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Preface 

Porous carbons have been considered as promising electrode materials due to their excellent 

virtues such as low cost, designable porous framework, and good electrical conductivity. Lots 

of synthetic methods have been developed for fabrication of functionalized nanoporous carbon 

materials with high specific surface areas, tunable and accessible nanopores, high degree of 

graphitization and heteroatoms doping, as introduced in Chapter 1.  

Herein, I focus on synthesis of nanoporous carbon materials with tailored properties, 

including relatively high specific surface area, accessible nanopore, relatively high degree of 

graphitization, and nitrogen doping, by using the hard-templating, soft-templating and self-

templating methods. 

In Chapter 2, nitrogen-doped mesoporous carbon spheres with large pore sizes are 

successfully prepared through self-polymerization of dopamine and spontaneous co-assembly 

linked with diblock copolymer micelles (PS-b-PEO).   

Chapter 3 introduces a facile and sustainable procedure for the synthesis of nitrogen-doped 

hierarchical porous carbons with three-dimensional interconnected framework. The strategy, 

based on a colloidal crystal templating method, utilizes nitrogenous dopamine as the precursor. 

Chapter 4 combines the synthetic methods developed in Chapter 2 and 3, designs and 

successfully synthesizes nitrogen-doped hollow carbon spheres with engineered large tunable 

mesoporous (~20 nm) shells for the first time. 

From Chapter 5 and 7, I use self-designed zeolite imidazole framework (ZIF) as both the 

self-template and carbon precursor. In Chapter 5, core−shell structured ZIF-8@ZIF-67 

crystals are prepared through a seed-mediated growth method, and firstly used for preparation 

of selectively functionalized nanoporous carbon. 

Chapter 6 explores a novel cage-type highly graphitic porous carbon-Co3O4 polyhedron 

(GPC-Co3O4) by executing a two-step annealing of core−shell ZIF-8@ZIF-67, inspired by the 

research in Chapter 5. 

In Chapter 7, I oriented synthesize of nanoporous carbons with adjustable functionalities 

by using bimetallic ZIF as the precursor, which merges the advantages of zinc and cobalt ions 

in one ZIF crystal.  

Chapter 8 summarizes my achivements in the tailored design and synthesis of functional 

nanoporous carbon materials, as well as the future prospects.  
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1.1. Introduction 

Considering global warming and other environmental issues caused by the traditional 

fossil-based energy generation technologies as well as the increasing demand for portable 

electronic devices in modern society, the new-type energy devices, such as fuel cells,[1] 

lithium-ion batteries,[2] lithium-air batteries,[3] and electrochemical capacitors[4] have been 

the focus of research. Their low operation temperature, small dimension, and high efficiency 

make them as the ideal power supplies for portable electronic devices, automobiles, and 

distributed stationary power sources.[5,6]  

Porous carbons have been considered as promising electrode materials for these energy 

devices due to its excellent virtues such as low cost, designable carbon framework and surface, 

high chemical and mechanical stability, high conductivity along with high specific surface area 

and abundant porosity.[7,8] Due to the well-developed synthetic methods, a number of 

nanoporous carbon materials with high surface areas and tunable and accessible pores have 

recently been utilized in the field of energy conversion and storage devices.[9,10] These 

nanoporous carbon materials with controllable morphologies are synthesized by using a wide 

variety of hard templates such as ordered mesoporous silica (e.g., MCM-41[11] and SBA-

15[12]) and aluminosilicate, colloidal silica particles, colloidal crystals, and so on.[13-16] Pore 

size of the resultant nanoporous carbon materials has been tuned from micropore to macropore 

regions. Alternative to the nanocasting method, nanoporous carbon or carbon composites with 

high surface area, tuned pore size, designed porosity, multiple length scale, and different 

compositions have been obtained by the self-assembly of amphiphilic organic molecules as 

soft template with carbon precursors.[17,18] Mesoporous carbon fibers with hierarchical 

porous structures can also be obtained by integration of the hard and soft-templating 

methods.[19] Various kinds of nanoporous carbon materials with random pores have been 

prepared via self-templating method by directly carbonization of carbon precursors, such as 

polymer, biomaterials, sucrose, and metal−organic frameworks.[20,21] Considering the 

application in electrochemical fields, lots of highly graphitic carbon materials have been 

explored by adopting high annealing temperature or adding some specific metals as the 
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catalysts. Furthermore, heteroatoms doping has been demonstrated as an effective way to 

modify the electron donor/accepter characteristics of carbons, endowing carbon materials with 

new functionalities and broadening their applications.  

 Nanoporous carbon materials with designed properties are critical for application. This 

review article aims to systematically summarize works concentrated on optimizing properties 

of nanoporous carbon materials for illustrating demanded electrochemical performance as 

electrodes. In this review, researches on the design of functional porous carbon materials are 

categorized into several chapters, as illustrated in Figure 1.1. 

 

 

Figure 1.1 Tailored design of nanoporous carbon materials towards electrochemical 

applications. Reproduced with permission from ref. [123], Copyright 2013, Wiley-VCH. 

Reproduced with permission from ref. [63], Copyright 2009, ref. [89], Copyright 2010, ref. 

[111], Copyright 2012, ref. [166], Copyright 2013, American Chemical Society.  
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1.2. Control of Pore Size, Morphology, and Structure 

1.2.1. Pore Size Control 

Porous structure of carbon materials is a determining factor that is related to 

electrochemical performance.[22,23] Many parameters including connectivity, pore size 

distribution, and pore length influence ion transportation resistance and diffusion distance. 

Consequently, carbon materials with different pore sizes in the region from micropore to 

macropore have been synthesized by several methods such as direct carbonization of carbon 

precursor, nanocasting, and organic-organic self-assembly methods.[24-27] The electrolyte 

diffusion as well as catalytic performance can be tuned by tailoring pore size of carbon 

materials from micropore to macropore regions. Carbon materials with meso/macropores 

provide facile transfer and diffusion of reactants and products in the reactions over electrodes.  

Micropores in carbons can provide high specific surface area, confining ions, and 

accommodating charges, which are especially important for electrochemical double-layer 

capacitor. Preparation of hierarchical porous carbon materials with integrated properties would 

offer opportunity to commercial carbon electrodes for practical applications. In this section, I 

classify representative synthetic methods of nanoporous carbon based materials by pore size in 

Table 1.1, and focus on summarizing effects of the pore size on electrochemical performance.
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Table 1.1 The representative methods of synthesis of nanoporous carbon powders. 

Pore size Method Template Carbon sources 
Pore size，Morphology 

and Description 
Ref 

Microporous 

Direct 

carbonization 
Self-template 

MOFs < 2 nm 25 

Al-PCP 

< 2 nm 

specific surface area (SSA) 

(5000 m2 g-1) 

28 

ZIF-8 
~1.1 nm 

SSA > 1110 m2 g-1 
29,30 

Extended Stöber 

method 
Resorcinol/formaldehyde 

Microporous carbon spheres, 

SSA of 504 m2 g-1 
33 

Nanocasting FAU type zeolite 
Poly(acrylonitrile) and 

poly(furfuryl alcohol) 

< 2 nm 

SSA > 1300 m2 g-1 

34,35,

36 

Mesoporous 

Nanocasting 

Ordered mesoporous silica 

Sucrose 

2.2-3.3 nm 

2D hexagonally ordered 

mesoporous structures 

37 

Silica and add boric acid as pore 

expanding agent 
3-10 nm 38 

MWSBA-15 5-9 nm 39 

SiO2 particles with diameter of 

16.8-39 nm 
12.4-34.5 nm 44 

Organic-organic 

self-assembly 

Soft-templating by using thermally decomposable surfactant and thermosetting polymer 

Pluronic F127 

Resorcinol/formaldehyde 

and triethyl orthoacetate 

~6 nm 

SSA of ~1300 m2 g-1 
45 

Resol (phenol/formaldehyde) 6.8 nm, SSA of 652 m2 g-1 46 

Pluronic P123 Resol (phenol/formaldehyde) 3.8 nm, SSA of 550 m2 g-1 47 

Pluronic F127 Formaldehyde and resorcinol ~3 nm mesoporous CNSs 48 
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Phenolic resol 
~3 nm, SSA of ~900 m2 g-1 

OMC nanospheres 
78 

Block copolymers with long 

hydrophobic chains 
Resol > 10 nm 54,55 

Polystyrene-block-poly(4-

vinylpyridine) (PS-b-P4VP) 
Resorcinol-formaldehyde 36 nm 56 

PEO-b-PS diblock copolymers 

with various PS chain lengths 
Phenolic resol 12-33 nm 57 

Diblock copolymer PEO125-b-

PS230 

homopolystyrene (h-PS49) as a 

pore expander 

Resol 23-37 nm 58 

Hierarchically 

nanoporous 

structure 

Direct 

carbonization 
Self-template 

Carbide Hierarchical pore architectures 24 

MOFs 
Micro- and mesopores  

SSA of 990-1820 m2 g-1 
64 

Hard-templating 

Silica or zirconia with bimodal 

mesoporous-macroporous 

structure 

Furfuryl alcohol 
Interconnected macroporous 

and mesoporous 

26,27,

59,60 

Submicrometer-size solid 

core/mesoporous shell silica 

spheres 

Phenol and 

paraformaldehyde 
Spherical carbon capsules 74 

Ordered hierarchical 

nanostructured silica 
Furfuryl alcohol 

Ordered hierarchical 

nanostructured carbons 
63 

Colloidal silica 
Monodisperse polystyrene 

latex 
OMC with mesoporous walls 67 
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MgO 

Thermoplastic (e.g., 

poly(vinyl alcohol), 

hydroxyl propyl cellulose, 

poly(ethylene terephthalate)) 

Aperiodic hierarchical porous 

structures 
65 

Ni(OH)2/NiO phenolic resin 
3D aperiodic hierarchical 

porous structures 
66 

Dual-templating 

approach by 

combining hard- 

and soft-

templating method 

Monodispersed silica colloidal 

crystals and amphiphilic triblock 

copolymer PEO−PPO−PEO Soluble phenolic 

formaldehyde 

Macropore sizes 230−430 nm, 
mesopore sizes ~11 nm 

61 

Poly(methyl methacrylate) 

colloidal crystals and amphiphilic 

triblock copolymer surfactants 

Ordered macropores (~342 nm) 

and mesopores (~3 nm) 
62 

Macroporous 

Hard-templating 

method 

Monodisperse silica nanoparticles 

with size of 150-800 nm 

Phenol and formaldehyde 

200 nm 68 

Monodisperse silica particles of a 

diameter in the range of 

40–90 nm 

62 nm 69 

12 nm colloidal silica spheres Sucrose and cyanamide 
Ordered macroporous carbon 

150 nm 
70 

Direct 

carbonization 
Self-template 

Poly(divinylbenzene) 
Macropore 

SSA of 2360 m2 g-1 
71 

Resorcinol-formaldehyde 

aerogels 
70-80 nm 72 

 

 

  



Chapter 1. Designed Fabrication of Nanoporous Carbon Materials towards Electrochemical Applications 

8 

As shown in Table 1.1, microporous carbon can be synthesized by direct carbonization 

of porous solid precursors containing abundant micropores and large carbon content like 

porous coordination polymer (PCP)[28] and metal−organic frameworks (MOFs).[29,30] Since 

the first report by Xu et al.,[31,32] several groups have reported unique conversion pathways 

of MOFs to nanoporous carbons. Recently, a simple Stöber method was extended for 

preparation of monodispersed microporous carbon spheres.[33] By utilizing a nanocasting 

method, the pore size of nanoporous carbon has been adjusted in the range from micropore to 

macropore regions by choosing suitable hard template with various pore sizes. Kyotani et al. 

reported a kind of microporous carbon by using FAU type zeolite, which is a pioneering study 

of carbon materials prepared with hard template.[34-36] Mesoporous templates such as silica 

and aluminosilicate have been studied for preparation of mesoporous carbon materials with 

designed internal (ordered or disordered porous structure, large-sized mesopores, and 

hierarchical nanostructures) and external morphologies (powders, fibers, spheres, rods, and 

monoliths).[37-44] Alternative to the hard-templating method, mesoporous carbon materials 

can be synthesized according to the organic-organic self-assembly approach of thermosetting 

polymer and thermally decomposable surfactant, which is called as the ‘‘soft-templating’’ 

method, is convenient and efficient.[45-48] According to the development of the soft-

templating approach, mesoporous polymer and carbon films have also been developed by 

several groups.[45,49-53] Mesoporous carbon materials with pore size larger than 10 nm were 

obtained using non-Pluronic surfactants showing strong hydrophobic/hydrophilic contrast.[54-

58] Bimodal mesoporous-macroporous carbon and silica-carbon composite were thus designed 

by combination of the hard- and soft-templating methods; the silica-carbon composite can be 

converted to hierarchical porous carbon based materials.[59-63] Hierarchical porous carbon 

materials with disordered structure were obtained by direct carbonization of carbide and MOFs, 

or using metal oxides as sacrificial templates.[24,64-66] Macroporous carbon materials with 

pore size larger than 50 nm were also synthesized through replication of large solid templates 

and carbonization of polymeric precursor gels.[67-72] Although the soft-templating method 

appears appealing in comparison of the hard-templating method, it remains difficulty to have 
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fully reproducible syntheses in different batch scale, in terms of porosity parameters (pore size, 

structure, and surface area) and materials texture and morphology.  

In recent years, many efforts have been made to consider influence of pore sizes of 

nanoporous carbon materials on electrochemical performance. Du et al. deposited platinum (Pt) 

nanoparticles on a series of carbon aerogel samples with different pore sizes and investigated 

their electrocatalytic activity for oxygen reduction reaction (ORR). Then the Pt nanoparticles 

deposited on carbon aerogel with the mean mesopore size of 18.5 nm exhibited the best 

electrochemical performance for ORR.[73] According to Joo’s study, Pt nanoparticles over 

ordered mesoporous carbon (OMC) showed an improved electrocatalytic activity for oxygen 

reduction, compared to that over common microporous carbon materials such as carbon black, 

charcoal, and activated carbon fibers.[74] They mainly attributed the improved activity due to 

the expanded pore size. OMC materials (pore sizes between 2 nm and 50 nm) exhibit diffusion 

limitation for large reagent molecules and then larger pores opening are demanded after loading 

of catalyst particles. Therefore, design of nanoporous carbon with large and much accessible 

porous structure is highly desired. 

Hierarchical nanostructured carbon materials obtained by replication of hierarchical 

nanostructured silica template were explored for the first time to support high loading of Pt 

nanoparticles (60 mass%) as cathode catalyst in proton exchange membrane fuel cell (PEMFC). 

The resulted catalyst with uniform dispersity, small particle size of Pt nanoparticles, and open 

network exhibited extremely improved catalytic activity in ORR by ca. 53-88%, compared to 

that of carbon black Vulcan XC-72 (VC)-supported Pt (60 mass%). The commercial carbon 

supports are dominantly composed of micropores which are easily blocked during loading Pt 

catalysts. Thus, the hierarchical porous carbon materials with high surface area, large pore 

volume, and well-interconnected bimodal porosity are more ideal candidates for porous 

catalyst support in fuel cells compared to commercial microporous carbon materials.[63,75] 

Two micrometer-sized carbon spheres named as PC-I and PC-II, which respectively consist of 

abundant mesopores and macropores, were synthesized from simple organic salt precursors by 

using an ultrasonic spray pyrolysis method. The SEM and TEM images are shown in Figure 
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1.2a-c. The porous carbon spheres were tested as pore-forming additives in Vulcan XC-72. 

According to the evaluation on unit cell performance, the anode catalyst mixture of 

PtRu/Vulcan and PtRu/PC-I showed the highest performance improvement (Figure 1.2d). For 

the reduction of O2 over the cathode, the addition of PC-II in E-TEK commercial Pt/C catalyst 

significantly improved the performance of the reduction of O2 over the cathode (Figure 

1.2e).[76] These results demonstrate that inclusion of carbon materials with outsized pores is 

an effective way to facilitate smooth mass transport of air and methanol, emphasizing 

importance of porous structure for processing highly efficient self-breathing fuel cells. 

 

 

Figure 1.2 SEM micrographs of (a1) PC-I, (b1) PC-II, and (c1) Vulcan XC-72, TEM 

micrographs of carbons and PtRu catalysts supported on each carbon: (a2) PC-I, (a3) PtRu/PC-

I, (b2) PC-II, (b3) PtRu/PC-II, (c2) Vulcan XC-72, and (c3) PtRu/Vulcan XC-72. (d) Voltage 

and power density responses of anode PtRu catalyst mixtures supported on PC-I and Vulcan 

XC-72, respectively and (e) cathode catalysts made from Pt/C (60 mass% Pt, E-TEK) mixed 

with various amounts of PC-II. Unit cell conditions: cell temperature, 70 °C; PtRu anode 

catalyst loading, 5 mg·cm-3; Pt cathode catalyst loading, 3 mg·cm-3; methanol flow rate, 2 

cm3·min-1; and airflow rate, 1000 cm3·min-1. Reproduced with permission [76]. Copyright 

2007, American Chemical Society.  
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1.2.2. Morphological and Structural Controls 

In addition to pore size, other factors such as architecture, length and orientation of 

pores and external morphology have great potentials to design electrochemical activity of 

materials. For example, open and interconnected pores permit fluid to flow through whole 

materials. It is well known that morphology and porous structure of carbon materials affect 

electrochemical corrosion (often named as “oxidation resistance”). Mesoporous carbon 

materials have been synthesized with morphological controls to polyhedrons, rods, fibers, 

monoliths, and spheres.[77,78] By integration of porous anodic alumina membrane utilized as 

a hard template, together with the soft template of Pluronic F127 triblock copolymer, OMC 

nanofibers with highly ordered parallel channels and regularly circulated pores have been 

developed.[19] The transport of ions, reactants, and products is demonstrated to be much easier 

in three-dimensional (3-D) ordered macroporous carbon materials with highly interconnected 

pores, leading to small resistance, short diffusion pathway, and high electrochemical 

performance.[68,79,80] Two different mesoporous carbon materials with similar 

physicochemical property, but different mesoporous structures, namely, CMK-3 with ordered 

mesospaces and wormhole-like mesoporous carbon have been used for loading Pt 

nanoparticles.[81] Hexagonally arrayed carbon nanorods of CMK-3 provide Pt nanoparticles 

with a number of electrochemically active sites at the surfaces. Consequently, Pt/CMK-3 

exhibited a good activity in both ethanol electrooxidation and ORR, with the mass activity 

increased by a factor of 6 and 3.6 times, respectively. It suggested that the desirable pore 

morphology of mesoporous carbon would be very prominent in the case of liquid reaction in 

terms of the role of easy mass transportation. As to channel length of nanoporous carbon, it has 

been demonstrated that carbon materials with short channel length have better electrochemical 

performance compared to those with longer channels,[82,83] since the decrease in the channel 

length will lower the resistance of mass transportation during electrochemical process. 
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1.2.3. Control of Graphitization Degree 

It is well known that the conductivity of porous carbon materials is proportional to its 

graphitization degree that will affect internal Ohmic resistance, Ohmic polarization, 

concentration polarization, and electrochemical performance while using such porous carbon 

electrodes. Improvement of graphitization degree is helpful to alleviate corrosion of the carbon 

and thus improve the durability. Therefore, porous carbon with graphitic structure on the 

atomic scale is highly desirable. Recently, a multitude of mesoporous carbon materials with 

designed pore structure and graphitic and/or semigraphitic walls have been synthesized by 

employing several methods and using different carbon sources.[84-86] As summarized in 

Table 1.2, the synthetic methods are classified into four major groups: (1) inverse replication 

technique, based on impregnating fluid of easily graphitized carbon precursor into hard 

templates of mesoporous silica and alumina; (2) catalytic graphitization, as an effective way to 

obtain graphitic porous carbon under relatively low temperature without sacrificing porosity; 

(3) chemical vapor deposition (CVD) method, based on depositing gaseous carbon precursor 

into silica template; and (4) bridging method, by combining nanoporous carbon with other 

highly conductive carbon materials. 
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Table 1.2 The synthetic methods of nanoporous graphitic carbons. 

Method Template Carbon sources 
Carbonization 

temperature 
Ref 

Impregnation method 

KIT-6 Mesophase pitch 900 °C 89 

MCM-48 

and  

KIT-6 

Furfuryl alcohol, sucrose, acenaphthene 

and mesophase pitch 
900-2400 °C 90 

Self-

template 
Ion-exchange resin 800-1400 °C 91 

Catalytic 

graphitization 

by adding 

metal species 

Fe, Ni, 

Mn 

Silica 

xerogel 
Phenolic resin 900 °C. 98 

FeCl2 

Self-

template 

Ionic liquid monomers or poly (ionic 

liquid) polymers 

900 °C and 

1000 °C 
94 

Fe 

Iron-based coordination polymer 

nanodisks 
900 °C 99 

Ni Ni3C 450 °C 96 

Ni SBA-15 Nickel phthalocyanine 900 °C 95 

CVD SBA-15 
benzene 900 °C 100 

ferrocene > 850 °C 101 

Hybridization 

SBA-15 
OMC and CNT prepared from benzene 

vapor 
900 °C 104 

F127 
Phenolic resin-based mesoporous carbons 

and carbon blacks and carbon onions 
850 °C 103 

P123 

/F127 
OMCs and reduced graphene oxide 850/900 °C 

105

106 
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Graphitization degree of the resultant porous carbon is controlled by careful selection 

of carbon precursors that are easily graphitized at appropriate temperature. For example, when 

double gyroid mesoporous silica (KIT-6[87,88]) was used as a hard template, a carbon material 

obtained from the mesophase pitch was much more graphitic than that obtained from furfuryl 

alcohol, as demonstrated by XRD (Figure 1.3a).[89] In addition, high temperature annealing 

can largely improve the degree of graphitization at expense of sacrificing porosity of the 

resultant carbon materials. Ryoo and co-workers infiltrated different carbon precursors into 

ordered mesoporous silica followed by heating in the range from 900 °C to 2400 °C. The 

thermal treatment led to a gradual deterioration of the carbon structure, and meanwhile led to 

a significant improvement in the degree of graphitization.[90] In order to maintain the original 

porous structure, amorphous carbon should be graphitized at low temperature with the aid of 

catalysts by means of heterogeneous graphitization. Many transition metals such as Fe, Co, and 

Ni have been demonstrated to be effective catalysts for preparation of graphitic carbon with 

high crystallinity.[91-97] Fuertes and co-workers reported the preparation of graphitic porous 

carbon materials by using silica xerogel as a hard template, phenolic resin as a carbon precursor, 

and metallic salt (e.g., Fe, Ni, Mn) as a catalyst. After heating at relatively low temperature 

(e.g., 900 °C), these graphitized carbon materials exhibited high electrical conductivity up to 

two orders larger than the corresponding non-graphitized samples.[98] Recently, graphitic 

mesoporous carbon (GMC) nanodisks were directly fabricated through catalytic carbonization 

of coordination polymers containing Fe catalyst at 900 °C.[99] A CVD method is a simple 

route to afford GMC with desired nanostructure by using gaseous carbon precursor (e.g., 

benzene, ferrocene) and hard template.[100,101] Pyrolysis temperature below 850 °C leads to 

gradual improvement of the graphitization degree and that above 850 °C results in appearance 

of the considerable amount of entangled graphitic ribbons with partial collapse. Carbon 

nanotubes (CNTs) and graphenes exhibit higher conductivity than general porous carbon 

materials.[102] Therefore, hybridize nanoporous carbon with other highly graphitic carbons 

paves the way to obtain highly conductive porous carbon materials. After bridging nanoporous 

carbon with highly conductive carbon materials like carbon black, carbon onion, CNT, and 
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graphene, the formed interconnected network facilitates electron transport between the 

nanoporous carbon particles.[103-106] 

As mentioned before, GMC and amorphous mesoporous carbon (AMC) were prepared 

by using KIT-6 silica as a template, mesophase pitch and furfuryl alcohol as carbon sources, 

respectively. TEM images of Pt supported on GMC and AMC after calcination at low 

temperature (≤500 oC) are shown in Figure 1.3b and c. Figure 1.3d and e illustrated that Pt 

catalyst supported on the graphitic carbon showed negligible loss in mass activity and active 

surface area after an accelerated durability test (1000 cycles, 0.5-1.2 V), whereas the 

commercial Pt on amorphous carbon lost ∼70% in activity and area. The high stability could 

be attributed to oxidation resistance of the graphitized carbon and strong interaction between 

Pt nanoparticles and graphitic carbon framework, resulting from metal/support orbital overlap 

(π-backbonding) coupled with partial charge transfer.[89] 

 

 

Figure 1.3 (a) XRD of GMC and AMC, TEM images of 20% Pt on (b) GMC and (c) AMC 

after calcination at low temperature ≤500 °C, CV curves of (d) Pt/GMC and (e) Pt/AMC before 

and after accelerated durability tests cycling at 20 mV·s-1. Reproduced with permission [89]. 

Copyright 2010, American Chemical Society. 
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    As shown in the Figure 1.4a and b, Chen and co-workers fabricated a porous carbon-

nanotube/carbon-nanofiber (CNT-CNF) composites by a novel in situ CVD method.[107] 

After being assembled as an anode in a lithium-ion battery, CNT-CNF composites displayed a 

high reversible capacity of 1150 mAh g-1 at 0.1 A g-1 even after 70 cycles, an excellent rate 

capability, and a long cycling life of over 3500 times while fading less than 20% at 8 A g-1 

(Figure 1.4c). The outstanding electrochemical performance can be attributed to the novel 

structure of CNT-CNF. The porous structure reduces the diffusion length of lithium ions. The 

growth of graphitic carbon nanotube greatly increases the electrical conductivity, provides 

more contact between electrode materials with electrolyte for transferring lithium ions, and 

promotes the rapid charge-transfer reaction.  

 

 

Figure 1.4 (a) Schematic of CNT-CNF hybrid material. (b) TEM image and SAED pattern of 

the CNT-CNF hybrid material, line profiles of the d-spacing of graphene sheets of the wall of 

CNT. (c) Capacities at various rates and cycling performances of the CNT-CNF hybrid 

electrodes tested between 3 and 0 V versus Li+/Li. Reproduced with permission [107]. 

Copyright 2013, American Chemical Society. 
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1.2.4. Surface Modification of Porous Carbon 

The surface chemistry of porous carbon materials is important for employing them as 

electrode materials and improving their functions. For example, in order to deposit additional 

functional metal catalysts over porous carbon surfaces uniformly and efficiently, surface 

modification is generally adopted as an effective way to modify the interfacial properties and 

boost the interactions with guest molecules. Surface functional groups will act as anchoring 

sites for metal catalysts and aid adsorption of metallic species over the carbon surfaces by 

several mechanisms such as adsorption, coordination reaction, and ion-exchange. Kinetics of 

the electrochemical processes involving carbon are highly relied on surface characteristics of 

the carbon materials used. Then, surface modification can be applied to enhance 

electrochemical reactivity and durability of the carbon materials. Among a number of existing 

methods for surface modifications, oxidation, polymer decoration, and grafting with functional 

groups have frequently been utilized for synthesis of designed electrode materials. 

Wettability of porous carbon materials is improved by introducing oxygen-containing 

functional groups such as carboxylic, anhydride, and carbonyl ones to the carbon surfaces 

through oxidation by gaseous (e.g., ozone) and liquid oxidant (e.g., concentrated mineral acids 

and aqueous solutions of hydrogen peroxide and potassium permanganate). Specific surface 

area and porosity also increase to some extend by generation of micropores. Metal catalysts on 

porous carbon materials after surface modification usually exhibit improved electrochemical 

performance in PEMFC and direct methanol fuel cell (DMFC) because of the high dispersion 

of the metal nanoparticles. For example, carboxyl groups are created on the surfaces of 

nanoporous carbon materials by oxidizing with concentrated nitric acid, being helpful for 

making the bonding between Pt colloids and the carbon surfaces strong, and thereby leading to 

enhancement of electrocatalytic activity in the methanol oxidation.[108,109] However, the 

oxidation conditions such as oxidant, temperature, and treatment duration need to be chosen 

carefully because excessive oxidation leads to structural collapse and dissolution of carbon. 

Oxidation also decreases the electrical conductivity of the porous carbon materials, which is 

unfavorable for application as electrodes.  
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Some porous carbon materials are modified by surface grafting with functional groups. 

Lee et al. synthesized pitch-based porous carbon materials with surface –SO3H groups.[110] 

The as-synthesized materials are carbonized from the mesophase pitch followed by sulfonation. 

Chen et al. decorated Pt/C with polyaniline (PANI) to obtain a core-shell catalyst.[111] The 

greatest enhancement in the catalytic property was observed at a thickness of 5 nm of the PANI 

shell. The Pt/C@PANI core-shell type catalyst also illustrated more outstanding stability than 

non-decorated Pt/C catalyst. The enhanced activity and stability of the novel PANI-decorated 

core-shell structure are induced by both the electron delocalization between Pt d-orbitals and 

PANI π-conjugated ligand and the electron transfer from Pt nanoparticles to the thin PANI 

layers that also protect the carbon support from direct exposure to the corrosive environment.  

Porous carbon is the fundamental electrode material for electrochemical capacitors. After 

decorating porous carbon materials with electrically conducting polymers, the energy density 

of carbon-based electrochemical capacitor will be greatly increased.[112,113] As shown in 

Figure 1.5, polyaniline (PANI) shells were decorated on the surface of hollow carbon spheres 

(HCS) via chemical oxidative polymerization.[114] The HCS-PANI composites exhibit a 

much higher gravimetric capacitance (525 F g-1) and significantly enhanced energy density 

(17.2 Wh kg-1) compared to the pure HCS (268 F g-1 and  9.1 Wh kg-1), due to the pseudo-

capacitance produced by PANI.  
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Figure 1.5 TEM images of (a) HCS and (b) HCS-PANI-65. (c) Ragone plots of symmetric 

supercapacitor measured in aqueous solution of 2.0 mol L-1 H2SO4. Data obtained from the 

galvanostatic discharge process at current densities varying from 0.1 to 10 A g-1. HCS-PANI-

x samples, x represents the mass percentage of PANI in the composites. Reproduced with 

permission [114]. Copyright 2010, American Chemical Society.  
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1.2.5. Heteroatom-Doped Nanoporous Carbon 

In order to endow nanoporous carbon-based materials with novel physical and 

electrochemical properties, heteroatoms such as boron (B), nitrogen (N), sulfur (S), fluorine 

(F), and phosphorus (P) have been doped as secondary phases into carbon frameworks. N-

doped carbon-based materials have been developed in recent years such as N-doped porous 

carbon nanospheres (CNSs), mesoporous carbon materials, CNTs, and graphenes.[115-119] In 

this section, the synthetic methods to prepare heteroatom-doped porous carbon materials and 

their electrochemical performances as electrodes in energy conversion and storage devices are 

summarized and discussed.[120,121] 

The synthesis of N-containing porous carbon materials can be categorized according to 

the following strategies. The first approach is direct carbonization of N-containing carbon 

precursors; resultant carbon materials usually possess disordered nanopores.[25,122] A kind of 

porous N-rich carbon was achieved by carbonization of furfuryl alcohol filled in N-rich porous 

organic framework (POF).[123] A scheme of the synthesis is illustrated in Figure 1.6, with the 

form of nitrogen in the carbon frameworks. Other N-containing polymers such as polypyrrole 

are also promising; N-doped porous CNSs have been synthesized via carbonization of 

polypyrrole nanospheres.[118] The second one is post-treatment of carbon materials in N-

containing atmosphere and polymer (e.g., NH3, polyaniline) at high temperatures.[124] The 

third one is filling N-containing liquid and vapor phase carbon precursors into the pores of 

mesoporous silica and aluminosilicate templates via liquid impregnation or CVD, respectively. 

This approach not only ensures the uniform distributions of nitrogen species but also avoids 

pore breakdown. A variety of N-containing organic molecules like acetonitrile, pyrrole, aniline, 

cyanamide, dicyandiamide, gelatin biomolecule, ethylenediamine, transition metal 

macrocyclic compounds, and N-containing aromatic dyestuff have been adopted.[125-133] 

Polyacrylonitrile (PAN) is a common source to generate N-containing carbon materials.[134] 

Schüth and co-workers reported the synthesis of OMC containing nitrogen groups using SBA-

15 type silica as a hard template and PAN as a carbon source.[135,136] The nitrogen content 

of N-doped carbon materials decreases along with the increase of temperatures for 
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carbonization. The above three methods to prepare N-doped nanoporous carbon are extended 

to doping of other non-metallic heteroatoms (e.g., B, P, F, S).[83,120,137-139] In addition, a 

direct co-assembly method has also been utilized for doping of B, N, F, and P atoms.[140,141] 

The previous works on heteroatom-doped nanoporous carbon are selectively summarized and 

listed in Table 1.3.  

 

 

Figure 1.6 Synthesis of N-rich porous carbon by carbonization of furfuryl alcohol filled in N-

rich POF at 1000 °C. Reproduced with permission [123]. Copyright 2013, Wiley-VCH. 
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Table 1.3 The preparation of heteroatom-doped nanoporous carbon materials. 

 

Doped atoms Method Precursors Structures Ref 

N 

Directly carbonization of N-

containing carbon precursors 
ZIF or polypyrrole 

Disordered 

nanoporous 
117,122 

Post-treatment of carbon in N-

containing atmosphere or 

polymer 

Nanoporous carbon treated with NH3 or 

polyaniline 

Disordered or 

ordered nanoporous 

carbon 

124 

Filling N-containing carbon 

precursors into porous templates 

Acetonitrile, pyrrole, aniline, cyanamide, 

gelatin, transition metal macrocyclic 

compounds, ethylenediamine, and N-

containing aromatic dyestuff 

Disordered or 

ordered nanoporous 

carbon 

125-129, 

131,133 

F Organic-organic self-assembly 
Phenol, formaldehyde, monomer of p-

fluorophenol, and Pluronic F127 
Ordered mesoporous 120 

B 
Organic-organic self-assembly Resol, boric acid, and F127 Ordered mesoporous 138 

Nanocasting Sucrose, boric acid, and SBA-15 Ordered mesoporous 137 

P Nanocasting SBA-15, triphenylphosphine, and phenol Ordered mesoporous 83 
Binary doping of 

S and N 
Nanocasting SBA-15, sucrose, and thiourea 3D hierarchical pore 

structures 
139 

Ternary doping 

of N, B, P 
Pyrolysis Dicyandiamide, boric acid, phosphoric acid, 

and metal chlorides 
Mesoporous 121 

app:ds:polymer
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Latest advances discover that N-doped carbon materials are capable of providing high 

electron mobility, creating beneficial interaction of catalyst support, and improving activity 

and stability of catalysts.[142-144] It has been proven that N-doped carbon materials lead to 

homogeneous and efficient deposition of Pt nanoparticles.[145,146] Although Pt-based 

catalysts are the best for the ORR catalysis, they suffer from slow reduction kinetics, time-

dependent drift, and high cost that are drawbacks for large-scale commercialization of low-

temperature fuel cells. Hence, great efforts have been devoted to exploring substitution of Pt 

catalysts into Pt-alloys, non-precious metals, and metal-free species. For most of the non-

precious metal catalysts (Mn, Fe, Co, etc.), nitrogen species, especially pyridinic type nitrogen, 

plays an important role in improving the catalytic activity for ORR.[147,148] The pristine MnO 

hardly showed electrocatalytic activity and mesoporous N-doped carbon itself exhibited a 

dominant two-electron process for ORR. However, the as-prepared MnO-containing 

mesoporous N-doped carbon nanocomposite catalyst exhibited high electrocatalytic activity 

for ORR and dominant four-electron oxygen reduction pathway in 0.1 mol·L-1 KOH aqueous 

solution, due to the synergetic effect between MnO and mesoporous N-doped carbon.[149] 

More importantly, researchers found out that N-containing carbon materials act as metal-free 

electrodes showing good electrocatalytic activity in ORR.[117,150] They attributed the 

catalytic performance to the electron accepting ability of the nitrogen atoms, which creates a 

net positive charge on adjacent carbon atoms and readily attracts electrons from the anode for 

facilitating ORR.[151] A novel N-doped ordered mesoporous graphitic arrays based on a 

metal-free nanocasting technology exhibited superior electrocatalytic activity, excellent long-

term stability, and resistance to crossover effects for ORR compared to a commercial catalyst 

Pt-C.[133] The schematic illustration of the preparation and the catalytic activity for ORR is 

shown in Figure 1.7. The results reveal that pyridinic and pyrrolic derivative nitrogen atoms 

in the carbon networks and highly graphitized carbon structure are mainly responsible for the 

enhanced activity of the metal-free N-C species.[152-154] Not only N-doped but also P- and 

B-doped nanoporous carbon materials are further exploited as potentially efficient and 
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inexpensive metal-free ORR catalysts with long-term stability and excellent tolerance to 

crossover effects of methanol in alkaline medium.[155,156] 

 

Figure 1.7 (a) Illustration during the preparation of N-doped graphitic nanorod arrays with 

ordered mesostructure, (b) rotating-disk voltammograms of the mesoporous graphitic arrays 

calcined at 600 °C, 750 °C, and 900 °C and Pt-C supported on GC electrodes in an O2-saturated 

0.1 mol·L-1 solution of KOH at a scan rate of 10 mV·s-1 at a rotation rate of 1600 rpm, (c) 

current-time chronoamperometric response of the mesoporous graphitic arrays calcined at 

900 °C and Pt-C-modified GC electrodes at -0.26 V in O2-saturated 0.1 mol·L-1 KOH at a 

rotation rate of 1600 rpm. Reproduced with permission [133]. Copyright 2010, Wiley-VCH. 
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Figure 1.8 (a) Schematic illustration of the synthetic procedure for N-doped graphene 

analogous particles. (b) The schematic of three types of bonding configurations of N atoms 

within the hexagonal lattice and edges of a graphene layer. (c) Cycling performance at a current 

density of 100 mA g-1 (left) and 5 A g-1 (right). Reproduced with permission [158]. Copyright 

2014, Nature Publishing Group. 

 

In addition, N-doped carbons are promising electrode materials for lithium-ion batteries. 

The strong interactions between N-doped carbon and lithium ions are favourable for lithium 

insertion, leading to an increased lithium storage capacity.[157] Very recently, Chen et al 

prepared N-doped graphene particle analogues composed of a high nitrogen content of 17.7 

wt% by calcination a nitrogen-containing MOFs,[158] shown in the Figure 1. 8a. The product 

showed an outstanding lithium storage performance as an anode for lithium-ion batteries, 

displaying a remarkable and stable capacity of 2,132 mAh g-1 after 50 cycles at a current density 

of 100 mA g-1, and 785 mAh g-1 after 1,000 cycles at 5 A g-1 (Figure 1.8c). The exceptional 
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electrochemical performance can be ascribed to the high nitrogen doping within the hexagonal 

lattice and edges of graphene analogous particles (Figure 1.8b). Although high specific surface 

area is the predominant factor for a carbon-based electrochemical capacitor, lately, heteroatoms 

doping (e.g., B, N, P) has been proved to be an effective method to increase the electrochemical 

capacitance of a carbon-based electrode by modifying the wettability and providing extra 

reversible pseudocapacitance.[159,161] For example, Kowalewski and co-workers fabricated 

a novel nanoporous nitrogen-enriched carbon materials through carbonization of a self-

assembled block copolymer consist of polyacrylonitrile and poly(n-butyl acrylate).[162] 

Supercapacitors fabricated from the nitrogen-enriched carbons with hierarchical pore 

structures showed extraordinarily high capacitance per unit surface area (> 30 ȝF cm-2) because 

of the pseudocapacitance obtained from the high nitrogen content (16.5 wt%).   

 

1.2.6. Encapsulation of Nanoparticles in Porous Carbon 

Incorporation of the secondary metallic phases will provide carbon with new functions 

and additional electrochemical activity, thus broaden the application fields of porous carbon 

systems. This section contains several methods of direct incorporation of metallic nanoparticles 

in carbon frameworks with the prospects as electrode materials for electrochemical applications. 

In order to disperse metal species uniformly over carbon frameworks with retention of 

the porous structure, the metal species are generally introduced into carbon precursor during 

the synthesis. Porous carbon-based composites with metals (e.g., Fe, Ni, Co, Nb) have been 

prepared by nanocasting method. The detailed process is as follows: (1) metal precursors are 

infiltrated into the channels of hard templates together with carbon precursors, (2) metal salts 

or metal oxides are spontaneously reduced to metal nanoparticles by carbon-thermic reduction 

and embedded in the carbon frameworks during carbonization in an inert atmosphere, and (3) 

the template is removed by chemical etching without solution of the metal particles. Fulvio et 

al. reported the preparation of mesoporous carbon materials with ultra-thin pore walls and 

highly dispersed Ni nanoparticles by using nickel nitrate hexahydrate as a metal source, 2,3-

dihydroxynaphthalene as a carbon precursor and two SBA-15 type silica-based materials as 
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hard templates.[163] The metallic Ni nanoparticles with uniform size of ca. 3 nm were 

homogeneously dispersed on the tubular carbon walls. Su et al. incorporated Ni and Co 

nanoparticles into the mesopore walls by sucrose-impregnation and benzene CVD routes, 

respectively.[164] It was found that the introduction of metal nanoparticles via both synthesis 

routes hardly had influence on pore structure.  

Another approach to introduce nanoparticles is a direct multi-component co-assembly 

between carbon precursor, block copolymer, and metal salts.[165,166] OMCs with uniform 

Fe/Co-containing nanoparticles were synthesized from chelate-assisted multi-component co-

assembly by using acetylacetone as a chelating agent, phenolic resol as a carbon source, ferric 

nitrates/cobalt nitrates as metal sources, and triblock copolymer Pluronic F127 as a 

template.[167] After carbonization, the nanocomposites have 2-D hexagonally arranged 

structures with uniform mesopores (∼4.0 nm) and high specific surface area (∼500 m2·g-1). 

Ferric and cobalt oxide nanoparticles with uniform size tunable from 8 nm to 22 nm by simply 

adjusting the amount of acetylacetone, highly dispersed throughout the carbon matrix. 

Cobalt/vanadium oxide-containing mesoporous carbon composite thin films were synthesized 

by tri-constituent self-assembly of Pluronic F127, phenol-formaldehyde oligomer, and cobalt 

(and vanadyl) acetylacetonate (acac).[168] During pyrolysis at 800 °C, the d-spacing usually 

decreases significantly due to the uniaxial contraction. The Co/V content mechanically 

strengthens the framework and leads to a decrease in the contraction from about 68% to 50%. 

In addition, the electrical conductivity of the mesoporous carbon film increases from 22 S/cm 

to 40 S/cm by adding 10 mass% of either Co(acac)2 and VO(acac)2 in the precursor solutions. 

The third approach is called self-templating method by directly carbonization of metal-

containing carbon precursors. During the past five years, metal−organic frameworks (MOFs) 

(or porous coordination polymers, PCPs) have become a rapidly rising star as a convenient 

self-templated precursor for preparing metal-containing carbon-based materials. Liu and co-

workers reported a simple strategy of preparing a non-platinum group metal electrocatalyst for 

oxygen reduction reaction through thermal activation of cobalt imidazolate framework.[169] 

The cobalt imidazolate framework has clearly-defined porous three-dimensional structures and 
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the initial entities of CoN4 moieties throughout the regular cell structure. After thermal 

activation, the imidazolate is converted to carbon frameworks, a fraction of nitrogen is retained 

in the form of pyridinic or pyrrolic moieties and coordinates with cobalt to form catalytic sites 

of CoN4. A wide range of MOF-derived carbon composites, such as core-shell-structured 

porous Fe/Fe3C@C nanoboxes supported on graphene[170] and Co3O4-carbon porous 

nanowire arrays,[171] have been synthesized in the very recent years.  

Metal-containing porous carbon composites have been demonstrated to be effective 

electrode materials in fuel cell and battery systems. Recently, researchers reported that some 

non-precious metals (e.g., Fe and Co) connected with N-doped carbons have outstanding 

catalytic activities for ORR in PEMFC even in acidic electrolyte.[172,173] Kramm et al 

synthesized an iron-based catalyst reached the highest density of FeN4 sites ever reported, and 

revealed that catalysts with desired homogeneous composition of MeN4 (Me = metal) sites in 

the carbon would possess a significant enhancement in ORR activity.[174] Transition metal 

oxides have high theoretical capacities as anode materials for lithium-ion batteries. However, 

they have low electrical conductivities and suffer a large volume expansion/contraction during 

the Li+ insertion/extraction process, resulting in electrode pulverization and poor cycling. 

Fabrication of metal oxide/carbon composites have been explored as an effective approach to 

alleviate the shortcoming of metal oxide. As shown in the Figure 1.9, Gu and co-workers 

prepared mesoporous peapod-like Co3O4@CNT arrays through nanocasting process.[175] The 

Co3O4 nanoparticles confined exclusively in the intratubular pores of the carbon nanotubes 

have controllable particle sizes between 3-7 nm and adjustable loading amount from 45 to 70 

wt%. The carbon nanotubes work as conductive networks and provide open pores for 

electrolyte diffusion to the Co3O4 nanoparticles. As a result, the Co3O4@CNT electrode 

showed a high specific capacity, an excellent rate capacity, and good cycling performance in 

lithium-ion batteries.  
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Figure 1.9 (a) Schematic illustration of the formation process of the mesoporous peapod-like 

Co3O4@CNT. (b,c) TEM images of thin microtome sections of Co3O4@CNT. The insets is the 

corresponding schematic image. (d) Charge/discharge curves of the Co3O4@CNT electrode 

(left), cycling performance of the Co3O4@CNT, ordered mesoporous carbon (CMK-5), and 

mesoporous Co3O4 electrodes (right). Current density is 0.1 Ag-1. Reproduced with permission 

[175]. Copyright 2015, Wiley-VCH. 
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1.3. Conclusion and Objective 

The recent progress to functionalize various nanoporous carbon materials was reviewed 

in this article. At the first part, the tremendous progresses in the controls of pore size, porous 

structure and morphology were summarized because properties of nanomaterials highly depend 

on structure and morphology. Compared to traditional carbon materials, porous carbon 

materials with high specific surface area, accessible pore (pore size from 2 to 50 nm, 3-D 

interconnected pore), and highly graphitic structure are desirable for loading catalysts and 

accelerating mass and electron transportation. A multitude of nanoporous carbon materials with 

designed porous structure, graphitic and/or semi-graphitic walls are useful for applications in 

electrochemical devices. Surface functionalization of porous carbon is essential towards the 

application as electrode materials. The surface functional groups will act as anchoring sites for 

the metal catalysts and aid the adsorption of metallic species on the carbon surfaces. 

 In terms of the introduction of the secondary phases into carbon frameworks, selecting 

N-doped nanoporous carbon as a typical example, metal-free catalysts for fuel cell applications 

have been reviewed as the most outstanding electrochemical application. Recent advances in 

carbon materials discover that heteroatom-doped carbon materials are capable of providing 

high electron mobility, creating beneficial interaction between catalyst and carbon support, and 

then improving the activity and stability of the catalysts. Heteroatom-containing nanoporous 

carbon materials can act as metal-free electrodes with good electrocatalytic activity for ORR 

which paves the new way to substitute Pt in the cathode electrode. Metal incorporation is an 

excellent method to endow porous carbon materials with novel electrochemical activities and 

expand their application in fuel cells and rechargeable batteries.  

Through the overview on the modified nanoporous carbon materials, the correlation 

among pore size, morphology and structure, surface property of porous carbon materials need 

to be identified for the designed applications. In my thesis, I focus on exploring new synthetic 

procedures for fabricating functionalized porous carbon materials with engineered 

nanoarchitecture towards application in energy storage and conversion devices, especially 

paying attention to the pore size distribution, N-doping, and degree of graphitization.  
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Templating method is popular to precisely control the pore size of nanomaterials. Thus, 

I conduct soft-templating (diblock copolymer micelles), hard-templating (silica nanospheres), 

and dual-templating methods, to synthesize carbon materials with designed porous structure 

and morphology. For in situ preparing N-doped carbon materials, nontoxic nitrogenous 

dopamine is selected as both the carbon and nitrogen sources because of its excellent properties, 

including (1) the self-polymerization under mild alkaline conditions at room temperature and 

pressure, (2) conformal deposition nature on solid surfaces, and (3) a high yield after 

carbonization (close to 50 wt% at 1000 °C) and well-preservation of nitrogen in the final 

carbons. As shown in the Figure 1.10, N-doped mesoporous carbon spheres (NMCS) with 

extra-large pores are prepared through assembly of diblock copolymer micelles, three-

dimensional N-doped hierarchical porous carbons (NHPC-3D) are fabricated by using silica 

nanospheres as the hard template. N-doped hollow carbon spheres with large mesoporous shells 

(NHCS-LM) are engineered from diblock copolymer micelles and silica spheres. Without 

adding metal as the catalyst, the degree of graphitization in the carbon product is increased 

slightly by using a higher calcination temperature.  

Functionalized nanoporous carbon materials can be fabricated by using designed 

metal−organic framework (MOF) as the self-templated precursor. As shown in the Figure 1.11, 

core−shell MOF and bimetallic MOF are designed elaborately and have been prepared 

successfully, for integrating the individual advantages of two kinds of single MOFs 

(Zn(MeIm)2 and Co(MeIm)2). The ratio of Co/Zn in MOF precursor is able to determine the 

properties of the derived carbon materials, including the ratio of micropore/mesopores, content 

of nitrogen, and degree of graphitization. As a result, selectively functionalized nanoporous 

hybrid carbon and self-adjusted nanoporous carbon with adjustable properties have been 

obtained.  
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Figure 1.10. Synthesis of N-doped porous carbon materials by using templating methods.  

 

Figure 1.11. Synthesis of functionalized nanoporous carbon materials by using designed novel 

MOFs as the self-templated precursors.  

The target of my thesis is to prepare functional porous carbon materials towards 

electrochemical applications. The pore size distribution, N-doping, and degree of 

graphitization can be controlled by the following approaches: (1) templating method will 

produce carbon materials with precisely controlled pore size, whereas self-templating approach 

will produce random pore size but adjustable ratio of micropores/mesopores; (2) nitrogenous 

organic compounds (e.g., dopamine and methylimidazole) are effective precursors for 

preparing N-doped carbon materials; (3) incorporated metal catalyst (cobalt) is able to greatly 
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increase the degree of graphitization of carbon materials at relatively low calcination 

temperatures (<1000 ºC). Considering the comprehensive properties of each prepared porous 

carbon, the carbon products can be used as the electrode materials in oxygen reduction reaction, 

electric double-layer capacitor, or rechargeable batteries. 
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2.1. Introduction  

Porous carbon materials have unique characteristics, such as a good electrical 

conductivity, chemical inertness, high surface area, large porosity, and good biocompatibility, 

thereby showing many potential applications in a wide range of research fields (e.g., adsorption, 

energy conversion and storage, catalysis, and sensor technology).[1-6] As demonstrated in 

many studies, mesoporous materials show an excellent performance compared to microporous 

materials, because of the less limited diffusion. Using mesopores, especially large-sized 

mesopores, smooth mass transport can be realized for large reagent molecules.[7-10] The 

morphological control is also a critical factor. The spherical morphology attracts sustained 

research interests especially when the particle size is smaller than 200 nm, because it provides 

short pathways for mass transport and minimizes the viscous effects.[11-14] Several successful 

applications in drug delivery, gene therapy, supercapacitors, Li-S batteries, and CO2 capture 

have been reported by using spherical carbon materials, due to their inherent short diffusion 

pathway and the effective intracellular endocytosis.[15-17] 

So far, various porous carbon spheres have been prepared using different methods, 

including a Stöber-based method, hard- and soft-templating methods, and a direct 

polymerization method.[18-20] For example, microporous carbon spheres with particle sizes 

from 120 to 800 nm have been synthesized through direct self-polymerization and subsequent 

carbonization by Lu and co-workers.[21] Although the resultant carbon spheres have a high 

specific surface area after treatment with KOH, the pores in the spheres are still micropores 

with a pore size smaller than 2 nm. Zhao et al. developed a hydrothermal method for the 

synthesis of ordered mesoporous carbon spheres derived from co-assembly of resol and 

F127.[22] However, their pore sizes are still limited to 3 nm. Therefore, such a limitation on 

the pore size in carbon spheres significantly devalues their practical applications.  

Until now, mesoporous materials with pore size larger than 10 nm have been 

successfully prepared by using various high-molecular-weight block polymers, such as 

polystyrene-block-poly(ethylene oxide) (PS-b-PEO), polyisobutylene-block-PEO (PIB-b-

PEO), PS-block-poly(4-vinylpyridine) (PS-b-P4VP), and PEO-block-poly(methyl 
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methacrylate) (PEO-b-PMMA) as soft templates. However, they are mostly used in the form 

of films or irregulary shaped particles with micrometer sizes.[23-26] These systems are based 

on solvent evaporation processes which are not applicable to prepare mesoporous carbon 

spheres. Mesoporous carbon spheres with large-sized pores will lead to many applications 

which are not attainable by films and irregular particles, as mentioned above. 

By using the micelles of a high-molecular-weight block polymer PS-b-PEO as a 

template, I propose a facile micelle route for the preparation of N-doped mesoporous carbon 

spheres (NMCS) with large mesopore sizes (up to 16 nm), as shown in Figure 2.1. The 

resultant mesoporous carbon spheres are promising catalysts for the oxygen reduction reaction 

(ORR) and also would show promising applications in large biomolecule adsorption and gene 

therapy. The key of my synthesis is the use of DA/PS-b-PEO composite micelles which are 

stably pre-formed in the reaction solution. Polymerization of the DA molecules and further co-

assembly with the PS-b-PEO micelles result in the formation of PDA/PS-b-PEO composite 

spheres (where polymerized dopamine is abbreviated as PDA). The PS-b-PEO micelles acting 

as a sacrificial pore-forming agent are removed during the carbonization process, leaving the 

mesopores in the carbon spheres. 

 

Figure 2.1 Formation process of the N-doped mesoporous carbon nanospheres (NMCS). 
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2.2. Experimental Sections 

2.2.1. Chemicals 

Dopamine hydrochloride (DA) was purchased from Aldrich. Amphiphilic block 

copolymer, polystyrene-b-poly(ethylene oxide) (PS-b-PEO) was purchased from Polymer 

Source Inc. All of chemicals were of analytical grade and used without further purification. 

2.2.2. Preparation of Nitrogen-Doped Mesoporous Carbon Spheres (NMCS) 

In a typical synthesis of NMCS with diameter of ~180 nm and pore size of 16 nm 

(NMCS-3), 200 mg of DA was dissolved in the mixed solution of ethanol and deionized water 

(with volume ratio of 1:2, 12 mL), and then the above solution poured into 4 mL THF 

containing 30 mg of diblock copolymer PS173-b-PEO170 under mild stirring. After 1 hour, 0.5 

mL of ammonia aqueous solution (NH4OH, 28-30 wt%) was injected to induce the self-

polymerization of dopamine and the colour of the solution became brown. After continuous 

reaction for 20 hours, PDA/PS173-b-PEO170 composite spheres were obtained by centrifugation 

and washed with mixed solution of ethanol and deionized water for several times. For 

carbonization, the PDA/PS173-b-PEO170 composite spheres were pre-heated at 350 °C for 3 

hours and finally heated at 800 °C for 2 hours under N2 atmospheres with a heating rate of 1 °C 

min-1. Finally, NMCS with the average particle size of ca. 200 nm and uniformly sized 

mesopores of 16 nm were obtained. All synthetic experiments were carried out at room 

temperature (ca. 22 °C). Through the above synthetic approach, DA shows several advantages 

for preparation of NMCS; (i) easy self-polymerization under mild condition, (ii) formation of 

strong interaction with common block polymer template, and (iii) preservation of stable N 

element after suffering heat treatment. 

The pore sizes of NMCS were varied by changing the diblock copolymers (PS-b-PEO) 

with different chain lengths of the PS blocks. In this work, I also used other block copolymers, 

such as PS31-b-PEO284, PS37-b-PEO114, PS87-b-PEO227, and PS178-b-PEO886. For comparison, I 

synthesized N-doped carbon spheres (labelled as NCS) through carbonization PDA at 800 °C 

under N2 atmosphere according to previous report.[21] The obtained NCS possess only 
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microporous structure. The specific surface area is 318 m2∙g-1, the average particle size is 192 

nm, and the N content is 7.7 wt% in NCS. These values are similar to the previous report.[21] 

2.2.3. Characterization 

The morphology of the samples was characterized by using a Hitachi SU-8000 field-

emission scanning electron microscope (SEM) at an accelerating voltage of 5 kV. The interior 

structure of samples was characterized by using SEM that is equipped with a focused ion beam 

(FIB). Transmission electron microscopy (TEM) and elemental mapping analysis were 

measured by JEM-2100 operated at 200 kV. N2 adsorption–desorption isotherms were obtained 

by using a BELSORP-mini (BEL, Japan) at 77 K. The surface areas were estimated by the 

Multipoint Brunauer–Emmett–Teller (BET) method at a P/P0 range of 0.05-0.5 based on the 

adsorption data. The total pore volumes and pore size distributions were calculated from the 

adsorption branches of isotherms based on the Barrett–Joyner–Halenda (BJH) model. Raman 

spectra were measured by Horiba-Jovin Yvon T64000 with the excitation Laser of 364 nm. 

Thermogravimetric (TG) analysis was carried out by using a Hitachi HT-Seiko Instrument 

Exter 6300 TG/DTA in N2 heating from room temperature to 1000 °C at 5 °C·min-1, and 

keeping at 350 °C for 2 hours. X-ray photoelectronic spectroscopy (XPS) spectra were carried 

out at room temperature by using a JPS-9010TR (JEOL) instrument with an Mg Kα X-ray 

source. All the binding energies were calibrated via referencing to C 1s binding energy (284.6 

eV). The peaks of the N 1s spectrum were fitted with a Gaussian-Lorentzian sum function 

and a Shirley background. When the value of %G/L is fixed to be 50%, the N 1s spectra 

reach the optimized fitting. 

2.2.4. Electrochemical Measurements  

Polarization curve and current-time (i-t) amperometry for ORR were measured on a 

CHI 842B electrochemical workstation with a conventional three-electrode cell. Platinum and 

a Ag/AgCl (3M) electrode were selected as the counter electrode and reference electrode, 

respectively. The working electrode was prepared as follows. 1 mg of NCS, NMCS, or 20 wt% 

Pt/C (the mass fraction of Pt in commercial Pt/C catalyst is 20%) was dispersed in the mixture 

of ethanol (0.2 mL) and Nafion (5 wt%, 10 ȝL) under ultrasonication for 30 mins. Then, 10 ȝL 
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of the above suspension was dropped on the polished glassy carbon (GC) electrode with 3 mm 

diameter and dried under infrared lamp. The electrochemical measurements were performed 

in basic media (0.1 M KOH) saturated with O2 at between -0.8 and 0.0 V (vs. Ag/AgCl) with 

a scan rate of 10 mV·s-1 and rotating speed of 1600 rpm. The polarization curves for ORR 

were carried out by the rotating disk electrode (RDE) or a rotating ring-disk electrode (RRDE) 

technique. In this work, electrochemical tests for different electrocatalysts were repeated for 

three times. 

 

2.3. Results and Discussion 

2.3.1. Synthesis and Characterization of NMCS 

DA is used as both the carbon and nitrogen sources in this study, which is critically 

important for high doping of N heteroatoms in the carbon matrix. Although DA has been often 

used for the preparation of N-doped carbon materials, microporous and/or non-porous carbon 

compounds have been always obtained through these methods.[21,27-30] It is difficult to 

control the pore sizes by using surfactants, probably because of the weak interaction between 

DA molecules and low-molecular-weight block copolymer or ionic surfactants. Carbon 

nanomaterials doped with heteroatoms, such as nitrogen, boron, and sulfur, have attracted 

much attention, because of their modification of electron donor/acceptor characteristics and the 

resulting enhancement of electrochemical properties.[31-34] N-doped carbon nanomaterials, 

such as N-doped nanotubes, graphene, and mesoporous carbon, have shown superior 

electrocatalytic performance and good stability for ORR. Therefore, the large pore-sized 

NMCS reported here would surely contribute to mass transportation by reducing and 

smoothing the diffusion pathways, which are expected to lead to high electrocatalytic activity 

for the ORR. These studies will provide not only a new synthesis method, but also important 

insight into designing mesoporous carbon spheres for various applications.  



Chapter 2. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock 
Copolymer Micelles 

4λ 

 

Figure 2.2 SEM images of (a) PDA spheres, (b) PDA/PS37-b-PEO114 composite spheres, (c) 

PDA/PS178-b-PEO886 composite spheres, and (d) PDA/PS173-b-PEO170 composite spheres.  

SEM images of the corresponding N-doped carbon spheres (NCS) and N-doped mesoporous 

carbon spheres (NMCS) carbonized at 800 °C for (e) NCS, (f) NMCS-1, (g) NMCS-2, and (h) 

NMCS-3. 
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Figure 2.3 SEM images of (a) PDA spheres, (b) PDA/PS37-b-PEO114 composite spheres, (c) 

PDA/PS178-b-PEO886 composite spheres, and (d) PDA/PS173-b-PEO170 composite spheres, 

respectively. The inset images are the particle size distribution histograms that calculated from 

over 50 particles. The average particle sizes are (a) 194 nm, (b) 180 nm, (c) 255 nm, and (d) 

203 nm, respectively. 

 

Figure 2.2a-d show scanning electron microscope (SEM) images for PDA spheres 

prepared without using PS-b-PEO micelles and PDA/PS-b-PEO composite spheres 

prepared by employing three PS-b-PEO diblock copolymers with different polymerization 

degree of PS and PEO chains, namely, PS37-b-PEO114, PS178-b-PEO886, and PS173-b-PEO170. 

All the composite spheres show uniform particle sizes and shapes, and their average particle 

sizes are 194 nm, 180 nm, 255 nm, and 203 nm for PDA spheres, PDA/PS37-b-PEO114, 

PDA/PS178-b-PEO886, and PDA/PS173-b-PEO170 composite spheres, respectively, as shown 

in low-magnified SEM images (Figure 2.3). The PDA spheres prepared without PS-b-PEO 

micelles have a very smooth surface (Figure 2.2a), while clear round bumps are observed on 

the surface of PDA/PS-b-PEO composite spheres (Figure 2.2b-d and Figure 2.4). The 

bumpiness on the particle surface is obviously increased by using the diblock copolymer with 

longer PS chains. When using PS173-b-PEO170 as a template, the micelles as a template are 

more clearly confirmed (Figure 2.2d). 
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Figure 2.4 High resolution SEM images of (a) PDA spheres, (b) PDA/PS37-b-PEO114 

composite spheres, (c) PDA/PS178-b-PEO886 composite spheres, and (d) PDA/PS173-b-

PEO170 composite spheres, respectively. 

 

 

Figure 2.5 SEM images of (a) NCS, (b) NMCS-1, (c) NMCS-2, and (d) NMCS-3 prepared 

from PDA spheres, PDA/PS37-b-PEO114 composite spheres, PDA/PS178-b-PEO886 composite 

spheres, and PDA/PS173-b-PEO170 composite spheres, respectively. The insets are the particle 

size distribution histograms that calculated from over 100 particles. The average particle sizes 

are (a) 192 nm, (b) 165 nm, (c) 201 nm, and (d) 180 nm, respectively. 
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After heat treatment at 800 °C in N2 atmosphere (i.e., carbonization), the PDA/PS-b-

PEO composite spheres were converted to NMCS. Three types of NMCS were prepared from 

PDA/PS37-b-PEO114, PDA/PS178-b-PEO886, and PDA/PS173-b-PEO170 composite spheres. 

These samples are denoted as NMCS-1, NMCS-2, and NMCS-3, respectively. For comparison, 

PDA spheres prepared without using PS-b-PEO micelles were also thermally converted to N-

doped carbon spheres (NCS) without mesopores. The original spherical morphology is 

completely retained without formation of cracks and holes. The sizes of NMCS are decreased 

compared with the PDA/PS-b-PEO composite spheres before the carbonization (Figure 2.5). 

Uniformly sized mesopores are well distributed on the sphere surface and their mesopore sizes 

roughly estimated from SEM images distinctly expand from 5 to 16 nm by increasing the PS 

chain lengths (Figure 2.2f-h). The lengths (i.e., molecular weights) of the PS chains strongly 

influence the pore sizes in the final NMCS, which will be discussed later. Focused ion-beam 

scanning electron microscope (FIB-SEM) shows that mesopores existed in both the exterior 

and interior of the carbon spheres (Figure 2.6). The spherical morphology and large-sized 

mesoporous structure in the NMCS still remain intact even extending the carbonization 

temperature to 1000 °C, showing good structural stability (Figure 2.7). 

 

Figure 2.6 FIB-SEM images of NMCS-3 prepared from PDA/PS173-b-PEO170 composite 

spheres. 
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Figure 2.7 SEM image of NMCS-3 prepared from PDA/PS173-b-PEO170 composite spheres 

after carbonization at 1000 °C under N2 atmosphere.  

 

As revealed by TEM images (Figure 2.8), the PDA/PS-b-PEO composite spheres 

(Figure 2.8b-d) have rough surfaces compared with PDA spheres (Figure 2.8a), which 

corresponds with the SEM results (Figure 2.2a-d). NMCS carbonized from PDA/PS-b-PEO 

composite spheres show distinct mesopores throughout the whole spheres (Figure 2.8f-h). N2 

adsorption–desorption isotherms were measured to investigate the porosities of both NCS and 

NMCS. The isotherms of the NCS are type I isotherms (Figure 2.9A). The high N2 adsorption 

shown in the adsorption branch at a relative low pressure is typically associated with 

micropores. Thus, without the templates, the carbonization in the polymeric matrix causes the 

formation of micropores because of the generation of gas in the spheres, which has been 

reported previously.[21] In contrast, NMCS-1, NMCS-2, and NMCS-3 show type IV isotherms 

with hysteresis loops. This behavior is typically associated with the capillary condensation of 

N2 into the mesopores. The mesopores in NMCS are not cylindrical type with uniform size and 

smooth surface. These mesopores in NMCS are distributed randomly and are not uniform 

strictly. During the adsorption process along with the increased relative pressure, the nitrogen 

was condensed first within the smallest mesopores. The pressure increased until all pores were 

filled with nitrogen. Then, the pressure decreased and induced desorption of nitrogen. Because 

the last filled large mesopores were connected with a few small mesopores, the nitrogen 

desorption in the same large mesopores happened at a lower relative pressure compared with 

adsorption process, leading to the formation of a hysteresis loop. 
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Figure 2.8 TEM images of (a) PDA spheres, (b) PDA/PS37-b-PEO114 composite spheres, (c) 

PDA/PS178-b-PEO886 composite spheres, and (d) PDA/PS173-b-PEO170 composite spheres, 

respectively. TEM images of the corresponding NCS and NMCS after carbonization ((e) NCS, 

(f) NMCS-1, (g) NMCS-2, and (h) NMCS-3). The samples before carbonization show weak 

contrast, because there is no large difference in the chemical compositions between the micelles 

and the polydopamine (PDA). 
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The Brunauer–Emmett–Teller (BET) surface areas, total pore volumes, and average 

pore sizes are summarized in Table 2.1. From the pore size distribution curves (Figure 2.9B), 

it is demonstrated that NMCS possess uniformly sized mesopores. The average pore size of 

NMCS-1 is 5.4 nm, while those of NMCS-2 and NMCS-3 are as large as 16.0 nm. These values 

are almost the same as those observed by SEM (Figure 2.2f-h). 

 

 

Figure 2.9 (A) N2 adsorption–desorption isotherms and (B) pore size distribution curves of (a) 

NCS, (b) NMCS-1, (c) NMCS-2, and (d) NMCS-3, respectively. For clarity, the isotherms for 

(b), (c), and (d) are offset by 50, 50, and 150 cm3 g-1, respectively. The pore size distribution 

curves for (b), (c), and (d) are offset vertically by 0.02, 0.04, and 0.06 cm3 nm-1 g-1, 

respectively. 

 

Table 2.1 Physicochemical properties and average particle sizes of NMCS-1, NMCS-2 and 

NMCS-3 samples. 

Sample 
Surface area 

(m2 g-1) 

Pore volume 

(cm3 g-1) 

Pore size 

 (nm) 

Particle size 

(nm) 

NMCS-1 363 0.48 5.4 165 

NMCS-2 356 0.45 16.0 201 

NMCS-3 343 0.48 16.0 180 
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2.3.2. Formation Mechanism of NMCS 

Based on the above observation, I propose the formation mechanism, as described in 

Figure 2.1. In the experimental process, PS-b-PEO was firstly mixed in THF solution, in which 

it was completely dissolved and existed as a unimer. After adding water and ethanol, the 

micellization process occurred, in which the Tyndall effect was clearly observed (Figure 

2.10a). As a typical example, the SEM image of the PS173-b-PEO170 micelle solution shows the 

presence of the diblock polymer micelles with a diameter of ~25 nm (Figure 2.10b), which is 

corresponding to the micelles size observed in Figure 2.4d. After addition of DA, the DA 

species surrounded the micelle surface by hydrogen bonding between the catechol and the N-

H groups in DA and -OH group in the PEO block.[35-37] According to a zeta-potential 

measurement, the DA/PS-b-PEO composite micelles were slightly positive charged, thereby 

further inducing a good dispersion of micelles (Figure 2.10c). The SEM image in Figure 2.10c 

also indicates the existence of well-dispersed DA/PS-b-PEO composite micelles. After adding 

ammonia solution, the polymerization reaction of DA molecules proceeds under alkaline 

condition.[35,36,38] During this stage, the DA/PS-b-PEO composite micelles are self-

assembled and polymerized to form PDA/PS-b-PEO composite spheres, as shown in Figure 

2.1. The PDA still strongly interacts with the PS-b-PEO template because of the 

catechols/quinone groups present in the PDA.[35,36] After 2 hours of reaction, small-sized 

PDA/PS-b-PEO composite spheres (with an average size of 185 nm) are formed (Figure 2.11a). 

With increase of the reaction time, the average particle sizes gradually grow to 378 nm (Figure 

2.11b-d). In my approach, the PS-b-PEO micelles act as a sacrificial pore-forming agent during 

carbonization. The mesopore sizes observed on the surface of the NMCS are slightly smaller 

than the micelle sizes observed on the original PDA/PS-b-PEO composite spheres (Figure 2.4), 

due to thermal shrinkage of the pore walls. 
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Figure 2.10 (a) Photograph of (right) transparent PS173-b-PEO170 solution dissolved in THF 

and (left) PS173-b-PEO170 micelle solution after adding water and ethanol. (b) SEM image of 

PS173-b-PEO170 micelles before adding DA and (c) SEM image of PS173-b-PEO170 micelles 

after adding DA. 

 

 

Figure 2.11 SEM images of PDA/PS173-b-PEO170 composite spheres obtained after reacting 

for (a) 2 hours, (b) 5 hours, (c) 20 hours, and (d) 40 hours. The inset images are the particle 

size distribution histograms that calculated from over 100 particles. The average particle sizes 

are (a) 185 nm, (b) 193 nm, (c) 203 nm, and (d) 378 nm, respectively. 
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Figure 2.12 TG curves of (a) PDA spheres, (b) PDA/PS37-b-PEO114 composite spheres, (c) 

PDA/PS178-b-PEO886 composite spheres, and (d) PDA/PS173-b-PEO170 composite spheres 

measured under N2 atmosphere.  

 

Table 2.2 The remaining weight percentages of PDA spheres and PDA/PS-b-PEO composite 

spheres after keeping at 350 °C for 2 hours and at 1000 °C during thermogravimetric analysis, 

which are noted as W350% and W1000%, respectively.  

Sample W350% W1000% ∆ (W350%–W1000%) 

PDA 76.2 50.9 25.3 

PDA/PS37-b-PEO114 69.8 46.9 22.9 

PDA/PS178-b-PEO886 64.7 43.1 21.6 

PDA/PS173-b-PEO170 51.5 30.8 20.7 

 

The detailed carbonization process along with the weight loss of PDA spheres and 

PDA/PS-b-PEO composite spheres were investigated by thermogravimetric (TG) analysis 

(Figure 2.12 and Table 2.2). The PDA spheres show a good thermal stability, in which the 

residues remain 76.2 % at 350 °C because of the loss of functional groups, and then illustrate 

a satisfied carbonization yield of 50.9 % at 1000 °C. On the other hand, the carbonization yields 

for PDA/PS37-b-PEO114, PDA/PS178-b-PEO886, and PDA/PS173-b-PEO170 composite 

spheres are 46.9, 43.1, and 30.8 wt%, respectively. PDA/PS-b-PEO composite spheres display 
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a larger mass decrease and less residues at 350 °C. Compared with PDA spheres, the extra 

weight loss of PDA/PS37-b-PEO114, PDA/PS178-b-PEO886, and PDA/PS173-b-PEO170 at 

350 °C are 6.40, 11.5, and 24.7 wt%, respectively. Nevertheless, they illustrate similar weight 

loss (ca. 21 wt%) from 350 to 1000 °C (Table 2.2). These results suggest that the extra weight 

loss of PDA/PS-b-PEO composite spheres at 350 °C is probably due to the removal of PS-b-

PEO micelles with different molecular weights of the PS and PEO blocks. As revealed by SEM 

images of PDA/PS173-b-PEO170 composite spheres carbonized from 300 to 350 °C, the 

micelles on the surface gradually disappear and finally they are completely removed at 350 °C 

(Figure 2.13). 

 

 

Figure 2.13 SEM images of (a) PDA/PS173-b-PEO170 composite spheres and their heated 

samples under N2 atmospheres for 2 hours at different temperatures ((b) 300 °C, (c) 320 °C, 

and (d) 350 oC).  
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Figure 2.14 (A) N2 adsorption–desorption isotherms, (B) pore size distribution curves of 

NMCS prepared from (a) PDA/PS31-b-PEO284 composite spheres, (b) PDA/PS37-b-

PEO114 composite spheres, (c) PDA/PS87-b-PEO227 composite spheres, (d) PDA/PS173-

b-PEO170 composite spheres, and (e) PDA/PS178-b-PEO886 composite spheres, respectively. 

For clarity, the isotherms for (c), (d), and (e) are offset by 50, 50, and 100 cm3 g-1, respectively, 

and the pore size distribution curves for (b), (c), (d), and (e) are offset vertically by 0.02, 0.04, 

0.06, and 0.08 cm3 nm-1 g-1, respectively.  

 

 

Figure 2.15 Relationship between the mesopore sizes and the molecular weights of PS block. 

The mesopore sizes are measured by N2 adsorption–desorption isotherms (as shown in Figure 

2.14).  
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Figure 2.16 SEM images of NMCS prepared from (a) PDA/PS31-b-PEO284 composite spheres, 

(b) PDA/PS37-b-PEO114 composite spheres, (c) PDA/PS87-b-PEO227 composite spheres, (d) 

PDA/PS173-b-PEO170 composite spheres, and (e) PDA/PS178-b-PEO886 composite spheres, 

respectively. The scale bar is 100 nm. 

 

As mentioned in Figure 2.2, the PS core sizes in the micelles determine the pore sizes 

in the obtained NMCS. In addition to NMCS-1, NMCS-2, and NMCS-3, I prepared another 

two kinds of NMCS using PS31-b-PEO284 and PS87-b-PEO227 as the templates. The pore sizes 

were determined by N2 adsorption–desorption measurement (Figure 2.14). Notably, the 

increase of the molecular weight of the PS blocks leads to a gradual expansion of the pore sizes 

(Figure 2.15 and 2.16). In addition, the PEO blocks (i.e., shell region of micelles) are 

interacting with the DA and PDA, in which the PEO shell thickness basically influences the 

wall thickness in the NMCS. Among the used five block copolymers, PS173-b-PEO170 shows 

the highest weight ratio of PS/PEO. Therefore, the resulting NMCS-3 possess a relatively thin 
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wall thickness and the mesopores are more closely packed inside the spheres, compared to the 

others (Figure 2.16). 

 

 

Figure 2.17 (A) The high-resolution N 1s XPS spectrum of (a) PDA/PS173-b-PEO170 composite 

spheres and (b) NMCS-3. The inset shows a schematic illustration of nitrogen atoms in NMCS-

3. (B) high-angle annular dark-field scanning TEM (HAADF-STEM) image and elemental 

mapping of NMCS-3. The scale bar is 100 nm. (C) Polarization curves of NCS, NMCS-3, and 

Pt/C catalysts in O2-saturated 0.1 M KOH solutions with a scan rate of 10 mV s-1 and a rotating 

rate of 1600 rpm. (D) Rotating ring-disk electrode (RRDE) test of the ORR on NMCS-3 in an 

O2-saturated 0.1 M KOH electrolyte at a scan rate of 10 mV s-1. The rotation rate is 1600 rpm 

and the Pt ring electrode is poised at 1.0 V for oxidizing HO2
− intermediate. 

 

X-ray photoelectron spectroscopy (XPS) analysis was performed to determine the 

electric state of the N element. Both PDA/PS173-b-PEO170 composite spheres (before 

carbonization) and corresponding NMCS-3 (after carbonization) were measured, as shown in 

Figure 2.17A. The N 1s spectrum of the PDA/PS173-b-PEO170 composite sphere shows one 
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peak centered at 399.8 eV which is attributed to the pyrrole N.[39] After carbonization, the N 

1s spectrum of NMCS-3 is deconvoluted into two binding energies centered at 398.4[39,40] 

and 400.8 eV,[41] which can be assigned to pyridinic-N and graphitic-N, respectively. 

Pyridinic-N, referring to the sp2-hybridized N atom bonded with two sp2-hybridized C 

neighbours via σ-bonds, possesses one lone-pair of electrons in the graphene plane and 

contributes one electron to the conjugated π system.[42] In the graphitic-N configuration, three 

sp2-hybridized N valence electrons form three σ-bonds with three sp2-hybridized C neighbours, 

one electron fills the π-orbitals, and the fifth electron enters the π*-states of conduction 

band.[43] According to another report, the fifth electron is distributed in the local network of 

the carbon π-system, but a part of charge localizes on the graphitic-N dopant and electronically 

couples to its nearest C neighbours.[44] The presence of N atoms in NMCS-3 was further 

confirmed by the elemental mapping analysis (Figure 2.17B). The content of C and N in 

NMCS-3 detected by elemental analysis is 92.3 wt% and 7.6 wt%, respectively, which matches 

with the XPS data. The N content in the other NCS, NMCS-1, and NMCS-2 samples measured 

by elemental analysis are 7.7, 7.3, and 7.5 wt%, respectively (Figure 2.18). There is no large 

difference of the N content among the samples. 

 

Figure 2.18 Energy dispersive X-ray (EDX) spectra of C, N, and O in (a) NCS, (b) NMCS-1, 

(c) NMCS-2, and (d) NMCS-3. 
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2.3.3. Electrocatalytic Activity of NMCS for Oxygen Reduction Reaction 

Toward development of new energy system, researcher are searching for efficient 

nonprecious metal catalysts or metal-free catalysts as substitution of Pt for the oxygen 

reduction reaction which is intrinsically sluggish but important in the cathodic reaction.  

Doping of electron-accepting N atoms in the carbon plane, especially graphitic-N and 

pyridinic-N species, is critical for the ORR by imparting higher positive charge density on 

adjacent carbon atoms and weakening the O–O bond.[45-49] During the ORR, oxygen can be 

activated by direct bonding with the lone pair electrons of pyridinic-N atoms.[48] And, the 

graphitic-N atoms promote the ORR by electron transfer from the carbon electronic bands to 

the antibonding orbitals of O2 and facilitating O2 dissociation on the adjacent C atoms.[49] 

Here I evaluated the ORR activity of the NCS and NMCS samples by measuring linear-sweep 

voltammograms (LSVs) in O2-saturated 0.1 M KOH solution using a rotating disk electrode 

(RDE). To emphasize the importance of my materials, the commercially available Pt catalyst 

(20 wt%) was also measured as a reference. 

 

 

Figure 2.19 Polarization curves of NMCS-1, NMCS-2, and NMCS-3, in O2-saturated 0.1 M 

KOH solutions with a scan rate of 10 mV s-1 and a rotating rate of 1600 rpm. 
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The electrochemical activities are strongly relied on the porous structure of carbon 

materials. The presence of interconnected large-sized pores can accelerate the reactant 

diffusion in comparison with microporous carbon.[9,50-52] As shown in Figure 2.17C and 

Figure 2.19, the large-sized mesoporous NMCS-3 and NMCS-2 present higher diffusion-

limited current compared with NCS with micropores and small-sized mesoporous NMCS-1. 

Besides, although NMCS-2 consist of large-sized mesopores, it exhibit worse ORR activity 

than NMCS-3 due to their lower porous density relative to NMCS-3 (Figure 2.2g,h). The 

results verify that the diffusion of oxygen, products, and electrolyte during ORR is more 

favourable in large-sized mesoporous structure with thin wall, leading to a higher activity in 

the diffusion controlled region.[9,50-53] The onset potentials of NCS, NMCS-1, NMCS-2, 

NMCS-3, and Pt/C are –0.15, –0.13, –0.12, –0.11, and –0.07 V, respectively, and the limiting 

currents are 3.14, 3.40. 4.35, 5.56, and 5.37 mA cm-2, respectively (Figure 2.17 C and Figure 

2.19). Clearly, NMCS with large mesopores show a more positive onset potential and a higher 

diffusion-limited current, compared to NCS with micropores, indicating their better 

electrocatalytic activity for the ORR. The improved electrochemical performance of NMCS is 

a result of their sufficient accessible porous architecture, which can reduce the diffusion 

resistance and enhance the three-phase boundary of gas, electrolyte, and solid catalyst.[50-

52,54,55] Interestingly, NMCS-3 exhibit a similar diffusion-limited current for the ORR 

compared with Pt/C, although the onset potential is slightly negative. 
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Figure 2.20 Cyclic voltammogram curves performed for NMCS-3 in N2- (dot line) and O2-

saturated (solid line) 0.1 M KOH solution. 

 

 

Figure 2.21 (A) Polarization curves of NMCS-3 at different rotation rates in O2-saturated 0.1 

M KOH solutions with a scan rate of 10 mV s-1. (B) The corresponding Koutecky-Levich plot 

of J-1 vs. ω-1/2 at different potentials.  

 

Cyclic voltammogram curves of NMCS-3, performed in N2- and O2-saturated 0.1 M 

KOH solution (Figure 2.20), present a distinct cathodic ORR peak at -0.21 V after introducing 

O2, further demonstrating the pronounced electrocatalytic activity of NMCS-3 towards the 

ORR. In order to gain insight to the kinetics of ORR on NMCS-3, I conducted the RDE 

measurements under different rotation rates from 625 to 2500 rpm with a scan rate of 10 mV 
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s-1. The polarization curves are shown in Figure 2.21A. The corresponding Koutecky-Levich 

plots (J-1 vs. ω-1/2) for NMCS-3 show good linearity and the slops are almost the same at 

potential ranging from -0.30 to -0.40 V (Figure 2.21B), indicating the first-order reaction 

kinetics with respect to the oxygen concentration and constant electron transfer numbers for 

oxygen reduction at different potentials. The kinetic parameters can be analyzed on the basis 

of the following Koutecky-Levich equations.[52] 

J-1 = JL
-1 + JK

-1 = B-1 ω -1/2 + JK
-1; B = 0.2nFC0(D0)2/3ν-1/6 

J is the measured current density, JK and JL are the kinetic- and diffusion-limiting current 

densities, ω is the angular velocity of the disk, n represent the overall number of electrons 

transferred in oxygen reduction, F is the Faraday constant (F = 96485 C mol-1), C0 is the bulk 

concentration of O2, ν is the kinematic viscosity of the electrolyte, and k is the electrontransfer 

rate constant. The number of electrons transferred (n) can be obtained from the slope of the 

Koutecky-Levich plots. The constant is 0.2, when the rotating speed is in rpm. The electron 

transfer number involved in NMCS-3 for the ORR was estimated to be 3.4 from the slope of 

the Koutecky–Levich plots (Figure 2.21B) 

To obtain in-depth understanding on the ORR proccess, a rotating ring-disk electrode 

(RRDE) test was also measured (Figure 2.17D). The corresponding amperometric current 

(upper curve) for the oxidation of hydrogen peroxide ions (HO2
−) was recorded at the Pt ring 

electrode, which is effective to monitor the formation of intermediate peroxide species. The 

electron transfer number (n) per oxygen molecule involved in the ORR was calculated from 

RRDE voltammograms according to the following equation.[56] 

n=4 × ID/(ID+IR/N) 

where ID is the disk current, IR is the ring current, and N = 0.37 is the collection efficiency of 

Pt ring. The transferred electron number (n) was estimated to be 3.26 for the NMCS-3 electrode 

(at the potential of -0.40 V vs. Ag/AgCl). It corresponds to a mixed two-step two-electron 

reactions (37 %) via formation of HO2
− intermediate and a fast direct four-electron reaction 

(63 %). The results indicate that the ORR using NMCS-3 involves both two-electron and four-

electron reactions, which is common in N-doped metal-free carbon materials.[45, 52, 56] The 
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durability of the catalyst is another major concern in fuel-cell technology. I further investigated 

the stability of NMCS-3 and Pt/C by using the i–t chronoamperometric measurement at a 

constant voltage of –0.6 V in O2-saturated 0.1 M KOH with rotation rate of 1600 rpm. Both 

the catalysts display a high transient current which fast degrades within the first 10 s. Then, 

NMCS-3 present less current loss (84 %) at steady state than Pt/C (76 %). Thus, it is proved 

that the durability of NMCS-3 is superior to that of the Pt/C catalyst. 

In addition, I investigated the effect of the carbonization temperature on ORR activity. 

For this purpose, I carbonized the representative NMCS-3 at various temperatures from 700 to 

1000 °C and investigated their physicochemical properties by N2 adsorption–desorption 

isotherms (Figure 2.22), Raman spectra (Figure 2.23), EDX spectra (Figure 2.24), and XPS 

spectra (Figure 2.25). The physicochemical properties and element composition changes in 

NMCS-3 are concluded in Table 2.3 and Figure 2.26. After increasing the carbonization 

temperature from 700 to 1000 °C, the specific surface areas and the pore volumes of NMCS-3 

are gradually increased, due to the generation of microporous structures (Table 2.3). As seen 

in Figure 2.22A, initial N2 uptakes at low pressure region (< 0.1) become clear with increase 

of the temperature. Even after 1000 °C, NMCS well preserve the large-sized mesopores without 

any distortion/collapse of mesopores, as also confirmed by Figure 2.7. Raman spectra of 

NMCS-3 carbonized at various temperatures (from 700 to 1000 °C) show two broad bands 

located at 1350 and 1593 cm-1 (Figure 2.23). The ratios of peak intensity (IG/ID) are gradually 

increased at a higher temperature, indicating the improvement in graphitic degree of the pore 

walls. The N content in the NMCS-3 roughly estimated by EDX measurement gradually 

decreases from 8.9 wt% to 3.4 wt% (Figure 2.24). As detected by XPS measurement (Figure 

2.25), the N 1s spectra of NMCS-3 can be fitted into two binding energies centered at 398.4 

and 400.8 eV, which are assignable to pyridinic-N and graphitic-N, respectively. The ratio of 

graphitic-N to pyridinic-N in NMCS-3 distinctly increases from 60.0 % to 93.6 % after 

increasing the carbonization temperature from 700 to 1000 °C.  
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Figure 2.22 (A) N2 adsorption–desorption isotherms and (B) pore size distribution curves of 

NMCS-3 after carbonization at various temperatures of (a) 700 °C, (b) 800 °C, (c) 900 °C, and 

(d) 1000 °C. For clarity, the pore size distribution curves for 800 °C, 900 °C, and 1000 °C are 

offset vertically by 0.01, 0.02, and 0.03 cm3 nm-1 g-1, respectively.  

 

 

Figure 2.23 Raman spectra of NMCS-3 after carbonization at different temperatures of (a) 

700 °C, (b) 800 °C, (c) 900 °C, and (d) 1000 °C under N2 atmospheres. 
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Figure 2.24 Energy dispersive X-ray (EDX) spectra of C, N, and O of NMCS-3 after 

carbonized under N2 atmospheres at different temperatures of (a) 700 °C, (b) 800 °C, (c) 900 °C, 

and (d) 1000 °C. 

 

 

Figure 2.25 N 1s XPS spectra of NMCS-3 after carbonization at different temperatures of (a) 

700 °C, (b) 800 °C, (c) 900 °C, and (d) 1000 °C. 
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Table 2.3 Physicochemical properties and element compositions of NMCS-3 after 

carbonization at various temperatures (700, 800, 900, and 1000 °C). 

Carbonization 

temperature 

(°C) 

Surface 

area 

(m2 g-1) 

Pore 

volume 

(cm3 g-1) 

Pore 

size 

(nm) 

IG/ID 

N 

content 

(wt%) 

Relative ratios of 

graphitic-N : 

pyridinic-N 

700 336 0.46 16.0 0.98 8.9 60.0 : 40.0 

800 343 0.48 16.0 1.00 7.6 77.6 : 22.4 

900 724 0.75 16.0 1.02 5.3 78.9 : 21.1 

1000 759 0.80 16.0 1.03 3.4 93.6 : 6.40 

 

 

 

Figure 2.26 Current density (I), graphitization degree (IG/ID), surface area, and N content of 

NMCS-3 after carbonization at various temperatures (700, 800, 900, and 1000 °C). 

 



Chapter 2. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock 
Copolymer Micelles 

72 

 

Figure 2.27 Polarization curves of NMCS-3 after carbonization at different temperatures of (a) 

700 °C, (b) 800 °C, (c) 900 °C, and (d) 1000 °C under N2 atmospheres in O2-saturated 0.1 M 

KOH solutions with a scan rate of 10 mV s-1 and a rotating rate of 1600 rpm. 

 

The ORR activities of NMCS-3 carbonized at different temperatures (700 °C, 800 °C, 

900 °C, and 1000 °C) were investigated. The linear-sweep voltammograms (LSVs) were 

performed in O2-saturated 0.1 M KOH solution by using rotating disk electrode (RDE). It 

has been generally known that the ORR activity is closely related to comprehensive physical 

and chemical properties of N-doped carbon materials. Thus, several factors, including 

graphitization degree, specific surface area, and N species as electrochemical active sites, 

should be taken into consideration.[46,57,58]  

As seen in Figure 2.27, it is clear that NMCS-3 carbonized at 700 °C show the most 

negative onset potential among all the samples and exhibit lower diffusion-limited current 

compared with NMCS-3 carbonized at 800 and 900 °C. The relative poor ORR activity of 

NMCS-3 carbonized at 700 °C is probably due to its low graphitization degree, which largely 
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limits the electron conductivity and weakens the interaction between carbon and 

electrochemical active N sites in despite of the high N content (Figure 2.26).  

When the carbonization temperature is higher than 700 °C, the onset potentials are 

similar. Especially, NMCS-3 carbonized at 900 °C exhibit the highest electrocatalytic activity 

for ORR, realizing the maximum current density. The current densities of NMCS-3 carbonized 

at 800, 900, and 1000 °C present the order of 900 °C (6.2 mA cm-2) > 800 °C (5.6 mA cm-2) > 

1000 °C (4.6 mA cm-2). Considering the overall physicochemical properties and element 

compositions in NMCS-3 (as shown in Table 2.3 and Figure 2.26), my results highlight the 

balance among graphitization degree, specific surface area, and electrochemically active N 

species is critically important for realizing the best ORR activity. 

As shown in Table 2.3 and Figure 2.26, although the N content in NMCS-3 carbonized 

at 900 °C decrease in comparison with NMCS-3 carbonized at 800 °C, the ratios of different 

active N species (graphitic-N to pyridinic-N, which have different functions during ORR[45-

49]) are almost the same. More importantly, NMCS-3 carbonized at 900 °C possess a higher 

graphitization degree and also around twice higher specific surface area in comparison with 

NMCS-3 carbonized at 800 °C, which greatly contribute to facile electron and mass 

transportation during ORR, leading to an enhanced current density.[46,57,58] When the 

temperature further increases up to 1000 °C, the graphitization degree and the specific surface 

area of NMCS-3 are slightly increased, but the amount of N species, especially ORR-active 

pyridinic-N, are seriously decreased. This is the reason for the decrease of current density from 

900 to 1000 °C. As a result, I can conclude that NMCS-3 carbonized at 900 °C exhibit the best 

catalytic activity for ORR with more positive onset potential and highest current density, due 

to its balance between the graphitization degree, specific surface area, and electrochemically 

active N species,[46,47] as shown in Table 2.3 and Figure 2.26. Compared with other metal-

free carbon-based materials (Table 2.4), NMCS-3 have become one of the most active metal-

free N-doped carbon catalysts towards ORR.[21,52,53,59-61] 
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Table 2.4 Comparison of catalytic activity of NMCS-3 towards ORR with other metal-free 

carbon-based materials. 

Reference Material 

Onset 

potential 

(V vs. 

Ag/AgCl) 

Cathodic 

ORR peak 

(V vs. 

Ag/AgCl) 

Max. 

current 

density 

(mA cm-2) 

Scan 

rate 

(mV s-1) 

Rotatio

n rate 

(rpm) 

This study 

N-doped mesoporous 

carbon sphere 

(NMCS) 

-0.11 -0.21 6.2 10 1600 

Angew. Chem. 

Int. Ed. 2010, 

49, 2565. 

N-doped ordered 

mesoporous graphitic 

array 

-0.13 -0.26 5.9 10 1600 

Angew. Chem. 

Int. Ed. 2012, 

51, 3892. 

Ordered macroporous 

graphitic C3N4/carbon 

composite 

-0.14 -0.30 4.8 5 1500 

J. Am. Chem. 

Soc. 2012, 134, 

16127. 

P-doped ordered 

mesoporous carbon 
-0.11 -0.23 5.1 10 1600 

Adv. Mater. 

2013, 25, 998. 

N-doped carbon sub-

micrometer sphere 
-0.10 -0.22 5.8 10 1600 

Adv. Mater. 

2013, 25, 3192. 

N-doped 

graphene/CNT 

nanocomposite 

-0.10 ---- 3.3 20 1600 

ACS Appl. 

Mater. 

Interfaces 2014, 

6, 4214. 

N-doped graphene 

nanoribbon 
-0.10 -0.21 3.6 10 1600 

Electrochimica 

Acta 2014, 129, 

196. 

N-doped graphitic 

carboncage 
-0.05 -0.25 4.1 10 1600 
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2.4. Conclusion 

In conclusion, my present synthesis is based on co-assembly of diblock polymer PS-b-

PEO micelles and nontoxic DA as the carbon and nitrogen sources. The use of DA offers a 

simple route for in situ introducing heteroatoms with high content into carbon materials. To 

the best of my knowledge, there have been no reports on highly N-doped mesoporous carbon 

spheres with extra-large mesopores (up to 16 nm). Both large-sized mesopores and high N-

doping are very effective for acceleration of the ORR. My NMCS realize high electrocatalytic 

activity and excellent long-term stability towards the ORR, even comparable to the Pt/C 

catalyst. These results shed light on the synthesis of mesoporous carbon spheres for various 

applications in the emerging field. By further optimization of porous architectures and 

compositions, I can expect to realize promising materials as cathode electrode.[62] Moreover, 

by selecting other carbon sources which effectively interact with the micelle surface, various 

large-sized mesoporous carbons with different heteroatoms are expected for improving the 

capacitance,[28] surface polarity, and basic sites.[63] 
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3.1. Introduction 

Porous carbon materials are widely used in dozens of fields due to their stable 

physicochemical properties, good electrical conductivity, and large storage capability.[1-3] It 

is well known that electric double-layer capacitors (EDLCs), which are based on electrical 

charge accommodation at the electric double-layer of a polarized electrode, are critical 

components applied in high-rate electric devices (hybrid vehicles) because of their high power 

density, high-speed recharging, and long working lifespan.[4] Porous carbons have been 

considered as the most promising electrode materials for EDLCs.[5,6] To obtain a high 

capacitance, high specific surface area and porosity are usually required.[7] In addition, the 

transportation resistance of the inner ions and the diffusion distance inside the carbon-based 

electrode must be minimized to increase the formation kinetics of the electric double-layer.[8] 

Although commercial activated carbons have a high specific surface area (>1000 m2 g-1), they 

are mostly composed of micropores and long diffusion pathways that are not favorable for ion 

transport and limit their effective capacitance.[9] Thus, porous carbon materials with a high 

surface area, short channels (less subject to tortuosity), as well as interconnected and 

hierarchical pore architectures are expected to be preferable for applications in supercapacitors.  

Carbon materials with three-dimensional hierarchical porous textures (i.e., macropores 

integrated with meso- and micropores) have attracted much attention during the past decade 

because they are desirable electrode materials for EDLCs thanks to their small transport 

resistance, short pathways, and high surface area.[8,10-12] As demonstrated by many studies, 

macropores are essential for the electrolyte to achieve free permeation and for creating an ion-

buffering reservoir.[8,10,11] On the other hand, mesopores facilitate ion mobility[12] and 

micropores contribute to increasing the surface area, confining ions, and accommodating 

charges.[13] The nanocasting method is the most popular approach to precisely control the 

porosity of the carbon materials by using colloidal silica as a template with suitable flexibility, 

controllability, and reproducibility.[14] First, colloidal silica with tunable particle sizes (from 

dozens of nanometers to several micrometers) is prepared by a modified Stöber method. Then, 

several carbon precursors, such as sucrose,[15] resol,[16] or pitch,[17] are introduced into the 
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void between the silica particles. After heat treatment under an inert atmosphere and sequential 

removal of the silica template with hydrofluoric acid, porous carbon materials with a 

multimodal pore distribution can be obtained. In some cases, the thermal decomposition of 

amphiphilic molecules as a secondary template can be employed to form mesopores.[18,19] In 

recent years, other simplified syntheses by direct carbonization of carbide,[20] biomass,[21,22] 

or metal–organic frameworks (MOFs)[23-26] have also been developed to fabricate various 

kinds of porous carbon materials.  

Lately, heteroatom doping (e.g., B, N, P) has proved to be an effective approach to 

further enhance the electrochemical performance of carbon materials because of the increased 

electrical conductivity, surface polarity, and reversible pseudocapacitance derived from the 

doped functional groups.[27,28] To simplify the synthetic procedures and circumvent the use 

of hazardous carbon precursors, nontoxic nitrogenous dopamine can be employed as an 

excellent candidate for preparing nitrogen-doped carbon (NC) materials.[29] First, dopamine 

can self-polymerize under mild alkaline conditions at room temperature and pressure. Second, 

dopamine tends to deposit onto any kind of surface; thus, various sacrificial templates can be 

used to generate the pores.[30,31] Third, polymerized dopamine has a high carbonization yield 

(close to 50 wt%, even at 1000 °C) and nitrogen can be preserved in the final carbons.[32] 

The aforementioned aspects constitute a satisfactory motivation to elaborate new three-

dimensional hierarchical porous carbons with functional heteroatoms as the electrode materials 

for EDLCs based on a nanocasting method. Nitrogenous dopamine is selected as the organic 

precursor and colloidal silica nanoparticles about 80 nm in size are used as the template for the 

formation of macropores. The resulting N-doped hierarchical porous carbon framework 

(NHPC-3D) is composed of macropores as well as meso- and microporous textures, which 

provide a high specific surface area for electrical charge storage, free diffusion pathways for 

ion and mass transport, and nitrogen functional groups for pseudocapacitance when 

implemented in high-rate EDLCs. 
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3.2. Experimental Sections 

3.2.1. Chemicals 

Tetraethyl orthosilicate (TEOS), aqueous solution of ammonia (NH4OH, 28 wt%), and 

dopamine hydrochloride were purchased from Aldrich. All chemicals were of analytical grade 

and were used without further purification. 

3.2.2. Preparation of Silica Spheres  

Silica spheres (≈80 nm) were prepared through a modified classic Stöber method. First, 

NH3·H2O (0.68 mL, 28 wt%) was added to a mixture of water (15.00 mL) and ethanol (9.33 

mL). At the same time, a solution of TEOS (2.25 mL) in ethanol (22.75 mL) was prepared. 

After stirring for 15 mins, the solution of TEOS in ethanol was added to the first alkaline 

solution in ethanol/water and reacted for another 3 hours under continuous stirring at 400 rpm. 

Then, the silica spheres could be collected through centrifugation and washed several times 

with deionized water and ethanol. 

3.2.3. Preparation of Three-Dimensional Nitrogen-Doped Hierarchical 

Porous Carbon (NHPC-3D) 

The detailed synthetic steps are described as follows. Solution A was prepared by 

dispersing 200 mg of silica spheres in 8 mL of ethanol under sonication for more than 1 hour. 

Meanwhile, solution B was prepared by dissolving 150 mg of dopamine hydrochloride in 8 mL 

of deionized water. Then, solution B was poured into solution A under mild stirring. Finally, 

0.5 mL of ammonia aqueous solution was injected and the colour of the solution turned from 

oyster white to dark brown. After continuous reaction for 20 hours, the polydopamine/silica 

composite material (labelled as PDA/silica) was collected by centrifugation and was washed 

several times with deionized water and ethanol. The N-doped carbon/silica composite material 

(labelled as NC/silica) was obtained by carbonizing the PDA/silica at 800 °C (2 hours) under 

N2 atmosphere with a heating rate of 2 °C min–1. Finally, the N-doped hierarchical porous 

carbons with three-dimensional interconnected framework (labelled as NHPC-3D) was 
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obtained by removing the silica template using hydrofluoric acid aqueous solution (HF, 10 

wt%). 

3.2.4. Characterization 

The morphology of the final products was observed on a Hitachi SU-8000 field-

emission scanning electron microscope at an accelerating voltage of 5 kV. TEM and elemental 

mapping analysis was conducted by using a JEM-2100 microscope at a voltage of 200 kV. The 

N2 adsorption–desorption isotherm was acquired with a Quantachrome Autosorb-iQ automated 

gas sorption system at 77 K. The specific surface area was calculated according to the BET 

model by using the adsorption branch data in the relative pressure (P/P0) range of 0.05–0.35. 

The total pore volume and pore size distribution were estimated from the adsorption branches 

from the isotherm on the basis of a NLDFT method. Wide-angle powder XRD patterns were 

acquired on a Rigaku Rint 2000 X-ray diffractometer by using monochromated CuKα radiation 

(40 kV, 40 mA) at a scanning rate of 2° min–1. Raman spectra were collected on a Horiba-Jovin 

Yvon T64000 instrument with an excitation laser wavelength of Ȝ = 514.5 nm. XPS spectra 

were acquired on a PHI Quantera SXM (ULVAC-PHI) instrument with an AlKα X-ray source. 

All binding energies were calibrated with reference to the C 1s binding energy (285.0 eV). The 

peaks of the N 1s spectrum were fitted with a Gaussian-Lorentzian sum function and a 

Shirley background. Thermogravimetric (TG) analysis was carried out by using a Hitachi HT-

Seiko Instrument Exter 6300 TG/DTA analyzer in air with heating from room temperature to 

800 °C at 5 °C min–1. 

3.2.5. Electrochemical Measurements 

The electrochemical measurements were carried out in a traditional three-electrode 

system. A platinum filament and Ag/AgCl (3 M KCl) electrode were utilized as counter and 

reference electrodes, respectively. The thin-film working electrode was prepared as follows: 

NHPC-3D (1 mg) was mixed with poly(vinylidene fluoride) (0.1 mg) and then well dispersed 

in N-methyl-2-pyrrolidone (0.4 mL) through ultrasonication. The black slurry was dropped 

onto a graphite substrate (1 cm2) and dried under an IR lamp to form a thin layer. The 

electrochemical measurements were conducted by using an electrochemical workstation (CHI 
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660E CH Instruments) in acid electrolyte (1.0 M H2SO4) at room temperature (22 °C). The 

electrochemical properties of the supercapacitor were studied by cyclic voltammogram (CV)  

and galvanostatic charge-discharge (GC-DC) measurements. The potential sweep rate ranged 

from 20 to 200 mV s–1 and the GC-DC current density varied from 2 to 20 A g–1. The specific 

capacitance was calculated from the GC-DC curves by using Equation (1):  

C = 
�×∆௧�×∆�                            (1) 

in which I is the charge-discharge current at a discharge time ∆t (s), ∆V is the potential range, 

and m is the mass of active electrode material. 

 

3.3. Results and Discussion 

3.3.1. Synthesis and Characterization of NHPC-3D 

 

 

Figure 3.1 Schematic illustration of the synthetic procedure for NHPC-3D. 

 

A schematic illustration of the synthetic procedure is shown in Figure 3.1. One solution 

was prepared by dispersing silica spheres (200 mg) in ethanol (8 mL) under sonication for more 

than 1h. Meanwhile, another solution was prepared by dissolving dopamine hydrochloride (150 

mg) in deionized water (8 mL). Then, the two solutions were mixed. Finally, an aqueous 

solution of ammonia (0.5 mL) was injected to induce the self-polymerization of dopamine and 

the color of the solution turned from oyster white to dark brown. After continuous reaction for 

20 h, the PDA/silica composite material was collected by centrifugation and washed several 

times with deionized water and ethanol. The NC/silica composite material was obtained by 

carbonizing PDA/silica at 800 °C (2 hours) under a N2 atmosphere with a heating rate of 2 °C 

min–1. Finally, the N-doped hierarchical porous carbon with a three-dimensional 
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interconnected framework (labeled as NHPC-3D) was obtained by removing the silica template 

with an aqueous solution of hydrofluoric acid (HF, 10 wt%). 

Changes in the morphology of the material in each step can be observed in the SEM 

image. First, dopamine and silica nanoparticles with a diameter of about 80 nm shown in 

Figure 3.2 were homogeneously dispersed in a mixture of ethanol and water. Then, the solution 

was adjusted to be alkaline by adding ammonia to trigger the polymerization of dopamine 

molecules. During this stage, dopamine starts to polymerize and simultaneously deposits on 

the silica spheres. As shown in Figure 3.3a, PDA is well coated on the silica spheres; thus 

forming PDA/silica. After being treated at 800 °C under an inert atmosphere, the outer PDA 

layer is converted into N-doped carbon and the product of NC/silica retains the morphology of 

the initial PDA/silica sample (Figure 3.3b). Finally, the silica template is removed by HF 

etching, leaving self-standing NHPC-3D (Figure 3.3c). A multitude of macropores of similar 

dimensions to the original silica template can be observed on the final NHPC-3D (Figure 3.3d). 

To determine residual silica in NHPC-3D, thermogravimetric (TG) analysis was conducted in 

air with heating from room temperature to 800 °C at a heating rate of 5 °C min–1. As shown in 

Figure 3.4, the NHPC-3D sample was stable up to 430 °C, then the weight decreased rapidly 

as the temperature increased from 430 to 590 °C due to the pyrolysis of N-doped carbon 

materials. Finally, 97.4 wt% weight loss was detected by TG analysis at 800 °C compared with 

the initial sample weight, which indicated that the silica template was almost removed by HF. 

The cross-linked carbon networks consist mainly of bowl-like thin-film (<10 nm) structures 

(Figure 3.3d), which suggests a relatively small ion-transport distance through the walls during 

the electrochemical process. 
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Figure 3.2 SEM image of silica template with a diameter of ~80 nm. 

 

 

Figure 3.3 SEM images of as-synthesized (a) PDA/silica, (b) NC/silica, and (c,d) NHPC-3D. 
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Figure 3.4 TG curve of NHPC-3D measured under an air atmosphere heating from room 

temperature to 800 °C with a heating rate of 5 °C min–1. 

 

As shown in the TEM image of Figure 3.5a, the NC/silica consists of silica 

nanoparticles coated with a thin carbon layer. After HF etching, the silica spheres are removed, 

leaving the templated macropores in the NHPC-3D frameworks (Figure 3.5b); this is 

consistent with the structural changes previously observed in the SEM images. Furthermore, 

the mesoporous structure also contains interconnected and overlapping carbon layers. The 

graphitic degree was investigated by HRTEM, which revealed that NHPC-3D was composed 

of disordered carbons (Figure 3.5c). The elemental spatial distribution of carbon, nitrogen, and 

oxygen in NHPC-3D is shown in Figure 3.5d and e, and confirms the good distribution of 

nitrogen atoms. Moreover, the nitrogen content was roughly estimated by energy-dispersive 

X-ray analysis to be about 8.2 wt% (Figure 3.6). 
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Figure 3.5 (a) TEM image of the NC/silica. (b) TEM, (c) high-resolution (HR) TEM, (d) 

scanning transmission electron microscopy (STEM) images, and (e) elemental mapping of 

NHPC-3D. 

 

 

Figure 3.6 Energy-dispersive X-ray analysis of NHPC-3D. 
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Figure 3.7 (a) Wide-angle XRD pattern, (b) Raman spectrum, (c) N2 adsorption–desorption 

isotherm (inset shows the pore size distribution), and (d) high-resolution X-ray photoelectron 

spectroscopy (XPS) result centered on N 1s of the NHPC-3D. 

 

The carbon state in NHPC-3D was investigated by XRD and Raman spectroscopy. As 

observed in Figure 3.7a, NHPC-3D exhibits two broad diffraction peaks located at 23.0° and 

44.0°,which could be indexed to the (002) and (101) diffraction planes of amorphous carbon 

(disordered carbon layers), respectively.[33,34] The Raman spectrum (Figure 3.7b) display 

two vibration bands at 1360 (D band) and 1590 cm–1 (G band), which implies the coexistence 

of disordered carbon/defect and graphitic carbon sheets, respectively.[35,36] The porosity of 

the structure was estimated from the N2 adsorption–desorption isotherm (Figure 3.7c). NHPC-

3D exhibits a type IV isotherm with a hysteresis loop.[37] Nitrogen uptake at low relative 

pressure (<0.05) is caused by the presence of micropores that originate from the pyrolysis of 

PDA. A type IV isotherm can be associated with the capillary condensation of nitrogen taking 

place in large mesopores derived from the overlapping carbon frameworks. Moreover, there is 

no saturation in the adsorption at high relative pressure (P/P0 > 0.9), which suggests the 
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existence of macropores inherited from the removed silica templates; this is consistent with the 

SEM and TEM images (Figure 3.3d and 3.5b). The multimodal pore size distributions from 

micro- to mesopore were analyzed through nonlocal density functional theory (NLDFT) and 

display in the inset of Figure 3.7c, which confirms the presence of hierarchical pores. From 

the adsorption branches in NHPC-3D, the calculations result in a large specific surface area of 

1056 m2 g–1 and a high pore volume of 2.56 cm3 g–1. Furthermore, XPS was conducted to detect 

the electric state of nitrogen in NHPC-3D. The high-resolution N 1s spectrum can be 

deconvoluted into two binding energies located at 397.9 and 400.6 eV  (shown in Figure 3.7d), 

which can be assigned to pyridinic-N and graphitic-N, respectively.[38] The percentage of 

nitrogen in the NHPC-3D samples estimated from the XPS spectrum by using the high-

resolution N 1s spectrum is around 7.4 wt%, which is slightly lower than the result determined 

by energy-dispersive X-ray analysis (8.2 wt%); this is reasonable when considering the 

difference between the two facilities. The XPS result verifies the successful doping of nitrogen 

into the NHPC-3D. 
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3.3.2. Electrochemical Supercapacitor with the NHPC-3D Electrode 

 

Figure 3.8 (a) Cyclic voltammograms with a potential sweep rate ranging from 20 to 200 mV s–

1. (b) GC-DC curves with a current density ranging from 2 to 20 A g–1. (c) Specific capacitance 

values calculated from the GC-DC curves at different current densities. (d) Cyclic stability at 

a charge-discharge current density of 5 A g–1 for 10000 cycles (inset shows the GC-DC curves) 

of the NHPC-3D electrode. All measurements were carried out in 1.0 M H2SO4 by using a 

three-electrode system. 

 

The unique structural properties of NHPC-3D suggest a promising performance as an 

electrode material for high-performance EDLCs. To characterize the electrochemical 

properties of the NHPC-3D electrode implemented in a supercapacitor architecture, cyclic 

voltammetry (CV) and galvanostatic charge-discharge (GC-DC) measurements were 

conducted by using a three-electrode system in 1 M aqueous H2SO4 electrolyte. The CV curves 

were recorded at sweep rates ranging from 20 to 200 mV s–1 (Figure 3.8a). It can be observed 

that NHPC-3D presents rectangular-like CV curves with a distinct hump, which implies that 

the capacitive response originates from both the electric double-layer capacitance and the 
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pseudocapacitance related to the doped nitrogen atoms.[39,40] It is well-known that 

heteroatom (e.g., nitrogen) doping could not only enhance the electric double-layer capacitance 

by increasing the wettability between electrolyte and carbon electrode,[39] but also give rise 

to pseudocapacitance effects by participating in pseudofaradaic charge-transfer reactions.[41] 

It is noteworthy that the quasi-rectangular CV shape is only slightly distorted, even at higher 

potential sweep rates, which implies efficient ion transfer and a rapid ion response inside the 

NHPC-3D electrode. The GC-DC measurements, which were performed to evaluate the 

specific capacitance of the NHPC-3D electrode (Figure 3.8b), were obtained at various current 

densities ranging from 2 to 20 A g–1 in a three-electrode system. The NHPC-3D electrode 

presents a quasi-linear appearance accompanied by a slight bend due to the impact of 

pseudocapacitance originating from nitrogen doping.[42,43] The specific capacitance values 

were calculated from the GC-DC curves at different current densities and are plotted in Figure 

3.8c. The NHPC-3D electrode shows an excellent specific capacitance of 252 F g–1 at a current 

density of 2 A g–1 in aqueous electrolyte, which is higher than or comparable to those of 

previously fabricated hierarchical porous carbons (Table 3.1). The specific capacitance of the 

NHPC-3D electrode at a higher current density of 20 A g–1 remains 190 F g–1, which results in 

a capacitance retention ratio as high as 75.7% during high-rate operations. 

The exact mechanisms responsible for ion transport in the electrode material are 

complex, but the abundance of macropores and the thin porous walls effectively shorten the 

diffusion pathways and minimize the transport resistance of the electrolyte and ions from the 

bulk electrolyte to the inner surface, leading to excellent high-rate performances. More 

precisely, the macropores not only provide free pathways for the electrolyte but also bring out 

a buffer space for the electrolyte and ions, which helps to reduce the diffusion distance of the 

inner surface.[8,10,11] The meso- and micropores in the carbon walls lead to a high specific 

surface area and contribute to a high electrochemical double-layer capacitance.[12,13] Thus, 

the distinguished specific capacitance and high capacitive retention can be greatly attributed to 

advantageous structural properties of NHPC-3D, including the high specific surface area (1056 

m2 g–1), interconnected hierarchical porous texture, and nitrogen functionalization. 
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Furthermore, the NHPC-3D electrode exhibits long-term cycling stability, as shown in Figure 

3.8d. The specific capacitance is almost constant over 10000 cycles, which showcases that 

NHPC-3D is a promising candidate for practical applications. 

 

Table 3.1 Comparison of the specific capacitances of hierarchical porous carbons in the 

previous literatures using three-electrode systems. 

Materials Electrolyte 

Current 

density 

(A g-1) 

Capacitance 

(F g-1) 
Reference 

N-doped hierarchical 

porous carbons 

1.0 M 

H2SO4 
2 252 This study 

Heteroatom-doped carbon 
1.0 M 

H2SO4 
2 245 

Adv. Funct. Mater.  

23 (2013) 1305-1312 

Hierarchical porous 

carbon hollow-spheres 
6.0 M KOH 2 248 

J. Power Sources  

211 (2012) 92-96 

Hierarchical porous 

carbon foams 
6.0 M KOH 1 206 

J. Power Sources  

209 (2012) 152–157 

N-doped porous 

nanofibers 
6.0 M KOH 1 202 

ACS Nano  

6 (2012) 7092-7102 

Hierarchical porous 

carbons 
6.0 M KOH 1 190 

Carbon  

55 (2013) 221-232 

Porous carbon through 

dual templates 
6.0 M KOH 1 153 

J. Mater. Chem. A  

1 (2013) 7379-7383 

N-containing 

hydrothermal carbons 

1.0 M 

H2SO4 
2 240 

Adv. Mater.  

22 (2010) 5202-5206 

  



Chapter 3. Three-Dimensional Nitrogen-Doped Hierarchical Porous Carbon as an Electrode for High-Performance 
Supercapacitors 

λ5 

3.4. Conclusion 

I developed a facile procedure for the large-scale preparation of NHPC-3D by taking 

advantage of the self-polymerization and coating nature of nitrogenous dopamine. The three-

dimensional interconnected hierarchical porous texture, as well as the high surface area, large 

pore volume, and heteroatom doping, in NHPC-3D make it an excellent candidate electrode 

material for high-rate supercapacitor applications by providing a sufficient surface for charge 

accommodation, and supplying reversible pseudocapacitance from the doped nitrogen atoms, 

which reduces the primary ion-transport resistance and pathways, and overcomes the kinetic 

limits in porous carbons during electrochemical processes. 
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4.1. Introduction 

Future fabrication of advanced nano-devices will rely largely on the ability to control 

the synthesis of nanomaterials possessing unique structural features and multifunctional 

properties.[1] Porous carbon materials have been universally applied in dozens of fields due to 

their stable physicochemical properties, good electrical conductivity, low cost, and abundant 

storage.[2] Compared with other morphologies, the hollow spherical structure has many 

fascinating properties, including a high surface-to-volume ratio, low density, and large interior 

void fraction.[3-5] Hollow carbon spheres have consequently attracted a great deal of interest, 

generating abundant research efforts. Up to now, hollow carbon spheres have been fabricated 

by means of various synthetic approaches, including the hard-templating and soft-templating 

methods.[6,7] The hard-templating method has been commonly adopted to synthesize uniform 

hollow carbon spheres by coating the surface of the spherical template core with a carbon 

precursor (e.g., resol,[8] pitch,[9] glucose,[10] pyrrole[11]), followed by carbonization and 

subsequent template etching. The retained carbon shells and hollow cores originate from the 

sacrificial colloid hard templates, including monodispersed silica nanoparticles,[12] spherical 

polymers (e.g., polystyrene spheres[13]), and metal oxides.[14] The soft-templating method, 

which is based on the organic–organic self-assembly of thermosetting carbon precursors and 

thermally decomposable amphiphilic molecules, requires less synthetic steps.[15,16] Only a 

few hollow carbon spheres are obtained by using the soft-templating method.[6] These uniform 

hollow carbon spheres exhibit excellent potential for applications in adsorption,[4] 

catalysis,[17] and energy storage,[18] due to their stable physicochemical properties, good 

electrical conductivity and unique structural properties, including high specific surface area, 

accessible porous shell and high internal volume. In addition, the internal void provides a 

confined space which is especially attractive for drug delivery, gas storage, nanoreactors, and 

active material encapsulation.[1,19,20] 

Research designed to promote applications of carbon materials has shown 

functionalized carbon materials with heteroatoms (e.g., N, B, P) to offer an effective approach 

to modifying intrinsic physicochemical properties of carbons.[21-23] Nitrogen-enriched 
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carbons with hierarchical pore structures present extraordinarily high capacitance per unit 

surface area (> 30 ȝF cm–2), due to the pseudocapacitance obtained from the high nitrogen 

content.[23] The success of N-doped carbon materials in these applications depends on the 

increases in active surface sites, electrical conductivity, and the electron-donor effect between 

nitrogen and carbon in the N-doped carbons. In this context, N-doped hollow carbon spheres 

have recently been the subject of extensive research efforts. Since the first report in 2011 by 

Dai and coworkers, dopamine has been demonstrated to be a suitable precursor for the synthesis 

of N-doped carbon materials.[24] Compared with other carbon precursors, dopamine has many 

unique features. First, dopamine is a nontoxic biomolecule that can self-polymerize under 

alkaline conditions at just room temperature and, at the same time, coat almost any 

surface.[25,26] Secondly, polymerized dopamine (polydopamine) has a high carbonization 

yield of 50 wt%, even at a temperature of 1000 °C, and nitrogen can be preserved in the final 

carbons in the form of graphitic-N and pyridinic-N.[27] In Chapter 2, I have demonstrated a 

strong interaction between dopamine and the high-molecular-weight diblock copolymer PS-b-

PEO, and have successfully obtained solid N-doped carbon spheres consisting of abundant 

large mesopores (up to 16 nm) for the first time.[28]  

Although N-doped hollow carbon nanospheres have been developed by different 

synthetic strategies, including the use of dopamine as the precursor and silica spheres as the 

hard template,[29,30] most have only random micropores or small mesopores (3-5 nm) in the 

shell.[4,11,19] To the best of my knowledge, there are few reports that focus on precision 

engineering of the porous architecture of the shell in the hollow carbon spheres. Recently, 

monodispersed asymmetrical carbon nanohemispheres filled with ordered mesopores have 

been realized by Zhao’s group, but the size of the pores in the shell is still less than 6 nm.[31] 

Hence, it remains a challenge to fabricate N-doped hollow carbon spheres with large mesopores 

in the shell, which could be more interesting for their ability to act as accessible pathways for 

mass transport, especially of large molecules. Inspired by the conformal deposition nature of 

polydopamine on solid surfaces, and the strong interaction between polydopamine and diblock 

copolymer PS-b-PEO, I report herein the synthesis through a dual-templating method of N-
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doped hollow carbon spheres with large tunable mesopores (~20 nm) in the shell (NHCS-LM). 

Dispersed silica nanoparticles with sizes of ~350 nm were used as the hard template, and the 

diblock copolymer PS173-b-PEO170 was selected as the micelle soft template for the generation 

of mesopores in the shell.  

 

4.2. Experimental Sections 

4.2.1. Chemicals 

Tetraethyl orthosilicate (TEOS), ammonia aqueous solution (NH4OH, 28 wt%), and 

dopamine hydrochloride (DA) were purchased from Aldrich. Amphiphilic block copolymer, 

polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) was purchased from Polymer Source Inc. 

All the chemicals were of analytical grade and were used without further purification. 

4.2.2. Preparation of Silica Spheres  

Silica spheres about 350 nm in size were prepared using the modified classic Stӧber 

method. First, 9 mL of 28 wt% NH3·H2O was added to a mixed solution of water (16.25 mL) 

and ethonal (24.75 mL). An ethanolic solution of TEOS was prepared simultaneously by 

dissolving TEOS (2.25mL) in ethanol (22.75 mL). After stirring for 15 mins, the ethanolic 

solution of TEOS was added to the original alkaline ethanol-water solution and the solution 

was reacted for another 3 hours. Silica spheres about 350 nm in size were then collected through 

centrifugation and washed several times with deionized water and ethanol. 

4.2.3. Preparation of Nitrogen-Doped Hollow Mesoporous Carbon Spheres 

(NHCS-LM) 

In a typical synthesis of N-doped hollow mesoporous carbon spheres, 200 mg of DA 

was dissolved in deionized water (8 mL), and the above solution was then poured into a mixed 

solution of ethanol and THF (volume ratio 1:1, 8 mL) containing 30 mg of diblock copolymer 

(PS173-b-PEO170) and 50 mg of silica spheres about 350 nm in size under sonication. After 30 

mins, 0.5 mL of ammonia aqueous solution (NH4OH, 28 wt%) was injected to induce self-

polymerization of the dopamine, and the colour of the solution turned from oyster white to dark 
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brown. After continuous reaction for 20 hours, silica@polydopamine/diblock copolymer 

micelles spherical composite materials consisting silica as the core and polydopamine/diblock 

copolymer micelles as the shell (assigned as silica@PDA/micelles) were collected by 

centrifugation and washed several times with deionized water and ethanol. The wall thickness 

of polydopamine in silica@PDA/micelles can be adjusted by repeating the coating process. 

During recoating, the pre-prepared silica@PDA/micelles were used as the core instead of silica 

spheres, and the products were assigned as silica@PDA/micelles-2). Carbonization was 

performed by heating the silica@PDA/micelles under a N2 atmosphere at 350 °C for 3 hours 

and finally at 800 °C for 2 hours with a heating rate of 1 °C min-1. The product is assigned as 

silica@NMCS (NMCS refers to the N-doped mesoporous carbon shell). Finally, N-doped 

hollow mesoporous carbon spheres (assigned as NHCS-LM) were obtained by removing the 

silica template using a hydrofluoric acid aqueous solution (HF, 10 wt%). N-doped hollow 

mesoporous carbon spheres with thicker walls were also prepared by carbonization of 

silica@PDA/micelles-2 and removal of the silica template by HF. 

4.2.4. Characterization 

The morphology of the products was determined with a Hitachi SU-8000 field-emission 

scanning electron microscope (SEM) at an accelerating voltage of 5 kV. Transmission electron 

microscopy (TEM) and energy-dispersive X-ray analysis (EDXA) were conducted with a JEM-

2100 at a voltage of 200 kV. The N2 adsorption–desorption isotherms were measured using a 

Quantachrome Autosorb-iQ Automated Gas Sorption System at 77 K. The specific surface area 

was calculated according to the Brunauer–Emmett–Teller (BET) model using adsorption 

branch data in the relative pressure (P/P0) range of 0.05-0.35. The total pore volumes and pore-

size distributions were estimated from the adsorption branches of isotherms according to the 

nonlocal density functional theory. Wide-angle X-ray diffraction (XRD) patterns were 

acquired with a Rigaku Rint 2000 X-ray diffractometer using monochromated Cu Kα radiation 

(40 kV, 40 mA) at a scanning rate of 2° min-1. Raman spectra were collected using a Horiba-

Jovin Yvon T64000 instrument with an excitation laser wavelength of Ȝ=514.5 nm. X-ray 

photoelectron spectroscopy (XPS) was conducted with a PHI Quantera SXM (ULVAC-PHI) 
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instrument with an Al Kα X-ray source. All the binding energies were calibrated via referencing 

to the C 1s binding energy (285.0 eV). The peaks of the N 1s spectrum were fitted with a 

Gaussian-Lorentzian sum function and a Shirley background. 

4.2.5. Electrochemical Measurements 

The electrochemical measurements were conducted using a traditional three-electrode 

system. A platinum filament and a Ag/AgCl (3 M KCl) electrode acted as counter and reference 

electrodes, respectively. The thin-film working electrode was prepared as follows. NHCS-LM 

(0.4 mg) was mixed with poly(vinylidene fluoride) (0.1 mg) and then well-dispersed in N-

methyl-2-pyrrolidone (0.2 mL) through ultrasonication. The resulting black slurry was dropped 

onto a graphite substrate (1 cm2) and dried under an infrared lamp to form a thin layer. 

Electrochemical measurements were conducted using an electrochemical workstation (CHI 

660E CH Instruments) in acid electrolytes (1.0 M H2SO4) at room temperature (22 °C). The 

electrochemical properties of the supercapacitor were studied by cyclic voltammetry (CV) and 

galvanostatic charge-discharge (GC-DC) measurements. The potential sweep rate ranged from 

20 to 200 mV s-1, and the GC-DC current density varied from 1 to 10 A g-1. The specific 

capacitance value was calculated from the CV curves by the following equation: C = 1�௦ሺV�−��ሻ ∫ �ሺ�ሻ������ , where m is the mass of active electrode material, s is the potential scan 

rate, Vf and Vi are the integration limits of the voltammetric curve, and I(V) denotes the current 

density. The specific capacitance was calculated from the GC-DC curves by the following 

equation, C = 
�×∆௧�×∆� , where I is the charge-discharge current at a discharge time of ∆t (s), ∆V 

is the potential range, and m is the mass of active electrode material. 
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4.3. Results and Discussion 

4.3.1. Synthesis and Characterization of NHCS-LM 

 

Figure 4.1 Schematic illustration of the preparation of NHCS-LM. 

A schematic illustration of the preparation of NHCS-LM is displayed and the formation 

mechanism is proposed in Figure 4.1. In the experimental process, the diblock copolymer 

PS173-b-PEO170 dissolved in tetrahydrofuran (THF) solution, silica nanospheres well-dispersed 

in ethanol solution and dopamine (DA) dissolved in water were consecutively mixed together 

under continuous stirring. Under these conditions, the diblock copolymer PS173-b-PEO170 

existed as micelles in the hybrid solution. The PS173-b-PEO170 micelles were surrounded by 

DA molecules because of the hydrogen bond interaction between the –OH group in the PEO 

block outside the micelles and the inherit catechol and N–H groups in the DA 

molecules.[25,32,33] The solution was then adjusted to become alkaline by adding a certain 

amount of ammonia solution. The pH value of the alkaline reaction solution was measured to 

be 11.35. The DA molecules proceeded to self-polymerize and continued to coat the surface of 

the silica spheres at this stage.[25,32] In the meantime, the micelles interacted strongly with 

the polymerized dopamine (abbreviated as PDA) due to the catechols/quinone groups present 

in the PDA,[25,32] and were thus forcibly co-deposited onto the surface of the silica spheres 

together with PDA to obtain core–shell silica@PDA/micelles composite spheres. 

Carbonization was conducted at 800 °C under an inert atmosphere. This involved converting 

the PDA into N-doped carbon, simultaneously removing the PS173-b-PEO170 micelles and 

creating large mesopores in the shell. The obtained sample is denoted as silica@NMCS at this 
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stage, where NMCS refers to the N-doped mesoporous carbon shell that is inherited from the 

PDA/micelles shell. Finally, the silica template was etched with hydrofluoric acid to obtain the 

macroporous core, leading to the formation of the target product, N-doped hollow carbon 

spheres with macroporous cores (~350 nm) and large mesoporous (~20 nm) shells (NHCS-

LM). 

 

Figure 4.2 SEM images of (a and b) silica@PDA/micelles, (c) silica template, (d) micelles of 

diblock copolymer PS173-b-PEO170, (e and f) silica@NMCS, and (g and h) NHCS-LM. The 

insets in Figure 4.2a,c,d,e,g are the particle size distribution histograms that calculated from 

over 50 particles. The average particle sizes are (a) 395 nm, (c) 350 nm, (d) 30 nm, (e) 370 nm, 

and (g) 373 nm, respectively. 
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The practical morphology of the samples in each stage was revealed by scanning 

electron microscope (SEM) images. As shown in Figure 4.2a, the prepared core–shell 

silica@PDA/micelles preserve the spherical morphology of their parent silica templates, but 

they exhibit a larger average diameter of 395 nm (inset in Figure 4.2a) compared with the 

silica core templates with an average diameter of 350 nm (Figure 4.2c). A high resolution SEM 

image of the individual particle of silica@PDA/micelles is shown in Figure 4.2b-1. Many 

round bumps with sizes of ~30 nm, a configuration matching the morphology of PS173-b-

PEO170 micelles (Figure 4.2d), can be clearly seen from the exposed hemispheres. The 

appearance of the silica@PDA/micelles is similar to my previously reported PDA/micelles 

spheres, demonstrating successful formation of a shell composed of PDA and PS173-b-PEO170 

micelles.[28] Most of the spheres retain their integrity. When a random cracked shell is 

observed (Figure 4.2b-2), it reveals that the PDA/micelles layer coats the surface of the silica 

core uniformly and displays a shell thickness of 24 nm, which explains the increased diameter 

of the silica@PDA/micelles compared with the parent silica spheres. After carbonization at 

800 °C under a N2 atmosphere, the PDA could be converted to N-doped carbon shell and those 

thermal pyrolysis PS173-b-PEO170 micelles were simultaneously removed to leave mesopores 

(Figure 4.2e and f). Finally, the silica template was etched by hydrogen fluoride aqueous 

solution (HF) to produce the N-doped hollow carbon spheres with large-sized mesoporous 

shells (NHCS-LM, Figure 4.2g). As definitely observed from the high-magnification SEM 

image (Figure 4.2h), the shells of NHCS-LM possess large mesopores (~20 nm). This result 

has never been realized by other studies. In addition to the large mesopores that are replicated 

from the removal of the micelles, abundant micropores and small mesopores that originated 

from the pyrolysis of PDA co-exist in the shells, which are not clear in the SEM image and can 

be estimated by N2 adsorption–desorption isotherms in the following section. Moreover, as 

verified in my previous study, the large mesopore size in the shell inherited from the diblock 

copolymer micelles can be easily adjusted by regulating the different molecular weights of the 

PS blocks in PS-b-PEO, which provides flexibility for tailored applications.[28] 
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Figure 4.3 TEM images of NHCS-LM with an identical average macroporous core diameter 

of 350 nm but varied shell thickness: (a and b) 17 nm and (c and d) 50 nm. 

 

The hollow structure and mesoporous shell of NHCS-LM were confirmed by 

transmission electron microscopy (TEM) images. As clearly shown in Figure 4.3a, NHCS-LM 

have a central hollow core with a diameter of around 350 nm, which matches the size of the 

silica template. The average porous shell thickness in NHCS-LM is about 17 nm, however, 

which is thinner than the PDA/micelles layer (24 nm), due to shrinkage of the PDA polymer 

during carbonization. The large mesopores that inherited from the diblock copolymer micelles 

in the shell also seem to appear in the TEM images (Figure 4.3a and b). The nitrogen content 

in NHCS-LM roughly estimated by energy-dispersive X-ray analysis (EDXA) is ~8 wt% 

(Figure 4.4). I further demonstrate that the thickness of the mesoporous shell is adjustable by 

controlling the coating times. After silica@PDA/micelles composite spheres were obtained, 

for example, these composite spheres have been redispersed into the ethanol solution and added 
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to the primary solution composed of PS173-b-PEO170 and dopamine, after which the process of 

coating the PDA/micelles layer has been repeated. The following carbonization and template 

etching steps are similar. As presented in Figure 4.3c and d, NHCS-LM after twice-repeated 

coating have an increased shell thickness of ~50 nm. 

 

 

Figure 4.4 Energy-dispersive X-ray analysis (EDXA) of NHCS-LM. 

 

The carbon state in NHCS-LM was identified by XRD and Raman spectroscopy. As 

shown in Figure 4.5a, NHCS-LM present two broad diffraction peaks at 2θ of 24° and 44°, 

which can be indexed to the (002) and (101) diffraction planes of the carbon and which suggest 

a predominantly amorphous nature of NHCS-LM.[34,35] As shown in Figure 4.5b, the Raman 

spectra of NHCS-LM show two distinct bands located at 1360 (D band) and 1590 (G band) 

cm–1, respectively. The D band is generally related to the vibrations of disordered carbon and 

defects in the plane terminations, and the G band is associated with vibrations of sp2-bonded 

ordered graphitic carbon sheets.[36,37] Thus, graphitic and disordered carbons co-exist in 

NHCS-LM, which corresponds with the XRD result. 
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Figure 4.5 (a) Wide-angle XRD patterns, (b) Raman spectra, (c) N2 adsorption–desorption 

isotherms and pore-size distributions, (d) high-resolution N 1s spectrum of an NHCS-LM 

sample. 

 

The porosity and electric state of nitrogen were also determined by nitrogen sorption 

analysis (Figure 4.5c) and X-ray photoelectron spectroscopy (XPS) (Figure 4.5d). The N2 

adsorption–desorption isotherms of the prepared silica@NMCS and NHCS-LM before and 

after removal of the silica template are shown in Figure 4.5c, and the inset shows the pore size 

distribution curves. It is clear that before removal of the silica template, the nitrogen adsorption 

is very low in silica@NMCS. The main nitrogen adsorption in the silica@NMCS is 

concentrated below a relative pressure of 0.05, due to the microporosity distribution in the shell. 

Silica@NMCS have a poor porosity with a BET specific surface area of 94 m2·g–1 and a total 

pore volume of 0.07 cm3·g–1. After removal of the silica core from silica@NMCS, NHCS-LM 

exhibit a type II isotherm which is closely associated with the macroporous texture (Figure 

4.5c). Aside from the obvious existence of macropores revealed by the unsaturated nitrogen 

adsorption at high relative pressure (P/P0 > 0.9), the nitrogen uptakes at low relative pressure 
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(P/P0 < 0.05) is caused by the presence of micropores, and the gradual nitrogen uptake in the 

relative pressure range of 0.05 < P/P0 < 0.9 is associated with nitrogen adsorption in the 

mesopores. The absence of hysteresis loop is probably due to the very thin shell thickness (~17 

nm) and the independent mesopores (~20 nm) in the shell, thus the nitrogen adsorption and 

desorption happened in the same relative pressure. The detailed micro- and meso-pore size 

distributions are analyzed based on nonlocal density functional theory using the adsorption 

branches of the isotherms, and the hierarchical pore size distributions are illustrated in the inset 

in Figure 4.5c. The micropores and small mesopores are mainly originated from the pyrolysis 

of PDA during carbonization, and the large mesopores with size around 20 nm are mostly due 

to the removal of the micelles as observed in SEM image (Figure 4.2h). The hierarchical 

porous structure of NHCS-LM leads to an increased BET specific surface area of 427 m2·g–1 

and a total pore volume of 1.39 cm3·g–1. X-ray photoelectron spectroscopy (XPS) was also 

carried out, moreover, to investigate the electric state of nitrogen in the NHCS-LM. As 

illustrated in Figure 4.5d, the high-resolution N 1s spectrum of NHCS-LM can be fitted into 

two binding energies located at 398.1 and 400.5 eV, which are indexed to pyridinic-N and 

graphitic-N, respectively, demonstrating the successful doping of nitrogen into the carbon 

matrix of NHCS-LM.  
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4.3.2. The Potential Applications of NHCS-LM 

 

Figure 4.6 (a) Cyclic voltammograms with a potential sweep rate ranging from 20 to 200 

mV·s–1, (b) specific capacitance values calculated from the cyclic voltammogram curves at 

different scan rates, (c) galvanostatic charge-discharge curves with a current density ranging 

from 1 to 10 A·g–1, and (d) specific capacitance values calculated from the galvanostatic 

charge-discharge curves at different current densities. All measurements were carried out in 

1.0 M H2SO4 using a three-electrode system. 

 

NHCS-LM synthesized by the dual-templating method in this study have a mesoporous 

shell with a large pore size (~20 nm) which has never been reported before. Combined with 

their large internal void space, abundant nitrogen functional groups, and large specific surface 

area and pore volume, NHCS-LM have a wide spectrum of potential applications. The NHCS-

LM can be used, for example, as electrode materials in electric double-layer capacitors. The 

electrochemical properties of a NHCS-LM electrode implemented in a supercapacitor 

architecture were investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge 

(GC-DC) measurements (Figure 4.6). The system was constructed in a three-electrode system 
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with a 1.0 M H2SO4 aqueous electrolyte. The CV curves were recorded at sweep rates ranging 

from 20 to 200 mV·s–1. Galvanostatic charge-discharge measurements were obtained at various 

current densities ranging from 1 to 10 A·g–1. It was observed that the NHCS-LM presented 

quasi-rectangular CV curves with a distinct hump (Figure 4.6a) and displayed quasi-linear 

charge-discharge curves accompanied by a slight bend (Figure 4.6c). These phenomena 

indicate that the capacitive response of NHCS-LM combines electric double-layer capacitance 

originating from the porous carbon with pseudo-capacitance originating from the doped 

nitrogen atoms.[38,39] It is noteworthy that the quasi-rectangular CV curves are only slightly 

distorted (Figure 4.6a), even at a high potential sweep rate of 200 mV·s–1, implying an efficient 

ion transfer and rapid ion response inside the NHCS-LM electrode. The diffusion pathways 

and transport resistance of the electrolytes and ions are minimized due to the unique structural 

properties of NMCS-LM. This is because the macroporous core in NMCS-LM is able to build 

a buffer space for the electrolytes and the mesoporous thin wall provides free pathways for the 

ions, conditions favoring high-rate operation.[40,41] The specific capacitance values 

calculated from both the CV and GC-DC are plotted in Figure 4.6b and d. The NHCS-LM 

electrode shows a specific capacitance of 130 F·g–1and 160 F·g–1 at a scan rate of 20 mV·s–1 

and a current density of 1 A·g–1 respectively. In addition, NHCS-LM are promising candidates 

as drug-delivery carriers. Large-molecule drugs can easily ingress and egress the interior 

storage space through the large external mesoporous shell.[42] If the NHCS-LM were loaded 

with a sulfur element, moreover, they could be used as cathode materials in lithium-sulfur 

batteries. As reported in the previous work,[9] elemental sulfur can be encapsulated in the 

hollow core and sequestered by the shell, while the permeable mesoporous shell helps to fast-

transport lithium ions to the internal sulfur. 
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4.4. Conclusion 

In summary, I have described a dual-templating approach to N-doped hollow carbon 

spheres with macroporous cores and tailored large mesoporous shells (NHCS-LM). The sizes 

of the mesopores in the tunable shells can be easily adjusted by adopting diblock copolymers 

with different molecular weight. Due to the unique structural properties of NHCS-LM, 

including their possession of abundant nitrogen functional groups, high specific surface area 

of 427 m2·g–1, large tunable mesopores in the shell and confined internal space, NHCS-LM are 

expected to be promising materials for applications as adsorbents, catalyst supports, drug 

delivery cargos, and hosts for active substances. 
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5.1. Introduction 

Nanoporous carbons (NPCs), which have excellent chemical and mechanical stability, 

good electrical conductivity, a large specific surface area, and an adjustable pore structure, are 

attractive and significant materials for industrial applications as electrode materials, adsorbents, 

and catalyst supports.[1-6] To date, various carbon materials have been extensively studied for 

supercapacitor applications.[7-11] On the basis of previous research, high available surface 

areas are the predominant requirement for carbon-based electrodes used in 

supercapacitors.[12,13] Other factors such as accessible porous structures, good electrical 

conductivity, and surface functionalities also contribute to improve the capacitance.[14-16] 

Heteroatom doping (e.g., B, N, P) has been demonstrated as an effective strategy to enhance 

the capacitance of a carbon electrode through ameliorating the surface wettability and offering 

reversible pseudocapacitance effects.[17-22] Alternatively, the introduction of metals can 

provide additional functionalities in the carbon matrix and further promotes the applications of 

carbon materials, especially as electrode materials.[23-25] For example, the crystallinity and 

electrical conductivity of carbons can be remarkably improved by the incorporation of some 

specific metals (Fe, Co, and Ni) due to their effect of catalytic graphitization of amorphous 

carbon.[26-29] Therefore, heteroatom-doped and/or metal-modified carbons are very 

promising for future applications (e.g., supercapacitor) and attract much research interest.  

Since the first report on metal−organic frameworks (MOFs) derived NPCs by Xu et 

al.,[30] several types of NPCs have been prepared by carbonization of MOFs. The parent MOFs 

assembled from metal ions (or clusters) with bridging organic linkers have many fascinating 

properties, such as an ultrahigh surface area, tunable compositions, and diverse structural 

topologies. In some cases, MOFs are considered as sacrificial templates, and additional carbon 

sources such as furfuryl alcohol are introduced into the micropores of MOFs, followed by 

polymerization and carbonization, to prepare NPCs.[31,32] In contrast, direct carbonization of 

MOFs is found to be a straightforward route for the preparation of NPCs possessing an 

extremely high surface area, heteroatom doping, and functional metal species.[33-37] In all the 

previous works, however, NPCs are prepared from a single MOFs precursor, and therefore the 
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expected functionalities are very limited.[38-42] In order to realize a high surface area, 

additional carbon sources (e.g., furfuryl alcohol) have been often filled in the MOFs, but the 

obtained NPCs are mainly composed of micropores, which suffer a diffusion limitation in 

supercapacitor application.[30,31,42] In addition, in the previous works, both high N content 

and highly graphitic structure are difficult to be realized at the same time because the N content 

largely decreases during the graphitization of NPCs.[36,41,43] The high porosity of NPCs is 

also seriously sacrificed during the graphitization process.[44] To overcome these issues, 

heterogeneous hybridization is an effective methodology to fuse the advantages of different 

materials and endows the hybrid materials with novel chemical and physical properties and 

interfacial functionality.[45-48] My target in this study is to realize selectively functionalized 

NPCs derived from core−shell MOFs, which can bring out novel chemical and physical 

properties that are not attainable from a single MOFs precursor. 

 

 

Figure 5.1 Synthetic scheme for the preparation of (a) ZIF-8 crystals and NC, (b) ZIF-67 

crystals and GC, and (c) core−shell ZIF-8@ZIF-67 crystals and NC@GC. 
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A zeolite imidazole framework (ZIF) is a well-known subfamily of MOFs formed 

through the coordination interaction between the metal ions and the imidazole 

derivatives.[49,50] Therefore, I set out to prepare core–shell MOFs (ZIF-8@ZIF-67) crystals, 

which consist of ZIF-8 ([Zn(MeIm)2]n) (MeIm=2-methylimidazole) crystals as the core and 

ZIF-67 ([Co(MeIm)2]n) crystals as the shell, through a seed-mediated growth method that is 

usually adopted to prepare core–shell structured materials.[51-54] By thermal treatment of ZIF-

8@ZIF-67 crystals, novel selectively functionalized nanoporous N-doped carbon@graphitic 

carbon (NC@GC) materials consisting of N-doped carbon (NC) as the core and highly 

graphitic carbon (GC) as the shell are successfully prepared (Figure 5.1). Nanoporous NC and 

GC materials have demonstrated different advantageous properties. Nanoporous NC prepared 

from ZIF-8 crystals has a relatively high N content of 16 wt% and a large specific surface area 

of 1499 m2·g-1, but the carbon is in an amorphous state. In contrast, nanoporous GC prepared 

from ZIF-67 crystals possesses highly graphitic walls with good conductivity due to the 

catalytic graphitization effect of well-dispersed Co species in the parent ZIF-67 crystals, but 

the specific surface area and N content are sacrificed. My novel NC@GC materials prepared 

from core–shell structured MOFs (ZIF-8@ZIF-67) reasonably integrate the advantageous 

properties of both NC and GC, including the high surface area, high N content, and graphitic 

structure. Furthermore, the NC@GC materials possess interconnected hierarchically 

micro/mesoporous structure originated from the core–shell ZIF-8@ZIF-67, which are 

favorable in supercapacitor. As expected, my nanoporous NC@GC electrode displayed a 

superior electrochemical performance in terms of capacitance and retention in comparison with 

nanoporous NC and GC electrodes prepared from single ZIF-8 and ZIF-67 crystals, 

respectively. This study not only bridges diverse carbon-based materials with infinite MOFs 

but also opens a new avenue for artificially designed nanoarchitectures with target 

functionalities.  
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5.2. Experimental Sections 

5.2.1. Chemicals 

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%) and cobalt chloride (CoCl2) were 

purchased from Sigma-Aldrich Chemical Co. 2-Methylimidazole (MeIm, purity 99%), 

hydrofluoric acid, and methanol were obtained from Nacalai Tesque Reagent Co. All the 

chemicals were used without further purification 

5.2.2. Preparation of ZIF-8 Seeds with Different Particle Sizes 

In a typical synthesis of ZIF-8 with a diameter of ~4 ȝm, methanolic solutions of zinc 

nitrate hexahydrate (810 mg, 40 mL) and methanolic solutions of MeIm (526 mg, 40 mL) were 

mixed under stirring. Then the mixture was transferred into an autoclave and was kept at 100 

ºC for 12 hours. The white powder was collected by centrifugation, washed several times with 

methanol, and dried at 80 ºC. When the mixed methanolic solution of zinc nitrate hexahydrate 

and MeIm was kept at room temperature (22 ºC) for 12 hours, the white particles of ZIF-8 with 

a diameter of 500 nm were precipitated. The size of ZIF-8 could be further decreased to ~50 

nm by adding polyvinylpyrrolidone (PVP) as the capping agent and keeping the reaction at 

room temperature. 

5.2.3. Preparation of ZIF-67 

In the synthesis of ZIF-67 with a diameter of ∼5 ȝm, a methanolic solutions (80 mL) 

of cobalt chloride (519 mg), polyvinylpyrrolidone (PVP) (600 mg) and MeIm (2630 mg) were 

mixed under stirring. Then the mixture was kept reaction at room temperature for 12 hours. 

The bright purple powder of ZIF-67 was collected by centrifugation, washed several times with 

methanol, and dried at 80 °C. 

5.2.4. Preparation of Core−Shell ZIF-8@ZIF-67 Crystals 

In a typical synthesis of core−shell ZIF-8@ZIF-67 crystals with micrometer-size, ZIF-

8 seeds (80 mg) with diameter of ∼4 ȝm were first well-dispersed in methanol (10 mL) under 

sonication for 30 mins. After stirring for 20 mins, a methanolic solution of cobalt chloride (177 

mg, 3 mL) and a methanolic solution of MeIm (895 mg, 3 mL) were stepwise injected into the 

above mixture. After stirring for another 5 mins, the mixture was transferred into an autoclave 
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and kept at 100 °C for 12 hours. During this time, the core−shell ZIF-8@ZIF-67 crystals were 

obtained. After cooling to room temperature, the resulting sample was collected by 

centrifugation, washed several times with methanol, and dried at 80 °C. The molar ratio of 

Co2+/Zn2+ in the obtained ZIF-8@ZIF-67 crystals under these typical conditions was 0.26. The 

shell thickness of ZIF-67 can be tuned by changing the amounts of methanolic solutions of 

cobalt chloride and MeIm. The obtained core−shell ZIF-8@ZIF-67 crystals with micrometer-

size are noted as ZIF-8@ZIF-67(x), where x indicates the molar ratio of Co2+/Zn2+ in the 

product. 

5.2.5. Carbonization of Core−Shell ZIF-8@ZIF-67 Crystals 

Core−shell ZIF-8@ZIF-67 crystals with micrometer-size were thermally converted to 

NC@GC materials through carbonization under a N2 flow at 800 °C for 3 hours, with a heating 

rate of 2 °C·min-1. After that, the obtained samples were washed extensively by HF solution 

(10 wt%) to remove the deposited Zn and Co species. As a control experiment, two types of 

NPCs were prepared by single precursors (ZIF-8 and ZIF-67 with micrometer-size) under the 

same thermal conditions, which are noted as NC and GC, respectively. 

5.2.6. Characterization  

The morphology of the samples was characterized using a Hitachi SU-8000 field-

emission scanning electron microscope (SEM) at an accelerating voltage of 5 kV. Transmission 

electron microscopy (TEM) and elemental mapping analysis were measured by a JEM-2100 

operated at 200 kV. Wide-angle powder X-ray diffraction (PXRD) patterns were measured by 

a Rigaku Rint 2000 X-ray diffractometer using monochromated Cu Kα radiation (40 kV, 40 

mA) via continuous scan. In order to calculate the unit cell parameters of metal−organic 

framework by using Braggs’ law, wide-angle powder X-ray diffraction (XRD) analysis was 

conducted via continuous scan by using a scan rate (angular velocity) of 0.5° min-1 and step 

(sampling interval) of 0.02°. To get a higher quality XRD pattern, determining more precise 

peak position and alleviating background noise, further research can set a much slower scan 

rate and smaller step, such as 0.1° min-1 with step of 0.01°. Carbon materials were analysized 

by XRD at a scan rate of 2°·min-1 with step of 0.02°. N2 adsorption−desorption isotherms were 
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obtained using a Quantachrome Autosorb-iQ Automated Gas Sorption System at 77 K. The 

surface areas of ZIF-8, ZIF-67 and core−shell ZIF-8@ZIF-67 crystals were estimated based on 

the Brunauer−Emmett−Teller (BET) model and Langmuir model, respectively, by using the 

adsorption branch data in the relative pressure (P/P0) range of 0.01−0.1. The surface areas of 

NC, GC, and NC@GC were obtained based on the BET model by using the data of adsorption 

branches in the relative pressure (P/P0) range of 0.05−0.5. The total pore volumes and pore-

size distributions were calculated from the adsorption branches of isotherms based on the 

density functional theory (DFT) method. Thermogravimetric (TG) analysis was carried out 

using a Hitachi HT-Seiko Instrument Exter 6300 TG/DTA in N2 heating from room 

temperature to 900 °C at 5 °C·min-1. X-ray photoelectron spectroscopy (XPS) spectra were 

measured at room temperature using a PHI Quantera SXM (ULVAC-PHI) instrument with an 

Al Kα X-ray source. The region of survey spectra is 0 to 1400 eV and the region of high-

resolution N 1s spectra is 392 to 412 eV. The percentage of N was calculated from the XPS 

survey spectrum by using N 1s peak. All the binding energies were calibrated via referencing 

to C 1s binding energy (285.0 eV). The peaks of the N 1s spectrum were fitted with a 

Gaussian-Lorentzian sum function and a Shirley background. 

5.2.7. Electrochemical Measurements 

The electrochemical  measurements were conducted in a standard three-electrode 

electrochemical cell. Platinum and Ag/AgCl (3 M KCl) electrodes were selected as the counter 

electrode and reference electrode, respectively. The working electrode was prepared according 

to the following  process. 1 mg of NC@GC materials derived from core−shell ZIF-8@ZIF-67 

crystals was mixed with poly(vinylidene fluoride) (0.1 mg) and then dissolved in N-methyl-2-

pyrrolidone solvent (0.5 mL). The obtained slurry was homogenized by ultrasonication, 

dropped onto graphite substrates (1 cm2), and dried under infrared lamp to form the thin film 

on the electrodes. For comparison, nanoporous NC and GC materials were prepared from single 

ZIF-8 and ZIF-67 crystals, respectively. The electrochemical measurements were carried out 

using an electrochemical workstation (CHI 660E CH Instruments) in acid electrolyte (1.0 M 

H2SO4). The electrochemical properties of the supercapacitor investigated by cyclic 
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voltammetry (CV) and galvanostatic charge-discharge measurements. The charge-discharge 

current density varied from 2 to 20 A·g-1. The specific capacitance was calculated from the 

galvanostatic charge-discharge curves using the following equation, C = ((I × Δt)/(m × ΔV)), 

where I is charge-discharge current at a discharge time Δt (s), ΔV is the potential range, and m 

is the mass of active electrode materials. 
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5.3. Results and Discussion 

5.3.1. Synthesis and Characterization of Core−Shell ZIF-8@ZIF-67 Crystals 

The core–shell MOFs (ZIF-8@ZIF-67) were prepared by a seed-mediated growth 

technique, as illustrated in Figure 5.1c. ZIF-8 and ZIF-67 are possible candidates for the 

preparation of core–shell MOFs (ZIF-8@ZIF-67) due to their isoreticular structures as 

[M(MeIm)2]n (M = Zn for ZIF-8 and Co for ZIF-67) and their similar unit cell parameters 

between ZIF-8 (a = b = c = 16.9910 Å)[49] and ZIF-67 (a = b = c = 16.9589 Å),[50] which 

were determined by single crystal X-ray diffraction studies. To achieve this goal, uniformly 

sized ZIF-8 seeds were first synthesized by the coordination reaction of Zn2+ ions and MeIm. 

Scanning electron microscope (SEM) images confirmed that the obtained ZIF-8 consisted of 

uniformly dispersed crystals of rhombic dodecahedral shape, and the diameters of ZIF-8 were 

successfully tuned from 50 nm to 4 ȝm by tailoring the synthetic conditions (Figure 5.2a-c). 

As mentioned in the Experimental section, in a typical synthesis, the methanolic solution 

containing zinc nitrate hexahydrate and MeIm was kept at room temperature, and the ZIF-8 

crystals with a diameter of around 500 nm were precipitated. When PVP was added as the 

capping agent, the size of the ZIF-8 crystals was significantly decreased to around 50 nm. When 

the methanolic solution containing zinc nitrate hexahydrate and MeIm was transferred into an 

autoclave and the reaction was kept at 100 ºC, the micrometer-sized ZIF-8 crystals were 

precipitated. The ZIF-67 crystals of rhombic dodecahedral shape with a diameter of 5 ȝm were 

obtained by mixing a methanolic solutions of cobalt chloride, PVP, and MeIm and keeping the 

reaction at room temperature (Figure 5.2d). 
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Figure 5.2 (a-c) SEM images of ZIF-8 with different diameters: (a) 50 nm, (b) 500 nm, and (c) 

4ȝm. (d) SEM images of ZIF-67 with diameter of 5 ȝm. 

 

For the preparation of core−shell ZIF-8@ZIF-67 crystals, here I selected ZIF-8 seeds 

with a diameter of 500 nm or 4 ȝm due to their better dispersity than ZIF-8 with a diameter of 

50 nm. The good dispersity is quite important for uniform coating with the ZIF-67 shell. After 

adding a methanolic solution of CoCl2, the Co2+ ions were immobilized on the surface of ZIF-

8 seeds through the coordinative interaction with MeIm units exposed on the surface, followed 

by the growth of the ZIF-67 shell via the interaction with additive MeIm linkers. It is noted that 

ZIF-8 crystals are white, while ZIF-67 crystals are bright purple. After increasing the feeding 

ratio of Co2+/Zn2+ during synthesis, the color of core−shell ZIF-8@ZIF-67 crystals gradually 

changed from white to pink, lavender, and bright purple (Figure 5.3), indicating the increased 

shell thicknesses of the ZIF-67 layer. The obtained core−shell MOFs crystals by using ZIF-8 

seeds with a diameter of 4 ȝm were abbreviated as ZIF-8@ZIF-67(x), where x represented the 

corresponding molar ratios of Co2+/Zn2+ in the products that were precisely determined by 

inductively coupled plasma (ICP) analysis. 

In another experiment, I attempted to prepare core−shell ZIF-67@ZIF-8 crystals using 

the same protocol. However, no core−shell structures were observed. As seen in Figure 5.4a, 
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a mixture of ZIF-8 crystals (300 nm) and ZIF-67 crystals (5 ȝm) was obtained. After shaking 

and standing the mixture for some time (Figure 5.4b,c), the micrometer-sized ZIF-67 crystals 

first precipitated and separated with ZIF-8 crystals, suggesting the failure of preparation of 

core−shell ZIF-67@ZIF-8. This was most likely due to the fast nucleation reaction of ZIF-8 

crystals, which did not favor heterogeneous seed-induced nucleation on the surface of ZIF-67 

seeds. Thus, it is difficult to coat the ZIF-67 seeds with the ZIF-8 layer under the similar 

synthetic condition. 

 

 

Figure 5.3 Photograph of ZIF-8, ZIF-67, and core−shell ZIF-8@ZIF-67(x) crystals prepared 

by using different feeding molar ratios of Co2+/Zn2+. The exact molar ratios of Co2+/Zn2+ are 

determined by ICP analysis and are labelled on the bottles. 

 

 

Figure 5.4 (a) SEM image of the products used to try to prepare core–shell ZIF-67@ZIF-8 

crystals by using ZIF-67 (5 ȝm) as the seed. (b,c) Photographs of the product standing for 30 

mins and 3 hours, respectively, after shaking.  
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Figure 5.5 TEM image and elemental mappings of the core−shell ZIF-8@ZIF-67(0.26) 

crystals, (b) SEM images of core−shell ZIF-8@ZIF-67(0.26) crystals, and (c) wide-angle 

PXRD patterns of as-synthesized ZIF-8, ZIF-67, and ZIF-8@ZIF-67(0.26) crystals. The scale 

bars are all 2 ȝm. 

The obtained core−shell ZIF-8@ZIF-67 crystals were carefully characterized. Figure 

5.5a shows the TEM image, line scan, and elemental mappings for the representative ZIF-

8@ZIF-67(0.26) crystals consisting of ZIF-8 cores and ZIF-67 shells. The molar ratio of 

Co2+/Zn2+ detected by energy dispersive X-ray (EDX) analysis was 0.26, which coincided with 

ICP data. As further proven by elemental mapping analysis (Figure 5.6), the core size and the 

shell thickness of ZIF-8@ZIF-67 crystals were easily controlled by using different sizes of ZIF-

8 seeds and changing the feeding ratios of Co2+/Zn2+ during the synthesis, respectively. As 

shown in Figure 5.5b, core−shell ZIF-8@ZIF-67(0.26) crystals show well-defined rhombic 

dodecahedral morphology, which corresponds to the original morphology of ZIF-8 seeds 

(Figure 5.2). As shown in Figure 5.5b, when the edge part with cracks was observed, it was 

found that the ZIF-67 shell uniformly coated ZIF-8 core with a thickness of 170 nm. The wide-

angle PXRD patterns of ZIF-8, ZIF-67, and core−shell ZIF-8@ZIF-67(0.26) crystals provide 

a better understanding of the core−shell crystals (Figure 5.5c). The positions of diffraction 

peaks of my prepared ZIF-8 and ZIF-67 crystals correspond to the PXRD patterns simulated 

from single crystal structures of ZIF-8[49] and ZIF-67.[50] The unit cell parameters estimated 

from my experimental PXRD pattern were a = b = c = 17.1 Å for the prepared ZIF-8 crystals 

and were a = b = c = 17.0 Å for the prepared ZIF-67 crystals. Because of the similar unit cell 

mailto:ZIF-8@ZIF-67(0.26)
mailto:ZIF-8@ZIF-67(0.26)
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parameters of ZIF-8 and ZIF-67 crystals, I can anticipate that the core−shell ZIF-8@ZIF-67 

crystals are successfully prepared most likely via epitaxial growth and exhibit topological 

information identical to those of the ZIF-8 and ZIF-67 crystals. The unit cell parameters of 

ZIF-8@ZIF-67(0.26) crystals (a = b = c = 17.0 Å) are similar to those of ZIF-8 (a = b = c = 

17.1 Å) and ZIF-67 (a = b = c = 17.0 Å), which were all calculated from the experimental 

PXRD patterns. 

 

Figure 5.6 (a, f, k, and p) TEM images, (b, g, l, and q) line scans, and (c-e, h-j, m-o, and r-t) 

elemental mappings of the four kinds of core−shell ZIF-8@ZIF-67 crystals with different core 

sizes and shell thicknesses. The scale bars are all 200 nm for (a-j) and 2 ȝm for (k-t). The molar 

ratios of Co2+/Zn2+ detected by EDX analyses, core sizes, and shell thicknesses of the four 

samples are summarized in Table 5.1. 

Table 5.1 Summary on the molar ratios of Co2+/Zn2+, core sizes, and shell thicknesses of the 

four kinds of core–shell ZIF-8@ZIF-67 crystals shown in Figure 5.6. 

Figure No. 
Molar ratio of 

Co2+/Zn2+ 
Core size (nm) Shell thickness (nm) 

Figure 5.6a-e 0.2 500 15 

Figure 5.6f-j 1.5 500 89 

Figure 5.6k-o 0.05 4000 33 

Figure 5.6p-t 0.5 4000 290 

mailto:ZIF-8@ZIF-67(0.26)
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The porosity of ZIF-8, ZIF-67, and core−shell ZIF-8@ZIF-67(0.26) crystals was 

measured by N2 adsorption−desorption isotherms. As shown in Figure 5.7a, all of the samples 

displayed type I isotherms with steep N2 uptakes at low relative pressure, which is typically 

associated with microporosity. The Brunauer−Emmett−Teller (BET) surface areas (SBET), 

Langmuir surface areas (SLangmuir), total pore volumes (Vpore), and pore sizes are summarized in 

Table 5.2. It is observable that the pore sizes for all three samples are the same. The specific 

surface area and the pore volume of ZIF-8@ZIF-67(0.26) crystals increase almost 10% in 

comparison to those of ZIF-8 and ZIF-67 crystals. Thus, there is no serious pore blocking at 

the interface between core ZIF-8 and shell ZIF-67 crystals. As clearly seen in wide-angle 

PXRD results (Figure 5.5c), the crystal structure and its lattice constant of ZIF-8 (core) are 

almost the same as those of ZIF-67 (shell). Therefore, the ZIF-67 shell can grow well on the 

surface of ZIF-8 crystals. As far as I know, the seed-mediated growth method reported here, 

for the first time, realized the preparation of novel core−shell ZIF-8@ZIF-67 crystals with 

controllable core sizes and adjustable shell thicknesses at the nanometer scale. 

 

Figure 5.7 (a) N2 adsorption−desorption isotherms and (b) pore-size distribution curves of ZIF-

8, ZIF-67, and ZIF-8@ZIF-67(0.26) crystals. The region of mesopores was enlarged as inset. 

For clarity, the isotherms of ZIF-67 and ZIF-8@ZIF-67(0.26) are offset for 50 and 100 cm3·g-

1. The pore-size distribution curves for ZIF-67 and ZIF-8@ZIF-67(0.26) are offset vertically 

by 0.05 and 0.1 cm3·nm-1·g-1, respectively. 
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Table 5.2 Summary on the surface areas, total pore volumes, and pore sizes of ZIF-8, ZIF-67, 

and ZIF-8@ZIF-67(0.26) crystals. 

Sample 
SBET 

(m2·g-1) 

SLangmuir 

(m2·g-1) 

Vpore  

(cm3·g-1) 

Pore size  

(nm) 

ZIF-8 1727 1955 0.76 1.1 

ZIF-67 1738 1963 0.73 1.1 

ZIF-8@ZIF-67(0.26) 1910 2159 0.85 1.1 

 

 

5.3.2. Thermal Conversion of Core−Shell ZIF-8@ZIF-67 Crystals to 

Nanoporous NC@GC Materials 

The obtained ZIF-8@ZIF-67 crystals were thermally treated at 800 °C under a N2 flow. 

Thermogravimetric (TG) curves for ZIF-8, ZIF-67, and ZIF-8@ZIF-67(0.26) crystals 

measured under a N2 atmosphere are shown in Figure 5.8. Core–shell ZIF-8@ZIF-67(0.26) 

crystals were thermally stable up to 470 ºC. This stability was almost the same as ZIF-67 

crystals (460 ºC) but was lower than ZIF-8 crystals (550 ºC). Then the weight of the crystals 

decreased rapidly along with the continued increase of temperature. During the heat treatment 

under N2 atmospheres, organic linkers thermally carbonized into carbon networks, and parts of 

organic linkers decomposed and evaporated in the form of small molecules (e.g., H2O, 

CO2).[40,55] Compared to the initial weight of ZIF-8, ZIF-67, and ZIF-8@ZIF-67(0.26) 

crystals, a 49–56 wt% loss (Table 5.3) was detected at 900 ºC by TG analysis. After the 

carbonization, the products were washed with an HF solution to remove the residual Zn and/or 

Co species. NC, GC, and NC@GC(x) samples were prepared from ZIF-8, ZIF-67, and ZIF-

8@ZIF-67(x), respectively. 

mailto:ZIF-8@ZIF-67(0.26)
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Figure 5.8 TG curves of (a) ZIF-8, (b) ZIF-67, and (c) ZIF-8@ZIF-67(0.26) crystals measured 

under N2 atmosphere. 

 

Table 5.3 Summary on the maximum temperature before the decomposition of ZIFs begins 

and the remaining weight (%) of ZIFs at 900 ºC during TG analysis shown in Figure 5.8, 

assigned as Tmax and W900%, respectively.  

Sample Tmax (oC) W900% 

ZIF-8 550 50.6 

ZIF-67 460 47.1 

ZIF-8@ZIF-67(0.26) 470 43.8 

 

As revealed by SEM images (Figure 5.9a), the obtained nanoporous NC particles retain 

the original rhombic dodecahedron shape from the parent ZIF-8 and exhibit a smooth surface 

without any large pores or cracks. In contrast, the nanoporous GC particles prepared from ZIF-

67 shrink significantly and show a distorted, bumpy surface (Figure 5.9d). A similar situation 

was observed with NC@GC particles prepared from ZIF-8@ZIF-67 crystals (Figure 5.9g,j). 

With the increase of ZIF-67 shell thickness, the NC@GC(0.35) particles that carbonized from 

ZIF-8@ZIF-67(0.35) with a thick ZIF-67 shell display a more seriously distorted surface than 

NC@GC(0.05) carbonized from ZIF-8@ZIF-67(0.05) with a thin ZIF-67 shell (Figure 5.9g, 
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j). A more detailed porous structure and graphitic degree of the samples were investigated by 

TEM and high-resolution TEM (HRTEM). As seen in Figure 5.9c, no graphitic carbon 

structures are observed in NC particles, indicating that the particles are composed of disordered 

carbon (amorphous carbon) networks.  

 

Figure 5.9 SEM images (a,d,g,j), TEM images (b,e,h,k), and HRTEM images (c,f,i,l) of NC 

(a-c), GC (d-f), NC@GC(0.05) (g-i), and NC@GC(0.35) (j-l). 

Furthermore, there are no distinct pores shown in NC (Figure 5.10a) due to the mainly 

micropores with size smaller than 2 nm. In contrast, both GC and NC@GC particles show 

distinct mesopores over the particle surface and abundant layered graphitic carbon structures 

with a typical distance value of graphite (0.334 nm), as revealed in Figure 5.9f,i,l and Figure 

5.10b-d. Through careful observation by HRTEM, it is found that the graphitic carbons are 

formed by catalytic graphitization of amorphous carbon on the deposited Co 

nanoparticles.[56,57] Most of the Co nanoparticles are in uniform size and spherical shape 
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(with diameter of around 3-4 nm) and they are easily removed by chemical etching (Figure 

5.9f and Figure 5.10b-d), but there are some remaining Co nanoparticles with large size (over 

7 nm) enclosed by well-developed graphitic layers. Because of such protection, it is difficult 

to completely remove the Co nanoparticles. The graphitization of amorphous carbon and the 

removal of Co species are supposed to induce the creation of a bumpy (rough) surface, as 

mentioned above (Figure 5.9). The particle shapes observed from TEM images (Figure 

5.9b,e,h,k) are in accordance with SEM images (Figure 5.9a,d,g,j). From the elemental 

mapping analysis, it is revealed that the N content is more concentrated at the center of the 

particles, while the remaining Co nanoparticles are mostly observed only in the shell region 

(Figure 5.11). Thus, NC@GC particles with N-doped amorphous carbon cores and highly 

graphitic carbon shells are successfully obtained. 

 

 

Figure 5.10 High resolution TEM images of the NC (a), GC (b), NC@GC(0.05) (c), and 

NC@GC(0.35) (d). The formed mesopores are indicated by circles. 
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Figure 5.11 (a,d,g,j) TEM, (b,e,h,k) high-angle annular dark-field scanning TEM (HAADF-

STEM) images, and (c,f,i,l) elemental mappings  of (a-c) NC, (d-f) GC, (g-i) NC@GC(0.05), 

and (j-l) NC@GC(0.35). The scale bars are 1 ȝm.  

 

Wide-angle XRD patterns for nanoporous NC exhibited two broad diffraction peaks at 

25° and 44° that are identical to the (002) and (101) diffractions of amorphous carbon (Figure 

5.12a). In the case of GC, NC@GC(0.05), and NC@GC(0.35), the (002) diffraction peaks were 

significantly shifted toward 26°, suggesting the formation of a graphitic carbon structure 

(Figure 5.12b).[58,59] The other intense diffraction peaks located at around 44º and 51° were 

indexed to the (111) and (200) diffractions of face-centered-cubic (fcc) Co crystal (Figure 

5.12a).[56,57] The average particle sizes of the remaining Co nanoparticles not completely 

dissolved by HF treatment are estimated to be around 7-8 nm, which coincides with the TEM 

data (Figure 5.9l).  
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Figure 5.12 (a) Wide-angle XRD patterns, (b) enlarged XRD diffraction peaks, (c) N2 

adsorption–desorption isotherms, (d) pore-size distributions, and (e) high-resolution N 1s 

spectrum of the (1) NC, (2) GC, (3) NC@GC(0.05), and (4) NC@GC(0.35) samples. For 

clarity, the isotherms for (1) and (4) are offset by 100 and 50 cm3·g-1, respectively. The pore-

size distribution curves for (2), (3), and (4) are offset vertically by 0.05, 0.10, and 0.15 cm3·nm-

1·g-1, respectively. 

 

Table 5.4 Surface areas and total pore volumes of NC, GC, NC@GC(0.05), and NC@GC(0.35) 

Sample 
SBET 

(m2·g-1) 

Smicro 

(m2·g-1) 

Smicro/SBET 

(%) 

Vpore 

(cm3·g-1) 

Vmicro 

(cm3·g-1) 

Vmicro/Vpore 

(%) 

N content 

(atomic %) 

NC 1499 378 25.2 1.31 0.18 13.7 16.1 

GC 496 49 10.0 0.71 0.02 2.8 5.7 

NC@GC(0.05) 1276 274 21.5 1.78 0.13 7.3 10.6 

NC@GC(0.35) 813 120 14.7 0.89 0.04 4.5 8.5 

 

The surface areas and pore-size distributions were investigated by N2 

adsorption−desorption isotherms (Figure 5.12c-d). The sharp uptakes at low relative pressure 

(< 0.05) indicate the presence of micropores. The hysteresis loops and the gradual uptakes at a 
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relative pressure range from 0.45 to 0.95, which are caused by the capillary condensation of N2 

in the mesopores with wide size distributions, are more distinct in the GC and NC@GC samples. 

Such hysteresis loops have often been observed in mesoporous materials (e.g., SBA-type 

mesoporous silica).[60,61] The mesopores in the ZIF-derived carbons are bumpy, random and 

interconnected. The sizes of the mesopores are also not uniform. During the adsorption process 

along with the increased relative pressure, the nitrogen was condensed first within the smallest 

dimensions. The pressure increased until all pores were filled with nitrogen. Then the pressure 

decreased and induced desorption of nitrogen. Because the last filled large mesopores were 

connected with a few small mesopores, the nitrogen desorption in the same large mesopores 

happened at a lower relative pressure compared with adsorption process, leading to the 

formation of a hysteresis loop. Thus, the interconnected hierarchically micro/mesoporous 

structures are well-developed, as confirmed by the pore size distributions for each sample. The 

mesopores in GC and NC@GC are mainly generated by the carbonization process and the 

subsequent removal of Co nanoparticles with relatively small size (3-4 nm). Therefore, the 

mesopores are not uniform. The specific surface area (SBET) and pore volume (Vpore) for the 

samples are summarized in Table 5.4. The NC sample possesses a high specific surface area 

of 1499 m2·g-1, which is a bit lower than that of the parent ZIF-8 crystals (1727 m2·g-1). 

However, the specific surface area of the GC sample with a highly graphitic structure is 

dramatically decreased to 496 m2·g-1. The value is extremely low in comparison to the original 

ZIF-67 crystals (1738 m2·g-1) due to the collapse of the well-defined microporous structure of 

ZIF-67 caused by the graphitization of amorphous carbon.[36,40] Furthermore, the ratio of the 

microporous surface area (Smicro/SBET) in NC (25.2%) is much higher than that in GC (10.0%), 

confirming the presence of a large amount of mesopores in GC. As I expected, the surface areas 

of the NC@GC samples are the intermediate value between NC and GC. The NC@GC(0.05) 

sample with a thin GC shell show a higher specific surface area (1276 m2·g-1) than the 

NC@GC(0.35) sample with a thick GC shell (813 m2·g-1), which also indirectly proves a 

successful tuning of the GC shell thickness.  
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The electric state of N in the carbon matrix was carefully investigated by X-ray 

photoelectron spectroscopy (XPS). The N 1s spectra of all the samples can be mainly 

deconvoluted into two peaks centered at ~398.8 and ~400.8 eV, which are assignable to 

pyridinic-N and graphitic-N, respectively (Figure 5.12e). Pyridinic-N, referring to the sp2-

hybridized N atoms bonded with two sp2-hybridized C neighbours via σ-bonds, possesses one 

lone-pair of electrons in the graphene plane, and contributes one electron to the conjugated π 

system.[62] In the graphitic-N configuration, three sp2-hybridized N valence electrons form 

three σ-bonds with three sp2-hybridized C neighbours, one electron fills the π-orbitals, and the 

fifth electron enters the π*-states of the conduction band.[63] According to another report, the 

fifth electron is distributed in the local network of the carbon π-system whereas a part of the 

charge localizes on the graphitic-N dopant and electronically couples to its nearest C 

neighbours.[64] It is revealed that the N atoms in the pentagonal ring of the original imidazole 

units are mostly converted into two types of N states during the carbonization process. The N 

atoms are steadily doped into the carbon structure. The percentages of doped N content 

estimated from the XPS spectrum are 16.1 atomic% (for NC), 5.7 atomic% (for GC), 10.6 

atomic% (for NC@GC(0.05)), and 8.5 atomic% (for NC@GC(0.35)). It is likely that the C-N 

bonds are partially destroyed during the catalytic graphitization process in the ZIF-67 crystals, 

thereby leading to the lower N content in the GC and NC@GC samples.[41,43,65] 
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5.3.3. Electrochemical Supercapacitors with NC@GC Electrodes 

 

Figure 5.13 Cyclic voltammograms of (a) NC, (b) GC, (c) NC@GC(0.05), (d) NC@GC(0.15), 

(e) NC@GC(0.35), and (f) NC@GC(0.5) electrodes at various scan rates in a range from 20 to 

200 mV·s-1. All measurements were conducted in 1.0 M H2SO4. 

 

A supercapacitor is an electrochemical energy-storage device that can rapidly store and 

give out energy over a number of repeated cycles.[66,67] This unique feature makes it a 

promising candidate to meet the increasing power demands in the field of portable electronic 

devices, hybrid electric vehicles, and memory backup. To evaluate the electrochemical 

properties NC, GC, and NC@GC electrodes, the cyclic voltammetry (CV) measurements using 

a standard three-electrode system were carried out in a 1.0 M H2SO4 aqueous electrolyte. The 

CV curves of NC, GC, and NC@GC electrodes conducted at different potential scan rates are 
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shown in Figure 5.13. The distinct appearance of humps in the rectangular-like shape CV 

curves reveals that the capacitive response derived from the combination of electric double-

layer capacitance (EDLC) and pseudocapacitance due to the nitrogens doped in carbons.[21, 

68, 71] 

 

 

Figure 5.14 (a) Cyclic voltammograms at a potential scan rate of 200 mV·s-1 for NC, GC, and 

NC@GC(0.15). (b) Charge-discharge curves of NC, GC, NC@GC(0.05), NC@GC(0.15), 

NC@GC(0.35), and NC@GC(0.5) electrodes at a current density of 2 A·g-1. (c) The specific 

capacitance values obtained at a current density of 2 A·g-1 and the respective capacitance 

retention ratios at a higher current density of 10 A·g-1 for NC, GC, NC@GC(0.05), 

NC@GC(0.15), NC@GC(0.35), and NC@GC(0.5) electrodes. (d) Cyclic stability of 

NC@GC(0.15) at a charge-discharge current density of 5 A·g-1 for 10000 cycles. Inset shows 

the galvanostatic charge-discharge curves. All measurements were conducted in 1.0 M H2SO4 

by using a three-electrode system.  

 

The CV curves of NC, GC, and the representative NC@GC(0.15) electrodes at a high 

potential scan rate of 200 mV·s-1 are shown in Figure 5.14a. It is observed that NC displays a 

mailto:NC@GC(0.05)
mailto:NC@GC(0.15)
mailto:NC@GC(0.35)
mailto:NC@GC(0.5)
mailto:NC@GC(0.05)
mailto:NC@GC(0.15)
mailto:NC@GC(0.35)
mailto:NC@GC(0.5)
mailto:NC@GC(0.15)
mailto:NC@GC(0.15)


Chapter 5. Thermal Conversion of Core–Shell Metal–Organic Frameworksμ A New Method for Selectively Functionalized 
Nanoporous Hybrid Carbon 

140 

distorted rectangular CV shape, whereas GC and NC@GC(0.15) electrodes present a quasi-

rectangular CV shape. I infer that the ion-diffusion limitation in micropores is the predominant 

factor that leads to distorted rectangular CV shape at high potential scan rate.[11,15,72] As 

concluded in Table 5.4, although NC possesses a higher specific surface area than GC and 

NC@GC, the ratio of micropores/mesopores is much higher in NC. Therefore, the serious ion-

transfer resistance in the inner micropores, especially at a high potential scan rate, leads to the 

distorted CV shape.[11,30,72] In addition, nanoporous NC prepared from ZIF-8 crystals is in 

an amorphous state; therefore, the electrical conductivity mainly controlled by the crystallinity 

of carbon is not as satisfied as GC and NC@GC under high-rate operation.[68] 

 

 

Figure 5.15 Charge-discharge curves of (a) NC, (b) GC, (c) NC@GC(0.05), (d) 

NC@GC(0.15), (e) NC@GC(0.35), and (f) NC@GC(0.5) electrodes at different current 

densities ranges from 2 to 20 A·g-1. All measurements were conducted in 1.0 M H2SO4. 
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In order to evaluate the specific capacitance and get further insight into the 

electrochemical performance of the NC, GC, and NC@GC electrodes, a galvanostatic charge-

discharge measurement that is a frequently-used technique for capacitance evaluation was 

carried out at various current densities in a three-electrode system (Figure 5.15). The 

galvanostatic charge-discharge curves of all electrodes conducted at a current density of 2 A·g-

1 are shown in Figure 5.14b. All of the electrodes display a quasi-linear appearance with a 

slight bend, implying the impact of pseudocapacitance derived from N doping.[11,21,68,71,72] 

The specific capacitance values are calculated from the galvanostatic charge-discharge curves 

since it is considered to be a more accurate technique especially for EDLC materials.[31,71,72]  

As shown in the Figure 5.14c, the specific capacitance values obtained at a current density of 

2 A·g-1 are NC (239 F·g-1), GC (119 F·g-1), NC@GC(0.05) (270 F·g-1), NC@GC(0.15) (255 

F·g-1), NC@GC(0.35) (149 F·g-1), and NC@GC(0.5) (136 F·g-1). The retention in specific 

capacitance at a higher current density of 10 A·g-1 for NC, GC, NC@GC(0.05), NC@GC(0.15), 

NC@GC(0.35), and NC@GC(0.5) is 53, 63, 64, 70, 71, and 65%, respectively. It is well known 

that the high specific surface area of carbon materials usually leads to high capacitance, and N 

doping is able to increase the capacitance by bringing about pseudocapacitance and 

ameliorating surface wettability.[17,69-72] Electrical conductivity, which is determined by the 

graphitic degree in carbon materials, is also crucial for capacitance by reducing the internal 

resistance. As discussed above, the NC@GC materials integrate the advantages of a high 

specific surface area and high N content in the NC core and a high graphitic degree in the GC 

shell, which can synergistically contribute to the high capacitance of a NC@GC electrode. 

Furthermore, the developed network of mesopores are also able to be accessed more freely and 

quickly by electrolyte ions,[73,74] even though the micropores are responsible for charge 

accommodation.[17,18,44,74-76] Thus, the NC@GC(0.15) electrode consisting of the mediate 

graphitic carbon shell and highly porous carbon core exhibits the best electrochemical 

performance (specific capacitance of 255 F∙g-1 with retention of 70 %) compared to the other 

samples (Figure 5.14c) due to its optimized physicochemical properties. For a thinner GC shell, 

the capacitance value of the NC@GC(0.05) electrode is a bit higher (270 F·g-1); however, the 
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retention in capacitance of NC@GC(0.05) electrode (64%) is much lower than that of the 

NC@GC(0.15) electrode (70%). Moreover, as I continue increasing the thickness of the GC 

shell, the specific capacitance value is found to be decreased in NC@GC(0.35) and 

NC@GC(0.5) electrodes. As demonstrated by the N2 adsorption–desorption analysis (Table 

5.4), the effective specific surface areas of NC@GC derived from ZIF-8@ZIF-67 crystals with 

a thicker ZIF-67 shell drastically decline due to the excessive graphitization of amorphous 

carbon in the thick GC shell, which ultimately decreases the capacitance value. The long-term 

cyclic stability of the representative NC@GC(0.15) electrode was investigated by using 

galvanostatic charge-discharge experiments at a current density of 5 A·g-1 within a potential 

window of 0-0.8 V (vs. Ag/AgCl). As shown in Figure 5.14d, the capacitance retention is 

almost 100% during all 10000 cycles, indicating an excellent stability of NC@GC(0.15).   

 

 

Figure 5.16 (a) Cyclic voltammograms at various scan rates in a range from 20 to 200 mV·s-1 

and (b) charge-discharge curves at different current densities ranges from 2 to 20 A·g-1 of mixed 

NC and GC electrode. The mass ratio of NC in the mixture of NC and GC is 0.9. All 

measurements were conducted in 1.0 M H2SO4. 

 

Further to demonstrate the importance of my hybrid structure (NC@GC), I simply 

mixed the NC and GC (mass ratio of NC is 0.9), and investigated their capacitive performance 

by CV and galvanostatic charge-discharge measurements (Figure 5.16). The specific 

capacitance value estimated from galvanostatic charge-discharge curve at a current density of 

2 A·g-1 is only 69 F·g-1, which is much lower than NC@GC (270 F·g-1).  
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To the best of my knowledge, this capacitance value obtained from my study is 

significantly higher or comparable in comparison with the previously reported heteroatom-

doped carbon materials, especially N-doped carbon materials (Table 5.5). Some reports show 

a little higher capacitances than my materials, but their current densities are too low (only 0.2 

A·g-1).[17,39] To obtain high performance EDLC supercapacitor, I should consider a proper 

balance between surface area, pore volume, pore size distribution, graphitic degree, and N 

content. Although the specific surface area of NC@GC is not exceptionally good enough 

compared with previous reports, I believe that the overall performance of my NC@GC material 

is due to the synergy of high specific surface area (1276 m2∙g-1), interconnected hierarchically 

micro/mesoporous structure, moderate N content (10.6 atomic%), as well as optimized 

graphitic carbon shell thickness which allows easy and rapid diffusion of ions. As seen in the 

Table 5.5, other reported materials are not able to simultaneously possess so many kinds of 

excellent properties. Actually, practically improving one property will hamper other properties 

which results into decreased performance. In this study, the structure properties in my hybrid 

NC@GC material can be easily adjusted by tuning the shell thickness in the parent ZIF-8@ZIF-

67 crystals, thus, superior electrochemical performance can be optimized successfully. 
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Table 5.5 Specific capacitances of porous carbons reported in the representative literatures in aqueous electrolytes using three-electrode systems. 

Materials 
Surface area 

(m2·g-1) 

 
Pore 

volume 

(cm3·g-1) 

Pore size 

(nm) 

Graphitization 

degree 

Heteroatom 

content 

(wt%) 

Electrolyte 

Potential 

range  

(V) 

Current 

density 

(A·g-1) 

Capacitance 

(F·g-1) 
Reference 

Nanoporous NC@GC 1276 
 

1.78 1-5 
Partially 
graphitic 

N: 10.6 
1.0 M 
H2SO4 

0.8 2.0 270 This study 

Nanoporous GC 
derived from ZIF-67 

943 
 

0.84 4-8 
Partially 
graphitic 

N: 0.8 
0.5 M 
H2SO4 

0.8 -- 238* 
Chem. Eur. J. 2014, 

20, 7895. 
Nitrogen-doped hollow 

carbon spheres 
753 

 
-- < 2 

Partially 
graphitic 

N: 6.0 
2.0 M 
H2SO4 

0.8 2.0 245 
J. Mater. Chem. 
2012, 22, 13464. 

Nitrogen-doped porous 
nanofibers 

563 
 

0.51 3.64 
Partially 
graphitic 

N: 7.2 
6.0 M 
KOH 

1.0 1.0 202 
ACS Nano, 2012, 6, 

7092. 
Vertically aligned BCN 

nanotubes 
347 

 
-- -- Graphitic 

B: 27 
N: 31 

1.0 M 
H2SO4 

1.3 2.0 265 
ACS Nano, 2012, 6, 

5259. 

Nitrogen and boron co-
doped graphene 

249 
 

-- 
Meso-
macro 
pores 

Graphitic 
B: 0.6 
N: 3.0 

1.0 M 
H2SO4 

0.8 -- 215* 
Adv. Mater. 2012, 

24, 5130. 

MOF-templated carbon 2222 
 

1.14 0.68 Amorphous -- 
6.0 M 
KOH 

1.0 0.25 274 
Carbon 2010, 48, 

3599. 
Nitrogen-doped 

microporous carbon 
1680 

 
0.86 1-1.2 Amorphous N: 6.0 

1.0 M 
H2SO4 

1.2 0.2 310 
Adv. Funct. Mater. 

2007, 17, 1828. 
Heteroatom-doped 

carbon 
1578 

 
1.09 < 2 Amorphous N: 0.7 

1.0 M 
H2SO4 

1.0 2.0 245 
Adv. Funct. Mater. 

2013, 23, 1305. 
Nitrogen enriched 

mesoporous carbon 
spheres 

1330 
 

-- 29 Amorphous N: 10.0 
5.0 M 
H2SO4 

0.8 1.0 211 
Electrochem. 

Commu. 2007, 9, 
569. 

Phosphorus-enriched 
carbon 

633 
 

0.31 0.6-1.3 Amorphous P: 6.2 
1.0 M 
H2SO4 

1.0 1.0 220 
J. Am. Chem. Soc. 
2009, 131, 5026. 

N-containing 
hydrothermal carbons 

571 
 

0.32 1.1 Amorphous N: 4.4 
1.0 M 
H2SO4 

0.8 2.0 245 
Adv. Mater. 2010, 

22, 5202. 
Melamine-based 

carbon 
442 

 
0.30 < 2 Amorphous N: 20.0 

1.0 M 
H2SO4 

1.0 0.02 205 
Chem. Mater. 2005, 

17, 1241. 

*Note: The specific capacitance value was calculated from CV curves by using following equation: C =  1�௦ሺV�−��ሻ ∫ �ሺ�ሻ������ , where m is the mass of active electrode material, s is the potential scan rate, Vf and Vi are the integration limits of the 

voltammetric curve, and I(V) denotes the current density. 
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5.4. Conclusion  

Core−shell ZIF-8@ZIF-67 crystals, which integrate the properties of single ZIF-8 and 

ZIF-67, are elaborately designed for the first time by applying a seed-mediated growth 

technique. The core sizes of ZIF-8 and the shell thicknesses of ZIF-67 can be tuned simply by 

using different sizes of ZIF-8 seeds and varying the feeding molar ratios of Co2+/Zn2+. After 

the direct carbonization of core−shell ZIF-8@ZIF-67 crystals, a new type of selectively 

functionalized NC@GC materials retain both the high specific surface area (up to 1276 m2·g-

1) and high N content (10.6 atomic%) derived from core ZIF-8 and superior graphitic structure 

originated from shell ZIF-67. The optimized NC@GC exhibits a distinguished electrochemical 

performance as an electrode in supercapacitors. This study bridges infinite MOFs with diverse 

functional carbon-based materials and provides new insight into artificially designed 

nanomaterials. 
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6.1. Introduction 

Considering global warming and other environmental issues caused by automobiles, 

electric vehicles are being developed to serve the next generation of urban commuters.[1] Thus, 

it is urgent to establish a rechargeable battery system with a high energy density, a good rate 

capability, and a long cycle life that can meet the requirements in commercial electric vehicles. 

The rechargeable Li−O2 (air) battery, which has an extremely high theoretical energy density 

compared to any other practical electrochemical batteries, has attracted enormous research 

attention since its introduction by Abraham and Jiang in 1λλ6.[2] Although various kinds of 

electrode materials have been developed to improve the performance of Li−O2 batteries, carbon 

is still considered to be the most promising choice due to its comprehensive advantages, 

including low-cost, good conductivity, large pore volume, and tunable porous structures,[3,4] 

which are required properties for Li−O2 cathode materials. Much effort has been made to reveal 

the favorable structural properties of carbon cathodes in Li−O2 batteries.  

To realize the practical application of a carbon-based cathode in a Li−O2 battery, 

however, there are still many challenges to overcome. A principal problem is the insufficient 

catalysis activity toward the oxygen reduction reaction (ORR) and especially the oxygen 

evolution reaction (OER) during the discharge/charge process, which might result in high 

overpotentials, low round-trip efficiency, passivation of the O2 electrode, low rate capability, 

and poor cycling performance.[5,6] Metals and compounds such as nanoporous gold,[7] 

TiC,[8] Ru nanoparticles,[λ-12] and RuO2[13-15] have been screen out to be effective catalyst 

materials for non-aqueous Li−O2 battery with respect to accelerating the formation of Li2O2 

during discharging, lower the charge potential during charging, and improve the cycling 

performance in the Li−O2 battery. However, metals and compounds generally provide low 

overall electrical conductivity and a heavy molecular weight, resulting in low energy 

efficiency[16] and significantly reduced specific capacity.[17,18] Considering the above 

aspect, incorporating catalytically active materials into the carbon-based cathodes such as the 

Co3O4/carbon composite is an effective way to promote the ORR and OER in Li−O2 



Chapter 6. Cage-Type Highly Graphitic Porous Carbon−Co3O4 Polyhedron as the Cathode of Lithium−Oxygen Batteries 

152 

batteries[1λ-21] and prevents the large discharge/charge overpotentials generally observed on 

carbon cathode.[22] 

In recent years, since the first report by Xu et al.,[23] the direct carbonization of metal–

organic frameworks (MOFs), which are assembled by bridging metal ions (or clusters) with 

organic linkers, has become an effective and popular method to prepare functional porous 

carbon-based composites. Our group mainly focuses on zeolitic imidazolate framework-

derived carbon and has explored their potential application in various fields, including chemical 

sensor,[24] supercapacitor,[25-27] and electrocatalyst.[28] The metal ions that exist in the 

parent MOFs can be in situ incorporated into the resulting carbon matrix, offering an excellent 

electronic connection between the metals/metal oxides and the carbon frameworks.[29,30] In 

some cases, a graphitic carbon can be obtained due to the catalytic graphitization effect of some 

specific metals (e.g., Fe,[31] Co[32]) contained in the parent MOFs. Thus, the MOFs-derived 

carbon composites usually exhibit attractive electrocatalytic activity.[33] For example, a 

MOFs-derived Co3O4-embedded N-doped mesoporous carbon layer/multiwalled carbon 

nanotube hybrid is prepared as the bi-functional electrocatalyst for the oxygen evolution 

reaction and oxygen reduction reaction.[34]  

Very recently, our group reported the design of core–shell structured MOFs and the 

derived first example of a selectively functionalized nanoporous hybrid carbon polyhedron, 

which consists of amorphous carbon as the core and highly graphitic carbon-Co as the 

shell.[35] Taking advantage of the different thermal stabilities of amorphous carbon cores and 

highly graphitic carbon shells under an air atmosphere[36,37] offers a good opportunity for us 

to obtain a cage-type extremely highly graphitic porous carbon-Co3O4 polyhedron by removal 

of the amorphous carbon cores and simultaneous oxidation of Co nanoparticles in the graphitic 

carbon shells via annealing of the selectively functionalized nanoporous hybrid carbon 

polyhedron in air. In this study, I report the fabrication of a cage-type extremely highly graphitic 

porous carbon-Co3O4 (GPC-Co3O4) polyhedron for the first time and employ it as an oxygen 

electrode without an additional conductive agent for the Li−O2 battery cathode. The GPC-

Co3O4 polyhedron integrates the favorable properties, including high electrical conductivity, 
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mesoporous structure, and well-dispersed catalytically active Co3O4 nanoparticles, resulting in 

a low charge potential and good cycling performance as the Li−O2 battery cathode. 

 

 

Figure 6.1 Synthetic scheme for the preparation of core–shell ZIF-8@ZIF-67 crystals, 

AC@GC-Co, and GPC-Co3O4. 

 

The designed synthesis of the cage-type GPC-Co3O4 polyhedron is illustrated in Figure 

6.1. The core–shell structured MOFs (ZIF-8@ZIF-67) are well designed and prepared through 

a seed-mediated growth method.[35] The core ZIF-8 is assembled from zinc ions and the 

organic linker of 2-methlylimidazole, whereas the shell ZIF-67 is formed by cobalt ions and 

the organic linker of 2-methlylimidazole. Thus, after the carbonization of ZIF-8@ZIF-67 

crystals under an inert atmosphere, I demonstrate that a selectively functionalized porous 

carbon polyhedron consisting of amorphous carbon (AC) as the core and highly graphitic 

carbon-Co (GC-Co) composite as the shell can be successfully prepared (assigned as AC@GC-

Co). Inspired by the different thermal stabilities of AC cores and GC-Co shells,[36,37] I thus 

intend to prepare a cage-type highly graphitic porous carbon-Co3O4 (assigned as GPC-Co3O4) 

polyhedron by executing an air calcination of the AC@GC-Co under an appropriate 

temperature.  
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6.2. Experimental Sections 

6.2.1. Chemicals 

Cobalt chloride (CoCl2) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%) were 

obtained from Sigma-Aldrich Chemical Co. 2-Methylimidazole (MeIm, purity 99%), methanol, 

and hydrofluoric acid were purchased from Nacalai Tesque Reagent Co. All of the chemicals 

were utilized without further purification. 

6.2.2. Synthesis of ZIF-8 Seeds 

In a typical synthesis, methanolic solutions of Zn(NO3)2∙6H2O (810 mg, 40 mL) and 

methanolic solutions of MeIm (526 mg, 40 mL) were homogeneously mixed by stirring. Then 

the mixture was transferred into an autoclave and incubated for 12 hours at 100 °C. After 

cooling to room temperature, the white product was collected by centrifugation, washed with 

methanol, and dried at 80 °C. 

6.2.3. Synthesis of Core−Shell ZIF-8@ZIF-67 Crystals 

The core–shell ZIF-8@ZIF-67 crystals were prepared according to our previously 

reported method.[35] For details, the prepared ZIF-8 seeds (80 mg) were first dispersed in 

methanol (10 mL) under sonication. Then a methanolic solution of CoCl2 (218 mg, 5 mL) was 

added to the above mixture under continuous stirring. After stirring for 10 mins, a methanolic 

solution of MeIm (1100 mg, 5 mL) was added into the above solution. After stirring for another 

5 mins, the mixture was transferred into a 50 ml autoclave with a Teflon liner and incubated at 

100 ºC for 12 hours. After cooling, the lavender core–shell ZIF-8@ZIF-67 crystals were 

collected by centrifugation, washed with methanol, and dried at 80 °C. 

6.2.4. Preparation of the Cage-Type Highly Graphitic Porous Carbon-Co3O4 

(GPC-Co3O4) Polyhedron Composite 

The cage-type highly graphitic porous carbon-Co3O4 (GPC-Co3O4) polyhedron 

composite was prepared through two-step annealing. First, core–shell ZIF-8@ZIF-67 crystals 

were thermally carbonized under a nitrogen flow at 900 ºC for 3 hours with a controlled heating 

rate of 2 ºC·min–1. Then Zn species and most of the Co species retained in the obtained carbon 
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product were removed by using a hydrogen fluoride aqueous solution (10 wt%). For the 

moment, the nanoporous amorphous carbon@graphitic carbon-cobalt polyhedron composite 

(assigned as AC@GC-Co) consisting of amorphous carbon (AC) as the core and graphitic 

carbon-cobalt (GC-Co) as the shell was successfully prepared as demonstrated by our previous 

research. Finally, AC@GC-Co was further calcined under air flow at 400 ºC for 2 hours to 

remove the amorphous carbon core and produced the target cage-type highly graphitic hollow 

porous carbon-Co3O4 polyhedron composite (assigned as GPC-Co3O4). 

6.2.5. Characterization 

Transmission electron microscopy (TEM), a line scan, elemental mapping, and energy-

dispersive X-ray analysis were conducted using a JEM-2100 at a voltage of 200 kV. The 

morphology of the products was performed on a Hitachi SU-8000 field-emission scanning 

electron microscope (SEM) instrument at an accelerating voltage of 5 kV. Wide-angle powder 

X-ray diffraction (XRD) patterns were acquired on a Rigaku Rint 2000 X-ray diffractometer 

using monochromated Cu Kα radiation (40 kV, 40 mA) at a scanning rate of 2°·min–1. N2 

adsorption–desorption isotherms were measured using a Quantachrome Autosorb-iQ 

Automated Gas Sorption System at 77 K. The specific surface area of core–shell ZIF-8@ZIF-

67 crystals was estimated based on the Langmuir model by using the adsorption branch data in 

the relative pressure (P/P0) range of 0.01-0.1. The specific surface area of GPC-Co3O4 was 

estimated according to the Brunauer–Emmett–Teller (BET) model by using the adsorption 

branch data in the relative pressure (P/P0) range of 0.05-0.3. The pore-size distributions were 

calculated from the adsorption branches of isotherms on the basis of the density functional 

theory (DFT) method. Thermogravimetric (TG) analysis was performed by using a Hitachi 

HT-Seiko Instrument Exter 6300 TG/DTA in a N2/air atmosphere with a heating rate of 5 °C 

min–1 from room temperature to target temperature. X-ray photoelectron spectroscopy (XPS) 

spectra were measured at room temperature using a PHI Quantera SXM (ULVAC-PHI) 

instrument with an Al Kα X-ray source. All the binding energies were calibrated via 

referencing to C 1s binding energy (285.0 eV). The peaks of the N 1s spectrum was fitted 

with a Gaussian-Lorentzian sum function and a Shirley background. 
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6.2.6. Battery Assembly 

The Li–O2 battery assembly was conducted in a 2032 coin cell with holes on the top in 

an Ar-filled glove box (< 0.1 ppm of H2O and 1 ppm of O2). The electrolyte was 1 M LiTFSI 

dissolved in tetraglyme (TEGDME) and the amount of electrolytes in a coin cell was 50 ȝL. 

The H2O content in the electrolyte measured by the Karl-Fischer titration is ~10 ppm. A glass 

fiber (GFA, Whatman) was used as a separator. A Li metal was utilized as the anode. The 

oxygen electrode was prepared by pressing a film composed of the active material and PTFE 

with a ratio of 85:15 wt% onto a hydrophobic carbon paper as the cathode for the Li–O2 battery. 

The electrodes were dried at 80 °C for 12 hours and then transferred to the glovebox without 

contact with air in a glass tube oven (GTO-200). The mass loading of the active material was 

0.5–1.0 mg·cm–2. The coin cell stored in a sealed glass chamber was purged with O2 (99.999%) 

for 2 hours before electrochemical tests. 

6.2.7. Electrochemical Measurements and Characterization 

All of the electrochemical measurements were conducted at a constant room 

temperature. Galvanostatic discharge/charge was conducted on a Hokuto discharging/charging 

system. The specific capacities and current densities were based on the mass of the active 

material in electrodes. For ex situ X-ray diffraction (XRD) measurements and scanning 

electron microscope (SEM) measurements of the discharged/charged cathodes, batteries were 

disassembled in an Ar glovebox, and the cathodes were extracted and rinsed with 

dimethylethane (DME) to wash off the electrolyte salt. After being dried in a vacuum chamber 

connected to the glovebox, the cathodes were placed in a customer-built X-ray cell sealed with 

a kapton polyimide film. XRD measurements were performed on a Bruker D8 Advanced 

diffractometer with Cu Kα (λ = 1.5406 Å) radiation. SEM was performed on Hitachi SU-8000 

field-emission scanning electron microscope. The cathodes were taken to the SEM sample 

loading chamber in a sealed glass bottle with a piece of lithium metal. The time from opening 

the glass bottle to finishing the sample loading into the SEM machine was < 10 seconds. 
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6.3. Results and Discussion 

6.3.1. Thermal Conversion of Core−Shell ZIF-8@ZIF-67 Crystals to Cage-

Type GPC-Co3O4 

 

Figure 6.2 (a) TEM image, line scan, and elemental mappings of a ZIF-8@ZIF-67 crystal; (b) 

SEM image of ZIF-8@ZIF-67 crystals; (c) SEM image and (d) TEM image of AC@GC-Co; 

(e) TG curve of AC@GC-Co measured under air atmosphere from room temperature to 700 °C 

with a heating rate of 5 °C·min–1; (f) SEM image and (g) TEM image of GPC-Co3O4. 

 

The core–shell structure of the obtained MOFs (ZIF-8@ZIF-67) was carefully 

characterized by TEM, line scan, and elemental mappings (Figure 6.2a), showing the ZIF-8 

core (zinc, green color) and the ZIF-67 shell (cobalt, red color). The molar ratio of Co2+/Zn2+ 

detected by energy-dispersive X-ray analysis was 0.3. The SEM image (Figure 6.2b) reveals 

that the prepared ZIF-8@ZIF-67 display a typical rhombic dodecahedral shape due to the seed 

growth of the parent rhombic dodecahedral ZIF-8. The crystal structure of core–shell ZIF-

8@ZIF-67 was identified by the powder XRD and the nitrogen sorption analysis. As proved 

by Figure 6.3a, ZIF-8@ZIF-67 possess topology information similar to that of ZIF-8 seeds 
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and ZIF-67 shells, which is the most important reason for the successful formation of the core–

shell structured ZIFs, most likely via epitaxial growth. The core–shell ZIF-8@ZIF-67 crystals 

retain the high microporosity from the ZIF-8 core and the ZIF-67 shell well (Figure 6.3b), 

exhibiting a high specific surface area of 2240 m2·g–1 and a narrow pore size of 1.2 nm. 

 

 

Figure 6.3 (a) The simulated XRD patterns of ZIF-8 and ZIF-67, the wide-angle powder XRD 

pattern of as-prepared ZIF-8@ZIF-67 crystals, and (b) the N2 adsorption–desorption isotherm 

and pore-size distribution curve of ZIF-8@ZIF-67 crystals.  

 

 

Figure 6.4 TG curve of core–shell ZIF-8@ZIF-67 crystals measured under a N2 atmosphere 

from room temperature to 900 °C with a heating rate of 5 °C·min–1. 

mailto:ZIF-8@ZIF-67(0.26


Chapter 6. Cage-Type Highly Graphitic Porous Carbon−Co3O4 Polyhedron as the Cathode of Lithium−Oxygen Batteries 

15λ 

The selectively functionalized porous carbon polyhedron (AC@GC-Co) was 

successfully prepared by carrying out the carbonization of ZIF-8@ZIF-67 at 900 °C under a 

N2 atmosphere. As monitored by the TG analysis (Figure 6.4), a 38.5 wt% of the initial ZIF-

8@ZIF-67 is retained at 900 °C under a N2 atmosphere. During this process, the 2-

methylimidazole in ZIF-8@ZIF-67 is converted to a carbon state, and the metal ions of Zn2+ in 

the core ZIF-8 and Co2+ in the shell ZIF-67 are thermally reduced to be metallic Zn and Co, 

respectively. Adding catalytic active transition metals into the carbon precursor, especially iron, 

nickel, and cobalt, has been examined to be an effective way for the graphitization of 

amorphous carbon through the solid-state transformation.[38] As a result, the carbons in the 

shells are catalytically graphitized by Co species whereas the carbons in the cores are still 

amorphous due to the weak catalytic activity of Zn species.[35] After washing with 

hydrofluoric acid (10 wt%), the metallic Zn and the most of Co nanoparticles can be removed. 

Some small Co nanoparticles well-enclosed by curved and layered graphitic carbon shells were 

protected against strong acid erosion and retained in carbon matrix.[39] Then I obtain the 

mediate product of AC@GC-Co, consisting of amorphous carbon (AC) as the cores and highly 

graphitic carbon-Co (GC-Co) composite as the shells. AC@GC-Co shows a solid rhombic 

dodecahedral morphology from the parent ZIF-8@ZIF-67 crystals (Figure 6.2b), as illustrated 

by SEM (Figure 6.2c, Figure 6.5a) and TEM images (Figure 6.2d). 

 

 

Figure 6.5 SEM images of (a) AC@GC-Co and (b) GPC-Co3O4. 
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Generally, the graphitic carbon is more thermally stable than amorphous carbon under 

air conditions.[36,37] The details of the thermal stability of AC@GC-Co were investigated 

using TG analysis, and the TG curve shown in Figure 6.2e was acquired under an air 

atmosphere. AC@GC-Co is stable up to 33λ.4 °C and then decomposes rapidly until 361.8 °C, 

accompanied by a weight loss of 78.7 wt%. During this moment, the amorphous carbons in 

AC@GC-Co burn out and release a large quantity of heat in a very short time. Thus, the 

temperature curve (blue line in Figure 6.2e) displays a peak at around the 62 min, showing that 

the temperature suddenly increases from 345.0 to 383.0 °C. The AC@GC-Co displays a 

secondary decomposition during the temperature range of 361.8 to 576.0 °C due to the burnout 

of the graphitic carbon. The weight of AC@GC-Co decreases slowly in this stage without 

disturbing the programed increased temperature. The residual weight at 700.0 °C is only 3.37 

wt%, proving the existence of an incombustible metal species. On the basis of the TG result, I 

determine to anneal the AC@GC-Co at 400.0 °C under air conditions to remove the amorphous 

carbon cores but reserve the graphitic carbon shells, and the metallic Co nanoparticles that exist 

in AC@GC-Co would be oxidized simultaneously to Co3O4. As demonstrated by the SEM 

(Figure 6.2f, Figure 6.5b) and TEM images (Figure 6.2g), the product retains the rhombic 

dodecahedral morphology and displays an expected hollow core. The detailed structural 

information on the obtained cage-type graphitic porous carbon-Co3O4 (assigned as GPC-

Co3O4) polyhedron is investigated in the following section.  
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Figure 6.6 (a,b) TEM images with different magnification, (c) high-resolution TEM image, (d) 

wide-angle XRD pattern, (e) N2 adsorption–desorption isotherm (the inset is the pore-size 

distribution curve), and (f) TG curve of GPC-Co3O4. The TG curve was obtained under an air 

atmosphere from room temperature to 700 °C with a heating rate of 5 °C·min–1. 

 

The crystallization of GPC-Co3O4 was carefully characterized by TEM, high-resolution 

TEM, and XRD analysis. As shown in Figure 6.6a-c, the shells of GPC-Co3O4 are composed 

of ring-like graphitic carbon layers with an interplanar spacing of 0.334 nm, which is the typical 

value of graphite.[40] It is well known that the uniformly distributed Co species in the parent 

ZIF-67 shell are able to graphitize catalytically the amorphous carbon at relatively low 

temperature (< 1000 °C), leading to a highly graphitic carbon structure.[32] The additional 

annealing in air atmosphere selectively remove the low-graphitic thermally unstable carbons, 

thus further increasing the degree of graphitization. The powder XRD pattern of GPC-Co3O4 

(Figure 6.6d) displays a sharp diffraction peak at 26.3° that corresponds to the (002) 

diffractions of graphitic carbon. The other diffraction peaks located at 31.2º, 36.8º, 44.8º, 59.3º, 

and 65.2° are respectively indexed to the (220), (311), (400), (511), and (440) diffractions of 

the cubic Co3O4 crystal (Figure 6.6d).[41] The Co3O4 crystals show weak diffraction peaks, 

implying the small sizes of Co3O4 crystals. As demonstrated by previous studies, it is difficult 

to completely etch of Co nanoparticles, which are enclosed integrally by ring-like graphitic 
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carbon layers that formed during catalytic graphitization.[32,35] Thus, the traceable Co3O4 

nanoparticles in GPC-Co3O4 are due to oxidation of the residual Co nanoparticles in AC@GC-

Co. The uniform distributions of elements including carbon, oxygen, and cobalt in GPC-Co3O4 

are shown in the elemental mapping images (Figure 6.7). However, it is difficult to distinguish 

the Co3O4 nanoparticles clearly in GPC-Co3O4 because they are quite small and are surrounded 

by graphitic carbon layers. I further acquired the X-ray photoelectron spectroscopy (XPS) 

spectrum to monitor the changes of elements before and after the secondary annealing in air. 

The full spectra and high-resolution N 1s spectra of AC@GC-Co and GPC-Co3O4 are shown 

in Figure 6.8. It is noteworthy that the N 1s spectrum of AC@GC-Co can be obviously fitted 

into two peaks, which are assignable to pyridinic-N (398.7 eV) and graphitic-N (400.8 eV), 

respectively (Figure 6.8b). However, nitrogen was not detected in GPC-Co3O4. The results 

suggest that the nitrogen was removed from AC@GC-Co during the secondary air annealing. 

 

 

Figure 6.7 (a) TEM, (b) high-angle annular dark-field scanning TEM (HAADF-STEM) images, 

and (c) elemental mappings of GPC-Co3O4. 
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Figure 6.8 X-ray photoelectron spectroscopy (XPS) spectra and high-resolution N 1s spectra 

of AC@GC-Co and GPC-Co3O4. 

 

The porosity of GPC-Co3O4 was measured by a N2 adsorption–desorption isotherm. As 

shown in Figure 6.6e, the isotherm displays a type IV curve with a hysteresis loop, which is 

generally induced by the capillary condensation of N2 in the mesopores.[42] The mesopores in 

GPC-Co3O4 have various sizes and distribute randomly. During the adsorption process along 

with the increased relative pressure, the nitrogen was condensed first within the smallest 

mesopores. The pressure increased until all pores were filled with nitrogen. Then, the pressure 

decreased and induced desorption of nitrogen. Because the last filled large mesopores were 

connected with the small mesopores, the nitrogen desorption in the same large mesopores 

happened at a lower relative pressure compared with adsorption process, leading to the 

formation of a hysteresis loop. The unsaturated N2 uptake in the high relative pressure of 0.9 

to 1.0 indicates the existence of macropores, which relates to the interior void generated from 

the removal of the amorphous carbon core.[43] The specific surface area calculated from the 

adsorption branch database on the BET model is 282 m2·g–1. The pore-size distribution inset 

in Figure 6.6e clearly reveals that the graphitic carbon shells have abundant mesopores with 

diameters mostly concentrated at 3.8, 7.8, and 28 nm. The thermal stability of GPC-Co3O4 was 

investigated via TG analysis (Figure 6.6f). GPC-Co3O4 shows no remarkable weight loss 

below the temperature of 360.0 °C; weight loss occurs gradually from 360.0 to 640.0 °C. The 

process corresponds well to the second decomposition of AC@GC-Co from 361.8 to 576.0 °C 
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(Figure 6.2e) after the rapid decomposition of the amorphous carbons in the first stage from 

339.4 to 361.8 °C (Figure 6.2e). The results reveal that GPC-Co3O4 has a higher decomposition 

temperature in comparison to AC@GC-Co due to the better stability of graphitic carbons in 

GPC-Co3O4 after the removal of amorphous carbon in AC@GC-Co via annealing at 400 °C 

under an air atmosphere. After the full decomposition of carbons above 640.0 °C, the content 

of Co3O4 was detected to be 12.4 wt % in GPC-Co3O4 (Figure 6.6f). 

 

6.3.2. Electrochemical Performance of the Li−O2 Battery with a GPC-Co3O4 

Electrode 

The successful cycling operation of a non-aqueous Li−O2 battery is widely considered 

to rely on the formation of insoluble discharge product of Li2O2 on the cathode during 

discharging, and the decomposition of Li2O2 during charging.[44] As demonstrated by many 

studies, the discharge capacity of a Li−O2 battery is linearly proportional to the amount of 

discharge product of Li2O2 deposited on the O2 electrode.[45] The mesopore volume of the 

porous carbon cathode is far more efficient for accommodating the reduction product of Li2O2 

compared to the micropore volume.[1,45] In addition, the mesopores facilitate the electrolyte 

immersion and electron/ion transfer.[46,47] Thus, compared to microporous carbon, 

mesoporous carbon is more suitable for achieving higher specific capacitance during 

discharge.[48,4λ] Furthermore, considering the gradual blockage of the O2 pathway caused by 

the deposited insoluble discharge products, the mesopores provide an open framework 

allowing for the rapid transfer of O2.[45] Also, the highly conductive carbons (e.g., graphene, 

carbon nanocage, carbon onions) are able to provide a low-resistance pathway for electron 

transfer. Inspired by the high graphitic degree, advantageous mesoporous and cage-type 

structure, and additional catalyst of Co3O4, GPC-Co3O4 was assembled as the oxygen electrode 

of a Li−O2 battery without adding an extra conductive agent. The cage-type extremely highly 

graphitic porous carbon-Co3O4 polyhedron serves as not only the current collector but also the 

catalyst, as well as the substrate of the Co3O4 catalyst. To evaluate the performance, discharge 

and charge tests were conducted. The cutoff voltage window was 2.0–4.5 V vs Li/Li+.  
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The initial discharge and charge profiles of the Li−O2 battery with a GPC-Co3O4 

electrode are shown in Figure 6.9a. The green points of i, ii, iii and iv represent the pristine, 

mediate discharge, full discharge, and full charge of Li−O2 batteries, respectively. The Li−O2 

battery with a GPC-Co3O4 electrode delivers a high average discharge plateau at 2.7 V vs. 

Li/Li+, indicating strong ORR catalytic activity. The discharge capacity is calculated to be 1575 

mAh·g–1 at a current density of 125 mA·g–1 based on the mass of GPC-Co3O4 in the electrodes 

(Figure 6.9a). Remarkably, the charge profile exhibits an obvious plateau at 3.5 V vs. Li/Li+, 

corresponding to the charge overpotential of ~0.58 V, which is considerably lower than that of 

the common carbon cathode (~1.0 V vs. Li/Li+).[1λ,50] During the charging process, reactions 

are mainly related to the oxidation of amorphous Li2O2 at low potentials (~3.6 V). The 

increased potential at the latter part of the charging profile (Figure 6.9a) is probably due to the 

decomposition of crystalline Li2O2 via a Li deficient solid solution reaction.[51] The good 

performance is likely attributable to the high conductivity of carbon frameworks, which 

promotes the transport of electrons during redox reactions, and associates with the embedded 

catalytic sites of Co3O4, which facilitates the formation and decomposition of Li2O2 during the 

discharge and charge processes in the Li−O2 battery. 
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Figure 6.9 (a) The initial discharge and charge profiles of the Li−O2 battery with a GPC-Co3O4 

electrode at a current density of 125 mA·g–1, (b) ex situ XRD patterns, and (c) SEM images of 

the GPC-Co3O4 cathodes after discharge and charge of the Li−O2 battery. The number coding 

marks of i, ii, iii, and iv represent the pristine, mediate discharge, full discharge, and full charge 

of Li−O2 batteries, respectively. 

 

To identify the products after discharge and charge of the Li−O2 battery, ex situ XRD 

analysis was performed to characterize the GPC-Co3O4 electrode after disassembling the 

battery at the states of pristine (i), full discharge (iii), and full charge (iv). In contrast to the 

pristine electrode (Figure 6.9b, i) and fully charged electrode (Figure 6.9b, iv), the XRD 

pattern of the electrodes after full discharging (Figure 6.9b, iii) exhibits extra weak reflections 

at 2θ of 33° and 35° indexing to the diffractions of Li2O2.[52] Neither Li2O nor LiOH was 
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detected from the XRD patterns (Figure 6.9b). The XRD analysis reveals that Li2O2 is the 

main discharge product and will reversibly decompose after being fully charged.  

To figure out the morphologies of the discharge products formed on the GPC-Co3O4 

electrode, I disassembled the battery at the stages of pristine (i), partly discharged (ii), fully 

discharged (iii), and fully charged (iv) and examined the GPC-Co3O4 electrode via SEM 

images. As revealed in Figure 6.9c i, ii, iii, the typical toroid-like lithium peroxide appears 

along with the discharging time and deposits definitely on the surface and in the pores of cage-

type GPC-Co3O4 polyhedron.[53] After a sufficient charge, the toroid-like lithium peroxide 

disappears (Figure 6.9c, iv), indicating the high reversibility of the electrodes. It is noteworthy 

that the morphology of the GPC-Co3O4 polyhedron is well-preserved after suffering the charge 

and discharge (Figure 6.9c, iv). The cage-type structure consists of the mesoporous walls, and 

the interior void enables the GPC-Co3O4 polyhedron to sustain the volume expansion and 

contraction during the deposition and release of Li2O2, which would help to keep the integrity 

of the GPC-Co3O4 electrode and increase the cycle life. Both XRD patterns and SEM images 

demonstrate the efficient generation of Li2O2 during discharging and the reversible 

decomposition of Li2O2 during charging, which is one of the pivotal factors for a successful 

rechargeable Li−O2 battery. 

The rate capability and cycling stability of the Li−O2 batteries with a GPC-Co3O4 

electrode were studied with a limited specific capacity of 500 mAh·g–1. The discharge and 

charge profiles at the current densities of 250, 375, 500, and 1250 mA·g–1 are shown in Figure 

6.10a. During the discharging and charging process, the overpotentials increase in proportion 

to the increased current densities, whereas the Coulombic efficiencies remain ~100%. The 

result indicates the good rate capability of Li−O2 batteries. The cycling performance of the 

GPC-Co3O4 electrode was further investigated at a current density of 250 mA·g–1 for 50 cycles. 

Figure 6.10b shows the selected discharge and charge profiles of the battery at the 1st, 25th, 

and 50th cycles. The profiles are overlapped and show no increase in discharge and charge 

overpotentials. As illustrated in Figure 6.10c, there is no variation and decay of the specific 

capacity over 50 cycles. The discharge and charge terminal voltages maintain well. After 50 
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cycles, the terminal voltages are still 2.62 V and 4.16 V, respectively. Commercial carbon 

material Super P (SP) was employed as the oxygen electrode and its performance was evaluated 

for comparison with GPC-Co3O4. The discharge and charge profiles of commercial carbon 

Super P electrode at first and 10th cycles are provided in Figure 6.10b. SP electrode shows a 

much higher charge potential of ~4.22 V and the corresponding charge overpotential is ~1.26 

V, which is much higher than that of the GPC-Co3O4 electrode (~0.58 V). The charge terminal 

voltage of SP increases gradually during cycling and reaches the cutoff voltage of 4.5 V after 

10 cycles (Figure 6.10c). The capacity also decreases below 500 mAh g-1 after 10 cycles, which 

indicating the poor reversibility. These results imply the outstanding cycling stability of the 

Li−O2 batteries with this unique GPC-Co3O4 electrode. 

 

 

Figure 6.10 (a) Rate capability of Li−O2 batteries with a GPC-Co3O4 electrode, (b) 

discharge/charge profiles of the selected 1st, 25th, and 50th cycles of GPC-Co3O4 electrode 

and the selected 1st and 10th cycles of Super P electrode at 250 mA·g–1, and (c) the terminal 

voltages and capacities of charge and discharge against cycle number. 
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6.4. Conclusion 

A cage-type highly graphitic carbon-Co3O4 polyhedron was fabricated by the annealing 

of core–shell structured MOFs (ZIF-8@ZIF-67) in a N2 atmosphere first and subsequently in 

an air atmosphere. After first annealing in the N2 atmosphere, a solid AC@GC-Co polyhedron 

consisting of the amorphous carbon cores (AC) and the graphitic carbon-Co shells (GC-Co) 

was obtained. By making use of the different thermal stabilities of amorphous carbon cores and 

highly graphitic carbon shells, a secondary annealing of AC@GC-Co in an air atmosphere was 

conducted to remove the low-graphitic carbons that were distributed mainly in the cores. Thus, 

a cage-type highly graphitic porous carbon-Co3O4 (GPC-Co3O4) polyhedron was obtained for 

the first time and was employed as an oxygen electrode without an additional conductive agent 

for the Li−O2 battery. The cage-type GPC-Co3O4 polyhedron cathode displays a low charge 

potential and long cycle life benefit from the structural properties, including high electrical 

conductivity, cage-type and mesoporous structure, and well-dispersed catalytically active 

Co3O4 nanoparticles. 
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7.1. Introduction 

Hybrid nanoporous carbon materials with controllable pore sizes, shapes, and surface 

properties have attracted considerable attention for the development of next-generation high 

performance electronic devices. Up to now, various types of carbon materials with different 

dimensionality (D), such as carbon-onions (0-D),[1] carbon nanotubes (1-D),[2] graphene (2-

D),[3] activated carbons (3-D),[4] and templated carbons (3-D),[5] have been explored 

extensively. The advantageous properties such as suitable pore size distribution,[6-8] large 

specific surface area,[9] high electrical conductivity,[10] and doped heteroatoms,[11] are 

favorable for energy conversion and storage applications. Practical improvements related to a 

specific property causes, however, the performance associated to other properties to decrease. 

Thus, the rational design and synthesis of hybrid carbon materials with controlled physical and 

chemical properties is still a challenge and is of great interest from the viewpoint of synthetic 

chemistry. 

In recent years, metal−organic frameworks (MOFs) have been scrutinized as 

convenient precursors for preparing diverse porous-carbon-based materials[12,13] or metal 

oxides[14,15] due to their regular nano-architecture constructed from various metal 

ions/clusters and organic ligands. Even though great progress has been made in using MOFs 

as precursors, the properties of the resulting porous carbons or metal oxides are limited by 

using only simple MOFs. As a subfamily of MOFs, zeolitic imidazolate frameworks (ZIFs), 

constructed from the coordination between zinc (Zn2+) or cobalt ions (Co2+) and imidazolate-

type linkers,[16] have proved to be great candidates for fabricating morphology-inherited 

porous carbon materials. The zinc-based ZIF (ZIF-8) or cobalt-based ZIF (ZIF-67) derived 

carbons exhibit many advantageous properties, along with specific limitations. In detail, 

nanoporous carbons derived from the typical single-metal ZIFs composed of zinc ions (e.g., 

ZIF-8) usually possess a microporous structure, large specific surface area, and high degree of 

nitrogen doping, but also a low degree of graphitization.[17] On the other hand, nanoporous 

carbons derived from the single-metal ZIFs composed of cobalt ions (e.g., ZIF-67) generally 

possess mesoporous structure and a high degree of graphitization, but a low specific surface 
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area and nitrogen content.[18] These examples suggest that having only a single type of metal 

ions in the ZIFs comes with both advantages and disadvantages. In contrast to zinc, cobalt is 

able to catalytically promote the graphitization of amorphous carbon at high temperature, but 

at the expense of decreasing the surface area[19] and concentration of doped 

heteroatoms.[20,21] Therefore, it is desirable to combine the advantages of zinc and cobalt ions 

in one single crystal (bimetallic ZIFs) in order to achieve porous carbon materials with tailored 

functionalities. 

According to our previous research, ZIF-8 (Zn(MeIm)2, MeIm = 2-methylimidazolate) 

and ZIF-67 (Co(MeIm)2) are highly compatible due to their isoreticular structure and similar 

lattice parameters.[16,22] As a result, our group successfully synthesized core−shell ZIFs (ZIF-

8@ZIF-67) by using ZIF-8 as seeds and further coating with ZIF-67 via epitaxial growth.[23] 

The fabrication of hetero-bimetallic ZIFs was also recently achieved via the co-precipitation of 

zinc and cobalt ions with MeIm.[24,25] Unlike the single-metal ZIFs, which only contain zinc 

or cobalt ions, here the zinc and cobalt ions coexist indiscriminately in the bimetallic ZIFs. As 

mentioned above, the zinc and cobalt ions exhibit different functionalities during carbonization. 

The MeIm coordinated with zinc ions can be converted into N-doped carbons, and the 

micropores formed between the MeIm and zinc ions can be mostly retained. In contrast, the 

MeIm coordinated with cobalt ions tends to yield graphitic carbon, while sacrificing the 

microporosity and doped nitrogen. Considering this background, in the present work, I study 

the synthesis of nanoporous carbons by using bimetallic ZIFs as precursor. The properties of 

the bimetallic-ZIF-derived carbons, including the specific surface area, porosity, degree of 

graphitization, and nitrogen doping, are precisely controlled by finely tuning the composition 

of the bimetallic ZIF precursors. 
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7.2. Experimental Sections 

7.2.1. Chemicals 

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%) and cobalt nitrate hexahydrate 

(Co(NO3)2·6H2O, 99%), 2-methylimidazole (purity 99%), methanol, and hydrofluoric acid 

were purchased from Nacalai Tesque Reagent Co. All the chemicals were used without further 

purification. 

7.2.2. Preparation of Bimetallic ZIFs (Cox·Zn1-x(MeIm)2)  

In a typical synthesis, Co(NO3)2∙6H2O and Zn(NO3)2∙6H2O were dissolved in 30 mL of 

methanol to form a clear solution, followed by the addition of 2-methylimidazole (984 mg, 12 

mmol) dissolved in 10 mL of methanol. After thoroughly mixing by continuous stirring for 10 

mins, the solution was then transferred into an autoclave and was incubated at 100 ºC for 12 

hours. After cooling to room temperature, the resulting crystals were collected by 

centrifugation, washed with methanol, and dried at 60 ºC. The molar ratio of Co2+/Zn2+ in the 

obtained bimetallic crystals was adjustable over a wide range by varying the initial metallic 

precursor ratio. The total molarity of Co2+ and Zn2+ was fixed to be 3 mmol during the synthesis. 

As a result, a series of bimetallic ZIFs were prepared and categorized as Cox·Zn1-x(MeIm)2, 

where x/1-x represents the corresponding initial molar ratio of Co2+/Zn2+ and the obtained 

bimetallic ZIFs are denoted as Co0.05·Zn0.95(MeIm)2, Co0.1·Zn0.9(MeIm)2, Co0.33·Zn0.67(MeIm)2, 

and Co0.67·Zn0.33(MeIm)2, respectively. Two single-metal ZIFs, ZIF-8 (Zn(MeIm)2) and ZIF-

67 (Co(MeIm)2), were also prepared by adding only Zn2+ or Co2+, respectively. 

7.2.3. Carbonization of Bimetallic ZIFs (Cox·Zn1-x(MeIm)2) 

Bimetallic ZIFs (Cox·Zn1-x(MeIm)2), ZIF-8, and ZIF-67 crystals were thermally 

converted into nanoporous carbon through carbonization under flowing argon at 900 ºC for 3 

hours with a heating rate of 2 ºC·min-1. The Zn and Co species were removed by extensive 

washing with HF solution (10 wt%). The nanoporous carbons converted from bimetallic ZIFs 

(Cox·Zn1-x(MeIm)2) are denoted as C-y (y = x/1-x, in the form of an irreducible fraction). Thus, 

the nanoporous carbons converted from the bimetallic ZIFs Co0.05·Zn0.95(MeIm)2, 

Co0.1·Zn0.9(MeIm)2, Co0.33·Zn0.67(MeIm)2, and Co0.67·Zn0.33(MeIm)2 are designated as C-1/19, 
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C-1/9, C-1/2, and C-2/1, respectively. C-ZIF-8 and C-ZIF-67 are also prepared for comparison 

by using ZIF-8 and ZIF-67 as the precursors, respectively. 

7.2.4. Characterization 

The morphology of the products was investigated by a Hitachi SU-8000 field-emission 

scanning electron microscope (SEM) at an accelerating voltage of 5 kV. Transmission electron 

microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy 

(HAADF STEM), and elemental mapping analysis were conducted on a JEM-2100 at voltage 

of 200 kV. N2 adsorption–desorption isotherms were measured with a Quantachrome 

Autosorb-iQ Automated Gas Sorption System at 77 K. The surface areas of C-y, C-ZIF-8, and 

C-ZIF-67 were calculated according to the Brunauer–Emmett–Teller (BET) model by using 

the adsorption branch data in the relative pressure (P/P0) range of 0.05-0.35. The total pore 

volumes and pore-size distributions were estimated from the adsorption branches of the N2 

isotherms on the basis of the density functional theory (DFT). Wide-angle powder X-ray 

diffraction (PXRD) patterns were acquired on a Rigaku Rint 2000 X-ray diffractometer using 

monochromated Cu Kα radiation (40 kV, 40 mA) at a scanning rate of 2°·min-1. Raman spectra 

were collected on a Horiba-Jovin Yvon T64000 instrument with an excitation laser wavelength 

of λ = 514.5 nm. CHN analysis was measured by Perkin Elmer 2400 CHNO Series II System. 

Thermogravimetric (TG) analysis was conducted on Hitachi HT-Seiko Instrument Exter 6300 

TG/DTA in N2 atmospheres and heated from room temperature to 900 °C at 5 °C·min-1. X-ray 

photoelectron spectroscopy (XPS) spectra were measured at room temperature using a PHI 

Quantera SXM (ULVAC-PHI) instrument with an Al Kα X-ray source. The region of high-

resolution N 1s spectrum ranges from 392 to 412 eV. The binding energies were calibrated via 

referencing to C 1s binding energy located at 285.0 eV. The peaks of the N 1s spectrum were 

fitted with a Gaussian-Lorentzian sum function and a Shirley background.  
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7.2.5. Electrochemical Measurements 

The electrochemical measurements were carried out using an electrochemical 

workstation (CHI 660e, CH Instruments). Firstly, the electrochemical analysis was carried out 

using standard three-electrode measurements. Ag/AgCl and platinum were used as the 

reference and the counter electrode, respectively. The electrolyte used for the present 

measurement was 1.0 M H2SO4. The working electrode was prepared as following description. 

1 mg of bimetallic-ZIF-derived carbon material was mixed with 0.1 mg of poly(vinylidene 

fluoride). After adding 200 ȝL of N-methyl-2-pyrrolidone, the mixture was treated with 

ultrasonication for 20 mins. The obtained homogeneous black slurry was dropped stepwise 

onto a graphite substrate (1 cm2) and dried under an infrared lamp to form a thin film. For all 

the samples, the mass loading per electrode was 1 mg. The thickness of the thin film estimated 

by cross-section SEM image is around 25 ȝm, the density of the active electrode material 

corresponds to 0.5 g∙cm-3. For the symmetric supercapacitor cell (SSC) measurements, two 

electrodes with the same weight loadings were used. The positive and negative electrodes were 

separated from each other by a distance of 0.3 cm, without a separator, and used for the 

electrochemical measurements. Thus the total weight loadings for both electrodes were 2 mg. 

The electrochemical properties of the electrodes were investigated by cyclic voltammetry (CV) 

and galvanostatic charge-discharge (GC-DC) measurements. The gravimetric and volumetric 

capacitance values were calculated using cyclic voltammetry and galvanostatic charge-

discharge measurements and the following equations:  �� = 1�௦ ሺ��−��ሻ ∫ �ሺ�ሻ������                (1) 

�� =  � × ∆௧�× ∆�                                        (2) �� =  �� ×  �                                    (3) 

Where Cg is gravimetric capacitance (F∙g-1), Cv volumetric capacitance (F∙cm-3), s is the 

potential scan rate, V the is potential window, I is the current (A), t is the discharge time, m is 

the mass in grams, and ρ is the density of the active electrode material.  
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7.3. Results and Discussion 

7.3.1. Synthesis and Characterization of Bimetallic ZIFs (Cox·Zn1-x(MeIm)2) 

 

Figure 7.1 (a) Schematic illustration of the crystal structure of the bimetallic ZIFs (Cox·Zn1-

x(MeIm)2). (b) Photograph of ZIF-8, ZIF-67, and the bimetallic ZIF (Cox·Zn1-x(MeIm)2) 

crystals. The initial molar ratios of Co2+/Zn2+ for the synthesis of each bimetallic ZIF is 

shown on top of the bottles in the form of an irreducible fraction. (c) TEM image, (d) 

elemental mapping, and (e) SEM image of the Co0.1·Zn0.9(MeIm)2. 

 

Table 7.1 Summary of the molar ratios of Co2+/Zn2+ in bimetallic ZIFs. 

Sample 
ICP determined molar 

ratio of Co2+/Zn2+ 

Feeding molar ratio of 

Co2+/Zn2+ 

Co0.05·Zn0.95(MeIm)2 0.027 0.053 

Co0.1·Zn0.9(MeIm)2 0.065 0.111 

Co0.33·Zn0.67(MeIm)2 0.356 0.500 

Co0.67·Zn0.33(MeIm)2 1.886 2.000 

 

A series of bimetallic ZIFs were prepared by reacting Co2+ and Zn2+ ions with 2-

methylimidazolate (MeIm) in methanolic solution. The proposed crystal structure of bimetallic 

ZIFs is shown in Figure 7.1a, which is formed by the mixed-coordination of MeIm with Zn2+ 

and Co2+, respectively, based on the nets of ZnN4[16] or CoN4[22] tetrahedra. The bimetallic 

ZIF crystals are denoted as Cox·Zn1-x(MeIm)2, where x/1-x represent the corresponding initial 

molar ratio of Co2+/Zn2+ used for the synthesis, as listed in Table 7.1. It should be noted that 



Chapter 7. Bimetallic Metal−Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons 

180 

ZIF-8 crystals, only consisting of zinc ions, are white. When the zinc ions are replaced by 

cobalt ions, the color of the obtained bimetallic ZIFs gradually changes from white to pink, 

lavender, and ultimately to purple (ZIF-67), as illustrated in Figure 7.1b. The metal content in 

each bimetallic ZIF sample was precisely determined by inductively coupled plasma (ICP) 

analysis. As summarized in Table 7.1, the actual molar ratio of Co2+/Zn2+ is slightly less than 

the feeding molar ratio used for the synthesis, implying that the coordination interaction 

between zinc and MeIm is stronger than that between cobalt and MeIm. The successful 

preparation of bimetallic ZIFs by incorporation of Zn2+ and Co2+ into one crystal are directly 

demonstrated by transmission electron microscopy (TEM) and element mapping. As shown in 

Figure 7.1c,d, the zinc and cobalt species coexist and are dispersed uniformly throughout the 

bimetallic Co0.1·Zn0.9(MeIm)2 crystals. The adjustable molar ratio of Co2+/Zn2+ in the other 

bimetallic ZIFs samples is also confirmed by elemental mapping (Figure 7.2). As discussed 

above, ZIF-8 and ZIF-67 are compatible thus, the resulting bimetallic ZIFs inherit the topology 

from both parent structures. According to the powder X-ray diffraction (XRD) patterns (Figure 

7.3), the diffraction peaks of the bimetallic ZIFs match well with the single-metal ZIF-8 and 

ZIF-67. The absence of shifted peaks reflects the crystal compatibility between the parent 

structures as the lattice seems not to suffer from any distortions. The SEM images in Figure 

7.1e and Figure 7.4b-e show that the series of bimetallic ZIFs have a rhombic dodecahedral 

shape identical to single-metal ZIF-8 and ZIF-67 (Figure 7.4a,f). 
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Figure 7.2 (a, d, g, j) TEM images, (b, e, h, k) HAADF STEM images, and (c, f, i, l) elemental 

mappings of the bimetallic ZIFs. (a-c) Co0.05·Zn0.95(MeIm)2, (d-f) Co0.1·Zn0.9(MeIm)2, (g-i) 

Co0.33·Zn0.67(MeIm)2, and (j-l) Co0.67·Zn0.33(MeIm)2. 
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Figure 7.3 Wide-angle powder XRD patterns of the as-prepared ZIF-8, ZIF-67, and 

bimetallic ZIF (Cox·Zn1-x(MeIm)2) crystals. 

 

 

Figure 7.4 SEM images of the as-synthesized (a) ZIF-8, (b) Co0.05·Zn0.95(MeIm)2, (c) 

Co0.1·Zn0.9(MeIm)2, (d) Co0.33·Zn0.67(MeIm)2, (e) Co0.67·Zn0.33(MeIm)2, and (f) ZIF-67. The 

scale bars are all 1 ȝm. 
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7.3.2. Thermal Conversion of Bimetallic ZIFs to Nanoporous Carbon 

Materials 

 

Figure 7.5 TG curves of ZIF-8, ZIF-67, and bimetallic ZIF (Cox·Zn1-x(MeIm)2) crystals 

measured under N2 atmosphere at a heating rate of 5 °C·min-1. 

 

In order to investigate the effect of the Co2+/Zn2+ molar ratio on the degree of 

graphitization, specific surface area, and pore size distribution of the bimetallic-ZIF-derived 

carbon, the series of bimetallic ZIFs were carbonized at an elevated temperature. As shown in 

the thermogravimetric (TG) curves (Figure 7.5), the thermal stability of bimetallic ZIF crystals 

under a N2 atmosphere gradually becomes lower along with the increased Co2+/Zn2+ ratios, 

which corresponds to the decreased thermal stability from single-metal ZIF-8 to ZIF-67. The 

weight of ZIF-8, ZIF-67, and bimetallic ZIF (Cox·Zn1-x(MeIm)2) crystals decreases rapidly as 

the temperature increases, ultimately yielding to ~50 wt% at 900 °C. During heat treatment 

under inert atmospheres, most the organic linkers thermally converted into the carbon matrix, 

while some parts also decomposed and evaporated as small molecules. The porous carbon 

materials derived from the bimetallic ZIFs (Cox·Zn1-x(MeIm)2) were labelled as C-y (y = x/1-

x). C-ZIF-8 and C-ZIF-67 are also prepared for comparison by respectively using single-metal 

ZIF-8 and ZIF-67 as the precursors.  



Chapter 7. Bimetallic Metal−Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons 

184 

 

Figure 7.6 SEM images of the (a) C-ZIF-8, (b) C-1/19, (c) C-1/9, (d) C-1/2, (e) C-2/1 and (f) 

C-ZIF-67. TEM and high-resolution TEM images of the representative samples (g,h) C-ZIF-8, 

(i,j) C-1/9, (k,l) C-2/1 and (m,n) C-ZIF-67. The insets in (k) and (m) show higher magnification 

images of the edges. 

 

As shown in the SEM images (Figure 7.6a-f), all of the carbon materials kept the 

rhombic dodecahedral morphology inherited from the parent ZIFs. It is worth mentioning that 

the surfaces of C-ZIF-8, C-1/19, and C-1/9 are smooth (Figure 7.6a-c). When the molar ratio 

of Co2+/Zn2+ increases above 1/2, however, the derived carbon materials C-1/2, C-2/1, and C-

ZIF-67 are found to have a rough surface and shrunken facets (Figure 7.6d-f). A detailed 

characterization by TEM and high-resolution TEM reveals that the smooth samples of C-ZIF-

8 and C-1/9 only consist of amorphous carbon (Figure 7.6g-j) whereas the rough samples of 

C-2/1 and C-ZIF-67 are composed of graphitic carbon sheets (Figure 7.6k-n). These results 
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suggest that the carbonized bimetallic ZIFs can be effectively graphitized in the presence of 

enough cobalt species, which explains the rough surface and distorted facets.  

During carbonization, the MeIm from the bimetallic ZIF is converted into a carbon state 

and the coexisting Zn2+ and Co2+ ions are thermally reduced to metallic Zn and Co 

nanoparticles, respectively. Incorporating catalytic active transition metals into the carbon 

precursor (e.g., Fe, Ni, Co) has been demonstrated as an effective approach for catalytic 

graphitization of amorphous carbon via solid-state transformation process.[26,27] As a result, 

the MeIm organic linkers that surround the cobalt ions tend to be catalytically converted into 

graphitic carbon. However, the organic linkers that surround zinc ions tend to yield amorphous 

carbon because a part of the zinc evaporates during the high temperature treatment and the 

residual zinc nanoparticles have a weak catalytic graphitization effect.[25] In other words, the 

degree of graphitization of C-y can be easily controlled by adjusting the molar ratio of 

Co2+/Zn2+ in the parent bimetallic ZIFs. 

 

 

Figure 7.7 (a) SEM image, (b, c) high-resolution TEM images of sample C-2/1.  
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A close observation of sample C-2/1 by high magnification SEM and TEM images 

(Figure 7.7) confirms the presence of thin graphitic carbon nanotubes grown on the surfaces 

of C-2/1. Although C-1/2 and C-ZIF-67 also consist of graphitic carbon, the presence of carbon 

nanotubes could not be observed (Figure 7.6d,f). This suggests that there is an optimal ratio 

of Co2+/Zn2+ in the bimetallic ZIFs to favor the growth of carbon nanotubes under inert 

atmosphere only. In this case, the zinc species in the bimetallic ZIFs separate from the cobalt 

species and prevent the excessive growth of cobalt nanoparticles during carbonthermal 

reduction of cobalt ions, resulting in the formation of abundant, dispersed, and catalytically 

active cobalt nanoparticles. At the same time, these cobalt nanoparticles are surrounded by a 

suitable amount of carbon atoms that will be effectively catalytically converted to be carbon 

nanotubes.[28] 

The degree of graphitization of carbon materials can be characterized by XRD patterns 

and Raman spectra. As shown in Figure 7.8a, the C-ZIF-8, C-1/19, and C-1/9 samples only 

exhibit two broad diffraction peaks at 23° and 44°, which are indexed to the (002) and (101) 

diffractions of amorphous carbon.[23] The broad diffraction peak at around 23° shift slightly 

toward higher angles as the cobalt content is increased from C-ZIF-8 to C-1/19, and to C-1/9, 

indicating the gradual formation of graphitized carbon. In the case of C-1/2, C-2/1, and C-ZIF-

67, which have higher ratios of cobalt, the (002) diffraction peak is observed at 26°, indicating 

highly graphitic carbon states.[28] The results confirm the importance of cobalt ions on the 

degree of graphitization in the bimetallic-ZIF-derived carbon. In addition, as revealed by the 

XRD patterns in Figure 7.9, the elevated calcination temperature from 800 to 900 °C also is 

quite critical to promote the graphitization of carbon, thus helps to magnify the distinction of 

graphitization degree in the series of bimetallic-ZIF-derived carbons in this study. The 

increased degree of graphitization from C-ZIF-8, to C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-

67 was further observed by Raman spectroscopy (Figure 7.8b). Each carbon sample displays 

two vibration bands. The D band located at 1360 cm-1 corresponds to the vibrations of 

disordered carbon or defects, while the G band located at 1590 cm-1 is related to the vibrations 

of sp2-bonded graphitic carbon sheets.[29] The intensity ratio between the D and G band (ID/IG) 
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provides a good insight on the degree of graphitization for comparative studies. As shown in 

Table 7.2, the value of ID/IG for C-ZIF-8, C-y, and C-ZIF-67 decreases with increasing the 

cobalt content in the bimetallic ZIF precursors, suggesting an improved graphitization. 

 

 

Figure 7.8 (a) Wide-angle PXRD patterns, (b) Raman spectra, (c) N2 adsorption–desorption 

isotherms, (d) pore-size distributions, as estimated by the DFT method, of the C-ZIF-8, C-y, 

and C-ZIF-67 samples. For clarity, the isotherms for C-ZIF-8 are offset by 40 cm3·g-1. The 

pore-size distribution curves for C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-67 are offset vertically 

by 0.0075, 0.015, 0.0225, 0.03, and 0.0375 cm3·nm-1·g-1, respectively. 
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Figure 7.9 Wide-angle powder XRD patterns of the bimetallic-ZIF of Co0.33·Zn0.67(MeIm)2 

derived carbon carbonized at 800 and 900 ºC, respectively. 

 

In addition to the diffraction peaks of carbon, C-1/2, C-2/1, and C-ZIF-67 display other 

intense diffraction peaks at 44º and 51°, which can be attributed to the (111) and (200) 

diffractions of face-centered-cubic metallic Co nanoparticles (Figure 7.8a). The average size 

of Co nanoparticles is estimated to be 9.2, 11.8, and 11.9 nm for C-1/2, C-2/1, and C-ZIF-67, 

respectively, by using the Scherrer equation.[30] Although most of the cobalt nanoparticles in 

the carbon matrix can be removed via acid etching to form the pores, some Co nanoparticles 

wrapped in circular graphitic carbon layers which formed during the catalytic graphitization, 

are protected from acid erosion and kept embedded in the carbon matrix.[31,32] The spatial 

distribution of carbon, nitrogen, and cobalt was detected by elemental mapping (Figure 7.10). 

Zinc completely disappeared from each carbon sample, and cobalt was also rarely observed. 

Even when the ZIFs containing high content of Co ions are used as the precursor, the resulting 

cobalt content is only 2.15 wt% and 1.90 wt% in C-2/1 and C-ZIF-67, respectively. From CHN 

analysis, it is found that the level of doped nitrogen (relative weight ratio of nitrogen to carbon) 

is 24.0, 23.4, 23.0, 6.2, 3.5, and 2.7%, for C-ZIF-8, C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-67, 

respectively. This confirms that the nitrogen heteroatoms, originating from the MeIm organic 

linker, are preserved in the carbon matrix after the high temperature treatment. However, the 
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content of nitrogen decreases along with the increased cobalt ratios in the bimetallic ZIF 

precursors which is probably due to the breakdown of C-N bond during the catalytically 

graphitization promoted by cobalt nanoparticles. 

 

Figure 7.10 (a, c, e, g) HAADF STEM and (b, d, f, h) elemental mappings of (a, b) C-ZIF-8, 

(c, d) C-1/9, (e, f) C-2/1, and (g, h) C-ZIF-67. 

 

The porosity of the carbon samples was investigated by N2 adsorption–desorption 

isotherms. The sharp nitrogen uptake at low relative pressure stage (P/P0 < 0.05) is generally 

attributed to the strong nitrogen adsorption into micropores. As shown in Figure 7.8c, the C-

ZIF-8, C-1/19, and C-1/9 samples exhibit a much higher nitrogen uptake at low relative 
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pressure compared with the C-1/2, C-2/1, and C-ZIF-67 samples, indicating higher 

microporosity. All of the samples have gradual nitrogen uptakes in the middle relative pressure 

ranges from 0.3 to 0.9, implying the presence of mesopores with wide size distributions. Unlike 

C-ZIF-8, C-1/19, and C-1/9, the C-1/2, C-2/1, and C-ZIF-67 samples display a clear hysteresis 

loop, which is generally due to presence of abundant, random, bumpy, and non-uniform 

mesopores.[33] During the adsorption process, the nitrogen was condensed first within the 

smallest dimensions. The pressure increased until all pores were filled with nitrogen. Then, the 

pressure decreased and induced desorption of nitrogen. Because the last filled large mesopores 

were connected with the small mesopores, the nitrogen desorption in the same large mesopores 

happened at a lower relative pressure compared with adsorption process, leading to the 

formation of a hysteresis loop. The pore size distributions (Figure 7.8d), calculated by the 

density functional theory (DFT) method, further prove that the pores in C-y gradually move 

from micropores towards mesopores with increasing the cobalt content in the bimetallic ZIF 

precursors. 

 

Table 7.2 The surface areas and total pore volumes calculated from N2 adsorption-desorption 

isotherms, and the ratios of D band to G band estimated from Raman spectra are summarized. 

Sample 
SBET 

(m2·g-1) 

Smicro 

(m2·g-1) 

Smicro 

/SBET 

Vpore 

(cm3·g-1) 

Vmicro 

(cm3·g-1) 

Vmicro 

/Vpore 
ID/IG 

C-ZIF-8 925 541 58.5% 0.57 0.29 50.9% 1.19 

C-1/19 890 426 47.9% 0.58 0.23 39.7% 1.00 

C-1/9 781 250 32.0% 0.52 0.14 26.9% 1.00 

C-1/2 643 123 19.1% 0.54 0.06 11.1% 0.67 

C-2/1 502 57 11.4% 0.53 0.03 5.7% 0.67 

C-ZIF-67 450 41 9.1% 0.43 0.01 2.3% 0.67 

 

The specific surface areas of C-y are also closely related to the cobalt ratios in the 

bimetallic ZIFs. As summarized in Table 7.2, the surface areas decrease from C-ZIF-8 (925 

m2·g-1), to C-1/19 (890 m2·g-1), C-1/9 (781 m2·g-1), C-1/2 (643 m2·g-1), C-2/1 (502 m2·g-1), and 



Chapter 7. Bimetallic Metal−Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons 

1λ1 

finally to C-ZIF-67 (450 m2·g-1). The specific surface area of C-ZIF-8 (925 m2·g-1, carbonized 

at 900 oC) is lower than that of our previously reported ZIF-8-derived-carbon (1499 m2·g-1, 

carbonized at 800 oC),[23] probably due to the collapse of some nanopores during the 

calcination at higher temperature. In addition, the ratio of the microporous surface area to the 

total surface area gradually decreases as the Co2+/Zn2+ molar ratio increases (Table 7.2). These 

results suggest that the microporosity in the carbons is inherited from the microporous ZIF 

precursor and that it is sacrificed during the graphitization of amorphous carbon catalyzed by 

the cobalt nanoparticles. Meanwhile, the mesopores are generated by the carbonization process 

and the subsequent removal of metal nanoparticles. Thus, hierarchically crosslinked 

micro/mesoporous structures are developed, and are expected to promote electrolyte 

penetration and to lower the diffusion resistance when used as electrode materials in 

electrochemical devices.  

 

 

Figure 7.11. High-resolution XPS spectrum centered on the N 1s peak of the representative 

C-1/19 sample. 

The electric state of N in the carbon was investigated by X-ray photoelectron 

spectroscopy (XPS). As shown in Figure 7.11, the high resolution spectrum of the N 1s peak 

of the representative C-1/19 sample can be mainly fitted with two peaks centered at ~398.6 and 
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~400.4 eV, which are assignable to pyridinic-N and graphitic-N, respectively.[34] The result 

demonstrates that the N atoms in the original pentagonal ring of the imidazole units are mainly 

doped into the carbon framework through two distinct mechanisms following the carbonization 

process. Pyridinic-N, referring to the sp2-hybridized N atoms bonded with two sp2-hybridized 

C neighbours via σ-bonds, possesses one lone-pair of electrons in the graphene plane, and 

contributes one electron to the conjugated π system.[35] In the graphitic-N configuration, three 

sp2-hybridized N valence electrons form three σ-bonds with three sp2-hybridized C neighbours, 

one electron fills the π-orbitals, and the fifth electron enters the π*-states of the conduction 

band.[36] According to another report, the fifth electron is distributed in the local network of 

the carbon π-system whereas a part of the charge localizes on the graphitic-N dopant and 

electronically couples to its nearest C neighbours.[37] 

 

7.3.3. Electrochemical Supercapacitors with Bimetallic-ZIF-Derived 

Carbon Electrodes 

 

Figure 7.12. (a) CV curves and (b) volumetric capacitance for C-ZIF-8, C-y, and C-ZIF-67 

samples at a scan rate of 20 mV∙s-1. 

 

To the best of my knowledge, this is the first example of a facile control over the degree 

of graphitization, pore size distribution, and nitrogen doping in carbons by utilizing bimetallic 
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MOFs with adjustable compositions. Furthermore, the series of bimetallic-MOF-derived 

nanoporous carbons doped with heteroatoms, which feature high surface area and a continuous 

conductive framework, have been investigated as promising compounds for electrodes in 

supercapacitor application using a standard three-electrode system. Cyclic voltammetry (CV) 

studies were carried out in a potential window ranging from 0.0 to 0.8 V. The CV curves for 

the samples show a quasi-rectangular shape (Figure 7.12a). The volumetric performance is an 

important technological metric for energy storage devices to meet realistic application. The 

variation of the volumetric capacitance values obtained for different samples is shown in 

Figure 7.12b. The volumetric capacitances are calculated to be 100, 95, 93, 54, 33, and 29 

F∙cm-3 for C-ZIF-8, C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-67, respectively, at a scan rate of 

20 mV∙s-1. From these values, it can be clearly found that the capacitance decreases as the 

Co2+/Zn2+ ratio in the bimetallic ZIF precursor is increased. These results are consistent with 

the N2 adsorption–desorption data, which indicates that the surface area as well as the number 

of micropores decrease as the cobalt content increases (Table 7.2). The capacitance retention 

at a high scan speed is one of the most important parameters for high performance 

supercapacitors. As shown in Figure 7.13, the capacitance retention for the C-ZIF-8 sample is 

found to be only 38% after cycling at a 200 mV∙s-1, which is significantly lower than 71%, 

85%, and 84% for the C-1/19, C-1/2, and C-ZIF-67 samples, respectively. The increased 

retention values can be explained by (i) the decreased concentration of micropores and 

increased concentration of mesopores which allow fast intercalation/de-intercalation of ions in 

the material, and (ii) the higher conductivity of the carbon matrix, owing to the increased degree 

of carbon graphitization.[38,39]  
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Figure 7.13 Volumetric capacitance retention of C-ZIF-8, C-1/19, C-1/2, and C-ZIF-67 

samples as a function of the applied scan rates. The capacitance retention is the volumetric 

capacitance calculated at a higher scan rate compared to the initial scan rate of 20 mV∙s-1. 

 

Among all of the samples, C-1/19 shows the high volumetric capacitance (95 F∙cm-3) 

with good capacitance retention (71%), further supercapacitor studies were carried out using 

this sample. A symmetric supercapacitor cell (SSC) was fabricated using C-1/19 for the 

positive and negative electrodes. Figure 7.14a shows the CV curves for the SSC at various 

scan rates ranging from 10-300 mV∙s-1. The CV shape is unaltered, even at high scan rates. 

This shows high stability and good capacitance retention for capacitor materials. The 

galvanostatic charge-discharge analysis were carried out at various applied current densities 

(Figure 7.14b). More interestingly, the charge-discharge curves show no electrode-potential 

drop (IR drop) even when the applied current density is increased up to 5 A∙g-1 (~15 times the 

initial current density), indicating the low internal ion-transport resistance.[6] The capacitance 

values are found to be 21.1, 20.4, 20.3, 18.7, 18.2, 17.λ, 17.λ, and 15.6 F∙cm-3 at the current 

densities of 0.35, 0.4, 0.45, 0.5, 1.0, 1.5, 3.5, and 5 A∙g-1, respectively (Figure 7.14c). This 

clearly reveals that this carbon material can be used in high-rate operating devices with high 

volumetric capacitance and capacitance retention. In addition to supercapacitor, carbon-based 
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materials are widely used in various fields (e.g., including Li-ion battery, fuel cell, catalysis), 

which request different properties of carbon. In this study, the physical and chemical properties 

of my bimetallic-ZIF-derived carbon can be precisely adjusted by tuning the ratio of Co2+/Zn2+ 

in the bimetallic ZIF precursor, providing an opportunity for us to screen out the optimal carbon 

materials for the specific applications. 

 

Figure 7.14 (a) CV curves at different scan rates of symmetric supercapacitor cell (SSC) with 

nanoporous carbon (C-1/19 sample) positive and negative electrodes. The device was cycled 

within the potential window of 0 to 0.8 V. (b) Galvanostatic charge-discharge curves with 

current density for the SSC. (c) Volumetric capacitance of SSC as a function of the applied 

current densities.  
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7.4. Conclusion 

In summary, bimetallic ZIFs (Cox·Zn1-x(MeIm)2) have been successfully prepared due 

to the crystal compatibility between ZIF-8 (Zn(MeIm)2) and ZIF-67 (Co(MeIm)2). Unlike the 

single-metal ZIFs, which only contain zinc or cobalt ions, the zinc and cobalt ions coexist in 

the bimetallic ZIFs and support different functionalities during the carbonization process. As a 

result, the physical and chemical properties of the bimetallic-ZIF-derived carbon can be 

designed via simply and precisely adjusting the ratio of Co2+/Zn2+ in the bimetallic ZIF 

precursor. Therefore, this work offers a practical way to achieve optimal properties in carbon 

materials for specific applications by easily tailoring the components of the bimetallic ZIFs 

precursors. 
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8.1. Overview of the Achievements 

Nanoporous carbon materials have attracted considerable attention for the development 

of next-generation high-performance electronic devices. In an overview of the whole work, I 

focus on rational design and synthesis of carbon-based materials with controlled physical and 

chemical properties, especially paying attention to the pore size distribution, nitrogen-doping, 

and degree of graphitization. The researches and main achievements are summarized in two 

sections below.  

 

(I) Synthesis of N-Doped Porous Carbon based on a Templating Method and Using 

Nitrogenous Dopamine as the Precursor 

The nanoscale mesoporous structure and spherical morphology are fascinating 

properties in carbon materials because of the resultant short pathways for mass transport and 

minimized viscous effects. Heteroatom doping will endow carbon materials with additional 

functionalities by modifying the electron donor/acceptor of carbon materials and increasing the 

wettability between carbon and an electrolyte. Herein, I demonstrate the synthesis of highly N-

doped mesoporous carbon spheres (NMCS) through the self-polymerization of dopamine and 

spontaneous co-assembly with diblock copolymer micelles (PS-b-PEO). The use of micelles 

enabled the precisely control of pore sizes in the spheres and the use of dopamine offered a 

simple in situ introduction of heteroatoms into carbon materials. This research shows the first 

time that narrowly dispersed NMCS possess large mesopores (~16 nm) and small particle sizes 

(~200 nm). Such large pores and small spherical geometry greatly promote mass transportation, 

leading to high electrocatalytic activity as the metal-free catalyst for oxygen reduction reaction. 

(Shown in Chapter 2) 

Then I introduce a facile procedure for the synthesis of N-doped hierarchical porous 

carbons with a three-dimensional interconnected framework (NHPC-3D). The strategy, based 

on a colloidal crystal templating method, utilized nitrogenous dopamine as the precursor. 

NHPC-3D is composed of macropores as well as meso- and microporous textures, providing a 
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high surface area for electrical charge storage and free diffusion pathways for ion and mass 

transport when being implemented in electrochemical capacitors. (Shown in Chapter 3) 

Inspired by the interaction between polydopamine and diblock copolymer, and the 

deposition of polydopamine on solid surfaces, herein I synthesized N-doped hollow carbon 

spheres with large tunable mesopores (~20 nm) in the shell. Silica spheres were used as hard 

template for a hollow core, and PS173-b-PEO170 was selected as a soft template for the 

generation of mesopores in the shell. The unique structural properties enabled the obtained 

carbon to be promising materials as adsorbents, catalyst supports, electrode materials, drug 

delivery carriers, and hosts for active substances. (Shown in Chapter 4) 

 

(II) Synthesis of Selectively Functionalized Nanoporous Hybrid Carbon based on Self-

Templating Method and Using designed MOFs as the Precursor 

In recent years, metal−organic frameworks (MOFs) have been demonstrated to be 

efficient precursors for preparing diverse porous carbon-based materials. In most of the 

previous works, however, carbon-based materials were derived from a single MOF precursor 

and therefore possessed limited properties. In this project, core−shell ZIF-8@ZIF-67 crystals 

were well designed and prepared through a seed-mediated growth method. The core size of 

ZIF-8 and the shell thickness of ZIF-67 can be tuned simply. After the direct carbonization of 

ZIF-8@ZIF-67, I obtained selectively functionalized nanoporous hybrid carbon consisting of 

N-doped carbon (NC) as the core and highly graphitic carbon (GC) as the shell. This is the first 

example of the integration of NC and GC in one particle at the nanometer level. Hybrid carbon 

integrate the advantageous properties of the individual NC and GC, exhibiting a distinguished 

specific capacitance. The study not only bridges diverse carbon materials with infinite 

metal−organic frameworks but also opens a new avenue for artificially designed 

nanoarchitectures with target functionalities. (Shown in Chapter 5) 

Based on the achievement in Chapter 5, I explored a novel cage-type highly graphitic 

porous carbon-Co3O4 polyhedron (GPC-Co3O4) by executing a two-step annealing of 

core−shell ZIFs. A hybrid carbon polyhedron composite, consisting of amorphous carbon (AC) 
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as the core and graphitic carbon-Co (GC-Co) as the shell, was prepared after the carbonization 

of core−shell ZIF-8@ZIF-67. AC cores were selectively removed, and Co was oxidized into 

Co3O4 by annealing AC@GC-Co in air. GPC-Co3O4 was assembled as an O2 electrode without 

an additional conductive agent and displayed a low charge overpotential, good rate capability, 

and long cycle life in a Li−O2 battery. (Shown in Chapter 6) 

The different metal ions in the ZIF precursor will play different roles during 

carbonization. In this study, I merged the advantages of different metal ions into one ZIF crystal 

(bimetallic ZIF) to achieve porous carbon materials with tailored properties. By fine-tuning the 

the compositions in the bimetallic ZIF precursors, the physical and chemical properties of my 

bimetallic-ZIF-derived carbon can be precisely adjusted, including the specific surface area, 

pore size distribution, degree of graphitization, and nitrogen doping, providing there is an 

opportunity to explore the optimal carbon materials for the specified applications. (Shown in 

Chapter 7) 

 

 

8.2. Future Perspective 

Carbon is undoubtedly the most widely used material in all technologies due to its 

abundance and competitively outstanding properties. During the past five years, metal−organic 

frameworks (MOFs) (or porous coordination polymers, PCPs) have become a rapidly rising 

star as a convenient self-templated precursor for preparing carbon-based materials, as shown 

in Table 8.1. The MOF-derived materials are promising in a wide variety of applications, such 

as gas storage, catalysis, and electronic devices. The applications of metal−organic frameworks 

(MOFs) and derivatives can be extended by encapsulating various functional species within 

the frameworks. Furthermore, morphological preservation is critical during the thermal 

transformation of MOFs in order to maintain the porosity, rigidity, and uniform distribution of 

the metal species. Based on my previous research experience, I will continue focusing on the 

exploration of multifunctional novel carbon-based nanomaterials by using elaborately designed 

MOFs as the main precursor for electrochemical applications. 
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(I) MOFs Functionalized with Nanoparticles via In Situ Encapsulation 

 

Figure 8.1 Metal nanoparticles encapsulated in an MOF. Reproduced with permission 

[12]. Copyright 2012, Nature Publishing Group. 

As proven by previous studies (Figure 8.1), the nanostructured objects capped with a 

surfactant can be encapsulated in MOFs, which would display synergistic behaviors (catalysis, 

optical and electrically conductivity). After an initial design and synthesis of nanoparticles 

encapsulated in MOFs, I will fabricate customized carbon-based nanomaterials after a one-step 

thermal conversion. The above research will broaden the horizons for exploitation of designed 

hybrid MOFs and inspire a new way to fabricate infinite deriviatives. 

 

(II) MOFs-Decorated Carbon Nanofiber Network as Flexible Freestanding Electrode 

Materials 

 

Figure 8.2 Illustration of the electrospinning process. 

The state-of-the-art fabrication of electrodes involves the combination of active 

materials with carbon black and insulated polymer binders. However, the additives will bring 

out shortcomings including extra cost, contact resistance, and needless weight. The self-

supported functional carbon nanofiber network fabricated via electrostatic spinning can be 
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easily scaled up to industrial-scale production and work as electrode materials in lots of fields, 

such as lithium-ion (lithium-air) batteries, electrochemical capacitors, and alkaline hydrogen 

evolution reactions.  

In order to endow the carbon nanofiber network with specific functionalities, the 

diverse hybrid MOFs and derivatives can be incorporated into carbon fibers and woven into a 

flexible, cross-linked, and lightweight carbon network. For example, I plan to fabricate a 

cobalt@graphitic carbon decorated N-doped carbon nanofiber network (Co@GC-NCNF). As 

schematically shown in Figure 8.2, polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP) 

are dissolved in N, N-dimethylformamide (DMF) first, and then the freshly prepared Co-ZIFs 

are added. After ejecting the mixed solution from the stainless steel capillary with a voltage of 

12 kV, the electrospun polymer nanofiber can be collected and carbonized to be Co@GC-

NCNF in N2. Such a carbon network has great potential for application not only in solid-state 

supercapacitor devices but also as a freestanding electrode in lithium-ion batteries: (1) The one 

dimensional (1D) carbon fibers can make ion transfer easy, (2) Co@GC will be 

electrochemically coupled due to the electrical conductive carbon fiber, and (3) isolated 

Co@GC can be prevented from aggregation and deterioration during long-term operation. 

 

(III) Extending the Morphology of MOF from Polyhedron into One or Two Dimensions 

Carbon nanomaterials with low dimensions are the focus of research due to their 

unusual and exceptional electronic properties. Despite rapid progress in the field of MOF-

derived carbons, their current morphology is mainly limited to polyhedrons, the typical 

appearance of parent MOFs. Recently, the fabrication of 1D carbon-based nanowire arrays by 

constructing a new MOF precursor on copper foil was reported. However, there are not many 

deep studies focusing on extending the existing MOFs to different morphologies. Breaking the 

dimensional limitation is the new challenges to further develop MOF-derived carbon-based 

materials and broaden their application. 
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Table 8.1 Selected carbon-based materials by adopting MOFs/PCPs as self-templated 

precursors. 

Precursor Product Structure Application Ref 

MOF-5 & 

furfuryl 

alcohol 

Nanoporous 

carbon 

 

Electric double-

layer capacitor 
[1] 

Al-PCP 
Nanoporous 

carbon 

 

Sensor [2] 

Fe-PCP 

Mesoporous 

carbon 

nanodisks 

 

Electric double-

layer capacitor 
[3] 

IRMOF-1 
Hierarchically 

porous carbon   

 

Hydrogen storage [4] 

ZIF-8 
N-doped porous 

carbon 

 

Lithium-ion battery [5] 

Zn/Co bi-MOF 
Co-N-C 

nanopolyhedron 

 

Oxygen reduction 

reaction 
[6] 
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ZIF-67 & 

H3BO3 

Co@N, B-

doped carbon 

 

Hydrogen evolution 

reaction 
[7] 

ZIF-67 

Hollow 

frameworks of 

N-doped carbon 

nanotubes  
 

Oxygen reduction 

and evolution 

reactions 

[8] 

MIL-88B-NH3 

Fe-containing  

N-doped carbon 

composites 

 

Oxygen reduction 

reaction 
[9] 

Co-MOF 

Co3O4-carbon 

porous 

nanowire arrays 

 

Oxygen evolution 

reaction 
[10] 

MOF-74 
Graphene 

nanoribbons 

 

Electric double-

layer capacitor 
[11] 
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