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Introduction

In knot theory, knot diagrams play an important role to study and clas-
sify knots. We have three points of view for the crossing information on
an oriented knot diagram: over/under crossing, left /right crossing and posi-
tive /negative crossing. See Fig. 1. We have the following relationship among
these three crossing information: if we give a crossing point two of these in-
formation, then another is obtained immediately. For instance, if a crossing
point is over crossing and left crossing, then it is negative crossing.
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Figure 1 : Each dot indicates a base point. Symbols O/U, L/R and P/N
mean over /under crossng, left /right crossing and positive/negative crossing,
respectively.

In 2012, Higa, Nakanishi, Satoh and Yamamoto defined an OU sequence
for a knot diagram, where the OU sequence is obtained from crossing infor-
mation by reading a sequence of over- and under- crossing points along the
orientation of a knot diagram [1]. They studied about sequences which are
realized by diagrams of the trefoil knot and characterized the warping poly-
nomials for diagrams of trefoil knot, where the warping polynomials for knot
diagrams is introduced by A. Shimizu in [2]. After their study, K. Taniyama
suggested the author to study LR sequences and PN sequences for knot di-
agrams. The LR sequence (respectively PN sequence) for a knot diagram is
obtained from crossing information by reading a sequence of left- and right-
crossing points (respectively positive- and negative- crossing points) along
the orientation. The precise definitions are given later respectively.



The author divides this paper into two parts: Chapter 1 and Chapter 2.

In Chapter 1, we introduce LR sequences for knot diagrams. Since an
LR sequence does not reflect any over/under crossing information, we de-
fine an LR sequence for an oriented closed curve on the 2-sphere with only
finitely many transversal double points. For a given oriented spherical closed
curve with n transversal double points, we assign a cyclic word, namely LR
sequence, of length 2n on two letters L standing left and R standing right
by reading the crossing sign so that each crossing point is read once L and
once R. The LR number of the curve is the number of appearance of sub-
sequences LR in the LR sequence. We note that there is a related study
[3]. We completely determine oriented spherical closed curves whose LR
numbers are less than or equal to three.

In Chapter 2, we introduce PN sequences for knot diagrams. For an
oriented knot diagram, we define a cyclic word, namely PN sequence, in
letters P and NN corresponding to positive and negative crossings along the
diagram, respectively. We give a necessary and suflicient condition for a
PN sequence to be obtained from some knot diagram. Also we prove that
any PN sequence of a diagram of a non-trivial knot contains at least four
subsequences PP and NN.



Chapter 1

LR number of spherical
closed curves



1.1 Introduction

Let L and R be symbols. An LR pre-sequence of length | € Z>1 is a map ¢ :
{1,2,...,1} — {L, R}. Such a pre-sequence is encoded by ¢©(1) p(2) - - - ().
We define a cyclic permutation p : {1,2,...,1} — {1,2,...,1} by p(i) =
i+1(i=12,...,1—1)and p(l) = 1.

Let 1 and o9 be LR pre-sequences with the same length. If there exists
i € Z such that po= ¢ o p’, then we say that ¢ and 9 are equivalent and
denote it by 1 ~ 9. It is clear that this is an equivalence relation. We do
not distinguish an LR pre-sequence and its equivalence class so long as no
confusion occurs. Let So; be the set of LR pre-sequences of length 2/ with
o Y(L) = o 1(R) = I. The elements of the quotient set Sy;/ ~ are called
LR sequences. For convenience, a consecutive sequence of m (m € Z>1)
copies of L (resp. R) is denoted by L™ (resp. R"). Then an LR sequence
w of length 2 can be written as w = L** RN L*2R% ... [*n RO where
a1, Q9,. .., a0, and B, s, ..., B, are positive integers with a1 +ag+- - -+a,, =
01+ B2+ -+ 5, = 1. Note that

w = L™ Rﬁl La2R52 ... [On Rﬁn
— LOél—lRBl &2 R32 e [On RﬁnL

_ Rﬁl 52 R32 e [0 Rﬁn !
— RﬁlflLa’2R52 L LanRBnLa’lR

Then the LR number of w, denoted by Ir(w), is defined to be n.

We consider an oriented closed curve with finitely many transversal dou-
ble points without any other singularities in the two-dimensional sphere S?.
In this chapter, by an oriented spherical closed curve, we mean such a curve.
We consider it up to orientation preserving auto-homeomorphisms on S2. A
transversal double point is called a crossing point.

We take a base point except for the crossing points on an oriented spher-
ical closed curve P and trace P along the orientation direction. When we
pass a crossing point, the crossing is read to be left (resp. right) if the curve
that one crosses travel from left to right (resp. from right to left). Then we
record the symbol L (resp. R) if the crossing is left (resp. right) at each
crossing point (see Fig. 1.1). We continue this recording until we return to
the base point.



Figure 1.1

Note that we pass each crossing point twice, and once it is read L and
once R. Therefore we obtain an LR sequence from the crossing information
on P by reading a sequence of left- and right- crossing along the orientation
direction of P. It is called an LR sequence for P and denoted by wp. We
define the LR number of P, denoted by Ir(P), to be the LR number of wp.
Namely ir(P) = lr(wp). See for example Fig. 1.2.

P

Figure 1.2 : wp = LRLRLR, Ir(P) = 3.

We define the LR sequence for a simple closed curve in S? to be the
empty sequence ) and Ir(()) to be zero.

For any P, we obtain an LR sequence for P. Conversely, given an LR
sequence w, we can construct a spherical closed curve whose LR sequence
coincides with w (Proposition 1.2.2). Therefore, for any positive integer n,
there exists an oriented spherical closed curve whose LR number is n.

A spherical closed curve P is said to be prime if for any simple closed
curve C' in S? which intersects P transversally in two points, exactly one of
subcurves of P cut by C'is a simple arc. A spherical closed curve P is said
to be reduced if P does not have subcurves illustrated in Fig. 1.3.

The main results of this chapter are Theorems 1.2.4, 1.3.2, 1.3.5 and
1.3.8. Theorem 1.2.4 is proved in Section 1.2. In Section 1.3, by Theo-
rem 1.2.4, we describe all prime oriented spherical closed curves whose LR



Figure 1.3

numbers are less than or equal to three (Theorems 1.3.2, 1.3.5 and 1.3.8).
Then we describe all non-prime oriented spherical closed curves whose LR
numbers are less than or equal to three (Theorem 1.3.2, Corollaries 1.3.10
and 1.3.11).

1.2 A concentric circular curve

Let w be an LR sequence. Assume that w = u; LRus or w = uy RLus, where
u1; and ug are LR subsequences. Then we say that an LR sequence w’' =
ujug is obtained from w by a contraction (cf. [1]).

Lemma 1.2.1. Let w be an LR sequence, and w' an LR sequence obtained
from w by a contraction. If there exists an oriented spherical closed curve P’
with wpr = w', then there exists an oriented spherical closed curve P with
wp = w.

Proof. Following the similar lines as [1], we make a local change illustrated
in Fig. 1.4 to the arc of P’ corresponding to the LR subsequence LR or RL
contracted. Then we obtain a new oriented spherical closed curve P with
wp = w. O
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Figure 1.4

Proposition 1.2.2. For any LR sequence w, there exists an oriented spher-
ical closed curve P such that wp = w.



Proof. For any LR sequence w, there exists an LR subsequence LR or RL
in w. By the induction on the length of w, we obtain an empty sequence ()
from w by a finite sequence of contractions. Since () corresponds to a simple
closed curve in S?, we obtain an oriented spherical closed curve whose LR
sequence coincides with w inductively by Lemma 2.2.1. O

Let P be an oriented spherical closed curve. In a small neighborhood of
each crossing point of P, we make the following local change to P: delete
the crossing point and connect the ends in the only way compatible with
orientation as in Fig. 1.5. We call this local change a smoothing.

[
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Figure 1.5 : A smoothing, then giving a marker to a crossing point.

When the smoothing has been done at all crossing points, P becomes a
set of disjoint simple closed curves in S?. We call these closed curves Seifert
circles. Applying smoothings to all crossing points of P and giving line
segments called markers on the sites of crossing points, we obtain a figure
called a Seifert diagram for P, which is denoted by Sy(P). The Seifert
diagram for P is constructed by the Seifert circles of P and the markers
corresponding to the crossing points of P.

In the same way as Section 1.1, we will obtain the LR sequence for Sg(P).
First we determine how to circulate S;(P) in the following: tracing a Seifert
circle v of Sy(P), if we encounter a marker on the left- (resp. right-) hand
side for the direction of travelling, then we leave =, move along the marker
and go into a Seifert circle on the left- (resp. right-) hand side of ~ along
the marker. A marker is said to be left (resp. right) for v if we pass the
marker and take to a Seifert circle on left- (resp. right-) hand side of 7. A
left marker is labeled L and a right marker R (see Fig. 1.6).

Then, circulating S;(P), we obtain the LR sequence from marker in-
formation of Sg(P). Notice that since we can restore Sq(P) to P, the LR
sequence for Sg(P) coincides with wp. Therefore we may treat Sy(P) instead
of P in some cases.



Figure 1.6 : A left (resp. right) crossing point corresponds to the left (resp.
right) marker.

Let S(P) be the set of Seifert circles of P in S?. Define

£
@
’“U

) :={y € S(P) | v is a clockwise innermost circle in S(P)},
I_(S(P)) :={y € S(P) | 7 is a counterclockwise innermost circle in S(P)},
I(S(P)) :={y € S(P) | v is an innermost circle in S(P)}.

Then we have I(S(P)) = I+ (S(P)) U I_(S(P)).

We say that P is a concentric circular curve if §1, (S(P)) = $1_(S(P)) =
1.

Let ¢(+) be the number of markers which the innermost circle v touches.
We define

ie,(P):= Y ev)s i (P)i= ) )

vel+(8(P)) yel-(8(P))

Lemma 1.2.3. Let P be an oriented spherical closed curve. Then
(1) In(P) > i, (P),
(2) Ir(P) >1i. (P) and
(3) Ir(P) > max {ic, (P), i._(P)}.

Proof. (1) Let Sy(P) be the Seifert diagram for P, and my,ma,...,m, the
markers which a clockwise innermost circle v touches in S;(P) (see Fig. 1.7).
Pass through m;, trace the arc of v and pass again through m;;1 (mq when
i = n), then we have an LR subsequence RL obtained from the marker
information.

Hence, if a clockwise innermost circle touches n markers, then the LR
sequence for Sy(P) contains at least n LR subsequences RL. Note that no
two clockwise innermost circles touch a common marker. Therefore ir(P) >
ic, (P).

By a similar argument, we have (2). Then (3) follows immediately. [

10



Figure 1.7 : To each crossing point ¢; (1 < i < n), we apply smoothing and
giving a maker.

Theorem 1.2.4. Let P be a reduced oriented closed spherical curve. If
the LR number of wp is less than or equal to three, then P is a concentric
circular curve.

Proof. If P is not a concentric circular curve, then $7(S(P)) > 3. Namely,
81 (S(P)) > 2 or I_(S(P)) > 2. On the other hand, since P is reduced,
we have ¢(vy) > 2 for all v € I(S(P)). Therefore i., (P) > 4 or i._(P) > 4.
Thus i7(P) > 4 by Lemma 1.2.3. O

1.3 Spherical closed curves with LR number 1, 2
or 3

In this section we determine prime oriented spherical closed curves whose
LR numbers are less than or equal to three. We need some lemmas in order
to construct such curves.

Let P be a concentric circular curve in 2, and Sy(P) the Seifert diagram
for P. There are four patterns of the parts of the circulation of S;(P) as
illustrated in Fig. 1.8. They are between two or three adjacent Seifert circles
of Sy(P).

A pattern on the left-hand side of Fig. 1.8 is called type A, one on the
second from the left type B, and the others type C. We obtain an LR sub-
sequence LR or RL from marker information of type A or B, and LL or
RR from that of type C. Then the LR number of Sy(P) is n if and only if
Sq(P) has exactly n type A patterns, and then Sy(P) has exactly n type B
patterns. Therefore we may count the number of patterns of type A or B in
S4(P) to calculate the LR number of P.

11



type A type B

type C

Figure 1.8

Suppose that Sy(P) has k Seifert circles v, . ... v, where k > 2. Let y;
be the counterclockwise innermost circle, and 4 the clockwise innermost
circle. Assume that +; and ;4 are adjacent (1 <1i < k —1). Such Seifert
circles are called the Seifert circles of Sq(P) arranged in order.

Lemma 1.3.1. Let P be a concentric circular curve, and Sq(P) the Seifert
diagram for P. Let ~v1,...,v be the Seifert circles of Sqy(P) arranged in
order where k > 2. If there exists v; (1 < i< k—1) such that the number of

the markers between ~; and ~;y+1 is n, then the LR number of P is greater
than or equal to n.

Proof. Let my,...,m, be n markers between 7; and ;11 (see Fig. 1.9).

]
[
’

Figure 1.9 : In the neighborhood of ~; and ;1.

Assume that we leave =;, pass my and take to ~;11 when circulating the
Sq(P). Since my is a right marker for ;, we obtain an LR subsequence R. In
order to turn back to y; again, we need to pass my (1 < h < n) in direction

12



of v; once. At this time, my, is a left marker for +;11. Then we obtain an
LR subsequence ¢ of length [ (I > 2), which contains at least one R and
one L in this process. Therefore there exists j (j < [) such that ¢(j) = R
and ¢(j + 1) = L. This shows that we have a type B pattern in the area
between v; and .

Applying a similar argument for each marker, we have at least n type B
patterns in the area between +; and ~;. Therefore ir(P) > n. O

Theorem 1.3.2. Let P be an oriented spherical closed curve. If the LR
number of P is one, then P is one of the following curves illustrated in
Fig. 1.10. In particular a spherical closed curve in the far left-hand side of
Fig. 1.10 is prime and the others are not prime.

Figure 1.10

Proof. By Lemma 1.2.3, i., (P) = i._(P) = 1. Thus 1, (S(P)) = $I_(S(P)) =
1, that is, P is a concentric circular curve. Let ~y,...,~; be the Seifert cir-
cles of Sy(P) arranged in order where k > 2. By Lemma 1.3.1, we see that
for any v; (1 <4 < k — 1), the number of markers between ~; and ;11 is
one. Therefore we obtain the following Seifert diagrams for P illustrated in
Fig. 1.11. O

Figure 1.11

Lemma 1.3.3. Let P be a concentric circular curve, and Sq(P) a Seifert
diagram for P. Let ~1,...,v be the Seifert circles of Sqy(P) arranged in

13



order where k > 3. If there exists v; (1 < i <k — 1) such that the number
of the markers between v; and v;11 s one, then P is not prime.

Proof. The marker between ~y; and ;11 represents a crossing point ¢ in P

such that P\ {c} is disconnected. Therefore P is not prime. O
Let 41,...,7% be the Seifert circles of Sy(P) arranged in order where
k > 3. Let mj,...,m, be p markers between v; and 7,11, and mllfl, .. ,qu*I

q markers between ;1 and ~; where 2 < ¢ < k —1 and p and q are positive
integers. We define the endpoints of the marker

¢ = mj, Ny (1<h<p), e li=mi Ny (1<j<q).

Tracing ;, we obtain a cyclic sequence of endpoints. We denote it by
E(v).

Lemma 1.3.4. Let P be a concentric circular curve, and Sq(P) the Seifert

diagram for P. Let ~v1,...,v be the Seifert circles of Sy(P) arranged in

order where k > 3. If there exists a Seifert circle v; (2 < i <k — 1) such
i i—1,i-1 i—1

that E(v;) coincides eieh---ehei ey ---el ! (p,q € N), then P is not

prime.

Proof. There exists a simple closed curve a that intersects S;(P) transver-
sally in two points as illustrated in Fig. 1.12. Therefore P restored from
Sq(P) is not prime. O

Figure 1.12

Now we construct prime oriented spherical closed curves whose LR num-
bers are two.

14



Figure 1.13

Theorem 1.3.5. Let P be a prime oriented spherical closed curve. If the
LR number of P is two, then P is one of the following curves illustrated in
Fig. 1.13.

Proof. 1t is clear that prime spherical closed curves with two or more crossing
points are reduced. Thus P is a concentric circular curve by Theorem 1.2.4.

We deal with S;(P) instead of P. By Lemmas 1.3.1 and 1.3.3, any Seifert
circles of Sy(P) have just two markers. Furthermore, S;(P) does not contain
the portions illustrated in Fig. 1.12 by Lemma 1.3.4. Therefore we obtain
the following Seifert diagram for P illustrated in Fig. 1.14. O

Figure 1.14

Lastly we construct prime oriented spherical closed curves whose LR
numbers are three.

Lemma 1.3.6. Let P be a concentric circular curve, Sq(P) the Seifert di-
agram for P, and v1,...,v, the Seifert circles of Sq(P) arranged in order
where k > 3. If there exists v; (2 < i < k—1) such that Sq(P) has p markers
between ~; and ;11 and q markers between ;1 and vy;, and E(~;) contains
j subsequences eﬁ;leﬁ;ll (h, j <q—1), then the LR number of P is greater
than or equal to p+ j.

Proof. We will count the number of type B patterns in Sy(P) to calculate
the LR number of P.

15



Since the number of the markers between ; and ;41 is p, Sg(P) has at
least p type B patterns in the area between 7; and . Then Ir(P) > p. In
addition, since E(v;) contains j subsequences e;;le;:l, Sa(P) has j type B
patterns in the area between ~;_1 and ;. Therefore Ir(P) > p+ j. O

————Fm——
i
i

Figure 1.15 : The case of p = ¢ = 3 and E(~;) contains a sequence e’{lef{l.

Lemma 1.3.7. Let P be a concentric circular curve, Sq(P) the Seifert di-
agram for P, and 7y, ...,v the Seifert circles of Sy(P) arranged in order
where k > 3. If there exists v;, and i, (2 < i2 < i1 < k — 1) such that
Sq(P) has p1 markers between v;, and vi,+1, p2 markers between vy;, and
Yig+1, and ps markers between vi,—1 and 7y, (p1 > p2, p3 > p2), then the
LR number of P is greater than or equal to p1 — pa + p3.

Proof. We will count the number of type B patterns in S;(P) to calculate
the LR number of P. Since the number of the markers between ;, and
~i;+1 18 p1, Sqa(P) has at least p; type B patterns in the area between ~;,
and ;. Then Ir(P) > p;. In addition, S;(P) has ps — pa type B patterns
in the area between 7,1 and ~;,. Therefore ir(P) > p1 — p2 + ps. O

Theorem 1.3.8. Let P be a prime oriented spherical closed curve. If the
LR number of P is three, then P is obtained from T'(3,n) by replacing one of
the areas A, B and C' with S(2,1), and by replacing the area D with S(2,m)
as in Fig. 1.16 where n > 2 and l,m > 0.

Proof. Since P has more than two crossing points, P is reduced. Thus, by
Theorem 1.2.4, P is a concentric circular curve.

We deal with Sy(P) instead of P. By Lemmas 1.3.1 and 1.3.3, any Seifert
circles of S4(P) have two or three markers. In addition, by Lemma 1.3.4,

16



Figure 1.16

Sq(P) does not contain the portions illustrated in Fig. 1.12. Furthermore,
Sq(P) does not satisfy the conditions of Lemmas 1.3.6 and 1.3.7. By these
facts, we have the desired conclusion. O

Some examples of prime oriented spherical closed curves with LR number
three are illustrated in Fig. 1.17. The curve (1) is 7'(3,2), (2) is 7'(3,4), (3)
is T'(3,5), (4) is obtained from T'(3,4) by replacing D with S(2,2), and (5)
is obtained from T'(3,4) by replacing both C' and D with S(2,2).

0000®

Figure 1.17

Let P; and P, be spherical closed curves. Suppose that P; and Py are
disjoint. We make the following local change to P, and P». Find a disk

17



D c §? such that DN P, = 9D N P; is a simple arc for i = 1, 2.
Let P = (P U P, UOD)\int(0D N (P, U P,)). Then P is said to be a
composition of P and Ps.

Lemma 1.3.9. Let P, and P be oriented spherical closed curves. If the LR
number of Py is ny and that of Ps is no, then the LR number of a composition
of P and Py isni+ng+1, ny +ng orng +ng — 1.

Proof. Let wp, be the LR sequence for P;, and wp, the LR sequence for
P,. The proof immediately follows by considering to put wp, between the
letters of wp,. O

By Theorems 1.3.5 and 1.3.8, and Lemma 1.3.9, we describe how to
construct non-prime oriented spherical closed curves whose LR numbers are
two or three.

Corollary 1.3.10. Let P be a non-prime oriented spherical closed curve
whose LR number is two. Then P is one of the following curves.

(1) The curve P is a composition of two oriented spherical closed curves
whose LR numbers are one.

(2) The curve P is a composition of a prime oriented spherical closed
curve whose LR number is two and at most four oriented spherical closed
curves whose LR numbers are one.

@o

(1) 2)

Figure 1.18 : Examples of cases (1) and (2) of Corollary 1.3.10.

Corollary 1.3.11. Let P be a non-prime oriented spherical closed curve
whose LR number is three. Then P is one of the following curves.

(1) The curve P is a composition of at most three oriented spherical
closed curves whose LR numbers are one.

(2) The curve P is a composition of an oriented spherical closed curve
whose LR number is two and an oriented spherical closed curve whose LR
number is one.

18



(3) The curve P is a composition of two oriented spherical closed curves
whose LR numbers are two.

(4) The curve P is a composition of a prime oriented spherical closed
curve whose LR number is three and at most six oriented spherical closed
curves whose LR numbers are one.

(n @) @) 4)

Figure 1.19 : Examples of cases (1), (2), (3) and (4) of Corollary 1.3.11.
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Chapter 2

PN sequences obtained from
signs of crossings of knot
diagrams
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2.1 Introduction

A PN sequence is a cyclic word w = X1 Xo -+ X, (n € N) in letters P and
N such that both of the numbers of P’s and N’s in w are even. We denote
by |w| the length n of w, which is even by definition. Let ny and ng be the
number of P’s in {X1, X3,...,X,-1} and {Xs, Xy4,..., X}, respectively.
We denote by A(w) the difference |n; — ng|. For convenience, the empty
sequence () is regarded as a PN sequence with || = 0 and A(0) = 0.

We use the following notations for subsequences of w:

(i) P =pPP---Pand N" = NN --- N,

(ii) (PN)™ :mPNPN~~~PN and EnNP)m =NPNP---NP.
2m 2m

We say that a PN sequence w’ is obtained from w by a contraction if w’
is obtained by deleting a subsequence PP or NN in w. An interval number
of a PN sequence w is defined to be the number of the subsequences PP
and NN in w, and denoted by I(w). For example, we have I(P?) = 2,
I(N®) = 6, and I(P2N?P2N?) = 4. We remark that I(w) is always even
(Lemma 2.3.1).

Let D be an oriented knot diagram in the 2-sphere. We take a base point
on D except for the crossings and trace D from the base point with respect
to the orientation of D. When we meet a positive or negative crossing (see
Fig. 2.1), we record the letter P or N, respectively, so that we obtain a
word w(D) in letters P and N. Since we pass each crossing twice, the word

w(D) is a PN sequence.
PREEREN AN
/ \ / N\
AN ANA
! 1o !
\ \/ \/ /
~ - ~ -

positive negative

Figure 2.1 : A positive crossing and a negative crossing.

We remark that w(D) is a cyclic word and it is independent of a par-
ticular choice of base points. If a pair of letters in w(D) correspond to the
same crossing, it is called a realized pair for D. The interval number (D)
of D is defined by I(D) = I(w(D)). In particular, if I(D) = 0, then D has
no crossing, and hence, it is a diagram of the trivial knot (Lemma 2.3.2).

21



The main results of this chapter are Theorems 2.1.1 and 2.1.2.

Theorem 2.1.1. For a PN sequence w, the following are equivalent.
(1) There exists an oriented diagram D of the trivial knot such that
w(D) = w.
(2) There exists a diagram D of some oriented knot such that w(D) = w.
(3) A(w) =0.

(4) There is a finite sequence of contractions from w to ().

Theorem 2.1.2. Let D be an oriented knot diagram. If I(D) = 2, then D
is a diagram of the trivial knot.

For an oriented knot K in the 3-sphere, we define the interval number
of K by

I(K) := min{I(D) | D is an oriented diagram of K}.
By Theorem 2.1.2, we obtain the following immediately.
Corollary 2.1.3. If K is a non-trivial knot, then I(K) > 4 holds.

For instance, let D be a diagram of the figure-eight knot 4; with four
crossings. Since w(D) = P2N?P?N? holds, we have I(4;) = 4 by Corollary
2.1.3. We do not know whether there exists an oriented knot K with I(K) =
6.

In Section 2.2, we prepare two lemmas on contractions (Lemmas 2.2.1
and 2.2.2) and prove Theorem 2.1.1. In Section 2.3, we characterize a PN
sequence w(D) with I(w(D)) = 2 (Lemma 2.3.3) and prove Theorem 2.1.2.

2.2 Proof of Theorem 2.1.1

To prove Theorem 2.1.1, we prepare the following lemmas.

Lemma 2.2.1. Let w and w' be PN sequences. Suppose that w' is obtained
from w by a contraction. Then we have the following.
(i) A(w') = A(w).
(ii) If there exists an oriented diagram D' of a knot K with w(D") = v/,
then there exists another oriented diagram D of K with w(D) = w.

Proof. (i) This follows by definition immediately.

(ii) Following the similar lines as [1], we perform a Reidemeister move
I as shown in Fig. 2.2 for the arc of D’ corresponding to the contraction
of PP or NN so that we obtain a diagram D of the same knot K with
w(D) = w. O
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Figure 2.2

Lemma 2.2.2. For any PN sequence w, there is a PN sequence w' which
satisfies the following.

(i) w' is obtained from w by a finite sequence of contradictions.

(ii) w’' = (PN)¥ with k = A(w).

Proof. For w = (), we have w’ = (). Assume that |w| > 0. If I(w) > 0, then
w contains PP or NN by definition so that we can perform a contraction for
w. By repeating this process, we obtain a finite sequence of PN sequences:

W = Wo, W1, W2, ..., Ws = wl7
with |wit1] = |wi| — 2 and I(w') = 0, where w;; is obtained from w; by a
contraction. Since w’ contains neither PP nor NN, we have w' = (PN)* for
some k > 0. Thercfore, it follows by Lemnma 2.2.1 (i) that Alw) = A(w') =
|k - 0] = k. O

We are ready to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. (1) = (2). This is trivial.

(2) = (3). Suppose that w = w(D) holds for a diagram D of some
oriented knot. Since the number of letters between any realized pair X;
and X; of w(D) = X1Xy---X,, is even, ¢ and j have opposite parities
(Lemma 2.3.4). Thus we have A(w) = 0 by definition.

(3) = (4). By Lemma 2.2.2, there is a PN sequence w’ = (PN)*
with & = A(w) such that w’ is obtained from w by a finite sequence of
contractions. Since A(w) = 0, we have w' = ().

(4) = (1). The empty sequence ) defines the diagram with no crossing
which presents the trivial knot. By Lemma 2.2.1(ii), w is realized by some
oriented diagram of the trivial knot. O

23



2.3 Proof of Theorem 2.1.2

Lemma 2.3.1. For any PN sequence w, the interval number I(w) is even.

Proof. Let mq and mgy be the numbers of the subsequences PN and NP in
w, respectively. Then it holds by definition that I(w) = |w| — (m1 + my).
Since w is cyclic, we have my = mg. Since |w| is even, so is I(w). O

Lemma 2.3.2. Let D be an oriented knot diagram. If I(D) = 0, then D is
a diagram of the trivial knot.

Proof. By the definition of I(D), we have w(D) = (PN)* for some k > 0.
Since k = A(w(D)) = 0 by Theorem 2.1.1, we have k = 0 and w(D) = () so
that D has no crossing. O

Lemma 2.3.3. Let D be an oriented knot diagram. If I(D) = 2, then w(D)
is coincident with one of the following.

(i) (PN)™P2(NP)™ (m >0).

(i) (NP)™N2(PN)™ (m > 0).

(iii) (PN)™(NP)™ (m > 1).
Proof. Since w(D) has two subsequences PP and/or NN, it is coincident

with P2, N2, or one of the following for some m, ¢ > 1 with m = £ (mod 2).
(i) PPNPN---PNP2NPN --- PN.

2m—1 20—1
(i) N2PNP-.-NPN2PNP---NP.
2m—1 20—1
(iii) P2NPN---NPN2PNP---PN.
2m—2 20—2
iv) PPNPN ---PN.
(iv)
[ ——
Am -1
(v) N¥PNP-.-NP.
—_—
4m—1

We remark that the number of P’s and N’s are even, respectively. Since we
have A(w(D)) = |m — ¢| for (i)—(iii) and 2m for (iv) and (v), it follows by
Theorem 2.1.1 that m = ¢ holds for (i)—(iii) and that the cases (iv) and (v)
do not happen. O

Let ¢(D) be the number of crossings of D. Then we have ¢(D) = 2m+1
for (i) and (ii), and 2m for (iii). The following is a well-known fact.

Lemma 2.3.4. Let w(D) = X1 Xo--- X, be the PN sequence of an oriented
knot diagram D, where X1, Xo, ..., X, € {P,N}. If X; and X; are a realized
pair for D, then i and j have opposite parities.
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We are ready to prove Theorem 2.1.2.

Proof of Theorem 2.1.2. We prove the theorem by induction on ¢(D). We
remark that any diagram D with ¢(D) < 2 presents the trivial knot.
Assume that ¢(D) > 2. We divide the PN sequence w(D) in Lemma
2.3.3 into halves as follows.
(i) (PNP---NP)(PNP---NP).

2m—+1 2m—+1
(ii) (NPN --- PN)(NPN --- PN).
2m—+1 2m—+1

(ifi) (PN --- PN)(NP--- NP).

2m 2m
By Lemma 2.3.4, there is no realized pair in any half subsequence.

Now we divide the diagram D into two arcs A1 and A which provide the
first and latter half subsequences of w(D), respectively. Then each A; has
no self-crossing (i = 1,2). We may assume that D is located in a 2-sphere,
which can be divided into two disks Fq and E95 such that D N E; consists of
A and short arcs transverse to A;. See the left of Fig. 2.3. Let p and ¢ be
the endpoints of Aj.

NV

DﬂEl DmEZ

Figure 2.3

Since D N Fy consists of disjoint union of embedded arcs as in the right
of the figure, there is an innermost arc of D N Ey, say «, such that one of
the disk components of Fy \ a misses any arcs of D N Es.

If one of the endpoints of « is p or ¢, then we can perform a Reidemeister
move I containing « to remove a crossing from A;. The obtained diagram
D’ of K satisfies ¢(D’) = ¢(D) — 1 and I(D') = 2. If the endpoints of « are
neither p nor ¢, then we can perform a Reidemeister move II containing o
to cancel a pair of crossings with opposite signs form A;. See Fig. 2.4. The
obtained diagram D" of K also satisfies ¢(D”) = ¢(D) — 2 and I(D") = 2.
In any case, D presents the trivial knot by the assumption. O
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Figure 2.4
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