

Waseda University Doctoral Dissertation

Fast Algorithm and VLSI Architecture of

HEVC Mode Decision and Reconstruction

Loop Based on Data Reuse and Reordering

Heming SUN

Graduate School of Information, Production and Systems

Waseda University

February 2017

Abstract

I

Abstract

With the development of the information society, multimedia contents are widely used.

Video data occupies the majority of multimedia data and it will dramatically grow

when high definition (HD) and ultra-HD video applications are popularized in the

near future. In order to relieve the burden of video storage and transmission, video

compression technique has been widely used. By encoding, large raw video data is

compressed to small binary data. By decoding, the compressed data is decompressed

for display. High efficiency video coding (HEVC) is the latest video compression

standard which doubles the compression ratio as its predecessor H.264/AVC. Howev-

er, to reach such high compression ability, many new coding features are adopted. As

a result, the encoding/decoding complexity becomes 5.2x/2.1x higher than H.264. So

low-complexity algorithms and architectures for HEVC are extremely desired.

Mode decision and reconstruction loop are two indispensable components in the

video coding. Mode decision is used to select the best mode which has the smallest

rate-distortion (R-D) cost. After choosing the best mode, the reconstruction loop is

conducted to generate the reconstructed pixels for the mode decision afterwards. In

the mode decision, the residual of the original and predicted picture passes through

forward transform and quantization to reduce the data volume. Rate represents the

requiring bits for coding quantized transformed residual and the best mode infor-

mation. After that, de-quantization and inverse transform are conducted to recover the

residual and generate the reconstructed picture. Since quantization is lossy, the recon-

structed picture is different from the original picture and distortion is used to reflect

the degree of difference.

In HEVC, mode decision and reconstruction loop become much more complex

and important due to two reasons. The first reason comes from the adoption of large

transform in HEVC. The largest transform size in HEVC is 32×32 which is 16x larger

than H.264, which will lead to huge hardware consumption. In the state-of-the-art

HEVC intra encoder [Pastuszak, TCSVT 2015], transform consumes about 53% of

Abstract

II

the overall gate counts. Therefore, the area-efficient designs for transform are highly

required. Moreover, due to the large transform size, many high-frequency quantized

transformed coefficients will be zero. The processing for the zero elements can be op-

timized. The second reason is that there are many more modes in HEVC than H.264.

For intra prediction, 5 prediction units (PU) and 35 prediction modes are supported.

Overall, 175 modes are provided in HEVC. However, there are only 2 PUs and 9 pre-

diction modes for intra prediction in H.264. The complexity of calculating the R-D

costs for all the modes is high. Therefore, reducing the number of modes is extremely

necessary. In this thesis, low-complexity algorithms and architectures for three re-

search topics of the mode decision and reconstruction loop are proposed. Because the

simple parallelization will still suffer from high hardware cost such as large area and

power consumption, the acceleration based on data reuse and reordering is studied.

The thesis is composed of five chapters.

In Chapter 1, the video encoding diagram is described at first. And then, the posi-

tion of mode decision and reconstruction loop in the video coding and their relation-

ship are presented. Finally, the motivations of choosing three research topics are giv-

en.

In Chapter 2, an area-efficient architecture for transform is presented. A complete

transform is composed of row and column transform which require the logical com-

putational part. In addition, a transpose buffer is required to store the results of row

transform. For the logical computational part, Chen’s algorithm is adopted so that the

symmetric property of the transform matrix can be utilized to reduce the number of

multiplications and additions. In addition, a reordered parallel-in serial-out (RPISO)

scheme is proposed so that the inputs of the butterfly structure could be reused in each

clock cycle. As a result, 25% normalized gate counts are saved compared with [Shen,

IEICE 2013]. For the transpose buffer part, static random-access memory (SRAM)

instead of register is adopted in order to reduce the area consumption. The storing po-

sitions in the SRAM are reordered so that it can achieve 100% I/O utilization of

SRAM. In addition, two data mapping methods are proposed so that write and read

Abstract

III

operation can be operated in parallel. As a result, about 62% area consumption can be

reduced compared with the SRAM-based transpose buffer in [Zhu, ISCAS 2013].

In Chapter 3, a low-cost system design of the de-quantization and inverse trans-

form is presented. The system can be used to generate the reconstructed pixels in both

encoder and decoder. For the de-quantization, the input coefficients are multiplied

with scaling parameters. In order to reduce the number of multiplications, the input

coefficients are decomposed to base part (baseLevel) and remaining part. The value of

base part is not greater than 3, thus the multiplication of baseLevel and scaling pa-

rameter can be replaced by look-up-tables (LUTs). For the remaining part, the number

of positions with non-zero value is usually not greater than four in one 4×4 block.

Therefore, only four multipliers are provided for processing one 4×4 block. In the

system, there are three memory operations: read operation of the buffer between

de-quantization and inverse transform, write and read operation of the transpose buff-

er of inverse transform. A specific path is created to detect zero elements by reusing

the pixel data. After the detection, the memory operations are skipped for the zero

elements. As a result, for the de-quantization, 77% normalized area consumption is

reduced compared with [Tikekar, ICIP 2014]. For the memory parts in the system,

29%-86% power consumption is saved compared with not skipping the memory op-

erations for the zero elements.

In Chapter 4, a prediction unit (PU) depth and prediction mode selection algo-

rithm for intra prediction is proposed. At first, a fast preprocessing stage based on a

proposed cost model is presented. After estimating the costs for 8×8 PU, the results

are reused to predict the costs for larger PUs. Based on the estimated costs of all the

PUs, 2 neighboring PU depths out of 5 are selected to do the R-D cost calculation.

Still based on the preprocessing results, a prediction mode selection scheme elimi-

nates the necessity to perform fine Hadamard cost calculation in the original HM. A

32×32 PU compensation scheme is also exploited to alleviate the mismatch problem

between proposed simplified cost and R-D cost due to the lack of large transform size

in proposed cost model. The compensation scheme is able to effectively improve

Abstract

IV

coding performance for high-resolution sequences. In comparison with HM (version

7.0), the proposed algorithm achieves about 52% encoding time reduction, with the

corresponding 1.87% BD-bitrate increment. Compared with [Xiong, ISPACS 2012],

the coding efficiency becomes worse by 0.62% in terms of BD-bitrate. However, the

encoding time reduction is increased by 14% on average and 23% in the best case.

Compared with [Zhang, VCIP 2012], the encoding time is increased by 5%. However,

the coding efficiency becomes better by 3.23% in terms of BD-bitrate.

In Chapter 5, the conclusion and future work are given. The methods in Chapter 2

and 3 are designed for mode decision and reconstruction loop and contribute to both

intra and inter prediction. The proposals in Chapter 4 intend to reduce the complexity

of mode decision for intra prediction. In the future, the other components will be de-

signed and the overall system pipeline schedule will be designed.

Acknowledge

V

Acknowledgement

I would like to thank my supervisor, Professor Shinji Kimura, for his guidance in

my research work. Professor Kimura talks with me about my research topic, which

broadens my views and helps me to improve my research. In addition, when I write

the piece of paper or dissertation, Professor Kimura reviews it very seriously and al-

ways gives many comments and suggestions in detail, from which I benefit a lot.

When I do the seminar, he asks many questions about my research and gives me sug-

gestions. Professor Kimura also leaves me sufficient freedom to do the research I am

interested. I enjoyed and appreciated all of it very much.

I would also like to thank Professor Satoshi Goto, who also gives a lot of guid-

ance on my research. He creates a good platform and provides good conditions for my

research work. I gain a lot from him about how to do the research as a doctor candi-

date. I would also like to thank Professor Takahiro Watanabe and Professor Takeshi

Yoshimura for their advice in improving my dissertation.

I would also like to thank Professor Takeshi Ikenaga for his comments to my dis-

sertation. The comments are really helpful for improving the quality of my disserta-

tion.

In addition, I am grateful to Dr. Dajiang Zhou, Dr. Jinjia Zhou, Mr. Jiayi Zhu, Mr.

Shuping Zhang, Miss. Li Guo, Mr. Shihao Wang, Mr. Jianbin Zhou, Miss. Landan Hu,

Miss. Zhengxue Cheng and other lab mates. They work together with me on video

coding. Only through the team work, I can achieve good research results.

Finally, I should thank the “Graduate Program for Embodiment Informatics” ini-

tiated by the Ministry of Education, Culture, Sports, Science and Technology, Japan,

for its support.

Contents

VI

Contents

Abstract .. I

Acknowledgement .. V

1. Introduction .. 1

1.1 Background ... 1

1.2 Mode Decision and Reconstruction Loop .. 3

1.2.1 Process of Mode Decision and Reconstruction Loop 3

1.2.2 Relationship between Mode Decision and Reconstruction Loop 8

1.3 Motivations of Choosing Three Research Topics 10

1.4 Dissertation Organization ... 14

2. An Area-Efficient Transform Architecture Design17

2.1 Introduction .. 18

2.1.1 Overview of HEVC Transform ... 18

2.1.2 Previous Works ... 22

2.1.3 Research Target ... 25

2.2 Proposed Architecture for Logical Computational Part 26

2.2.1 Proposed Reordered Parallel-in Serial-out (RPISO) Scheme 26

2.2.2 Unified 8/16/32-point IDCT Architecture Based on RPISO 28

2.3 Proposed Architecture for Transpose Buffer Part 32

2.3.1 Reordered Data Mapping Scheme for SRAM-based Transpose Buffer ... 33

2.3.2 Pipelining Schedule for Write and Read Operation 38

2.4 Experimental Results .. 40

2.4.1 Experimental Results of Logical Computational Part 41

2.4.2 Experimental Results of Transpose Buffer Part.. 44

2.5 Chapter Summary ... 45

Contents

VII

3. A Low-Cost System Design for De-quantization and

Inverse Transform ...46

3.1 Introduction .. 47

3.1.1 Overview of the System of De-quantization and Inverse Transform 47

3.1.2 Previous Works ... 50

3.1.3 Research Target ... 52

3.2 VLSI Architecture for De-quantization .. 52

3.2.1 Low-Delay Alignment Mapping Architecture .. 52

3.2.2 Four-multiplier-based Multiplication with Scaling Parameters................ 55

3.2.3 Pipeline Schedule for De-quantization ... 56

3.3 System Architecture of De-quantization and Inverse Transform 58

3.3.1 Reordered Data Mapping Scheme for QT Buffer 59

3.3.2 Multiple-Shape Inverse Transform Architecture 62

3.4 Zero Skipping Method for SRAM-based Buffer 64

3.4.1 4x1-Row-based Zero Skipping Method for QT Buffer 65

3.4.2 Row-based Zero Skipping Method for Transpose Buffer 66

3.4.3 An Example of Zero Skipping Method .. 67

3.5 Frame-Level Worst Case .. 68

3.5.1 Required Clock Frequency for One Frame ... 68

3.5.2 Frame-Level Worst Case at MinCR .. 71

3.6 Sequence-Level Worst Case ... 73

3.6.1 Artificial Worst-Case Analysis ... 73

3.6.2 Practical Worst-Case Analysis .. 75

3.7 Experimental results ... 76

3.7.1 Experimental Results of Area Consumption .. 76

3.7.2 Experimental Results of Power Consumption .. 78

3.8 Chapter Summary ... 80

4. Fast Prediction Unit Depth and Prediction Mode

Contents

VIII

Selection Algorithm for HEVC Intra Prediction82

4.1 Introduction .. 83

4.1.1 Overview of Mode Decision for Intra Prediction in HM 83

4.1.2 Previous Works ... 84

4.1.3 Research Target ... 87

4.2 Proposed Algorithm for PU Depth Selection ... 88

4.2.1 Proposed Low-Complexity Cost Model ... 88

4.2.2 Training Method for Obtaining Thresholds .. 90

4.2.3 Summary of Proposed PU Depth Selection Algorithm 92

4.3 Proposed Algorithm for Prediction Mode Selection 94

4.4 Proposed 32x32 PU Compensation Strategy .. 95

4.5 Experimental Results .. 97

4.5.1 Threshold Training Results ... 97

4.5.2 Coding Performance of Proposed Algorithm ... 99

4.5.3 Analysis for the Coding Performance .. 103

4.5.4 Stable Complexity of Proposal ... 107

4.6 Chapter Summary ... 108

5. Conclusion and Future Work ... 110

Bibliography .. 112

Publications ...122

Appendix ..124

Index of Figures

IX

Index of Figures

Figure 1-1 Video encoding diagram. .. 2

Figure 1-2 Eight PU partitions in HEVC [4]. ... 3

Figure 1-3 5 intra prediction units for HEVC. .. 4

Figure 1-4 35 intra prediction modes for HEVC. ... 4

Figure 1-5 An example of intra prediction. .. 5

Figure 1-6 An example for the mode decision result of a 64x64 block. 6

Figure 1-7 Mode decision process [5]. ... 7

Figure 1-8 Reconstruction loop process. .. 8

Figure 1-9 Mode decision and reconstruction loop. ... 9

Figure 1-10 Four neighboring PUs. .. 9

Figure 1-11 Hardware consumption distribution for each component [6]. 13

Figure 1-12 The relationship between the three chapters of proposals. 14

Figure 2-1 The position of chapter 2 in the mode decision and reconstruction

loop. ... 17

Figure 2-2 A two-dimensional transform. ... 18

Figure 2-3 Original overall architecture for 8-point 1D IDCT. Y represents

8-point samples before IDCT, X represents 8-point samples after IDCT. The

symbol “ο” means addition and “-” means subtraction. 21

Figure 2-4 Original architecture for EE and odd engines in the 8-point IDCT (a)

The EE engine is composed of two EE sample generators (b) The odd

engine is composed of four odd sample generators. 21

Figure 2-5 Data mapping method in [18] ... 24

Figure 2-6 Proposed architecture for EE8, EO8 and O8 engines by using the

RPISO scheme in the 8-point IDCT. .. 27

Figure 2-7 Proposed architecture for 8-point 1D IDCT. 28

Figure 2-8 Overall flowchart for 16-point 1D IDCT based on Chen’s algorithm.

Index of Figures

X

.. 29

Figure 2-9 Selection signal values for multiplexers and the reordered outputs in

each cycle for IDCT16 and IDCT32. ... 30

Figure 2-10 Proposed architecture for unified 8/16/32-point 1D IDCT. 31

Figure 2-11 Inputs of MCM in O32 and O16. .. 31

Figure 2-12 Data mapping scheme for the SRAM without reordering. 34

Figure 2-13 Proposed data mapping scheme for the SRAM (mode 0). 35

Figure 2-14 Proposed data mapping scheme for the SRAM (mode 1). 35

Figure 2-15 Data mapping example for TU8x8. ... 37

Figure 2-16 Overall 2D IDCT architecture. .. 38

Figure 2-17 Proposed pipelining schedule for the read (IT2) and write (IT1). 39

Figure 3-1 The position of chapter 3 in the mode decision and reconstruction

loop. ... 46

Figure 3-2 System of de-quantization and inverse transform. 47

Figure 3-3 An example of the input and output for the pseudo coded shown in

Table 3-1. ... 49

Figure 3-4 An example for the unaligned coeff_abs_level_remaining. 50

Figure 3-5 Many zero elements in the system. ... 50

Figure 3-6 The exchange buffer method around DCT/IDCT [36]. 51

Figure 3-7 IDCT pruning when transform block is scanned horizontally.

Colored regions are non-zero regions. ... 51

Figure 3-8 The architecture to generate R[n] which indicates whether each

coefficient requires coeff_abs_level_remaining or not. 53

Figure 3-9 The architecture to generate AC[n] which indicates the result of

coeff_abs_level_remaining after the alignment. .. 54

Figure 3-10 The architecture of two stages for DQ. ... 56

Figure 3-11 An example for the usage of the OR gate in Figure 3-10. 57

Figure 3-12 Architecture for the whole system. ... 58

Figure 3-13 Data mapping example for TU8x8 for the QT buffer without

Index of Figures

XI

reordering. .. 59

Figure 3-14 Reordered data mapping example for TU8x8 for the QT buffer. .. 61

Figure 3-15 Architecture for 16-pixel-parallelism multiple-shape transform. . 63

Figure 3-16 Proposed system with zero skipping method. 64

Figure 3-17 An example of the timing diagram for skipping the read operation.

.. 65

Figure 3-18 An example for zero skipping method of 8x8. 67

Figure 3-19 A pipeline example without a pipeline stall. 71

Figure 3-20 A pipeline example without a pipeline stall. 71

Figure 3-21 A pipeline example with a pipeline stall. 71

Figure 3-22 Normalized distribution estimation for the required frequency in

case of MinCR. .. 73

Figure 3-23 An artificial worst-case for decoding 120 frames of 8K. 74

Figure 3-24 The compression ratios of the first I-frames for the bit streams with

maximum bitrate. ... 76

Figure 4-1 The position of Chapter 4 in the mode decision. 82

Figure 4-2 Theoretical method to get the best thresholds. 91

Figure 4-3 NP curve for sequence BQMall (QP=32,2N=16,”intra main”). ... 91

Figure 4-4 Prediction Depth selection algorithm. ... 93

Figure 4-5 Mode selection algorithm. ... 95

Figure 4-6 Four 32x32 blocks in one CTB. .. 95

Figure 4-7 32x32 PU compensation strategy for b0 and b3. 96

Figure 4-8 32x32 PU compensation strategy for b1 and b2. 96

Figure 4-9 The 1
st
 frame of Traffic. .. 104

Figure 4-10 The 1
st
 frame of Cactus. .. 104

Figure 4-11 The 1
st
 frame of BasketballDrive. ... 105

Figure 4-12 The 1
st
 frame of Johnny. .. 105

Figure 4-13 The CU partition results of Johnny. .. 107

Figure 4-14 The CU partition results of BQTerrace. 107

Index of Figures

XII

Index of Tables

XIII

Index of Tables

Table 1-1 Differences between H.264 and HEVC .. 10

Table 1-2 Hardware consumption of H.265/HEVC intra encoder [6]. 11

Table 1-3 Hardware consumption comparison of HEVC motion estimation

with full RDO .. 14

Table 2-1 Data mapping method for the transpose memory. 37

Table 2-2 Comparison with other HEVC 2D IDCT architectures. 42

Table 2-3 Comparison of the hardware cost for each transform block. 43

Table 2-4 Comparison with other SRAM-based transpose memory. 45

Table 3-1 Calculation of TransCoeffLevel. ... 48

Table 3-2 Data mapping method for the QT memory. 60

Table 3-3 Comparison of area consumption for DQ. .. 77

Table 3-4 Gate counts for the other logical components. 77

Table 3-5 Comparison of area consumption for all the logical parts in the

system. ... 78

Table 3-6 Power consumption of memory part for Cactus under the

“Random-access” and QP 27. .. 79

Table 3-7 Power consumption of memory part for PeopleOnStreet under the

“Random-access” and QP 32. .. 79

Table 3-8 Power consumption of memory part for Cactus of the first frame

with compression ratio 6. ... 79

Table 3-9 Power consumption of memory part for PeopleOnStreet of the first

frame with compression ratio 6. ... 79

Table 3-10 Power consumption for the components. .. 80

Table 3-11 Power consumption comparison with previous work. 80

Table 4-1 Number of intra modes and candidate modes supported for various

PUs. .. 83

Index of Tables

XIV

Table 4-2 Training and testing sequences. .. 98

Table 4-3 T(QP,32) finally adopted with various QPs. 98

Table 4-4 T(QP,16) finally adopted with various QPs. 98

Table 4-5 Performance comparison by all the proposed algorithms. 99

Table 4-6 The effect of the mode selection. .. 100

Table 4-7 Performance comparison with the fixed two and three PU depths. 101

Table 4-8 Performance comparison with previous work. 102

Table 4-9 Performance comparison with [59]. ... 103

Table 4-10 The effect of 32x32 PU compensation strategy to high resolution

sequences. .. 103

Table 4-11 Time reduction of different QPs. .. 108

Table 4-12 Time reduction of different Classes. ... 108

Introduction

1

1. Introduction

1.1 Background

With the development of the information society, multimedia contents are widely used.

Video data occupies the majority of multimedia data and it is forecasted to dramati-

cally grow with high definition (HD) and ultra-high definition (UHD) video applica-

tions being popularized in the near future. According to the report in [1], it is fore-

casted that video traffic will consume about 82% of the internet traffic by 2020. In

order to relieve the burden of storage and transmission for the video, the video com-

pression techniques are widely used. In the past 20 years, there have been many video

compression standards such as MPEG-2 and H.264. The development trend of stand-

ards is to achieve the higher compression ratio to meet the increase of raw video data.

Recently, 8K (7680x4320) UHD has come out to further improve the visual effect.

However, the storage and transmission of 8K UHD videos become a critical problem

because of 16x more pixels compared with the 1080p (1920x1080) HD. In addition,

the frame rate for 8K UHD can be as fast as 120 frame per second (fps) which is 4x

faster than the popular 30 fps. Therefore, a new video compression standard with a

higher compression ratio is required. So High Efficiency Video Coding (HEVC) [2]

comes out. HEVC can achieve 50% bit rate reduction compared with the previous

standard H.264. However, in order to achieve such high compression ratio, many new

coding features are adopted thus the complexity of HEVC also becomes much higher.

Compared with H.264, 5.2x/2.1x higher complexities are consumed for HEVC en-

coding/decoding as reported in [3].

A typical encoding diagram is shown in Figure 1-1. The input of the encoding is

original video data and the output is the compressed bit stream. There are two kinds of

prediction. Intra prediction aims to reduce the spatial redundancy within one frame,

while inter prediction aims to reduce the temporal redundancy between different

Introduction

2

frames. There are many supported encoding modes for inter and intra prediction. So

the mode decision process is required to select the best encoding mode. After the

mode decision, the best mode information is transferred to context-adaptive binary

arithmetic coding (CABAC) for the entropy coding. The difference between the orig-

inal and predicted pixels is calculated and called residual. For the residual pixels,

forward transform (T) is processed to transfer the residual from spatial domain to fre-

quency domain. After that, quantization (Q) can further reduce the volume of the

transformed data. The quantized transformed residual is transferred to CABAC for the

entropy coding. In order to regenerate the residual pixel, de-quantization (DQ) and

inverse transform (IT) are conducted. The summation of regenerated residual and the

predicted pixel is reconstructed pixel. Because of the loss of quantization, the recon-

structed pixels are not exactly equal to the original pixels, which will lead to perfor-

mance loss. Finally, the reconstructed pixels with loop filtering are used for the next

mode decision.

-Original
pixels

residual

Mode
decision

(Prediction)

T
Entropy
coding

Predicted
pixels

Reconstruc
ted pixels

Bit
stream

Loop
filter

+

Q

ITDQ

Reconstruction loop

Residual picture
= original-
predicted

Reconstructed
picture =

residual’+predicted

0110...

T: transform
Q: quantization

DQ: de-quantization
IT: inverse transform

Original
picture

predicted
picture

Figure 1-1 Video encoding diagram.

Introduction

3

1.2 Mode Decision and Reconstruction Loop

The encoding diagram has been shown in Figure 1-1. We can see that mode decision

and reconstruction loop are two indispensable components in the video coding. The

process of mode decision and reconstruction loop and their relationship are given in

this chapter.

1.2.1 Process of Mode Decision and Reconstruction Loop

The process of mode decision and reconstruction loop are introduced in this chapter.

At first, three kinds of units in HEVC are introduced. The first unit is the coding unit

(CU) which is corresponding to the macroblock in H.264. CU is the basic unit for

coding. The CU size can be from 64x64 to 8x8. The second kind of unit is the predic-

tion unit (PU) which is used for prediction. PU is partitioned from CU and there are

eight kinds of PU partitions as shown in Figure 1-2. The third kind of unit is the

transform unit (TU). The TU size can be from 32x32 to 4x4. The root of TU is the CU

and a CU can be recursively split into TUs.

2Nx2N

NxN NxN

NxN NxN

2NxN

2NxN

N
x

2
N

N
x

2
N

2NxN/2

2Nx3N/2

2NxN/2

2Nx3N/2

N
/2

x
2

N

3
N

/2
x

2
N

3
N

/2
x

2
N

N
/2

x
2

N

2Nx2N NxN 2NxN Nx2N

2NxnU 2NxnD nLx2N nRx2N

Figure 1-2 Eight PU partitions in HEVC [4].

For intra prediction, PU partition can be 2Nx2N and NxN. NxN is only adopted

Introduction

4

for the smallest CU. Therefore, the PU can be from 64x64 to 4x4 in default as shown

in Figure 1-3. For each PU, there are 35 prediction modes as shown in Figure 1-4.

Mode 2 to 34 are 33 directional modes. Mode 0 (Intra_Planar) and mode 1 (Intra_DC)

are two non-directional modes. Mode 35 (Intra_FromLuma) is the chroma mode

which is to derive from the best luma mode.

64

32

16

8

4

2N

N

Figure 1-3 5 intra prediction units for HEVC.

1
7

 1
6

 1
5

 1
4

 1
3

 1
2

 1
1

 1
0

 9
 8

 7
 6

 5
 4

 3
 2

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

 0 : Intra_Planar

 1 : Intra_DC

 35: Intra_FromLuma

Figure 1-4 35 intra prediction modes for HEVC.

Introduction

5

For inter prediction, if the CU is not the smallest, NxN is not supported. Other-

wise, all the eight PU partitions can be supported. For each PU partition, the best mo-

tion vector is decided through the motion estimation stage. In addition, HEVC also

supports the merge mode which derives the motion vector information from spatially

or temporally neighboring blocks so that the motion estimation is not required for

merge mode.

In order to explain clearly how to do the prediction, an example of intra predic-

tion is shown in Figure 1-5. The prediction unit is 4x4 in this example. When using

the vertical directional mode (26 in Figure 1-4), the four reconstructed pixels above

the block are used to do the prediction. So the values of predicted pixels and the cor-

responding residual pixels are shown in the figure. When using the horizontal direc-

tional mode (10 in Figure 1-4), the four reconstructed pixels in the left side of the

block are used for the prediction. In this case, the residual pixels are different from the

results of the vertical directional mode.

Reconstructed pixels

Processed block

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

40 41 42 39

40 41 42 39

40 41 42 39

40 41 42 39

40 41 42 39

-
1 0 -1 2

1 0 -1 2

1 0 -1 2

1 0 -1 2

=

Residual pixelsOriginal pixels Predicted pixels

vertical
direction

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

35

36

37

38

35 35 35 35

36 36 36 36

37 37 37 37

38 38 38 38

-
6 6 6 6

5 5 5 5

4 4 4 4

3 3 3 3

=

horizontal
direction

Figure 1-5 An example of intra prediction.

For each CU, the residual pixels can be generated by the prediction. After that,

the residual should be coded based on different TU combination. All the TU combina-

tion will be traversed to find the best one. Therefore, for each CU 2Nx2N, we go

through all supported combinations of PU, prediction mode and TU to select the best

Introduction

6

mode. After selecting the best mode for each CU 2Nx2N, the cost of CU 2Nx2N and

the summation of the costs of four CU NxN are compared to decide whether CU

2Nx2N is split or not. By doing so recursively from bottom to up, the best mode for

the largest CU 64x64 can be decided.

Figure 1-6 gives an example for the mode decision result for the luma part of a

64x64 block. The CU splitting is shown by the black line. The 64x64 block is split to

two 32x32 blocks, four 16x16 blocks and sixteen 8x8 blocks. In this example, for the

CU8x8, the PU partition NxN is not selected. For the right top and right bottom 32x32

PUs, the prediction modes are mode 1. The prediction modes for other PUs are also

shown as the number inside the block. The TU splitting is shown in red line. Two CU

16x16 is split to four 8x8 TUs. For the other CU, the best TU is the same as its attrib-

utive CU.

29

1

1

24

64

N

N-th
prediction

mode

24

24

28

28 23

2928

28 29

2727

28 28
28

028

28 28

TU splitting

Figure 1-6 An example for the mode decision result of a 64x64 block.

However, as shown in Figure 1-6, for different 64x64 blocks, the best modes are

different. The mode decision process is shown in Figure 1-7. There are two steps in

the mode decision. The first step is the prediction and the second step is the

Introduction

7

rate-distortion-optimization (RDO) process including the fast RDO and full RDO

process. For the first step, the prediction is conducted for all the supported PU depths

and modes. After that, fast RDO is also conducted for all the supported PU depths and

modes in order to select some candidate modes for full RDO since the complexity of

full RDO is very high.

Intra
prediction

Motion
Estimation

Fast
RDO T Q

DQ IT SSD

CABAC rate

Final
Mode

Decision

prediction RDO process

Full RDO Pass

Mode Decision

All
mode

best
mode

Figure 1-7 Mode decision process [5].

For fast RDO, some low-complexity costs such as sum of absolute difference

(SAD) cost and sum of absolute transformed difference (SATD) cost are used. For full

RDO, in order to ensure the coding performance, an optimal cost named after

rate-distortion (R-D) cost is used for the referee. The calculation function for R-D cost

is shown in the following equation.

JRDO = SSD+λ*R (1-1)

where SSD is the distortion given by the sum of the squared differences between the

original and reconstructed blocks. Transform, quantization, de-quantization and in-

verse transform are conducted to calculate the reconstructed pixels. R is the estimated

encoded bits including the information for header and residual. In order to reduce the

complexity, a look-up-table based CABAC rather than real CABAC is used to calcu-

late R. λ is a coefficient related to QP, which indicates the ratio in significance be-

tween the distortion and rate.

By comparing the R-D cost, the mode with the smallest cost is selected as the

best one. After that, the reconstruction loop process is used to generate the recon-

structed pixels for the best mode. The process is shown in Figure 1-8. Transform,

quantization, de-quantization and inverse transform are processed.

Introduction

8

The input of reconstruction loop is the residual of the best mode. The output of

reconstruction loop is added with the predicted pixels to generate the reconstructed

pixels. The equation is shown in the following equations where 𝑃𝑟𝑒𝑠𝑖 is the input of

reconstruction loop and 𝑃𝑟𝑒𝑠𝑖′ is the output of reconstruction loop. We can see that if

𝑃𝑟𝑒𝑠𝑖 is equal to 𝑃𝑟𝑒𝑠𝑖′, the reconstructed pixels are equal to the original pixels.

𝑃𝑟𝑒𝑠𝑖 = 𝑃𝑜𝑟𝑖𝑔 − 𝑃𝑝𝑟𝑒𝑑 (1-2)

𝑃𝑟𝑒𝑐𝑜 = 𝑃𝑟𝑒𝑠𝑖
′ + 𝑃𝑝𝑟𝑒𝑑 (1-3)

However, since the input of quantization and the output of de-quantization are

different, the reconstructed pixels are different from the original pixels and the degree

of difference becomes larger with larger quantization step.

T Q DQ IT

Reconstruction loop

-7 -4 2 5

-12 -9 3 8

-5 -2 -4 -5

0 2 -5 -8

-2 -2 0 0

1 -3 0 0

0 1 0 0

0 1 0 0

-7 -4 2 6

-10 -5 2 7

-3 -3 -3 -3

0 2 -5 -7

Residual

Bitstream
Entropy
coding

Residual’

Reconstruction
in encoder

Reconstruction
in decoder

Predicted
pixel

+
Reconstruct

ed pixel

-

Predicted
pixel

Original
pixel

Figure 1-8 Reconstruction loop process.

1.2.2 Relationship between Mode Decision and Reconstruction

Loop

In this chapter, the relationship between mode decision and reconstruction loop will

be described. At first, the functional relationship is shown in Figure 1-9. The best

mode is selected in mode decision and then the reconstruction loop is conducted to

Introduction

9

generate the reconstructed pixels for the best mode. After that, the reconstructed pix-

els are used for the mode decision of the next block. An example is shown in Figure

1-10, there are four neighboring PUs and the block A is processed at first. After find-

ing the best mode for A, the reconstructed pixels of block A can be calculated. The

four reconstructed pixels of the rightest column of block A are required for the mode

decision of block B. Similarly, the four reconstruction pixels of the bottom row of

block B are required for the mode decision of block C. The four reconstructed pixels

of the rightest column of block C are required for the mode decision of block D.

Intra
prediction

Motion
Estimation

Fast
RDO T Q

DQ IT SSD

CABAC rate

Final
Mode

Decision

prediction RDO process

Full RDO Pass

Mode Decision

T Q DQ IT

Reconstruction loop

The number of modes for each process
Prediction: all modes
Fast RDO: all modes
Full RDO: selected modes
Reconstruction loop: best mode

Figure 1-9 Mode decision and reconstruction loop.

A B

C D

Processing
order

Figure 1-10 Four neighboring PUs.

Secondly, mode decision and reconstruction loop can share the hardware con-

sumption in the real implementation. Because the full RDO process includes the re-

construction loop, these two parts can share the resource of T, Q, DQ and IT in the

real implementation. For example, in the latest HEVC encoders [3][6], the reconstruc-

tion loop and RDO process share the resource of T and Q.

Introduction

10

1.3 Motivations of Choosing Three Research Topics

The processes and relationship of mode decision and reconstruction loop have been

introduced in the last chapter. In this chapter, the motivations of choosing the research

topics are presented.

In HEVC, the complexity of mode decision and reconstruction loop has become

much higher than H.264 because many new features are adopted. The main differ-

ences between H.264 and HEVC are shown in Table 1-1. For the basic unit, the larg-

est in H.264 is only 16x16 while the largest can be up to 64x64 in HEVC. For the

prediction methods, 26 more intra directions (prediction modes) are supported in

HEVC. For the inter prediction, the merge mode and advanced motion vector predic-

tion (AMVP) are new features in HEVC. In addition, four asymmetric prediction unit

partitions are supported in HEVC. For the transform, the largest size increases from

8x8 in H.264 to 32x32 in HEVC. Sample adaptive offset is also a new in-loop filters

in HEVC. For the entropy coding, only CABAC is supported in HEVC while con-

text-adaptive variable-length coding (CAVLC) is also provided in H.264.

Table 1-1 Differences between H.264 and HEVC

Standard H.264 HEVC

Basic unit
Macro block (MB)

16x16 & 4x4

Coding Unit (CU)

From 8x8 to 64x64

Prediction

methods

Intra prediction: 9 directions

Inter prediction: Motion

vector prediction

Prediction unit partition:

Four kinds

Intra prediction: 35 directions

Inter prediction: Advanced motion vector

prediction & merge mode

Prediction unit partition: Eight kinds

Transform Integer DCT (8x8) Integer DCT (32x32)

In-loop filters Deblocking filter Deblocking filter & Sample adaptive offset

Entropy coding CABAC and CAVLC Improved CABAC

In Table 1-1, all the differences for basic unit, prediction methods and transform

Introduction

11

are related with the mode decision process. The difference in transform size is related

with reconstruction loop process. Because of the difference, the designs for mode de-

cision and reconstruction loop in H.264 cannot be adopted in HEVC directly. There-

fore, the low-complexity designs for HEVC mode decision and reconstruction loop

are highly desired. In this thesis, three research topics for mode decision and recon-

struction loop are selected. The reasons for choosing the three research topics are pre-

sented in the following.

Firstly, the reason for doing research on transform in Chapter 2 is given. [6] is the

state-of-the-art HEVC intra-encoder. The area consumption distribution is shown in

Table 1-2. Among all the components, forward transform and inverse transform take

the majority of the hardware consumption. Forward transform consumes 326.2K and

42.7K gate counts, and inverse transform consumes 174.9K and 36.2K gate counts.

Overall 580K gate counts are consumed on transform, which is about 53% of the

overall gate counts.

Table 1-2 Hardware consumption of H.265/HEVC intra encoder [6].

Module Main Loop (K gate) 4x4 Loop (K gate)

Intra predictor 105.2 22.1

Compensator & Orig. Pix. Buffer 7.1 2.0

Residual Buffer & Rank Lists 11.4 -

Forward Transform 326.2 42.7

Quantization 69.4 29.8

Dequantization 40.7 18.9

Inverse Transform 174.9 36.2

Reconstruction & Pred. Buffer 3.2 2.6

Rate Estimator 39.8 13.3

Dist. Estimator 11.1 4.5

Mode Decision & Coeff.Buffer 17.3 2.5

Total Loop 802.3 172.4

Main Controller 13.5

Entropy Coder 94.3

Total 1086.5

We can see that the computation of transform is very high in HEVC since the

Introduction

12

largest transform size is 32x32 which is much larger than 8x8 in H.264. For a com-

plete 32x32 transform, 65536 multiplications and 63488 additions are required with-

out any optimization. In H.264, the largest transform size is 8x8 thus only 1024 mul-

tiplications and 896 additions are required. Many more operations are required for

HEVC transform compared with H.264. Therefore, my first research topic is to design

an area-efficient transform architecture.

Secondly, the reason for designing the system for the de-quantization and inverse

transform in Chapter 3 is presented. After designing the architecture for transform, the

system design around transform is also required. As shown in Figure 1-9, the output

of quantization is the input of de-quantization. Because of large transform size, there

are many small high-frequency transformed coefficients which will be quantized to

zero. Therefore, there are many zero inputs for the de-quantization. The processing for

the zero elements can be optimized for area and power consumption. So there is much

sufficient optimization space for the system of de-quantization and inverse transform.

Moreover, the system design of de-quantization and inverse transform is important

because it is required to generate the reconstructed pixels for both encoder and decod-

er. Therefore, the second research topic is to design the system of de-quantization and

inverse transform.

Finally, the reason for reducing the number of PUs and prediction modes for intra

prediction in Chapter 4 is given. In H.264, SATD cost is usually used for mode deci-

sion because it spends lower cost than R-D cost and the performance loss by using

SATD cost is acceptable. However, in HEVC, replacing R-D cost by some fast cost

models will lead to 10-15% rate increase for intra-frame encoding and more than 40%

rate increase for inter-frame encoding as reported in [5]. As a result, we have to em-

ploy R-D cost for the mode decision in HEVC encoders such as [3], [5], [6] and [7].

The hardware consumption of [6] for each component is shown in Figure 1-11. In [6],

full RDO includes forward transform, quantization, rate estimator and distortion esti-

mator. Fast RDO is corresponding to the item of “Residual Buffer & Rank List”. For

Introduction

13

the reconstruction loop, since transform and quantization are already categorized in

full RDO, so only the de-quantization and inverse transform are categorized in the

reconstruction loop. The entropy coder is corresponding to CABAC.

Figure 1-11 Hardware consumption distribution for each component [6].

We can see that full RDO consumes the majority. The high complexity of full

RDO process comes from two reasons. The first reason is that transform is required

which leads to large area consumption which has been addressed in the above. It is

noted that transform consumes more hardware consumption than rate and distortion

estimation. In fact, many efficient methods for rate and distortion estimation such as

[9]-[11] have been developed. The second reason is that there are many modes re-

quiring full RDO process in HEVC. For the intra prediction, there are five PU depths

in HEVC as given in Figure 1-3. The largest PU is 64x64 and the smallest is 4x4. For

each PU, 35 prediction modes are supported as shown in Figure 1-4. As a result, 175

modes require the full RDO process, so the number of modes has to be reduced. Re-

ducing the number of modes requiring full RDO process is corresponding to fast RDO

in Figure 1-7.

It is noted that the reason for doing fast RDO for intra rather than inter is that the

full RDO process consumes the majority of area consumption for intra prediction.

However, in the inter-frame encoding, the motion estimation consumes a comparable

hardware resource compared with full RDO process as shown in Table 1-3. In [8], the

gate counts for the motion estimation are 778.7K. In [6], the gate counts for the full

11.7%
1.0%

51.2%

24.9%

8.7% 2.4%
intra prediction

fast RDO

full RDO

reconstruction loop

CABAC

Others

Introduction

14

RDO process are 556.6K. Therefore, motion estimation is more important than full

RDO process in inter-frame encoding. In fact, for the motion estimation, HEVC is

based on the results of SATD and SAD cost which is also used in H.264. Therefore,

many low-complexity H.264 designs can be friendly implemented for HEVC.

Table 1-3 Hardware consumption comparison of HEVC motion estimation with full RDO

Module Gate counts (K)
On-chip memory

(KB)

Motion estimation [8] 778.7 17.4 KB

Full RDO process [6] 556.6 -

Therefore, the research of fast RDO for intra prediction is developed. Different

from the Chapter 2 and 3, fast algorithms are required before the VLSI implementa-

tion in Chapter 4. The algorithms can be classified to software-oriented algorithms

and hardware-oriented algorithms. Since the final target is the hardware implementa-

tion, so the research target is the hardware-oriented algorithm.

1.4 Dissertation Organization

The rest of the thesis is organized as follows. The relationship between the chapters is

illustrated in Figure 1-12.

Fast
RDO

T Q
DQ IT SSD

CABAC rate

Final
Mode

Decision

All
modes

selected
modes

best
mode

T Q
D
Q

IT

Chapter 3Chapter 3

Chapter 2Chapter 2Chapter 2Chapter 2

Chapter 4

Full RDO Pass Reconstruction loop

Figure 1-12 The relationship between the three chapters of proposals.

Introduction

15

 Chapter 2 gives an area-efficient transform architecture. By using Chen’s algo-

rithm, the transform can be decomposed to even and odd part. The results of even and

odd parts can be shared by a butterfly structure. For the outputs in each clock cycle,

the requiring outputs are reordered so that the inputs of the butterfly structure can be

reused. The requiring outputs are reordered for 8/16/32-point IDCT. After presenting

the method for the individual 8/16/32-point IDCT, a unified 8/16/32-point IDCT ar-

chitecture is proposed. 2N-point IDCT reuse the results of N-point IDCT. As a result,

about 25% area consumption can be reduced for the logical computational part com-

pared with previous works. For the transpose buffer part, SRAM is used to store the

results of row transform. The storing address in SRAM is reordered so that the I/O

utilization of SRAM can achieve 100% for both writing and reading operation. Two

data mapping methods are developed so that writing and reading operation can be ex-

ecuted in parallel. Finally, an overall pipeline schedule is proposed to avoid the writ-

ing and reading address conflict problem. As a result, 62% area consumption can be

saved compared with other SRAM-based memory mapping methods. The designs in

Chapter 2 can be used in the mode decision and the reconstruction loop.

 Chapter 3 gives a low-cost architecture for the system of de-quantization and in-

verse transform. The input of the de-quantization is decomposed to base part

(baseLevel) and remaining part. For the baseLevel, the value is not greater than 3.

Therefore, the multiplication with the scaling parameter could be avoided. For the

remaining part, the number of positions with non-zero values is not greater than 4 in

many cases. Therefore, the number of multipliers in the de-quantization is reduced

from 16 to 4 and four multipliers are reused in the different clock cycles. To ensure

that the proposed design can meet the throughput of 8K@120fps, a complete analysis

for the throughput of the frame-level and sequence-level is given. In the overall sys-

tem, memories are used to transfer the pixel data. In addition, the pixel data is reused

to detect the zero elements. After the detection, for each zero 4x1-row, the read opera-

tion of the memory between de-quantization and inverse transform is disabled. For

Introduction

16

each zero row, the write operation of the transpose memory of the inverse transform is

disabled. For the zero elements in each column, the read operation of the transpose

memory of the inverse transform is disabled. As a result, overall, 68% normalized ar-

ea consumption can be saved for the logical part, and 56% normalized power con-

sumption can be saved for the overall system compared with the previous work. For

the de-quantization, the proposed architecture can save the area consumption by 77%

compared with previous works. For the zero skipping method of the memory part,

29%-86% power consumption can be saved compared with not skipping memory op-

erations for zero elements. Chapter 3 can be used for both mode decision and recon-

struction loop.

 In Chapter 4, a fast RDO for the intra prediction is given. Different from most of

the previous works, the proposal is based on the proposed low-complexity cost model

rather than the edge and gradient information. There are two schemes in the proposed

cost model. One is that original pixels rather than reconstructed pixels are utilized as

the neighboring pixels for doing the prediction. The other is that only the estimated

costs for 8x8 are calculated and the costs for larger PUs are estimated by reusing the

results of 8x8 PUs. Based on the proposed cost model, the costs of neighboring PUs

are compared and two PUs are selected. In order to improve the coding efficiency, the

32x32 PU compensation method is proposed thus some additional 32x32 PUs require

the R-D cost calculation. Still reusing the results of cost models, the Hadamard cost

calculation in the original HM can be completely removed. As a result, 52% encoding

time reduction can be achieved with about 1.87% BD-bitrate compared with original

HM. Compared with previous works, better coding efficiency or more encoding time

reduction can be achieved. This chapter works for the mode decision of intra predic-

tion.

 In Chapter 5, the overall conclusion and future work are presented.

An Area-Efficient Transform Architecture Design

17

2. An Area-Efficient Transform Architecture

Design

In this chapter
1
, an area-efficient transform architecture will be presented. The posi-

tion of this chapter in the mode decision and reconstruction loop is shown in Figure

2-1. In the mode decision, the forward transform and inverse transform are required in

the full RDO process. In addition, the transforms are also required in the reconstruc-

tion loop. There are two major concepts of the idea in this chapter. For the logical

computational part, not only the architecture of N-point transform is reused for

2N-point transform, but also the inputs of the butterfly structure are reused. For the

transpose buffer in transform, the writing positions in SRAM are reordered in order to

achieve 100% I/O utilization of SRAM. This chapter is related with the publication [2]

and [8] in Page 122.

Fast
RDO

T Q
DQ IT SSD

CABAC rate

Final
Mode

Decision

Full RDO Pass

All
modes

selected
modes

best
mode

T Q
D
Q

IT

Reconstruction loop

Figure 2-1 The position of chapter 2 in the mode decision and reconstruction loop.

1 This chapter is related with the publication [2] and [8] in Page 122.

An Area-Efficient Transform Architecture Design

18

2.1 Introduction

2.1.1 Overview of HEVC Transform

Since the development of H.264, the discrete cosine transform (DCT) has been widely

employed to perform the transform operation since it can provide energy compaction.

To reduce the computational complexity and solve the mismatch problem between

forward and inverse transforms, integer DCT has been adopted instead of floating

DCT. Forward transform is used to transfer the data from spatial domain to frequency

domain, and inverse transform is adopted to transfer the data from frequency domain

back to spatial domain.

 A complete transform in the video coding is two-dimensional as shown in Figure

2-2. Two 1-D transforms are row transform and column transform. Row transform is

processed row by row and the results are stored in the transpose buffer. After that, the

results in the transpose buffer will be fetched column by column to do the column

transform.

T
ra

n
s
p
o

s
e

b
u

ffe
r

...

...

Row transform
Column

transform

Figure 2-2 A two-dimensional transform.

 The largest DCT size provided in H.264 is 8x8, while larger DCTs including

16x16 and 32x32 are provided in HEVC since a larger transform size can contribute

to higher compression ratios. Because of larger transform size, there are two problems.

One is the large hardware cost for logical computational part. In order to get one re-

An Area-Efficient Transform Architecture Design

19

sult of 32x32 transform, it requires 32 multiplications and 31 additions. The second

problem is the large hardware cost for transpose buffer part. In order to store the re-

sults of row transform for 32x32, it requires more than 100K gate counts.

 In order to reduce the number of operations for the logical computational part,

HM use Chen’s algorithm [17]. The inverse transform is taken as an example and the

analysis for Chen’s algorithm is given in the below.

 A complete 2D IDCT can be decomposed to two 1D IDCTs, and the decomposi-

tion method is shown in the following equation.

2 2 2 2[] []*[]*[] (([]*[]) *[])T T T

N N N NX T Y T Y T T (2-1)

where T2N is a 2N × 2N transform matrix defined by HEVC, Y is the 2N × 2N matrix

before the IDCT, and X is the result after the 2D IDCT operation. The first 1D IDCT

(IT1) is called a row IDCT, and the second one (IT2) is called a column IDCT. For a

2N-point input [Y0,Y1,…Y2N-1], which is defined as Y2N, a 1D IDCT operation

[Y2N]*[T2N] requires (2N)
2
 multiplications and 2N*(2N-1) additions.

 In fact, the transform matrix T2N has the property of symmetry so that it can be

decomposed. For example, T8 is given by Eq. (2-2). We can see that the matrix has

both symmetric and anti-symmetric properties, as shown in Eq. (2-3).

8

64 64 64 64 64 64 64 64

89 75 50 18 18 50 75 89

83 36 36 83 83 36 36 83

75 18 -89 -50 50 89 18 -75
[]

64 -64 -64 64 64 -64 -64 64

50 -89 18 75 -75 -18 89 -50

36 -83 83 -36 -36 83 -83 36

18 -50 75 -89 89 -75 50 -18

T

 (2-2)

 8 8

8 8

(,) (,7) (0,2,4,6)

(,) (,7) (1,3,5,7)

T i j T i j i

T i j T i j i

 (2-3)

 The matrices for each transform size can be found in [2]. Using the symmetry, a

fast algorithm was developed to decompose the transform matrix [17]. Using Chen’s

algorithm, the decomposition method for the HEVC transform matrix is shown in the

following equation.

2 2 2

0
[] []*[]*[]

0

N

N N N

N

T
T P B

O
 (2-4)

An Area-Efficient Transform Architecture Design

20

where T2N is a 2N × 2N transform matrix, TN is an N × N transform matrix, ON is an

odd part matrix, P2N is a permutation matrix, and B2N is a 2N-point butterfly structure.

Detailed definitions for P2N, B2N, TN, and ON are given as follows.

2

2

2

2

1, 2* () * 2 1
(,)

0,

1, () (2 1)

(,) 1,

0,

(,) (2* ,)

(,) (2* 1, -1-j)

N

N

N N

N N

i j or i j N
P i j

otherwise

i j and i N or i j N

B i j i j and i N

otherwise

T i j T i j

O i j T i N

 (2-5)

 By using the decomposition, [Y2N]*[T2N] can be expressed as the following equa-

tion.

2 2 2 2 2

2

0
[]*[] []*[]*[]*[]

0

[]*[] 0
[]*[]

0 []*[]

N

N N N N N

N

Even

N N

NOdd

N N

T
Y T Y P B

O

Y T
B

Y O

 (2-6)

 0 2 2 2

1 3 2 1

[] [, ,...]

[] [, ,...]

Even

N N

Odd

N N

Y Y Y Y

Y Y Y Y

 (2-7)

where [YN
Even

]*[TN] and [YN
Odd

]*[ON] are defined as the results of the even and odd

parts, respectively. The implementation of [YN
Even

]*[TN] and [YN
Odd

]*[ON] cost N
2

multiplications and N*(N-1) additions, respectively, while B2N requires 2N additions.

Therefore, a total of 2*N
2
 multiplications and 2*N

2
 additions are required. Compared

with the original method before decomposition, the required number of computations

is significantly reduced. In fact, TN can be decomposed into the TN/2 and ON/2 in the

same way to further reduce the number of computations for the even part.

Figure 2-3 illustrates the corresponding overall architecture for a 1D 8-point in-

verse discrete cosine transform (IDCT) based on Chen’s algorithm. Yn represents the

8-point inputs and Xn represents the 8-point outputs of IDCT. As shown in Eq. (2-6),

the transform can be divided into even and odd parts. To generate 8-point results, four

results are required from the even and odd parts, respectively. The results from the

even part are En (n = 0, 1, 2, 3) and the four results from the odd part are On (n = 0, 1,

2, 3). Based on En and On, Xn can be obtained after an 8-point butterfly structure. The

relationship is shown in the following equation.

An Area-Efficient Transform Architecture Design

21

 7,n n n n n nX E O X E O (2-8)

Figure 2-3 Original overall architecture for 8-point 1D IDCT. Y represents 8-point samples be-

fore IDCT, X represents 8-point samples after IDCT. The symbol “ο” means addition and “-”

means subtraction.

Figure 2-4 Original architecture for EE and odd engines in the 8-point IDCT (a) The EE engine

is composed of two EE sample generators (b) The odd engine is composed of four odd sample

generators.

 The even part may be further divided into two parts, namely the EE (Even-Even)

part and the EO (Even-Odd) part. Each part is required to generate two results. A de-

tailed architecture for the EE engine is shown in Figure 2-4(a). The architecture for

the EO engine is similar to that of the EE engine. Based on EEn and EOn, En can be

calculated as follows.

-

-

P
erm

u
tatio

n

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y0

Y2

Y4

Y6

Y1

Y3

Y5

Y7

P
erm

u
tatio

n

Y0

Y4

Y2

Y6

EO
EE

-

O
d

d
 En

g

-

-
-

O0

O1

O2

E0

E1

E2

E3

O3

X0

X1

X2

X3

X4

X5

X6

X7

8-point
Butterfly

4-point
Butterfly

EE0

EE1

EO1

EO0

EE
 s

am
p

le

ge
n

e
ra

to
r

Y0

x

T[0,0]

EE0

(a)EE engine (b)Odd engine

O
d

d
 s

am
p

le
 g

e
n

e
ra

to
r

x

T[4,0]

Y4

EE
 s

am
p

le

ge
n

e
ra

to
r

T[0,1] T[4,1]

EE1

+

Y5

x

T[5,0]

x

+

Y1

x

T[1,0]

Odd0

x

+

+

Y3 Y7

T[3,0] T[7,0]

Odd1,2,3

Transform
coefficient

O
d

d
 s

am
p

le
 g

e
n

e
ra

to
r

O
d

d
 s

am
p

le
 g

e
n

e
ra

to
r

O
d

d
 s

am
p

le
 g

e
n

e
ra

to
r

An Area-Efficient Transform Architecture Design

22

 3,n n n n n nE EE EO X EE EO (2-9)

For the odd part, four results are generated, and details of the architecture for the odd

engine are shown in Figure 2-4(b).

2.1.2 Previous Works

The researches on the area-efficient architectures for transform have been conducted

from H.264. In [12], the authors proposed an architecture for a multi-standard inverse

transform; two circuit share strategies, a factor share, and adder share strategies were

applied to reduce the required circuit resource. A low-cost hardware sharing architec-

ture was proposed in [13] by adding the offset computations and pipelined design. In

[14], Wang et al. designed a reconfigurable architecture that provided the fusing

strategies that generate constant multipliers in the matrix calculation blocks. In addi-

tion, an adder-sharing strategy was adopted to save circuit area. A high-performance

inverse transform circuit was also developed in [15] based on the butterfly architec-

ture, and this work shares the resources efficiently by exploiting the similarities be-

tween transforms. In [16], extensive mathematical analysis and decomposition were

performed for the H.264 transform and quantization so that all multiplication and di-

vision operations were avoided effectively. The above low-cost architectures were all

designed for the 4/8-point IDCT in H.264, and they cannot be directly used in HEVC

due to the differences in the transform size. The large transform size in HEVC will

cause huge area consumptions from two perspectives. One is the logical computation-

al part of the transform; a larger transform leads to a greater number of multipliers and

adders causing the required amount of hardware resources to increase. The other

problem is the transpose memory required to store more intermediate results as the

transpose architecture consumes more area. In order to solve the above two problems,

several recently developed low-cost architectures have been reported for the HEVC

transform.

An Area-Efficient Transform Architecture Design

23

 Based on Chen’s algorithm, many literatures have been presented. Shen et al. [18]

utilize the Chen’s algorithm to reuse the small transform in the larger transform archi-

tecture, the author used the multiple constant multiplication (MCM) for 4/8-point

transform and share the regular multipliers for 16/32-point transform. In [19], the

multiplications of 16/32-point transform are implemented with input-muxed constant

multipliers. Still based on Chen’s algorithm, a fully pipelined transform architecture

was pro-posed for an HEVC codec in [20]. The authors in [21] proposed a

16/32-point architecture that had no multiplications in the design. The similarity

property of transform matrices was utilized in [22], so a calculation unit can be shared

for different transform mode. In [23], the authors presented a unified forward/inverse

transform architecture for HEVC; the unified architecture makes use of symmetrical

properties that exist in HEVC transform matrices to achieve hardware sharing. In [24],

the authors turned the multiplications by constant into shift and sum operations to

achieve a multiplierless HEVC transform architecture. In [25], the N-point 1D trans-

form was performed using an (N/2)-point 1D transform unit and a constant matrix

multiplication recursively. Meher et al. [26] developed two efficient DCT architec-

tures for HEVC, one is based on Chen’s algorithm and implemented without multipli-

ers. Moreover, the other one uses pruning scheme to truncate some transformed bits in

order to save the complexity. The pruned architecture cannot be used in the decoder

since the transformed bits are truncated. Do et al. [27] minimized the critical compu-

tation path of transform by replacing all the multiplications with additions and shifts.

All the previous works utilize Chen’s algorithm. However, when the pixel paral-

lelism is smaller than the transform size, the symmetric property in transform cannot

be utilized completely. For example, when the pixel parallelism is 4 and the transform

size is 8x8, two cycles are required to generate the eight results Xn (n = 0, 1, 2,…, 7).

{X0, X1, X2, X3} are generated in the first cycle, and {X4, X5, X6, X7} are generated in

the second cycle. In this way, according to Eq. (2-8), all the En and On results are re-

quired in the two clock cycles. To generate all of the En and On results in each cycle,

An Area-Efficient Transform Architecture Design

24

the architecture for the odd and EE engines is the same as shown in Figure 2-4. The

problem is that although En and On can be used to generate all the eight results of Xn,

only four of them are required in each clock cycle. Therefore, the calculation of all the

En and On in one clock cycle is not required.

The above literatures aim to reduce the computation of the logical computational

part. For a complete transform, a transpose buffer is required to store the results of

row transform. To reduce the area of the transpose memory, SRAM instead of register

is utilized in some previous works. Shen et al. [18] used 4 single-port 8 × 512-bit

SRAM. Zhu et al. [20] used 32 dual-port 32 × 16-bit SRAM. The total bits of SRAM

are 16384 bits in both designs. The data mapping method in [18] is shown in Figure

2-5, the width of one word is 512-bit. In the first clock cycle, four results of a0, b0, c0

and d0 are generated and they are stored in SRAM 0, 1, 2 and 3, respectively. After

that, all the an (n=0,1,…,31) in the first column are written in the SRAM 0. By doing

so, the results of first column can be feteched in one clock cycle.

Figure 2-5 Data mapping method in [18]

 The above works are focused on the low-cost implementation of accurate trans-

form, there are also many works focused on the approximate transform. By using the

approximate computing, the hardware cost can be saved with the performance loss.

Lee et al. [28] designed a low-complexity integer DCT for the rate and distortion es-

timation. The Hadamard transform was used to substitute for the discrete cosine

An Area-Efficient Transform Architecture Design

25

transform to reduce the complexity in Zhu et al. [29]. Potluri et al. [30] used only 14

additions for the 8-point approximate DCT. Jridi et al. [31] presented a generalized

recursive algorithm to get the orthogonal approximation of DCT where the larger

DCT can be obtained from the smaller DCT. Cintra et al. [32] proposed a transfor-

mation matrix with only zero-element and one-element thus there are no multiplica-

tions and shifts in the computation. Bouguezel et al. [33] introduced some zeros in the

8x8 matrix which can reduce the number of arithmetic operations by about 25%.

Kalali et al. [34] only calculated some low-frequency coefficients by the

pre-determined methods. Jridi et al. [35] conducted the approximation based on a new

4-point DCT kernel which can increase the coding efficiency.

2.1.3 Research Target

In the previous chapter, low-cost architectures for transform are introduced. For the

work on approximate computing, the coding efficiency loss is large. In [29], although

the BD-bitrate is only 1.27%, the simplified R-D cost model (Hadamard cost) is only

applied in the PU mode decision. When using SATD cost for all the mode decision

process, the performance loss will become much larger than 1.27%.

In fact, on the encoder side, the accurate transform without approximation is

adopted in some real implementations such as [3], [5] and [6]. It is because the per-

formance loss caused by approximate transform is very large. On the decoder side,

accurate transform is also required. Therefore, my research target is focused on re-

ducing the hardware consumption of the original transform in HEVC.

For the logical computational part, when the pixel parallelism is smaller than the

transform size, the outputs are reordered so that the inputs of butterfly structure can be

reused. For the transpose buffer part, although some SRAM-based designs have been

introduced in [18] and [20], the data width of SRAM is larger than the pixel parallel-

ism, so the I/O utilization of each SRAM cannot reach 100%. For the design in [18],

An Area-Efficient Transform Architecture Design

26

only 16-bit is used for writing in each clock cycle. Therefore, the I/O utilization of

each SRAM is only 3.125%. In [20], the pixel parallelism is different for various

transform sizes. When processing 32-point transform, the pixel parallelism is 32 thus

32 16-bit results are written in the SRAM. In this case, the I/O utilization can achieve

100%. However, when processing 4-point transform, the pixel parallelism is 4 thus

only four 16-bit results are written in the SRAM in one clock cycle. In this case, the

I/O utilization is only 12.5%. Therefore, my research target is to reorder the writing

positions of row transform results in SRAM so that it can achieve 100% I/O utiliza-

tion of SRAM.

2.2 Proposed Architecture for Logical Computational

Part

2.2.1 Proposed Reordered Parallel-in Serial-out (RPISO)

Scheme

In Eq. (2-8), we can see that by using an 8-point butterfly structure, Xn and X7-n are

generated by the same En and On. If Xn and X7-n can be generated within one cycle,

they can share En and On. Similarly, using a 4-point butterfly structure, En and E3-n are

calculated by the same EEn and EOn. Likewise, if En and E3-n can be generated within

one cycle, they can share EEn and EOn.

 In order to reduce the redundant inputs of butterfly and the required calculations

for butterfly inputs in each cycle, the outputs are reordered. After the reordering, in

the first cycle, {X0, X3, X4, X7} are generated. In the second cycle, {X1, X2, X5, X6}

are generated. To calculate X0,3,4,7 in the first cycle, O0,3 and E0,3 are required, while to

obtain E0,3, EE0 is required. In the second cycle, to calculate X1,2,5,6, O1,2 and E1,2 are

An Area-Efficient Transform Architecture Design

27

required, while to obtain E1,2, EE1 is required. Within a single cycle, only one result is

generated from the EE part and two results are generated from Odd part. It should be

noted that the EO engine is similar to the EE engine; within each cycle, only one re-

sult is generated from the EO engine.

Figure 2-6 Proposed architecture for EE8, EO8 and O8 engines by using the RPISO scheme in

the 8-point IDCT.

 Using the RPISO scheme, the architecture for the EE engine is shown in Figure

2-6. In the first cycle, EE0 is selected for the calculation, and the multiplexers select

T[0,0] and T[4,0]. In the second cycle, EE1 is required, thus the multiplexers select

T[0,1] and T[4,1]. Compared with the original EE engine in Figure 2-4(a), the number

of EE sample generators is reduced by one half with some extra multiplexers. The ar-

chitecture for the odd engine is shown in Figure 2-6. The multiplexers are used to se-

lect the transform coefficients. In the first cycle, the transform coefficients for O0,3 are

selected, while in the second cycle, the transform coefficients for O1,2 are selected.

Compared with the original architecture shown in Figure 2-4(b), one half of the mul-

tipliers and adders can be reduced for the odd engine. The proposed architecture for

an 8-point 1D IDCT is shown in Figure 2-7(A) where Yn represents 8-point inputs, the

O8

Y1

x

adder

T[1,0] T[1,1]

0 1

Y3

x

0 1

T[3,0] T[3,1]

Y5

x

T[5,0] T[5,1]

0 1

Y7

x

0 1

T[7,0] T[7,1]

O8

Y1

x

adder

T[1,2] T[1,3]

0 1

Y3

x

0 1

T[3,2] T[3,3]

Y5

x

T[5,2] T[5,3]

0 1

Y7

x

0 1

T[7,2] T[7,3]

EE8

Y0

x

adder

T[0,0] T[0,1]

0 1

Y4

x

0 1

T[4,0] T[4,1]

Y2

x

T[2,0] T[2,1]

0 1

Y6

x

0 1

T[6,0] T[6,1]

adder

EO8

0 1cycle

sel_o8 0 1

sel_e8 0 1

EE0
EO0
O0
O3

EE1
EO1
O1
O2

Results of
EE8, EO8
and O8

sel_e8

sel_o8

An Area-Efficient Transform Architecture Design

28

circuits for EE8, EO8 and O8 are shown in Figure 2-6. The values of sel_e8 and

sel_o8 and the reordered outputs in each cycle are shown in Figure 2-7(B).

 It has to be noted that the pixel parallelism is not necessary to be 4. When the

parallelism is 8 or 16, the RPISO scheme can still reduce the redundant inputs of but-

terfly and the required calculations for butterfly inputs in each cycle.

Figure 2-7 Proposed architecture for 8-point 1D IDCT.

2.2.2 Unified 8/16/32-point IDCT Architecture Based on

RPISO

A 16-point 1D IDCT is similar with 8-point IDCT. The overall flowchart is shown in

Figure 2-8. It is composed of permutation part, even part, odd part and butterfly

structure. By using a 16-point butterfly structure, Xn and X15-n are calculated by the

same En and On as shown in the following equation.

 15,n n n n n nX E O X E O (2-10)

Input Permutation

O8EE8 O8

4-point butterfly

sel_e8 Y0, Y1, Y2,Y3,Y4,Y5,Y6,Y7

Reordered outputs

IDCT8

EO8

sel_o8
-

0 1cycle

sel_o8 0 1

sel_e8 0 1

Reordered
outputs

X0
X3
X4
X7

X1
X2
X5
X6

Selection signal values
for multiplexers in

each cycle for IDCT8
(A) (B)

An Area-Efficient Transform Architecture Design

29

Figure 2-8 Overall flowchart for 16-point 1D IDCT based on Chen’s algorithm.

 By using the proposed RPISO scheme, Xn and X15-n can share {En,On} in the

same cycle. To generate four outputs in one cycle, two even results and two odd re-

sults are calculated in one cycle. The reordered outputs in each cycle are stated in

Figure 2-9(A). Four cycles are required to generate 16-point results.

 For the even part of 16-point IDCT, En is equal to the result of 8-point IDCT ac-

cording to [17]. So the architecture in Figure 2-7(A) can be reused as the even engine

for 16-point IDCT. Within each cycle, four results are generated from 8-point IDCT. A

multiplexer is required to select two as the results for even part. The selection signal is

sel_e16. The selection signal sel_o8 and sel_e8 can select four results generated by

8-point IDCT. The values for the selection signals in each cycle are given in Figure

2-9(A). For example, in the first cycle, sel_o8 and sel_e8 are 0, {E0,E3,E4,E7} are

generated by 8-point IDCT, sel_e16 is 0 so that {E0,E7} are selected as two even re-

sults for 16-point IDCT.

-

P
erm

u
tatio

n

Y0

Y1

Y14

Y15

Y0
Y2

Y12
Y14

Y1
Y3

Y13
Y15

Odd
Engine

-

-

-O0

O1

O6

E0

O7

X0
X1

X6
X7

X8
X9

X14
X15

8-point
IDCT

16-point
Butterfly

…
…

…
…

E1

E6
E7

…
…

…
…

…
…

An Area-Efficient Transform Architecture Design

30

Figure 2-9 Selection signal values for multiplexers and the reordered outputs in each cycle for

IDCT16 and IDCT32.

 For the odd part of 16-point IDCT, On is generated by multiplication and addition.

An odd engine for 16-point IDCT (O16) can generate one On result. As shown in Fig-

ure 2-10, O16 is composed of 8 multiple constant multiplications (MCM) and 7 ad-

ders. For each MCM in O16, one input is the odd-index input Yn, and the other is

constant coefficient. The constants are selected by a Look Up Table (LUT16) and the

selection signal is sel_o16. For example, in the first cycle, sel_o16 is 0, the corre-

sponding constants for O0 and O7 are selected so that {O0,O7} are generated as the

odd results for 16-point IDCT.

 Similarly, the 32-point IDCT can reuse the 16-point IDCT as the even engine. A

multiplexer with the selection signal sel_e32 is used to select two results from

16-point IDCT. sel_e16 and sel_o16 can decide the outputs from 16-point IDCT. For

the odd part of 32-point IDCT, an O32 can generate one result. O32 is composed of

16 MCMs and 15 adders, as shown in Figure 2-10. sel_o32 is used to select the con-

stant coefficients from LUT32. The values for all the selection signals in each cycle

are shown in Figure 2-9(B). Eight cycles are required to generate 32-point results. The

overall architecture for 8/16/32-point IDCT is shown in Figure 2-10.

0 1 2 3cycle

sel_o8

0 0 1 1sel_e16

0 1 1 0

0 1 2 3cycle

sel_e32 0 0 0 0

sel_o16 0 1 2 3

4 5 6 7

1 1 1 1

3 2 1 0

(A) selection signal values and the
reordered outputs in each cycle for

IDCT16
(B) selection signal values and the reordered

outputs in each cycle for IDCT32

sel_o8

sel_e16

0 1 1 0 0 1 1 0

0 0 1 1 1 1 0 0

sel_o16 0 1 2 3

sel_o32 0 1 2 3 4 5 6 7

sel_e8 0 1 1 0 0 1 1 0

sel_e8 0 1 1 0

Reorder
-ed

outputs

X0
X7
X8
X15

X3
X4
X11
X12

X1
X6
X9
X14

X2
X5
X10
X13 Reordered

outputs

X0
X15
X16
X31

X2
X13
X18
X29

X1
X14
X17
X30

X3
X12
X19
X28

X4
X11
X20
X27

X5
X10
X21
X26

X6
X9
X22
X25

X7
X8
X23
X24

An Area-Efficient Transform Architecture Design

31

Figure 2-10 Proposed architecture for unified 8/16/32-point 1D IDCT.

Figure 2-11 Inputs of MCM in O32 and O16.

 It has to be noted that in the RTL level, the multiplication is implemented directly

(* operator in Verilog). However, the multiplier in odd engine is multiple constant

multiplier (MCM) which can be implemented as the adder tree by the Design Com-

plier tool. Figure 2-11(A) gives the inputs of MCM in O32, one constant input is se-

lected from an 8to1 multiplexer and the variable is odd-index input of 32-point IDCT.

Similarly, for the multiplier in O16, one constant input is selected from a 4to1 multi-

plexer, and the variable is odd-index input of 16-point IDCT. Moreover, the circuit of

IDCT16

Input Permutation

IDCT 8

O16mux

4-point butterfly

sel_e16

Y0, Y1, „,Y2N-2,Y2N-1

O32 O32mux

4-point butterflysel_e32

O16

IDCT32

O16

sel_o16

Reordered outputs

mux

A B C D

ba

sel: 0

sel: 1

a=A
b=D
a=B
b=C

Y1

sel

x x x

Y3 Y15

„„

7 adders

x

Y13

LUT16
„„

O32

sel_o32

Y1

x x x

Y3 Y31

„„

15 adders

x

Y29

LUT32
„„

mux

Critical path

x

Constant coeffcients

8to1 mux

sel_o32

Yn

LUT32

x

Constant coeffcients

4to1 mux

sel_o16

Yn

LUT16

(A) MCM in O32 (B) MCM in O16

An Area-Efficient Transform Architecture Design

32

O32 is shown in Figure 2-10. 16 multipliers are processed in parallel. The number of

multipliers does not influence the critical path. According to the timing report by De-

sign Complier, the critical path is shown in Figure 2-10. We can see that the critical

path does not include the O32.

 It should be noted that in my design, within each cycle, four final outputs of

IDCT can be generated regardless of the TU size. The register is not used to store the

intermediate results, and the 4-point IDCT does not adopt the RPISO scheme since it

may be generated within one cycle; thus, there is no need to reorder the outputs. The

proposed unified architecture only supports the 8/16/32-point IDCT. Because the

4-point IDCT incurs a small hardware cost, the 4-point IDCT is implemented indi-

vidually. The reason for doing so is that the overhead required to embed a 4-point

IDCT into the unified architecture is higher than the direct implementation of a

4-point IDCT.

The architecture for the IDCT has been given in the above. It is noted that for the

DCT, the processing order is reverse so that the butterfly structure is at the first step

and the permutation is at the last step. Therefore, there is no need to reorder the out-

puts. For 8-point DCT, two clock cycles are required. In the first clock cycle,

{X0,X1,X2,X3} are output. In the second clock cycle, {X4,X5,X6,X7} are output. For

16-point DCT, four clock cycles are required. The four outputs in four clock cycles

are {X4*n,X4*n+1,X4*n+2,X4*n+3} where n is from 0 to 3 in four clock cycles. For the

32-point DCT, eight clock cycles are required. The four outputs in four clock cycles

are {X4*n,X4*n+1,X4*n+2,X4*n+3} where n is from 0 to 7 in eight clock cycles. For the

calculation part in forward transform, MCM is also used which is the same as inverse

transform.

2.3 Proposed Architecture for Transpose Buffer Part

For the transpose memory part, it is the same for forward transform and inverse

An Area-Efficient Transform Architecture Design

33

transform. The inverse transform is taken as an example. As shown in Eq. (2-1), a

complete 2D IDCT is composed of two 1D IDCT. The row IDCT is IT1 and the col-

umn IDCT is IT2. IT2 can only start after getting a complete column of IT1 results.

However, the IT1 results are obtained row by row. Therefore, we require transpose

memory stores the IT1 results.

2.3.1 Reordered Data Mapping Scheme for SRAM-based

Transpose Buffer

To reduce the hardware cost, SRAM is used to realize the transpose memory. The IT1

result is stored in the SRAM. The parallelism in my design is 4 pixels/cycle, so four

SRAMs were used. In order to show the features of the proposed reordered method,

the method without reordering is shown at first. Taking TU 32 × 32 as an example, the

mapping scheme without reordering is shown in Figure 2-12. In Figure 2-12, (m, n)

indicates the IT1 result Xm,n (m, n = 0, 1, 2,…, 31). The samples in the different col-

umns are marked using various colors. The column 4*k (k = 0, 1, 2,…, 7) is shaded in

white, the column 4*k+1 is shaded in light gray, the column 4*k+2 is shaded in dark

gray, and the column 4*k+3 is shaded in black. In each clock cycle, four IT1 results of

one row are written into SRAMs. In the first clock cycle, X0,0, X0,1, X0,2 and X0,3 are

written in four SRAMs, respectively. For the other IT1 results, without reordering, the

results of the column 4*k are stored in the SRAM 0, the results of the column 4*k+1

are stored in the SRAM 1, the results of column 4*k+2 are stored in the SRAM 2 and

the results of column 4*k+3 are stored in the SRAM 3. However, by using this

non-reordered data mapping, four IT1 results of one column cannot be fetched in one

clock cycle. For example, X0,0, X1,0, X2,0 and X3,0 are all stored in the SRAM 0 so they

cannot be fetched in one clock cycle. Therefore, the reading operation cannot achieve

the pixel parallelism of 4.

An Area-Efficient Transform Architecture Design

34

sram2sram1sram0

(1,3)(1,0) (1,1) (1,2)

(2,2) (2,3)(2,0) (2,1)

0x0

0x4

0x10

……

row0

(0,0) (0,1) (0,2) (0,3)

..

(0,4) (0,5) (0,6) (0,7)
(0,8) (0,9) (0,10) (0,11)

(0,12) (0,13) (0,14) (0,15)

0x1
0x2
0x3

(1,7)(1,4) (1,5) (1,6)

..
..

(3,1) (3,2) (3,3)(3,0)

..

…… …… …… ……

sram3

0x5

..

0x18

..

addr

C
ol 0

(4,0) (4,1) (4,2) (4,3)0x20

..

(5,0) (5,1) (5,2) (5,3)0x28

(0,16)
(0,20)
(0,24)
(0,28)

(0,17)
(0,21)
(0,25)
(0,29)

(0,18)
(0,22)
(0,26)
(0,30)

(0,19)
(0,23)
(0,27)
(0,31)

„„„

0x8

..

0x9

„
„
„0x6

0x7

write

read

Figure 2-12 Data mapping scheme for the SRAM without reordering.

 In order to make the reading operation achieve the pixel parallelism of 4, the

storing position is reordered. The proposed data mapping method is shown in Figure

2-13. X4*m,n, X4*m+1,n, X4*m+2,n, and X4*m+3,n are written in four SRAMs so that they

can be read out in one cycle. For example, X0,0, X1,0, X2,0, and X3,0 are written in four

SRAMs. Therefore, these four samples can be read within one cycle. Similarly, X4*m,0,

X4*m+1,0, X4*m+2,0, and X4*m+3,0 are written in four SRAMs. Four IT1 results of the first

column can be read within one cycle. After eight cycles, the IT1 results of the first

column can be fetched. After the IT1 results of the first column are obtained, IT2 can

begin. Every eight cycles, the IT1 results of one complete column are read out for

IT2.

 To make full use of the transpose memory, two data mapping modes are proposed.

When the transpose memory is full of the IT1 results of the same transform block N,

the IT1 results of the next transform block N+1 are written in from the next cycle.

Meanwhile, the data mapping mode interchanges. In the other mapping scheme mode,

X’n,m (the IT1 results of block N+1) is stored in the same address as Xm,n of block

An Area-Efficient Transform Architecture Design

35

N. The detailed mapping scheme for mode 1 is shown in Figure 2-14. Similarly, IT1

results of one complete column can be read within eight cycles.

sram2sram1sram0

(1,3) (1,0) (1,1) (1,2)

(2,2) (2,3) (2,0) (2,1)

0x0

0x4

0x10

……

row0

(0,0) (0,1) (0,2) (0,3)

..

(0,4) (0,5) (0,6) (0,7)
(0,8) (0,9) (0,10) (0,11)

(0,12) (0,13) (0,14) (0,15)

0x1
0x2
0x3

(1,7) (1,4) (1,5) (1,6)

..

..

(3,1) (3,2) (3,3) (3,0)

..

…… …… …… ……

sram3

0x5

..

0x18

..

addr
C

ol 0

(4,0) (4,1) (4,2) (4,3)0x20

..

(5,0) (5,1) (5,2)(5,3)0x28

(0,16)
(0,20)
(0,24)
(0,28)

(0,17)
(0,21)
(0,25)
(0,29)

(0,18)
(0,22)
(0,26)
(0,30)

(0,19)
(0,23)
(0,27)
(0,31)

„„„

0x8

..

0x9

„
„
„0x6

0x7

write

read

Figure 2-13 Proposed data mapping scheme for the SRAM (mode 0).

sram2sram1sram0

(3,1) (0,1) (1,1) (2,1)

(2,2) (3,2) (0,2) (1,2)

0x0

0x4

0x10

……

row0

(0,0) (1,0) (2,0) (3,0)

..

(4,0) (5,0) (6,0) (7,0)
(8,0) (9,0) (10,0) (11,0)

(12,0) (13,0) (14,0) (15,0)

0x1
0x2
0x3

(7,1) (4,1) (5,1) (6,1)

..

..

(1,3) (2,3) (3,3) (0,3)

..

…… …… …… ……

sram3

0x5

..

0x18

..

addr

C
ol 0

(0,4) (1,4) (2,4) (3,4)0x20

..

(0,5) (1,5) (2,5)(3,5)0x28

(16,0)
(20,0)
(24,0)
(28,0)

(17,0)
(21,0)
(25,0)
(29,0)

(18,0)
(22,0)
(26,0)
(30,0)

(19,0)
(23,0)
(27,0)
(31,0)

„„„

0x8

..

0x9

„
„

„0x6
0x7

write

read

Figure 2-14 Proposed data mapping scheme for the SRAM (mode 1).

 The target is to design a transpose memory that can store the IT1 results for vari-

An Area-Efficient Transform Architecture Design

36

ous transform sizes on the decoder side. The data mapping scheme used to store the

32 × 32 IT1 results was given in Figure 2-13 and Figure 2-14. To store the 32 × 32

IT1 results in four SRAMs, the depth of each SRAM is 256 (32 × 32/4). If the trans-

form size is smaller, the IT1 results are stored in the corresponding address in the

SRAM. For example, when writing the 16 × 16 IT1 results, Xm,n (m, n = 0, 1, 2,…,15)

is written in the corresponding position as shown in Figure 2-13 and Figure 2-14. One

quarter of the transpose memory is used for transform block 16 × 16. When storing

the 8 × 8 and 4 × 4 IT1 results, the proportion of the transpose memory that is used is

only 1/16 and 1/64, respectively.

 By using the proposed data mapping scheme, within each cycle, all the in-

put/output ports of SRAM are used for writing/reading. Therefore, 100% I/O utiliza-

tion of each SRAM can be achieved. In addition, the data width of SRAM is signifi-

cantly reduced compared with previous work, so the hardware area can be reduced.

The detail comparison result is shown in the experimental results.

 The data mapping scheme has already been given when the pixel parallelism is 4.

The method can be also extended to the larger pixel parallelism such as 16. Take TU8

as an example, IT1 results of two columns are read in one clock cycle, so they should

be stored in the different banks of SRAMs. The detail data mapping method is shown

in Figure 2-15 where [r,c] represents the IT1 result at the r-th row and c-th column. In

the first clock cycle, the results of first two rows (orange in Figure 2-15) are stored.

For the 0-th row, [0,0] is stored in the SRAM#0, and the rest 7 results are stored in the

column order. For the 1-th row, [1,0] is stored in the SRAM#8, and the rest 7 results

are also stored in the column order. In the second clock cycle, the results of second

two rows (yellow in Figure 2-15) are stored. Because [2,0] will be read in the same

clock cycle with [0,0] and [0,1], the bank in which it is stored has to be different with

that of [0,0] and [0,1]. Therefore, [2,0] is stored in the SRAM#2. Similarly, the IT1

results of the first two columns are stored in different banks of SRAMs as shown in

Figure 2-15.

An Area-Efficient Transform Architecture Design

37

0

00

10

20

30

write two rows
into the buffer in
each clock cycle

00

01

11

21

31

01

20

02

12

02

21

03

13

03

40

04

14

04

41

05

15

05

60

06

16

06

61

07 10 11

30

12

31

13

50

14

51

15

70

16

71

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

40

50

60

70

41

51

61

71

00

10

20

30

01

11

21

31

40

50

60

70

41

51

61

71

07

17

read two columns
from the buffer in
each clock cycle

0

1

2

3

Bank
Addr

rc The element at the r-th row, c-th column (r,c=0,1,2..7)

Figure 2-15 Data mapping example for TU8x8.

Table 2-1 Data mapping method for the transpose memory.

Input: TU size, the position of coefficient. c and r represent the c-th column and r-th row, re-

spectively. The range of c and r is [0, TU size-1].

Output: the corresponding bank of SRAM and the address in each bank for storing the coeffi-

cient

switch (TU size)

 case 4x4:

 Bank = c + r*4

 Addr = 0

 case 8x8:

 Bank = (c + (r%2) * 8 + (r/2) * 2) % 16

 Addr = r/2

 case 16x16:

 Bank = (c + r) % 16

 Addr = r

 case 32x32:

 Bank = (c + r) %16

 Addr = r * 2+ c/16

endswitch

An Area-Efficient Transform Architecture Design

38

For each IT1 result at the r-th row and c-th column, the bank of SRAM and the

address in each bank is shown in the pseudo code in Table 2-1. For a specific position

of four kinds of TUs, the detail bank of SRAM and the address for writing can be ob-

tained by the pseudo code in Table 2-1. By following the above method, IT2 can read

the IT1 results of one block/two columns/one column/half column for TU4/8/16/32 in

each clock cycle.

2.3.2 Pipelining Schedule for Write and Read Operation

The type of SRAM does not influence the proposed data mapping scheme in Chapter

2.3.1. No matter a single-port or two-port SRAM is adopted, the I/O utilization of

SRAM can always achieve 100% by using my proposed data mapping scheme.

Figure 2-16 Overall 2D IDCT architecture.

 If a single-port SRAM is used as a transpose memory, write and read cannot work

in parallel. IT1 is performed at first and the results are written in the memory. After

that, the IT1 results are read out and IT2 is performed. IT1 and IT2 can share one 1D

M
u

x

(A) single-port SRAM
based 2D IDCT

(B) Two-port SRAM
based 2D IDCT

Single-port
SRAM

1D IDCT

input
output

input output
1D IDCT

(IT1)
Two-port

SRAM
1D IDCT

(IT2)

IT1/IT2 sel

write read

writeread

An Area-Efficient Transform Architecture Design

39

IDCT architecture. The overall architecture is shown in Figure 2-16(A).

 To make a fully pipelined 2D IDCT architecture, two-port (1r1w) SRAM is used

in my design. Writing IT1 results in memory and reading IT1 results from memory

can perform in parallel. IT1 and IT2 require the 1D IDCT hardware resource, respec-

tively. The overall architecture is shown in Figure 2-16(B).

Figure 2-17 Proposed pipelining schedule for the read (IT2) and write (IT1).

 The processes for IT1 and IT2 are pipelined in my design. In this way, the writing

of the IT1 results and reading results for IT2 can be done in parallel. The read and

write address for each SRAM should be different in each cycle. To avoid this address

conflict, a pipelining schedule for a two-port SRAM is proposed as shown in Figure

2-17.

 Taking TU 32 × 32 as an example, from cycles 0 to 7, the IT1 results of row 31 in

block N (blkN, row31) are written in the SRAM. Assume that the data mapping

Blk N row31

Blk N (read)

Blk N+1 (write)Blk N (write)
row 0

sram#0 write addr(0x)

sram#1 write addr(0x)

sram#2 write addr(0x)

sram#3 write addr(0x)

row 31 row 0 row 1row 1 „„ „„

8 cycles

FF

FF

FF

FF

 Blk N (read)
col 0 col 1

„„col 0 col 1

„„

A
d

d
r

co
n

fl
ic

t

Conventionally, start to
read Blk N after Blk N is

written into sram

A
d

d
r

co
n

fl
ic

t

FE

FE

FE

FE

F8

F8

F8

F8

sram#0 read addr(0x)

sram#1 read addr(0x)

sram#2 read addr(0x)

sram#3 read addr(0x)

Eight cycles ahead for
read, to avoid the
address conflict

Blk N+1 row0
E0

E8

F0

F8

20

28

30

38

00

08

10

18

„

„

„

„

C0

C8

D0

D8

„

„

„

„

F9

F9

F9

F9

8 cycles

Blk N col0
E0

E8

F0

F8

20

28

30

38

00

08

10

18

„

„

„

„

C0

C8

D0

D8

Blk N col1
F8

E0

E8

F0

38

20

28

30

18

00

08

10

„

„

„

„

D8

C0

C8

D0

0 1 „ 6 7 8 9 „ 14 15
Cycle

row31

col31

col31

8 cycles

An Area-Efficient Transform Architecture Design

40

scheme for writing block N is mode 0. Within each cycle, X31,4*k, X31,4*k+1, X31,4*k+2,

and X31,4*k+3 are written. The corresponding data mapping scheme is shown in Figure

2-13. Then, the IT1 results of the next block N+1 are written. The data mapping mode

interchanges to mode 1, and the corresponding data mapping scheme is interchanged

as shown in Figure 2-14. The IT1 results of row 0 in block N+1 (blkN+1, row0) are

written from cycles 8 to 15. Conventionally, after all the IT1 results of block N are

written in, the IT1 results of block N begin to be fetched. In this way, the IT1 results

of column 0 in block N (blkN, col0) are read from cycles 8 to 15. However, We can

see in Figure 2-17 that the address for writing (blkN+1, row0) and reading (blkN, col0)

is the same, which will lead to an address conflict. To solve this address conflict

problem, reading (blkN, col0) is done eight cycles in advance.

 In my pipelining schedule for SRAM, from cycles 0 to 7, the IT1 results of (blkN,

col0) are read out. Within each cycle, X4*k,0, X4*k+1,0, X4*k+2,0, and X4*k+3,0 are read out.

It should be noted that when reading the last sample of the first column X31,0 in the

cycle 7, this sample has already been written into the SRAM in cycle 0. Thus, it could

be fetched in cycle 7. From cycles 8 to 15, the IT1 results of (blkN, col1) are read out,

while the IT1 results of (blkN+1, row0) are written in. We can see that there is also no

address conflict between them. After that, the IT1 results of (blkN+1, rowK) are writ-

ten in and (blkN, colK+1) are read out for IT2; using this schedule, the address con-

flict between reading and writing is avoided.

2.4 Experimental Results

Verilog HDL is used to implement the proposed design. The design was synthesized

with a TSMC 90nm cell library. As mentioned previously, there are two critical prob-

lems that lead to the significant hardware cost. One is the logical computational part,

and the other is the transpose memory part. The results are analyzed from these two

perspectives.

An Area-Efficient Transform Architecture Design

41

2.4.1 Experimental Results of Logical Computational Part

In my design, a 4-point IDCT is not included in the unified architecture. The reason is

explained at the end of Section 2.2.2. The individual gate count for a 4-point IDCT is

2.4 k, and the gate count for the 8/16/32-point unified IDCT is 63.9 k. Therefore, an

overall gate count of 66.3 k is required for a 1D IDCT design that can support the en-

tire transform size on the decode side. The concept of the normalized area (NA) is in-

troduced to obtain a fair performance comparison, and normalized area by maximum

throughput is defined by the following equation.

Normalized area by maximum throughput

Gate Gate

MaxThroughput MaxFreq Tp

 (2-11)

where MaxFreq is the maximum frequency of the design and Tp is the throughput

within each cycle, which is equal to the pixel parallelism. “Gate” refers to the gate

count for the logical calculation part for the IDCT excluding the transpose memory.

 In order to demonstrate the effectiveness of my proposed design, the comparison

is performed with those in references [18]-[22], which describe the low-cost designs

for the HEVC IDCT. The comparison result is shown in Table 2-2. It should be noted

that the throughput in [19], [20], and [22] is different for various 2N-point IDCTs. On

the decoder side, the worst-case scenario should be considered. For example, in [20],

the authors achieve 4/8/16/32 pixels/cycle for a 4/8/16/32-point IDCT, respectively. In

the worst case, when the TU size is always 4 × 4 on the decoder side, the parallelism

is 4 pixels/cycle. The smallest parallelism is used to calculate the normalized area. For

the logical IDCT computation part, compared with [18]-[22], the gate count is re-

duced by more than 25%.

 For the 1D DCT architecture in [26], the pixel parallelism is 16 pixels/cycle. In

fact, for the same function, the architecture with higher pixel parallelism can share

more computations and hardware resources. So the architecture with higher pixel par-

allelism usually has less normalized area than one with lower pixel parallelism. The

An Area-Efficient Transform Architecture Design

42

normalized area by parallelism is defined as follows.

 Gate
Normalized area by parallelism

pixel parallelism

(2-12)

Table 2-2 Comparison with other HEVC 2D IDCT architectures.

Design

Tech-

nology

(nm)

Max

Speed

(MHz)

Pixel Par-

allelism

Gate

Count

(k)
5)

Normalized

Area by Eq.

(2-11)
6)

Normalized

Area by Eq.

(2-12)
7)

Supporting

Video

Format

Shen [18] 130 350 4 109.2 x 2 156 54.6
4Kx2K

30fps

Shen [19] 130 191 4~8
2)

 54.1 x 2 141.62 27.05
4Kx2K

30fps

Zhu [20] 90 311 4~32
3)

 117.7 x 2 189.23 58.85
4Kx2K

60fps

Park [21]

1)

180 300 2.12 52.3 x 2 164.46 49.34
4Kx2K

30fps

Chiang

[22]
90 270

1.38~2.67

4)

63.8 x 2 342.46 92.46
4Kx2K

30fps

Meher[26] 90 N/A
8)

 16 131 x 2 N/A 16.38
8Kx4K

60fps

Proposed

4x
90 312 4 66.3 x 2 106.25 33.15

4Kx2K

60fps

Proposed

8x
90 312 8 88.2 x 2 70.67 22.05

8Kx4K

30fps

Proposed

16x
90 312 16 113 x 2 45.27 14.13

8Kx4K

60fps

1) Park [21] only supports 16/32-point IDCT.

2) The parallelism for 4/8/16/32-point IDCT is 4 / 8 / 4 / 4 pixels/cycle, respectively.

3) The parallelism for 4/8/16/32-point IDCT is 4 / 8 / 16 / 32 pixels/cycle, respectively.

4) The parallelism for 4/8/16/32-point IDCT is 2 / 2.67 / 2 / 1.38 pixels/cycle, respectively.

5) Gate count for 2D IDCT.

6) The unit for Normalized Area by max. throughput is 1/(MHz*pixel/cycle). If the parallelism is different for various IDCT size,

the least parallelism is used to calculate in Eq. (2-11).

7) The unit for Normalized Area by parallelism is 1K/(pixel/cycle). If the parallelism is different for various IDCT size, the least

parallelism is used to calculate in Eq. (2-12).

8) Reference [26] synthesize the architecture with the desired timing constraint for 8Kx4K 60fps. The corresponding operating

frequency is 187MHz.

 To have a fair comparison with [26], the architecture with higher parallelism such

An Area-Efficient Transform Architecture Design

43

as 8 pixels/cycle and 16 pixels/cycle is designed. Proposed RPISO scheme is still

adopted in these architectures. When the pixel parallelism is 8 pixels/cycle,

16/32-point IDCT can take advantage of RPISO to reduce the redundant inputs and

corresponding calculations of 16/32-point butterfly structure. Similarly, when the pix-

el parallelism is 16 pixels/cycle, the 32-point IDCT can take advantage of RPISO

scheme to save the hardware cost.

 The results are shown in Table 2-2. We can see that the design with higher pixel

parallelism consumes much less normalized area is than the design with lower pixel

parallelism. Compared with [26], my IDCT architecture with parallelism of

16pixels/cycle consumes less normalized area by parallelism than [26]. The reason is

partially because that RPISO scheme is used to reduce the calculations of butterfly

inputs for 32-point IDCT.

 It has to be noted that in [26], the author synthesize the 1D architecture with the

desired timing constraint for 8Kx4K 60fps. The corresponding frequency is 187MHz

(7680x4320x60x1.5/16). Therefore, 187MHz mentioned in [26] is considered as the

operating frequency. The results in Table 2-2 show a comparison of my results with

other unified architectures for HEVC IDCT. Using the RPISO scheme, it is possible

to realize savings in area. Each transform block is also implemented individually. The

results are shown in Table 2-3. In [19], the author presented the hardware area for

each transform block. Compared with [19], savings in the required hardware re-

sources can be realized for each transform block by using the RPISO scheme.

Table 2-3 Comparison of the hardware cost for each transform block.

 Gate Count (k)

Transform size 4-point 8-point 16-point 32-point

Shen [19] 7.2 19.6 31.1 54.1

Proposed 2.4 8.6 24.3 47.8

An Area-Efficient Transform Architecture Design

44

 In addition, it is obvious that the unification method proposed in Section 2.2.2 can

result in reduced hardware overhead. The overall gate count for an individual trans-

form block is 83.1 k (2.4 + 8.6 + 24.3 + 47.8), which is greater than the 66.3 K of the

proposed unified architecture.

2.4.2 Experimental Results of Transpose Buffer Part

For the transpose memory part, four SRAM blocks are used since the parallelism is 4

pixels/cycle. To store the IT1 results of a 32 × 32 transform block, the width of each

SRAM is 16 bit (one IT1 result) and the depth is 256 (32 × 32/4). A total of 16384

SRAM bits were used. To store the IT1 results of the smaller transform, a part of the

transpose memory is used. The detailed data mapping scheme was given in Chapter

2.3.

 In [18] and [20], the authors also used SRAM to realize the transpose architecture,

and the total SRAM bit is the same as my design. However, much smaller area can be

achieved since the width of my SRAM is significantly reduced compared with [18]

and [20]. To perform a comparison with various transpose memory designs, a memory

complier is implemented using the same process TSMC 90nm. A single-port SRAM is

used in [18]. However, a 1D IDCT architecture in [18] can also be adopted in a fully

pipelined 2D IDCT architecture when using a two-port SRAM. To have a fair com-

parison of all the SRAM-based transpose memory design, a two-port memory com-

plier is used to generate the area. The total area for the SRAMs is shown in Table 2-4.

Using my proposed narrower and deeper SRAMs, the total SRAM area was 80988

um
2
. Therefore, a savings of at least 62% in the SRAM area can be realized compared

with [18] and [20]. In [21] and [22], the authors used registers to implement a trans-

pose memory based on the traditional method, which is not so area-efficient. The au-

thor in [19] did not develop the transpose architecture.

An Area-Efficient Transform Architecture Design

45

Table 2-4 Comparison with other SRAM-based transpose memory.

Memory design Shen [18] ** Zhu [20] Proposed

Total Bits 16384bits

Number of SRAMs 4 32 4

Each SRAM

Width 512bits 16bits 16bits

Depth 8 32 256

Area(um
2
) 68431 6590 20247

Total SRAM Area (um
2
) *

273724

(4*68431)

210880

(32*6590)

80988

(4*20247)

* The areas are generated by the same process TSMC 90nm.

** The type of SRAM in [18] is single-port. A two-port memory complier is used to generate its area

for a fair comparison of a fully pipelined 2D IDCT.

2.5 Chapter Summary

In this chapter, an area-efficient multi-size transform architecture for HEVC is pre-

sented. To reduce the required amount of hardware resources, the RPISO scheme is

proposed. In this scheme, the final outputs are reordered so that the redundant inputs

of butterfly and the required calculations for butterfly inputs in each cycle are reduced.

Based on the RPISO scheme, a unified architecture for an 8/16/32-point transform is

presented. Using Chen’s algorithm, the N-point architecture is reused in the 2N-point

architecture. An SRAM instead of a register is used to realize the transpose memory.

The data mapping scheme is proposed in which the storing positions in SRAM are

reordered. In addition, the pipelining schedule for the SRAM is proposed so that the

write and read operation can be conducted in parallel. The results show that the sav-

ings of about 25% in the area for the logical computational part, and 62% in the area

for the transpose memory part can be achieved compared with previous works.

A Low-Cost System Design for De-quantization and Inverse Transform

46

3. A Low-Cost System Design for

De-quantization and Inverse Transform

The low-cost architecture for transform has been introduced in the last chapter, and

this chapter
2
 will introduce the proposals for the system of de-quantization (DQ) and

inverse transform (IT). The position of this chapter in the mode decision and recon-

struction loop is shown in Figure 3-1. In the mode decision, DQ and IT are required in

the full RDO pass. In addition, these two components are also required in the recon-

struction loop. There are two major concepts of ideas in this chapter. For the

de-quantization, the idea is to reduce the number of multipliers and then reuse four

multipliers in different clock cycles. For the system of de-quantization and inverse

transform, the concept is to reuse the pixel data to detect the zero elements and then

skip the read and write operations of SRAM for the zero elements. This chapter is re-

lated with the publication [1] in Page 122.

Fast
RDO

T Q
DQ IT SSD

CABAC rate

Final
Mode

Decision

Full RDO Pass

All
modes

selected
modes

best
mode

T Q
D
Q

IT

Reconstruction loop

Figure 3-1 The position of chapter 3 in the mode decision and reconstruction loop.

2 This chapter is related with the publication [1] in Page 122.

A Low-Cost System Design for De-quantization and Inverse Transform

47

3.1 Introduction

3.1.1 Overview of the System of De-quantization and Inverse

Transform

The system of de-quantization and inverse transform is shown in Figure 3-2. In the

de-quantization, the operation is multiplication, addition and shift. The process of in-

verse transform has been shown in Chapter 2. Between de-quantization and inverse

transform, since the data format is 4x4 in the de-quantization and row by row in the

inverse transform in the decoding, so a memory is required between the

de-quantization and inverse transform.

DQ IT

IT1
Transpose

_MEM

QT_MEM

X + >>

Scaling

parameter

Coeff

Change the

data format Row by

row

Block (4x4) by

block

IT2

Figure 3-2 System of de-quantization and inverse transform.

In the encoding, the inputs of de-quantization are the results of quantized coeffi-

cients. In the decoding, the inputs of de-quantization are generated by the results of

syntax elements. Each coefficient can be represented by five syntax elements.

sig_coeff_flag, coeff_abs_level_greater1_flag, coeff_abs_level_greater2_flag indicate

whether the coefficient is larger than 0/1/2 or not, respectively. co-

eff_abs_level_remaining indicates the remaining absolute value. coeff_sign_flag

A Low-Cost System Design for De-quantization and Inverse Transform

48

means the sign of each coefficient. For each TU, the SE’s are coded in the format of

4x4 according to the HEVC standard [2]. Within each 4x4 block, 16 coefficients are

coded in the scan order which is selected from up-right diagonal, horizontal and ver-

tical order. For each specific coefficient, TransCoeffLevel can be calculated as the

pseudo code in Table 3-1 where numSigCoeff is the number of non-zero coefficients

already coded. lastGreater1ScanPos is the first coefficient whose co-

eff_abs_level_greater1_flag is 1 in the scan order.

Table 3-1 Calculation of TransCoeffLevel.

Input: sig_coeff_flag, coeff_abs_level_greater1_flag, coeff_abs_level_greater2_flag, co-

eff_abs_level_remaining, coeff_sign_flag

Output: TransCoeffLevel

for each coefficient in the 4x4 block

if(sig_coeff_flag==0)

TransCoeffLevel = 0

else

baseLevel = 1+ coeff_abs_level_greater1_flag+

coeff_abs_level_greater2_flag

if(baseLevel==((numSigCoeff<8) ? ((the coefficient is at the lastGreater1ScanPos) ?

3 :2): 1)))

TransCoeffLevel = coeff_abs_level_remaining + baseLevel

else

TransCoeffLevel = baseLevel

endif

TransCoeffLevel = TransCoeffLevel *(1-2*coeff_sign_flag)

endif

endfor

An example of input and output is given in Figure 3-3, if sig_coeff_flag is 0,

TransCoeffLevel is 0. Otherwise, TransCoeffLevel is based on baseLevel and co-

eff_abs_level_remaining. coeff_abs_level_remaining is only required under the fol-

lowing cases. When numSigCoeff is not smaller than 8 (n=0,1,2…6 in Figure 3-3),

coeff_abs_level_remaining is required. When numSigCoeff is smaller than 8, for the

coefficient at the lastGreater1ScanPos (n=11 in Figure 3-3), co-

A Low-Cost System Design for De-quantization and Inverse Transform

49

eff_abs_level_remaining is required if coeff_abs_level_greater2_flag is true; for the

coefficient not at the lastGreater1ScanPos, coeff_abs_level_remaining is required if

coeff_abs_level_greater1_flag is true (n=7,9 in Figure 3-3). After getting the absolute

value of TransCoeffLevel, coeff_sign_flag is used to indicate the sign for TransCoef-

fLevel. After that, the DQ results can be calculated by the addition and shift.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sig_coeff_f
lag[n]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

coeff_abs_level_
greater1_flag[n]

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

coeff_abs_level_
greater2_flag[n]

1

coeff_abs_level_
remaining[n]

1143162815320 0 0 0 0 0 0

TransCoeffLevel
[n]

21 4 -16 9 -3 7 -2 -5 -1 16 -1 -4 1 1 1 0

coeff_sign
_flag[n]

0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-3 An example of the input and output for the pseudo coded shown in Table 3-1.

For the de-quantization, there are two problems. One problem is that in the real

implementation, the results of coeff_abs_level_remaining do not align with the coeffi-

cients because of two reasons. One reason is that the coeff_abs_level_remaining is

coded from the last coefficient to the first coefficient, and the other reason is that it is

not coded for all the coefficients. An example is given in Figure 3-4 where C[n]

means the original result of coeff_abs_level_remaining before the alignment, R[n] in-

dicates whether the coefficient requires the results of coeff_abs_level_remaining or

not, and AC[n] indicate the result of coeff_abs_level_remaining after the alignment,

and it align with R[n]. In the example, only three coefficients at position of 0,7,15

need the remaining results. So R[0], R[7], R[15] are 1. AC[0], AC[7] and AC[15] are

C[2], C[1] and C[0], respectively.

A Low-Cost System Design for De-quantization and Inverse Transform

50

n

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

AC[n]

R[n]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C[n]

Figure 3-4 An example for the unaligned coeff_abs_level_remaining.

The second problem is that the multiplications are required in the de-quantization.

Although de-quantization does not consume as many as hardware resources compared

with inverse transform, multiplications in the de-quantization are still hardware con-

suming. For the de-quantization, there are no specific previous works on reducing the

hardware consumption up to now.

For the whole system, the problem is that there are many zero elements in the

system as shown in Figure 3-5. For the zero elements, the processing can be opti-

mized. In addition, since the data format is different for the de-quantization and in-

verse transform, so a data mapping method is required for the buffer between the

de-quantization and inverse transform.

7 0 0 0

2 0 0 0

1 0 0 0

0 0 0 0

5712 0 0 0

1632 0 0 0

816 0 0 0

0 0 0 0

DQ IT

20 37 50 57

71 75 74 73

23 43 58 66

71 74 73 72

Figure 3-5 Many zero elements in the system.

3.1.2 Previous Works

For the de-quantization, there are no specific previous works on reducing the hard-

ware consumption as far as the author knows. For the data exchange buffer, [36] gave

a very delicate mapping method as shown in Figure 3-6. In the case of TU4x4, the

A Low-Cost System Design for De-quantization and Inverse Transform

51

half row of 0-0, 0-1, 0-2 and 0-3 are written in the SRAM. Therefore, the I/O utiliza-

tion of SRAM is only 50%. For the other TU sizes, the utilization is 100%.

Figure 3-6 The exchange buffer method around DCT/IDCT [36].

Figure 3-7 IDCT pruning when transform block is scanned horizontally. Colored regions are

non-zero regions.

For the optimization of the zero element processing, [37] used the method in [38]

as shown in Figure 3-7. In the case that the scan type is horizontal, the row IDCT is

processed before the column IDCT. By doing so, the last non-zero row is detected and

the logical computation for all the zero rows can be saved for the row IDCT. For the

example in Figure 3-7, the last non-zero element is in the third row thus only the first

three rows need the process of row IDCT.

A Low-Cost System Design for De-quantization and Inverse Transform

52

3.1.3 Research Target

For the de-quantization, since there are no previous works, so the remaining problems

are that the results of coeff_abs_level_remaining do not align with the coefficients and

the multiplications are required. Therefore, my research target is to design a low-delay

alignment mapping architecture for coeff_abs_level_remaining and reduce the number

of multipliers. For the system of de-quantization and inverse transform, there are two

remaining problems. One problem is that when processing transform unit 4x4, the I/O

utilization of SRAM cannot reach 100% in [36]. The other problem is that [37] only

adopted the zero skipping for the logical computational part while they did not present

the methods to optimize the zero element processing for the memory part. Therefore,

the research target is to design a SRAM-based buffer between de-quantization and

inverse transform which can achieve 100% I/O utilization. For the zero elements in

the system, the target is to prune the read/write operations to save the power con-

sumption.

3.2 VLSI Architecture for De-quantization

3.2.1 Low-Delay Alignment Mapping Architecture

As described in Chapter 3.1.1, the results of coeff_abs_level_remaining do not align

with the coefficients. So the first step is to align coeff_abs_level_remaining with the

coefficient. As shown in Table 3-1, numSigCoeff and lastGreater1ScanPos are re-

quired in the judgment. So these two elements are calculated first. The architecture is

shown in Figure 3-8.

A Low-Cost System Design for De-quantization and Inverse Transform

53

NOT

AND

16'd1

...

MUX1

MUX2

... ...

ADD ADD

... 0 0... 0

COM

MUX1

MUX2

8

……

……

…… COM

8

8 bit

…

sig_coeff_flag

coeff_abs_level_greater1_flag

coeff_abs_level_
greater1_flag[0]

coeff_abs_level_
greater2_flag[0]

coeff_abs_level_gre
ater1_flag[15]

coeff_abs_level_gre
ater2_flag[15]

sig_coeff_flag[0] sig_coeff_flag[15]

R[0] R[15]

16

ADD

16

16

lastGreater1ScanPos 16

4

16

numSigCoeff[0] numSigCoeff[7]4

……

for each position n in the 4x4 block
 if(numSigCoeff>=8)
 R[n] = sig_coeff_flag[n]
 else if(lastGreater1ScanPos[n])
 R[n] =coeff_abs_level_greater2_flag[n]
 else
 R[n] = coeff_abs_level_greater1_flag[n]
 endif
endfor

The equivalent pseudo code with Table 1 for
R[n]

n

The signal is
corresponding to n

samples

Figure 3-8 The architecture to generate R[n] which indicates whether each coefficient requires

coeff_abs_level_remaining or not.

The pseudo code for R[n] is shown in Figure 3-8. lastGreater1ScanPos is detect-

ed in parallel by a leading-one circuit, the result of the bitwise AND operation of the

true code and the complement code of coeff_abs_level_greater1_flag is a one-hot

A Low-Cost System Design for De-quantization and Inverse Transform

54

code in which the single high bit is corresponding to the position of lastGreat-

er1ScanPos. numSigCoeff is equal to the summation of sig_coeff_flag. For the eight

rightmost positions, numSigCoeff is not calculated because it is impossible to be larg-

er than 8. After getting the results of lastGreater1ScanPos and numSigCoeff, the posi-

tions of coefficients with coeff_abs_level_remaining can be detected by the pseudo

code in Table 3-1. The circuit and the equivalent pseudo code are shown in Figure 3-8.

A multiplexer (MUX2 in Figure 3-8) is used and the select signal is the comparison

result of numSigCoeff and 8. If numSigCoeff is not smaller than 8, sig_coeff_flag is

used to indicate R[n]. If numSigCoeff is smaller than 8, another multiplexer (MUX1 in

Figure 3-8) is used. If the position is lastGreater1ScanPos, co-

eff_abs_level_greater2_flag is used to indicate R[n]. Otherwise, coeff_abs_level

_greater1_flag is used to indicate R[n].

...
R[0] …

...
…

...

...

C[0]

…
 M

U
X

...

C[0]

C[1]

…

c[0]

ADD

M
U

X

…

ADD

…

M
U

X

…

R[1] R[2] R[14] R[15] R[0] R[1] R[2] R[14] R[15]

C[1]

C[14]

C[15]

C[0]

…

C[1]

C[14]

R[0] … R[1] R[2] R[14] R[15]

AC[0] AC[1]

AC[14]

AC[15]

R[0] R[1]

R[14]

R[15]

Figure 3-9 The architecture to generate AC[n] which indicates the result of co-

eff_abs_level_remaining after the alignment.

After obtaining R[n], AC[n] can be selected by multiplexers. AC[n] is 0 if R[n] is

0. Therefore, the AND operation is used for generating AC[n] and one input is R[n].

For the non-zero AC[n], the value can be obtained by the multiplexers. Start from

A Low-Cost System Design for De-quantization and Inverse Transform

55

AC[15], it has to be C[0]. For AC[14], it may be equal to C[0] or C[1], and it depends

on the R[15]. If R[15] is 1, AC[14] is C[1]; otherwise, AC[14] is C[0]. Similarly, for

the other AC[n] (n<15), the values depend on the number of R[m] (m>n) that is 1. The

corresponding circuit is shown in Figure 3-9.

3.2.2 Four-multiplier-based Multiplication with Scaling Param-

eters

After finding the aligned remaining values for the corresponding coefficients, Trans-

CoeffLevel can be obtained by the summation of baselevel and remaining values, as

shown in Table 3-1, and 16 multipliers are used to calculate the multiplication of

TransCoeffLevel and scaling parameter, which will lead to large hardware cost.

TransCoeffLevel is composed of two parts, one part is baselevel, and the other part is

remaining value. For the first part, the largest value is three, so the multiplication re-

sults can be obtained by look up tables instead of multipliers. For the second part, ac-

cording to the experiments, the probability of the 4x4 block with not greater than 4

remaining values is very high. Therefore, only 4 results of coeff_abs_level _remaining

are input in each clock cycle. By doing so, there are two merits. The first merit is that

the number of multipliers can be reduced to 4 so that the hardware cost can be re-

duced. In almost all the cases, the 4x4 block with less than 4 remaining values can be

processed within one clock cycle. For the 4x4 blocks with more than 4 remaining

values, four multipliers are exploited in different clock cycles. For example, for the

4x4 block with 7 remaining values, four remaining values are multiplied by the scal-

ing parameter in the first clock cycle. The rest three remaining values are multiplied

by the scaling parameter in the second clock cycle. In addition to the merit of reduc-

ing the hardware cost, 75% reduction for the data width of coeff_abs_level_remaining

can be reduced.

A Low-Cost System Design for De-quantization and Inverse Transform

56

3.2.3 Pipeline Schedule for De-quantization

Two stages are designed for DQ. In the first stage, four remaining values are multi-

plied by the scaling parameter. In the first cycle, C[n] (n=0,1,2,3) are input and they

are multiplied by the scaling parameter. The multiplication results of C[n] and the

scaling parameter are defined as MC[n]. Because C[n] (n=4,5,....15) are not input in

the first cycle, MC[n] (n=4,5,…15) are set as zero. If there are more than four re-

maining values, C[n] (n=4,5,6,7) are input in the second cycle. MC[n] (n=4,5,6,7) are

the multiplication results of input C[n] and the scaling parameter. MC[n]

(n=0,1,2,3,8,9,…15) are set as zero. If the third and fourth clock cycles are required,

the zero compensation methods are shown in Figure 3-10.

a

Compensate 0

Circuit in Fig. 3-9

Circuit in Fig. 3-8

… …

…

b c d

R

LUT

R R

baselevel coeff_sign_flag

ADDER

ADDER

SHIFT

coeff_abs_level_
greater1_flag

coeff_abs_level_
greater2_flag

sig_coeff_flag

MC[0] MC[15] R[0] R[15]

DQ results

stage 1

stage 2

A B C D

scaling
parameter

0 1 2 3

C[0] C[4] C[8] C[12]

C[1] C[5] C[9] C[13]

C[3] C[7] C[11] C[15]

C[2] C[6] C[10] C[14]

a

b

c

d

cycle

0 0 0 0 0 0 0 0 0 0 0 0

B C0 0 0 0 A 0D 0 0 0 0 0 0 0

B C0 0 0 0 0 0 0 0 A 0D 0 0 0

B C D0 0 0 0 0 0 0 0 A0 0 0 0

A B C D0

1

2

3

Inputs in four cycles

Compensate 0 methods in four cycles

MC 0
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADDER

coeff_abs_level_
greater1_flag

coeff_abs_level_
greater2_flag

1

adder

shift

TransCoeffLevel * scaling parameter*(1-2*coeff_sign_flag)

baseLevel*scaling
parameter

SIGN
TransCoeffLevel * scaling parameter

coeff_abs_level_remaining
*scaling parameter

TransCoeffLevel * scaling parameter*(1-2*coeff_sign_flag) + adder

OR_OUT

OR_IN

Figure 3-10 The architecture of two stages for DQ.

In each clock cycle, there are only 4 valid MC[n] corresponding to 4 C[n], while

the other 12 MC[n] are compensated by 0. In order to integrate the 16 MC[n] calcu-

A Low-Cost System Design for De-quantization and Inverse Transform

57

lated in more than one clock cycle, the OR gate is used. An example is given to ex-

plain the meaning of the OR gate in Figure 3-11. There are 6 non-zero C[n] (A-F in

Figure 3-11), so 2 clock cycles are required. In the first cycle, the leftmost four C[n]

(n=0,1,2,3) are input, thus one input of the OR gate is corresponding to MC[n]

(n=0,1,2,3). The other input of the OR gate is initialized as 0 in the first cycle of each

4x4 block, so the output of the OR gate is corresponding to MC[n] (n=0,1,2,3). In the

second cycle, the second leftmost four C[n] (n=4,5,6,7) are input, thus one input of

the OR gate is corresponding to MC[n] (n=4,5,6,7). The other input of the OR gate is

the output of the last clock cycle, so the output of the OR gate is corresponding to the

MC[n] (n=0,1,2…,7). We can see that by using the OR operation, MC[n] calculated in

different clock cycles can be integrated. In addition to MC[n], the results of baselevel

and coeff_sign_flag are also stored in the pipeline registers. In the second stage, the

steps are shown in Figure 3-10. At first, the multiplication results of baselevel and

scaling parameter are obtained by a LUT and the multiplication results of TransCoef-

fLevel and scaling parameter can be generated by the addition. After that, co-

eff_sign_flag is used to add the sign bit. After the addition and shift, the final results

of DQ can be calculated and reordered to the horizontal order for the IDCT.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15n

0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1R[n]

A B C D E F 0 0 0 0 0 0 0 0 0 0C[n]

0 0 0 0 0 0 0 0 D 0 0 C 0 B 0 A

0 0 0 0 F 0 E 0 0 0 0 0 0 0 0 0
OR_IN[n]

in the 2nd cycle

OR_OUT[n]
in the 1st cycle

OR_OUT[n]
in the 2nd cycle

0 0 0 0 F 0 E 0 0 0 0 0D C B A

Figure 3-11 An example for the usage of the OR gate in Figure 3-10.

A Low-Cost System Design for De-quantization and Inverse Transform

58

3.3 System Architecture of De-quantization and Inverse

Transform

The overall architecture is shown in Figure 3-12. DQ is processed in serial for luma

and chroma because there are many all-zero 4x4 blocks which are skipped in the DQ

process. According to the experiments, many blocks are all-zero ones, so the serial

processing of luma and chroma will not influence the throughput in an actual condi-

tions. IT is processed in parallel for luma and chroma. So there are two paths for IT in

Figure 3-12.

DQ

SRAM SRAM

IT1 IT1

SRAM SRAM

IT2 IT2

FIFO

FIFOFIFO

FIFO

Figure 3-12 Architecture for the whole system.

Between DQ and IT, a buffer (QT buffer) is required to collect all the non-zero

4x4 blocks for each TU. After all the DQ results of non-zero 4x4 blocks are calculated

and written in the QT buffer, IT1 fetches the DQ data row by row. The results of IT1

are transposed before entering IT2. The results of IT2 are the final results of the sys-

tem.

The FIFO between DQ and IT1 transfers two kinds of information. One kind is

the zero-element flags, the other kind is the TU information such as TU size. The

FIFO between IT1 and IT2 also stores two kinds of information including ze-

ro-element flags and TU information. Because IT is processed in parallel for luma and

A Low-Cost System Design for De-quantization and Inverse Transform

59

chroma, there are two FIFOs between DQ and IT1 and two FIFOs between IT1 and

IT2.

3.3.1 Reordered Data Mapping Scheme for QT Buffer

The QT buffer is required to store the 4x4 blocks, so the write of QT buffer is in the

format of 4x4. However, the format of IT1 process is row by row. So if the read of QT

buffer is in the format of 4x4, an additional register-based buffer is required to change

the data format. The registers will consume about 80K and 30K gate counts for luma

and chroma, respectively. In order to eliminate the additional registers to change the

data format, SRAM is used for the QT buffer. Take TU8 as an example, without reor-

dering, the data mapping method for SRAM is shown in Figure 3-13.

00

10

20

30

04

14

24

30

Bank

Addr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

01 02 03

11 12 13

21 22 23

31 32 33

05 06 07

15 16 17

25 26 27

31 32 33

00 01 02 03 10 11 12 13 20 21 2322 30 31 32 33

0504 06 07 14 15 16 17 24 25 26 27 30 31 32 33

00

10

04

14

01 02 03

11 12 13

05 06 07

15 16 17

Write one 4x4 block
into buffer in each

clock cycle

Can only read half of
two rows from the
buffer in each clock

cycle

rc The element at the r-th row, c-th column (r,c=0,1,2...7)

Figure 3-13 Data mapping example for TU8x8 for the QT buffer without reordering.

 The coefficients of one 4x4 block are written orderly in 16 banks of SRAMs.

However, the results of two rows are in two words of one SRAM so that they cannot

A Low-Cost System Design for De-quantization and Inverse Transform

60

be fetched in one clock cycle.

Table 3-2 Data mapping method for the QT memory.

Input: TU size, sblk_x, sblk_y and n (the position of the coefficient within a 4x4 block). The

range of sblk_x and sblk_y is [0,
𝑇𝑈 𝑠𝑖𝑧𝑒

4
− 1]

Output: the corresponding bank of SRAM and the address in each bank for writing.

switch(TU size)

 case 4x4:

 Bank = n

 case 8x8:

 switch (sblk_x)

 case 0: Bank = n

 case 1: Bank = (n+8) % 16

 endswitch

 case 16x16:

 Bank = (n+sblk_x*4)%16

 case 32x32:

 Bank = (n+ (sblk_x%4)*4) % 16

endswitch

switch(TU size)

 case 4x4:

 Addr = 0;

 case 8x8:

 Addr = n/8 + sblk_y*2

 case 16x16:

 Addr = n/4 + sblk_y*4

 case 32x32:

 Addr = n/4 + (sblk_x/4)*4 + sblk_y*8

endswitch

Therefore, the writing positions are reordered to fetch the results of two rows in

one clock cycle. The mapping method is shown in the pseudo code in Table 3-2.

(sblk_x, sblk_y) are used to represent the position of the 4x4 block within the whole

TU, and they can be obtained by the Eq. (3-1).

sblk_x = x ≫ 2 sblk_y = y ≫ 2 (3-1)

A Low-Cost System Design for De-quantization and Inverse Transform

61

where x,y are the horizontal and vertical axes of any coefficient of the current 4x4

block. For the TU 2Nx2N, the range of sblk_x and sblk_y is between 0 and 2N/4 – 1.

00

10

20

30

04

14

24

30

Bank

Addr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

01 02 03

11 12 13

21 22 23

31 32 33

05 06 07

15 16 17

25 26 27

31 32 33

00 01 02 03 10 11 12 13

20 21 2322 30 31 32 33

0504 06 07 14 15 16 17

24 25 26 27 30 31 32 33

00

10

04

14

01 02 03

11 12 13

05 06 07

15 16 17

Write one 4x4 block
into buffer in each

clock cycle

Read two rows from
the buffer in each clock

cycle

rc The element at the r-th row, c-th column (r,c=0,1,2...7)

Figure 3-14 Reordered data mapping example for TU8x8 for the QT buffer.

The proposed reordered data mapping method is shown in Figure 3-14. For the

4x4 block at (0,0), DQ[n] (n=0,1,…7) belong to the first two rows of TU8, and they

are written in the first eight banks of SRAMs. For the 4x4 block at (1,0), DQ[n]

(n=0,1,…7) also belong to the first two rows of TU8, so they are written in the second

eight banks of SRAMs. By doing so, 16 DQ results of the first two rows are written in

different banks of SRAMs, thus they can be fetched in one clock cycle. For the 4x4

block at (0,1), the SRAM mapping method is the same with that for the 4x4 block at

(0,0). The only difference is that the writing address of each SRAM is two larger than

that for the 4x4 block at (0,0). For the 4x4 block at the specific (sblk_x,sblk_y), the

SRAM and address mapping method for writing is shown in the pseudo code in Table

3-2.

A Low-Cost System Design for De-quantization and Inverse Transform

62

By following the above method, IT1 can read the DQ results of one block/two

rows/one row/half row for TU4/8/16/32 in each clock cycle. It is noted that for TU32,

only half row is fetched in one cycle. So it takes two clock cycles to fetch the results

of one complete row. Registers are used to store the DQ results of half row in the first

cycle.

3.3.2 Multiple-Shape Inverse Transform Architecture

The architecture of 4-pixel-parallelsim has been introduced in Chapter 2.2. Since the

pixel parallelism for DQ is 16, the pixel parallelism for IT is also 16 in the system.

This chapter will give a multiple-shape transform architecture when the pixel paral-

lelism is 16 for all the TU sizes. The 2N-point 1D IT architecture can process one row

for TU 2Nx2N. Since the pixel parallelism is 16, four/two/one/half rows are processed

for TU4/8/16/32, respectively in each clock cycle. So four/two/one/one copies of

4/8/16/32-point 1D IT architecture are required to support all the TU sizes. By using

Chen’s algorithm, the architecture for 2N-point 1D IT can be decomposed of the odd

part and even part. The architecture of the even part is same as the N-point 1D IT ar-

chitecture. So we can reuse the even part in 2N-point 1D IT architecture for the

N-point 1D IT architecture.

The proposed overall architecture is shown in Figure 3-15 where IT_2N is the

architecture for 2N-point 1D IT. In the figure, O8, O16 and O32 mean the odd part of

IT_8, IT_16 and IT_32, respectively. The odd parts can be implemented by multipli-

cations and adders, and the detail circuits are shown in the previous chapters. In my

proposal, only one copy of IT_32, IT_8 and two copies of IT_4 are required. For TU4,

the IT_4 within the IT_32 can process one row, the IT_4 within IT_8 can process an-

other row, and the other two rows can be processed by two individual copies of IT_4.

For TU8, the IT_8 within IT_32 can process one row, and the other row can be pro-

cessed by the individual copy of the IT_8. For TU16, the IT_16 within IT32 can pro-

A Low-Cost System Design for De-quantization and Inverse Transform

63

cess one row. For TU32, IT_32 can process half row in each clock cycle.

E8

O16

B
8O8 B16

B32

P
E
R
M
U
T
A
T
I
O
N E8

E8

E8

O8

B
8

O32

M

M

M

/4

/4

/8

/8

/8

/16

/16

/8

/16

/16

/4

/4
/8

/4

/4

M /8

TU is
4x4

M

a

b
c

sel

sel: 1 c = a
sel: 0 c = b

TU is 4x4 or 8x8
TU is
not

32x32

TU is
4x4

TU4

TU8 TU16
TU32

/4

/4

/8

/16

/4

/4

/4

/4

Stage 1 Stage 2 Stage 3 Stage 4

IT8

IT16

IT32

/16

Figure 3-15 Architecture for 16-pixel-parallelism multiple-shape transform.

There are four stages in the design. When the TU size is 4x4, in the first stage, the

results of IT_4 can be calculated. In the next three stages, the results of IT_4 are se-

lected by the multiplexer and stored in the registers. It is noted that in order to save

the hardware cost of registers, the registers for transferring the results of IT_4 can be

shared with O32. It is because the bit-depth in O32 is much larger than IT_4 and O32

is not used when TU size is 4x4. So the registers in O32 can be shared to transfer the

results to the fourth stage. When the TU size is 8x8, it needs two stages to generate

the results of IT_8. We need some registers to transfer the results to the final stage.

A Low-Cost System Design for De-quantization and Inverse Transform

64

Similarly, the registers in O32 are used to transfer since O32 is not used when TU size

is 8x8. When the TU size is 16x16, it needs three stages to generate the results. In the

fourth stage, a multiplexer is used to select the results. When TU size is 32x32, it

takes four stages to generate the results and output.

It is noted that in the case of intra prediction and luma processing, Discrete Sine

Transform (DST) is used for TU 4x4, so the architecture for DST of TU 4x4 is also

individually supported.

3.4 Zero Skipping Method for SRAM-based Buffer

DQ

QT bufferZF_REG

ZF
Detect

QT_ren

Zero flag

Write/read
enable &
address

Pixel data

Zero_flag

IT1

Transpose
buffer

ZF_REG

ZF
Detect

IT2

T1T2_wen

T1T2_ren

4x4

Nx1

Nx1

1xN

1st cycle

2nd cycle

3rd cycle

4th cycle

Transfer the zero flags
through the system

Figure 3-16 Proposed system with zero skipping method.

The structure for the system has been shown in the previous chapter. There are many

zero elements in the system. So the methods for detecting zero elements and skipping

the write/read operation are presented in this chapter. The proposed system with zero

skipping method is shown in Figure 3-16. Originally, there is only one path to transfer

the pixel data through the system. DQ writes the pixel data into QT buffer. And then,

IT1 reads the pixel data from QT buffer. After IT1 is processed, the results are written

A Low-Cost System Design for De-quantization and Inverse Transform

65

in the transpose buffer. Finally, IT2 fetches the data from the transpose buffer. In the

proposed system, one path is created to detect the zero flag by reusing the pixel data,

as shown in the left path of Figure 3-16. ZF_REG means the registers to store the re-

sults of zero flags in pipelines. ZF Detect aims to detect the zero elements. However,

for the different memory operations, the zero skipping patterns are different. The de-

tail zero skipping patterns are presented in the following.

3.4.1 4x1-Row-based Zero Skipping Method for QT Buffer

This section gives zero skipping method for QT buffer. Because the smallest row size

is 4 for TU4x4, the zero pattern is defined as 4x1 that is one row of TU4x4. When

writing the DQ results of the 4x4 block in the QT buffer, four flag bits are stored in

four registers, respectively. Each flag bit can indicate whether each 4x1 row is all-zero

or not. The flag bits are stored in the registers. And the size of registers is the same as

the depth of the SRAM. So in each clock cycle, the writing address of the 4x1 row is

the same as that of the flag bit. An example of the timing diagram is shown in Figure

3-17.

W_ADDR_4x1row

W_ADDR_zeroflag

W_DATA_zeroflag

R_ADDR_4x1row

R_ADDR_zeroflag

R_DATA_zeroflag

R_EN_4x1row

„
„

BA

BA

BA

A B

CLK

Figure 3-17 An example of the timing diagram for skipping the read operation.

 The 4x1 row “A” is all-zero so that a high bit is stored in the corresponding reg-

ister, while the 4x1 row “B” is not all-zero so that a low bit is stored. When reading

A Low-Cost System Design for De-quantization and Inverse Transform

66

the DQ results from the QT buffer, the corresponding flag bit is read one clock earlier

before. The reading address of the flag bit is the same as that of the corresponding 4x1

row. If the flag bit is high which means the corresponding 4x1 row are all-zero, the

read for the 4x1 row is disabled. By doing so, the read operation of QT memory can

be skipped.

3.4.2 Row-based Zero Skipping Method for Transpose Buffer

For the write operation of the transpose buffer, the all-zero input rows can be detected

based on the results of four flag bits. For example, for TU8, two flag bits stand for one

8x1 row. If the two flag bits are both high, the corresponding 8x1 row is all-zero.

Since IT1 is processed row by row, if the input row of IT1 is all-zero, the correspond-

ing output row is certainly all-zero. Therefore, the zero flag of the IT1 input row is

transmitted to the last stage of the IT1, and disable the corresponding write operation

to the transpose memory.

For the read operation of the transpose buffer, the information of all-zero rows

cannot be directly utilized because IT1 results are fetched column by column. How-

ever, when reading the IT1 results of each column, the read for some banks of

SRAMs can still be disabled by the following scheme. Once writing the non-zero IT1

results into the transpose memory, the row number is stored in the register. And the

last non-zero row number is written in the FIFO between IT1 and IT2. Take TU16 as

an example. If the IT1 results of the below 12 rows are all zero. When reading the IT1

results of one column in each clock cycle, 12 banks of SRAM can be prevented from

reading. Only the non-zero data are fetched from 4 banks. In this case, 75% reading

activities can be saved.

In addition to saving the power of the transpose memory, the power of the pipe-

line registers in IT1 can also be saved. When the input row of IT1 is all-zero, there is

no need to do the 1D IDCT computations. Considering there are many registers in the

A Low-Cost System Design for De-quantization and Inverse Transform

67

1D IDCT computation especially for large TU, this scheme can save the switching

power consumption.

3.4.3 An Example of Zero Skipping Method

This chapter gives an example of zero skipping method for 8x8 in Figure 3-18. For

8x8, four clock cycles are required. The zero flag pattern for QT buffer is 4x1, and

four zero flags for four 4x1 rows are detected in the same clock cycle when writing

the pixel data in the QT buffer. For the read operation of QT buffer, the pixel data is in

the unit of 8x2. In the first clock cycle, the first two rows are read. The corresponding

4x1 zero flags are all 0 so that the four 4x1 rows are all read from the QT buffer. In

the second clock cycle, the 3
rd

-4
th

 rows are read. There are three 4x1 rows that are

all-zero. Therefore, the read operations of the three 4x1 rows are disabled. In the third

clock cycle, the 5
th

-6
th

 rows are read. All the four 4x1 rows are all-zero, so all the read

operations are disabled. In the fourth clock cycle, the final two rows are read. All

the four 4x1 rows are all-zero, so all the read operations are disabled.

Zero_flag

CLK

QT_ren

0
0
1
1

0
0
0
1

T1T2_wen

T1T2_ren

1
1

1
0

1

0 0

1

In unit of 8x2

In unit of 8x2

In unit of 2x8

1
1
1
1

1
1
1

0
0

1

1

0
0
0
1

0
0
1
1

1
1
1
1

1
1
1

1

An example of 8x8

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

1

0

Figure 3-18 An example for zero skipping method of 8x8.

For the write operation of transpose buffer, the pixel data is in the unit of 8x2.

A Low-Cost System Design for De-quantization and Inverse Transform

68

According to four flags of 4x1 rows, the zero 8x1 row can be detected in each clock

cycle. In the first clock cycle, the first two rows are written in the transpose buffer.

For the first two rows, because both 4x1 rows are non-zero, the write operation is

abled. In the second clock cycle, the 3
rd

-4
th

 rows are written. For the 3
rd

 row, one 4x1

row is zero and the other 4x1 row is non-zero. Therefore, the 3
rd

 row is non-zero and

the corresponding write operation is enabled. For the 4
th

 row, both 4x1 rows are zero

so it is a zero row. So the write operation is disabled. In the third clock cycle, the

5
th

-6
th

 rows are zero so the write operation is disabled, so as the final two rows in the

final clock cycle.

For the read operation of transpose buffer, the pixel data is in the unit of 2x8.

According to the results of zero flags, we can know the final non-zero 8x1 row. In the

example, the third row is the final non-zero 8x1 row. From the 4
th

 row, all the 4x1

rows are zero which means that all the rows are zero. Therefore, when reading the da-

ta from transpose buffer in the unit of 2x8, the pixels below the 3
rd

 row are not read in

each clock cycle. It is noted that for the read operation of QT buffer and the write op-

eration of transpose buffer, the 16 memory operations are all enabled or disabled in

one clock cycle. However, for the read operation of transpose buffer, the 16 memory

operations are selectively enabled or disabled in one clock cycle.

3.5 Frame-Level Worst Case

3.5.1 Required Clock Frequency for One Frame

The overall proposed system is shown in Figure 3-12. DQ writes the output to the QT

buffer from which IT reads the input data. In my design, 16 pixels are processed for

IT in one clock cycle, while 16 pixels (a SBLK) are processed for DQ in at most four

clock cycles. So the number of processing clock cycles of DQ may be larger than that

of IT, thus the pipeline stall may arise. The number of clock cycles will directly in-

A Low-Cost System Design for De-quantization and Inverse Transform

69

fluence the required frequency, so the number of clock cycles of the pipeline stall is

calculated at first.

DQ is processed in units of SBLK. For each zero SBLK, the process can be

skipped. For each non-zero SBLK, the number of clock cycles can be calculated by

the following equation where M is the number of non-zero remaining values in the

SBLK.

cyc(SBLK) = {

1, 𝑀 ≤ 4
2, 4 < 𝑀 ≤ 8
3, 8 < 𝑀 ≤ 12
4, 12 < 𝑀 ≤ 16

 (3-2)

After getting the number of clock cycles for each SBLK, the number of clock cy-

cles of the pipeline stall is calculated based on a read/write model. In the model, the

read/write of the QT buffer is executed in units of 32x32 which is the largest TU size.

For each 32x32 block, the number of clock cycles for IT is 64 (32x32/16), and the

number of clock cycles for DQ is the summation of cyc(SBLK) for all the luma and

chroma SBLKs because the luma and chroma are processed in serial for DQ, as

shown in the equation (3-3).

𝑐𝑦𝑐(𝑏32) = ∑𝑐𝑦𝑐(𝑆𝐵𝐿𝐾) (3-3)

Because QT buffer can store three 32x32 blocks, when reading the DQ results of

one 32x32 block, the DQ results of the next 32x32 block can also be written simulta-

neously. A pipeline example is shown in Figure 3-19 where writing the DQ results of

block N and reading the DQ results of block N-1 are simultaneous. For the block N, if

the number of clock cycles of DQ is not larger than 64, IT can read the DQ results

without any pipeline stalls.

In fact, even if the number of clock cycles is larger than 64, the pipeline stall

might still be avoided in some cases. Because the QT buffer can store three 32x32

blocks, when DQ results of one 32x32 block are read, DQ results of the next two

32x32 blocks can be stored. Therefore, for each 32x32 block, DQ results can start to

be stored in the buffer right after its previous block. So if the summation of the num-

A Low-Cost System Design for De-quantization and Inverse Transform

70

ber of clock cycles for the current and previous 32x32 blocks is not larger than 128,

IT can read the DQ results without any pipeline stalls for the current block. A pipeline

example is illustrated in Figure 3-20 where cyc(b32) for the block N is larger than 64

while the summation of cyc(b32) for the block N-1 and block N is not larger than 128.

In this example, for the block N, IT can read the DQ results without any pipeline

stalls.

However, if the summation of cyc(b32) for the block N-1 and block N is larger

than 128, the pipeline stall will arise. A pipeline example is illustrated in Figure 3-21.

In this example, for the block N, there is a pipeline stall for reading. The number of

clock cycles of the pipeline stall is calculated by the equation (3-4).

𝐷𝑒𝑙𝑎𝑦(𝑏32(𝑁))

= 𝑐𝑦𝑐(𝑏32(𝑁)) + 𝑐𝑦𝑐(𝑏32(𝑁 − 1)) − 128 (3-4)

After that, the number of clock cycles of the pipeline stall for one frame can be

calculated by the summation of Delay(b32) for all the 32x32 blocks, as shown in the

equation (3-5). So the number of required clock cycles for decoding one frame with

the pipeline stall is given in the equation (3-6) where PicSizeInSamplesY is the num-

ber of luma samples in one frame.

𝐷𝑒𝑙𝑎𝑦(𝑓) = ∑ 𝐷𝑒𝑙𝑎𝑦(𝑏32)𝑎𝑙𝑙 𝑡𝑒 32𝑥32 𝑏𝑙𝑜𝑐𝑘 (3-5)

𝑐𝑦𝑐(𝑓) =
𝑃𝑖𝑐𝑆𝑖𝑧𝑒𝐼𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑌

16
+ 𝐷𝑒𝑙𝑎𝑦(𝑓) (3-6)

If one frame is decoded without a pipeline stall, the number of required clock cy-

cles is 𝑃𝑖𝑐𝑆𝑖𝑧𝑒𝐼𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑌/16 and the required frequency is 250MHz for support-

ing real-time decoding of 8K@120fps. If one frame is decoded with the pipeline stall,

the required frequency becomes larger and is proportional to the number of required

clock cycles, as shown in the equation (3-7).

𝐹𝑟𝑒𝑞(𝑓) =
 𝑐𝑦𝑐(𝑓)

𝑃𝑖𝑐𝑆𝑖𝑧𝑒𝐼𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑌

16

× 250𝑀𝐻𝑧 (3-7)

A Low-Cost System Design for De-quantization and Inverse Transform

71

N

N-1 N

N

N

DQ write into buffer for the
N-th 32x32 block

IT read from buffer for the
N-th 32x32 block

……

…… ……

……

64 cycles 64 cycles

Figure 3-19 A pipeline example without a pipeline stall.

N-1

N-2 N-1

N

N

……

……

……

……

64 cycles 64 cycles 64 cycles

cyc(N-1) + cyc(N)

Figure 3-20 A pipeline example without a pipeline stall.

N-1

N-2 N-1

N

N

……

……

……

……

64 cycles 64 cycles 64 cycles

cyc(N-1) + cyc(N)

Pipeline
stall

Figure 3-21 A pipeline example with a pipeline stall.

3.5.2 Frame-Level Worst Case at MinCR

For each frame, if more bits are coded, cyc(f) becomes larger and a higher clock fre-

quency is required. So the frame with the most bits is considered as the worst case.

I-frame usually consumes much more bits than B-frame, so the first frame (I-frame)

with the largest possible number of bits is checked.

HEVC standard [1] defines NumBytesInVclNalUnits which can be regarded as

A Low-Cost System Design for De-quantization and Inverse Transform

72

the number of bytes for each frame. For the first frame, it is defined in the equation

(3-8) according to [39].

NumBytesInVclNalUnits ≤
1.5

𝑀𝑖𝑛𝐶𝑅
∗ (𝑀𝐴𝑋(𝑃𝑖𝑐𝑆𝑖𝑧𝑒𝐼𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑌,

𝑀𝑎𝑥𝐿𝑢𝑚𝑎𝑆𝑟

300
)) (3-8)

where MinCR is the minimal compression ratio defined in [1], and it is 6 for

8K@120fps. PicSizeInSamplesY is the number of luma samples in one frame, and

MaxLumaSr is the maximum luma sample rate. Therefore, the maximum bits for the

first I-frame is equal to
1.5∗8

6
∗ (𝑀𝐴𝑋(𝑃𝑖𝑐𝑆𝑖𝑧𝑒𝐼𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑌,

𝑀𝑎𝑥𝐿𝑢𝑚𝑎𝑆𝑟

300
)).

In my experiments, 13 test sequences including five 4K and eight 8K sequences

are used. For each sequence, the first frames for all the QPs are encoded, and get the

first frame whose bits are close to the maximum bits. For decoding each frame with

MinCR, the required frequency can be calculated by the method described in the last

section.

Assuming that the required frequencies of different sequences are subject to a

normal distribution, the required frequencies of 13 test sequences are used as the

samples to estimate the mean and the standard deviation of the normal distribution.

The normfit function in MATLAB is used to do the estimation and the distribution is

shown in Figure 3-22. The estimation results show that the probability for the required

frequency being less than 400MHz is well larger than 99.99%. Considering that the

samples are the required frequencies in case of MinCR, 400MHz can be regarded as

the maximum frequency for decoding one frame in the worst case. In fact, the maxi-

mum frequency of my design can achieve 400MHz, while the working frequency is

set as 300MHz because it can support the real-time decoding of 8K@120fps at the

sequence level in all practical cases. The analysis will be given in the next section.

A Low-Cost System Design for De-quantization and Inverse Transform

73

Figure 3-22 Normalized distribution estimation for the required frequency in case of MinCR.

3.6 Sequence-Level Worst Case

The last section analyzes the frame-level worst case in which the frame is compressed

in MinCR. However, for each bit stream, the bitrate cannot exceed the maximum bi-

trate (MaxBR) defined in [1]. So the number of frames with MinCR is limited. The

sequence-level worst case in which the bit rate is close to MaxBR will be analyzed in

this section.

3.6.1 Artificial Worst-Case Analysis

At first, an artificial worst-case for decoding 120 frames of 8K is shown in Figure

3-23. For the 8K sequence, if one frame is compressed in MinCR, 66355.2k

(7680x4320x1.5x8/6) bits are coded. According to the HEVC standard [1], the maxi-

mum bitrate (MaxBR) for the level 6.2 (8K@120fps) is 240000 kbps, so there are at

most three frames with MinCR in 120 frames. For decoding one frame with MinCR,

the required frequency is 400MHz while the working frequency is 300MHz, so

250 275 300 325 350 375 400 425 450
0

0.005

0.01

0.015

0.02

0.025

0.03

required frequency (MHz)

p
ro

p
a
b
ili

ty
 d

e
n
s
it
y

A Low-Cost System Design for De-quantization and Inverse Transform

74

11.11ms (
1𝑠

120
×

400

300
) is required. Compared with 8.33ms (

1𝑠

120
) by 400MHz, 2.78ms is

delayed for storing the decoded frame into a decoded picture buffer (DPB). In the

worst case, the three frames with MinCR are consecutive in the decoding order so that

the delay for storing the decoded frames into the DPB becomes the largest. Therefore,

at most 8.34ms are delayed for storing the decoded frames into the DPB. For the re-

maining 117 frames, the overall bit consumptions are 40934.5 (240000-66355.2x3)

kbits. The average bit consumptions for each frame are only 349.87 kbits which are

quite small. So the required clock frequency will be close to 250MHz. Therefore,

1.39ms (
1𝑠

120
×

300−250

300
) can be advanced for storing one decoded frame in the DPB. As

a result, after 6 frames, 8.34ms can be advanced and there will be no delay for the

subsequent frames. So the system can support real-time decoding at the sequence lev-

el even in the artificial worst case, despite a temporary delay of less than 10ms, which

can be overcome by a frame buffer between the decoder and display.

…………

120 frames

kbits
66355

350

3 frames

Figure 3-23 An artificial worst-case for decoding 120 frames of 8K.

A Low-Cost System Design for De-quantization and Inverse Transform

75

In addition to the above artificial worst case for normal sequences, the case for

white-noise image sequences is also analyzed. Because there is almost no temporal

correlation in white-noise image sequences, B-frame can consume as many bits as

I-frame, which is similar to the all intra configuration. 240000k bits will be consumed

on the 120 frames nearly on average. Therefore, about 2000 kbits are consumed for

each frame, thus the compression ratio is about 200. For the frame with such large

compression ratio (note the analyzed frame-level worst case was based on MinCR=6),

300MHz is enough for real-time decoding. Therefore, white noise image sequences

can also be decoded.

3.6.2 Practical Worst-Case Analysis

In fact, when the bit stream achieves MaxBR, each frame is rarely compressed with

MinCR in the practical case. 120 frames for 13 test sequences are encoded under the

configuration “Random-access”. For each sequence, all the QPs are traversed to find

the bit stream whose bitrate is close to 240000 kbps. It is noted that for the test se-

quence whose resolution is smaller than 8K or frame rate is lower than 120fps. The

normalized bitrate is calculated by the equation (3-9).

Normalized bitrate

= bitrate ×
8𝐾

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×

120

𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒
 (3-9)

For the first frame (usually also the frame with the largest number of bits) of the

sequence with MaxBR, the compression ratio is shown in Figure 3-24. We can see

that the compression ratios are much larger than 6 for all the cases. Therefore, it is be-

lieved that in the practical worst case with MaxBR, the frames with MinCR rarely

occur. So the proposal can support real-time decoding at the throughput of

8K@120fps in all the practical cases.

A Low-Cost System Design for De-quantization and Inverse Transform

76

Figure 3-24 The compression ratios of the first I-frames for the bit streams with maximum bi-

trate.

3.7 Experimental results

Verilog-HDL is used to implement the proposed design. The design is synthesized

with a SMIC 40nm cell library. 16 pixels are processed in each clock cycle for all the

components in the system. The operating frequency is 300MHz because it is sufficient

for processing 8K videos at 120fps. The results for the DQ, IT and system design are

given, respectively.

3.7.1 Experimental Results of Area Consumption

For DQ, 24K gate counts are consumed for the first stage, and 26K gate counts are

consumed for the second stage. The comparison of area consumption is shown in Ta-

ble 3-3. The DQ design in [37] consumed 27.7K gate counts. Since the throughputs of

the proposed design and [37] are different, so the normalized area consumption is in-

troduced to do a fair comparison. The normalized area is calculated by the Eq. (3-10).

Normalized area = Gate/(Throughput) (3-10)

0

5

10

15

20

25

30

35

40

45

50 old_town_cross(4K)

in_to_tree(4K)

park_joy(4K)

ducks(4K)

crowd(4K)

nhk_03900(8K)

nhk_04200(8K)

nhk_07500(8K)

nhk_09900(8K)

nhk_11700(8K)

nhk_14700(8K)

nhk_15300(8K)

nhk_16200(8K)

A Low-Cost System Design for De-quantization and Inverse Transform

77

Table 3-3 Comparison of area consumption for DQ.

Design Throughput Gate counts (K) Normalized Area by Eq.

(3-10) **

[37] 4K@60fps* 27.7 37.11

Proposed 8K@120fps 50 8.37

*The throughput of the whole system in [37] is 4K@30fps, while DQ in [37] can achieve

4K@60fps.

** The unit of the normalized area is 1/(M pixel/s).

In Chapter 3.2.2, a method is given to reduce the number of multipliers from 16

to 4 in each clock cycle. Without this scheme, 67K gate counts are consumed. With all

the schemes, 50K gate counts are consumed. Compared with [37], about 77% nor-

malized area consumption can be reduced. The area consumption of the other com-

ponents is shown in Table 3-4. 176K gate counts are consumed for the 1D IDCT. By

using my proposal, one copy of 16-point 1D IDCT architecture, one copy of 8-point

1D IDCT architecture and two copies of 4-point 1D IDCT architectures can be saved.

About 20% area consumption can be saved by this method. In my system, IT1 and

IT2 do not share the architecture, so two copies of 1D IDCT architecture are required.

For luma, IT1 and IT2 consume 352K (176K x 2) gate counts. The rest 71K gate

counts are consumed for memory address generator, FIFOs, control parts and pipeline

registers. For chroma, IT1 and IT2 consume fewer gate counts compared with luma.

Only 120K (60K x 2) gate counts are consumed. It is because TU32 is not supported

for chroma. The rest 49K gate counts are also consumed for the same purpose as luma.

Totally, 642K (592K + 50K) gate counts are cost for the logical part of the whole sys-

tem. Compared with [37], about 68% area consumption can be saved for the whole

system of the de-quantization and inverse transform, as shown in Table 3-5.

Table 3-4 Gate counts for the other logical components.

 1D DCT x 2 Memory address

generator

FIFOs Pipeline registers and

controls

Total

Luma 176x2 16 10 45 423

chroma 60x2 16 6 27 169

Total 472 32 16 72 592

A Low-Cost System Design for De-quantization and Inverse Transform

78

Table 3-5 Comparison of area consumption for all the logical parts in the system.

Design Throughput Gate counts (K) Normalized Area by Eq. (3-10)

[37] 4K@30fps 125.8 337.04

Proposal 8K@120fps 642 107.50

For the memory part, two buffers are required for one path of luma or chroma. For

luma, each buffer is composed of 16 banks of SRAMs, and the depth is set as the ca-

pacity of storing three complete TU32 so that the system pipeline will not be stalled.

Thus the depth is 192. The widths of each SRAM are 16 bits that can store one coeffi-

cient. For chroma, the depth is set as the capacity of storing three complete TU16 thus

the depth is 96. The two-port (1R1W) SRAM is used in my design. The memory

complier is used to generate the area. For the luma part, the total bits are 49152 bits,

and the area consumption is 88921.462 um
2
. If registers are used to store the same bits,

235339.78 um
2
 are consumed. About 63% area consumption is reduced compared

with using registers. For the chroma part, the total bits are 24576 bits, and the area

consumption is 56756.32 um
2
. If registers are used to store the same bits, 117669.89

um
2
 are consumed. About 52% area consumption is reduced compared with using

registers.

3.7.2 Experimental Results of Power Consumption

For the memory part, three write/read operations can be skipped. One is to prevent the

read operation from the QT memory. Another is to prevent the write operation to the

transpose memory. The other is to prevent the read operation from the transpose

memory. By using the three schemes, the results are shown in the following four ta-

bles. The power consumption reduction is dependent on the input bit stream. The re-

sults of different kinds of input bit streams are given. Table 3-6 and Table 3-7 give the

results under the configuration of “Random-access” and common QPs. We can see

A Low-Cost System Design for De-quantization and Inverse Transform

79

that about 86% power consumption can be reduced. Table 3-8 and Table 3-9 give the

results of the first frames when the compression ratio is 6. We can see that there are

only 29% and 34% power reduction because the ratio of zero elements is small in the

frames compressed by a small compression ratio. It is noted that for the logical part,

the switching power can also be reduced by preventing the switching activities of the

registers in the pipelines.

Table 3-6 Power consumption of memory part for Cactus under the “Random-access” and QP 27.

Scheme w/o skipping Q_T_C Q_T_C + T1_T2_P With all the skipping

Luma 45.08 31.81 18.24 6.47

Chroma 21.85 15.51 8.82 2.81

Power (mW) 66.93 47.32 27.06 9.28

Table 3-7 Power consumption of memory part for PeopleOnStreet under the “Random-access”

and QP 32.

Scheme w/o skipping Q_T_C Q_T_C + T1_T2_P With all the skipping

Luma 45.54 32.06 18.27 6.60

Chroma 22.27 15.88 9.09 2.85

Power (mW) 67.81 47.94 27.36 9.45

Table 3-8 Power consumption of memory part for Cactus of the first frame with compression ratio

6.

Scheme w/o skipping Q_T_C Q_T_C + T1_T2_P With all the skipping

Luma 42.06 38.31 35.82 33.98

Chroma 18.88 15.59 12.29 9.36

Power (mW) 60.94 53.9 48.11 43.34

Table 3-9 Power consumption of memory part for PeopleOnStreet of the first frame with com-

pression ratio 6.

Scheme w/o skipping Q_T_C Q_T_C + T1_T2_P With all the skipping

Luma 40.40 35.73 32.49 29.75

Chroma 19.10 15.86 12.73 9.93

Power (mW) 59.5 51.59 45.22 39.68

* Q_T_C is the skip for the read operation of the QT buffer.

T1_T2_P is the skip for write operation of the transpose buffer.

A Low-Cost System Design for De-quantization and Inverse Transform

80

Table 3-10 Power consumption for the components.

Component DQ IT_luma IT_chroma Memory Overall

Power (mW) 4.90 35.49 14.46 9.37 54.85

Table 3-11 Power consumption comparison with previous work.

Design Throughput Power (mW) Normalized power by Eq. (3-11)

[37] 4K@30fps 7.8 31.35

Proposal 8K@120fps 54.85 13.77

 The power consumption for the other logical parts is shown in Table 3-10. For the

memory part, the power consumption is the average value of the power consumptions

in the common test condition such as “random-access”. Overall, the power consump-

tion is 54.85 mW. The normalized power consumption is obtained by the following

equation. Compared with reference [37], the normalized power consumption can be

reduced by 56% as shown in Table 3-11.

Normalized power = power*10
9
/(Throughput) (3-11)

3.8 Chapter Summary

In this chapter, a low-cost system architecture of de-quantization and inverse trans-

form is presented. Firstly, for the de-quantization, the coefficient is decomposed to

two parts. One part is base part (baseLevel) whose value is not greater than 3 thus the

multiplication with scaling parameter can be replaced by LUT. The other part is re-

maining part and the number of positions with non-zero remaining values is usually

not greater than 4 within one 4x4 block. So the number of required multipliers is re-

duced from 16 to 4. Four multipliers can be reused in different clock cycles. Secondly,

a system with zero skipping method is created. The zero elements are detected by re-

using the pixel data. After detecting the zero elements, the read/write memory opera-

tion is skipped in order to save the power consumption. As a result, overall, for the

logical part, 68% normalized area consumption can be reduced compared with the

A Low-Cost System Design for De-quantization and Inverse Transform

81

previous work. For the whole system, 56% normalized power consumption can be

reduced compared with the previous work. For the de-quantization, the proposed ar-

chitecture can save 77% area consumption compared with previous works. For the

memory part, 29%-86% power consumption can be saved compared with not using

the zero skipping method.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

82

4. Fast Prediction Unit Depth and Prediction

Mode Selection Algorithm for HEVC Intra Pre-

diction

This chapter
3
 will reduce the number of intra modes requiring R-D cost calculation.

The position of this chapter is corresponding to the fast RDO in mode decision as

shown in Figure 4-1. The algorithms can be classified to software-oriented and hard-

ware-oriented. Since my final target is the hardware implementation, so my research

target is hardware-oriented. The major concept of the idea in this chapter is to create a

simplified cost model and reuse the results of calculated costs. This chapter is related

with the publication [3] and [12] in Page 122. Most of the previous hardware-oriented

works are based on the sequence features such as edge and gradient information. The

conceptual difference of my method is based on a proposed a low-complexity cost

model rather than sequence features.

Fast
RDO

T Q
DQ IT SSD

CABAC rate

Final
Mode

Decision

Full RDO Pass

All
modes

selected
modes

best
mode

T Q
D
Q

IT

Reconstruction loop

Figure 4-1 The position of Chapter 4 in the mode decision.

3 This chapter is related with the publication [3] and [12] in Page 122.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

83

4.1 Introduction

4.1.1 Overview of Mode Decision for Intra Prediction in HM

HEVC intra PU and prediction modes are ready shown in Figure 1-3 and Figure 1-4.

There are five PU depths and 35 prediction modes. In HEVC Test Model (HM), for

the intra prediction, not all the prediction modes require the R-D cost calculation.

Some prediction modes are filtered by a fast RDO. The numbers of selected predic-

tion modes are different for various PUs as shown in Table 4-1. For the PUs larger

than 8x8, 3 prediction modes are selected. For the other PUs, 8 prediction modes are

selected. The selection is based on SATD cost.

Table 4-1 Number of intra modes and candidate modes supported for various PUs.

PU depth # of intra prediction modes # of prediction modes requiring R-D cost

4x4 35 8

8x8 35 8

16x16 35 3

32x32 35 3

64x64 35 3

In addition, the most probable mode (MPM) derived from the intra modes of the

above and left neighboring blocks will also be added into the candidate modes. After

selecting the best prediction by comparing the R-D cost, the residual pixels can be

generated. For the residual, all the TU combinations will be traversed to code the re-

sidual. However, the TU splitting will not contribute too much to the coding efficien-

cy for the intra prediction. According to [40], when the residual quadtree (RQT) is

turned off, the average performance loss is only 0.4%. Therefore, in the intra mode

decision, the most important issue is to choose the best combination of PU and pre-

diction mode rather than the RQT. Although HM already reduces the number of PUs

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

84

and prediction modes requiring R-D cost calculation, the remaining number is still

excessive. So there are many algorithms in order to reduce the number of PU depths

or prediction modes requiring R-D cost calculation.

4.1.2 Previous Works

From H.264, there are extensive researches focused on fast RDO. For example, a di-

rectional field based approach was reported by Pan, et al. [41] in which prediction

modes are reduced according to an edge direction texture histogram. Based on that,

Wei, et al. [42] further proposed a method to reduce the computation overhead for

edge detection. Kim, et al. [43] suggested a method based on a multi-stage sequential

mode decision process to filter out unlikely candidate modes. Huang, et al. [44] pro-

posed a variance-based algorithm for block size decision and an improved filter-based

algorithm for prediction mode decision. Tian, et al. [45] proposed a fast block type

decision algorithm based on the entropy feature.

However, most of the above algorithms for fast mode and block size decision

were designed for H.264/AVC, which cannot be directly applied in HEVC due to the

distinctions in block types and angular prediction modes. Several latest proposals

have been reported to reduce the complexity of HEVC intra prediction. [7] developed

the relationship between texture and R-D cost for depth selection and use hadamard

transform rather than DCT for PU mode selection. Chen et al. [51] executed chroma

prediction in advance to generate a depth map, and thereby reduced the complexity of

luma prediction. Wallendael et al. [52] exploited the neighboring intra modes to ob-

tain a prioritization of the different modes. Similarly, Zhao et al. [53] made use of

neighboring prediction information to eliminate unlikely angular modes. Jiang et al.

[54] calculated the gradient directions and generated a gradient-mode histogram to do

the fast mode decision. Motra et al. [55] used direction information of the co-located

neighboring block of previous frame along with neighboring blocks of current frame

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

85

to speed up intra mode decision. Silva et al. [56] calculated the predominant orienta-

tion of the edge of the current PU pixels to reduce the number of evaluated angular

modes. Zhang et al. [57] presented a gradient-based fast decision algorithm for pre-

diction unit size selection and mode selection. Xiong et al. [58] used the

non-normalized histogram of oriented gradient (n-HOG) to select CU size. Gweon et

al. [59] can reduce the computational complexity by using the signaling information

coded_block_flag (cbf) in the HEVC syntax. If cbf is zero after encoding a PU parti-

tion, the next PU process of encoding the CU can be eliminated. Gweon et al. [59] can

only be used in P or B slices. And it has already been included in HEVC Test Model

(HM) 7.0. Yao et al. [60] used the bit number difference between the most probable

mode (MPM) and non-MPM to do the early decision for the intra mode selection.

Wang et al. [61] exploited the Otsu’s method to calculate the texture complexity of the

largest coding unit and then filter some coding units. Liu et al. [62] selected some

coding units based on the texture complexity, and then selected the modes for each

unit based on the texture direction. Park et al. [63] used the temporal correlation

among frames to skip some unlikely units. In [64], all the modes are clustered in K

groups for the mode selection. Shang et al. [65] utilized the depth information of

neighboring units and the mode information of larger units to do the unit and mode

selection. Lim et al. [66], Kim et al. [67] and Cho et al [68] presented a fast coding

unit partitioning algorithm based on Bayesian decision rule. In [69], some homoge-

nous coding units are terminated in the first step, and then the linear support vector

machines (SVMs) are used to do the early coding unit split and termination decision.

Liu et al. [70]-[71] and Yu et al. [72] are creative works which used the convolution

neural network to do the mode decision. Min et al. [73] calculated the global and local

edge complexities in four directions to decide the coding unit partition. Chen et al.

[74] presented a fast mode and depth decision algorithm based on edge detection and

reconfiguration. Zhao et al. [75] detected the dominate direction of the coding unit by

calculating the discrete cross differences and then select some modes. Gweon et al.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

86

[76] terminated the PU partitions when there exists a PU with coded block flag (CBF)

being 0. Hu et al. [77] changed the intra mode selection problem to a Bayesian deci-

sion problem. Shen et al. [78] used the information in spatially nearby coding units

and different depth levels to skip some specific depths. Tseng et al. [79] studied the

statistical relationships of coding unit to the standard deviation of the pixels in the

largest coding unit and R-D cost and then conducts the depth and prediction mode se-

lection. Chen et al. [80] developed two kinds of classifiers. One is to categorize the

depth to split, indistinct and non-split. After that, for the indistinct category, another

classifier is used to distinguish the split or non-split. Hu et al. [81] terminated the

splitting by a logistic regression classifier. In order to obtain the coefficients for the

logistic regression classifier, an offline training scheme is developed. Kim et al. [82]

exploited some key points in the picture such as the difference of Gaussian and then

do the CU depth decision. Geuder et al. [83] developed a descriptor to investigate the

pixel pair differences and then the number of differences is compared with the thresh-

old to do the block size decision. Shang et al. [84] used the depth information of

neighboring CUs to early terminate the CU splitting and used the correlations between

the prediction mode of higher depth and current depth to terminate some prediction

modes. Radosavljević et al. [85] detected the local image characteristics and use the

histogram matching of two neighboring CU depths to do the split decision. Du et al.

[86] utilized the random forests to decide whether the current CU depth should be

skipped or terminated. Rhee et al. [87] developed the relationship between the for-

ward and backward directional prediction and skip the backward prediction when the

minimal cost of forward directional prediction and merge mode is smaller than a

threshold. Goswami et al. [88] terminated the unit splitting based on the results of

R-D costs of the higher and current levels. Shen et al. [89] extracted some features

and did the CU level decision based on the Bayesian decision rule. Shen et al. [90]

filtered some depths which are rarely used in the previous frame and neighboring

units. Huang et al. [91] filtered some depths by utilizing the depth information of spa-

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

87

tial and temporal units. Different from the other works, Jiang et al. [92] took the mo-

tion consistency into consideration for the CU depth decision.

Many good works on fast RDO have been introduced in the above. In fact, they

can be classified into software-oriented algorithm and hardware-oriented algorithm.

For the hardware-oriented algorithms, there are two properties. One is to achieve the

block-level complexity reduction. In HEVC, the largest coding block is 64x64, so a

stable complexity reduction for 64x64 should be achieved. For example, [68] required

updating the parameters periodically. For the frames with parameter updating phase,

the encoding is conducted as origin. Therefore, the complexity reduction cannot be

ensured for each 64x64 block. The second property is that the algorithm should be

convenient to be implemented in hardware. Some intricate mathematical models such

as Bayesian decision rule in [66]-[68] can contribute to the precise estimation accura-

cy for the rough mode decision. However, Bayesian decision rule is not friendly for

the hardware implementation due to the high computation. In the previous works, [7],

[56]-[58], [70], [72], [74] and [75] satisfy the above two conditions for being the

hardware-oriented methods and they are very representative works. [57], [70] and [72]

mainly focused on the reducing the number of R-D cost calculations by filtering the

PU depths. [56], [74] and [75] reduced the complexity by reducing the number of

prediction modes within each depth.

4.1.3 Research Target

My research target is the hardware-oriented algorithm. In the previous hard-

ware-oriented works, there are still several problems. In [57] and [75], the perfor-

mance loss is so large that the BD-bitrate is more than 3%. [70]-[72] are the latest

works focusing on reducing the number of depths. The works are quite creative and

full of novelty. However, the computation of convolutional neural network is still a

little bit high. [74] outperformed [56] in terms of both coding efficiency and encoding

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

88

time reduction. However, the PU depth selection’s contribution to the complexity re-

duction is a little bit limited. In my method, the target is to reduce the number of PU

depths need full RDO. The difference with the previous work is that all the previous

works use the image information such as edge, gradient and texture while my method

is based on a proposed simplified cost model.

4.2 Proposed Algorithm for PU Depth Selection

4.2.1 Proposed Low-Complexity Cost Model

Although the R-D cost is nearly optimal, intra mode decision involve huge computa-

tional complexity, making it unsuitable for pre-processing. It is therefore useful to

start with a simpler Hadamard cost function and reduce its complexity by using two

schemes.

 Firstly, original pixels rather than reconstructed pixels can be utilized to compute

the sum of the absolute transformed differences (SATD). In the pre-processing part,

the mode decision part has not been finished, so the reconstructed pixels cannot be

used. By using the original pixels, the estimated SATD cost can be calculated to sup-

port the proposed PU size and mode selection algorithm, which is beneficial to the

complexity reduction. Using original pixels can also eliminate the reconstruction pro-

cess and reduces critical data dependency in the reconstruction loop, which makes

implementation of parallel design for hardware or software easier.

 The HEVC behavior uses the reconstructed pixels of the neighboring PUs as the

neighboring pixels to compute the SATD for the current PU. In my proposal, after the

pre-processing, some PUs (depths) and modes can be filtered. For the remained PU

depths and modes, the reconstructed pixels are also used to do the fine-processing in-

cluding the R-D cost calculation.

 An SATD cost vector (CVSATD) is employed to calculate the SATD of each PU.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

89

Each CVSATD is composed of at most 35 elements and each element is the estimated

SATD for each mode. After it obtains the CVSATD of a PU, the minimum element es-

timates that PU’s minimum SATD.

 The second scheme involves reducing the number of SATD calculations. The

CVSATD of only the 8 × 8 PU are obtained by means of complete calculations. After

this, rather than calculating the CVSATD for the larger PUs, the existing 8 × 8 CVSATD

is used to estimate these values. For instance, the CVSATD of a 2N × 2N (N = 8, 16)

PU can be estimated by summation of the CVSATD of the leaf 8 × 8 PUs. Eq. (4-1) and

(4-2) show the estimation method, j means the specific larger 2N × 2N (N = 8, 16) PU

while i represents the corresponding specific leaf 8 × 8 PU. Considering that the 64 ×

64 depth cannot bring any gain, this depth is split without any processing. So there is

no need to compute CVSATD for PU 64 × 64.

 𝐶𝑉𝑆𝐴𝑇𝐷32
𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = ∑ 𝐶𝑉𝑆𝐴𝑇𝐷8

𝑖+16∗𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑗 = 0,1,2,3)15
𝑖=0 (4-1)

 𝐶𝑉𝑆𝐴𝑇𝐷16
𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = ∑ 𝐶𝑉𝑆𝐴𝑇𝐷8

𝑖+4∗𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑗 = 0,1,2, … ,15)3
𝑖=0 (4-2)

After applying the estimation, the SATD cost can be rewritten as:

JHAD=SATD’+∆E +λ∙R (4-3)

Here SATD’ is the estimation to SATD with △E being the estimation error. Note that

SATD’ is usually smaller than SATD since the former is from the prediction based on

small blocks which utilizes reference pixels nearer and therefore more likely to be

closer to the current pixels. As a result, △E tends to be positive. In additional, △E in-

creases with PU size 2N, since the estimation of SATD’ is performed from lower 8x8

depth to higher 2Nx2N depths, while the error also accumulates.

In (4-3), is closely related to QP. In deciding the mode between PU depths, R

indicates coding bits that involve information for PUs of size 2N, as larger PUs in-

volve less mode information to be written to the bit rate.

 Considering the strong relations between △E and 2N, and between λ∙R and 2N

together with QP, (△E + λ∙R) can be estimated as a function of 2N and QP, so that:

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

90

 ' (,2)HADJ SATD f QP N (4-4)

 In HM, whether a 2Nx2N is divided into four NxN or not is determined by the

cost of adjacent PU depths recursively. Based on approximate Hadamard based cost

shown in equation (4-4), the cost of split or not for a 2Nx2N is shown as follows:

 𝐽𝑛𝑜𝑛−𝑠𝑝𝑙𝑖𝑡 ≈ 𝑆𝐴𝑇𝐷2𝑁
′ + 𝑓2𝑁(𝑄𝑃, 2𝑁) (4-5)

 𝐽𝑠𝑝𝑙𝑖𝑡 ≈ ∑*𝑆𝐴𝑇𝐷𝑁
′ + 𝑓𝑁(𝑄𝑃,𝑁)+ (4-6)

where ∑ means the sum of JHADAMARD for individual split NxN. 2 ' 'N NSATD SATD is

defined as ∆C2N, and then the determination condition for splitting 2Nx2N is shown

as follow:

2 2

2 2

2 2 , (,) (,2) (,2)

2 2 , (,) (,2) (,2)

N N N

N N N

nonsplit Nx N C f QP N f QP N T QP N

split Nx N C f QP N f QP N T QP N

 (4-7)

where T(QP,2N) is considered as a threshold, which is a function of QP and PU size

2N.

4.2.2 Training Method for Obtaining Thresholds

Theoretically, the optimal threshold can be obtained by training as shown in Figure

4-2. The threshold combination with best coding efficiency should be the optimal one.

However, for each round of the training process, a complete encoding process has to

be gone through which is computationally intensive. In addition, a total of 2 thresh-

olds are involved, which results in huge number of combinations of thresholds. This

may not be reasonable in practical use.

 Here a fast training method is presented. The original criterion for the optimal

thresholds is to minimize the rate distortion. Alternatively, the target is at the closest

decision results as HM. By taking HM’s decision on whether one 2Nx2N depth is

split or not as the “correct” choice, the aim is to get a set of thresholds that minimize

the “error” rate. For this purpose, a data statistic component is incorporated into HM

for offline training of ∆C2N for the split determination of each 2Nx2N depth, and the

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

91

corresponding determination results. Figure 4-3 plots the normalized probabilities (NP)

of split and non-split CUs under different ∆C2N. Normalized probability (NP) is plot

for each ∆C2N value by using:

split

0

(delta_cost)
NP (delta_cost)=

()

split

spliti

M

M i

 (4-8)

nonsplit

0

(delta_cost)
NP (delta_cost)=

()

nonsplit

nonspliti

M

M i

 (4-9)

Encoding according to the
assumed thresholds

Threshold (QP,32)
Threshold (QP,16)

bitrate

Thresholds adjustment based on
approach algorithm

psnr

Figure 4-2 Theoretical method to get the best thresholds.

Figure 4-3 NP curve for sequence BQMall (QP=32,2N=16,”intra main”).

 Msplit (i) is the number of 2Nx2N PUs which has ∆C2N equal to i and takes the

“split” decision in HM. Correspondingly, Mnonsplit (i) is the number of 2Nx2N PUs

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

92

which has ∆C2N equal to i and takes the “nonsplit” decision. When ∆C2N is small,

there are many PUs sampled for each ∆C2N value, so the statistical dispersion of

NPsplit and NPnonsplit is small, which results in a relatively smooth interval of the curve.

On the contrast, when ∆C2N grows higher, the number of PUs for each ∆C2N becomes

much smaller. It is the lack of statistical samples that leads to the severe variations of

the curves. In spite, the trends of the curves are still quite clear to support the pro-

posed model.

 From Figure 4-3, it can be seen that CU is more likely to be non-split for small

∆C2N, while the NP of being split increases as ∆C2N increases. These trends conform

to the assumed decision mechanism described in (4-7). The combined error rate of the

conditional probabilities P(split|∆C2N) and P(non-split|∆C2N) can be defined as:

2 2

2 2

0

() (|) (|)

N N

T

N N

C C T

E T P split C P non split C (4-10)

where E denotes error rate and T is the threshold.

 Therefore, the threshold which can satisfied with 0
dE

dT
 and

2

2
0

d E

dT
 is the best

threshold which can also be regarded as the intersection of two curves.

 Then for each 2Nx2N PU, if ∆C2N is larger than the off-lined trained threshold, it

is considered that it should split to NxNs. Otherwise, 2Nx2N PU size is suitable for

encoding this 2Nx2N depth.

 Following this approach, for each sequence and QP value in the training set, only

one encoding iteration is required to get a whole set of thresholds. Although this may

not ensure the optimum results as the method in Figure 4-2 provides, the complexity

is much more reasonable.

4.2.3 Summary of Proposed PU Depth Selection Algorithm

Generally, there are 4 CU depths from 64x64 to 8x8. For depth of 8x8, there are two

kinds of PUs which are 8x8 and 4x4. The filtering judgment for each depth can be

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

93

obtained according to the decision mechanism in (4-7), based on ∆C2N acquired in the

fast pre-processing (FP) stage together with already offline trained T(QP,2N). How-

ever, the FP system is based on fast Hadamard cost, while the optimal criterion is R-D

cost. Therefore, only some unfiltered PUs in FP system are required to calculate R-D

cost to make the final decision of coding structure.

 If 2Nx2N depth is not filtered in FP, 2Nx2N PU is likely to be suitable for pre-

dicting the current CU depth in R-D cost based criterion, so that it is required to cal-

culate the R-D cost of this 2Nx2N PU. Considering the risk of missing the best coding

structure generated by smaller PUs, the R-D cost generated by the smaller PUs is used

to compare with the R-D cost of 2Nx2N PU. The R-D cost by the smaller PUs is de-

fined as the sum of R-D cost of four split NxN PUs. By the comparison of the R-D

costs of the neighboring 2 PU depths, the branch structure of the current 2Nx2N is

constructed as either itself or the four splits of it. This situation is shown in the right

case in the Figure 4-4.

2Nx2N

2Nx2N is filtered in FP

Split to NxN level
Calculate R-D cost by

2Nx2N PU

Yes No

Calculate sum of R-D
costs by 4 NxN PUs

Best Coding Tree
(BCT)

NxN

Recursively
process four NxN
units one by one

LCU

Figure 4-4 Prediction Depth selection algorithm.

 Otherwise, 2Nx2N PU is decided to be filtered in FP, the fine processing includ-

ing R-D cost for this PU is eliminated and directly split to the lower NxN and process

four NxN PUs recursively, which is shown in the left case of the Figure 4-4.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

94

 For one LCU, all the filter-flag for each depth can be achieved by the FP. Then

the process is from largest CU to smallest CU. Starting from LCU (64x64), each

2Nx2N depth is processed recursively as Figure 4-4 shows. The final structure by this

PU size selection scheme is still based on the generic quadtree. However, only two

neighboring depths need detail R-D cost calculation to get each leaf, while all the five

PU depths has to be gone through in HM.

4.3 Proposed Algorithm for Prediction Mode Selection

After doing the PU depth selection, some unlikely R-D cost calculations can be fil-

tered. However, for some remaining PU depths such as 32x32, 16x16 and 8x8, all the

35 intra modes have to be gone through by calculating Hadamard-based cost to select

the candidate modes, as shown in Table 4-1. It will cost large computation. Therefore,

the target is to reduce the number of modes supported for Hadamard-based cost com-

putation.

 In the process of the pre-processing, CVSATD can be obtained for each 2Nx2N PU

(N=4, 8, 16) according to the equation (4-1) and (4-2). Despite the element of CVSATD

represents the SATD’ by original pixels quickly, it can still be utilized to reflect the

relative value of precise Hadamard cost in the case of different modes. The modes

having a smaller SATD’ are mostly likely to incur smaller Hadamard cost. In order to

reduce the complexity of this approach, the modes with the smallest SATD’ are used

as candidates. In this way, the precise Hadamard calculation stage can be eliminated.

The number of candidate modes left by the mode selection is 8, 3 and 3 for 8x8,

16x16 and 32x32 PU, respectively. Since no CV is calculated for 4x4 PU in prepro-

cessing, the mode selection process does not apply to 4x4 PUs.

 It has to be noted that the most probable mode (MPM) is not ignored in the pro-

posals. After 3 or 8 modes are selected at first by the mode filtering algorithm, MPMs

are also added for the final R-D cost evaluation. The flowchart of this proposed

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

95

method is shown in Figure 4-5.

Figure 4-5 Mode selection algorithm.

4.4 Proposed 32x32 PU Compensation Strategy

The largest TU size supported in HEVC can be 32x32. By using large TUs, a large PU

(32x32 PU) can benefit a lot in terms of R-D cost, especially in high resolution se-

quences. However, this advantage will not be reflected in fast pre-processing (FP),

which always estimates the 8x8 SATD costs, since the largest SATD supported by

HM is 8x8. Therefore, this 32x32 PU compensation strategy is proposed to compen-

sate some 32x32 PUs.

b0 b1

b2 b3

b0 b1

b2 b3

b0 b1

b2 b3

b0 b1

b2 b3

LCU(CTB)
32x32 block always

compensate 32x32 PU

32

32x32 block selectively
compensate 32x32 PU

Figure 4-6 Four 32x32 blocks in one CTB.

 One LCU (CTB) can be divided to four 32x32 CUs as shown in Figure 4-6. To

Hadamard cost
of 35 modes

HM

RD cost RD cost

Pre-processing

3 or 8
candidate

modes

3 or 8 modes with
smallest elements

in CV

Mode filtering

CV
Generation

Fine-processing

Add MPMs Add MPMs

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

96

solve the above problem, a 32x32 PU compensation strategy can be applied to b0 and

b3. For the b1 and b2, some filtered 32x32 PUs in FP can then be selectively com-

pensated based on the spatial features of adjacent b0 and b3.

b0
(b3)

32x32 is filtered in FP

Extra 32x32 PU

compensation

PU size selection
(section 4.1.3)

Best Coding Tree
(BCT)

Yes No

Figure 4-7 32x32 PU compensation strategy for b0 and b3.

b1

Either top b3 or left b0 has
32x32 BCT

Best Coding Tree
(BCT) for b1

Yes No

32x32 is filtered in FP
YesNo

Extra 32x32 PU
compensation

PU size
selection

(section 4.1.3)

Figure 4-8 32x32 PU compensation strategy for b1 and b2.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

97

 Figure 4-7 shows the 32x32 PU compensation scheme for b0 and b3. Even if the

32x32 PU is filtered by the FP system, this PU will be fine-processed additionally. In

this manner, it can be always determined whether 32x32 PU is the best coding struc-

ture for each b0 and b3 by comparing the R-D cost calculation.

 For b1 or b2, if its 32x32 PU is filtered in pre-processing, the compensation

strategy will be taken into account. The compensation strategies for b1 and b2 are the

same, as shown in Figure 4-8.

 When processing each b1 or b2, their left and top neighboring 32x32 CUs have

already been processed. So it can refer to the best coding tree of the left and top

neighboring CU. If one of its neighboring CU (left or top) selects the best coding

structure as 32x32, then the 32x32 PU should calculate R-D cost for this current CU

(b1 or b2). The reason is that the current CU is more likely to select 32x32 as the best

coding structure if its neighboring CU has already chosen 32x32 as the best coding

structure. This case is shown in the middle path of Figure 4-8. In the other cases (left

and right path), it will follow the depth selection method in Section 4.2.3.

4.5 Experimental Results

4.5.1 Threshold Training Results

Based on test conditions recommended for HM, the test sequences were divided into

five classes according to the resolution. For each class, one sequence was selected to

perform the fast threshold training detailed in Section 4.2.2. These training sequences

are listed in Table 4-2, and the rest sequences are used as testing sequences. For each

sequence, four QP values were used: 22, 27, 32 and 37. As shown in (4-7), the thresh-

old was based on both the CU size (2N) and the QP value. After obtaining the

T(QP,2N) combinations from all the training sequences, the average T(QP,2N) of two

low resolution (LR) training sequences (BQMall and RaceHorses) are calculated ac-

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

98

cording to the corresponding QP and 2N. After that, the polynomial fitting (degree is

one) is done for all the QP values by MATLAB to generate the threshold combina-

tions for LR (Class C&D). The method to gain the threshold combination for HR

(Class A&B&E) is the same while the training sequences are Traffic, Cactus and

KristenAndSara. T(QP,32) and T(QP,16) finally adopted are listed in Table 4-3 and

Table 4-4, respectively. We can see that the T(QP,32) adopted for low resolution is

small. Thus, with smaller T(QP,32), more 32x32 will be split for the low resolution.

This training result is quite reasonable considering that the 32x32 is always split for

the low resolution in original HM.

Table 4-2 Training and testing sequences.

Training

sequences
Traffic, Cactus, BQMall, RaceHorses, KristenAndSara

Testing se-

quences

PeopleOnStreet, Nebuta, SteamLocomotive, Kimono, ParkScene, BQTerrace, Basket-

ballDrive, RaceHorses, PartyScene, BasketballDrill, BQSquare, BlowingBubbles,

BasketballPass, FourPeople, Johnny

Table 4-3 T(QP,32) finally adopted with various QPs.

QP High Resolution Low Resolution

22 285 102

27 293 111

32 301 119

37 309 128

Table 4-4 T(QP,16) finally adopted with various QPs.

QP High Resolution Low Resolution

22 200 101

27 213 134

32 226 167

37 240 200

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

99

4.5.2 Coding Performance of Proposed Algorithm

The proposed algorithms were integrated with HM 7.0 [93]. The common test condi-

tion “Intra, main” recommended in [94] is adopted. The simulation was performed on

a six-core, 3-GHz Intel Xeon-based server. In the experiment, entire sequences for all

five classes are coded. The results of these assessments, in which the bit-rate were

measured for QPs of 22, 27, 32, and 37 using Bjontegaard’s method [95], are listed in

Table 4-5. The time reduction is evaluated as follows:

Time= 100%

proposed HM

HM

Encoding time Encoding time

Encoding time
(4-11)

 Table 4-5 Performance comparison by all the proposed algorithms.

 Proposed Algorithm

Class Sequence
△Time

[%]

BD-bitrate

[%]

BD-psnr

[dB]

Class A

(4k)

PeopleOnStreet -47.85% 2.30 -0.1298

Nebuta

-41.99% 1.54 -0.1124

SteamLocomotive -48.35% 0.70 -0.0424

Class B

(1080p)

Kimono -59.39% 0.87 -0.0313

ParkScene -54.98% 2.06 -0.0881

BQTerrace -51.47% 1.54 -0.0952

BasketballDrive -62.53% 2.59 -0.0619

Class C

(WVGA)

RaceHorses -53.32% 1.82 -0.1159

PartyScene -48.92% 1.30 -0.1021

BasketballDrill -55.96% 3.12 -0.1479

Class D

(WQVGA)

BQSquare -48.72% 1.16 -0.1023

BlowingBubbles -46.29% 1.20 -0.0717

BasketballPass -53.72% 2.28 -0.1303

Class E

(720p)

FourPeople -49.95% 2.43 -0.1407

Johnny -56.64% 3.09 -0.1256

Average -52.01% 1.87 -0.0998

 As shown in Table 4-5, the proposed algorithm achieves an average of 52% en-

coding time saving with the performance loss being less than 1.9%, which can be

considered acceptable. For different sequences, stable complexity reduction can be

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

100

achieved. We can see that at least 41% complexity can be reduced, with sequence

Nebuta. In addition, a quite stable complexity reduction can be achieved for different

sequences within each resolution.

 The effect of mode selection scheme is shown in Table 4-6. Without the mode se-

lection, about 48% time reduction can be achieved with BD-bitrate about 1.8%. Mode

filtering is not as effective as PU depth selection in terms of the complexity reduction.

The reason is that mode filtering can reduce the complexity of Hadamard cost while

the PU depth filtering can reduce the number of PU depths with R-D cost calculation.

R-D cost takes the majority of encoding complexity. Even so, the mode filtering can

still achieve 5% more complexity reduction with almost no performance loss.

Table 4-6 The effect of the mode selection.

 Proposed Algorithm w/o Mode Selection

Class Sequence
△Time

[%]

BD-bitrate

[%]

BD-psnr

[dB]

Class A

(4k)

PeopleOnStreet -43.50% 2.20 -0.1237

Nebuta

-38.18% 1.53 -0.1112

SteamLocomotive -43.59% 0.67 -0.0406

Class B

(1080p)

Kimono -53.59% 0.76 -0.0268

ParkScene -50.07% 2.16 -0.0925

BQTerrace -47.24% 1.55 -0.0959

BasketballDrive -57.11% 2.15 -0.0515

Class C

(WVGA)

RaceHorses -49.34% 1.79 -0.1131

PartyScene -45.95% 1.35 -0.1067

BasketballDrill -51.61% 3.13 -0.1488

Class D

(WQVGA)

BQSquare -45.42% 1.15 -0.1016

BlowingBubbles -43.07% 1.12 -0.0673

BasketballPass -49.29% 2.19 -0.1245

Class E

(720p)

FourPeople -45.25% 2.30 -0.1335

Johnny -51.43% 2.65 -0.1074

Average -47.64% 1.78 -0.0963

 By using the PU size selection method presented in section 4.2.3, only two PU

depths need fine-processing. After adopting the 32x32 compensation strategy pro-

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

101

posed in section 4.4, only two or three PU depths need fine-processing including R-D

cost calculation. To further verify the effectiveness of my algorithms, my proposals

are compared with the fixed two or three PU depths. The comparison result is shown

in Table 4-7. Almost all the combination of fixed two or three PU depths cannot get

the better coding efficiency than my algorithms. The fixed three PU depths (16&8&4)

can achieve almost the same coding efficiency as my algorithms and it can achieve

the BD-bitrate of 2.12%. However, my algorithm is much more attractive in terms of

encoding time reduction (-52.01% vs. -16.49%).

Table 4-7 Performance comparison with the fixed two and three PU depths.

Fixed two and three PU depths △Time[%] BD-bitrate[%]

64&32 -66.75% 16.18

32&16 -62.37% 10.52

16&8 -51.71% 5.48

8&4 -34.77% 8.90

64&32&16 -48.46% 10.42

32&16&8 -35.16% 3.31

16&8&4 -16.49% 2.12

Proposed -52.01% 1.87

 Table 4-8 shows the performance comparison with all the hardware-oriented pre-

vious works. △Tc means the encoding time reduction from the coding depth selection

and △Tp means the encoding time reduction from the prediction mode selection. △T is

the overall encoding time reduction. From the table, we can see that [56] and [74] are

focused on prediction mode selection. Compared with [74], 10% more encoding time

reduction can be achieved. However, the BD-bitrate becomes 1.2% larger. Compared

with [56], 32% more encoding time reduction can be achieved while the BD-bitrate

becomes 1.0% larger. The rest of the references in Table 4-8 are focused on depth de-

cision. Compared with the references of [7], [57], [70], [72] and [75], the coding effi-

ciency is better while they can achieve 5%-15% more encoding time reduction. Com-

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

102

pared with [58], about 15% more encoding time reduction can be achieved with al-

most the same coding efficiency.

 About the feature of my design, most of the previous works calculate edge or gra-

dient for the depth or mode decision. A low-complexity SATD-based cost model is

created and the fast depth decision is conducted based on proposed cost model rather

than edge or gradient information.

Table 4-8 Performance comparison with previous work.

Proposed Algorithm △Tc △Tp △T
Maximum

BD-bitrate [%]

Average

BD-bitrate[%]

[7] 62 0 62 6.73 4.53

[56] 0 20 20 2.96 0.9

[57] 52 5 57 7.00 5.10

[58] 38 0 38 2.28 1.25

[74] 14 28 42 0.9 0.66

[75] 0 67 67 8.35 3.92

[70]* 61 0 61 5.01 2.67

[72]* 61 0 61 5.72 3.39

Proposal 47 5 52 3.12 1.87

* After the publication of my proposal

 To compare with [59] (HM7.0), the experiments are done based on the common

test condition “lowdelay, main” and “randomaccess, main” which is recommended in

the common test condition. And the function (Cbf fast mode setting) for [59] is turned

on in HM7.0 during this experiment. Since my algorithm aims to the early termination

for intra prediction, the results are compared with HM7.0 in terms of encoding time

for intra prediction and bit-rates.

 The results are shown in Table 4-9. By using the common condition “lowdelay,

main”, average 56% intra encoding time can be reduced and the average BD-bitrate is

only 0.88%. Under the common condition “randomaccess, main”, about 51% intra

encoding time can be saved while the performance loss is only 1.44% in average.

For the common test sequences in HM, the effect to high resolution (Class

A&B&E) is shown in Table 4-10. The sequence Nebuta, SteamLocomotive, Kimono

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

103

and Johnny can benefit a lot from this compensation. This was because using a large

PU (32x32 PU) contributed significantly to the coding efficiency of these sequences.

It can be concluded that the proposed strategy is really effective to improve perfor-

mance considerably at high resolution.

Table 4-9 Performance comparison with [59].

 Lowdelay, main Randomaccess, main

Class △Intra Time BD-bitrate

[%]

△Intra

Time

BD-bitrate

[%]

A -47.24% 0.89 -46.18% 1.54

B -48.73% 0.86 -52.55% 1.24

C -58.81% 0.99 -58.48% 1.61

D -66.47% 0.48 -44.33% 0.98

E -57.70% 1.31 -50.18% 2.12

Average* -56.24% 0.88 -50.94% 1.44

* the average is the average value of all the test sequences given in the common test condition

Table 4-10 The effect of 32x32 PU compensation strategy to high resolution sequences.

 Proposed Algorithm
Proposed Algorithm

w/o 32x32 PU Compensation

High resolution BD-bitrate[%] BD-psnr[dB] BD-bitrate[%] BD-psnr[dB]

PeopleOnStreet 2.30 -0.1298 2.79 -0.1569

Nebuta 1.54 -0.1124 9.20 -0.6427

SteamLocomotive 0.70 -0.0424 9.78 -0.5695

Kimono 0.87 -0.0313 8.38 -0.2952

ParkScene 2.06 -0.0881 2.94 -0.1252

BQTerrace 1.54 -0.0952 1.82 -0.1121

BasketballDrive 2.59 -0.0619 3.39 -0.0814

FourPeople 2.43 -0.1407 3.04 -0.1755

Johnny 3.09 -0.1256 6.41 -0.2571

Average 1.90 -0.0919 5.31 -0.2684

4.5.3 Analysis for the Coding Performance

The overall results are shown in Table 4-5. We can see that for some specific se-

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

104

quences such as BasketballDrive and Johnny, the performance loss is large. The rea-

son will be analyzed in this chapter.

Figure 4-9 The 1
st
 frame of Traffic.

Figure 4-10 The 1
st
 frame of Cactus.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

105

Figure 4-11 The 1
st
 frame of BasketballDrive.

Figure 4-12 The 1
st
 frame of Johnny.

As shown in Eq. (4-7), the threshold is used to do the depth selection and it is a

function of QP and 2N. The function includes the bit part thus the threshold is used to

partially compensate the bit part. However, for different sequences, the required bits

are different. If the bits for the training sequences are obviously different from the

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

106

testing sequences, the trained threshold may not be suitable for the testing sequences.

For the high resolution, the training sequences are Traffic, Cactus and KristenAndSara.

The 1
st
 frame of Traffic and Cactus are shown in Figure 4-9 and Figure 4-10. We can

see that Traffic and Cactus are the sequences with complex textures since there are no

large backgrounds and there are many objects. Therefore, more bits are required.

Compression ratio is adopted to reflect the number of coded bits and it is about 28 for

Traffic and 24 for Cactus. Among the test sequences, BasketballDrive and Johnny are

the sequences with simple textures. The 1
st
 frame of BasketballDrive and Johnny are

shown in Figure 4-11 and Figure 4-12. We can see that there are many simple textures

in the background of picture. For BasketballDrive, the wall and ground have simple

textures. For Johnny, the blue board has simple textures. The encoding results show

that the compression ratio reaches 60 for the two sequences. As a result, for the se-

quence with simple textures, the trained thresholds may not be appropriate for the

depth decision and lead to large coding performance loss.

In order to prove my assumption, the coding results of Johnny and BQTerrace are

analyzed. The BD-bitrate of Johnny is as large as 3.09% while the BD-bitrate of

BQTerrace is only 1.54%. The CU partition result of the Johnny is shown in Figure

4-13, we can see that there are many large CUs. For Johnny, more than 50% picture

area is coded in the large CUs such as 32x32 and 64x64. The CU partition result of

BQTerrace is shown in Figure 4-14. We can see that there are many small CUs. There

are only about 30% picture area coded in the large CUs such as 32x32 and 64x64. If

the picture is simple, more large CUs will be selected. Therefore, the coding perfor-

mance difference among various sequences is resulted from the different texture com-

plexity of sequences. In this thesis, the training sequences are with the complex tex-

ture, thus, for the sequences with simple texture, the coding efficiency will become a

little bit worse.

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

107

Figure 4-13 The CU partition results of Johnny.

Figure 4-14 The CU partition results of BQTerrace.

4.5.4 Stable Complexity of Proposal

As mentioned before, my proposals can achieve a stable reduction for various se-

quences. Moreover, a stable time reduction for different QPs and various resolutions

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

108

can be ensured. Table 4-11 shows the time reduction of different QPs, [58] could gain

more time reduction under larger QPs. By using my proposals, a stable and consider-

able time reduction can be achieved under different QPs, which indicates the stability

of my algorithms. In Table 4-12, we can see that [58] can achieve about 52% reduc-

tion for Class E while only 27% reduction can be achieved for Class D. However, the

proposal can ensure a stable reduction for various resolutions (Class).

Table 4-11 Time reduction of different QPs.

QP Proposed Algorithm [58]

22 -48.08% -30.85%

27 -49.41% -30.13%

32 -51.49% -43.03%

37 -53.34% -47.47%

Table 4-12 Time reduction of different Classes.

Class Proposed Algorithm [58]

A -46.07% -37.36%

B -57.09% -41.28%

C -52.74% -32.03%

D -49.58% -26.84%

E -53.30% -51.83%

4.6 Chapter Summary

A low-complexity algorithm for HEVC intra prediction is proposed in this chapter. By

using the fast PU depth selection scheme, the number of PUs that requires full RDO is

reduced from five to two. To supply this PU size decision, a fast off-line training

method is also designed. Based on the benefit of using a large size transform, the

32x32 PU is selectively compensated and processed. For the selected PU depths, the

proposed fast prediction mode selection scheme reuses the information in the

pre-processing in order to avoid the precise Hadamard cost calculation stage in the

Fast Prediction Unit Depth and Prediction Mode Selection Algorithm for HEVC Intra Prediction

109

original HM. As a result, the proposed method achieves 52% reduction in encoding

time relative to HM 7.0, while its corresponding bit rate increase is about 1.87%.

Compared with [56], [58] and [74], 10%-32% more encoding time reduction can be

achieved with 0.62%-1.21% more coding efficiency loss. Compared with [7], [57]

and [75], the proposal can achieve 2.05%-3.23% coding efficiency improvement with

5%-15% less encoding time reduction. Compared with [72], the proposal can achieve

1.52% better coding efficiency with 9% less encoding time reduction. Compared with

the latest work [70], the proposal can achieve 0.8% better coding efficiency with 9%

less encoding time reduction.

Conclusion and Future Work

110

5. Conclusion and Future Work

In this thesis, the low-complexity algorithms and architectures for HEVC mode deci-

sion and reconstruction loop are presented. Chapter 2 gives an area-efficient transform

architecture. There are two major contributions. Firstly, the requiring outputs are re-

ordered in each clock cycle to reuse the inputs of the butterfly structure. By doing so,

about 25% area consumption can be saved compared with previous works. Secondly,

the transpose memory is implemented by SRAM instead of registers. A data mapping

scheme is designed to reorder the writing positions in the SRAM so that the I/O utili-

zation of SRAM can achieve 100%. The results show that about 62% area consump-

tion can be saved compared with previous works. This chapter can be used in the

mode decision and reconstruction loop for both intra and inter prediction.

Chapter 3 gives a low-cost architecture for the system of de-quantization and in-

verse transform. There are two major contributions. Firstly, for the de-quantization,

the coefficient is decomposed to two parts. One part is baseLevel whose value is not

greater than 3 thus the multiplication with scaling parameter can be replaced by LUT.

The other part is remaining and the number of non-zero remaining values is usually

not greater than 4 within one 4x4 block. So the number of required multipliers is re-

duced from 16 to 4. Four multipliers can be reused in different clock cycles if there

are more than 4 non-zero remaining values. Secondly, a system with zero skipping

method is created. The zero elements are detected by reusing the pixel data. After de-

tecting the zero elements, the read/write memory operation is skipped in order to save

the power consumption. As a result, overall, for the logical part, 68% normalized area

consumption can be reduced compared with the previous work. For the whole system,

56% normalized power consumption can be reduced compared with the previous

work. For the de-quantization, the proposed architecture can save 77% area consump-

tion compared with previous works. For the memory part, 29%-86% power consump-

Conclusion and Future Work

111

tion can be saved compared with not using the zero skipping method. This chapter can

be applied in the mode decision and reconstruction loop for both intra and inter pre-

diction.

In Chapter 4, a fast PU depth and prediction mode decision method for the intra

prediction is given. There are two major contributions. At first, a pre-processing

method based on original pixels rather than reconstructed pixels is given. Only the

costs for 8x8 are calculated and then the results are reused to estimate the cost for

larger PUs. Two PU depths are selected for R-D cost calculation based on the results

of pre-processing. Secondly, by reusing the results of pre-processing, the Hadamard

calculation for all the prediction modes in original HM can be eliminated. As a result,

about 52% encoding complexity can be reduced with 1.87% BD-bitrate compared

with HM. Compared with previous works, more encoding time reduction or better

coding performance could be achieved as a trade-off result. This work can be used for

intra prediction in the mode decision.

About the future work, there are four plans. The first plan is to polish the algo-

rithm for the intra fast RDO and do the hardware implementation. In this thesis, the

number of PUs requiring R-D cost calculation has been reduced. For each PU, the

number of prediction modes requiring R-D cost calculation is the same as origin. For

the PU depth 4x4 or 8x8, 8 modes are required to calculate the R-D cost. In fact,

based on the proposed estimated cost, some prediction modes can be filtered for the

R-D cost calculation. Secondly, the rate estimator will be designed. Although there are

already some existing architectures for the rate estimator, the performance is still not

high enough. Thirdly, the target is focusing on the fast RDO for the inter prediction.

Although the full RDO does not consume the majority in the inter-frame encoding, it

is still a very interesting and meaningful work. Finally, after designing the individual

components, the individual components will be combined and the overall pipeline will

be developed.

Bibliography

112

Bibliography

[1] Cisco, White paper: Cisco VNI Forecast and Methodology, 2015-2020

[2] “High efficiency video coding,” ITU-T Rec. H.265 and ISO/IEC 23008-2

(HEVC), Jan. 2013.

[3] C.-C. Ju, et al. “A 0.5 nJ/Pixel 4 K H.265/HEVC Codec LSI for Multi-Format

Smartphone Applications”, IEEE Journal on solid-state circuits, vol. 51, no. 1, pp.

56-67, Jan. 2016.

[4] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, "Overview of the high effi-

ciency video coding (HEVC) standard," IEEE Transactions on circuits and sys-

tems for video technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[5] V. Sze, M. Budagavi, G.J. Sullivan, “High Efficiency Video Coding (HEVC):

Algorithms and Architectures”, Chapter 11.

[6] G. Pastuszak, and A. Abramowski, “Algorithm and Architecture Design of the

H.265/HEVC Intra Encoder,” IEEE Transactions on circuits and systems for vid-

eo technology, vol. 26, no. 1, pp. 210-222, May 2015.

[7] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, "HDTV1080p HEVC Intra encoder

with source texture based CU/PU mode pre-decision," in Proc. of IEEE Asia and

South Pacific Design Automation Conference, pp. 367-372, Jan. 2014.

[8] S.-Y. Jou, S.-J. Chang, and T.-S. Chang, “Fast motion estimation algorithm and

design for real time QFHD High Efficiency Video Coding”, IEEE Transactions

on circuits and systems for video technology, vol. 25, no. 9, pp. 1533-1544, Sept.

2015.

[9] Z. Sheng, D. Zhou, H. Sun and S. Goto, “Low-Complexity Rate-Distortion Opti-

mization Algorithms for HEVC Intra Prediction,” in Proc. of MultiMedia Model-

ing, pp. 541-552, Jan. 2014.

[10]L. Hu, H. Sun, D. Zhou and S. Kimura, “Hardware-oriented rate-distortion opti-

mization algorithm for HEVC intra-frame encoder,” in Proc. of IEEE Internation-

al Conference in Multimedia & Expo Workshops (ICMEW), pp. 1-6, June 2015.

[11]W. Shen, Y. Fan, L. Huang, J. Li, “A Hardware-Friendly Method for

Rate-Distortion Optimization of HEVC Intra Coding,” in Proc. of International

Bibliography

113

Symp. on VLSI Design Automation and Test, pp. 1-4, Apr. 2014.

[12]H. Qi, Q. Huang and W. Gao, “A low-cost very large scale integration architecture

for multistandard inverse transform,” IEEE Transactions on Circuits and Syst. II:

Express Briefs, vol. 57, no. 7, pp. 551-555, Jul. 2010.

[13]G.-A. Su and C.-P. Fan, “Low-cost hardware-sharing architecture of fast 1-D in-

verse transforms for H.264/AVC and AVS applications,” IEEE Trans. On Circuits

and Syst. II: Express Briefs, vol. 55, no. 12, pp. 1249-1253, Dec. 2008.

[14]K. Wang et al., "A reconfigurable multi-transform VLSI architecture supporting

video codec design," IEEE Trans. on Circuits and Syst. II: Express Briefs, vol. 58,

no. 7, pp. 432-436, Jul. 2011.

[15]H. Chang and K. Cho, “High-performance inverse transform circuit based on

butterfly architecture for H. 264 high profile decoder,” In Proc. of IEEE Asia Pa-

cific Conf. on Circ. and Sys., pp. 394-397, Dec. 2010.

[16]C. Peng, D. Yu, X. Cao and S. Sheng, “A new high throughput VLSI architecture

for H. 264 transform and quantization,” In Proc. of Int. Conf. on ASIC, pp.

950-953, Oct. 2007.

[17]W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algorithm for

the discrete cosine transform,” IEEE Trans. Commun., vol. COM-25, no. 9, pp.

1004-1009, Sep. 1977.

[18]S. Shen, W. Shen, Y. Fan and X. Zeng, “A unified 4/8/16/32-point integer IDCT

architecture for multiple video coding standards,” In Proc. of IEEE Int. Conf. on

Multimedia and Expo, pp. 788-793, Jul. 2012.

[19]S. Shen, W. Shen, Y. Fan and X. Zeng, “A unified forward/inverse transform ar-

chitecture for multi-standard video codec design,” IEICE Trans. on Fundam. of

Electron., Commun. and Comp. Sci., vol. E96-A, no. 7, pp. 1534-1542, Jul. 2013.

[20]J. Zhu, Z. Liu, and D. Wang, “Fully pipelined DCT/IDCT/ Hadamard unified

transform architecture for HEVC Codec,” In Proc. of IEEE Int. Symp. on Circuits

and Syst., pp. 677-680, May 2013.

[21]J. S. Park, W. J. Nam, S. M. Han, and S. Lee, “2-D large inverse transform (16x16,

32x32) for HEVC (high efficiency video coding),” J. Semicond. Technol. and Sci.,

vol. 12, no. 2, pp. 203-211, June 2012.

[22]P. T. Chiang, and T. S. Chang, “A reconfigurable inverse transform architecture

design for HEVC decoder,” In Proc. of IEEE Int. Symp. on Circuits and Syst., pp.

Bibliography

114

1006-1009, May 2013.

[23]M. Budagavi, and V. Sze, “Unified forward+ inverse transform architecture for

HEVC,” in proc. of IEEE Int. Conf. on Image Processing, pp. 209-212, Sep.

2012.

[24]W. Zhao, T. Onoye, and T. Song, “High-performance multiplierless transform ar-

chitecture for HEVC,” In Proc. of IEEE Int. Symp. On Circuits and Syst., pp.

1668-1671, May 2013.

[25]S. Y. Park, and P. K. Meher, “Flexible integer DCT architectures for HEVC,” In

Proc. of IEEE Int. Symp. on Circuits and Syst., pp. 1376-1379, May 2013.

[26]P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim and C. Yeo, “Efficient Integer

DCT Architectures for HEVC,” IEEE Trans. Circuits Syst. Video Technol., vol.

24, no. 1, pp. 168–178, Jan. 2014.

[27]T. Do, Y. Tan, and C. Yeo, "High-throughput and low-cost hardware-oriented in-

teger transforms for HEVC," In Proc. of IEEE International Conference on Image

Processing, pp. 2105-2109, Oct. 2014.

[28]B. Lee, and M. Kim, "A CU-Level Rate and Distortion Estimation Scheme for

RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer

DCTs," In Proc. of IEEE Transactions on Image Processing, pp. 3787-3800, Au-

gust 2016.

[29]J. Zhu, Z. Liu, D. Wang, Q. Han, Y. Song, “Fast Prediction Mode Decision with

Hadamard Transform Based Rate-Distortion Cost Estimation for HEVC Intra

Coding,” in Proc. of IEEE International Conference on Image Processing, pp.

1977-1981, Sep. 2013.

[30]U. Potluri, et al. "Improved 8-point approximate DCT for image and video com-

pression requiring only 14 additions," IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 61, no. 6, pp. 1727-1740, June 2014.

[31]M. Jridi, A. Alfalou, and P. K. Meher, "A generalized algorithm and reconfigura-

ble architecture for efficient and scalable orthogonal approximation of DCT,"

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 2, pp.

449-457, Feb. 2015.

[32]R. Cintra, and Fábio M. Bayer, "A DCT approximation for image compression,"

IEEE Signal Processing Letters, vol. 18, no. 10, 579-582, Oct. 2010.

[33]S. Bouguezel, M. Omair Ahmad, and M. N. S. Swamy, "Low-complexity 8× 8

Bibliography

115

transform for image compression," Electronics Letters, vol. 44, no. 21, pp.

1249-1250, Oct. 2008.

[34]E. Kalali, A. C. Mert, and I. Hamzaoglu, "A computation and energy reduction

technique for HEVC Discrete Cosine Transform," IEEE Transactions on Con-

sumer Electronics, vol. 62, no. 2, pp. 166-174, May 2016.

[35]M. Jridi, and P. K. Meher, “A Scalable Approximate DCT Architectures for Effi-

cient HEVC Compliant Video Coding,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, accepted.

[36]Y. Fan, L. Huang, Y. Bai, and X. Zeng, “A parallel-access mapping method for the

data exchange buffers around DCT/IDCT in HEVC encoders based on single-port

SRAMs,” IEEE Trans. Circuits Syst. II, vol. 62, no. 12, pp. 1139-1143, Dec.

2015.

[37]M. Tikekar, C.T Huang, V. Sze, A. Chandrakasan, “Energy and Area-Efficient

Hardware Implementation of HEVC Inverse Transform and Dequantization,” in

Proc. of IEEE International Conference on Image Processing, pp. 2100-2104, Oct.

2014.

[38]M. Budagavi and V. Sze, “IDCT pruning and scan dependent transform order,”

Joint Collaborative Team on Video Coding (JCT-VC), 2011.

[39]Y. H. Chen, and V. Sze, “A deeply pipelined CABAC decoder for HEVC sup-

porting level 6.2 high-tier applications,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 25, no. 5, pp. 856-868, May 2015.

[40]X. Huang, H. Jia, B. Cai, C. Zhu, J. Liu, M. Yang, D. Xie, and W. Gao, “Fast al-

gorithms and VLSI architecture design for HEVC intra-mode decision,” Journal

of Real-Time Image Processing, vol. 12, no. 2, pp. 285-302, Aug. 2016.

[41] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, “Fast mode

decision algorithm for intra prediction in H.264/AVC video coding,” IEEE

Transactions on circuits and systems for video technology, vol. 15, no. 7, pp.

813–822, Jul. 2005.

[42] Y. C. Wei, and J. F. Yang, “Transformed-domain intra mode decision in

H.264/AVC encoder,” in Proc. of IEEE Region 10 Int. Tech. Conf., pp. 1-4, Nov.

2006.

[43] C. Kim, and C. C. J. Kuo, “Feature-based intra-/interceding mode selection for

H.264/AVC,” IEEE Transactions on circuits and systems for video technology,

Bibliography

116

vol. 17, no. 4, pp. 441-453, Apr. 2007.

[44] Y.-H. Huang, T.-S. Ou, and H. Chen, “Fast Decision of Block Size, Prediction

Mode, and Intra Block for H.264 Intra Prediction,” IEEE Transactions on circuits

and systems for video technology, vol. 20, no. 8, pp. 1122-1132, Aug. 2010.

[45] G. Tian, T. Zhang, X. Wei, T. Ikenaga, and S. Goto, “A block type decision algo-

rithm for H.264/AVC intra prediction based on entropy feature,” in Proc. of IEEE

Asia Pacific Circuits and Systems, pp. 1348-1351, Nov. 2008.

[46]Y. Lee, and Y. Lin, "Zero-block mode decision algorithm for H.264/AVC," IEEE

Transactions on Image Processing, vol. 18, no. 3, pp. 524-533, March 2009.

[47]H. Zeng, K. Ma and C. Cai, "Fast mode decision for multiview video coding us-

ing mode correlation," IEEE Transactions on circuits and systems for video tech-

nology, vol. 21, no. 11, pp. 1659-1666, Apr. 2011.

[48]H. Wang, S. Kwong and C. Kok, "An efficient mode decision algorithm for

H.264/AVC encoding optimization," IEEE Transactions on Multimedia, vol. 9, no.

4, pp. 882-888, May 2007.

[49]H. Zeng, K. Ma and C. Cai, "Hierarchical intra mode decision for H.264/AVC,"

IEEE Transactions on circuits and systems for video technology, vol. 20, no. 6, pp.

907-912, March 2010.

[50]Y. Sun, and J. Wang, "Fast mode decision for H.264/AVC based on rate-distortion

clustering," IEEE Transactions on Multimedia, vol. 14, no. 3, pp. 693-702, Feb.

2012.

[51]W. Chen, J. Su, B. Li, and T. Ikenaga, “Reversed intra prediction based on chroma

extraction in HEVC,” in Proc. of Int. Symp. Intell. Signal Process. Comn. Syst.,

pp. 1-5, Dec. 2011.

[52] G. V. Wallendael, S. V. Leuven, J. D. Cock, P. Lambert, R. V. Walle, J.

Barbarien, A. Munteanu, “Improved intra mode signaling for HEVC,” in Proc. of

IEEE Int. Conf. Multimedia Expo, pp. 1-6, Jul. 2011.

[53] L. Zhao, L. Zhang, S. Ma, and D. Zhao, “Fast mode decision algorithm for intra

prediction in HEVC,” in Proc. of IEEE Vis. Comm. Image Pro., pp. 1-4, Nov.

2011.

[54] W. Jiang, H. Ma, and Y. Chen, “Gradient based fast mode decision algorithm for

intra prediction in HEVC,” in Proc. of International Conf. on CECNet, pp.

1836-1840, Apr. 2012.

Bibliography

117

[55] A. S. Motra, A. Gupta, M. Shukla, P. Bansal, and V. Bansal, “Fast intra mode de-

cision for HEVC video encoder,” in Proc. of International Conf. on SoftCOM, pp.

1-5, Sept. 2012.

[56] T. L. Silva, L. V. Agosini, and L. A. S. Cruz, “Fast HEVC intra prediction mode

decision based on edge direction information,” in Proc. of European Signal Pro-

cessing Conference, pp. 1214-1218, Aug. 2012.

[57] Y. Zhang, Z. Li, and B. Li, “Gradient-based fast decision for intra prediction in

HEVC,” in Proc. of Visual Communications and Image Processing, pp. 1-6, Nov.

2012.

[58] J. Xiong, and H. Li, “Fast and efficient prediction unit size selection for HEVC

intra prediction,” in Proc. of Intelligent Signal Processing and Communications

Systems, pp. 366-369, Nov. 2012.

[59] R.-H. Gweon, Y.-L. lee, “Early termination of CU encoding to reduce HEVC

complexity,” IEICE Trans. Fundamentals, vol.E95-A, no.7, pp. 1215-1218, July

2012.

[60] F. Yao, X. Zhang, Z. Gao, and B. Yang, "Fast mode and depth decision algorithm

for HEVC intra coding based on characteristics of coding bits," in Proc. of IEEE

International Symposium on Broadband Multimedia Systems and Broadcasting,

pp. 1-4, June 2016.

[61] X. Wang, and Y. Xue, "Fast HEVC intra coding algorithm based on Otsu's meth-

od and gradient," In Proc. of IEEE International Symposium on Broadband Mul-

timedia Systems and Broadcasting, pp. 1-5, June 2016.

[62]X. Liu, Y. Liu, P. Wang, C.-F. Lai, and H.-C. Chao, "An Adaptive Mode Decision

Algorithm Based on Video Texture Characteristics for HEVC Intra Prediction,"

IEEE Transactions on circuits and systems for video technology, accepted.

[63]S. Park, S. Lee, H. Xu, and E. S. Jang, "Temporal correlation-based fast encoding

algorithm in HEVC intra frame coding," in Proc. of IEEE International Confer-

ence on Consumer Electronics-Berlin, pp. 113-115. Sep. 2015.

[64] S. Jaballah, K. Rouis, and J. B. Tahar, "Clustering-based fast intra prediction

mode algorithm for HEVC," In Proc. of European Signal Processing Conference,

pp. 1850-1854, Aug. 2015.

Bibliography

118

[65] X. Shang, G. Wang, T. Fan, and Y. Li, "Fast CU size decision and PU mode deci-

sion algorithm in HEVC intra coding," in Proc. of IEEE International Conference

on Image Processing, pp. 1593-1597, Sep. 2015.

[66]K. Lim, J. Lee, S. Kim, and S. Lee, "Fast PU skip and split termination algorithm

for HEVC intra prediction," IEEE Transactions on Circuits and Systems for Vid-

eo Technology, vol. 25, no. 8, pp. 1335-1346, Aug. 2015.

[67]H.-S. Kim, and R.-H. Park, "Fast CU Partitioning Algorithm for HEVC Using an

Online-Learning-Based Bayesian Decision Rule," IEEE Transactions on Circuits

and Systems for Video Technology, vol. 26, no. 1, pp. 130-138, Jan. 2016.

[68]S. Cho, and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU Parti-

tioning in HEVC Intra Coding”, IEEE Transactions on Circuits and Systems for

Video Technology, vol. 23, no. 9, pp. 1555-1564, Sep. 2013.

[69]T. Zhang, M.-T. Sun, D. Zhao, and W. Gao, "Fast Intra Mode and CU Size Deci-

sion for HEVC," IEEE Transactions on Circuits and Systems for Video Technol-

ogy, accepted.

[70] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, "CU Partition Mode Decision

for HEVC Hardwired Intra Encoder Using Convolution Neural Network," IEEE

Transactions on Image Processing, vol. 25, no. 11, pp. 5088-5103, Nov. 2016.

[71] Z. Liu, X. Yu, S. Chen, and D. Wang, "CNN oriented fast HEVC intra CU mode

decision," In Proc. of IEEE International Symposium on Circuits and Systems, pp.

2270-2273, May 2016.

[72] X. Yu, Z. Liu, J. Liu, Y. Gao, and D. Wang, “VLSI friendly fast CU/PU mode de-

cision for HEVC intra encoding: Leveraging convolution neural network,” in

Proc. of IEEE Int. Conf. Image Process., pp. 1285–1289, Sep. 2015.

[73] B. Min, and R. CC Cheung, "A fast CU size decision algorithm for the HEVC

intra encoder," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 25, no. 5, pp. 892-896, May 2015.

Bibliography

119

[74] G. Chen, L. Sun, Z. Liu, and T. Ikenaga, “Fast Mode and Depth Decision for

HEVC Intra Prediction Based on Edge Detection and Partition Reconfiguration,”

IEICE Tran. Fund., vol. E97-A, no. 11, pp. 2130-2138, Nov. 2014.

[75] W. Zhao, T. Oneye, and T. Song, “Hardware-oriented fast mode decision algo-

rithm for intra prediction in HEVC”, in Proc. of Picture Coding Symposium, pp.

109-112, Dec. 2013.

[76] R. Gweon and Y. Lee, “Early Termination of CU Encoding to Reduce HEVC

Complexity,” IEICE Tran. Fund., vol. E95-A, no.7, pp. 1215-1218, July 2012.

[77] N. Hu and E. H. Yang, "Fast Mode Selection for HEVC Intra-Frame Coding With

Entropy Coding Refinement Based on a Transparent Composite Model," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 25, no. 9, pp.

1521-1532, Sept. 2015.

[78] L. Shen, Z. Zhang and P. An, "Fast CU size decision and mode decision algorithm

for HEVC intra coding," IEEE Transactions on Consumer Electronics, vol. 59, no.

1, pp. 207-213, February 2013.

[79] C. F. Tseng and Y. T. Lai, "Fast coding unit decision and mode selection for in-

tra-frame coding in high-efficiency video coding," IET Image Processing, vol. 10,

no. 3, pp. 215-221, February 2016.

[80] J. Chen and L. Yu, "Effective HEVC intra coding unit size decision based on

online progressive Bayesian classification," in Proc. of IEEE International Con-

ference on Multimedia and Expo, pp. 1-6, July 2016.

[81] Q. Hu, Z. Shi, X. Zhang and Z. Gao, "Fast HEVC intra mode decision based on

logistic regression classification," in Proc. of IEEE International Symposium on

Broadband Multimedia Systems and Broadcasting, pp. 1-4, June 2016.

[82] N. Kim, S. Jeon, H. J. Shim, B. Jeon, S. C. Lim and H. Ko, "Adaptive key-

point-based CU depth decision for HEVC intra coding," in Proc. of IEEE Interna-

tional Symposium on Broadband Multimedia Systems and Broadcasting, pp. 1-3,

June 2016.

Bibliography

120

[83] W. Geuder, P. Amon and E. Steinbach, "Low-complexity block size decision for

HEVC intra coding using binary image feature descriptors," in Proc. of IEEE In-

ternational Conference on Image Processing, pp. 242-246, Sept. 2015.

[84] X. Shang, G. Wang, T. Fan and Y. Li, "Fast CU size decision and PU mode deci-

sion algorithm in HEVC intra coding," in Proc. of IEEE International Conference

on Image Processing, pp. 1593-1597, Sept. 2015.

[85] M. Radosavljević, G. Georgakarakos, S. Lafond and D. Vukobratović, "Fast cod-

ing unit selection based on local texture characteristics for HEVC intra frame," in

Proc. of IEEE Global Conference on Signal and Information Processing, pp.

1377-1381, Dec. 2015.

[86] B. Du, W. C. Siu and X. Yang, "Fast CU partition strategy for HEVC intra-frame

coding using learning approach via random forests," in Proc. of Asia-Pacific Sig-

nal and Information Processing Association Annual Summit and Conference, pp.

1085-1090, Dec. 2015.

[87]C. E. Rhee, “Skipping Prediction Directions Based on the Cost Relationship be-

tween Multi-Directional Predictions for an HEVC Encoder,” IEICE Trans. Inf.

and Syst., vol. E97-D, no. 9, Sep. 2014.

[88]K. Goswami, B-G. Kim, D-S Jun, S-H Jung, and J. S. Choi, “Early Coding Unit

(CU) Splitting Termination Algorithm for High Efficiency Video Coding

(HEVC),” ETRI Journal, vol. 36, no. 3, pp. 407-417, June 2014.

[89]X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for HEVC based on

Bayesian decision rule,” in Proc. of Picture Coding Symposium, pp. 453-456,

May 2012.

[90]L. Shen, Z. Liu, X. Zhang,W. Zhao, and Z. Zhang, “An effective CU size decision

method for HEVC encoders,” IEEE Transactions on Multimedia, vol. 15, no. 2,

pp. 465-470, Feb. 2013.

[91]X. Huang, C. Kuo, C, Mao and Y. Ciou, “Adaptive Depth Search Range for

HEVC Coding Unit Size Selection,” in Proc. of Asia-Pacific Signal and Infor-

mation Processing Association, pp. 1-6, Dec. 2014.

[92]X. Jiang, T. Song, W, Shi, T. Shimato, L. Wang, “High Efficiency CU Depth Pre-

Bibliography

121

diction Algorithm for High Resolution Applications of HEVC,” IEICE Trans.

Fundamentals, vol. E98-A, no.12, pp. 2528-2536, Dec. 2015

[93]https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

[94]F. Bossen, “Common HM test conditions and software reference configurations,”

JCTVC-I1100, Jul. 2012.

[95]G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,”

in 13th Video Coding Experts Group (VCEG)-M33 Meeting, Austin, TX, Apr.

2001.

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

Publications

122

Publications

The publications with ○ are included in this thesis.

Transactions:

○ [1] Heming Sun, Dajiang Zhou, Shuping Zhang, and Shinji Kimura, “A

Low-Power VLSI Architecture for HEVC De-quantization and Inverse Transform”,

IEICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, Vol. E99.A, No. 12, pp. 2375-2387, December 2016.

○[2] Heming Sun, Dajiang Zhou, Peilin Liu, and Satoshi Goto, “A Low-Cost VLSI

Architecture of Multiple-Size IDCT for H.265/HEVC”, IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, Vol. E97.A,

No. 12, pp. 2467-2476, December 2014.

○[3] Heming Sun, Dajiang Zhou, Peilin Liu, and Satoshi Goto, “Fast Prediction

Unit Selection and Mode Selection for HEVC Intra Prediction”, IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences, Vol.

E97.A, No. 2, pp. 510-519, February 2014.

International Conferences:

[4] Dajiang Zhou, Shihao Wang, Heming Sun, Jianbin Zhou, Jiayi Zhu, Yijin Zhao,

Jinjia Zhou, Shuping Zhang, Shinji Kimura, Yoshimura Takeshi, and Satoshi Goto, “A

4Gpixel/s 8/10b H.265/HEVC video decoder chip for 8K Ultra HD applications ”,

IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, America,

pp. 266-268, February 2016.

[5] Zhengxue Cheng, Heming Sun, Dajiang Zhou and Shinji Kimura, "Merge mode

based fast inter prediction for HEVC", IEEE International Conference on Visual

Communications and Image Processing (VCIP), Singapore, Singapore, pp. 1-4, De-

cember 2015.

[6] Landan Hu, Heming Sun, Dajiang Zhou and Shinji Kimura, “Hardware-oriented

rate-distortion optimization algorithm for HEVC intra-frame encoder”, IEEE Interna-

tional Conference on Multimedia and Expo Workshops (ICMEW), Turin, Italy, pp.

Publications

123

1-6, June 2015.

[7] Zhengxue Cheng, Heming Sun, Landan Hu, and Shinji Kimura, “A fast level fil-

tering algorithm for inter prediction in HEVC encoder”, International Technical Con-

ference on Circuits/Systems, Computers and Communications (ITC-CSCC), Seoul,

Korea, pp. 404-407, June 2015.

○[8] Heming Sun, Dajiang Zhou, Jiayi Zhu, Shinji Kimura and Satoshi Goto, “An

area-efficient 4/8/16/32-point inverse DCT architecture for UHDTV HEVC decoder”,

IEEE International Conference on Visual Communications and Image Processing

(VCIP), Valletta, Malta, pp. 197-200, December 2014.

[9] Jianbin Zhou, Dajiang Zhou, Heming Sun, and Satoshi Goto, “VLSI architecture

of HEVC intra prediction for 8K UHDTV applications”, IEEE International Confer-

ence on Image Processing (ICIP), Paris, France, pp. 1273-1277, October 2014.

[10] Heming Sun, and Satoshi Goto, “A fast mode selection algorithm for HEVC in-

tra prediction”, International Technical Conference on Circuits/Systems, Computers

and Communications (ITC-CSCC), Phuket, Thailand, pp. 449-451, July 2014.

[11] Zhe Sheng, Dajiang Zhou, Heming Sun, and Satoshi Goto, “Low-complexity

rate-distortion optimization algorithms for HEVC intra prediction”, International

Conference on Multimedia Modeling (MMM), Dublin, Ireland, pp. 541-552, January

2014.

○[12] Heming Sun, Dajiang Zhou, and Satoshi Goto, “A low-complexity HEVC

intra prediction algorithm based on level and mode filtering”, IEEE International

Conference on Multimedia and Expo (ICME), Melbourne, Australia, pp. 1085-1090,

July 2012.

Appendix

124

Appendix

“Graduate Program for Embodiment Informatics” supports me during the doctor

course. Therefore, I would like to appreciate this program and explain my under-

standing about the “Embodiment Informatics” in the appendix.

Literally speaking, Embodiment Informatics is composed of two words. Infor-

matics is a study about information science. In the ancient, the amount of information

is quite limited. However, in the modern life, the amount of information has been ex-

ploding thus informatics is developed to manage massive information systematically.

Embodiment means the implementation which can turn something from the idea-level

to product-level. Nowadays, with the development of many fields, the ideas are not

limited to only one research field. For example, in the past, the car is only related with

the mechanical system. There was no relationship between car manufacture and elec-

tronic engineering. However, recently, the auto car based on the electronic system

becomes a hot topic. Therefore, the combination of different research fields is highly

desired. After the implementation of the ideas, the product will come out and be used

in daily life. Therefore, the target of Embodiment Informatics is to combine the con-

cepts of different research topics and develop some real products which are really

useful for the human being’s daily life.

For example, my research topic is the algorithm and architecture design for the

video compression. The latest video compression standard is High Efficiency Video

Coding (HEVC) which can double the compression ratio compared with the former

standard H.264. By HEVC encoding, the storage and transmission burden for the ultra

high definition videos can be relieved. In fact, my research can also be collaborated

with the research topics in other fields such as robotics and wireless communication.

After the fabrication, the encoding chip is small enough to be placed on a robot. This

robot with video encoding chip can capture the video and compress the data in the

Appendix

125

real-time. By developing an ultra-low-power encoder, the robot is able to have a

long-life battery. By using the wireless communication, it can support the real-time

communication between the robot and control center. A stable wireless communica-

tion system is required. The wireless communication is related with the information

engineering. As a result, the product is an intelligent robot which can take the film,

and then compress the captured video and transmit the compressed data in the re-

al-time.

In order to master the knowledge of different research fields, taking the courses

of different fields is highly required. For example, I belong to the department of sys-

tem LSI. However, I not only learn the knowledge of my department such as digital

circuits, but also take some courses in the information engineering such as machine

learning in order to widen the knowledge.

In addition to knowledge, the program also encourages the students to improve

several abilities. The first ability is the social ability in the company. I take some

courses about business in order to know how to apply the knowledge in book to the

practical marketing. Moreover, the program also sets up the studio to hold many

events. In the studio, the students can gather together and have a hot discussion to im-

prove the communication ability. The second ability is the leadership. The program

not only aims to develop good researchers, but also develop good leaders who can

contribute to the future of Japan. Therefore, I have tried my best to improve the lead-

ership during the doctor course. I not only focus on my own research, but also take

care of many master students on their researches. By my instruction and their hard

working, they have obtained good results and published transactions and conference

papers. The third ability is the language. It is obvious that English is very important

for the researchers. The program also supports the students for one-month English

training in U.C.Davis. Therefore, I have always kept in mind to practice English.

In short, I really appreciate this program for giving me so many chances. I will

apply the knowledge learnt from this program into the future life.

