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1 Introduction
A combined finite element scheme with a pressure-stabilization and a characteristics
method for the Navier-Stokes equations has been proposed by us [20, 22]. In this
paper we prove stability and optimal error estimates for the scheme with a natural
stabilization parameter.

The system of the Navier-Stokes equations is one of the most important basic
models in flow dynamics and is often employed in scientific computation. In order
to solve convection-dominated flow problems many ideas have been proposed, e.g.,
upwind methods [1, 4, 7, 14, 18, 19, 32, 34], characteristics(-based) methods [3, 10, 12,
13, 20–23, 25–28] and so on.

We focus on the characteristics finite element (C-FE) methods, which include less
numerical diffusion among them and such a common advantage that the resulting
matrix of the system of linear equations is symmetric. The advantage enables us to
use efficient linear iterative solvers for symmetric matrices, i.e., MINRES, CR and
so on [2, 29]. A C-FE scheme for the Navier-Stokes equations has been originally
proposed in [25] and error estimates of the form O(∆t + hm +(hm+1/∆t)) have been
proved. In [31] optimal error estimates of O(∆t + hm) have been proved for a C-FE
scheme of first order in time for the Navier-Stokes equations. In [3] a C-FE scheme for
the Navier-Stokes equations of high order in time has been presented and optimal error
estimates of O(∆t2 + hm) have been proved. In these schemes it is supposed that the
pair of finite element spaces for the velocity and the pressure satisfies the conventional
inf-sup condition [16], e.g., P2/P1 (Hood-Taylor) finite element, which leads to large
degrees of freedom.

In [20,22] we have proposed a stabilized C-FE scheme for the Navier-Stokes equa-
tions by combining a pressure-stabilization [6] and a characteristics method of first
order in time, while its theoretical analysis was not completed at that time. To the
best of our knowledge the scheme is the first stabilized C-FE scheme for the Navier-
Stokes equations. The characteristics method works well for convection-dominated
problems, and the pressure-stabilization is employed for the use of the cheap P1/P1
finite element. The scheme is symmetric by virtue of the characteristics method and
we can use efficient linear iterative solvers for symmetric matrices. Since the result-
ing matrix is identical with respect to the time step, it is enough to make the matrix
only once at the beginning. As for a corresponding stabilized C-FE scheme for the
Oseen equations we have recently proved essentially unconditional stability as well as
convergence with optimal error estimates of O(∆t +h) in [24].

In this paper we prove conditional stability and optimal error estimates of O(∆t +
h) for the scheme proposed in [20, 22] with a natural stabilization parameter. The
nonlinearity of the Navier-Stokes equations is overcome by mathematical induction,
which has been developed for C-FE schemes in [3, 31]. The key issue of the proof
of stability and convergence is how to estimate the essential supremum norm of first
derivatives of the numerical velocity, and the estimate is more delicate than those in [3,
31] because the P1/P1 finite element has only the first order interpolation property for
the first derivatives. The condition on time increment for the stability and convergence
to be proved is the same as that of [31]. Consequently, the scheme leads to efficient
computation especially in 3D as well as mathematical reliability with the optimal error
estimates.

Let m be a non-negative integer and Ω be a domain in Rd(d = 2,3). We use the
Sobolev spaces W m,∞(Ω), Hm(Ω) and H1

0 (Ω) as well as Cm(Ω̄). For any normed
space X with norm ‖ · ‖X , we define function spaces Cm([0,T ];X) and Hm(0,T ;X)
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consisting of X-valued functions in Cm([0,T ]) and Hm(0,T ), respectively. We use
the same notation (·, ·) to represent the L2(Ω) inner product for scalar-, vector- and
matrix-valued functions. The norms in W m,∞(Ω)d and Hm(Ω)d are simply denoted as

‖ · ‖m,∞ ≡ ‖ ·‖W m,∞(Ω)d , ‖ · ‖m ≡ ‖ ·‖Hm(Ω)d ,

and the notation ‖ · ‖m is employed not only for vector-valued functions but also for
scalar-valued ones. L2

0(Ω) is a subspace of L2(Ω) defined by

L2
0(Ω) ≡

{
q ∈ L2(Ω); (q,1) = 0

}
.

We often omit [0,T ], Ω and/or d if there is no confusion, e.g., C0(H1) in place of
C0([0,T ];H1(Ω)d). For t0 and t1 ∈ R we introduce function spaces

Zm(t0, t1) ≡ {v ∈ H j(t0, t1;Hm− j(Ω)d); j = 0, · · · ,m, ‖v‖Zm(t0,t1) < ∞},

and Zm ≡ Zm(0,T ), where the norm ‖v‖Zm(t0,t1) is defined by

‖v‖Zm(t0,t1) ≡
{ m

∑
j=0

‖v‖2
H j(t0,t1;Hm− j(Ω)d)

}1/2

.

The abbreviation LHS means the left-hand side.

2 A pressure-stabilized characteristics finite element
scheme

In this section we present our pressure-stabilized characteristics finite element scheme
for the Navier-Stokes equations [20, 22] with a natural stabilization parameter.

Let Ω be a bounded domain in Rd(d = 2,3), Γ ≡ ∂Ω be the boundary of Ω and
T be a positive constant. We consider an initial boundary value problem; find (u, p) :
Ω × (0,T ) → Rd ×R such that

Du
Dt

−∇
(
2νD(u)

)
+∇p = f in Ω × (0,T ), (1a)

∇ ·u = 0 in Ω × (0,T ), (1b)
u = 0 on Γ × (0,T ), (1c)

u = u0 in Ω , at t = 0, (1d)

where u is the velocity, p is the pressure, f : Ω × (0,T ) → Rd is a given external
force, u0 : Ω → Rd is a given initial velocity, ν ∈ (0,ν0] is a viscosity for a fixed
ν0 > 0, D(u) is a strain-rate tensor defined by

Di j(u) ≡ 1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(i, j = 1, · · · ,d),

D/Dt is a material derivation defined by

D
Dt

≡ ∂
∂ t

+u ·∇.

2



WIAS Discussion Paper No.2013-002

Letting V ≡ H1
0 (Ω)d and Q ≡ L2

0(Ω), we define bilinear forms a on V ×V , b on
V ×Q and A on (V ×Q)× (V ×Q) by

a(u,v) ≡ 2
(
D(u), D(v)

)
, b(v,q) ≡−(∇ · v, q),

A ((u, p),(v,q)) ≡ νa(u,v)+b(v, p)+b(u,q),

respectively. Then, we can write the weak formulation of (1); find (u, p) : (0,T ) →
V ×Q such that for t ∈ (0,T )(Du

Dt
(t),v

)
+A ((u, p)(t),(v,q)) = ( f (t),v), ∀(v,q) ∈V ×Q, (2)

with u(0) = u0.
Let ∆t be a time increment, tn ≡ n∆t for n∈N∪{0} and f n ≡ f (·, tn) for a function

f defined in Ω × (0,T ). Let X : (0,T ) → Rd be a solution of the ordinary differential
equation,

dX
dt

= u(X , t), (3)

for a smooth function u : Ω × (0,T ) → Rd . Then, it holds that

Du
Dt

(X(t), t) =
d
dt

u
(
X(t), t

)
.

Let X(·;x, tn) be the solution of (3) subject to an initial condition X(tn) = x. For a
velocity w : Ω → Rd let X1(w,∆t) : Ω → Rd be a function defined by

X1(w,∆t)(x) ≡ x−w(x)∆t.

Since the position X1(un−1,∆t)(x) is an approximation of X(tn−1;x, tn), we can con-
sider a first order approximation of the material derivative at t = tn(n ≥ 1),

Du
Dt

(x, tn) =
d
dt

u
(
X(t;x, tn), t

)∣∣∣
t=tn

=
un −un−1 ◦X1(un−1,∆t)

∆t
(x)+O(∆t),

where the symbol ◦ means the composition of functions,

v◦X1(w,∆t)(x) ≡ v(X1(w,∆t)(x)),

for v and w : Ω → Rd . X1(w,∆t)(x) is called an upwind point of x with respect to
the velocity w. The next proposition proved in [28] gives a sufficient condition to
guarantee all upwind points are in Ω .

Proposition 1 ( [28], Proposition 1). Let w ∈W 1,∞(Ω)d be a given function satisfying
w|Γ = 0, and assume

∆t <
1

‖w‖1,∞
.

Then, it holds that

X1(w,∆t)(Ω) = Ω .
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For the sake of simplicity we assume that Ω is a polygonal (d = 2) or polyhedral
(d = 3) domain. Let Th = {K} be a triangulation of Ω̄ (=

∪
K∈Th

K), hK be a diameter
of K ∈ Th, and h ≡ maxK∈Th hK be the maximum element size. Throughout this
paper we consider a regular family of triangulations {Th}h↓0 satisfying the inverse
assumption [8], i.e., there exists a positive constant α0 independent of h such that

h
hK

≤ α0, ∀K ∈ Th, ∀h. (4)

We define function spaces Xh, Mh, Vh and Qh by

Xh ≡ {vh ∈C0(Ω̄)d ; vh|K ∈ P1(K)d , ∀K ∈ Th},
Mh ≡ {qh ∈C0(Ω̄); qh|K ∈ P1(K), ∀K ∈ Th},

Vh ≡ Xh ∩V and Qh ≡ Mh ∩Q, respectively, where P1(K) is the polynomial space of
linear functions on K ∈ Th. Let NT ≡ [T/∆t] be a total number of time steps, δ0 be a
positive constant and (·, ·)K be the L2(K)d inner product. We define bilinear forms Ch
on H1(Ω)×H1(Ω) and Ah on (V ×H1(Ω))× (V ×H1(Ω)) by

Ch(p,q) ≡−δ0 ∑
K∈Th

h2
K(∇p, ∇q)K ,

Ah((u, p),(v,q)) ≡ νa(u,v)+b(v, p)+b(u,q)+
1
ν

Ch(p,q). (5)

Suppose f ∈C0([0,T ];L2(Ω)d) and u0 ∈V . Let an approximate function u0
h ∈Vh

of u0 be given. Our pressure-stabilized characteristics finite element scheme for (1) is
to find {(un

h, pn
h)}

NT
n=1 ⊂Vh ×Qh such that for n = 1, · · · ,NT(un

h −un−1
h ◦X1(un−1

h ,∆t)
∆t

,vh

)
+Ah((un

h, pn
h),(vh,qh)) = ( f n,vh),

∀(vh,qh) ∈Vh ×Qh. (6)

Remark 1. (i) The choice of the coefficient 1/ν before Ch(p,q) in definition (5) of Ah
is natural from the theoretical point of view as shown in Lemma 4 below.

(ii) Scheme (6) leads to a symmetric matrix of the form(
A BT

B C

)
,

where A, B and C correspond to 1
∆t (u

n
h,vh) + νa(un

h,vh), b(un
h,qh) and 1

ν Ch(pn
h,qh),

respectively.

(iii) The matrix is independent of time step n and regular. The regularity is derived
from the fact that (un

h, pn
h) = (0,0) when un−1

h = f n = 0 since we have

1
∆t

‖un
h‖2

0 +2ν‖D(un
h)‖2

0 +
δ0

ν ∑
K∈Th

h2
K‖∇pn

h‖2
L2(K)d = 0,

by substituting (un
h,−pn

h) ∈Vh ×Qh into (vh,qh) in (6).

(iv) There exists a unique solution (un
h, pn

h) if X1(un−1
h ,∆t) maps Ω into Ω . The condi-

tion is ensured if ∆t‖un−1
h ‖1,∞ < 1 (cf. Proposition 1).
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3 Main results
In this section we present the main results of stability and error estimates, which are
proved in section 4.

Let {un}NT
n=0 and {pn}NT

n=0 be sequences of functions and m ∈ {1, · · · ,NT} be an
integer. We use the following norms and seminorms, ‖ · ‖Vh ≡ ‖ ·‖V ≡ ‖·‖1, ‖ · ‖Qh ≡
‖ ·‖Q ≡ ‖ ·‖0,

‖u‖l∞
m(X) ≡ max

n=0,··· ,m
‖un‖X , ‖u‖l∞(X) ≡ ‖u‖l∞

NT
(X),

‖u‖l2
m(X) ≡

{
∆t

m

∑
n=1

‖un‖2
X

}1/2
, ‖u‖l2(X) ≡ ‖u‖l2

NT
(X),

|q|h ≡
{

∑
K∈Th

h2
K(∇q,∇q)K

}1/2
,

|p|l∞
m(|·|h) ≡ max

n=0,··· ,m
|pn|h, |p|l∞(|·|h) ≡ |p|l∞

NT
(|·|h),

for X = L∞(Ω), W 1,∞(Ω), L2(Ω) and H1(Ω). We additionally define norms
‖(v,q)‖X×M,ν ≡ {ν‖v‖2

X +(1/ν)‖q‖2
M}1/2 for X ×M = V ×Q and H2(Ω)d ×H1(Ω).

D∆t is the backward difference operator defined by

D∆tan ≡ an −an−1

∆t
.

After preparing a (pressure-stabilized) Stokes projection using P1/P1-element and
two hypotheses, we give the main results.

Definition 1 (Stokes projection). For (u, p) ∈ V × (Q∩H1(Ω)) we define the Stokes
projection (ûh, p̂h) ∈Vh ×Qh of (u, p) by

Ah((ûh, p̂h),(vh,qh)) = Ah((u, p),(vh,qh)), ∀(vh,qh) ∈Vh ×Qh. (7)

Hypothesis 1. The function u0 ∈ V satisfies the compatibility condition, ∇ · u0 = 0.

Hypothesis 2. The solution (u, p) of (2) satisfies u ∈ C0([0,T ];W 1,∞(Ω)d)∩ Z2 ∩
H1(0,T ;V ∩H2(Ω)d) and p ∈ H1(0,T ;Q∩H1(Ω)).

Let ∆t∗ be any fixed positive constant.

Theorem 1. Let (u, p) be the solution of (2). Suppose Hypotheses 1 and 2 hold. Then,
there exist positive constants h0 and c0 independent of h and ∆t such that the following
hold for any h and ∆t satisfying

h ∈ (0,h0], ∆t ≤ min{c0hd/4, ∆t∗}. (8)

(i) Scheme (6) with the first component u0
h of the Stokes projection of (u0,0) by (7) has

a unique solution (uh, ph).
(ii) There exists a positive constant

c1(1/ν , ‖u‖C0([0,T ];W 1,∞∩H2), ‖p‖C0([0,T ];H1)) (9)

independent of h and ∆t such that

‖uh‖l∞(L∞) ≤ c1. (10)

5
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(iii) There exists a positive constant

c(1/ν , T, ‖u‖C0([0,T ];W 1,∞)∩Z2∩H1(0,T ;H2), ‖p‖H1(0,T ;H1)) (11)

independent of h and ∆t such that

‖uh −u‖l∞(H1),
∥∥∥D∆tuh −

∂u
∂ t

∥∥∥
l2(L2)

, ‖ph − p‖l2(L2) ≤ c(∆t +h). (12)

Remark 2. Since the initial pressure p0 is not given, we cannot practice the Stokes
projection of (u0, p0). That is the reason why we employ the Stokes projection of
(u0,0) and set the first component as u0

h. This choice is sufficient for the error esti-
mates (12).

4 Proof of Theorem 1
The section is devoted to the proof of Theorem 1.

We use c to represent the generic positive constant independent of the discretiza-
tion parameters h and ∆t. c(A) means a positive constant depending on A, which
monotonically increases as A increases. c(‖u‖C0([0,T ];W 1,∞)) is simply denoted by c̃.
The symbol “′ (prime)” is sometimes put in order to distinguish between two con-
stants, e.g., c′.

4.1 Preparations
First we present some lemmas and a proposition directly used in the proof. They are
fundamental and we omit the proofs.

Lemma 1 (discrete Gronwall’s inequality, [17, 33]). Let a0 and a1 be non-negative
numbers, ∆t ∈ (0,1/(2a0)] be a real number, and {xn}n≥0, {yn}n≥1 and {bn}n≥1 be
non-negative sequences. Suppose

D∆txn + yn ≤ a0xn +a1xn−1 +bn, ∀n ≥ 1.

Then, it holds that

xn +∆t
n

∑
i=1

yi ≤ exp{(2a0 +a1)n∆t}
(

x0 +∆t
n

∑
i=1

bi

)
, ∀n ≥ 1.

Lemma 2 (Korn’s inequality, [11]). Let Ω be a bounded domain with a Lipschitz-
continuous boundary. Then, we have the following.

(i) There exists a positive constant α1 such that

(‖D(v)‖2
0 +‖v‖2

0)
1/2 ≥ α1‖v‖1, ∀v ∈ H1(Ω)d .

(ii) There exists a positive constant α2 such that

‖v‖0 ≤ α2‖D(v)‖0, ∀v ∈ H1
0 (Ω)d ,

and the norms ‖D(·)‖0 and ‖ · ‖1 are equivalent in H1
0 (Ω)d .

6
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Lemma 3 ( [8, 9]). (i) There exists a positive constant α3 independent of h such that

|qh|h ≤ α3‖qh‖0, ∀qh ∈ Qh. (13)

(ii) There exist an interpolation operator Πh : L∞(Ω)d → Xh and positive constants
α4k (k = 0, · · · ,2) independent of h such that

‖Πhv‖k,∞ ≤ α4k‖v‖k,∞, ∀v ∈W k,∞(Ω)d , k = 0,1, (14a)

‖Πhv− v‖1 ≤ α42h‖v‖2, ∀v ∈ H2(Ω)d . (14b)

(iii) There exist positive constants α50 and α51 independent of h such that

‖vh‖0,∞ ≤ α50h−d/6‖vh‖1, ∀vh ∈Vh, (15a)

‖vh‖1,∞ ≤ α51h−d/2‖vh‖1, ∀vh ∈Vh. (15b)

Remark 3. (i) Although the inverse assumption (4) is supposed throughout the paper,
it is not required for the estimates (13) and (14). The assumption that {Th}h↓0 is
regular is sufficient.

(ii) The inverse inequality (15a) is sufficient in this paper, while it is not optimal for
d = 2.

The next lemma shows a modified version of the stability inequality in [5,15], and the
lemma easily yields the following Proposition 2.

Lemma 4. There exist positive constants h1 and α6 independent of h and ν such that
for any h ∈ (0,h1] and ν > 0

inf
(uh,ph)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

Ah((uh, ph),(vh,qh))
‖(uh, ph)‖V×Q,ν‖(vh,qh)‖V×Q,ν

≥ α6. (16)

Proof. Introducing (ũh, p̃h) ≡ (
√

νuh,(1/
√

ν)ph) and (ṽh, q̃h) ≡ (
√

νvh,(1/
√

ν)qh),
we have

LHS of (16)

= inf
(uh,ph)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

νa(uh,vh)+b(vh, ph)+b(uh,qh)+ 1
ν Ch(ph,qh)

‖(uh, ph)‖V×Q,ν‖(vh,qh)‖V×Q,ν

= inf
(ũh,p̃h)∈Vh×Qh

sup
(ṽh,q̃h)∈Vh×Qh

a(ũh, ṽh)+b(ṽh, p̃h)+b(ũh, q̃h)+Ch(p̃h, q̃h)
‖(ũh, p̃h)‖V×Q‖(ṽh, q̃h)‖V×Q

≥ α6,

where the last inequality has been proved in [5, 15].

Remark 4. Although the conventional inf-sup condition [16],

inf
qh∈Qh

sup
vh∈Vh

b(vh,qh)
‖vh‖1‖qh‖0

≥ β ∗ > 0,

does not hold for the pair of Vh and Qh, the P1/P1 finite element spaces, Ah satisfies
the stability inequality (16) for this pair.

7
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Proposition 2. Suppose (u, p) ∈ (V ∩ H2(Ω)d)× (Q ∩ H1(Ω)). Then, there exist
positive constants h1 and α7 independent of h and ν such that for any h ∈ (0,h1] and
ν > 0 the Stokes projection (ûh, p̂h) of (u, p) by (7) satisfies

√
ν‖ûh −u‖1,

1√
ν
‖ p̂h − p‖0,

1√
ν
|p̂h − p|h ≤ α7h‖(u, p)‖H2×H1,ν . (17)

After preparing another lemma, we give the proof of Theorem 1 in the following
subsections.

Lemma 5. Let u ∈ W 1,∞(Ω)d be a velocity satisfying u|Γ = 0. Then, there exists
a constant δ1 ∈ (0,1) independent of ∆t such that the following hold for any ∆t ∈
(0,δ1/‖u‖1,∞].
(i) The Jacobian J ≡ det(∂X1(u,∆t)/∂x) satisfies

1
2
≤ J ≤ 3

2
.

(ii) There exists a positive constant α8 independent of ∆t such that

‖v− v◦X1(u,∆t)‖0 ≤ α8‖u‖0,∞∆t‖v‖1, ∀v ∈V. (18)

Proof. Let y(x) ≡ X1(u,∆t)(x). Since (∂y/∂x)i j = δi j −∆t∂ui/∂x j for the Kronecker
delta δi j, (i) is easily obtained. We prove (ii). For s ∈ [0,1] we define Y (x;s) by

Y (x;s) ≡ y(x)+ s{x− y(x)} = x− (1− s)u(x)∆t.

From the identity

v(x)− v(y) = [v(y+ s(x− y))]1s=0 = ∆t
∫ 1

0
[{u(x) ·∇}v]

(
Y (x,s)

)
ds,

the Schwarz inequality and (i), we have

(
LHS of (18)

)2 = ∆t2
∫

Ω

{∫ 1

0
[{u(x) ·∇}v]

(
Y (x;s)

)
ds

}2
dx

≤ ∆t2
∫ 1

0
ds

∫
Ω

[{u(x) ·∇}v]
(
Y (x;s)

)2 dx

≤ c‖u‖2
0,∞∆t2

d

∑
i, j=1

∫
Ω

∂vi

∂x j
(x)2 dx,

which implies (18).

4.2 Estimates under an assumption
Let {(u, p)(t); t ∈ [0,T ]} ⊂ V × Q be the solution of (2). Suppose that there ex-
ists a solution {(un

h, pn
h)}m

n=1 ⊂ Vh × Qh of scheme (6) with an initial value u0
h for

an integer m ∈ {1, · · · ,NT}. Let (ûh, p̂h)(t) ∈ Vh ×Qh be the Stokes projection of
(u, p)(t) ∈ H2(Ω)d ×H1(Ω) by (7) for t ∈ [0,T ] and set {en

h}m
n=0 ⊂Vh, {εn

h}m
n=1 ⊂ Qh

and {ηh(t); t ∈ [0,T ]} ⊂V as

en
h ≡ un

h − ûn
h, εn

h ≡ pn
h − p̂n

h, ηh(t) ≡ (u− ûh)(t).

8
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From (2), (6), (7) and the identity en
h = ηn

h −un +un
h, it holds that for n = 1, · · · ,m

(D∆ten
h,vh)+Ah((en

h,ε
n
h ),(vh,qh)) = 〈Rn

h,(vh,qh)〉, ∀(vh,qh) ∈Vh ×Qh, (19)

where

〈Rn
h,(vh,qh)〉 ≡

4

∑
i=1

〈Rn
hi,vh〉+ 〈Rn

h5,qh〉,

〈Rn
h1,vh〉 ≡

(Dun

Dt
− un −un−1 ◦X1(un−1,∆t)

∆t
,vh

)
,

〈Rn
h2,vh〉 ≡

1
∆t

(
un−1 ◦X1(un−1

h ,∆t)−un−1 ◦X1(un−1,∆t),vh

)
,

〈Rn
h3,vh〉 ≡

1
∆t

(
ηn

h −ηn−1
h ◦X1(un−1

h ,∆t),vh

)
,

〈Rn
h4,vh〉 ≡ − 1

∆t

(
en−1

h − en−1
h ◦X1(un−1

h ,∆t),vh

)
,

〈Rn
h5,qh〉 ≡ − 1

ν
Ch(pn,qh).

Rn
h5 is derived from

b(en
h,qh)+

1
ν

Ch(εn
h ,qh) = −b(ûn

h,qh)−
1
ν

Ch(p̂n
h,qh)

= −b(un,qh)−
1
ν

Ch(pn,qh) = − 1
ν

Ch(pn,qh)

for n = 1, · · · ,m. Let Lm (m = 0, · · · ,NT ) be a real number defined by

Lm ≡ ‖uh‖l∞
m(L∞).

In the next proposition we use ∆t∗, h1 and δ1, the constants stated just before
Theorem 1 and in Lemmas 4 and 5, respectively.

Proposition 3. Let (u, p) be the solution of (2). Suppose Hypotheses 1 and 2 hold.
Assume h ∈ (0,h1] and ∆t ∈ (0,∆t∗]. Let u0

h be the first component of the Stokes pro-
jection of (u0,0) by (7). Suppose that for an integer m ∈ {1, · · · ,NT} there exists a
solution {(un

h, pn
h)}

m−1
n=1 of scheme (6) satisfying

∆t‖uh‖l∞
m−1(W 1,∞) ≤ δ1. (20)

Then, the solution can be extended to (um
h , pm

h ) and there exists a positive constant

c∗(Lm−1; 1/ν, T, ‖u‖C0([0,T ];W 1,∞)∩Z2∩H1(0,T ;H2), ‖p‖H1(0,T ;H1)) (21)

independent of h and ∆t such that

‖eh‖l∞
m(H1), ‖D∆teh‖l2

m(L2), |εh|l∞
m(|·|h) ≤ c∗(Lm−1)(∆t +h). (22)

For the proof we use the next lemma, which gives estimates of Rhi (i = 1, · · · ,5).
It is proved in Appendix.

9
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Lemma 6. Under the assumptions in Proposition 3 it holds that for any vh ∈ Vh,
qh ∈ Qh and n = 1, · · · ,m

〈Rn
h1,vh〉 ≤ c̃

√
∆t‖u‖Z2(tn−1,tn)‖vh‖0, (23a)

〈Rn
h2,vh〉 ≤ c̃

{
‖en−1

h ‖0 + c(1/ν)h‖(u, p)n−1‖H2×H1
}
‖vh‖0, (23b)

〈Rn
h3,vh〉 ≤ c(1/ν)h

{ 1√
∆t

‖(u, p)‖H1(tn−1,tn;H2×H1) +Ln−1‖(u, p)n−1‖H2×H1

}
‖vh‖0,

(23c)

〈Rn
h4,vh〉 ≤ cLn−1‖en−1

h ‖1‖vh‖0. (23d)

〈Rn
h5,qh〉 ≤

δ0h
ν

‖pn‖1|qh|h. (23e)

Proof of Proposition 3. From (20) and Remark 1-(iv) the solution can be extended to
(um

h , pm
h ). We prove (22). It holds that

‖D∆ten
h‖2 +D∆t(ν‖D(en

h)‖2
0)+b(D∆ten

h,ε
n
h ) ≤

4

∑
i=1

〈Rn
hi,D∆ten

h〉 (24)

for n = 1, · · · ,m by (19) with (vh,qh) = (D∆ten
h,0) ∈Vh ×Qh and the inequality (a2 −

b2)/2 ≤ a(a−b). Recalling u0
h ∈Vh is the first component of the Stokes projection of

(u0,0) by (7), we denote by p0
h the second component. Then, it holds that

b(u0
h,qh)+

1
ν

Ch(p0
h,qh) = b(u0,qh) = 0, ∀qh ∈ Qh. (25)

Since (û0
h, p̂0

h) is the Stokes projection of (un, pn) for n = 0, we have

b(û0
h,qh)+

1
ν

Ch(p̂0
h,qh) = b(u0,qh)+

1
ν

Ch(p0,qh) =
1
ν

Ch(p0,qh). (26)

Equations (25) and (26) imply

b(e0
h,qh)+

1
ν

Ch(ε0
h ,qh) = − 1

ν
Ch(p0,qh),

where ε0
h ≡ p0

h − p̂0
h. Hence it holds that

b(D∆ten
h,qh)+

1
ν

Ch(D∆tεn
h ,qh) = − 1

ν
Ch(D∆t pn,qh), ∀qh ∈ Qh,

for n = 1, · · · ,m. From the above equation with qh = εn
h we obtain

b(D∆ten
h,ε

n
h )+

1
ν

Ch(D∆tεn
h ,εn

h ) = − 1
ν

Ch(D∆t pn,εn
h ) (27)

for n = 1, · · · ,m. Subtracting (27) from (24) and using Lemma 6 with vh = D∆ten
h ∈Vh,

the inequality ab ≤ βa2/2+b2/2β (β > 0), Lemma 2 and the estimate of |D∆t pn|h,

|D∆t pn|h ≤ ch‖D∆t pn‖1 ≤
ch√
∆t

‖p‖H1(tn−1,tn;H1),

we have

‖D∆ten
h‖2

0 +D∆t

(
ν‖D(en

h)‖2
0 +

δ0

2ν
|εn

h |2h
)
≤

4

∑
i=1

〈Rn
hi,D∆ten

h〉+
1
ν

Ch(D∆t pn,εn
h )

10
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≤
( 4

∑
i=1

βi
)
‖D∆ten

h‖2
0 +

β5δ0

ν
|εn

h |2h +
1
ν

{ c̃
β2

+
cL2

n−1

β4

}
ν‖D(en−1

h )‖2
0

+ c̃′(1/ν)
[

∆t
β1

‖u‖2
Z2(tn−1,tn) +

h2

β2
‖(u, p)n−1‖2

H2×H1 +
h2

β5∆t
‖p‖2

H1(tn−1,tn;H1)

+
h2

β3

{ 1
∆t

‖(u, p)‖2
H1(tn−1,tn;H2×H1) +L2

n−1‖(u, p)n−1‖2
H2×H1

}]
(28)

for n = 1, · · · ,m and any positive numbers βi (i = 1, · · · ,5). Thus, there exists a posi-
tive constant

c̃(Lm−1; 1/ν , T, ‖u‖C0([0,T ];W 1,∞)∩Z2∩H1(0,T ;H2), ‖p‖H1(0,T ;H1))

independent of h and ∆t such that

‖eh‖l∞
m(H1), ‖D∆teh‖l2

m(L2), |εh|l∞
m(|·|h) ≤ c̃(Lm−1)(∆t +h+‖e0

h‖1 + |ε0
h |h) (29)

by applying Lemma 1 to (28) with proper βi (i = 1, · · · ,5), e.g., βi = 1/8 for i =
1, · · · ,4 and β5 = 1/(4∆t∗), and Ln−1 ≤ Lm−1 for any n = 1, · · · ,m.

Since (u0
h, p0

h) and (û0
h, p̂0

h) are the Stokes projections of (u0,0) and (u0, p0) by (7),
respectively, it holds that

‖e0
h‖1 = ‖u0

h − û0
h‖1 ≤ ‖u0

h −u0‖1 +‖u0 − û0
h‖1 ≤

2α7h√
ν

‖(u0, p0)‖H2×H1,ν

≤ 2α7hmax{1,1/ν}‖(u0, p0)‖H2×H1

≤ c(1/ν)h‖(u0, p0)‖H2×H1 , (30a)

|ε0
h |h = |p0

h − p̂0
h|h ≤ |p0

h −0|h + |p̂0
h − p0|h + |p0|h

≤ α3{‖p0
h −0‖0 +‖ p̂0

h − p0‖0}+h‖p0‖1

≤ h(2α3α7
√

ν‖(u0, p0)‖H2×H1,ν +‖p0‖1)

≤ h(2α3α7 max{ν ,1}‖(u0, p0)‖H2×H1 +‖p0‖1)

≤ ch‖(u0, p0)‖H2×H1 . (30b)

Combining (30) with (29), we can take a positive constant c∗(Lm−1) independent of h
and ∆t of the form (21) such that (22) holds.

4.3 Proof of Theorem 1
The proof is given by induction through three steps.

Step 1 (definitions of ci, i = 0, · · · ,2, and h0): Let ∆t∗, h1, δ1 and c∗ be the constants
stated just before Theorem 1, in Lemmas 4 and 5 and Proposition 3, respectively. We
can take positive constants c1 and c2 such that the inequalities

c1 ≥ max
{
‖u0

h‖0,∞, 2‖ûh‖C0(L∞)
}
, (31a)

c2 ≥ max
{
‖u0

h‖1,∞hd/4, 2‖ûh‖C0(W 1,∞)h
d/4}, (31b)

are valid for any h ∈ (0,h1] by the following estimates. From Proposition 2, (14)
and (15) it holds that

‖ûh(t)‖0,∞ ≤ ‖ûh(t)−Πhu(t)‖0,∞ +‖Πhu(t)‖0,∞

11
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≤ α50h−d/6‖ûh(t)−Πhu(t)‖1 +α40‖u(t)‖0,∞

≤ α50h−d/6(‖ûh(t)−u(t)‖1 +‖u(t)−Πhu(t)‖1
)
+α40‖u(t)‖0,∞

≤ α50h1−d/6
{ α7√

ν
‖(u, p)(t)‖H2×H1,ν +α42‖u(t)‖2

}
+α40‖u(t)‖0,∞

≤ c(1/ν)
{

h1−d/6
1 ‖(u, p)‖C0(H2×H1) +‖u‖C0(L∞)

}
< ∞, (32a)

‖ûh(t)‖1,∞ hd/4 ≤
(
‖ûh(t)−Πhu(t)‖1,∞ +‖Πhu(t)‖1,∞

)
hd/4

≤ α51h−d/4‖ûh(t)−Πhu(t)‖1 +α41hd/4‖u(t)‖1,∞

≤ α51h−d/4(‖ûh(t)−u(t)‖1 +‖u(t)−Πhu(t)‖1
)
+α41hd/4‖u(t)‖1,∞

≤ α51h1−d/4
{ α7√

ν
‖(u, p)(t)‖H2×H1,ν +α42‖u(t)‖2

}
+α41hd/4‖u(t)‖1,∞

≤ c(1/ν)
{

h1−d/4
1 ‖(u, p)‖C0(H2×H1) +hd/4

1 ‖u‖C0(W 1,∞)
}

< ∞. (32b)

Similar estimates are also obtained for ‖u0
h‖0,∞ and ‖u0

h‖1,∞hd/4.
Then, we define a constant c0 by

c0 ≡ min
{δ1

c2
,

c2

4α51c∗(c1)

}
. (33a)

Let a positive constant h2 be small enough to satisfy{
2α50c∗(c1)(c0hd/12

2 +h1−d/6
2 ) ≤ c1,

4α51c∗(c1)h
1−d/4
2 ≤ c2,

(33b)

and we set h0 ≡ min{h1,h2}.

Step 2 (induction): Under the condition (8) we now consider the scheme (6) with the
first component u0

h of the Stokes projection of (u0,0) by (7). For m ∈ {0, · · · ,NT} we
set property P(m),

P(m) :


(a) The scheme (6) is solvable until n = m,

(b) ‖uh‖l∞
m(L∞)(= Lm) ≤ c1,

(c) ‖uh‖l∞
m(W 1,∞)h

d/4 ≤ c2.

It is trivial that P(0) holds true by the definitions of the constants c1 and c2. Supposing
that P(m−1) holds true for an integer m ∈ {1, · · · ,NT}, we prove that P(m) also does.
It holds that from (8), P(m−1) and (33a)

∆t‖uh‖l∞
m−1(W 1,∞) ≤ c0hd/4‖uh‖l∞

m−1(W 1,∞) ≤ c0c2 ≤ δ1,

which implies that the assumptions of Proposition 3 are satisfied. We, therefore, obtain
P(m)-(a) and the estimate (22). We show P(m)-(b) and (c). From (31) and (33) we have

‖um
h ‖0,∞ ≤ ‖um

h − ûm
h ‖0,∞ +‖ûm

h ‖0,∞ ≤ α50h−d/6‖um
h − ûm

h ‖1 +
c1

2

≤ α50c∗(c1)h−d/6(∆t +h)+
c1

2

≤ α50c∗(c1)(c0hd/12
2 +h1−d/6

2 )+
c1

2
≤ c1,

12



WIAS Discussion Paper No.2013-002

‖um
h ‖1,∞hd/4 ≤

(
‖um

h − ûm
h ‖1,∞ +‖ûm

h ‖1,∞
)
hd/4 ≤ α51h−d/4‖um

h − ûm
h ‖1 +

c2

2

≤ α51c∗(c1)h−d/4(∆t +h)+
c2

2

≤ α51c∗(c1)(c0 +h1−d/4
2 )+

c2

2
≤ c2.

Thus, P(m) holds true, and the induction is completed.

Step 3 (existence (i), stability (ii) and error estimates (iii) of Theorem 1): The com-
pleted induction implies P(NT ) holds true. From (32) we can express c1 in the form (9).
Hence we have existence (i) and stability (ii). Since the inequalities

Ln ≤ LNT = ‖uh‖l∞(L∞) ≤ c1, n = 0, · · · ,NT , (34)

are satisfied, the first and second inequalities of (12) in (iii) hold for c ≡ c∗(c1) by
Proposition 3. The third inequality of (12) in (iii) is obtained as it holds that

‖εn
h‖0 ≤

√
ν‖(en

h,ε
n
h )‖V×Q,ν ≤

√
ν

α6
sup

(vh,qh)∈Vh×Qh

Ah((en
h,ε

n
h ),(vh,qh))

‖(vh,qh)‖V×Q,ν

=
√

ν
α6

sup
(vh,qh)∈Vh×Qh

〈Rn
h,(vh,qh)〉− (D∆ten

h,vh)
‖(vh,qh)‖V×Q,ν

≤ c̃(1/ν,c1)
[
‖en−1

h ‖1 +‖D∆ten
h‖0 +

√
∆t‖u‖Z2(tn−1,tn)

+h
( 1√

∆t
‖(u, p)‖H1(tn−1,tn;H2×H1) +‖(u, p)n−1‖H2×H1 +‖pn‖1

)]
(35)

for n = 1, · · · ,NT . Here we have used (13), (34) and Lemmas 4 and 6. Finally, c∗(c1),
(9) and (35) derive the dependency (11) of the constant c in (12).

5 Numerical results
In this section two and three dimensional test problems are computed by scheme (6)
in order to observe the convergence order.

Quadrature formulae of degree five for d = 2 (seven points) and 3 (fifteen points) [30]
are employed for computation of the integral∫

K
un−1

h ◦X1(un−1
h ,∆t)(x)vh(x) dx

appearing in scheme (6). δ0 = 0.05 is chosen by some numerical experience. The
system of linear equations is solved by MINRES.

Example 1. In problem (1) we set Ω = (0,π)d , T = 1 and two values of ν ,

ν = 1, 10−1.

The functions f and u0 are given so that the exact solution is

(u, p)(x, t)

=

{(
−φ(x1,x2, t),φ(x2,x1, t),ρ(x1,x2,0, t)

)
(d = 2),(

ψ(x1,x2,x3, t),ψ(x2,x3,x1, t),ψ(x3,x1,x2, t),ρ(x1,x2,x3, t)
)

(d = 3),

13
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where

φ(a,b, t) ≡ sin2 asinb{sin(a+ t)+3sin(a+2b+ t)},
ψ(a,b,c, t) ≡ sin2 asinbsinc

[
4cosbsincsin(c+a+ t)

− sinb{3sin(b+2c+ t)+ sin(b+ t)}
]
,

ρ(a,b,c, t) ≡ sin(a+2b+ c+ t).

Let N be the division number of each side of the domain. We set N = 16,32,64,128
and 256 for d = 2 and N = 8,16,32 and 64 for d = 3, and (re)define h ≡ π/N. Sample
meshes are shown in Fig. 1 for d = 2 (left, N = 16) and 3 (right, N = 8). The time
increment ∆t is set to be ∆t = 1/N = h/π . Let (uh, ph) be the solution of scheme (6).
The initial function u0

h is chosen as the first component of the Stokes projection of
(u0,0) by (7). We define Err by

Err ≡
√

ν‖uh −Πhu‖l2(H1) +(1/
√

ν)‖ph −Πh p‖l2(L2)√
ν‖Πhu‖l2(H1) +(1/

√
ν)‖Πh p‖l2(L2)

as the relative error between (u, p) and (uh, ph). Fig. 2 shows graphs of Err versus h
in logarithmic scale. We can see that Err is almost of first order in h for both d = 2
and 3, and the results are consistent with Theorem 1.

Figure 1: Sample meshes used for Example 1 in 2D (left, N = 16) and 3D (right,
N = 8).

6 Conclusions
As for a pressure-stabilized characteristics finite element scheme for the Navier-Stokes
equations, we have proved stability and convergence results with the optimal error es-
timates for the velocity and the pressure. The results hold under a condition on the
time increment of the form ∆t ≤ chd/4, which is the same as that of [31] by the charac-
teristics finite element scheme using the conventional elements. The scheme is based
on the method of characteristics, which works well for convection-dominated prob-
lems and leads to a symmetric coefficient matrix of the system of linear equations.
Since a cheap P1/P1 finite element is employed, the degrees of freedom are smaller
than that of conventional elements for the equations, e.g., P2/P1. These advantages,
i.e., symmetry of the coefficient matrix and small degrees of freedom, reduces compu-
tation cost (time and memory). Two and three dimensional numerical results obtained
by the linear solver MINRES have been shown and the numerical convergence or-
ders have been recognized to be consistent with the theoretical results. Consequently,

14
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10-3

10-2

10-1

100

π/256 π/128 π/64 π/32 π/16 π/8

E
rr

h

1

1

2D, ν=1  
2D, ν=0.1
3D, ν=1  
3D, ν=0.1

Figure 2: Err versus h for two and three dimensional test problems in Example 1.

the scheme leads to efficient computation especially in 3D as well as mathematical
reliability with optimal error estimates, first order in both time and space.
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Appendix
Proof of Lemma 6 We firstly prove (23a). For X(t) = X(t;x, tn) and Y n(x;s) ≡
sX(tn−1)+(1− s)X1(un−1,∆t)(x) (s ∈ [0,1]) we have

Dun

Dt
− un −un−1 ◦X1(un−1,∆t)

∆t

=
{Dun

Dt
(x)− u(X(tn), tn)−u(X(tn−1), tn−1)

∆t

}
− 1

∆t

{
un−1(X(tn−1))−un−1 ◦X1(un−1,∆t)(x)

}
=

1
∆t

∫ tn

tn−1

{Du
Dt

(X(tn), tn)− Du
Dt

(X(t), t)
}

dt − 1
∆t

[
un−1(Y n(x;s)

)]1
s=0

15
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=
1
∆t

∫ tn

tn−1
dt

∫ tn

t

D2u
Dt2 (X(s),s)ds

− 1
∆t

∫ 1

0

[{(
X(tn−1)−X1(un−1,∆t)(x)

)
·∇

}
un−1](Y n(x;s)

)
ds

≡ Rn
h11(x)+Rn

h12(x),

and

〈Rn
h1,vh〉 = (Rn

h11,vh)+(Rn
h12,vh) ≤ (‖Rn

h11‖0 +‖Rn
h12‖0)‖vh‖0. (A.1)

We evaluate ‖Rn
h1i‖0 (i = 1,2). From the Schwarz inequality it holds that

‖Rn
h11‖0 ≤

√
∆t
3

∥∥∥D2u
Dt2

∥∥∥
L2(tn−1,tn;L2)

≤ c
√

∆t‖u‖Z2(tn−1,tn). (A.2)

From the estimate,

|X(tn−1;x, tn)−X1(un−1,∆t)(x)| =
∣∣∣un−1(x)∆t −

∫ tn

tn−1
u(X(t), t)dt

∣∣∣
=

∣∣∣{un(x)−
∫ tn

tn−1

∂u
∂ t

(x, t)dt
}

∆t −
∫ tn

tn−1
u(X(t), t)dt

∣∣∣
=

∣∣∣∫ tn

tn−1

{
un(x)−u(X(t), t)

}
dt −∆t

∫ tn

tn−1

∂u
∂ t

(x, t)dt
∣∣∣

=
∣∣∣∫ tn

tn−1

[
u(X(s),s)

]tn

s=t dt −∆t
∫ tn

tn−1

∂u
∂ t

(x, t)dt
∣∣∣

=
∣∣∣∫ tn

tn−1
dt

∫ tn

t

Du
Dt

(X(s),s)ds−∆t
∫ tn

tn−1

∂u
∂ t

(x, t)dt
∣∣∣

≤ ∆t
∫ tn

tn−1

{∣∣∣Du
Dt

(X(t), t)
∣∣∣+ ∣∣∣∂u

∂ t
(x, t)

∣∣∣}dt,

we have

‖Rn
h12‖0 ≤ c̃

√
∆t

(∥∥∥Du
Dt

∥∥∥
L2(tn−1,tn;L2)

+
∥∥∥∂u

∂ t

∥∥∥
L2(tn−1,tn;L2)

)
≤ c̃

√
∆t‖u‖Z1(tn−1,tn).

(A.3)

Combining (A.2) and (A.3) with (A.1), we obtain (23a).
For the estimate (23b) we have∣∣∣ 1

∆t

{
un−1 ◦X1(un−1

h ,∆t)−un−1 ◦X1(un−1,∆t)
}
(x)

∣∣∣
=

∣∣∣ 1
∆t

[
un−1

(
sX1(un−1

h ,∆t)(x)+(1− s)X1(un−1,∆t)(x)
)]1

s=0

∣∣∣
=

∣∣∣∫ 1

0
{(un−1 −un−1

h )(x) ·∇}un−1
(

sX1(un−1
h ,∆t)+(1− s)X1(un−1,∆t)

)
ds

∣∣∣
=

∣∣∣∫ 1

0
{(ηn−1

h − en−1
h )(x) ·∇}un−1

(
sX1(un−1

h ,∆t)+(1− s)X1(un−1,∆t)
)

ds
∣∣∣

≤ c̃(|ηn−1
h (x)|+ |en−1

h (x)|),

which implies

〈Rn
h2,vh〉 =

1
∆t

(
un−1 ◦X1(un−1

h ,∆t)−un−1 ◦X1(un−1,∆t),vh

)
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≤ c̃(‖ηn−1
h ‖0 +‖en−1

h ‖0)‖vh‖0

≤ c̃
{

c(1/ν)h‖(u, p)n−1‖H2×H1 +‖en−1
h ‖0

}
‖vh‖0.

The estimates (23c), (23d) and (23e) are obtained as

〈Rn
h3,vh〉 =

1
∆t

(
ηn

h −ηn−1
h ◦X1(un−1

h ,∆t),vh

)
= (D∆tηn

h ,vh)+
1
∆t

(
ηn−1

h −ηn−1
h ◦X1(un−1

h ,∆t),vh

)
≤ ‖D∆tηn

h‖0‖vh‖0 +α8Ln−1‖ηn−1
h ‖1‖vh‖0

≤
{ 1√

∆t

∥∥∥∂ηh

∂ t

∥∥∥
L2(tn−1,tn;L2)

+α8Ln−1‖ηn−1
h ‖1

}
‖vh‖0

≤ c(1/ν)h
{ 1√

∆t
‖(u, p)‖H1(tn−1,tn;H2×H1) +Ln−1‖(u, p)n−1‖H2×H1

}
‖vh‖0,

〈Rn
h4,vh〉 = − 1

∆t

(
en−1

h − en−1
h ◦X1(un−1

h ,∆t),vh

)
≤ α8Ln−1‖en−1

h ‖1‖vh‖0,

〈Rn
h5,qh〉 = − 1

ν
Ch(pn,qh) ≤

δ0

ν
|pn|h|qh|h ≤

δ0h
ν

‖pn‖1|qh|h,

from (17) and (18).
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