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ABSTRACT

Let us consider to synthesize a processor core with
SIMD instructions by a hardware/software cosynthesis
system. The system is required to configure functional
units executing SIMD instructions and obtain the area
and delay of the functional units to evaluate the syn-
thesized processor core. This paper proposes a hard-
ware unit generation algorithm for a hardware/software
cosynthesis system of processors with SIMD instruc-
tions. Given a set of instructions to be executed by a
hardware unit and constraints for area and delay of the
hardware unit, the proposed algorithm extracts a set
of subfunctions to be required by the hardware unit
and generates more than one architecture candidates
for the hardware unit. The algorithm also outputs the
estimated area and delay of each of the generated hard-
ware units. The execution time of the proposed algo-
rithm is very short and thus it can be easily incorpo-
rated into the processor core synthesis system. Experi-
mental results demonstrate effectiveness and efficiency
of the algorithm.

1. INTRODUCTION

By modifying a b-bit functional unit, it can execute
a single b-bit operation in one case but it can also exe-
cute n-parallel b/n-bit sub-operations in another case.
For example, a modified 32-bit functional unit can ex-
ecute four parallel 8-bit operations. A packed SIMD
type operation (or a SIMD operation in short) is n-
parallel b/n-bit sub-operations executed by a modified
b-bit functional unit. In image processing, each pixel
can be represented by an 8-bit data. On the other hand,
other operations such as a memory address operation
need 32-bit or more bits. Since a modified functional
unit with SIMD operations (called a SIMD functional
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unit) can execute both a 32-bit operation and four 8-bit
operations, it is effective for image processing. Since an
image processor with SIMD functional units executes
n pixels concurrently, it can execute application pro-
grams of image processing quickly.

An instruction corresponding to a SIMD operation
is called a SIMD instruction. A SIMD instruction has
an operation type, which is a type.of a SIMD func-
tional unit executing the instruction. For example, a
SIMD instruction executed by a SIMD adding unit has
an operation type of add. A SIMD instruction can have
many options other than an operation type. Let us con-
sider that the result of a b/n-bit operation is over the
maximum value represented by b/n bits. In one case,
the result can be saturated to the maximum value rep-
resented by b/n bits (called a saturation operation) or
just high bits of the result can be dicarded (called a
wrap around operaion). In another case, the result can
be kept as 2 x b/n-bit data. It is called a bit-extend
operation. Thus for each operation type, a SIMD in-
struction has many options such as a packing number,
whether the data can be signed or unsigned, whether
the data can be saturated or wrapped around, whether
the data can be bit-extended, and how much the data
is shifted. We can have a large number of SIMD in-
structions. However, if a particular application pro-
gram runs on an image processor, a small number of
SIMD instructions are actually used. We consider that
it is important to synthesize an appropriate instruction
set of an image processor depending on an application
program. Hardware/software codesign can be one of
the powerful methodologies in order to synthesize an
appropriate instruction set.

‘We have been developing a hardware/software cosyn-
thesis system for digital signal processor cores(11]. In
hardware/software partitioning, a set of instructions



in the processor is optimized, area of the synthesized
processor core and the execution time of a given ap-
plication program are estimated, and an appropriate
processor core configuration is obtained. Depending on
instructions of a processor, a processor core has appro-
priate hardware units, which are functional units, ad-
dressing units, and hardware loop units. Area and crit-
ical path delay of a hardware unit must be estimated
in order to estimate area of a processor core and the
execution time of an application program. If SIMD in-
structions are synthesized depending on an application
program, the processor core requires a specific SIMD
functional unit to the application program. Since we
have many SIMD instructions for each operation type,
the number of such a specific SIMD functional unit
must be very large. Since we cannot prepare many
SIMD functional units in a hardware unit library, we
must generate a hardware unit library with estimated
area and delay. Besides, area and delay of hardware
units should be estimated quickly because area of a
processor core and the execution time of the applica-
tion program for many processor core configurations
must be estimated in order to obtain an appropriate
processor core configuration.

In our former system(11] or researches on processor
synthesis reported such as in {1, 10, 13}, hardware units
have been designed manually. However, all the SIMD
functional units cannot be prepared because they have
alarge number of configurations. In [5], FHM-DBMS|8],
a management system of hardware units is used. In
FHM-DBMS, it is difficult to synthesize a functional
unit under the constraints of area and delay. Therefore,
it is insufficient for hardware/software partitioning.

In this paper, we propose a hardware unit genera-
tion system for hardware/software cosynthesis of digi-
tal signal processors with SIMD instructions. Given a
set of instructions executed by a hardware unit and the
constraints of area and delay of the hardware unit, the
system generates more than one hardware unit candi-
dates and estimated area and delay of them. An ap-
propriate hardware unit can be selected among hard-
ware unit candidates. The hardware unit generation
system is composed of a subfunction extractor and an
architecture configurator. A subfunction extractor de-
termines an architecture template based on a set of in-
put instructions. An architecture configurator assigns
subfunctional units to subfunctions in the architecture
template and outputs hardware unit configurations and
estimated area and delay. Especially for the architec-
ture configurator, we propose an architecture configu-
ration algorithm. The algorithm enumerates hardware
unit configurations quickly even if any set of instruc-
tions is given. The algorithm also can be applied to
hardware units other than SIMD functional units.

This paper is organized as follows: Sect. 2 defines
a set of SIMD instructions; Sect. 3 proposes a hard-

Table 1. Basic instructions.

ADD, SUB, SRA, SAL,
SLL, AND, OR, XOR,

MUL, DIV, SLT, SEQ,
SNE, COM2, MAC, INC,
DEC, ADDI, SUBI, SRAI,
SRLI, SLLI, ANDI, ORI,
XORI, MULI, DIVI

LDX, 1DY, 51X, STV,
LDRX, LDRY, STRX, STRY,
LDXI, LDYI, STXI, STVI,
LDIX, LDIY, STIX, STIY,
MY, ImM

BEQ, BNE, BZ, BNZ,

IP, LOUP, RPT, CALL,
RET, NOP, HLT

LDPX, STPX

Arithmetic and logic
operation

Load and store

Jump

Parallel load and store

Table 2: SIMD instructions.
Arithmetic operation ADD, SUB, MUL, MAC
Shift operation SRA, SLA, SLL ]
Bit extend /extract operation [[ EXTD, EXTR
Others EXCH

ware unit generation system; Sect. 4 proposes-an ar-
chitecture configuration algorithm in order to obtain
configurations of hardware units quickly; Sect. 5 shows
several experimental results including SIMD functional
units, addressing units, and hardware units and evalu-
ates effectiveness of the system; Sect. 6 gives concluding
remarks.

2. SIMD INSTRUCTIONS

Target processors for our hardware/software cosyn-
thesis system have a set of instructions in Table 1 and
a set of SIMD instructions in Table 2. A SIMD in-
struction executes n-parallel sub-operations of b/n-bit
width with a b-bit functional unit concurrently. Let n
be a packing number and k be b/n.

A SIMD instruction has an operation type and sev-
eral parameters. SIMD instructions have n-parallel
operations for k-bit data(Figure 1) and n/2-parallel
bit-extended operations for k-bit data(Figure 2). Also
SIMD instructions can have shift operations and satu-
ration operations for arithmetic operation results. For
example, the multiplying instruction with a packing
number of 4, signed operation, 2 bits right shift, and
saturation is represented by MUL.4_sr2s.

3. HARDWARE UNIT GENERATION
SYSTEM

In this section we first discuss relation between hard-
ware/software partitioning and area/delay estimation
of hardware units especially in a hardware/software
cosynthesis system and then propose a hardware unit
generation system.
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Figure 1: n-parallel operations for k-bit data.
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Figure 2: n/2-parallel bit-extended operations for k-bit
data.

3.1. Hardware/software cosynthesis system and
hardware units

Given an application program written in C language
and a set of application data, our hardware/software
cosynthesis system of digital signal processor cores[11]
synthesizes a hardware description of a processor core
and generates an object code and a software environ-
ment(a compiler and a simulator). The system is mainly
composed of compiler, a hardware/software partitioner,
& hardware generator, and a software generator.

In hardware/software partitioning, the system ob-
tains an appropriate processor core configuration based
on area of a processor core and the execution time of an
application program. To explore processor core config-
urations, the process mainly focuses on hardware units
such as functional units, addressing units, and hard-
ware loop units. Thus, area and delay of a hardware
unit must be estimated in hardware/software partition-
ing(Figure 3). Let us consider minimizing area of a
processor core. The instruction set of a processor core
is reconfigured in order to minimize area of it. If the
instruction set of a processor core is reconfigured, a
hardware unit in the processor core can be also recon-
figured. Area of the reconfigured hardware unit can
be different from that of the hardware unit before it is
reconfigured. Let us consider that a SIMD functional
unit u is reconfigured to a SIMD functional unit v’
according as the instruction set of a processor core is
reconfigured. Let area of hardware unit u and v’ be a,
and a, respectively. Then, a,s must be less than a,
so that area of the reconfigured processor core can be
less than that of the processor core before it is recon-
figured. For the execution time of a processor core, the
similar discussion holds true. Besides, in order to ex-
plore a large number of processor core configurations,
a hardware unit should be quickly configured and area
and delay of the hardware unit should be estimated.

3.2. Hardware unit generation system
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Figure 3: A hardware/software cosynthesis system and
hardware unit generation.
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Figure 4: The architecture template of a SIMD func-
tional unit

.Based on discussion of section 3.1, we propose a
hardware unit generation system.

3.2.1. Architecture template

A hardware unit is realized by several hardware
parts which realizes a part of hardware unit functions
(called a subfunctional unit). A subfunction is a func-

_ tion realized by a subfunctional unit. An architecture

template represents a set of subfunctions and their con-
nections. Area of a hardware unit is estimated by
adding up area of subfunctional units assigned to sub-
functions in an architecture template and area of a con-
troller depending on the architecture template. Delay
of hardware unit is estimated by the critical path delay
of subfunctional units on the critical path of a hard-
ware unit depending on an architecture template and
delay of a controller.

For example, a hardware unit which executes MUL_4_
sr3s and MUL_4h_s15 has an architecture template with
subfunctions and their connections in Figure 4. The
subfunctions are bit extension of 2 higher packing data,
signed multiplication and extended multiplication of 4
packing data, 3 bit right shift and 5 bit left shift, and
signed saturation. Figure 5 shows architecture tem-
plates of an addressing unit and a hardware loop unit.
Figure 6 shows that several hardware unit configura-
tions are obtained by assigning subfunctional units to
subfunctions in an architecture template.

3.2.2. Overview of our system

Given a set of instructions executed by a hardware
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Figure 5: (a) The architecture template of an address-
ing unit. (b) The architecture template of a hardware
loop unit.

Set (a) of subfunction 4

Area 300
Detay 4

Area 1000 Area 20
Delay 20 Delay

Hardvare unit (b)

Area 2320
Delay 20

Hardware unit (a)

Area 1120
Delay 29

Figure 6: Assignment of subfunction units to subfunc-
tions in an architecture template.

unit and constraints of area and delay of the hard-
ware unit, a hardware unit generation systém gener-
ates more than one hardware unit candidates and out-
puts their estimated area and delay. Figure 7 shows
the proposed system. The hardware unit generation
system is composed of a subfunction extractor and an
architecture configurator. A subfunction extractor de-
termines an architecture template based on a set of in-
put instructions. An architecture configurator assigns
subfunctional units to subfunctions in the architecture
template and outputs hardware unit configurations and
their estimated area and delay.

Since a hardware unit is realized by a combination
of subfunctional units, the system can generate hard-
ware units for any given set of instructions by prepar-
ing a small number of subfunctional units. Since the
system can give constraints of area and delay to hard-
ware units, the system can outputs only the hardware
units required in hardware/software partitioning which
intends to reduce area of a processor core or the execu-
tion time of an application program. Since the system
can enumerate more than one candidates, a hardware
unit for a set of instructions need not be configured
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Figure 7: The hardware unit generation system.

many times. Thus, hardware/software partitioning can
be quickly performed.

4. ARCHITECTURE CONFIGURATION
ALGORITHM

This section defines an architecture configuration
problem which is the core of the hardware unit genera-
tion system and proposes an architecture configuration
algorithm which enumerates hardware unit configura-
tions.

4.1. Architecture configuration problem

Let I, be a set of instructions executed by a hard-
ware unit u. Let a, be area of a hardware unit v and
Qmaez be the input maximum area of a hardware unit.
Then an area constraint is given by a, < amaes. Let dy
be critical path delay of a hardware unit v and dmas
be the input maximum delay of a hardware unit. Then
a delay constraint is given by dy < dpnae. Given an
architecture template which depends on a set I of in-
structions, an area constraint @mq; and a delay con-
straint dmas, an architecture configuration problem is
to obtain more than one hardware unit configurations
which satisfy I C I, an area constraint, and a delay
constraint.

4.2. Algorithm

Let F = {fi, f2,...,fm} be a set of subfunctions
in an architecture template. We can select a set S; of
subfunctional units which can realize f; (i = 1,...,m).
A subfunctional unit s € S; has area a(s) and delay
d(s).



In an architecture configuration problem, more than
one candidates must be enumerated quickly. It is de-
sirable that enumerated hardware unit configurations
have smaller area in hardware units which have the
same delay. Therefore we propose the algorithm as fol-
lows.

First, we assign a subfunctional unit which has the
shortest delay in S; (i = 1,...,m) to each subfunction
fi. The generated hardware unit has the shortest delay
in all the candidates and are expects to satisfy a delay
constraint.

Second, we focus on a subfunction f; and try to
replace the subfunctional unit s currently assigned f;
with a subfunctional unit s’ € S;\s such that a(s') <
a(s) and d(s') is minimum. We perform this operation
for each of all the subfunctions and actually replace s
with smin which satisfies a delay constraint and has
the smallest area of all the generated configurations.
This algorithm can obtain hardware unit configurations
which have small area gradually by repeating this pro-
cess while a hardware unit satisfies a delay constraint.

Lastly, we enumerate hardware unit configurations
which satisfy an area constraint.

Figure 8 shows this algorithm. Let us calculate time
complexity of the proposed algorithm. Let n be the to-
tal of subfunctional units 3_|.S;|. If subfunctional units
which realize a subfunction f; are sorted on delay in
sscending order, Step 2 of Figure 8 can be executed
with O(1). Since Step 3 is executed for all subfunc-
tions, Step 2-4 can be executed with O(m). Step 2-4
are repeated at most n times. Thus, time complexity is
O(mn + nlogn). Let us calculate space complexity of
the proposed algorithm. This algorithm need to keep n
sorted subfunctional units. A hardware unit is realized
by m subfunctional units. Thus, space complexity is
O(m + n).

5. EXPERIMENTAL RESULTS

The system has been implemented in the C lan-
guage on Sun Ultra SPARC(200MHz). The system was
applied to a SIMD multiplier and an addressing unit.
We used gee(version 2.95.2) to compile. We described
subfunctional units in VHDL and logic-synthesized them
using Synopsys Design Compiler with the VDEC cell
libraries(CMOS and 0.35um technology). ! Thus we
obtained area and delay of the subfunctional units. We
enumerated all the hardware unit configurations.

Figure 9 shows the results of a SIMD multiplier
given a set of instructions in Table 3 and constraints
of area and delay as 900,000{um?} and 16.0[ns] respec-
tively. The number of hardware unit configurations

1The libraries in this study have been developed in the
chip fabrication program of VLSI Design and Education Cen-
ter(VDEC), the University of Tokyo with the collaboration by
Hitachi Ltd. and Dai Nippon Printing Corporation.
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Step 1 Configure a hardware unit assigning each subfunc-
tional unit which has the shortest delay to each sub-
function of an architecture template. If the con-
figured hardware unit does not satisfy a delay con-
straint, finish. .

Step 2 Output the current configuration if the current
configuration of a hardware unit satisfy an area con-
straint.

Step 3 Let S; be a set of subfunctional units assigned to
a subfunction fi. Let a(s) and d(s) be area and delay
of a subfunctional unit s € S;. For a subfunction
fi, try to replace the subfunctional unit s currently
assigned f; with a subfunctional unit s’ € S;\s such
that a(s’) < a(s) and d(s") is minimum.

Step 4 For each of all the subfunctions, perform Step 3.
Actually replace s with smin which satisfies a delay
constraint and has the smallest area of all the gener-
ated configurations. Update S; to Si\smin.

Step 5 Repeat Step 2—4 while there exists a hardware unit
which satisfies the condition written in Step 4.

Figure 8: The proposed algorithm.

Table 3: The input set of instructions for a SIMD mul-
tiplier.

MUL 2. sw MUL 2 .ss
MULA4.sw MUL 4 ss
MUL2_sr7w MUL2.srds
MUL 4 _sr4w MUL 4 srds

enumerated by our proposed algorithm is about 20%
of that enumerated by a full search algorithm. How-
ever, our algorithm can enumerate most of configura-
tions which have the smallest area of all the hardware
units with the same delay. Our proposed algoritLm
and a full search algorithm can obtain the results of
Figure 9 by 0.17 [ms] and 2.10[ms], respectively. In a
hardware/software partitioning, a hardware unit gen-
eration system must be executed hundred thousands of
times so that more processor core configurations can
be explored. Since our algorithm can obtain the con-
figurations more than 10 times faster than a full search
algorithm, hardware/software partitioning can be per-
formed quickly and more processor core configurations
can be explored.

Next, we can apply our algorithm to an address-
ing unit[6, 7]. Table 4 shows functions of a generated
addressing unit. Figure 10 shows the results given con-
straints of area and delay as 280,000[um? and 20[ns]
respectively. This results show that our proposed algo-
rithm can effectively obtain configurations for general
hardware units as well as SIMD functional units.

Therefore, we can obtain a better configuration of
processor cores in hardware/software partitioning by
using our hardware unit generation system.



Table 4: The input set for an addressing unit.
The functions
post increment

post decrement

index add modulo add
The number of address registers 8
The number of index register 8
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Figure 9: The results of the SIMD multiplier.

6. CONCLUSION

This paper proposed a hardware unit generation
system for hardware/software cosynthesis system of pro-
cessor cores with SIMD instructions. The experimen-
tal results demonstrate that the systern can enumerate
more than one configurations which have small area
and short delay. In the future, we will incorporate con-
straints of power dissipation or the number of cycles
for multicycle functional units into our system.
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