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Preface 

Coordination polymers (CPs), including metal organic frameworks (MOFs) and porous coordination 

polymers (PCPs), have attracted much attention for years because of their beneficial uses in catalysis, 

drug-delivery systems, energy, storage, separation, and environmental applications. Recent research efforts 

have been devoted to tailor-made nanoarchitectured cyano-bridged coordination polymers (CPs) to meet 

the developments of the aforementioned applications. All 2D and 3D nanostructures can be simply 

synthesized by purposefully changing the precursor compositions (e.g., types and concentrations of metal 

ions, ligands, and chelating agents) and synthetic conditions (e.g., synthetic temperatures, aging 

temperatures and times, and pHs). The first target of my PhD thesis is the rational design of various 

2D-shaped cyano-bridged coordination polymers (CPs) through a solution phase approach and then 

hybridization with graphene oxide sheets. But I also reported the 3D-shaped ones (Prussian Blue (PB) and 

PB analogues cubes) to show the effect of the synthetic parameters on the final morphology of products 

from the same family (–M–C≡N–Ḿ–, where; M and Ḿ are Co, Ni, Fe, Mn, etc.). So, it is a duty to show 

the potential of my synthetic approach for preparation of various morphologies and compositions. The 

effect of the synthetic parameters on the final morphology of products is carefully discussed.  

As a second target, a controlled thermal treatment of both 2D and 3D nanostructures in air or in 

an inert atmosphere can yield nanoporous metal oxides and carbides, respectively. The large fraction of 

metal centers can be utilized as the metal source, and the removable organic components, by simple 

calcination, can provide nanopores. The original morphology is almost retained, even after the thermal 

treatments. My strategy has proven to be a promising solid-state method for the preparation of nanoporous 

metal oxides and carbides with fine crystal structures. This method has great potential to overcome 

difficulties in the preparation through traditional approaches, such as supramolecular templating. My 

obtained nanoporous materials show a superior performance as electrode materials for supercapacitors, 

electrocatalysts for an oxygen reduction reaction (ORR) and oxygen evaluation reaction (OER), and drug 

carriers for drug delivery systems (DDSs).  

Chapter 1 introduces the recent progress related to coordination compounds. Their conversion 

into functional nanoporous materials is also mentioned.  

Chapter 2 explains a thermal decomposition of cyano-bridged Co-Fe CPs with cubic 

morphology to prepare nanoporous Co-Fe mixed oxides. During the thermal treatment, the organic units 

(carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous 

metal oxides. The original nanocube shapes are retained well even after the thermal treatment. I further 

extend this concept to prepare nanoporous metal oxides with hollow interiors. Core-shell heterostructures 

consisting of different metal cyanide hybrid CPs are prepared first. Then, only the cores are dissolved by 

chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), 
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leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also 

successfully converted to nanoporous metal oxides with hollow interiors by controlled thermal treatment.  

In Chapter 3, an oriented and controlled crystal growth of various cyano-bridged CPs is 

realized by using trisodium citrate dihydrate (TSCD) as a chelating agent. After mixing manganese acetate 

with TSCD, the formed Mn-citrate complex tends to release a few Mn
2+

 ions steadily and slowly, which 

then react with the ligands at the initial stage of the reaction. Subsequently, the generated nuclei further 

grow from the interaction between the released Mn
2+

 and [Mn(CN)6]
3-

, [Co(CN)6]
3-

, and [Ru(CN)6]
4-

 

anions to form several types of cyano-bridged CPs (abbreviated as MnCNMn, MnCNCo, and MnCNRu, 

respectively). After thermal treatment in air, the as-prepared CPs can be decomposed into their 

corresponding nanoporous Mn-based oxides. Surprisingly, the electrochemical analysis reveals that the 

Mn-Ru oxide prepared from MnCNRu is a promising catalyst for the production of H2O2 by selectively 

catalyzing the ORR through a 2-electron pathway.  

Chapter 4 shows potential applications of PB-derived nanoporous iron oxide. Nanoporous iron 

oxide nanoparticles with superparamagnetic behavior are successfully synthesized from Prussian blue 

(PB) cubes through a thermal conversion method and applied to the intracellular drug-delivery systems 

(DDSs) of bladder cancer cells (i.e., T24) with controlled release and magnetic guiding properties. The 

synthesized materials show great potential as drug carriers with high biocompatibility, controlled release, 

and magnetic targeting features for future intracellular DDSs. Furthermore, by tuning the applied 

calcination temperatures, the crystalline degrees and phases of nanoporous Fe oxides can be controlled 

from the amorphous phase to the γ-Fe2O3 and α-Fe2O3 phases. Nanoporous α-Fe2O3 with a high surface 

area is useful for photocatalytic applications.  

The 2D CPs have a highly accessible surface area that permits guest molecules to effectively 

access the micropores in the CPs. Moreover, 2D CPs have many active sites for catalytic and 

electrochemical reactions, and furthermore assembled CPs can be used as membrane filters.  

Chapter 5 demonstrates a bottom-up synthesis of 2D cyano-bridged Cu-Pt CP nanoflakes using 

TSCD as a chelating agent, which controls the nucleation and the crystal growth. The citrate anions 

directly interact with Cu cations, as confirmed by a 
1
H-NMR spectroscopic study. The Cu ions gradually 

released from the Cu-citrate complex are gradually converted into Cu-Pt CPs in the reaction with 

[Pt(CN)4]
2−

. The generation speed of Cu-Pt CPs was significantly delayed in the presence of citrate ions, 

thereby leading to the controlled growth of single crystalline Cu-Pt CPs with a plate morphology. The 

lateral sizes of the Cu-Pt CP flakes are controlled by changing the amount of trisodium citrate used. I 

strongly believe that my method will be useful for the preparation of other types of 2D CPs flakes. Such 

2D CPs can be potentially used for preparation of nanoporous metal oxides and carbides with new solid 

state properties. 

Chapter 6 demonstrates the controlled synthesis of cyano-bridged Ni-Ni CPs with 2D 

morphology. After calcination in air, the 2D Ni-Ni CPs can be transformed into nanoporous nickel oxide 
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(NiO) with a highly accessible surface area. This strategy is adopted in order to form 2D nanoporous NiO 

with tunable porosity and crystallinity by changing the applied calcination temperatures. During this 

thermal treatment, organic units (carbon and nitrogen) are completely removed and only the metal content 

remains to take part in the formation of nanoporous NiO. The original 2D flake-shapes are almost retained, 

even after thermal treatment at low temperature, but they are completely destroyed at high temperature 

because of further crystallization in the framework. Nanoporous NiO with high surface area shows 

significant efficiency and interesting results for supercapacitor application. This concept is also applicable 

to nanoporous nickel-cobalt mixed oxides. These mixed oxides demonstrate high electrocatalytic activity 

for oxygen evolution reaction (OER). 

Chapter 7 discusses a novel strategy involving the hybridization of cyano-bridged CP flakes 

with graphene oxide (GO) sheets. The positively-charged cyano-bridged Ni-Ni CPs are spontaneously 

hybridized with the negatively-charged GO sheets and thermally treated in air, so the organic materials can 

be removed without affecting the integrity of the parent GO sheets. Thus, the layer-by-layer construction 

followed by a thermal treatment can produce a new hybrid nanoporous material consisting of NiO and GO. 

The obtained hybrid material exhibits an efficient catalytic activity and stability for the oxygen reduction 

reaction (ORR). I also demonstrate the in-situ crystallization of cyano-bridged Ni-Ni CP flakes on the 

surface of GO sheets. The GO sheets are utilized as a nucleation site, and then the NiCNNi-coated GO 

sheets self-assemble to form ordered lamellar nanomaterials. This approach might be applied to many 

other inorganic-organic hybrids for ordered layer-by-layer (LbL) architectures. Thermal treatment under 

nitrogen yields a Ni3C-GO composite with a similar morphology to the starting material, and the Ni3C-GO 

composite exhibits good electrocatalytic activity and excellent durability for the ORR.  

Chapter 8 summarizes my thesis and future prospects. Through my thesis, I found that the 

chelating agent strongly affects the speed of the crystallization. With a reaction rate a hundred times 

slower, the synthetic conditions become optimal to trigger a controlled crystal growth. I have realized 

various cyano-bridged CP nanostructures with different compositions, which can serve as excellent 

precursors for the synthesis of many nanoporous metal oxides and carbides. In the future, my strategy can 

be extended for the synthesis of other tailor-made cyano-bridged CPs with their potential applications for 

the desired nanoporous inorganic materials.
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Chapter 1 

1.1. General Introduction 

The development of energy-efficient systems with well-designed functional materials is an 

important key to solve current energy and environmental issues. These problems are originating 

from the massive human activity, and controlling the nanosized structure of materials and 

systems is a crucial factor to start solving them [1]. Well-designed molecules and their highly 

sophisticated arrangement result in incredibly high efficiency as well as excellent specificity and 

selectivity at a macroscopic scale. Biological processes such as photosynthesis and materials 

conversions are attractive examples of newly designed materials/systems [2]. 

 In order to produce highly functional artificial materials based on molecular (or 

nanomaterials) arrangement, key concepts such as nanotechnology, self-assembly (or 

self-organization), supramolecular chemistry, and materials science have to be appropriately 

combined. Ideally, nanoscale units (functional molecules and nanomaterials) produced by 

nanotechnologies are organized by spontaneous supramolecular processes into functional 

materials [3]. However, there are still some unbridgeable gaps between the concept of 

nanotechnology and supramolecular organization. Basically, the current nanoscience and 

nanotechnology mainly focus on fundamental aspects such as the observation of structures and 

phenomena at a nanometer-scale, while far advanced functions have yet not been fully explored. 
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Although the technologies related to device fabrication are regarded as highly successful 

accomplishments, they are actually categorized as a microtechnology (and not nanotechnology). 

Therefore, the contribution of nanotechnology to nanoscale fabrication is indeed rather 

ambiguous and still remains unrealistic. Combining nanotechnologies with realistic 

supramolecular chemistry and materials science have not yet been accomplished. 

 In order to solve this challenging situation, some novel notions have to be proposed and 

established. As a breakthrough concept, an advanced terminology, nanoarchitectonics, has been 

recently proposed by Aono and coworkers [4], aiming at architect functional materials and 

advanced systems from nanometer-scale unit objects and building blocks through the 

harmonization of various actions and events (e.g., accurate regulation of atomic and molecular 

arrangements, chemical reaction-based conversion of materials, self-assembly/organization, 

structural controls with external physical stimuli, etc.). This novel notion is more suitable for 

describing supramolecular processes and materials synthesis. 

Herein, I focus on ‘coordination’ as a structure-directing driving force during materials 

fabrication. Coordination chemistry has several distinct advantages in architecting materials [5]. 

The interactions between metals and ligands are strong and highly directional, which are 

favorable to arrange components and fixing structures in designable ways. Combining 

components, such as metals and organic ligands, is necessary to ensure diverse construction 

motifs. Metal-ligand coordination is multivalent and can be extended to multiple directions from 

one metal center, which is a desirable characteristic for structure grown from nano-to macro-scale. 

Therefore, coordination chemistry has a critical role to play in materials nanoarchitectonics, 

although its relevance is not yet well recognized in current science and technology. The main goal 

of this contribution is to inform the readers about the importance of the combination between 

nanoarchitectonics and coordination chemistry as well as their stabilities from a thermodynamic 
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standpoint.  

I also add one additional concept to coordination nanoarchitectonics here: the effect of 

interfaces. Interfacial systems and their low-dimensional structure often consist in an appropriate 

media to bridge nanoscale phenomena and macroscopic 3D structures [6]. These media work as 

gateways for architecting 3D materials from nanoscale coordination chemistry. In addition, 

coordination materials with anisotropic and directional properties can be created through 

interfacial processes. In fact, the preparation of coordination polymers at the interfacial medium 

have been recently researched [7]. 

 According to the above-mentioned backgrounds and motivations, I here summarize 

recent activities in coordination chemistry-driven materials science, mainly porous coordination 

polymers and metal-organic frameworks (MOF), to make readers aware of the deep relation 

between coordination chemistry and nanoarchitectonics. This work starts with a brief description 

of the essences behind nanoarchitectonics and interfacial supramolecular chemistry, followed by 

a summary of recent research divided into two sections: (i) materials construction in 2D, 

including coordination complex at the air-water interface, coordination and patterning on solid 

surfaces, and 2D coordination polymers; (ii) materials construction in 3D such as morphology 

control of coordination polymers and their conversion into nanomaterials (Figure 1.1). 

1.2. Essentials 

Before developing on recent examples of research activity, key terms in this contribution, namely 

‘nanoarchitectonics’ and ‘interfacial supramolecular chemistry’, are briefly summarized in the 

following two sections. 
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Figure 1.1. Synthetic strategy from coordination units to interfacial organization and 3D 

materials. 

1.2.1. Nanoarchitectonics 

In order to highlight the unique features which define nanoarchitectonics, rough outlines of the 

fabrication processes involved in macros- and microscopic technologies are summarized here 

(Figure 1.2). Macroscopic structures can be fabricated acurately according to their blueprints and 
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design drawings. Similar processes to the ones employed in macroscopic fabrication can also be 

found at a microscopic scale. At this level, microfabrication can create finely integrated structures 

with ultra-high precision, thanks to advanced methods (e.g., lithographic techniques). Thus, 

microscale-objects exactly reflecting their blueprint can be constructed and implemented in finely 

designed tools and sophisticated processes. 

 Following further reduction of the material size to nanoscale, disturbances and 

incertainties based on thermal/statistical fluctuations and mutual components interactions start to 

cause uncontrollable and unexpected effects. Thus, nanoscale fabrication cannot obey the 

chronology of a typical blueprint-based procedure. The preparation of functional nanomaterials 

have to be achieved in concert with the harmonization of various interactions and effects that 

control the organization of the structure through stimulating processes taking place spontaneously, 

such as self-assembly/organization, atomic/molecular manipulation, chemical reactions or 

application of external physical stimuli. These processes should be regarded as an entire 

architectonic scheme based on a set of building blocks, and not as the combination of individual 

mechanisms. This recent terminology, nanoarchitectonics, has been proposed as a new paradigm 

of materials science and technology in nanoscale fabrication [8]. According to Masakazu Aono, 

one of the founders of this concept, nanoarchitectonics permits (i) the production of reliable 

nanomaterials and nanosystems upon the organization of nanoscale structures with unavoidable 

unreliabilities, (ii) the development of new functionalities based on mutual interactions of 

individual components, (iii) the creation of unexpected emergent functionalities from assembling 

and organizing a huge number of nano-building blocks, and (iv) the exploration of a new 

theoretical field to describe the above-mentioned phenomena.  

Not limited to a strict definition, the term nanoarchitectonics has been used in order to 

stress on the importance of organizing nano-components into functional materials in various 
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research fields, including functional and hybrid materials [9], nanoscale fabrication [10], energy 

and environmental technologies [11], physical and device applications [12], biological and 

biomedical usages [13], and supramolecular assemblies of functional materials [14], where 

various types of interactions promoting and maintaining the assembly are present. However, the 

use of coordination bondings has not been highlighted exhaustively, although they possess 

several advantages to form and preserve nanostructures. In particular, both structural (directional) 

precision and dynamic equilibrium are features which make coordination chemistry an attractive 

tool for novel nanoarchitectonics processes. 

 

Figure 1.2. Nanoarchitectonics: nanoscale fabrication is different from those in macroscale and 

microscale dimensions. 

1.2.2. Interfacial Supramolecular Chemistry 

When architecting functional structures, supramolecular assemblies in low-dimensional media 

sometimes can become important processes, as was recently reported [15]. Prior to describing the 

interfacial processes of coordination nanoarchitectonics in the next section, basic features of 
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interfacial supramolecular chemistry are briefly explained here (Figure 1.3) [16]. 

 The control over the association constants and binding energies in supramolecular 

assemblies are crucial factors. Therefore, most of the scientists in the field have made 

considerable efforts towards designing and synthesizing optimal chemical structures by 

assembling specific components. However, the resulting interfacial effects often interfere much 

more than through the modification of the chemical structures [17]. For example, the binding 

constant of a phosphate-guanidinium pair in aqueous bulk solution was found to be apparently 

small (1.4 M
-1

), whereas the binding constants of the micelles, as mesoscopic surfaces, was 

measured to be 10
2
 - 10

4
 M

-1
 [18]. More interestingly, at the macroscopic air-water interface, this 

value becomes much greater (10
6
 - 10

7
 M

-1
) [19]. These examples strikingly indicate that 

controlling the interfacial environment has a considerable effect on the structural chemistry, when 

compared to varying the binding constant. 

 

Figure 1.3. Unique features and advantages in supramolecular chemistry at interfacial media. 

 

By using reaction field calculations combined with AM1 molecular orbital methods, Sakurai and 
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coworkers predicted enhanced molecular recognition efficiency at the interface [20]. A 

complementary pair of guanidinium-phosphate was put at various positions of a hetero-dielectric 

media (i.e., an interfacial system with two far-off dielectric constants, ca. 80 for the aqueous 

phase and ca. 2 for the lipid phase). The binding constants were calculated after changing 

systematically the distance between guanidinium and phosphate. Consequently, it was deduced 

that the electrostatic hydrogen bonding of guanidinium-phosphate can be efficiently formed even 

when exposed to an aqueous environment. In a low dielectric medium, the electronic states of the 

recognition sites at the aqueous interface are remotely affected by the non-polar phase, which 

significantly increases the molecular association efficiency. The same research group also used 

the Poisson-Boltzmann equation with the Debye-Hückel approximation to study the air-water 

interface, which revealed a significant modulation of the potential on the water side upon contact 

with a nonpolar lipid phase [21]. 

 Interfaces are media which can be as suitable for molecular interaction as for molecular 

manipulation [22]. The lateral direction of the interfacial medium appears infinite, and 

macroscopic manipulation in centimeter- and meter-scale can be easily applied. In contrast, the 

thickness is neighboring the nano- and molecular scale. Therefore, macroscopic mechanical 

deformations can be reinterpreted at a molecular level, i.e., the molecular manipulation and 

nanoscopic functional control can be achieved manually at a dynamic interface such as at the 

junction between air and water. For example, upon hand-motion-like macroscopic movements, 

such as the compression and expansion of macroscopic Langmuir monolayer, the manipulation of 

molecular machines for reversible capture/release of guest molecules [23], chiral discrimination 

of amino acids [24] and discrimination of faint structural differences between thymine and uracil 

[25] become possible. 

The enhanced confinement of molecular interactions and the dynamic nature of 
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functional molecules within interfacial media play important roles during structural fabrication. 

Applying highly directional and multivalent coordination chemistry to such anisotropic and 

heterogeneous interfacial media can be beneficial for functional nanoarchitectonics. Recently, 

several research activities on the fabrication of nanostructure based on coordination chemistry 

have been reported and will be summarized in the next sections. 

1.3. Coordination Nanoarchitectonics 1: Assembly in 2D 

1.3.1. Coordination Complexes at the Air-Water Interface 

Interfacial media, such as the air-water interface have been used for molecular recognition and 

supramolecular assembly through non-covalent molecular interactions where the presence of 

coordination is negligible compared to hydrogen bondings and electrostatic interactions [26]. 

However, several examples using coordination complexes at the air-water interface were reported. 

Langmuir monolayers and Langmuir-Blodgett (LB) films can provide thin film structures for 

redox active coordination complexes as well as nano-assemblies useful for device fabrication. 

For example, Talapatra, Goswami, and coworkers prepared a Langmuir monolayer of 

chromium(III) azo-anion-radical complexes using a 2-(arylazo)pyridine-containing ligand with a 

long alkyl chain [27]. The formed monolayer was transferred onto a platinum working electrode 

by a Langmuir-Schaefer (LS) technique. Voltammograms of the electrode appeared to be stable 

and reproducible through more than 300 redox cycles, the first oxidation taking place only after 

several cycles, which is an advantageous characteristic. Sohn and coworkers used asymmetric 

fan-shaped dendrimers with benzoic acid functional group to coordinate with Al
3+

 and Eu
3+

 metal 

ions [28]. The bidentate chelation of these metal ions with the carboxylate oxygen atoms resulted 

in different ways for the monolayer to pack. The significant differences between Al
3+

 and Eu
3+
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originate from the intrinsic nature of the ions and their coordination number. A lateral mechanical 

modulation induces a better stacking in the case of the Eu ion-based coordination complex. 

The process of transferring floating materials at interfaces with a solid surface would 

often provide the opportunity to spontaneously form micro- and nanoscopic regular structures 

upon various phenomena, such as dewetting [29]. Clemente-Leon and Coronado et al. reported 

the patterning of coordination nanoparticles of Prussian blue (PB) through LB transfer [30]. PB 

coordination nanoparticles are negatively charged and can interact with a Langmuir monolayer of 

phospholipid dipalmitoyl-L-α-phosphatidylcholine. Various patterns, including vertically or 

horizontally-aligned and tilted fringes, were prepared at various surface pressures and transfer 

speeds. The patterned surfaces are expected to be useful for the development of functional 

systems with magnetic anisotropy. 

The above example emphasizes on the achievement of preformed coordination 

nanoparticles, where the coordination structures themselves are not altered. However, the creation 

and modification of novel coordination nanostructures based on coordination chemistry at the 

interface would be a more attractive process as the formation of multivalent coordination bonding 

can be favorable for the development of extended supramolecular structures. When the ligand 

and metal components meet each other at the interfacial medium, a network of interlinked 

supramolecular structures can be anisotropically developed. Liu and coworkers pioneered the 

formation of regular structures with supramolecular chirality based on the interaction between 

achiral components at the air-water interface based on various molecular interactions [31]. In one 

example by Guo and Liu, the structural formation of the interfacial coordination between Ag ions 

in a subphase and a Langmuir monolayer of amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole 

was investigated (Figure 1.4) [32].  
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Figure 1.4. Chiral nanostructure formation of interfacial coordination between a Langmuir 

monolayer of achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole with Ag ion. 

 

At the air-water interface, substituted benzimidazoles coordinate with Ag
+
 from the subphase to 

produce coordination polymers showing a distinct chirality, although both the components are 

achiral. Neighboring naphtha[2,3]imidazole groups were linked through coordination with the 

Ag
+
 ions, but the significant steric hindrance in this coordination geometry makes the alignment 

of the ligand arrays twisted along the backbone of the coordination polymer. Once the distorted 

assembly is formed, it extends as a chiral helical structure. In this process, the chiral sense from 

the achiral components can be determined by the accidental formation of an initial twisted 

coordination complex. In a recent publication, they discussed the mutual importance of the ligand 

structure and the metal species [33]. 

 The formation of structure-defined network linkage driven by metal-ligand interactions 

at the air-water interface was accomplished by Talham and coworkers [34]. The monolayer is 

based on an amphiphilic pentacyanoferrate complex spread on the surface of an aqueous solution 

of Ni
2+

 ions (Figure 1.5).  
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Figure 1.5. Formation of 2D grid structure from amphiphilic pentacyanoferrate complex as a 

monolayer component with aqueous Ni
2+

 ion. 

 

This combination induces the formation of iron-nickel cyanide-bridged network within a 2D 

plane. The formation of a face-centered square grid structure was confirmed by characterizing the 

transferred LB films by grazing incidence synchrotron X-ray diffraction, which indicated that 

their average domain size became ca. 36 nm
2
. The same 2D structure cannot be obtained from a 

homogeneous reaction under similar conditions. Confining the reactants within a 2D interface 

would be advantageous to form an anisotropic growth probably because of restricted diffusion. 

The ferromagnetically ordered state of LB films below 8 K was observed by magnetic 

measurements, revealing a significant dependence on the applied field. 

 A more sophisticated design for interfacial coordination structures was developed by 

Makiura, Kitagawa, and coworkers who prepared 2D MOF network structures and layer-by-layer 

architectures by taking advantage of the directional feature of coordination chemistry and 

structural anisotropy (Figure 1.6) [35]. 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato-cobalt 

and pyridine were used as monolayer components and were spread from their 

chloroform/methanol solution onto an aqueous subphase of Cu
2+

 ions. The 2D copper-mediated 
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array of the porphyrin units was formed at the air-water interface and the resulting MOF sheet 

was transferred onto a solid substrate, such as Si(100) or quartz. After removing the unreacted or 

physisorbed components by intermediate washing, the next layer was deposited in order to make 

a layer-by-layer structure based on π-π interaction. The high crystalline ordering of both in-plane 

and out-of-plane of the prepared layered films were confirmed by synchrotron X-ray surface 

crystallography. This strategy to prepared anisotropic ordered films of functional MOF can open 

new routes in the technologies of device fabrication. 

 

Figure 1.6. Formation of 2D MOF network structures and their layer-by-layer building-up wisely 

using 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato-cobalt and pyridine monolayer on 

aqueous subphase including Cu
2+

 ion. 

 

Sakamoto, Schlüter, and coworkers demonstrated the preparation of free-standing 2D nanosheets 

based on coordination at the air-water interface (Figure 1.7) [36]. In their method, they used 
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hexafunctional terpyridine-based D6h-symmetric ligand in which each terpyridine from the core 

ligand can be connected with the neighboring ligand through coordination with an appropriate 

metal ion, such as Fe
2+

. Confining the ligand structure at the air-water interface prevents them 

from forming 3D coordination networks. In addition, they recently demonstrated trans-metalation 

within the sheets such as exchanges from Zn
2+

 to Fe
2+

, Co
2+

, and Pd
2+

 [37]. The demonstrated 

transmetalation, consisting in positioning metal ions at defined intervals and arrangements, is 

usually regarded as a difficult nanofabrication technique. 

 

Figure 1.7. Preparation of free-standing 2D nanosheets base on coordination between 

hexafunctional terpyridine-based D6h-symmetric ligand and appropriate metal ions such as Fe
2+

. 

1.3.2. Coordination and Patterning on Surface 

As mentioned above, the 2D coordination networks at dynamic interfaces, such as air-water, 

provides attractive approaches for the formation of anisotropic nanoarchitectures with 

well-defined geometries. Because such dynamic interfaces are not convenient for practical 
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applications, the resulting 2D coordination structures are usually transferred onto solid substrates 

for proper implementation. From a practical viewpoint, the preparation of regular coordination 

structures directly on solid interfaces is also a promising strategy. 

 Auwarter and coworkers reported several approaches to prepare MOF structures through 

the codeposition of carbonitrile-functionalized porphyrin derivatives with an appropriate metal 

[38]. They codeposited the free-base form of tetra[(4-cyanophenyl)phen-4-yl]porphyrin with Co 

atoms onto a BN monolayer grown on Cu(111) substrate under ultrahigh vacuum conditions. The 

CN-Co coordination resulted in 4-fold coordination nanosheet motifs. Upon exposure to an 

atomic beam of Co, both the metalation of the tetrapyrrolic macrocycle with Co and the 

formation of a network occurred and could be regulated by controlling the deposition temperature. 

They also demonstrated another method for the preparation of d-f hetero-bimetallic coordination 

network structures through a multistep procedure (Figure 1.8) [39]. In the initial step, the 

free-base form of tetra[(4-cyanophenyl)phen-4-yl]porphyrin was codeposited on Ag(111) with Gd 

atoms, resulting in a well-packed structure with a square unit cell, similarly based on 4-fold 

coordination of CN ligands with the rare-earth atoms. In the following step, the resulting 

coordination structure is exposed to a beam of Co atoms which leads to the porphyrin metalation 

and completion of a grid-like 2D coordination network. The prepared surface network structure 

includes both lanthanides and transition-metals with a defined 2D arrangement and magnetic 

exchange interactions between the 3d and 4f elements. Therefore, these coordination networks 

have a great potential for applications such as magneto-responsive devices and molecular 

spintronics. 
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Figure 1.8. Preparation of d-f hetero-bimetallic coordination network structures through 

multistep procedure. 

 

Shchyrba et al. reported a strategy to control the dimensionality of coordination polymers on a 

solid surface trough in-situ modification of organic ligand [40]. As illustrated in Figure 1.9, the 

organic ligand molecule, 4,9-diaminoperylene quinone-3,10-diimine, undergoes a regulated 

dehydrogenation (removal of H2 or 3H2) depending on the coexisting metal atoms on surface, 

such as Fe, Co, Ni, or Cu . The presence of Ni, Fe, and Co induces the transformation of 

4,9-diaminoperylene quinone-3,10-diimine (DPDI) into an endo-ligand through one H2 

dehydrogenation (DPDI to deh-DPDI in Figure 1.9). At one side of the endo-ligand, two amino 

groups coordinate with one metal atom, thus chelating the structures by adjacent endo-ligands 

and resulting in one-dimensional (1D) coordination polymers. Different metal species, such as Cu 

ions, can lead to further dehydration of 4,9-diaminoperylene quinone-3,10-diimine to provide 
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exo-ligand upon three H2 removal (DPDI to 3deh-DPDI in Figure 1.9). Two amino groups at the 

side of the ligand are converted into one azo-linkage that can coordinate with two metal atoms. In 

the latter case, coordination polymers with a 2D network are formed. This is a typical example of 

nanoarchitectonics driven by chemical reactivity. 

 

Figure 1.9. Modulation of coordination pattern through regulated dehydrogenation (removal of 

H2 or 3H2) of ligand molecule, 4,9-diaminoperylene quinone-3,10-diimine (DRDI). 

 

The formation of coordination nanostructures on solid interfaces as a coating technique can offer 

a wide spectrum of opportunities for multiple applications. For example, Zhang and coworkers 

reported the fabrication of various 2D nanomaterials including MoS2 nanosheets, graphene oxide, 

and reduced graphene oxide with zeolitic imidazolate frameworks [41]. Such hybridization 

strategy can lead to enhanced performance in various applications, such as device preparation. In 

this case, write-once-read-many-times memory devices were prepared using hybrid materials 

made of MoS2 and zeolitic imidazolate frameworks and exhibited high ON/OFF ratio and long 
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operating lifetime. The obtained device showed a bistable electrical behavior: a low (OFF) and a 

high (ON) current states. The OFF to ON transition worked as a writing step. Both the ON and 

OFF states did not show any significant fluctuations, even after more than 1500 s of test under 

ambient conditions. The carrier transport process is expected to be governed by a 

space-charge-limited-current (trap limited). The charges were transferred from the zeolitic 

imidazolate frameworks and trapped by MoS2 at lower energy levels due to quantum confinement 

effect. The insulating nature of the zeolitic imidazolate framework can be used in nonvolatile 

memory devices. Similarly, core-shell-type coating structures, based on 2D functional materials 

as a core and coordination structures as a shell, are expected to be useful for various applications 

including catalysis and energy storage, as well as information storage devices. The coating 3D 

nanomaterials with coordination structures was also reported. Yang, Yaghi, and coworkers 

reported the preparation of MOF structures on octahedral silver nanocrystals [42]. Atomic layer 

deposition of aluminum oxide on silver nanocrystals was first conducted. Adding of 

4,4',4",4'"-(porphyrin-5,10,15,20-tetrayl)-tetrabenzoic acid induced the formation of MOF 

coating around silver nanocrystals. The deposition thickness of the aluminum layer was precisely 

regulated from 0.1 to 3 nm, resulting in an accurate control over the thickness of the MOF layer 

(10 to 50 nm). 

1.3.3. Two-Dimensional Coordination Polymer 

The anisotropic properties of coordination nanostructures are not limited to materials located on 

the surface or at the interfaces, but can also be expressed on the basis of dimensionally-restricted 

natures. Several 3D coordination polymers often have an inherent 2D structural nature. These 

materials are often called 2D coordination polymers and MOF [43]. In this section, recent 

research activities on such materials are briefly summarized. Lotsch and coworkers assembled 
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lamellar structures of 2D coordination polymer nanosheets with regular surfactant interlayers 

(Figure 1.10) [44].  

 

Figure 1.10. 2D coordination polymer nanosheets with regular surfactant interlayers 

 

Imidazole derivatives were mixed with zinc acetate to react under reverse microemulsion 

conditions, involving cetyltrimethylammonium bromide (CTAB) as a surfactant component, 

resulting in the self-assembly of 2D zinc coordination polymer interweaved with CTAB. 

Probably due to structural confinement and free energy minimization at the organic-hybrid 

interface, a layered phase of Zn-based coordination polymer nanosheets sandwiched between the 

organic liquid crystal phases was formed. The layered assemblies can be liberated into sheet and 

belt-like structures after being treated with organic solvents. In addition, the sheet-type structures 

sometimes exhibited morphological transformation into highly regular coordination 

polymer-based multi-walled nanotube structures. Delgado, Zamora, and coworkers also reported 

the delamination of 2D coordination polymers just by immersing the corresponding crystals in 

water [45]. These solvent-assisted soft processes can be useful for the production of 
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one-molecule thick structurally designed 2D materials, a potential alternative to graphene. 

 2D structural motifs of coordination polymers can provide a conduction path for various 

objects. Horike, Kitagawa, and coworkers synthesized coordination polymers that showed an 

intrinsic proton conduction pathway oriented parallel to the layers [46]. The coordination 

polymer was made from Zn
2+

, 1,2,4-triazole, and orthophosphates having acidic protons. These 

acidic ligands are connected to form extended hydrogen bonding within the layers. The 

appropriate interval and arrangement of mobile protons in 2D structures are important factors for 

such conduction, according to the proton-hopping model in solids. Zheng, Kitagawa, and 

coworkers reported proton conduction regulated by the phase transition of 2D Co-La 

coordination polymers [47]. The used coordination polymers consist of acidic phosphonate 

groups possessing both coordinated water molecules at the intralayer space and lattice water 

molecules at the interlayer space, providing an efficient proton conducting pathway. A solid-state 

phase transition of the coordination polymers occurred above 45 °C and 93% relative humidity, 

resulting in a new phase. This transition induced the release of the protons from the intralayer 

region to the interlayer region. As a result, the proton conductivity of the material was 

significantly enhanced. Jenkins and coworkers reported a possible breathing behavior of 

coordination frameworks, which can be used as an interesting switching property [48]. Here, the 

coordination polymers, semirigid bis(1,2,4-triazole) ligands in their syn conformation, were 

coordinated with Cu
+
 chains to form a series of 2D metal-organic frameworks to form 

topologically 1D nanotubes. These anisotropic frameworks underwent two different solid state 

transformations as a result of the solvation. When guest molecules were incorporated, the size of 

the coordination tubes was altered upon rotation of the phenyl rings. 

 Various functions have been explored with 2D coordination polymers. Zhang et al. 

developed turn-on fluorescence sensors for organic volatile compounds which can be detected 
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through dynamic changes within the 2D MOF structures made from Zn4O-like building units and 

4,4’-(2,2-diphenylethene-1,1-diyl)dibenzoic acid ligands [49]. The coplanar conformation of the 

peripheral phenyl rings can induce a bathochromic shift (red shift) upon the promotion of π 

electron conjugation. On the other hand, the weakening of π electron conjugation at a 

perpendicular conformation leads to a hypsochromic shift (blue shift), which is caused by the 

conformational change of dangling phenyl rings. In addition, the presence of analytes, such as 

benzenes, increased the quantum yield, resulting in effective turn-on fluorescence sensing. Two 

dangling phenyl rings with unrestricted motions in 2D MOFs and molecular interactions with 

guest analytes can restrict motions by causing turn-on fluorescence. Lee, Vittal and coworkers 

reported sensing properties of polyrotaxane coordination polymers from Zn
2+

 and 

1,4-bis[2-(4’-pyridyl)ethenyl]benzene and 4,4’-sulfonyldibenzoate for nitro compounds [50]. The 

obtained coordination polymers exhibited selective photoluminescent quenching for 

2,4-dinitrophenylhydrazine compared to other nitro derivatives. 

 Huang et al. prepared 2D p-d conjugated coordination polymers that exhibited high 

electrical conductivity and ambipolar transport properties [51]. The coordination polymers 

containing a Cu ion and benzenehexathiol (BHT) as a form of a highly crystalline thin film were 

synthesized by liquid-liquid interface reaction (Figure 1.11A). The prepared materials were 

characterized by four-probe measurements which revealed high electrical conductivity at room 

temperature. Ambipolar charge transport properties with extremely high electron and hole 

mobilities were also confirmed under field-effect geometry (Figure 1.11B). This case is a good 

example of coordination polymers which can be synthesized into dimension-defined structures 

with desired components. The formed structures can also be integrated into devices. Therefore, 

the implementation of 2D polymers into various applications such as photocatalysts [52] and 

solar cells [53] has been actively researched. Not limited to these examples, various 2D 
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coordination polymers and related 2D materials have been rapidly paid attention to [54]. 

 

Figure 1.11. (A) Formation of 2D p-d conjugated coordination polymer with Cu ion and 

benzenehexathiol (BHT) through liquid-liquid interface reaction. (B) Device application for 

field-effect geometry. 

1.4. Coordination Nanoarchitectonics 2: Conversion 

into Materials in 3D 

For more advanced coordination nanoarchitectonics, assembling and integrating coordination 

structures into 3D motifs with functional properties are required. In the following sections, two 

aspects are discussed and exemplified, namely morphological control and 3D materials 

conversion. 
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1.4.1. Morphology Control of Coordination Polymer 

So far, various coordination polymers with different shapes (e.g., nanocubes, nanowires, plates, 

and sheets) have been reported (Figure 1.12). Their size and shape can be tuned by controlling 

the synthetic conditions or by using different precursors. A 1D morphology (e.g., nanowires) 

extends in a straight line (along the one axis), a 2D morphology (e.g., plates, sheets) extends in a 

plane (two directions), and a 3D morphology (e.g., nanocubes) extends in all three directions (x-, 

y-, and z-axes). Among well-known coordination polymers, PB and its analogues (PBAs) can 

offer a broad range of compounds which can be useful for many practical applications. Cyanide 

groups can act as a bridge between transition metals ions. They are convenient for many 

applications, such as gas storage [55], batteries [56], catalysis [57], gas capture and separation 

[58], charge transfer [59], drug delivery [60], sensing and environmental clean-up [61]. 

 Qu et al. have reported the preparation of PB nanowires which are vertically oriented to 

the substrate via a simple electrochemical deposition inside the pores of a polycarbonate 

membrane [62]. After dissolving the membrane with chloroform, only straight PB nanowires are 

obtained. By systematically tuning the pH value of the solution, the concentration of K3[Fe(CN)6], 

and the addition of a capping agent (e.g., polyvinylpyrrolidone (PVP)), several types of PB 

particles with different particle sizes can be obtained [63]. PVP mainly serves as a capping agent 

which stabilizes the nuclei in the initial stage. When the concentration of PVP is low, the particles 

tend to directly precipitate without further crystal growth. When the amount of PVP is sufficient, 

the nuclei can first stabilize, and then self-assemble in an ordered fashion. The acid concentration 

controls the dissociation of K3[Fe(CN)6] and generates Fe
3+

 ions which react with the [Fe(CN)6]
4- 

ions. 
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Figure 1.12. An illustration of 1-, 2-, and 3-dimensional shape controls of CPs. 

 

Previous synthetic methods have mostly aimed to prepare PB crystals with well-defined 

morphologies. Lee et al. have reported the morphology of PB converting from cubic to hexapod 

shape [64]. The change in the morphology is confirmed by using different concentration of nitric 

acid. By increasing the acidic concentration, the shape of the particles evolves from cubic to 

star-like hexapods, passing through several stages such as truncated cubes, cuboctahedrons, 

truncated octahedrons, and hexapods with arms. This indicates that the oxidation reaction start at 

the corners of the nanocubes. It is common for the larger PB particles to form by aggregation and 

fusion of smaller crystals. More defects are present at the edges and corners, which makes the 

etching process faster than at the center. Furthermore, a new morphology of PB microcrystals has 

been prepared via controlled selective chemical etching, as reported by Hu et al [65]. Using a 

surfactant (e.g., CTAB) to protect the surface of PB, the etching of the corners and edges can be 

enhanced. By carefully tuning the reaction conditions, selective etching of specific facets results 

in materials with fine structures. 
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By replacing Fe ions with other transition metals ions, one can obtain PBAs. The structural model 

used to understand their properties have been studied extensively. PBAs have attracted much 

attention over the past decade because of the diversity and tunability of their chemical and 

physical properties. Some PBAs have the same cubic structure (Fm-3m) as PB. Yamauchi and 

co-workers have synthesized KCo
III

4[Fe
II
(CN)6]3 and Fe

II
3[Co

III
(CN)6]2 by simple wet-chemical 

synthesis at room temperature [66]. The atomic ratios of Co
II
/Fe

III 
and Fe

II
/Co

III 
estimated by 

inductively coupled plasma analyses were 4/3 and 3/2, respectively, which is in good agreement 

with the reported stoichiometric ratios. As another example, Mg
II

3[Co
III

(CN)6]2 and 

Co
II

3[Fe
III

(CN)6]2 were recently synthesized with Mg
II
/Co

III 
and Co

II
/Fe

III
, respectively [67]. 

 The synthesis of hollow coordination polymers have been reported via different ways. 

Maurin-Pasturel et al. reported the growth of a cyano-bridged coordination network on gold 

nanoparticles (Figure 1.13) [68]. The design of such an intricate core-shell structured material is 

a promising way to realize functional nanomaterials combining multiple properties in a single 

system. Finally, by dissolving the Au cores, hollow PBAs nanoparticles can be successfully 

obtained. Another layer of PBAs can also be formed on the surface of Au@PBA by epitaxial 

growth, leading to the formation of double-shelled Au@PBA@PBA heterostructures. As another 

promising way, PBA@PBA core-shell heterostructures prepared by epitaxial crystal growth can 

be utilized as starting materials [69]. After subsequently removing the core, hollow PBAs 

nanoparticles can be obtained. Risset et al. have been reporting a facile surfactant-free route to 

synthesize uniform Rb0.4M4[Fe(CN)6]2.8·7.2H2O (M=Co, Ni) hollow nanoparticles. 

Rb1.6Mn4[Fe(CN)6]3.2·4.8H2O serves as a sacrificial/removable core in the synthesis of the 

core@shell heterostructures. After the dissolution of the cores under mild conditions, hollow 

nanocubes with crystallized walls can be obtained. 
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Figure 1.13. Schematic representation of hollow PBA and double-layer Au@PBA@PBA 

nanoparticles obtained through the cyano network growth on the Au surface. 

 

Recently, Hu et al. have succeeded to prepare various hollow PB nanocubes [70]. During the 

etching process, the reaction normally starts from the outer surface of the particles. The PB 

mesocrystals used in this study possess voids because the large particles are formed by 

aggregations and fusion of the smaller crystals. Thus, it is possible for the etching agents (i.e., 

HCl) to diffuse into the inner parts of the mesocrystals through these defects, leading to the 

formation of an inner cavity. PVP plays a crucial role in the etching process, acting as a surface 

protecting agent which can locally decrease the etching rate. 

 Microemulsions are isotropic liquid mixtures consisting of oil, water, and surfactants. 

The aqueous phase can contain salts and/or other ingredients, and the oil phase (or any 

water-immiscible liquids) can be a complex mixture of different hydrocarbons and olefins. 

Depending on the proportion of each phase, one can form a system consisting of oil dispersed in 
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water (oil-in-water, O/W) or water dispersed in oil (water-in-oil, W/O). The surfactant molecules 

form a monolayer at the interface between oil and water, with the hydrophobic tails of the 

surfactant molecules dissolved in the oil phase and the hydrophilic head groups in the aqueous 

phase [71].
 
The syntheses of PB and PBAs have been synthesized by mixing water-in-oil and/or 

oil-in-water microemulsions containing the appropriate reactants (Figure 1.14). Cao et al. have 

reported the synthesis of polyhedrons, cubes, and rods of Co3[Co(CN)6]2 nanostructures with 

good control over the shape [72]. The microemulsion consisted of an aqueous solution of 

K3[Co(CN)6] mixed with cyclohexane, n-pentanol, and CTAB. 

 

Figure 1.14. Model for CPs growth in non-aqueous inverse microemulsion with ultrasonication. 

 

The size of the synthesized PB nanocubes can be controlled by applying external forces. Wu et al. 

have been synthesizing monocrystalline nanocubes of PB with several sizes by a direct 

dissociation of the single-source precursor under ultrasonic conditions [73]. The reaction 

temperature and the concentration of K4[Fe(CN)6] aqueous solution combined with the ultrasonic 
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conditions allowed a fine control over the final particle size and size distribution. The first step is 

the dissociation of K4[Fe(CN)6] salt in an acidic solution, resulting in the formation of ferrous 

ions which are directly oxidized and converted into the ferric ions, as they are highly unstable in 

air. A slow dissociation is preferred for fine crystal growth. Then, the resulted ferric ions react 

with the undissociated K4[Fe(CN)6] to form PB nanocubes through preferential crystal growth. 

Ultrasonication provides better conditions than hydrothermal treatment to generate uniform size 

distribution of PB nanocubes. 

 Microwave-assisted heating was also used for several decades to synthesize organic 

compounds, and was recently applied to the preparation of coordination polymers. Microwave 

heating allows short reaction times, fast kinetics of crystal nucleation and growth, as well as high 

yields of the desired products. The most significant development in the use of microwave heating 

for the preparation of coordination polymers is attributed to the growth of nano-sized crystallites 

in a short time and may find direct applications in functional nanodevices. Stefanczyk et al. 

reported the synthesis of novel cyano-bridged coordination polymers with different morphologies 

via microwave-assisted construction [74].
 

1.4.2. Thermal Conversion to Nanoporous Inorganic Materials 

The urgent need for nanoporous metals oxides with well-defined compositions, fine 

morphologies, and highly crystallized frameworks is motivating scientists to discover novel and 

facile synthetic methods. A solid-state strategy for preparing nanoporous inorganic materials with 

a predictable nanostructure is highly promising and necessary for large scale production. By 

using cyano-bridged coordination polymers, such as PB and PBAs, many nanoporous metals 

oxides can be prepared by annealing. PB and PBAs have a large fraction of metals ions among 

the organic ligands which can be used as metal sources, while the organic components can be 
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removed by simple calcination and produce abundant pores [75]. Thus, during the thermal 

treatment, the metal content is retained and takes part in the formation of the framework. 

 Pang et al. have synthesized Mn3[Co(CN)6]2·nH2O which was further thermally 

converted into Mn3O4-Co3O4 composite materials with corner-truncated nanocubic shapes [76]. 

The decomposition process is carried out by two steps. First, water is removed at 160 °C. Then, 

heating up to 370 °C allows the removal of the cyanide groups. It is clear that the Mn3O4-Co3O4 

composite is formed after heating at 370 °C. This is the normal decomposition behavior of 

CN-containing compounds. Yamauchi and coworkers have also reported the thermal 

decompositions of PB and PBAs under optimal thermal conditions for the preparation of many 

nanoporous metals oxides [77]. Different temperatures were systematically applied to prepare 

nanoporous iron oxides from the PB nanocubes in order to investigate their impact. The 

morphology of the obtained samples after calcination at 250 °C and 400 °C remains nanocubic, 

but the particle size is slightly reduced and the surface roughness increased. The reduction of the 

particles size is mainly caused by removing the cyano-groups and the interstitial water molecules 

during the heating treatment. On the basis of XRD results and magnetic measurements, a γ-Fe2O3 

phase is mainly obtained. Other spinel metal oxides (e.g., Co2O3 and NiCo2O4) are also obtained 

by thermal treatment in air of CoCo and NiCo PBAs [78]. 

 Hu et al. have reported a facile strategy for the fabrication of binary FexCo3-xO4 

nanoporous structures, which involves the pyrolysis-induced transformation of PBA (i.e, 

Fe3[Co(CN)6]2·nH2O) nanoparticles (Figure 1.15A) [79].
 

Before pyrolysis, spherical-like 

particles of Fe3[Co(CN)6]2·nH2O are observed. After pyrolysis, binary nanoporous FexCo3-xO4 is 

formed. The FexCo3-xO4 product consists of many nanoparticles without major aggregation and 

with a morphology similar to the original PBA precursor. When evaluated as an absorbent for dye 

molecules in water, the nanoporous FexCo3-xO4 particles not only exhibit a high absorption 
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capacity, but can also be recycled easily and quickly via a simple magnetic separation, 

showcasing their potential in applications such as water treatment (Figure 1.15B). This excellent 

absorption ability can be attributed to the interconnected nanopores and the large surface area. 

 

Figure 1.15. (A) Schematic illustration of the formation of FexCo3-xO4 nanoporous particles (B) 

Schematic illustration of the adsorption process for Congo red dye into the inner part of the 

FexCo3-xO4 particles. 

 

Hu et al. have reported the controlled synthesis of superparamagnetic nanoporous iron oxide 

particles with hollow interiors by using PB coordination polymers (Figure 1.16) [80]. The 

thermal treatment of PB nanoparticles at 250 °C and 400 °C leads to the formation of amorphous 

iron oxide, while using the hollow PB nanoparticles leads to the formation of γ-Fe2O3 with an 
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amorphous phase at low temperature and a mixed phase of crystalline α- and γ-Fe2O3 at higher 

temperature. The large hollow PB particles yield a pure phase of crystalline γ-Fe2O3 at low 

temperature and α-Fe2O3 at higher temperature. Thus, introducing the hollow structures with a 

tunable size effectively accelerates the oxidization of the iron walls. 

 

Figure 1.16. Schematic illustrations on thermal decomposition of solid PB particles, small 

hollow PB particles, and large hollow PB particles, respectively. 

 

Recently, the growth of CoCo, FeCo, CoFe, and FeFe PBAs shells on the surface of a NiCr core 

was reported [66]. Since the core and the shell have the same crystal structure, the shell can grow 

epitaxially and crystallize along the same orientation as the core. After a selective chemical 

etching of the core-shell heterostructured nanocubes using a hydrochloric acid solution, hollow 

interiors can form. In this method, hydrochloric acid penetrates the voids of the shell to further 

dissolve the core, thereby leading to the formation of hollow CoCo, FeCo, CoFe, and FeFe PBAs 

nanocubes. In this case, the NiCr cores can be used as a removable/sacrificial template. After 

subsequent thermal treatments of the hollow PBAs in the air, the nanoporous hybrid metals 
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oxides with hollow cavities can be obtained. This new type of nanostructured oxides can be used 

in applications such as drug delivery, water treatment, etc. 

 The Kirkendall effect has been recently proposed as the main phenomenon responsible 

for the formation of hollow particles. Originally, the term ‘‘Kirkendall effect’’ refers to the 

different atomic diffusive rates of the elements atoms under thermal treatments, leading to the 

generation of pores in the lower-melting component side near the interface. For example, the 

CoCo-PBA nanocubes can be thermally converted into Co3O4 nanocages in air (Figure 1.17). 

This phenomenon can be explained by the Kirkendall effect which is based on a nonequilibrium 

interdiffusion process [81]. During the first stage of the thermal oxidation, a thin intermediate 

shell is formed on the surface of the CoCo-PBA nanocubes. This thin film acts as a barrier to 

separate the inner part of the CoCo-PBA from the oxygenated environment. During the first stage, 

only the shells are immediately oxidized due to the difficulty for oxygen to diffuse towards the 

inside. Therefore, free metal ions tend to move towards the shell region after the decomposition 

of the organic units in order to react with oxygen, leading to the formation of a hollow interior. 

 

Figure 1.17. A reaction pathway for preparation of Co3O4 nanocages via thermal decomposition 

of Co-based PBA. 
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Recently, Ostwald ripening process has been proposed as a template-free strategy for fabricating 

nanoporous inorganic materials. The basic principle of the Ostwald ripening concept is that the 

larger crystals grow by the fusion of the smaller ones, which results in the formation of dendritic 

nanoarchitectures. Yan et al. have prepared Co3O4 dendritic structure by a facile strategy which 

involves the thermal decomposition of cobalt-based PBAs nanoparticles (Figure 1.18) [82]. 

Calcining Co3[Co(CN)6]2·nH2O nanocubes at 450 °C leads to the formation of Co3O4 porous 

nanocages; this mechanism can also be described by the Kirkendall effect. After calcination at 

650 C°, the morphology starts to change, and by further increasing the temperature up to 850 °C, 

the grains become aggregated, recrystallized, and rearranged into a dendritic shape. 

 

Figure 1.18. Schematic illustration of formation of Co3O4 dendritic structure by the Ostwald 

ripening, which involves the thermal decomposition of nanoparticles of cobalt-based PBAs. 

1.5. Aims and objectives of this dissertation 

The aim of this study could be summarized in three main points which are a surprise, a challenge 

and an interest as illustrated in Figure 1.19. About the surprise, on my way to the results 

presented in this dissertation I was surprised and delighted to witness how the chelating agent 
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(trisodium citrate dihydrate (TSCD)) combined with my precursors. It is always a good feeling to 

observe a successful reaction. I was also impressed to see the impact of the chelating agent on the 

speed of the crystal growth. With a reaction rate a thousand times slower, the conditions were 

perfect to trigger a controlled crystal growth process. By this approach, I rationally designed 

various cyano-bridged coordination polymers nanostructures with two dimensional (2D) and 

three dimensional (3D) uniform shapes and sizes through facile and cheap solution phase 

approach.  

But about the challenge, the difficulties encountered during this work reside in various 

aspects of this dissertation. Firstly, determining which precursors and co-reactants would be the 

most suitable for such reactions required long study and many trials to catch the optimum 

conditions. I then spent considerable time optimizing the synthetic parameters to lead to the 

desired morphology. All the cyano-bridged CPs nanostructures could be simply synthesized by 

purposefully changing the precursor compositions (e.g., types and concentrations of metal ions, 

ligands, and chelating agents) and synthetic conditions (e.g., synthetic temperatures, aging 

temperatures and times, and pHs). 

Finally, my interest is divided into two main parts. First, a more focus on the 2D 

cyano-bridged CPs is reported for four reasons. i) 2D CPs have a highly accessible surface area 

that permits guest molecules to effectively access the micropores in the CPs (as described in 

Chapter 5), ii) 2D CPs have many active sites for catalytic and electrochemical reactions (as 

described in Chapter 6, the 2D CoNi-oxide flakes showed better electrocatalytic performance for 

oxygen evolution reaction (OER) than 3D NiCo-oxide cubes, however they have the same 

composition, iii) Assembled 2D CPs can be used as membrane filters, and iv) 2D CPs could 

growth into the surface of GO sheets and the resulted 2D CPs coated GO sheets then 

self-assemble and are stabilized in an ordered lamellar nanomaterials, this part is reported in 
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Chapter 7. As a second, the thermal treatment of coordination polymers (2D and 3D) has proven 

to be a promising solid-state method for the preparation of nanoporous metal oxides. The large 

fraction of metal centers can be utilized as the metal source, and the removable organic 

components, by simple calcination, can provide pores. It is possible to prepare different 

nanoporous metal oxides from various coordination polymers. This method has the potential to 

overcome the difficulties in the preparation of nanoporous metal oxides through 

surfactant-assisted approaches.  

 

Figure 1.19. Schematic illustration of a controlled crystal growth pathway of 2D and 3D 

cyano-bridged CPs nanostructures as well as the LbL assembly of CPs flakes with GO sheets 

involving the thermal decomposition into well-retained nanostructured oxides and carbides. 
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Chapter 2 

2. Single-Crystal-like Nanoporous Spinel Oxides: 

A Strategy for Synthesis of Nanoporous Metal 

Oxides Utilizing Metal-Cyanide Hybrid 

Coordination Polymers 

2.1. Introduction 

Chemically synthesized nanoporous metal oxides are of great potential in many applications, 

such as catalysis, water purification, energy storage, and sensing, because of their high accessible 

surface areas and large number of active sites provided by their nanoporous structure [1,2]. Until 

now, many nanoporous metal oxides with different compositions have been reported utilizing 

self-organization of surfactants or block copolymers [1,2]. In almost all cases, however, the 

frameworks are poorly crystallized and/or amorphous. This fact can limit their practical usage. 

Therefore, many efforts have been made to develop novel synthetic approaches to 

prepare nanoporous materials with perfectly crystalline frameworks [3]. Controlled thermal and 

hydrothermal treatments can induce effective crystallization in frameworks [4-6]. However, large 

mesostructural changes can occur in some cases through the fusion of several pores during 
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framework crystallization, significantly reducing the surface area. Several groups have also 

reported mesoporous organosilica with perfectly crystallized frameworks showing unique 

chemical and physical properties that are not attainable by mesoporous organosilica with 

amorphous frameworks [7-12]. Mesoporous zeolites have also been reported by designed 

surfactants, and their high catalytic activity for various acid-catalyzed reactions involving bulky 

molecules has been shown [13]. The hard-templating method is very effective for the preparation 

of mesoporous crystallized metal oxides [14-20]. In this case, some solvents, such as water and 

alcohols, are used to dissolve target metal precursors and to fill hard-templates (e.g., mesoporous 

silica, carbon, and alumina) before the final thermal treatment. Although highly robust and 

crystallized frameworks are realized, relatively complicated operation processes are required. 

Thus, by considering highly crystalline frameworks, I can discover novel solid-state properties or 

dramatically upgrade inherent properties, which cannot be realized with amorphous or poorly 

crystallized frameworks. 

Mesocrystals, which are a highly oriented aggregation of nanocrystals, have often 

exhibited well-developed porous structures with single-crystal-like frameworks [21-24]. 

Single-crystalline solid precursors can be converted to nanoporous materials with close crystal 

structures after insertion, substitution, and removal of some atoms. By the shrinkage of crystal 

lattices and the removal of unstable elements, nanoporous structures are formed inside the 

crystals. Topotactic conversion has been reported as a sophisticated synthetic method. Anatase 

TiO2 mesocrystals have been prepared by topotactic conversion from NH4TiOF3 mesocrystals 

[25]. Growth of mesoporous quasi-single-crystalline Co3O4 has been also reported by topotactic 

chemical transformation [26]. However, the requirement of similarity between the solid precursor 

and targeted metal oxide is hard to satisfy. 

A solid-state conversion method is a promising way to synthesize nanoporous metal 
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oxides with crystalline frameworks. As a new solid-state strategy, I have been focused on thermal 

decomposition of coordination polymers, which are hybrids containing metals and organic linkers. 

Coordination polymers (CPs), such as metal-organic frameworks (MOFs) and porous 

coordination polymers (PCPs), have received attention as a novel class of nanoporous materials 

in recent years because of their adjustable pore structures and wide framework compositions 

[27-32]. The diverse structures, high surface area, and large pore volume of MOFs (or PCPs) 

have inspired their consideration as precursors to prepare nanoporous carbons. Since the first 

report by Xu et al. [33-35] several MOFs, such as MOF-5, Al-PCP, and ZIF-8, have been 

demonstrated as promising precursors, yielding highly nanoporous carbons showing excellent 

properties in gas adsorption, electrochemical capacitance, sensing, and catalysis [36-40]. CPs 

have also been utilized as novel precursors for making various metal oxides [41-45]. Although 

the obtained metal oxides show well-defined shapes, the surface areas are relatively low. 

Nanoporous metal oxides with oriented frameworks have never been reported using this strategy.  

In contrast, metal-cyanide hybrid CPs, in which the metal ions were bridged by –C≡N– 

organic units, contain a large amount of metals [46-48]. The cyano groups can be removed by 

calcination in air to form the corresponding metal oxides because the metal ions can be oxidized 

and the organic units removed [49-52]. The metal ions are uniformly separated by cyano groups 

in the cubic crystal system, so it is expected that nanoporous metal oxides can be obtained. In this 

work, I report a preparation of mesoporous crystalline metal oxides by a thermal conversion of 

metal-cyanide hybrid CPs. The main goal in this study is to demonstrate a direct thermal 

conversion to single-crystal-like nanoporous metal oxides which have been never realized yet 

[49-52]. This strategy based on thermally induced solid-state conversion can realize the 

preparation of single-crystal-like nanoporous metal oxides by changing the compositions of the 

precursors. For proof of concept, in this study, metal oxides with a spinel crystal structure are 
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selected as the model targeted material. Nanoporous spinel metal oxides composed of Fe and/or 

Co atoms are successfully synthesized, showing a stable magnetic property at room temperature.  

2.2. Experimental Section 

2.2.1. Chemicals 

Potassium hexacyanoferrate(III) (K3[Fe(CN)6]·3H2O) was purchased from Merck KGaA, 

Germany. Potassium hexacyanochromate(III) (K3[Cr(CN)6]), potassium hexacyanocobaltate(III) 

(K3[Co(CN)6]), and iron(II) chloride tetrahydrate (FeCl2·4H2O) were purchased from 

Sigma-Aldrich, USA. Cobalt(II) chloride anhydrous (CoCl2), nickel(II) chloride hexahydrate 

(NiCl2·6H2O), trisodium citrate dihydrate, polyvinylpyrrolidone-K30, and hydrochloric acid were 

purchased from Nacalai Tesque, Japan. All chemical reagents were used without further 

purification.  

2.2.2. Synthesis of Solid Metal-Cyanide Hybrid CPs and Their 

Thermal Conversion to Nanoporous Metal Oxides 

2.2.2.1. Synthesis of Solid CoCo Nanocubes 

CoCl2 (77.9 mg) and trisodium citrate dihydrate (397.1 mg) were dissolved in 20 mL of water to 

form a clear solution. Meanwhile, K3[Co(CN)6] (130 mg) was dissolved into 20 mL of water. 

Then the above two solutions were combined by stirring until the mixture became clear. The 

obtained solution was aged for 24 h. The precipitate was collected by centrifugation. After being 

washed extensively with water and ethanol, the precipitate was dried at room temperature. The 

obtained composition is Co
II

3[Co
III

(CN)6]2, abbreviated as solid CoCo. 



Cubes shape | Chapter 2 

 

 
 

58 
 

2.2.2.2. Synthesis of Solid FeCo Nanocubes 

FeCl2·4H2O (59.6 mg) and trisodium citrate dihydrate (100 mg) were dissolved in 20 mL of 

water to form a clear solution. Meanwhile, K3[Co(CN)6] (130 mg) was dissolved into 20 mL of 

water. Then the above two solutions were combined by stirring until the mixture became clear. 

The obtained solution was aged for 24 h. The precipitate was collected by centrifugation. After 

being washed extensively with water and ethanol, the precipitate was dried at room temperature. 

The obtained composition is Fe
II

3[Co
III

(CN)6]2, abbreviated as solid FeCo. 

 

2.2.2.3. Synthesis of Solid FeFe Nanocubes 

PVP (K30, 3.0 g) and K3[Fe(CN)6]·3H2O (132 mg) were added to 40 mL of a 0.01 M HCl 

solution by stirring. After 30 min, a clear solution was obtained. Then the solution was heated at 

80 °C for 20 h. The precipitate was collected by centrifugation. After being washed extensively 

with water and ethanol, the precipitate was dried at room temperature. The obtained composition 

is Fe
III

4[Fe
II
(CN)6]3, abbreviated as solid FeFe. 

 

2.2.2.4. Thermal Conversion to Nanoporous Metal Oxides 

The above-obtained three solid CPs with cube shapes (solid CoCo, solid FeCo, and solid FeFe) 

were used as the precursor. The powders (50.0 mg) were heated inside an electronic furnace from 

room temperature to desired temperatures at a heating rate of 5 °C min
-1

. After arriving at the 

desired temperature (260 °C), the samples were annealed for 4 h. During this stage, organic units 

were removed to obtain the corresponding nanoporous metal oxides, abbreviated as solid 

cal-CoCo, solid cal-FeCo, and solid cal-FeFe. After that, the samples were cooled inside the 

furnace naturally. Finally, the obtained powder was collected for further characterization. All 

calcination processes were performed in air.  



Cubes shape | Chapter 2 

 

 
 

59 
 

2.2.3. Synthesis of Core-Shell Nanocubes of Metal-Cyanide Hybrid 

CPs, Creation of Hollow Interiors, and Their Thermal Conversion to 

Nanoporous Metal Oxides 

2.2.3.1. Synthesis of NiCr Nanocubes 

NiCl2·6H2O (143 mg) and trisodium citrate dihydrate (220 mg) were dissolved in 20 mL of water 

to form a clear solution. Meanwhile, K3[Cr(CN)6] (130 mg) was dissolved into 20 mL of water. 

Then the above two solutions were combined by stirring until the mixture became clear. The 

obtained solution was aged for 24 h. The precipitate was collected by centrifugation. After being 

washed extensively with water and ethanol, the precipitate was dried at room temperature. The 

obtained composition is Ni
II

3[Cr
III

(CN)6]2, abbreviated as NiCr. 

 

2.2.3.2. Synthesis of NiCr@CoCo Nanocubes 

NiCr nanocubes (10 mg) were dispersed in a mixed solution containing CoCl2 (77.9 mg), 

trisodium citrate dihydrate (397.1 mg), and distilled water (20 mL). Meanwhile, K3[Co(CN)6] 

(133 mg) was dissolved into distilled water (20 mL). Then the above two solutions were 

combined by stirring. The obtained solution was aged for 24 h. The precipitate was collected by 

centrifugation. After being washed extensively with water and ethanol, the precipitate was dried 

at room temperature. The obtained product is abbreviated as NiCr@CoCo. 

 

2.2.3.3. Synthesis of NiCr@FeCo Nanocubes 

NiCr nanocubes (10 mg) were dispersed in a mixed solution containing FeCl2·4H2O (59.6 mg), 

trisodium citrate dihydrate (100 mg), and distilled water (20 mL). Meanwhile, K3[Co(CN)6] (130 

mg) was dissolved into distilled water (20 mL). Then the above two solutions were combined by 

stirring. The obtained solution was aged for 24 h. The precipitate was collected by centrifugation. 
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After being washed extensively with water and ethanol, the precipitate was dried at room 

temperature. The obtained product is abbreviated as NiCr@FeCo. 

 

2.2.3.4. Synthesis of NiCr@CoFe Nanocubes 

NiCr nanocubes (10 mg) were dispersed in a mixed solution containing CoCl2 (77.9 mg), 

trisodium citrate (397 mg), and distilled water (20 mL). Meanwhile, K3[Fe(CN)6] (132 mg) was 

dissolved into distilled water (20 mL). Then the above two solutions were combined by stirring. 

The obtained solution was aged for 24 h. The precipitate was collected by centrifugation. After 

being washed extensively with water and ethanol, the precipitate was dried at room temperature. 

The obtained product is abbreviated as NiCr@CoFe. 

 

2.2.3.5. Synthesis of NiCr@FeFe Nanocubes 

NiCr nanocubes (10 mg) were dispersed in a mixed solution containing PVP (K30, 3.0 g), 

K3[Fe(CN)6]·3H2O (132 mg), and 0.01 M HCl solution (40.0 mL) by stirring. After 30 min, the 

vial was placed into an electric oven and heated at 80°C for 24 h. The precipitate was collected 

by centrifugation. After being washed extensively with water and ethanol, the precipitate was 

dried at room temperature. The obtained product is abbreviated as NiCr@FeFe. 

 

2.2.3.6. Preparation of Hollow Nanocubes by Removal of NiCr Cores and Thermal 

Conversion to Nanoporous Metal Oxides 

The above-obtained core-shell nanocubes (NiCr@CoCo, NiCr@FeCo, NiCr@CoFe, and 

NiCr@FeFe) (40 mg) were dispersed in a 2 M HCl solution (40 mL) by stirring. After 3 h, the 

vessels were transferred into stainless autoclaves and heated at 130 °C for 3 h. (Caution! CN 

groups may be converted to HCN gas in hot acidic solution. Therefore, the preparation should be 
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always carried out under a fume hood). During this stage, the NiCr cores were completely 

removed to obtained hollow nanocubes, abbreviated as hollow CoCo, hollow FeCo, hollow CoFe, 

and hollow FeFe. After aging, the precipitates were collected by centrifugation and washed 

several times in distilled water and ethanol. After drying at room temperature, the hollow CoCo, 

FeCo, CoFe, and FeFe nanocubes were annealed at 350 °C for 1 h to obtain the corresponding 

nanoporous metal oxides, abbreviated as hollow cal-CoCo, hollow cal-FeCo, hollow cal-CoFe, 

and hollow cal-FeFe, respectively.  

2.2.4. Characterizations 

2.2.4.1. Materials Characterization 

Scanning microscopic microscope (SEM) images were taken with a Hitachi SU8000 scanning 

microscope at an accelerating voltage of 5 kV. TEM observation was performed using a 

JEM-2100F TEM system that was operated at 200 kV and equipped with energy-dispersive 

spectrometer analysis. Wide-angle powder X-ray diffraction (XRD) patterns were obtained with a 

Rigaku RINT 2500X diffractometer using monochromated CuKα radiation (40 kV, 40 mA) at a 

scanning rate of 5
o
 min

-1
. Nitrogen adsorption-desorption isotherms were obtained using a 

Quantachrome Autosorb Automated Gas Sorption System at 77 K. X-ray photoelectronic 

spectroscopy (XPS) spectra were recorded at room temperature using JPS-9010TR (JEOL) 

instrument with MgKα X-ray source. 

 

2.3.4.2. Electrochemical Measurement 

The graphite substrates were first polished using a fine polisher in a water flow. Then the 

substrates were rinsed with distilled water in an ultrasonic bath for 30 min. The mass of 

electrodes was measured using the ultra-microbalance (METTLER TOLEDO). Each electrode 
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contained 1.0 mg cm
-2

 of electroactive material. Samples were mixed with a polyvinylidine 

difluoride (PVDF, 20%) in N-methylpyrolidinone (NMP) solvent. The resulting slurry was 

homogenized by ultrasonication and coated onto graphite substrates (1×1 cm
2
), which was 

followed by drying at 80 °C for 2 h in a vacuum oven. The electrochemical measurement was 

conducted in a three-electrode electrochemical cell with a Pt counter electrode and Ag/AgCl as a 

reference electrode in a 6 M KOH solution. The graphite substrate coated with the samples was 

used as the working electrode. Cyclic voltammetry (CV) measurements were obtained using an 

electrochemical workstation (CHI 660E CH Instruments, USA) in the scan range of – 0.1 V to 

0.5 V. The specific capacitance (Csp) is calculated by using the following equation: 

C =  
1

𝑚𝑠(V𝑓−𝑉𝑖)
∫ 𝐼(𝑉)𝑑𝑣

𝑉𝑓

𝑉𝑖
                                              (2.1)       

In which Csp is the specific capacitance (F g
-1

), m is the mass of the active electrode material (g), 

s is the potential scan rate (mV s
-1

), Vf and Vi are the integration limits of the voltammetric curve 

(V), and I(V) denotes the response current density (A cm
-2

). 

2.3. Results and Discussion 

2.3.1. Synthesis of Solid Metal-Cyanide Hybrid CPs and Their 

Thermal Conversion to Nanoporous Metal Oxides 

Here I synthesized three metal-cyanide hybrid CPs; Co
II

3[Co
III

(CN)6]2 (abbreviated as solid 

CoCo), Fe
II

3[Co
III

(CN)6]2 (abbreviated as solid FeCo), and Fe
III

4[Fe
II
(CN)6]3 (abbreviated as solid 

FeFe). Thermal conversion of solid CPs (solid CoCo, solid FeCo, and solid FeFe) to the 

corresponding nanoporous metal oxides is carefully discussed in this section. The morphology of 

the precursors before and after calcination is shown in Figures 2.1.1 and 2. Well-defined 

nanocubes with 200 nm in size were observed without any irregularly shaped products. 
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Wide-angle XRD patterns for solid CoCo, solid FeCo, and solid FeFe before calcination were 

assigned to be a face-center cubic (fcc) structure (Figure 2.2). Selected-area electron diffraction 

(ED) patterns proved that an individual nanocube possessed a single-crystalline structure. As a 

typical example, the ED patterns for a solid FeCo nanocube are shown in Scheme 2.1a-2, which 

is a typical one for metal-cyanide hybrid CPs [48]. 

 
Figure 2.1.1. SEM images of (a-1) solid CoCo nanocubes, (a-2) solid cal-CoCo nanocubes, (b-1) 

solid FeCo nanocubes, (b-2) solid cal-FeCo nanocubes, (c-1) solid FeFe nanocubes, and (c-2) 

solid cal-FeFe nanocubes. 

 
Figure 2.1.2. TEM images of (a-1) solid CoCo nanocubes, (a-2) solid cal-CoCo nanocubes, (b-1) 

solid FeCo nanocubes, (b-2) solid cal-FeCo nanocubes, (c-1) solid FeFe nanocubes, and (c-2) 

solid cal-FeFe nanocubes. The corresponding selected-area ED patterns of individual nanocubes 

are shown as inset images. 
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Figure 2.2. Wide-angle XRD patterns of solid CoCo nanocubes, solid FeCo nanocubes, and solid 

FeFe nanocubes.  

 

To prepare nanoporous FeCo oxide, solid FeCo nanocubes were calcined in air for 4 h (Scheme 

2.2), which is abbreviated as solid cal-FeCo. During this stage, organic units (–C≡N–) were 

completely removed. Previously, I studied the thermal decomposition process by 

thermogravimetry/differential thermal analysis/mass spectrometry (TG-DTA-MS) under He/O2 

flow and the results indicated several exothermic peaks at approximately 260-310 and 470 °C, 

accompanied with the production of CO2 and/or N2O (m/z = 44) as well as N2 and/or CO (m/z = 

28), which is typical for the combustion reaction of a CN-containing material [49]. Even after 

removal of the organic units, the products retained the original cubic shape (Figure 2.1.1). A 

high-resolution TEM image indicated the formation of nanopores inside the nanocubes (Figure 

2.3a). Wide-angle XRD patterns proved that the calcined powder (solid cal-FeCo) possessed a 

highly crystallized spinel structure (Fd-3m) without any formation of other crystalline phases 

(Figure 2.4). To understand the oxidation states of Fe and Co atoms, the obtained solid cal-FeCo 

was studied by XPS analysis (Figure 2.5). The Fe 2p spectrum contained Fe 2p3/2 (711 eV), Fe 
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2p1/2 (724 eV), and the satellite peak, indicating that the Fe atoms existed as Fe
3+

. It has been 

known that Fe
2+

 is not stable but is easily converted to the stable form of Fe
3+

 by heating. The Co 

2p spectrum shows a typical doublet consisting of a low-energy band (780 eV) and a high-energy 

band (795 eV), which belong to Co 2p3/2 and Co 2p1/2, respectively (Figure 2.5). The energy 

difference between the Co 2p3/2 and 2p1/2 splitting is approximately 15 eV, which coincides with 

the previous work on the formation of a Co3O4 spinel crystal [26]. From the XPS result, the 

chemical formula of solid cal-FeCo can be defined as Co
II

1.0Co
III

0.2Fe
III

1.8O4 (Fe-Co oxide), which 

matches the ICP elemental analysis. No residual carbon or nitrogen content was observed, which 

was confirmed by CHN analysis.  

The most interesting point is that selected-area ED patterns taken from an individual 

nanocube particle exhibited well-defined crystallographic orientation inside the nanocubes 

(Scheme 2.1b-2). Intense periodic spots belong to highly oriented crystalline pore walls. From 

high-resolution TEM data, it was proved that the atomic lattice fringes were well oriented in the 

same direction (Figure 2.3b). This means that the nanocubes are composed by connected 

nanoparticles in the same direction, which often have been known as mesocrystals. Thus, the Fe 

and Co contents in solid Fe-Co with a fcc crystal structure are perfectly rearranged into the spinel 

crystalline framework in an oriented way during the annealing process, as shown in Schemes 2.1 

and 2.2. 

To fully understand this phenomenon, another two precursors (solid CoCo and solid 

FeFe) with the same fcc crystalline structures were calcined under the same conditions (Scheme 

2.2), which are abbreviated as solid cal-CoCo and solid cal-FeFe, respectively. SEM and TEM 

images of the starting solid CoCo nanocubes and solid FeFe nanocubes are shown in Figure 2.1.1 

and 2. In both cases, uniform cube shapes 200 nm in size were observed. Wide-angle XRD 

patterns proved that both the nanocubes possessed fcc structures (Figure 2.2). After calcination, 
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the cubic shapes were retained, and well-developed nanoporous structures were confirmed by 

SEM and TEM images (Figure 2.1.1 and 2). Unlike solid cal-FeCo nanocubes, however, the 

crystalline degrees of both solid cal-CoCo and solid cal-FeFe nanocubes were very low.  

 
Scheme 2.1. Crystal models and the corresponding selected-area ED patterns of (a) solid FeCo 

nanocubes with an fcc crystal structure and (b) solid cal-FeCo nanocubes with a spinel crystal 

structure. (a-1, b-1) Three-dimensional crystal models; (a-2, b-2) selected-area ED patterns taken 

from an individual nanocube; and (a-3, b-3) atomic arrangements viewed from the <001> 

direction. 

 

Figure 2.3. (a) Low-magnification TEM image and (b) high-magnification TEM image of solid 

cal-FeCo nanocubes.  
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Figure 2.4. Wide-angle XRD patterns of solid FeCo nanocubes and solid cal-FeCo nanocubes. 

 

 
Scheme 2.2. Illustration of thermal conversion process for solid CoCo nanocubes, solid FeCo 

nanocubes, and solid FeFe nanocubes.  

 

In the case of solid cal-CoCo, a wide-angle XRD pattern was assigned to be a pure crystalline 

spinel Co3O4 structure (not shown), but selected-area ED patterns taken from an individual 

nanocube exhibited ring-like patterns with intense spots showing a polycrystalline state (Figure 

2.1.2). Thus, the crystalline orientation in the framework was random inside the nanocubes. The 

Co 2p XPS spectrum of solid cal-CoCo nanocubes was similar to that observed in solid cal-FeCo 

nanocubes, suggesting the co-existence of both Co
2+

 and Co
3+

 states (Figure 2.5). According to 
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elemental analysis, the production composition was very close to Co3O4. Thus, direct calcination 

of solid CoCo nanocubes resulted in the formation of nanoporous Co3O4 with ploycrystallized 

walls (Scheme 2.2). On the other hand, in the case of solid cal-FeFe, the wide-angle XRD pattern 

showed no obvious peaks, suggesting neither a polycrystalline nor an amorphous state. 

Selected-area ED patterns showed amorphous rings without intense spots (Figure 2.1.2c-2). 

Similar to cal-FeCo nanocubes, the majority were present as Fe
(III)

 (Figure 2.5). Thus, direct 

calcination of solid FeFe nanocubes resulted in the formation of nanoporous Fe oxides with 

amorphous walls (Scheme 2.2). 

 

Figure 2.5. XPS spectrum for solid cal-CoCo nanocubes, solid cal-FeCo nanocubes, and solid 

cal-FeFe nanocubes. 

 

The surface areas of solid cal-CoCo, solid cal-FeCo, and solid cal-FeFe were measured by N2 

adsorption-desorption isotherms. Solid cal-FeFe exhibited the highest specific surface area (larger 

than 200 m
2
 g

-1
) among the three samples. However, this value is not surprising, because the 

amorphous Fe oxide frameworks can preserve micropores originating from the precursor. It was 
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interesting that the surface area of solid cal-FeCo (105 m
2
 g

-1
) with a single-crystal-like 

framework was much higher than that of solid cal-CoCo (32 m
2
 g

-1
) with a polycrystalline 

framework. Considering two facts ((i) Fe and Co are of similar molecular weight, and (ii) both 

have the same spinel crystal structure), the surface areas for cal-FeCo and cal-CoCo nanocubes 

should be the same. In the case of solid cal-CoCo nanocubes, the microporosity of the precursor 

is probably lost during the re-arrangement of crystalline domains, thereby leading to a low 

specific surface area. 

From the above results, it is found that the crystalline structures, degrees, and 

orientations in the obtained nanoporous metal oxides obviously depend on the compositions in 

the precursors. As seen in wide-angle XRD patterns (Figure 2.4), the precursors have entirely 

different crystalline structures from those of the finally obtained nanoporous metal oxides, 

indicating that the arrangements/locations of metal atoms are quite different from each other, thus 

ruling out the possibility of topotactical conversion. To seek a possible solution, intermediate 

products during the thermal decomposition of solid FeCo nanocubes were investigated by 

high-resolution TEM. After calcination for 1 h, a single particle was composed by many 

crystalline domains, which were randomly oriented inside the nanocube (Figure 2.6). After 

annealing for 2 h, the crystalline domains were oriented in the same direction, although a few 

amorphous parts still existed. It is well known that a multiple-step transformation often happens, 

and it is driven by the need to decrease the surface energy. In general, amorphous phases are 

formed at the first step. Then the amorphous phases are aggregated to each other, and small 

crystalline domains with random orientations are generated among the amorphous aggregations. 

Finally, the crystalline domains are gradually rotated and attached to each other to form highly 

oriented crystalline phases, as shown in Scheme 2.2. Nanoporous products are obtained from a 

recrystallization event (i.e., a transformation from the amorphous state (less dense phase) to a 
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crystalline state (more dense phase). Figure 2.7 shows the (100) surface model of two spinel 

structures (Co3O4 and Fe2CoO4). I guess that there is the significant difference of the surface 

energy between two crystal surfaces. The crystal surface with lower surface energy tends to be 

exposed more easily, meaning minute nanocrystals are stabilized without further crystal growth. 

While, the crystal surface with higher surface energy is not generally exposed, in which larger 

crystals are formed in order to mineralize the total surface energy by rotating the crystalline 

domains, as shown in Scheme 2.2. 

 

Figure 2.6. Low- and high-magnification TEM images for solid FeCo nanocubes. 

High-magnification TEM image shows that the nanocube is composed by many crystalline 

domains oriented randomly.  

 

 

Figure 2.7. Crystal models of (100) surface in Co3O4 and Fe2CoO4 spinel structures.  
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Because spinel metal oxides are one of the famous magnetic materials, I evaluated the magnetic 

properties for solid cal-CoCo, solid cal-FeCo, and solid cal-FeFe. Room-temperature 

magnetization curves of the obtained samples are shown in Figure 2.8. In the cases of solid 

cal-CoCo nanocubes and solid cal-FeFe nanocubes, the pore walls were composed of minute 

crystalline sizes and/or an amorphous-like state, as observed in the selected-area ED patterns 

(Figure 2.1.2). Generally, such small ferromagnetic grains show superparamagnetic behavior. 

Each grain does not show a ferromagnetic state because of the thermal fluctuation of the 

magnetic moment at room temperature. From the magnetization curve (Figure 2.8), no hysteresis 

was observed at all, and both the coercive forces (Hc) and the residual magnetization (Mr) were 

nearly zero. This is typical of superparamagnetic behavior. The Ms values measured at 10000 Oe 

were 3.4 emu g
-1

 (for solid cal-CoCo nanocubes) and 13.5 emu g
-1

 (for solid cal-FeFe nanocubes), 

respectively.  

It is well known that the metal compositions strongly affect Ms values [53-54]. Fe
3+

/Fe
2+

 

ions have larger numbers of unpaired electrons than Co
3+

/Fe
2+

 ions, and Fe-Fe interaction is 

usually stronger than the Co-Co interaction (e.g., TC = 858 K for Fe3O4 and TN = 33 K for 

Co3O4). Therefore, solid cal-FeFe nanocubes showed a higher Ms value compared to solid 

cal-CoCo nanocubes. As another factor, the Ms values are gradually increased with an increase in 

the crystalline size. As seen in Scheme 2.1b-2 and Figure 2.3, solid cal-FeCo nanocubes showed 

a single-crystal-like structure in which the metal atoms were perfectly oriented in the same 

direction, thereby showing high Ms value and a stable hysteresis loop. The Ms value for cal-FeCo 

nanocubes was significantly higher than those of the other two samples, although solid cal-FeCo 

nanocubes (Co
II

1.0Co
III

0.2Fe
III

1.8O4) contained a large amount of Co with lower magnetic moment. 

Based on these results, the significant difference of Ms definitely comes from the different 

crystallinity. 
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Figure 2.8. Magnetic hysteresis loops of solid cal-CoCo nanocubes, solid cal-FeCo nanocubes, 

and solid cal-FeFe nanocubes. 

 

2.3.2. Synthesis of Core-Shell Heterostructures of Metal-Cyanide 

Hybrid CPs, Creation of Hollow Interiors, and Their Thermal 

Conversion to Nanoporous Metal Oxides 

Figure 2.9.1a shows SEM images of solid NiCr nanocubes, which are used as cores for the 

preparation of core-shell heterostructures. An average particle size of around 80 nm was observed. 

These solid NiCr nanocubes were used as seeds. The shells of CoCo, FeCo, CoFe, and FeFe 

layers were successfully formed on the NiCr cores, and their average particle sizes were 

increased to around 200 nm, as shown in Figure 2.9.1 and 2. The above-obtained core-shell 

nanocubes are abbreviated as NiCr@CoCo, NiCr@FeCo, NiCr@CoFe, and NiCr@FeFe, 

respectively. The elemental mapping for NiCr@CoFe and NiCr@FeFe nanocubes is shown in 

Figure 2.10a-b. Except for NiCr@FeFe nanocubes, the other core-shell particles were cubic 

structures with sharp edges (Figure 2.9.1 and 2). NiCr@FeFe nanocubes possessed very rough 

surfaces at the edges and corners of the cubes, suggesting that the shell is composed of 
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aggregated FeFe nanoparticles [55]. Selected-area ED patterns taken from a whole core-shell 

particle showed a single-crystalline state, indicating that the shell parts epitaxially grew on the 

core part due to their same fcc crystal structures (Figure 2.10c-d). To study the crystalline 

structures of core-shell nanocubes, wide-angle XRD patterns were measured. As examples, 

wide-angle XRD patterns for NiCr nanocubes, NiCr@CoCo nanocubes, and NiCr@FeFe are 

shown in Figure 2.11. All of them showed typical diffraction patterns of face-center-cubic (fcc) 

crystals. No peaks derived from the impurities were detected, which indicates the high purity of 

our products. Considering the slight difference in the crystal constants between NiCr and CoCo 

nanocubes, their peak positions are a little different. However, only the outer shells were detected. 

Due to a large shell thickness, the NiCr core became undetectable by normal X-ray analysis. 

 
Figure 2.9.1. SEM images of (a) NiCr seeds, (b) NiCr@CoCo nanocubes, (c) NiCr@FeCo 

nanocubes, (d) NiCr@CoFe nanocubes, and (e) NiCr@FeFe nanocubes.  
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Figure 2.9.2. TEM images of (a) NiCr@CoCo nanocubes, (b) NiCr@FeCo nanocubes, (c) 

NiCr@CoFe nanocubes, and (d) NiCr@FeFe nanocubes. 

 

 

Figure 2.10. (a-b) Elemental mapping of NiCr@CoFe nanocubes and NiCr@FeFe nanocubes. 

(c-d) the selected-area ED patterns of individual (c) NiCr@CoFe nanocubes and (d) NiCr@FeFe 

nanocubes.  
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Figure 2.11. Wide-angle XRD patterns of NiCr seeds, NiCr@CoCo nanocubes, and NiCr@FeFe 

nanocubes.  

 

After the selective chemical etching of the core-shell heterostructured nanocubes using a 

hydrochloric acid solution, hollow interiors in the nanocubes were formed (Figure 2.12). These 

obtained hollow nanocubes are abbreviated as hollow CoCo, hollow FeCo, hollow CoFe, and 

hollow FeFe, respectively. On almost the particles, the hollow interiors were existed inside the 

nanocubes, which could not been seen by SEM observation. But, here I looked for the crack parts 

and confirmed the presence of hollow interiors through the cracks. From elemental mapping data, 

it was proved that neither Ni nor Cr elements were observed, indicating the complete removal of 

the cores after chemical etching (Figure 2.13). In this method, hydrochloric acid penetrates the 

voids/holes in the shell region, and the cores are dissolved, thereby creating a cavity inside the 

nanocubes. Even after the etching, the average diameters of the original nanocubes were not 

significantly changed (Figures 2.9 and 2.12). Thus, the cores can be used as a 

removable/sacrificial template. It should be noted that the hollow sizes of hollow CoFe and FeFe 

are larger than those of hollow CoCo and FeCo, even though the same NiCr seeds were used in 



Cubes shape | Chapter 2 

 

 
 

76 
 

this experiment. The dissolution rates of CoFe and FeFe are high, so the shell region is also 

slightly dissolved by hydrochloric acid. (A detailed comparison is given in a later section.) To 

study the crystal structures and phase purity, the obtained hollow nanocubes after chemical 

etching were measured by wide-angle XRD (Figure 2.14). All of them showed the same 

diffraction patterns assignable to typical fcc crystals, although the peak positions were slightly 

varied due to the small difference in the crystal constants. It is indicated that the original 

crystalline structure in the shell was retained well.  

To discuss the significant difference in the dissolution rates, I performed a dissolution 

study by using solid NiCr, CoCo, FeCo, CoFe, and FeFe nanocubes. I prepared the solid NiCr, 

CoCo, FeCo, CoFe, and FeFe nanoparticles separately. Each sample (40 mg) was dispersed in a 2 

M HCl solution (40 mL). After stirring for 3 h at room temperature, the vessels were transferred 

into stainless autoclaves and heated at 130 °C for different intervals. The photographs of 

time-dependent colloidal suspensions during the etching process are shown in Figure 2.15. The 

solutions before etching showed typical colors for each solid nanocube. After 3 h, only solid NiCr 

nanocubes were completely dissolved. Other nanocubes were still undissolved and precipitated. 

This fact is reasonable for the selection of NiCr as a sacrificial template for the creation of a 

hollow interior. After 9 h, solid CoFe and FeFe nanocubes were completely dissolved without 

any precipitation, which refers to the different dissolution rates of nanocubes. Therefore, the 

obtained hollow nanocubes possessed different shell thicknesses, as shown in Figure 2.12.1 and 

2. For further confirmation of the fast dissolution of NiCr, the following experimental was carried 

out. I first prepared solid FeFe seeds and further coated the NiCr shell on the FeFe seeds. After 

etching treatment under the same conditions, it was found that the core FeFe particles were not 

dissolved at all, while the NiCr shell particles were partially dissolved to form the porous shell 

(Figure 2.16). 
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Figure 2.12.1. SEM images of (a) hollow CoCo nanocubes, (b) hollow FeCo nanocubes, (c) 

hollow CoFe nanocubes, and (d) hollow FeFe nanocubes. 

 

 
Figure 2.12.2. TEM images of (a) hollow CoCo nanocubes, (b) hollow FeCo nanocubes, (c) 

hollow CoFe nanocubes, and (d) hollow FeFe nanocubes. 
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Figure 2.13. Elemental mapping data of (a) hollow CoCo nanocubes, (b) hollow FeCo nanocubes, 

(c) hollow CoFe nanocubes, and (d) hollow FeFe nanocubes. 

 

 

Figure 2.14. Wide-angle XRD patterns of hollow CoCo nanocubes, hollow FeCo nanocubes, 

hollow CoFe nanocubes, and hollow FeFe nanocubes. 
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Figure 2.15. Dissolution test of solid NiCr nanocubes, solid CoCo nanocubes, solid FeCo 

nanocubes, solid CoFe nanocubes, and solid FeFe nanocubes.  

 

 

Figure 2.16. (a-c) SEM images of (a) solid FeFe nanocubes, (b) FeFe@NiCr nanocubes, and (c) 

FeFe@NiCr nanocubes after chemical etching. (d-f) TEM and HADDF-STEM images of (d) 

FeFe@NiCr nanocubes and (e-f) FeFe@NiCr nanocubes after chemical etching. (g-i) Elemental 

mapping of FeFe@NiCr nanocubes after chemical etching. 
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Several efforts have been made to prepare hollow CP nanocubes [55-60], my systematic 

experimentals are very convincing, I believe, and it is widely useful to other compositions. It is 

known that CoCo nanocubes are electrochemically active. To show the advantage of hollow 

interiors, electrochemical performance of solid and hollow CoCo nanocubes was carried out 

using a cyclic voltammetric study. Cyclic voltammograms (CVs) at different scan rates at a 

potential window of -0.10 to 0.45 V (v.s. Ag/AgCl) are shown in Figure 2.17a-c.  

In the case of hollow CoCo nanocubes, the shape of the CV was rectangular. The CV 

shape showed more symmetry than that of solid CoCo nanocubes. This data shows an obvious 

advantage of the hollow structure, which provides higher surface area as well as more oxidation 

and reduction reaction site. In the case of hollow CoCo nanocubes, the hollow interiors of the 

cubes can provide easy access for electrolyte ions, thereby showing a symmetric rectangular 

shape. The capacitance values of these materials were found to be 97 and 84 F g
-1

 for hollow and 

solid CoCo CPs, respectively, at a scan rate of 20 mV s
-1

. With the increase in scan rates, the 

capacitance value was found to gradually decrease (Figure 2.17d). At a higher scan rate, 

electrolyte ions have less time to complete redox reactions, which results in the capacitance 

decrease. Interestingly, hollow CoCo nanocubes showed a good rate capability in comparison to 

solid CoCo nanocubes. This is an obvious advantage of the porous interior space in hollow CoCo 

nanocubes, which realizes effective access of electrolyte ions even at high scan rates. 
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Figure 2.17. (a-c) Cyclic voltammograms (CVs) at different scan rates of solid CoCo nanocubes 

and hollow CoCo nanocubes. (d) Specific capacitance at different scan rates of solid CoCo 

nanocubes and hollow CoCo nanocubes. 

 

As mentioned in the above section, metal-cyanide hybrid CPs are considered excellent precursors 

for nanoporous metal oxides. Based on this concept, I demonstrated a thermal conversion of 

hollow CP nanocubes to the corresponding nanoporous metal oxides with hollow interiors. The 

hollow CoCo, FeCo, CoFe, and FeFe nanocubes were annealed at 350 °C to obtain the 

corresponding nanoporous metal oxides, abbreviated as hollow cal-CoCo, hollow cal-FeCo, 

hollow cal-CoFe, and hollow cal-FeFe, respectively. The surface morphologies and the internal 

structures of the obtained nanoporous metal oxides were studied by using SEM and TEM (Figure 

2.18.1 and 2). The shapes of the obtained metal oxides were not changed, although the collapsing 

of a few particles was observed. The obtained nanoporous metal oxides were further 

characterized using HAADF-STEM and elemental mapping (Figure 2.19). The different contrast 
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between the inner parts and the outer shells indicates the formation of the hollow structures.  

 
Figure 2.18.1. SEM images of (a) hollow cal-CoCo nanocubes, (b) hollow cal-FeCo nanocubes, 

(c) hollow cal-CoFe nanocubes, and (d) hollow cal-FeFe nanocubes. 

 

 
Figure 2.18.2. TEM images of (a) hollow cal-CoCo nanocubes, (b) hollow cal-FeCo nanocubes, 

(c) hollow cal-CoFe nanocubes, and (d) hollow cal-FeFe nanocubes. 
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Figure 2.19. Elemental mapping data of (a) hollow cal-CoCo nanocubes, (b) hollow cal-FeCo 

nanocubes, (c) hollow cal-CoFe nanocubes, and (d) hollow cal-FeFe nanocubes. 

 

The overall structures and crystal phases of the obtained oxides were determined by wide-angle 

XRD (Figure 2.20a). Hollow FeCo and CoFe nanocubes were successfully converted to hollow 

nanoporous FeCo oxides with a single-crystal-like spinel structure. Selected-area ED patterns 

taken from one hollow particle showed very intense spots which was exactly the same ones as 

solid cal-FeCo nanocubes as shown in Scheme 2.1, suggesting that the same thermal conversion 

process happened in the hollow systems. In contrast, the pore walls of hollow cal-CoCo and 

hollow cal-FeFe nanocubes were poorly crystallized and/or amorphous (not shown). The same 

situation was observed in the solid systems, as shown Scheme 2.2. 

The atomic ratios of Fe
2+

/Co
3+

 and Co
2+

/Fe
3+

 in FeCo and CoFe nanocubes are examined 

before and after thermal treatment. The ideal insoluble form of solid and hollow FeFe (Prussian 

blue, PB) is Fe4
III

[Fe
II
(CN)6]3 which can be synthesized by mixing aqueous solutions of Fe

3+
 and 

[Fe
II
(CN)6]

4-
 ions. In this form, there are interstitial water molecules between metal-cyanide 

frameworks. A similar compound, soluble PB (KFe4
II
[Fe

III
(CN)6]3), contains interstitial potassium 
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ions. This soluble PB can be synthesized by the chemical reaction between Fe
2+

 and [Fe
III

(CN)6]
3-

 

ions and the ideal molar ratio of Fe
2+

/Fe
3+

 is 4/3 [61-64]. Furthermore, Mg3
II
[Co

III
(CN)6]2 and 

Co3
II
[Fe

III
(CN)6]2 as PB analogues were synthesized recently in which the molar ratios of 

Mg
2+

/Co
3+

and Co
2+

/Fe
3+ 

are 3/2, respectively [65-66]. Therefore, the ideal molar ratios of 

M
2+

/M
3+

 in the ideal structures of PB and its analogues is evidenced to be 4/3 or 3/2. In this study, 

I have synthesized FeCo (Fe3
II
[Co

III
(CN)6]2) and CoFe (KCo4

II
[Fe

III
(CN)6]3), using Fe

2+
 and 

[Co
3+

(CN)6]
3-

, and Co
2+

 and [Fe
III

(CN)6]
3-

, respectively (Figure 2.21).  

The atomic ratios of Fe
2+

/Co
3+

 and Co
2+

/Fe
3+ 

estimated by ICP analysis were 3/2 and 4/3, 

respectively, and they were in a good agreement with the above ideal ratios. After thermal 

treatment of FeCo and CoFe nanocubes, they were converted into the corresponding nanoporous 

hybrid metals oxides (FeCo oxide and CoFe oxide) and the atomic ratios of Fe/Co and Co/Fe 

estimated by ICP analysis were 3/2 and 4/3, respectively, close to the starting FeCo and CoFe 

nanocubes. This means that the organic groups (–C≡N–) and water were removed without any 

effect on the original metals ratios. Although both hollow FeCo and CoFe nanocubes have 

different compositional ratios of Fe/Co, their corresponding metal hybrid FeCo oxides exhibited 

single-crystal-like spinel structures (Figure 2.20). This is because the presence of Fe atoms 

significantly would increase the surface energy, which can facilitate the formation of large 

crystals. 

 
Figure 2.20. (a) Wide-angle XRD patterns of hollow cal-FeCo nanocubes and hollow cal-CoFe 
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nanocubes and (b) the selected-area ED patterns of individual nanocube (hollow cal-CoFe 

nanocubes). 

 

Figure 2.21. Ideal crystal structures of FeCo (Fe3
II
[Co

III
(CN)6]2) and CoFe (KCo4

II
[Fe

III
(CN)6]3).  

2.4. Conclusion 

I demonstrated that metal-cyanide hybrid CPs with cubic morphology and uniform particles sizes 

were converted into the corresponding nanoporous hybrid metals oxides after thermal treatment 

in air. During calcination, –C≡N– groups and interstitial water molecules were removed, leaving 

pores/voids between the original frameworks. Interestingly, the thermal conversion of solid FeCo 

nanocubes resulted in the formation of single-crystal-like nanoporous spinel oxides with 

enhanced magnetic property. This thermal conversion process was also applicable to hollow CP 

nanocubes. To prepare the hollow CP nanocubes, CoCo, FeCo, CoFe, and FeFe shells epitaxially 

grew on the surface of NiCr core, because they have the same crystal structure. After selective 

chemical etching, the NiCr cores were removed and hollow interiors inside the nanocubes were 

formed. By direct calcination of these hollow CP nanocubes, single-crystal-like nanoporous 

spinel oxides with hollow interiors were also successfully prepared, for the first time. I strongly 

believe that our method should be useful in the future for the preparation of more complicated 

architectures with controlled hollow interiors and tunable particles sizes.  
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Chapter 3 

3. Nanoporous Mn-Based Electrocatalysts 

through Thermal Conversion of Cyano-Bridged 

Coordination Polymers toward Ultra-High 

Efficient Hydrogen Peroxide Production   

3.1. Introduction 

Manganese (Mn)-based oxides have attracted a great interest from scientists because they have an 

excellent catalytic activity toward several reactions such as oxygen reduction reaction (ORR). 

The ORR in aqueous solutions occurs mainly by two pathways. One is the direct 4-electron 

reduction pathway (from O2 to H2O) which is highly preferred in fuel cells, and the other one is 

the 2-electron reduction pathway (from O2 to H2O2) which is used in industry for the production 

of H2O2 [1,2]. The latter pathway is often followed by further reduction (from H2O2 to H2O), and 

thus, in order to form H2O2 efficiently, materials with a high selectivity on the 2-electron 

reduction pathway are necessary. Because of the existence of various oxidation states (i.e., II, III, 

and IV), different manganese oxides, such as MnO, MnO2, Mn2O3, and Mn3O4, can be prepared 

and used in catalysis or battery technologies [3-5]. Various nanostructured Mn oxides with 
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different shapes, such as dendritic clusters, nanocrystals, nanowires, multipods, nanotubes, 

nanoneedles, or nanoflowers, have been reported so far [6-11]. Especially, Mn3O4 is also 

well-known to be an active catalyst in various oxidation reactions [12,13] or as a promising 

electrode material for capacitors because of its specific capacitance [14]. 

Despite the above-mentioned advantages of Mn oxides, their catalytic efficiency is 

limited [15,16]. One promising way to overcome such limitations and to further enhance their 

electrocatalytic activity is to introduce other metals oxides (e.g., Co, Ru, Ni, Fe, and Zn) [17]. 

The elegant combination of different transition metal oxides can achieve a superior 

electrocatalytic activity. It has been demonstrated that these mixed transition-metal oxides 

usually exhibit higher electrical conductivity than their respective single counterparts. Zhang et al. 

have designed MnxCo3-xO4 catalysts for the selective reduction of NO and elimination of NOx 

pollutants [18]. Moreover, Liang et al. have been developed a MnCo2O4/graphene hybrid as a 

highly efficient electrocatalyst for the ORR in alkaline conditions [19]. Recently, the intrinsic 

electrocatalytic activity of Ru has been extensively investigated, but its low abundance and high 

cost tend to exclude it from practical uses [20-22]. Thus, combining Ru with other abundant 

metals is an economically favorable way to enhance the electrocatalytic activity.  

In addition to a desirable composition, the nanostructure of a material can also affect the 

electrocatalytic activity. Nanoporous structures are greatly beneficial to the performance of 

catalysts since they show high specific surface area, numerous active sites, and shorter diffusion 

lengths for the reaction pathway [23]. For this reason, Prussian blue analogues (PBAs) were 

selected as promising precursors for the preparation of nanoporous metal oxides with unique 

properties [24,25]. PBAs are a class of crystalline coordination polymers consisting of divalent 

and trivalent metals ions bridged by cyanide groups (i.e., M
2+

−C≡N−Ḿ
3+

; M or Ḿ= Fe, Co, Ni, 

Mn, etc.). By removing the cyanide ligands through controlled aerobic thermal treatments, 
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nanoporous metals oxides can be obtained. The large fraction of metal nodes can be utilized as 

metal sources, while the removable organic components can generate nanopores [26,27]. 

Herein, I report the controlled and oriented crystal growth of PBAs (i.e., Mn3[Mn(CN)6]2 

(abbreviated as MnCNMn), Mn3[Co(CN)6]2 (abbreviated as MnCNCo), and Mn2[Ru(CN)6] 

(abbreviated as MnCNRu)) with tunable particle size and shape. After aerobic calcination, the 

PBAs are successfully converted into nanoporous Mn-based oxides with different compositions, 

as shown in Figure 3.1. The electrochemical analysis reveals that the Mn-Ru oxide prepared 

from Mn2[Ru(CN)6] is a promising catalyst for the production of H2O2 by selectively catalyzing 

the ORR through a 2-electron pathway. Our electrocatalyst demonstrates a high activity, strict 

selectivity, and long-term stability for the production of H2O2. 

3.2. Experimental Sections 

3.2.1. Synthesis of MnCNMn, MnCNCo, and MnCNRu PBAs and 

Their Thermal Conversion 

In a typical synthesis of MnCNRu, trisodium citrate dihydrate (TSCD) (350 mg) was dissolved in 

40 mL of manganese (II) acetate aqueous solution (0.058 mM) to form a clear solution, followed 

by the addition of 40 mL of K4[Ru(CN)6] solution (0.025 mM) under magnetic stirring. For the 

synthesis of MnCNCo, TSCD (200 mg) was dissolved in 40 mL of manganese (II) acetate 

solution (0.085 mM) to form a clear solution, followed by the addition of 40 mL of K3[Co(CN)6] 

solution (0.04 mM) under magnetic stirring. For synthesis of MnCNMn nanocubes, TSCD (200 

mg) was dissolved in 40 mL of manganese (II) acetate solution (0.085 mM) to form a clear 

solution, followed by the addition of 40 mL of K3[Mn(CN)6] solution (0.037 mM) under 

magnetic stirring. The solutions were aged for 24 h to allow the crystal growth, followed by the 
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formation of a precipitates. The obtained precipitates were collected by centrifugation. After 

washing with water and ethanol several times, the precipitates were dried at room-temperature for 

48 h. For the conversion to nanoporous metal oxides, the as-prepared powders (100.0 mg) were 

placed in a melting pot and heated from room temperature to the desired temperature (360 °C) at 

5 °C min
-1

 using an electronic furnace. After reaching the desired temperature, the samples were 

annealed for 2 h to a complete thermal decomposition. Finally, the obtained powder was 

collected for characterization. All calcination processes were performed aerobically. 

3.2.2. Electrochemical Measurements 

The electrochemical activities of the catalysts were evaluated by using cyclic voltammetry and 

linear sweep voltammetry in a three-electrode electrochemical cell in a rotating ring-disk 

electrode (RRDE) with Pt ring and glassy carbon disk (GC, 4 mm in diameter) configuration. 

Counter electrode was a graphite rod (10 mm in diameter) and the reference electrode was an 

Ag/AgCl (3 M NaCl) electrode. The working electrode was prepared as follows. The RRDE was 

firstly polished in a circle motion using alumina suspensions with decreasing particle size 

(typically from 1.0 to 0.05 µm). The as-prepared catalyst (5 mg) was dispersed in a mixture of 

water/ethanol solution (3:1 volume ratio) (950 µL) and 5 wt% Nafion solution (50 µL) under 

ultrasonication for 30 min to get a homogenous suspension. Then, 5 µL of the above suspension 

was dropped onto the GC disk of the RRDE, resulting in catalyst loading of 200 µg cm
-2

. To get a 

uniform catalyst layer, the RRDE was set horizontally at room temperature. The electrolyte was 

0.1 M KOH and was bubbled with high pure oxygen to get O2-saturated 0.1 M KOH. The GC 

disk electrode was subjected to potential cycling at a sweep rate of 10 mV s
-1

 with a rotation 

speed of 1600 rpm. Solution ohmic drop (i.e., iR drop) was compensated. The background 

capacitive current was recorded in the same potential range and scan rate, but in N2-saturated 
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electrolyte. The current recorded in O2-saturated solution was corrected for the background 

current to yield net ORR current of the tested catalyst. 

 

Figure 3.1. Schematic illustration of PBAs undergoing thermal decomposition to produce the 

corresponding metal oxides for electrocatalytic production of H2O2. 

3.2.3. Characterizations 

SEM images were taken with a Hitachi S-4800 scanning microscope at an accelerating voltage of 

10 kV. TEM observations were performed using a JEM-2100F TEM system operated at 200 kV 

and equipped for energy-dispersive spectrometer analysis. Wide-angle powder X-ray diffraction 

(XRD) patterns were obtained with a Rigaku RINT 2500X diffractometer using monochromated 

Cu Kα radiation (40 kV, 40 mA) at a scanning rate of 0.5 °C min
-1

. X-ray photoelectronic 

spectroscopy (XPS) spectra were recorded at room temperature using JPS-9010TR (JEOL) 

instrument with Mg Kα X-ray source. Thermo-gravimetric (TG) analysis was carried out using a 

Hitachi HT-Seiko instrument Exter 6300 TG-DTA in O2-heating from room temperature to 700 

°C with a heating rate of 5 °C min
-1

. Nitrogen adsorption-desorption data were obtained by using 

a Quantachrome Autosorb Automated Gas Sorption System at 77 K. The production of H2O2 is 
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checked by an off-line fourier transform infrared (FTIR) spectroscopy to the small volume of 

solution sampled from the electrolyte very close to the electrode. 

3.3. Results and Discussion 

3.3.1. Preparation of MnCNRu, MnCNCo, and MnCNMn 

Precursors  

To understand the role of TSCD in the formation of PBAs, two reactions, with and without 

TSCD, were compared. In the absence of TSCD, more Mn species dissolved in the solution can 

react immediately with the [Mn(CN)6]
3-

, [Co(CN)6]
3-

, or [Ru(CN)6]
4-

 anions and resulting in the 

formation of irregularly-shaped MnCNMn, MnCNCo, and MnCNRu particles, respectively 

(Figure 3.2). In contrast, in the presence of TSCD, the resulting materials have a well-defined 

cubic morphology and homogeneous particle size distribution (Figure 3.3). My previous 
1
H 

nuclear magnetic resonance (NMR) study reveals that TSCD bonds to the metal cations through 

chelating effect [28]. Therefore, in the present study, Mn-citrate complex is thought to be formed. 

Free Mn
2+

 ions are steadily released from the Mn-citrate complex to react with [Mn(CN)6]
3-

, 

[Co(CN)6]
3-

, or [Ru(CN)6]
4-

 anions at the initial stage of the reaction. Subsequently, the generated 

nuclei further grow through the interaction taking place between the free Mn
2+

 ions and the 

anions. Thus, the presence of TSCD plays an important role as it induces the preferential crystal 

growth of MnCNMn, MnCNCo, and MnCNRu PBAs. A different concentration of TSCD was 

used for the preparation of MnCNRu. Interestingly, it is found that the final size and shape can be 

controlled depending on the concentration of TSCD employed (Figure 3.4). From scanning 

electron microscope (SEM) images, well-defined cubes with sharp edges can be observed when 

the concentration of TSCD is above 350 mg (Figure 3.4). With increasing the concentration of 
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TSCD, the number of nuclei formed at the early stage of the reaction is thought to decrease, 

based on the above-mentioned idea. These few nuclei undergo crystal growth by interacting with 

[Ru(CN)6]
4-

, leading to a final product with a larger particle size (Figure 3.4f).  

The obtained PBA particles prepared with TSCD under a typical condition were 

examined by SEM (Figure 3.3) and wide-angle X-ray diffraction (XRD) (Figure 3.5). The 

MnCNRu sample shows cubic shapes of approximately 600 nm (Figure 3.3c). The XRD patterns 

can be assigned to face-center cubic (Fm-3m) structures, similar to typical Prussian blue crystals 

(Figure 3.5c). MnCNMn and MnCNCo have a similar crystal structure but with an average 

particle size of ~1 µm and ~2 µm, respectively (Figures 3.3a and b, 3.5a and b, and Figure 

3.6).  

 

Figure 3.2. SEM images of the (a) MnCNMn, (b) MnCNCo, and (c) MnCNRu PBAs, prepared 

in the absence of TSCD. 
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Figure 3.3. SEM images of the (a) MnCNMn, (b) MnCNCo, and (c) MnCNRu PBAs.  

 

Figure 3.4. SEM images of the MnCNRu prepared with various amounts of TSCD. 
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High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and 

elemental mapping are powerful tools to determine structure and atomic distribution.  Mn, Co, 

Ru, C, and N can be clearly identified and observed to be homogeneously distributed over the 

whole area of the cubes (Figure 3.7). HAADF-STEM images show that the MnCNRu and 

MnCNMn cubes possess a rough surface around the edges and corners, suggesting that the final 

cubes are composed of aggregated nanocrystals [25]. On the other hand, MnCNCo cubes with 

sharp corners are formed by more densely packing nanocrystals. The elemental composition was 

investigated by ICP analysis. Mn/Co (in MnCNCo) and Mn/Ru (in MnCNRu) atomic ratios are 

found to be 1.50 and 1.00, respectively. 

 

Figure 3.5. Experimental XRD patterns (black line), computed XRD patterns (red line), and the 
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residuals (blue line) of (a) MnCNMn, (b) MnCNCo, and (c) MnCNRu. The peaks indicated by 

(*) are generated from impurities.  

 

Figure 3.6. The particle size distributions obtained from TEM images of (a) MnCNMn, (b) 

MnCNCo, and (a) MnCNRu PBAs. 

 

 

Figure 3.7. HAADF-STEM and elemental mapping images of the (a) MnCNMn, (b) MnCNCo, 

and (c) MnCNRu PBAs. 
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3.3.2. Thermal Conversion of MnCNRu, MnCNCo, and MnCNMn 

Cubes 

The inorganic-organic hybrids nature of PBAs allows them to decompose into nanostructured 

metal oxides through thermal treatments. PBAs have a large fraction of metal ions beside the 

organic ligands. Therefore, the metal atoms can be utilized as a metal source, while the 

removable organic components act as porogens. The thermal decomposition process of MnCNCo 

cubes is monitored by thermogravimetric (TG) analysis (Figure 3.8). A first sharp mass loss of 

around 25% can be observed up to temperature and 150 °C, attributable to the removal of 

interstitial water molecules from the inorganic-organic framework. The second mass loss of 

around 25%, between 300 and 400 °C, is due to the complete removal of the cyanide bridges. 

This behavior is typical of the combustion reaction of CN-containing materials.  

 

Figure 3.8. TGA curve of MnCNCo at a heating rate of 5 °C min
-1

 from room temperature to 

800 °C. 
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In the present study, the samples were heated at 360 °C for 2 h to ensure a complete thermal 

decomposition during which the PBAs were converted into their corresponding metal oxides 

while retaining their original shapes. During the thermal process, organic residues and water 

molecules are removed, leaving behind pores/voids inside the metal oxide framework formed by 

the oxidization/rearrangement of the metal components. The porous structure gives surface areas 

as high as 24.5 m
2
 g

-1
 (Mn3O4), 23.9 m

2
 g

-1
 (MnxCo3-xO4) and 24.3 m

2
 g

-1
 (Mn-Ru oxide), which 

was confirmed from the N2 adsorption-desorption isotherms (Figure 3.9).  

No obvious predominant pore sizes were observed in the BJH pore size distribution 

curves, which is in agreement with the irregular nanoporous structures observed by SEM (Figure 

3.10). It can be observed from the wide-angle XRD patterns of the obtained oxides that both the 

samples prepared from MnCNMn and MnCNCo possess a spinel crystal structure (i.e., Mn3O4, 

MnxCo3-xO4). The peaks assigned to Mn3O4 are slightly sharper and stronger than those from 

MnxCo3-xO4. The weaker crystallinity of MnxCo3-xO4 can be due to the incorporation of the Co 

atoms. On the other hand, in the case of the sample prepared from MnCNRu, additional peaks 

corresponding to Ru and RuO2 can also be observed as impurities in addition to the peaks 

assignable to Mn3O4 with a spinel crystal structure [29], implying that the Ru atoms are hardly 

incorporated in the spinel crystal. Although it is generally known that Ru is sensitive to air and 

easily oxidized, pure Ru metal coexists because oxygen molecules have not reached all the parts 

of the MnCNRu cubes. 
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Figure 3.9. N2 gas adsorption-desorption isotherms of Mn3O4, MnxCo3-xO4, and Mn-Ru oxide, 

respectively. 

 

Figure 3.10. SEM images of the corresponding metal oxides prepared from (a) MnCNMn, (b) 

MnCNCo, and (c) MnCNRu PBAs. 
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From the high-resolution TEM (HRTEM) data, one can observe the highly crystallized oxides 

obtained from the PBAs along with the lattice fringes (Figures 3.11). Several small crystals are 

randomly oriented inside the cubes. As shown in Figures 3.12 and 3.13, metal and oxygen atoms 

are well-distributed, suggesting that Mn, Co, and Ru from the solid PBA crystals are uniformly 

rearranged into the highly crystalline oxides (any phase segregations were not observed at the 

nanometer scale. But, at the atomic scale, it is believed that some phase segregations (i.e., Mn3O4, 

Ru, and RuO2) occurred, as mentioned above. The atomic ratios (Mn, Co, and Ru) of the oxides 

obtained by ICP analysis indicate that the compositions are similar to that of the PBAs, meaning 

that only water, cyanide groups and other organic residues are removed while the metals are 

maintained in place. The Mn/Co (in MnxCo3-xO4) and Mn/Ru (in Mn-Ru oxide) atomic ratios are 

calculated to be 1.45 and 0.95, respectively.  

 
Figure 3.11. TEM and HRTEM images of the corresponding metal oxides prepared from (a) 
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MnCNMn, (b) MnCNCo, and (c) MnCNRu PBAs. The zone axes are <011>, <100>, and <021> 

of the spinel crystalline structures, respectively.  

 
Figure 3.12. HAADF-STEM and elemental mapping images of the corresponding metal oxides 

prepared from (a) MnCNMn, (b) MnCNCo, and (c) MnCNRu PBAs. 

 

 
Figure 3.13. (a) SEM image and (b) HAADF-STEM images and the corresponding elemental 

mapping of the Mn-Ru oxides prepared from MnCNRu PBAs. 

 

To determine the electronic states of Mn, Co, and Ru, X-ray photoelectron spectroscopy (XPS) 

measurement was carried out on the obtained metal oxides. In the case of the oxide prepared from 

MnCNMn, the high resolution spectrum centered on Mn 2p3/2 can be deconvoluted into two 

contributions positioned at 641.6 eV and 643.2 eV corresponding to Mn
2+

 2p3/2 and Mn
3+

 2p3/2, 

respectively, suggesting the presence of spinel Mn3O4 (Figure 3.14a) [30,31]. The Mn 3s peak is 

also observed at 83.2 eV with a satellite peak at 88.8 eV, probably due to different oxidation 
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states of Mn, which is an additional evidence of the formation of Mn3O4 [32]. The O/Mn ratio is 

1.32, which is almost the same as the expected stoichiometric value for Mn3O4 (i.e., 1.33). The 

calculated Mn
2+

/Mn
3+

 molar ratio is 1.00/2.18, which is consistent with the theoretical value of 

typical Mn
II
Mn

III
2O4 spinel oxides (i.e., 0.5). In the case of the oxide prepared from MnCNCo 

PBAs, the XPS spectra of Mn 2p and Co 2p are shown in Figure 3.14b-c. As for the previous 

sample, the Mn 2p3/2 spectrum can be deconvoluted into Mn
2+

 2p3/2 and Mn
3+

 2p3/2 contributions. 

The Co 2p3/2 can be divided into two contributions at 780 eV and 781.2 eV, attributed to Co
2+ 

2p3/2 and Co
3+

 2p3/2, respectively. The O/(Mn+Co) atomic ratio is 1.32, which is in accordance 

with the calculated value of spinel MnxCo3-xO4. In addition, the calculated 

(Mn
2+

+Co
2+

):(Mn
3+

+Co
3+

) ratio is 1:2.07 which is consistent with the calculated value of a 

typical spinel oxides (i.e., 0.5).  

The XPS spectrum of Mn 2p of the Mn-Ru oxide prepared from MnCNRu reveals a 

peak centered at 641.8 eV which can be deconvoluted into two contributions corresponding to 

Mn
2+

 and Mn
3+ 

(Figure 3.15), respectively, similar to the ones observed in Figure 3.14a-b. In the 

spectrum centered on Ru 3p shown in Figure 3.14d, the deconvolution confirms the presence of 

Ru
0
 and Ru

4+
 chemical states, located at 642.6 eV and 645.4 eV, respectively [33,34]. A higher 

O/(Mn+Ru) atomic ratio (1.90) was confirmed in the Mn-Ru oxide which is probably due to the 

existence of high valence of Ru (i.e., Ru
4+

 as RuO2). It is known that the Ru
2+

 and Ru
3+

 species 

are unstable in non-molecular solid, except in a few complex oxides
[35]

 and therefore, as 

previously mentioned, they are unlikely to be present in the spinel crystal. All the results 

illuminated that both Ru and RuO2 are formed as impurities. 
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Figure 3.14. XPS spectra centered on the (a) Mn 2p and Mn 3s in the Mn3O4, (b) Mn 2p and (c) 

Co 2p in the MnxCo3-xO4, and (d) Ru 3p in the Mn-Ru oxide. 

 

 

Figure 3.15. XPS spectra centered on the Mn 2p in the Mn-Ru oxide. 
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3.3.3. Electrochemical Catalysis Using the Obtained Oxides  

Hydrogen peroxide (H2O2) has previously been synthesized by directly combining hydrogen and 

oxygen in the presence of catalysts [36-40]. In the case of ORR, the reduction of O2 includes two 

different pathways: the direct four-electron transfer (reaction 1) and the two-by-two electron 

pathway (stepwise, reactions 2-3) [41-43]: 

O2 + 2H2O + 4e
-
  4OH

- 
                                              (3.1) 

O2 + H2O + 2e
-
  HO2

-
 + OH

-  
                                         (3.2) 

HO2
-
 + H2O + 2e

-
  3OH

- 
                                             (3.3) 

The stepwise process goes through the formation of a hydroperoxide intermediate (HO2
-
). If a 

catalyst is capable of selectively stop the oxygen reduction at this stage, it then leads to a 

convenient way to produce hydrogen peroxide. Recently, such an alternative approach for the 

synthesis of H2O2 based on a two-electron reduction pathway-based ORR has been demonstrated 

[44-47]. It is well-known that the ORR activity of the manganese oxides (MnxO) is valence- and 

particle size-dependent [5,15,16], so it is possible to obtain a MnxO-based catalyst with a specific 

activity (i.e., high-selectivity of two-electron transfer) for catalyzing ORR. 

In this study, the activity of Mn-Ru oxide catalyst toward ORR was carefully studied and 

compared to the Mn3O4 and MnxCo3-xO4 catalysts. From the cyclic voltammograms (CV) in the 

presence of oxygen (Figure 3.16), the Mn-Ru oxide catalyst shows a positively shifted oxygen 

reduction peak, compared to the other two samples. The ORR performance is further 

characterized by using a rotating ring-disk electrode (RRDE) in an O2-saturated 0.1 M KOH 

solution at a rotation speed of 1600 rpm (Figure 3.17). The onset-potential catalyzed by the 

Mn-Ru oxide at 0.79 V is positively shifted (around 200 mV) compared to that of the Mn3O4 and 

MnxCo3-xO4 catalysts. Commercially available RuO2 catalyst gives a similar onset-potential to 

that of the Mn oxide and Mn-Co oxide catalysts, which strongly suggests the presence of a 
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synergistic effect between Mn and Ru in the Mn-Ru oxide catalyst. From the viewpoint of both 

the onset potential and the limitation current, the Mn-Ru oxide catalyst exhibits superior ORR 

performances. 

 

Figure 3.16. CV curves obtained under (black plot) N2- and (red plot) O2-saturated 0.1 M KOH 

catalyzed by (a) Mn oxide, (b) Mn-Co oxide, and (c) Mn-Ru oxide prepared from MnCNMn, 

MnCNCo, and MnCNRu PBAs, respectively. 

 

 

Figure 3.17. ORR polarization curves of (i) Mn oxide prepared from MnCNMn, (ii) Mn-Co 
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oxide prepared from MnCNCo, (iii) commercially available RuO2, and (iv) Mn-Ru oxide 

prepared from MnCNRu, respectively. 

 

The polarization curves catalyzed by the Mn-Ru oxide exhibit two distinct potential regions: the 

diffusion-limiting region (from 0.0 V to 0.8 V) and the mixed kinetic-diffusion control region 

(form 0.8 V to 1.0 V) [48,49] (Figure 3.18a). The Koutecky-Levich (K-L) plots obtained from 

the polarization curves at various rotation speeds are employed for the calculations. In the K-L 

model, the current density (j) combines a kinetic (jk) and a diffusion (jd) components:  

1/j = 1/jk+1/jd=1/jk+1/Bω
1/2

                                             (3.4) 

B = 0.62 nFD
2/3
ν

-1/6
CO2                                                (3.5) 

where n is the number of transferred electrons, F is Faraday’s constant (96,485 C mol
-1

), D is the 

diffusion coefficient of O2 in 0.1 M KOH solution (1.9 × 10
-5

 cm
2
 s

-1
), ν is the kinematic viscosity 

of the electrolyte (0.01 cm
2
 s

-1
) and CO2 is the concentration of molecular oxygen in 0.1 M KOH 

(1.2 × 10
-6

 mol cm
-3

). B should equal to 0.44 mA cm
-2

 s
1/2

 for a four-electron process and to 0.22 

mA cm
-2

 s
1/2

 for a two-electron process. Figure 3.18b clearly shows that the slopes determined 

experimentally, at various potentials, are in good agreement with the calculated slope for the 

two-electron process, evidencing the selective formation of H2O2 during the ORR. From the 

slopes of the plot derived from the experimental data, B is calculated as 0.22 mA cm
-2

 s
1/2

, 

suggesting that a pure two-electron reduction process is achieved by using the Mn-Ru oxide 

catalyst. So far, several materials for ORR have been reported by other research groups, but 

catalysts suitable for two-electron reduction processes are rare, and their onset potentials are 

lower compared to that of our Mn-Ru oxide catalyst (Table 3.1). The ORR pathway catalyzed by 

Mn-Ru oxide in a wide potential range was further studied by using the RRDE (Figure 3.18c). 

The electron number (n) transferred in the ORR was calculated from the following equation: 

n=4 × Id/(Id + Ir/N)                                                    (3.6) 
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Where Id is the disk current, Ir is the ring current and N = 0.4 is the current collection efficiency 

of Pt ring electrode. 

 
Figure 3.18. (a) ORR polarization curves of Mn-Ru oxide at different rotation rates in 

O2-saturated 0.1 M KOH. (b) Koutecky-Levich plots for the determination of the number of 

electrons transferred during the reaction. (c) The current collected on disk and ring electrodes 

catalyzed by Mn-Ru oxide in O2-saturated 0.1 M KOH at a rotation speed of 1600 rpm. (d) The 

electron number transferred and the percentage of peroxide at various potentials, calculated by 

using the currents collected on the rotating ring-disk electrode shown in panel (c). 

 

Table 3.1. Comparison between the electrocatalytic activity toward ORR of our catalysts and 

other previously reported materials. n is the number of electron transferred during the ORR. 

 

Sample information  Electrolyte Onset potential* 

(mV vs. RHE) 

n References 

Mn-Ru oxide 0.1M KOH 910 2.0 Present work 

MnxCo3-xO4 0.1M KOH 762 2.0 Present work 

Mn3O4 0.1M KOH 762 2.0 Present work 

Mesoporous N-doped carbon 0.1M KOH 730 2.6 Adv. Funct. Mater. 

2012, 22, 4584 

Reduced graphene oxide 0.1M KOH 810 2.7 Chem. Commun. 2013, 

49, 6334 

N-doped graphene 0.1M KOH 800 2.7 Nat. Mater. 2011, 10, 

780 

CoMn2O4 0.1M KOH or KCl 780 2.9 Nat. Chem. 2011, 3, 79 
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Co2MnO4 0.1M KOH or KCl 850 3.3 Nat. Chem. 2011, 3, 79 

CoxMn3–xO4 0.1M KOH or KCl 860 3.4 Nat. Chem. 2011, 3, 79 

Porous calcium-manganese oxide 

(Ca2Mn3O8) microspheres 

0.1M KOH 850 3.5 Chem. Sci. 2013, 4, 

368 

CoxMn3–xO4 0.1 M KOH or KCl 880 3.7 Nat. Chem. 2011, 3, 79 

Co3O4/graphene composite 1.0M KOH 864 3.7 J. Am. Chem. Soc. 

2012, 134, 3517 

Manganese oxide containing 

mesoporous N-doped carbon 

0.1M KOH 810 3.8 Adv. Funct. Mater. 

2012, 22, 4584 

Flower-like manganese oxide on 

reduced graphene oxide 

0.1M KOH 840 3.8 Chem. Commun. 2013, 

49, 6334 

Spinel MnCo2O4/ graphene 

composite 

1.0M KOH 885 3.9 J. Am. Chem. Soc. 

2012, 134, 3517 

Co3O4 nanocrystals on graphene 0.1M KOH 880 3.9 Nat. Mater. 2011, 10, 

780 

Iron-based catalyst (Fe-N/C) 0.1M KOH 700 3.9 Nat. Mater. 2011, 10, 

780 

Platinum/carbon 0.1M KOH or KCl 50 3.9 Nat. Chem. 2011, 3, 79 

Spinel MnCo2O4 nanoparticles + 

graphene sheet mixture 

1.0M KOH 845 4.0 J. Am. Chem. Soc. 

2012, 134, 3517 

N-doped graphene sheets 1.0M KOH 830 4.0 J. Am. Chem. Soc. 

2012, 134, 3517 

Manganese oxide (β-MnO2) 0.1M KOH 800 4.0 Angew. Chem. Int. Ed. 

2013, 52, 2474  

Layer-by-layer structured NiO-GO 

nanocomposite 

0.1M KOH 860 --- Chem. Commun. 2015, 

51, 16409 

Cobalt and nitrogen-functionalized 

graphene 

0.1M KOH 862 --- J. Mater. Chem. A 

2013, 1, 3593 

*: All the onset potentials referenced to RHE are calculated through by the following equation: 

E(vs. RHE) = E(vs. Ag/AgCl) + 0.0592*pH. 

 

The n value was estimated to be about 2.0, which is consistent with the high yield of peroxide 

(over 99 %) (Figure 3.18d) [50,51]. The selectivity for H2O2 production was further confirmed 

by using RRDE measurements at different constant potentials (e.g., 0.65 V and 0.55 V vs. RHE), 

in which a constant potential (e.g., 0.65 and 055 V vs. RHE), in which a constant was fixed at 

1.50 V to the ring electrode vs. RHE. From Figure 3.19, it is obvious that the calculated 

efficiency for H2O2 is close to 100% for all the detection times, which is consistent with the 

electron number of 2. Thus, it is clear that the Mn-Ru oxide is the critical factor leading to such 

highly efficient catalysts for the production of H2O2 through a two-electron reduction pathway. 

The excellent capability of the Mn-Ru oxides for the production of H2O2 can be explained from 

three aspects. Firstly, improved mass transport inside the nanoporous architectures is achieved, 

due to the enhanced wettability of the catalyst layer caused by the self-humidification of RuO2, 
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which highly facilitate the transport of the formed H2O2 from the electrode to the bulk electrolyte 

[52]. In addition, the nanoscale distribution of RuO2 content, which possesses good electronic 

conductivity, facilitates the electron transfer between the active Mn3O4 sites, and finally improves 

the activity of Mn3O4 toward the ORR. Thirdly, a bi-functional effect between the adjacent 

Mn3O4 and RuO2 sites particularly changed the adsorption of oxygen molecules, which avoids 

the O-O bond breaking [40,53], thus enhancing the formation of H2O2. The synergistic effect of 

enhanced mass transportation and adjacent sites with different activities are responsible for the 

high-efficiency of H2O2 production. 

Because of its importance in catalyzing reactions, the catalytic stability of the 

as-prepared Mn-Ru oxide was further evaluated by employing a chronoamperometric approach in 

a time period of 5 h. For comparison, a commercially available Pt, 5% on carbon (abbreviated as 

PtC-5%) catalyst was also studied by the same method. The large current retention of the 

as-prepared Mn-Ru oxide reveals an addition of the better catalytic stability in catalyzing ORR 

(Figure 3.20a). The superior catalytic stability is probably supported by the shape and 

crystallinity retention of the catalyst even after electrocatalyzing ORR for long time (Figure 

3.20b and c). 

 
Figure 3.19. Chronoamperometric curves obtained at disk and ring electrodes at different 

constant potentials: (a) 0.65V and (b) 0.55V. The measurements were carried out in O2-saturated 

0.1M KOH at a rotation speed of 1600 rpm. The corresponding H2O2 production efficiencies 

were shown in the insets. 
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Figure 3.20. (a) Current retention plot during chronoamperometric measurements for the Mn-Ru 

oxide and commercially available PtC-5% catalysts. (b) SEM and (c) TEM images of the Mn-Ru 

oxide after long-term stability measurement. 

3.4. Conclusions 

I have demonstrated a novel approach for the preparation of Mn-Ru oxide with a nanoporous 

structure through the thermal treatment of a MnCNRu PBA in which the CN-groups act as a 

bridge between Mn and Ru. During the thermal process, the organic residues and the water 

molecules are removed, leaving pores/voids inside the metal frameworks subject to further 

oxidation. When compared with the Mn and Mn-Co oxide catalysts, the Mn-Ru oxide catalyst 

shows a significantly enhanced electrocatalytic activity toward ORR. Importantly, my Mn-Ru 

oxide catalyst can selectively reduce oxygen in a two-electron pathway, which is a promising 

result for further application in the production H2O2 in a convenient and environmentally friendly 

way. All the results indicate that the superior performance toward H2O2 production can be 

achieved due to the proper catalyst compositions. The present strategy makes the preparation of 

PBAs with well-defined compositions and morphologies easier, so it is now possible to prepare 
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various nanoarchitectured hybrid metals oxides as promising candidates for electrocatalytic 

applications. I strongly believe that this method has the potential to overcome the typical 

difficulties encountered during the fabrication of nanoporous/mesoporous metal oxides by other 

traditional approaches. 
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Chapter 4-1 

4-1. Prussian Blue Derived Nanoporous Iron 

Oxides as Anticancer Drug Carriers for 

Magnetic-Guided Chemotherapy 

4-1.1. Introduction 

In recent years, cancer has become one of the most serious diseases causing a high rate of 

casualties. Chemotherapy, radiotherapy and surgical resection are three common therapies to treat 

cancer, chemotherapy being the one inflincting the least pain to the patients. However, the 

multidrug resistance (MDR) of cancer cells is responsible for 90% of chemotherapeutic failures 

upon treatment [1]. Generally, MDR originates from the overexpression of ATP-binding cassette 

transporter proteins effluxing the anticancer drugs from the cytoplasm of cancer cells to reduce 

the accumulation of drugs [2]. Fortunately, an appropriate drug delivery system (DDS) can 

change the release behavior of chemotherapeutic agents, thus improving effectively the 

anticancer activity and overcoming the prevalent MDR issues affecting cancer chemotherapy 

[3,4]. So far, many organic materials have been utilized as carriers for DDS, such as liposomes 

[5], alginate [6], albumin [7], and poly(lactic-co-glycolic acid) (PLGA) [8]. In addition to these, 
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inorganic nanoparticles exhibiting specific compositonal and strutural features can also 

circumvent MDR. For instance, the family of nontoxic, biocompatible, and mechanically stable 

mesoporous silica nanoparticles [9,10] is a well-known carrier for drug delivery. Other inorganic 

nanoparticles, such as gold, silver, and iron oxide, exhibit intrinsic physicochemical properties 

suitable for transferring irradiated energy into heat or toxic radicals for hyperthermia [11] and 

photothermal [12] or photodynamic therapy [13]. The unique properties of inorganic 

nanoparticles make them good potential candidates for DDS applications.  

As the carriers circulate in the human body, it is a big challenge to impart the 

cell-targeting ability to drug carriers. Modifying the surface of the synthesized drug carriers is a 

common method to increase their affinity towards cancer cells. For example, the PEGylation of 

carriers lets them accumulate in the tumor, owing to an enhanced permeability and retention 

(EPR) effect [14]. Folic acid [15], transferrin [16], and antibodies [17] are also commonly used 

for targeting cancer cells which express specific receptors for these ligands. However, the 

variation in receptor expression from patient to patient and the non-specific expression of 

receptors in normal cells are extremely limiting factors when it comes to applying this strategy in 

the clinical environment [18]. Compared to molecular targeting, magnetic targeting based on 

physical operation is therefore more reliable and is not limited by the expression of a receptor in 

cancer cells. One only needs to employ an external magnetic field on the patient in order to direct 

the magnetic nanoparticles circulating in the vicinity of the tumor. It is well known that iron 

oxide is a highly biocompatible material suitable for magnetically guided drug delivery. Many 

reports have shown that magnetically guided drug delivery could enhance the accumulation of 

magnetic carriers on targed cells both in vitro and in vivo. Moreover, magnetic iron oxide has 

other physical benefits in other applications such as hyperthermia and magnetic resonance 

imaging, the latter providing real-time drug distribution [19]. Namiki et al. [20] guided 
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successfully nucleic acid-loaded LipoMag, which is composed of a magnetic nanocrystal core 

and cationic lipid shell, to gastric tumors in mice. Cheng et al. [18] synthesized a new class of 

multifunctional nanoparticles consisting of a core, a thin layer of iron oxide as the intermediate 

shell, and a thin layer of gold as the outer shell for multimodal imaging and photothermal therapy. 

They asserted that the uptake of nanoparticles was enhanced about 8-fold under a tumor-targeting 

magnetic field. Mejias et al. [21,22] also reported that by applying an external magnetic field, the 

targeting of IFN-γ-loaded magnetic nanoparticles at the tumor site becomes more efficient. These 

pioneering studies all demonstrate the successful drug delivery of such materials as well as their 

application in magnetic-guided chemotherapy.  

Coordination polymers are of great importance nowadays because of their wide range of 

applications such as catalysis, gas storage, biosensing, electrochemistry, and drug delivery 

[23,24]. Prussian Blue (PB) and its analogues, as a large family of coordination polymers, have 

drawn significant attention because of their high surface area, uniform pore arrangement and 

tunability in their particle size and shape [25-29]. PB (Fe4[Fe(CN)6]3·xH2O), in which iron ions 

are bridged by cyano groups (Fe
III

–C≡N–Fe
II
), is considered as a potential precursor for 

nanoporous iron oxides with high surface areas. The iron components can be oxidized and the 

organic components (–C≡N–) can be removed by thermal decomposition in air [30,31].  

In this work, I report the thermal conversion of PB nanocubes into nanoporous iron 

oxides with superparamagnetic behavior. Furthermore, the cytotoxicity of PB-derived 

nanoporous Fe oxides is examined by MTT assays on bladder cancer cells (i.e., T24). Even at 

high dosage (800 mg mL
-1

), the cell viability remains 100%, indicating an excellent 

biocompatibility. Consequently, PB-derived materials can be utilized as an anticancer drug 

capsule for magnetic guiding chemotherapy.  
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4-1.2. Experimental Section 

4-1.2.1. Chemicals 

PVP (Polyvinylpyrrolidone) (K30) was purchased from Nacalai Tesque. Potassium 

hexacyanoferrate (III) (K3[Fe(CN)6]·3H2O) was purchased from Merck KGaA, Germany. 

Hydrochloric acid was purchased from Wako Pure Chemical Industries, Ltd. 5-Dimethylthiazol- 

2-yl-2,5-diphenyl tetrazolium bromide (MTT), Triton X-100, 4´,6-diamidino-2-phenylindole 

(DAPI) and o-phenylenediamine (o-PDA) were supplied by Sigma-Aldrich. N,N-Dimethyl- 

formamide (DMF) was supplied by MBI, USA. Dimethyl sulfoxide (DMSO) was supplied by J. 

T. Baker, USA.  

4-1.2.2. Preparation of PB Nanocubes 

For the preparation of PB nanocubes, PVP (polyvinylpyrrolidone) (K30) (6.0 g) and 

K3[Fe(CN)6]·3H2O (264 mg) were dissolved in a 0.01 M HCl aqueous solution (80.0 mL) under 

magnetic stirring. After 30 min of stirring, a clear yellow solution was obtained. The vial was 

then placed into an electric oven and heated at 80 °C for 30 h. After aging, the precipitates were 

collected by centrifugation and washed several times in distilled water and ethanol. After drying 

at room temperature for 24 h, PB nanocubes of approximately 80 nm in particle size were 

obtained. For the preparation of nanoporous iron oxide, the obtained PB powder (50.0 mg) was 

placed into a melting pot which was then heated inside an electronic furnace at a heating rate of 

1 °C min
-1

 from room temperature to a designated temperature (250 °C and 400 °C) and kept for 

1 h to achieve complete thermal decomposition. After that, the powders were left to cool inside 

the furnace. Finally, the obtained powders were collected separately for characterization. All 
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calcination processes were performed in air. The obtained PB-derived nanoporous Fe oxides 

calcined at 250 °C and 400 °C are labeled as ’PB_250’ and ’PB_400’, respectively.  

4-1.2.3. Cell-Related Experiments 

Bladder cancer cells (T24) were maintained under standard cell culture conditions, in high 

glucose Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, NY, USA) with 10% fetal 

bovine serum (Gibco, NY, USA) in a 37 °C, 5% CO2 humidified incubator. Before measuring the 

cytotoxicity, the cancer cells were transferred from the culture dish into a 96-well plate (2×10
4
 

cells per well) and cultured for 1 day. Subsequently, the PB_250 and Cis@PB_250 samples of 

various concentrations were added into the cell media in the 96-well plate. After incubating for 

24 h, the 96-well plate was washed with phosphate buffered saline (PBS) to remove the dead 

cells and the PB NPs in the media. Next, MTT (5 mg mL
-1

) was added into each well to achieve a 

final concentration of 0.5 mg mL
-1

, followed by further incubation for 2 h at 37 °C. After that, the 

cell medium containing MTT was removed from each well. A DMSO solution (0.1 mL) was then 

added into each well to dissolve the formazan crystals, and the absorbance at 570 nm was 

recorded by using an ELISA reader.  

In order to observe the effect of magnetic guiding, T24 cells were cultured on a 12-well 

plate (2×10
5
 cells per well) for 1 day. After washing with PBS, 1 mL of Cis@PB_250-containing 

solution (100 mg mL
-1

) was added into each well, followed by culturing for 24 h. A magnet was 

put underneath the cell plate for guiding during the culturing period. After that, the plate was 

washed with modified PBS (PBS with 4% paraformaldehyde) three times, and 0.5 mL of DAPI 

(antibody titer 1:2000)-containing PBS solution (2.8×10
-5

 M) was then added into the plate for 

30 min to stain the nucleus of the living cells. Finally, the plate was washed with PBS and stored 

in PBS solution. The distribution of DAPI-stained cells was analyzed by confocal fluorescence 
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microscopy. 

4-1.2.4. Characterization 

SEM images were obtained with a Hitachi SU8000 scanning microscope at an accelerating 

voltage of 5 kV. Wide-angle powder X-ray diffraction (XRD) patterns were obtained with a 

Rigaku RINT 2500X diffractometer using monochromated CuKα radiation (40 kV, 40 mA) at a 

scanning rate of 2° min
-1

. Nitrogen adsorption-desorption data were obtained by using a 

Quantachrome Autosorb Automated Gas Sorption System at 77 K. Prior to the measurements, the 

samples were degassed in vacuum. The surface areas were calculated by the BET method using 

the adsorption branches of the isotherm. The concentration of MB in the aqueous solution was 

determined by measuring the absorbance at λmax = 664 nm using a JASCO V-570 UV/Vis/NIR 

spectrophotometer. The absorbance at 704 nm was measured to follow the adsorption of cisplatin 

in PBs.  

4-1.3. Results and Discussion 

The surface morphology of the prepared PB nanocubes before and after calcination was 

examined using a scanning electron microscope (SEM), as shown in Figure 4-1.1a. The average 

size of the PB nanocubes is around 80 nm (Figure 4-1.1a-1). The morphology of the obtained 

PB-derivatives after calcination (PB_250 and PB_400) remains nanocubes, but their sizes were 

slightly reduced and their surface roughness increased (Figure 4-1.1a-2 and 4-1.1a-3). The 

reduction of the particles size is mainly caused by removing the cyano-groups and the interstitial 

water molecules during calcination. To retain the original shapes of the nanocubes, it is found 

that the aging time of the PB particles before calcination has a critical effect. Along aging time 
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effectively solidifies the metal-organic framework. After calcinating the PB particles aged for a 

short time (15 h instead of 30 h), the original cubic shape is destroyed, as shown in Figure 4-1.2. 

In addition, I have checked the dispersity of the particles in water. Even after 15 h, the particles 

are still well dispersed (Figure 4-1.3). I also performed dynamic light scattering (DLS) analysis 

for investigating the particle size distribution (Figure 4-1.4). The predominant particle size is 

around100 nm which is in agreement with the SEM data.  

 

Figure 4-1.1. (a) SEM images of PB (a-1), PB_250 (a-2), and PB_400 (a-3). (b) Wide-angle 

XRD patterns of PB (b-1), PB_ 250 (b-2), and PB_400 (b-3). (c) Magnetization curves of 

PB_250 and PB_400 samples measured at 300 K. Insets: Two photographs showing the solution 

colors containing iron oxide nanoparticles before (top left) and after (bottom right) magnetic 

collection. When the magnet approaches the center, the iron oxide nanoparticles are easily 

collected 

 

The crystal phase of the final products and the degree of crystallinity were characterized by using 

wide-angle XRD measurements (Figure 4-1.1b). The as-prepared PB particles show the same 

face-centered cubic diffraction patterns as the bulk PB crystals (JCPDS card 73-0687) (Figure 
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4-1.1b-1). No peaks derived from impurities were detected, which indicates the high purity of the 

PB particles. In the original PB crystals, iron atoms are separated by cyano-bridges, which 

provide good conditions for small-sized γ-Fe2O3 particles during the oxidization process. 

Considering that 250 °C is a relatively low temperature for solid-state reactions, the aggregation 

or fusion of γ-Fe2O3 during the calcination is greatly hindered. Indeed, PB_250 shows no obvious 

XRD peaks, indicating that the phase in the frameworks is mostly amorphous (Figure 4-1.1b-2). 

In the case of PB_400, very weak and broad peaks observed at 2θ = 35° and 63° can be assigned 

to the γ-Fe2O3 crystal structure (Figure 4-1.1b-3). In few parts, the frameworks are partially 

crystallized into the γ-Fe2O3 phase. To investigate the surface areas of the synthesized PB, 

PB_250, and PB_400 in detail, N2 gas adsorption-desorption isotherms were measured. In 

comparison to the original PB sample (74 m
2 

g
-1

) before calcination, both PB_250 and PB_400 

samples show relatively high surface area (175 m
2
 g

-1
 and 228 m

2 
g

-1
, respectively).  

It is well known that γ-Fe2O3 shows a magnetic property, unlike α-Fe2O3. As mentioned 

above, my PB-derived nanoporous Fe oxide is composed of an amorphous phase or small sized 

γ-Fe2O3 crystals depending on the calcination conditions. Generally, such small ferromagnetic 

grains show a superparamagnetic behavior. However, not each grain shows a ferromagnetic state 

due to the thermal fluctuation of the magnetic moment at room temperature. From the 

magnetization curve (Figure 4-1.1c), no hysteresis could be observed, and both the coercive 

forces (Hc) and the residual magnetization (Mr) were nearly zero, which is a typical behavior for 

superparamagnetic materials. The saturation magnetization (Ms) values measured at 10000 Oe are 

30.6 emu g
-1

 (for PB_400) and 22.3 emu g
-1

 (for PB_250), respectively. This increase is 

attributed to an improved crystallization of γ-Fe2O3 by increasing the calcination temperature. 

Due to these sufficient Ms values, the samples can be easily collected by a neodymium magnet 

(inset in Figure 4-1.1c).  
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Figure 4-1.2. SEM images of PB-derived Fe oxide particles, a) PB_250 and b) PB_400, prepared 

using PB nanocubes aged at 80 °C for 15 hours. 

 

 

Figure 4-1.3. Photos of the synthesized iron oxides suspended in water for different times.  

 

 

Figure 4-1.4. Hydrodynamic diameter of the synthesized iron oxides. 

 

To show the potential of this material as a drug carrier, I investigated the ability of PB_250 and 
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PB_400 to trap guest molecules. Figure 4-1.5a represents the dynamic adsorption of methylene 

blue (MB) dye into the synthesized PB_250 and PB_400. Each sample (PB_250 and PB_400, 10 

mg) was mixed with 50 mL of MB solution (0.02 mm). The dye was separated from the 

adsorbent by centrifugation and the supernatant was taken out for UV/Vis measurements. The 

MB concentration was determined by measuring the absorbance at λmax = 664 nm. After 

measuring Amax, the concentration of MB was calculated using the Lambert-Beer law (Amax= 

ε×c×l, where ε = 74028 Lmol
-1 

cm
-1

 and l = 1 cm). The MB amounts adsorbed into the PB_250 

and PB_400 samples were calculated by subtracting the final solution concentration from the 

initial concentration of the dye solutions. The amount of the MB adsorbed into my samples, Qe 

(mg g
-1

), was calculated from the following equation: 

Qe = (C0-Ce) × V × m
-1

                                             (4-1.1) 

Where; C0 is the initial MB concentration in the aqueous solution (mg L
-1

), Ce is the final MB 

concentration at equilibrium (mg L
-1

), V is the volume of MB solution (L), and m is the mass of 

adsorbent used (g). The adsorption process of MB into both samples was completed within about 

1 h and the amount of adsorbed MB in PB_400 was measured to be approximately twice higher 

than that adsorbed in PB_250, reaching 22.1 mg g
-1

. The difference in adsorption is due to the 

difference in surface area, as mentioned before.  

The effect of the initial MB concentration on the adsorption behavior was also studied. 

Figure 4-1.5b shows the adsorption capacities depending on the initial MB concentrations. For 

each sample, 50 mL of MB solutions were mixed with 10 mg of particles, sonicated for 15 min, 

and then stirred for 4 h in the dark at room temperature. The dye was separated from the 

adsorbent by centrifugation and the supernatant was taken out for UV/Vis measurements at λmax = 

664 nm for MB. The initial MB concentrations were set to be 0.8, 1.6, 3.2, 4.8, and 6.4 mg L
-1

. 

From the plot of the adsorption capacity versus the MB concentration (Figure 4-1.5b), it is found 
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that, as the initial MB concentration increases, the adsorption efficiency also linearly increases. 

My PB-derived nanoporous Fe oxides are expected to be utilized as an anticancer drug 

(i.e., cisplatin) capsule for magnetic-guided chemotherapy of Bladder cancer cells (T24). The 

loading capacities and the release percentages were studied, as presented in Figure 4-1.6. For the 

loading test, the original PB and the synthesized PB_250 sample (20 mg) were immersed into 4 

mL of cisplatin aqueous solution (0.5 mg mL
-1

) and the adsorption kinetics were studied (Figure 

4-1.6a). The cisplatin concentration was determined by mixing the latter with an 

o-phenylenediamine solution in DMF (1.2 mg mL
-1

) in a 1:1 volume ratio. After heating the 

mixture at 100 °C for 10 min, the maximum absorbance was measure at 704 nm. The adsorption 

process was finished within 180 min, and the loading efficiencies were determined to be 100% 

for both PB and PB_250. Such a rapid adsorption rate and high loading are attributed to the open 

nanoporous structure with a high surface area. The release test of cisplatin was then performed 

(Figure 4-1.6b). The cisplatin-loaded PB_250 (Cis@PB_250, 20 mg) was added to water (2 mL) 

and the release proceeded under stirring at room temperature. The release profile of cisplatin 

from Cis@PB_250 was measured by UV/Vis measurements and was found to yield 17.1% and 

32.2% of the initial load after 180 min for PB and PB_250, respectively. The observed release 

profiles follow a pseudo-first order.  

 

Figure 4-1.5. (a) Equilibrium adsorption capacities versus time of adsorption of MB dye and (b) 

the adsorption capacities versus the concentration of MB dye into the surface of SPB_250 and 
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SPB_400 samples. 

 

Figure 4-1.6. (a) The adsorption kinetics of cisplatin into PB and (b) measurement of the release 

profile of cisplatin from the cisplatin-loaded PB (Cis@PB). 

 

The study of the biocompatibility of PB_250 is critical for further medical application. The 

cytotoxicity of PB_250 was examined by MTT assays of Bladder cancer cells (T24), as shown in 

Figure 4-1.7a. The cell images after uptake are shown in Figure 4-1.8. The results show that the 

cell viability is around 100%, even when the dosage of PBs was as high as 800 mg mL
-1

, thus 

indicating an excellent biocompatibility. Such a high biocompatibility is very promising for 

intracellular applications. Furthermore, the cytotoxicity of Cis@PB_250 was estimated by using 

the same cancer cells (Figure 4-1.7c). In contrast to PB_250, the viability of the bladder cancer 

cells treated with Cis@PB_250 decreased with increasing dosages, suggesting a dose-dependent 

effect. Cisplatin crosslinks with DNA through the displacment of its chloride anions with guanine 

of DNA. This crosslinking ability of cisplatin with DNA depends on the release of cisplatin from 

PB_250. Thus, Cis@PB_250 has good efficacy for the intercellular drug delivery in T24 cells.  

In order to demonstrate the magnetic guiding ability of PB_250, we cultured T-24 cells 

with and without a magnetic stone underneath the slide glass. After the addition of Cis@PB_250 

to the T-24 cells for 4 h, the cells were washed to remove the dead cells. The cell nuclei were then 

stained with the blue fluorescent dye DAPI. DAPI can bind strongly to the AT-rich regions in 
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DNA and can stain cell nuclei [32,33]. When no magnetic guiding is applied, many healthy cells 

are distributed all over the observation area (Figure 4-1.7b), while magnetic guiding leads to a 

clear boundary between the bright stains and the dark field (Figure 4-1.7d), indicating that most 

of the cells located inside the magnetic field died while the cells located outside were kept alive 

after the treatment with Cis@PB_250.  

 

Figure 4-1.7. (a and c) MTT assays of (a) PB_250 and (c)Cis@PB_250 and (b and d) cell 

imaging of PB_250 without (b) and with (d) a magnetic stone, respectively. 

 

Figure 4-1.8. Fluorescent images of cells after uptaking cisplatin-loaded iron oxide nanoparticles 

for 24 hours. (Left) Transmission mode and (right) DAPI mode. The cell nuclei were stained with 

the fluorescent dye DAPI so they show blue fluorescence. The dark brown spots indicate the 

positions of cisplatin-loaded iron oxide nanoparticles. 
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In addition, the cancer cell-killing ability of Cis@PB_250 was superior than that of free cisplatin 

(Figure 4-1.9).The drug loaded magnetic nanoparticles can be guided to a specific position by 

external magnetic guiding. Compared with the passive accumulation by the enhanced 

permeability and retention (EPR) effect, magnetic guiding provides the advantage of a fast and 

accurate accumulation of magnetic nanoparticles at a desired location. This property can reduce 

the leakage of drug during the circulation which would otherwise lead to unnecessary hazardous 

effects on the health of the cells [34]. Fuchigami et al. used doxorubicin-loaded FePt 

nanoparticles to treat gastric cancer cells with magnetic guiding [35]. They reported that 70% of 

the cancer cells died during 15 min of guiding, whereas 0% died when no magnetic guiding was 

used. Bladder cancers affecting most of the patients belong to the category of non-muscle- 

invasive bladder cancer (NMIBC) [36]. The standard treatment for NMIBC is a transurethral 

resection followed by an intravesical therapy [37]. In these cases, the magnetic guiding of 

magnetic and drug-containing nanoparticles can greatly enhance the delivery efficacy [38,39].  

 

Figure 4-1.9. MTT assay of T-24 cancer cells treated with free cisplatin. 
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4-1.4. Conclusion 

I established a facile route to prepare nanoporous iron oxides with a high content of amorphous 

γ-Fe2O3 phase by thermal decomposition of PB nanocubes in air. The obtained oxides showed a 

high adsorption capacity toward the dye MB attributed to their large surface area and have a 

super paramagnetic behavior. The PB-derived nanoporous Fe oxides are highly biocompatible 

and consequently can be utilized as anticancer drug (i.e., cisplatin) capsules for the chemotherapy 

of Bladder cancer cells (T24). The use of PB as the starting material is a new and unique 

technology, and further use of various PB analogues with different compositions will produce 

more functional materials in the future.  
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Chapter 4-2 

4-2. Thermal Conversion of Hollow Prussian Blue 

Nanoparticles into Nanoporous Iron Oxides with 

Crystallized Hematite Phase 

4-2.1. Introduction 

Various inorganic nanoporous materials have been drawing intense research interest not only for 

their unique structural, optical, and surface properties, but also for their broad range of 

applications such as catalyst, drug delivery, and chemical storage. Among these materials, iron 

oxides are potentially useful for catalysts [1] and lithium ion batteries [2]. Iron oxides can exhibit 

several crystal structures, including wüstite (FeO), magnetite (Fe3O4), maghemite (γ-Fe2O3), 

cubic (β-Fe2O3), hematite (α-Fe2O3), and orthorhombic (ε-Fe2O3). In particular, the interest in 

hematite (α-Fe2O3) has recently increased, due to the unique optical and magnetic behavior, high 

catalytic activity, suitable band gap, and low toxicity.  

Developing new routes for preparation of nanoporous α-Fe2O3 and investigating their 

distinct properties are of considerable interest. In a recent study, α-Fe2O3 hollow spheres with 

sheet-like subunits were synthesized by a facile quasiemulsion-templated method, in which 
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glycerol was dispersed in water to form oil-in-water quasiemulsion microdroplets [3]. Porous 

α-Fe2O3 nanorods with diameters of 30-60 nm were also synthesized through thermal 

decomposition of FeC2O4·2H2O nanorods prepared by a poly (vinyl alcohol)-assisted 

precipitation process. Compared to commercial submicrometer-sized α-Fe2O3 powders, the 

porous α-Fe2O3 nanorods exhibited significantly enhanced capability as an electrode material for 

lithium-ion batteries [4]. As another example, 3D flowerlike iron oxide showed an excellent 

ability to remove heavy-metal ions and other pollutants in water treatment [5]. Thus, nanoporous 

α-Fe2O3 materials with high surface areas have exhibited very interesting properties, which are 

not attainable by bulk α-Fe2O3 without nanopores. Table 4-2.1 summarizes the structural 

parameters of various nanoporous α-Fe2O3 previously reported [6-21].  

Recently, synthesis of hollow Prussian Blue (PB) coordination polymers by chemical 

etching was demonstrated [22] and their thermal conversion to nanoporous iron oxide particles as 

well is reported [23]. PB coordination polymer, in which iron ions are bridged by cyano groups (–

Fe
(II)

–CN–Fe
(III)

–), is considered a potential precursor for nanoporous iron oxides with high 

surface areas, because the iron component can be oxidized and the organic components can be 

removed by calcination in air. This approach is simple and convenient, which is useful for further 

preparation of several iron oxides with different crystalline degrees and structures. Herein, I 

extend this concept to synthesize nanoporous iron oxides with α-Fe2O3 phase. The obtained 

samples were carefully characterized with scanning electron microscopy (SEM), wide-angle 

X-ray diffraction (XRD), nitrogen gas adsorption-desorption isotherms, transmission electron 

microscopy (TEM), and Mössbauer spectroscopy. 
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4-2.2. Experimental Details  

4-2.2.1. Preparation of Hollow PB Nanoparticles  

According to the previous papers [22-23], PVP (K30, 3.0 g) and K3[Fe(CN)6]·3H2O (132 mg) 

were added to 0.01 M HCl solution (40.0 mL) under magnetic stirring. After 30 min of stirring, a 

clear solution was obtained. The vial was then placed into an electric oven and heated at 80 
o
C for 

20 h. After aging, the precipitates were collected by centrifugation and washed several times in 

distilled water and ethanol. After drying at room temperature for 12 h, PB nanocubes of 

approximately 100 nm in particle size were obtained. For creation of a hollow cavity, PB 

nanocubes (40.0 mg) and PVP (200 mg) were added to 1.0 M HCl solution (40 mL) in a Teflon 

vessel under magnetic stirring. After 2 h, the vessel was transferred into a stainless autoclave and 

heated at 140 
o
C for 4 h in an electric oven. After aging, the precipitates were collected by 

centrifugation and washed in distilled water and ethanol several times. After drying at room 

temperature for 12 h, hollow PB nanocubes were obtained. 

 

Table 4-2.1 Summary of nanostructured α-Fe2O3 materials previously reported. 

Shape Fe source Surface area (m
2
.g

-1
) Ref. 

Hollow spheres FeSO4·7H2O 103 [3] 

Porous nanorods FeC2O4·2H2O 11.8 [4] 

3D flowerlike FeCl3·6H2O 40.0 [5] 

Porous nanorods FeCl3·6H2O --- [6] 

Spherical nanoparticles FeC2O4·2H2O --- [7] 

Mesoporous films FeCl3 --- [8] 

Flute-like porous nanorods β-FeOOH 125 [9] 

3D urchin-like superstructures FeSO4·7H2O 86.8 [10] 

Mesoporous nanorods Fe(NO3)3·9H2O 105 [11] 

Mesoporous nanorods α-FeC2O4 125 [12] 

Porous nanoparticles FeCl3 22.3 [13] 

Porous nanorods FeCl3·6H2O 82.6 [14] 

Spindle-like nanostructures Fe(NO3)3·9H2O 66.8 [14] 

Mesoporous thin films Fe(NO3)3·9H2O 190 [15] 

Mesoporous nanospheres FeCl3 18.2 [16] 
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Hollow-structured particles FeCl3·6H2O --- [17] 

Nanotube Fe(NO3)3·9H2O --- [18] 

Hollow microsphere FeCl3·7H2O --- [19] 

Hollow sphere Ferric potassium oxalate 41.1 [20] 

Mesoporous particle FeCl3 335 [21] 

4-2.2.2. Characterization.  

SEM images were taken with a Hitachi SU8000 scanning microscope at an accelerating voltage 

of 5 kV. TEM observation was performed using a JEM-2100F TEM system that was operated at 

200 kV and equipped for energy-dispersive spectrometer analysis. Wide-angle powder X-ray 

diffraction (XRD) patterns were obtained with a Rigaku RINT 2500X diffractometer using 

monochromated Cu-Kα radiation (40 kV, 40 mA) at a scanning rate of 2° min
−1

. N2 

adsorption-desorption isotherms were measured on a high precision adsorption measuring 

apparatus BELSORP-mini (BEL Japan) and quanta chrome Autosorb1 Automated Gas Sorption 

System. Prior to the measurements, the samples were degassed in vacuum. The surface areas 

were calculated by BET method using the adsorption branches of the isotherm.
 57

Fe Mössbauer 

spectra were recorded at room temperature in transmission geometry using a 
57

Co/Rh γ-ray 

source. The source velocity was calibrated using α-Fe as a reference material. TG-DTA-MS was 

measured with a Rigaku Thermo Mass Photo TG-DTA-PIMS 410/S. The detection range of the 

MS was from 1 to 250 m/z. The sample and α-Al2O3 standard were separately loaded inside 

platinum pans, and heated from room temperature to 1000 °C at 10 °C min
-1

 under He/O2 flow to 

analyze the mass spectrometry of thermally produced compounds. 

4-2.3. Results and Discussion 

For the creation of the hollow cavity, the synthesized PB particles (Figure 4-2.1a) were treated 



Cubes shape | Chapter 4 
 

 
 

143 
 

with 1.0 M HCl solution in the presence of PVP. The PVP polymer was on the external surface of 

the PB particles and thus could serve as a protecting agent during the HCl etching process [22]. 

Even after the etching, the average diameter of the PB particles was not changed (around 100 nm), 

and the corresponding particle size distribution was very narrow, as shown in Figure 4-2.1b. The 

diameter of the internal cavity was calculated to be around 80 nm. To prepare nanoporous iron 

oxides with hematite (α-Fe2O3) phase, I further calcined the hollow PB particles at 400 
o
C for 

different time durations (4, 5, 6, and 7 h). The samples were heated inside an electric furnace 

from room temperature to 400 
o
C at a heating rate of 1 °C min

-1
. After that, the powder was 

allowed to cool inside the furnace. Finally, the obtained powders were collected for further 

characterization. The entire calcination process was performed in air.  

The morphology of the calcined samples was observed by scanning electron microscopy 

(SEM), as shown in Figure 4-2.1c-f. After calcination at 400 
o
C for 5 h, the surface structure of 

hollow particles obviously changed due to the crystallization of the PB shell to iron oxide 

(Figure 4-2.1d). With further increase in the calcination time to 6 and 7 h (Figure 4-2.1e-f), the 

hollow structure completely collapsed. In the starting PB crystals, the Fe atoms were stabilized 

by cyano bridges. Upon calcination at high temperatures under air flow, the C–N bridges can be 

removed to form Fe oxides. After the calcination, no carbon content was confirmed in the final 

product. The result of TG-DTA-MS under He/O2 flow (Volume ratio: 80/20, Flow rate: 200 ml 

min
-1

) indicated several exothermic peaks at around 260-310 and 470 ºC, accompanied with the 

production of CO2 and/or N2O (m/z = 44) as well as N2 and/or CO (m/z = m/z), which is typical 

for the combustion reaction of CN-containing material. Emission of adsorbed H2O (m/z = 18) 

was also detected. Molecules with masses larger than m/z = 50 were not detected by 

TG-DTA-MS up to 1000 ºC. 
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Figure 4-2.1. SEM images of (a) PB nanoparticles before chemical etching, (b) PB nanoparticles 

after chemical etching, and samples calcined for (c) 4, (d) 5, (e) 6, and (f) 7 h. 

 

To investigate the effect of calcination time on the crystalline phases and degrees, I performed 

wide-angle XRD measurement, as shown in Figure 4-2.2. With the increase in calcination time, 

the intensities of α-Fe2O3 phase peaks gradually increased, indicating the enhancement of crystal 

growth. The crystalline sizes were calculated by using the Scherrer equation. The average sizes 

were varied from around 12.2 nm (for 4 h), 15.4 nm (for 5 h), 17.1 nm (for 6 h), to 17.1 nm (for 7 

h). Thus, the increase of calcination time promoted the crystallization of α-Fe2O3, thereby leading 

to collapse of the original hollow structure. As clearly seen in Figure 4-2.1e-f, the formation of 

large-sized nanopores was caused by the gradual crystallization of iron oxides.  

To further understand the crystalline structure, we collected 
57

Fe Mössbauer spectra 

from the calcined PB samples for 5 and 7 h, as shown in Figure 4-2.3. The spectral data could be 

well resolved into a sextet peak and a doublet peak with a peak-area ratio of 0.3:0.7, respectively. 

On the basis of the obtained Mössbauer parameters listed in Table 4-2.2, the former is assigned 

as α-Fe2O3. The latter exhibits an isomer shift characteristic of Fe
III

, which was caused by the 
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presence of impurities such as amorphous iron oxide and/or γ-Fe2O3 phases. Increasing the 

calcination time up to 7 h significantly improved the quality and volume fraction of α-Fe2O3 to 

65 % (Table 4-2.2 and Figure 4-2.3b). This is in good agreement with the XRD data below 

(Figure 4-2.2). 

 

Figure 4-2.2. Wide-angle XRD pprofiles for samples calcined for (a) 4, (b) 5, (c) 6, and (d) 7 h. 

 

The hollow structure of the starting hollow PB particles and the crystalline structure of the 

calcined iron oxide samples were examined by transmission electron microscopy (TEM), as 

shown in Figure 4-2.4. Solid PB nanocubes were transformed into hollow cubes after chemical 

etching (Figure 4-2.4a). The calcined sample for 5 h showed similar morphology to that of the 

original hollow PB particles with similar particle sizes (Figure 4-2.4b). The hollow structure was 

well retained even after the crystallization of iron oxides. Selected-area electron diffraction (ED) 

showed very intense spots assignable to α-Fe2O3, indicating the formation of a highly crystalized 

α-Fe2O3 phase. Because several α-Fe2O3 crystals were randomly oriented in different directions, 



Cubes shape | Chapter 4 
 

 
 

146 
 

several patterns were mixed with each other. From a high-resolution TEM image, clear lattice 

fringes were oriented in the same direction at the edge of the cube, which confirmed the 

formation of α-Fe2O3 crystalline phase (Figure 4-2.5a). The surface area and pore volume were 

calculated to be 163 m
2
 g

-1
 and 0.89 cm

3
 g

-1
, respectively, from the corresponding N2 

adsorption-desorption isotherm. These values were much lower than those of the calcined sample 

for 4 h (480 m
2
 g

-1
 and 1.5 cm

3
 g

-1
, respectively) [23]. 

 

Figure 4-2.3. 
57

Fe Mössbauer spectra collected at room temperature from calcined samples for 

(a) 5 and (b) 7 h. Red and blue lines represent the contributions from α-Fe2O3 and some impurity 

phases (amorphous and/or γ-Fe2O3). 
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Table 4-2.2 Mössbauer parameters of calcined samples for 5 and 7 h.  

Calcination 

time [h] 

Isomer shift 

[mm·s
-1

] 

Hyperfine field 

[kOe] 

Quadrupole splitting 

[mm·s
-1

] 

FWHM 

[mm·s
-1]

 

Peak area 

[%] 
Phase 

5 

5 

0.374 

0.335 

505. 5 

0 

-0.21
[b]

 

0.73 

0.34 

0.56 

23 

76 

α-Fe2O3 

 

7 

7 

0.372 

0.334 

505.8 

0 

-0.22
[b]

 

0.729 

0.28 

0.57 

64 

35 

α-Fe2O3 

 

 

In contrast, long calcination times of 7 h destroyed the original hollow structures (Figures 

4-2.4c). However, a continuous nanoporous structure derived from the original hollow structure 

was well developed. The surface areas and pore volumes were calculated to be 100 m
2
 g

-1
 and 

0.50 cm
3
 g

-1
 (for 6 h), and 70.0 m

2
 g

-1
 and 0.41 cm

3
 g

-1
 (for 7 h), respectively. Although longer 

calcination time decreased the surface areas of the samples upon the crystallization of α-Fe2O3, 

these values are relatively high compared to those of other nanostructured α-Fe2O3 previously 

reported (Table 4-2.1).  

 

Figure 4-2.4. TEM images and the corresponding ED patterns of (a) PB nanoparticles after 

chemical etching, and (b-c) calcined samples for (b) 5 and (c) 7 h. 
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Figure 4-2.5. High resolution TEM images and corresponding Fast Fourier Transform (FFT) 

images of calcined samples for (a) 5 and (b) 7 h. 

 

My porous iron oxides with α-Fe2O3 phase are useful as a photocatalyst. To investigate the 

photocatalytic activity, 5.0 mg of the photocatalyst (several iron oxide samples calcined for 5, 6, 

and 7 h) was mixed with 15 ml of methylene blue (MB, 0.01 mM, 15 mL), and then sonicated in 

a cool water bath for 5 min. Afterward, the suspension was magnetically stirred in dark for 4 h to 

reach the complete adsorption-desorption equilibrium, followed by the addition of hydrogen 

peroxide solution (30 wt. %, 0.2 mL), then the bottle was exposed to UV light irradiation at room 

temperature.  

The time-dependent UV/Vis absorption spectra in the absence and presence of iron 

oxides are shown in Figure 4-2.6. The remaining MB concentration was analyzed by measuring 

the peak intensity derived from MB at 664 nm. With increasing the irradiation time, the 

maximum absorption intensity gradually decreased, suggesting the decolorization and 

decomposition of MB molecules (Figure 4-2.6). In a control experimental without the 

photocatalyst, the decomposition rate under UV light was very slow. In the presence of the 

photocatalyst, the decomposition rate was significantly increased. With the increase of the 

hematite (α-Fe2O3) content (i.e., with the increase of the calcination time), the decomposition rate 

of MB molecules was increased (Figure 4-2.7). The sample calcined for 7 h exhibited the highest 
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decomposition rate compared to the others, due to high content of crystallized hematite phase 

(α-Fe2O3), which was confirmed by Mössbauer spectra (Figure 4-2.3). The suggested mechanism 

of the dye decomposition occurs on the photocatalyst surface rather than the bulk solution. Some 

electrons generated on the surface under UV light are directly trapped by H2O2 to form OH
· 

radicals. As a result, the OH
·
 radicals lead to the photocatalytic reaction [24]. 

 

Figure 4-2.6. Time-dependent UV-VIS spectra on photocatalytic decomposition of MB under UV 

light in the presence of H2O2 ((a) MB (without catalyst), (b) MB and H2O2 (without catalyst), and 

(c-e) the samples calcined for (c) 5, (d) 6, and (e) 7 h, respectively). 
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Figure 4-2.7. Time-dependent change of (A) absorbance at 664 nm and (B) MB concentration 

(Co means the initial MB concentration before UV irradiation): (a) MB (without catalyst), (b) MB 

and H2O2 (without catalyst), and samples calcined for (c) 5, (d) 6, and (e) 7 h. The error bars are 

also shown in Figure A. 

4-2.4. Conclusion  

I established a facile route to prepare nanoporous iron oxides with an α-Fe2O3 crystalline phase 

by thermal decomposition of PB coordination polymers. By using hollow PB particles as the 

starting material, I prepared well-organized nanoporous iron oxides with high surface areas and 

large pore volumes. Their crystalline phases and degrees were controlled by several calcination 

conditions. The use of PB as the starting material is a new and unique technology, and further use 

of various PB analogues with different compositions will produce more functional materials in 

the future. 
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Chapter 5 

5. Controlled Crystallization of Cyano-Bridged 

Cu-Pt Coordination Polymers with 

Two-Dimensional Morphology 

5.1. Introduction 

In recent years, coordination polymers (CPs), including metal-organic frameworks (MOFs) and 

porous coordination polymers (PCPs), have received much attention [1]. Their tunable pore 

structures and controlled compositions and shapes make them attractive materials for many 

applications such as catalysts, drug delivery, magnetism, gas storage, and ion exchange. 

Cyano-bridged coordination CPs consist of metal ions and cyanide ligands, in which the metal 

ions are bridged by cyano groups. Cyano-bridged CPs can serve as precursors for the preparation 

of various nanoporous metals oxides [2].  

So far, CPs with various morphologies have been reported using different synthetic 

conditions. The morphologies were determined to be one (1D), two (2D), or three dimensional 

(3D). A 1D morphology (e.g., tube) extends in a straight line (along the x-axis), a 2D 

morphology (e.g., sheet, flake) extends in a plane (two directions, x- and y-axes); a 3D 
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morphology (e.g., cube) extends in all three directions (x-, y-, and z-axes). Among them, a 2D 

morphology is quite interesting because it shows many properties that are not observed in the 

bulk chemistry. The 2D CPs have a highly accessible surface area that permits guest molecules to 

effectively access the micropores in the CPs. Moreover, 2D CPs have many active sites for 

catalytic and electrochemical reactions, and furthermore assembled CPs can be used as 

membrane filters.  

Several efforts have thus been made towards the successful preparation of 2D CPs [3]. 

Kitagawa and co-workers prepared a MOF-2 nanofilm by using a layer-by-layer growth method 

[3a]. Xu and co-workers [3b] proposed a delamination process from bulk crystals of a layered 

MOF, and Cheetham and co-workers [3c] reported an ultrasonication-induced exfoliation 

approach to prepare MOF nanosheets. Although some important advantages have been identified 

in previous studies, I believe that these approaches are somewhat inconvenient because of the 

need for complicated synthetic conditions and special equipment.  

My recent study demonstrated that 2D cyano-bridged CPs with a nanoflake shape can be 

synthesized under a controlled crystallization process using trisodium citrate as a chelating agent 

[4]. In this study, I have extended this concept to synthesize new 2D cyano-bridged Cu-Pt CPs 

with nanoflake shapes. Although Falvello reported the synthesis of Cu-Pt CPs [5], synthetic 

methods demonstrating shape and/or size control have not been reported. By changing the 

amount of trisodium citrate and the copper sources, I clarified that the presence of trisodium 

citrate plays an important key role in the formation of the 2D nanoflake shape. My method is 

based on a bottom-up design and this will be useful for the preparation of other types of CP 

nanoflakes/nanosheets in the future.  
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5.2. Preparation of 2D Cu-Pt Nanosheets 

The typical preparation conditions of 2D Cu-Pt nanosheets/flakes are as follows: copper(II) 

acetate and trisodium citrate (as a chelating agent) were mixed well with distilled water in a 

round-bottomed flask until the solution was clear. In another flask, potassium 

tetracyanoplatinate(II)(K2Pt(CN)4) was dissolved in distilled water until the solution was clear. 

The two flasks were mixed under static conditions for 24 h. After the reaction was terminated, the 

solid precipitates were then collected by centrifugation. Then, the precipitates were washed 

several times with distilled water and ethanol. After drying at room temperature, the solid 

powders were obtained. The amount and types of precursors are varied in this study, and the data 

are summarized in Table 5.1. To study the effect of the chelating agent on the crystallization, the 

amount of Cu and Pt sources was fixed and only the amount of trisodium citrate was varied. 

 

Table 5.1 Compositions of the starting solutions for various Cu-Pt PCs. 

Sample No Cu source  Conc. K2Pt(CN)4  Trisodium citrate  

A Cu(COOCH3)2 0.4 mM 0.4 mM 0.0 mM 

B Cu(COOCH3)2 0.4 mM 0.4 mM 0.1 mM 

C Cu(COOCH3)2 0.4 mM 0.4 mM 0.2 mM 

D Cu(COOCH3)2 0.4 mM 0.4 mM 0.3 mM 

E Cu(COOCH3)2 0.4 mM 0.4 mM 0.4 mM 

F Cu(COOCH3)2 0.4 mM 0.4 mM 0.5 mM 

G CuCl2 0.4 mM 0.4 mM 0.5 mM 

H Cu(NO3)2 0.4 mM 0.4 mM 0.5 mM 

I CuSO4 0.4 mM 0.4 mM 0.5 mM 

5.3. Apparatus 

SEM images were taken with a Hitachi SU8000 scanning microscope at an accelerating voltage 

of 5 kV. Wide-angle powder X-ray diffraction (XRD) patterns were obtained with a Rigaku 

RINT 2500X diffractometer using monochromated CuKa radiation (40 kV, 40 mA) at a scanning 
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rate of 1° min
-1

. 
1
H NMR spectra were obtained at 25 °C using an AL300 BX spectrometer 

(JEOL, Tokyo, Japan). D2O was obtained from Cambdridge Isotope Laboratories, Inc. 

K2[Pt(CN)4] hydrate was dried under vaccum overnight at 40 °C. Trisodium citrate and 

Cu(OAc)2 were used as received. Cu(OAc)2 (0.4 mm) and trisodium citrate (0.45 mm) were 

dissolved in D2O (20 mL) to form a clear solution A. In the meantime, K2[Pt(CN)4] (0.4 mm) was 

dissolved in D2O (20 mL) to form clear solution B. Solutions A and B were then mixed. The 

obtained solution was measured by 
1
H NMR spectroscopy. Before measurements were taken, the 

solution was filtered (0.25 mm mesh Teflon) to remove the light green precipitate that was 

responsible for broadening of all 
1
H NMR signals. 

5.4. Characterization of Various 2D Cu-Pt Nanosheets 

The obtained powders were characterized by using SEM (Figure 5.1). The nanoflakes gradually 

increased in size by increasing the amount of trisodium citrate. The obtained Cu-Pt CP 

nanoflakes were well dispersed in solutions (Figure 5.2a). A clear Tyndall light-scattering effect 

was observed by a side-incident light beam. A TEM image of the Cu-Pt CP nanoflakes is shown 

in Figure 5.2b. A TEM grid was immersed in the colloidal suspension for one minute, and this 

was the rinsed with water and dried under a N2 stream. The nanoflakes were routinely observed; 

the crystal structure of the obtained 2D Cu-Pt CP nanoflakes was also characterized by using 

wide-angle X-ray diffraction (XRD; Figure 5.3). In the absence of the chelating agent (trisodium 

citrate), the peaks were broad, thereby implying the incomplete crystallinity and/or the presence 

of an amorphous phase (Figure 5.3a). By increasing the amount of the chelating agent to 0.5 mm, 

the peaks became sharper and their intensities were increased, thus indicating the formation of 

large crystals (Figure 5.3f). In the absence of trisodium citrate, poorly developed nanoparticles 

were obtained. When a suitable amount of trisodium citrate was used, well-defined nanoflakes 
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were obtained. It is noteworthy that the obtained CPs have a flake-like morphology, and this 

corresponds to the inherent crystal structure. To assign the XRD patterns, the automatic indexing 

program (DICVOL) was employed [6]. The most reliable crystal system was the orthorhombic 

cell with a=13.486(9) Å, b=10.135(5) Å, and c=3.461(2) Å (Figure 5.4). The XRD results were 

consistent with the electron diffraction (ED) patterns. The lattice constants obtained by XRD 

were consistent with those calculated by the ED patterns. 

 

Figure 5.1. SEM images of various Cu-Pt CPs prepared from different reaction solutions ((a) 

Sample A, (b) Sample B, (c) Sample C, (d) Sample D, (e) Sample E, and (f) Sample F). 

 

 

Figure 5.2. (a) Photograph of colloidal suspensions containing well-dispersed 2D Cu-Pt CP 

nanoflakes. The light beam is incident from the side to demonstrate the Tyndall effect. (b) 

Low-magnified TEM images of (b-1) Sample B and (b-2) Sample C, respectively.  
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Figure 5.3. Wide-angle XRD patterns of various Cu-Pt CPs prepared from different reaction 

solutions ((a) Sample A, (b) Sample B, (c) Sample C, (d) Sample D, (e) Sample E, and (f) Sample 

F). 

 

 

Figure 5.4. Assignment of wide-angle XRD patterns by automatic indexing program (DICVOL). 
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Regarding the porous properties of the obtained samples, I measured the nitrogen gas 

adsorption-desorption isotherms for five samples (Samples A-E) with different particle sizes. As 

shown in Figure 5.5, a hysteresis loop at high relative pressures was observed. The inter-particles 

space is generated through the assembly of small-sized particles. The surface areas for Samples A, 

B, and C were 52 m
2
 g

-1
, 52 m

2
 g

-1
, and 56 m

2
 g

-1
, respectively. With further increasing the 

particle sizes, the inter-particles space gradually disappeared and the surface areas gradually 

decreased from 40 m
2
 g

-1
 (for Sample D) to 28 m

2
 g

-1
 (for Sample E), and 10 m

2
 g

-1
 (for Sample 

F). Thus, the accessibility of nitrogen gas from the outside into inside of the particle varied, and 

this depends on the particle size. In the case of large-sized particles, nitrogen molecules could not 

easily access the whole surface of the particle, and thus lower surface areas were measured. 

Trisodium citrate is a well-known chelating agent and can easily coordinate to various 

transition-metal cations [7,8]. Thus, it is predicted that the citrate ions directly interact with metal 

ions. A 
1
H-NMR spectroscopic study more clearly revealed the chelating effect of the trisodium 

citrate with Cu
2+

. As shown in Figure 5.6a and b, the 
1
H-NMR spectra of the citrate ligand with 

two doublet peaks at around 2.6 ppm disappeared in the presence of Cu(OAc)2; this is typical in 

the formation of a metal-ligand complex involving paramagnetic ions [9]. After the addition of 

the K2[Pt(CN)4] solution in the mixed solution of trisodium citrate and Cu(OAc)2, the 
1
H-NMR 

peaks (as indicated by arrows) gradually reappeared (Figure 5.6c-i) accompanied by a visible 

precipitate. This result indicates that citrate anions become free from paramagnetic Cu
2+

, while 

the Cu ions released from the Cu-citrate complex are gradually converted into Cu-Pt CPs in the 

reaction with [Pt(CN)4]
2-

. Thus, the 
1
H-NMR spectroscopy study revealed that citrate anions can 

stabilize Cu
2+

 ions in the solution. As a result, the generation speed of Cu-Pt CPs was 

significantly delayed in the presence of citrate ions, thereby leading to the controlled growth of 

single crystalline Cu-Pt CPs with fine morphology. 
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Figure 5.5. N2 gas adsorption-desorption isotherms of various Cu-Pt CPs prepared from different 

reaction solutions ((a) Sample A, (b) Sample B, (c) Sample C, (d) Sample D, and (e) Sample E). 



Flakes shape | Chapter 5 
 

 
 

162 
 

 

Figure 5.6. 
1
H-NMR spectra of sodium citrate in D2O in the absence (a) and presence (b) of 

Cu(OAc)2. Time course 
1
H-NMR spectra of sodium citrate and Cu(OAc)2 in D2O measured after 

addition of K2[Pt(CN)4]; (c) 5 min, (d) 15 min, (e) 25 min, (f) 45 min, (g) 3.5 hr, (h) 10 hr, (i) 30 

hr. 
1
H-NMR signals at 2.1 ppm and 4.8 ppm are corresponding to acetate anion and water, 

respectively. The magnified image was inserted at right side.  

 

In general, a balance between nucleation and crystal growth determines the final size of the 

particles in the products (Figure 5.7). In the present system, free Cu ions are released steadily 

from the Cu-citrate complex and are treated with [Pt(CN)4]
2-

 at the initial stage of the reaction. 

(a) Cu(OAc)2  

 Cu(OAc)2  Cu
2+

 + 2OAc
 –

                  (5.1) 

 Cu
2+

 + Citrate  Metal-ligand complex        (5.2) 

 Cu
2+

 + Pt(CN)4
2– 

2D Cu-Pt CP          (5.3) 

(b) CuCl2  

CuCl2  Cu
2+

 + 2Cl
 –
                  (5.4) 

Cu
2+

 + Citrate  Metal-ligand complex        (5.5) 

Cu
2+

 + Pt(CN)4
2– 

2D Cu-Pt CP 

          

(5.6) 

Figure 5.7. Reaction system for formation of 2D Cu-Pt PCs ((a) Cu(COOCH3)2 and (b) CuCl2).  

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

5 4 3 2

d / ppm 
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Then, the nuclei are generated and grow further by interaction of the free Cu ions with 

[Pt(CN)4]
2-

 to form the final products. Therefore, with an increase in the concentration of 

trisodium citrate, the number of nuclei formed at the early stage of the reaction is thought to be 

decreased, and these nuclei further undergo crystal growth by interacting with [Pt(CN)4]
2-

 to 

afford the final products with larger particle sizes. In contrast, at low concentration of trisodium 

citrate, more Cu species dissolved in the solution are present as free Cu ions, therefore they can 

immediately react with [Pt(CN)4]
2-

. Consequently, there are many nuclei at the early stage of the 

reaction, and they grow very fast to afford small-sized particles. Wide-angle XRD results (Figure 

5.3) also nicely confirmed that the variation in crystal sizes depends on the concentration of 

trisodium citrate used. According to TEM data, I investigated the lateral size distribution for 

Samples A, B, C, and D (Figure 5.8). The amount of trisodium citrate used is very important to 

determine the lateral sizes of CP nanoflakes. 

 

Figure 5.8. Lateral size distribution data of various Cu-Pt CPs prepared from different reaction 

solutions ((a) Sample A, (b) Sample B, (c) Sample C, and (d) Sample D). 

 

I further studied the effect of different Cu sources on the particle size of the final products. Three 

different Cu sources (CuCl2, Cu(NO3)2, and CuSO4, as shown in Table 5.1) were used instead of 
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copper(II) acetate (Cu(OOCCH3)2). SEM images of the obtained particles are shown in Figure 

5.9. For the same concentration of trisodium citrate (i.e., 0.5 mM), relative to the product 

prepared with copper(II) acetate, the sample prepared with the other Cu sources showed smaller 

particle sizes. The peak intensities in wide-angle XRD profiles significantly decreased by 

replacing copper(II) acetate with other Cu sources (Figure 5.10). In the case of CuCl2 (Sample 

G), when CuCl2 is dissolved in an aqueous solution, Cu
2+

and Cl ions are well separated (i.e., the 

electrolytic dissociation constant is almost 1; Figure 5.7). Even when some free Cu ions are 

protected by citrate anions, the amount of free Cu
2+

 ions is higher compared to the copper(II) 

acetate system. Therefore, more nuclei are formed at the early stage of the reaction, and they 

grow very fast to afford small-sized particles. A similar situation was observed in Cu(NO3)2 (for 

Sample H) and CuSO4 (for Sample I). These results significantly indicate that the type of Cu 

source also affects the particle size of the final products. 

 

Figure 5.9. SEM images of Cu-Pt CPs prepared from several reaction solutions with different Cu 

sources (Sample F, Sample G, Sample H, and Sample I). 
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Figure 5.10. Wide-angle XRD patterns of Cu-Pt CPs prepared from several reaction solutions 

with different Cu sources (Sample F, Sample G, Sample H, and Sample I). 

5.5. Conclusion 

In conclusion, I reported a bottom-up synthesis to prepare 2D Cu-Pt CP nanoflakes using 

trisodium citrate as a chelating agent, which controls the nucleation rate and the crystals growth. I 

believe that my method will be useful for the preparation of other types of CPs nanoflakes. Such 

2D-shaped CPs and their derivatives could potentially have new solid state properties. 
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Chapter 6-1 

6-1. Controlled Synthesis of Nanoporous Nickel 

Oxides with Two-Dimensional Shapes through 

Thermal Decomposition of Metal-Cyanide 

Hybrid Coordination Polymers 

6-1.1. Introduction 

Nanoporous/mesoporous silica-based materials are interesting materials that have been widely 

applied in many research fields, such as catalysis, sensing, and adsorption [1]. Significant 

progress has been made in the synthesis of nonsiliceous nanoporous metal oxides [2] ever since 

the discovery of mesoporous silica prepared through surfactant self-assembly. For example, 

surfactants (or block copolymers) can self-assemble in non-aqueous solution to form ordered 

mesophases. Several inorganic methods, using sol-gel reaction, electrochemical reaction or 

chemical reduction, can be carried out inside the ordered mesophases. After the removal of the 

templates, various mesoporous crystalline metal oxides (sometimes including metals) [3] with 

different compositions have been prepared. Shape- and size-controlled synthesis of nanoporous 

materials is very important for further improving their performance [4]. In particular, 
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two-dimensional (2D) shapes, such as nanosheets, nanoflakes, and free-standing films are 

interesting because they show many outstanding properties that are not observable in their bulk 

counterpart [5]. Two-dimensional nanoporous metal oxides can offer highly accessible surface 

area that permits guest molecules to effectively access the nanopores and reach their surfaces. 

Also, they can provide many active sites for catalytic and electrochemical reactions. Therefore, 

finding an efficient way to achieve the preparation of novel nanoporous metal oxides with 2D 

architectures is of crucial importance in materials science.  

So far, several efforts have been made towards preparing 2D nanoporous materials. Zhao 

and co-workers have reported the synthesis of γ-Al2O3 with 2D flake-like morphology by a novel 

hard-templating method [6]. Although there have been several reports on the synthesis of highly 

crystalline nanoporous transition metal oxides (e.g., Co3O4, CuO, Fe2O3, NiO, V2O5, and WO3) 

by the hard-templating method [7], there have been only a few reports on 2D nanoporous metal 

oxide materials. Various forms of 2D nanoporous NiO have been prepared by dehydration and 

recrystallization of β-Ni(OH)2 nanoplates synthesized by a hydrothermal process [8]. The 

controlled synthesis of ordered mesoporous carbon nanosheets using low concentration 

monomicelles has been reported, with the possibility of further converting the obtained material 

into mesoporous graphene nanosheets by carbonization [9]. Mou et al. have reported a 

freestanding thin sheet form of mesoporous silica material with perpendicular orientation by 

utilizing a ternary surfactant system [10a,b]. Ordered mesoporous thin carbon plates with short 

channels perpendicular to the plates have also been synthesized by the replication of mesoporous 

silica plates [10c]. Such unique structures are much desired for their possible applications in 

catalysis, masking, and separation. Although several methods for the formation of 2D 

nanoporous materials have been reported, further development is required in order to extend the 

list of potential materials to other metal oxide compositions. Thus, it is still a great challenge to 
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develop facile methods to prepare 2D nanoporous metal oxides in a more predictable way.  

CPs, including metal-organic frameworks (MOFs), have recently drawn great attention. 

Their diverse structural and physical properties, including orderly arranged nanopores, tunable 

fluorescence, electrochemical behavior, magnetic susceptibility, and biocompatibility, make them 

attractive materials for many applications [11]. Recent reports have shown that the thermal 

treatment of MOFs is a promising method for the preparation of nanostructured metal oxides (e.g., 

Fe oxide [12], ZnO [13], Co3O4 [14], CoFe2O4 [15], Al2O3 [16], and In2O3 [17]). Since MOFs 

have a large fraction of metal ions as well as organic ligands, the large fraction of metal atoms 

can be utilized as the metal source, while the organic components, which are removable by 

simple calcination, can provide abundant nanopores. So far, MOFs with various shapes and sizes 

have been obtained by purposefully changing the synthetic parameters, including the precursor 

compositions (e.g., type and concentration of metal salts and ligands, capping and reducing 

agents, and pH values of the solutions) and the conditions of reaction (e.g., synthetic temperature, 

aging temperature and time, stirring rates, and sonication). Therefore, we believe that the use of 

2D CPs has the potential to overcome the difficulties in the preparation of 2D nanoporous metal 

oxides by the aforementioned methods.  

Metal-cyanide hybrid CPs, which are traditional CPs, can serve as potential precursors 

for the preparation of various nanoporous metal oxides [18]. Metal-cyanide hybrid CPs featuring 

different metal contents have been reported, and their shapes and particle sizes are more easily 

controlled compared to general MOFs [19-21]. Here, I demonstrate that 2D nickel cyanide hybrid 

CP (abbreviated as “Ni-CP”) can be synthesized by a controlled crystallization process, and I 

further extend this concept to the preparation of various Ni-CPs with different lateral sizes. By 

thermal treatment in air, the organic parts (–C≡N–) can be removed, leaving nanoporous 

structures. The obtained nanoporous NiO electrodes with high surface area and unique 2D shapes 
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are found to be promising candidates for high-capacitance energy storage. Electrochemical 

analysis has demonstrated that my nanoporous NiO materials can serve as efficient electrodes for 

supercapacitors. My method using metal-cyanide hybrid CPs can also be used to prepare other 

types of nanoporous oxides with controlled shapes in the future. 

6-1.2. Experimental Section 

6-1.2.1. Chemicals 

Potassium tetracyanonickelate(II) hydrate (K2[Ni(CN)4]·xH2O) was purchased from Sigma- 

Aldrich. Nickel(II) chloride hexahydrate and trisodium citrate dihydrate were purchased from 

Nacalai Tesque (Japan). Polyvinylidine difluoride (PVDF 20%), and N-methylpyrrolidone 

(NMP) solvent were purchased from Wako (Japan). All chemical reagents were used without 

further purification. 

6-1.2.2. Synthesis of 2D Ni-CP Nanoflakes 

In a typical synthesis (for preparation of sample D), NiCl2·6H2O (0.474 g) and trisodium citrate 

dihydrate (0.441 g) were dissolved in 100 mL water to form a clear solution. In the meantime, 

K2[Ni(CN)4]·xH2O (0.482 g) was dissolved in 100 mL water to form another clear solution. Then, 

both solutions were mixed with each other under magnetic stirring until the mixture became clear. 

The obtained solution was aged for 30 h until the reaction was complete. Compared to our 

previous study [20], the amounts of the used chemicals were increased five times to prepare a 

large amount of NiO samples which are required for study of supercapacitors. After extensive 

washing in water and ethanol, the precipitates were dried at room temperature. On the basis of 
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elemental analysis, the chemical composition of the obtained sample was Ni[Ni(CN)4], which is 

abbreviated as “Ni-CP”. For the preparation of different types of Ni-CP nanoflakes with different 

lateral sizes (samples A, B, C, D and E), the amount of trisodium citrate dihydrate was varied, as 

shown in Table 6-1.1. 

 

Table 6-1.1 Starting solutions for various 2D Ni-CPs with different lateral sizes and their surface 

areas calculated from nitrogen gas adsorption isotherms.  

Sample 

name 

NiCl2.6H2O 

(g) 

K2[Ni(CN)4] 

(g) 

Trisodium citrate 

dihydrate (g) 

Surface area 

(m
2
 g

-1
) 

Average lateral 

size (nm) 

A 0.474 0.482 0.000 97 53 

B 0.474 0.482 0.147 79 69 

C 0.474 0.482 0.294 64 114 

D 0.474 0.482 0.441 80 158 

E 0.474 0.482 0.588 7 478 

6-1.2.3. Thermal Conversion from 2D Ni-CP Nanoflakes to 

Nanoporous NiO 

For thermal conversion to nanoporous NiO, the obtained Ni-CP nanoflakes were used as the 

precursor. The powder (around 500 mg) was placed in a melting pot. The melting pot was then 

heated inside an electric furnace from room temperature to the designated temperature with a 

heating rate of 5 °C min
-1

. After reaching the designated temperature (300, 400, and 500 °C), the 

sample was annealed for 1 h to completely remove the organic parts (as confirmed by CHN 

elemental analysis). After that, the powder was naturally cooled to room temperature inside the 

furnace. Finally, the obtained powder was collected for characterization. The entire calcination 

process was carried out in air.  

6-1.2.4. Electrochemical Measurements 

The electrochemical measurements were conducted in a three electrode electrochemical cell with 
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a Pt counter electrode and Ag/AgCl as the reference electrode in 6 M KOH solution. Graphite 

substrates coated with the various NiO samples were used as the working electrode. Cyclic 

voltammetry (CV) measurements were conducted using an electrochemical workstation (CHI 

660E CH Instruments, USA) in the scan range of 0.0 to 0.5 V. For every experiment, the typical 

area under consideration was 1×1 cm
2
. For the preparation of the working electrodes, the 

graphite substrates were first polished using a fine polisher in flowing water. Then, they were 

rinsed with deionized water, etched in 0.1 M HCl solution at room temperature for 10 min, and 

finally rinsed with deionized water in an ultrasonic bath for 30 min. The masses of the electrodes 

were measured using an ultramicrobalance (Mettler Toledo). Each electrode contained 1.0 mg 

cm
-2

 of electroactive material. The NiO samples were mixed with poly(vinylidine difluoride) 

(PVDF, 20%) in NMP solvent. The resulting slurry was homogenized by ultrasonication and 

coated onto the graphite substrates, which was followed by drying at 80 °C for 2 h in a vacuum 

oven. The specific capacitance (Csp) was calculated by using Equation (6-1.1): 

C =  
1

𝑚𝑠(V𝑓−𝑉𝑖)
∫ 𝐼(𝑉)𝑑𝑣

𝑉𝑓

𝑉𝑖
                                            (6-1.1) 

Where; C is the specific capacitance [F g
-1

], m is the mass of the active electrode material [g], s is 

the potential scan rate [mV s
-1

], Vf and Vi are the integration limits of the voltammetric curve [V], 

and I (V) denotes the response current density [A cm
-2

]. 

6-1.2.5. Characterization 

SEM images were collected with a Hitachi SU8000 scanning electron microscope at an 

accelerating voltage of 5 kV and current of 10 A. TEM observations were performed using a 

JEM-2100F TEM system that was operated at 200 kV. Wide-angle powder X-ray diffraction 

(XRD) patterns were obtained with a Rigaku RINT 2500 diffractometer using monochromated 

CuKα radiation (40 kV, 40 mA) at a scanning rate of 5° min
-1

. N2 adsorption-desorption isotherms 
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were obtained by the use of a Quantachrome Autosorb automated gas sorption system at 77 K. 

X-ray photoelectronic spectroscopy (XPS) spectra were recorded at room temperature by using a 

JPS-9010TR (JEOL) instrument with an MgKα X-ray source. All binding energies were calibrated 

by referencing to C 1s (285.0 eV). 

6-1.3. Results and Discussion 

6-1.3.1. Formation of 2D-Shaped Ni-CPs 

In a typical synthetic strategy, nickel(II) chloride (NiCl2) was dissolved in water in the presence 

of different amounts of trisodium citrate dihydrate to form various transparent solutions. The 

resulting solutions were added to K2[Ni(CN)4] solution. After aging, centrifugation, washing, and 

drying, 2D Ni-CPs were obtained with different lateral sizes (Table 6-1.1). 
1
H NMR study 

revealed the chelating effect of the trisodium citrate on Ni
2+

 ions, as shown in Figure 6-1.1. The 

1
H NMR spectrum of the citrate ligand features two doublet peaks at around 2.6 ppm that 

disappear in the presence of NiCl2, which is typical during the formation of a metal-ligand 

complex involving paramagnetic ions. After the addition of K2[Ni(CN)4]solution, the 
1
H NMR 

peak at around 2.6 ppm gradually recovers. This result indicates that the citrate anions are freed 

from the paramagnetic Ni
2+

. The free Ni
2+

 ions released from the citrate complex can gradually 

react with K2[Ni(CN)]4 to generate Ni-CPs. Moreover, I checked UV/Vis spectroscopy for 

confirming the formation of Ni-Citrate complex. From the spectra, it is evident that, after the 

addition of trisodium citrate dihydrate, the strength of the maxima absorption peak of NiCl2 

solution was significantly increased and the position was shifted. This absorbance variation was 

caused by coordination between citrate anions and Ni
2+

 ions [20]. 

The morphology of the obtained Ni-CPs was observed by scanning electron microscope 

(SEM), as shown in Figure 6-1.2. The average lateral sizes were measured from the SEM images 
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(Figure 6-1.3), and their values are summarized in Table 6-1.1. The concentration of trisodium 

citrate dihydrate (as a chelating agent) is critical for the determination of the lateral sizes in the 

final products. As shown in Figure 6-1.2, as the amount of the chelating agent increases, the 

lateral size gradually increases. It is well known that the balance between nucleation and crystal 

growth determines the particle size in the final products. In the present system, free Ni
2+

 ions are 

released steadily from the Ni-citrate complex and react with [Ni(CN)4]
2-

 at the initial stage of the 

reaction. Subsequently, the nuclei are generated and further grow by interaction between the free 

Ni ions and [Ni(CN)4]
2-

 to form the final Ni-CP products. Therefore, with increasing 

concentration of trisodium citrate, the number of nuclei formed at the early stage of the reaction 

is thought to be decreased. These few nuclei undergo crystal growth by interacting with 

[Ni(CN)4]
2-

, leading to a final product with larger particle size. In contrast, at lower 

concentrations of sodium citrate, more Ni species dissolved in the solution are present as free Ni 

ions and immediately react with [Ni(CN)4]
2-

. Consequently, there are many nuclei growing 

relatively fast at the early stage of the reaction, leading to small-sized particles.  

 

Figure 6-1.1. 
1
H-NMR spectra of trisodium citrate in D2O in the presence (a) and absence (b) of 

NiCl2. Time course 
1
H-NMR spectra of trisodium citrate and NiCl2 in D2O (containing 0.01 
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vol. % methanol as a standard) measured after addition of K2[Ni(CN)4]: (c) 10 min, (d) 30 min, 

(e) 1 h, (f) 3 h, (g) 6 h, (h) 12 h, and (i) 24 h. 

 

Figure 6-1.2. SEM images of various 2D Ni-CPs prepared from different reaction solutions: (a) 

Sample A, (b) Sample B, (c) Sample C, (d) Sample D, and (e) Sample E. 

 

 

Figure 6-1.3. Lateral size distribution data for various 2D Ni-CPs prepared from different 

reaction solutions: (a) Sample A, (b) Sample B, (c) Sample C, (d) Sample D, and (e) Sample E. 
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The crystal structure of the obtained Ni-CPs was examined by wide-angle X-ray diffraction 

(XRD) measurements (Figure 6-1.4). The various diffraction peaks can be assigned to an 

orthorhombic system and clearly match Hofmann-type Ni(H2O)2[Ni(CN)4]·xH2O with 2D 

layered structure (Figure 6-1.4) [20]. No peaks derived from impurities are detected. In the case 

of small-sized Ni-CPs (samples A and B; Figure 6-1.2a and b), the peaks are very broad, 

implying an incomplete crystallization and/or the presence of an amorphous phase. With 

increasing the concentration of trisodium citrate, the peaks become sharper and their intensities 

are drastically increased, indicating the formation of large-sized crystals. Rapid crystallization 

generally results in fine nanoparticles with irregular shapes, while a slow crystallization can 

allow the growing crystals to develop a well-defined macroscopic morphology similar to the 

inherent atomic crystal structure [19-21]. In my case, the Ni-CPs show a flake-like morphology 

corresponding to a Hofmann-type layered crystal structure.  

It is well-known that 2D CPs exhibit porosity in the interlayer spaces. To investigate the 

porosity of the obtained 2D Ni-CPs, nitrogen gas adsorption-desorption isotherm measurements 

were performed on samples with different lateral sizes (samples A-E, as listed in Table 6-1.1). 

Their surface areas are summarized in Table 6-1.1: 97 m
2
 g

-1
 (sample A), 79 m

2
 g

-1
 (sample B), 

64 m
2 

g
-1

 (sample C), and 80 m
2 

g
-1

 (sample D). After further increase of the lateral sizes beyond 

150 nm for sample D (Figure 6-1.3d), the surface area is drastically decreased to 7 m
2 

g
-1

 

(sample E). Thus, the accessibility of nitrogen gas to the particle interior varies according to the 

particle size (lateral size). In the case of large-sized particles, nitrogen gas cannot easily access 

the active sites of the particles which, as a result, exhibit a low surface area.  

Transmission electron microscope (TEM) images of the Ni CPs prepared from different 

reaction solutions (samples C and D) are shown in Figure 6-1.5. Nanoflakes with different lateral 

sizes were observed. The sample with a high content of trisodium citrate dihydrate (i.e., sample 
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D) shows larger lateral-sized nanoflakes than the one with a low content of trisodium citrate 

dihydrate (i.e., sample C). High-resolution TEM images of edges of nanoflakes show that all 

lattice fringes are oriented in the same direction without any domain boundaries, although a slight 

distortion is observed. Selected-area electron diffraction (ED) patterns which are taken from one 

nanoflake show very intense spots, demonstrating their single-crystalline nature. 

 

Figure 6-1.4. Wide-angle XRD patterns of various 2D Ni-CPs prepared from different reaction 

solutions: a) sample C, b) sample D, and c) sample E. The peak assignment of sample E is also 

shown below. 

 



Flakes shape | Chapter 6 
 

 
 

179 
 

 

Figure 6-1.5. TEM and high resolution TEM images of 2D Ni-CPs nanoflakes prepared from 

different reaction solutions: (a, b) Sample C and (c, d) Sample D. Insets are corresponding ED 

patterns taken from one flake. 

6-1.3.2. Conversion from 2D Ni-CPs to Nanoporous NiO 

The cyano-groups between metals can be removed by thermal treatment in air. The metals are 

uniformly separated by cyano-groups in the crystal structure, so it is expected that metal oxides 

can be obtained. My Ni-CP nanoflakes were heated in air at three different temperatures (300, 

400, and 500 °C). Various nanoporous NiO samples were obtained. As shown in Table 6-1.2, the 

obtained heat-treated samples are abbreviated as“X_Y” where “X” refers to the original sample 

names (A, B, C, D, and E) and “Y” refers to the applied temperature. 

Considering the TGA data (Figures 6-1.6), I can calculate the weight loss. It is 

well-known that a multiple-step transformation often happens during heating of Ni-CPs flakes. In 

the first stage, water molecules are removed (weight loss of ~32.44%) from room temperature up 

to ~150 °C. The second weight loss of ~22.16% can be assigned to the CN-groups starting to be 

released at ~300 °C. During this stage, the nickel is oxidized at the same time. After that, the 
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recrystallization of NiO is further occurred without any weight loss.  

 

Therefore, in the second step, it is revealed that both the organic removal and the oxidation 

reaction are occurred. 

 

Figures 6-1.6. TG curves of Ni-CPs flakes in air at a heating rate of 5 °C min
-1

 from room 

temperature up to 800 °C. 

 

Table 6-1.2 The surface areas of heat-treated samples.  

Sample name 
Applied temperature (°C) 

300 400 500 

A 140 66 24 

B 144 64 17 

C 107 38 14 

D 79 27 9 

E 60 13 8 

Note: Heat-treated samples are abbreviated as ‘X_Y’ where ‘X’ means the original sample names 

(A, B, C, D, and E) and ‘Y’ means the applied temperature, respectively. 
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The surface morphology of these oxides was examined by SEM, as shown in Figures 6-1.7, 

6-1.8, and 6-1.9. Samples D and E heated at 300 °C (D_300, E_300) almost entirely retained the 

shapes of the original 2D flakes (Figure 6-1.7 d and e, respectively). During calcination at higher 

temperatures, however, large structural changes occur due to the fusion of several pores/voids 

following further crystallization in the framework. The samples heated at 400 and 500 °C are 

highly crystallized, and the original 2D Ni-CP morphology has been totally destroyed (Figures 

6-1.8 and 6-1.9), as discussed in detail later. 

Figure 6-1.10 shows wide-angle XRD patterns for typical samples. In the case of sample 

C, the crystallized NiO phase is predominant, but unoxidized Ni is also formed as a secondary 

phase (i.e., small peaks corresponding to Ni fcc phase are also observed, as marked by the 

squares). The generation of unoxidized Ni phase may be due to the fast thermal decomposition of 

Ni-CPs at high temperature. During this stage, the Ni species inside the nanoflakes are not 

oxidized in air, most likely due to a fast cleavage of the CN bond [20].  

 

Figure 6-1.7. SEM images of NiO samples prepared by heating various 2D Ni-CPs at 300 °C: (a) 

A_300, (b) B_300, (c) C_300, (d) D_300, and (e) E_300. 
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Figure 6-1.8. SEM images of NiO samples prepared by heating various 2D Ni-CPs at 400 °C: (a) 

A_400, (b) B_400, (c) C_400, (d) D_400, and (e) E_400. 

 

 

Figure 6-1.9. SEM images of NiO samples prepared by heating various 2D Ni-CPs at 500 °C: (a) 

A_500, (b) B_500, (c) C_500, (d) D_500, and (e) E_500. 

 

Another possibility is that the formation of Ni phase is caused by the presence of citrate ions 

adsorbed onto the surface of the 2D Ni-CP nanoflakes. Even though the as-prepared Ni-CPs were 

carefully washed with solvents, as described in the Experimental Section, negatively charged 
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citrate ions are thought to interact with the positively charged Ni
2+

 ions that are located on the 

surfaces of the Ni-CPs. These remaining citrate ions can act as a reducing agent for the NiO 

phase that is formed during the heat treatment. As shown in Figure 6-1.10a-c, by increasing the 

applied temperature, the amount of unoxidized Ni phase is gradually decreased, because oxygen 

molecules diffuse more easily through the sample. The degree of crystallinity is also increased, so 

that the average crystallite size calculated from Scherrer’s equation is increased from 5.63 nm 

(for C_300) to 12.7 nm (for C_400) and 16.9 nm (for C_500). It is interesting to point out that the 

heat-treated samples with larger lateral sizes (e.g., sample D) show only NiO phase without any 

formation of unoxidized Ni phase (Figure 6-1.10d). By increasing the lateral size, the total 

amount of adsorbed citrate ions on the external flake surface is decreased to the point where it 

cannot supply the formation of reduced Ni phase anymore. 

 

Figure 6-1.10. Wide-angle XRD patterns of various NiO samples: (a) NiO prepared by heating 

Sample C at 300 °C (C_300), (b) NiO prepared by heating Sample C at 400 °C (C_400), (c) NiO 

prepared by heating Sample C at 500 °C (C_500), and (d) NiO prepared by heating Sample D at 

300 °C (D_300). 
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After thermal treatment at 300 °C, samples C and D (C_300, D_300) were characterized by TEM 

imaging (Figure 6-1.11). Both samples are well crystallized (Figure 6-1.11b and e) and the 

observed lattice fringes can be assigned to NiO phase (Figure 6-1.12). From the TEM, it is 

confirmed that sample D almost preserves the flake-like morphology of the precursor (Figure 

6-1.11d). Only the edges of the flakes seem to have collapsed due to the crystallization, but the 

original flake-like morphology is well retained at the centers. Meanwhile, in the case of sample C, 

a large decrease in the lateral size is observed (Figure 6-1.11a). High angle annular dark field 

scanning transmission electron microscope (HAADF-STEM) images and the corresponding 

elemental mapping data can confirm the nanostructures and determine the distribution of 

elements (Figure 6-1.11c and f). The HAADF-STEM images show different contrast over the 

top surface, and this indicates the conversion of Ni-CP nanoflakes into the corresponding 

nanoporous oxides after heat treatment (Figure 6-1.13). From the elemental mapping, it is 

confirmed that both nickel and oxygen are uniformly distributed over the whole area. 

 

Figure 6-1.11. (a, d) TEM images, (b, e) high-resolution TEM images, (c1, f1) HAADF-STEM 

images, and (c2, c3, f2, f3) the corresponding elemental mapping (nickel and oxygen) of two NiO 

samples ((a-c) NiO prepared by heating Sample C at 300 °C (C_300) and (d-f) NiO prepared by 

heating Sample D at 300 °C (D_300), respectively).  
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Figure 6-1.12. High-resolution TEM image of NiO sample prepared by heating Sample C at 

300 °C (C_300). 

 

Figure 6-1.13. HAADF-STEM images of two NiO samples ((a) NiO prepared by heating Sample 

C at 300 °C (C_300) and (b) NiO prepared by heating Sample D at 300 °C (D_300), 

respectively). 

 

I calculated the average crystalline sizes by Scherer equation (1) using the peaks of XRD (111, 

200, and 220) (Figure 6-1.14) in both cases of NiO flakes (D_300) and particles (A_300) and 

values are collected in Table 6-1.3.  

cos

K
D



 
                                                     (6-1.2) 

Where, D is the average crystalline size, K (0.9) is the shape factor, λ (0.15405 nm) is the 

wavelength of incident X-ray, β is the full width at half-maximum (FWHM), and θ is the peak 
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position. The estimated crystalline sizes are in a good agreement with the electron diffraction 

(ED) patterns (Figure 6-1.14) which reveal the polycrystalline nature of both the flakes and 

particles and Scherer equation is believed to be a suitable choice for these calculations. The large 

NiO particles are formed by the aggregation of small crystallites randomly oriented. Moreover, 

the crystallites in the NiO flakes are larger than those of the NiO particles, indicating a higher 

crystallinity.  

 

Figure 6-1.14. Wide-angle XRD and ED patterns of NiO flakes and particles. 

 

Table 6-1.3 The average crystalline sizes (D nm) of NiO flakes (D_300) and particles (A_300) 

calculated using the Scherer equation. 

Sample name d β (rad.) 2θ° β.cosθ D (nm) 

NiO flakes 111 0.0147 37.16 0.0140 9.90 

NiO particles 111 0.0254 37.16 0.0240 5.77 

NiO flakes 200 0.0172 43.17 0.0159 8.72 

NiO particles 200 0.0412 43.17 0.0383 3.62 

NiO flakes 220 0.0170 62.73 0.0145 9.56 

NiO particles 220 0.0352 62.73 0.0299 4.63 

 

In order to investigate the chemical and electronic states, sample D heat-treated at 300 °C 

(D_300) was characterized by X-ray photoelectron spectroscopy (XPS; Figure 6-1.15). The Ni 

2p3/2 peak can be observed at a binding energy of 855.4 eV. I also confirm a satellite peak greater 
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than the main peak by approximately 5 eV at 860.6 eV. The shoulder peak for Ni 2p1/2 is located 

at 872.8 eV. It has been reported that Ni
2+

 gives a characteristic Ni 2p3/2 peak with a subpeak for 

Ni 2p1/2 [22]. No peak corresponding to unoxidized Ni
0
 could be observed. This is strong 

evidence for the presence of the oxidized Ni state. Thus, it is shown that the Ni-CP nanoflakes are 

completely converted into pure NiO phase after heat treatment at 300 °C, which is in good 

agreement with the wide-angle XRD data (Figure 6-1.10). The O 1s region shows a single strong 

peak at 529.2 eV and an additional O 1s peak at 531.1 eV associated with the oxygen from the 

oxide [23]. This evidence also supports the formation of NiO phase after the thermal 

decomposition of 2D Ni-CP nanoflakes.  

The porosity of the heat-treated samples was examined by nitrogen gas adsorption- 

desorption isotherms. The surface areas are summarized in Table 6-1.2. The surface area of the 

nanoporous NiO samples is higher than the one from the original Ni-CP nanoflakes before heat 

treatment. The high surface area taking place after heating at 300 °C reduces seriously when the 

temperature is increased further (up to 500 °C) due to the fusion of the nanopores during the 

crystallization in the framework [24], as discussed above. 

 

Figure 6-1.15. (a) Ni 2p and (b) O 1s XPS spectra of NiO sample prepared by heating Sample D 

at 300 °C (D_300).  
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6-1.3.3. Supercapacitor Application Using Nanoporous NiO  

The fast growing interest in portable electronic devices and electric vehicles has stimulated 

extensive research in high performance energy storage devices, such as supercapacitors [25]. 

Cyclic voltammetry (CV) measurements were performed in the potential range of 0.0-0.5 V for 

samples A-E which were heat treated at 300 °C (i.e., A_300, B_300, C_300, D_300, and E_300). 

Figure 6-1.16a shows the CV shapes at a scan rate of 5 mV s
-1

.  

The oxidation and reduction peak positions vary, however, depending on the lateral sizes. 

The specific capacitance values calculated from the CV curves are 186 (for A_300), 225 (for 

B_300), 447 (for C_300), 638 (for D_300), and 4.53 (for E_300). The specific capacitances with 

various scan rates are summarized in Table 6-1.4.  

 

Table 6-1.4 Specific capacitance values for different NiO samples heated at 300 °C. Heat-treated 

samples are abbreviated as ‘X_Y’ where ‘X’ means the original sample names (A, B, C, D, and 

E) and ‘Y’ means the applied temperature, respectively. 

 

 

 

 

 

 

It is clear that D_300 shows the highest specific capacitance compared to the other samples. This 

can be explained as follows. As discussed in the wide-angle XRD data, samples D and E with 

larger lateral sizes contain a pure NiO phase after heat treatment, whereas the other samples with 

smaller lateral sizes contain impurities such as Ni metal, which are not useful to redox transition 

in supercapacitor application. Especially for sample D heat-treated at 300 °C (D_300), the lateral 

Sample name Specific capacitance (F∙g
-1

) 

5 mV 20 mV 40 mV 60 mV Retention 

A_300 186 132 98 84 45.1 % 

B_300 225 136 95 70 31.1 % 

C_300 447 289 231 196 43.9 % 

D_300 638 459 360 295 46.0 % 

E_300 4.53 < 1.00 < 1.00 < 1.00 Undetectable 
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size distribution of NiO flakes is found to be uniform. The random aggregation of the flakes 

(Figure 6-1.7d) prevents them from stacking together, thus leading to a relatively high surface 

area of 79 m
2
 g

-1
. Such an ideal structure gives the electrolyte easy access to the electrode surface, 

which ultimately results in a high capacitance value. The CVs at different scan rates for sample D 

heat-treated at 300 °C (D_300) are shown in Figure 6-1.16b. The specific capacitance decreases 

when the scan rate is increased (Figure 6-1.16c). Higher scan rates result in shorter redox times, 

leading to incomplete redox transitions at the“inner” active sites. The best specific capacitance 

value obtained in the present work is significantly higher than the ones previously reported 

(Table 6-1.5) [26]. This result highlights the importance of optimizing both the 2D shape and the 

crystallinity of the structure in order to improve the energy-storage performance. For more 

convenience, I also compared the specific capacitance of my NiO flakes with the reported 2D 

NiO nanosheets/nanoflakes at the same scan rate and electrolyte (Table 6-1.6). The best specific 

capacitance value obtained in the present work is significantly higher than that in previous 

reports.  

 

Figure 6-1.16. (a) Cyclic voltammograms (CVs) of NiO samples prepared by heating various 2D 
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Ni-CPs at 300 °C (A_300, B_300, C_300, D_300, and E_300, respectively). The scan rate is 5 

mV. (b) CVs of NiO sample prepared by heating Sample D at 300 °C (D_300) at different scan 

rates. (c) Specific capacitance at different scan rates of D_300. 

 

Table 6-1.5 Comparison of capacitance performance of NiO-based supercapacitors. 

No. Morphology 
Capacitance 

(F·g
-1

) 

Scan rate 

(mV·s
-1

) 

Potential 

window (V) 
Electrolyte Ref 

1 hollow spheres 346  - 0.0- 0.6  2M KOH [26a] 

2 nanosheets 470  5  0.0- 0.45 6 M KOH [26b] 

3 flower shape 585  - 0.0- 0.45 2 M KOH [26c] 

4 honeycomb 167  20  -0.8- 0.4 2 M KOH [26d] 

5 flower shape 480  - -0.05- 0.4  2 M KOH [26e] 

6 nanocolumns 390  - -0.3- 0.7 1 M KOH [8] 

7 nanoflakes 638  5  0.0- 0.5  2M KOH This study 

 

Table 6-1.6 Comparison of capacitance performance of 2D NiO-based supercapacitors. 

Morphology Scan rate Capacitance Electrolyte Ref 

NiO flakes 5 mV·s
-1

 411 F·g
-1

 2 M KOH [27] 

NiO nanoflakes 5 mV·s
-1

 263 F·g
-1

 2 M KOH [28] 

2D NiO nanosheets 5 mV·s
-1

 527 F·g
-1

 2 M KOH [29] 

NiO nanoflakes 5 mV·s
-1

 402 F·g
-1

 2 M KOH [30] 

NiO nanosheets 5 mV·s
-1

 470 F·g
-1

 2 M KOH [31] 

Mesoporous NiO nanosheets 

NiO nanosheet hollow sphere 

5 mV·s
-1

 

5 mV·s
-1

 

168 F·g
-1

 

556 F·g-1 

2 M KOH 

2 M KOH 

[32] 

[33] 

NiO Nanoflakes 5 mV·s
-1

 638 F·g
-1

 2M KOH This study 

6-1.4. Conclusion 

I have demonstrated the bottom-up synthesis of various types of 2D Ni-CP nanoflakes by using 

trisodium citrate as a chelating agent to control the nucleation rate and the crystal growth. The 

nanoflake sizes were gradually increased by increasing the concentration of trisodium citrate. 

These Ni-CP nanoflakes were thermally converted into the corresponding nanoporous NiO with 

high surface area. It was found that the obtained nanoporous NiO materials could serve as an 

efficient electrode for supercapacitors. I strongly believe that my method will be useful for the 

preparation of other types of CP nanoflakes which can serve as potential precursors for the 
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preparation of various nanoporous metal oxides. Such 2D CPs and their derivatives will open 

new opportunities in the future. 
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Chapter 6-2 

6-2. Synthesis of Nanoporous Ni-Co Mixed Oxides 

by Thermal Decomposition of Metal-Cyanide 

Coordination Polymers 

6-2.1. Introduction 

Nanoporous/mesoporous metal oxides are interesting materials which have been widely applied 

in catalysis, sensing, and adsorption. Significant progress has been made in the synthesis of 

nanoporous metal oxides [1]. For example, various structure-directing agents have been utilized 

in order to obtain self-assembled nanostructured/mesostructured metal oxides by suitably 

adjusting the reaction conditions [2]. Current preparation methods are mainly based on 

wet-chemistry [3a-c], although hard-templating techniques are also available to prepare 

nanoporous materials [3d-f]. In the case of hard-templating method, large amounts of hazardous 

chemicals, such as corrosive HF solvent, are required to remove the templates and to successfully 

prepare nanostructured materials. Shape control in nanoporous metal oxides is also an effective 

way to further improve their performance. For example, small-sized particles or thin films with 

nanoporous structures show accelerated adsorption kinetics of guest molecules and controlled 
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release properties, which cannot be attained by particles with irregular shape [4]. The 

aforementioned traditional approaches [2,3] are not versatile engineering methods suitable for the 

control of morphology. Therefore, finding an efficient way to prepare nanoporous metal oxides 

with good shape control is of fundamental importance.  

Thermal treatment of coordination polymers (CPs) including metal-organic frameworks 

(MOFs) has been proved as a promising strategy for preparing nanoporous metal oxides [5]. CPs 

have a large fraction of metal ions as well as organic ligands. The considerable amount of metal 

atoms can be utilized as a metal source, while the organic components can provide voids after 

being removed by calcination. Under optimized conditions, the original shapes of CPs can be 

retained in the products. Therefore, this method has the potential to overcome the difficulties met 

in typical shape-controlled syntheses of nanoporous metal oxides using soft- or hard-templating 

methods.  

Herein, I prepared nanoporous Ni-Co mixed oxides by thermal treatment of 

monodispersed metal-cyanide CPs. By controlling the composition and the shape, our material 

could reach an efficient electrocatalytic activity for oxygen evolution reaction (OER). It is 

generally known that single oxides of solely Co or Ni show lower activity as electrodes, while 

mixing these oxides results in a more promising performance [6]. Our nanoporous Ni-Co mixed 

oxide displays good activity for OER, showing the lowest impedance and more negative onset 

potential on the electrode/electrolyte interface. This high efficiency is probably due to the 

nanoporous structure and plate-like morphology, which contribute to the diffusion of oxygen, 

electrolyte, and intermediate species throughout the whole surface of the material. 
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6-2.2. Experimental Section 

6-2.2.1. Materials Synthesis 

Synthesis of CoCo nanocubes: In atypical procedure, cobalt chloride (77.9 mg) and trisodium 

citrate dihydrate (397.1 mg) were dissolved in 20 mL water to form a clear solution (A). 

Meanwhile, K3[Co(CN)6] (130 mg) was dissolved in 20 mL water to form a second clear solution 

(B). Then, solution A and solution B were mixed together under magnetic stirring. The obtained 

solution was aged for 24 h, followed by the formation of a precipitate which was collected by 

centrifugation. After washing with water and ethanol extensively, the precipitate was dried at 

room temperature. The crystal structure is shown in Figure 6-2.1a.  

Synthesis of NiCo nanocubes: In atypical procedure, nickel chloride hexahydrate (59.6 mg) and 

trisodium citrate dihydrate (100 mg) were dissolved in 20 mL water to form a clear solution (A). 

Meanwhile, K3[Co(CN)6] (130 mg) was dissolved in 20 mL water to form a second clear solution 

(B). Then, solution A and solution B were mixed together under magnetic stirring. The obtained 

solution was aged for 24 h, followed by the formation of a precipitate which was collected by 

centrifugation. After washing with water and ethanol extensively, the precipitate was dried at 

room temperature. The crystal structure is shown in Figure 6-2.1b.  

Synthesis of CoNi nanoflakes: In atypical procedure, cobalt chloride (59.6 mg) and trisodium 

citrate dihydrate (100 mg) were dissolved in 20 mL water to form a clear solution (A). 

Meanwhile, K2[Ni(CN)4] (130 mg) was dissolved in 20 mL water to form a second clear solution 

(B). Then, solution A and solution B were mixed together under magnetic stirring. The obtained 

solution was aged for 24 h, followed by the formation of a precipitate which was collected by 

centrifugation. After washing with water and ethanol extensively, the precipitate was dried at 

room temperature. The crystal structure is shown in Figure 6-2.1c. 
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Synthesis of NiNi nanoflakes: In atypical procedure, nickel chloride hexahydrate (59.6 mg) and 

trisodium citrate dihydrate (100 mg) were dissolved in 20 mL water to form a clear solution (A). 

Meanwhile, K2[Ni(CN)4] (130 mg) was dissolved in 20 mL water to form a second clear solution 

(B). Then, solution A and solution B were mixed together under magnetic stirring. The obtained 

solution was aged for 24 h, followed by the formation of a precipitate which was collected by 

centrifugation. After washing with water and ethanol extensively, the precipitate was dried at 

room temperature. The crystal structure is shown in Figure 6-2.1d. 

Conversion to nanoporous metals oxides: The as-prepared powders were used as precursor for 

nanoporous oxide materials. The powders (100.0 mg) were placed in a melting pot which was 

then heated from room temperature to the desired temperature using an electronic furnace at a 

rate of 1 °C min
-1

. After reaching the desired temperature (300 °C), the samples were annealed 

for 4h to ensure complete thermal decomposition. After that, the powders were cooled inside the 

furnace at a rate of 1 °C min
-1

. Finally, the obtained powder was collected for characterization. 

All calcination processes were performed in air. 

 
Figure 6-2.1. Crystal structures of (a) CoCo, (b) NiCo, (c) CoNi, and (d) NiNi. The water 

molecules are omitted here. 
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6-2.2.2. Characterization 

SEM images were taken with a Hitachi SU8000 scanning microscope at an accelerating voltage 

of 5 kV. The TEM observation was performed using a JEM-2100F TEM system operated at 200 

kV and equipped for energy-dispersive spectrometer analysis. Wide angle powder X-ray 

diffraction (XRD) patterns were obtained with a Rigaku RINT 2500X diffractometer using 

monochromated CuKα radiation (40 kV, 40mA) at a scanning rate of 0.5 °C min
-1

. Nitrogen 

adsorption-desorption data were obtained by using a Quantachrome Autosorb Automated Gas 

Sorption System at 77 K. Linear sweep voltammetry (LSV), electrochemical impedance 

spectroscopy (EIS), potentiodynamic polarization curves (Tafel plots) and chronoamperometry 

for oxygen evolution reaction (OER) were measured on a CHI 660E electrochemical workstation 

by using a conventional three-electrode cell. Platinum was used as the counter electrode and a 

saturated Ag/AgCl electrode was used as reference electrode. The glassy carbon electrode coated 

with the sample was used as the working electrode. 

6-2.3. Results and Discussion 

Firstly, I prepared four types of CPs (Co
II

3[Co
III

(CN)6]2·xH2O, Ni
II

3[Co
III

(CN)6]2·xH2O, 

Co
II
[Ni

II
(CN)4]·xH2O, and Ni

II
[Ni

II
(CN)4]·xH2O) with different shapes and within which cyano- 

groups are located at the bridges between the metals (see the Experimental Section). These four 

CPs are abbreviated as CoCo, NiCo, CoNi, and NiNi, respectively. By thermal treatments in air, 

the organic bridges left nanopores/voids between the metals centers. Finally, the corresponding 

nanoporous metal oxides were obtained with a faithful reproduction of the parent morphology. 

The final products are abbreviated as cal-CoCo, cal-NiCo, cal-CoNi, and cal-NiNi.  

Figure 6-2.2a-1 and b-1 show SEM images of the starting metal-cyanide CPs (CoCo 
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and NiCo, respectively) with cubic shapes. The size distribution of the particles is relatively 

uniform. The wide-angle powder XRD patterns indicate that these two samples have a similar 

crystal structures. All the peaks can be assigned to a face-centered cubic (fcc) structure (Figure 

6-2.3), but the unit cell parameters are slightly different in each case. This is due to the small 

difference in the metal compositions between the two samples [7]. After calcination, a hollow 

space is formed at the center of the nanocubes, leading to the transformation into nanocages, as 

shown in the SEM images (Figure 6-2.2a-2 and b-2). 

 

 

 

 

 

 

 

 

Figure 6-2.2. SEM images of (a-1) CoCo,(b-1) NiCo, (a-2) cal-CoCo,and (b-2) calNiCo and 

TEM images of (c-1) NiCo and (c-2) cal-NiCo. 

 

 

Figure 6-2.3.a. (Black) Experimental XRD pattern of NiCo, (Red) computed XRD pattern, and 

(Blue) difference between the experimental and the computed XRD patterns. 



Flakes shape | Chapter 6 
 

 
 

201 
 

 

Figure 6-2.3.b. (Black) Experimental XRD pattern of CoCo, (Red) computed XRD pattern, and 

(Blue) difference between the experimental and the computed XRD patterns. 

 

Nanocages from both compositions show a similar size distribution when compared to the 

original nanocubes. The crystal structure of the calcined materials was confirmed by wide-angle 

XRD measurement (Figure 6-2.4). The sample obtained from CoCo (i.e., cal-CoCo) mostly 

contains a Co3O4 phase with a cubic spinel structure (Figure 6-2.4), while the sample obtained 

from NiCo (i.e., cal-NiCo) has a mixture of NiCo oxide and Ni metal with an fcc structure 

(Figure 6-2.4). It is well known that Ni is less active than Co in air and thus more difficult to 

oxidize.  

The morphology of NiCo and cal-NiCo with cubic shapes was observed by TEM 

(Figure 6-2.2c-1 and c-2, respectively). From the TEM image of cal-NiCo (Figure 6-2.2c-2) one 

can observe a clear difference of contrast located between the center and edges. The density at the 

edges of the nanocubes is much higher than at the center, indicating the formation of nanocages. 

The surface area was determined by N2 gas adsorption-desorption isotherms at 77 K. The surface 

areas for cal-CoCo and cal-NiCo were calculated to be 40 m
2
 g

-
1 and 62 m

2
 g

-1
, respectively. 
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Figure 6-2.4. Wide-angle XRD patterns of cal-CoCo, cal-NiCo, cal-CoNi, and cal-NiNi, 

respectively. The peaks marked by # are assigned to Co3O4 phase.  

 

Figure 6-2.5a-1 and b-1 show the SEM images of the starting CoNi and NiNi. Unlike CoCo and 

NiCo, well-defined flake morphology, originating from a Hoffman-type crystal structure [8], can 

be observed. The diffraction peaks of these two materials can be assigned to an orthorhombic 

crystal structure with a Hofmann-type two-dimensional (2D) layered structure. Even after 

calcination, the initial flake morphology of cal-CoNi and cal-NiNi is well preserved with the 

additional formation of a nanoporous structure (Figure 6-2.5a-2 and b-2). According to the 

wide-angle XRD results, both calcined samples contain non-oxidized Ni metal, although 
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cal-CoNi has less impurity (Ni) than cal-NiNi Figure 6-2.4. The surface area of cal-NiNi is 

around 120 m
2 

g
-1

 which is twice higher than that of cal-CoNi (60 m
2 

g
-1

).  

 

Figure 6-2.5. SEM images of (a-1) CoNi, (b-1) NiNi, (a-2) cal-CoNi, (b-2) cal-NiNi and TEM 

images of (c-1) CoNi and (c-2) cal-CoNi. 

 

On the basis of these results, we conclude that nanocubes can be transformed into nanocages after 

calcination (Figure 6-2.2), while nanoflakes retain their morphology (Figure 6-2.5). The thermal 

transformation of CPs takes place in two steps. Firstly, the thermal decomposition of CP 

frameworks induces the removal of the organic compounds. Then, the metal ions diffuse and 

oxidize in order to form the corresponding metal oxides. CoCo and NiCo nanocubes are 

converted into the corresponding metal oxide nanocages by thermal treatment in air. This 

phenomenon can be explained by the Kirkendall effect, which is based on a non-equilibrium 

inter-diffusion process [9]. During the first stage of the thermal oxidation, the oxidized shells are 

immediately formed, due to the difficulty for oxygen to diffuse towards the inner parts. Therefore, 

free metal ions tend to move towards the shell region after the decomposition of the organic units 

in order to react with oxygen, leading to formation of hollow interiors. By contrast, for 

nanoflakes, their thinness permits oxygen to diffuse quickly and homogeneously throughout the 



Flakes shape | Chapter 6 
 

 
 

204 
 

plates. In this case, a diffusion equilibrium is reached and, consequently, no hollow structure is 

formed inside the plates.  

My NiCo and CoNi samples before and after calcination were further examined by 

high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and 

elemental mapping analysis (Figure 6-2.6). In the case of the starting NiCo and CoNi materials, I 

clearly observed the homogeneous distribution of C, Co, Ni, and N atoms over the entire area 

(Figure 6-2.6a-1 and b-1). Even after the conversion into nanoporous mixed oxides, both Ni and 

Co were uniformly dispersed without any phase separation (Figure 6-2.6a-2 and b-2). The Ni/Co 

atomic ratio obtained by inductive coupled plasma (ICP) analysis for NiCo and CoNi was 3:2 and 

1:1, respectively [Note: The total compositions of the products (i.e., without any consideration of 

phase separations) were obtained by ICP analysis. Therefore, the Ni/Co atomic ratios should be 

considered as the contribution of Ni and Co in all the phases of the final products after 

calcination]. These values reflect faithfully the stoichiometry of Ni3[Co(CN)6]2·xH2O and 

Co[Ni(CN)4]·xH2O. Thus, after thermal treatment, the samples were converted into their 

corresponding metals oxides (cal-NiCo and cal-CoNi, respectively) and their Ni/Co atomic ratios 

remained identical. From the XRD pattern of cal-NiCo (Figure 6-2.4.), no peaks derived from 

cobalt oxide (Co3O4) can be observed, and the fcc structure of the Ni oxide based phase is 

predominately formed, although a low content of Ni metal coexists. Thus, it is found that the Co 

dopant can be substituted in the inner lattice for Ni atoms without affecting the original fcc 

crystal structure. After increasing the Co content up to 50% (e.g., cal-CoNi), however, cobalt 

oxide (Co3O4) with a spinel structure is formed as a secondary phase (Figure 6-2.4).  

 



Flakes shape | Chapter 6 
 

 
 

205 
 

 
Figure 6-2.6. HAADF-STEM and elemental mapping images of (a-1) NiCo, (a-2) cal-NiCo, 

(b-1) CoNi, (b-2) cal-CoNisamples. 

 

I then investigated the electrochemical performance of the obtain nanoporous metal oxides for 

oxygen evolution reaction (OER) (Figure 6-2.7). The catalytic OER performance for all the 

samples (cal-CoCo, cal-NiCo, ca-NiNi, and cal-CoNi ) was studied using electrochemical 

impedance spectra (EIS) in an O2-saturated 0.1 M KOH solution at a potential of 0.65 V over the 

frequency range of 0.01 Hz–100 kHz [10]. The Nyquist complex-plane impedance spectra of the 

catalysts are shown in Figure 6-2.8a. Generally, the arc in the high frequency range indicates the 

presence of an Ohmic process and of a charge-transfer resistance at the electrode/electrolyte 

interface. Among all the catalysts, cal-CoNi displays the smallest arc diameter, implying a lower 

impedance at the electrode/electrolyte interface, reflecting a better diffusion of oxygen, 

electrolyte, and intermediate species. The potentiodynamic polarization measurements (Tafel 

plots) were performed in a polarizing potential ranging from -2.0 V to 0.0 V vs. Ag/AgCl, at a 

scan rate of 10.0 mV s
-1

 in 0.1 M KOH solution. The resulting currents are plotted on a 

logarithmic scale. Figure 6-2.8b shows a greater shift of the overpotential to lower values for 
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cal-CoNi than for the other samples (cal-CoCo, cal-NiCo, and cal-NiNi). Thus, it is revealed that 

the mixed oxide is fairly efficient in catalyzing oxygen evolution reaction. 

 

Figure 6-2.7. Photographs of (a) electrochemical cell, (b) working electrode during 

measurements at 0.65 V vs. Ag/AgCl (Some bubbles on the working electrode indicate the 

formation (evolution) of O2 gas). 

 

The catalytic performance of the oxygen evolution for all the catalysts was examined by linear 

scan voltammograms (LSVs). Figure 6-2.8.c displays typical LSV plots of various catalysts for 

OER. The oxidation wave can be observed at an onset potential of ~1.60 V and is attributed to 

catalytic water oxidation. Among all the catalysts, cal-CoNi shows the largest oxygen evolving 

current. The OER of the cal-CoNi sample appears to be shifted towards lower potentials, as 

highlighted by the horizontal dotted line set at 10.00 mA cm
-2

 in Figure 6-2.8c. At η = 0.40 V, 

the activity of the cal-CoNi catalyst was also found to be 3.03 mA cm
-2

, thus outperforming the 

other catalysts (2.44, 1.08, and 0.99 mA cm
-2

 for cal-NiCo, cal-CoCo, and cal-NiNi catalysts, 

respectively). Furthermore, cal-CoNi showed negligible performance attenuation (< 16%) in the 

first 50 s (Figure 6-2.8d), in contrast to a noticeable activity loss in cal-NiCo (> 36%) indicative 

of a superior stability for OER. These results suggest that flake-shaped cal-CoNi can serve as an 
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efficient catalyst to drive water oxidation with high stability. The oxidation peak observed just 

before the rising current due to oxygen evolution is ascribed to the transition to higher valence 

states of nickel and cobalt, which leads to the formation of a specific catalytic phase for OER 

[11]. The higher peak current observed for the cal-CoNi highlights an easier valence transition of 

Co and Ni compared to the other samples, which is in good agreement with the lower 

overpotential observed in the Tafel plots (Figure 6-2.8b).  

 

Figure 6-2.8. (a) Electrochemical impedance spectra(EIS) curves, (b) Tafel plots, (c) Linear 

sweep voltammetry (LSV) curves, and (d) chronoamperometric plots recorded at a constant 

overpotential (h = 0.38 V) in 0.1 m KOH for (i) cal-NiNi, (ii )cal-CoCo, (iii ) cal-NiCo, and (iv) 

cal-CoNi, respectively. 

 

I furthermore consider that the shape effect is also critical for the OER catalytic activity. To 

clarify the shape effect, another control experiment was carried out. Rigorous grinding of the 

cal-CoNi sample totally destroyed the flake-like shape of the sample. I studied its OER catalytic 

activity using the LSV technique under the same conditions. Figure 6-2.9 compares the LSV 
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curves of the cal-CoNi before and after grinding. There is a sharp decrease in its OER catalytic 

activity after grinding because of the destruction of the 2D flake shape. The plate-like 

morphology of cal-CoNi sample is expected to contribute to the diffusion of oxygen, electrolyte, 

and intermediate species throughout the whole surface of the material.  

 

Figure 6-2.9. Linear sweep voltammetry (LSV) curves recorded in 0.1 M KOH for cal-CoNi 

nanoflakes before and after grinding. 

6-2.4. Conclusion  

In this chapter all 2D (CoNi and NiNi) and 3D (CoCo and NiCo) nanostructures are prepared by 

the same method. Thermal decomposition of the obtained metal-cyanide CPs with well-defined 

shapes is a powerful method for the preparation of a new family of nanoporous metal oxides. The 

nanoporous Ni-Co mixed oxides reported herein show excellent electrocatalytic activity for OER. 

The better catalytic performance of CoNi-oxide flakes than NiCo-oxide cubes for OER is 

reported to show the shape effect and the advantages of 2D-morpholgy. This group of materials 

shows a promising catalytic performance in the field of electrochemistry. Through such an 

innovative strategy, various nanoporous metal oxides with different compositions and shapes can 



Flakes shape | Chapter 6 
 

 
 

209 
 

be prepared by choosing the appropriate CP precursors, which will broaden their range of 

applications. 
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Chapter 7-1 

7-1. Layer-by-Layer Motif Hybridization: 

Nanoporous Nickel Oxide Flakes Wrapped into 

Graphene Oxide Sheets toward Enhanced 

Oxygen Reduction Reaction 

7-1.1. Introduction 

Hybrid materials have many scientific utilities due to the combined effects of two (or more) 

building blocks. The development of such materials covers a wide range of applications like 

catalysis, adsorption, electrochemical techniques, sensing, and energy storage. Therefore, finding 

efficient methods to prepare these materials in high yields is of fundamental importance. Among 

others, a promising concept is the ‘layer-by-layer’ (LbL) fabrication of nanometer-level layered 

hybrid structures in a designable manner. LbL approaches are known to be simple, inexpensive, 

and versatile processes for the fabrication of multilayered hybrid structures with various 

compositions and have been performed through various interactions, including electrostatic, 

hydrogen bonding, and charge-transfer, as well as through chemical reactions such as sol-gel, 

electrochemical coupling, and click reactions [1]. Recently, highly flexible two-dimensional (2D) 
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graphene oxide (GO) sheets have been attracting a lot of attention for their potential in various 

applications [2]. In particular, the hybridization of GO sheets with various nanomaterials (e.g., 

nanoparticles) is a promising strategy because of the unique properties arising from the resulting 

materials [3].  

Fuel cells have attracted significant interest due to their implementation in highly 

efficient and clean energy storage systems. Therefore, designing suitable electrocatalysts for 

oxygen reduction reactions (ORRs) is vital in fuel cell research [4]. Tremendous efforts and 

extensive studies have been devoted to the development of suitable and low-cost catalysts for 

ORRs with high activity. An important challenge, however, remains unresolved. The main 

problem associated with GO is its intrinsic low ORR activity, which is usually enhanced by either 

doping with some heteroatoms or hybridization with transition-metal species. Heteroatoms such 

as nitrogen (N) are generally used to change the charge density of GO and enhance its catalytic 

activity [5]. On the other hand, transition-metals, such as Ni, Mn, Co, MoO3, Fe3O4, NiO, MoS2 

and WS2, have recently gained noticeable popularity in various nanocomposite systems owing to 

their low cost and high activity originating from a favorable kinetics phenomenon [6]. Wu et al., 

have reported that Fe3O4 nanoparticles supported on 3D nitrogen-doped graphene aerogel are 

promising for improving the ORR performance [7].  

Herein, I propose a new LbL approach for the synthesis of multilayered NiO-GO hybrid 

materials. Rather disordered interfacial structures in LbL films provide abundant nanospaces, 

which is advantageous for interlayer molecular diffusion. The electrochemical performance of 

NiO can be enhanced when combined with GO sheets through appropriate chemical interaction. 

The electrochemical analysis performed in this work demonstrates that our NiO-GO hybrid 

material can serve as an efficient catalyst for ORR. It also exhibits good stability compared to the 

PtC-5% catalyst (current loss is about 24.6% for NiO-GO hybrid material compared to 38.3% for 
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PtC-5%). 

7-1.2. Experimental Details 

7-1.2.1. Chemicals  

Potassium tetracyanonickelate(II) hydrate was purchased from Sigma-Aldrich, USA. Nickel(II) 

chloride hexahydrate, trisodium citrate dihydrate, and sulfuric acid were purchased from Nacalai 

Tesque, Japan. Potassium hydroxide and sodium nitrate was purchased from Wako, Japan. 

Nanographite platelets (N008-100-N) of 100 nm thickness were used as raw material to prepare 

graphene oxide (GO), Angestron materials. KMNO4 and H2O2 were purchased from Kanto 

chemicals Co., INC. Platinum, 5% on carbon was obtained from Alfa Aesar, A Johnson Matthey 

Company. All chemical reagents were used without further purification. 

7-1.2.2. Synthesis of NiCNNi Flakes  

In a typical procedures, NiCl2·6H2O (59.6 mg) and trisodium citrate dihydrate (300 mg) were 

dissolved in 20 mL water to form a clear solution. Meanwhile, K2[Ni(CN)4] (130 mg) was 

dissolved into 20 mL water to form another clear solution. The two solutions were then mixed 

together under constant magnetic stirring for 30 min. The obtained solution was aged for 30 h 

until the reaction was complete and the precipitate is formed. After washing with water and 

ethanol extensively, the green precipitates were dried at room-temperature. On the basis of 

elemental analysis, the resulting chemical compound was Ni[Ni(CN)4], which is hereafter 

abbreviated as ‘NiCNNi flakes’. 
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7-1.2.3. Synthesis of GO Sheets 

The preparation of GO solutions followed the modified Hummers’ method. The procedures are 

briefly described as follows. Sodium nitrate (0.30 g) was dissolved in sulfuric acid (10 mL). 

N008-100-N carbon source was added to the solution, which was stirred for 30 min. KMNO4 

(0.30 g) was further added to the solution and stirred again for 1 h. Then, H2O2 (10 mL) was 

added to the solution under stirring. Finally, the solution was centrifuged and then redispersed in 

water 3 times at different time intervals such as 10, 30, and 45 min. Then, the material was 

extracted by adding water, mixing with methanol, and keeping for further processing. The GO 

(10 mg) sheets were dissolved in 25 mL water under stirring for 2 h followed by strong 

sonication for 30 min. 

7-1.2.4. Synthesis of NiO-GO Hybrids 

The two previously prepared solutions were mixed under vigorous sonication for 30 min. The 

obtained solution was aged under stirring for 4 h. The precipitate was obtained by centrifugation. 

After washing with water and ethanol extensively, the NiCNNi-GO hybrid was dried at room 

temperature. Then, the obtained NiCNNi-GO hybrid (100 mg) was heated inside an electronic 

furnace to the desired temperature (300 °C) with a heating rate of 5 
o
C min

-1
 and kept for 

annealing during 1 h. After that, the powder was cooled inside the furnace naturally. Finally, the 

obtained powder (NiO-GO hybrid) was collected for characterization. The whole calcination 

process was carried out in the air. 
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7-1.2.5. Electrochemical Measurements 

A conventional three-electrode cell was used for oxygen reduction reaction (ORR) measurement, 

including an Ag/AgCl (saturated KCl) reference electrode, a platinum wire as a counter electrode, 

and a modified rotating disk electrode (RDE) as a working electrode. The working electrode was 

prepared as follows. 5 mg of catalyst was dispersed in a mixture of water/ethanol (v/v=3:1, 950 

μl) and Nafion (5 wt%, 50 μl) under sonication for 30 min. Then, 5 μL of the above suspension 

was dropped on the surface of the RDE and dried at room temperature. The cyclic 

voltammograms were checked at a scan rate of 50 mV s
-1

 without any rotation. The linear sweep 

voltammograms were performed at a potential range between -1.0 V and 0.2 V (vs. Ag/AgCl) 

with a scan rate of 10 mV s
-1

 and rotating speed of 1600 rpm. All the measurements were carried 

out in 0.1 M KOH with N2- or O2-saturated. 

7-1.2.6. Characterization 

SEM images were acquired with a Hitachi SU8000 scanning microscope at an accelerating 

voltage of 5 kV. The TEM observations were performed using a JEM-2100F operating at 200 kV 

and equipped for energy-dispersive spectrometer analysis. The wide-angle powder X-ray 

diffraction (XRD) patterns were obtained with a Rigaku RINT 2500X diffractometer using 

monochromated Cu Kα radiation (40 kV, 40 mA). Raman spectra were measured by 

Horiba-Jovin Yvon T64000 with the excitation Laser 364 nm. Nitrogen adsorption-desorption 

isotherms data were obtained with a Quantachrome Autosorb Automated Gas Sorption System at 

77 K. The electrochemical measurements were conducted in a three-electrode electrochemical 

cell with a Pt counter electrode and Ag/AgCl as reference electrode in a 6 M KOH solution. A 

glassy carbon electrode coated with the sample was used as the working electrode. Linear sweep 
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voltammetry measurements were obtained using an electrochemical workstation (ALS/HCH 

instruments, electrochemical analyzer/model: 842BZ) in the scan range from 0.2 to -1.0 V.  

7-1.3. Results and Discussion 

The nickel cyano-bridged coordination polymer (NiCNNi) flakes consist of very thin plates with 

an average lateral size of around 150 nm (Figure 7-1.1a). The flakes are highly crystallized, as 

confirmed by selected area electron diffraction (SAED) patterns. On the other hand, the GO 

sheets show a typical 2D morphology with lateral sizes as large as 1 µm (Figure 7-1.1b). Their 

surface is smooth and the sheets are detached from each other. The SAED patterns reveal the 

typical hexagonal arrangement of a crystalline framework characteristic of GO sheets. The lateral 

size of the NiCNNi flakes is much smaller than that of GO sheets. The NiCNNi flakes and GO 

sheets are sonicated separately to form colloidal solutions and their measured zeta potentials are 

2.97 mV and -30.7 mV, respectively [8]. 

 

Figure 7-1.1. SEM and TEM images of (a) NiCNNi flakes and (b) GO sheets. The corresponding 

SAED patterns are shown as insets. 
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The NiO-GO hybrid materials were synthesized by assembling the NiCNNi flakes and GO sheets 

followed by thermal treatment (Scheme 7-1.1). The two colloidal solutions were mixed together 

under strong sonication. The materials are well dispersed in the suspensions (Figure 7-1.2). 

Through this step, the positively charged NiCNNi flakes become uniformly embedded into the 

negatively charged GO sheets through electrostatic interactions. By changing the NiCNNi:GO 

weight ratios, various types of NiO-GO hybrids can be obtained. The zeta potential gradually 

decreases with increasing GO content.  

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

images of the typical NiCNNi-GO hybrids before thermal treatment (NiCNNi:GO=75:25) are 

shown in Figure 7-1.3a. The introduced NiCNNi flakes can clearly be observed inside the GO 

sheets. During the thermal treatment at 300 °C, the organic group from NiCNNi can be removed 

to generate nanoporous NiO flakes [9]. Even after calcination, the NiO flakes are still enclosed by 

the GO sheets. It is worth noticing that the lateral size of NiO flakes remains mostly unchanged 

after thermal treatment (Figure 7-1.3b).  

 

Scheme 7-1.1. Schematic presentation of the synthesis of NiO–GO hybrid materials by 

assembling the NiCNNi flakes and GO sheets followed by thermal treatment. 



LbL assembly | Chapter 7 
 

 
 

219 
 

 

Figure 7-1.2. Photographs of the suspensions for the preparation of the NiCNNi-GO hybrids with 

different NiCNNi:GO ratios. 

 

Figure 7-1.3. SEM and TEM images of (a) NiCNNi-GO hybrid (NiCNNi:GO=75:25) before 

thermal treatment and (b) the corresponding NiO-GO hybrid after thermal treatment. 

 

From the elemental mapping, it is found that carbon, oxygen, and nickel atoms are uniformly 

distributed over the entire area of the hybrid material (Figure 7-1.4). However, it is hard to 

distinguish the NiO flakes from the GO sheets, because several NiO flakes are overlapped. 

Cross-sectional TEM images and the corresponding HAADF-STEM and the elemental mapping 

images show a clear layer-by-layer architecture (Figures 7-1.5 and 7-2.6). The introduction of the 

NiO flakes as spacers prevent restacking or aggregation of the GO sheets.  
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Figure 7-1.4.  HAADF-STEM image and elemental mapping images (carbon, oxygen, and 

nickel atoms) of NiO-GO hybrid prepared from prepared from NiCNNi: GO = 75:25. 

 

Figure 7-1.5. Cross-section HAADF-STEM image and elemental mapping (carbon, oxygen, and 

nickel) of NiO-GO hybrid prepared from prepared from NiCNNi:GO=75:25. 

 

Figure 7-1.6. Cross-sectional TEM image of NiO-GO hybrid prepared from NiCNNi: 

GO=75:25. 
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The crystal structure of NiO-GO hybrids after thermal treatment was examined by wide-angle 

X-ray diffraction (XRD) (Figure 7-1.7a). For comparison, the spectra of individually calcined 

NiO flakes and GO sheets are also displayed. The XRD pattern of NiO-GO hybrids matches with 

the (111), (200), and (220) crystal planes of a standard NiO crystal structure [9]. Another broad 

diffraction peak could be assigned to the (002) plane of GO sheets [10]. The Raman spectra of the 

NiO-GO hybrids and thermally-treated GO sheets are shown in Figure 7-1.7b. The D and G 

bands of GO sheets can be clearly observed [11]. The NiO-GO hybrid shows two additional 

peaks (at 554 and 1077 cm
-1

) corresponding to the NiO phase [12].  

The porosity of the obtained materials was investigated by nitrogen adsorption- 

desorption isotherms (Figure 7-1.7c). The corresponding BET surface area is summarized in 

Table 7-1.1. The surface area of the hybrid materials appears to increase gradually upon 

increasing the content of NiO flakes in the hybrid system. Actually, the GO sheets possess a 

relatively small surface area as the layers tend to stack and agglomerate. The introduction of the 

NiO flakes inside the GO sheets as spacers leads to the enhancement of the overall surface area. 

From the isotherms, uptake at low relative pressure (P/P0 < 0.1) can be observed, indicating the 

presence of micropores. At higher pressure, the adsorption gradually increases without exhibiting 

any clear capillary condensation step, which is typical of ordered mesoporous materials [13]. It 

indicates that pore size distribution inside the interlayer space is not uniform. 

 

Table 7-1.1 Summary on the surface areas of the obtained samples  

Weight ratios Surface area (m
2
 g

-1
) 

NiCNNi:GO = 100:0 78.5 

NiCNNi:GO = 75:25 152 

NiCNNi:GO = 50:50 99.8 

NiCNNi:GO = 25:75 47.8 

NiCNNi:GO = 0:100 12.5 

 



LbL assembly | Chapter 7 
 

 
 

222 
 

 

Figure 7-1.7. (a) Wide-angle XRD of the calcined NiO flakes, the calcined GO sheets, and the 

typical NiO-GO hybrid after thermal treatment, (b) Raman spectra of the calcined GO sheets and 

the typical NiO-GO hybrid after thermal treatment, (c) N2 adsorption-desorption isotherms of 

(i-iii) the NiO-GO hybrids prepared from different NiCNNi:GO compositions [(i) 

NiCNNi:GO=75:25, (ii) NiCNNi:GO=50:50, (iii) NiCNNi:GO=25:75] and (iv) the calcined GO 

sheets. 

 

The typical NiO-GO hybrid (prepared from NiCNNi:GO=75:25) was examined by X-ray 

photoelectron spectroscopy (XPS) (Figure 7-1.8). The survey spectrum confirms the presence of 

Ni, O, and C elements in the material. The high resolution spectrum centered at Ni 2p3/2 reveals 

that the signal can be divided into at least four contributions, highlighting a multi-coordinated Ni 

(Figure 7-1.8b). While the multiplet located at 855.7, 861.0 and 865.3 eV is a typical signature of 

NiO [14], the peak at 853.9 eV is believed to originate from the interactions taking place between 

the NiO flakes and the GO sheets. Indeed, this contribution was not observed for free NiO flakes 

which are not embedded in GO [9a]. In the case of oxygen, two peaks at 529.4 eV and 531.4 eV 

are assignable to the O 1s peaks of the NiO phase (Figure 7-1.8c) [14]. The C 1s spectrum of GO 

clearly indicates the presence of a considerable amount of oxidized carbon atoms (Figure 7-1.8d). 
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Four types of carbon atoms in different functional groups are observed: non-oxygenated ring 

(~284.56 eV), C–O (~286.01 eV), C=O (~288.42 eV), and O–C=O (~290.88 eV) [15]. It is 

expected that the NiO flakes are more tightly anchored to the surface of GO through functional 

groups containing oxygen. 

 

Figure 7-1.8. (a) XPS survey and (b, c, and d) high resolution XPS spectra of the NiO-GO hybrid 

prepared from prepared from NiCNNi:GO=75:25 [(b) Ni 2p, (c) O 1s, and (d) C 1s spectra]. The 

Ni 2p3/2 peak contains the information necessary for the analysis, thus the Ni 2p1/2 contribution is 

not fitted. 

 

Inspired by the unique structure of my NiO-GO hybrid materials, ORR was selected to examine 

their performance in energy conversion systems. Cyclic voltammetric (CV) measurements were 

performed to compare the ORR activity of the hybrid materials prepared from different NiO:GO 

compositions. The NiO-GO hybrid prepared from NiCNNi:GO=75:25 shows a significant 

enhancement in ORR activity, compared to the other samples (Figure 7-1.9). From the CV 

curves obtained in O2-saturated 0.1 M KOH, the NiO-GO hybrid prepared from 

NiCNNi:GO=75:25 showed an onset potential of about 130 mV (Figure 7-1.10a), and a 
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reduction peak at about 370 mV, which are comparable to the previously reported NiO-based 

catalysts [16]. More importantly, this NiO-GO hybrid shows good tolerance toward small organic 

fuels (e.g., methanol), compared to a standard 5% Pt supported on carbon (abbreviated as 

PtC-5%) (Figure 7-1.10a and b) [17]. All the results indicated that my NiO-GO hybrid materials 

are good candidates for ORR and do not suffer from the crossover effects of organic fuels.  

 

Figure 7-1.9. Cyclic voltammetric (CV) curves obtained under (black color) N2-, and (red color) 

O2-saturated 0.1 M KOH catalyzed by (a) the calcined NiO flakes, (b, c) the NiO-GO hybrids 

prepared from different NiCNNi:GO ratios [(b) NiCNNi:GO=50:50, and (c) NiCNNi:GO=25:75], 

and (d) the calcined GO sheets.  

 

The ORR performance was further tested by using a rotating disk electrode (RDE) in an 

O2-saturated 0.1 M KOH solution at a rotation speed of 1600 rpm. The linear sweep 

voltammograms (LSVs) of all the samples are shown in Figure 7-1.10c. The electrochemical 

behavior toward the ORR varies depending on the NiO:GO compositions. The NiO-GO hybrid 

prepared from NiCNNi:GO=75:25 shows the best performance from the standpoints of both 

onset potential and limiting current. The onset potential of the NiO-GO hybrid prepared from 

NiCNNi:GO=75:25 (100 mV) for the ORR is more positive compared to the other samples [NiO 
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(180 mV), the NiO-GO hybrid prepared from NiCNNi:GO=50:50 (100 mV), the NiO-GO hybrid 

prepared from NiCNNi:GO=25:75 (140 mV), and GO (120 mV)]. A larger surface area can be 

obtained by increasing the proportion of NiO flakes. The NiO-GO hybrid with a high surface area 

probably tends to decrease the mass transport resistance and facilitate the access of the electrolyte 

to the active sites, which is greatly beneficial during the ORR process [18]. A 

chronoamperometric measurement over a time period of 5000 s was further performed on the 

NiO-GO hybrid, and benchmarked to the PtC-5% catalyst. The current retention performance is 

shown in Figure 7-1.10d. The NiO-GO hybrid shows a current loss of 24.6%, which is much less 

than for the PtC-5% catalyst (38.3%). 

 

Figure 7-1.10. (a,b) CV curves obtained under N2- and O2-saturated 0.1 M KOH, and 

O2-saturated 0.1 M KOH together with 0.5 M CH3OH catalyzed by (a) NiO-GO hybrid prepared 

from NiCNNi:GO=75: 25, and (b) PtC-5%. (c) ORR polarization curves of a RDE modified with 

(i) the calcined NiO flakes, (ii-iv) the NiO-GO hybrids prepared from different NiCNNi:GO 

compositions [(ii) NiCNNi:GO=75:25, (iii) NiCNNi:GO=50:50, and (iv) NiCNNi:GO=25:75], 

and (v) the calcined GO sheets. The plots are obtained in O2-saturated 0.1 M KOH at a rotation 

rate of 1600 rpm with a scan rate of 10 mV s
-1

. (d) Current retention plot during 

chronoamperometric measurements for NiO-GO hybrid prepared from NiCNNi:GO=75:25 and 

PtC-5%. 
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7-1.4. Conclusion 

In conclusion, I successfully prepared NiO-GO hybrid materials with high surface areas through 

the thermal conversion of NiCNNi-GO hybrids. The NiO flakes are uniformly distributed and 

tightly anchored to the surface of the GO sheets, thereby forming a robust hetero-layered 

structure assembled through the LbL process. The NiO-GO hybrids exhibit an efficient catalytic 

activity for ORR. Combining the desirable electrochemical properties of both NiO and GO lead 

to a synergetic improvement in their electrocatalytic activity. My strategy can be applicable in the 

future for the preparation of various functional metal oxides wrapped in GO sheets for promising 

electrocatalytic applications. 
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Chapter 7-2 

7-2. Self-Construction from 2D to 3D: One-Pot 

Layer-by-Layer Assembly of Graphene Oxide 

Sheets Held Together by Coordination Polymers 

7-2.1. Introduction 

For the further development of functional materials, a smart approach to the assembly of 

functional 2D materials into well-defined 3D structures is critical. The best strategy for this 

purpose is layer-by-layer (LbL) assembly that can provide well-designed alternating layered 

structures with nanoscale precision from a variety of functional components [1]. For example, 

methodologies to create artificial layered structures often lead to materials with high level 

functions that cannot be predicted based on the identity of the original components [2]. However, 

most of the previous strategies have several disadvantages: 1) in many cases, interlayer materials 

are nonfunctional polymers and often degrade the functionality of the main components; 2) 

step-by-step layering processes could be disadvantageous for construction of substantially thicker 

materials. Although pioneering approaches for non-interlayer-polymer LbL processes have been 

recently proposed [3], these disadvantages have not yet been properly addressed.  
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In the novel strategy presented here, I have exploited the layering capabilities of coordination 

polymers [4] as an interlayer adhesive in a spontaneous self-constructive process implemented in 

one pot. Typically, Ni-based cyano-bridged coordination polymers (NiCNNi) are deposited on 

the surface of graphene oxide (GO) sheets. During this reaction (Figure 7-2.1), GO sheets 

spontaneously assemble through binding of NiCNNi flakes in the one-step construction of 

heterogeneous layered structures whose components all have some potentially useful 

functionality. In addition, the GO sheets serve not only as building units but also as nucleation 

sites for the growth of the NiCNNi flakes. Thermal treatment of the layered assembly causes 

successful conversion of the NiCNNi components to Ni3C with retention of the original LbL 

structure, since the inserted GO layers prevent random fusion of the metal source. 

 
Figure 7-2.1. Formation process of NiCNNi-GO hybrids (composites) through coordination- 

polymer-glued layer-by-layer assembly of graphene oxide sheets, and its thermal conversion to 

Ni3C-GO hybrid (composite). Cross-sectional TEM images of NiCNNi-GO hybrid and Ni3C-GO 

hybrid and the crystal structure Ni(H2O)2[Ni(CN)4]∙4H2O (NiCNNi) between the GO sheets are 

also shown. 
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7-2.2. Experimental Details 

7-2.2.1. Chemicals  

Potassium tetracyanonickelate (II) hydrate was purchased from Sigma-Aldrich, USA. Nickel 

chloride hexahydrate, trisodium citrate dihydrate (TSCD), and sulfuric acid were purchased from 

Nacalai Tesque, Japan. Potassium hydroxide and sodium nitrate was purchased from Wako, Japan. 

Nanographite platelets (N008-100-N) of 100 nm thickness were used as raw material to prepare 

graphene oxide (GO), Angestron materials. KMNO4 and H2O2 were purchased from Kanto 

Chemicals Co., Inc. All chemical reagents were used without further purification. 

7-2.2.2. Synthesis of GO Sheets  

Graphite powder (N008-100-N, carbon source) and sodium nitrate were mixed together followed 

by the addition of 7.67 ml of concentrated sulphuric acid solution under constant stirring for 1 h. 

Then, 1 g of KMnO4 was added gradually to the above solution while keeping the temperature 

less than 20 °C. The mixture was stirred at 35 °C for 10 h and the resulting solution was diluted 

by adding 83 ml of pure water under vigorous stirring. To ensure the completion of reaction with 

KMnO4, the suspension was further treated with 30% H2O2 solution (1.67 ml). The resulting 

colloidal solution was kept for the next step.  

7-2.2.3. In-situ Growth of NiCNNi Flakes onto the Surface of GO 

Sheets and Thermal Conversion into Ni3C-GO Hybrid 

NiCl2·6H2O (94.8 mg) and trisodium citrate dihydrate (88.2 mg) were dissolved in 20 mL water 
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to form a clear solution. This solution was poured dropwise into 20 mL GO solution (2 mg mL
-1

) 

and stirred for 30 min. The obtained mixture is gently mixed with another clear solution prepared 

by dissolving K2[Ni(CN)4] (96.4 mg) into 20 mL water. Then, the final suspension was aged for 

two days until the reaction is complete. The precipitate was obtained by centrifugation. After 

washing with water and ethanol extensively, the as-prepared NiCNNi-GO LbL hybrids were 

dried at room temperature. Then, the obtained NiCNNi-GO hybrids (100 mg) were heated inside 

an electronic furnace to the desired temperatures (350 °C, 450 °C, 550 °C, and 650 °C) with a 

heating rate of 5 
o
C min

-1
 and kept for annealing during 1 h. After that, the powder was cooled 

inside the furnace naturally. Finally, the obtained powder (Ni3C-GO LbL hybrids) was collected 

for characterization. The whole calcination process was carried out under nitrogen flow (130 mL 

min
-1

). 

7-2.2.4. Characterization 

SEM images were acquired with a Hitachi SU8000 scanning microscope at an accelerating 

voltage of 5 kV. The TEM observations were performed using a JEM-2100F operating at 200 kV 

and equipped for energy-dispersive spectrometer analysis. The wide-angle powder X-ray 

diffraction (XRD) patterns were obtained with a Rigaku RINT 2500X diffractometer using 

monochromated Cu Kα radiation (40 kV, 40 mA). Raman spectra were measured by 

Horiba-Jovin Yvon T64000 with the excitation Laser 364 nm. X-ray photoelectronic spectroscopy 

(XPS) spectra were recorded at room temperature by using a JPS-9010TR (JEOL) instrument 

with an Mg Kα X-ray source. All binding energies were calibrated by referencing to C 1s (285.0 

eV). The UV/Vis spectra were collected using a JASCO V-570 UV/Vis/NIR spectrophotometer.  
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7-2.2.5. Electrochemical Measurements 

A conventional three-electrode cell was used for oxygen reduction reaction (ORR) measurement, 

including an Ag/AgCl (saturated KCl) as reference electrode, a platinum wire as a counter 

electrode, and a modified rotating ring disk electrode (RRDE) as a working electrode. The 

working electrode was prepared as follows. 5 mg of catalyst was dispersed in a mixture of 

water/ethanol (v/v = 3:1, 950 μl) and Nafion (5 wt%, 50 μL) under sonication for 30 min. Then, 5 

μL of the above suspension was dropped on the surface of the RDE and dried at room 

temperature. The cyclic voltammograms were checked at a scan rate of 20 mV s
-1

 without any 

rotation. The linear sweep voltammograms were performed at a potential range between 0.0 V 

and -1.0 V (vs. Ag/AgCl) with a scan rate of 10 mV s
-1

 and rotating speed of 1600 rpm. All the 

measurements were carried out in 0.1 M KOH with N2- or O2-saturated. The kinetic parameters 

can be analyzed on the basis of the following Koutecky-Levich equations: 

J
-1

= JL
-1

 + JK
-1

 = B
-1
ω

-1/2
 + JK

-1 
                                        (7-2.1) 

B = 0.62nFC0(D0)
2/3

ν
 -1/6 

                                             (7-2.2) 

, where J is the measured current density, JK and JL are the kinetic- and diffusion-limiting current 

densities, ω is the angular velocity of the disk, n represent the overall number of electrons 

transferred during the oxygen reduction, F = 96485 (C mol
-1

) is the Faraday constant, C0 (mol 

L
-1

) is the bulk concentration of O2, ν (cm
2
 s

-1
) is the kinematic viscosity of the electrolyte, D0 

(cm
2
 s

-1
) is the diffusion coefficient, and k is the electron transfer rate constant. The number of 

electrons transferred (n) can be obtained from the slope of the Koutecky-Levich plots.  

The electron transfer number per oxygen molecule involved in the ORR was calculated 

from RRDE voltammograms according to the following equation. 

n=4×Id/(Id+Ir/N)                                                    (7-2.3)  

, where Id is the disk current, Ir is the ring current and N = 0.4 is the collection efficiency of Pt 
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ring.
 

7-2.3. Results and Discussion 

Figure 7-2.1 shows the formation process of the NiCNNi-GO hybrid structure. The GO sheets 

have a two-dimensional (2D) morphology with a large average lateral dimension of ~1 μm and 

are dispersed as a colloidal suspension (Figure 7-2.2). The high-resolution TEM image clearly 

shows lattice fringes which are oriented in two directions. Electron diffraction (ED) patterns 

reveal a hexagonal arrangement of the diffraction spots, which is a typical crystalline 

characteristic of GO. Functional groups (e.g., carboxyl, hydroxyl, and epoxy) [5] of GO sheets, 

which can act as bridging sites simultaneously interacting with Ni
2+

 species, confer an overall 

negative charge on the starting GO suspension. By slow addition of [Ni(CN)4]
2-

 into the reaction 

system, nucleation of growth occurs, resulting in the growth of fine NiCNNi layers on both sides 

of the GO sheets. During this reaction, the surface charge of GO sheets changes from -30.7 mV 

to 7.75 mV, according to Zeta potentials measured prior to and following reaction. Subsequently, 

the NiCNNi-GO components spontaneously assemble forming a highly optimized LbL 

architecture consisting of alternating layers of NiCNNi and GO.  

NiCNNi flakes prepared in the absence of GO sheets exhibit an average lateral size of 

~150 nm (Figure 7-2.3a,b). The ordered lattice fringes of the flakes from high-resolution TEM 

(Figure 7-2.3c) combined with the periodic spots from the electron diffraction (ED) patterns 

reveal that the flakes are highly crystallized [6]. The surface morphology of the NiCNNi-GO 

hybrid was examined using scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM), and the results are shown in Figure 7-2.4. From these images it can be 

clearly observed that the NiCNNi flakes have grown horizontally at the surfaces of the GO sheets 

with flakes apparently encapsulated between the larger GO sheets. The selected area ED pattern, 
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indicates that the crystalline structures of both NiCNNi and GO are preserved even after 

hybridization (Figure 7-2.4b). Interestingly, the cross-sectional high-angle annular dark-field 

scanning transmission electron microscope (HAADF-STEM) images reveal an LbL-type 

structure of the hybrid consisting of NiCNNi and GO layers (Figures 7-2.5a and 7-2.6a). The 

corresponding elemental mapping image shows heterogeneous distribution of Ni, C, and O 

atoms, thus also supporting the formation of alternating layered structures with nanometer-level 

layer thicknesses. 

 

Figure 7-2.2. (a) Photograph of GO suspension, (b-c) SEM images of exfoliated GO sheets, (d-e) 

TEM images of exfoliated GO sheets, and (f) high resolution TEM image of GO sheets. The 

selected area ED patterns are shown as an inset. 
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Figure 7-2.3. (a) SEM image, (b) TEM image, and (c) high resolution TEM image of NiCNNi 

flakes. The selected area ED patterns shown as an inset clearly match Hofmann-type crystal 

structure with Pnma space group (a=12.2 Å, b=13.8 Å, and c=7.12 Å, respectively). 

 

 

Figure 7-2.4. (a) SEM image and (b) TEM image of the NiCNNi-GO hybrid. Selected area ED 

pattern is shown as an inset. The inside spots are derived from NiCNNi flakes, while the outside 

ones are derived from GO sheets. The respective assignments are given in Figure 7-2.2f and 

7-2.3c. 
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Figure 7-2.5. Cross-sectional HAADF-STEM images and elemental mapping images (carbon, 

oxygen, and nickel atoms) of (a) the as-prepared NiCNNi-GO hybrid and (b) Ni3C-GO hybrid 

after calcination at 450 °C. 

 

 

Figure 7-2.6. Cross-sectional HAADF-STEM image of (a) NiCNNi-GO hybrid and (b) Ni3C-GO 

hybrid after calcination at 450 °C. 

 

To demonstrate the formation process of NiCNNi flakes on the GO sheets, the assembling of 

layered NiCNNi-GO hybrids was examined by UV/Vis measurements at different time intervals 

(Figure 7-2.7). UV/Vis absorption spectrum of the as-prepared GO suspension shows an 

absorption peak at around 230 nm corresponding to π-π* transition of C=C and another shoulder 

at 290-300 nm corresponding to n-π* transition of the C=O bond [7]. As the reaction time is 
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increased from 5 to 90 min, the UV/Vis absorption peaks of NiCNNi-GO hybrids gradually are 

red-shifted from ~331 nm to ~340 nm, corresponding to the d-d transition of Ni. This is an 

evidence of gradual growth of the NiCNNi flakes [8]. 

The crystal structures of GO, NiCNNi, and NiCNNi-GO hybrid were further 

investigated by wide-angle XRD (Figure 7-2.8a). In the case of GO, a diffraction peak at 2θ (ca. 

9.4°) is observed, corresponding to the 001 reflection (ca. 0.94 nm) [7]. Another diffraction peak 

is observed at 2θ (ca. 25.5°), indicating a highly ordered graphitic structure. The diffraction peaks 

of the NiCNNi flakes are assignable to an orthorhombic system and clearly match Hofmann-type 

NiCNNi with 2D layered structure [6]. After the growth of NiCNNi flakes on the GO sheets, the 

relative peak intensity corresponding to 121 peak is weakened. This can be explained by 

preferential crystal growth on the GO sheets. As shown in Figure 7-2.4b, the (121) planes are 

vertically oriented plane to the GO surface. 

 

Figure 7-2.7. (a) UV-vis spectra of GO suspension and NiCNNi-GO hybrids collected at 

different time intervals and (b) plots of UV-vis peak positions of NiCNNi-GO hybrids as a 

function of the reaction times.  
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The changes of GO structure after the growth of NiCNNi flakes are examined by Raman 

measurement (Figure 7-2.8b). It can be seen that the intensity ratio (IG/ID) of D and G bands of 

GO in the NiCNNi-GO hybrid is increased due to the removal of a large number of 

oxygen-containing functional groups [7]. It reveals the improvement of the GO sheets with less 

defects. Therefore, as seen in Figure 7-2.8b, the 001 peak is weakened and shifted to 2θ (ca. 

10.2°), demonstrating a decrease in the two interlayer distance of GO sheets (from ca. 0.94 nm to 

ca. 0.87 nm). A sharp peak is observed at 2185.7 cm
-1

 corresponding to the C-N stretching [9], 

which remains even after hybridization with GO sheets. Together with XPS analysis (Figure 

7-2.9), I confirm the presence of NiCNNi layers. As a reference, NiCNNi flakes were measured 

by high resolution XPS. As shown in Figure 7-2.9a, the obtained spectrum reveals a sharp 

photopeak at ~855 eV assigned to Ni 2p3/2 as well as a Ni 2p1/2 at 872.5 eV, which are in 

accordance with Ni
2+

 species [10]. A photopeak at around 285 eV is observable with a good 

symmetry corresponding to C 1s core-level of carbon element in C-N (Figure 7-2.9b) [11]. N 1s 

photopeak at around 399 eV is characteristic of nitrogen element in C-N (Figure 7-2.9c) [12]. 

 

Figure 7-2.8. (a) Wide-angle XRD patterns and (b) Raman spectra of the GO, NiCNNi, and 

NiCNNi-GO hybrid samples. 
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Figure 7-2.9. High resolution XPS spectra of (b) Ni 2p, (b) C 1s, and N 1s of NiCNNi flakes as a 

reference. 

 

It was anticipated that thermal treatment of pristine NiCNNi flakes under nitrogen would result in 

Ni3C with a two-dimensional morphology. To test this, NiCNNi flakes without GO sheets were 

calcined under nitrogen at different temperatures (i.e., 350 °C, 450 °C, 550 °C, and 650 °C, 

respectively). The crystal structures and phase purities of the resulting products were examined 

using wide-angle XRD (Figure 7-2.10). The sample calcined at 350 °C underwent incomplete 

removal of the organic units and the peaks could not be assigned to a specific crystal structure. 

Interestingly, the sample calcined at 450 °C give a diffraction pattern characteristic of pure 

crystalline Ni3C [13] with XRD patterns assignable to a trigonal (R-3c) structure. Further 

increases in the calcination temperature (500 °C and 650 °C) lead to decomposition of the Ni3C 

structure with some peaks corresponding to metallic fcc Ni emerging. Although pure crystalline 
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Ni3C could be obtained following optimization of the thermal treatment process of NiCNNi 

flakes (i.e. 450 °C under nitrogen), the original 2D form was totally disrupted because of 

crystallization and fusion of the metal framework, as illustrated by SEM imaging (Figure 

7-2.11). In contrast, the NiCNNi-GO LbL structure is relatively stable even against thermal 

treatment at elevated temperatures, yielding the Ni3C-GO LbL structure. The Ni3C-GO hybrid 

has an LbL structure that strongly corresponds with the original NiCNNi-GO hybrid (Figures 

7-2.5b and 7-2.6b). As is clearly shown in Figures 7-2.12 and 7-2.13, the lateral size and 

morphology of individual Ni3C nanosheets remains unchanged. 

 

Figure 7-2.10. Wide-angle XRD patterns of NiCNNi flakes (without GO sheets) treated at 

different temperatures.  

 

The Ni3C-GO hybrid obtained by calcination at 450 °C was examined by high resolution X-ray 

photoelectron spectroscopy (XPS) (Figures 7-2.14a-c). At least seven peaks are found in the C 

1s XPS spectrum after deconvolution. The peak at 283.3 eV is assigned to Ni-C bonds [14], with 

a second peak at 285.5 eV assigned to sp
3
 hybridized carbon (C-C, sp

3
) [14]. Between these two 

peaks, a third feature at 284.3 eV can be assigned to sp
2
 hybridized carbon (C=C, sp

2
) [14]. 
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Additionally, four types of carbon atoms due to different functional groups can be observed: 

non-oxygenated ring (284.5 eV), C-O (286.01 eV), C=O (288.42 eV), and O-C=O (292 eV) [15]. 

In the Ni 2p3/2 XPS spectrum, a peak with a binding energy of 855.4 eV with a satellite peak at 

861.6 eV were observed. The main peak position is located at a higher binding energy than NiO, 

Ni(OH)2, and metallic Ni phases, and it corresponds to pure Ni3C phase. From these XPS data, it 

can be deduced that the Ni3C flakes are more tightly anchored to the surface of GO through 

functional groups containing oxygen. Raman spectra of GO sheets and Ni3C-GO hybrids are 

shown in Figure 7-2.14d. The D and G bands of GO sheets can be clearly observed in both cases 

[16], implying the retention of 2D GO structure even after the growth of Ni3C during thermal 

treatment. After heat treatment, the intensity of the graphitic (G) band increases relative to that of 

GO sheets because the functional groups of GO sheets have been thermally decomposed. 

 

Figure 7-2.11. SEM images o of NiCNNi flakes (without GO sheets) treated at different 

temperatures ((a) 350 °C, (b) 450 °C, (c) 550 °C, and (d) 650 °C). 
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Figure 7-2.12. SEM images of the NiCNNi-GO hybrids treated at different temperatures ((a) 

350 °C, (b) 450 °C, (c) 550 °C, and (d) 650 °C). 

 

 

Figure 7-2.13. SEM images of the NiCNNi-GO hybrids treated at different temperatures ((a) 

450 °C, and (b) 550 °C). 

 

Of the well-known transition metal carbides, nickel carbide (Ni3C) has received considerable 

recent attention owing to its excellent catalytic activity and high chemical stability [17]. It is 

anticipated that Ni might be a realistic alternative to precious metals like Pt, Au, and Pd, because 

of its low cost, abundance, and corrosion resistance in alkaline solutions [17]. However, Ni3C has 
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been much less investigated because complex synthetic procedures, which require expensive 

apparatus. A few previous reports have suggested that thermal treatment of nickel-based 

precursors might open the way for synthesis of high quality Ni3C [18], although morphological 

control and particle aggregation at elevated temperatures remain challenging issues. The 

integration of transition metal carbides and highly conductive carbon materials could also 

circumvent serious problems associated with the rate capabilities and poor charge transport. The 

intrinsic properties of graphene (e.g., excellent electrical conductivity, high mechanical strength) 

would make its hybrids with Ni3C excellent candidates for various electronic applications. In this 

work, I demonstrate the significant advantage of an LbL architecture for such materials over 

simple physically mixed Ni3C-GO composites.  

 

Figure 7-2.14. (a) XPS survey spectrum and (b-c) XPS expanded spectra ((b) C 1s, and (c) Ni 

2p3/2) of Ni3C-GO hybrid after calcination at 450 °C. (d) Raman spectra of GO sheets and 

Ni3C-GO hybrid after calcination at 450 °C. 
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Inspired by the unique form of the LbL-structured Ni3C-GO hybrid after calcination at 450 °C 

(abbreviated as Ni3C-GO LbL), the oxygen reduction reaction (ORR) was investigated to explore 

the potential application of these materials in energy conversion systems. Its electrocatalytic 

activity was also benchmarked against GO, Ni3C and a physically mixed Ni3C-GO composite 

(abbreviated as Ni3C-GO mix). The electrocatalytic activities of all the samples were first 

evaluated by cyclic voltammetry (CV) in 0.1 M KOH solution saturated with N2 and O2 at a scan 

rate of 20 mV s
-1

. The observed oxygen reduction peak of Ni3C-GO LbL shifted significantly to 

more positive potentials (-290 mV vs. Ag/AgCl) than that of GO (-310 mV vs. Ag/AgCl), Ni3C 

(-370 mV vs. Ag/AgCl) or Ni3C-GO mix (-360 mV vs. Ag/AgCl), as shown in Figure 7-2.15, 

thus suggesting a significantly enhanced electrocatalytic activity of LbL-structured Ni3C-GO 

hybrid. 

The ORR performance of the samples was further examined by using a rotating-ring 

disk electrode (RRDE) in an O2-saturated 0.1 M KOH solution at a rotation speed of 1600 rpm 

and a scan rate of 10 mV s
-1 

(Figure 7-2.16). The linear scan voltammograms (LSV) curves in 

Figure 7-2.16a confirm the ORR activity of Ni3C-GO LbL catalyst, with an onset potential of 

around -99 mV vs. Ag/AgCl. Compared to GO (-166 mV vs. Ag/AgCl), Ni3C (-240 mV vs. 

Ag/AgCl) and Ni3C-GO mix (-228 mV vs. Ag/AgCl), the Ni3C-GO LbL (-99 mV vs. Ag/AgCl) 

shows a more positive onset potential, thus further confirming the improved electrocatalytic 

activity of the Ni3C-GO LbL catalyst for the ORR. Even when compared to previous reports, my 

Ni3C-GO LbL catalyst shows a more positive onset potential, as summarized in Table 7-2.1.  

To investigate the effect of the Ni3C-GO LbL catalyst on the kinetics of the ORR, the 

RRDE measurement was performed at different rotation speeds from 200 rpm to 2500 rpm at a 

constant scan rate of 10 mV s
-1

 (Figure 7-2.16b). The corresponding Koutecky-Levich plots [19] 

(J
-1

 vs. ω
-1/2

) for my catalyst are parallel with good linearity and constant electron transfer 
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numbers for ORR at different potentials (-0.35, -0.40, and -0.45 V vs. Ag/AgCl), as shown in 

Figure 7-2.16c. The average transferred electron number (n) was estimated to be 2.6 which is 

slightly higher than that of 2.5 for Ni3C-GO mix (Figure 7-2.17).  

 

Figure 7-2.15. CV curves of the (a) Ni3C, (b) GO, (c) Ni3C-GO LbL, and (d) Ni3C-GO mix, 

recorded in 0.1 M KOH solution saturated with N2 (red line) and O2 (black line) at a scan rate of 

20 mV s
-1

. 

 

Moreover, to obtain a more in-depth understanding of the ORR process, electron transfer number 

(n) were estimated from hydrodynamic voltammograms collected from disk and ring electrodes 

(RRDE). The obtained n values during the ORR using Ni3C-GO LbL catalyst was estimated to be 

from 2.6 to 3.0 (from -0.4 V to -1.0 V vs. Ag/AgCl) (Figure 7-2.16d). Furthermore, the charge 

transfer resistances of the Ni3C-GO LbL and Ni3C-GO mix catalysts were investigated by 

electrochemical impedance spectroscopy (EIS) in 0.1 M KOH over the frequency range from 1 M 

Hz to 1 Hz. The typical impedance spectra of different catalysts are shown in Figure 7-2.18. The 
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diameters of the semicircle behaviors of the EIS data represent the charge-transfer resistance (Rct) 

at the electrode surface. It is obvious that the layer-by-layer assembled Ni3C-GO sample shows 

lower resistance, namely better performance, than the physically mixed sample (Ni3C-GO mix). 

 

Figure 7-2.16. (a) ORR polarization curves of (i) Ni3C, (ii) Ni3C-GO mix, (iii) GO, and (iv) 

Ni3C-GO LbL, recorded in O2-saturated 0.1 M KOH solution with a sweep rate of 10 mV·s
-1

 at a 

rotation rate of 1600 rpm, (b) ORR polarization curves of Ni3C-GO LbL at different rotation 

rates, and (c) corresponding Koutecky-Levich (K-L) plots of the Ni3C-GO LbL at different 

potentials. (d) The current collected on disk and ring electrodes catalyzed by Ni3C-GO LbL. 

 

Figure 7-2.17. ORR polarization curves of (a) Ni3C, (c) GO, and (e) Ni3C-GO mix at different 

rotation rates recorded in O2-saturated 0.1 M KOH solution with a sweep rate of 10 mV·s
-1

, and 
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corresponding Koutecky-Levich (K-L) plots of the (b) Ni3C, (d) GO, (f) Ni3C-GO mix at 

different potentials. 

 

Figure 7-2.18. Complex-plane impedance diagrams obtained by the electrochemical impedance 

spectroscopy (EIS) of different catalysts obtained in 0.1 M KOH. 

 

Table 7-2.1 Comparison of ORR activity of our ORR catalyst with previously reported materials 

(n is the number of electron transferred during the ORR).  

Sample information  Electrolyte Onset potential* 

(mV vs. RHE) 

n References 

Ni3C-GO LbL 0.1M KOH 861 3.76 Present work 

TiO2 0.1M KOH 713 2.41 Nat. Commun. 2015, 6:8696 

N-doped carbon film 0.1M KOH --- 3.72 Angew. Chem. Int. Ed. 2014, 53, 
9503-9507 

Mn3O4 Nanoparticles on 

Nitrogen-Doped Graphene 

0.1M KOH 830 3.81 Adv. Funct. Mater. 2014, 24, 

2072-2078 
covalent organic polymers 

with Co 

0.1M KOH 890 3.56 Angew. Chem. Int. Ed. 2014, 53, 

2433-2437 

Mesoporous N-doped carbon 0.1M KOH 730 2.6 Adv. Funct. Mater. 2012, 22, 

4584 

Reduced graphene oxide 0.1M KOH 810 2.7 Chem. Commun. 2013, 49, 6334 
N-doped graphene 0.1M KOH 800 2.7 Nat. Mater. 2011, 10, 780 

CoMn2O4 0.1M KOH or KCl 780 2.9 Nat. Chem. 2011, 3, 79 

Co2MnO4 0.1M KOH or KCl 850 3.3 Nat. Chem. 2011, 3, 79 
CoxMn3–xO4 0.1M KOH or KCl 860 3.4 Nat. Chem. 2011, 3, 79 

Porous calcium-manganese 

oxide (Ca2Mn3O8) 

microspheres 

0.1M KOH 850 3.5 Chem. Sci. 2013, 4, 368 

CoxMn3–xO4 0.1 M KOH or 

KCl 

880 3.7 Nat. Chem. 2011, 3, 79 

Co3O4/graphene composite 1.0M KOH 864 3.7 J. Am. Chem. Soc. 2012, 134, 

3517 
Manganese oxide containing 

mesoporous N-doped carbon 

0.1M KOH 810 3.8 Adv. Funct. Mater. 2012, 22, 

4584 



LbL assembly | Chapter 7 
 

 
 

249 
 

Flower-like manganese oxide 

on 

reduced graphene oxide 

0.1M KOH 840 3.8 Chem. Commun. 2013, 49, 6334 

Spinel MnCo2O4/ graphene 

composite 

1.0M KOH 885 3.9 J. Am. Chem. Soc. 2012, 134, 
3517 

Co3O4 nanocrystals on 

graphene 

0.1M KOH 880 3.9 Nat. Mater. 2011, 10, 780 

Iron-based catalyst (Fe-N/C) 0.1M KOH 700 3.9 Nat. Mater. 2011, 10, 780 

Platinum/carbon 0.1M KOH or KCl 50 3.9 Nat. Chem. 2011, 3, 79 
Spinel MnCo2O4 

nanoparticles + graphene 

sheet mixture 

1.0M KOH 845 4.0 J. Am. Chem. Soc. 2012, 134, 

3517 

N-doped graphene sheets 1.0M KOH 830 4.0 J. Am. Chem. Soc. 2012, 134, 

3517 
Manganese oxide (β-MnO2) 0.1M KOH 800 4.0 Angew. Chem. Int. Ed. 2013, 52, 

2474  

Layer-by-layer structured 

NiO-GO nanocomposite 

0.1M KOH 860 --- Chem. Commun. 2015, 51, 
16409 

Cobalt and 

nitrogen-functionalized 

graphene 

0.1M KOH 862 --- J. Mater. Chem. A 2013, 1, 3593 

*: All the onset potentials referenced to RHE are calculated through by the following equations. 

E(vs. RHE) = E(vs. Ag/AgCl) + 0.0592 × pH = E(vs. SCE) + 0.0592 × pH 

7-2.4. Conclusion  

I have synthesized NiCNNi-GO LbL hybrids through coordination-polymer-glued layer-by-layer 

assembly of graphene oxide sheets, in which the GO sheets serve not only as building units but 

also as nucleation sites for the growth of NiCNNi flakes. Even after thermal treatment, the 

layered NiCNNi parts are successfully converted to Ni3C with retention of the original LbL 

structure because the inserted GO layers effectively prevent random fusion of the metal source. 

My method relies on the layering capabilities of coordination polymers and their interlayer 

adhesive properties for spontaneous LbL construction. My approach should also be available for 

the synthesis of many other inorganic-organic hybrids with ordered LbL architectures. Thus, a 

variety of well-designed alternating layered nanoscale structures with novel properties will be 

realized by varying the initial functional components in my synthetic scheme. 
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Chapter 8 

8. General Conclusions and Future Prospects 

8.1. General Conclusion 

Various inorganic nanoporous materials have been drawing intense research interest not only for 

their unique structural and surface properties, but also for their broad range of applications such 

as their potential in catalysis, drug delivery, charge transfer, and energy storage and separation. 

Among these materials, porous coordination polymers (PCPs) have received much attention [1]. 

Their tunable pore structures, functionality, structural modifications and regularity make them 

attractive materials for the aforementioned applications. A family of these materials, 

cyano-bridged coordination (CPs), consisting of transition metal ions and cyanide ligands, in 

which the metal ions are bridged by cyanide groups (–M–C≡N–Ḿ–) is of great importance. My 

dissertation demonstrated that various two-dimensional (2D) and three-dimensional (3D) 

cyano-bridged CPs can be realized. Shapes in a nanoregime can be synthesized under a controlled 

crystallization process using trisodium citrate dihydrate as a chelating agent [2]. The tailor-made 

nanostructured cyano-bridged CPs were optimized using a chelating agent, trisodium citrate 

dihydrate, which determined the size and shape of my products. The concentration of trisodium 

citrate dihydrate is critical for the determination of the size and the shape of the final products. As 
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the amount of trisodium citrate dihydrate increases, the final size gradually increases, and the 

shape improves.  

It is well known that the balance between nucleation and crystal growth determines the 

particle size in the final products. In my study, free metal ions are released steadily and slowly 

from the metal-citrate complex and react with metal cyanate ligands at the initial stage of the 

reaction. Subsequently, the nuclei are generated and grow by interaction to form the final CP 

products with fine crystal structures. Therefore, by increasing the concentration of trisodium 

citrate dihydrate, the number of nuclei formed at the early stage of the reaction is thought to be 

decreased. These few nuclei undergo crystal growth, leading to a final product with a larger 

particle size. In contrast, the absence of the chelating agent resulted in distorted and random 

particles. According to my strategy, I have realized various fine monocrystalline materials, which 

can be abbreviated as CoCNCo, CoCNNi, NiCNCo, NiCNNi, FeCNCo, CoCNFe, FeCNFe, 

NiCNCr, MnCNMn, MnCNCo, MnCNRu, FeCNNi, and CuCNPt (Table 8.1). 

Cyano-bridged CPs could serve as precursors for the preparation of various nanoporous 

metal oxides and carbides [3]. After regulated thermal treatments in air or under an inert 

atmosphere, various nanoporous metal oxides and carbides, respectively, were successfully 

prepared. The original morphology is well retained, even after the thermal treatments. My 

strategy has proven to be a promising solid-state method for the preparation of nanoporous metal 

oxides and carbides with fine crystal structures. This method has the potential to overcome the 

difficulties in preparation through traditional approaches (soft- and hard-templating) thanks to my 

synthetic procedures. By this strategy, I have already obtained various nanoporous metal oxides, 

such as spinel Co3O4, CoNi2O4, NiCo2O4, FeCo2O4, CoFe2O4, Mn3O4, MnxCo3-xO4, and 

MnxRu3-xO4; NiO, α-Fe2O3, γ-Fe3O4, Pt/CuO, and CoNiFe-O; carbides, such as Ni3C nanoporous 

flakes; and other nanocomposites, such as layered nickel oxide/graphene oxide (NiO-GO) and 
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nickel carbide/graphene oxide (Ni3C-GO) hybrids (Table 8.1). The final products show a 

significant efficiency and interesting results for supercapacitors, oxygen reduction reaction 

(ORR) and oxygen evaluation reaction (OER), H2O2 production, drug delivery systems (DDSs), 

and photocatalytic applications. 

 

Table 8.1 Electron microscope images of tailored 2D and 3D cyano-bridged CPs nanostructures 

and their corresponding thermally derived nanoporous metal oxides and carbides. 

As-prepared 

products 
Shape 

Thermally derived 

oxides/carbides 
Shape Ref. 

FeCNFe 

nanocubes 

 

Nanoporous γ-Fe2O3 

 

[4] 

 

FeCNFe 

nanocubes 

 

Hollow α-Fe2O3 

 

[5] 

CoCNCo 

nanocubes 

 

Nanoporous spinel 

Co3O4 

 

[6] 

FeCNCo 

nanocubes 

 

Nanoporous spinel 

FeCo2O4 

 

[6] 
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Hollow 

CoCNFe 

nanocubes 

 

Hollow CoFe-oxide 

 

[6] 

Hollow 

FeCNFe 

nanocubes 

 

Hollow Fe-oxide 

 

[6] 

NiCNNi 

nanoflakes 

 

Nanoporous NiO 

 

[7] 

CoCNNi 

nanosheets 

 

Nanoporous 

CoNi2O4 sheets 

 

[8] 

NiCNCo 

nanocubes 

 

NiCo2O4 nanocages 

 

[8] 
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Layered 

NiCNNi-GO 

hybrids 

 

layered NiO-GO 

hybrids 

 

[9] 

MnCNMn 

nanocubes 

 

Nanoporous spinel 

Mn3O4 

 

[10] 

MnCNCo 

nanocubes 

 

Nanoporous spinel 

MnxCo3-xO4 

 

[10] 

MnCNRu 

nanocubes 

 

Nanoporous spinel 

MnxRu3-xO4 

 

[10] 

Layered 

NiCNNi-GO 

hybrids 

 

layered Ni3C-GO 

hybrids 

 

[11] 
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The thermal conversion of cyano-bridged CPs into nanostructured metal oxides and carbides can 

be explained by various pathways as follows:   

8.1.1. Direct thermal treatments  

In general, this reaction is accompanied by the loss of water molecules in the first stage of 

heating as a normal product. The metal components can be oxidized, and the organic components 

(−C≡N−) are removed by continuous thermal decomposition in air. Of course, the metal ions are 

uniformly separated by cyano groups in the crystal system, so it is expected that nanoporous 

metal oxides with grain sizes can be obtained. As described in Chapter 4-1, new nanoporous iron 

oxide nanoparticles with superparamagnetic behavior were successfully synthesized from 

Prussian blue (PB) nanocubes through a thermal conversion method (Figure 8.1) [4]. PB 

(Fe4[Fe(CN)6]3·xH2O), in which iron ions are bridged by cyano groups (Fe
III

–C≡N–Fe
II
), is 

considered as a potential precursor for nanoporous iron oxides with high surface areas. The iron 

components can be oxidized, and the organic components are removed by thermal treatment in air. 

The morphology of the obtained PB derivatives after calcination (PB_250 and PB_400) remains 

a nanocube, but their sizes were slightly reduced, and their surface roughness increased. The 

reduction of the particles size is mainly caused by removing the cyano groups and the interstitial 

water molecules during calcination.  

By the same method, I report in Chapter 3 the controlled crystal growth of various PBA 

(i.e., Mn3[Mn(CN)6]2 (abbreviated as MnCNMn), Mn3[Co(CN)6]2 (abbreviated as MnCNCo), 

and Mn2[Ru(CN)6] (abbreviated as MnCNRu)) with tunable particle sizes and cubic shapes. After 

aerobic calcination, the PBAs are successfully converted into nanoporous Mn-based oxides with 

different compositions (Figure 3.10-12; Chapter 3) [10]. Moreover, by starting with flakes (e.g., 

NiNi and CoNi), a well-defined 2D morphology, even after calcination, the initial flake 
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morphology is well preserved with the additional formation of a nanoporous structure of metal 

oxides (Figure 8.2), as demonstrated in Chapters 6 and 7 [7,8,11].  

 
Figure 8.1. SEM images of (a) PB nanocubes and thermally derived iron oxides at (b) 250 °C 

(PB_250) and (c) 400 °C (PB_400).  

 

Figure 8.2.TEM images of (a) the as-prepared NiNi, (b) nanoporous NiO, (c) the as-prepared 

CoNi, and (d) nanoporous CoNi-oxide flakes. 

8.1.2. Kirkendall effect  

Originally, the term ‘‘Kirkendall effect’’ referred to the different atomic diffusive rates of the 

binary elements under thermal treatment. Due to the difference in the diffusion rate of elements 

during heating, the generation of porosity in the lower-melting component side of the diffusion 

couple near the interface could create hollow nanostructures. As described in Chapter 6-2, 

starting with CoCo and NiCo nanocubes, after calcination, a hollow space is formed at the center 
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of the nanocubes, leading to the transformation into nanocages (Figure 8.3). Nanocages from 

both compositions show a similar size distribution when compared to the original nanocubes. The 

sample obtained from CoCo (i.e., cal-CoCo) mostly contains a Co3O4 phase with a cubic spinel 

structure, while the sample obtained from NiCo (i.e., cal-NiCo) has a mixture of NiCo oxide and 

Ni metal. The formation of the nanocages can be explained by the Kirkendall effect, which is 

based on a non-equilibrium inter-diffusion process. During the first stage of the thermal oxidation, 

the oxidized shells are formed immediately, due to the difficulty with which oxygen diffuses 

toward the inner parts. Therefore, free metal ions tend to move toward the shell region (i.e., 

outward diffusion) after the decomposition of the organic units in order to react with oxygen, 

leading to formation of hollow interiors.  

 

Figure 8.3. SEM images of (a-1) CoCo and (b-1) NiCo nanocubes and (a-2) cal-CoCo and (b-2) 

cal-NiCo nanocages. 

8.1.3. Etching 

For creating an interior hollow cavity, in the general etching process, the etching reaction 

normally starts from the external surface of the particles. The large PB mesocrystals formed from 
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the aggregation of small crystallites often have defects/voids. Thus, it was possible for etching 

agents (e.g., HCl) to diffuse into the inner parts of mesocrystals through the defects, leading to 

the formation of an interior hollow cavity. The capping agent (e.g., PVP) plays a crucial role in 

the etching process. It serves as a surface-protecting agent, which can decrease the etching rate on 

the particle surface. Then, such hollow PB nanocubes offer a great opportunity to make 

nanoporous iron oxides with hollow interiors, making it possible to realize the advantages of a 

hollow cavity. After the thermal treatment, nanoporous iron oxide particles with hollow structures 

and high surface areas were obtained. Surprisingly, the crystalline phases of the obtained iron 

oxides and their crystalline grain sizes were precisely controlled by the applied calcination 

temperatures and the volumes of internal hollow cavities of PB particles. As described in 

Chapter 4-2, I demonstrated that Prussian blue (PB) coordination polymers can be successfully 

etched by acidic solution for the preparation of hollow PB nanoparticles [5]. Using hollow PB 

nanoparticles as starting materials, I calcined them under various conditions to prepare 

nanoporous Fe oxides with a crystallized α-Fe2O3 (hematite) phase (Figure 8.4). The obtained 

α-Fe2O3 exhibited a high surface area, which will be useful for photocatalytic applications. 

 
Figure 8.4. SEM images of (a) PB nanoparticles before chemical etching, (b) PB nanoparticles 

after chemical etching, and samples calcined for (c) 4, (d) 5, (e) 6, and (f) 7 h. 
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8.1.4. Hard-templating method 

The hard-templating method is very useful for the preparation of highly crystallized frameworks 

with a nanodimensional porous structure. The porous structure for metal oxide can be printed 

after removal of the template by treating it with acid and/or by calcination in an aerobic condition, 

because the porous oxide structure is very susceptible to collapse in both cases. As described in 

Chapter 2, I have used small NiCr nanocubes as a sacrificial template for the synthesis of hollow 

CoCo, FeCo, CoFe, and FeFe PB analogues [2]. The different dissolution rates enabled the 

removal of NiCr core by etching using a diluted hydrochloric acid solution (Figure 8.5), resulting 

in hollow spheres of the hard-dissolved PB analogues. After subsequent calcination in air, I 

succeeded in obtaining nanoporous spinel Co3O4, FeCo2O4, CoFe2O4, and Fe2O3 with hollow 

interiors. 

 

Figure 8.5. Dissolution test of solid NiCr nanocubes, solid CoCo nanocubes, solid FeCo 

nanocubes, solid CoFe nanocubes, and solid FeFe nanocubes. 

8.2. Future Perspectives 

In my dissertation, several examples of the preparation of functional structures and materials 
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based on coordination nanoarchitectonics are introduced. Because of the promising advantages 

offered by coordination chemistry, such as high directionality, wide selection of components, and 

multivalent nature, the structure of certain materials can be rationally architected from various 

molecules and metal ions. This is one of the most logical and realistic bottom-up strategies to 

construct objects at a nanoscale level with a structural precision arising from using molecules (or 

ions) as building units. The examples shown in this thesis have showcased several attractive 

features of coordination materials (i.e., cyano-bridged CPs). 

Biological systems could be considered as naturally occurring examples of material 

synthesis through self-assembly. In biological systems, metal coordination is used in some 

specific functional units, such as hemeproteins, but is generally not used in the formation of 

manmade structures. Self-assembly processes of biological structures are mostly based on van der 

Waals interactions and hydrophobic effects with the aid of electrostatic interaction and hydrogen 

bonding. These interactions are individually negligible, but together, they can be a powerful tool 

to assemble matter in a well-defined manner with sufficient strength. Therefore, biological 

materials, including living cells, have a flexible, soft structural nature, which makes them highly 

responsive to external stimuli. In addition, biological systems have multicomponent features with 

structural hierarchies. If materials produced by coordination nanoarchitectonics included such 

features, the functions of the coordination materials could be implemented in many advanced 

applications. 

Further efforts are necessary for the development of coordination materials in order to 

satisfy the above-mentioned requirements. The structural softness of certain coordination 

materials, such as coordination polymers (CPs) and metal-organic frameworks (MOFs), recently 

became an attractive research target that can be achieved through several strategies, such as using 

soft ligand and integrated structures [12]. I believe this research direction can achieve great 
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success by significantly developing the dynamic functions and applications of coordination 

materials, including sensing and drug delivery systems. On the other hand, the exploration of 

methodologies to architect a well-defined multicomponent assembly and highly hierarchical 

structures needs more effort and consideration. One possible strategy to architect such systems on 

the basis of coordination bonding would be to construct low-dimensional structures and assemble 

them into 3D motifs. For example, 2D coordination polymer nanosheets can be assembled into 

3D stacked structures through appropriate methods, such as Langmuir-Blodgett and 

layer-by-layer assembly, as mentioned in the introduction (Figure 1.6) and supported by Chapter 

7. Some strategies enable the construction of multiple components within two dimensions 

(Figure 1.8). These interfacial processes for constructing low-dimensional structures are the keys 

to synthesizing highly hierarchical structures with coordination materials. A paradigm shift from 

simple assembly to an interfacial low-dimensional strategy is necessary to further develop 

functional materials with coordination chemistry. 

Another trend, the urgent need for nanoporous metal oxides with definite compositions 

and highly crystallized frameworks, is motivating scientists to discover novel and facile synthetic 

methods. A solid-state strategy for the preparation of nanoporous metal oxides with well-defined 

nanostructures in a predictable way is highly promising and required for large-scale production to 

meet the requirements of the rapid development of applications. Using cyano-bridged CPs, many 

nanoporous metal oxides/carbides or even alloys can be prepared by annealing in air or under an 

inert atmosphere (Figure 8.6). Various oxides or carbides can be prepared as much as I have 

many fine CP structures. I strongly believe that this method has the potential to overcome 

difficulties in the fabrication of nanoporous metal oxides and carbides by traditional approaches.  
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Figure 8.6. Schematic illustration of the self-assembled cyano-bridged CPs in 2D and 3D shapes, 

followed by thermal conversion into well-retained nanoporous inorganic materials. 

 

Moreover, it is well-known that PB is a controlled synthesized material formed from small 

crystals arranged in large mesocrystals. This feature enables me to use a template to determine 

the final shape of PB, and therefore I can prepare it in many forms. For instance, Qu et al. have 

reported the preparation of highly regular and ordered in the vertical orientation PB nanowires 

via simple electrochemical deposition with a polycarbonate membrane sacrificial template for the 

effective modification of glassy carbon electrodes [13]. After dissolution of the template by 

chloroform, PB nanowires were obtained. I can extend this idea to deposit PB between 

nanochannels in the top surface of thin metal films as efficient transistors in manufacturing 

(Figure 8.7). This can be extended to prepare ferromagnetic nanocrystal assemblies (e.g., FePt) 

or other magnetic materials (e.g., CoPt) with chemically and mechanically robust characters that 

can support high-density magnetization reversal transitions, and porosity can be introduced for 
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the first time. FePt and CoPt nanoparticles have generated great interest recently because of their 

chemical stability, efficient catalytic activity toward oxygen reduction reaction, and potential 

applications in high-density data storage and high-performance permanent magnets.  

 

Figure 8.7. Controlled crystal growth of PBAs in the top surface of a metal substrate for efficient 

transistor manufacturing. 

 

Last but not least, capacitors are the critical passive part of electronics. Currently, they can work 

efficiently at 175°C, but automobile industries require power systems that function up to 250°C, 

and the aviation industry demands function up to 500 °C [14]. I expected the improvement of 

semiconductors, especially for high-temperature electronics. In particular, SiC-based active 

devices, such as transistors and Schottky diodes, are capable of operating at over 500°C. They 

currently reached an advanced manufacturing stage, and I might be able to control the sizeable 

space in the module. If I succeed in controlling various layers from PB, PBAs, and their derived 

nanoporous structures where higher dielectric materials and ferroelectric ones are stacked on 

semiconductor substrates with high-temperature durability, it will enable innovation in car 

electronics and expand the variety of materials in the semiconductor industry. 
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