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1.1.  Introduction 

 

The skeletal muscle is the most abundant tissue in the human body comprising 40–50% of 

body mass.  Skeletal muscle protein undergoes rapid turnover, which is regulated by the balance 

between the rates of protein synthesis and degradation.  Physical activity (exercise training), and 

anabolic hormones and drugs (sports doping) increase muscle protein content.  However, 

sarcopenia and muscle disuse (due to unloading, microgravity, or inactivity) and diseases decrease 

muscle protein content.  The rate of protein synthesis is at least in part mediated by 2-adrenergic 

receptors (2-ARs) in skeletal muscles in both anabolic and catabolic conditions. 

ARs belong to the guanine nucleotide-binding G protein-coupled receptor (GPCR) family.  

Skeletal muscle contains a significant proportion of -ARs.  The 2 subtype is the most abundant, 

while ~7–10% of ARs are the 1 subtype [1, 2].  Furthermore, 2-AR is more dense in slow-twitch 

muscles than in fast-twitch muscles [3, 4].  However, the magnitude of anabolic responses to 

2-adrenergic agonists is greater in fast-twitch muscles than in slow-twitch muscles [5-8]. 

The family of -ARs was originally believed to signal predominantly via coupling with a 

stimulatory guanine nucleotide-binding protein, Gs; however, recent studies revealed that both 2- 

and 3-ARs in skeletal muscle are also capable of coupling to an inhibitory guanine 

nucleotide-binding protein, Gi [9].  2-AR activates the Gs/adenylyl cyclase (AC)/cyclic 

adenosine monophosphate (cAMP)/cAMP-dependent protein kinase A (PKA) signaling pathway.  

The signaling pathway is at least in part responsible for the anabolic response of skeletal muscle to 

2-AR stimulation.  Further, in addition to the well-documented inhibition of AC activity [10], 

2-AR coupling to Gi activates Gs-independent pathways [11]. 

2-AR has 7 transmembrane  helices forming 3 extracellular loops, including an NH2 

terminus and 3 intracellular loops that include a COOH terminus [12].  2-AR contains 

phosphorylation sites in the third intracellular loop and proximal cytoplasmic tail.  Phosphorylation 

of these sites triggers the agonist-promoted desensitization, internalization, and degradation of the 

receptor [13].  These regulatory mechanisms contribute to maintaining agonist-induced 2-AR 
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responsiveness in various conditions.  In addition to the post-translational process, 2-AR synthesis, 

including transcription and subsequent translation, is required to restore transmembrane receptor 

density. 

Under several physiological and pharmacological conditions, changes in 2-AR density 

would likely reflect responsibility to circulating catecholamine or injected agonist, and subsequent 

rate of muscle protein synthesis or degradation.  Therefore, the transcriptional and translational 

responses of 2-AR are widely thought to play an important role in plastic regulation of muscle 

protein synthesis and degradation.  Furthermore, understanding the correlation between changes in 

muscle mass and 2-AR expression in several anabolic or catabolic conditions present scientific 

evidence to eradicate sports doping and identify novel approaches for attenuating muscle atrophy 

concomitant with disuse and various diseases.  This thesis summarizes the effects of (1) 2-agonist 

clenbuterol [CHAPTER 1 and CHAPTER 2], (2) synthesized glucocorticoid dexamethasone 

[CHAPTER 3], and (3) casted-immobilization [CHAPTER 4] on 2-AR expression in rat skeletal 

muscle.  The thesis also outlines the functional roles of 2-adrenergic receptors in skeletal muscle 

hypertrophy and atrophy as well as the adaptive responses of 2-adrenergic receptor expression to 

anabolic and catabolic conditions [CHAPTER 5]. 
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2.   CHAPTER 1 

Effects of the 2-agonist clenbuterol on 1- and 2-adrenocepter mRNA expressions of rat 

skeletal and left ventricle muscle [Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki 

K, Imaizumi K (2008) J Pharmacol Sci 107:393-400] 

 

2.1.  Introduction 

 

Doping drugs are categorized into stimulants, analgesics, anabolic agents, diuretics, 

masking agents, peptide hormones and their homologues, and anti-estrogen agents [1-3].  Athletes 

are prohibited from using these drugs to improve athletic performance.  However, many types of 

doping drugs have been used by athletes despite many suppressive and side reactions [1, 3].  

Furthermore, many substances, including steroids, 2-agonists, erythropoietins, growth hormones, 

transforming growth factor-, , fibroblast growth factors, mechano-growth factors, and insulin-like 

growth factor-1 have been used as doping drugs for the improvement of athletic performance such as 

increasing muscle strength, muscle power, and endurance capacity [1-3].  Especially, anabolic 

androgenic steroids (i.e., methandienone, nandrolone, 19-norandrogen, stanozolol, and 

19-norandrostendion) and 2-agonists (i.e., clenbuterol, salbutamol, metaproterenol, fenoterol and 

clorpreneline) have been known to heighten muscle strength and muscle power [1-9]. 

The 2-agonist clenbuterol [4-amino-(t-butyl-amino) methyl-3,5-dichlorobenzyl alcohol] 

has been used as a non-steroidal anabolic drug for sports doping and, as a consequence, focused on 

since Sydney Olympic Games in 2000.  According to the recent World Anti-Doping Agency 

documents [10], the use of clenbuterol was the fifth most common case in the number of anabolic 

drugs-used contravention in 2006 (53 cases).  Although clenbuterol is known to heighten muscle 

power and increase muscle mass, the precise mechanism of these responses is still unknown [4-9]. 

The pharmacokinetics and dynamics of clenbuterol are unique.  Clenbuterol showed high 

affinity toward both 1-adrenoceptor (1-AR) and 2-adrenoceptor (2-AR) and selectivity toward 

the 2-AR, relative to other -agonists [11].  Equilibrium dissociation constants of clenbuterol were 
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38 and 6.3 nM for 1- and 2-ARs, respectively [11].  The high affinity of clenbuterol toward 1- 

and 2-ARs was coupled to a low relative efficacy of clenbuterol to activate either 1- or 2-ARs [11].  

Most 2-agonists such as isoproterenol or salbutamol require approximately 1%-3% -AR 

occupation for 40%-50% relaxation of the jugular vein, whereas clenbuterol required approximately 

100% -AR occupation for a similar response [11].  Moreover, clenbuterol has a relative longer 

half-life of about 26 h [12]. 

Clenbuterol is also mainly used for a therapeutic agent of asthma as a bronchodilator 

having relaxing actions on bronchial smooth muscles [13].  In addition to bronchodilatation, 

clenbuterol have many physiological actions such as lipolysis, glycolysis, glycogenolysis, 

vasodilatation, and cardiac actions [4, 5, 13, 14].  Many of these clenbuterol-induced physiological 

and pharmacological effects are also shown to be mediated through 2-AR [3-5, 13-16].  It is well 

known that 2-adrenergic stimulation activates a guanine nucleotide-binding protein (G-protein), 

leading to activation of adenylyl cyclase and production of cyclic adenosine monophosphate (cAMP), 

which is largely responsible for 2-AR-mediated intracellular effects [4, 15, 16].  However, long- 

term -adrenergic stimulations are known to promote the desensitization and down-regulation of 

-ARs [7, 16-19].  Down-regulation is defined as a decline in the total number of receptors caused 

by prolonged exposures [16].  On the one hand, -AR binding to agonists is known to be 

desensitized because of the phosphorylation at the C-terminal tail of receptors by G-protein-coupling 

receptor kinase and/or at the third intracellular loop of receptors by cAMP-dependent protein kinase 

A (PKA) [16, 17].  The post processes, internalization-endosome formation-degradation or 

resensitization, depend on the magnitude, kinetics, and duration of stimulations [16].  On the other 

hand, activation of cAMP response element binding protein (CREB) by PKA is related with -AR 

mRNA transcription [18, 20, 21].  Furthermore, transcribed -AR mRNA is eliminated by 

spontaneous and/or -adrenergic receptor binding protein ( ARBP)–mediated degradation [22-24].  

From these view points, the down-regulation of -AR is associated with both pre-translational and 

post-translational processes.  Although there have been many reports about the post-translational 

process of -AR in skeletal muscles, respiratory tissues, and cardiac muscle, little is known about the 



6 
 

transcriptional control and mRNA stability. 

It is well known that skeletal muscles are composed of slow-twitch and fast-twitch muscle 

fibers [15].  The proportion of these muscle fibers is different in each skeletal muscle.  Extensor 

digitorum longus (EDL) and soleus (SOL) muscles are known as a typical fast-twitch fiber-rich and 

a slow-twitch fiber-rich muscle, respectively, in rats [7, 25].  These muscle fibers are different in 

the velocity of contraction, metabolic properties, and -AR distributions [4, 7, 14, 15, 25].  Jensen 

et al. [26, 27] reported that the 2-AR subtype was contained in about 80%-95% of total -ARs in 

skeletal muscles and relatively higher in the slow-twitch fiber-rich SOL muscle than in the 

fast-twitch fiber-rich EDL muscle.  The effects of -adrenergic stimulations on 1- and2-AR 

mRNA expressions in muscle fibers, however, are not still elucidated.  Furthermore, -agonists also 

are known to induce inotropic and chronotropic actions via 1- and 2 ARs of cardiac muscle [16, 28, 

29].  The 1-AR subtype of cardiac muscle is known to be the predominant receptor and contained 

in about 70%-80% of total -ARs in human ventricle (ranging from 60%-80% in ventricles of 

various mammals including human, rat, canine, and feline) [28, 29].  Although -agonists have 

been used as therapeutic agents for several types of heart diseases, the effects of 2-agonists on -AR 

mRNA expressions are still unclear [16, 29].  In the present study, therefore, the effects of the 

administration of the 2-agonist clenbuterol for 10 days on 1- and 2-AR mRNA expressions of 

EDL, SOL, and cardiac (left ventricle: LV) muscles were studied in adult male rats.  The effects of 

clenbuterol on RNA concentration of these muscles were also examined. 

 

 

2.2  Materials and methods 

 

2.2.1. Experimental procedures 

The present study was carried out according to the protocol shown in Fig. 1.  During the 

experimental period, clenbuterol was administered to rats for 10 days (dose= 1.0 mg/ kg body 

weight/ day).  EDL, SOL and LV muscles were isolated and weighed on the next day after the final 
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day of the administration of clenbuterol to clarify the effects of 2-agonist, clenbuterol on 1 and 2 

AR mRNA expressions of EDL, SOL, and LV muscles. 

 

 

 

 

2.2.2. Animal care 

Male 7-week-old Sprague Dawley rats (CLEA Japan, Tokyo) were pre-fed for 5 days to 

allow adaptation to their new environment [30, 31].  Rats were maintained at a controlled 

temperature (23°C- 25°C) and a relative humidity (50%- 60%), with fixed light-dark cycles 

[8:00- 20:00 (light) and 20:00- 8:00 (dark)] [30, 31].  Animal foods (CE-2 cubic type; CLEA Japan) 

were given to each rat under diet-restricted feeding (feeding dosage= 30 g/ day) and distilled water 

was given ad libitum [30].  All rats were weighed daily during the experimental period.  After the 

adaptation period, the rats were randomly divided into two groups, the clenbuterol-administered 

(n= 10, the initial body weight= 279± 2 g, means± S.E.M.) group and the control (n= 9, the initial 

body weight=279± 2 g, means± S.E.M.) group. 

All experimental and animal care procedures were approved by the Committee on Animal 

Care Use at Waseda University and followed the Guiding Principles for the Care and Use of Animals 

in the Field of Physiological Sciences established by the Physiological Society of Japan and the 

American Physiological Society Animal Care Guidelines.  We performed procedures with the least 

possible pain or discomfort to the rats. 
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2.2.3. Administration of clenbuterol to rats 

Clenbuterol hydrochloride (Sigma, St. Louis, MO, USA) was dissolved in 0.9% NaCl 

solution as a vehicle to obtain a clenbuterol concentration of 0.1%.  In the clenbuterol-administered 

group, clenbuterol (dose= 1.0 mg/ kg body weight/ day) was administered from cervical portion of 

the back via a subcutaneous (s.c.) injection (8:00- 8:30) for 10 days.  In the control group, an 

equivalent volume of 0.9% NaCl solution was administered in the same manner [30]. 

 

2.2.4. Sample storage 

Isolated and weighed skeletal muscle was cut the both ends and preserved in RNAlater 

solution (Ambion, Austin, TX, USA) to stabilize RNA.  In addition, residual blood in the isolated 

heart was removed by washing with by autoclaved 0.9% NaCl solution, and then the heart was 

separated into LV and the other sections.  Then the LV was weighed and preserved in RNAlater 

solution.  The samples preserved in RNAlater solution were stored at -20°C after the incubation at 

4°C overnight. 

 

2.2.5. Analyses of mRNA expressions by real-time quantitative reverse transcription- 

polymerase chain reaction (RT-PCR) 

Real-time quantitative RT-PCR was used to quantify 1- and 2-AR mRNA expression 

levels.   Stored muscle samples were homogenized using TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s protocol.  RNeasy Mini Spin Column, an adjunct with 

RNeasy Fibrous Tissue Mini Kit (QIAGEN, Hilden, Germany), was used for the purification of 

RNA.  The RNA concentration was determined by measuring absorbance at 260 and 280 nm 

(U-3310 Spectrophotometer; Hitachi, Tokyo) according to our routine method [32]. 

The extracted RNA was subjected to single-stranded cDNA synthesis using a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Faser City, CA, USA) 

according to the manufacturer’s protocol.  In quantitative RT-PCR, synthesized cDNA was added to 

a SYBR Premix Ex Taq reaction mixture (TaKaRa Bio Inc., Shiga) containing 200 nM PCR primer 
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(forward and reverse) [32].  Primer sequences for real-time RT-PCR were: 1-AR: 5'-CTG CTA 

CAA CGA CCC CAA GTG-3' (forward), 5'-AAC ACC CGG AGG TAC ACG AA-3' (reverse) and 

2-AR: 5'-GAG CCA CAC GGG AAT GAC A-3' (forward), 5'-CCA GGA CGA TAA CCG ACA 

TGA-3' (reverse).  TATA-box binding protein (TBP) was used as the reference gene [33-35].  

Amplification was performed using an ABI PRISM 7000 Sepuence Detection System (Applied 

Biosystems) [32].  1- and 2-AR mRNA levels were normalized using the Threshold Cycle (Ct) 

method in accordance with the manufacturer’s protocol and were expressed as ratios relative to TBP 

mRNA levels [32]. 

 

2.2.6. Statistical analyses 

Experimental data are presented as the means± S.E.M.  The differences between two 

groups were tested by a Student t- test and considered significant when P was < 0.05. 

 

 

2.3  Results 

 

2.3.1. Effects of clenbuterol on the body weight and the weights, RNA concentration, and total 

RNA content of muscles 

We investigated the effects of clenbuterol on the body weight and the weights, RNA 

concentration, and total RNA content of EDL, SOL, and LV muscles.  As shown in Table 1, there 

were no significant differences of the body weight between both groups.  The weight of EDL 

muscle was 1.14 times (P< 0.001) higher in the clenbuterol-administered group than that in the 

control group.  Furthermore, RNA concentration and total RNA content of EDL muscle were 1.29 

(P< 0.001) and 1.48 times (P< 0.001) higher, respectively, in the clenbuterol-administered group 

than those in the control group.  However, the weight, RNA concentration, and total RNA content 

of SOL and LV muscles in the clenbuterol-administered group were comparable with those in the 

control group.  These results showed that the effects of clenbuterol on muscle hypertrophy were 
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markedly higher in fast-twitch fiber-rich EDL muscle than in slow-twitch fiber-rich SOL muscle. 

 

 

 

2.3.2. Effects of clenbuterol on 1-AR mRNA expression of muscles 

Figure 2 showed the effects of clenbuterol on 1-AR mRNA expression of EDL, SOL and 

LV muscles.  There were no significant differences of 1-AR mRNA expression of EDL (Fig. 2A) 

and SOL (Fig. 2B) muscles between both groups.  However, 1-AR mRNA expression of LV 

muscle was 0.84 times (P< 0.05) lower in the clenbuterol-administered group than in the control 

group (Fig. 2C). 
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2.3.3. Effects of clenbuterol on 2-AR mRNA expression of muscles 

As shown in Fig. 3, 2-AR mRNA expression of EDL was 0.84 times (P< 0.05) lower in 

the clenbuterol-administered group than in the control group (Fig. 3A).  However, there were no 

significant differences of 2-AR mRNA expression of SOL muscle between both groups (Fig. 3B).  

Furthermore, 2-AR mRNA expression of LV muscle was 0.94 times (P< 0.05) lower in the 

clenbuterol-administered group than in the control group (Fig. 3C). 

 

 

2.4.  Discussion 

 

The purpose of the present study was to elucidate the effects of 2-agonist clenbuterol 

(dose= 1.0 mg/ kg body weight/ day, s.c. for 10 days) on 1- and 2-AR mRNA expressions of EDL, 

SOL, and LV muscles in adult male rats.  The present results are summarized in Table 2.  The 

main findings of the present study are also summarized as follows: 1) Clenbuterol significantly 

increased the weight, RNA concentration, and total RNA content of EDL muscle without changing 

those of SOL and LV muscles (Table 1).  2) Clenbuterol significantly decreased 1-AR mRNA 

expression of LV muscle without changing that of EDL and SOL muscles (Fig. 2).  3) Clenbuterol 

significantly decreased 2-AR mRNA expression of EDL and LV muscles without changing that of 

SOL muscle (Fig. 3).  These results suggest that the effects of clenbuterol on 1- and 2-AR mRNA 
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expressions and muscle hypertrophy depend on muscle fiber types. 

 

 

2.4.1. Effects of clenbuterol on skeletal muscle weights 

The present study clearly showed that the administration of clenbuterol for 10 days 

increased the weight of EDL muscle without changing the weight of SOL and LV muscles (Table 1).  

These results agreed with our previous findings [6].  The present results also demonstrated that 

clenbuterol significantly increased RNA concentration and total RNA content of fast-twitch 

fiber-rich EDL muscle (Table 1).  These results strongly suggest that clenbuterol increases the 

synthesis rate of muscle protein in fast-twitch fibers in order to increase muscle mass and protein 

accretion. 

      It is well known that 2-agonists increase the cross-sectional area of fast-twitch fibers [4, 6, 7, 

25].  In addition, the effects of 2-agonists on the functional properties of skeletal muscles may be 

associated with the metabolic responses [7, 14, 25, 36].  Kitaura et al. [25] reported that clenbuterol 

induced a transition from slow to fast myosin heavy chain (MHC) phenotypes of SOL muscle, but no 
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significant changes in MHCs of EDL muscle.  Furthermore, they also reported that clenbuterol 

decreased monocarboxylate transporter 1 content in EDL and SOL muscles, increased the lactate 

dehydrogenase (LDH) total activity in EDL muscle, and increased LDH-specific activity and the 

ratio of the muscle-type isozyme of LDH (anaerobic activity) to the heart-type (aerobic activity) in 

SOL muscle [25].  Additionally, clenbuterol-induced shift of metabolic property from oxidative to 

glycolytic in SOL muscle is demonstrated by the increase in phosphofructokinase activity and 

decrease in citrate synthase activity [36].  Hunt et al. [14] reported that clenbuterol prevented 

adrenalin from antagonizing insulin-stimulated muscle glucose uptake in fast-twitch epitrochlearis 

and slow-twitch SOL muscles.  Ryall et al. [7] also reported that treatment with the 2-agonist 

fenoterol caused a small increase in fatiguability due to a decrease in succinate dehydrogenase 

activity in both EDL and SOL muscles.  These findings suggest that the administration of the 

2-agonist clenbuterol shifts the MHC phenotype from slow to fast and the metabolic property from 

oxidative to glycolytic in slow-twitch fiber-rich SOL muscles and changes the predominant activity 

to the glycolytic system in all skeletal muscles. 

 

2.4.2. Effects of clenbuterol on 2-AR mRNA expression in skeletal muscles 

The present study clearly demonstrated that clenbuterol decreased 2-AR mRNA 

expression of EDL muscle (Fig. 3A).  However, no significant effect of clenbuterol on 2-AR 

mRNA expression of SOL muscle was observed (Fig. 3B) regardless of higher 2-AR density.  The 

present results suggest that the different effects of clenbuterol on 2-AR mRNA expression between 

fast-twitch fiber-rich EDL and slow-twitch fiber-rich SOL muscles are associated with the 

intracellular factors without any association with the number and distribution of 2-AR molecules.  

In contrast, it was reported that the decrease of -AR densities on the cell surface was dependent on 

the receptor density in each muscle fiber, although the details are unclear [27]. 

Sillence et al. [37] reported that 2-AR density was decreased in hind-limb muscle 

harvested from 7-day clenbuterol-administered (dose=0.2 mg/kg body weight) female rats.  

Similarly, Rothwell et al. [19] reported that 2-AR density in muscle membranes was decreased in 



14 
 

rat hind-limb muscle injected with clenbuterol (dose=2.0 mg/kg body weight) for 18 days.  

Although the differences of the experimental protocols may influence the magnitude and kinetics of 

reduction levels of 2-AR density, these findings clearly showed that the decrease of 2-AR density 

was confirmed under the different protocols such as the dose and duration of the administration of 

clenbuterol.  Although 2-AR density and mRNA expression should not be considered to be the 

same subjects, gene expression dynamics and the gene product, protein expression, are deeply 

associated.  In the present study, therefore, the experimental protocol was determined by the 

protocol of these previous studies regarding 2-AR density.  More elaborated studies focused on the 

dose- and duration-responses of clenbuterol are required. 

It is well known that the genetic information from DNA is mediated via the 

transcription-translation process of mRNA to synthesize protein.  Therefore, the decrease of mRNA 

expression levels is associated with the accelerated degradation of mRNA and the decreased 

transcription rate [7, 15].  Mak et al. [18] analyzed the activation of the transcriptional factor of the 

-AR gene CREB and showed the decrease of 1-AR density, mRNA expression, and transcription 

rate in rat lung after the long-term treatment with the -agonist isoproterenol, suggesting that the 

reduction of transcription rate is responsible for the -agonist-induced decrease of 1-AR mRNA 

expression [18].  However, they also showed the decrease of 2-AR density and mRNA expression 

without any detectable decline in the transcription rate, indicating that -agonist destabilizes 2-AR 

mRNA [18].  These findings suggest that the decrease of 2-AR mRNA expression of EDL muscle 

induced by clenbuterol is not associated with the decline in the transcription rate. 

On the other hand, there are some reports describing post-transcriptional regulation such as 

destabilization of receptor mRNA [22-24].  Hadcock et al. [22] reported that -adrenergic 

stimulation reduced the half-life of -AR mRNA, and this is responsible for the short-term 

agonist-induced decrease of -AR mRNA expression without affecting the transcription rate.  

Furthermore, Port et al. [23] and Pende et al. [24] showed that -AR mRNA-binding protein 

(-ARBP or A+U-rich element RNA- binding/degradation factor 1) played an important role for the 

2-agonist-induced decrease of -AR mRNA expression.  In fact, -agonist decreased -AR mRNA 
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expression [22] and increased the amount of -ARBP [23], although glucocorticoids, which 

increased -AR mRNA expression [22], decreased the amount of -ARBP [23].  Insulin, which 

activates its receptor-intrinsic tyrosine kinase activity, decreased the amount of -ARBP, much like 

glucocorticoids [23].  These results show that -AR mRNA expression levels are inversely related 

to the amount of -ARBP.  Furthermore, these reports indicate that the decrease of 2-AR mRNA 

expression of EDL muscle obtained from the present study (Fig. 3A) is related to the amount of 

-ARBP.  The different effects of clenbuterol on 2-AR mRNA expression between fast- and 

slow-twitch fibers may be connected with -ARBP expression and activation in each muscle fiber.  

Further studies are needed to clarify the possible mechanisms of clenbuterol-induced suppression of 

2-AR mRNA expression of EDL muscle. 

 

2.4.3. Effects of clenbuterol on 1- and 2-AR mRNA expressions of LV muscle 

The present study clearly showed that clenbuterol significantly decreased 1- and 2-AR 

mRNA expressions of LV muscle (Figs. 2C and 3C).  These results suggest that the decrease of 

2-AR mRNA expression is associated with the direct stimulation of clenbuterol to the receptor and 

the decrease of 1-AR mRNA expression is associated with the direct and indirect stimulation of 

clenbuterol to the receptor. 

Barbier et al. [38] showed that endurance training decreased 1-AR density without 

changing 2-AR density in cardiac muscle.  Although endurance training-induced sympathetic 

hyperactivity is known to promote the secretion of catecholamines, the plasma levels of noradrenalin 

increase more than those of adrenalin in response to endurance training [39].  As 1-AR is more 

sensitive to noradrenalin than adrenalin, this subtype is selectively down-regulated in cardiac muscle 

after the long-term exercise [40].  On the other hand, Cohen et al. [11] reported that clenbuterol 

showed high affinity towards both 1- and 2-ARs and not high selectivity toward 1-AR, suggesting 

that clenbuterol nonselectively binds and down-regulates 1-AR of LV muscle.  It is possible that 

1-AR mRNA expression of EDL and SOL muscles was not affected because of the low number of 

1-AR. 
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Ventricular fibrillation [41], heart failure [42], and diabetes-induced heart diseases [43] 

dramatically change -AR density and mRNA expression in heart.  In these heart problems, the 

decrease of myocardial 1-AR density and mRNA expression without changing myocardial 2-AR 

density and mRNA expression is observed [41, 42].  These phenomena resemble the present results 

with respect to the -AR mRNA expressions, suggesting that the overload of cardiac functions by 

clenbuterol-induced increase of plasma volume is associated with -AR mRNA expressions. 

The present study showed that the administration of clenbuterol decreased 2-AR mRNA 

expression of fast-twitch fiber-rich EDL muscle without changing that of slow-twitch fiber-rich SOL 

muscle (Fig. 3: A and B).  The administration of clenbuterol also decreased 1- and 2-AR mRNA 

expressions of LV muscle (Figs. 2C and 3C).  Further studies are needed to clarify the mechanism 

of the clenbuterol-induced changes in 2-AR mRNA expression in fast- and slow-twitch fibers and in 

cardiac muscle. 
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3.   CHAPTER 2 

Adaptive effects of 2-agonist, clenbuterol on the expressions of 2-adrenoceptor mRNA 

in rat fast-twitch fiber-rich muscles [Sato S, Nomura S, Kawano F, Tanihata J, 

Tachiyashiki K, Imaizumi K (2010) J Physiol Sci 60:119-127] 

 

3.1.  Introduction 

 

The 2-agonist, clenbuterol (4-amino-(t-butyl-amino)-methyl-3,5-dichlorobenzyl 

alcohol) has been used as a non-steroidal anabolic drug for sports doping.  It has been reported that 

administration of clenbuterol induces skeletal muscle hypertrophy and inhibits skeletal muscle 

atrophy [1-8].  These clenbuterol-induced phenomena are caused by the increased rate of protein 

synthesis and/or reduced rate of proteolysis via the 2-adrenoceptor (AR) [5, 9-12].  These findings 

show that the 2-AR is responsible for both the skeletal muscle hypertrophy and anti-atrophy effects 

of clenbuterol.  However, it has been reported that chronic administration of -agonists 

down-regulate the density and/or mRNA expression of 2-AR [1, 13].  Recently, we have reported 

that clenbuterol reduced the expression of 2-AR mRNA in fast-twitch fiber-rich muscle, extensor 

digitorum longus (EDL) muscle, without changing that in slow-twitch fiber-rich muscle, soleus 

(SOL) muscle, suggesting that these effects depend on muscle fiber types [1].  However, the 

mechanisms of this fiber type-dependent decrease are still unknown. 

Some reports have showed that cAMP response element binding protein (CREB) and the 

glucocorticoid receptor (GR) regulate the expression level of 2-AR mRNA as transcriptional 

regulatory factors [14-17].  First, it is well known that positive autoregulation of the 2-AR gene 

occurs through receptor-mediated elevation of the concentration of cyclic adenosine monophosphate 

(cAMP), followed by the phosphorylation and activation of CREB [14, 16].  Second, the steroid 

hormone-GR complex also binds to the 2-AR gene, and activates transcription, showing that GR 

modulates the expression of 2-AR mRNA [16, 17]. 

On the other hand, Hadcock et al. [18] showed that one mechanism for down-regulation of 
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2-AR mRNA is destabilization of 2-AR mRNA.  It is well known that 2-AR mRNA contains an 

AU-rich element (ARE) within the 3’-untranslated region (3’-UTR) that can be recognized by 

several mRNA binding proteins, including Hu antigen R (HuR), AU-rich element 

binding/degradation factor1 (AUF1) and heterogenous nuclear ribonucleoprotein A1 (hnRNP A1) 

[19-22].  These proteins are known to play an important role in the regulation of 2-AR mRNA 

stability [19-30]. 

These findings mentioned above support the hypothesis that clenbuterol-reduced 

expression of 2-AR mRNA may be related to expression of transcriptional and post-transcriptional 

regulatory factors for 2-AR mRNA levels in skeletal muscles.  In this study, therefore, we 

examined the effects of clenbuterol on expression of CREB, GR, HuR, AUF1 and hnRNP A1 

mRNAs in fast-twitch fiber-rich (EDL and plantaris: PLA) and slow-twitch fiber-rich (SOL) muscles 

in rats. 

 

 

3.2.  Materials and methods 

 

3.2.1. Experimental procedures and animal care 

The experimental procedure used in this study is shown in Fig. 1.  Briefly, clenbuterol 

(dose= 1.0mg/kg body weight/day) was administered to rats for ten consecutive days during the 

experimental period.  The EDL, PLA, and SOL muscles were isolated and weighed on the day after 

the final day of clenbuterol administration [1]. 

Male 7-week-old Sprague Dawley rats (CLEA Japan, Tokyo) were pre-fed for 5 days to 

allow adaptation to their new environment [1, 31].  Rats were maintained at a controlled 

temperature (23-25°C) and relative humidity (50-60%), with fixed light-dark cycles (8:00–20:00 

(light) and 20:00–8:00 (dark)) [1, 31, 32].  Animal foods (CE-2 cubic type; CLEA Japan) was given 

to each rat under diet-restricted feeding (feeding chow= 30g/day) and distilled water was given ad 

libitum [1].  All rats were weighed daily during the experimental period.  After the adaptation 



23 
 

period, the rats were randomly divided into two groups, the clenbuterol-administered (n= 10, the 

initial body weight= 279± 2g, mean± standard error of the mean ( SEM)) and the control (n= 10, the 

initial body weight=278± 2g, mean± S EM) group. 

All experimental and animal care procedures were approved by the Committee on Animal 

Care Use at Waseda University and followed the Guiding Principles for the Care and Use of Animals 

in the Field of Physiological Sciences established by the Physiological Society of Japan [1, 31-35] 

and also American Physiological Society Animal Care Guidelines.  We performed procedures with 

the least possible pain or discomfort to the rats [1, 31-34]. 

 

 

3.2.2. Administration of clenbuterol to rats 

Clenbuterol hydrochloride (Sigma, St. Louis, MO, USA) was dissolved in 0.9% NaCl 

solution as a vehicle to obtain a clenbuterol concentration of 0.1% [1, 31].  In the 

clenbuterol-administered group, clenbuterol (dose= 1.0mg/kg body weight/day) was administered to 

cervical portion of the back via a subcutaneous (s.c.) injection (8:00- 8:30) for ten consecutive days 

[1].  In the control group, an equivalent volume of 0.9% NaCl solution was administered in the 

same manner [1, 31]. 

 

3.2.3. Sample storage 

Isolated and weighed skeletal muscles were cut at both ends and preserved in RNAlater 
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solution (Ambion, Austin, TX, USA) to stabilize RNA [1].  The samples were stored at -20°C after 

the incubation at 4°C overnight until they could be used for RNA extraction [1]. 

 

3.2.4. Analysis of mRNA expressions by real-time quantitative reverse transcription- 

polymerase chain reaction 

RNA was extracted from stored muscle samples by use of TRIzol reagent (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s protocol [1, 32].  RNA concentration was 

determined by measuring absorbance at 260 nm (U-3310 Spectrophotometer; Hitachi, Tokyo, Japan) 

[1, 32, 34].  The extracted RNA was subjected to single-stranded cDNA synthesis using a 

high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA) according 

to the manufacturer’s protocol [1, 32, 34].  In the real-time quantitative polymerase chain reaction 

(PCR), synthesized cDNA was added to a Power SYBR Green PCR Master Mix (Applied 

Biosystems) containing 200 nM PCR primer (forward and reverse) [1].  The relative amount of 

each mRNA was calculated and normalized by the value of 18S rRNA gene.  The oligonucleotide 

sequences for the primers are shown in Table 1.  Amplification was performed using an ABI Prism 

7000 sepuence detection system (Applied Biosystems). 
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3.2.5. Statistical analysis 

Experimental data were presented as the mean± SEM.  The differences between two 

groups were tested by a Student t- test and considered significant when p value was <0.05. 

 

 

3.3.  Results 

 

3.3.1. Effects of clenbuterol on the weight, RNA concentration in, and RNA content of PLA 

muscle 

No significant effects of clenbuterol on body weight were observed as reported previously 

[1].  As shown in Fig. 2, the weight (0.40±0.01g) of, RNA concentration (1.19±0.06mg/g) in, and 

RNA content (0.48±0.03mg) of PLA muscle in the clenbuterol-administered group were 1.18 

(p<0.001), 1.31 (p<0.05) and 1.55 (p<0.01) times higher than those (0.34±0.01g, 0.91±0.01mg/g and 

0.31±0.04mg, respectively) in the control group.  These results were qualitatively similar to our 

previous findings in EDL muscle [1] (Table 2), and clearly showed that the effects of clenbuterol on 

muscle hypertrophy were greater in fast-twitch fiber-rich muscle than in slow-twitch fiber-rich 

muscle. 
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3.3.2. Effects of clenbuterol on expression of 1, 2 and 3-AR mRNAs in skeletal muscles  

Figure 3 showed the effects of clenbuterol on expressions of 1, 2 and 3-AR mRNAs in 

EDL, PLA, and SOL muscles.  Expression of 2-AR mRNA in EDL and PLA muscles was 0.69 

(p<0.01) and 0.67 (p<0.01) times lower in the clenbuterol-administered group than in the control 

group, respectively (Fig. 3).  The smaller effects of clenbuterol on expression of 2-AR mRNA in 

PLA muscle were comparable with those in EDL muscle (Fig. 3).  In contrast, there were no 

significant differences of expression of 2-AR mRNA in SOL muscles between both groups (Fig. 3).  

These findings support the previous suggestion that the effects of clenbuterol on expression of 

2-AR mRNA depend on muscle fiber types [1].  However, there were no significant differences of 

expression of 1 and 3-AR mRNAs in these muscles between both groups (Fig. 3). 
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3.3.3. Effects of clenbuterol on expression of transcriptional factor mRNAs in skeletal muscles 

The effects of clenbuterol on the expression of CREB and GR mRNAs in EDL, PLA and 

SOL muscles were shown in Fig. 4.  There were no significant differences of the expression of 

CREB mRNA in these skeletal muscles between both groups (Fig. 4).  Expression of GR mRNA in 

EDL and PLA muscles was 0.70 (p<0.01) and 0.80 (p<0.05) times lower in the 

clenbuterol-administered group than in the control group, respectively (Fig. 4).  However, no 

significant differences of expression of GR mRNA in SOL muscle were observed between both 

groups (Fig. 4).  These results clearly show that the effects of clenbuterol on expression of GR 

mRNA depend on muscle fiber types. 

 

 

3.3.4. Effects of clenbuterol on expression of post-transcriptional regulatory factor mRNAs in 

skeletal muscles 

Figure 5 shows the effects of clenbuterol on expression of HuR, AUF1, and hnRNP A1 

mRNAs in EDL, PLA, and SOL muscles.  Expression of HuR mRNA in EDL and PLA muscles 

was 0.79 (p<0.01) and 0.82 (p<0.05) times lower, respectively, in the clenbuterol-administered group 

than in the control group (Fig. 5).  However, no significant effect of clenbuterol on expression of 
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HuR mRNA in SOL muscle was observed (Fig. 5).  Expression of AUF1 mRNA in EDL and PLA 

muscles was 0.73 (p<0.001) and 0.76 (p<0.01) times lower, respectively, in the 

clenbuterol-administered group than in the control group (Fig. 5).  However, there was no 

significant difference between expression of AUF1 mRNA in SOL muscle in these groups (Fig. 5).  

Expression of hnRNP A1 mRNA in EDL and PLA muscles was 0.66 (p<0.01) and 0.70 (p<0.001) 

times lower, respectively, in the clenbuterol-administered group than in the control group (Fig. 5).  

However, there was no significant difference between expression of hnRNP A1 mRNA in SOL 

muscle in these groups (Fig. 5).  Thus, clenbuterol significantly reduced expression of HuR, AUF1 

and hnRNP A1 mRNAs in EDL and PLA muscles without changing those in SOL muscle, showing 

that the effects of clenbuterol on expression of these post-transcriptional regulatory factor mRNAs 

are specific to fast-twitch fiber-rich muscles such as EDL and PLA muscles. 
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3.4.  Discussion 

 

The purpose of this study is to elucidate the effects of the 2-agonist, clenbuterol 

(dose= 1.0mg/kg body weight/ day for 10 days, s.c.) on mRNA expression of transcriptional (CREB 

and GR) and post-transcriptional (HuR, AUF1 and hnRNP A1) regulatory factors for 2-AR mRNA 

levels in fast-twitch fiber-rich (EDL and PLA) and slow-twitch fiber-rich (SOL) muscles in rats.  

The results are summarized in Table 2 and suggest that muscle fiber type-dependent effects of 

clenbuterol on expression of 2-AR mRNA are closely related to the decrease of mRNA expression 

of transcriptional and post-transcriptional regulatory factors for 2-AR mRNA levels. 

 

Our previous study showed that clenbuterol increased the weight of, RNA concentration in, 

and RNA content of EDL muscle without changing those in SOL muscle [1].  This study also 

demonstrated that clenbuterol increased the weight of, RNA concentration in, and RNA content of 

PLA muscle (Fig. 2).  These results clearly suggest that the effects of clenbuterol on the synthesis 
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rate of muscle protein are greater in fast-twitch fiber than in slow-twitch fiber, and there are no 

differences in the effects of clenbuterol on the weight of and RNA concentration in fast-twitch 

fiber-rich muscles between extensor (EDL) and flexor (PLA) muscles.  This study also showed that 

clenbuterol reduced the expression of 2-AR mRNA in EDL and PLA muscles without changing that 

in SOL muscle (Fig. 3), clearly supporting our previous suggestion that the effects of clenbuterol on 

expression of 2-AR mRNA depend on muscle fiber type [1]. 

It is well known that 2-AR regulates expression of several genes including 2-AR itself 

through the signaling pathway [14, 15, 36-38].  The transcriptional responses of several genes 

including 2-AR to cAMP are localized to the cAMP response element, which is constituted by the 

palindromic sequence TGACGTCA in the 5’-flanking region and recognized by CREB [14, 15, 39, 

40].  This study clearly shows that clenbuterol did not change the expression of CREB mRNA in 

skeletal muscles (Fig. 4).  Mak et al. [13] reported that -agonist, isoproterenol reduced the density 

of 2-AR and expression of 2-AR mRNA without any detectable decline in the rate of transcription.  

These findings suggest that the decrease of expression of2-AR mRNA induced by clenbuterol is 

not associated with the decline in the abundance of CREB or even in the rate of transcription in 

fast-twitch fiber-rich muscles.  Furthermore, in this study, statistical regression analyses showed 

that expression of 2-AR mRNA was not strongly correlated with expression of CREB mRNA in 

EDL, PLA and SOL muscles (data not shown). 

On the other hand, glucocorticoid is associated with the transcription of the 2-AR gene 

[17].  The GR-ligand complex undergoes a conformational change resulting in dissociation of heat 

shock protein 90 and unmasking of a nuclear localization signal into the nucleus, where it binds 

directly to glucocorticoid response element constituted by the consensus sequence 

AGAACAnnnTGTTCT in the 5’-flanking region, and activates gene transcription including 2-AR 

[17, 41, 42].  Our study clearly shows that clenbuterol reduced expression of GR mRNA in EDL 

and PLA muscles (Fig. 4).  Recently, we also showed that synthesized glucocorticoid, 

dexamethasone-induced down-regulation of expression of 2-AR mRNA in SOL muscle may be 

related to the relatively much larger reduction in the expression of GR mRNA in SOL muscle than in 
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EDL muscle [32].  Furthermore, in the current study, the statistical regression analyses showed that 

the positive correlation between expression of 2-AR mRNA and expression of GR mRNA in 

fast-twitch fiber-rich, EDL (r=0.59) and PLA (r=0.67) muscles was stronger than that in slow-twitch 

fiber-rich, SOL muscle (r=0.41) (data not shown).  These findings suggest that the decrease of 

expression of 2-AR mRNA induced by clenbuterol is closely associated with the decline in 

expression of GR mRNA in fast-twitch fiber-rich muscles.  These findings also indicate that the GR 

has an adaptable role in regulation of expression of 2-AR mRNA in various situations caused by 

exposure to internal and external stimuli. 

Hadcock et al. [18] showed that one mechanism for down-regulation of 2-AR mRNA is 

destabilization of 2-AR mRNA rather than decline in the rate of transcription.  The regulation of 

stability and turnover of 2-AR mRNA has been associated with the interaction with mRNA binding 

proteins, including HuR, AUF1 and hnRNP A1 that often bind to AREs commonly located within 

their 3’-UTR [19-22].  HuR is a ubiquitously expressed and a member of the embryonic lethal 

abnormal vision family of RNA-binding proteins [43, 44].  Overexpression of HuR leads to 

stabilization [24, 25], and inverse reduction of levels of HuR induces the decline in half-life [27, 28] 

of mRNAs carrying AREs in their 3’-UTR.  These findings suggest that HuR stabilizes mRNAs 

containing AREs within their 3’-UTR, including 2-AR mRNA.  Our current study showed that 

clenbuterol reduced expression of HuR mRNA in EDL and PLA muscles (Fig. 5), strongly 

suggesting that clenbuterol-induced down-regulation of expression of HuR mRNA reduces the 

stability of 2-AR mRNA, and consequently, reduces expression of 2-AR mRNA in fast-twitch 

fiber-rich muscles. 

On the other hand, overexpression of AUF1 leads to degradation of mRNAs carrying 

AREs within their 3’-UTR, suggesting that AUF1 is involved mostly in degradation of 2-AR 

mRNA and competes against the role of HuR [26].  Our current study, however, showed that 

clenbuterol reduced the expression of AUF1 mRNA in EDL and PLA muscles (Fig. 5), suggesting 

that clenbuterol-reduced expression of AUF1 mRNA heightens the stability of 2-AR mRNA in 

fast-twitch fiber-rich muscles.  Although the cause of these disagreements is uncertain, it is possible 
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that the decrease in expression of AUF1 mRNA may be associated with the response to maintain the 

balance of the stability of several intravital mRNAs containing AREs other than 2-AR mRNA, 

because the action of AUF1 competes against that of HuR in respect of the stability of mRNAs 

containing AREs. 

According to results of Dreyfuss et al. [45], hnRNP A1 is associated with the pre-mRNA, 

small nuclear ribonucleoprotein complex where they facilitate the processing of nascent transcripts 

into mRNA, for example by modulating mRNA splicing.  However, more recent evidence that 

hnRNP A1 can shuttle from the nucleus to the cytoplasm has led to the speculation that hnRNP A1 

has an additional role in affecting the stability of mRNAs containing AREs within their 3’-UTR such 

as 2-AR mRNA [23].  Our current study showed that clenbuterol reduced the expression of hnRNP 

A1 mRNA in EDL and PLA muscles (Fig. 5), suggesting that clenbuterol-induced down-regulation 

of the expression of hnRNP A1 mRNA reduces the rate of modulation of 2-AR mRNA splicing and 

perhaps the stability of 2-AR mRNA and, consequently, expression of 2-AR mRNA in fast-twitch 

fiber-rich muscles.  Furthermore, in this study, the positive correlation between expression of 

2-AR mRNA and expression of HuR (r=0.79 and r=0.58, respectively), AUF1 (r=0.74 and r=0.78, 

respectively), and hnRNP A1 (r=0.63 and r=0.74, respectively) mRNAs in EDL and PLA muscles 

was stronger than those (HuR: r=0.58, AUF1: r=0.34 and hnRNP A1: r=0.48, respectively) in SOL 

muscle (data not shown). 

In conclusion, this study showed that clenbuterol reduced mRNA expression of 

transcriptional and post-transcriptional regulatory factors for 2-AR mRNA levels in fast-twitch 

fiber-rich muscles, suggesting that these phenomena are related to expression pattern of 2-AR 

mRNA in skeletal muscles.  These clenbuterol-induced responses of expression of 2-AR mRNA in 

skeletal muscles may play an important role in the regulation of 2-AR-mediated hypertrophy. 
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4.   CHAPTER 3 

Synthesized glucocorticoid, dexamethasone regulates the expressions of 2-adrenoceptor 

and glucocorticoid receptor mRNAs but not proteins in slow-twitch soleus muscle of rats 

[Sato S, Shirato K, Tachiyashiki K, Imaizumi K (2011) J Toxicol Sci 36:479-486] 

 

4.1.  Introduction 

 

It is generally accepted that prolonged hypokinesia (i.e. reduction in limb movement) 

and/or hypodynamia (i.e. reduction in muscle loading) resulted from prolonged bed rest, life in a 

wheel chair, restricted movement, limited muscular function and microgravity environment activate 

sympatho-adrenal axis associated with increases in circulating levels of noradrenalin and adrenalin 

from adrenal medulla [1].  Similarly, activation of hypothalamo-hypophyseal-adrenocortical axis is 

associated with releases into peripheral blood of corticotropin releasing factor (CRF) from 

hypothalamus, adrenocorticotropic hormone (ACTH) from pituitary anterior, and glucocorticoids 

from adrenal cortex [2, 3].  These endocrine factors play an important functional role in the 

regulation of the rate of protein synthesis and degradation in skeletal muscles [4, 5].  

Administration of high doses of glucocorticoids increased the rate of muscle protein degradation and 

decreased the rate of muscle protein synthesis, leading to muscle atrophy in humans [5].  

Glucocorticoids also increased the expression and activity of the ubiquitin-proteasome pathway that 

play an important role in the major proteolytic mechanism of muscle atrophy [6, 7].  Some reports 

showed that the degree of synthesized glucocorticoid, dexamethasone (DEX)-induced decrease in 

muscle weight was higher in fast-twitch fiber-rich (extensor digitorum longus (EDL)) muscle than in 

slow-twitch fiber-rich (soleus (SOL)) muscle [8, 9]. 

On the other hand, 2-adrenoceptor (AR) in skeletal muscles plays an important 

physiological role in muscle plasticity and equilibrium between muscle protein synthesis and 

degradation [4, 10, 11].  We reported that administration of 2-agonist, clenbuterol (CLE: 4-amino- 

(t-butyl-amino)methyl-3,5-dichlorobenzyl alcohol), one of doping drugs, increased the weight of 
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EDL muscle without changing that of SOL muscle [12].  Further, administration of CLE decreased 

the density of 2-AR in fast-twitch muscles [13] and decreased the expression of 2-AR mRNA in 

EDL muscle without changing that in SOL muscle [12, 14].  On the contrary, Cornett et al. [15] 

reported that glucocorticoids increased the transcription of 2-AR by acting toward glucocorticoid 

response elements (GREs) on 2-AR gene via glucocorticoid receptor (GR) using HepG2 cells in 

vitro.  However, our recent report demonstrated that administration of DEX decreased the 

expression of 2-AR mRNA in SOL muscle without changing that in EDL muscle [8].  Huang et al. 

[13, 16] also reported that corticosterone failed to increase 2-AR density in fast-twitch muscle, 

whereas concurrent treatment of CLE with DEX prevented CLE-induced down-regulation of 2-AR 

density in the same muscle.  Thus, DEX-induced changes in the expression of 2-AR in skeletal 

muscles are not fully clear, especially in respects of transcription and post-transcription regulations. 

In addition, Collins et al. [17] demonstrated that 2-AR gene is positively autoregulated 

through receptor-mediated elevation of cAMP concentration, followed by phosphorylation and 

activation of cAMP response element binding protein (CREB).  2-AR mRNA is also shown to 

contain an AU-rich element (ARE) within the 3’-untranslated region (3’-UTR) that can be 

recognized by several mRNA binding proteins, including Hu antigen R (HuR) and AU-rich element 

binding/degradation factor1 (AUF1) [18], which proteins play an important role in the regulation of 

2-AR mRNA stability [19-22].  However, the mechanisms for muscle fiber type-dependent 

down-regulation of the expression of 2-AR mRNA induced by DEX are still unknown.  In the 

present study, therefore, we examined the effects of DEX on mRNA and protein expressions of 

2-AR and GR, and mRNA expressions of CREB, HuR and AUF1 in EDL and SOL muscles of rats. 

 

 

4.2.  Materials and methods 

 

4.2.1. Animal care and experimental protocol 

All experimental procedures and animal care were approved by the Committee on the 
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Animal Care, Ethics and Use, Waseda University, and followed to the Guiding Principles for the 

Care and Use of Animals in the Field of Physiological Sciences, the Physiological Society of Japan 

[23]. 

Male 7-week-old Sprague Dawley rats (CLEA Japan, Tokyo, Japan) were pre-fed for 5 

days to allow adaptation to their new environment.  The rats were housed two to a cage in a 

temperature (23–25°C) and humidity (50–60%)-controlled room with a 12:12 hr light-dark cycle.  

Animal foods (CE-2 cubic type; CLEA Japan) were given to each rat under pair feeding, and 

distilled water was given ad libitum.  After the adaptation period for 5 days, the rats were randomly 

divided into DEX-administered group (n=9, the initial body weight=262±2 g, mean±S.E.) and 

control group (n=10, the initial body weight=260±2 g, mean±S.E.). 

Dexamethasone 21-phosphate (Sigma, St. Louis, MO, USA) was dissolved in a 0.9% NaCl 

as a vehicle to obtain 0.1% DEX [8].  In DEX-adminsitered group, DEX (dose=1.0 mg/kg body 

weight/day) was administered to rats from the cervical portion of the back via a subcutaneous 

injection for 10 days.  In control group, an equivalent volume of 0.9% NaCl was administered to 

the rats in the same manner.  On the next day after the final administration of DEX, the rats were 

sacrificed by decapitation, and then EDL and SOL muscles were isolated and rapidly frozen in liquid 

nitrogen.  The muscle samples were stored at -80°C until they could be used for RNA and protein 

extractions. 

 

4.2.2. RNA extraction and real-time quantitative RT-PCR 

Total RNA was extracted using a TRIzol reagent (Invitrogen, Carlsbad, CA, USA).  Total 

RNA content was determined by measuring absorbance at 260 nm.  The extracted total RNA was 

subjected to single-stranded cDNA synthesis using a high-capacity cDNA reverse transcription (RT) 

kit (Applied Biosystems, Foster City, CA, USA) which is contained random primer for RT.  In 

real-time quantitative PCR, synthesized cDNA was added to a power SYBR green PCR master mix 

(Applied Biosystems) containing 200 nM PCR primer (forward and reverse).  The primer 

oligonucleotide sequences used for real-time quantitative PCR are described previously [14].  
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Amplification was performed using an ABI PRISM 7000 Sepuence Detection System (Applied 

Biosystems).  PCR amplification program consisted of an initial denaturation step for 10 sec at 

95oC, followed by the shuttle PCR standard protocol of 40 cycles.  Each mRNA level was 

determined using the threshold cycle (Ct) method in accordance with the manufacturer’s protocol.  

The relative amount of each mRNA was normalized by the value of reference gene, 18S rRNA. 

 

4.2.3. Protein extraction and western blotting 

For analysis of the expression of 2-AR, according to the methods of Dohm et al. [24] and 

Kern et al. [25], whole muscle cell organelles were separated into cytosol and membrane-rich 

fractions, in order to investigate DEX-induced trafficking of 2-AR between cytosol and cell 

membrane.  Frozen muscles were homogenized in an ice-cold homogenized buffer (0.3 M KCl, 0.1 

M KH2PO4, 50 mM K2HPO4 and 10 mM EDTA; pH 6.53, 1:20, w/v) containing protease inhibitor 

cocktail (Thermo Fisher Scientific, Rockford, IL, USA) by Polytoron homogenizer (IKA, 

Baden-Wurttemberg, Germany).  After the incubation on ice for 15 min, the homogenate was 

centrifuged at 100,000 g for 60 min at 4oC.  The resultant supernatant was collected and used as 

cytosol fraction.  The resultant pellet was slowly homogenized in an ice-cold solubilized buffer (0.3 

M KCl, 0.1 M KH2PO4, 50 mM K2HPO4, 10 mM EDTA and 1% Triton X-100, 1:20, w/v) containing 

protease inhibitor cocktail (Thermo Fisher Scientific).  The homogenate was incubated on ice for 

120 min and vortexed once a quarter.  After the incubation, the homogenate was centrifuged at 

100,000 g for 60 min at 4oC.  The resultant supernatant was collected and used as membrane-rich 

fraction.  Protein samples were frozen at -80oC until used for western blot analysis. 

For analysis of the expression of GR protein, cytosol and nuclear-mixed fraction were 

extracted from whole muscle cell organelles because GR plays a role as transcription factor.  Total 

protein of cytosol/nuclear fraction was extracted by Tissue Protein Extraction Reagent (T-PER, 

Thermo Fisher Scientific) according to the manufactured protocol.  Briefly, frozen muscles were 

homogenized in an ice-cold T-PER (1:20, w/v) containing protease inhibitor cocktail (Thermo Fisher 

Scientific) by Polytoron homogenizer (IKA).  The homogenate was centrifuged at 10,000 g for 10 
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min at 4oC.  The resultant supernatant was collected as cytosol/nuclear fraction and stored at -80oC 

until used for western blot analysis. 

Protein concentration was determined by BCA protein assay kit (Thermo Fisher Scientific).  

There was no significant difference in protein contents per tissue between two groups in each 

fraction (data not shown) of EDL and SOL muscles.  Twenty five micrograms of protein were 

incubated (5 min, 100oC) with an equal volume of reducing sample buffer (0.5 M Tris-HCl, 10% 

SDS, 3% -mercaptoethanol, 50% glycerol, 0.02% bromophenol blue), and then subjected to 4-12% 

SDS-polyacrylamide gel (Invitrogen).  After electrophoresis, the proteins were transferred onto a 

PVDF membrane (Invitrogen) at 20 V for 120 min.  The PVDF membrane was first incubated for 

60 min in a washing buffer (PBS + 0.1% Tween 20) containing 1% skim milk.  After being washed, 

the membrane was incubated with a primary antibody in the washing buffer over night.  The 

following antibodies were used at a 1:500 dilution: 2-AR (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) and 1:2,000 dilution: GR (abcam, Cambridge, UK).  After being washed, the membrane 

was incubated for 90 min with donkey anti-rabbit immunoglobulin G horseradish peroxidase-linked 

secondary antibody (1:10,000 dilution).  The membrane was washed, and the immunoreactive 

bands were visualized using ECL (GE healthcare, Buckinghamshire, UK).  The signal was 

quantified with a Lumino-Image Analyzer LAS-3000 System (Fuji Photo Film, Tokyo, Japan). 

 

4.2.4. Statistical analyses 

Experimental data were presented as mean±S.E.  The differences between two groups 

were tested by a Student’s t-test and considered to be significant when p value was < 0.05. 

 

 

4.3.  Results 

 

4.3.1. Expressions of 2-AR mRNA and protein 
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Figure 1A shows the effects of DEX on the expressions of 2-AR mRNA in EDL and SOL 

muscles.  No significant change in the expression of 2-AR mRNA in EDL muscle between both 

groups was found (Fig. 1A).  On the contrary, DEX decreased the expression of 2-AR mRNA in 

SOL muscle by 62% (p < 0.001) (Fig. 1A).  These findings clearly support our previous suggestion 

that the effects of DEX on the expression of 2-AR mRNA depend on muscle fiber types [8].  In 

addition, no significant changes in the expressions of 1- and 3-AR mRNAs in EDL and SOL 

muscles between two groups were found (data not shown). 

We next investigated the effects of DEX on the expression of 2-AR protein in skeletal 
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muscles.  As shown in Fig. 1B, the immunoblot data clearly showed the existence of 2-AR protein 

in cytosol and membrane-rich fractions of rat skeletal muscles.  No significant change in the 

expression of 2-AR protein was observed in cytosol and membrane-rich fractions of EDL muscle 

between both groups (Fig. 1B).  DEX also did not change the expression of 2-AR protein in 

cytosol and membrane-rich fractions of SOL muscle (Fig. 1B). 

 

4.3.2. Expressions of GR mRNA and protein 

 

 

Figure 2A shows the effects of DEX on the expression of GR mRNA in EDL and SOL 

muscles.  DEX decreased the expression of GR mRNA in EDL and SOL muscles by 31% (p < 
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0.05) and 58% (p < 0.001), respectively (Fig. 2A).  The degree of DEX-induced decline in the 

expression of GR mRNA was relatively much higher in slow-twitch than in fast-twitch fiber-rich 

muscle, which agreed with our previous results [8]. 

Next, we examined the effects of DEX on the expression of GR protein in skeletal muscles.  

Figure 2B shows the immunoblot data of GR protein in cytosol/nuclear fraction of rat skeletal 

muscles.  As shown in Fig. 2B, DEX did not change in the expression of GR protein in EDL and 

SOL muscles.  Thus, DEX did not alter the expressions of 2-AR and GR proteins in EDL and SOL 

muscles, whereas decreased the expressions of 2-AR and GR mRNAs in SOL muscle. 

 

4.3.3. mRNA expressions of transcription and post-transcription factors 

Finally, we determined whether decreased expression of 2-AR mRNA in SOL muscle is 

associated with transcriptional and post-transcriptional regulations.  Therefore, we investigated 

typical transcription (CREB) and post-transcription (HuR and AUF1) factors of 2-AR mRNA.  As 

shown in Fig. 3, DEX tended to increase the expression of CREB mRNA by 128% (p = 0.06) in 

EDL muscle.  On the other hand, DEX decreased the expression of CREB mRNA in SOL muscle 

by 34% (p < 0.01) (Fig. 3).  Thus, the effects of DEX on the expression of CREB mRNA clearly 

differ from muscle fiber types. 
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Figure 4 shows the effects of DEX on the expressions of HuR and AUF1 mRNAs in 

skeletal muscles.  Although the expression of HuR mRNA in EDL muscle tended to increase to 

125% (p = 0.08) by DEX (Fig. 4), no significant change in the expression of HuR mRNA in SOL 

muscle was observed between both groups (Fig. 4).  DEX also increased the expression of AUF1 

mRNA in EDL muscle by 130% (p < 0.01) (Fig. 4).  However, DEX did not change the expression 

of AUF1 mRNA in SOL muscle (Fig. 4). 

 

 

 

 

4.4.  Discussion 

 

The present study demonstrated that the expression of 2-AR protein in cytosol and 

membrane-rich fractions of EDL and SOL muscles was not affected by DEX (Fig. 1B).    Huang 

et al. [13, 16] reported that corticosterone and DEX did not change the density of 2-AR in 

fast-twitch muscle, but concurrent treatment of DEX with CLE prevented CLE-induced 

down-regulation of 2-AR density in fast-twitch muscle.  Thus, DEX and/or corticosterone did not 

up-regulate the expression of 2-AR protein in skeletal muscles, expect for preventive effects on 

down-regulation.  However, this study (Fig. 1A) and our previous study [8] also demonstrated that 
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DEX decreased the expression of 2-AR mRNA in SOL muscle without changing that in EDL 

muscle.  These findings indicate that different effects of DEX on the expression of 2-AR between 

mRNA and protein levels in SOL muscle are closely related with transcription and post-transcription 

regulations of 2-AR mRNA. 

It is generally accepted that GR-ligand complex undergoes a conformational change 

resulting in dissociation of heat shock protein 90 (HSP 90) and unmasking of a nuclear localization 

signal into the nucleus, where it binds directly to GREs constituted by the consensus sequence 

AGAACAnnnTGTTCT in the 5’-flanking region, and activates gene transcription including 2-AR 

in vitro [15, 26].  However, the present study clearly showed that DEX decreased the expression of 

GR mRNA in EDL and SOL muscles, although the degree of DEX-induced decline was relatively 

higher in SOL muscle than in EDL muscle (Fig. 2A).  These findings suggest that DEX-induced 

decline in the abundance of GR mRNA is closely associated with the decrease in the expression of 

2-AR mRNA.  As already described, however, DEX did not alter the expressions of 2-AR and 

GR proteins (Figs. 1B and 2B), suggesting that 1) the magnitude of GR-ligand complex-induced 

transcriptional promotion of 2-AR gene is relatively smaller in vivo, 2) it takes more time for the 

protein level to reduce after the detection of a reduced mRNA level, and 3) the decline in the 

expressions of 2-AR and GR mRNAs is associated with the acceleration of translation rate.  

Further studies are obviously necessary to clarify the correlated regulation of the expressions 

between 2-AR and GR in vivo. 

Since the expression of 2-AR was regulated at mRNA level but not protein levels, we 

next studied the effects of DEX on the expression of transcription and post-transcription factors of 

2-AR mRNA.  The present study showed that DEX tended to increase the expression of CREB 

mRNA in EDL muscle, and contrastingly decreased that in SOL muscle (Fig. 3).  Transcriptional 

responses of 2-AR gene to cAMP are known to be localized to cAMP response element (CRE), 

which is constituted by the palindromic sequence TGACGTCA in the 5’-flanking region on 2-AR 

gene and recognized by CREB [17].  These findings suggest that DEX-induced down-regulation of 

CREB mRNA in SOL muscle (Fig. 3) may be associated with the decrease in the expression of 
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2-AR mRNA.  On the other hand, DEX-induced up-regulation of CREB mRNA in EDL muscle 

(Fig. 3) may be associated with the conservation of the expression of 2-AR mRNA. 

The present study also showed that DEX tended to increase the expressions of HuR and 

AUF1 mRNAs in EDL muscle without changing those in SOL muscle (Fig. 4).  It is widely 

accepted that overexpression of HuR leads to stabilization [19, 21], and inversely reduction of HuR 

levels decreases half-life [22] of mRNAs carrying AREs in their 3’-UTR, suggesting that HuR 

stabilizes mRNAs containing AREs within their 3’-UTR, including 2-AR mRNA.  In contrast, 

Loflin et al. [20] reported that overexpression of AUF1 leads to degradation of mRNAs carrying 

AREs within their 3’-UTR, suggesting that AUF1 involves mostly in degradation of 2-AR mRNA 

and competes against the role of HuR.  These findings indicate that DEX-induced decrease in the 

expression of 2-AR mRNA is not correlated with mRNA levels of these factors.  However, parallel 

pattern of the expressions of HuR and AUF1 mRNAs in EDL muscle (Fig. 4) may be related to the 

conservation of stability of mRNAs containing AREs within their 3’-UTR such as 2-AR mRNA.  

Further studies are needed to clarify detailed mechanism for the effects of DEX on 

post-transcriptional regulation of 2-AR mRNA in skeletal muscles. 

In conclusion, this study demonstrated that the expressions of 2-AR and GR are regulated 

at mRNA levels but not protein levels by DEX.  The decreased actions on the expressions of 2-AR 

and GR mRNAs are clearly dependent on muscle fiber type.  Further, it is generally accepted that 

the content of 2-AR in slow-twitch fibers is much greater than in fast-twitch fibers, and the content 

of GR in slow-twitch fibers is lower than in fast-twitch fibers, which hypothesizes that the difference 

of the content of 2-AR and GR between fast- and slow-twitch fibers may be related to fiber type 

dependent decrease in the expressions of 2-AR and GR mRNAs.  Further, the present results also 

suggest that DEX-induced decrease in the expression of 2-AR mRNA in slow-twitch fiber-rich SOL 

muscle is associated with the transcriptional regulations. 
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5.   CHAPTER 4 

Casted-immobilization downregulates glucocorticoid receptor expression in rat 

slow-twitch soleus muscle [Sato S, Suzuki H, Tsujimoto H, Shirato K, Tachiyashiki K, 

Imaizumi K (2011) Life Sci 89:962-967] 

 

5.1.  Introduction 

 

Muscle disuse results in increased myofibrillar protein breakdown, causing a progressive 

decrease in muscle strength that is associated with decrease in the cross-sectional area of muscle 

fibers.  It is commonly seen in various catabolic conditions, including hypokinesia (reduction in 

limb movement) and hypodynamia (reduction in muscle loading).  Prolonged hypokinesia and/or 

hypodynamia have been shown to increase the secretion of glucocorticoids, which contribute to 

increased catabolism of muscle proteins via the ubiquitin-proteasome pathway [1-3]. 

Glucocorticoids bind to the glucocorticoid receptor (GR), which regulates transcription of 

a variety of target genes through interaction with their promoter regions.  Glucocorticoid 

responsiveness is partly dependent upon the expression level of GR [4].  Chronic glucocorticoid 

treatment typically leads to downregulation of GR expression, both in cell culture and intact tissue 

[5].  This downregulation of the receptor reflects glucocorticoid effects on both GR gene 

transcription [6] and protein turnover [7].  Our group also reported that chronic administration of a 

synthesized glucocorticoid, dexamethasone, decreased the expression of GR mRNA in skeletal 

muscle [8-10]. 

Prolonged hypokinesia and/or hypodynamia have been shown to increase the secretion of 

catecholamines (adrenaline and noradrenaline), which selectively bind to the 2-adrenergic receptor 

(2-AR).  2-AR in skeletal muscle plays an important physiological role in muscle plasticity via 

maintenance of muscle protein synthesis and degradation [11-14].  Furthermore, several studies 

have demonstrated that glucocorticoids and the GR complex activate the transcription of the 2-AR 

gene through interaction with glucocorticoid response elements (GREs) in its promoter region [15], 
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leading to an upregulation of 2-AR expression [16, 17]. 

The positive correlation between the expression of GR and 2-AR likely play a 

physiological role in maintaining the balance between muscle protein catabolism and anabolism.  

However, the correlation between disuse-induced muscle atrophy and the expression of GR and 

2-AR remains unknown.  In this study, we examined the effects of casted-immobilization (knee 

and foot arthrodesis), a model for muscle disuse, for 10 days on the expression of GR and 2-AR in 

fast-twitch (extensor digitorum longus: EDL) and slow-twitch (soleus: SOL) rat muscles. 

 

 

5.2.  Materials and methods 

 

5.2.1. Animal care and experimental protocol 

Experimental procedures and animal care were approved by the Committee on Animal 

Care, Ethics and Use, Waseda University, and conducted according to the Guiding Principles for the 

Care and Use of Animals in the Field of Physiological Sciences, the Physiological Society of Japan 

[18]. 

Male 7-week-old Sprague Dawley rats (CLEA Japan, Tokyo, Japan) were allowed to 

acclimatize to their new environment for 5 days.  The rats were housed two to a cage in a 

temperature (23–25oC) and humidity (50–60%)-controlled room with a 12:12 h light-dark cycle.  

Animal food (CE-2 cubic type; CLEA Japan) was given to each rat by pair feeding, and once-boiled 

tap water was given ad libitum.  After the 5-day adaptation period, the rats were randomly divided 

into casted-immobilization (n = 7, initial body weight = 263 ± 2 g, mean ± SEM) and sedentary 

control (n = 8, initial body weight = 261 ± 1 g, mean ± SEM) groups. 

According to the method of Booth and Kelso [19], the casted-immobilization group rats 

were immobilized by arthrodesis for 10 days.  Briefly, knee and ankle joints were fixed in the 

neutral position with a scotch cast (3-J; 3M health care, Tokyo, Japan) under sodium pentobarbital 

(dose = 45 mg/kg body weight) anesthesia.  Blood samples were collected in heparinized 
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microcapillary tubes at day 0 (baseline, before cast operation), and days 1, 4, and 9 of the 

experimental period.  After casted-immobilization for 10 days, rats were sacrificed by decapitation, 

and then the EDL and SOL muscles were isolated and immediately frozen in liquid nitrogen.  

Muscle samples were stored at -80 oC until use. 

 

5.2.2. Blood analysis 

Plasma growth hormone (GH), catecholamine (adrenaline and noradrenaline), and 

corticosterone concentrations were measured by the Rat GH ELISA kit (AKRGH-010; Shibayagi, 

Gunma, Japan), 2-CAT (A-N) Research ELISA kit (Labor Diagnostika Nord GmbH & Co. KG, 

Nordhorn, Germany), and YK240 Corticosterone EIA kit (Yanaihara Institute Inc., Shizuoka, Japan), 

respectively.  Plasma creatine kinase (CK) activity was measured with a DRI-CHEM 7000 

(FUJIFILM Medical Co., Tokyo, Japan), using the corresponding slide (CPK-PIII, FUJIFILM 

Medical Co.). 

 

5.2.3. Real-time quantitative RT-PCR 

Total RNA extracted from skeletal muscle was reverse-transcribed using the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) with random 

primers.  Synthesized cDNA was added to a Power SYBR Green PCR Master Mix (Applied 

Biosystems) with 200 nM PCR primers (forward and reverse).  The primer oligonucleotide 

sequences used for real-time quantitative PCR were as follows [9,14]: GR, 5′-TAC CAC AGC TCA 

CCC CTA CC-3′ (forward), 5′-AGC AGG GTC ATT TGG TCA TC-3′ (reverse); 2-AR, 5′-GAG 

CCA CAC GGG AAT GAC A-3′ (forward), 5′-CCA GGA CGA TAA CCG ACA TGA-3′ (reverse); 

18S rRNA, 5′-GTG CAT GGC CGT TCT TAG TTG-3′ (forward), 5′-AGC ATG CCG AGA GTC 

TCG TT-3′ (reverse).  Amplification was performed using an ABI PRISM 7000 Sequence 

Detection System (Applied Biosystems).  The relative amount of each mRNA was normalized to 

the value of the 18S rRNA gene. 
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5.2.4. Protein extraction 

For analysis of the GR protein, total protein from the cytosol/nuclear fraction was 

extracted using the Tissue Protein Extraction Reagent (T-PER; Thermo Fisher Scientific, Rockford, 

IL) according to the manufacturer’s protocol.  Briefly, frozen muscles were homogenized in 

ice-cold T-PER (1:20, w/v) containing a protease inhibitor cocktail (Thermo Fisher Scientific) with a 

polytron homogenizer (IKA, Baden-Wurttemberg, Germany).  The homogenate was centrifuged at 

10,000 g for 10 min at 4 oC.  The resultant supernatant was collected as the cytosol/nuclear fraction. 

For analysis of the 2-AR protein, whole muscle cell organelles were separated into 

cytosol and membrane-rich fractions.  Frozen muscles were homogenized in ice-cold 

homogenization buffer (0.3 M KCl, 0.1 M KH2PO4, 50 mM K2HPO4 and 10 mM EDTA; pH 6.53, 

1:20, w/v) containing a protease inhibitor cocktail (Thermo Fisher Scientific) with a polytron 

homogenizer (IKA).  After a 15-min incubation on ice, the homogenate was centrifuged at 100,000 

g for 60 min at 4 oC.  The resultant supernatant was collected as the cytosol fraction.  The pellet 

was homogenized in an ice-cold solubilization buffer (0.3 M KCl, 0.1 M KH2PO4, 50 mM K2HPO4, 

10 mM EDTA and 1% Triton X-100; pH 6.53, 1:20, w/v) containing a protease inhibitor cocktail 

(Thermo Fisher Scientific).  The homogenate was incubated on ice for 120 min and vortexed once 

every 15 min.  After the incubation, the homogenate was centrifuged at 100,000 g for 60 min at 4 

oC.  The resultant supernatant was collected as the membrane-rich fraction.  Total proteins 

extracted from each fraction were stored at -80 oC until use. 

 

5.2.5. Western blotting 

The protein concentration of each separated fraction was determined using a BCA Protein 

Assay kit (Thermo Fisher Scientific).  Thirty (cytosol/nuclear fraction) or twenty (cytosol and 

membrane-rich fractions) micrograms of protein were incubated (5 min, 100 oC) with an equal 

volume of reducing sample buffer (0.5 M Tris-HCl, 10% SDS, 3% -mercaptoethanol, 50% glycerol, 

0.02% bromophenol blue), and then subjected to 4–12% SDS-polyacrylamide gel electrophoresis 

(Invitrogen, Carlsbad, CA).  After electrophoresis, the proteins were transferred to a PVDF 
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membrane (Invitrogen).  The membrane was incubated for 60 min in PBS-T (1×PBS + 0.1% 

Tween-20) containing 1% skim milk (w/v).  After washing with PBS-T, the membrane was 

incubated with an anti-GR antibody (1:2500 dilution; Abcam, Cambridge, UK) or anti-2-AR 

antibody (1:100 dilution; Santa Cruz Biotechnology, Santa Cruz, CA) overnight.  Following 

overnight incubation, the membrane was washed with PBS-T, and then incubated for 90 min with 

donkey anti-rabbit immunoglobulin G horseradish peroxidase-linked secondary antibody (1:10,000 

dilution; GE healthcare, Buckinghamshire, UK).  The membrane was again washed with PBS-T, 

and the immunoreactive bands were visualized using ECL (GE healthcare).  The signal was 

quantified with a Lumino-Image Analyzer LAS-3000 System (Fuji Photo Film, Tokyo, Japan). 

 

5.2.6. Statistical analysis 

Experimental data were presented as mean ± SEM.  The differences between two groups 

were tested by a Student’s t-test.  Subsequent post hoc analyses to determine significant differences 

from baseline in both groups were performed by Dunnett’s test.  The differences were considered 

significant when the P value was <0.05. 

 

 

5.3.  Results 

 

5.3.1. Muscle atrophy 

Body weight was 9% (P < 0.01) lower in casted-immobilized rats (279 ± 6 g) than in 

sedentary control rats (306 ± 3 g), suggesting that casted-immobilization slows down body growth.   

As shown in Table 1, although the relative weight of EDL muscle per body weight was unchanged 

by casted-immobilization for 10 days, the relative weight of SOL muscle per body weight was 

reduced by 47% (P < 0.001) after casted-immobilization.  RNA and protein concentrations in the 

EDL muscle were not changed by casted-immobilization.  In contrast, casted-immobilization 

decreased RNA and protein concentrations in the SOL muscle by 20% (P < 0.01) and 16% (P < 0.05), 
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respectively, as compared with sedentary control rats.  These results suggest that 

casted-immobilization suppresses muscle protein synthesis and/or promotes muscle protein 

degradation, depending on muscle fiber type. 

 

 

5.3.2. Plasma GH, catecholamine, and corticosterone concentrations, and CK activity 

We examined the plasma concentration of GH, which promotes cell proliferation and body 

growth, and plasma CK activity, which is considered an indicator of muscle protein degradation.  

There was no change in plasma GH concentration during the experimental period (Fig. 1A).  

Plasma CK activity at day 4 of the experimental period was relatively (P = 0.07) higher in the 

casted-immobilization group than in the sedentary control group (Fig. 1B). 
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Plasma concentrations of stress-responsive hormones during the experimental period were 

also measured.  There were no differences in plasma catecholamine (adrenaline and noradrenaline) 

concentrations between the two groups during the experimental period (Figs. 2A and 2B).  Plasma 

corticosterone concentration at day 1 of the experimental period was relatively (P = 0.08) higher in 

the casted-immobilization group than in the sedentary control group (Fig. 2C). 
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5.3.3. GR and 2-AR expression 

We next investigated the effects of casted-immobilization on the expression of GR and 

2-AR in skeletal muscle.  As shown in Fig. 3A, casted-immobilization decreased the expression of 

GR mRNA in the SOL muscle by 36% (P < 0.05) without changing that in the EDL muscle.  

Furthermore, casted-immobilization decreased the expression of GR protein in the cytosol/nuclear 

fraction in the SOL muscle by 63% (P < 0.001), without changing that in the EDL muscle (Fig. 3B).  

These results clearly demonstrate that casted-immobilization specifically downregulates GR 

expression in slow-twitch SOL muscle. 
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As shown in Fig. 4A, casted-immobilization decreased the expression of 2-AR mRNA in 

the SOL muscle by 45% (P < 0.05), and also relatively (P = 0.06) decreased that in the EDL muscle.  

These results suggest that casted-immobilization suppresses the transcription of the 2-AR gene, 

especially in slow-twitch SOL muscle.  However, there was no difference in 2-AR protein 

expression in the cytosol and membrane-rich fractions in the EDL and SOL muscles in both groups 

(Fig. 4B). 
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5.4.  Discussion 

 

The present study clearly demonstrated that casted-immobilization induced muscle atrophy, 

which was greater in slow-twitch SOL muscle than in fast-twitch EDL muscle (Table 1).  

Furthermore, decreased RNA and protein concentrations following casted-immobilization were also 

observed in the SOL muscle but not in the EDL muscle (Table 1).  These results are consistent with 

findings from hindlimb suspension models [20-24], suggesting that there is a significant reduction in 

transcriptional and translational capacities in slow-twitch muscle after casted-immobilization, as 

well as hindlimb suspension.  In addition, the acceleration of protein degradation was seen in 

atrophied SOL muscle after hindlimb suspension [24].  The present study also demonstrated that 

casted-immobilization relatively increased plasma CK activity (Fig. 1B) without changing the 

plasma GH concentration (Fig. 1A).  Thus, casted-immobilization-induced muscle atrophy in 

slow-twitch muscle is due, in part, to an increased rate of protein degradation. 

Numerous studies have focused on the effects of glucocorticoids and the synthesized 

glucocorticoid, dexamethasone, on the expression of GR mRNA and protein [8-10, 15, 25, 26].  

Treatment of L6 muscle cells with dexamethasone [25] and L6 myotubes and C2C12 myotubes with 

glucocorticoids [26] have been shown to downregulate GR expression.  Our group has previously 

demonstrated that chronic administration of dexamethasone reduced the expression of GR mRNA in 

the EDL and SOL muscles [8-10].  Thus, glucocorticoid-dependent downregulation of GR 

expression has been frequently observed in vitro and in vivo.  In the present study, downregulation 

of GR expression was observed in the SOL muscle after casted-immobilization for 10 days (Fig. 3), 

without changing the plasma corticosterone concentration (Fig. 2C).  These results suggest that 

immobilization-induced downregulation of GR expression is mediated by other regulatory factors, 

such as transcription factors for the GR gene and signaling molecules downstream of GR.  

Furthermore, the interaction of glucocorticoids with GR is necessary for the activation of the 

ubiquitin-proteasome pathway and subsequent muscle protein degradation via upregulation of 

muscle atrophy F-box (MAFbx) and muscle ring-finger 1 (MuRF1) expression, and alteration of 
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activity in the upstream protein kinase B (Akt)/Forkhead box O (FOXO) pathway [2, 3].  Therefore, 

casted-immobilization-induced downregulation of GR expression in the SOL muscle may attenuate 

muscle atrophy and protein degradation. 

Our groups and others attempt to clarify the mechanism of immobilization-induced muscle 

atrophy.  Krawiec et al. [22] reported that immobilization-induced atrophy is proteasome dependent 

but glucocorticoids independent in the predominant fast type gastrocnemius muscle.  Our study also 

showed that casted-immobilization did not alter the expression GR mRNA and protein in fast-twitch 

EDL muscle (Fig. 3).  From these insights, immobilization-induced atrophy in fast-twitch muscles 

is independent upon the density of GR as well as the downstream signaling.  On the other hand, 

casted-immobilization-induced preferential decrease in the expression of GR mRNA and protein in 

slow-twitch muscle (Fig. 3) suggests that the mechanism of immobilization-induced atrophy in 

slow-twitch muscle might be different from that in fast-twitch muscle.  Although detailed 

mechanism of immobilization-induced atrophy was not examined in this study, the atrophy in 

slow-twitch muscle might be dependent in part upon glucocorticoid signal.  Thus, our study 

regarding the correlation between muscle atrophy and GR expression in fast- and slow-twitch 

muscle is different insights from previous reports of others such as Krawiec et al. [22] who 

demonstrated the involvement of glucocorticoid signaling against immobilization-induced muscle 

atrophy, and is the first report in the fields of muscle atrophy, muscle remodeling and muscle 

physiology.  The insights of this study should contribute at least in part toward the clarification of 

the mechanism of immobilization-induced muscle atrophy. 

2-AR-mediated functions, such as muscle hypertrophy, are partly regulated by receptor 

density, which is associated with synthesis of the receptor and downregulation of the receptor.  

Furthermore, glucocorticoids and the GR complex activate the transcription of the 2-AR gene 

through interaction with GREs, a consensus cis-acting DNA sequence AGA ACA nnn TGT TCT in 

its promoter regions [15], and upregulation of 2-AR expression [16, 17].  These findings support 

the present results that casted-immobilization reduced the expression of 2-AR mRNA in the SOL 

muscle (Fig. 4A), where GR expression was also downregulated (Fig. 3).  These results suggest 
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that casted-immobilization suppresses transcription of the 2-AR gene by downregulation of GR 

expression in the SOL muscle, which may attenuate 2-AR-mediated muscle protein anabolism.  

Nevertheless, casted-immobilization for 10 days did not change the expression of 2-AR protein in 

each fraction (Fig. 4B).  It may take more time for 2-AR protein expression to be reduced after the 

reduction in mRNA expression, provided that the turnover of 2-AR protein is relatively slow. 

 

 

5.5.  Conclusions 

 

 Casted-immobilization, a model for muscle disuse, downregulates GR expression in 

slow-twitch muscle, suggesting that muscle disuse suppresses glucocorticoid signals, such as muscle 

protein degradation and transcription of the 2-AR gene, via downregulation of GR expression in 

slow-twitch muscles.  These findings may prove useful for identifying new therapeutic targets and 

novel approaches to attenuate muscle atrophy that is concomitant with physiological and 

pathological catabolic conditions. 
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6.   CHAPTER 5 

Muscle plasticity and 2-adrenergic receptors: Adaptive responses of 2-adrenergic 

receptor expression to muscle hypertrophy and atrophy [Sato S, Shirato K, Tachiyashiki 

K, Imaizumi K (2011) J Biomed Biotechnol 2011:1-10] 

 

6.1.  Introduction 

 

The skeletal muscle is the most abundant tissue in the human body comprising 40–50% of 

body mass.  Skeletal muscle protein undergoes rapid turnover, which is regulated by the balance 

between the rates of protein synthesis and degradation.  Physical activity (exercise training), and 

anabolic hormones and drugs (sports doping) increase muscle protein content.  However, 

sarcopenia and muscle disuse (due to unloading, microgravity, or inactivity) and diseases decrease 

muscle protein content.  The rate of protein synthesis is at least in part mediated by 2-adrenergic 

receptors (2-ARs) in skeletal muscles in both anabolic and catabolic conditions. 

ARs belong to the guanine nucleotide-binding G protein-coupled receptor (GPCR) family.  

Skeletal muscle contains a significant proportion of -ARs.  The 2 subtype is the most abundant, 

while ~7–10% of ARs are the 1 subtype [1, 2].  Furthermore, 2-AR is more dense in slow-twitch 

muscles than in fast-twitch muscles [3, 4].  However, the magnitude of anabolic responses to 

2-adrenergic agonists is greater in fast-twitch muscles than in slow-twitch muscles [5-8]. 

The family of -ARs was originally believed to signal predominantly via coupling with a 

stimulatory guanine nucleotide-binding protein, Gs; however, recent studies revealed that both 2- 

and 3-ARs in skeletal muscle are also capable of coupling to an inhibitory guanine 

nucleotide-binding protein, Gi [9].  2-AR activates the Gs/adenylyl cyclase (AC)/cyclic 

adenosine monophosphate (cAMP)/cAMP-dependent protein kinase A (PKA) signaling pathway.  

The signaling pathway is at least in part responsible for the anabolic response of skeletal muscle to 

2-AR stimulation.  Further, in addition to the well-documented inhibition of AC activity [10], 

2-AR coupling to Gi activates Gs-independent pathways [11]. 
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2-AR has 7 transmembrane  helices forming 3 extracellular loops, including an NH2 

terminus and 3 intracellular loops that include a COOH terminus [12].  2-AR contains 

phosphorylation sites in the third intracellular loop and proximal cytoplasmic tail.  Phosphorylation 

of these sites triggers the agonist-promoted desensitization, internalization, and degradation of the 

receptor [13].  These regulatory mechanisms contribute to maintaining agonist-induced 2-AR 

responsiveness in various conditions. 

The adaptive responses of 2-AR expression to anabolic and catabolic conditions in 

skeletal muscles are shown in Figure 1.  Understanding the correlation between changes in muscle 

mass and 2-AR expression in several anabolic or catabolic conditions present scientific evidence to 

eradicate sports doping and identify novel approaches for attenuating muscle atrophy concomitant 

with disuse and various diseases.  This review will discuss the effects of (1) pharmacological 

2-AR stimulation (sports doping), (2) muscle hypertrophy (exercise training), and (3) muscle 

atrophy (catabolic conditions and hormones) on 2-AR expression in skeletal muscles. 

 

 

6.2.  Pharmacological stimulation of 2-AR 

 

6.2.1. Muscle hypertrophy and 2-AR 

A 2-adrenergic agonist, clenbuterol [1-(4-amino-3,5-dichlorobenzyl)-2-(tert-butylamino) 

ethanol] is used as a non-steroidal anabolic drug for sports doping.  According to the recent World 

Anti-Doping Agency (WADA) documents, clenbuterol was the seventh most commonly used 

anabolic agent in 2009 (67 cases; 2.0% of all anabolic agents used). 

Numerous studies have shown that the administration of 2-adrenergic agonists induces 

muscle hypertrophy in many species [23-25].  Experiments using mice lacking 1-AR, 2-AR, or 

both demonstrate that 2-adrenergic agonist-induced functions such as muscle hypertrophy are 

mediated by 2-AR [26].  2-Adrenergic agonists promote muscle growth by increasing the rate of 

protein synthesis and/or decreasing protein degradation [23-25].  Furthermore, 2-adrenergic 
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agonists induce slow-to-fast [myosin heavy chain (MHC)I/ → MHCIIa → MHCIId/x → MHCIIb] 

transformation of muscle fibers. 

 

 

The 2-AR signaling pathway involves the agonist-dependent activation of Gs, which in 

turn activates AC, resulting in increased cAMP production.  Cyclic AMP-activated PKA initiates 

the transcription of many target genes via the phosphorylation of cAMP-response-element- (CRE-) 

binding protein (CREB) or adaptor proteins such as CREB-binding protein (CBP) and p300, 

subsequently promoting protein synthesis [23].  While 2-AR-mediated signaling was traditionally 
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believed to involve selective coupling to Gs, recent studies revealed that 2-AR exhibits dual 

coupling to both Gs and Gi in skeletal muscles [9, 23].  In addition to Gs, Gi-linked G 

subunits play an active role in various cell signaling processes such as the phosphoinositol 3-kinase 

(PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70S6K and 

PI3K/Akt/forkhead box-O (FOXO) pathways.  These signaling pathways play important roles in 

2-adrenergic agonist-induced hypertrophy in skeletal muscles [23]. 

In addition to promoting protein synthesis, the hypertrophic response of skeletal muscles 

following 2-adrenergic agonist administration is associated with decreased protein degradation.  

2-Adrenergic agonists attenuate protein degradation predominantly via Ca2+-dependent proteolysis 

and the ATP/ubiquitin-dependent pathway [27-31].  However, there is little knowledge regarding 

the preventive effects of 2-adrenergic agonists on the proteolysis system compared with the protein 

synthesis system. 

The hypertrophic responses to 2-adrenergic agonists are observed much frequently in 

fast-twitch muscle than in slow-twitch muscle.  Our group previously demonstrated that clenbuterol 

administration (1.0 mg·kg-1·day-1) to rats for 10 days increases the mass of fast-twitch EDL muscle 

without altering in slow-twitch soleus muscle [7, 8]; other groups also observed the same tendency 

[5, 6, 32-35].  However, the mechanisms of the fiber type-dependent effects of 2-adrenergic 

agonists on muscle hypertrophy remain unclear. 

Pearen et al. [36, 37] and Kawasaki et al. [38] identified that 2-AR activation increases 

the expression of the orphan nuclear receptor, NOR-1 (NR4A3), a negative regulatory factor of 

myostatin (a member of the transforming growth factor- superfamily and a potent negative 

regulator of muscle mass), in fast-twitch muscles without altering that in slow-twitch muscles.  

Furthermore, Shi et al. [32] demonstrate the possibility that 2-adrenergic agonist-induced fiber 

type-dependent hypertrophy is in part due to the extracellular signal-regulated kinase (ERK)/mitogen 

activated protein kinase (MAPK) pathway.  Moreover, the pharmacological inhibition of the 

PI3K/Akt/mTOR signaling pathway revealed that the attenuation of the anabolic response to 

clenbuterol is greater in fast-twitch muscles than in slow-twitch muscles [30].  In addition to the 
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protein synthesis system, Yimlamai et al. [35] found that clenbuterol inhibits ubiquitination more 

strongly in fast-twitch muscles than in slow-twitch muscles.  Thus, 2-AR-mediated signaling 

pathways tend to promote muscle hypertrophy to a greater extent in fast-twitch muscle than in 

slow-twitch muscle. 

 

6.2.2. Post-translational regulation of 2-AR 

 As shown in Table 1, some reports focus on the responses of 2-AR expression to 2-AR 

stimulation in skeletal muscles [4, 7, 8, 14-17].  This is because 2-AR functions such as muscle 

hypertrophy are maintained via receptor density, including synthesis and downregulation as well as 

receptor sensitivity, which includes receptor sensitization, desensitization, phosphorylation, and 

internalization [13, 39, 40]. 

 The desensitization of 2-AR is associated with receptor phosphorylation.  McCormick et 

al. [41] demonstrate that fast-twitch fibers mainly express non-phosphorylated 2-AR, whereas 

slow-twitch fibers predominantly express phosphorylated 2-AR.  Furthermore, treating muscle 

fibers with 2-adrenergic agonists (e.g., clenbuterol, formoterol, and salbutamol) increases the 

phosphorylation of 2-AR in slow-twitch fibers but not in fast-twitch fibers [41].  On the other hand, 

the receptor phosphorylation occurs via the actions of protein kinases (such as PKA) and/or GPCR 

kinase (GRK).  Rat skeletal muscles contain predominantly GRK2 and GRK5; GRK protein is 

expressed more in fast-twitch muscles than in slow-twitch muscles.  These expression levels in 

each type of muscle fiber are not altered by 2-adrenergic agonist administration [42].  Thus, there 

is a negative correlation between the level of phosphorylated 2-AR and receptor kinase.  Therefore, 

further investigation is needed to reveal the detailed mechanism of 2-AR phosphorylation. 

 Following 2-AR phosphorylation, the receptor is internalized into the cytosol.  The 

internalized 2-AR is then degraded or dephosphorylated and subsequently recycled to the 

membrane [13, 43-45].  Prolonged administration of 2-adrenergic agonists leads to the 

downregulation of 2-AR density in skeletal muscles [15-17].  These post-translational regulations 

are advantageous for maintaining the rate of muscle protein synthesis and/or degradation. 
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6.2.3. Short-term and chronic transcriptional regulation of 2-AR 

2-AR synthesis, including transcription and subsequent translation, is required to restore 

transmembrane receptor density.  The process of 2-AR synthesis can be separated into 2 pathways: 

(1) the positive autoregulation of 2-AR gene transcription via receptor-mediated elevation of cAMP 

concentration followed by the phosphorylation and activation of CREB [46, 47], and (2) the 

transactivation of the 2-AR gene via interaction between hormones and the nuclear receptor 

complex and response elements on the 2-AR promoter region [48].  In particular, the transcription 

of the 2-AR gene and the subsequent mRNA expression via cAMP-mediated CRE activation 

increased in response to short-term 2-adrenergic agonist exposure [46, 47].  Moreover, treatment 

with glucocorticoids or thyroid hormone transactivates the 2-AR gene both in vitro and in vivo 

[48-51]. 

Our previous reports demonstrate that clenbuterol administration (1.0 mg·kg-1·day-1) for 

10 days to rats decreases 2-AR mRNA expression in the fast-twitch EDL muscle without altering 

that in the slow-twitch soleus muscle [7, 8].  Furthermore, the mRNA expression of GR was also 

decreases with clenbuterol treatment in the EDL muscle but not in the soleus muscle [8].  

Glucocorticoids and the GR complex activate the transcription of the 2-AR gene via interaction 

with glucocorticoid response elements (GREs), consensus cis-acting DNA sequences (i.e., AGA 

ACA nnn TGT TCT) on its promoter regions [48], thus upregulating 2-AR expression [16, 50, 51].  

These findings corroborate our results that there is a positive correlation between the expression 

levels of 2-AR and GR in skeletal muscles.  Beitzel et al. [14] also report that administrating the 

-adrenergic agonist, fenoterol (1.4 mg·kg-1·day-1, i.p.), for 5 days decreases 2-AR mRNA 

expression in the EDL and soleus muscles.  Thus, in contrast to the transactivation of the 2-AR 

gene and increase in the mRNA level in response to short-term agonist exposure, chronic 

2-adrenergic stimulation inhibits 2-AR synthesis in skeletal muscles. 

 

6.2.4. Post-transcriptional regulation of 2-AR 

In addition to post-translational and transcriptional regulation, several groups focus on the 
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post-transcriptional regulation of 2-AR mRNA.  2-AR mRNA contains an AU-rich element 

(ARE) within the 3′-untranslated region (3′-UTR) that can be recognized by several mRNA-binding 

proteins, including HuR, AUF1, and hnRNP A1 [52-55].  These factors play a role in the regulation 

of 2-AR mRNA stability [52-55].  Our study demonstrates that clenbuterol-induced stimulation of 

2-AR decreases the mRNA expressions of these factors in the EDL but not in the soleus muscle [8], 

suggesting that the post-transcriptional process of 2-AR synthesis requires the stability of its mRNA 

to be regulated. 

 

 

6.3.  Exercise training and 2-AR 

 

Strength resistance training increases muscle mass [56], fiber cross-sectional area [57], 

protein and RNA contents [58], and the capacity to generate force [59].  In contrast to strength 

training, endurance training is characterized by increased mitochondrial mass [60], increased 

oxidative enzymes [61], decreased glycolytic enzymes [62], increased slow contractile and 

regulatory proteins [62], and decreased fast-fiber area [63].  These findings suggest that the 

functional roles of 2-AR in skeletal muscles differ with the type of exercise training. 

 

6.3.1. Strength exercise training and 2-AR 

Mounier et al. [64] investigated the changes in the weight of the EDL muscle induced by 

clenbuterol administration, strength training, and a combination of both.  They found that the 

effects of strength training and clenbuterol on muscle hypertrophy were not additive in fast-twitch 

muscles.  Their report also demonstrates that the strength training-induced enhancement of lactate 

dehydrogenase-specific activity is completely inhibited by clenbuterol administration, while the 

clenbuterol-induced decrease in monocarboxylate transporter1 mRNA expression is completely 

offset by strength training [64].  Thus, there are no synergetic effects of a combination of strength 

training and 2-AR stimulation on muscle mass.  Furthermore, strength training counteracts 
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molecular modifications such as glycolytic control induced by chronic clenbuterol administration in 

fast-twitch muscles to some extent.  However, our evidence regarding the synergistic effects of 

strength training and 2-AR stimulation is insufficient because the experimental models of 

strength-trained animals are not fully established. 

 

6.3.2. Endurance exercise training and 2-AR 

In contrast to strength training, 2-AR stimulation affects endurance training-induced 

modulations such as contractile activity [65], muscle fiber type shift [65], metabolic enzyme activity 

[66], and insulin resistance [67, 68].  Lynch et al. [65] demonstrated that low-intensity endurance 

training prevents clenbuterol-induced slow-to-fast (type I fiber → type II fiber) fiber type 

transformation in the EDL and soleus muscles, and thereby offsets the clenbuterol-induced decrease 

in Ca2+
 sensitivity in fast-twitch fibers.  These results suggest that endurance training-heightened 

muscle aerobic capacity is attenuated by 2-AR stimulation-induced muscle fiber type 

transformations.  Furthermore, pharmacological -AR blockage diminishes the endurance 

training-induced increase in citrate synthase activity in the fast-twitch plantaris muscle [66].  

Moreover, clenbuterol administration prevents the endurance training-induced improvement in 

insulin-stimulated glucose uptake and attenuates the increase in citrate synthase activity in the 

skeletal muscles of obese Zucker rats [67, 68].  These findings demonstrate that the endurance 

training-induced increase in aerobic metabolism in skeletal muscles requires moderate but not 

excessive stimulation of2-AR. 

Recently, Miura et al. [69] demonstrated that an increase in peroxisome 

proliferator-activated receptor- coactivatior-1 (PGC-1) mRNA in response to exercise is 

mediated by 2-AR activation.  Furthermore, the Ca2+-signaling [70] and p38 MAPK pathways [71], 

which is downstream of 2-AR, are activated in skeletal muscles in response to exercise, which 

regulates PGC-1 expression.  Since PGC-1 promotes mitochondrial biogenesis [72], the 

exercise-induced activation of 2-AR may in part enhance aerobic capacity by increasing PGC-1 

expression.  Thus, 2-AR stimulation is essential for enhancing the effects of exercise training on 
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muscle functions such as fiber type shift as well as oxidative and anaerobic metabolism. 

 

6.3.3. Response of 2-AR expression to exercise training 

 As mentioned above, the functional roles of 2-AR during exercise training are 

physiologically important in skeletal muscles.  Therefore, changes in the expression and sensitivity 

of 2-AR should be important for the metabolic, anabolic, and catabolic adaptations of skeletal 

muscles during exercise training.  Nevertheless, there is little information on the response of 2-AR 

expression to exercise training in skeletal muscles.  However, many studies demonstrate the effects 

of exercise training on 2-AR expression in several tissues and cell types such as myocardia [73, 74], 

adipocytes [75], and macrophages [76].  Barbier et al. [73] demonstrated that exercise training 

induces changes in the distribution of 1-, 2-, and 3-AR densities in the rat left ventricle.  In 

adipocytes, the exercise-induced trafficking of 2-AR into the cell membrane from the cytosol is 

coupled with adipocytes’ function to increase intracellular cAMP production [75].  Kizaki et al. 

[76] also found a reduction in the expression of 2-AR mRNA in macrophages and highlight the 

significance of 2-AR in the exercise training-induced improvement of macrophages’ innate immune 

function.  Thus, changes in 2-AR expression play a role in physiological adaptations to exercise 

training in several tissues. 

 A few studies also report the effects of exercise training on -AR in skeletal muscles [18, 

19, 77, 78] (Table 1).  Nieto et al. [18] demonstrate that -AR density and Gs content in the 

fast-twitch gastrocnemius muscle are significantly lower in endurance-exercised rats than in controls.  

They also reveal that exercise reduces receptor- and non-receptor-mediated (i.e., pharmacological 

stimulation of AC by forskolin) AC activity in muscles [18].  However, Buckenmeyer et al. [19] 

report that endurance training increases -AR density in slow-twitch muscles that are primarily 

recruited during endurance training, whereas -AR density is not altered in fast-twitch muscles.  

Their report also demonstrates that receptor-mediated AC activity in slow-twitch muscles is 

increased by endurance training, and non-receptor-mediated AC activity is increased by training in 

both fast- and slow-twitch muscles [19].  In contrast to chronic endurance training, the effects of 
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acute exercise on -AR density and AC activity in each type of muscle were not observed [73].  

Therefore, endurance exercise training-induced changes in 2-AR expression and signaling in 

slow-twitch muscle contributes to the adaptation of metabolic and anabolic capacities during 

exercise. 

 

 

6.4.  Muscle atrophy and 2-AR 

 

6.4.1. Preventive roles of 2-AR in disuse-induced muscle atrophy 

Muscle wasting and weakness are common in physiological and pathological conditions, 

including aging, cancer cachexia, sepsis, other forms of catabolic stress, denervation, disuse (e.g., 

unloading, inactivity, and microgravity), burns, human immunodeficiency virus (HIV)-acquired 

immunodeficiency syndrome (AIDS), chronic kidney or heart failure, chronic obstructive pulmonary 

disease (COPD), and muscular dystrophies.  For many of these conditions, the anabolic properties 

of 2-adrenergic agonists provide therapeutic potential for attenuating or reversing muscle wasting, 

muscle fiber atrophy, and muscle weakness.  These 2-adrenergic agonists also have important 

clinical significance for enhancing muscle repair and restoring muscle function after muscle atrophy. 

In particular, muscle disuse, which is mainly reflected by increased myofibrillar protein 

breakdown, causes a progressive decrease in muscle strength associated with a decreased 

cross-sectional area of muscle fibers.  Therefore, preventing disuse-induced muscle atrophy is a 

problem requiring urgent attention and highlights 2-AR as a target of pharmacological stimulation.  

Since 2000, many groups have focused on the preventive effects of 2-adrenergic agonist on 

disuse-induced muscle atrophy [4, 34, 35, 79]. 

 Yimlamai et al. [35] demonstrate that clenbuterol attenuates the hindlimb 

unweighting-induced atrophy and reduces ubiquitin conjugates only in fast-twitch plantaris and 

tibialis anterior muscles but not in the slow-twitch soleus muscle; this suggests that clenbuterol 

alleviates hindlimb unweighting-induced atrophy, particularly, in fast-twitch muscles at least in part 
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through a muscle-specific inhibition of the ubiquitin-proteasome pathway.  However, Stevens et al. 

[34] report that clenbuterol treatment accelerates hindlimb unweighting-induced slow-to-fast 

(MHCI/ → MHCIIa → MHCIId/x → MHCIIb) transformation in the soleus muscle.  

2-Adrenergic agonist also reverses muscle wasting and weakness in several conditions such as 

ageing [4], muscular dystrophy [29], denervation [80], cancer cachexia [28], and myotoxic injury 

[81]. 

 

6.4.2. Preventive roles of 2-AR in catabolic hormone-induced muscle atrophy 

 Prolonged muscle disuse and/or unloading increases the secretion of glucocorticoids, 

which promotes the catabolism of muscle proteins via the ubiquitin-proteasome pathway [82, 83].  

Sepsis also elevates plasma glucocorticoids and adrenocorticotropic hormone (ACTH) levels [84].  

Therefore, several studies focus on the counteractive effects of 2-AR stimulation on 

glucocorticoid-induced muscle atrophy [16, 85].  Huang et al. [16] report that clenbuterol almost 

prevents the decrease in the weight of gastrocnemius/plantaris muscle bundles induced by 

dexamethasone, a synthetic glucocorticoid.  Pellegrino et al. [85] demonstrate that concurrent 

treatment of clenbuterol with dexamethasone minimizes MHC transformation induced by 

clenbuterol (slow-to-fast) or dexamethasone (fast-to-slow) alone.  Thus, 2-AR stimulation plays an 

inhibitory role in muscle atrophy and weakness induced by catabolic diseases, mechanical unloading, 

catabolic hormones, and pharmacological agents. 

 

6.4.3. Response of 2-AR expression to catabolic hormones 

 Although the effectiveness of 2-AR stimulation on muscle atrophy is well documented, 

catabolic condition-induced changes in the expression of 2-AR in skeletal muscles are not fully 

understood.  Understanding the responses of 2-AR expression to muscle atrophy is required to 

establish treatments for muscle atrophy. 

 Table 1 shows the catabolic condition-induced changes in 2-AR expression in skeletal 

muscles.  Our group investigated whether catabolic hormones or agents alter 2-AR expression in 
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skeletal muscles [20, 21].  Dexamethasone administration (1.0 mg·kg-1·day-1) to rats for 10 days 

decreases the expression of 2-AR mRNA in the soleus muscle without altering that in the EDL 

muscle, although the expression of 2-AR protein in the EDL and soleus muscles is not altered [20, 

21].  Dexamethasone also does not alter 2-AR density in gastrocnemius/plantaris muscle bundles 

[16].  These phenomena are specifically observed in skeletal muscles; meanwhile, glucocorticoids 

and the GR complex activate the transcription of 2-AR gene in the human hepatoma cell line 

(HepG2) [48], subsequently leading to the upregulation of 2-AR levels in DDT1 MF-2 smooth 

muscle cells [50] and lung tissue [16, 51].  Furthermore, dexamethasone decreases the expression 

of GR mRNA in the soleus muscle [20, 21].  Dexamethasone also decreases and increases the 

expression of CREB mRNA, a transcription factor of the 2-AR gene [46, 47], in the soleus and 

EDL muscles, respectively [20].  These findings suggest that the dexamethasone-induced decrease 

in the expression of 2-AR mRNA in the slow-twitch soleus muscle is associated with transcriptional 

regulations. 

 

6.4.4. Response of 2-AR expression to muscle disuse 

The effects of physiological and pathological catabolic condition-induced muscle atrophy 

on 2-AR expression have also been studied (Table 1) [4, 14, 22].  Our recent investigation 

demonstrates that casted immobilization (knee and foot arthrodesis) for 10 days markedly induces 

atrophy in the soleus muscle, whereas it decreased the expression of 2-AR mRNA [22].  

Decreased GR mRNA and protein expression was also detected in the soleus muscle [22].  These 

results suggest that casted immobilization decreases the expression of 2-AR mRNA in slow-twitch 

muscles via the downregulation of GR levels and subsequent glucocorticoid signals.  On the other 

hand, Ryall et al. [4] demonstrate that aging-induced muscle wasting is observed in the EDL and 

soleus muscles, although there are no age-associated changes in 2-AR density in these muscles.  

Furthermore, in the regeneration process from muscle injury induced by bupivacaine injection, 

2-AR density and mRNA expression as well as Gs content are decreased in the soleus but 

increased in the EDL muscle [14].  Thus, the effects of catabolic conditions such as disuse, aging, 
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and injury on 2-AR expression are different from and/or dependent on the conditions, especially in 

fast-twitch muscles, whereas decreasing tendencies are observed in slow-twitch muscles. 

Both pharmacological and mechanical studies indicate that the preventive effects of 2-AR 

stimulation on muscle atrophy and weakness are limited by decreased 2-AR synthesis and 

subsequently decreased density.  In order to use 2-adrenergic agonists as a therapeutic agent for 

muscle wasting, further studies are necessary to obtain detailed evidence regarding the responses of 

2-AR expression and function to muscle atrophy. 

 

 

6.5.  Conclusions 

In this review, we discussed adaptive responses of 2-AR expression in skeletal muscles to 

2-adrenergic agonist treatment, exercise training, muscle disuse, and glucocorticoid treatment.  

This review also outlined the functional roles of 2-AR in skeletal muscles.  Skeletal muscle partly 

requires 2-AR activation for hypertrophy, regeneration, and atrophy prevention; however, its 

functions and responsiveness must be adaptively regulated by the receptor itself via downregulation, 

synthesis, and desensitization.  New insight in the form of scientific evidence is needed to eradicate 

sports doping and to identify new therapeutic targets for attenuating muscle atrophy induced by 

physiological and pathological conditions. 
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7.   Concluding remarks 

 

This thesis summarized the adaptive responses of 2-adrenergic receptor (2-AR) 

expression to 2-AR stimulation-induced muscle hypertrophy (CHAPTER 1 and CHAPTER 2), 

glucocorticoid receptor stimulation-induced muscle atrophy (CHAPTER 3), and 

immobilization-induced muscle atrophy (CHAPTER 4).  The key findings are summarized as 

follows: 

1. The administration of 2-agonist clenbuterol (dose=1.0mg/kg body weight/day) to rats for 10 

days increased the weight of the fast-twitch muscle without changing that of the slow-twitch 

muscle.  Clenbuterol decreased the expression of 2-AR mRNA in the fast-twitch muscle but 

not in the slow-twitch muscle.  The mRNA expression of glucocorticoid receptor (GR), one of 

the transcription factors of 2-AR gene, was also decreased with clenbuterol treatment in the 

fast-twitch muscle but not in the slow-twitch muscle.  Thus, there is a positive correlation 

between the expression levels of 2-AR and GR mRNAs in the fast-twitch muscle, suggesting 

that decreased rate of transcription of the 2-AR gene is related to the reduction of GR 

expression. 

2. The administration of synthesized glucocorticoid dexamethasone (dose=1.0mg/kg body 

weight/day) to rats for 10 days induced muscle atrophy, which was greater in the fast-twitch 

muscle than in the slow-twitch muscle.  Dexamethasone decreased the expression of 2-AR 

mRNA in the slow-twitch muscle but not in the fast-twitch muscle.  The expression of GR 

mRNA was also decreased with dexamethasone treatment in both fast- and slow-twitch muscles, 

although the degree was higher in the slow-twitch muscle than in the fast-twitch muscle.  Thus, 

there is a positive correlation between the expression levels of 2-AR and GR mRNAs in the 

slow-twitch muscle.  Nevertheless, the expression of 2-AR and GR proteins was not affected 

by dexamethasone in both fast- and slow-twitch muscles.  It may take more time for 2-AR 

and GR protein expressions to be reduced after the reduction in mRNAexpression. 

3. Casted-immobilization for 10 days induced muscle atrophy of rats, which was greater in the 
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slow-twitch muscle than in the fast-twitch muscle.  Casted-immobilization decreased the 

expression of 2-AR mRNA in the slow-twitch muscle but not in the fast-twitch muscle.  

However, the expression of 2-AR protein was not affected by casted-immobilization in both 

fast- and slow-twitch muscles.  The expression of GR mRNA and protein was also 

downregulated after 10-day casted-immobilization in the slow-twitch muscle without changing 

that in the fast-twitch muscle.  These results suggest that casted-immobilization suppresses 

glucocorticoid signals, such as muscle protein degradation and transcription of the 2-AR gene, 

via downregulation of GR expression in the slow-twitch muscle. 

The thesis also integrated and discussed the adaptive responses of 2-AR expression to 

anabolic and catabolic conditions (CHAPTER 5).  The 2-AR in the skeletal muscle plays a 

physiological role in the regulation of muscle plasticity and energy balance.  Skeletal muscle partly 

requires 2-AR activation for hypertrophy, regeneration, and atrophy prevention; however, its 

functions and responsiveness must be adaptively regulated by the receptor itself via downregulation, 

synthesis, and desensitization.  This thesis will present scientific evidence to eradicate sports 

doping and identify novel approaches for attenuating muscle atrophy concomitant with disuse and 

various diseases. 
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