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1 Introduction

This paper presents a model of the endogenous formation of altruism and attempts to

find socio-economic determinants of the distribution of altruism within a society. It has

been found that individual altruism is formed primarily by the combined effects of genes,

parents, peers and society, and the socio-economic environment or culture (Cavalli-Sforza

and Feldman [10]; Boyd and Richerson [8], [23]; Henrich et al. [14]; Levy-Garboua [18];

Bowles and Gintis [7]). This paper represents a society’s socio-economic environment

using a game and, treating the effects of genes and parents as exogenous, studies how in-

dividual altruism is formed through interactions with other people via this game. We aim

to determine the characteristics of this game that affect the formation and distribution

of altruism within a society.

More precisely, this paper studies the following situation. Individuals care not only

about their own material payoffs but also about other individuals’ payoffs. The extent

to which they care about others’ payoffs, or the degree of altruism, varies from person

to person. Young individuals are randomly and repeatedly matched to play a game that

represents a socio-economic environment. Their initial degrees of altruism, which could be

interpreted as the effects of genes and parents on altruism, are exogenously given. Their

opponents’ altruism cannot be observed directly, but it can be inferred by the opponents’

actions. In other words, we restrict attention to a class of games in which greater actions

reflect greater degrees of altruism. We then suppose that: (i) when an individual meets

with others who are inferred to be more or less altruistic than he is, he becomes more

or less altruistic, respectively; (ii) the greater the difference between his own action and

his opponents’ actions, the more his degree of altruism changes; and (iii) individual

altruism is determined by the equilibrium actions of all opponents, that is, their average

equilibrium action. Given these assumptions, we ask what characteristics of the game

affect altruism and its distribution, and we find that supermodularity and the extent of

positive spillover effects are important.1 To be more precise, we show that if the game

played in the society is supermodular, individuals tend to become more homogeneous in

terms of altruism as spillover effects increase. In particular, if the equilibrium actions are

linear with respect to the degree of altruism, the distribution of altruism when spillover

effects are small is a mean-preserving spread of that under larger spillover effects, given

the same initial distribution of altruism. The basic intuition underlying the results is

as follows. In a supermodular game, the equilibrium actions of altruistic individuals,

which are monotonically increasing in the degree of altruism, are greater under greater

spillovers because the marginal benefits to others of an increase in their own actions are

1A game is said to be supermodular if players’ actions are strategic complements, that is, the best
response of each player is increasing in his opponents’ actions (see Definition 2 in subsection 2.5). A
game is said to have positive spillovers if an increase in a player’s action raises his opponents’ payoffs
(see Definition 1 in subsection 2.5).
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greater. More importantly, the equilibrium actions increase with an increase in the degree

of altruism in accordance with the extent of spillovers. Thus, the difference between the

actions of individuals with different levels of altruism is greater under larger spillovers.

As a result, for most individuals, the differences between the average action and their

own actions are also greater and, therefore, their altruism is driven closer to the level

of altruism of individuals who chose the average action. If the equilibrium actions are

linear with respect to the degree of altruism, the action of an individual with the average

initial degree of altruism is the average action under both smaller and larger spillover

effects. Thus, individuals’ altruism tends to move to the same level, but it does so to a

greater extent under larger spillover effects. Therefore, the resulting distribution under

larger spillover effects second-order stochastically dominates that under smaller spillover

effects. This implies, for example, that people who live close to one another and engage

in joint production, such as irrigation agriculture in a rural village, are more likely to

exhibit similar levels of altruism than those who live apart and engage in more or less

independent work, as is often the case in cities.

In the last two decades, much experimental evidence has indicated that people exhibit

altruism in various situations (Camerer [9]) and, in parallel, economists have begun to

recognize that altruism is a non-negligible factor in important decisions on public good

provision, intergenerational transfers, and charitable donations, to name a few. These

findings have directed attention to the process through which altruism is formed, creating

two strands of economics literature. One strand either explicitly employs evolutionary

game theory as an analytical tool or implicitly uses the concept of evolutionary selection,

and this strand tries to determine the conditions under which altruism is evolutionarily

stable or, more generally, has a payoff advantage (see Bester and Guth [3]; Bolle [6];

Possajennikov [21]; Dekel et al. [11]; Heifetz et al. [13]; Alger [1]).2 The idea that altruistic

individuals could have a payoff advantage is insightful. However, evolutionary approaches

to altruism formation seem to have a serious limitation because they are based on the

assumption that the number of individuals with certain preferences is increasing in the

material or monetary payoff, which does not apply to altruism. First, this assumption

may rest on another assumption that a parent’s number of children is increasing in his

material or monetary payoff, which has not been found in reality. In fact, an inverse

association between income per adult and fertility has long been observed both across

countries and across households within a country (Becker et al. [2]; Kuznets [16]). In

addition, children are not exact reproductions of their parents. Thus, even if the number

of children were increasing in parental income, it does not follow that the level of altruism

2In a similar context, Kockesen et al. [15] systematically explore the conditions under which individuals
who are concerned with both their absolute and relative payoffs have a payoff advantage. They find
that those individuals could have higher payoffs under supermodularity as well as under submodularity
with certain additional conditions. Sethi and Somanathan [25] investigate the conditions under which
reciprocity is stable.
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of materially successful individuals would eventually prevail in a society. Second, this

strand of literature may instead be based on another assumption that materially successful

preferences are imitated by a larger number of individuals than less successful ones,

which also does not apply to altruism. Individuals do not become altruistic by imitating

altruistic agents precisely because those agents are materially successful. In this paper,

therefore, we do not assume that the number of individuals with a certain level of altruism

is increasing in the associated material payoff. Rather, we assume that an individual’s

altruism is based on how other people behave toward him as well as on the characteristics

of his interactions with other people. In contrast to most results based on evolutionary

selection mechanisms, heterogeneity in a society remains unless the initial distribution of

altruism is degenerate, which is more realistic in light of the observed variety in altruism

across individuals (Camerer [9]; Henrich et al. [14]).

Another strand of the literature analyzes how individual preferences are formed and

transmitted to offspring, taking into account the effect of peers (Bisin and Verdier [4],

[5]; Saez-Marti and Sjogren [24]; Pichler [20]). In one of their contributions [4], Bisin and

Verdier, who first rigorously investigated cultural transmission in economics, present a

model in which children acquire the preferences of either their parents or a role model

in the population with some probability that can be controlled by parents. They then

establish conditions under which, for example, heterogeneous preferences are globally

stable. Saez-Marti and Sjogren [24] and Pichler [20] extend and elaborate the basic idea

of Bisin and Verdier [4] so as to incorporate, respectively, the possibility of biased cultural

transmission from peers and the formation of continuous preferences. These papers are

closely related to this paper in that they appropriately consider the effect of peers and

society on preference formation. On the other hand, this paper differs from theirs in

that we emphasize the characteristics of interactions between individuals that affect the

formation and distribution of altruism. To our knowledge, this has not been investigated

rigorously in the existing literature.

The remainder of the paper is organized as follows. The next section describes the

model. Section 3 studies the effect of larger spillover effects on altruism and its distribu-

tion. In section 4, we make sure that the results obtained for the model with two-player

games continue to hold for a model with N -player games. Section 5 concludes the paper

and discusses issues that remain unaddressed.

2 The Model

2.1 Environment

We consider an economy populated by a continuum of individuals, the set of whom is

denoted by I. Individuals have different levels of altruism and live for two periods, youth
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and old age. More precisely, individuals are young in period 1 and old in period 2.

Although the specific length of each period does not affect our analysis, period 1 is taken

to be sufficiently long for individuals to establish the extent of their altruism. Time t is

measured continuously. At every t in period 1, all individuals are randomly matched to

play a two-player game G = (X, {π1, π2}). X is the action space of each player, which is

assumed to be a compact subset of the real line [a, a] ∈ R. πi : X ×X → R (i = 1, 2)

is the material payoff function of player i. We do not assume any a priori heterogeneity

among individuals that changes the primitives of the game. Thus, we focus on symmetric

games, which implies that there exists a function π : X×X → R such that πi = π(xi, xj),

where xi is player i’s action and xj is the opponent’s action. The function π is assumed

to be bounded and twice continuously differentiable.3 It follows from Young’s theorem

that π12(xi, xj) = π21(xi, xj), where π12 = ∂2π/∂xj∂xi and π21 = ∂2π/∂xi∂xj. Let π11

and π22 be the second-order derivatives with respect to the first and the second argument,

respectively. We assume π11(xi, xj) < 0 and π22(xi, xj) < 0 throughout this paper. The

first inequality shows that π exhibits diminishing marginal returns to the player’s own

actions. The second inequality means that the marginal payoff of player i with respect

to his opponent’s action is decreasing in the opponent’s action. The game played by the

whole population, in which randomly paired individuals play the game G, will be referred

to as the population game with G. An equilibrium of the population game will be called

a population equilibrium.

2.2 Utility function

We next introduce the utility function of an altruistic individual. An individual is re-

garded as more altruistic the more she cares about other individuals’ material payoffs.

Let yi and yj, respectively, denote the material payoffs to individuals i and j, who happen

to be paired. The utility function of individual i with extent of altruism λi is given by

Ui(yi, yj, λi) = yi + λiyj. (1)

Throughout our analysis, we will focus on the case where λi is weakly positive. If λi

is strictly positive, the individual cares not only about his own payoff but also about

his opponent’s payoff. As λi rises, his utility increases more with an increase in his

opponent’s payoff. Thus, a strictly positive λi can be interpreted as representing the

degree of altruism. Instead, if λi = 0, the individual is exclusively concerned with his

own payoff, or equivalently, is selfish. This case is most often assumed in the economics

literature. Alger [1] and Levine [17], for example, have used (1) or a similar utility

3One-sided derivatives are assumed to exist at a and a.
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function for different analytical goals from this paper’s.4 In the game G, player i’s utility

can be written as a function of his and his opponent’s (= player j’s) actions:

Ui(xi, xj, λi) = π(xi, xj) + λiπ(xj, xi), (2)

where π(xj, xi) in the second term on the right-hand side is the opponent’s material

payoff. We assume that given any expectations of his opponent’s actions, the optimal

action of an individual lies in his action space X.5

2.3 Distribution and formation of altruism

We suppose that the initial levels of young children’s altruism at the beginning of period

1 are mutually independent and distributed according to a density function f , which is

assumed to be continuous and to have compact and convex support Λ = [λmin, λmax],

where 0 ≤ λmin < λmax < ∞. The key feature of our model is that the degrees of

individuals’ altruism change over time depending on their experiences. There could be a

variety of possible ways to formalize the endogenous formation of altruism. In particular,

we want to consider both what causes altruism formation and when this formation occurs.

First, if an individual could observe the extent of altruism of other people with whom he

interacts, his altruism might change directly because of their altruism. In reality, however,

it is almost impossible, or at least quite difficult, to tell how altruistic other people are.6

Consequently, individuals most often infer others’ altruism, and their personality traits

in general, from what they do. Furthermore, most people tend to be deeply affected by

others’ behavior. Therefore, we assume that an individual cannot observe his opponents’

altruism and that his altruism changes depending on his opponents’ actions. To be more

precise, we restrict attention to games in which greater actions imply that an opponent

is more altruistic, and we assume that an individual’s altruism changes according to the

difference between his opponent’s action and his own action. For example, suppose that

two individuals were matched to play such a game and that one individual took a greater

action than the other individual. Then, we postulate that the former’s altruism falls

and the latter’s altruism rises. It is true that, in general, an opponent’s action reflects

both his altruism and his expectations. As noted below, however, our focus will be

on equilibrium situations in which all individuals share the same correct expectations

4To be more precise, Alger [1] considers both altruism and negative altruism, or spite, and investigates
the evolutionarily stable degrees of altruism when each generation plays a public goods game once. The
utility function in Levine [17] incorporates not only altruism and spite but also reciprocity. His paper
aims to pin down the values of the parameters in his utility function so as to explain experimental
results successfully. The exploration of an evolutionary process through which those values are realized
is suggested as future research.

5Precise conditions for this assumption will be given wherever appropriate.
6This is particularly true if individuals are randomly matched with strangers, which is the case in

this paper.

5



WIAS Discussion Paper No. 2012-007

about opponents’ actions. Furthermore, there are many cases in which people attribute

others’ behavior to their personal traits, implicitly assuming that other people should have

more or less similar expectations as themselves. Second, we suppose that experiences in

childhood and young adulthood have a significantly larger impact on altruism than those

in old age. Thus, for simplicity, we assume that individuals’ altruism is formed based on

their experiences during period 1. It is also assumed that each individual’s altruism is

determined based on his aggregate experience during that period.

In sum, an individual’s altruism changes from its initial level λi to its level in old age

λoldi according to

λoldi (λi,∆i) = λi + h(∆i), (3)

where ∆i is the difference between the average action of his opponents when he was young,

m, and his own action, xi. The function h : R → R, which is assumed to be strictly

increasing and satisfies h(0) = 0, transforms the difference ∆i into units of altruism.

As will become clear in what follows, in games with positive spillovers, an opponent is

inferred to be more altruistic as he chooses greater actions. Hence, an individual becomes

more or less altruistic when his opponents’ actions are greater or lower, respectively, than

his own action. Thus, the difference ∆i is measured as ∆i = m − xi. For our purposes,

h could be any strictly increasing function with h(0) = 0, as long as it retains the order

of λi (i.e., if λi < λ′i, then λoldi < λoldi
′
).

2.4 Information structure and equilibrium

The information structure of the population game is as follows. When playing G, an

individual knows neither his opponent’s altruism nor the population distribution of al-

truism. He chooses his actions based on his own altruism and his expectations of others’

actions. In equilibrium, all individuals share common expectations that are fulfilled by

their actions. We assume that individuals play their equilibrium actions repeatedly over

period 1. This could be interpreted, as in Dekel et al. [11], as individuals learning to form

correct expectations and to play equilibrium actions from their experiences much faster

than their preferences change. An equilibrium of the population game is given by equilib-

rium actions and their distribution, {x∗(λi), ϕ∗}, where x∗(λi) is the optimal action of an

individual with λi given the self-fulfilling expectations about opponents’ actions, ϕ∗(x).

2.5 Definitions and assumptions

As mentioned above, we focus on games in which greater actions reflect greater altruism.

We therefore restrict ourselves to a certain class of games. The concept below is used to

characterize such games.
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Definition 1. (Kockesen et al. [15])

A two-player game G is said to have positive spillovers if(
∂π(xi, xj)

∂xj
≡
)
π2(xi, xj) > 0 for ∀(xi, xj) ∈ X2.

G has positive spillovers if an increase in the opponent’s action raises the individual’s

material payoff. Because the game is symmetric, the opponent’s payoff also increases as

the individual takes greater actions, which is more important from the point of view of

altruistic individuals. This implies that in games with positive spillovers, more altruistic

individuals are inclined to choose greater actions.

We also use the following concept.

Definition 2. (Topkis [26])

A two-player game G is said to be supermodular if π12(xi, xj)(= π21(xi, xj)) ≥ 0 for

∀(xi, xj) ∈ X2.

This concept is familiar in the economics literature. In supermodular games, the

actions of two players are strategic complements, that is, a greater opponent’s action

induces a player to choose a greater action. From (2), it can be easily checked that if

G is supermodular, the second-order cross derivatives of the utility function are weakly

positive, ∂2Ui/∂xi∂xj = ∂2Ui/∂xj∂xi ≥ 0. The supermodularity of G will be used to

prove Proposition 2 and Lemma 1 in subsection 3.2.

To study the effect of the characteristics of a game played in a society on the distri-

bution of altruism, we will compare the distributions of old individuals’ altruism in two

societies in which different games, G and Ĝ, are played. In general, however, these games

have multiple equilibria, and thus, the results may change as we compare different pairs of

equilibria across societies. To avoid this problem, we restrict attention to games that have

a unique equilibrium. The following assumptions, which Mason and Valentinyi [19] show

are sufficient conditions for Bayesian games to have a unique monotone pure-strategy

equilibrium, turn out to ensure the existence of a unique population equilibrium:7

Assumption 1. There exists an ω ∈ (0,∞) such that for all xi, xj ∈ X and λi ∈ Λ,

|π1(xi, xj) + λiπ2(xj, xi)| ≤ ω.

Assumption 2. There exists a ν ∈ [0,∞) such that f(λi) ≤ ν for all λi ∈ Λ.

Assumption 3. There exists a δ > 2νω such that π2(xj, xi) ≥ δ for all (xj, xi) ∈ X2.

In this paper, we focus on supermodular games with, from Assumption 3, positive

spillovers. Examples of games that fall into this class include the standard Bertrand

7A monotone pure strategy is a pure strategy that is increasing in type, which is, in this case, the
degree of altruism.
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game with differentiated products (Fudenberg and Tirole [12]; Kockesen et al. [15]) and a

public good game with a linear or an increasing-return production function. Furthermore,

as long as there are weakly increasing returns, many real-life situations in which, for

example, people collaborate in the production of food, commercial products, or security

could be represented by a supermodular game with spillovers.

3 Spillovers and the Distribution of Altruism

As described above, we focus on supermodular games with positive spillovers. In this

section, we study how the distribution of old individuals’ altruism varies as the game

played in the society changes. In particular, we investigate the effect of the extent of

spillover effects on the distribution of altruism by comparing two distributions of altruism

that result from two games with different extents of spillover effects. Before doing so,

in the next subsection, we confirm that the population game under consideration has a

unique monotone pure-strategy equilibrium.

3.1 Equilibrium

Suppose that an individual with altruism λi expects that his opponents will choose their

actions according to a continuous density function, ϕ(x). Then, the individual solves the

following maximization problem:

max
xi∈X

∫
x∈X

[π(xi, x) + λiπ(x, xi)]ϕ(x)dx.

Because π is continuously differentiable and ϕ is continuous, the integrand in the above

expression is continuous with respect to xi and x and continuously differentiable with

respect to xi. It follows that the order of differentiation and integration is interchangeable.

Thus, the first-order condition is given by8

∫
x∈X

[π1(xi, x) + λiπ2(x, xi)]ϕ(x)dx = 0.

Let xi(λi) denote the optimal action of the individual. Because the derivative of the

left-hand side of the above expression with respect to xi exists and is negative (by the

assumptions that π11 < 0 and π22 < 0), xi(λi) is continuously differentiable for λi > 0

and
dxi(λi)

dλi
= −

∫
x∈X π2(x, xi)ϕ(x)dx∫

x∈X [π11(xi, x) + λiπ22(x, xi)]ϕ(x)dx
. (4)

8The condition under which the optimal actions of all individuals lie in X is
∫
x∈X [π1(a, x) +

λmaxπ2(x, a)]ϕ(x)dx ≤ 0 ≤
∫
x∈X [π1(a, x) + λminπ2(x, a)]ϕ(x)dx.

8
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Because there are spillovers (π2 > 0), the numerator of the fraction on the right-hand

side is positive, and we know that the denominator is negative. Hence, dxi/dλi > 0, that

is, the optimal actions are monotonically increasing in altruism given any expectations,

including the correct ones. Therefore, any equilibrium in which individuals share correct

expectations consists of monotone strategies as long as an equilibrium exists. Intuitively,

this is because a more altruistic individual chooses a greater action by partly sacrificing

his own material payoff to benefit his opponents through spillovers.

Under the assumptions stated in the previous section, it can be shown that the pop-

ulation game in which the two-player game G is played has a unique pure-strategy equi-

librium. As the above argument suggests, the equilibrium is in monotone strategies.

Proposition 1. Consider a population game in which altruistic individuals are randomly

paired to play a supermodular game with positive spillovers, G. Then, under Assumptions

1–3, the population game has a unique monotone pure-strategy equilibrium.

Proof. Let G′ = {X,Λ, f, Ui} be a two-player symmetric Bayesian game in which players’

types are independent. The utility function Ui is given by (2), and a density function

f gives players’ common beliefs about their opponents’ types. Because G′ is symmetric,

if there exists a unique equilibrium, it must be symmetric (Theorem 4.5 in Reny [22]).

Thus, we restrict attention to a symmetric equilibrium. First, it will be shown that the

Bayesian game G′ has a unique monotone pure-strategy equilibrium. Next, we show that

there exists a one-to-one correspondence between a symmetric Bayesian equilibrium of

G′ and an equilibrium of the population game with G.

Existence and uniqueness of a monotone pure-strategy equilibrium of G′:

This part of the proof is based on Mason and Valentinyi [19]. Assumptions 3, 1, and

2 correspond to assumptions U1, U2, and D2 in their paper. Because players’ types are

independent in our model, their assumption D1 always holds as well. They establish

that if assumptions U1, U2, D1, and D2 hold, Bayesian games have a unique monotone

pure-strategy equilibrium. Therefore, the Bayesian game G′ has a unique monotone

pure-strategy equilibrium.

One-to-one correspondence between an equilibrium of G′ and an equilibrium of the

population game:

Next, we show that there is a one-to-one correspondence between a Bayesian equi-

librium of G′, s∗(λi), and the equilibrium actions of individuals in the population game,

x∗(λi).

(1) s∗(λi)⇒ x∗(λi): In a Bayesian equilibrium s∗(λi), given the expectations about the

opponents’ types f(λ) and strategy s∗(λ), the optimal strategy for both players is s∗(λi)

for each possible λi ∈ Λ. In other words, s∗(λi) for each λi ∈ Λ is the optimal action

9
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for a player given the expectation that the other player will choose s∗(λ) with density

f(λ). Let ϕ∗(x) ≡ ϕ(s∗(λ)) = f(λ) be the probability density function of opponents’

actions in the population game. ϕ∗ means that the density of x = s∗(λ) is given by

f(λ). Thus, the optimal action of an individual with altruism λi in the population game

is s∗(λi). If every individual in the population game chooses an action according to

x∗(λi) = s∗(λi), the probability density with which an opponent takes action x = s∗(λ) is

ϕ∗(x) = f(λ). Thus, the expectation ϕ∗ is self-fulfilling. This means that x∗(λi) = s∗(λi)

and ϕ∗(x) (≡ ϕ(x∗(λ)) = f(λ)) constitute a population equilibrium.

(2) x∗(λi)⇒ s∗(λi): Conversely, let {x∗(λi), ϕ∗(x)} be a population equilibrium. That

is, x∗(λi) is the optimal action of an individual with λi given the probability density

of his opponents’ actions, ϕ∗(x). The support of ϕ∗(x) is given by the set of x such

that x = x∗(λ) for some λ ∈ Λ. Because altruism is distributed according to f and

because the optimal actions are strictly increasing in altruism, it must be the case that

ϕ∗(x) = ϕ(x∗(λ)) = f(λ). This means that if an opponent chooses x∗(λ) with probabil-

ity density f(λ), the optimal action for an individual with altruism λi is x∗(λi). Thus,

s∗(λi) = x∗(λi) for both players under the expectations of types f(λ) is a Bayesian

equilibrium of G′.

From (1) and (2), we have x∗(λi) = s∗(λi) for ∀λi ∈ Λ. Therefore, if G′ has a unique

monotone pure-strategy equilibrium, the population equilibrium must also be a unique

monotone pure-strategy equilibrium. This completes the proof of Proposition 1.

Because the equilibrium actions in the population game and the equilibrium strategy

in the corresponding Bayesian game are equivalent, we will use whichever is convenient

for our purposes in the following analysis.

3.2 Extent of spillover effects and altruism

Given that the population game has a unique monotone pure-strategy equilibrium, we

next investigate how the ultimate distribution of altruism changes as the extent of

spillover effects varies. In particular, we compare two supermodular games with positive

spillovers, Ĝ = (X, π̂) and G = (X, π), where the spillovers and their overall marginal

effects are greater in the former than in the latter.

To be more precise, we additionally make the following assumptions. First, we assume

that π̂2(xj, xi) is greater than π2(xj, xi) such that π2(xj, x
∗(λi)) < π̂2(xj, x̂

∗(λi)) holds for

∀xj ∈ X and ∀λi ∈ Λ, where x∗(λi) and x̂∗(λi) are the equilibrium actions in G and

Ĝ, respectively, and that π22(xj, xi) < π̂22(xj, xi) for ∀(xj, xi) ∈ X2. That is, both the

spillovers and their marginal changes are greater in Ĝ than in G. Second, under positive

spillovers, the marginal payoff to an individual’s own action is assumed to decrease at

a slower rate as his opponent’s action increases: π112(xi, xj) ≥ 0. It is also assumed

that the marginal spillover benefits to the opponent are non-decreasing as the opponent’s

10
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action increases: π221(xj, xi) ≥ 0. Let us call Ĝ a game with larger spillover effects than

G. In order to focus on the effect of spillovers, the effect of an individual’s action on his

own payoff is the same in the two games: π1 = π̂1 and π11 = π̂11. Also, we focus on the

case in which the marginal payoffs to the individual and his opponent with respect to the

individual’s action decrease at a weakly slower rate as the individual’s action increases:

π111(xi, xj) ≥ 0 and π222(xj, xi) ≥ 0.

As already noted, altruistic individuals choose greater actions as the spillover benefits

to their opponents increase. Hence, the following result is quite intuitive (though the

proof is somewhat complicated):

Proposition 2. Consider two population games in which the supermodular games G and

Ĝ are played, where Ĝ has larger spillover effects than G. Then, the equilibrium action for

an individual with any level of strictly positive altruism is strictly greater in the population

game with Ĝ than in the population game with G.

Proof. Let x∗(λi) and x̂∗(λi) be the unique population equilibria with G and Ĝ, re-

spectively. Also, let s∗(λi) and ŝ∗(λi) be the unique Bayesian equilibria of G′ and

Ĝ′ = {X,Λ, f, Ûi}, respectively, where Ûi(xi, xj, λi) = π̂(xi, xj) + λiπ̂(xj, xi).

To prove the proposition, we show that the Bayesian equilibrium of Ĝ′ is greater than

that of G′ for all positive λi, that is, s∗(λi) < ŝ∗(λi) for all λi ∈ Λ′, where Λ′ ≡ Λ\{0}. If

so, we can conclude that x∗(λi) < x̂∗(λi) because, as is clear from the proof of Proposition

1, the equilibrium actions in the two population games are given by x∗(λi) = s∗(λi) and

x̂∗(λi) = ŝ∗(λi).

Let s(λ) be an arbitrary monotone pure strategy. Given s(λ), a player solves the fol-

lowing maximization problems for each λi in the Bayesian games G′ and Ĝ′, respectively:

max
xi

L(xi, λi; s, f) ≡
∫
λ∈Λ

[π(xi, s(λ)) + λiπ(s(λ), xi)] f(λ)dλ

and

max
xi

L̂(xi, λi; s, f) ≡
∫
λ∈Λ

[π̂(xi, s(λ)) + λiπ̂(s(λ), xi)] f(λ)dλ.

Because the integrands in the above expressions are continuous with respect to λ and

continuously differentiable with respect to xi, the order of differentiation and integration

is, again, interchangeable. Thus, the first-order conditions are given by

L1(xi, λi; s, f) ≡
∫
λ∈Λ

[π1(xi, s(λ)) + λiπ2(s(λ), xi)] f(λ)dλ = 0 (5)

and

L̂1(xi, λi; s, f) ≡
∫
λ∈Λ

[π̂1(xi, s(λ)) + λiπ̂2(s(λ), xi)] f(λ)dλ = 0. (6)

From π1 = π̂1 and π2 < π̂2, we have L1 < L̂1 for all xi ∈ X and λi ∈ Λ′. In addition,
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from π11 = π̂11(< 0) and π22 < π̂22(< 0), the second-order derivatives of L and L̂ satisfy

L11 < L̂11 < 0 for ∀λi ∈ Λ′. Therefore, the optimal action for any positive λi is greater

in Ĝ′ than in G′.9 (The optimal action for λi = 0 is the same for G′ and Ĝ′.)

Let Σ be the set of monotone pure strategies. We equip Σ with the following metric,

which has been introduced by Mason and Valentinyi [19]:

d(s, s′) ≡ sup
%∈X
{λ′i − λi|s(τi) < % < s′(τi) or s′(τi) < % < s(τi),∀τi s.t. λi ≤ τi ≤ λ′i}. (7)

Intuitively speaking, this metric is the supremum of the horizontal distance between two

strategies. As Mason and Valentinyi point out, (Σ, d) is a complete metric space. Next,

let T : Σ → Σ and T̂ : Σ → Σ denote the best-response functions in games G′ and

Ĝ′, respectively. From the above argument, Ts(λ) < T̂s(λ) for λi ∈ Λ′. Because Ĝ′ is

supermodular, L̂1 is weakly increasing in s(λ). Combining this fact with Ts(λ) < T̂s(λ)

yields T 2s(λ) < T̂ 2s(λ) for all λ ∈ Λ′, where T 2s(λ) = T (Ts(λ)) and T̂ 2s(λ) = T̂ (T̂ s(λ)).

By induction, we have T ns(λ) < T̂ ns(λ) for any n ∈ N , where N denotes the set of

natural numbers. Hence, limn→∞ T
ns(λ) ≤ limn→∞ T̂

ns(λ). Under Assumptions 1–3,

T and T̂ are contractions (Theorem 4 in Mason and Valentinyi [19]). Thus, by the

contraction mapping theorem, we have: s∗(λ) = limn→∞ T
ns(λ) ≤ limn→∞ T̂

ns(λ) =

ŝ∗(λ). We next show that the strict inequality s∗(λ) < ŝ∗(λ) holds for all λ ∈ Λ′. From

s∗(λ) ≤ ŝ∗(λ), we have L1(xi, λi; s
∗, f) < L̂1(xi, λi; ŝ

∗, f) for ∀xi ∈ X and ∀λi ∈ Λ′. Thus,

from L11, L̂11 < 0, s∗(λi) < ŝ∗(λi) holds for ∀λi ∈ Λ′. Therefore, we can conclude that

the equilibrium actions in the population game with Ĝ are strictly greater than those in

the population game with G for all altruistic individuals: (s∗(λi) =) x∗(λi) < x̂∗(λi) (=

ŝ∗(λi)) for ∀λi ∈ Λ′.

Furthermore, we obtain the following result, which leads to Proposition 3 below.

Lemma 1. A marginal increase in the equilibrium action with an increase in altruism is

greater in the population game with Ĝ than in the population game with G. Therefore,

the difference between the equilibrium actions for any two individuals with different levels

of altruism is greater in the population game with Ĝ than in the population game with G.

Proof. Differentiating s∗ and ŝ∗ with respect to λi yields:

ds∗(λi)

dλi
= −

∫
λ∈Λ

π2(s∗(λ), s∗(λi))f(λ)dλ∫
λ∈Λ

[π11(s∗(λi), s∗(λ)) + λiπ22(s∗(λ), s∗(λi))] f(λ)dλ
(> 0) (8)

and
dŝ∗(λi)

dλi
= −

∫
λ∈Λ

π̂2(ŝ∗(λ), ŝ∗(λi))f(λ)dλ∫
λ∈Λ

[π̂11(ŝ∗(λi), ŝ∗(λ)) + λiπ̂22(ŝ∗(λ), ŝ∗(λi))] f(λ)dλ
(> 0). (9)

9The optimal actions for all λi ∈ Λ lie in X if L̂1(a, λmax; s, f) ≤ 0 ≤ L1(a, λmin; s, f) holds.
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From the assumption stated at the beginning of this subsection, the supermodularity

of π̂, and Proposition 2, π2(s∗(λ), s∗(λi)) < π̂2(s∗(λ), ŝ∗(λi)) ≤ π̂2(ŝ∗(λ), ŝ∗(λi)) for all

λi, λ ∈ Λ. Hence, the numerator of the fraction on the right-hand side of (9) is greater

than that on the right-hand side of (8). Then, from π111, π112 ≥ 0 and Proposition 2,

π11(s∗(λi), s
∗(λ)) ≤ π11(ŝ∗(λi), s

∗(λ)) ≤ π11(ŝ∗(λi), ŝ
∗(λ)) = π̂11(ŝ∗(λi), ŝ

∗(λ))(< 0) holds

for all λi, λ ∈ Λ. In addition, from π222, π221 ≥ 0, π22 < π̂22, and Proposition 2, we have

π22(s∗(λ), s∗(λi)) ≤ π22(ŝ∗(λ), ŝ∗(λi)) < π̂22(ŝ∗(λ), ŝ∗(λi))(< 0). Thus, the denominator

of the fraction on the right-hand side of (9) is negative but greater than that on the

right-hand side of (8). Therefore, (0 <) ds∗(λi)/dλi < dŝ∗(λi)/dλi holds for ∀λi ∈ Λ′.

From x∗(λi) = s∗(λi) and x̂∗(λi) = ŝ∗(λi) for ∀λi ∈ Λ, we have dx∗(λi)/dλi < dx̂∗(λi)/dλi

for ∀λi ∈ Λ′.

It follows that for any λi and λ′i(> λi),

x∗(λ′i)− x∗(λi) =

∫ λ′i

λi

dx∗(λ)

dλ
dλ <

∫ λ′i

λi

dx̂∗(λ)

dλ
dλ = x̂∗(λ′i)− x̂∗(λi).

Thus, the difference between the optimal actions of any two individuals with different

levels of altruism is greater in the population game with Ĝ than in the population game

with G.

As an individual’s action increases, his marginal utility decreases. However, under pos-

itive spillovers, the marginal payoffs to the individual and his opponent with respect to his

action decrease at a weakly slower rate as the opponent’s action increases (π112(xi, xj) ≥ 0

and π221(xj, xi) ≥ 0). Because all individuals choose greater actions in Ĝ, the marginal

utility of each individual with respect to his own action decreases more slowly with an

increase in his action in Ĝ than in G. In addition, because of greater spillovers, a marginal

increase in the degree of altruism raises the marginal utility with respect to the individ-

ual’s own action more in Ĝ than in G. The above proposition results from these two

factors.

Each young individual’s altruism changes according to the difference between the

average action of his opponents and his own action (see Eq. (3)). From Lemma 1, we

obtain the following result:

Proposition 3. Suppose that there are two societies, society G and society Ĝ, with

the same initial distribution of altruism among young children. In societies G and Ĝ,

individuals are randomly and repeatedly paired to play the supermodular games G and Ĝ,

respectively, where Ĝ has larger spillover effects than G. Then, either (i) the minimum

altruism among old individuals in society Ĝ is higher than that in society G, (ii) the

maximum altruism among old individuals in society Ĝ is lower than that in society G, or

both. As the equilibrium actions in these societies become closer to linear with respect to

the degree of altruism, it becomes more likely that both (i) and (ii) occur.
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Proof. Let m and m̂ be the average equilibrium actions in societies G and Ĝ, respec-

tively. Let x∗−1 and x̂∗−1 denote the inverse function of the equilibrium actions x∗ and

x̂∗, respectively. Then, either (i) x∗−1(m) < x̂∗−1(m̂), (ii) x∗−1(m) > x̂∗−1(m̂), or (iii)

x∗−1(m) = x̂∗−1(m̂) holds. In the first case, from dx∗(λi)/dλi < dx̂∗(λi)/dλi, the dif-

ference between the average action and an individual’s equilibrium action in society Ĝ,

∆̂i = m̂ − x̂∗(λi), is greater than that in society G, ∆i = m − x∗(λi), for all λi weakly

less than x̂∗−1(m̂). Consequently, the levels of altruism of old individuals whose initial

altruism levels were included in the range [λmin, x̂
∗−1(m̂)] are higher in society Ĝ than in

society G. Therefore, the minimum altruism in society Ĝ is higher than that in society G:

min{λoldi }i∈I < min{λ̂oldi }i∈I . On the other hand, in case (ii), ∆i and ∆̂i satisfy ∆̂i < ∆i

for all λi ∈ [x̂∗−1(m̂), λmax]. This means that the altruism levels of old individuals whose

initial altruism levels were included in the range [x̂∗−1(m̂), λmax] are lower in society Ĝ

than in society G. Hence, the maximum altruism in society Ĝ is lower than that in

society G: max{λ̂oldi }i∈I < max{λoldi }i∈I . In case (iii), ∆i < ∆̂i for λi ∈ [λmin, x
∗−1(m)),

and ∆̂i < ∆i for λi ∈ (x∗−1(m), λmax]. It follows that λoldi (λi,∆i) < λ̂oldi (λi, ∆̂i) for

λi ∈ [λmin, x
∗−1(m)) and λ̂oldi (λi, ∆̂i) < λoldi (λi,∆i) for λi ∈ (x∗−1(m), λmax]. Therefore,

the distribution of old individuals’ altruism in society Ĝ second-order stochastically dom-

inates that of society G, or equivalently, the latter is a mean-preserving spread of the

former. As x∗ and x̂∗ become closer to linear, x∗−1(m) and x̂∗−1(m̂) approach the average

initial altruism λ̄(≡
∫
λ∈Λ

λf(λ)dλ) and, as a result, it becomes more likely that both

min{λoldi }i∈I < min{λ̂oldi }i∈I and max{λ̂oldi }i∈I < max{λoldi }i∈I hold, that is, the range of

old individuals’ altruism in society Ĝ is included in that of society G.

In the special case of linear equilibrium actions, we have a more clear-cut result as

follows:

Corollary 1. If the equilibrium actions in both societies are linear with respect to altru-

ism, the distribution of old individuals’ altruism in society G is a mean-preserving spread

of that of society Ĝ.

Proof. This directly follows from the proof of Proposition 3 because if x∗ and x̂∗ are

linear, we have x∗−1(m) = x̂∗−1(m̂) = λ̄.

The above results state that if two societies start from the same initial distribution

of young children’s altruism and if the interactions between individuals in these societies

can be represented by a supermodular game, then the range of old individuals’ altruism

in the society with smaller spillover effects is never included in that of the society with

larger spillover effects. Furthermore, when the equilibrium actions of individuals are

proportional to the degree of altruism, individuals in the society with larger spillover

effects become more homogeneous than those in the society with smaller spillover effects.
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We do not obtain the above stated results from increases in productivity (i.e., increases

in π1(xi, xj) and π11(xi, xj)). This is because, although an increase in an opponent’s

action raises spillover benefits to the opponent (by supermodularity), an increase in an

individual’s action reduces spillover benefits (π22(xj, xi) < 0). It follows that the marginal

increase in the equilibrium actions with respect to the degree of altruism under higher

productivity may or may not be greater than that under lower productivity (see (8) and

(9), in particular the numerators). Thus, we do not obtain Proposition 3 and Corollary 1.

The results are also ambiguous in the cases of submodular games with positive or negative

spillovers. As seen in the proof of Proposition 2, the best response given an opponent’s

strategy s(λ), Ts(λ), is greater the greater the spillovers, whether positive or negative.10

If the game is submodular, however, the best response is lower when the opponent’s

strategy is greater. Thus, it cannot be determined which of T 2s(λ) and T̂ 2s(λ) is greater,

where T̂ is the best response function for the game with greater spillovers. Furthermore,

in the case of supermodular games with negative spillovers, the equilibrium actions are

inversely monotone in the degree of altruism but are still greater in a game with smaller

negative spillovers. Then, the marginal increase in the equilibrium actions with respect to

altruism for a game with smaller negative spillovers may or may not be greater than that

for a game with larger negative spillovers, because the absolute values of the numerator

and the denominator of the fraction showing the former are both smaller than those of

the fraction showing the latter (see, again, (8) and (9)). Therefore, both supermodularity

and positive spillovers constitute sufficient conditions for Proposition 3 and Corollary 1.

4 Extension: N-player Games

The two-player games considered so far can be extended to N -player games. Suppose that

individuals are matched to play an N -player symmetric game, GN = ({1, 2, ..., N}, X, π),

where the payoff function is now defined on the set of vectors of N players’ actions, π :

XN → R. Let x−i denote the actions of the other players, x−i = (x1, ..., xi−1, xi+1, ..., xN) ∈
XN−1. The payoff function satisfies πi = π(xi,x−i) = π(xi,xσ(−i)), where σ is a permu-

tation of 1, ..., i− 1, i+ 1, ..., N . Suppose also that an individual cares about the material

payoffs of all the other individuals playing the game in addition to his own payoff. The

10We regard smaller negative spillovers as greater than larger negative spillovers.
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utility function of an individual with λi can be written as11

UN
i (xi,x−i, λi) = π(xi,x−i) + λi

∑
j 6=i

π(xj, xi).

Let us assume, in addition to Assumption 2, that for all i ∈ {1, ..., N},

|π1(xi,x−i) + λi
∑
j 6=i

π2(xj, xi)| ≤ ω for some positive ω

and ∑
j 6=i

π2(xj, xi) ≥ δ for δ > 2νω

hold, which respectively correspond to Assumptions 1 and 3 in the case of two-player

games. These assumptions guarantee, again, that there exists a unique monotone pure-

strategy equilibrium in the corresponding symmetric N -player Bayesian game G′N =

(X,Λ, f, UN
i ), where individuals’ altruism is independently drawn according to the density

function f .12

Another change must be made to an individual’s maximization problem. Suppose

that an individual expects that his opponents’ actions are distributed according to the

density function ϕ(x). Then, his maximization problem is now written as

max
xi

∫
x−i∈X−i

UN
i (xi,x−i, λi)Πj 6=iϕ(xj)dx−i,

where X−i is the space of all the profiles of the other individuals’ actions.

Given the above modifications, it is straightforward to check that the results obtained

in the previous section continue to hold for N -player games under slightly modified as-

sumptions.13 Therefore, we only state the main result without proof:

Proposition 4. Consider two societies with the same initial distribution of young chil-

dren’s altruism. In one society, an N-player supermodular game GN is played, and in

the other society, another N-player supermodular game ĜN is played. If ĜN has larger

spillover effects than GN , then the range of old individuals’ altruism in society GN is

never included in that of society ĜN . If the equilibrium actions in these societies are

11By simply rescaling λi, we could also consider the case in which each individual cares about the
average material payoff of the other players,

UN
i (xi,x−i, λi) = π(xi,x−i) + λ′iπ̄(xi,x−i),

where π̄(xi,x−i) ≡
∑

j 6=i π(xj , xi)/(N − 1) and λ′i = (N − 1)λi.
12Mason and Valentinyi [19] first derived these assumptions for N -player Bayesian games.
13For the assumptions stated at the beginning of subsection 3.2, the derivatives of the payoff functions

with respect to the second argument should be replaced by those with respect to k-th argument, where
k = 2, ..., N . For example, πk < π̂k should hold instead of π2 < π̂2.
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sufficiently close to linear, the latter is included in the former. If, in particular, the equi-

librium actions in both societies are linear, the distribution of altruism of society GN is

a mean-preserving spread of that of society ĜN .

5 Conclusion and Discussion

This paper attempted to find socio-economic determinants of people’s altruism and its

distribution. We identified supermodularity and the extent of positive spillover effects as

some of these determinants. That is, if the interactions between individuals in a society

can be represented by a supermodular game, then when spillover effects are relatively

large, either the lowest degree of altruism in the society is higher, the highest degree of

altruism in the society is lower, or both. As the equilibrium actions become close to

linear with respect to the degree of altruism, it becomes more likely that both occur. If,

in particular, the equilibrium actions are linear, the distribution of altruism under smaller

spillover effects is a mean-preserving spread of that under larger spillover effects.

To our knowledge, this study is the first attempt to identify socio-economic deter-

minants of the distribution of altruism. However, many important issues remain unad-

dressed in this paper. First, our analysis considers only one generation, and thus, the

vertical transmission of altruism from parents to children is not made explicit. As a result,

the long-run implications for the distribution of altruism are not examined. Second, we

found two socio-economic determinants of altruism, but we have not fully characterized

all the determinants. Searching for the other characteristics of a game that can affect

altruism formation should be worth the effort. Third, although we consider a random

matching model, it may also be of interest to analyze a model of repeated interactions

and to compare the results obtained from these two models because interactions within

a company, community, or village are often repeated within a closed group. The main

results of this paper may or may not be strengthened depending on how reputation effects

relate to the difference between individuals’ equilibrium actions. Finally, many theoretical

implications, including the ones obtained in this paper, await empirical scrutiny. These

challenging yet important issues are left for future research.
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