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Chapter 1

Introduction

How should we price contingent claims in incomplete markets? What is the
optimal hedging structure in incomplete markets? These two questions are
most important topics for finance theory. Markets are complete if any claim
in the market is attainable. In general there is no friction like transaction
costs and so on. The prices of contingent claims in complete markets are
given as the initial cost of its self-financing strategies. Complete markets
are characterized in terms of the martingale measure: The market model is
complete if, and only if, the martingale measure is unique. In this models
any contingent claim can be priced by no-arbitrage considerations. It is true
our real markets are not complete. Therefore we face the problem of an in-
complete market. In such markets a contingent claim cannot be perfectly
hedged by choosing a unique self-financing trading strategy. There are in-
finitely many martingale measures, each of which produces a no-arbitrage
price. To treat this problem we consider an 'optimal’” hedging strategy and
regard its initial cost as price. In this paper we choose Local risk minimiza-
tion (LRM) strategies as such ’optimal’ hedging strategies. LRM strategies
for incomplete market models whose asset price process is described by a
stochastic differential equation (SDE) driven by a Lévy process, are typical
framework of incomplete market models.

Local risk minimization, which has a history of more than twenty years, is
a very famous hedging method for contingent claims in incomplete markets.
Although its theoretical aspects have been very well studied, corresponding
computational methods have yet to be thoroughly developed. This paper
aims to illustrate how to numerically calculate LRM for call options in ex-
ponential Lévy models.



Our aims, in this paper, are two points: The first point is how to and how
fast to compute local risk minimization (LRM) of call options for exponential
Lévy models. Here, LRM is a popular hedging method through a quadratic
criterion for contingent claims in incomplete markets. [Arai & Suzuki(2015.1)]
have previously obtained a representation of LRM for call options; here we
transform it into a form that allows use of the fast Fourier transform (FFT)
method suggested by [Carr & Madan(1999)]. FFT is a very forceful algo-
rithm to compute the Discrete Fourier Transform (DFT). Using FFT, we
can reduce computational complexity O(N?) to O(N log N), where N is the
size of data. Considering Merton jump-diffusion models and variance gamma
models as typical examples of exponential Lévy models, we provide the forms
for the FFT explicitly; and compute the values of LRM numerically for given
parameter sets. We show that our FF'T method can reduce computation time
to calculate LRM dramatically. When Monte Carlo methods, in general, need
hours or days to calculate, our FFT method needs only one-tenth seconds.
Considering Merton jump-diffusion models and variance gamma models as
typical examples of exponential Lévy models, we provide the forms for the
FFT explicitly; and compute the values of LRM numerically for given param-
eter sets. Furthermore, we illustrate numerical results for a variance gamma
model with estimated parameters from the Nikkei 225 index.

In response to this, the second is comparing delta hedging strategies and
LRM strategies. We discuss the differences of LRM strategies and delta hedg-
ing strategies, in exponential Lévy models, where delta hedging strategies in
this paper (A*) are defined under the minimal martingale measures (MMM).
We give inequality estimations for the differences of LRM and delta hedging
strategies, and then show numerical examples for the two typical exponential
Lévy models, Merton models and variance gamma models. Furthermore we
show FFT can calculate A* in a one-tenth seconds as an application of the
first point.

In order to calculate L RM; numerically, we have to calculate conditional
expectations of functionals of S7 under P*. However, there does not appear
to be any straightforward way to specify the probability density function of
St (or equivalently L) under P*. Instead, since L is a Lévy process, it
may be comparatively easy to specify its characteristic function under P*.
Hence, a numerical method based on the Fourier transform is appropriate
for computing LRM. Moreover, [Carr & Madan(1999)] introduced a numer-
ical method for valuing options based on the FFT. We take advantage of
this to develop a numerical method for LRM. In this paper, we consider two



concrete exponential Lévy processes for L. The first is a jump-diffusion pro-
cess as introduced by [Merton(1976)]. Note that he also suggested a hedging
method for these models, but this is different from LRM. For additional de-
tails, see Section 10.1 of [Cont & Tankov(2004)]. This jump-diffusion process
consists of a Brownian motion and compound Poisson jumps with normally
distributed jump sizes. The second is a variance gamma process, which is
a Lévy process with infinitely many jumps in any finite time interval and
no Brownian component. This was introduced by [Madan & Seneta(1987)]
and can be defined as a time-changed Brownian motion. Many papers (e.g.,
[Carr & Madan (1999)], [Madan et al. (1998)]) have studied it in the context
of asset prices. [Schoutens(2003)] provides more details on these two Lévy
processes and more examples of exponential Lévy models.

There is great deal of literature on numerical experiments related to LRM

(e.g., [Bonetti et al. (2015)], [Ewald, Nawar & Siu (2013)], [Kang & Lee
(2014)], [Lee & Song (2007)], [Leoni et al. (2014)] and [Yang et al. (2010)]),
but to our knowledge, ours is the first attempt to develop an FFT-based
numerical LRM scheme for exponential Lévy models.
[Kélani & Quittard-Pinon(2014) ] studied an optimal hedging strategy that
they call 6-hedging, which is similar to but different from LRM, for exponen-
tial Lévy models, and adopted a Fourier transform approach separate from
[Carr & Madan(1999))’s method. As an important difference, they assumed
that S is a martingale under the underlying probability measure. In contrast,
we do not make this assumption. We therefore need to treat S under P*, that
is, calculate conditional expectations of functionals of S under P*. However,
the structure of S is no longer preserved under a change of measure. For
example, when L is a variance gamma process under P, it is not so under P*.
Thus, our setting is more challenging but also more natural.

Delta hedging strategies, which are also well-known and often used by
practitioners, are given by differentiating the option price under a certain
martingale measure with respect to the underlying asset price. Due to the
relationship between LRM and the MMM, we consider delta hedging strate-
gies under the MMM.

This paper is organized as follows: Chapter 2 gives a short introduction
of a LRM and its representations.

In Chapter 3, we illustrate how to compute LRM of call options for expo-
nential Lévy models. [Arai & Suzuki(2015.1)] have previously obtained a
representation of LRM for call options; here we transform it into a form that
allows use of the FF'T method suggested by [Carr & Madan(1999)]. Consid-
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ering Merton jump-diffusion models and variance gamma models as typical
examples of exponential Lévy models, we provide the forms for the FFT
explicitly; and compute the values of LRM numerically for given parame-
ter sets. Furthermore, we illustrate numerical results for a variance gamma
model with estimated parameters from the Nikkei 225 index.

In chapter 4, we discuss the differences of LRM and delta hedging strategies,
in exponential Lévy models, where delta hedging strategies in this paper are
defined under the MMM. First of all we give inequality estimations for the
differences of LRM and delta hedging strategies, and then show numerical
examples for the two typical exponential Lévy models, Merton models and
variance gamma models.



Chapter 2

Local Risk-Minimization and
Its Representations

We will give a short survey of LRM here. More precise definitions or exam-
ples are shown in [Schweizer(2001)], [Schweizer(2008)],

[Arai & Suzuki(2015.1)], and [Arai & Suzuki(2015.0)]. We consider a finan-
cial market which is composed of one risk-free asset and one risky asset with
maturity T. We may assume that the interest rate of the market is given
by 0. To put it plainly, the price of the risk-free asset is 1 at all time. The
fluctuation of the risky asset is assumed to be given by a solution to the
following stochastic differential equation:

dSt = St_ |:Oétdt + ﬂtth —|—/ ’)/t7zj\7(dt, dZ>:| , SO > O, (21)
Ro

where «, 5 and v are predictable processes. Let (2, F,P) be a complete
probability space and F = {F;};cj0,77 be the canonical filtration completed
for P. W; is 1-dim. standard Brownian motion, N(dt, dz) is Poisson random
measure, and N (dt,dz) is its composed random measure. In other words,
using Lévy measure v we can write N (dt, dz) = N(dt, dz)—v(dz)dt. Moreover
v is a stochastic process measurable with respect to the o-algebra generated
by Ax (s,u] x B, A€ F;, 0 <s<u<T, Be B(Ry). Now, we specurate
the following:

Assumption 2.0.1. 1. (2.1) has a solution S satisfying the so-called struc-
ture condition. More precisely, S is a special semimartingale with the
canonical decomposition S = Sy + M + A such that

11
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(a)

< 0Q.
L2(P)

T
H[MFT” + [ laad
0

where dMy = S;_ (5 dWy + fRO Y. N(dt,dz)) and dAy = S;_oudt.
Qi

Se- (B + Jg, viv(d2))

, we have A =

(b) Defyning a process Ny :=
[ Ad(M).

(¢) The mean-variance trade-off process K; := fot N2d(M), is finite.
Id est K is finite P-a.s.

These conditions (a)-(c) are called structure condition (see [Schweizer(2001)],
[Schweizer(2008)]).

2. v, > —1, (t,z,w)-a.e. In other words, E [fOT e, 1{7tyzg_1}y(dz)dt] =
0. Remark that this condition guarantees S; > 0 for arbitrary t € [0,T].

We define LRM for a contingent claim F' € L?(P) based on Theorem 1.6
of [Schweizer(2008)].

Definition 2.0.2. 1. ©g denotes the space of all R-valued predictable pro-
cess & satisfying E [fOT Ed(M); + (fOT |§tdAt|)2} < 0.

2. An L2-strategy is given by a pair ¢ = (£,7m), where & € Og and 7 is
an adopted process such that V() := £S 4+ n is a right continuous
process with E[V2(¢)] < oo for every t € [0,T]. Note that & (resp. n;)
represents the amount of units of the risky asset (resp. risk-free asset)
an investor holds at time t.

3. For F € L*(P), the process C¥(p) defined by Cf (¢) == Flu_ry +
Vi(p) — fot £,dS; is called the cost process of ¢ = (§,n) for F.
4. An L?-strategy o is called locally risk-minimizing for F if Vr(p) = 0

and C¥ () is a martingale orthogonal to M, that is, [CT (), M] is a
uniformly integrable martingale.

Now we discuss a representation of LRM here. First of all, we recall
Follmer-Schweizer decomposition here.
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Definition 2.0.3. An F' € L*(P) admits Follmer-Schweizer decomposition
if it can be described

T
F=F, +/ ¢fds, + LY (2.2)
0

where Fy € R, £ € Og and L is a square-integrable martingale orthogonal
to M with L{ = 0.

Proposition 5.2 of [Schweizer(2008)] shows the following:

Proposition 2.0.4. (Proposition 5.2 of [Schweizer(2008)])
Under Assumption 2.0.1, an LRM ¢ = (§,n) for F exists if and only if F
admits a Follmer-Schweizer decomposition. Its relationship is given by

t
& —¢ nt:Fo+/ €7 dS, + LF — Fly_py — €S,
0

As a result, it suffices to obtain a representation of ¢ in 2.2 in order
to obtain LRM. Throughout of this paper we identify ¢ with LRM. We
consider the process Z := E(— [ AdM), where £(Y') represents the stochastic
exponential of Y, that is, Z is a solution to the SDE dZ; = —\;Z;_dM;. In
addition to Assumption 2.0.1, we suppose the following:

Assumption 2.0.5. Z is a positive square-integrable martingale; and ZrF €
L (P).

A martingale measure P* ~ P is called 'minimal’ if any square-integrable
P-martingale orthogonal to M remains a martingale under P*. We can see
the following:

Lemma 2.0.6. Under the Assumption 2.0.1, if Z is a positive square-integrable
martingale, then a minimal martingale measure P* exists with dP* = ZpdP.

Example 2.0.7. We provide a framework here. The postulates are that As-
sumption 2.0.1 is satisfied, and Z is a positive square integrable martingale.
We consider the following three conditions:

1.

Vx> —1, (t,z,w)-a.e.
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2. supyepo .y (lee] + B7 + [p, 7i.v(dz)) < C. for some C >0
3. There exist an € > 0 such that

QY2

Bt + Jg, 2av(dz)

<l-—¢ and B} +/ Viv(dz) > e, (t,z,w)-a.c.
Ro

The above condition 2 ensures the existence of a unique solution S to (2.1)
satisfying supepo ) |Si| € L*(P) by Theorem 117 of [Situ(2005)]. Hence an
MMM exists by Lemma 2.0.6

Next, we concentrate on representations of LRM &F for contingent claim
F. As a first step, we study the representation through the martingale rep-
resentation theorem.

We assume Assumptions 2.0.1 and 2.0.5. Let P* be a minimal martingale
measure, that is, dP* = ZpdP holds. The martingale representation theorem
(see, e.g. Proposition 9.4 of [Cooley & Tukey (1965)]) provides

T T
0 0 Ro

for some predictable processes g and gtl’z. From Ito’s lemma, we have

T L E[ZrF|F,_ .
F =Ep.[F] + /gf+ [ZT Filue gy
t—

+EZF]—" 0. -
/ /g“ P tbes e (dt, dz)
Ro etz)

= Ep. [F] + / R2AW " + / / hi N¥(dt,dz)
0 Ro

where u; == MNS_ By, Or. = MSi—eo, AWE™ := dW,+u,dt, and N¥*(dt, dz) :=
N(dt,dz) + 0, .v(dz)dt. Girsanov’s theorem implies that the compensated

Poisson random measure of N under P* and W¥* and N®* are a Brownian
motion, respectively. Addition to that, we assume that

E [ /0 ' {(hQ)? + /R O(hg,z)%(dz)} dt] < o0. (2.3)
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Denoting i) := h{ — &S,_f, i, == h{, — &Si—-, and

Ny 1
6= {0+ / B Aav(d2)) (2.4)

Ro

we can see 793 + fRo it v (dz) = 0 for any t € [0,7T]. This implies 7, +
i, it204-v(dz) = 0. We have then

T T T
F — Ep[F] _/ &edSy :/ i dW;” +/ / it N¥(dt,dz)
0 0 0 JRy

T T "
:/ z’?th+/ / it N(dt,dz).
0 0 Ro

The following lemma implies that LI := E[F — Ep:[F] — fOT £sdSs| Fi] is a
square-integrable martingale orthogonal to M with L = 0.

Lemma 2.0.8. Under Assumption 2.0.1, 2.0.5, and (2.3), we have

E [ /0 ")+ /0 ' /R 0(7;;Z)2y(dz)dt} <.

Consequently, we can conclude the following:

Proposition 2.0.9. Assume that Assumption 2.0.1, 2.0.5, and equation
(2.3). We have then £ = £ defined equation (2.4).

In the above proposition, a representation of LRM ¢F is obtained under a
soft setting. The processes h and h! appeared in equation (2.4) are induced
by the martingale representation theorem so that it is almost impossible to
calculate them explicitly, and confirm wheather equation (2.3) holds. In
the paragraph, we introduce concrete expressions for h° and h! by use of
Malliavin calculus.

In this part, we prepare some definitions and terminologies with respect
to Malliavin calculus. We treat a Clark-Ocone type formula under change of
measure (under P*) particurarly, see [Solé et al.(2007)] and
[Delong & Imkeller (2010)].

We adopt the canonical Lévy space framework treated by [Solé et al.(2007)].
Remark that Malliavin calculus is discussed based on the underlying Lévy
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process X. We put X; :== W, + fot fRo 2N (ds, dz) here. In the first place, we
define measures ¢ and @ on [0,7] x R as

g(E) = /E So(dz)dt + [E 2u(dz)dt
Q(E) := [E So(dz)dW, + /E ZN(dt, dz)

where dy is the Dirac measure at 0 and E € B(][0,7] x R). Deterministic
functions h : ([0, 7] x R)" — R satisfy

[

T,q,n

= / (11, 21)s -+ (b 20) (b, d21) - gty 20) < 0
([0, TxR)™

2

is the set of product measurable. For h € L7,

where we denote that L7,
and n € N, we define

L.(h) ;:/ Bt 1), (b 2 Q1) - - Oy, dz)
([0,T)xR)™

To make it formal we denote Io(h) := h for h € R and L7, := R. Under this
preparations, any F € L*(PP) has the unique representation F' = "> I,,(hy,)
with functions h, € L7, that are symmetric in the n pairs (t;, 2;),1 < i < n,
and we have E[F?] = Y > n‘thHi% L This is called chaos expansion.

Note that chaos expansion is unique expansion. Then we define Malliavin
derivative.

Definition 2.0.10. 1. Set Sobolev space D*? as follows:
12 . 2 — ! 2
Dh? = {F e L*(P)|F = Z%]n(hn)7;nn.||hn||L2TM < oo} :

2. For any F € D2, we define DF : [0,T] x R x Q — R as

Dy.F =Y nl_1(h((t 2),9)).

n=1

Then we call this DF as Malliavin derivative of F.
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We can obtain Clark-Ocone type formula under MMM P* with this Malli-
avin derivation and some additional assumptions. Here we omit the precise
introduction of Clark-Ocone type formula. Under the above preparations,
we obtain the representations of h° and h'! as follows:

Proposition 2.0.11. If Clark-Ocone type formula under MMM, Assumption
2.0.1, and 2.0.5 hold, h° and h' are described as

1o = Ep. {DtOF FU DyousdWE + / / ”NP* ds da:] )]—"t_} ,
Ro S:

(2.5)

hi.=EBp:[F(H, — 1)+ zH; D, .F|F,_]. (2.6)

Moreover, LRM ¥ is given by substituting equations (2.5) and (2.6) for h°
and h' in equation (2.4) respectively, if equation (2.3) holds.

In a very real sense, the condition ’if Clark-Ocone type formula under
MMM holds’ is most important. To check the condition whether this Clark-
Ocone type formula holds or not is very complicated. Whereas SDE (2.1)
are deterministic function, we need not to check this condition. We propose
a framework which satisfies all the above Assumptions here.

Corollary 2.0.12. We consider the case where «, 3, and vy in SDE (2.1) are
deterministic functions satisfying the three conditions 2.0.7. Additionally, we
assume that

1. ZrF € [A(P),
2, F e D2,
3. ZTDt,zF + FDt,zZT —+ ZDt,ZF . Dt,zZT S L2<q X P)

Then all conditions in Proposition 2.0.11 are satisfied and LRM &F is given
by

F_
;=

615EIP’* [Dt70F|.E_] + fRO EP* [ZDt7ZF|.E_]fYt’ZV<dZ)
Si (B2 + Jo, 7Pv(d2))
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Now, we discuss the representations of LRM for call options as the last
part of this chapter. The pay-off of the call option is expressed (Sp — K)*,
where K > 0 is strike price, T > 0 is maturity, and X+ := max(X,0). We
regard (Sr — K)T as a function of F' which is continuous but not smooth.
Because of that we can not use the chain rule, we use the mollifier approx-
imation. As a preparation for a representation of LRM for call options, we
show the following without proof.

Proposition 2.0.13. For any F € D', K € R and g-a.e. (t,z) € [0,T] xR,
we have (F — K)™ € DM and

(F + 2D, .F — K)* — (F — K)*
Z

Di.(F — K)" = 1paiy DioF - 140y(2) + 1g,(2) -

Lemma 2.0.14. For any F' € D2, we have 1p_gyDyoF =0, (t,w)-a.e.

We consider the case where «, 5, and v in 2.0.7 and assume the next
condition:

{~i. +1log(1 + ,.)|*}v(dz) < C for some C > 0. (2.7)
Ro

When this condition 2.7 and there conditions on Example 2.0.7 are sat-
isfied, then all conditions on Corollary 2.0.12 are automatically satisfied. By
using the preparation, which is the above proposition and lemma, we obtain
an explicit representation of LRM for call options.

Proposition 2.0.15. For any K > 0 and t € [0,T], we have

(ST—K)+ . 1
(Sr107 _
Sie (B2 + Jo, 7220(02)

) {BEEJP’* [1{ST>K}ST|~7:t—]

+4Ewwm+%»—m+4&—Kmﬂ¢mwm}



Chapter 3

Numerical local risk
minimization for exponential
Lévy models

3.1 Preliminaries

We introduced a general representation of LRM for call options by using
Malliavin calculus for Lévy processes based on the canonical Lévy space on
Chapter 1. One of our main purpose is to transform that result into a form
that allows the fast Fourier transform method suggested by [Carr & Madan(1999)]
to be applied. In particular, Merton jump-diffusion and variance gamma
models, being common classes of exponential Lévy models, are discussed as
concrete applications of our approach.

The fluctuation of the risky asset (e.g. liquidity, transaction costs, portfo-
lio constraints, non-continuous trading, and so on) is assumed to be described
by an exponential Lévy process S on a complete probability space (2, F,P),
described by

5= Sqexp {ut + oWt [ aN(0dn)}  toree 0.1,
Ro

where Sy > 0, u € R, 0 > 0, and Ry := R\ {0}. Here W is a one-dimensional
Brownian motion and N is the compensated version of a Poisson random

measure N. Denoting the Lévy measure of N by v, we have N([O,t],A) =
N([0,t],A) — tv(A) for any t € [0,7] and A € B(Ry). Now, (Q,F,P) is

19
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taken as the product of a one-dimensional Wiener space and the canonical
Lévy space for N. In addition, we take F = {F;}icpo) as the completed
canonical filtration for P. For more details on the canonical Lévy space,
see [Solé et al.(2007)] and [Arai & Suzuki(2015.1)]. Moreover, S is also a
solution to the stochastic differential equation

dS, = S,_ |:[LS dt + o dW, + / (e —1)N(dt,dz)|,
Ro

where

1
p =4 o+ / (e* — 1 —z)v(dr).
2 Ro
Without loss of generality, we may assume that Sy = 1 for simplicity. Now,
defining L, := log S; for all ¢t € [0, T, we obtain a Lévy process L. Moreover,

dM; = S;_[o dW, + / (e* — 1)N(dt, dz)]
Ro
is the martingale part of S.

Our focus is the development of a computational method for LRM with
respect to a call option (Sp— K)* with strike price K > 0. We do not review
the definition of LRM in this paper; for details, see [Schweizer(2001)] and
[Schweizer(2008)].We first briefly introduce the explicit LRM representation
of such options in exponential Lévy models given in [Arai & Suzuki(2015.1)].

Define the minimal martingale measure (MMM) P* as an equivalent mar-
tingale measure under which any square-integrable P-martingale orthogonal
to M remains a martingale. Its density is then given by

dr :exp{—gVVT—g—QT—I—/ log(l—é’x)N([O,T],dx)—l—T/
Ro

0.v(d
AP 2 o, o x)}’

where

po pe” = 1)
o? + fRO(ey —1)%v(dy) o? + fRO(ey —1)%v(dy)

for x € Ry. In the development of our approach, we rely on the following:

and 0, :=

£ =

Assumption 3.1.1. 1. [; (|z|Va*)v(dz) < oo, and [, (e” —1)"v(dr) <
oo forn = 4.
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2. 02> p° > —0® — [o (" = 1)’v(dx).

The first condition ensures that u®, &, and 6, are well defined, the square
integrability of L, and the finiteness of fRo (e* — 1)"v(dx) for n = 1,3. The
second guarantees that 6, < 1 for any x € Ry. Moreover, by the Girsanov
theorem,

Wi =W, + &t
and
NP*(10, 4], dz) = O,v(dz)t + N([0,t], dx)

are a P*-Brownian motion and the compensated Poisson random measure of
N under P*, respectively. We can then rewrite L; as

Ly = 't + oW} +/ NP ([0,1], dz),
Ro
where

1

po= —502 +/R (x —e®" +1)(1 —6,)v(dr).

Note that L is a Lévy process even under P*, with Lévy measure given by
v (dx) = (1 — 6,)v(dw).

The LRM will be given as a predictable process L RM;, which represents the
number of units of the risky asset the investor holds at time ¢. First, we
define

Il = EP*[1{5T>K}ST ‘ ‘th], (31>
L= /]R B [(Spe” — K) — (Sp— K)* | Fol(e® — D(dz).  (3.2)

Our explicit representation of LRM for call option (Sp — K)* is then as
follows:

Proposition 3.1.2 (Arai & Suzuki (2015)). For any K > 0 and t € [0,T],

0'2]1 + ]2
Si— (o + fRO(ex — 1)%v(dx))

LRM, = (3.3)
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Remark 3.1.3. 1. The assumption [, (e” —1)'v(dz) < oo is imposed in
Proposition 4.6 of [Arai & Suzuki(2015.1)].

2. If the interest rate of our market is instead r > 0, then equation (3.3)
becomes
0'211 -+ [2
Sy (o + o (€% = 1)%v(dz))’

LRM, = ¢ 7T

and P* is rewritten with & and 6, becoming

(4% —1)o and (1% —r)(e” — 1)

775 oy (7 = 1P0(dy) 72+ oy (e — 1P (dy)’

respectively. Moreover, the second condition in Assumption 3.1.1 would
be revised to

0>p’—r>—0®— / (e” — 1)*v(dx).
Ro
That is, a nonzero r requires only that we replace p with p — r and
multiply the the expression for LRM,; by e~ =Y which means that we
can easily generalize results for the r = 0 case to those for r > 0. For
simplicity, in this paper we treat only the case r = 0.

From the point of view of Proposition 3.1.2, we have to calculate condi-
tional expectations of functionals of S; under P* in order to calculate LRM;
numerically. However, there does not appear to be any straightforward way
to specify the probability density function of Sy (or equivalently Lz) un-
der P*. Instead, since L is a Lévy process, it may be comparatively easy
to specify its characteristic function under P*. Hence, a numerical method
based on the Fourier transform is appropriate for computing LRM. More-
over, [Carr & Madan(1999)] introduced a numerical method for valuing op-
tions based on the fast Fourier transform (FFT). We take advantage of this
to develop a numerical method for LRM. To this end, we induce integral ex-
pressions for I; and I in terms of the characteristic function of Ly_; under
P* and recast them into a form that allows the Carr-Madan approach to be
applied. In particular, Is will be given as a linear combination of Fourier
transforms.

The rest of this section is organized as follows: An introductory review
of the Carr—-Madan approach is given in Subsection 2.1.1, and the integral
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representations of I; and I are presented in Subsection 2.1.2. Merton jump-
diffusion models are examined in Section 2.2, which starts with mathematical
preliminaries and proceeds to numerical results. Section 2.3 is similarly de-
voted to variance gamma models.

3.1.1 Numerical method

We briefly review the Carr-Madan approach, which is an FFT-based numeri-
cal approach for option pricing. The FFT, introduced by [Cooley & Tukey (1965)],
is a numerical method for computing a discrete Fourier transform given by

N-1
F(l) := Z e~ Mty (3.4)
=0

.....

is typically a power of 2. The FFT requires only O(N log, N) arithmetic
operations, as compared with the usual Fourier transform method’s O(N?).

The aim of the Carr—-Madan approach is efficient calculation of E[(Sy —
K)*] when S is a P-martingale. Recall that we are considering only the
case in which the interest rate is zero. Denoting k := log K and C(k) :=
E[(St — €¥)*], we have

_ l OO o i(v—ia)k P(v —ia — 1) v
o) =+ /0 i(v —ia)[i(v — i) + 1] 4 (3:5)

for a > 0 with E[S2™!] < oo, where ¢ is the characteristic function of Lr.
Note that the right-hand side of equation (3.5) is independent of the choice
of a. Now, we denote

_ o(z—1)
vG) = D
for z € C. Using the trapezoidal rule, we can therefore approximate C'(k) as

N-1

Clk) = 3 Oy (g iy, (3.6

J=0

where N represents the number of grid points and 1 > 0 is the distance
between adjacent grid points. The right-hand side of equation (3.6) corre-
sponds to the integral in equation (3.5) over the interval [0, N7, so we need
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to specify N and 7 such that

1 [ s
—/ e~ ivmiky (y —da)dv| < € (3.7)

™ Nn

for a sufficiently small value € > 0, which represents the allowable error. By
incorporating Simpson’s rule weightings, we may rewrite equation (3.6) as

=

-1
1 VR

Clk) = 3~ e — )
™

B+ (=17 = 9)),

w3

<

where 0; is the Kronecker delta function. We define

—ak N1
e . n j+1
F(l) = P _ Z(3 —1ytr 5§
(1) = — ;:06 ¢™p(ng —ia)3 (3 +(=1) i)
forl =0,..., N—1, which is a discrete Fourier transform as given in equation

(3.4). This yields

C(k) ~ F ((k;+ %) %) .

So long as we take 7 so that |k| < 7/n, we can employ the FFT to compute
C(k).

3.1.2 Integral representations

We next induce integral expressions for I; and I, defined in equations (3.1)
and (3.2), and evolve them so that the Carr-Madan approach is available.
Recall that Assumption 3.1.1 applies throughout. As can be seen from Sub-
section 2.1, if [; and I are represented in the same form as equation (3.5)
we can compute them by means of the Carr—-Madan approach. Because the
conditional expectations appearing in I; and I, are under P*, the functions
corresponding to v in equation (3.5) should include the characteristic func-
tion of Ly_; under P*, denoted by

dr_i(2) = Epx [eiZLTft]

for z € C.
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First, we induce an integral representation for
I (= Ep-[143,5> 157 | Fi-])
with ¢r_; by using Proposition 2 from [Tankov(2010)]:

Proposition 3.1.4. For K > 0,

1 00 K—iv—a—i—l
Ep-[L{sy>ry - S | Foe] = — . a—1ti

for allt € [0,T] and a € (1,2]. Note that the right-hand side is independent
of the choice of a.

Proof. Define G(2) := 1{z>ky - @, g(x) := G(e*) for any € R, and g(z) :=
Jg €% g(x)dx for any z € C. We employ one lemma:

br_i(v —ia)ST " dv  (3.8)

Lemma 3.1.5. Let L’ be an independent copy of L. Then,
P*-d
L'/T—t + Lt_ — LT

for all t € [0,T], where

means that A = B in law for P*.

Proof of Lemma 3.1.5. Proposition 1.7 of [Bertoin(1998)] implies that
P*(L;— = L;) = 1. Therefore,

P*-d
Lt - Lt,.
Because Lévy processes have independent and stationary increments, we have

Ly=Ly—Li+ L ="L, ,+ L.

Returning to the proof of Proposition 3.1.4, from Lemma 3.1.5 we have
Bp-[Lisy>ry - S7 | Fir] = Ep[G(ST) | Fio] = Epe[g(Lyp_y + Li—) | Fi-]
— [ oo+ Lywtao)
R

where p(A) := P*(L,._, € A) for any A € B(R). By (22)-(25) in the proof
of Proposition 2 of [Tankov(2010)], if any « € (1, 2] satisfies the conditions
that
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(a) g(x)e ™" has finite variation on R,
(b) g(z)e™" € LY(R),

(¢) Ep:[e*f1-t] < 00, and

|61 (v — ia)|

dv < o0,
R 1+ [v]

(@)
then
Loplde) = — [ oo+ ) S d

[ ota+ Liwtdn) = o= [ ato+ ia)ori(—o = i)z do

for a € (1,2], which is independent of the choice of a. As a result, under
conditions (a)—(d), we have

1 ~ : . a—1v
Ep-[Lis,>ky - St | Fie] = o / 9(v + i) pr—i(—v — ia) ST dv
R

== / G(—v +ia)pr_i(v —ia) ST dv
T Jo
1 00 K—iv—a—i—l )
—— o _ s Sa+zv dv.
T Jo a—1+iv¢T (v —ia)S; v
We need only to confirm that conditions (a)-(d) hold. Conditions (a)
and (b) are obvious. To demonstrate condition (c), it suffices to show Sr_; €
L?(P*) for any t € [0,T]. Note that we have

/R = 1 ()

_ e — 1 2u(dx Iz
‘Af D) + T

|

/Ro(ew —1)3y(dz) < .

Because S is a solution to

dSy = S,_ (o dW}F + / (e — )N (dt, dx)),
R



27

Theorem 117 of [Situ(2005)] implies that

sup |Sy| € L*(P*).
te[0,7]

Next, we show condition (d). Note that
or—i(v — i)
= Ep- {exp {(w + a) {u*(T —t)+oWr , + / NP ([0,T — 1], d:):)} }} :
B (3.9)

For the right-hand side, we have

o [exp {(w +a) /R eNF([0.T — t],dx)H ’

< Ep- {exp {a/ NP ([0,T — t],dm)}} < 00,
Ro
because

Ee- 7] = Br- [oxp {a {m ~0+oWE o+ [ o570

_ 6u*(T—t)EP*[ aocWE’ }EIP’ [ o [, x]\NfP*([O,Tft],da:)}

1
Ep- [eO‘UW t] = exp {éaQUQ(T - t)} :
and

Ep- [eaLT*t] < 0.

In addition, we obtain

|Ep-[exp{(iv + a)oW;_}]| = exp { el )20 (r-t) } : (3.10)

As a result, we have from equations (3.9)—(3.10)

|¢T (v — { g (T_t)vz}dv<oo
R 1+|U| 2

for some C' > 0. This completes the proof of Proposition 3.1.4. m
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We evolve (3.8) into the same form as (3.5) as follows:

1 00 K w—a—+1 ) )
]1 = E]P’*[]-{ST>K} . ST | ft_] = %/ mQZ)T t(U — Z(I)S?_—i_wdl)

= —/ e~ iRy (v — i) dv (3.11)
where k := log K and

¢T—t(2)5tii

12— 1

V1(2) =

for z € C. Thus, we can compute [; with the FFT based on Subsection 2.1.
We turn next to

n(-f e [(Sre — K)* = (87~ K)* | i) - () ).

First, we have the following integral representation:

Proposition 3.1.6. For any K > 0,

_ s Sa—l—z’v
Ep-[(Sy — - Kot Orov—i)SET L 39
pl(Sr CIF] / (v — 1 +dv)(a + iv) v (312)

for any t € [0,T] and any « € (1,2]. Note that the right-hand side is inde-
pendent of the choice of a.

Proof. We can see this in the same manner as Proposition 3.1.4 but with

G(z) = (x — K) . O

Note that (3.12) coincides with (3.5), where o — 1 in (3.12) corresponds to
a in (3.5). Denoting

or_¢(2)S¥

vala) =

for z € C and ¢ := v — icr, we have

- v—a+1 ¢T*t<v - Z-O[)Stoi+w
Ee-[(S1 RS / K- (=14 w)(a+iv) dv
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L[ ralQSE
S A <z<—1>z< v

/ K)o = f(F). (3.13)

Note that f(K) is computed with the FFT. Moreover, Fubini’s theorem
implies

I — /R Ep.[(Sye” — K)* — (Sp — K)* | Fo](e® — D)u(dz)

(e7"K) — f(K)} (¢" — 1)v(dz)

- / 0 {; [t o - 2 [T ko a(a e - vt
[

{_/ (€4 — 1)K~ ZC“%(C)dv} (& — 1)(dr)
/ JOiCHL /RO (e — 1)(e® — )w(dz)s(C)dv (3.14)

which is the same form as (3.5), because the integrand of (3.14) is a function
of (. However, we cannot compute (3.14) numerically as it stands, because
it is not possible to compute the integral [, (" —1)(e” — 1)v(dz) directly.
Thus, we need to make further model-dependent calculations. In Sections 3
and 4, respectively, we evolve (3.14) into a linear combination of Fourier
transforms for Merton jump-diffusion models and variance gamma models.

Remark 3.1.7. Regarding LRM;, I, and Is as functions of S;— and K, we
have 1;(S;—, K)/S;— = I;(1, K/S;_) fori=1,2 by (3.8) and (3.14), and

o?L(S—, K)+ I,(S-, K)  o*L(1,K/S;-) + I(1,K/S,)
Si— (o + i, (€% = 1)%v(dx)) B 02 + [p,(€* = 1)2v(dr)

by (3.3). As a result, LRM; is given as a function of K/S;,— =: my_,
where my_ is called moneyness. Thus, we denote LRM; by LRM;(m;_).
As a by-product of this, we can analyze jump impacts on LRM. If the pro-
cess L has a jump with size y € Ry at time t, then the moneyness my;_
changes into my_e™Y at the moment when the jump occurs. Thus, LRM also
changes from LRM;(m;_) to LRM;(m;_eY). We can regard the difference
LRM;(my_e Y)—LRM,(m;_) as a jump impact. In particular, LRM;(e™Y)—
LRM;(1) represents a jump impact when the option is at the money.

LRMt(St_, K) -
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Remark 3.1.8. Hereafter, we fiz o € (1,2] arbitrarily. Moreover, we denote
(:=v—1ia forv e R, so we may regard ¢ as a function of v.

3.2 The Merton Jump-Diffusion Model

We consider the case in which L is given as a Merton jump-diffusion process,
which consists of a diffusion component with volatility ¢ > 0 and compound
Poisson jumps with three parameters, m € R, § > 0, and v > 0. Note that v
represents the jump intensity and that the sizes of the jumps are distributed
normally with mean m and variance 62. Thus, its Lévy measure v is given

by
oo -

v(dr) =

7
V21 242

When it desirable to emphasize the parameters, we write v as v[y, m, §]. Note

that the first condition of Assumption 3.1.1 is satisfied for any m € R, § > 0,
and v > 0. In addition, the second condition is equivalent to

o? 52
Oz,u—i—E—l-W{exp(m—i—?) —l—m}

and
2

30 ) 52
u+7+7 exp(2m + 267) — exp m+§ —m > 0.

We consider only the case in which the parameters satisfy Assumption 3.1.1.

3.2.1 Mathematical preliminaries

Our aim here is threefold: (1) to give an analytic form for

Or—1(2)(:= Ep~ [eiZLT_t]) :

(2) to evolve (3.14) into a linear combination of three Fourier transforms; and
(3) to give sufficient conditions for N7n under which (3.7) holds for a given
e>0.

First, we provide an analytic form of ¢r_;. To this end, we begin by
calculating v*".
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Proposition 3.2.1. We have
2m + §2

U (dx) = v[(1 + h)y, m, 6%)(dx) + v {—hv exp { } ,m+ 8%, 52} (da),

(3.15)

where

S
h = K :
o? + fRO(eI —1)%v(dx)

Proof. By Assumption 3.1.1, 0 > h > —1. Hence,

VW (dr) = (1 - 0,)v(de) = (1 — h(e® — 1))v(dx) = (1 + h)v(dr) — he*v(dz).

Moreover,

x —m)?
ev(dr) = \/;_Wé exp {m - %} dx

v = (m+ )] | 2m 407
Nor { T T

2
=v {’yexp{zm;—(s },m+52,52} (dz),

from which (3.15) follows. O

Next, we calculate ¢r_4(() for t € [0,T].
Proposition 3.2.2. For anyt € [0,T] and v € R, with  := v — iq,

02{2

or-i6) =exp { (T~ 0) 15" - 7 +—/Lfe“f-—1-—i<x>uWde>]}

0,2<2

2

F (1 + W)y (emS — 1= imQ)

dr_o(C) = Ep- |:exp {zg [N*(T —t)+oWi_, + /RO =N ([0,T — 1), dx)} H

iCp" —

:exp{(T—t)

2m+52

. 252
— hye [N 1 —ic(m + 6%)]

Proof. We only have to show the first equality:
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= exp {(T — )iy} Ep- [V~ Ep. [exp {@'g /R 0 NP ([0,T — 1], dx)H
— exp {(T — 1) {i{,u* - "2;2 + /R O(ei@ 1 i{:p)yp*(dx)} } .

Second, we evolve (3.14). We define

$(2) = ol exp {—%5}
for z € C and

F(r) =1 / KGO d,

™ Jo

Remark that f is computed with the FFT as well as f defined in (3.13). The
following proposition demonstrates (3.14), namely, I, is given by a linear
combination of three Fourier transforms.

Proposition 3.2.3. We have

/ EP*[(STGI — K)+ — (ST — [()+ | ft,](ex — 1)I/(d$)

Ro
= e 5 f(Ke™m ) — qe™ f(Ke™) + (1 — e 7)) f(K)  (3.16)

for any t € [0,T].
Proof. We calculate
/ (e —1)(e® — 1)v(dx)

Ro

= / (eeHDT _ o ] — e®)y(dx)
Ro

2

2 2
= exp {@'C + 1)m + %(ic + 1)2} — yexp {i(m — %g?} (1 —emtT).
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Hence, we obtain

2

(3.14) 1em+52/ ) =i =5 ()

T 0
=2 [T ey rten e S g Qo (1 - ) ()
T Jo

= A F(K e ) - e f(Ke ™) 4 (1 — ) f(K).

]

Third, we provide sufficient conditions for the product N7 under which
(3.7) holds for a given allowable error £ > 0. First of all, we determine an

upper estimate for ¢_;.

Proposition 3.2.4. We have

- o} (T —t
lbr_o(v — ia)| < Oy exp{_%}
for any v € R, where
2(12 )
“ :eXp{@_t) {a“*+ +/ (e — 1 — ax)” (d:cﬂ}
Ro
2062 252

+ (1 +h)y(e™ 2 —1—am)

¢r—i(v — icx)
— exp {(T 1) li(v eyt = W0 /R O(e“”—m)m —1—i(v— m)x)yp*(dx)} }

ap” +

:exp{(T—t)

_ h/YeQm;—&Q |:e(m+52)a+# — 1= a(m+52):|

Proof. Proposition 3.2.2 implies that

2

= exp {(T —t) {(w +a)p — (v — 2iav = o) + /Ro(e(i“a)“” —1—(iv+ a)x)vp*(da:)} }

2
~ exp {(T ~ tiv [u* + 0% — /R S (dx)] } exp {(T — 1) /R el (dx)}
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X exp {(T — 1) {oz,u* — M + /RO(—1 — ax)yp*(dx)] } :

Noting that

exp{(T—t) /R livta)a, (dm)}’ gexp{(T—t) /R eawyp*(dx)},

we have

(br_o(v — ia)| < exp {(T _h [au* - M + /Ro(ew . ax)yp*(dx)} } |

]

Propositions 3.2.5 and 3.2.6 below give sufficient conditions for Nn under
which I; and I satisfy (3.7) for a given allowable error £ > 0, respectively.
Proposition 3.2.5. Let € > 0 and t € [0,T). When a > 0 satisfies

B 1/4
K (K ¢ 1
il el — < 1
(W <St—) Cl) oVT —tel/4 — @ (3.17)

we have

1 K- w—a+1
= (v — i) S dy

T a—14+1w se€

a

Proof. Noting that e < 272 for any = > 0, we have, by Proposition 3.2.4,

1 K- w—a+1
— —(bT (v — i) S dy

T J, 14w
1 00 K- a+1
- ———— (v — )| S d
- 7r/a |a—1+iv||¢T (v —da)|Sidv
5 K ]. C 0'221)2 (Tﬁt)drv
- Si— a la — 1+ v
K

(s
ﬂ(g) o, *;{ : (T_@}Zdv
(

K (K 0 4>
= s—> Cl/a AT =2
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0
Proposition 3.2.6. Lete¢ >0 andt € [0,T). If a > 0 satisfies
_ACHK KN asme (2 a1 48222 &2
i at+l)m+(SG+a+; ma+ S 1— m+ }< 5
Sbrot(T —t)2%e (St_) {e e +1-e [y <a’,
(3.18)
then
1 [ ) .
_/ K—z(—l—l/ (ezC;r . 1)(€z . 1)V(d:t)¢g(§)dv <. <319)
T J, Ro

Proof. First, we estimate [ [1)2(¢)|dv. Noting that

1
(i€ — 1)i¢

1
(lv+a—1)(iv+ a)

<

1
v?’

Proposition 3.2.4 implies
T )
(i€ = 1)i¢

| a0l = [

02
N 0 =53 (T—1)
<ose |

1}2
ACLSE [,
< d
—&@—wl1’”
4GSy
50T —t)2a® "

dv

Hence, Proposition 3.2.3 implies that
L.H.S. of (3.19)

7€2m+%52

/ﬂmwﬂwwwwm_ff (e e

m ™ a
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=) g

T
1/°°
Tra

52
Y 1— em+7 > —iv—a
T P e (o

e2m+%52 (Ke—m—62)—iv—a+1 . em(Ke—m)—iv—a—l—l

IN

|20

2< 2 2>

= %/ {238 (Kemm =)ot g em(Kem) = iy (e > dv
7|1 - eer%‘ > —a+1
e K™ aha(C)|dv
,nyaJrl ¢

IN

{€(a+1)m+(%+a+%)62 + ema+52§2 +1]1-— em+§|} / |12(C)|dv
T a

A0 K K\ (ot yme(22atd)s? + 822 L
- « m 5 ta+s3 mao 5 1 — m+3 }
= bmot(T —t)%a® (St_) {e e Fll—e |
<e.

3.2.2 Numerical results

As seen in the previous subsection, substituting (3.11) and (3.16) for I; and
I, respectively, we can compute LRM; given in (3.3) with the FFT. Note
that we need Proposition 3.2.2 in order to calculate 1y, 15, and ¢. In this
subsection, we provide numerical results for a Merton jump-diffusion model
with parameters T'=1, u= —-0.7, 0 =02, y =1, m =0, and 06 = 1. Note
that ;° is given by —0.03, which satisfies the second condition of Assump-
tion 3.1.1. In particular, we consider the following two cases: First, fixing
the strike price K to 1, we compute LRM,; for times t = 0,0.05,...,0.95.
Second, t is fixed to 0.5 and we instead vary K from 1 to 8 at steps of 0.25
and compute LRM;j5. Note that we take L;_ = 1 whatever the value of ¢ is
taken. Moreover, we choose N = 2 1 = 0.025, and o = 1.75 as parame-
ters related to the FF'T. We have then Nn = 409.6. For any parameter set
mentioned above, both (3.17) and (3.18) are satisfied for ¢ = 1072. Figure
3.1 shows the results for these two cases. The computation time to obtain
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Fig. 3.1(b) was 0.59 s. Note that all numerical experiments in this paper were
carried out using MATLAB (8.1.0.604 R2013a) on an Intel Core i7 3.4 GHz
CPU with 16 GB 1333 MHz DDR3 memory.
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(a) Values of LRM; of a call option with strike price K = 1 and maturity
T = 1 vs. times t = 0,0.05,...,0.95 for a Merton jump-diffusion
model with parameters u = —0.7, c = 0.2, y =1, m =0, and § = 1.
These parameters satisfy the second condition of Assumption 3.1.1.
Moreover, the FFT parameters are chosen as N = 2, 5 = 0.025, and
a = 1.75.
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(b) Values of LRMj 5 of call options at a fixed time 0.5 vs. strike price K
from 1 to 8 at steps of 0.25 for the same Merton jump-diffusion model
as (a) with Sp5 = 1.

Figure 3.1: Merton jump-diffusion model
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3.3 The Variance Gamma Model

We now consider the case in which L is given as a variance gamma process.
Note that L does not have a diffusion component. This means that o = 0,
that is, I; vanishes. A variance gamma process, which has three parameters
k>0, meR, and o > 0, is defined as a time-changed Brownian motion
with volatility o, drift m, and subordinator G;, where G, is a gamma process
with parameters (1/k,1/k). In summary, L is represented as

Lt = mGt -+ 5BGt for ¢t € [O, T] s

where B is a one-dimensional standard Brownian motion. Moreover, the
Lévy measure of L is given by

dx _
— = C(Lizeore® + 1psoye Mﬂc)?

V(dCL’) = O(l{w<0}€_G|z‘ + ]-{:c>0}e_M|$|> |IL’| —

where

Note that C, G, and M are positive. To emphasize the parameters, we
write v with parameters x, m, and ¢ as v(dx) = v[k,m, d](dz). Moreover,
by regarding C', G, and M as parameters, we may express v as v(dzr) =
veam(de). In addition, we assume M > 4 in this section, which ensures
that the first condition of Assumption 3.1.1 holds, by the following lemma:

Lemma 3.3.1. When M >4, [, (e” —1)"v(dr) < oo forn =2,4.

Proof. For n = 2,4, we have
/ (e® —1)"v(dzr) < C’/ e Mrr < 00,
1 1

/Ol(ex C1)(da) < /O1 (e — 1)"w(dz) < Cle —1)" < o0,
/_ i(ew _1)u(dz) < /_ i(—x)"y(dx) <c /_ i(—x)"ldx <o,
/_o:(ew — 1)"v(dx) < /_o: v(dr) < C/loo e “dr < 00,

because n — M < 0,0 < e* —1 < z(e—1) whenever z € [0,1], 1 +x < e” for
any r € R, and e* < 1if x <0. O]
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Remark 3.3.2. We can generalize this lemma to fRo le* — 1|*v(dx) < oo for
any a € [1, M).

Because pu = fRo zv(dz), (3.21) below implies that the second condition of
Assumption 3.1.1 can be rewritten as

(M —1)(G+1) MG
1Og(<M—2><G+2>) >0210g<<M—1><G+1>)’

which is equivalent to -3 < G — M < —1.

3.3.1 Mathematical preliminaries

The approach to variance gamma models is similar to that in Subsection 3.1.
We begin by calculating of .

Proposition 3.3.3.

VU (dx) = vasneem(dr) + vopeei— (de),

where

s
h M

~ Jo(em = 12u(da)’

Proof. By the same argument as Proposition 3.2.1,

V(dr) = (1 + h)v(dz) — he®v(dx).

We have A\ve g a(de) = vacem(de) for any A > 0, and

M AT
" vo.cu(dr) = exc(l{mo}er + 1soye M >W
d
= C(]_{x<0}€(G+l)x + 1{x>0}€—(M_1)m)|_$|
x
= voct1,m—1(dx)
because M — 1 > 0. 0

Remark 3.3.4. For any A > 0, \v[k,m,d|(dx) is a Lévy measure corre-
sponding to the variance gamma process with parameters /X, Am, and SV
However, vo gi1,m—1(dx) is not necessarily a Lévy measure corresponding to
a variance gamma process.
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Next we calculate the characteristic function ¢r_; of L under P*:

Proposition 3.3.5. For anyt € [O,T] and v € R, with ( :== v —1ia, we have

i ) () o) ()

X exp {(T — t)i¢ {u* +(1+ h>0MG—X4G - hO(G]\j— I)(CJJW_—QU] }

where
pw= / (x — e + 1)" (dn).
Ro

Proof. First of all, we have

0 —Mzx o ,—(M—-a—iv)z _ ,—Mz
/ (e — 1)6 dr = / < ‘ dx
0 x 0 X
/OO ef(Mfafiv):r _ ef(Mfoz):r + ef(Mfa):r — Mz
0

dx

xXr
0o v > M

0 M-«
M

/ / —(M—a—it)z dl‘dt“—/ / _txdﬁdt
M—-a JO

1 +1 a

& M—a—iv S\M—a

= —log (1 - %) : (3.20)

which provides

) 0 ) eG:r o esz
[ @ = pegutin =c [ @ -1 | e
Ro -z 0

—0o T
=-C <log <1+%) + log (1 — %)) )

0 o0 _
/RO zvegm(de) = —C’/ %" dx + C/o e MTdy = —CMGMG.

—00

In addition, we have
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Together with Proposition 3.3.3, we obtain

’ . ic —(14+h)C ic —(14+h)C
iCr 1 —log(1+= log (1— =
/Ro(e iCx)v' (dz) og( + G) + og( M)

i hC ic hC
| 14+ — | 1-—
+og(+G+1) +og( M—l)

. M-G M—-G -2
+ (14 h)C¢ o _ZhOC(G—i—l)(M—l)’

from which Proposition 3.3.5 follows. O

Now, we reformulate (3.14) into a linear combination of two Fourier trans-
forms in order to allow use of the FFT. As preparation, we show the following;:

Lemma 3.3.6.

o - M—i¢ G+iC )
/Roe (e 1)V(d-’13)—Clog(M_1_z'gG+1+z‘C '

Proof. First of all, we have

(3.21)

/R (e ()
_ /R 2 (o7 _ 1) (de)

= /OO ﬂe—(G—&-oﬁ-l—H’v)x dx + /oo e’ — 16—(M—a—iv):r: dr S
0 Zz 0 T

(3.22)

To calculate (3.22), we compute

e -1 e -1
e * cosbx dx and e~ *sinbx dx
0 z 0 z

for a > 1 and b € R. First, we have

oo _x
e?# —1 _
e cosbxdx
0 x




43

oo b a
= / cos T / xe ¥ dt dx
0 z a—1
= / / cosbx - e dx dt
a—1J0
@ t
= —dt
/a_1 12 + b2

1 a® + b?

A similar calculation implies that

oo
e* —1 _ .
/ e “sinbxr dr
0

(3.24)

for z € R, we have, by (3.23) and (3.24),

/ € e—(M—a—w)x dr
0 i

e —1 et —1
= / e~ M= cos v dr + i / e~ M=% 6in vr da
0 T 0 z

11 (M — a)? +v? cilt M-« ; A M—-—a-1
=-lo i | tan —tan ————
2 %8 (M —a—1)2+0v? v v

M—o—iv
=1 . 3.25
Og(M—a—1—w) (3:25)

Calculating the first term of the right-hand side of (3.22) in the same way as
the above, we obtain

/OO 1—¢" o~ (Gratltiv)e g, _ log ( Grativ ) , (3.26)
0

x G+a+1l+iv
Substituting (3.25) and (3.26) for (3.22), we arrive at (3.21). O
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From the above lemma, I, is given as follows:
| Bel(Sre = K)" = (¢ = K)* | Fille” = 1wda)
0
_1 / i / (€7 — 1)(e” — 1)(da)ia(C)dv
T™Jo Ro

L[ i~ I MG :
= %/0 K Yy ()dv — %/0 Clog ((M T 1)) K%y (¢)dw.
(3.27)

where
M—i¢ G+ic
M—l—i§G+1+@'§) v(C).

Jva(() = Clog (

Recall that

 ora(Q)SE
el = e e

As a result, we need only use the FF'T twice for computing I5.

As the final item of this subsection, we estimate a sufficient length for the
integration interval of (3.27) for a given allowable error € > 0 in the sense of
(3.7). We first provide an upper estimate of ¢r_; as follows:

Proposition 3.3.7. For any v € R,

|71 (v — )| < Cyfo| 2900,

where
C, = (GM)(IM)(T—t)C[(G +1)(M — 1)]—h(T—t)C
. M-G M-G-2
Xexp{(T—t)Oé [u +(1+h)CG—M—hC<G+1)<M_1)]}.
(3.28)
Proof. This can be seen because
ww+a\ Y Ge
1 < —
‘ (1+25) |

for any a > 0. O
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We need to prepare one more lemma:

Lemma 3.3.8.

/Roez‘cx(ez_nu(das) SC{GiaJrM_la_l}. (3.29)

Proof. The same sort of calculations as in (3.20) imply

/ <7 — 1w (da)

<C{ 001_6 (G+a+1+w ¢ dr| + /OO 6x_1e(Maiv)xdm}
0 0 z
<C{ oo e (G+a+1)zdx+/00 ex_le(Ma)xdx}
B 0 0 x
Cllog |1 1 1 L
e N ()
1
SC{G—I—Oz —a—l}

O

When we calculate (3.27), N and n should be taken so that Nn satisfies
(3.30) below for a given allowable error € > 0.

Proposition 3.3.9. Let € > 0. When a > 0 satisfies

CCy Kot 50 1 1 MG s
< (T—t)+1
7e(2C(T — 1) + 1) {G+a T a1 |8 <(M— 1)(G+1)>H =4 ’
(3.30)
we have
1 / K / (€45 — 1) (% — 1)w(da)ibs(C)dv| < e, (3.31)
T Ja Ro

where Cy is defined in (3.28).
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Proof. By (3.29), we have

1{ o0
S_
™ a

iCH/R (e® — Dv(dx)a(C)dv

_l’_
S
™ a

1 1 1
< Ko
_7'('{ (G+Q+M—Oé—].+

ig+1/R eiCx(el — 1)1/(d$)w2(C>dv

/Roei%x_m(dx) /R e’ = v ]!wz Idv}
log<< G+1>D [1h2(C |dv}

(3.32)

Because Proposition 3.3.7 implies

dr_1(¢)S;°
(i€ = 1)i¢

1 —2C(T—1) car
< ECZW‘ 20(T t)St,

— oS o] T2,

|¢2(C)| =

we have, together with (3.32),

1 1 1
H.S. of (3.31) < —CC, K+ P
R.H.S Of(331)_ﬂ_CC2K St{G_Fog—‘_M—a—l—i_

" /OO o 2CT0-2

1 1 1
= —CCy, Kot g

w2 t_{G+Oé+M—Oé_1+
4-20(T-D-1

ST =T

I%QM—%%+MN}

l%QM—%%+nN]
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3.3.2 Numerical results

We illustrate our numerical results for a variance gamma model. Choosing
the model parameters as k = 0.15, m = —0.2, and § = 0.45, which meet
the second condition of Assumption 3.1.1, we compute LRM, for the same
numerical experiments as in Subsection 3.2. Note that M > 4 is satisfied.
Moreover, we also take the same parameters related to the FFT as in Sub-
section 3.2. N satisfies (3.30) for any parameter set. The results are shown
in Fig. 3.2. The computation time to obtain Fig. 3.2(b) was 0.19 s.

In addition, we implemented the same type of numerical experiments as
the above based on market data. We used the Nikkei 225 index for March
2014. We need to set the log price L; := log(S;/Ss), where Sy is the price on
28 February 2014, which was 14841.07. We estimate the parameters C', G,
and M in Table 3.1 from the mean, variance, and skewness of the log price
by using the generalized method of moments and the Levenberg—Marquardt
method.

Table 3.1: Estimated parameters

C  2.469395026815120
G 23.743109051760964
M 24.903251787154687

Because G — M =~ —1.16, this parameter set satisfies Assumption 3.1.1. We
take T' = 1 and S, = 14841.07, that is, L, = 0. First, fixing the strike
price K = 14000, we compute LRM,; for t = 0,0.05,...,0.95. Next, fixing ¢
to 0.5, the values of LRM, 5 are computed for K = 10000, 11000, ..., 20000.
Note that N7 satisfies (3.30). The results of the computation are illustrated
in Fig. 3.3.
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(a) Values of LRM; of a call option with strike price K = 1 and maturity
T =1vs. timest =0,0.05,...,0.95 for a variance gamma model with
parameters k = 0.15, m = —0.2, and § = 0.45. These parameters
meet the second condition of Assumption 3.1.1. Moreover, the same
FFT parameters as Figure 3.1 are taken.
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(b) Values of LRMj 5 of call options at a fixed time 0.5 vs. strike price
K from 1 to 8 at steps of 0.25 for the same variance gamma model as
(a) with 50.5 =1.

Figure 3.2: Variance gamma model with parameters x = 0.15, m = —0.2, § =
0.45
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(a) Values of LRM, for a variance gamma model with strike price K =
14000 and S;— = 14841.07 vs. t = 0,0.05,...,0.95. The three pa-
rameters C, G, and M, given in Table 3.1, are estimated from the
Nikkei 225 index for March 2014. This parameter set satisfies As-
sumption 3.1.1.
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(b) Values of LRMjy5 at a fixed time 0.5 vs. strike price K =
10000, 11000, . ..,20000 for the same variance gamma model as (a)
with 50.5 = 14841.07.
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Figure 3.3: Variance gamma model based on the Nikkei 225 index for March

2014






Chapter 4

Comparison of Local Risk
Minimization and Delta
Hedging for Exponential Lévy
Models

Delta hedging strategies, which are also well-known and often used by prac-
titioners, are given by differentiating the option price under a certain mar-
tingale measure with respect to the underlying asset price. Due to the rela-
tionship between LRM and the MMM, we consider delta hedging strategies
under the MMM. Its precise definition will be introduced in Section 3.1.

[Arai & Suzuki(2015.1)] showed explicit representations of LRM for call
options by using Malliavin calculus for Lévy processes based on the canoni-
cal Lévy space. Carr and Madan introduced a numerical method for valuing
options based on the FFT, see [Carr & Madan(1999)]. In Chapter 2, we
adopted Carr and Madan’s method to compute LRM of call options for ex-
ponential Lévy models. In particular, the authors discussed Merton models
and variance Gamma (VG) models as typical examples of exponential Lévy
models.

This chapter aims to illustrate, based on [Arai & Suzuki(2015.1)], how
different is LRM from delta hedging strategies for call options in exponential
Lévy models. Furthermore, we show that delta hedging strategies are easily
calculated by using the numerical scheme developed in Chapter 2. We give
inequality estimations of the differences of LRM and delta hedging strategies
for the typical exponential Lévy models, known as Merton models and VG

o1
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models. Merton models are composed of a Brownian motion and compound
Poisson jumps with normally distributed jump sizes. VG models, which
are exponential Lévy processes with infinitely many jumps in any finite time
interval and no Brownian component, are the second example. We show that
the difference of LRM and delta hedging strategies converges to zero when
moneyness tends to zero or infinity. In addition to this, we give numerical
results of the difference of LRM and delta hedging strategies since there are
mathematical difficulties to follow the behaviours of the option prices around
at the money.

4.1 Preliminaries

We consider a financial market composed of one risk-free asset and one risky
asset with finite maturity 7" > 0. For simplicity, we assume that market’s
interest rate is zero, that is, the price of the risk-free asset is 1 at all times.
The fluctuation of the risky asset is assumed to be described by an expo-
nential Lévy process S on a complete probability space (£, F,P), described
by

Sy 1= Sy exp {,ut%—oWH—/ :U]V([O,t],d;v)}
Ro

for any ¢ € [0, 7], where Sy > 0, u € R, 0 > 0, and Ry := R\ {0}. Here W is
a one-dimensional Brownian motion and N is the compensated version of a
Poisson random measure N. Denoting the Lévy measure of N by v, we have

N([0,2], A) = N([0,1], A) — tw(A)

for any ¢t € [0,7] and A € B(Ry). Moreover, S is also a solution of the
stochastic differential equation

dS; = Sy [us dt + o dW, + / (e® —1)N(dt,dz)| ,
Ro

where

1
p =+ —o? —i—/ (e =1 —x)v(dr).
2 Ro
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Without loss of generality, we may assume that Sy = 1 for simplicity. Now,
defining L, := log S; for all t € [0, T], we obtain a Lévy process L. Moreover,

dM; := S,_[o dW, +/ (e" — 1)N(dt, dz)]
Ro
is the martingale part of S.

Our focus is to compare LRM to delta hedging strategies with respect to a
call option (S7—K)* with strike price K > 0. We first give some preparations
and assumptions to introduce an explicit LRM representation of such options
in exponential Lévy models. Define the MMM P* as an equivalent martingale
measure under which any square-integrable P-martingale orthogonal to M
remains a martingale. Its density is given by

dP* 2
=exp{ — Wr — 5—T%—/ log(1 — 0,)N([0, T}, dz) + T/ O.v(dz)},
dIP 2 Ro Ro
where
S S(,r __ 1
€ ro and 0, := G )

" o2+ [ (ev — 1)2u(dy) 02 + [ (ev — 1)2v(dy)

for x € Ry. In the development of our approach, we rely on the following
assumption.

Assumption 4.1.1. 1. [ (|z[Va?)v(dz) < oo, and [, (e” —1)"v(dx) <
oo forn = 4.

2. 02> p® > —0® — [o (" = 1)’v(dx).

The first condition ensures that p°, &, and 6, are well defined, the square
integrability of L, and the finiteness of [, (¢* — 1)"v(dx) for n = 1,3. The
second condition guarantees that 6, < 1 for any x € Ry. Moreover, by the
Girsanov theorem,

WE =W, + & and  NT([0,1], dz) := 0,v(dz)t + N([0,1], dz)

are a P*-Brownian motion and the compensated Poisson random measure of
N under P*, respectively. We can then rewrite L; as

Ly = 't + oW} +/ NP ([0,1], dz)

Ro
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where

1

pro= —502 + /R (x —e"+1)(1 —6,)v(dx).

Note that L is a Lévy process even under P*, with Lévy measure given by
VP (dx) := (1 —0,)v(dz). LRM will be given as a predictable process LRM;,
which represents the number of units of the risky asset the investor holds at
time . We introduce a representation of LRM for call option. We define

Iy := Ep+ 115,513 S7 | Fi],
L= / Epe [(Sre® — K)* — (Sp— K)* | Fo] x (¢" — D)w(dz) |
Ro

where F = {F;}icjo,77 is the P-completed filtration generated by W and N.
By using these symbols, we can write an explicit representation of LRM for
call option (Sy — K)* as follows:

Proposition 4.1.2 (Proposition 4.6 of [Arai & Suzuki(2015.1)]). For any
K >0 andtel0,T],

0'211 + [2

LA, = Si— (0% + [, (e" — 1)2w(dx))’

(4.1)

Next, we introduce integral representations of I; and I given in
[Arai & Suzuki(2015.1)] in order to show we can adopt Carr and Madan’s
method. The characteristic function of Ly_; under P* is denoted by

¢r_1(2) = Ep[e*7] for z€C.
We induce an integral representation for I; with ¢, firstly.
I = Ep[1{s, 5k} - S7 | Fi]

1 00 Kfivfcwrl
_ - _ Sa—l—zvd
/ a—1+zv¢T (v —ia) !

:—/ —ivmiky, (v — i) dv
where k := log K and
or_¢(2)S¥*

1z — 1

P1(z) =
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and a € (1,2]. Note that the right-hand side is independent of the choice of
a. We turn next to I. Denoting

_ ¢Tft (Z)Sff

val2) = Ty

and ¢ := v — i, we have
I, = /R Ep«[(Sre® — K>+ —(Sy — K)+ | Fil(e® — 1)v(da)
= %/OOO KiCJrl/R (eiC:Jc _ 1)(6‘” _ 1)V(dx)1/}2(g)dv_ (4.2>

Note that we can not calculate (4.2) numerically as it stands, because it is
not possible to compute the integral [, (e*—1)(e” —1)v(dx) directly. Thus,
we introduce model-dependent calculations for Merton models in Secs. 3.2
and for VG models in Secs. 3.3, respectively. Regarding LRM,;, I, and I, as
functions of S, and K, we have [;(S;—, K)/S;— = L;(1, K/S;_) for i = 1,2.
We obtain

C L(1LK/S, ) + L(1, K/S,)
FRMS R) = =00 Jo, (€7 = 1)?v(dx)

from (4.1). As a result, LRM, is given as a function of K/S;_ =: x;—, where
X¢— is called moneyness. Thus, we denote LRM; by LRM;(x;—). Moreover,
we regard I3 (A, B) = * [ %%,t(v —ia)B*"®dy and the same thing
is valid for I. Hereinafter we fix a € (1, 2] arbitrarily. Moreover, we denote
( :=v —1ia for v € R, so we may regard ( as a function of v.

Next, we define delta hedging strategies.

Definition 4.1.3. For any K > 0 and s > 0, a delta hedging strategy under
the minimal martingale measure is defined as

. OEp-[(Sp — K)T | S, =5
AE" (Xt—) — P[( T 68) ‘ t ]

Remark that the above definition of delta hedging strategies coincide
with the usual delta hedging strategies in the case of Black—Scholes. The
next theorem follows from the direct calculation.
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Theorem 4.1.4.

I

Af*(Xt—) = i .

Remark 4.1.5. Using the numerical scheme developed in Chapter 2, we can
calculate AY" (x;_) easily from Theorem 4.1.4.

Remark 4.1.6. [Denkl, et al. (2013)] introduced the definition of A-strategies
which are generalized delta hedging strategies. The authors derived semi-
explicit formulas for the mean-squared hedging error of a FEuropean-style con-
tingent claim in terms of A-strategies. This has been done for delta hedg-
ing strategies including Black-Scholes hedging strategies. They also showed
two numerical examples. First, they compared the performance of Black-
Scholes strategies and variance-optimal strategies in the mormal Gaussian
Lévy model. Second, they assessed the hedging errors of Black-Scholes strate-
gies, the delta hedge and the variance-optimal strategy in a diffusion-extended
CGMY Lévy model. As in Example 3.2, they discussed the delta hedge by
computing the derivatives of a price process with respect to the underlying
exponential Lévy models. This delta hedge is equivalent to our AL

We see behaviours of LRM;(x;_) and Af (x;_), when moneyness y;_
sufficiently small. Taking strike price K — 0 then S;_ goes to relatively
and sufficiently large. Under such a condition, we write ;- — 0 as one
representation of sufficiently small moneyness.

Theorem 4.1.7. When moneyness xi— goes to zero relatively, LRM; coin-
cides with AF" ;

limo |ILRM,(x:—) — A} (xi)| =0 . (4.3)

Xt——
Proof. From monotone convergence theorem,

I
- = ]EP* [1;%>th

S

S
S

eLTft]

| Fi-]

= ]EP* []—eLTft >Xi—

= Ep- [1LT7t>10g Xt— eLTit]

= / e’p*(dx)
log xt—
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-0 Epr [eLT_t]
=1.

Another term is little complicated.

P 1

G = 5 Bl — ) (81— K) R~ wda)

= [ Bl - ) = (= ) e - Dvlda) (4
Ro
To make it easy to see, we put ef7—¢ as e¥ and separate (4.4) into four parts:

e / N / (7% — )1, rotog e Lysiog " (dy) (€ — 1)v(da)
s

J2 1= /Do /R (ey—s—x - Xt—)ly-i-:czlogth 1y<10gXt7p*(dy) (" = 1)v(dz)
s

Iy - / N / (€ — xe) Ly octonne. Lystogne 0" (dy) (¢ — Lyw(d)

)

Jy = /OO /R (=xt=) T (=x=) T Lysaciogye Ly<iogy,_ P (dy) (e — 1)v(dz)

s
=0.

First part is J;. Adopting Lebesgue’s dominated convergence theorem,
we obtain

Xliﬂ_lm J1 ZXPH_{O/ / (eyﬂ - ey)lyﬂzlogm 1y210gxt7p*(dy)(€x - 1)V(dx)
t— - —o0 J Ry
— [ e e lim s Lt (@)~ V(o)
—00 RO t—

_ / Z /R () = 1)v(d)
_ Ep.[ebr] /R (= 1)v(da)

- /Ro(ef —1)2u(d)

=C <
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The next part is Jo. We can adopt Lebesgue’s dominated convergence
theorem also, and we obtain

lim J, = lim / / (eyﬂn - th)lyﬂczlogm— 1y<10g>a_p*(dy)(ex — v (dx)
Ro

xt——0 xt——0 —00

= [T i 1y Lyt 2 (@) = D(da)
o0 0 -
=0

The last part is J3. This part is the same as the former parts so Adopting
Lebesgue’s dominated convergence theorem that we obtain

lim J; =— lim / / (€Y = Xt=)Lytaoc—togxi_ Ly>—10g, P*(dy)(e” — 1)v(dx)
Ro

Xt——0 xt——0

/ [ dmn = st Ly (d0) € — D)
Ro

xt——0

To summarize the above, we conclude

LRM, — A = 22 ! _ L e (@~ Dvlde)
Si_ o2+ Jo (6" = D?v(dz) S o? + fRo — 1)21/(dx)
L1 L c
" S_0*+C S_o*+C
lim (LRM, — A" = c ¢
Xt——0 o?2+C o2+C
=0
O

4.2 The Merton Jump-Diffusion Model

We consider the case where L is given as a Merton jump-diffusion process,
which consists of a diffusion component with volatility o > 0 and compound
Poisson jumps with three parameters, m € R, 6 > 0, and v > 0. Note that
represents the jump intensity, and that the sizes of the jumps are distributed
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normally with mean m and variance 62. Thus, its Lévy measure v is given

by
exp{_M}dx.

v(dx) = 552

~
V2o
Note that the first condition of Assumption 4.1.1 is satisfied for any m € R,

0 > 0, and v > 0. We consider only parameter sets satisfying the second
condition of Assumption 4.1.1.

4.2.1 Mathematical preliminaries

Our aim here is to give an inequality estimation of |[LRM; — AF"|. An ana-
lytic form of ¢7_, was given in Proposition 3.2.1 and of v*" can be seen in
Proposition 3.2.2 also. The letter C and others denote generic constants and
the values of constants C may change from line to line.

Theorem 4.2.1. There exists a positive constant C such that
|LRM,(xi-) = A7 ()] < Cx= (4.5)

Proof. First of all, we show the inequality estimation (4.5).
I — 11/ (e® — 1)*v(dx)
Ro

> ; a+iv
= l/ K—(Oé-l-iv)-i—l/ (6(a+iv)a: . 1)(655 N ].)l/(d:)j’) QST_t‘(U — Za)st_ -
"o Ro (a+iv —1)(a +iv)

1 [e’s) ) B s Sa+iv
o _/ K—(a-‘rw)-{—l/ (ezv o 1)2l/(d$) or t(v ‘ZOZ) = v
T Jo Ro a+w—1

Noting that

we have

-1, /R ("~ 1v(da)

= % /Ooo K=t (P (o 4 4v) — F(1))

e G

d
a+iv—1 v
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Hence
|12—11/ (¢" — 1)20(dz)|
Ro

dv

> . _ o Sa+iv
< l ’K*(aer)JrlHF(a + Z'U) . F(1)| ’¢T t(v ZO()H t—
™ Jo la +iv — 1|
_ 1 11—« > . |¢T_t(?] — ZOf)|
= %St—xt— A ‘F(Oé + ZU) F(l)’md

=:7].
Now we take

yit) = (a+iv—-1)t+1,

[ Fonl

/ 1 F’(y(t))y'(t)dt\

<[ sup F'(y(t))[|(a + iv —1)]
0<t<1

then

|F(a+iv) — F(1)] =

< Clmps|(a+iv—1)],
where
Clmsay =7 {emEHITF @D | gmty y gma+iia® 4 13
A+ VI T Za)eme ) )’
+y(m + 52)em“+§a2 .
Using lemma 3.2.4, we have

1 0 .
I< %Xi—_ast—c(m,é,oa)/ |t (v — i) |dv
0

GC R Te )
< ity ag, [ 0y,
& 0

Its integral part is easy to calculate and then we have

< Clc(m,6,a) 1
a 2n(T —t)

I K'mege
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Finally taking a constant C as

/Ro(er C1)2(d) = C < oo,

we obtain the following estimate:

* Clc(méa) Xl__a
LRM, — AIP’ < )0, t
| : A o/2m(T —t) 02 + [p (e* — 1)*v(dx)
CIC m,d,x —a
— o) X

(024 C)\/2n(T —t)

From

4.2.2 Numerical results

We compute |LRM,; — AF'| with the FFT. In this subsection, we provide a
numerical result for a Merton jump-diffusion model with parameters 7' = 0.5,
L;=0,up=-07,0=0.2v=1,m=0,and § = 1. Note that 7 is given by
—0.03, which satisfies the second condition of Assumption 4.1.1. We compute
and plot the data of [LRMy5 — Af"| shown as Figure 4.1. FFT parameters
are chosen as N = 24 1 =0.025 and a = 1.75.

4.3 The Variance Gamma Model

We now consider the case where L is given as a variance Gamma process,
which has three parameters x > 0, m € R, and ¢ > 0. This is defined as a
time-changed Brownian motion with volatility ¢, drift m, and subordinator
Gy, where G is a Gamma process with parameters (1/x,1/x). In summary,
L is represented as

Lt = mGt -+ 5BGt for ¢t € [O, T] s
where B is a one-dimensional standard Brownian motion. Moreover, the
Lévy measure of L is given by

dx

I/(dl‘) = C(].{JKO}eiG'Il + 1{z>0}eile‘) |J]|



1 1 202 m
= — = — 2 — -
C: /<¢>O’ G 52\/m+m+52>0,

Mi=——— -2 >0
m? + 22 0

In addition, we assume M > 4, which ensures that the first condition of
Assumption 4.1.1 holds. An analytic form of ¢, was given in Proposition
3.3.5, and that of ¥ can be seen in Proposition 3.3.3 also. The letter C and
others denote generic constants and the values of constants C may change
from line to line.

Theorem 4.3.1. There exists a positive constant C such that
|LRM;(xi-) — A (xie-)| < Cxi=® -
Proof.

I -1 /Ro(ew —1)%v(dx)

1 Oo 1 ; _ s a+1iv
— _/ K—(Oc-i—w)—H/ (e(a—l—w)x . 1)(633 . ].)V(dl’) ¢T t.(U ZO{)St_ . o
T Jo Ro (a+iv —1)(a +iv)

0o . a+iv
_ l / K—(a-{-iv)—l—l / (e;r _ 1)21/(dl‘) QbT—t(U — ZOC)Stf dv
T Jo Ro

a+iwv—1
Noting that

we have

L -1, /Ro(efv —1)%v(dx)

or—i(v — i) St

a+iww—1

dv

1 [ A
G / K™ (F(a + iv) = F(1))
™ Jo
Hence

|1r2—1r1/R (¢" — 1)20(dz)|
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1 o . _ s a+1iv
< _/ |K‘(o¢+w)+1HF(a+iv) _ F(1)| |¢T t(v ‘ZO‘)HSt— |dU
7 Jo la 4+ iv — 1]
1 I o . |pr—¢(v — i)
25, i [ F _ p(1) et Tl
“Siad™ [ IP(ain) = PR
= 1.
Now we take
yit) = (a+w—-1)t+1,
then
a+v
|F(a+iv) — F(1)| = F’<y>dy\
1
-|/ F’(y(t))y'(t)dt\
0
< | sup F'(y(t))||(o + iv — 1)
0<t<1

< Coamamlla+iv—1).

From the characteristic function of VG

R [ I L
G

Xexp{(T—t)(iijoz){u*ﬂL(l h)CMGM hC(G]\frlG : H

i+« iv+a\ ] HEC v+« v+ o\ ]I
1+ 1-— 1+ 1 —

G M G+1 M—1

W+« iw+a\] ™ W+« v+ a\]"
(o) (1)) e e) (-]

We estimate Iy here.

First of all we estimate | (1 + k) (1 — e [~or,

—aq

“fo+g

v |T®

)+25

W+«

G

‘1+
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o Voo
= |a+ 57+ (5
200 v
=|1+= —)?
PGy
V. o|"F
= Co+(a)2
where Cp :=1+ 22 + ()2 > 1.
v+ o™ a LU |Tm
’1— TR b 2 htb
a N
= |-+ (7
Let € := (1 — )2, then
W+« vt a\[" Vo V)| TE
(7)) =l @) ()
U2 U2 1 4_%1
= GCO+C0(M) +€(5> +M2G2
= [eCo + C10? + Cov*| ™% (4.6)
where we put C; := 15 + & and Cy := M21@2
The next is | (1 + Zgi?) (1 — ey ]

(o

+

W+ «

o) (1
(1v5%)+
’(1+Gil) (

_|_
M—-1

ol
71)

(“G(il)2<

_M—l
L +
M —1)?

a2
2

)

-z

@ 2+ v
M -1 M—-1
o 2 1 9
v
-1) (G+1)
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= |K +Cv® + C0'| 7 (4.7)

where

2 2
~ o o
K'_<HG 1) (1_M—1>

n
G (HGil)Q(MiU?JF(1_MOC—1)2(G1L1)2
= T

From (4.6) and (4.7),
I'=[eCo+Crv® +Cov'[#|K + Cyv® + Cyo'|#
= [eCo+ Cw + Cout [ IHNINCI R 4 0?4 Gy 21 T0C
< (Co)TFIHNINCNR 4 o 4 Cpot 2T

1

o0
/ 1] < (eCo) 2 HHMT=nC / K + Cyv? + Cyo* |2MT-9C gy
0 0
= (eco)é(uh)(Tt)C(/ +/ )|I~(+C302 +C4U4|%h(Tft)CdU
0 a

< (eCy) 2T U ROy / (Ca*) T~ W}
0

C%h(Tft)C
— (eC —1@+h)(T-t)C f(%h(T—t)C N 4 2W(T-t)C+1 |
(<Co) “Tonr—tc+1”
We have
1 o .
I< Xt “Si- C(cha)/ |pr—+(v — ia)|dv
0
L(T—t)C
C1C(CG’Ma) x2S, (Eco)f%(lJrh)(Tft)C Jesna-ne, _ C} 2h(T—t)C+1|
T 2n(T —t)C' + 1
Finally we obtain the following estimate:
P* 1 Ceoma L(A+h)(T—-t)C Lp(T—t)C th(T_t)C 20(T—t)CH+1 | 1

LRM, — AI"| < = 22229 ()72 K> - e

The latter part is the same as the proof of Theorem 4.2.1 O]
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4.3.1 Numerical results

In this subsection, we compute |LRM, — AF'| for a VG model with a pa-
rameter set based on market data. We use the Nikkei 225 index for March
2014, as in numerical part of VG models in Section 2. We need to set the
log price L; :=log(S;/Sp), where Sy is the price on 28 February 2014, which
is 14841.07. The parameters C', G, and M are estimated from the mean,
variance, and skewness of the log price by using the generalized method
of moments and the Levenberg—Marquardt method. The values of C, G
and M are C' = 2.469395026815120, G = 23.743109051760964 and M =
24.903251787154687. For G — M =~ —1.16, this parameter set satisfies As-
sumption 4.1.1. We take T" = 1 and S;_ = 14841.07, that is, L, = 0.
We fix t to 0.5, the values of LRMys and AL are computed for K =
10000, 10250, . ..,20000. The computational results are given as Figure 4.2.

4.4 Conclusion

For Merton models and VG models, we have derived inequality estimations
for the differences of LRM; and AF". Moreover the difference converges to
zero when moneyness tends to zero or infinity. We have computed the be-
haviours of |[LRM,;— Al | for two cases. The first case is a Merton model with
an artificial parameter set. The other is a VG model with a parameter set
based on market data. Numerical examples have shown that the behaviours
of [LRM; — AY"| are different between the two cases. We have deduced four
points from the numerical experiments: (i) the differences in VG models have
converged faster than the Merton models when moneyness tends to zero or
infinity. (ii) Under the given conditions, the values of |[LRM; — AY"| for the
Merton models are larger than that for the VG models. (iii) For the Merton
model, | LRM; — AF"| has the maximum value around at the money. (iv) For
the VG model, the behaviours of |[LRM; — AF"| are unstable around at the
nmoney.
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