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1 Introduction

Internet advertisements that are displayed along with the search results for a key-

word or a combination of keywords are sold through keyword auctions. The gener-

alized second price auction (GSP) is the most widely used auction mechanism for

selling advertisements on Internet search engines. Each time a user enters a search

keyword into a search engine, a GSP-type auction allocates the advertising slots

within that user’s search results. The Internet advertisement revenue via keyword

auctions has increased constantly in the last few years and is a principal source of

revenue of search engines.1

The advertisements related to a searched keyword are usually displayed on the

right-hand side of the search result pages. The number of the ads on each search

result page is limited to less than or equal to a fixed number, and this holds true

for major search engines such as Google and Yahoo!.2 This seems to be a puzzle

because a search engine can add a new advertising slot with no cost burden and

the new advertisement creates an additional advertising revenue. A naive answer

for the limit of the number of the advertisements is that it servers the interests of

search engine users; too many advertisements on a search result page reduces the

users’ benefit and the search engine loses endorsement from them.

In this study, we explain why a search engine restricts the number of the adver-

tisements from the perspective of the search engine’s slot supply strategy. There

are no existing studies investigating the reason for the limited number of advertis-

1For example, Google’s revenue from these auctions increased more than 2.5-fold from $6

billion in 2005 to $16.4 billion in 2007. Since 2003, the revenue generated from keyword

auctions has accounted for approximately 47% of the total Internet advertisement revenue in

the U.S., which increased from $2.7 billion in 2003 to $7.2 billion in 2009 (from annual re-

ports by the Interactive Advertising Bureau (http://www.iab.net/insights research/

947883/adrevenuereport ).
2Interestingly, even if you, as a user of Google search or Yahoo! search, change the setting on

the number of search results on each page, this ceiling of the number of advertisements on a page

remains unchanged.
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ing slots on a search result page. We show that limiting the number of advertising

slots is a simple but powerful method of increasing the search engine’s revenue.

Many studies that consider how a search engine sells advertising slots follow

Myerson (1981) and Riley and Samuelson (1981) on the optimal design of an auc-

tion mechanism for a single object. Iyengar and Kumar (2006a,b) use a direct

mechanism for a keyword auction and considers the computation problem of the

optimal allocation of advertising slots. Assuming the separable click through-rates

(CTRs), Edelman and Schwarz (2010) analyze the optimal reserve price and show

that the GSP with the optimal reserve price is the optimal auction. In Ostrovsky

and Schwarz (2009), the impact of the reserve price is measured in a field exper-

iment on the actual keyword auction conduced by Yahoo!. Although in reality,

the auctioneer does not have the exact information on the distributions of the bid-

ders’ values and cannot set the optimal reserve price, these results suggest that a

reserve price is an effective method of increasing the seller’s revenue. In contrast,

in this study, we explore another method, limiting the number of advertising slots,

to improve the revenue.

Our analysis adopts a simplified model of keyword auctions. We assume that

each advertiser knows his value (expected revenue) per click. The CTR of an

advertising slot depends only on its position, and we assume that the CTRs of

advertising slots are common knowledge. All advertisers maximize expected profit

(defined as total value of clicks received minus total payment in the auction). We

describe a keyword auction as a one-shot incomplete information game where each

advertiser simultaneously announces his bid to a search engine.

From the game theoretic analysis, we obtain an explicit representation of a

search engine’s revenue. Then, we show that for a given keyword, there exists an

optimal number of advertising slots that maximizes the search engine’s expected

revenue and this optimal number is independent of the values of CTRs of all ad-

vertising slots. This result is obtained from a suggestive theorem ofdecreasing

marginal return across slots, i.e., the marginal return on CTR at ahigheradvertis-
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ing slot is greater than that at alower advertising slot.

The decreasing marginal return across slots gives us a useful insight to under-

stand a slot supply strategy of a search engine. It implies that a search engine can

increase its revenue by ramping the CTRs across slots. In other words, to increase

the expected revenue, the search engine designs the placement of the advertise-

ments in a manner that the advertisements in higher positions receive several clicks

and the advertisements in lower positions receive few. This insight seems to be

consistent with the current form of keyword auctions where a few advertisements

in the top positions are highlighted and the advertisements in lower positions are

displayed only in the second or third page of search results.

We also analyze a more general question of how a seller of divisible goods

such as land, forest and water, divides the goods into a finite number of items with

different sizes when the items are sold through position auctions. We show that

our result from the analysis of keyword auctions can be applied to this general

framework, and the optimal number defined in a keyword auction becomes the

upper-bound of the optimal number of items in this context.

Finally, we analyze the comparative statics on the optimal number of adver-

tising slots in keyword auction. We provide a sufficient condition for the optimal

number of slots for a certain keyword being greater than or equal to that for another

keyword. We also show that the optimal number of slots is non-decreasing as the

number of potential advertisers increases.

The remainder of the paper is organized as follows. In Section 2, we explain

the basic setup of our model and provide the result on the seller’s expected revenue.

In Section 3, we propose the slot supply strategy of a search engine, and show that

a restriction on the number of advertising slots on a page and an accentuation of the

advertisement in the higher position are effective methods of increasing the seller’s

revenue. We also apply our result to the more general question of how a seller

of divisible goods divides the goods into a finite number of items in Section 4.

In Section 5, we conduct a comparative statics analysis on the optimal number of
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slots. We conclude in Section 6.

2 Model

2.1 Basic setup

A keyword auction is defined by the following components. There aren,n = 2,

advertisers (bidders) participating in a keyword auction and each advertiseri has a

value or expected revenuevi for a click on the advertisement. There areK advertis-

ing slots with click-through rates (CTRs)α1,α2, ...,αK , whereαk is the estimated

probability of being clicked or the estimated number of clicks per given period, for

an advertiser in thek-th advertising slot (the slotk). We assumeα1 = α2 = ... = αK

and setαk = 0 for all k > K for notational convenience. We assumen = K.3 Each

advertiser submits a bid to the auction. The bid submitted byi is denoted bybi . We

denote the bid profile ofn advertisers byb = (b1, . . . ,bn).

In the generalized second price auction (GSP), advertisers are allocated adver-

tising slots in the descending order of the bidsb1,b2, ...,bn. Let d(k) denote the

name of the bidder who submitsk-th highest bid amongb. In the GSP, bidderd(k)

acquires the slotk. The advertiser obtaining the slotk pays the bid of the advertiser

obtaining one lower advertising slot (the slotk+1) for each click. Hence, the pay-

ment pG
k (b) is αkbd(k+1). To complete the definition of the payments, we assume

thatbd(k) = 0 if k > n. From this, whenK = n, the payments ofd(K) is assumed

to be zero, and fork > K, bidderd(k) paysαkbd(k+1) = 0 by the definition ofαk.

The payoff of bidderd(k) is given byαkvd(k)−αkbd(k+1).

2.2 Revenue of a search engine

We model a keyword auction in the GSP as a normal form game of incomplete

information. Thus, we assume thatvi , the valuation ofi to obtain the advertising

slot, is private information.

3In reality, this is not a restriction because whenn < K, it is sufficient to redefineK by K = n.
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Let Fi : [0, v̄)→ [0,1] be a distribution function of the valuation of bidderi and

fi(vi) ≡ F ′i (vi) is its density function. We assume that the value of each bidder is

independent and identically distributed and thusFi(·) = F(·) and fi(·) = f (·) for all

i. We call{v∈ [0, v̄)|0 < F(v) < 1} the effective domain ofF . We further assume

thatF is increasing in its effective domain. This implies thatF−1(u) is well defined

and increasing foru∈ (0,1).We defineF−1(0) by limu→0+ F−1(u) andF−1(1) by

limu→1−F−1(u).

To analyze the equilibrium behavior of the bidders in the keyword auction, we

focus on the symmetric equilibrium where every bidder follows the same strategy

that determines the bid depending on his true valuation. Letβ : [0, v̄) → R+ be

such a strategy andβ (v) be the bid of the advertiser whose value isv. We assume

thatβ (·) is increasing and differentiable andβ (0) = 0.

Given a bidding profileb = (b1, ...,bn), the revenue of the auctioneer is defined

by

m(b) =
K

∑
k=1

αkbd(k+1).

For any vector of values,v = (v1, . . . ,vn), let β (v) = (β (v1), ...,β (vn)).

Let Vi denote a random variable of bidderi’s valuation andV = (V1, ...,Vn) be

a random vector. Note thatβ (V) is also a random vector. The expected revenue of

the auctioneer is

E[m(β (V))],

whereE[·] is a expectation operator with respect to a distribution functionF .

In this section, we explore the explicit representation of the expected revenue

in order to analyze the revenue maximizing behavior of the auctioneer. To find

the explicit formula of the expected revenue, we rely on therevenue equivalence

theorem(see, for example, Lahaie, Pennock, Saberi, and Vohra 2007). From the

revenue equivalence theorem, we know that the expected revenue in the GSP auc-

tion is the same as the one in the VCG (Vickrey 1961, Clarke 1971, Groves 1973)

mechanism, in which submitting bidder’s true value is his dominant strategy and

thus the symmetric equilibrium is constructed byβ (vi) = vi .
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The VCG mechanism uses the following allocation and payments rules. The

allocation rule is the same as the one in the GSP. For the payment rule, advertiser

i = d(k) pays the negative externality thati imposes on other advertisers. The

payment of advertiseri who acquires the slotk is

pV
k (b) =

[
k−1

∑
h=1

αhbd(h) +
K

∑
h=k

αhbd(h+1)

]
−

[
k−1

∑
h=1

αhbd(h) +
K

∑
h=k+1

αhbd(h)

]
, (1)

where, assuming that each advertiser submits the bid of its true value for a click,

the expression in the first square bracket is the sum of the revenue of advertisers

other thani when i leaves the auction, and the expression in the second square

bracket is the sum of their revenue wheni participates in the auction.

By simple calculation, Eq. (1) is reduced to

pV
k (b) =

K+1

∑
h=k+1

(αh−1−αh)bd(h) =
K

∑
h=k

(αh−αh+1)bd(h+1).

From this, we obtain a convenient recursive formula for the payment of advertisers:

pV
K(b) = αKbd(K+1), and for eachk= 1,2, . . . ,K−1, pV

k (b) = (αk−αk+1)bd(k+1)+

pV
k+1(b).

For any value vectorv = (v1, . . . ,vn), let (v(1), . . . ,v(n)) be the rearrangement of

vi by the non-increasing order, i.e.,v(k) ≥ v(h) for anyk andh with k≥ h. For nota-

tional convenience, we setv(n+1) = 0. For a givenv, the revenue of the auctioneer

in the VCG is

mV(v) =
K

∑
k=1

pV
k (v) =

K

∑
k=1

K

∑
h=k

(αh−αh+1)v(h+1) =
K

∑
k=1

k(αk−αk+1)v(k+1) (2)

where note thatαK+1 = 0.

Proposition 1. The expected revenue of the auctioneer in the GSP auction with

incomplete information,M, is

K

∑
k=1

k(αk−αk+1)E[V(k+1)]

whereV(k+1) is the (k+ 1)-th highest order statistic generated from distribution

functionF and we setE[V(n+1)] = 0.
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Proof. From the revenue equivalence theorem and Eq. (2),

M = E[mV(V)] = E[
K

∑
k=1

k(αk−αk+1)V(k+1)] =
K

∑
k=1

k(αk−αk+1)E[V(k+1)].

Thus, the expected revenue of the auctioneer is the weighted average of the

expectation of the(k+1)-th order statistic of advertisers’ valuation when we nor-

malize∑K
k=1 αk = 1 because∑K

k=1k(αk−αk+1) = ∑K
k=1 αk.

When there is only one advertising slot andα1 = 1, the expected revenue is

E[V(2)] and this is similar to the expected revenue in a single-object auction with-

out reserve price (see, for example, Krishna 2002). Thus, this result is a natural

extension to the case of selling multiple items.

The expected revenue of a search engine defined in the proposition is supported

from other frameworks. In a complete information setting, Varian (2007) and Edel-

man et al. (2007) introduce an equilibrium concept, known as a locally envy-free

equilibrium, and show that the revenue defined in Proposition 1 is equal to the ex-

pectation of the revenue predicted from the bidder-optimal locally envy-free equi-

librium.4 In the recent work of Edelman and Schwarz (2010), the bidder-optimal

locally envy-free equilibrium is uniquely justified from the criterion obtained by

considering the upper bound of the revenue of a finitely repeated keyword auction

of incomplete information when the reserve price is optimally selected. Several

works focus on the dynamic aspect of keyword auctions. Cary, Das, Edelman, Gi-

otis, Heimerl, Karlin, Mathieu, and Schwarz (2007) examine the dynamic process

of bidding behavior where, in each period, one bidder changes the bid to the one

that produces the most favorable outcome for the bidder, taking other bidders’ bids

in the previous period as given. They show that this bidding behavior converges

to the bidder-optimal locally envy-free equilibrium. Kamijo (2010) considers the

bidding behavior in an environment where each bidder changes his bid without

4The bidder-optimal locally envy-free equilibrium gives the lowest revenue among the set of all

locally envy-free equilibria.
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realizing others’ current and past bids. Kamijo (2010) shows that the same re-

sult as Cary et al. (2007) holds even in this setting. In a laboratory experiment,

Fukuda, Kamijo, Takeuchi, Masui, and Funaki (2010) found that there is no sta-

tistical difference between the average revenue of a seller in a repeatedly played

keyword auction in the lab and the revenue in the bidder-optimal locally envy-free

equilibrium.

3 Slot supply strategy of a search engine

In this section, we consider how a search engine can increase its revenue by mod-

ifying the placement of advertising slots and the number of the advertising slots

displayed on a search result page.

3.1 Motivating Example

Let us consider a situation where there are five bidders and five advertising slots for

a keyword. The values of the bidders are distributed according to a uniform distri-

bution between0and100. The CTRs are given by(α1, ...,α5)= (100,80,60,40,20).

In the case of uniform distribution, the expectation of thek-th highest order

statistic is given by

E[V(k)] = v̄
n+1−k

n+1
, (3)

wherev is distributed between0 and v̄ and the number of the bidders isn. From

Proposition 1 and the above equation, we calculate the expected revenue of the

auctioneer and obtainM ∼= 6667.

Next, let us consider a situation where the CTRs of advertising slots diminish.

This is not a difficult task for the search engine because it determines the place

where the advertisements will appear or the number of the advertisements on the

first search result page. For example, we consider a situation whereα5 becomes0

(i.e., deleting slot5). In this new situation, the expected revenue of the auctioneer

becomesM = 8000. This implies that the auctioneer’s revenue is improved by
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reducing CTRs of advertising slots.5

As shown in the example above, the revenue of the auctioneer can be improved

by manipulating the CTRs, especially by reducing the CTRs. This is an easier

method of increasing revenue than manipulating the auction mechanism.

To obtain greater insight on the auctioneer’s slot supply strategy of the auction-

eer, we consider the case where the CTR of one slot is improved by one point. Let

Mk, k = 1,2,3,4,5, denote the expected revenue when the CTR of slotk is slightly

improved and is changed fromαk to αk +1. By easy calculation, we have

M1−M ∼= 67,

M2−M ∼= 33,

M3−M = 0,

M4−M ∼=−33,

M5−M ∼=−67.

From these equations, we find that on one hand, an increase in CTR for slots1

or 2 enhances the auctioneer’s revenue, and on the other hand, that for slots4

or 5 decreases the revenue. We also find thatMk−M is decreasing ink with

M1−M > 0 andM5−M < 0. This implies that there existL such thatML−M = 0

andML+1−M < 0 (for this example,L = 3). Since the expected revenue is linearly

varied to the change in the CTRs, it is indicated that supplying the topL advertising

slots is the optimal strategy for the search engine.

Why does the revenue decrease even though the CTR of an advertising slot is

improved? This counter-intuitive observation is explained as follows.6 When the

5This result does not rely on our simplified setting that the price of the lowest advertising slot

(slot 5) is zero. Even if there exists a minimal priceε > 0 which the bidder in the last position pays

for each click andε is sufficiently small, the search engine can increase its revenue by deleting the

slot 5.
6Because we do not obtain the explicit representation of equilibrium strategy for a keyword auc-

tion with incomplete information, the following explanation is based on the equilibrium bid at the

bidder-optimal locally envy-free equilibrium for a keyword auction with complete information. As



WIAS Discussion Paper No.2010-009 10

CTR of an advertising slot, for example slotk, is improved, the bidderd(k) who

currently occupies slotk is satisfied with the current slot and thus, loses the incen-

tive to obtain higher advertising slots, thereby decreasing his bid. This decrease

occurs even though bidderd(k+1) increases his bid in order to obtain slotk. The

decrease in the bid ofd(k) then motivates the decrease in the bid ofd(k−1), and

this induces the further decrease in the bid ofd(k−2), and so on. Therefore, while

the search engine’s revenue obtained from slotk increases due to the improvement

of CTR of slotk combined with an increase ofbd(k+1) (i.e., the positivedirecteffect

of the improvement of CTR of slotk), the revenues obtained from higher advertis-

ing slots will decrease (i.e., the negativeindirecteffect of the improvement of CTR

of slot k). If slot k is in a lower position, the former effect (the positive direct ef-

fect) is dominated by the latter (the negative indirect effect), and thus, the revenue

of the search engine will decrease. On the other hand, if slotk is in a higher posi-

tion, the former effect dominates the latter, and thus, the search engine’s revenue is

improved.

3.2 Optimal slot restriction and accentuating certain slots

In this subsection, we examine the observation made in the previous subsection

by a general framework. To illustrate the results in this subsection, we assume a

situation where the seller initially provides a sufficient number of advertising slots

to the advertisers. Thus, we assumeK = n.

We define themarginal return of slotk, denoted byµk, as the derivative ofM

by αk. Thus,µk is defined as follows: fork = 1,2, ...,K,

µk ≡ ∂M
∂αk

=−(k−1)E[V(k)]+kE[V(k+1)].

From this equation, we find that the marginal expected return of slotk is a constant

and independent of the values of CTRs of advertising slots. If we compare this

with an example in the previous subsection,µk corresponds toMk−M. Thus, our

aim is to show thatµ1,µ2, ...,µK are in the decreasing order.

explained in subsection 2.2, this prediction is consistent with the expected revenue in Proposition 1.
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Next we explain our assumption on distribution functionF . We define the

virtual valuation of the bidder whose value isv by φF(v) = v− 1−F(v)
f (v) . We say

thatF is regular (or F satisfies regularity) if a virtual valuation is increasing in the

effective domain ofF .7 The regularity is a weaker condition than the increasing

hazard rate (the hazard rate defined byf (v)1−F(v) is increasing inv). F is weakly

regular (or F satisfies weak regularity) if a virtual valuation is non-decreasing but

not a constant.

The next theorem is a generalization of the observation in the previous subsec-

tion and one of our main results.

Theorem 1(Decreasing marginal return across slots). Assume thatF satisfies reg-

ularity. The following three statements hold:

(i) µ1 > µ2 > ... > µK ,

(ii) µ1 > 0, and

(iii) µK < 0.

The proof is in the appendix. It is not difficult to show that the statements of

this theorem hold for the case whereF is weakly regular.

This theorem gives us a useful insight to understand a search engine’s slot-

supply strategy. It implies that a search engine can increase its revenue not by uni-

formly improving CTRs across slots but by ramping the CTRs across advertising

slots. In fact, in the example given in the previous subsection, the expected revenue

of the auctioneer is unchanged even if the CTRs of advertising slots are uniformly

improved and then become(α1, ...,α5) = (100+ a,80+ a,60+ a,40+ a,20+ a)

for any a > 0. On the other hand, if the CTRs of advertising slots are inclined

and become(α1, ...,α5) = (100+a,80+a,60,40−a,20−a) for anya∈ (0,20),

the expected revenue increases by200a. Thus, to increase the expected revenue,

the search engine designs the placement of the advertisements in a manner that the

7This assumption is the same as one in Myerson (1981) on the optimal design of auction.
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ads in higher positions receive several clicks and the ads in lower positions receive

fewer clicks.

In the rest of this subsection, we explain the consequences of Theorem 1 for

two types of search engine’s slot supply strategies. One strategy is to restrict the

number of the advertising slots displayed on the search result page. In the real

world, this strategy is executed in a keyword auction.8 The other is accentuating

certain advertising slots to improve their CTRs.

For L 5 K, anL-slot restrictionis the slot supply strategy such that a search

engine sells only topL advertising slots. In other words, the search engine set

αk = 0 for anyk > L with keeping the CTRs of topL advertising slots unchanged.

From Theorem 1, the optimal slot restriction is obtained.

Proposition 2. Assume thatF is regular. LetL∗ satisfy

µL∗ = 0 > µL∗+1.

Then, theL∗-slot restriction maximizes the expected revenue of the seller among

anyL-slot restrictions.

Proof. This is clear from Theorem 1.

There are three remarks on this proposition. First,L∗ is determined only by

the distribution functionF (correctly speaking, the order statistics ofF). Thus,

a change in CTRs of advertising slots does not influence the optimal numberL∗.

This enables a search engine to execute the different types of slot supply strategy

separately. Second, even if we consider theslot restriction on the first page, L∗ is

still the optimal number. AnL-slot restriction on the first page is the slot supply

strategy such that a search engine makes the CTR of slotk,k > L, rαk, wherer ∈
(0,1). Third, in the case of uniform distribution on[0, v̄], µk is directly calculated

8In 2007, the number of ads on a page was restricted to less than or equal to eight (Varian 2007).
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as follows.

µk =−(k−1)E[V(k)]+kE[V(k+1)]

=−(k−1)v̄
n+1−k

n+1
+kv̄

n−k
n+1

= v̄
n+1−2k

n+1
.

ThusL∗ is n+1
2 if n is odd andn

2 if n is even.

Since irrespective of the values of CTRs, the optimal numberL∗ of slots is de-

termined, another search engine’s slot-supply strategy is to improve CTR of certain

advertising slots. Assume thatα1 > α2 > ... > αK > 0. Fork, aslotk-accentuation

is the slot supply strategy such that the CTR of the slotk is slightly improved and

that of the other slots remains unchanged. Thus, the search engine makes the CTR

of slot k αk +η , whereη is a small positive number satisfyingαk +η < αk−1 for

any k. The slotk-accentuation is a simplified form of the real world slot supply

strategy, in which search engines highlight specific advertising slots.

Proposition 3. Assume thatF is regular. The slot1-accentuation maximizes the

expected revenue of the auctioneer among any slotk-accentuation.

Proof. From Theorem 1, the marginal return of slot1 is the highest.

The statement of this proposition can hold in a more general framework. First,

we consider a more realistic setting such that after slotk-accentuation, the CTRs

of the other slots decrease. Thus, while the new CTR of slotk becomesαk + η ,

the new CTR of sloth,h 6= k, is αh− δ , where(K− 1)δ 5 η , δ > 0 andαk +

η < αk−1− δ for anyk > 1. Even in this general setting, it is easily shown from

Theorem 1 that the slot1-accentuation gives the highest revenue.

Second, we consider the situation where a seller can freely select the values of

CTRs of slots with a restriction such thatα1 = α2 = ... = αK = 0 and the sum of

the CTRs is a constant numberC,C > 0. What is the solution for this allocation

problem? Applying Theorem 1 again, the answer is to setα1 = C andαk = 0 for
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anyk > 1. Therefore, if the sum of the CTRs is restricted to a constant value, there

is no reason for the seller to divide them into several slots.

4 Other applications

In this section, we consider a slightly different situation from the keyword auction.

A divisible good that amounts toC, for example, a land, is sold to several producers

(i.e., farmers). The landowner can freely partition the lands intoK blocks, and

the sizes of blocks areα1,α2, ...,αK , whereα1 = α2 = ... = αK . Farmers have

different technologies and a farmer with technologyv, v∈R+, obtains a returnvαk

if he uses a land whose size isαk. Assume that technologyv is independent and

identically distributed according toF . Now consider what happens if the owner

sells his land by a generalized second price auction. In this context, the utility of

a farmeri who acquires blockk is viαk− bd(k+1), wherebd(k+1) is defined in a

similar manner as in a keyword auction. The only difference between this model

and a keyword auction is the payment rule. Then, applying the revenue equivalence

theorem, the expected revenue of the landowner is that defined in Proposition1.

Therefore, Theorem 1 also holds for this model, and thus, from the last paragraph in

the previous subsection, this landowner maximizes his expected revenue by setting

α1 = C andαk = 0 for otherk > 1.

The result in the previous paragraph indicates that there is no room for the

landowner to partition the land if he wants to sell it.9 The reason for this unintu-

itive result is that in the model above, there is nobenefit from partitioning. Thus,

if we consider the model of diminishing marginal return from land, the result is

completely different. We now consider the same problem of the landowner as

9Wilson (1979) observed a similar result. He compared the revenue when a single item is sold

in a first price auction (unit auction) with the revenue when the share of the item is sold in a share

auction in which each bidder submits a schedule which specifies the number of shares requested for

each possible price per share. Wilson (1979) observed that in some cases, the revenue in the share

auction is only half of that in the unit auction.
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that in the previous paragraph, but we now incorporate the benefit of partition by

modifying the payoff of the farmers. Lets : R+ → R+ be a function satisfying

s(α) > 0,s′(α) > 0 ands′′(α) < 0 for any α > 0 ands(0) = 0. A farmer with

technologyv, v ∈ R+, obtains a returnvs(αk) if he uses a land whose size isαk.

Let M(α1,α2, ...,αK) be the expected revenue defined in Proposition 1, i.e.,

M(α1,α2, ...,αK) :=
K

∑
k=1

k(αk−αk+1)E[V(k+1)].

Then, the problem of the landowner is to maximizeM(s(α1),s(α2), ...,s(αK)) un-

der the condition thatα1 = α2 = ... = αK = 0 and∑K
k=1 αk = C.

This maximization problem can be solved by the Lagrange multiplier method.

We have the following necessity conditions for the optimum:

αk(s′(αk)µk−λ ) = 0 for anyk = 1,2, ...,K, (4)

and

s′(αk)µk−λ 5 0 for anyk = 1,2, ...,K,

whereλ is a Lagrange multiplier and satisfiesλ = 0.

Let L∗ be that defined in Proposition 2 and be the optimal number of advertising

slots for a keyword auction. Interestingly, we will show thatL∗ is also an important

number in this context. Letk be an integer greater thanL∗. By the definition of

L∗, µk < 0 holds. This implies that for any non-negativeλ , s′(αk)µk−λ < 0 for

any αk > 0. Then, Condition (4) implies that in the optimum,αk must be zero

for anyk > L∗. Therefore,L∗ is the upper bound for the number of land partition.

It is readily shown that whenlimα→0+ s′(α) = ∞, partitioning the land intoL∗

blocks is the optimum for the landowner andα1, ...,αL∗ are determined to satisfy

s′(α1)µ1 = ... = s′(αL∗)µL∗ and∑L∗
k=1 αk = C.

The models considered in this section are applied to many other examples such

as selling government bonds to securities companies and selling leases of tract for

oil and gas exploitation.
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5 Comparative statics analysis on the optimal number of

slots

In this section, we explore how the optimal number of advertising slots varies with

changes in exogenous conditions. Specifically, we consider the comparative statics

of a change in a distribution function for the bidders’ valuation and a change in the

number of the potential bidders in the market on the optimal number of slots.

5.1 Comparative statics of the change in distribution functions

Let F andG be different distribution functions for the bidders’ values. We first

prepare dominance relations on the set of random variables or the set of distribution

functions. In the following analysis, we use notationsX andY to denote random

variables distributed according toF andG, respectively.

The first one describes a situation where one random variableX is larger than

another random variableY. We say thatF stochastic-dominates(s-dominates)G

and writeF =s G if for any u∈ (0,1), F−1(u) > G−1(u). If F =s G, we say thatX

s-dominatesY.

We say thatF is the right parallel shift ofG if for somec∈R, F(v) = G(v−c)

for v∈ [c, v̄).

The next is a variability comparison between two random variables. We say

thatF dispersive-dominates(d-dominates)G and writeF =d G if F−1(u)−G−1(u)

is non-decreasing inu ∈ (0,1). Then, if F is the right parallel shift ofG, both

F =d G andG =d F hold.10

AssumeF andG satisfy regularity. LetφF(·) andφG(·) denote the virtual valu-

ations under distribution functionF andG, respectively. Thus,φF(v) = v− 1−F(v)
f (v)

andφG(v) = v− 1−G(v)
g(v) . We say thatF virtual valuation-dominates(v-dominates)

G and writeF =v G if a random variableφF(X) s-dominates anotherφG(Y). Thus,

10For basic results on s-domination and d-domination, refer to Shaked and Shanthikumar (1994)

and Boland, Shaked, and Shanthikumar (1998).
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if F =v G, the virtual valuation calculated from distribution functionF is stochastic

larger than the virtual valuation calculated from distribution functionG.

An important consequence of v-dominance is thatF =v G holds if and only if

(1− u)(G−1(u)−F−1(u)) is increasing inu ∈ (0,1). To confirm this, letΦF(·)
andΦG(·) be distribution functions of random variablesφF(X) andφG(Y), respec-

tively. Then, by the assumption on the regularity, the inverse function ofΦF(·) is

determined by

Φ−1
F (u) = φF(F−1(u)) = F−1(u)− 1−u

f (F−1(u))

for anyu∈ (0,1). Differentiating(1−u)(G−1(u)−F−1(u)) by u∈ (0,1), we have

−(G−1(u)−F−1(u))+(1−u)(
1

g(G−1(u))
− 1

f (F−1(u))
)

=−
(

G−1(u)− 1−u
g(G−1(u))

)
+

(
F−1(u)− 1−u

f (F−1(u))

)
=−Φ−1

G (u)+Φ−1
F (u).

If F =v G, this must be positive becauseF =v G impliesΦ−1
F (u) > Φ−1

G (u). On the

other hand, if this is positive for anyu∈ (0,1), F =v G holds.11

To avoid confusion, in this section we writeµF
k (resp.µG

k ) instead ofµk when

the values of bidders are i.i.d.F (resp.G). Similarly, we denote the optimal number

of slots defined in Proposition 2 byL∗F (resp.L∗G) when the values of bidders are

i.i.d. F (resp.G).

The following theorem shows that the v-dominance is a sufficient condition for

the inequality relationship betweenµF
k andµG

k .

Theorem 2. Let F and G be two different distribution functions for the bidders’

valuations and satisfy regularity. IfF v-dominatesG, then

µF
k > µG

k

holds for anyk 5 K.
11Following Bulow and Roberts (1989), forq ∈ (0,1), the virtual valuationφF (F−1(1− q)) is

interpreted as the marginal revenue of the discriminating monopolist when he sellsq unit of goods.

Then, sinceF =v G is equivalent toΦ−1
F (u) > Φ−1

G (u) for any u ∈ (0,1), it is equivalent to the

condition that the marginal revenue underF is greater than that underG.
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The proof is in the appendix.

From this theorem, we know that ifF =v G, for anyk, the marginal expected

return of slotk when the bidder’s values are distributed according toF is greater

than that when the bidder’s values are distributed according toG.

Combining Theorems 1 and 2, we obtain the result on the comparative statics

of the optimal number of advertising slots.

Corollary 1. Let F andG be two different distribution functions for the bidders’

valuations. If bothF andG are regular andF v-dominatesG, L∗F = L∗G.

Thus, the v-dominance is a sufficient condition for the inequality relationship

between the optimal number of advertising slots under different distribution func-

tions. As applications of this corollary, we list the following two propositions.

Proposition 4. Assume thatF andG are regular. IfF is the right parallel shift of

G, thenL∗F = L∗G.

Proof. From the definition of the right parallel shift, there existsc > 0 such that

F(v) = G(v−c) for anyv∈ [c, v̄). This implies thatf (v) = g(v−c) for anyv∈ [c, v̄)

andF−1(u)−c = G−1(u) hold for anyu∈ (0,1). Then,

−
(

G−1(u)− 1−u
g(G−1(u))

)
+

(
F−1(u)− 1−u

f (F−1(u))

)
= c > 0.

ThusF =v G, and from Corollary 1,L∗F = L∗G.

This proposition implies that if the values of the bidders are uniformly in-

creased by some positive constant, the optimal number of slots is increasing or

unchanged.

Proposition 5. Assume thatF and G are regular. If F =s G and G =d F, then

L∗F = L∗G.

Proof. By the definitions of the s-dominance and d-dominance,(G−1(u)−F−1(u))

is a negative and increasing function inu∈ (0,1). Thus,(1−u)(G−1(u)−F−1(u))

is an increasing function; therefore,F =v G. From Corollary 1,L∗F = L∗G.
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This proposition states that ifF is larger (in a stochastic sense) thanG and is

less scattered (in a stochastic sense) thanG, the optimal number of slots underF is

greater than or equal to that underG.

How can we interpret these propositions on the optimal number of slots? The

answer seems to come from the following two intuitive statements: keeping other

conditions constant,

(1) when large bidder’s values are more realized, the seller can increase its revenue

by supplying more advertising slots, and

(2) when values of bidders are less scattered, the seller can increase its revenue by

supplying more advertising slots.

We explain why these two statements hold. For the first statement, there is

a simple reason. When the higher values of the bidders are likely to be realized,

the cost of deleting advertising slots becomes expensive. Thus, if the values of

the bidders are expected to be high, the search engine can increase the revenue by

providing more slots.

Next, we explain the second statement. When the valuations of the advertisers

are less scattered, each bidder has a chance to obtain a higher advertising slot by

slightly increasing his bid, and this leads to higher bids by advertisers in equilib-

rium. This results in higher revenue for the auctioneer. In this case, the auctioneer

has a weak incentive to decrease the number of slots. On the other hand, when the

valuations of the advertisers are more scattered, each bidder cannot obtain a higher

advertising slot by a small increase in his bid, and this leads to lower bids by ad-

vertisers in equilibrium. This results in less revenue for the auctioneer. In such a

case, the auctioneer has a strong incentive to decrease the number of slots in order

to make the bids of advertisers higher.

To check these statements, we consider a general uniform distribution on[a,b]

wherea = 0 andb > a. The expectation ofk-th highest order statistic is given by

E[V(k)] = (b−a)
n+1−k

n+1
+a.
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Thus, by a simple calculation, the marginal return of slotk is

µk =
2(b−a)

n+1

(
b(n+1)
2(b−a)

−k

)
.

From this, the optimal number of slots isb b
2(b−a)(n+1)c if b b

2(b−a)(n+1)c5 n−1

and the optimal number isn− 1 otherwise.12 Statement (1) holds in this case

because ifb increases with keeping(b− a) a constant value, the optimal num-

ber increases or is unchanged. In addition, Statement (2) holds because if(b−a)

decreases with keepingb a constant value, the optimal number increases or is un-

changed.

From a general uniform distribution, we can provide examples of why both s-

dominance and d-dominance are needed in Proposition 5. LetF andG be uniform

distributions on[1,10] and [1,3], respectively. Then,F =s G holds butG =d F

does not. From the result in the previous paragraph,L∗F is b5
9(n+1)c andL∗G is

b3
4(n+1)c. Thus, we haveL∗F < L∗G. Next, letF andG be uniform distributions

on [1,3] and[3,7], respectively. Then,G =d F holds butF =s G does not. Then,

L∗F is b3
4(n+1)c andL∗G is b7

8(n+1)c. Thus, we haveL∗F < L∗G.

5.2 Comparative statics analysis of the change in the number of the

bidders

In this subsection, we explore how the optimal number of slots changes due to a

change in the number of the bidders in the market. We denote byµF
k:n the marginal

return of slotk and byLF∗
n the optimal number of slots defined in Proposition 2

when there aren bidders whose values are i.i.d.F . We obtain the following result.

Theorem 3. Assume thatF is regular. Then,

µF
k:n+1 > µF

k:n

holds for anyk 5 K.

12For x∈ R, bxc denotes the maximal integer that is less than or equal tox.
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The proof is in the appendix.

From this theorem, we obtain a natural result on the optimal numbers of slots

for the markets with different depths.

Corollary 2. Assume thatF satisfies regularity. Then,LF∗
n+1 = LF∗

n .

From this corollary, we find that the optimal number of slots increases as the

number of potential advertisers increases.

6 Concluding remarks

In this study, we explored the optimal number of the advertising slots that maxi-

mizes the auctioneer’s revenue. Our result showed that the auctioneer indeed has

an incentive to delete certain lower advertising slots. In reality, the search engines

like Google and Yahoo! restrict the number of the advertising slots for each search

result page, and this is well explained by our analysis. In the real world keyword

auction, a reserve price is a familiar and convenient way to increase the seller’s rev-

enue. However, in the recent change in the rule of of Google (AdWords) keyword

auctions, AdWords removed the reserve price, called a “minimum bids.” Instead,

it began to present the information on “first page bid estimates,” which is an es-

timated value of a bid needed for the ad to be displayed on the first search result

page.13 This may be the evidence for the importance of a slot-restriction in the first

result page as a revenue improving mechanism of a search engine. The analysis

should be expanded to explore the difference between setting the reserve price and

restricting the number of slots as slot supply strategy of a search engine.

13See,http://adwords.blogspot.com/2008/09/quality-score-improvements-to-go-live.

html , last checked May 29, 2010.
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Appendix

From the theory of order statistic, it is known that

E[V(k)] =
∫ v̄

0
x

n!
(n−k)!(k−1)!

f (x)F(x)n−k(1−F(x))k−1dx.

Putu = F(x). Then,x = F−1(u) anddu= f (x)dx. Thus, we obtain

E[V(k)] =
∫ 1

0
F−1(u)

n!
(n−k)!(k−1)!

un−k(1−u)k−1du. (5)

From this, we can calculateµk as follows. For allk = 1,2, . . . ,n−1,

µk =−(k−1)E[V(k)]+kE[V(k+1)]

=−(k−1)
∫ 1

0
F−1(u)

n!
(n−k)!(k−1)!

un−k(1−u)k−1du

+k
∫ 1

0
F−1(u)

n!
(n−k−1)!k!

un−k−1(1−u)kdu

=
n!

(n−k)!(k−1)!

∫ 1

0
F−1(u)

[
(n−k)un−k−1(1−u)k− (k−1)un−k(1−u)k−1

]
du

(6)

Fork = n,

µn =−(n−1)E[V(n)] =−n(n−1)
∫ 1

0
F−1(u)(1−u)n−1du (7)

From (6) and (7), for allk = 1,2, . . . ,n,

µk =
n!

(n−k)!(k−1)!

∫ 1

0
F−1(u)

[
(n−k)un−k−1(1−u)k− (k−1)un−k(1−u)k−1

]
du

(8)

Proof of Theorem 1

(i). From (8), fork = 1,2, ...,n−1,

µk−µk+1

=
n!

(n−k)!(k−1)!

∫ 1

0
F−1(u)

[
(n−k)un−k−1(1−u)k− (k−1)un−k(1−u)k−1

]
du

− n!
(n−k−1)!k!

∫ 1

0
F−1(u)

[
(n−k−1)un−k−2(1−u)k+1−kun−k−1(1−u)k

]
du
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=
n!

(n−k)!k!

∫ 1

0
F−1(u)un−k−2(1−u)k−2

[
k(n−k)u(1−u)−k(k−1)u2

− (n−k)(n−k−1)(1−u)2 +k(n−k)u(1−u)
]
du

=
n!

(n−k)!k!

∫ 1

0
F−1(u)un−k−2(1−u)k−2

[
(n−k−1)(ku− (n−k)(1−u))(1−u)

− (k−1)u(ku− (n−k)(1−u))+nu(1−u)
]
du

=
n!

(n−k)!k!

∫ 1

0
(1−u)F−1(u)

d
du

[
un−k−1(1−u)k−1(ku− (n−k)(1−u))

]
du

=
n!

(n−k)!k!

{ [
(1−u)F−1(u)un−k−1(1−u)k−1(ku− (n−k)(1−u))

]1

0

+
∫ 1

0

(
F−1(u)− (1−u)

f−1(u)

)
un−k−1(1−u)k−1(ku− (n−k)(1−u))du

}
.

(9)

Note that

[
(1−u)F−1(u)un−k−1(1−u)k−1(ku− (n−k)(1−u))

]1

0
=





0 if k < n−1,

F−1(0)≥ 0 if k = n−1.

(10)

From (9) and (10),

µk−µk+1 ≥ n!
(n−k)!k!

∫ 1

0

(
F−1(u)− (1−u)

f−1(u)

)

un−k−1(1−u)k−1(ku− (n−k)(1−u))du. (11)

Note that
∫ 1

0
un−k−1(1−u)k−1(ku− (n−k)(1−u))du=

[
−un−k(1−u)k

]1

0
= 0. (12)

From (11) and (12),

µk−µk+1 ≥ n!
(n−k)!k!

∫ 1

0

[(
F−1(u)− (1−u)

f−1(u)

)
−

(
F−1(r)− (1− r)

f−1(r)

)]

un−k−1(1−u)k−1(ku− (n−k)(1−u))du (13)

wherer = n−k
n . Note that

un−k−1(1−u)k−1(ku− (n−k)(1−u))





< 0 if 0 < u < r,

> 0 if r < u < 1.

(14)
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Furthermore, since by regularity,F−1(u)− (1−u)
f−1(u) is increasing inu,14

(
F−1(u)− (1−u)

f−1(u)

)
−

(
F−1(r)− (1− r)

f−1(r)

)




< 0 if 0 < u < r,

> 0 if r < u < 1.

(15)

From (13), (14), and (15), it follows thatµk−µk+1 > 0.

(ii). From (8),

µ1 = n
∫ 1

0
F−1(u) [(n−1)un(1−u)]du> 0.

(iii). It is obvious from (7).

Proof of Theorem 2

From (8),

µF
k −µG

k

=
n!

(n−k)!(k−1)!

∫ 1

0
F−1(u)

[
(n−k)un−k−1(1−u)k− (k−1)un−k(1−u)k−1

]
du

− n!
(n−k)!(k−1)!

∫ 1

0
G−1(u)

[
(n−k)un−k−1(1−u)k− (k−1)un−k(1−u)k−1

]
du

=
n!

(n−k)!k!

∫ 1

0
(1−u)

(
F−1(u)−G−1(u)

)

[
(n−k)un−k−1(1−u)k−1− (k−1)un−k(1−u)k−2

]
du

(16)

Note that

∫ 1

0
(n−k)un−k−1(1−u)k−1− (k−1)un−k(1−u)k−2du=

[
un−k(1−u)k−1

]1

0
= 0.

(17)

14This is checked as follows. Letϕ(u) = φF (F−1(u)) for u∈ (0,1). Then,

dϕ
du

=
dφF

dv
(F−1(u))

dF−1

du
(u) =

dφF

dv
(F−1(u))

1
f (F−1(u))

.

Since the regularity impliesdφF
dv (F−1(u)) > 0, we havedϕ

du > 0.
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From (16) and (17),

µF
k −µG

k =
n!

(n−k)!k!

∫ 1

0

[
(1−u)

(
F−1(u)−G−1(u)

)− (1− r)
(
F−1(r)−G−1(r)

)]

[
(n−k)un−k−1(1−u)k−1− (k−1)un−k(1−u)k−2

]
du (18)

wherer = n−k
n−1. Note that

(n−k)un−k−1(1−u)k−1− (k−1)un−k(1−u)k−2





> 0 if 0 < u < r,

< 0 if r < u < 1.

(19)

SinceF v-dominatesG, (1−u)
(
F−1(u)−G−1(u)

)
is decreasing inu. Thus,

(1−u)
(
F−1(u)−G−1(u)

)− (1− r)
(
F−1(r)−G−1(r)

)




> 0 if 0 < u < r

< 0 if r < u < 1.

(20)

From (18), (19), and (20), it follows thatµF
k −µG

k > 0.
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Proof of Theorem 3

From (8),

µF
k:n+1−µF

k:n

=
(n+1)!

(n−k+1)!(k−1)!

∫ 1

0
F−1(u)

[
(n+1−k)un−k(1−u)k− (k−1)un+1−k(1−u)k−1

]
du

− n!
(n−k)!(k−1)!

∫ 1

0
F−1(u)

[
(n−k)un−k−1(1−u)k− (k−1)un−k(1−u)k−1

]
du

=
n!

(n−k+1)!(k−1)!

∫ 1

0
F−1(u)un−k−1(1−u)k−1

[
(n+1)(n−k+1)u(1−u)

− (n+1)(k−1)u2− (n−k+1)(n−k)(1−u)+(n−k+1)(k−1)u
]
du

=
n!

(n−k+1)!(k−1)!

∫ 1

0
F−1(u)un−k−1(1−u)k−1

[
(n−k)(1−u)(ku− (n−k+1)(1−u))

− (k−1)u(ku− (n−k+1)(1−u))+(n+1)u(1−u)
]
du

=
n!

(n+1−k)!(k−1)!

∫ 1

0
(1−u)F−1(u)

d
du

[
un−k(1−u)k−1(ku− (n−k+1)(1−u))

]
du.

=
n!

(n−k+1)!(k−1)!

{ [
(1−u)F−1(u)un−k(1−u)k−1(ku− (n−k+1)(1−u))

]1

0

+
∫ 1

0

(
F−1(u)− (1−u)

f−1(u)

)
un−k(1−u)k−1(ku− (n−k+1)(1−u))du

}
.

(21)

Note that

[
(1−u)F−1(u)un−k(1−u)k−1(ku− (n−k+1)(1−u))

]1

0
=





0 if k < n,

F−1(0)≥ 0 if k = n.

(22)

From (21) and (22),

µF
k:n+1−µF

k:n ≥
n!

(n−k+1)!(k−1)!

∫ 1

0

(
F−1(u)− (1−u)

f−1(u)

)

un−k(1−u)k−1(ku− (n−k+1)(1−u))du. (23)

Note that

∫ 1

0
un−k(1−u)k−1(ku− (n−k+1)(1−u))du=

[
−un−k+1(1−u)k

]1

0
= 0. (24)
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From (23) and (24),

µF
k:n+1−µF

k:n≥
n!

(n−k+1)!(k−1)!

∫ 1

0

[(
F−1(u)− (1−u)

f−1(u)

)
−

(
F−1(r)− (1− r)

f−1(r)

)]

un−k(1−u)k−1(ku− (n−k+1)(1−u))du (25)

wherer = n−k+1
n+1 . Note that

un−k(1−u)k−1(ku− (n−k+1)(1−u))





< 0 if 0 < u < r,

> 0 if r < u < 1.

(26)

Furthermore, since by regularity,F−1(u)− (1−u)
f−1(u) is increasing inu,

(
F−1(u)− (1−u)

f−1(u)

)
−

(
F−1(r)− (1− r)

f−1(r)

)




< 0 if 0 < u < r,

> 0 if r < u < 1.

(27)

From (25), (26), and (27), it follows thatµF
k:n+1−µF

k:n > 0.


