activity induces
phase advances maximally in the middle of the subjective
day [30]. In addition, melatonin induces circadian phase
shifts of firing activity rhythm of the SCN [8,22,23] and
melatonin receptors are abundantly found in the SCN
[4,732], indicating a direct regulation of the circadian
clock by melatonin.

Although melatonin and methyl-B,, are used therapeu-
tically to treat circadian rhythm sleep disorders, the interre-
lation between these clock regulators has not been studied
in animal models. In the present study, we analyzed the
effect of methyl-B,, on melatonin-induced circadian phase
shifts as well as on melatonin biosynthesis in the rat.

2. Materials and methods
2.1. Animals

Adult male Sprague-Dawley rats (310-450 g, 60-70
~ days old) reared under LD 12:12 in a constant temperature
' and humidity (25°C and 60 + 6%) were used. Food and
| water were available ad libitum.

2.2. Recording of melatonin-induced circadian phase shifts

In order to record free-running activity rhythms, the
animals were maintained in constant dim illumination (dim
LL; 0.5-1.0 lux). The free-running period and the activity
onset time (CT 12) were estimated by an eye-fitting method
as reported previously [16]. Melatonin (Sigma) was ini-
tially dissolved in methanol and diluted with physiological
saline to a final concentration of 1-100 ng/ml (less than
0.2% methanol). The melatonin solution was injected i.p.
- 2-h before the activity onset time (CT 10) which is the
- most effective for inducing phase shifts [1]. The magnitude
- of the phase shift was estimated as the difference in the
activity onset time (CT 12) of pre- and postinjection days
by three experienced investigators. In order to determine
an accurate activity onset time following melatonin injec-
tion, activity recording was continued for at least 10 days
after drug injection.

The effect of an ip. injection of methyl-B,, on mela-
tonin-induced phase shifts was analyzed using a crossover
txperimental design. Intact rats (n=8) and pinealec-
tomized (PINX) rats (n = 6) were maintained in dim LL
for 10-14 days before the experiments. The rats were then
Rtdomly assigned to two treatment groups (n=4 for

intact rats and n = 3 for PINX rats). Each group was used
during two trials separated by at least 3 weeks. In the first
trial, rats received either saline or methyl-B, (500 ug/kg)
injection 30-min prior to a melatonin (1 ug /kg) injection
at CT 10. In the second trial, the injection of saline or
methyl-B,, was reversed between groups. In another set of
experiments (n = 6), a methyl-B, (500 ug/kg) injection
was given 30 min prior to a saline injection and the rats
monitored for 10~14 days under dim LL conditions to
determine the effects of methyl-B,, on circadian activity.
The volume of each injection was adjusted to 1 ml/kg
bedy weight.

2.3. Pinealectomy

At least 2 weeks prior to the recording of drinking
thythms, rats were anesthetized with an ip. injection of
pentobarbital sodium (50 mg /kg) and placed into a stereo-
taxic instrument. A round cranial incision (7 mm ¢, center
at the ramda) was made and the dura mater was cut to
expose the pineal gland. The pineal body was removed
with fine forceps according to methods reported elsewhere
[34]. After surgery, the incision was treated with 5000 U
penicillin streptomycin. The dissected cranial cap was
wiped with ethanol and then fixed on the cranium with
dental resin. At the end of recording of drinking rhythms,
the rats were sacrificed with a lethal dose of pentobarbital
sodium, and the accuracy of the pinealectomy was visually
confirmed.

2.4. Analysis of melatonin synthetic activity in the pineal
gland

Rats were kept in individual cages and locomotor activi-
ties were recorded under constant darkness (DD). The
activity was detected by infrared sensor (F5B-GA18M,
Omron) and the free-running period was eye-estimated as
described above. After a week under DD, 1 mg/kg
methyl-B,, dissolved in saline or saline (control group)
was 1.p. injected at CT 9.5 and then the animals were
sacrificed at CT 10 or CT 14 with lethal dosage of ether

- under dim red light (< 0.5 lux). Following decapitation

and eyeball removal, the pineal body was exposed by a
cranial incision, removed with fine forceps and immedi-
ately immersed in 30 ul of ice cold 0.3 M PCA in 50%
methanol. The pineal gland was homogenized by a pellet
mixer for 5 min and additionally by an ultrasonic mixer for
10 min at 4°C. The sample was centrifuged at 13,000 g for
15 min at 4°C and the supernatant (20 wl) was used to
assay indoleamines by high performance liquid chromatog-
raphy with electrochemical detection (HPLC-ECD). For
melatonin assay, the sample (14 wl) was directly injected
into the mobile phase with 0.1 M sodium acetate, 0.1 M
citric acid monohydrate, octanesulfonic acid (80 mg/1)
and EDTA (5 mg/1) adjusted to pH 3.9 in 30% methanol.
The mobile phase was circulated at a flow rate of 1
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ml/min. For evaluation of serotonin (5-HT), 5-hydoxyin-
doleacetic acid (5-HIAA) and N-acethylserotonin (NAS),
the resting sample (6 wl) was diluted 20-times with the
mobile phase and then injected into the chromatography
column. Each target substance was filtered by a pre-col-
umn, divided in the 4.6 mm¢ X 150 mm chromatogram
column (MA-50DS, Eicom) at 24°C and detected by the
electrode (ECD-300, Eicom). The detected electrical signal
was fed into a computer via an analog-digital converter
(Power Chrome, AD Instruments) for peak area and reten-
tion time analysis.

3. Results

3.1. Dose responsiveness of melatonin-induced phase-ad-
vances in dim LL free-running rats

Rats kept under dim LL had stable free-running rhythms
of drinking behavior (Fig. 2A). A single injection of
1-100 ug/kg melatonin at CT 10 induced a circadian
phase advance in a dose-dependent mammer (F(3,22) =
3.50, p <0.05 by one-way ANOVA, ED,, = 1.3 ug/kg)
(Fig. 1). The mean phase shift induced by 1 ug/kg
melatonin (15.0 + 10.2 min) was not significantly different
from the saline injected control (—2.5 + 13.1 min) while
the injection of 10 wg/kg (40.0 +10.2 min) or 100
ug/kg (41.4 £ 11.2 min) melatonin induced significantly
larger responses (p < 0.05 for each group by Tukey’s
post-hoc test following one-way ANOVA) (Fig. 1).

Phase advance (min)

[ [ i 1

Saline

-

10
Meiatonin (ug/ kg)

100

Fig. 1. Dose response curve for melatonin-induced phase advances.
Melatonin or saline was injected intraperitoneally at CT 10 in free-run-
ning rats maintained in continuous dim illumination. An approximate
sigmoidal curve was fitted by nonlinear regression using Sigma Plot™
3.0. Note that 1 pg/kg melatonin did not induce a significantly larger
phase shift than saline. The phase advances caused by the 10 or 100
g/ kg melatonin injections are significantly larger than the saline in-
jected control (* p<0.05, by one-way ANOVA followed by Tukey’s
post-hoc analysis).
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Fig. 2. (A) A double-plotted actigram of drinking behavior in a rat
free-running under continuous dim illumination {dim LL). There was no
circadian phase shift induced by a melatonin (1 ug/kg) injection in
combination with a saline injection (a). Actigtam showing a 70-min phase
advance by a melatonin (1 pg/kg) injection in combination with a
methyl-B;, (500 wg/kg) injection (b). This magnitude of phase advance
was comparable to that induced by 100 ug/kg melatonin (c). Asterisks
indicate the time of melatonin injection (CT 10). Bold lines on each
actigram indjcate ‘the eye-estimated activity onset time (CT 12). (B)
Means #SEM of the circadian phase advance caused by combinatory
injections of methyl-By, (500 ug/kg) and melatonin (1 ug/kg): + and
— on the bottom indicate drug and saline injection, respectively. Under-
line indicates the groups of pinealectomized (PINX) rats. Significant
differences were observed betwesn methyl-B,, + melatonin-injected group
and saline + melatonin-injected group in intact rats (* p < 0.05 by Stu-
dent’s rtest), but an equivalent effect of methyl-B,, was voided in the’
PINX rats.

3.2. Effects of methylcobalamin on the melatonin induced
phase-shift in intact and pinealectomized (PINX) rats

An ip. injection of methyl-B,, (500 ug/kg), 30-min
prior to the melatonin (1 wg/kg) injection significantly
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amplified the melatonin-induced phase advance in intact
rats ( p < 0.05 by Student’s r-test) (Fig. 2A, B). The phase
advance amplified by the methyl-B,, was 3.4 times that of
saline-pretreated rats and comparable to the shift induced
by 10 or 100 wg/kg melatonin (Figs. 1 and 2A). On the
other hand, injection of saline following a 500 wg/kg
methyl-B,, injection did not induce a significant phase
shift (Fig. 2B). In PINX rats, injection of the methyl-B,,
(500 mg/kg) did not amplify the melatonin (1 wg/kg)-in-
duced phase advance (Fig. 2B). The saline-preinjected
controls showed slightly larger (+12.8 min) shifts in
PINX rats than in intact animals (n.s. by Student’s #-test).

3.3. Circadian variation in melatonin synthesis
The content of melatonin in the pineal gland had a

manifest circadian rhythm with a gradual increment during
the subjective night (CT 14-22) and a trough during the
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Table 1
Circadian time (CT) variations in the contents of indoleamines in the rat
pineal gland

n  Serotonin 5-HIAA NAS Melatonin
CT10 6 31.36+826 4.59+1.52 1.02+£0.39 024+0.14% %
CT14 6 9594322 1.02+042 1.764+0.82 0.53+£022x
CT18 4 14874767 1.69+058 1.13+0.15 1761093
CT22 4 1137+2.81 162+028 1454017 2.65+0.63

Mean content (ng/gland) + SEM of serotonin, 5-HIAA (5 hydroxy indole
acetic acid), NAS ( N-acetyl serotonin), and melatonin, Animals sacrificed
at CT 10 or CT 14 underwent a saline injection at CT 9.5 as a control
experiment of methyl-By, injection. * p <0.05, * * p < 0.01 in compari-
son with melatonin content at CT22 by Tukey’s post-hoc test following
one-way ANOVA.

subjective day (CT 10) (F(3,16) = 5.53, p < 0.01 by one-
way ANOVA) (Fig. 3A-D, Table 1). Similar to the mela-
tonin rhythm, the intermediate substrate, N-acetylserotonin

r 1
_ A E
| i T ] { ] 1 I T
T :
P T T l { 1 1 I T
- C
— I G
20 - T { T [ 0 ¢y g
< - 100
16 |- D =% 3
% © - 80
19 b wn =
-1 60
S i, 2
8 - 44 E
4 - —- 20
0 0
I 1 H T [ I i I I
0 4 8 12 16 0 4 8 12 16
Time (min)

Fig. 3. Representative chromatographs of a rat pineal extract. Arrows indicate the retention time (RT) of melatonin defined by a standard solution (G)
which contains 2.5 wg/ml serotonin, 2.5 wg/ml 5-HIAA, 2.5 ug/ml NAS and 25 ug/ml melatonin. The melatonin peak was small in the subjective day
(A: CT 10) or early in the subjective night (B: CT 14) and was elevated from middle (C: CT 18) to late (D: CT 22) subjective night. An i.p. injection of
wethyl-By, (1 mg/kg) elevated the melatonin content early in the subjective night (F: CT 14) but not in the subjective day (E: CT 10).
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(NAS) levels were high during the subjective night and
low in the subjective day, although the day—night differ-
ence was not significant due to the large inter-individual
variations (F(3,16)=0.40, p=0.74, ns. by one-way
ANOVA). In contrast, the concentration of the substrate
5-HT indicated an inverse circadian pattern being 3.3 times
higher at CT 10 than that at CT 14 (Table 1), although the
time course difference was not significant (F(3,16) = 2.86,
p = 0.069, n.s. by one-way ANOVA) (Table 1). The con-
centration of SHT oxide, SHIAA, indicated a similar circa-
dian pattern to the SHT rhythm (F(3,16)=2.95, p=
0.064, n.s. by one-way ANOVA).

3.4. Effect of methylcobalamin on the melatonin synthetic
activity in the pineal gland

A methyl-B,, (1 mg/kg) injection 30-min prior to the
pineal sampling at CT 10 did not affect any of the evalu-
ated monoamines (Fig. 3A, E, Fig. 4). However, methyl-B,,
significantly enhanced (+0.56 ng/gland) the melatonin
content of the pineal gland at CT 14 ( p < 0.05 by Student’s
t-test) (Fig. 3B, F, Fig. 4). Similarly, NAS (+0.81

Subjective day (CT 10) Subjective night (CT 14)
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Fig. 4. Effects of methyl-B,, on the melatonin synthetic activity in the rat
pineal gland. White bars indicate the mean content of monoamines in the
pineal gland sampled after saline injection at CT 9.5 and dark bars
indicate the mean contents after methyl-B,, (1 mg/kg) injection at CT
9.5. Significant differences between the saline and methyl-B;, groups
were observed in the melatonin content in the subjective night (CT14) but
not in the subjective day (CT 10). Mean-+SEM, n=6 for each group,
* p < 0.05 by Student’s rtest.
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ng/gland) and 5-HIAA (+1.26 ng/gland) levels were
increased while 5-HT levels were slightly decreased
(—0.60 ng/gland) at CT 14 although these differences
were not statistically significant (n.s. by Student’s #-test)
(Fig. 4).

4. Discussion

The present study addressed the effect of methyl-B,, on
the melatonin-induced circadian phase-shifts in the rat. A
1-100 mg/kg melatonin injection late in the subjective
day (CT 10) induced a dose-dependent phase-advance in
free-running rats maintained in dim LL. A methyl-B,
injection 30-min prior to the injection of melatonin (1
wg/kg) amplified the phase-advance. Pinealectomy elimi-
nated the effect of methyl-B;, on the melatonin-induced
phase shifts although the basal sensitivity for melatonin
was slightly increased in the PINX rats.

The dose-responsiveness of melatonin for behavioral
phase shifts and the sensitization for melatonin in the
PINX rats observed in the present study were similar to
those reported for free-running rats under constant dark-
ness [34]. The magnitude of the phase advance caused by 1
ng/kg melatonin following preinjection of methyl-B,,
was comparable to that caused by 10 or 100 ug/kg of
melatonin alone. Methyl-B,, injection in combination with
a saline injection did not induce apparent phase shifts,
suggesting amplification of melatonin-induced phase shifts
by methyl-B,,. Two possible interpretations may explain
the effects of methyl-B,,. First, the sensitivity of the
circadian clock to melatonin is amplified (e.g., melatonin
receptors in the SCN are sensitized) by methyl-B,,. Sec-
ond, methyl-B,, promotes endogenous melatonin synthesis
augmenting the subthreshold dosage (1 ug/kg) of mela-
tonin. The latter possibility is more plausible since the
effect of methyl-B,, on the melatonin-induced phase shift
was eliminated by pinealectomy which removes the pri-
mary locus for melatonin biosynthesis.

According to the above hypothesis, subsequent experi-
ments addressed whether methyl-B,, injected at CT 9.5
affects melatonin synthesis in the pineal gland. To observe
the melatonin synthetic activity, we evaluated the pineal
gland for levels of melatonin, 5-HT, NAS, and 5-HT
oxide, 5-HIAA by HPLC-ECD. The contents of these
monoamines were detectable in the extracts from a single
pineal gland by our HPLC-ECD method. The 5-HT and.
5-HIAA contents at CT 10 were larger than those at CT
14, while the NAS and ‘melatonin levels indicated inverse
rhythms, being consistent with previous reports which used
reversed-phase HPLC-ECD in combination with the radio
immunoassay [24].

Interestingly, there were no significant differences in
the content of melatonin and its substrates in the pineal
gland which was collected 30-min after the methyl-B,,
injection (CT 10). CT 10 corresponds to the time of the
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melatonin injection in the first experiment. These results
indicate that the amplification of melatonin-induced phase
advances observed in the first experiment were not caused
by an acute elevation of the endogenous melatonin content.
On the other hand, early in the subjective night (CT14),
the content of melatonin was increased while the 5-HT
content was decreased by a methyl-B,, injection. These
data indicate that methyl-B,, promotes melatonin synthe-
sis. During melatonin biosynthesis, the intermediate sub-
strate, NAS is synthesized from 5-HT by the rate-limiting
enzyme, N-acethyltransferase (NAT). NAT activity was
increased early in the night (or subjective night) by B-
adrenergic innervation from the superior cervical ganglion
which undergoes efferent regulation by the SCN (Fig. 5)
[19-21]. Therefore, melatonin synthesis undergoes up-
stream regulation by NAT and methyl-B,, may accelerate
the melatonin synthesis only when NAT is activated by the
SCN clock.

Methyl-B,, is known to be a major methyl-base donor
for the S-adenosyle methionine (SAM) which is involved
in methylation reactions [27]. During melatonin synthesis,
5-hydroxy-indole-O-methyl-transferase (HIOMT) requires
SAM as a methyl donor to convert NAS to melatonin [31].
Therefore, transmethylation by methyl-B;, may promote
melatonin biosynthesis (Fig. 5). This hypothesis is sup-
ported by our preliminary observation in which
cyanocobalamin, an analog of vitamin B, which has a
cyan-base in place of a methyl-base of methyl-B,,, was
ineffective in modulating the melatonin content of the rat
pineal gland (data not shown).

Although the phase response curve for single i.p. injec-
tions of melatonin which is based on the locomotor activ-
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Fig. 5. A model of methyl-B,, action on melatonin synthesis in the pineal
gland. In melatonin synthesis, the intermediate substrate, N-acethyl-
serotonin (NAS) is synthesized from serotonin by the rate-limiting en-
Zyme, N-acethyltransferase (NAT). NAT is activated early in the subjec-
tive night by B-adrenergic innervation from the superior cervical ganglion
(SCG) which is regulated by the SCN clock. The methyl-B,, may serve
2 a methyl-base donor for the S-adenosyle methionine (SAM) which
Supplies a methyl-base for 5-hydroxy-indole-O-methyl-transferase
(HIOMT).
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ity rhythms has a narrow window for the phase advance
late in the subjective day [1], phase shifts of SCN firing
thythm recorded in vitro indicates a broad window for
phase advances stretching from late in the subjective day
to early in the subjective night [8,22,23] and an additional
window late in the subjective night to early in the subjec-
tive day [23]. Therefore, it is conceivable that amplifica-
tion of the melatonin-induced phase advances by methyl-
By, were caused by a secondary impact of melatonin rise
during the early subjective night. However, since methyl-
By, in combination with saline did not produce a phase
advance, the acceleration of melatonin synthesis in the
early subjective night alone seems to be insufficient to
induce a phase advance in vivo.

The present results demonstrated an increase in mela-
tonin synthesis by methyl-B,, in the pineal gland. How-
ever, with respect to our previous reports which indicated
the somnogenic action of methyl-B,, in rats [13,17], fur-
ther careful discussion will be required since endogenous
melatonin is known to act as the ‘darkness hormone’ and
thus induce wakefulness in the nocturnal animals. In our
previous experiments, temporal sleep promotion and reduc-
tion of brain temperature was observed during or immedi-
ately after the nocturnal intracerebroventricular (i.c.v.) in-
fusion of methyl-B,, [13,17]. In such cases, infusion of
methyl-B,, into the third ventricle may directly affect the
surrounding hypothalamic area [33], such as the medial
preoptic area which is known as a sleep- and thermo-regu-
latory center. Interestingly, the day after a nocturnal 10-h
i.c.v. infusion of methyl-B,,, diurnal sleep promotion and
nocturnal sleep reduction were observed in the previous
report [17] or similar reversed phase modulation was ob-
served by the intravenous infusion of methyl-B,, [3]. In
these cases, methyl-B;, may spread widely in the central
nervous system and may affect pineal metabolism. There-
fore, the reported function of methyl-B,, for sleep promo-
tion may not be contradictory to the melatonin increase
observed in the present study, although the most effective
site of action of methyl-B,, still has to be determined.

We recently demonstrated that the total content of
vitamin B,, analogs in the rat brain are decreased at night
(or subjective night) and increased during the day (or
subjective day) [15]. Interestingly, the circadian variations
seen in the vitamin B, content were similar to those of
SAM activity and inverse to the melatonin content in the
pineal gland [9,31]. Since SAM acts as a methyl-base
donor for HIOMT in the process of melatonin synthesis
(Fig. 5), these reports together with the present results
suggest that endogenous methyl-B,, may be partially uti-
lized for endogenous melatonin synthesis.

In addition to the reported functions for the photic and
the activity-dependent entrainment pathways, the present
study indicates that the melatonin-induced circadian en-
trainment is also modulated by the methyl-B,,. This effect
may be caused by an acceleration of melatonin synthesis in
the early subjective night when endogenous melatonin
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synthesis is initiated by the circadian clock, although it is
also possible that methyl-B,, increased the sensitivity of
the clock for melatonin. The present results shed light on
the understanding of the consequence as well as the mech-
anisms of methyl-B,, therapy for circadian rhythm sleep
disorders.
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A, Control
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Fig. 1 Light pulse-induced phosphorylation of calcium/calmodulin dependent protein kinase II (CaMKID in
the hamster suprachiasmatic nucleus (SCN). Hamsters were exposed to a light pulse (300 Iux) for 5 min at ZT
13.5 and perfused transcardially with saline and paraformaldehyde. Brain slices including the SCN were proc-
essed for immunohistochemistry with antibody to phospho-CaMKII. Scale bar =500 um.
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T# 5 cAMP Responsible Element Binding Protein
(CREB) DV vBME, 857 NV5 I VEBBERIZ L 5 SCN
FEEE) X L OB TRTENAGET L L 2HD
P L72(3). BT OMNAEE LR 2 RE DK%
FIBMIZ & - T CaMKII BEHALEh a2 L2 RHB LA (B
1). B, cfos PR LHEERFTHY -FOS ¥ ¥ 327 K
L AP 1 BEKRERRT S junB OT7 VFE ¥ AF Y TR
7 U F FORBANRE, HICLB78Y XAOMMAE
2 PETHIEBHTEENLW). LizdaT, ¥
I UBZEKOEREILE, CaUOHRALEFRICEL AV
EVaY yB LU CaMK DML, CREBD Y ¥ BRiL%E
EEL, ¢FOS, JunB ¥ vy 2 BELR EORPEREBET
BUEREAIYE, ANBTORANIIERBISNEEER
bhb.
—BILBEAREE (NOS) 2%, CaMKIizk2Y VR
BIZ L o TEBLLINZZEPFPRESI N TS, NOSE
RHT 25858 L T35 SCN O ENETICEZEBICEELT
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W3, NOS HE#¢ L-NAME 7° NMDA BEREHIC L 5
SCN ##Es Y X 2 0AE k2 HHT T L6, L
NAME iZ%6BEHc L 2 0L 2 7 —8RE LITE ) XA DR
HMEEIHL, Z0HEIENO OEETH S L-arginine
Lo THET A EPELIP IR - 72(6). NO M
BcEET A BRO YT VERY 7 I —ERTERILL,
MR D cGMP DB E 2 EINE 5. Weber 5 i3 cGMP
BEESuF 4 3 F—EORRYEEETH 5 KT-5823
® SCN ~O BIHRESEHEIC L 2178 ) X & QA
EAEEICHHET 5%, T8 X2 OMEREICH LTk
SLERALAVC ERRE LE. IRHOKRIZ, KT
DR O Y £y MCEAINVET 21 ¥ ~NOS-NO-
THlY 7 = VEEY 7 5 — ¥ — cGMP — cGMP K7 1
F4 vEFF—BLVIHBERY S FVIERRREZ R
LTWwBZeEERBELTNS,

(2) FEXFIER

SR AT 1 B SRR EE O LA 2 B 9> T OIS
LT, %< 0EpMBITEM/ER L THRAREZ Y £y
A, TOEIRERRRETE LTI, HIRRECH
HIBEE), 5 VIZEYICLAEEL VO LA
DEML EFMLRTVWS, SCNNOHRBATIRELT
12873k L7z RHT ® GHT DI, RRERERI OO
BELSET b VARSI SNATEY, SCNIZEH
Bovo b=V EREBIEETS. Beldto P URE
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#% (5-HT,,/5-HT,)) ®7 T=2 b ThH 5 8-OH-DPAT ®
KA G- AT X L ORAEEIL % AURER I b S &,
7 AR FUS HIAR IR RIS & 5 b 0 LD TEL
LTWBZEEZHLPICLAT). REOTKL DR T
5-HT, AN LT L ) B\AEL R (+)-8-OH-DPAT
DFHH(—)-8-OH-DPAT & W A CEER 2R T2
&, O 5-HT, AR I HU3E DR4004 T
HENDLZEEZWEOLPIT L ¥ 512, SCN OMBEED
) XL HITEY X b EFERICIEERBE O MEE L Bl
L 7(8). — 7%, IGL % 5 1& neuropeptide Y (NPY)
BAHRE LT w5 2%, SCN ~O NPY 0513 FR
MOGAREHIAZILETIERIL, EbICZ0oMBET
FE R MY UTRERIARVWI £ 5, NPY OMHEZE
EVeF L SCN NOMBHI~OEEN 2EHTH L LR
b b, Gillette 51iE, cAMP 7 F T 7 7% SCN O # &%
BY XL OMHERAKENIIELSE, FOERIZIEE
FRETHLEIEZHLMILZ®). 3627 Fo VB
V- CEREEERELETANATY YRKRARVIAT
F—YHEETH S IBMX b AL NHEERERHERT
e b, WEED cAMP A3IEF6 R FRE o 4R P B EH A
ERERZETAZENIZo &) L1,

2. BB UXLOGFEYS

EERETCTENETNOEYBEEEOEH Y X%
FoTwabZ i, BB X 2P BENEZHELZZTITY
LHZEERLTWE, BHY X505 FREOHREIIER
Ty av¥ayNx (Drosophila) T HN2HER
EOTHERERTITDORTE ., 2¥E5IALDE
Wcid) ALDBEBORL 5 2RERME, whw bEEtE
REBBOGMNESG Tho b, $-5FEWENTE
EVESCERTE ML THE, —HFHELEW CIIRE
T CEHEZY - THENUE S L OMEFETHo72. &
ZAA1997 EICA DRV THAEO U X A RIREMIC
BAPDPboTwB eI bMBBEFHI V-V 7S
hERIE-EL22H3. UTTRIXAREBLUAS
RICHEbLEETFICOVTHET 5.

BEEYTOE—ORIETFERICL o THEIELT S
CEWRENTZDIE, NEAY — D tau BEEREYT
Ho72(10). COERIFEREHRLERLRTH), EH
BNLAS — 3B I ZF U BHEOEH Y X2BHPERTO
KL, COBEREFEANTOTHONLR Y —F 22
BHE, SETHRONARY—F20BEOESEYRT.
RROBECHED STEHE Y X5 OBLIIZIZ— B
nNTw3 (BREMEE MWiau BRENLARY—TiFE+0
BEES—ERIBR DN T LB Z LB RE SN (BLEWD
£ R EREBY T RS BRER CRERERESREIN
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Twa) (1), NAAY—TRRY Y gFhra—=v s
DD OBEHEE~ — A —PERINL TR WD, £
DIU—Z Y TIFEDEIARI L Tz,

BEY—-A—2ZBRHETELYYALHCT, BHBY
ALBRERPBITERY YA 2L, FOERKEEF%
FMELLY ETH, Whwb forward genetic 27 71—
F 3. Takahashi 5D TV — 72 L o THED BRI
7z. 1994 4E, Vitaterna Si3B L F 300 EDF AN R
RERFETH BT V¥ VLA N -ethyl-N -nitrosourea T
MEL, EEOARALREL CRETICEEZROZHD
<y ARER LITE Y X AR EHI LR, 852 300 T
FIEZT IREEAROR 237 A2 BR L72(12).
B OBRZORBHOERRIIE s R A LOPERE
BILLoTHlEMIShAZLFHLPERD, 2ORNE
BEEF I Clock & 47 & N7z, Homozygous @ Clock
EEIIRAIDD TCURBEOEBHOER ) XA %R
FEEDHIT2, 3EEDI B XLPHETS. —H U
ALV WER Ly AL VR EEZ L LBURARO
U X AHFH LT X 2. 1997 48 King 5 & Antoch 5 i
BAC @ eontigliC & B3RV vaFrnru—o L bo v
ARV =2y 7w ATHEBEEELBAC 70— YD Clock
EEDin vivo complementation EERIZ & o T Clock &
BFEIU—= 7 L72(13,14). Clock BIZFiZ 24 DL
TV BLE10kbICB L EKRE ZBEFTH
O bHLH-PAS 7 7 3 J—DEBER{EFEZI—FLTW
7z, E£7, CRIEEBEERILCEELEZZONL VY
I VB v F (Q-rich) R E EA T2, E561Z, Clock
ZERI3 splice N+~ O RRBAERICL Y exonld DEx
EpA%y &N, CLOCK ¥ ¥/32 & (CLOCK) @ C
KD Qrich BEFSL 51 BEOT IV BERELCH &8
CENTWEIEPHL R oz, TOILRERY Y
N7 BTREEERIRI IS A WRREEZRE L
Twh., D& ) forward genetic 7% 7 70 —FI3%E
BIEHFHORLZIERKTIRAEHFONELIL, o
T FHOBETE20HETEL LI RE, FOBENSE
BETHo BB EROUE LTSI LIIATET
H5.

IO EFEBCTSEYCRONHMREZILICETER
BEFE25HLEORELFS, reverse genetic Wiz 7
Tu—F& LT, WHLEWICBIT 5 Drosophila REH&E
FHREDTDBREVRAL O NT &z, Drosophila TlEZ
NETERIOREEEZBR T L2EET L L T period
(per) B & U timeless (tim) BEFIFIAEEINTHS (Z
Z T i Drosophila @ per % dPer L FFE). dPer &5 F
DIAELVAERIZLAEPERY V32 % (PER) OH—
DT I 7BREBERIZL > THZOFEEH) XL0BHITEL &



246 Bl EE, FBE ¥, RE EE

1 2 3 4

mPer! —b

mPer2 =———p

Fig. 2 Light induction of mPer] transcript in the
suprachiasmatic nucleus (SCN) was inhibited by
in vivo mPer! antisense oligonucleotide (ODN)
treatment. The mPer] and random antisense
ODNs were administrated i.c.v. at ZT15. Mice were
placed in constant darkness (DD) for 1 hr and half
of the mice were exposed to a light pulse (20 lux)
for 15 min at ZT16 and transferred to DD for addi-
tional 1 hr. Brains were removed, and the SCN
were punched out from the frozen slices (0.5-mm-
thick). Total RNAs were isolated and mPerl,
mPer? and f-actin cDNA were quantified by a
competitive PCR method. Lane 1, treated with ran-
dom ODN; lane 2, treated with antisense ODN;
lane 3, treated with random ODN following light
pulse; lane 4, treated with antisense ODN follow-
ing light pulse. Lower lanes in mPer 1 and B-actin
panels represent PCR products of respective com-
petitors.

o VE ot T B, T, FUYEVYAERIZLD
PER O—¥RETIZEEL L % 5. dPer BL U tim BT
FO mRNA &% V87 BiREL L bMEBOEH I AL
n, #OEEY X LE mRNADSY VAT BITEAR 6 R
FELLE/ITLTE. FDROES S, PER & TIM %
VAZE (TIM) EBEWIESE L TIEEZBR LES
BIFL, dPer (B U, B£5 < tim) BRIETFEROR

Ed (MEHKC) WHT200E2605 80 ko7,

CDORFFAT T4 — RNy 2 Zh—THHEE ) X LIRS

Table 1 Clock genes isolated from Drosophila
and mammals were conserved through evolu-
tion. +indicates the existence of the PAS do-
main in the gene products.

Drosophila mammals PAS
Per 1 +
per (period) Per2 +
Per3 +
(Per4?) ?
tim (timeless) ? -
doubletime ? -
dClock Clock +
cycle BMAL1(MOP4) +

KOEERTH L LT HELFIMOEY TLHEATES L
BEDLIHZEZILNTVA.

WEALE IS B\ TIE S M E T dPer FE T OGHEDT
ELRALNTELMRD L TPk L L, # -
B LD FL— T3 PCRELZHWTR N/ &A%
LHFRETF (hPerl) %4EET 5T & ITRIIL72(15).
FIZFEICSun Stk o THRA—EETFHFRES N
(16). 51297 ERA D B EZLDIEINTTIDDT N
— T2 E O Per RER S (Per2) O U
oV I RHELZ1T~19). BEITICELICL VL
SnkETY (Per3) DEEVHEREINTVE (FV 2R
BLUR O dPer HFEETF % mPer B X U hPer &1
R). mPerl & mPer2 REFORNTORRAZTAN
#r 25 SCNIKBWTh oL bBOEANSR OGN, &
72, mPerl, mPer2 DFHIE dPer FMBEEDRRE
FLTV A, 20— it mPer] TREBKEBOR
¥ mPer? TREBMNBEHOBELEL, WINbLER
BB EIIC Y — 7 298¢ B dPer & WA P ETH o 72,
mPer] ¥ mPer2 @ SCN A CORHH AL SNV THA
FEBRTIE, SCN KBV TIhLREFOWH 2 HE—H
BHICERELTYA. EH5 b ERNARCEVTERL
TwuBIEdD, ThLRETFEWFEERERT %Wk
FURBE NS, EIRE T &I Drosophila THHART
bPer BETFIREZTSELBE - ABRICERAL TR,
Drosophila TREBBECHENLY XLARAPRLN
LI ERHELPICERTYS (20) 2%, HWALBY TORE
5L ZARETHE. ‘

Shigeyoshi & i mPer I ORFFBB~OBEERRAN
%78, JHEEO mPer] mRNA ORE~OBEZ W
(21). #ORE, 78 X2 CEELEd 28T CT

49



BT O T, JEEW, STEWE L

Clock inputs
(light, drugs, ...)

v

247

BMAL1 CLOCK

S S

Clock controlled genes

PER

TIM?

/

Clock outputs

(sleep-wake, behavior, ...)

Fig. 3 Schematic illustration of the mammalian circadian timing system in an oscillator cell. The feedback loop

comprising the oscillator was shown with arrows.

BT mPerImRNA X SCN IZBWTABICHES R
b WY ol (RO CTHRIER % gating & 1P
S5, mPerl ODFEBUTH gating RSN, Z0ZEL
—BETH), BHEINSRICIE - 2122 L, 180 5%
Kb LEDULRVIES., FHENZDEFORED X1
CEND mPer] BEEYOBMBERE Y X 5O ML
P XL DONHEERIIHBLTWAEZECH B, 7277
L, BRIV ZLAONHELE 1YL 2V TETLTWAED
XL, fTEY XADMBEELICIEEE P E. 25120
&% mPer] FHBLMABMOKE SITHBELTSED,

TOMELIZIZRA—TH o7 mPerl BEFOMEBED
RHITSCN SRR B0 LT, HiCk 3 mPer]
FEILEEH L SON MEE LT 5 RHT 25828+ 2 8
SMIEICBE LT A mPer] 7Y F v Y X2
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WTSCNHDIIZ L 2 mPer] HE %2 HREICHIE L7
B (2 CFBOMHEB Il sns 2 RBLT
Wh, INLDZ &P S mPer] BIZFORBED, HiC
LETEOMMEICRLEL ShD I EFRBERE. &
D mPer 1 B1EF D F6FHE L Drosophila TR 51T,
MMHZERERIC L2 TIM ORELFEIC L > &R
ENBLEEZOLNRTWA, DI &iX, Drosophila &1
AIFETY XA CHET2RETF (BY) BHBETHoTH,
ZTOREWEILT L L TRTREEER TV B DITTIEER
WZEERLTWS (E1).
EIATINETCHEEESNIdPer B & HIALE Y D
Perl, Per2 8 & U Clock BIZFEWIIPAS FXA L V&
MiEh a2 @0 ERTHEOI 890> T b, PAS F
A4 i3 dPer, ¥ D Amnt, Ya vV avSTOSim
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DEBGEFEWCIET 2B LTEITLNTZHOT,
PER US D& v 2 BTy v EREO&aCElb
STWhEFEZLNA, 727°L, PER & TIM B EH%
HETEZRTIMIZPAS FAAL VEFoTwiRnwI L
5, ohb¥ v R BTORBEREEIELPTRR o
7z. ¥7:, PER & TIM dbEERMEICLEL ENE F AL
VHRAEN TV RVWI LD, EORTT AT 74 —F
ISy 7 B RIOBEERHETFOIAMELTwELELDL
NT &7z, DWEIE Drosophila 1[Z8\W T Clock FEH
5 (dClock) DEET 5T L & HICE N5 (22,23)

& &1z, =% A& Drosophila ®T 5T CLOCK 2°Z

BEBRT DL EDONR— P F—DHL L R o72(24,29).

IS EANT TR cycle, HILEETIE BMALL (MOPS3)
LI NAREFTIALREWVICAET S THY, Eh
5 O&EFEYW (CYCLE, BMALLD % CLOCK F# PAS
FAAL vEFLTW. dClock, cycle RIZFDEL LD
—FH DER% R ETHED Drosophila TiZHEH U XA HH
£LTw7. PERKRESFEEAL F AL Y PFEL RV
Z &idi~<724%, CLOCK(dCLOCK), BMALIL(CYCLE)
LLbHLH FAASL V2o Tw5, JPEROTOE—F
— B2k dPer mRNADIEEE LY A 27U v VICLELE
XN 2% Ebox LIFIENBE X7 LA F FEFIFIEELTY
LS, ZOEINEERIC L - TikE 3 17z CLOCK-MOP
ISDBABFILIZLAER—Thb. &5, TOEFN
mPer 1 B{EF EFICHERE L CLOCK-BMALI ~7 0" 8&
A O E-box BFIICHE LEE R EELT 5 2 & 'H
Llcshns. FLZ &2 dCLOCK THRAIhEEED
12, dCLOCK 2 & 2 BEFHEOK R T & /2 PER, TIM #*
dCLOCK @ E-box % A L 228 EEHALD F ) per, tim B
BOWERMH TS 2 LS 22 & N7z (26). Droso-
phila TELNIERD HTRD S & WILHOKEHREF
OBBILTOLI %S (3. 5 Per BRIEFOE
B CLOCK-BMALL IZ & » THEMAL S g 4 I PER 2°
ERLTW. PER - b F—F 37 B (HELE TIM
FETZH?) LEESL TERA~NETT L CLOCK-BMALL
OEEERILEIEZHEEL, BRE L Tper BETOR
iYL PER SBRA T 5. £OKR, B CLOCK-
BMALL I2 L 5 Per BEFOEZOFEELFIELED, R
OBV A 7 VHEHBES.

L2 5T mPer] BEETFIEHRIEHE, SCN TREIWL—
BEOHFEEZITEY, hE T —EORMRERRRE
FARRICHICE o THESRB I EPFRENTVE Q).
SRS BEFOHEIZD mPer FIHFHEIC gating FRS
haZeBmohTws, REFTICYTATICNICS
WTHRICE - THEINLZLPHONTWERETR
mPerl, mPer2 i W X cfos, fos-B, jun-B, zif 268
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il ER, FB OEBE, RW EE

(NGFI-A), nur77 (NGFLB), egr-3 D8ETH 5. T
D3 b, egr-3 1% mPer FAEIC X 2 REFEHIER I
BEETHLEEZLNTVRAEMRICOARDND HINE
Bxhs.

LZAT, ThEITRAMOKZERET T NTRWIZrd
BRAETHEIC L AUHELINEIZZ L OHHEY) XA
ONRSREITHETHo72(28). DRI, HWABWIC2E
OEBRSEA (21 S b2 u—4), CRYL, CRY2#®
AL, CRY2iE~ ™ A8 D ganglion AfZ L inner nu-
clear BIZBREMICHEHE L, CRYLIZSCNHTHE L~V
TREALIOBMAROEB 2 RTILFHALP LR o2
(29). TR LRAEYFABEREREFERIEII VA
HREEE (F7Y V), BMERFORMICKYS I VB2
HkEeE (PUFbru—2) 2ALTERELTVWAHIRE
PERFBLTWS, BE, HHEOREME THMELE
L YVRIBETFABESK, FORBANF2ZIEMD
BT EABIECESTAIEFELPERo72(30). &
OMBEIZ X - T Per & & HIT c-fos DBEMIIHFES L,
FOHHN Y —HSCN TORICE 2 REFHELUT
VB ERS ol Lo TIORIGHEY X508
BOMBICEELFE 2 RTWEEFH 5.

3. BHUXLOEEZ

RS OEHIIRETT R ETRBRTLILIATHS
2, BEZHAHEEICIAREHHOEAR CREITIIRIC
500 FADREE WL EWVD) LI ILa—T
To—pk, S5ICER- BB ALEE, ) ORPHE
BOBEEICRES LS ) XA EEL ) EHREOE
KBRS T WD, ARBETORRLRET AR EL
THROERRERT 2 A 7L 20OEYEFFHHAZE
SHEIALTOLBENEIONS. HEOMNEL T
MKC-242 (5HT,, Z&47 T= A 1) (31) % DR4004 (5HT,
ZRIKT VYDA M) BHITohbEL, BREOFTIEA
S o vEHTLILNTES, T72, mPerl X mPer2
1 SON O & 7e 55, #BEORRER/NMEME, 2
REFELPICLRBEL TS, IALORMEMICERL
T B BINREFOBEBICOVWTIRELRATH B, B
25 (BEORE (58 - BB - 52 - TADA) DB
ORetE CEBRE) KL r0BEELTnELNEER
LB, X 5ICmPerl % mPer? RHEHEDALR LT
O, EREG, ERER, BE2CCHIOBALTVWRIE
FEILNTWS, BIREFRINLEFREBALTVLIHE
oo [o—» VS OB EIcFS L, SCN O ERFHE
(HEEE] 2FoTVn3d0LELTYA. Thbbik
R OBEORBEES D E(HAL, EEORALR
yIAKBEARRELTVEALDLELONS. LAFoT
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Circadian rhythm is an endogenous rhythm that persists in constant conditions with a period of nearly but
not identical to 24 hr. Under natural conditions, the circadian clock is precisely entrained to the daily (24
hr) cycle, because environmental stimulus (especially light) induces a phase shift of the clock. In mam-
mals, the suprachiasmatic nucleus (SCN) of the hypothalamus has been shown to be the primary pace-
maker that drives daily rhythms of behavioral and physiological activity. Photic information is conveyed
from the retina to the SCN directly by the retinohypothalamic tract (RHT) and indirectly by the geniculo-
hypothalamic tract (GHT). The transmitter of the RHT is glutamate, while the GHT is GABA and neu-
ropeptide Y. Serotonergic innervation from the median raphe and melatonin from the pineal body are
likely to provide non-photic information to the SCN. Single gene mutations that dramatically alter circa-
dian phenotype were found in the hamster (tau) and mouse (clock). Moreover, the homologous genes of
the Drosophila clock gene, per, were found in mammals and the homologue of the mammalian clock was
found in Drosophila. These data suggest that the some constitutes of the biological clock may be conserved
between Drosophila and mammals, and a transcription-translation feedback loop involving some clock gene
products may be a oscillator itself.

Keywords: circadian rhythm; suprachiasmatic nucleus; photic entrainment; per gene; drug development
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Abstract

The suprachiasmatic nucleus (SCN) has been identified as a pacemaker for mammalian circadian rhythms. Excitatory amino
acid receptors, especially N-methyl-p-aspartate (NMDA) receptors, have been considered to play an important role in the
transmission of light information from the retina to the circadian clocks in the SCN. In the present study, we showed that
application of NMDA at circadian time (CT) 12—15 induced significant glutamate release from the SCN region in vitro. The
NMDA-induced glutamate release was blocked by co-application of the NMDA receptor antagonist MK-801, but not by that of
tetrodotoxin. These results suggested that glutamate stimulated its own release by activating NMDA receptors. This NMDA-
induced glutamate release through NMDA receptor-mediated mechanisms might be involved in NMDA-induced potent phase
shifts. © 1998 Elsevier Science Ireland Ltd. All rights reserved

Keywords: Circadian rhythm; Suprachiasmatic nucleus: N-Methyl-p-aspartate; Glutamates; Rat

The suprachiasmatic nucleus (SCN) of the hypothalamus
has been identified as a primary pacemaker for circadian
thythms in mammals. Entrainment of circadian rhythms to
the environmental light-dark cycle is mediated by the direct
retinohypothalamic tract (RHT) [6]. Excitatory amino acids
(EAAs) are involved in the transmission of photic informa-
tion from the retina to the SCN [6,8,12,13,18]. Electrical
stimulation of the optic nerve has been shown to induce
calcium-dependent release of [*Hlglutamate in in vitro
hypothalamic slice preparations containing the SCN [13].
Application of glutamate produces changes in the firing
thythm of SCN neurons in subjective night, but glutamate
shows no effect during subjective day [5,8]. This effect is
similar to the light-induced phase resetting effect.

Light-induced phase shifts of activity in free-running
hamsters and c-fos expression in the SCN are blocked by

* Corresponding author. Tel: +81 429 476732: fax: +81 429
176806; e-mail: shibata @human.waseda.ac.jp

a systemic injection of MK-801 [1,3], a non-competitive
antagonist of the N-methyl-p-aspartate (NMDA) receptors,
while focal administration of NMDA induces Fos protein in
the SCN [7] and phase shifts in vivo [14]. Thus, NMDA-
type receptors have been suggested to be involved in med-
iating photic inputs to the SCN. Recently, we reported that
application of glutamate, NMDA and non-NMDA receptor
agonist kainate caused an increase in 2-deoxyglucose
uptake in the SCN, and that NMDA produced changes in
the phase of firing rhythms of SCN neurons in vitro with a
phase-response curve similar to the one demonstrated after
treatment by optic chiasm stimulation [16-18]. These lines
of evidence suggest that glutamate is a neurotransmitter in
the RHT, and that NMDA receptor subtypes play important
roles in the transmission of light information.

It has been demonstrated that NMDA induces the release
of endogenous EAAs from striatum in vivo and in vitro, and
that this effect is blocked by non-competitive NMDA recep-
tor antagonist, MK-801 [11]. It has also been reported that
NMDA receptors are present on glutamatergic terminals

1304-3940/98/$19.00  © 1998 Elsavier Science Ireland Ltd. All rights reserved
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[19]. These findings indicate that NMDA causes the release
of glutamate by a mechanism involving NMDA receptor
action in the presynaptic nerve. Thus, in the SCN, activation
of NMDA receptors may induce an increase in glutamate
release, which may stimulate NMDA receptors. In the pre-
sent study, we examined whether NMDA might induce glu-
tamate release from SCN slices during early subjective
night, because NMDA. produces remarkable phase delays
in early subjective night [18].

Wistar rats weighing 200300 g were housed in a normal
(lights on 0800 h) 12:12 h light-dark cycle for at lease 2
weeks prior to the study. To eliminate direct effects of light
on neuron activity within the slice, all rats were placed in
constant darkness for 2 days prior to killing by decapitation
in dim red light. The rats were decapitated under ether
anesthesia and the brains quickly removed. Coronal
hypotbalamic slices (450 pM thickness) through the SCN
and anterior hypothalamic area were prepared with a tissue
chopper as reported previously [9,18]. Then the SCN region

~“was dissected out from each slice.

'Glutamate releases from SCN were measured by the
batch method [15]. After 1-2 h of preincubation in Krebs-
Ringer solution equilibrated with 95% 0,/5% CO,, each
slice was placed in a dish with 1 ml control Krebs-Ringer
or Mg*-free Krebs-Ringer containing drug and incubated
for 15 min. The composition of the control Krebs-Ringer
solution, equilibrated with 95% 04/5% CO,, was (in mM):
129 NaCl, 1.3 MgSO,, 22.4 NaHCO;, 1.2 KH,PO4, 4.2 KCl,
10.0 glucose, 1.5 CaCly. Mg*-free Krebs-Ringer contained
Na,SO, instead of MgSO,. These buffers were maintained
at pH 7.3-7.4. The slices were obtained 2 h before applica-
tion of agents at a specified circadian time (CT). CTO refers
to lights-on and CT 12 to lights-off in the colony. Extra-
cellularly released glutamates in the solution were assayed
using HPLC with a precolumn derivatization technique
by o-phtal-aldehyde/2-mercaptoethanol. The derivatized
armino acids were quantified by fluorescence detection
(excitation 334 nm, emission 425 nm). In enucleation
experiments, the rats were enucleated and 5 days later slices
were prepared as described earlier. All data are expressed as
mean + SEM and significant differences between groups
were determined using Student’s z-test.

We examined whether NMDA might induce glutamate
release from the SCN region at early subjective night. First,
we examined the spontaneous release of glutamate in nor-
mal Krebs-Ringer and in Mg*-free Krebs-Ringer, because
NMDA receptors were blocked by Mg? in a voltage-depen-
dent fashion. The average release of glutamate in Mg**-free-
Krebs-Ringer did not different from that in normal Krebs-
Ringer (Fig. 1A) (106 + 12.1%, with 100% equaling release
of glutamate in normal Krebs-Ringer; n = 3). The average
glutamate release per 15 min was 197.7 £ 22.8 pmol/SCN
in the Mg”—free—Krebs-Rinéer. Mg?-free Krebs Ringer was
used for the remaining NMDA receptor experiments.

Application of NMDA induced glutamate release from
the SCN region in a dose-dependent manner. Significant
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release of glutamate was observed after application of 1
uM (124 +5.6%; n=7T) or 10 uM (186 £ 8.5%; n=8)
NMDA. High K (50 mM) treatment for 15 min also
induced a significant release of glutamates from the SCN
region (Fig. 1B) (277 £ 53.8%; n = 3). In the next experi-
ment, we examined the effect of the NMDA receptor
antagonist MK-801 on NMDA-induced glutamate release
from the SCN region. The application of MK-801 (1 pM)
for 15 min around CT13 produced a slight release of gluta-
mate from the SCN region (129 + 4.0%; n = 3), whereas
NMDA (10 uM)-induced glutamate release was signifi-
cantly blocked by MK-801 (1 pM) (Fig. 2A) (109 £ 7.4%;
n=73). However, NMDA (10 pM)-induced glutamate
release (178.1 £6.26, n=4) was still seen in TTX (1
pM) supplemented Ringer. solution (165.3 £ 8.35, n=4).
The application of TTX (1 pM) for 15 min at CT13 did
not produce any glutamate release from the SCN region
(105.5°% 17.22, n = 4) (Fig. 2B).

In order to elucidate whether NMDA-induced glutamates
originated from axon terminals of the optic nerve, we exam-
ined the influence of enucleation on NMDA-induced gluta-
mate release from the SCN. Enucleation was conducted
under ether anesthesia. Five days after enucleation, no sig-
nificant changes were observed in spontaneous release of

A =120 )
£ 1o
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{ B S St B |

Mg-free Ringer

Normal Ringer

Hokk
S 380 )]

-log M
High K 50mM

control 6 5

NMDA

Fig. 1. NMDA-induced glutamate release from the SCN region in
vitra. (A) The spontaneous release of glutamate from the SCN in
normal Ringer and in Mg**-free Ringer. Values are expressed with
100% equaling glutamate release in normal Ringer. (B) NMDA (1
and 10 uM) or high K* (50 mM) treatment in a bath for 15 min at
CT 13. Values are expressed with 100% equaling control release.
Numbers in parentheses indicate the number of animais. *P < 0.05,
P < 0,005 vs. conirol group (Student's ttest).
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=ig. 2. Effect of MK-801 or TTX on NMDA-induced glutamate release
rom the SCN region in vitro. MK-801 (100 uM) or TTX (1 uM) treat-
nent in a bath 5 min prior to NMDA application and for 15 min of
ncubation time at CT 13. Numbers in parentheses indicate the num-
ser of animals. (A) NMDA-induced glutamate release was signifi-
:antly blocked by MK-801 (100 uM). *P < 0.05 vs, control group,
*P < 0.01 vs. NMDA + MK-801 (Student's ttest). (B) NMDA-
nduced glutamate release was not significantly blocked by TTX (1
M), **P < 0.01 vs. control group (Student’s +test).

rlutamates in the enucleated rats (94.9 £ 8.54% of release
of glutamates of the normal rats; n = 3)(Fig. 3A). NMDA-
nduced glutamate release in enucleated rats was not signif-
cantly changed (86.32 + 5.72% of NMDA-induced gluta-
nate release of the normal rats; n = 3) (Fig. 3B).

The present results indicate that NMDA induces gluta-
nate release from the SCN region in a dose-dependent man-
ter, and that NMDA-induced glutamate release is blocked
yy MK-801. It has also been reported that 2-amino-5-phos-
shopentanoic acid (a competitive NMDA receptor antago-
iist) and MK-801 (a non-competitive NMDA antagonist)
educe the high K'-evoked release of endogenous EAAs
rom brain slices in a tetrodotoxin insensitive manner [4].
‘hese data strongly suggest that NMDA enhances EAA
elease and then the released glutamates stimulate NMDA
eceptors. Thus, NMDA-induced glutamate release through
MDA -receptor-mediated mechanisms might be impli-
ated in NMDA-induced phase shifts in vivo [14] and in
itro [18].

It has been reported that NMDA receptors are present on
Tutamatergic terminals [2]. These results indicate that
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NMDA-induced glutamate releases are mediated by presy-
naptic receptors, and that NMDA enhances EAA release,
which in turn stimulates NMDA receptors. Support for
this hypothesis has come from the study [11] showing that
NMDA induces the release of EAAs from striatal slices, and
that this effect is blocked by MK-801.

In the present study, no significant changes were observed
in spontaneous and NMDA-induced release of glutamates in
enucleated rats. This suggested that glutamates released
from the SCN without RHT terminals were mainly mea-
sured. ["H]MK-801 binding sites have been reported to be
distributed homogeneously in the SCN [10]. In addition, it
was recently reported that NMDA-receptor 1 subunit
mRNA-expressing cells are distributed evenly throughout
the SCN [6]. Glutamate-like immunoreactivity has been
demonstrated in both retinal and non-retinal terminals in
the SCN [2].

We found that [*H]glutamates were abundantly released
from the SCN after local stimulation of the SCN in compar-
able amount with that observed after optic nerve stimulation
[13]. The present results also suggested that non-RHT glu-
tamatergic terminals might play an important role in
NMDA-induced release of glutamates from the SCN region.
Thus, in summary, it is indicated that NMDA induces glu-
tamate release from the SCN region, and that released glu-
tamates may play a role in NMDA-induced phase shifts.

—
n
<
1

B @ [ =1
[=3 o -1 8
T T T T

Glutamate release (% of control)
n
<

normai

Glutamate release (% of n

enucleation
5 5

normal
-logM

NMDA

Fig. 3. Effect of NMDA on glutamate release from enucleated rat
SCN. (A) The difference in spontaneous release of glutamate
between the normal and the enucleated rats was not significant.
(B) NMDA-induced glutamate release from the normal or the enu-
cleated rats.
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Inhibition of Light- or Glutamate-Induced mPer1 Expression
Represses the Phase Shifts into the Mouse Circadian Locomotor
and Suprachiasmatic Firing Rhythms
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mPer1, a mouse gene, is a homolog of the Drosophila clock
gene period and has been shown to be closely associated with
the light-induced resetting of a mammalian circadian clock. To
investigate whether the rapid induction of mPer? after light
exposure is necessary for light-induced phase shifting, we
injected an antisense phosphoticate oligonucleotide (ODN) to
mPer? mRNA into the cerebral ventricle. Light-induced phase
delay of locomotor activity at CT16 was significantly inhibited
when the mice were pretreated with mPer7 antisense ODN 1 hr
before light exposure. mPer? sense ODN or random ODN
treatment had little effect on phase delay induced by light

pulses. In addition, glutamate-induced phase delay of supra-
chiasmatic nucleus (SCN) firing rhythm was attenuated by pre-
treatment with mPer1 antisense ODN, but not by random ODN.
The present results demonstrate that induction of mPer? mRNA
is required for light- or glutamate-induced phase shifting, sug-
gesting that the acute induction of mPer? mRNA in the SCN
after light exposure is involved in light-induced phase shifting of
the overt rhythm.

Key words: antisense oligonucleotide; circadian rhythm; firing
rhythm; mPer1; phase shift; suprachiasmatic nucleus

Circadian rhythms, which persist in the absence of environmental
cues, are observed in a wide variety of organisms (Edmunds,
1988). To maintain synchrony with the daily environmental cycle,
organisms responded to environmental cues, especially light, to
reset or entrain their circadian rhythms. In mammals, the supra-
chiasmatic nucleus (SCN) of hypothalamus has been shown to be
a primary circadian pacemaker of locomotor activity and various
physiological phenomena (Hastings, 1997). The genetic and mo-
lecular mechanisms that control circadian rhythms were initiated
by studies of Drosophila thythms (Konopka and Benzer, 1971).
The circadian rhythms evident in the locomotor activity of adult
flies and in gating of eclosion were altered by mutations in two
genes, period (dPer) and timeless (tim) (Hall, 1998; Young, 1998).
Protein levels and mRNA levels of these genes undergo robust
circadian oscillation, and both proteins co-regulate their own
regulation by negative feedback loops. In mammals, previous
studies have demonstrated that mRNAs of immediately early
genes (IEGs), including c-fos and junB, are markedly induced
by light in the SCN (Rusak et al., 1990; Morris et al,, 1998).
However, the molecular component of the circadian clock and the
mechanism by which the light entrains the circadian clock have
only been recently elucidated. The recent isolation of dPer
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homologous genes, Perl (Sun et al., 1997; Tei et al., 1997), Per2
(Albrecht et al, 1997, Shearman et al., 1997, Takumi et al,
1998b), and Per3 (Zylka et al., 1998; Takumi et al., 1998a) from
human and mouse have significantly clarified the molecular mech-
anisms of the circadian clock in mammals. These genes are
rhythmically expressed in the SCN. We showed that brief expo-
sure to light during subjective night results in a large and rapid
induction of mPerl expression (Shigeyoshi et al., 1997). The
induction of mPer] (<20 min) by light is more rapid than the
accumulation of c-fos protein (Shigeyoshi et al., 1997). This
suggests that c-fos protein is not directly involved in the rapid
induction of the mPerl gene.

To investigate whether induction of mPer! transcripts by light
exposure is necessary for light-induced phase shifts, we injected
an antisense phosphotioate oligonucleotide (ODN) to mPer!
mRNA intracerebroventricularly 1 hr before light exposure. We
found that inhibition of light-induced mPer! expression by anti-
sense oligonucleotide in vivo significantly represses light-induced
phase shifts of the mouse circadian locomotor rhythm. We have
reported that treatments with glutamate, NMDA, or substance P,
or stimulation of the optic chiasm produce changes in the phase
of the firing rhythm of SCN neurons in vifro with a phase~
response curve similar to that induced by light exposure in vivo
(Shibata et al., 1992, 1994; Shibata and Moore, 1993). Direct
application of mPer] antisense ODN to the SCN in hypothalamic
slices in vitro produced an attenuation of the glutamate-induced
phase shift in a manner similar to the reduction of the light-
induced phase shifts observed in vivo. These results suggest that
acute induction of mPer] mRNA in the SCN after light exposure
is involved in light-induced phase shifts of overt rhythms.
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MATERIALS AND METHODS

Phosphotioate ODNs. The published sequence of mPerl was used to
design an antisense ODN targeted to the region of the mRNA containing
the initiation ATG. The sequences of the mPer] antisense and sense
ODNSs (18-mer) were 5'-TAG GGG ACCACT CAT GTC T-3' and 5°-A
GAC ATG AGT GGT CCC CTA-3, respectively. The sequences of
random ODN (18-mer) and vasopressin precursor gene (AV P) antisense
ODN (18-mer) were 5'-CCG TTA GTA CTG AGC TGA C-3' and
5'-CAT CCT GGC GAG CAT AGG T-3', respectively. The random
ODN contained an equivalent GC content as the antisense and sense
ODNs of mPerl. All ODNs were purified by HPLC to reduce the possible
toxicity of phosphotioate ODNs.

Animals and surgery. Male Balb/c mice (Takasugi Saitama, Japan)
purchased 6 weeks postpartum were maintained on a 12 hr light/dark
cycle with light on at 8:30 A.M. Animals were given food and water ad
libitum. Stainless steel guide cannulas (6.0 mm, 23 gauge) were implanted
bilaterally intracerebroventricularly (4.5 mm anterior and 1.1 mm lateral
to lambda and depth of 2.1 mm below the skull) using a stereotaxic frame
(Narishige, Tokyo, Japan). After 2 d recovery, animals were moved to
continuous darkness for at least 2 weeks before ODN administration. For
assessment of the locomotor activity, mice were housed individually, and
their locomotor activity rhythm was measured by area sensors (model
FA-05 F5B; Omron, Tokyo, Japan) with a thermal radiation detector
system, and data were stored on a personal computer.

After free-running for 14-20 d in constant darkness, mice were ran-
domly assigned to mPerl antisense ODN, mPerl sense ODN, mPerl
random ODN, AV P antisense ODN, or vehicle (sterilized saline). A 5 ul
aliquot of each ODN (2~6 nmol) was unilaterally injected into the lateral
ventricle via an injection cannula (external diameter, 0.35 mm) extending
0.5 mm below the tip of the guide cannula at a rate of 1 ul min ™ using
a 10 w! Hamilton syringe. Injection was performed at circadian time 1
(CT1; CT12, onset time of locomotor activity), CT4, CT8, CT15, or
CT21, then animals were returned to their individual cages. For light
exposure experiments, implanted mice were again randomly assigned an
ODN, and 60 min after the injection, each animal was exposed to a light
pulse lasting 15 min at CT16. Light (20 lux) was administered while the
mice were in a Plexiglascylinder. After treatment, animals were returned
to constant darkness. Some mice were first exposed to the light, and then
ODNs were administered 0 or 120 min after light exposuré. Each group
received a repeated irtracerebroventricular injection (3 or 4 times for
each animal) after at least 14 d. Injections were randomly administered
into the right or left ventricle. To verify that ODNs were administered
into the cerebral vertricle, niice were injected with 5 ul of saturated fast
green, and their brains were examined macroscopically after sectioning.
Anisomyein (50 ug in 5 yl of saline) and MK-801 (10 wgin 5 ul of saline)
were also intracerebroventricularly injected in the same manner. After
treatment, animals were returned to constant darkness. The phase of the
rhythm was assessed visually by applying a straight edge to the onset of
activity on successive days before the light pulse and again beginning ~3
d after a light treatment and determining the difference in phases on the
day of the light exposure (Daan and Pittendrigh, 1976). At least four
independerit experiments using different mice were done at each group.

Slice culture and measurement of neural activity rhythm. On the first day,
coronal hypothalamic slices (400 wm thickness) including SCN were
obtained between zeitgeber time 911 (ZT9-11) from male Balb/c mice
(10-14 weeks). Then, slices were preincubated and treated with vehicle
or mPer]l antisense, sense, or random ODNs (each 20 um) in Krebs’
Ringer’s solution (in mm: NaCl 129, KC1 4.2, MgSO, 1.3, KH,PO, 1.2,
CaCl, 1.5, glucose 25, NaHCO, 22.4, and HEPES 25, with gentamycin
0.5 mg/ml, pH 7.3-7.4) for 4 hr (ZT12-16). At ZT16, the slices were
removed into the buffer containing glutamate (10 um) for 15 min. After
drug treatment, perfusion with normal miedium was reinstated. The
spontaneous action potentials of single SCN cells were recorded extra-
cellularly through glass electrodes filled with 3 M NaCl during the second
day in vitro. Stable single unit activity was recorded over 5 min intervals.
The activities of all cells recorded during a single experiment were
averaged into 2 hr intervals using 1 hr lags. Previous studies have shown
that this procedure yields a pattern of €lectrical activity for the popula-
tion of SCN neurons that varies little between animals, and that the time
of peak electrical activity is a reliable marker of the phase of the SCN
pacemaker (Shibata and Moore, 1993; Shibata et al., 1994),

Biochemical analysis. To detect injected biotinylated ODN, anesthe-
tized mice were perfused intracardially with ice-cold saline and 4%
paraformamide in 0.1 M phosphate buffer (PB), pH 7.4, and then their
brains were removed, post-fixed for 24 hr at 4°C and placed in 0.1 M PB
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with 20% sucrose for 24 hr. The distributions of ODN in the serial
cryostat sections (30 pm) containing SCN were determined using a
Vecstatain ABC Elite kit (Vector Laboratories, Burlingame, CA).
RT-PCR analysis. The effect of mPerl antisense ODN on mPerl ex-
pression in the SCN was examined by RT-PCR. Mice were entrained to
light/dark cycle for 2 weeks. Mice were transferred to constant darkness
for one extra daily cycle, and at ZT15, mice were administered antisense
ODN {2, 4, and 6 nmol) and vehicle. Half of both groups received light
treatment (20 lux, 15 min) at ZT16. At ZT17.5, brains (n = 4 for each
group) were removed and placed in ice-cold saline. Slices (0.5-mm-thick)
of mice brain that contained SCN were frozen on dry ice, and the SCNs
were punched out with a 26 gauge needle. Total RNA from the SCN (n =
4) was extracted in each group by Trizol solution (BRL, Bethesda, MD).
A one-step RT-PCR system (BRL) was used for reverse transeription of
~100 ng of RNA, and mPerl, mPer2, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) cDNA were amplified by PCR. RT-PCR re-
actions were performed for 21 cycles with mPerl, mPer2, and GAPDH
primers in a single tube. The primer pairs used for the amplification of
each product are as follows: 5-CCA GGC CCG GAG AAC CTT
TTT-3' and 5'-CGA AGT TTG AGC TCC CGA AGT G-3' (mPerl);
5'-ACA CCACCCCTT ACA AGC TTC-3' and CGC TGG ATG ATG
TCT GGC TC-3' (mPer2); and 5'-GAC CTC AAC TAC ATG GTC
TAC A-3' and TGG CCG TGA TGG CAT GGA CT-3' (GAPDH). The
sizes of the PCR products of mPerl, mPer2, and GAPDH were 402, 779,
and 436 bp, respectively. PCR products were run on 3% agarose gels, and
DNA in the appropriate bands were detected with an EDAS-120 system -
(Eastman Kodak, Rochester, NY),

RESULTS

Phase shift effects of mPer1 antisense ODN on

various CTs

Administration of 6 nmol of mPerl antisense ODN at various
CTs (CT1, 8, 15, 21) were compared with vehicle administration
(Fig. 1B). Significant phase delays were observed when mPer]
antisense ODN was administrated at CT1. There were no signif-
icant differences between mPerl antisense ODN administrated at
other CTs, To examine whether this ODN shifting effect is
specific to mPerl antisense ODN, we examined the effects of
intracerebroventricular administration of four different ODNs
and anisomycin on behavioral rhythms (Fig. 14,C). Administra-
tion of anisomycin, which inhibits protein synthesis, has been
shown to induce phase shifts when it was injected into the SCN
region (Inouye et al., 1988). Two ODNs, mPer] antisense ODN
and AVP antisense ODN, had specific mRNA targets, whereas
the other two ODNs, sense and random ODNs, lacked specific
mRNA targets. We found that phase delays were observed when
anisomycin (50 ug) or mPerl antisense (6 nmol) ODN was ad-
ministered (p < 0.01; Student’s ¢ test). No significant phase shifts
were observed after injection of the other ODNs or vehicle (Fig.
1C). The magnitude of the phase shifts by mPer] antisense ODN
were dose-related, with injection of 4 nmol of the mPerl antisense
ODN producing a phase shift approximately half the size of the
one at a 6 nmol dose. No phase delays were observed at 2 nmol
doses.

Effect of ODN on light-induced phase shifts

We previously demonstrated that mPer] induction by light is
strongly correlated with phase shifts in behavioral rhythms
(Shigeyoshi et al., 1997). Thus, we examined the effect of mPer]
antisense ODN on light-induced phase shifts (Fig. 24,B). Mice
injected with vehicle at CT15 followed by exposure to a light
pulse for 15 min at CT16 had a marked phase delay in the
circadian rhythm of locomotor activity of ~2 hr. MK-801, an
NMDA receptor antagonist, injected intracerebroventricularly at
CT15 markedly depressed the light-induced phase delay at CT16,
as previously reported (p < 0.01; Student’s ¢ test) (Colwell et al,,
1990; Shibata et al., 1994). Injection of mPer/ antisense ODN at
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(c) random ODN

W

Figure 2. Effect of ODN injection on light-
induced phase delay of locomotor activity rhythm.
Mice were injected with ODNs at CT15 under the
safety light, 1 hr after injection, mice were ex-
| posed to light (20 lux) for 15 min and returned to
constant darkness. 4, Locomotor activity records

of vehicle (a), mPer] antisense (b), random ODN -0.5

(¢), and AVP antisense ODN (d)-injected mouse.
B, Light-induced phase shifts in mPer] antisense
ODN (A), sense ODN (), random ODN (R),
AVP antisense ODN (C), and MKC-801 (MK)-
injected mouse. * indicates that antisense ODN
was administered 2 hr after the light pulse. The
number in the figure indicates the amount (nano-
moles) of injected ODN. 0 indicates the vehicle
administration. Numbers in parentheses indicate
the number of experiments. Preinjection of mPerl
antisense ODN (4 and 6 nmol) and MK-801 sig-
nificantly reduced light-induced phase shift

Phase Shifts (hr)

(**p < 0.01; Student’s ¢ test). Injection of mPerl -2.5

antisense ODN 2 hr after light exposure did not
have any effects,

these experiments, the mean peak of electrical activity on the
Subsequent day occurred at ZT6-7 (ZT6.0 = 0.5; n = 4) (Fig.
34,B). For slices treated with glutamate in vitro at ZT16 on day
1, the peak was around ZT9 on day 2 (Fig. 3). Glutamate-induced
phase delay at ZT16 was significantly blocked by 4 hr pretreat-
Ment with mPer! antisense ODN (ZT12-16) but not by pretreat-
ment with random ODN. However, mPer! antisense ODN did not
Produce phase changes when applied alone for 4 hr (Z'T12-16).

Distribution of ODN in the brain and effect of antisense
ODN on mRNA

Distribution of antisense ODN was examined by injection and
$aining of biotinylated ODN in the fixed slice section of the

-1.0

-1.5

-2.0
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(b)

0 1 L

brain. The ODN were most extensively distributed around the
third ventricle, including the SCN (Fig. 44). Inhibition of mPer]
induction by mPer] antisense ODN in the SCN 1.5 hr after light
exposure at CT16 was examined by RT-PCR. Before amplifica-
tion, RNA were preliminarily tested for possible genomic DNA
contamination. Gel analysis showed bands of expected lengths.
Light exposure at CT16 induced expression of mPer] mRNA
(180 % 24% of nonlight group; n = 4) and mPer2 mRNA (160 =
25%; n = 4) 90 min after light pulse. Light induction of mPer]
mRNA was considerably inhibited when 4 or 6 nmol of mPerl
antisense ODN was administrated (Fig. 4B, C). Administration of
6 nmol of mPer! antisense significantly reduced the expression of.
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CT15 attenuated the light-induced phase delay at CT16 in a
dose-dependent manner [phase shift, —0.480 = 0.194 hr (6 nmol
injection of antisense ODN) vs <2204 * 0.141 hr (vehicle injec-
tion); p = 0.0001]. However, injection of miPer] antisense alone at
CT15 did not alter locomotor activity (Fig. 2B). mPer] antisense
administration immediately after light exposure (CT16.3) also
inhibited the light-induced phase shift, but less efficiently, and
administration of it 2 hr after light exposure (CT18) did not
inhibit the phase delay (Fig. 2B). The other ODNs injected at
CT15 did not affect the light-induced phase delay at CT16.
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Figure 1. Effect of ODN administration at CT1 on the
mouse circadian locomotor rhythm. 4, Locomotor activity
records of vehicle (@), mPerl antisense ODN (b), random
ODN (c), and anisomycin (d)-injected mice. Each animal
was injected at CT1 (¢ in the figure) intracerebroventricu-
larly (5 ul; 1wl min ~') and returned to constant darkness. B,
Phase-response curve for mPer] antisense ODN administra-
tion at CT1, CT8, CT15, and CT21. Numbers in parentheses
indicate the number of experiments. Injection of mPer! an-
tisense ODN at CT1 induced a significant phase delay (**p <
0.01; Student’s ¢ test). C, Phase shifts of mouse locomotor
thythm by various ODNs or anisomycin injection at CT1.
0, Vehicle; 4, mPerl antisense ODN; S, sense ODN;
R, random ODN; C, AVP antisense ODN. The number in the
figure indicates the amount (in nanomeles) of injected ODN.
Numbers in parentheses indicate the number of experiments.
Injection of mPerl antisense ODN and anisomycin sig-
nificantly phase delayed locomotor rhythm (**p < 0.01;
Student’s ¢ test).

Effect of antisense ODN on in vitro SCN neural

activity rhythm

We and other researchers have reported that treatments with
glutamate produce changes in the phase of the firing rhythm of
SCN neurons in vitro with a phase~response curve similar to that
induced by light exposure in vivo (Shibata et al., 1994; Shirakawa
and Moore, 1994), Thus, we examined the effects of mPer! anti-
sense ODN in vitro. In control experiments, coronal hypothalamic
slices containing whole SCN were treated in vitro for 4 hr on day
1 between ZT12 and ZT16 with drug-free perfusion medium. In
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Figure 3. Effect of mPerl antisense ODN on glutamate-induced phase
delay of SCN firing rhythm in vitro. A, The average neuromal activity
rhythms in the SCN recorded from mice slice on day 2. Each point
indicates the 2 hr means * SEM of firing rate of single SCN cells from
ZT2-14. B, Average phase shifts induced by glutamate and glutamate plus
mPerl antisense ODN. Each bar indicates the peak of firing rate (mean
SEM). Numbers in parentheses indicate the number of slices. Preincuba-
tion of mPerl antisense ODN significantly reduced glutamate-induced
phase shift (*p < 0.05 vs glutamate alone; Student’s ¢ test). Glu, Gluta-
mate; 4, mPerl antisense ODN; R, mPer! random ODN.

mPer] mRNA (68 + 8.7% of random ODN treatment; n = 4; p<
0.05; Student’s ¢ test) but not that of mPer2 mRNA (99 = 11% of
random ODN treatment; n = 4; p > 0.05; Student’s ¢ test). This
result suggests that phenotypic effects of mPer] antisense ODN
treatment on light-induced phase delay are mediated by the
specific inhibition of mPer] expression in the SCN.

DISCUSSION

Administration of mPer] antisense ODN at CT1, but not at other
CTs, significantly delayed the locomotor rhythm of mice. Injec-
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tion of vehicle, mPer! sense ODN, or mPer] random ODN at CT1
had little effect. It is currently believed that circadian oscillators,
including those in mammals, are comprised of transcription/
translation-based negative feedback loops controlled by clock
genes (Hall, 1998; Reppert, 1998; Young, 1998). Peripheral or
intra-SCN injections of translation inhibitors such as anisomycin
or cycloheximide at early subjective days (CT1-4) have been
reported to produce a phase delay in wheel-running rhythms
(Takahashi and Turek, 1987; Inouye et al., 1988). Transcript of
mPerl is endogenously rhythmic with a consistent peak of expres-
sion in the subjective day at CT4 (Tei et al., 1997). We observed
that the injection of mPerl antisense ODN 4 hr before the light
pulse did not block the light-induced phase delay of locomotor
rhythm (data not shown). Therefore, the largest reduction of
mPer] expression by antisense ODN might occur when antisense
ODN is injected 2-3 hr before the mPer] peak and may be the
reason why antisense ODN delayed the circadian rhythm only
at CT1. ‘

In this study, we demonstrated that blockade of acute mPer!
induction after light exposure by antisense ODN prevents the
light-induced phase shifts of the circadian activity rthythm. This
block in light-induced phase shift was caused by selective inhibi-
tion of mPerl induction, because mPer! antisense ODN alone did
not interfere with the free-running rhythm at CT16. Moreover, it
is interesting that both mPer] mRNA expression and phase delay
of locomotor activity induced by light at CT16 were reduced by 4
nmol of mPer] antisense ODN but not by 2 nmol. Thus, we
observed the parallel reduction of mPer] expression and phase
delay. In the present experiment, 4 and 6 nmol of mPer! antisense
ODN reduced to 60-70% of mPer] RNA expression induced by
light exposure. Although we do not detect the protein production
of mPerl after light exposure, we can estimate 30~40% reduction
of mPer] mRNA may affect the light-induced phase changes in
mouse behavior. Present results suggest that the reduction of
light-induced phase delay by antisense ODN in vivo is a result of
the inhibition of light-induced acute induction of mPer] gene in
the SCN. Further experiments are needed to locate the specific
region of antisense ODN action (for example, direct antisense
ODN injection into the SCN or immunostaining of mPerl anti-
body there).

Transcript of mPer! is rapidly induced by light in a time-of-
day-dependent manner (Shigeyoshi et al., 1997). The responsive-
ness of mPer] mRNA to light is gated so that little or no increase
was seen during the subjective day, whereas robust induction was
seen during the subjective night. Gating is also present in light-
induced phase shifts of behavioral rhythm. Their dose and thresh-
old is closely correlated with mPerl inducibility in the SCN,
These results with our present results suggest that mPer] plays a
central role in the circadian clock. mPer2 gene was also shown to
be induced by light but in a delayed manner compared with mPerl
(Takumi et al., 1998b), possibly reflecting a different regulatory
mechanism. Recently, mPer3 has been isolated and shown not to
be light inducible (Takumi et al, 1998a; Zylka et al, 1998),
suggesting that mPer genes have different roles in the light-
induced phase shift. Therefore, injection of mPer2 or mPer3
antisense ODN or cocktails containing antisense ODNs of mPer
genes may be a good strategy for determining the roles of these
genes.

To exclude the possibility that other regions of the brain might
have added to the effects of mPerl antisense ODN treatment, we
examined the neural rhythm of SCN using slice culture. Admin-
istration of mPer] antisense ODN blocked the glutamate-induced
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Figure 4. Effects of mPerl antisense ODN on the mPerl
expression in the SCN. A, Distribution of biotinylated
ODN 2 hr after injection into the brain. mPerl antisense
ODN (5'-biotnylated; 6 nmol in 5 ul) was microinjected
intracerebroventricularly. Mice were killed 2 hr later, fol-
lowed by detection of biotinylated ODN. An arrow on the
top slice shows antisense ODN injection site. An arrow on
the bottom slice shows the position of SCN. The ODNs
were most extensively distributed around the third ventri-
cle including the SCN. B, Inhibition of light induction of
mPer] transcript in the SCN by in vivo mPer] antisense
ODN treatment. Total RNA was isolated 1.5 hr after light
exposure from mPer] antisense ODN-pretreated mice,
and mPerl, mPer2, and GAPDH RNA were amplified by
an RT-PCR method. Lane 1, Treated with vehicle; lane 2,
treated with 2 nmol of antisense ODN; lgne 3, treated with
4 nmol of ODN; lane 4, treated with 6 nmol of antisense
ODN. The PCR products of mPerl, mPer2, and GAPDH
gene are indicated by arrows. C, Semiquantitative analysis
of RT-PCR products shown in B. The band intensity of
RT-PCR products of mPer]l and mPer? mRNA was mea-
sured by one-dimensional analysis software (Eastman
Kodak), and their amounts were normalized against
GAPDH.

phase delay of the SCN circadian firing rhythm. Thus, glutamate-
induced phase shifts may be involved in the expression of mPerl
mRNA in the SCN. SCN is entrained to the environmental
light/dark cycle via a retinal projection, the retinohypothalamic
tract (RHT). Glutamate is a transmitter of the RHT (de Vries et
al,, 1993). Glutamate and NMDA applieation to rat SCN in vitro
have been reported to cause phase delays in SCN firing rhythms
when applied at early subjective night (Shibata et al.,, 1994
Shirakawa and Moore, 1994). Furthermore, glutamate receptor
antagonists and inhibitors of nitric oxide synthase, calmodulin, or
calcium calmodulin kinase II antagonize phase shifts in the SCN
firing rhythm induced by glutamate or NMDA in vitro (Shibata et
al., 1994; Watanabe et al., 1994; Fukushima et al,, 1997). There-
fore, we cannot rule out the possibility that mPer! antisense ODN
interferes with these biochemical steps. However, the sequence
specificity of the ODNs on light- or glutamate-induced phase
delay strongly suggest this is not the case.

Light-induced phase shifts of circadian rhythms induce imme-
diately early genes (IEGs) such as c-fos, junB, and NGFI-A
mRNAs specifically in the SCN (Rusak et al., 1990; Morris et al,
1998). Blockade of expression of e-fos or Jun B expression in the
SCN has been shown to inhibit light-induced phase shifts in
mammalian circadian clocks (Wollnik et al,, 1995). These pro-
teins are believed to dimerize and bind to AP-1, which are
CRE/CaRE consensus sequences that are present in the promot-
ers of many genes (Takeuchi et al, 1993). The light-induced
induction of IEGs is also gated as mPer! and mPer2. The time
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courses of c-fos and mPer] mRNA induction are similar, but it is
unknown whether c-fos protein is involved in transcription of
mPerl (or mPer2) or the induction of the c-fos and mPer are
simultaneous.

In this study, we used antisense ODN as pharmacological tools
to inhibit mPerl expression in vivo and in vitro. The mechanism of
inhibition of physiological systems by antisense ODNs is believed
to be the result of specific hybridization of the antisense ODN to
its complementary mRNA, causing distuption of the translation
of the mRNA into protein (Talamo, 1998). We have not deter-
mined the amounts of mPet1 protein expression, because we have
not obtained anti-mPerl antibody. Antisense ODN is also be-
lieved to bind to the genomic DNA region of the corresponding
gene and inhibit binding of transcription factors and to bind to
mRNA and accelerate degradation of targeted mRNA by
RNaseH (Kashihara et al, 1998). Both of these mechanisms
should lower the level of mRNA. These effects may be sequence-
specific; arising from inhibition of imperfectly matched target
genes, or sequence-independent effects on gene expression. An-
tisense ODNs may also effect nontargeted genes or even be toxic
to physiological systems (Talamo, 1998). In the present study, we
showed that mPer] mRNA in the SCN was reduced by treatment
with mPerl antisense ODN, but treatment did not affect mPer2
and GAPDH mRNA levels, demonstrating that the antisense
ODN used in this study specifically effects only mPerl gene
expression. We used phesphotioate~substituted ODNs, which
have longer biological half-lives than unsubstituted ODNs but
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may be toxic (Agrawal et al., 1991). In this study, some animals
exhibited altered locomotor activity for the first several hours
after injection. However, this effect was observed in both mPer]
antisense ODN-injected animals and control ODNs-injected an-
imals, suggesting this change is caused by a toxic effect of the
administration of ODNs. In all cases, locomotor activity was
restored to normal under constant darkness. In our previous
experiments (Ono et al., 1996, Watanabe et al,, 1996), metham-
phetamine and adenosine antagonists inhibited the light-induced
phase shift, although these chemicals increase or decrease motor
activity, respectively. Thus, the circadian oscillator may be unaf-
fected by ODN injection. We also demonstrated that ODNs
injected intracerebroventricularly were distributed in specific re-
gions of the brain after 2 hr, especially around the third ventricle
including the SCN. However, other regions of the brain might
have added to the effects of mPer] antisense ODN treatment.

In summary, the present results indicate that acute induction of
mPer] mRNA after light exposure is necessary for light-induced
phase shifting of the mouse locomotor thythm. Further genetic
dissection of mPer genes, possibly with knock-out mice is useful
to identify the role of these genes in detail.
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Potentiating action of MKC-242, a selective 5-HT, 4 receptor
agonist, on the photic entrainment of the circadian activity rhythm
in hamsters

British Journal of Pharmacology {1998) 125, 1281-1287

13T, Moriya, Y. Yoshinobu, ‘M. Ikeda, 2S. Yokota, 2M. Akiyama & *S. Shibata

1 Advanced Research Center for Human Sciences; *Department of Pharmacology and Brain Science, School of Human Sciences,
Waseda University, Tokorozawa, Saitama 359-1192, Japan

1 Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are
known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-
hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify
the role of 5-HT, A receptors, we examined the effects of 5—{3-[((28)-1,4—benzodioxan—2-ylmethyl)amino]-
propoxy}-1,3-benzodi0xole HCl (MK C-242), a selective 5.-HT,a receptor agonist, on photic entrainment
of wheel-running circadian rhythms of hamsters.

2 MKC-242 (3 mg kg™, 1.p.) significantly accelerated the re-entrainment of wheel-running rhythms to
a new 8§ h delayed or advanced light-dark cycle.

3 MKC-242 (3mgkg™', ip.) also potentiated the phase advance of the wheel-running rhythm
produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-
dipropylaminotetralin (8-OH-DPAT)(5 mg kg~!, ip.), a well known 5-HT1a/5-HT; receptor agonist,
only suppressed low intensity (5 lux) light-induced phase advances.

4 The potentiating actions of MKC-242 on light pulse-induced phase advances were
when injected 20 or 60 min after the light exposure.

5 The potentiating action of MK C-242 was antagonized by WAY100635, a selective 5-HT, 5 receptor
blocker, but not by ritanserin, a 5-HT,/5-HT; receptor blocker, indicating that MK.C-242 is activating 5-
HT, A receptors.

6 Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected
by MKC-242 (3 mg kg™, i.p.).

7 HPLC analysis demonstrated that MK.C-242 (3 mg kg~?, i.p.) decreased the 5-HIAA content in the
SCN.

8 The present results suggest that presynaptic 5-HT,a receptor activation may be involved in the
potentiation of photic entrainment by MKC-242 in hamsters.

Keywords: Circadian rhythm; light-entrainment; 5-Hydroxytryptamine (5-HT); 5-HT,a receptor
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Introduction

The biological clocks of mammals, which are located in the
suprachiasmatic nuclei (SCN) of the hypothalamus, control
various physiological daily rhythms such as feeding, drinking,
locomotor activity, sleep-wakefulness, plasma adrenal corti-
costerone levels and the body temperature cycle (Inouye &
Shibata, 1994). It is well known that daily light-dark cycles
strongly entrain the circadian rhythms generated by the
biological clock. Light signals for photic entrainments reach
the SCN vig a direct projection from the retina (retinohy-
pothalamic tract (RHT)) and via an indirect projection from
the retina through the intergeniculate leaflet (IGL) (geniculo-
hypothalamic tract (GHT)) (Inouye & Shibata, 1994).

Both the SCN and the IGL are innervated by 5-
hydroxytryptamine (serotonin, 5.HT) neurons in the midbrain
raphe nuclei in rats (Cagampang e? al., 1993; Cagampang &
Inouye, 1994), and in hamsters (Meyer-Bernstein & Morin,
1996). Systemic or local injections of agonists for 5-HT
receptor subtypes suppress the light-induced phase shifts of
hamster activity rhythms (Rea et al., 1994; Pickard et al., 1996;
Mintz et al., 1997), light-induced c-fos expression in the
hamster SCN (Selim er al., 1993; Glass et al., 1994, 1995;
Pickard et al., 1996), the extracellular glutamate concentration

3 Author for correspondence.
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(Selim et al., 1993; Srkalovi et al., 1994) and the firing rates of
light responsible cells in the hamster SCN (Ying & Rusak,
1994). In in vitro studies, Liou ez al. (1986) and Rea et al.
(1994) reported that 5-HT suppressed the optic nerve
stimulation-evoked field potentials in the rat SCN and hamster
SCN respectively. Furthermore, Morin & Blanchard (1991)
reported that depletion of hamster brain serotonin increased
the circadian activity rhythm response to light. This evidence
suggests that S-HT neurons from midbrain raphe nuclei
regulate the photic entrainment of the biological clock in
mammals in an inhibitory manner.

However, it remains to be clarified how various S5-HT
receptor subtypes are involved in circadian regulation.
Recently, Pickard et al. (1996, 1997) reported that selective
5-HT,g receptor agonists inhibit the light-induced phase shift
of hamster wheel-running activity rhythm and light-induced ¢-
fos expression in the SCN. Bilateral enucleation reduces the
density of 5-HT,p receptors in the SCN. Based on these
observations, they suggested that activation of 5-HTg
receptors, which are localized presynaptically on retinal
terminals in the SCN, suppress the photic entrainment of the
biological clock.

On the other hand, the roles of 5-HT, or 5-HT, receptor
are still vague because of a lack of subtype-specific ligands. For
example, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT),
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which is an agonist for both 5-HT,, and 5-HT, receptors
suppressed photic responses of the circadian clock, and these
actions are antagonized by both 5-HT,, and 5-HT; receptors
antagonists (Weber er al., 1996). In contrast, Ying & Rusak
(1997} reported that the suppression of the firing rates of light-
responsive SCN neurons induced by 8-OH-DPAT were
mediated via activation of 5-HT, receptors but not 5-HT,,
receptors. Furthermore, 5-HT,5 receptor mRNA is sparsely
distributed in the rat SCN (Roca et al., 1993).

In order to establish the role of 5-HT,. receptors in
regulating the photic entrainment of the biological clock, we
examined the effects of 5-{3-[((28)-1,4-benzodioxan-2-ylmethy-
Daminolpropoxy}-1,3,-benzodioxole HCl (MK C-242), a selec-
tive 5-HT, 4 receptor agonist (Matsuda et al., 1995a,b; Suzuki
et al., 1995; Abe et al., 1996; Asano et al., 1997) on the photic
entrainment of the hamster wheel-running rhythm. The K,
values of MKC-242 for 5-HT,, and S-HT, receptors are
0.35 oM (Matsuda er al., 1995a) and >100 nM (personal
communication from Mitsubishi Chemical Co.), respectively.
We also investigated the effects of MK C-242 on light-induced
c-fos expression in the SCN and the IGL, and on 5-HT
turnover in the SCN to confirm neuronal and cellular
mechanisms of serotonergic regulation of photic entrainment.

Methods

Animals

Male Syrian hamsters (Mesocricetus auratus) weighing 120~
200 g were maintained under controlled environmental
conditions (234+2°C room temperature; 12-12 h light-dark
cycle, lights on at 08:30 h) for at least 2 weeks before being used
for the experiments. The light intensity was almost 200 Tux at
the level of the animal cage. Food and water were provided ad
libitum. Animals were treated in accordance with the Law (No.
105) and Notification (No. 6) of the Japanese Government.
Under the light-dark cycle, zeitgeber time (ZT) referred to
animal colony light-dark cycle. ZT0 was designated as light-on
and ZT12 as light-off. In free-running conditions under
constant darkness, circadian time (CT) was defined instead of
ZT, and CT12 referred to the onset of wheel-running,

Recording of wheel-running rhythm

Hamsters were housed individually in transparent plastic cages
(35%20x 20 cm), each equipped with a running wheel of
15cm diameter, which closes a microswitch on each
revolution. Wheel-running activity was continuously recorded
in 6 min epochs by a PC-9801 computer.

Fos immunohistochemistry

After 2 days of constant darkness, hamsters were injected
intraperitoneally with drugs 30 min prior to a light pulse (0, 5
or 60 lux for 15 min) at projected ZT 20 and returned to
darkness. Sixty minutes after the light pulse onset, the animals
were deeply anaesthetized with Nembutal and perfused
intracardially with 100 ml of saline (37°C), followed by 100 ml
of 4% paraformaldehyde in 0.1 M phosphate buffered saline
(PBS; pH 7.2; 4°C). Brains were removed from the skull and
fixed with 50 ml of 4% paraformaldehyde in 0.1 M PBS and
transferred to 20 and 30% sucrose solutions in 0.1 M PBS for
24 and 48 h, respectively., Brains were cut into 40 pm slices
from rostral to caudal SCN or IGL with a freezing microtome.
Alternate sections were incubated for 48 h with anti-Fos
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antibody (OA-11-824, Cambridge Research Biochemical.
US.A)) diluted to 1:1000 with 0.1 M PBS containing 1%
normal rabbit serum and 0.3% Triton X-100 (PBSRT). All
sections were then washed three times with 0.1 M PBS (10 min
each) and incubated for 2 h with biotinylated anti-sheep rabbit
antibody (diluted to 1:200 with PBSRT; Vectastain). The
sections were washed three times with 0.1 M PBS and
incubated for 2h in an avidin-biotin complex solution
(Vectastain ABC kit). After three washes with 0.1 M PBS,
sections were visualized with diaminobenzidine as a chromo-
gen and mounted on gelatin-coated glass slides. All procedures
were performed at room temperature. The number of cells
which expressed Fos immunoreactivity was counted by an
unnotified observer. Average cell numbers in the bilateral SCN
or the IGL per one slice were calculated.

Measurement of 5-HT and 5-HIAA content

Measurements of 5-HT and 5-HIAA contents in the SCN were
done by HPLC as previously reported (Ono et al., 1996).
Hamsters were anaesthetized with ether and killed by
decapitation. The brain was rapidly removed from the skull
and the SCN was dissected free. Monoamines in the SCN was
extracted with 200 ul of 0.5 M HCIO, by sonication on ice.
After centrifugation at 15,000 r.pm. for 10 min at 4°C,
supernatants were collected for measurement of monoamine
contents. Eicompak MA-350DS (4.6 x 150 mm) (Eicom, Kyo-
to) and an electrochemical detector (ECD-300, Eicom) were
used for 5-HT and 5-HIAA assays. The mobile phases were as
follows: 50 mM sodium-acetate-citrate buffer (pH 3.9) contain-
ing 80 mg1~' sodium l-octanesulphonate, 5mgl~! EDTA
and 10 (v/v)% methanol. The data were analysed with a
Powerchrom 2.0.6 system.

Drugs and reagents

MKC-242 and WAY100635 (N-{2-[4-(2-methoxyphenyl)-1-
piperazinyljethyl} - N - (2 - pyridinyl) cyclohexanecarboxamide
trihydrochloride) were a kind gift from Mitsubishi Chemical
Co. (Yokohama, Japan). (+)8-OH-DPAT and ritanserin were
purchased from Research Biochemicals (Natick, MA, U.S.A)).
All other chemicals wete of the highest grade.

All drugs were freshly prepared. MK.C-242 was suspended
in 0.5% carboxymethylcellulose (CMC) and injected i.p. at the
dose indicated (1-3 ml kg™"). All other drugs were dissolved
in saline and injected ip. at the indicated doses (1 ml kg—).

Data and Statistical analysis

The data are presented as means & s.e.mean, Statistical analysis
was conducted by one- or two-way ANOVA followed by
Dunnett’s test or Student’s t-test. P values of 5% or less were
considered as statistically significant.

Results

Effect of MKC-242 on re-entrainment of wheel-running
activity rhythms to a new light-dark cycle

shows a representative actogram of the re-
entrainment of wheel-running activity to an 8 h advance of
light-dark cycle in hamsters. When hamsters were injected with
vehicle, it took approximately 2 weeks for complete re-
entrainment to a new light-dark cycle. On the other hand, it
took only 2-3 days for re-entrainment, when animals were



T. Moriya et al

Potentiation of photic entrainment by MKC-242

injected with MKC-242 (3 mg kg™") at ZT20 on the day of
light exposure. Advance and delay experiments were carried
out using different animals. MKC-242 (3 mg kg™") signifi-
cantly accelerated the re-entrainment of wheel-running activity
to both an 8-h-delayed (~6.340.3h for MKC-242 and
—4.8+0.3 h for vehicle on 4th day, P <0.03, Student’s ¢-test)
or -advanced (6.7+0.79 h for MKC-242 and 4.3+0.47 h for

vehicle on the 4th day, P<0.05, Student’s t-test) light-dark
cycle.

Effect of MKC-242 on light pulse-induced phase shifts of
wheel-running activity in constant darkness

To confirm that MKC-242 accelerated the re-entrainment to
new light-dark cycle by potentiating the effects of environ-
mental light, we next examined the effect of MKC-242 on the
light pulse-induced phase shift of wheel-running activity in
hamsters maintained in constant darkness. As shown in Figure
2a and Table 1, exposure to a light pulse for 15 min (light
intensity: 60 lux) at circadian time 20 (CT; CT 12: onset time of
wheel-running) caused a phase advance (average values:
1.98 +0.13 h) of wheel-running activity in hamsters. One-way
ANOVA revealed the significant potentiation of MKC-242 in
light-induced phase advance (Fy35=16.4, P<0.01). Injection of
MKC-242 (3 mg kg™"), but not 0.1 or 1.0 mg kg™' 30 min

prior to light exposure dramatically potentiated the phase
advance of wheel-running activity induced by a light pulse at
CT 20 (60 lux) (Dunnett’s test, P<0.05) (Figure 2b and Table
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1). Two to three days are required to get stable phase shifts,
when light phase advances the activity rhythm of mammals
(Figure 2a). MKC-242 did not affect the time required to
complete a phase shift induced by a light pulse at CT20 (data
not shown). Whereas, MKC-242 application without light
exposure did not affect the phase of wheel-running activity
rhythm (Figure 2c and Table 1).

The potentiating action of MKC-242 was dependent on the

~intensity of the light exposure (Table 2). In the case of vehicle,

the phase advance of wheel-running activity increased with an
increase of light intensity between 5 and 60 lux. A high
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Figure 1 Representative double plot-actogram demonstrating the
potentiating effect of MKC-242 on re-entrainment of the wheel-
running activity to an 8 h advanced light-dark cycle. Time of day is
indicated horizontally and consecutive days vertically. Upper, middle
and lower bars on the top of actogram show the light (open bar)-
dark (solid bar) cycle during day 1~ 18, day 19-47 and day 48-66,
respectively. Hamsters were maintained in a 12:12 h light-dark cycle
at least for 15 days, the light-dark cycle was advanced 8 h (indicated
by arrows), then MKC-242 (M) (3 mg kg~?, i.p.) or vehicle (V) were

admiinistered at ZT20 of former light-dark cycle for 2 continuous
days.

Figure 2 Representative double plot-actograms demonstrating the
potentiating effects of MKC-242 on the light pulse<induced phase
advance of wheel-running activity of hamsters. The time of day is
indicated horizontally and consecutive days vertically. Hamsters were
maintained in constasit darkness until a stable free-running rhythm
was observed for at least 10 days. Hamsters then received am
intraperitoneal injection of vehicle (2) or MK.C-242 (3 mg kg~ (b,e)
30 min prior to light exposure (60 lux, 15 min) at CT20 (a,b) or were
handled the same without receiving a light pulse (c). Eye-fitted lines

to activity onset were also shown in each actogram, and the

differences between these two lines were designated as phase changes
(h). Approximate treatmient times are indicated by stars.
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Table 1 Dose-dependent effects of MKC-242 on the light
pulse-induced phase advances of wheel-running activity of
hamsters

MKC-242 Light pulse Phase advance induced
(mg kg™')  (CT20 for 15 min) by light puise (k)

0 + 1.9840.13 (7)

0.1 + 2.78+0.51 (6)

1 + 3.17+0.63 (8)

3 + 4.25+0.65 (13)*
3 - 0.23+0.21 (6)

Detail of the methods were described in the legend for
Figure 2. Data are expressed as means+s.emean. The
number of animals are shown in parentheses. *, Significant
difference (£ <0.05) compared to vehicle (one-way ANOVA
followed by Dunnett’s test).

Table 2 Light pulse intensity-dependence for the
potentiating actions of MKC-242 on light pulse-induced
phase advances of wheel-running activity of harmsters

Phase advance induced by light pulse
(CT20 for 15 min) (h)

Light intensity MXKC-242
(bux) Vehicle (3 mg kg™h
5 0.83+0.34 (T) 3.12+0.84 (10)*
60 1.98+0.13 (7) 4.25+0.65 (13)*
200 2.3040.10 (5) Not tested

Hamsters in constant darkness received either vehicle or
MKC-242 (3 mg kg~!) 30 min before a light pulse (5, 60,
200 fux for 15 min at CT20). High intensity (200 Iux) light-
induced phase shifts were tested for the vehicle group only.
Data are expressed as means+s.e.mean. The number of
animals are shown in parentheses. *, Significant difference
{P<0.05) compared'to vehicle (unpaired Student's t-test).

Table 3 Effect of injection timing on the potentiation
action of MKC-242 on light pulse-induced phase advances
of wheel-running activity

Phase adyamce induced by light pulse
(CT20 for 15 min) (h)

Time of injection after MKC-242

light pulse onset (min) Vehicle (3 mg kg™h

-30 1.98+0.13(7) 4.25+0.65 (13)*
20 2.78+0.51 (5) 5.65+0.85 (6)*
60 2724033 (6) 5.62+0.096 (6)*

Hamsters maintained in constant darkness received either
vehicle or MKC-242 (3 mg kg~') 30 min before or 20,
60 min after light exposure (60 lux for 15 min at CT20).
Data are expressed as means+s.e.mean. The number of
animals are shown in parentheses, *, Significant difference
(P<0.05) compared to vehicle (unpaired Student’s t-test).

Table 4 Effect of 8-OH-DPAT on light pulse-induced phase
advance of wheel-running activity of hamsters maintained in
constant darkness

Phase advance induced by light pulse
(CT20 for 15 min) (h)

Light intensity 8-OH-DPAT
(lux) Vehicle (5 mg kg™Y
5 1.1340.30 (10) 0.25+0.10 (6)*
20 2.28+0.40 (6) 1.5240.58 (7)
60 2.61+0.44 (6) 2.25+0.50 (6)

Data are expressed as means+s.c.mean. The number of
animals are shown in parentheses. *, Significant difference
(P <0.05) compared to vehicle (unpaired Student’s t-test).
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intensity light pulse (200 lux) caused a ceiling effect on the
phase advance (2 h), because more high intensity of light
(10''-10" photons cm~! s™') has reported to cause almost
same degree of advance (2 h) (Boulos, 1995). MKC-242
(3 mg kg™') potentiated not only low (5 lux), but also high
(60 lux) intensity light-induced phase advances. MKC-242
caused a large phase advance beyond the ceiling effect, when a
60 lux light pulse was applied. In the next experiment, we
observed the effect of 8-OH DPAT on light-induced phase
advance. Two-way ANOVA revealed no significant differences
between Drug x Intensity of light (F,15=0.23, P> 0.05), but
there are significant increase of phase advance with intensity-
dependent manner (F, ;5= 10.5, one-way ANOVA, P<0.01).
As shown in Table 4, 8-OH-DPAT suppressed low intensity (5
lux) light-induced phase advances, but did not affect high
intensity (20 and 60 lux) light-induced phase advances.

In the next experiments, we examined the importance of the
timing of MK.C-242 injection on the potentiating action on a
light pulse-induced phase advance (Table 3). There are
significant differences in drug effect (F1,37=20.6, P<0.01), but
in injection timing (Fy3, = 1.7, P> 0.05). Injection of MK C-242
(3 mg kg™") 30 min prior to light pulse onset significantly
potentiated the phase advance of wheel-running activity, as
shown in Figure 3. Furthermore, an injection of MKC-242
(3 mg kg™") 20 min or 60 min after the light onset, when the
light has been turned off, resulted in a strong potentiating
action on the light pulse-induced phase advance of wheel-
running activity.

As shown in Figure 3, pre-injection of WAY100635 (3—
10 mg kg™"), a selective 5-HT,s receptor blocker, antag-
onized the potentiating action of MKC-242 in a dose-
dependent manner. However, WAY100635 (10 mg kg~
itseif did not affect the light pulse-induced phase advance
of wheel-running activity. On the other hand, ritanserin
(10 mg kg1, a 5-HT,/5-HT, blocker failed to affect the
potentiating action of MKC-242 on light pulse (60 lux for
15 min at CT20)-induced phase advances (vehicle + vehicle;
240+0.08h (r=35), vehicle+MKC-242 (3mg kg=1y;

MKC-242 (3 mg kg')

8_
#
<"
P
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[¢] %
7] *
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Figure 3 Effect of WAY100635, a selective 5-HT; 4 receptor blocker,
on the potentiating action of MKC-242 on the light pulse-induced
phase advance of wheel-rumming activity. Hamsters received either
vehicle or WAY100635 45 min prior to the light pulse, followed by
vehicle or MKC-242 (3 mg kg™") 30 min prior to the light pulse
(60 lux for 15 min at CT20). Values are given as means+s.e.mean
(n=6-12). Cross-hatched column exhibits the injection of
WAY100635 without MKC-242. *P<0.05, compared with MKC-
242 (3mgkg™?) (closed column) (one-way ANOVA followed by
Dunnett’s test). #P<0.05, compared with vehicle (open column)
(one-way ANOVA followed by Dunnett’s test).
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5214066 h (n=13), ritanserin (10 mg kg™ +MKC-242
(3mgkg™"); 481+0.61 h (n=9), ritanserin (10 mg kg™ ")+
vehicle; 2.734£0.58 b (n=235)).

Effect of MKC-242 on light pulse-induced c-fos
expression in the SCN and the IGL

Figure 4 shows the effect of MKC-242 on light pulse-
induced c-fos expression in the SCN and the IGL. Exposure
to a light pulse at CT20 for 15 min significantly increased
¢-fos immunoreactive cells both in the SCN (Fp4=15.7,
P<0.01) and the IGL (F,,=13.1, P<0.01) (Figure 4a,b) in
an intensity-dependent manner. However, pre-injection of
MKC-242 (3 mg kg~') did not alter the light pulse (5 lux
and 60 lux)-induced c-fos expression in the SCN nor in the
IGL.

a SCN
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Figure 4 Effect of MKC-242 on light pulse-induced c-fos expression
in the SCN (a) or the IGL (b) in hamsters. Hamsters maintained on a
light-dark cycle were transferred to constant darkness. After 2 daysin
constant darkness, hamsters ‘were recéived either vehicle or MKC-242
(3 mg kg™ 30 min prior to the light pulse (60 lux for 15 min at
CT20). Sixty minutes after light ‘pulse onset, the animals were
anaesthetized with an overdose of pentobarbital (80 mg kg™') and
perfused transcardially with saline followed by 4% paraformalde-
hyde. Coronal sections (40 um) through the SCN or the IGL were
processed for immunohistochemistry. Values are given as meansd
s.e.miean (n#=5<9 for the SCN; n=3=4 for the IGL). No significant
differences ‘were observed when compared to vehicle group (Student’s
t-test).

Table 5 Effect of MKC-242 on the 5-HT and 5-HIAA
concentrations in the SCN of hamsters
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Vehicle ~ MKC-242 (3 mg kg™h)
5-HT 6046+7.61 (7)  59.83+12.17 (8)
(ng mg protein™?)
S-HIAA 28.50--3.35 (7)  18.89+2.62 (8)*

(ng mg protein™ ")

5-HIAA/5-HT ratio 0.52+0.09 (7) 0.38+0.07 (8)

Hamsters maintained under a light-dark cycle were
transferred to a light room at ZT16 (8 h light—dark cycle
shift) and received vehicle or MKC-242 (3 mg kg™h at
ZT20 (4 h after transfer to light room). Sixty minutes after
injection, brains were prepared and monoamine contents
were measured by h.p.l.c. as described in Methods. Data are
expressed as means+s.e.mean. The number of animals are
shown in parentheses. *, Significant difference (£<0.05)
compared to vehicle (unpaired Student’s t-test).

Effect of MKC-242 on 5-HT and 5-HIAA
concentrations in the hamster SCN

Table 5 shows the effect of MKC-242 on the 5-HT and its
metabolite, 5-HIAA concentrations in the hamster SCN.
MKC-242 (3 mg kg™ ") decreased 5-HIAA content to 73% of
control and did not affect the 5-HT content in the SCN.

Discussion

In the present experiments, we demonstrated that MKC-242, a
selective 3-HT,, receptor agonmist, potentiated the photic
entrainment of wheel-running activity in hamsters in a c-fos
expression-independent manner. Furthermore, MKC-242
decreased the turnover of 5-HT in the SCN.

In contrast to MKC-242, 8-OH-DPAT, a well known 5-
HT, A receptor agomist, suppressed the photic entrainment. The
differences in actions of MK C-242 and 8-OH-DPAT, however
may reflect the specificity of these chemicals for 5-HT receptor
subtypes. MK C-242 has been reported to have high affinity for
5-HT, A receptors (K;=0.35 nM, Matsuda ez al., 1995a) and a
relative low affinity for 5-HT; receptor (K;> 100 nM; personal
communication from Mitsubishi Chemical Co.). In addition,
the potentiating action of MK .C-242 on the photic entrainment
was not reversed by co-administration of ritanserin, a 5-HT,/5-
HT, receptor blocker. On the other hand, 8-OH-DPAT has a
high affinity for both 5-HT,, and 5-HT, receptors (Lovenberg
et al., 1993). The importance of 5-HT, receptors in regulating
photic atd non-photic entrainment of the biological clock is
becoming abundantly clear. Ying & Rusak (1997) reported
that 8-OH-DPAT suppressed firing rates of light-responsible
SCN neurons viag activation of 5-HT; receptors in the SCN.
Furthermore, the phase advancing action of 8-OH-DPAT on
firing rhythms in the SCN slice were abolished by the 5-HT,/5-
HT, blocker, ritanserin, but not the 5-HTs antagonist,
pindolol, suggesting a functional role of 5-HT; receptors in
the SCN. It may, therefore, be possible that 8-OH-DPAT
suppresses photic entrainment via 5-HT; receptor activation.

The site of action or the intra/intercellular mechanism of the
potentiating actions of MKC-242 on photic entrainment are
still unclear. Although c-fos expression in the SCN by light is
known to be a biochemical marker of photic entrainment, in
the present results, MKC-242 did not affect c-fos expression in
the SCN. Weber er al. (1995) reported that a nitric oxide
synthase (NOS) inhibitor blocks light-induced phase shifts of
wheel-running activity, but not c-fos expression in the hamster
SCN. Thersfore, the potentiated photic entrainment by MKC-
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242 may be the result of an augmented c-fos-independent light
signal pathway, such as NOS activation. In addition to this
possibility, an alternate explanation is that MKC-242 acts
downstream of the light-induced c-fos expression in the SCN.

We can rule out the following possibility that MKC-242
increases the sensitivity for light in the photo-recipient organ,
i.e. retina, because MK C-242 is still able to potentiate photic
entrainment, even when it was administered after turning off
the light pulse.

5-HT;a receptors were reported to be present in the SCN,
IGL and raphe nuclei, all of which are involved in regulating
photic entrainment of the biological clocks (Wright et al.,
1995). The role of SCN 5-HT,, receptors in photic
entrainment is not established at present, although some
reports have suggested a suppressing action of 5-HT 4 receptor
activation on photic entrainment (Rea et al., 1994; Moriya et
al., 1996). MKC-242, however, did not suppress but
potentiated the photic entrainment by low and high intensity
light pulse, suggesting that MK C-242 failed to act on 5-HT,
receptors in the SCN.

The GHT pathway has been reported to inhibitory regulate
the photic entrainment of the biological clock via the release of
neuropeptide Y (NPY) and gamma-aminobutyric acid
(GABA) in the SCN (Ying et al., 1993; Biello & Mrosovsky,
1995). The IGL, a relay area of GHT, was reported to be
innervated by abundant 5-HT neurons from the raphe nuclei
and a 3-HTa receptor agonist potently suppressed both the
spontaneous and light-induced activity of IGL neurons (Ying
et al., 1993). Therefore, MK .C-242 may act at 5-HT, 4 receptors
in the IGL and block the light signal communicated vig the
GHT. Suppression of GHT activity could potentiate photic
entrainment of the biological clock by decreasing the NPY and
GABA releases to the SCN. MK(C-242, however, failed to
affect light-induced c-fos expression in the IGL, therefore we
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