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A pressure-stabilized characteristics finite element scheme for the Oseen equations is pre-
sented. Stability and convergence results with the optimal error estimates for the velocity and the
pressure are proved. The scheme can deal with convection-dominated problems and leads to a
symmetric coefficient matrix of the system of linear equations. A cheap P1/P1 finite element is
employed and the degrees of freedom are smaller than that of other typical elements for the equa-
tions, e.g., P2/P1. Therefore, the scheme is efficient especially for three dimensional problems.
Two and three dimensional numerical results are shown to recognize the theoretical convergence
orders and applicability to the linear stability analysis of stationary flows for the Navier-Stokes
equations.
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1 Introduction
In this paper we present a combined finite element scheme with a pressure-stabilization and a charac-
teristics method for the Oseen equations, and prove its stability and error estimates. A corresponding
scheme to the Navier-Stokes equations has been proposed by us [21,23] and the theoretical analysis
will be given in a forthcoming paper [25].

The system of the Oseen equations is well known as a linearized model of the Navier-Stokes
equations and has been used to understand the incompressible fluid dynamics, e.g., the flows past a
cylinder and a sphere. Although the system is linear, the numerical treatment is not so easy especially
in the convection-dominant case. We focus on the following two issues in order to devise efficient
schemes.

The one is what pair of finite elements should be employed for the velocity and the pressure. The
well-known inf-sup condition [15] requires a restriction on the choice of elements. A typical pair of
elements satisfying the inf-sup condition is the so-called P2/P1 (Hood-Taylor) finite element [15],
i.e., continuous piecewise quadratic polynomial approximation to the velocity and continuous piece-
wise linear approximation to the pressure. The P2/P1 finite element is still expensive especially for
three dimensional computations, while it has a second order approximation property. On the other
hand, the P1/P1 finite element, i.e., continuous piecewise linear approximation to both the velocity
and the pressure, is cheap and useful for three dimensional computations, while it does not satisfy
the inf-sup condition and has a first order interpolation property. In [6] a pressure-stabilization tech-
nique has been originally proposed for the Stokes equations and a first order convergence has been
proved.

The other is how to discretize the convection term especially for convection-dominated (small
viscosity, high Reynolds number) problems. In order to deal with such problems a lot of ideas
have been proposed, e.g., upwind methods [1, 4, 7, 13, 17, 18, 32, 34], characteristics(-based) meth-
ods [3, 9, 11, 12, 21–24, 26–29] and so on. We note that the approximation based on the method of
characteristics is one of the least diffusive methods among them and has such a common advantage
that the resulting matrix of the system of linear equations is symmetric, which enables us to use
efficient linear iterative solvers for symmetric matrices, i.e., MINRES, CR and so on [2, 30].

In this paper we propose a combined finite element scheme with a pressure-stabilization and
a characteristics method for the Oseen equations, and prove its stability and error estimates. The
characteristics method works for convection-dominated problems, and the pressure-stabilization is
employed for the use of the cheap P1/P1 finite element. Since the scheme is symmetric by virtue
of the characteristics method, we can use efficient linear iterative solvers for symmetric matrices.
The resulting matrix is identical with respect to the time step and it is enough to make the matrix
only once at the first time step. The scheme is essentially unconditionally stable and has a first order
convergence property both in time and space.

Let m be a non-negative integer and Ω be a bounded domain in Rd(d = 2,3). We use the Sobolev
spaces W m,∞(Ω) and Hm(Ω) as well as Cm(Ω̄). For any normed space X with norm ‖ · ‖X , we
define function spaces Cm([0,T ];X) and Hm(0,T ;X) consisting of X-valued functions in Cm([0,T ])
and Hm(0,T ), respectively. We use the same notation (·, ·) to represent the L2(Ω) inner product for
scalar-, vector- and matrix-valued functions. L2

0(Ω) is a subspace of L2(Ω) defined by

L2
0(Ω) ≡

{
q ∈ L2(Ω); (q,1) = 0

}
.

We often omit [0,T ], Ω and/or d if there is no confusion, e.g., C0(H1) in place of C0([0,T ];H1(Ω)d).
For t0 and t1 ∈ R we introduce function spaces

Zm(t0, t1) ≡ {v ∈ H j(t0, t1;Hm− j(Ω)d); j = 0, · · · ,m, ‖v‖Zm(t0,t1) < ∞},
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and Zm ≡ Zm(0,T ), where the norm ‖v‖Zm(t0,t1) is defined by

‖v‖Zm(t0,t1) ≡ max
j=0,··· ,m

‖v‖H j(t0,t1;Hm− j(Ω)d).

The abbreviations LHS and RHS mean left- and right-hand sides, respectively.

2 A pressure-stabilized characteristics finite element scheme
In this section we present our pressure-stabilized characteristics finite element scheme for the Oseen
equations.

Let Ω be a bounded domain in Rd(d = 2,3), Γ ≡ ∂Ω be the boundary of Ω and T be a positive
constant. We consider an initial boundary value problem; find (u, p) : Ω × (0,T ) → Rd ×R such
that

Du
Dt

−∇
(
2νD(u)

)
+∇p+λu = f in Ω × (0,T ), (1a)

∇ ·u = 0 in Ω × (0,T ), (1b)
u = 0 on Γ × (0,T ), (1c)

u = u0 in Ω , at t = 0, (1d)

where u is the velocity, p is the pressure, f : Ω ×(0,T )→Rd is a given external force, u0 : Ω →Rd

is a given initial velocity, λ : Ω × (0,T ) → Rd×d is a given reaction rate, ν ∈ (0,ν0] is a viscosity
for a fixed ν0 > 0, D(u) is a strain-rate tensor defined by

Di j(u) ≡ 1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(i, j = 1, · · · ,d),

D/Dt is a material derivation defined by

D
Dt

≡ D
Dtw

≡ ∂
∂ t

+w ·∇,

where w : Ω × (0,T ) → Rd is a given velocity.

Remark 1. If w is replaced by u and λ = 0, (1) becomes the Navier-Stokes problem. Here, we focus
on the Oseen problem (1). The discussion of the Navier-Stokes problem will be presented in the
forthcoming paper [25].

We impose assumptions for the given velocity w and reaction rate λ .

Hypothesis 1. The function w satisfies{
w ∈C0([0,T ];W 1,∞(Ω)d),
w = 0 on Γ × [0,T ].

Hypothesis 2. The function λ satisfies

λ ∈C0([0,T ];L∞(Ω)d×d).
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Let V ≡ H1
0 (Ω)d and Q ≡ L2

0(Ω) be function spaces. We define bilinear forms a on V ×V , b on
V ×Q and A on (V ×Q)× (V ×Q) by

a(u,v) ≡ 2
(
D(u), D(v)

)
, b(v,q) ≡−(∇ · v, q),

A ((u, p),(v,q)) ≡ νa(u,v)+b(v, p)+b(u,q),

respectively. Then, we can write the weak formulation of (1); find (u, p) : (0,T )→V ×Q such that,
for t ∈ (0,T ),(Du

Dt
(t),v

)
+A ((u, p)(t),(v,q))+(λ (t)u(t),v) = ( f (t),v), ∀(v,q) ∈V ×Q, (2)

with u(0) = u0.
We introduce a basic idea of the method of characteristics. Let X : (0,T ) → Rd be a solution of

the ordinary differential equation,

dX
dt

= w(X , t). (3)

Then, for a smooth function u : Ω × (0,T ) → Rd it holds that

Du
Dt

(X(t), t) =
d
dt

u
(
X(t), t

)
.

Let ∆t be a time increment, tn ≡ n∆t for n ∈ N∪{0} and X(·;x, tn) be the solution of (3) satisfying
an initial condition X(tn) = x. Then, we can consider a first order approximation of the material
derivative at t = tn(n ≥ 1) as follows.

Du
Dt

(x, tn) =
d
dt

u
(
X(t;x, tn), t

)∣∣∣
t=tn

=
u(X(tn;x, tn), tn)−u(X(tn−1;x, tn), tn−1)

∆t
+O(∆t)

=
un −un−1 ◦Xn

1
∆t

(x)+O(∆t), (4)

where Xn
1 (x) is a function defined by

Xn
1 (x) ≡ x−wn(x)∆t,

and we have used notations, un ≡ u(·, tn) and

v◦Xn
1 (x) ≡ v(Xn

1 (x)).

The point Xn
1 (x) is called an upwind point of x. The approximation (4) of Du/Dt is a basic idea to

devise numerical schemes based on the method of characteristics. The idea has been combined with
finite element and difference methods, cf. [9, 22, 24, 27, 29].

The next proposition proved in [29] gives a sufficient condition to guarantee all upwind points
are in Ω .

Proposition 1 ( [29], Proposition 1). Under Hypothesis 1 and the inequality

∆t <
1

‖w‖C0(W 1,∞(Ω))
, (5)

it holds that, for any n = 0, · · · ,NT ,

Xn
1 (Ω) = Ω .
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For the sake of simplicity we assume Ω is a polygonal (d = 2) or polyhedral (d = 3) domain. Let
Th = {K} be a triangulation of Ω̄ (=

∪
K∈Th

K), hK be a diameter of K ∈ Th, and h ≡ maxK∈Th hK
be the maximum element size. We consider a regular family of subdivisions {Th}h↓0 satisfying the
inverse assumption [8], i.e., there exists a positive constant α0, independent of h, such that

h
hK

≤ α0, ∀K ∈
∪
h

Th. (6)

We define function spaces Xh, Mh, Vh and Qh by

Xh ≡ {vh ∈C0(Ω̄h)d ; vh|K ∈ P1(K)d , ∀K ∈ Th},
Mh ≡ {qh ∈C0(Ω̄h); qh|K ∈ P1(K), ∀K ∈ Th},

Vh ≡ Xh ∩V and Qh ≡ Mh ∩Q, respectively, where P1(K) is a polynomial space of linear functions
on K ∈ Th. Let NT ≡ [T/∆t] be a total number of time steps, δ0 be a positive constant and (·, ·)K
be the L2(K)d inner product. We define bilinear forms Ch on H1(Ω)×H1(Ω) and Ah on (V ×
H1(Ω))× (V ×H1(Ω)) by

Ch(p,q) ≡−δ0 ∑
K∈Th

h2
K(∇p, ∇q)K ,

Ah((u, p),(v,q)) ≡ νa(u,v)+b(v, p)+b(u,q)+
1
ν

Ch(p,q),

respectively. Suppose that f ∈ C0([0,T ];L2(Ω)d) and u0 ∈ V . Let an approximate function u0
h ∈

Vh of u0 be given. Our pressure-stabilized characteristics finite element scheme for (1) is to find
{(un

h, pn
h)}

NT
n=1 ⊂Vh ×Qh such that, for n = 1, · · · ,NT ,(un

h −un−1
h ◦Xn

1
∆t

,vh

)
+Ah((un

h, pn
h),(vh,qh))+(λ nun−1

h ,vh)

= ( f n,vh), ∀(vh,qh) ∈Vh ×Qh. (7)

Remark 2. (i) We can replace the third term by (λ nun
h,vh) and prove the stability and convergence

of the scheme. The scheme, however, loses such an advantage of the Galerkin characteristics method
that the resulting matrix is symmetric unless λ is symmetric. That is the reason why we consider
scheme (7). (ii) The choice of the coefficient 1/ν before Ch(p,q) is natural from the theoretical
point of view as shown in Lemma 5 below. (iii) Scheme (7) leads to the symmetric matrix of the
form (

A BT

B C

)
,

where A, B and C are corresponding to 1
∆t (u

n
h,vh)+ νa(un

h,vh), b(un
h,qh) and 1

ν Ch(pn
h,qh), respec-

tively, and the matrix is independent of the given velocity w and time step n.

We also prepare the following problem which generalizes (7). Let fh = { f n
h }

NT
n=1 ⊂ L2(Ω)d ,

gh = {gn
h}

NT
n=1 ⊂ H1(Ω) and u0

h ∈Vh be given. The problem is to find {(un
h, pn

h)}
NT
n=1 ⊂Vh ×Qh such

that, for n = 1, · · · ,NT ,(un
h −un−1

h ◦Xn
1

∆t
,vh

)
+Ah((un

h, pn
h),(vh,qh))+(λ nun−1

h ,vh)

= ( f n
h ,vh)+

1
ν

Ch(gn
h,qh), ∀(vh,qh) ∈Vh ×Qh. (8)

Remark 3. When fh = f and gh = 0, problem (8) reduces to (7).
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3 Main results
In this section we present the main results of stability and error estimates, which are proved in
section 4.

We use c to represent the generic positive constant independent of the discretization parameters
h and ∆t, and it can take different values at different places. c(A) means a positive constant, which
monotonically increases as A increases. For i = 0,1,2 and 3 constants ci have particular meanings
in this paper,

c0 = c(‖w‖C0(L∞)), c1 = c(‖w‖C0(W 1,∞)), c2 = c(‖λ‖C0(L∞)), c3 = max{c1,c2},

respectively. We use norms and seminorms, ‖ · ‖k ≡ ‖ · ‖Hk(Ω) (k = 0,1,2), ‖ · ‖Vh ≡ ‖ · ‖V ≡ ‖ · ‖1,
‖ · ‖Qh ≡ ‖ · ‖Q ≡ ‖ · ‖0, ‖(v,q)‖V×Q,ν ≡ {ν‖v‖2

V + (1/ν)‖q‖2
Q}1/2, ‖(v,q)‖V×Q ≡ ‖(v,q)‖V×Q,1,

‖(v,q)‖H2×H1,ν ≡ {ν‖v‖2
2 +(1/ν)‖q‖2

1}1/2,

‖u‖l∞(X) ≡ max
n=0,··· ,NT

‖un‖X , ‖u‖l2(X) ≡
{

∆t
NT

∑
n=1

‖un‖2
X

}1/2
,

|q|h ≡
{

∑
K∈Th

h2
K(∇q,∇q)K

}1/2
, |p|l2(|·|h) ≡

{
∆t

NT

∑
n=1

|pn|2h
}1/2

,

‖(u, p)‖H1(t0,t1;H2×H1,ν) ≡
{

∑
k=0,1

∥∥∥ ∂ k

∂ tk (u, p)(t)
∥∥∥2

L2(t0,t1;H2×H1,ν)

}1/2
,

for X = L2(Ω) and H1(Ω). D∆t is the backward difference operator defined by

D∆tan ≡ an −an−1

∆t
.

First we show the stability result.

Theorem 1 (stability). (i) Suppose that Hypotheses 1 and 2 hold. Let ∆t0 be any fixed positive
number satisfying (5). For any ∆t ∈ (0,∆t0], fh = { f n

h }
NT
n=1 ⊂ L2(Ω)d , gh = {gn

h}
NT
n=1 ⊂ H1(Ω) and

u0
h ∈Vh, there exists a unique solution (uh, ph) of scheme (8), and it holds that

‖uh‖l∞(L2),
√

ν‖uh‖l2(H1),
1√
ν
|ph|l2(|·|h) ≤ c3(‖u0

h‖0 +‖ fh‖l2(L2) +
1√
ν
|gh|l2(|·|h)). (9)

(ii) Moreover, suppose that there exist p0
h ∈ Qh and g0

h ∈ H1(Ω) such that

b(u0
h,qh)+

1
ν

Ch(p0
h,qh) =

1
ν

Ch(g0
h,qh), ∀qh ∈ Qh. (10)

Then, it holds that
√

ν‖uh‖l∞(H1), ‖D∆tuh‖l2(L2), ‖ph‖l2(L2)

≤ c3(1/ν)
(
‖u0

h‖1 + |p0
h|h +‖ fh‖l2(L2) +

1√
ν
|gh|l2(|·|h) +

1√
ν
|D∆tgh|l2(|·|h)

)
. (11)

Corollary 1. (i) Suppose that Hypotheses 1 and 2 hold. Let f ∈C0([0,T ];L2(Ω)d) be given. Let ∆t0
be any fixed positive number satisfying (5). For any ∆t ∈ (0,∆t0] and u0

h ∈ Vh there exists a unique
solution (uh, ph) of scheme (7), and it holds that

‖uh‖l∞(L2),
√

ν‖uh‖l2(H1),
1√
ν
|ph|l2(|·|h) ≤ c3(‖u0

h‖0 +‖ f‖l2(L2)). (12)
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(ii) Moreover, suppose there exists p0
h ∈ Qh such that

b(u0
h,qh)+

1
ν

Ch(p0
h,qh) = 0, ∀qh ∈ Qh. (13)

Then, it holds that
√

ν‖uh‖l∞(H1), ‖D∆tuh‖l2(L2), ‖ph‖l2(L2) ≤ c3(1/ν)(‖u0
h‖1 + |p0

h|h +‖ f‖l2(L2)).

Remark 4. (i) Since the constant c3 in (12) is independent of ν , scheme (7) is stable even when
ν tends to 0. (ii) Corollary 1 is obtained by setting fh = f and gh = 0 in Theorem 1. (iii) The
relation (13) is satisfied if (u0

h, p0
h)∈Vh×Qh is chosen as Stokes projection of (u0,0) (cf. Definition 1

below).

We give error estimates after preparing a (pressure-stabilized) Stokes projection using P1/P1-
element and two hypotheses.

Definition 1 (Stokes projection). For (u, p) ∈ V × (Q∩H1(Ω)) we define the Stokes projection
(ûh, p̂h) ∈Vh ×Qh of (u, p) by

Ah((ûh, p̂h),(vh,qh)) = Ah((u, p),(vh,qh)), ∀(vh,qh) ∈Vh ×Qh. (14)

Hypothesis 3. The function u0 satisfies compatibility conditions ∇ ·u0 = 0 and u0 ∈ V .

Hypothesis 4. The solution (u, p) of (2) satisfies u∈C0([0,T ];V ∩H2(Ω)d)∩Z2∩H1(0,T ;H2(Ω)d)
and p ∈C0([0,T ];Q∩H1(Ω))∩H1(0,T ;H1(Ω)).

Theorem 2 (error estimate). (i) Let (u, p) be the solution of (2). Suppose Hypotheses 1–4 hold. Let
∆t0 be any fixed positive number satisfying (5). Then, for any ∆t ∈ (0,∆t0] the solution (uh, ph) of
scheme (7) satisfies

‖uh −u‖l∞(L2),
√

ν‖uh −u‖l2(H1),
1√
ν
|ph − p|l2(|·|h)

≤ c3

(
‖u0

h −u0‖0 +∆t‖u‖Z2 +
h√
ν
‖(u, p)‖C0([0,T ];H2×H1,ν)∩H1(0,T ;H2×H1,ν)

)
. (15)

(ii) Moreover, suppose u0
h is the first component of the Stokes projection of (u0,0) by (14). Then, it

holds that

√
ν‖uh −u‖l∞(H1),

∥∥∥D∆tuh −
∂u
∂ t

∥∥∥
l2(L2)

, ‖ph − p‖l2(L2)

≤ c3(1/ν)
(

∆t‖u‖Z2 +
h√
ν
‖(u, p)‖C0([0,T ];H2×H1,ν)∩H1(0,T ;H2×H1,ν)

)
. (16)

Remark 5. (i) RHS of (15) is of O(∆t + h) if u0
h ∈ Vh satisfies ‖u0

h − u0‖0 ≤ ch, e.g., we can take
u0

h = Πhu0 for the linear interpolation operator Πh : C0(Ω̄) → Vh, or the first component of the
Stokes projection of (u0,0) by (14). (ii) In (15) the constant c3 is independent of ν .

4 Proofs of Theorems 1 and 2
This section is devoted to the proofs of Theorems 1 and 2.
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4.1 Preliminaries
First we prepare six lemmas and a proposition to be used in the proofs. We omit the proofs of the
first three lemmas only by referring to the related bibliography.

Lemma 1 (discrete Gronwall inequality, [16, 33]). Let a0 and a1 be non-negative numbers, ∆t ∈
(0,1/(2a0)] be a number, and {xn}n≥0, {yn}n≥1 and {bn}n≥1 be non-negative sequences. Suppose

D∆txn + yn ≤ a0xn +a1xn−1 +bn, ∀n ≥ 1.

Then, it holds that

xn +∆t
n

∑
i=1

yi ≤ exp
{

3(a0 +a1)n∆t
}(

x0 +∆t
n

∑
i=1

bi

)
, ∀n ≥ 1.

Lemma 2 (Korn inequality, [10]). Let Ω be a bounded domain with a Lipschitz-continuous bound-
ary. Then, we have the followings.
(i) There exists a positive constant α1 such that

(‖D(v)‖2
0 +‖v‖2

0)
1/2 ≥ α1‖v‖1, ∀v ∈ H1(Ω)d .

(ii) The norms ‖D(·)‖0 and ‖ · ‖1 are equivalent in H1
0 (Ω)d .

Lemma 3 ( [29]). Assume Hypothesis 1 and (5). Then, it holds that, for any n ∈ {0, · · · ,NT},

‖v◦Xn
1 ‖0 ≤ (1+ c1∆t)‖v‖0, ∀v ∈ L2(Ω)d . (17)

The next lemma is proved easily by a scaling argument.

Lemma 4. Let {Th}h↓0 be a regular family of triangulations of Ω̄ . Then, there exists a positive
constant α2 such that

|qh|h ≤ α2‖qh‖0, ∀qh ∈ Qh. (18)

The next lemma shows a modified version of the stability inequality in [5, 14], and the lemma
easily yields the following Proposition 2.

Lemma 5. There exists a positive constant γ0, independent of h and ν , such that

inf
(uh,ph)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

Ah((uh, ph),(vh,qh))
‖(uh, ph)‖V×Q,ν‖(vh,qh)‖V×Q,ν

≥ γ0. (19)

Proof. Introducing (ũh, p̃h) ≡ (
√

νuh,(1/
√

ν)ph) and (ṽh, q̃h) ≡ (
√

νvh,(1/
√

ν)qh), we have

LHS of (19)

= inf
(uh,ph)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

νa(uh,vh)+b(vh, ph)+b(uh,qh)+ 1
ν Ch(ph,qh)

‖(uh, ph)‖V×Q,ν‖(vh,qh)‖V×Q,ν

= inf
(ũh,p̃h)∈Vh×Qh

sup
(ṽh,q̃h)∈Vh×Qh

a(ũh, ṽh)+b(ṽh, p̃h)+b(ũh, q̃h)+Ch(p̃h, q̃h)
‖(ũh, p̃h)‖V×Q‖(ṽh, q̃h)‖V×Q

≥ γ0,

where the last inequality has been proved in [5, 14].
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Remark 6. Although the conventional inf-sup condition [15],

inf
qh∈Qh

sup
vh∈Vh

b(vh,qh)
‖vh‖1‖qh‖0

≥ β ∗ > 0,

does not hold for the pair Vh and Qh of the P1/P1 finite element spaces, Ah satisfies the stability
inequality (19) for this pair.

Proposition 2. Suppose (u, p)∈ (V ∩H2(Ω)d)×(Q∩H1(Ω)), and u satisfies ∇ ·u = 0. Let (ûh, p̂h)
be the Stokes projection of (u, p) by (14). Then, it holds that

√
ν‖u− ûh‖1,

1√
ν
‖p− p̂h‖0,

1√
ν
|p− p̂h|h ≤ ch‖(u, p)‖H2×H1,ν . (20)

Lemma 6. Assume Hypothesis 1. Let ∆t0 be any fixed positive number satisfying (5). Then, for any
∆t ∈ (0,∆t0] and n ∈ {0, · · · ,NT} it holds that

‖u−u◦Xn
1 ‖0 ≤ c1∆t‖u‖1, ∀u ∈V, (21a)

(u−u◦Xn
1 ,v) ≤ c′1∆t‖u‖0‖v‖1, ∀u,v ∈V. (21b)

Proof. Let any n ∈ {0, · · · ,NT} be fixed. Let y(x) ≡ Xn
1 (x), and J(x) ≡ det(∂y/∂x) > 0 be the

Jacobian. Using J(x)−1 ≤ 1+ c1∆t,

u(x)−u(y) = [u(x+ s(y− x))]0s=1 = ∆t
∫ 1

0
[{wn(x) ·∇}u](x+ s(y− x))ds,

and the Schwarz inequality, we obtain (21a).
(21b) is proved as follows,

LHS of (21b) = (u,v)− (u◦Xn
1 ,v) = (u,v)−

∫
Ω

u(y)v((Xn
1 )−1(y))J(x)−1 dy

≤ ‖u‖0

{∫
Ω
{v(y)− v((Xn

1 )−1(y))J(x)−1}2 dy
}1/2

= ‖u‖0

{∫
Ω
{v◦Xn

1 (x)− v(x)J(x)−1}2J(x)dx
}1/2

≤ c1‖u‖0{‖v◦Xn
1 − v‖0 +‖v− vJ−1‖0} ≤ c1∆t‖u‖0{‖v‖1 +‖v‖0}

≤ c1∆t‖u‖0‖v‖1.

4.2 Proof of Theorem 1-(i)
Let (uh, ph) = {(un

h, pn
h)}

NT
n=1 ⊂ Vh ×Qh be the solution of scheme (8). Substituting (un

h,−pn
h) ∈

Vh ×Qh into (vh,qh) in (8), we have(un
h −un−1

h ◦Xn
1

∆t
,un

h

)
+νa(un

h,u
n
h)−

1
ν

Ch(pn
h, pn

h)+(λ nun−1
h ,un

h)

= ( f n
h ,un

h)−
1
ν

Ch(gn
h, pn

h). (22)

Let εi (i = 1,2) be any positive numbers. We have, by (21a),(un
h −un−1

h ◦Xn
1

∆t
,un

h

)
=

1
∆t

{1
2
(‖un

h‖2
0 −‖un−1

h ◦Xn
1 ‖2

0)+
1
2
‖un

h −un−1
h ◦Xn

1 ‖2
0

}
9
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≥ D∆t
(1

2
‖un

h‖2
0
)
− c1‖un−1

h ‖2
0, (23a)

νa(un
h,u

n
h) = 2ν‖D(un

h)‖2
0, (23b)

− 1
ν

Ch(pn
h, pn

h) =
δ0

ν
|pn

h|2h, (23c)

(λ nun−1
h ,un

h) ≥−c2
(
ε1‖un

h‖2
0 +

1
4ε1

‖un−1
h ‖2

0
)
, (23d)

( f n
h ,un

h) ≤ ε2‖un
h‖2

0 +
1

4ε2
‖ f n

h ‖2
0, (23e)

− 1
ν

Ch(gn
h, pn

h) ≤
δ0

ν
|gn

h|h|pn
h|h ≤

δ0

2ν
(|gn

h|2h + |pn
h|2h). (23f)

From (22) and (23) it holds that, for n = 1, · · · ,NT ,

D∆t
(1

2
‖un

h‖2
0
)
+2ν‖D(un

h)‖2
0 +

δ0

2ν
|pn

h|2h

≤ (c2ε1 + ε2)‖un
h‖2

0 +
(
c1 +

c2

4ε1

)
‖un−1

h ‖2
0 +

1
4ε2

‖ f n
h ‖2

0 +
δ0

2ν
|gn

h|2h. (24)

Applying Lemma 1 to (24) with proper εi (i = 1,2) satisfying ∆t0 ≤ 1/{4(c2ε1 +ε2)}, we obtain (9).

4.3 Proof of Theorem 1-(ii)
From (8) with vh = 0 ∈Vh and (10), it holds that, for n = 0, · · · ,NT ,

b(un
h,qh)+

1
ν

Ch(pn
h,qh) =

1
ν

Ch(gn
h,qh), ∀qh ∈ Qh,

which gives, for n = 1, · · · ,NT ,

b(D∆tun
h,qh)+

1
ν

Ch(D∆t pn
h,qh) =

1
ν

Ch(D∆tgn
h,qh), ∀qh ∈ Qh. (25)

Substituting (D∆tun
h,0) ∈ Vh ×Qh into (vh,qh) in (8) and using (25) with qh = −pn

h, we have, for
n = 1, · · · ,NT ,(un

h −un−1
h ◦Xn

1
∆t

,D∆tun
h

)
+νa(un

h,D∆tun
h)−

1
ν

Ch(D∆t pn
h, pn

h)+(λ nun−1
h ,D∆tun

h)

= ( f n
h ,D∆tun

h)−
1
ν

Ch(D∆tgn
h, pn

h). (26)

We evaluate each term in (26) as follows.(un
h −un−1

h ◦Xn
1

∆t
,D∆tun

h

)
=
(

D∆tun
h +

1
∆t

(un−1
h −un−1

h ◦Xn
1 ),D∆tun

h

)
= ‖D∆tun

h‖2
0 +

1
∆t

(
un−1

h −un−1
h ◦Xn

1 ,D∆tun
h
)

≥ ‖D∆tun
h‖2

0 −
(

c1‖un−1
h ‖2

1 +
1
4
‖D∆tun

h‖2
0

)
(by (21a))

≥ 3
4
‖D∆tun

h‖2
0 − c1‖D

(
un−1

h

)
‖2

0, (27a)
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νa(un
h,D∆tun

h) = D∆t
(ν

2
a(un

h,u
n
h)
)
+

ν∆t
2

a(D∆tun
h,D∆tun

h)

= D∆t
(
ν‖D(un

h)‖2
0
)
+ν∆t‖D

(
D∆tun

h
)
‖2

0, (27b)

− 1
ν

Ch(D∆t pn
h, pn

h) = D∆t
(
− 1

2ν
Ch(pn

h, pn
h)
)
− ∆t

2ν
Ch(D∆t pn

h,D∆t pn
h)

= D∆t
( δ0

2ν
|pn

h|2h
)
+

δ0∆t
2ν

|D∆t pn
h|2h, (27c)

−(λ nun−1
h ,D∆tun

h) ≤ c2‖un−1
h ‖2

0 +
1
8
‖D∆tun

h‖2
0, (27d)

( f n
h ,D∆tun

h) ≤ 2‖ f n
h ‖2

0 +
1
8
‖D∆tun

h‖2
0, (27e)

− 1
ν

Ch(D∆tgn
h, pn

h) ≤
δ0

ν

(
ε3|pn

h|2h +
1

4ε3
|D∆tgn

h|2h
)
, (27f)

for any positive number ε3, where Lemma 2 has been used for (27a). Combining (27) with (26), we
have, for n = 1, · · · ,NT ,

D∆t

(
ν‖D(un

h)‖2
0 +

δ0

2ν
|pn

h|2h
)

+
1
2
‖D∆tun

h‖2
0

≤ ε3
δ0

ν
|pn

h|2h +
c1

ν
ν‖D(un−1

h )‖2
0 + c2‖un−1

h ‖2
0 +2‖ f n

h ‖2
0 +

δ0

4ε3ν
|D∆tgn

h|2h. (28)

Hence, the first and second inequalities of (11) are obtained by applying Lemma 1 to (28) with a
proper ε3 satisfying ∆t0 ≤ 1/(4ε3) and estimating ‖un−1

h ‖0 by (9).
Next we prove the third inequality of (11). From Lemmas 4, 5 and 6 it holds that

‖pn
h‖0 ≤

√
ν‖(un

h, pn
h)‖V×Q,ν ≤

√
ν

γ0
sup

(vh,qh)∈Vh×Qh

Ah((un
h, pn

h),(vh,qh))
‖(vh,qh)‖V×Q,ν

=
√

ν
γ0

sup
(vh,qh)∈Vh×Qh

( f n
h ,vh)+ 1

ν Ch(gn
h,qh)− 1

∆t (u
n
h −un−1

h ◦Xn
1 ,vh)− (λ nun−1

h ,vh)
‖(vh,qh)‖V×Q,ν

≤ c
γ0

{
‖ f n

h ‖0 +δ0|gn
h|h +‖D∆tun

h‖0 +
1
∆t

sup
vh∈Vh

(
un−1

h −un−1
h ◦Xn

1 ,vh
)

‖vh‖1
+‖λ nun−1

h ‖0

}
≤ c3

γ0
(‖ f n

h ‖0 +δ0|gn
h|h +‖D∆tun

h‖0 +‖un−1
h ‖0),

which yields the third inequality of (11) by the first inequality of (9) and the second inequality
of (11).

4.4 Proof of Theorem 2
Let {(u, p)(t); t ∈ (0,T )} ⊂ V ×Q and (uh, ph) = {(un

h, pn
h)}

NT
n=1 ⊂ Vh ×Qh be the solutions of (2)

and scheme (7). Let (ûh, p̂h)(t) ∈Vh ×Qh be the Stokes projection of (u, p)(t) ∈ H2(Ω)d ×H1(Ω)
by (14) and set

en
h ≡ un

h − ûn
h, εn

h ≡ pn
h − p̂n

h, ηh(t) ≡ (u− ûh)(t).

For any (vh,qh) ∈Vh ×Qh, it holds that, from (2), (7), (14) and an identity,

en
h = ηn

h −un +un
h,
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(en
h − en−1

h ◦Xn
1

∆t
,vh

)
+νa(en

h,vh)+b(vh,εn
h )+b(en

h,qh)+
1
ν

Ch(εn
h ,qh)+(λ nen−1

h ,vh)

=
(ηn

h −ηn−1
h ◦Xn

1
∆t

−
un −un−1 ◦Xn

1
∆t

,vh

)
+
(
λ n(ηn−1

h −un−1),vh
)

+
(Dun

Dt
+λ nun,vh

)
− 1

ν
Ch(pn,qh)

=
(ηn

h −ηn−1
h ◦Xn

1
∆t

+
(Dun

Dt
−

un −un−1 ◦Xn
1

∆t

)
+λ n(ηn−1

h +un −un−1),vh

)
− 1

ν
Ch(pn,qh)

= ( f̃ n
h ,vh)+

1
ν

Ch(g̃n
h,qh), (29)

where

f̃ n
h ≡

ηn
h −ηn−1

h ◦Xn
1

∆t
+
(Dun

Dt
−

un −un−1 ◦Xn
1

∆t

)
+λ n(ηn−1

h +un −un−1),

g̃n
h ≡−pn.

Applying Theorem 1-(i) to (29), we obtain

‖eh‖l∞(L2),
√

ν‖eh‖l2(H1),
1√
ν
|εh|l2(|·|h) ≤ c3

(
‖e0

h‖0 +‖ f̃h‖l2(L2) +
1√
ν
|g̃h|l2(|·|h)

)
. (30)

We evaluate ‖ f̃h‖l2(L2) and |g̃h|l2(|·|h). It holds that

‖ f̃ n
h ‖0 ≤

∥∥∥ηn
h −ηn−1

h ◦Xn
1

∆t

∥∥∥
0
+
∥∥∥Dun

Dt
−

un −un−1 ◦Xn
1

∆t

∥∥∥
0
+‖λ n(ηn−1

h +un −un−1)‖0

≡ In
1 + In

2 + In
3 .

In
i (i = 1,2,3) and In

4 ≡ |g̃n
h|h are evaluated as

In
1 = ‖

ηn
h −ηn−1

h ◦Xn
1

∆t
‖0 =

∥∥∥D∆tηn
h +

ηn−1
h −ηn−1

h ◦Xn
1

∆t

∥∥∥
0

≤ ‖D∆tηn
h‖0 + c1‖ηn−1

h ‖1 (by (21a))

≤ 1√
∆t

‖ηh‖H1(tn−1,tn;L2) + c1‖ηn−1
h ‖1

≤ c1h√
ν

( 1√
∆t

‖(u, p)‖H1(tn−1,tn;H2×H1,ν) +‖(un−1, pn−1)‖H2×H1,ν

)
, (31a)

In
2 =

∥∥∥Dun

Dt
−

un −un−1 ◦Xn
1

∆t

∥∥∥
0
≤ c1

√
∆t‖u‖Z2(tn−1,tn), (31b)

In
3 = ‖λ n(ηn−1

h −un−1 +un)‖0 ≤ c2(‖ηn−1
h ‖0 +‖un −un−1‖0)

≤ c2

( h√
ν
‖(un−1, pn−1)‖H2×H1,ν +

√
∆t‖u‖H1(tn−1,tn;L2)

)
, (31c)

In
4 = |g̃n

h|h = |pn|h ≤ h‖pn‖1, (31d)

which imply

‖ f̃h‖l2(L2) ≤ c3

(
∆t‖u‖Z2 +

h√
ν
‖(u, p)‖H1(0,T ;H2×H1,ν)

)
, (32a)
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|g̃h|l2(|·|h) ≤ h‖p‖l2(H1). (32b)

Combining (32) with (30), we obtain (15).
Next we prove Theorem 2-(ii). Applying Theorem 1-(ii) to (29), we obtain

√
ν‖eh‖l∞(H1), ‖D∆teh‖l2(L2), ‖εh‖l2(L2)

≤ c3(1/ν)
(
‖e0

h‖1 + |ε0
h |h +∆t‖u‖Z2 +

h√
ν
‖(u, p)‖H1(0,T ;H2×H1,ν)

)
, (33)

from (32) and the estimate

|D∆t g̃h|l2(|·|h) = |D∆t p|l2(|·|h) ≤ h|D∆t p|l2(H1) ≤ h
∥∥∥∂ p

∂ t

∥∥∥
L2(H1)

.

Since (u0
h, p0

h) and (û0
h, p̂0

h) are the Stokes projections of (u0,0) and (u0, p0) by (14), respectively, it
holds that

‖e0
h‖1 = ‖u0

h − û0
h‖1 ≤ ‖u0

h −u0‖1 +‖u0 − û0
h‖1 ≤

ch√
ν
‖(u0, p0)‖H2×H1,ν , (34a)

|ε0
h |h = |p0

h − p̂0
h|h ≤ |p0

h −0|h + |p̂0
h − p0|h + |p0|h ≤ ch

√
ν‖(u0, p0)‖H2×H1,ν . (34b)

Combining (34) with (33), we obtain (16).

5 Numerical results
In this section two and three dimensional problems are computed by scheme (7).

A quadrature formulae of degree five (2D: seven points, 3D: fifteen points) [31] is employed for
computation of the integral ∫

K
un−1

h ◦Xn
1 (x)vh(x) dx

appearing in scheme (7). Let Re ≡ 1/ν be the Reynolds number. δ0 = 0.05 is chosen by some
numerical experience. The system of linear equations is solved by MINRES.

5.1 Numerical convergence order
In order to observe the convergence order we prepare analytic solutions.

Example 1. In problem (1) we set Ω = (0,π)d , T = π and two values of ν ,

ν = 1, 10−1.

(i) In the case of d = 2 we set

w(x, t) = (1+ sin t)
(
sin2 x1 sin(2x2), −sin2 x2 sin(2x1)

)T
,

λ (x, t) = (1+ sin t)

(
sinx1 cosx1

sinx1 sinx2 sinx1 cosx2

)
.

The functions f and u0 are given so that the exact solution is

(u, p)(x, t) =
(
w(x, t),(1+ sin t)(sinx1 − sinx2)

)
.
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(ii) In the case of d = 3 we set

w(x, t) = (1+ sin t)

−sin2 x1 sin(2x2)sin(2x3)

2sin(2x1)sin2 x2 sin(2x3)

−sin(2x1)sin(2x2)sin2 x3

 ,

λ (x, t) = (1+ sin t)

 sinx1 sinx2 sinx3

cosx1 cosx2 cosx3

sinx1 sinx2 sinx3

 .

The functions f and u0 are given so that the exact solution is

(u, p)(x, t) =
(
w(x, t),(1+ sin t)(−sinx1 +2sinx2 − sinx3)

)
.

We solve Example 1 to recognize the theoretical convergence order. Let N be the division number
of each side of the domain. We set N = 16,32,64,128 and 256 for d = 2 and N = 8,16,32 and 64
for d = 3, and (re)define h ≡ π/N. Sample meshes are shown in Fig. 1 for d = 2 (left, N = 16) and
3 (right, N = 8). The time increment ∆t is set to be ∆t = 1/N = h/π . Let (uh, ph) be the solution
of scheme (7). The initial function u0

h in scheme (7) is chosen as the first component of the Stokes
projection of (u0,0) by (14). We define Err by

Err ≡
‖uh −Πhu‖l2(H1) +‖ph −Πh p‖l2(L2)

‖Πhu‖l2(H1) +‖Πh p‖l2(L2)

as the relative error between (u, p) and (uh, ph). Fig. 2 shows graphs of Err versus h in logarithmic
scale. We can see that Err is almost of first order in h for both d = 2 and 3, and the results are
consistent with Theorem 2.

Figure 1: Sample meshes used for Example 1 in 2D (left, N = 16) and 3D (right, N = 8).

5.2 Application to the linear stability analysis for flows past a circular cylin-
der

Applying scheme (7) to linearized Navier-Stokes equations at stationary symmetric solutions past
a circular cylinder, we reconfirm the fact that the onset of flow instability is around Re = 50. The
critical Re is delicately dependent on the size of Ω and the outflow boundary conditions [19,20]. Let

Ω ≡ {x ∈ R2; −7.5 < x1 < 22.5, −7.5 < x2 < 7.5, |x| > 0.5} (35)

be the domain and Th be the triangulation of Ω̄ . Fig. 3 shows Ω (left) and Th around the cylinder.
The boundary conditions for the stationary flows are also put in the left figure, where τ ≡ (−pI +
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10-3

10-2

10-1

100

π/256 π/128 π/64 π/32 π/16 π/8

E
rr

h

1

1

2D, ν=1  
2D, ν=0.1
3D, ν=1  
3D, ν=0.1

Figure 2: Err vs. h in two and three dimensional test problems.

2νD(u))n for the identity matrix I and the outward unit normal vector n. The number of elements
is 52,416, the number of nodes is 26,608 (hmin = 1.16× 10−2, h = hmax = 2.50× 10−1) and the
number of degrees of freedom is 78,924. The triangulation Th is symmetric with respect to the
x1-axis, cf. Fig. 3 (right). Let Ω+ ≡ {x ∈ Ω ; x2 > 0} be the upper half domain. We impose the
boundary conditions τ1 = 0 and u2 = 0 on the x1-axis and the conditions of Fig. 3 on the other
boundaries. For each Re subject to the initial value u = 0 we solve the non-stationary Navier-Stokes
equations in Ω+ by a pressure-stabilized characteristics finite element scheme [21, 23] and obtain
a numerically stationary solution. Extending the solution symmetrically to the domain x2 < 0, we
get a symmetric stationary solution (u(NS)

h , p(NS)
h ) ∈ Xh ×Mh. Fig. 4 exhibits streamlines (left) and

pressure contours (right) of the stationary solution (u(NS)
h , p(NS)

h ) for Re = 10 (top) and 100 (bottom).
Considering the perturbation of the velocity and the pressure for the Navier-Stokes equations, we set
the following problem.

Γ2:  τ1=0, u2=0

Γ2:  τ1=0, u2=0

Γ 0
:  

u=
(1

,0
)T

Γ 1
:  

τ=
(0

,0
)T

Γ0:  u=(0,0)T

Figure 3: The domain Ω with the boundary conditions for the Navier-Stokes equations (left) and the
used triangular mesh around the cylinder (right).
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Figure 4: Streamlines (left, [-0.1, 0.1; 0.01]) and pressure contours (right, [-0.9, 0.9; 0.01]) of the
stationary solution (u(NS)

h , p(NS)
h ) for Re = 10 (top) and 100 (bottom).

Example 2. In (1) we set Ω by (35), T = 100, five values of ν ,

ν =
1

Re
, Re = 10,40,50,60,100,

w = u(NS)
h , λi j = ∂u(NS)

hi /∂x j (i, j = 1,2), f = 0 and u0 ≈ 0. The homogeneous boundary condi-
tion (1c) is replaced with the boundary conditions, u = 0 on Γ0, τ = 0 on Γ1 and τ1 = 0 and u2 = 0
on Γ2, cf. Fig. 3 (left) for the definitions of Γi (i = 0,1,2).

We solve Example 2 by a slightly modified scheme of (7) with ∆t = 1/50; find {(un
h, pn

h)}
NT
n=1 ⊂

Ṽh × Q̃h such that, for n = 1, · · · ,NT ,(un
h −un−1

h ◦Xn
1

∆t
,vh

)
+Ah((un

h, pn
h),(vh,qh))+(λ nun−1

h ,vh)

= ( f n,vh), ∀(vh,qh) ∈ Ṽh × Q̃h, (36)

where Ṽh ≡ Xh ∩{v ∈ H1(Ω)d ; v = 0 on Γ0, v2 = 0 on Γ2} and Q̃h ≡ Mh. The small perturbation,
u0

h(−1.36,0) = (0.01,0)T , is given while u0
h(P) = 0 at the other nodes P.

We compute ‖(un
h, pn

h)‖V×Q for n = 1, · · · ,NT and observe the behavior of the solutions. The
graphs of ‖(un

h, pn
h)‖V×Q versus t are shown in Fig. 5. For Re = 10,40 and 50 the values of ‖(un

h, pn
h)‖V×Q

finally decrease and for Re = 60 and 100 the values of ‖(un
h, pn

h)‖V×Q monotonically increase after
t = 3. For Re = 50 we have additionally performed a computation on a fine mesh (]elements:
195,200, ]nodes: 98,400, hmin = 5.67× 10−3, h = hmax = 1.66× 10−1) and with a small ∆t(=
1/100). The result is shown in the dashed line in Fig. 5. The graph of ‖(un

h, pn
h)‖V×Q is almost

flat after t = 50, which implies the onset of the flow instability is around this Reynolds number. In
order to obtain the critical Reynolds number a finer mesh and a smaller ∆t should be employed.
Continuing the computation for Re = 100 until t = 140, we obtain (uh, ph)(t = 140). Fig. 6 shows
streamlines (left) and pressure contours (right) of (u(NS)

h , p(NS)
h )+ (uh, ph)(t = 140) for Re = 100,

where maxx∈Ω̄ |uh(x)(t = 140)| ≈ 0.126 and maxx∈Ω̄ |u(NS)
h (x)| ≈ 1.230. A non-symmetricity with

respect to the x1-axis caused by (uh, ph) is observed.
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Figure 5: Graphs of ‖(uh, ph)(t)‖V×Q vs. t for Re = 10,40,50,60 and 100.

Figure 6: Streamlines (left, [−0.1,0.1;0.01]) and pressure contours (right, [−0.6,0.6;0.01]) of
(u(NS)

h , p(NS)
h )+(uh, ph)(t = 140) for Re = 100.
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6 Conclusions
We have presented a pressure-stabilized characteristics finite element scheme for the Oseen equa-
tions. Stability (Theorem 1) and convergence (Theorem 2) results with the optimal error estimates
for the velocity and the pressure have been proved. The scheme is based on the method of char-
acteristics, which works well for convection-dominated problems and leads to a symmetric coeffi-
cient matrix of the system of linear equations. The system can be solved by efficient linear solvers
for symmetric matrices, e.g., MINRES, CR and so on. Since a cheap P1/P1 finite element is em-
ployed, the degrees of freedom are smaller than that of other typical elements for the equations, e.g.,
P2/P1. These advantages, i.e., symmetry of the coefficient matrix and small degrees of freedom, re-
duces computation cost (time and memory). Two and three dimensional numerical results have been
shown. The numerical convergence orders in Example 1 are consistent with the theoretical results.
In Example 2 scheme (7) is applied to the linear stability analysis of stationary flows past a circular
cylinder governed by the Navier-Stokes equations. The obtained results imply that the scheme is ap-
plicable to such linear stability analysis and reconfirmed that the critical Re is around 50. Theoretical
analysis of stability and error estimates for a corresponding scheme to the Navier-Stokes equations
will be shown in a forthcoming paper [25].
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[6] Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes
equations. In W. Hackbusch editor, Efficient solutions of Elliptic Systems. Vieweg, Wiesbaden,
11–19 (1984)

18

WIAS Discussion Paper No.2013-001                                                          

17

w9D7853
テキストボックス
   

w9D7853
線




[7] Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible Navier-Stokes equations.
Computer Methods in Applied Mechanics and Engineering. 32, 199–259 (1982)

[8] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam
(1978)

[9] Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion prob-
lems based on combining the method of characteristics with finite element or finite difference
procedures. SIAM Journal on Numerical Analysis. 19, 871–885 (1982)

[10] Duvaut, G., Lions, J.L.: Inequalities in mechanics and physics. Springer, Berlin (1976)

[11] Ewing, R.E., Russell, T.F.: Multistep Galerkin methods along characteristics for convection-
diffusion problems. In Vichnevetsky, R. and Stepleman, R.S. editors, Advances in Computer
Methods for Partial Differential Equations. 4, 28–36, IMACS (1981)

[12] Ewing, R.E., Russell, T.F., Wheeler, M.F.: Simulation of miscible displacement using mixed
method and modified method of characteristics. Proceedings of SPE Reservoir Simulation
Symposium (15-18 November, 1983, San Francisco), Society of Petroleum Engineers. 71–81
(1983)

[13] Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-
Stokes equations. Computer Methods in Applied Mechanics and Engineering. 99, 209–233
(1992)

[14] Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the
elasticity equations. SIAM Journal on Numerical Analysis. 28, 1680–1697 (1991)

[15] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Theory and
Algorithms. Springer, Berlin (1986)

[16] Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-
Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM Journal on
Numerical Analysis. 27, 353–384 (1990)

[17] Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational
fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear
time-dependent multidimensional advective-diffusive systems. Computer Methods in Applied
Mechanics and Engineering. 63, 97–112 (1987)

[18] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge Univ. Press. Cambridge (1987)

[19] Kumar, B., Mittal, S.: Effect of blockage on critical parameters for flow past a circular cylinder.
International Journal for Numerical Methods in Fluids. 50, 987–1001 (2006)

[20] Norberg, C.: An experimental investigation of the flow around a circular cylinder: influence of
aspect ratio. Journal of Fluid Mechanics. 258, 287–316 (1994)

[21] Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized
characteristic-curve finite element scheme. Transactions of Japan Society for Computational
Engineering and Science. ONLINE ISSN:1347-8826 (2008)

19

WIAS Discussion Paper No.2013-001                                                          

18

w9D7853
テキストボックス
   

w9D7853
線




[22] Notsu, H., Rui, H., Tabata, M.: Characteristics finite difference schemes of second order in
time for convection diffusion problems. to appear in Journal of Algorithms & Computational
Technology.

[23] Notsu, H., Tabata, M.: A combined finite element scheme with a pressure stabilization and a
characteristic-curve method for the Navier-Stokes equations. Transactions of the Japan Society
for Industrial and Applied Mathematics. 18, 427–445 (2008) (in Japanese)

[24] Notsu, H., Tabata, M.: A single-step characteristic-curve finite element scheme of second order
in time for the incompressible Navier-Stokes equations, Journal of Scientific Computing. 38,
1–14 (2009)

[25] Notsu, H., Tabata, M.: Error estimates of a pressure-stabilized characteristics finite element
scheme for the Navier-Stokes equations (in preparation)

[26] Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes
equations. Numerische Mathematik. 38, 309–332 (1982)

[27] Pironneau, O.: Finite Element Methods for Fluids. John Wiley & Sons, Chichester (1989)

[28] Pironneau, O., Tabata, M.: Stability and convergence of a Galerkin-characteristics finite ele-
ment scheme of lumped mass type. International Journal for Numerical Methods in Fluids. 64,
1240–1253 (2010)

[29] Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-
diffusion problems. Numerische Mathematik. 92, 161–177 (2002)

[30] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

[31] Stroud, A.H.: Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs,
New Jersey (1971).

[32] Tabata, M.: A finite element approximation corresponding to the upwind finite differencing.
Memoirs of Numerical Mathematics. 4, 47–63 (1977)

[33] Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in
nonstationary Navier-Stokes flows. Japan Journal of Industrial and Applied Mathematics. 17,
371–389 (2000)

[34] Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabi-
lized bilinear and linear equal-order-interpolation velocity-pressure elements. Computer Meth-
ods in Applied Mechanics and Engineering. 95, 221–242 (1992)

20

WIAS Discussion Paper No.2013-001                                                          

19

w9D7853
テキストボックス
   

w9D7853
線



