
Generalized Software Reliability Model

Considering Uncertainty and Dynamics:

Theoretical Foundations and Empirical

Applications

February, 2017

Waseda University
Graduate School of Fundamental Science and Engineering

Department of Computer Science and Engineering
Research on Reliable Software Engineering

Kiyoshi HONDA

2

Contents

1 Introduction 1

1.1 Background . 2

1.2 Software Reliability Growth Model (SRGM) 2

2 Overview of This Thesis 5

3 Generalized Software Reliability Model Considering Uncer-
tainty and Dynamics: Theoretical Foundations 9

3.1 Introduction to This Chapter 9

3.2 Background . 11

3.2.1 Uncertainty and Dynamics 11

3.2.2 Motivating Example 12

3.3 Generalized Software Reliability Model (GSRM) 13

3.3.1 Modeling Uncertainties and Dynamics 15

3.3.2 Uncertainties . 15

3.3.3 Simulations . 16

3.3.4 Formulation . 19

3.4 Evaluation . 23

3.4.1 Evaluation design and results 23

3.4.2 Discussion . 31

3.4.3 Limitations . 34

3.5 Related work . 36

3.5.1 Software Reliability Growth Models 36

3.5.2 Uncertainties . 38

3.6 Conclusion . 38

i

4 Predicting Release Time of Open Source Software Based on
GSRM 40

4.1 Introduction to This Chapter 40

4.2 Proposal method . 40

4.2.1 Separating time periods 41

4.2.2 Prediction of Release Time 42

4.3 Application to OSS . 42

4.4 Related work . 43

4.5 Conclusion . 43

5 Predicting Time Range of Development Based on GSRM 45

5.1 Introduction to This Chapter 45

5.2 Motivating example . 46

5.3 Generalized Software Reliability Model 47

5.3.1 Uncertainty and Time-dependence 48

5.3.2 Time Range of Development 50

5.4 Evaluation and Discussion . 50

5.4.1 Comparison with the NHPP models 50

5.4.2 Prediction of time ranges 54

5.4.3 Summary . 61

5.5 Related work . 63

5.6 Conclusion . 64

6 Detection of Unexpected Situations by Applying Software
Reliability Growth Models to Test Phases 65

6.1 Introduction to This Chapter 65

6.1.1 Motivating example . 65

6.2 Background . 68

6.2.1 Software Reliability Growth Model (SRGM) 69

6.2.2 Project monitoring . 69

6.3 Proposal to detect unexpected situations 70

6.4 Evaluation and Results . 70

6.4.1 Fitness of model (RQ 1) 71

6.4.2 Monitoring Predicted Faults (RQ 2) 73

6.4.3 Thread to validity . 77

6.5 Conclusion . 77

ii

7 Project Management Using Cross Project Software Reliabil-
ity Growth Model 78
7.1 Introduction to This Chapter 78

7.1.1 Research Questions . 79
7.2 Background . 79

7.2.1 Software Reliability Growth Model (SRGM) 80
7.2.2 Project monitoring . 81
7.2.3 Motivating example . 82

7.3 Proposal to compare SRGM between projects 82
7.3.1 Extension of SRGM to fault densities 84
7.3.2 Comparison of projects 84

7.4 Evaluation and Results . 86
7.4.1 Evaluation design and result 86
7.4.2 Discussion . 96
7.4.3 Limitations . 98

7.5 Related work . 98
7.6 Conclusion . 99

8 Project Management Using Cross Project Software Reliabil-
ity Growth Model Considering System Scale 101
8.1 Introduction to This Chapter 101
8.2 Motivating Example . 102
8.3 Proposal of classified leveled SRGM considering system scale . 103

8.3.1 Comparison of projects 103
8.4 Evaluation and Results . 104

8.4.1 Evaluation design and result 104
8.4.2 Discussion . 109

8.5 Conclusion . 110

9 Conclusion 111
9.1 Summary of This Thesis . 111
9.2 Future Work . 112

Acknowledgments 115

Bibliography 116

List of Publications 125

iii

List of Tables

1.1 Standard SRGMs and their failure time distributions. 4

3.1 Combinations of dynamics as characterized by α(t) and γ(t).
α(t) and γ(t) indicate the number of detected faults per unit
time and the uncertainty term, respectively. 17

3.2 Dataset 1 (DS 1). Each row contains the total number of faults
detected over the corresponding number of days. 24

3.3 Dataset 2(DS 2-1, 2-2, 2-3). Each row contains the total num-
ber of faults detected over the corresponding number of weeks. 24

3.4 Details of each dataset. 25

3.5 Selection of three uncertainty types for Datasets 1 and 2. . . 30

3.6 Comparison of GSRM with the NHPP models using datasets
1 and 2. 32

4.1 Comparison of GSRMwith NHPPmodel (Exponential model).
43

5.1 Comparison of GSRM and NHPP models using dataset 1. . . 52

5.2 Dataset 2. Number of weeks for development and the num-
ber of faults for the three different releases of a large medical
record system. 53

5.3 Comparison of GSRM with the NHPP models using dataset 2. 54

5.4 Number of faults in dataset 3. 54

5.5 Comparison of GSRM and the NHPP models using dataset 3. 58

5.6 Predicted ranges of the exponential model and GSRM for each
dataset. Unit time is weeks. 59

5.7 Δt for each releases. Unit time is weeks. 60

5.8 Ranges of the exponential model and GSRM in dataset 3. . . 61

5.9 Number of faults in dataset 3. 62

iv

6.1 Comparison of the simultaneous model (CASE 1) with the
separated model (CASE 2) using RSS ratio datasets. 72

7.1 Comparison of SRGMs based on calendar time and person
hours . 91

7.2 Comparison of SRGMs based on calendar time and person
hours . 91

7.3 Correlations between each value 93
7.4 Comparison of SRGMs based on person hours and imple-

mented test cases . 94
7.5 Comparison of SRGMs based on person hours and imple-

mented test cases . 94

8.1 Details of projects. 105
8.2 Comparison of the RSS of the classified and unclassified leveled

SRGMs. 109

v

List of Figures

2.1 Overview of related work. 6

2.2 Overview of software reliability models. 7

3.1 Cumulative number of detected faults for Dataset 1 (left) and
Dataset 2 release 2 (right) as a function of elapsed time. In
the legends, Detected faults, exponential model, and S-shaped
model represent the actual data, the fit using the exponential
model, and the fit using the S-shaped model, respectively. . . 12

3.2 Ratio of the cumulative number of detected faults at time t
versus the total number of detected faults for the entire project
where the. x-axis represents time in arbitrary units. 1 corre-
sponds to tmax and 0 : 5 to t1. In Model 1-1, Model 1-2
and Model 1-3, the number of detected faults per unit time
is constant. In Model 2-1, Model 2-2 and Model 2-3,
the number of detected faults per unit time changes at t1.
In Model 3-1, Model 3-2 and Model 3-3, the number of
detected faults per unit time increases. 18

3.3 Cumulative number of detected faults for the entire project of
DS 1 plotted against the elapsed number of days. In the leg-
end, Detected faults, GSRM, GSRM-upper, and GSRM-lower
represent the actual data, the fit using GSRM, the predicted
upper limit, and the predicted lower limit, respectively. (A)
the late uncertainty type, (B) the constant uncertainty type,
and (C) the early uncertainty type. 26

3.4 Cumulative number of detected faults for the entire project of
DS 2-1 plotted against the elapsed number of weeks. Legends
and the titles are the same as Fig. 3.3. 27

vi

3.5 Cumulative number of detected faults for the entire project of
DS 2-2 plotted against the elapsed number of weeks. Legends
and the titles are the same as Fig. 3.3. 28

3.6 Cumulative number of detected faults for the entire project of
DS 2-3 plotted against the elapsed number of weeks. Legends
and titles are the same as Fig. 3.3. 29

3.7 In “DS 1,” the cumulative number of detected faults for DS 1 is
plotted against the elapsed number of days. In the legend, De-
tected faults, GSRM, exponential model, and S-shaped model
represent the actual data, the fit using GSRM, the fit using
the exponential model, and the S-shaped exponential model,
respectively. In the other graphs, the cumulative number of
detected faults for 1 project of Dataset 2 is plotted against the
elapsed number of weeks. Legends are the same as “DS 1.” . 32

4.1 The number of issues and development days about “founda-
tion.” . 41

5.1 Time ranges based on NHPP model (Exponential model). . . 47

5.2 Relationship between the equations forN(t), N+(t) andN−(t),
and Δt, t+ and t−. 51

5.3 Comparison of GSRM and the exponential model. 52

5.4 Cumulative number of detected faults for the entire project of
release 1 versus the elapsed number of weeks. release1, Expo-
nential, My Model, +, and − represent the actual data, the fit
using Exponential model, the fit using GSRM, the predicted
upper limit, and the predicted lower limit, respectively. . . . 55

5.5 Cumulative number of detected faults for the entire project of
release 2 versus the elapsed number of weeks. Legend is the
same as Figure 5.4. 56

5.6 Cumulative number of detected faults for the entire project of
release 3 versus the elapsed number of weeks. Legend is the
same as Figure 5.4. 57

5.7 Plot of the number of faults over time for the messaging mod-
ule. Circles and solid line indicate the actual faults and pre-
dicted faults by GSRM, respectively. 58

vii

5.8 Plot of the number of faults over time for the common module.
Circles and solid line indicate the actual faults and predicted
faults by GSRM, respectively. 59

5.9 Plot of the number of faults over time for the consumer mod-
ule. Circles and solid line indicate the actual faults and pre-
dicted faults by GSRM, respectively. 60

6.1 (A) Difference between the actual data and the model. Solid
and dashed lines represent the actual data and SRGM, respec-
tively. Cumulative number of detected faults for all of Project
1 as a function of elapsed time. 66

6.2 (B) Case where SRGM overestimates expectations. Solid,
dashed, and dotted-dashed lines represent the actual data,
SRGM, and the time I applied SRGM, respectively. Cumula-
tive number of detected faults for all of Project 1 as a function
of elapsed time. 67

6.3 Cumulative number of detected faults for all of Project 1 rep-
resented as a function of elapsed time. In the legend, A, B, C,
D, E, F, G and H represent the number of faults separated by
test phase. 71

6.4 Cumulative number of detected faults for all of Project 2 rep-
resented as a function of elapsed time. In the legend, A, B, C,
D, E, F, G and H represent the number of faults separated by
test phase. 72

6.5 Cumulative number of predicted faults by SRGMs for all of
Project 1 represented as a function of elapsed time. In the
legend, A, B, C, D, E, F, G and H represent the number of
faults separated by test phase. 73

6.6 Cumulative number of predicted faults by SRGMs for all of
Project 2 as a function of elapsed time. In the legend, A, B,
C, D, E, F, G and H represent the number of faults separated
by test phase. 74

6.7 Cumulative maximum predicted number of faults by SRGMs
for all of Project 1 as a function of elapsed time. In the legend,
A, B, C, D, E, F, G and H represent the number of faults
separated by test phase. 75

viii

6.8 Cumulative maximum predicted number of faults by SRGMs
for all of Project 2 as a function of elapsed time. In the legend,
A, B, C, D, E, F, G and H represent the number of faults
separated by test phase. 76

7.1 Examples of calendar time and person hours. 83
7.2 Example of a comparison between projects. 84
7.3 Overview to compare the results of SRGM between projects. 85
7.4 Relation of the number of faults and calendar time. 88
7.5 Relation of the number of faults and person hours. 89
7.6 Relation of the number of faults and implemented test cases. 90
7.7 Results of the fault densities and the rates of used person

hours. 95
7.8 Results of the fault densities and the rates of used person

hours. 95
7.9 Fault densities and rates of used person hours for project B

and E and the leveled Gompertz model 97

8.1 Fault densities and rates of used person hours for projects P2
and P5 and the leveled Gompertz model 103

8.2 Results of the unclassified SRGM and the projects. 105
8.3 Results of the SRGMmodel classified by LOC and the projects.

106
8.4 Results of the SRGM model classified by the test case and the

projects. 107
8.5 Results of the SRGM model classified by the test density and

the projects. 108
8.6 Fault densities and rates of used person hours for P2 and P5

and the leveled Gompertz models classified by test density. . 110

9.1 Overview of future work. 112
9.2 Overview of the future work in software reliability models. . . 113

ix

Chapter 1

Introduction

Software reliability is a critical component of computer system availability.
Software reliability growth models (SRGMs) such as the Times Between Fail-
ures Model and the Failure Count Model can indicate whether a sufficient
number of faults have been removed to release the software. The Failure
Count Model is based on counting failures and probability methods. Repre-
sentatives of this type of model include the Goel-Okumoto non-homogeneous
Poisson process (NHPP) Model and the Musa Execution Time Model.

Recent studies by Tamura [47], Yamada [55], Zhang [59], Cai [4], Kamei
[23], Schneidewind [43] and Nguyen [33] have attempted to describe the dy-
namics of developments using a stochastic process. However, they have not
evaluated the dynamics with actual datasets. Existing methods assume that
each parameter is independent of time, which leads to the inability to account
for dynamics. Although this assumption limits the models, it makes the mod-
els solvable by mathematical methods. For example, the NHPP model has
two parameters (i.e., the total number of faults and the fault detection rate),
which are independent of time because the NHPP model equations cannot
be solved if these values have time dependencies. Although Okamura et al.
proposed a multi-factor software reliability model framework that can deal
with the metrics observed in the testing phase such as test coverage, the
number of test workers, etc. [38], their method employs a logistic regression
to analyze the relationships between the probability that an event occurs
and environmental factors, including the person hours. They evaluated their
method with five datasets, including the number of test cases, cumulative
test cases, and increment of code coverage, etc., but they did not evaluate
their method with person hours. On the other hand, I hypothesize that if

2 Chapter 1 Introduction

several developers suddenly join a project in which a SRGM is applied, the
development environment suddenly changes, impacting the parameters, es-
pecially the SRGM parameters, since sudden changes should be treated with
time-dependent parameters.

1.1 Background

Software reliability is important to release software. Several approaches have
been proposed to measure reliability. One is to model fault growth, which
is a type of SRGM. Because software development includes numerous uncer-
tainties and dynamics regarding development processes and circumstances,
this section explains SRGMs, their uncertainties and dynamics as well as
provides a motivating example.

1.2 Software Reliability GrowthModel (SRGM)

SRGMs are used to predict the numbers of faults. Because it is important
to estimate the costs to develop software, several methods exist in software
engineering. One method is called the function point method, which can
estimate the person hours to analyze functions software development. The
SRGM is one such method to estimate the person hours to release software
by quantifying the person hours by the numbers of faults and the numbers of
predicted faults. However, existing SRGMs often inaccurately estimate the
numbers of faults. In my experience, existing SRGMs estimate between 0.5
to 10 times the actual numbers of faults.

I hypothesized that existing models estimate the wrong number of faults
because they are unable to model the fault detection process. In this thesis,
I propose a new model. Similar to SRGMs that assess software reliability
quantitatively from fault data observed in the testing phase, my approach is
also based on the fault counting [8] model.

Many software reliability models have been proposed, but the most pop-
ular is the NHPP model. In this study, NHPP models are compared with my
method, which I named the Generalized Software Reliability Model (GSRM)
using development data containing the number of faults detected in a given
time. My GSRM is formulated by counting the number of faults detected in
a given time assuming that fault detection is based on a stochastic process,

1.2 Software Reliability Growth Model (SRGM) 3

whereas the NHPP model assumes that the stochastic process governing the
relationship between fault detection and a given time interval is a Poisson
process. In actual developments, fault counting predicts the number of re-
maining faults.

In the NHPP model, the probability of detecting n faults is described by

Pr{N(t) = n} =
{H(t)}n

n!
exp {−H(t)} (1.1)

N(t) is the number of faults detected by time t and H(t) is the expected
cumulative number of detected faults [54]. Assuming that the total number
of faults is constant at Nmax, the number of detected faults at a unit time
is proportional to the number of remaining faults. These assumptions yield
the following equation

dH(t)

dt
= c(Nmax −H(t)) (1.2)

where c is a proportionality constant. The solution of this equation is

H(t) = Nmax(1− exp (−ct)) (1.3)

This model is called the exponential software reliability growth model, and
was originally proposed by Goel and Okumoto [9]. Yamada et al. derived the
delayed S-shaped software reliability growth (S-shaped) model from equation
(1.3) with a fault isolation process [57]. Equation (1.3) can be rewritten into
the delayed S-shaped SRGM using HS(t), which is the expected cumulative
number of faults detected in the S-shaped model, as

HS(t) = Nmax{1− (1 + ct) exp (−ct)} (1.4)

Researchers have proposed other software reliability growth models by ap-
plying several failure time distributions in NHPP models. Table 1.1 presents
the standard SRGMs and their corresponding failure time distributions.

In early works, researchers employed the maximum likelihood estimation
to estimate the model parameters. However, today the least square method
is also employed to estimate model parameters [40]. In this thesis, I only
take the trend curves of these SRGMs and estimate these curves in terms of
the non-linear least squares method.

4 Chapter 1 Introduction

Table 1.1: Standard SRGMs and their failure time distributions.
Model name Failure time distribution References

Exponential model Exponential distribution [9]
S-Shape model Gamma distribution [57]
Logistic model Truncated logistic distribution [34]
Gompertz model Truncated extreme value max distribution [36]
Weibull model Log extreme value min distribution [8] [36]

Chapter 2

Overview of This Thesis

I consider that developers and researchers have tried to remove uncertainties
in software engineering, for a long time. For example, in requirement engi-
neering several researchers proposed methods to model the uncertainties and
risks. In implementation, Kernighan et al. surveyed the elements of good
style about programming, taking best practices, and mentioned that “Write
clearly - don’t be too clever” in “The elements of programming style”[25].
This means that Kernighan et al. were aware of the problem that bad pro-
gramming style gave the readers of programming code a difficulty to under-
stand. If there is a difficulty to understand in the programming code, it
makes other programmers who try to improve the program to fail to under-
stand or to write error code. Thanks to these studies, nowadays almost all
companies employ the naming convention, which is one of the programming
style, in its development team because a lot of developers develop a product
by cooperating with other developers and needs rules to understand the code
easily and clearly for other developers. In short, such naming convention
and coding standards are ones of the challenges to remove the uncertainties
between developers in implementation.

Figure 2.1 shows the over view of related work about uncertainty of soft-
ware developments as far as I know. The X axis represents phases of software
development. The Y axis represents modeling uncertainty and controlling
uncertainty. The areas represent the research areas of several researchers or
research group. The area (3) is my research area and the theme of this thesis.

About (1) in figure 2.1, several researchers tried to treat the uncertainties
in requirements and operations. Wallace et al. studied the risk [49] and ana-
lyzed the software project risks to reduce the incidence of failure [49]. They

5

6 Chapter 2 Overview of This Thesis

Figure 2.1: Overview of related work.

mentioned that software projects have six dimensions: Team Risk, Organi-
zational Environment Risk, Requirements Risk, Planning and Control Risk,
User Risk, and Complexity Risk. They emphasized that Organizational En-
vironment Risk and Requirements Risk are due to risks and uncertainties.
Goseva-Popstojanova and Kamavaram studied the uncertainties in require-
ments and operations by component-based software engineering [22] [10]. In
[22], they analyzed the uncertainties of operational profiles and component
reliability by calculating the conditional entropy of each component. In [10],
they analyzed the uncertainties of the operational profiles and the compo-
nent reliability by Monte Carlo simulations. These analytical methods focus
on the requirements and operations.

About (2) in figure 2.1, N. Ubayashi et al. proposed a method to de-
scribe uncertainty in design models or programs by specifying uncertain ar-
chitectural points [48]. They modeled architectural uncertainty in design
and coding phases. Additionally, T. Fukamachi et al. proposed a modular-
ization mechanism for uncertainty [7]. Their approach to deal with uncer-
tainty modeled uncertainty about requirement by describing in design and
code as a method and tried to control uncertainty by adding or deleting the

7

uncertainty method.

About (3) in figure 2.1 , I proposed a method to quantify uncertainty
through the software reliability growth model [16] and evaluated my method
by using actual data sets [31]. Additionally, I proposed a method to detect
unexpected situations in actual situations [14]. My research area is focusing
on the process of detecting faults in implementation and verification. And I
was able to quantify the uncertainties through the fault detection.

�

� �

�

�

�

�

�

Figure 2.2: Overview of software reliability models.

Additionally, I summarized the relations between several famous software
reliability models and my proposed model, which is named as a Generalized
Software Reliability Model (GSRM) in figure 2.2. The X axis represents the
time when the models had been proposed. The Y axis represents the amount
of data which each model can treat.

At the beginning of the studies of the software reliability models, there
were trend curve model and Non-Homogeneous Poisson Process model in
1970’s. NHPP model was proposed by Goel et al. [9]. The famous models
of trend curve models are Logistic model and Gompertz model.

As the researches of software reliability models made progress, it became
clear that NHPP based models could describe the same model as trend curve

8 Chapter 2 Overview of This Thesis

models. Moreover, several researchers extended NHPP based models to non-
parametric NHPP models which employed neural network [24] [42] and sup-
port vector machine (SVM) [52] [39]. The existing NHPP based models were
classified as parametric NHPP models.

In 2000’s, Okamura et al. proposed phase type software reliability models
which combined non-parametric NHPP models and parametric NHPP model
[37]. Fujii et al. proposed metrics-based software reliability models which
used both the number of faults and software metrics and employed regression
models to treat the software metrics [6].

The GSRM is based on the parametric NHPP model and can directory
treat the person hours and numbers of developers without regression models.
Moreover, the GSRM can model the uncertainties and dynamics of develop-
ments.

In this thesis, I compared the GSRM and existing parametric NHPP mod-
els by using actual data sets. Additionally, I did not compare the GSRM with
the metrics-based SRM because I did not have the datasets which contains
the faults data and metrics data. In order to compare the GSRM with the
metrics-based SRM, I should prepare the dataset which contains the faults
data and metrics data and the numbers of developers.

Chapter 3

Generalized Software
Reliability Model Considering
Uncertainty and Dynamics:
Theoretical Foundations

3.1 Introduction to This Chapter

Previous studies only use linear stochastic differential equations, but my
research indicates that nonlinear stochastic differential equations more real-
istically model actual situations. These studies and SRGMs treat and test
several datasets only in the given situation (e.g., within the same company
or organization). In short, existing models are tested and applied to the situ-
ation from which the datasets are obtained, and are evaluated from different
domains. For example, one work evaluated several SRGMs with automotive
software datasets, while another assessed two SRGMs with an army system
dataset. Rana et al. studied four software projects from the automotive sec-
tor and concluded two statistic SRGMs perform better than other SRGMs
[40]. On the other hand, Goel et al. investigated two stochastic SRGMs with
a U.S. Navy project dataset and concluded their model provides a plausible
description [9]. These studies did not evaluate existing SRGMs with other
domains.

Herein I propose a model called the Generalized Software Reliability
Model (GSRM) [16] to describe several development situations that involve

10
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

random factors (e.g., team skills and development environment) to estimate
the time that a development will end [15]. Additionally, I have predicted the
release times of open source software (OSS) using GSRM [18] and agile de-
velopment [50]. Moreover, I have applied GSRM and SRGMs to company’s
datasets [15] [14] [13] [12]. Due to random factors, the GSRM in each situa-
tion has an upper and lower limit, suggesting that a GSRM can predict the
maximum and minimum number of faults. I formulate the upper and lower
limit equations for three development situations with approximations in or-
der to treat these equations easily and predict the number of faults in several
ranges. I evaluate and test GSRM and other models using datasets from
different organizations and circumstances. GSRM can quantify uncertain-
ties that are influenced by random factors (e.g., team skills and development
environments), which is important to more accurately model the growth of
software reliability and to optimize development teams or environments.

This study aims to answer the following research questions:

1. RQ1: Can GSRM be applied to several development situations?

2. RQ2: Is GSRM an improvement over other models (e.g., NHPP) in
describing the growth of software reliability under different situations?

My contributions are as follows:

1. I propose a software reliability model applicable to nine development
situations, which is 12% more precise than existing models for recent
datasets.

2. Three approximate equations about three uncertainty types in my soft-
ware reliability model.

3. An evaluation with actual datasets confirms that my software reliability
model can classify development situations.

To evaluate my model, I simulate nine types of development situations using
the Monte Carlo method. To simplify the application of my model, I divide
the situations related to uncertainty situations into three types and derive
an approximation equation for each. Finally, I apply the approximation
equations to four projects from two different organizations and classify these
projects into three uncertainty types.

The rest of this Chapter is organized as follows. Section 2 describes my
model as a generalized software reliability model and summarizes the types

3.2 Background 11

of developments depending on dynamics and uncertainties. In addition, I
derive three equations, which depend on the uncertainties. Section 3 applies
GSRM to four projects using two datasets and evaluates whether GSRM can
accommodate different situations. Moreover, I compare GSRM with NHPP
models by focusing on how closely the models can simulate actual data.
Section 4 discusses related work, while Section 5 provides the conclusion.

3.2 Background

Software reliability is important to release software. Several approaches have
been proposed to measure reliability. One is to model faults growth, which
is a type of SRGM. Because software development includes numerous uncer-
tainties and dynamics regarding development processes and circumstances,
this section explains SRGM, its uncertainties and dynamics as well as pro-
vides a motivating example.

In this Chapter, I compare GSRM with these two models. Equation (1.3)
results in an exponentially shaped software reliability graph. However, a real
software reliability graph typically follows a logistic curve or a Gompertz
curve [56], which is more complex. Therefore, I propose a new model that
can express either a logistic curve or an exponentially shaped curve for use
in actual developments.

3.2.1 Uncertainty and Dynamics

Software development projects have uncertainties and risks. Wallace et al.
analyzed the software project risks to reduce the incidence of failure [49].
They mentioned that software projects have six dimensions: Team Risk, Or-
ganizational Environment Risk, Requirements Risk, Planning and Control
Risk, User Risk, and Complexity Risk. They emphasized that Organizational
Environment Risk and Requirements Risk are due to risks and uncertainties.
However, existing software reliability growth models do not contain these
uncertainty elements. On the other hand, several SRGMs treat limited time-
dependent assumptions. Yamada et al. proposed an extend NHPP model re-
lated to the test-domain dependence [58]. The test-domain dependent model
includes the notion that a tester’s skills improve in degrees. Although growth
of skills is a time-dependent additional assumption to the NHPP model, this

12
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

model does not correspond to dynamic changes (e.g., changes in or the num-
ber of team members).

3.2.2 Motivating Example

Existing studies describe usages and evaluate models, and almost all compare
models and try to suggest an improvement. Existing models can be applied
to similar situations, but they cannot be applied different situations like other
domains or scales. For example, Figure. 3.1 shows the impact of applying
two existing models to different datasets in references [9] and [45], which
belong to different organizations. The crosses for “Dataset 1” represent the
actual data in reference [9] and the crosses for “Dataset 2 release 2” represent
one project of the actual data in reference [45]. The dashed lines represent
the exponential model fitted to the actual data. The dotted-dashed lines
represent the S-shaped model fitted to the actual data. These results indicate
that the fitness of the S-shaped model is greater than the exponential model
in “Dataset 1.” However, the fitness of the exponential model is greater than
the S-shaped model in “Dataset 2 release 2.” In other words, the fitness of a
model depends on the situation and is not universal. Therefore, I propose a
model that is suitable for different situations.

Figure 3.1: Cumulative number of detected faults for Dataset 1 (left) and
Dataset 2 release 2 (right) as a function of elapsed time. In the legends,
Detected faults, exponential model, and S-shaped model represent the actual
data, the fit using the exponential model, and the fit using the S-shaped
model, respectively.

3.3 Generalized Software Reliability Model (GSRM) 13

3.3 Generalized Software Reliability Model

(GSRM)

For my software reliability model [16], I extend a nonlinear differential equa-
tion that describes the fault content as a logistic curve as an Ito type stochas-
tic differential equation. In this Chapter I derive three equations correspond-
ing to three types of uncertainties [16]. Moreover, I apply and evaluate the
three equations by using actual datasets.

In my previous paper [16], I proposed a simple GSRM equation, which
only simulated several development situations that involved random factors.
In [16], I could not analyze actual datasets. In this Chapter, I extend the sim-
ple GSRM equation to apply it to actual datasets. The equation is divided
into three uncertainty types: late, constant, and early types. Using clearly
defined equations, I apply GSRMs to actual datasets and obtain the upper
and lower limits in each situation due to random factors, which mean that
the GSRM can predict the maximum and minimum number of faults. Ad-
ditionally, I evaluate and test my GSRMs and other models using datasets
from different organizations and circumstances. The GSRM can quantify
uncertainties that are influenced by random factors, which is important to
more accurately model the growth of software reliability and to optimize
development teams or environments.

I start with the logistic differential equation, which is expressed as

dN(t)

dt
= N(t)(a+ bN(t)) (3.1)

N(t) is the number of detected faults by time t, a defines the growth rate,
and b is the carrying capacity. If b = 0, then the solutions are exponential
functions. Because the numerous uncertainties and dynamic changes prevent
actual developments from correctly obeying equation (3.1), it should be ex-
tended into a stochastic differential equation. I assume that such dynamic
elements are time dependent and contain uncertainties. These elements are
expressed using a. The time dependence of a can be used to describe sit-
uations such as an improved development skills and increased growth rate.
The uncertainty of a can describe parameters such as the variability of devel-
opment members and the environment. The growth of software is analyzed
with an emphasis on the testing phase by simulating the number of detected
faults. I assume that software development has the following properties:

14
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

1. The total number of faults is constant.

2. The number of faults that can be found depends on time.

3. The number of faults that can be found contains uncertainty, which
can be simulated with Gaussian white noise.

The first assumption means that the total number of faults is finite and
can be treated as a boundary condition. This assumption implies that cor-
recting faults does not create new ones. Indeed, many SRGMs assume that
the total number of faults is constant [28]. Several researchers have proposed
SRGMs that can treat infinite faults [30]. I assume that the debugging pro-
cess creates new faults. I suppose that I can use one model for fault creation
and fault detection in the debugging process.

The second assumption means that the ability to detect the faults varies;
the ability depends on time because the number of developers changes in
recent developments, and the number of developers affects the ability to
detect the faults. Researchers have proposed several time dependent models
whose situations are limited such as the error detection per time increases
with the progress of software testing [57]. Hou et al. proposed a SRGM
upon considering two learning curves (the exponential learning curve and
the S-shaped learning curve) [19]. These existing models assume that the
number of developers does not change and the time dependent parameters
are a specific model like the exponential learning curve. In contrast, my
model does not depend on a specific model.

The third assumption means that uncertainties in the development pro-
cess affect the ability to detect faults. This assumption is due to the fact that
actual datasets have non-constant detection rates or seem to be independent
of time. Analyzing actual faults in datasets, I observed several sudden in-
creases in the number of detected faults. Then I modeled the uncertainty,
which affects the ability to detect faults as Gaussian white noise that is a
simple but commonly used noise. To the best of my knowledge, other SRGMs
do not treat such uncertainties that occur in the development. By analyzing
the uncertainties for each development, I can understand how a development
progresses and predict the progress with a concrete tolerance.

3.3 Generalized Software Reliability Model (GSRM) 15

3.3.1 Modeling Uncertainties and Dynamics

Considering these properties, equation (3.1) can be extended to an Ito type
stochastic differential equation with a(t) = α(t) + σ(t)dw(t), which is ex-
pressed as

dN(t) = (α(t) + βN(t))N(t)dt+N(t)σ(t)dw(t) (3.2)

N(t) is the number of detected faults by time t, α(t)+σ(t)dw(t) is the differ-
ential of the number of detected faults per unit time, γ(t) = N(t)σ(t)dw(t) is
the uncertainty term, σ(t) is the dispersion, and β is the nonlinear carrying
capacity term. This equation has two significant terms, α(t) and σ(t)dw(t);
α(t) affects the end point of development and σ(t)dw(t) affects the growth
curve through uncertainties. Thus, my model treats both uncertainties and
dynamics. However, uncertainties cannot be treated directly because they
depend on the cause. My approach treats the uncertainties through a fault
detecting process.

3.3.2 Uncertainties

In particular, equation (3.2) indicates that the stochastic term is dependent
on N(t), which means that the uncertainties depend on the number of de-
tected faults. According to equation (3.2), as the number of detected faults
increases, the stochastic term has a greater effect on the number of detected
faults. Such a situation corresponds to software development with late un-
certainty.

I compare three different types of dependencies of γ(t) on N(t):

• The late uncertainty type is where γ(t) = N(t)σdw(t).

• The constant uncertainty type is where γ(t) is independent of N(t):
γ(t) = σdw(t).

• The early uncertainty type is where γ(t) depends on the inverse ofN(t):
γ(t) = 1/N(t)σdw(t).

As α(t) and the coefficient of dw(t) are varied, models are simulated using
equation (3.2). Table 3.1 summarizes the types of α(t), the coefficient of
dw(t), and the corresponding situations. Using GSRM, the type must be
chosen for Table 3.1 to calculate the parameters using past data. In devel-
opment, faults are detected and debugged. The detected faults are counted

16
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

and used to predict when the project will end. Projects contain a lot of
uncertainty elements, and the predicted development period is almost never
long enough. GSRM can describe the uncertainty of applied development
and calculate the uncertainty of fault detection.

I describe the uncertainty as σ(t)dw(t), which is basically Gaussian white
noise obtained from past data. The uncertainty is difficult to calculate using
equation (3.1), so I assume some limits and obtain σ(t)dw(t) quantitatively.
I start by defining a(t) in terms of

a(t) = α(t) + σ(t)dw(t) (3.3)

Equation (3.1) cannot be solved due to the time dependence of a, as shown
in equation (3.3). Therefore, I assume that a is time independent with an
added term δ, which is small. This assumption allows equation (3.1) to be
solved. These three uncertainty types can be rewritten as

dN(t) = (α(t) + βN(t))N(t)dt+N(t)δdw(t) (3.4)

dN(t) = (α(t) + βN(t))N(t)dt+ δdw(t) (3.5)

dN(t) = (α(t) + βN(t))N(t)dt+
1

N(t)
δdw(t) (3.6)

Each GSRM model is derived from one of these three types of uncertainty.

3.3.3 Simulations

Using these equations for GSRM, I simulated these nine cases. Figure 3.2
models and plots these nine cases. For each column in Table 3.1, the dif-
ference between each model is the parameter α(t). In Model 1-1, Model
2-1 and Model 3-1, which are based on Model 1-1, a2 = a1, a3 = 2a1 and
t1 = tmax/2 in Model 2-1, and α3(t) = a1t in Model 3-1. α(t)’s are set
in the same manner along all columns (i.e., α(t) is the same along each row
in Table 3.1). For Model 1-1, Model 2-1 and Model 3-1, the effect of
uncertainty over time, γ(t) = N(t)σdw(t) increases. The situation in Model
2-1 corresponds to the number of development team members doubling at
time t1. The situation corresponding to Model 3-1 is that the members’
skills improvement over time, effectively doubling the manpower by the time
tmax. For Model 1-2, Model 2-2, and Model 3-2, the effect of uncertainty
γ(t) = σdw(t) is constant. For Model 1-3, Model 2-3 and Model 3-3,
the effect of uncertainty γ(t) = σdw(t)/N(t) decreases over time.

3.3 Generalized Software Reliability Model (GSRM) 17

Table 3.1: Combinations of dynamics as characterized by α(t) and γ(t).
α(t) and γ(t) indicate the number of detected faults per unit time and the
uncertainty term, respectively.

γ(t) = N(t)σdw(t) γ(t) = σdw(t) γ(t) = σdw(t)/N(t)

α1(t) = a1(const.)

The number of

detected faults

per unit time

is constant, but

the uncertainty

increases near the

end. This model

is similar to a

logistic curve.

(Model 1-1)

The number of

detected faults

per unit time

and uncertainty

are constant.

(Model 1-2)

The number of

detected faults

per unit time is

constant, but the

uncertainty de-

creases over time

(e.g., the team

matures over

time). (Model

1-3)

α2(t) = a2

(t < t1)

α2(t) = a3

(t ≥ t1)

The number of

detected faults

per unit time

changes at t1, and

the uncertainty

increases near

the end (e.g., new

members join the

project at time

t1). (Model

2-1)

The number of

detected faults

per unit time

changes at t1, but

the uncertainty

is constant.

(Model 2-2)

The number of

detected faults

per unit time

changes at t1, but

the uncertainty

decreases over

time. (Model

2-3)

α3(t) ∝ t

The number of

detected faults

per unit time

and the uncer-

tainty increase

near the end

(e.g., increasing

manpower with

time). (Model

3-1)

The number of

detected faults

per unit time

increases, but

the uncertainty

is constant.

(Model 3-2)

The number of

detected faults

per unit time

increases, but

the uncertainty

decreases over

time. (Model

3-3)

18
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

Figure 3.2: Ratio of the cumulative number of detected faults at time t versus
the total number of detected faults for the entire project where the. x-axis
represents time in arbitrary units. 1 corresponds to tmax and 0 : 5 to t1.
In Model 1-1, Model 1-2 and Model 1-3, the number of detected faults
per unit time is constant. In Model 2-1, Model 2-2 and Model 2-3, the
number of detected faults per unit time changes at t1. InModel 3-1, Model
3-2 and Model 3-3, the number of detected faults per unit time increases.

3.3 Generalized Software Reliability Model (GSRM) 19

The purpose of the simulations is to confirm that my approach can assess
software reliability under dynamic changes and uncertainties in development
as well as adapt the models to produce appropriate results. I used a Monte
Carlo method to examine these models. Figure 3.2 shows the effects of un-
certainties and dynamics.

3.3.4 Formulation

In sections 3.3.2 and 3.3.3, I simulated several stochastic differential equa-
tions. The results show that random factors affect the number of predicted
faults. I assumed that the effects of random factors obey Gaussian white
noise, which follows the dispersion of equation (3.2). Thus, the number of
detected faults has an upper and a lower limit. In this section, I discuss
the three types of uncertainty (late uncertainty, constant uncertainty, and
early uncertainty) and formulate the stochastic differential equations to ap-
proximate differential equations without stochastic variables in order to treat
these stochastic differential equations easily and predict the number of faults
in several ranges. These approximated differential equations have simple so-
lutions, which contain uncertainty values and will give the upper and lower
limits.

Late uncertainty type

The late uncertainty type means that the uncertainties in the development
circumstances increase as the development progresses. Consider the following
equation

dN(t) = (α + βN(t))N(t)dt+N(t)δdw(t) (3.4)

If δdw(t) is a constant value (i.e., time independent), equation (3.4) can be
written as

dN(t) = (α + δ + bN(t))N(t)dt (3.7)

The solution to equation (3.7) is given by

N(t) =
Nmax

1 + b exp{−(α + δ)t} (3.8)

This equation is a logistic equation where δ is the origin of the uncertainty.
α+δ is the gradient. The sign of δ can be positive or negative. If δ is negative
(positive), the gradient of the equation is small (large). The sign of δ gives

20
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

the limitation of the uncertainty. If δ is negative (positive), the growth of
the graph provides a lower (upper) limit. I calculate the upper and lower
limits of some projects and plot them in the next section. δ is determined as

δi = − 1

ti
ln

{
1

b

(
Nmax

Ni

− 1

)}
− α (3.9)

The subscript i indicates the data is for the ith fault detected at ti. i differs
from the approximate value at ti. Finally, I obtain the average and variance
of δ. I can construct the equation of SRGM from the average and variance
of δ to simulate the projects and to predict when they will end by using δ
and its distribution, which is Gaussian white noise [15]. I assume that the
detected faults obey equation (3.8) and that the detection rate has a time-
independent uncertainty δ. This assumption yields the following upper and
lower limits

N+(t) =
Nmax

1 + b exp{−(α + δ)t} (3.10)

N−(t) =
Nmax

1 + b exp{−(α− δ)t} (3.11)

N+(t) means the upper limit about N(t). If the development proceeds via
a favorable situation, the number of detected faults will obey equation (??).
N−(t) denotes the lower limit about N(t). If the development proceeds via
an unfavorable situation, the number of detected faults will obey equation
(3.11).

Constant uncertainty type

In this section, the constant uncertainty type where the development cir-
cumstances have the uncertainties that are independent of time is discussed.
Consider the following equation

dN(t) = (α + βN(t))N(t)dt+ δdw(t) (3.5)

If δ → 0, equation (3.5) is derived as follows

dN(t) = (α + βN(t))N(t)dt (3.12)

3.3 Generalized Software Reliability Model (GSRM) 21

This equation can be solved as

N(t) =
Nmax

1 + b exp(−αt)
(3.13)

This is the base equation for the other types. However if δ << 1 and δ �= 0, I
should consider the δ term. The entire term, which is related with δ, is δdw.
Because dw is Gaussian white noise, the value of δ can be calculated from
the actual data and base equation (3.13). I write the number of the actual
detected faults as Ni and the number of predicted faults as N(t). di, which is
the difference between the actual and predicted data, is defined using these
two terms as

di = Ni −N(ti) (3.14)

δ is expressed as

δ =

√√√√ 1

m

m∑
i=1

(di − d̄)2 (3.15)

δ means the standard deviation. d̄ is the average of di. m represents the
total number of detected faults. Finally, the upper limits and lower limits of
the constant uncertainty type equations are expressed as

N+(t) =
Nmax

1 + b exp(−αt)
+ δ (3.16)

N−(t) =
Nmax

1 + b exp(−αt)
− δ (3.17)

N+(t) is the upper limits about N(t), while N−(t) means the lower limits
about N(t). These limit equations mean that when the number of detected
faults becomes large, they are not affected by the δ uncertainty term.

Early uncertainty type

In this section, I discuss the early uncertainty type, which means that the
uncertainties in the development circumstances decrease in the late stage of
the development. Consider equation (3.6), which is given by

dN(t) = (α(t) + βN(t))N(t)dt+ δ
1

N(t)
dw(t) (3.6)

22
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

If δ → 0, then it can be rewritten as

dN(t) = (α + βN(t))N(t)dt (3.18)

This equation can be solved as

N(t) =
Nmax

1 + b exp(−αt)
(3.13)

This is the base equation of the other types. However if δ << 1 and δ �= 0,
then this should be regarded as the δ term. The whole of the uncertainty
term is δdw(t)/N(t). Because dw(t) is Gaussian white noise, the value of
δdw(t)/N(t) can be calculated from the actual data and base equation (3.13).
The concrete equation is obtained from equation (3.13) as

δ{1 + b exp(−αt)}
Nmax

(3.19)

Ni is the number of actual faults and N(t) is the number of predicted faults.
di, which is the difference between the actual data and predicted data, can
be expressed using these two terms as

di = Ni −N(ti) (3.20)

Equation (24) shows the difference between the actual data and the predicted
data. Using this equation and the relation as δdw/N(t), δ is expressed as

δ =

√√√√ 1

m

m∑
i=1

{N(ti)di}2 (3.21)

This value δ denotes the standard deviation. Additionally, dw means Gaus-
sian white noise. Finally the equation for the early type uncertainty is written
by adding equation (3.19) to equation (3.13)

N+(t) =
Nmax

1 + b exp(−αt)
+ δ

1 + b exp(−αt)

Nmax

(3.22)

N−(t) =
Nmax

1 + b exp(−αt)
− δ

1 + b exp(−αt)

Nmax

(3.23)

N+(t) means the upper limits about N(t), and N−(t) means the lower limits
about N(t). These equations indicate that when the number of detected
faults is large, the uncertainty term has a negligible influence on the number
of detected faults.

3.4 Evaluation 23

3.4 Evaluation

In this section, I apply the three types of uncertainties to four projects from
two datasets to determine which uncertainty types are suitable for each
dataset. The first development dataset is from reference [9]. The second
development dataset is from reference [45]. Moreover, I compared GSRM
with other SRGMs using two datasets.

3.4.1 Evaluation design and results

I evaluate GSRM by applying to two datasets [9] [45] and comparing my
model with other models. First, I applied the three uncertainty types of
GSRM to these datasets to determine which uncertainty type is suitable
for the development situation. To analyze the suitability, I evaluated the
coverages between their upper and lower limits. The areas between these
limits contain several actual data points. If the number of contained actual
data points of one type is larger than that of the other type, I considered the
uncertainty type is suitable for the dataset. Second, I compared GSRM with
other models with respect to the accuracy of applying the models to these
datasets. I adopted the residual sum of square (RSS) and Akaike Information
Criteria (AIC). RSS means the differences between the model and the data.
AIC means the differences between the model and the data considering the
number of parameters in the model. If the RSS and AIC values are small,
the model fits with the data. Because these values indicate model fitness, the
fitness of different models can be compared. My evaluation uses the datasets
in Table 3.4. DS 1 [9] was obtained in 1979. DS 2-1, 2-2, and 2-3 [45] were
obtained in 2000. DS 2-1, 2-2, and 2-3 were developed with several testing
guidelines, including the fault-prone method, and using previous projects’
data [46].

Design

This development dataset is from reference [9] and is written by Goel and
Okukmoto. The data are originally from the U.S. Navy Fleet Computer
Programming Center and consist of the errors in software development (Table
3.2). The second development dataset is from reference [45] and is written
by Stringfellow et al. The data come from three releases of a large medical
record system, which consists of 188 software components (Table 3.3). The

24
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

Table 3.2: Dataset 1 (DS 1). Each row contains the total number of faults
detected over the corresponding number of days.

Error No. 1 2 3 4 5 6 7 8 9 10 11 12
Time (days) 9 21 32 36 43 45 50 58 63 70 71 77

Error No. 13 14 15 16 17 18 19 20 21 22 23 24
Time (days) 78 87 91 92 95 98 104 105 116 149 156 247

Error No. 25 26 27 28 29 30 31 32 33 34
Time (days) 249 250 337 384 396 405 540 798 814 849

Table 3.3: Dataset 2(DS 2-1, 2-2, 2-3). Each row contains the total number
of faults detected over the corresponding number of weeks.

Weeks Release 1 (DS 2-1) Release 2 (DS 2-2) Release 3 (DS 2-3)
1 28 90 9
2 29 107 14
3 29 126 21
4 29 145 28
5 29 171 53
6 37 188 56
7 63 189 58
8 92 190 63
9 116 190 70
10 125 190 75
11 139 192 76
12 152 192 76
13 164 192 77
14 164 192
15 165 203
16 168 203
17 170 204
18 176

3.4 Evaluation 25

Table 3.4: Details of each dataset.

Dataset Year Term Faults Citation Explain
DS 1 1979 849 days 34 [9] US Navy
DS 2-1 2000 18 weeks 176 [45] Pharmacy (release 1)
DS 2-2 2000 17 weeks 204 [45] Pharmacy (release 2)
DS 2-3 2000 13 weeks 77 [45] Pharmacy (release 3)

data contain the cumulative number of faults and their detected times for
the three different releases of the software program. I applied GSRM to
these datasets and classified the datasets based on the uncertainty type by
comparing the covered actual data points between the upper and lower limits.
To compare with NHPP models (NHPP and S-shaped), I adopted the time
independent model of GSRM because these datasets do not have person
month data. The models were evaluated using RSS and AIC where small
values indicate that the model has a sufficient fit.

Table 3.4 shows that these datasets contain data from the 1970s and the
2000s, which were produced by waterfall developments. The 2000s projects
were developed with the fault prone method, which is a modern approach
[46]. Therefore, the 2000s projects were developed via more modern processes
than the 1970s project.

Results

I evaluated the adoptions for the three uncertainty types and compared the
GSRMs with NHPP models through the two datasets. For each uncertainty
type, I calculated the upper limit and the lower limit as well as its suitability.
Figures 3.3 – 3.6 and Table 3.5 show the results. I compared the GSRMs with
the NHPP models (e.g., the exponential model and S-shaped model) through
RSS and AIC. As mentioned above, small RSS and AIC values indicate a
good model fitness. Figure 3.7 and Table 3.6 show the results.

Type Selection

I calculated δ and the upper and lower limits. Figures 3.3 – 3.6 plot the
results where the x-axis represents time and the y-axis represents the number
of detected faults. Solid, dashed, and dotted-dashed lines represent values

26
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

Figure 3.3: Cumulative number of detected faults for the entire project of
DS 1 plotted against the elapsed number of days. In the legend, Detected
faults, GSRM, GSRM-upper, and GSRM-lower represent the actual data, the
fit using GSRM, the predicted upper limit, and the predicted lower limit,
respectively. (A) the late uncertainty type, (B) the constant uncertainty
type, and (C) the early uncertainty type.

3.4 Evaluation 27

Figure 3.4: Cumulative number of detected faults for the entire project of
DS 2-1 plotted against the elapsed number of weeks. Legends and the titles
are the same as Fig. 3.3.

28
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

Figure 3.5: Cumulative number of detected faults for the entire project of
DS 2-2 plotted against the elapsed number of weeks. Legends and the titles
are the same as Fig. 3.3.

3.4 Evaluation 29

Figure 3.6: Cumulative number of detected faults for the entire project of
DS 2-3 plotted against the elapsed number of weeks. Legends and titles are
the same as Fig. 3.3.

30
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

calculated with GSRM, upper limits, and lower limits, respectively. The
crosses indicate the actual data in reference [9] and [45]. These results confirm
that almost all of the real data points are contained within the calculated
upper and lower limits. I quantitatively evaluated which type is suitable for

Table 3.5: Selection of three uncertainty types for Datasets 1 and 2.
Late type Constant type Early type

Coverage Area Rate Coverage Area Rate Coverage Area Rate
DS 1 16 62.9 0.254 25 136.9 0.183 24 271.3 0.088
DS 2-1 13 350.6 0.037 12 307.1 0.039 11 374.9 0.029
DS 2-2 13 343.5 0.038 9 179.5 0.050 8 174.3 0.046
DS 2-3 10 114.3 0.087 9 90.9 0.099 9 106.6 0.084

each datasets by calculating the Coverage, Area, and Rate for each dataset.
Coverage means the number of actual data points between the upper and
lower limits. Area, which denotes the area surrounded by the upper and
lower models, is calculated by integrating the upper and lower models. Rate,
which indicates the coverage rate of the type, represents the Coverage divided
by Area. Coverage is the most important value since a model with a large
Coverage can cover a lot of actual data points. If one type has a larger
Coverage than the other types, it is more suitable for the dataset. However,
if the types have equal Coverage, then the type with the largest Rate is most
suitable for the dataset.

Table 3.5 shows the results. The constant type of uncertainty is suitable
for dataset 1 because it has the largest coverage (Figure. 3.3 and Table
3.5). This is reasonable since the interval of detecting faults is random as
the development proceeds in dataset 1, indicating that uncertainty events
randomly occur. The results of release 1, 2, and 3 indicate that the late type
is suitable for dataset 2 because it has the largest coverage (Figures. 3.4 –
3.6). This is consistent with Tables 3.3 and 3.5 where more faults are detected
at the end of development for dataset 2, indicating that the development has
issues up until each release.

In these datasets, I could not verify the results by interviewing the devel-
opment teams that produced these datasets due to the age of the datasets.
Therefore, I requested that a Japanese IT company, which employs about
5000 people, use GSRMs and evaluate the results, including the uncertain-
ties, from 2013 to 2015. I collected the fault datasets from the two projects in
the company. Additionally, the two managers of the two development teams

3.4 Evaluation 31

evaluated the results. Then I asked the two managers about the GSRM re-
sults and whether they agreed with the uncertainty type according to the
GSRMs. They responded that the uncertainty type indicated by the results
is consistent with their thoughts.

Comparison

The NHPP models are well known reliability models. In this section, I discuss
the differences between GSRM and NHPP models using the actual develop-
ment data in a given situation when the growth rate is time independent.
The reason for this limitation is because the NHPP model cannot be applied
to time-dependent situations. Figure 3.7 shows the results, where the crosses
represent the actual data in reference [9] and [45]. The solid, dashed, and
dotted-dashed lines represent the GSRM fitted to the actual data, the expo-
nential model fitted to the actual data, and the S-shaped model fitted to the
actual data, respectively. The parameters are calculated by R 1, which is a
language and environment for statistical computing and graphics. DS 1 and
DS 2-2 are the same projects as shown Figure. 3.1, which is the motivating
example. To verify that GSRM is a better model than the other models, I
calculate the RSSs and the AICs from these models and the development
data (Table 3.6).

The RSSs and AICs of the GSRM are lower in DS 2-1, DS 2-2 and DS 2-3
than those of the exponential and S-shaped models, suggesting that GSRM
is a better approximation than the NHPP models because GSRM has more
flexibility due to the nonlinear term. Especially, the GSRM has the breaking
term such as β, which causes the model to converge on the given values near
the actual data points.

3.4.2 Discussion

I compared GSRM with other NHPP models using two datasets in order
to assess whether GSRM can describe the data precisely. Additionally, I
applied the three uncertainty types to the datasets to verify whether GSRM
can adapt to different situations.

1The R Project for Statistical Computing http://www.r-project.org/

32
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

Figure 3.7: In “DS 1,” the cumulative number of detected faults for DS 1 is
plotted against the elapsed number of days. In the legend, Detected faults,
GSRM, exponential model, and S-shaped model represent the actual data,
the fit using GSRM, the fit using the exponential model, and the S-shaped
exponential model, respectively. In the other graphs, the cumulative number
of detected faults for 1 project of Dataset 2 is plotted against the elapsed
number of weeks. Legends are the same as “DS 1.”

Table 3.6: Comparison of GSRM with the NHPP models using datasets 1
and 2.

exponential model S-Shaped model GSRM
DS 1 RSS 131.3 100.1 137.8

AIC 148.4 139.2 152.1
DS 2-1 RSS 4612 3246 1310

AIC 158.9 152.6 136.3
DS 2-2 RSS 696.1 3489 473.7

AIC 119.4 145.8 112.8
DS 2-3 RSS 264.8 181.1 158.8

AIC 84.07 79.14 77.43

3.4 Evaluation 33

Wide applicability (RQ1)

In my simulations, I applied the reliability growth models to nine types of
development situations, which are characterized by two uncertainty elements
related to the detection of faults.

I successfully simulated the three types of dynamics of the development
situation: the number of detected faults per unit time is constant (e.g., the
number of members is constant), the number of detected faults per unit
time changes at the given time (e.g., new members join the project a given
time) and the number of detected faults per unit time increases (e.g., new
members join the project gradually). Especially, for the type where the
number of detected faults per unit time increases, the number of detected
faults is smaller than the other types in the late development, but it is greater
than the other types in early development. This means that if new members
join the project gradually, the number of detected faults will be smaller than
other types at the late of the development. If managers decided to increase
the members at the early development, ideally they would add new members
all at once and not gradually.

Existing models can describe only one of these situations with additional
limitations, but GSRM can describe several of these situations primarily
because existing models cannot handle time-dependent growth rates without
limitations, whereas GSRM can handle time-dependent rates as long as the
appropriate uncertainty situation is inputted. Additionally, GSRM has a
scheme for development uncertainties and can construct a model involving
uncertainties.

GSRM has a good fit for almost all datasets. The S-shape model has a
good fit for several datasets, but a worse fit for other datasets (e.g., dataset
2, release 2), indicating that the appropriateness of the model depends on the
situation. GSRM shows that dataset 2, release 2 is the late uncertainty type,
while the other releases have similar coverages for the different uncertainty
types. The results suggest that dataset 2, release 2 may be complicated since
many faults are detected in the first week. Regardless, these results indicate
that GSRM can treat several situations.

The old dataset (e.g., dataset 1) is a constant type of GSRM, while the
new datasets (e.g., dataset 2) are late types of GSRM. This means that the
old development has uncertainty events throughout development, while the
new development has uncertainty events at the later stage of development.
Nowadays, many researchers and developers recommend that faults or bugs

34
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

be removed at the earlier stages of development. I assume that the new de-
velopment would be well controlled since modern developers may have more
skills and knowledge than traditional developers. On the other hand, I as-
sume that the old development would be always exposed to uncertainty events
since developers may not have sophisticated skills and specific knowledge.

Comparison with other models (RQ2)

Given a situation where the growth rate is time independent, I used two
actual datasets to compare to GSRM with the NHPP models. The results
show a high-precision convergence of the numbers of faults and appropriate
development terms with GSRM. The precision of convergence is at least 12%
higher for GSRM than for the NHPP models, confirming that GSRM can
describe software growth more realistically than previously proposed models
based on the NHPP models. Thus, using GSRM may help developers devise
a more accurate plan for releasing software.

3.4.3 Limitations

I derive three uncertainty types by considering development situations arti-
ficially. However, the three types are intuitive.

To verify the probability of the types (late type, constant type, and early
type), I interviewed several developers about whether these three types are
suitable for actual developments. Almost all developers responded affirma-
tively and answered that their experiments seem to correspond to these types.
Although one developer answered that there are other uncertainty types, the
framework that the product employed in his experiment was forced to sud-
denly change to another framework mid-development. Although I propose
three types of uncertainties in development as an initial study, it is true that
there are other types of uncertainties.

Threats to Internal Validity

I treated the growth of the number of faults as a time dependent function.
The growth of the number of faults may be related to other factors (e.g.,
test efforts). In this research, I could not collect and evaluate the test efforts
and other data. The test efforts should influence the number of the detected

3.4 Evaluation 35

faults because if the test efforts are not constant, the number of detected
faults changes.

I chose three types of uncertainty: late, constant, and early. It is not
necessary to divide the uncertainty types by time categories. Although the
responses vary by individual, I asked several developers whether their assess-
ment agreed with the uncertainty type of the GSRM. Overall, the developers’
thoughts were consistent with the uncertainty types.

In comparing the models, I used two datasets, both of which were ob-
tained by one organization or company. It is possible that the data contains
mistakes or other false elements. Several studies have focused on the accu-
racy of the faults datasets. An early paper on bug reports in open software
indicates that the bug reports often contain information that does not de-
scribe bugs [11]. However, the datasets I used were collected from industries.
In general, industries try to collect exact bug reports because they do not
want to release software with bugs. If bugs remain in software released to
other companies, the bugs may have a detrimental effect. Thus, products
developed by industries tend to contain few faults. In [45], products related
to dataset 2 have few faults in each release. Hence, the number of mistakes
remaining in the dataset does not greatly impact my research results.

Additionally, the data were too old to compare with recent developments.
However, recent studies have also employed these datasets, which should
protect the validity of the results of this study.

Threats to External Validity

I only tested GSRM with two datasets, which is insufficient to make general-
izations about GSRM. Moreover, the datasets are old and the scales of their
systems are smaller than recent systems. Although a lot of factors (e.g.,
development styles, development scales, organizations, ages, etc.) should
greatly affect the growth of the number of faults, I could not evaluate such
factors. I evaluated two datasets belonging to a different organization pub-
lished in different timeframes.

In the future, I plan to use datasets related to large-scale systems. More-
over, I plan to use datasets with different development styles or development
scales. Additionally, I only compared GSRM with NHPP models. However,
other models exist. Although these models have similar origins as the NHPP
model, GSRM should be compared to other models besides NHPP models.

36
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

Threats to Construct Validity

I supposed that the uncertainty types of developments can be categorized as
late type, constant type, and early type, and can be evaluated by applying
GSRM to actual datasets. The types of uncertainties were artificial and may
not be applicable to actual datasets because it is possible that the datasets
belong to other uncertainty types.

Additionally, it is unclear whether I evaluated the correct uncertainty
values by applying GSRMs to the datasets quantitatively since my definitions
of the uncertainty values were built from only the viewpoints of the number
of faults and time series. However, several developers who understood the
results of GSRM concurred with the types determined by GSRM.

3.5 Related work

3.5.1 Software Reliability Growth Models

Many kinds of software reliability growth models exist. Several researchers
proposed time-dependent models whose situations are limited such as the
error detection per time increase with the progress of software testing [57].
Yamada et al. proposed an extend NHPP model, which is related with test-
domain dependence [58]. The test-domain dependent model includes the
idea that the tester’s skills should improve by degrees (e.g., the growth of
skills is time dependent). Hou et al. proposed a SRGM considering two
learning curves, which are the exponential learning curve and the S-shaped
learning curve [19]. These models assume that the number of developers
does not change and the time dependent parameters are model specific like
the exponential learning curve. My model does not depend on such specific
models and situations.

Although software reliability models have not been used on waterfall de-
velopment, Fujii et al. developed a quantitative software reliability assess-
ment method in incremental development processes, which is an agile soft-
ware development, based on the familiar non-homogeneous Poisson processes
[6]. They used not only the number of faults but also software metrics, which
are the number of software modules, the number of design reviews, the num-
ber of test cases performed, the size of software, and the development effort.
They showed a software reliability prediction through a case study. They
developed a SRGM for the incremental development processes and adopted

3.5 Related work 37

other metrics to their SRGM, but they did not directly treat the number of
developers. My model can directly treat the number of developers, which
should be suitable to actual and recent development styles.

Kuo et al. proposed a framework for modeling the software reliability
model using various testing efforts and fault detection rates [27]. The testing
efforts mean the resource expenditures spent on software testing (e.g., test
cases, human resource, CPU time) applied into SRGMs in [53]. Kuo et al.
applied their framework to several NHPP models by employing three types
of testing effort functions (constant testing effort consumption, Weibull-type
testing effort function, and Logistic testing effort functions) and two types
of fault detection rates (constant proportionality and time-variable fault de-
tection rates).

Additionally, Ahmad et al. proposed an S-shaped NHPP model contain-
ing testing-effort [1]. Ahmad et al. assumed that the testing effort expen-
ditures are described by the Log-logistic function and integrated the Log-
logistic function into an S-shaped NHPP model. Their model requires the
test effort expenditures such as the test cases and human resource, but my
model only needs the number of developers.

Huang et al. proposed five SRGMs with multiple changing points, which
could be treated as the timing of introducing new tools or techniques [20].
They prepared datasets with and without multiple changing points, and eval-
uated their SRGMs with the changing points and the estimated changing
points. Their idea about multiple changing points in development is similar
to my assumption about dynamic changes in development. However, they
only target the timing of the changes of development, whereas my model
targets the timing and the concrete values such as the increased numbers of
developers. Since my model can treat concrete values such as the numbers
developers, I am able to simulate the development in section 3.3.

Singh et al. proposed a SRGM using a feed forward neural network
approach, which is a machine learning method [44]. Their approach uses part
of the data (60% to 80% from the beginning) for several datasets to train each
neural network model. I supposed that if several development changes occur
after learning data their model would not be able to treat such situations
since it was constructed with the learning data using a machine learning
technique. My model can treat a situation such as changes in developers,
which I simulate in section 3.3.

38
Chapter 3 Generalized Software Reliability Model Considering Uncertainty

and Dynamics: Theoretical Foundations

3.5.2 Uncertainties

Several researchers tried to treat the uncertainties in requirements and op-
erations. Wallace et al. studied the risk [49] and analyzed the software
project risks to reduce the incidence of failure [49]. They mentioned that
software projects have six dimensions: Team Risk, Organizational Environ-
ment Risk, Requirements Risk, Planning and Control Risk, User Risk, and
Complexity Risk. They emphasized that Organizational Environment Risk
and Requirements Risk are due to risks and uncertainties. My studies focus
on the uncertainties and try to evaluate the uncertainties in a quantitative
manner. In contrast, Wallace et al. did not focus on the uncertainties and
did not evaluate the uncertainties in a quantitative way.

Goseva-Popstojanova and Kamavaram studied the uncertainties in re-
quirements and operations by component-based software engineering [22]
[10]. In [22], they analyzed the uncertainties of operational profiles and com-
ponent reliability by calculating the conditional entropy of each component.
In [10], they analyzed the uncertainties of the operational profiles and the
component reliability by Monte Carlo simulations. These analytic methods
focus on the requirements and operations. However, my methods focus on
the uncertainties in development phases, including requirements and oper-
ations. In the future, I plan to analyze the effects of the uncertainties in
requirements and operations since I suppose that the uncertainties in the
requirement phases affect the development process.

3.6 Conclusion

Using GSRM, I successfully simulated developments containing uncertain-
ties and dynamic elements. I obtained the time-dependent logistic curve and
growth curve, which is not possible using other models, as well as simulated
and analyzed nine types of developments with GSRM. Additionally, I for-
mulated equations for three types of uncertainty that are related to actual
development situations. I also defined uncertainty values from actual data
containing information on faults during development and applied GSRM to
datasets to calculate the fitness of the models. These results demonstrate
that GSRM can calculate uncertainties using past data and predict how long
a project will take.

In the future, I plan to evaluate teams or team members using quantita-

3.6 Conclusion 39

tive methods while considering uncertainties to optimize teams for a partic-
ular project using GSRM.

Chapter 4

Predicting Release Time of
Open Source Software Based
on GSRM

4.1 Introduction to This Chapter

I propose a model (GSRM) that can describe several development situations
that involve random factors, such as the skills of teams and development envi-
ronments, to provide a time range in which the development will end. Earlier
studies only use linear stochastic differential equations; however, my research
indicates that non-linear stochastic differential equations lead to more elabo-
rate equations that can model situations more realistically. Moreover, I aim
to reveal the development of open source software (OSS).

4.2 Proposal method

I focus on the determination when OSS will be released in the point of view
of issue growth. Especially I use two methods which are below.

A. Separating development time periods into each version.

B. Using GSRM and predicting the number of issues and release dates.

4.2 Proposal method 41

4.2.1 Separating time periods

The upper side graph of figure 4.1 indicate the growth of issues about “foun-
dation,”1 which is a front-end framework, divided by each version. The
shapes of curves are significantly sharped when the new version released.
Therefore I scope the changing points of versions and separate them into
each version, and apply my model (GSRM). The reason for separating them
is to approximate GSRM more precisely and treat them more naturally.

Figure 4.1: The number of issues and development days about “foundation.”

1http://foundation.zurb.com/

42
Chapter 4 Predicting Release Time of Open Source Software Based on

GSRM

4.2.2 Prediction of Release Time

I defined the methods to predict release times by using a GSRM and an
NHPP model (Exponential model). In general, the time when the develop-
ment will end is planned as when the number of detected faults is getting
around 95% of the predicted number of faults. SRGM can calculate the
predicted number of faults and the time when the development will end.

In the case of a GSRM, by using the equation (3.13), I can obtain the
time when 95% of the predicted number of faults will be found.

N(t) =
Nmax

1 + b exp(−αt)
(2.13)

I substitute N(t) = 0.95 ·Nmax for the equation (3.13) and solve it in terms
of t.

t =
1

α
ln (19 · b) (4.1)

In the case of an NHPP (Exponential model), by using the equation (1.3),
I can obtain the time when 95% of the predicted number of faults will be
found.

H(t) = Nmax(1− exp (−ct)) (1.3)

I substitute H(t) = 0.95 ·Nmax for the equation (1.3) and solve it in terms of
t.

t =
1

c
ln (20) (4.2)

I used these two equation (4.1) and (4.2) and evaluated the predicted times.

4.3 Application to OSS

I discuss the differences between GSRM and the Non-Homogeneous Poisson
Process (NHPP) models using actual development data of OSS named as
“foundation” in a given situation as the growth rate is time-independent.
The reason for this limitation is because the NHPP model cannot be applied
to time-dependent situations. I compare GSRM with a general NHPP model
on data sets obtained from Github sites2. In Table 4.1, I show the numbers of
issues and the days each version and the residual sum of squares (RSS) and
the Akaike’s Information Criterion (AIC) about models. This results show

2https://github.com/zurb/foundation

4.4 Related work 43

GSRM is better than Exponential model in the view point of predictions.
Predicted numbers of issues and days by GSRM are more precisely than
those of Exponential model.

Table 4.1: Comparison of GSRM with NHPP model (Exponential model).

Actual Data GSRM Exponential model
Version 2 Issue 536 526 899

Days 258 245 854
RSS - 50388 25929
AIC - 2108 1936

Version 3 Issue 1066 1170 32555
Days 242 306 23102
RSS - 182119 44708
AIC - 2306 1965

Version 4 Issue 1974 2203 5897
Days 265 323 2017
RSS - 720089 302405
AIC - 2865 2634

4.4 Related work

The software reliability models had ever been used on water fall development,
however Fujii et al. developed a quantitative software reliability assessment
method in incremental development processes, which is one of agile software
developments, based on the familiar non-homogeneous Poisson processes.[6]
Fujii et al. did not use only the number of faults but also the software metrics
and showed software reliability prediction through a case study.

4.5 Conclusion

Using GSRM, I was able to successfully predict the release dates and the
number of issues about OSS. However NHPP can more precisely approximate
the growth of issues than GSRM. For future work I will adjust the time-
dependence of models. In this Chapter, I limited the development situation
as time-independence situation, in order to compare GSRM with NHPP and

44
Chapter 4 Predicting Release Time of Open Source Software Based on

GSRM

the lack of data about time-dependent elements, thus GSRM could more
precisely approximate the growth of issues.

Chapter 5

Predicting Time Range of
Development Based on GSRM

5.1 Introduction to This Chapter

Software reliability is a critical component of computer system availability.
Especially, quality managers try to control software reliability and project
managers try to estimate the end of development for planing developing
term and distribute the manpower to other developments. In a estimating
method, a manager collects faults data, which contains the number of faults
and the time when faults are detected, and estimates how many faults re-
mained using the faults data applying a prediction model, which is called
software reliability growth model. Thus, software reliability growth models
have been developed to indicate whether enough faults have been removed
to release the software. Although the logistic curve and Gompertz curve [56]
are well-known software reliability growth curves, they cannot account for
the dynamics of software development, which are affected by various devel-
opment environment elements, such as the skills of the development team,
changing requirements, etc. However, these curves cannot account for the
dynamics of software development. Developments are affected by various ele-
ments of the development environment, such as the skills of the development
team and changing requirements.

Many current models only give the number of faults that will be found
within some time range. Here, I propose a model called the generalized soft-
ware reliability model (GSRM), which can describe several development situ-

46 Chapter 5 Predicting Time Range of Development Based on GSRM

ations that include random factors (e.g., skills of the development team and
development environment), to provide a time range in which development
will end. Although earlier studies use linear stochastic differential equations,
my research indicates that non-linear stochastic differential equations lead
to more elaborate equations that can model situations more realistically.
Furthermore, GSRM can quantify uncertainties influenced by random fac-
tors. To more accurately predict the time required to complete development
and to optimize development teams and environments, uncertainties must
be quantified. Thus, this study aims to answer the following three research
questions.

RQ1: How much better is GSRM at describing the growth of software reli-
ability in different situations compared to other models (e.g., NHPP)?

RQ2: How accurately does GSRM describe the convergence of the number
of faults and the appropriate development term in a given situation
compared to other models?

RQ3: How does GSRM predict when a development will end, considering
the dispersion due to uncertainty?

My contributions are as follows:

• A generalized software reliability model, which is 12% more precise
than existing models.

• A new method to predict when development will end.

5.2 Motivating example

Existing software reliability growth models give us the number of faults will
be found with some ranges of raults, however the models cannot precisely in-
dicate the time when the development will end. Figure 5.1 shows an example
dataset from reference [45] written by C. Stringfellow et al. , which is drawn
with three models: the normal NHPP (Exponentail model), its upper limit,
and its lower limit, which indicate a greater deal of faults than Exponentail
model and a less than Exponentail model, whose values are calculated with
confidence interval as 70%. For example, the end for the “Lower Limit Time”
is twice that of the “Upper Limit Time,” indicating that the predictions are

5.3 Generalized Software Reliability Model 47

Figure 5.1: Time ranges based on NHPP model (Exponential model).

not meaningful. Hence, I try to construct a new method which can define
the time ranges of development at section 5.3.2.

In this chapter, I compare GSRM with these models. Equation (1.3)
results in an exponentially shaped software reliability graph. However, actual
software reliability graphs typically follow a logistic curve or a Gompertz
curve [56], which are more complex. Therefore, I propose a new model,
GSRM, which can fit either a logistic curve or an exponentially-shaped curve
for use in actual developments.

5.3 Generalized Software Reliability Model

For my software reliability model, I extend a nonlinear differential equation
that describes the fault content as a logistic curve into an Ito-type stochastic
differential equation. I start with equation. (5.1), which is called the logistic
differential equation.

dN(t)

dt
= N(t)(a+ bN(t)) (5.1)

48 Chapter 5 Predicting Time Range of Development Based on GSRM

N(t) is the number of detected faults by time t, a defines the growth rate,
and b is the carrying capacity. If b = 0, then the solutions of this equa-
tion become exponential functions. Equation (5.1) can be extended into a
stochastic differential equation because actual developments do not strictly
obey equation (5.1) due to the numerous uncertainties and dynamic changes.
Such dynamic elements are considered time-dependent and to contain uncer-
tainty; these factors are expressed in a. The time-dependence of a can be
used to describe situations such as skill improvement of development mem-
bers and increases in the growth rate, while the uncertainty of a can describe
parameters such as the variability of development members and the envi-
ronment. I analyze the growth of software with an emphasis on the testing
phase by simulating the number of detected faults. Software development is
assumed to have the following properties:

1. The total number of faults is constant.

2. The number of faults that can be found varies depending on time.

3. The number of faults that can be found contains uncertainty, which
can be simulated with Gaussian white noise.

Considering these properties, equation (5.1) can be extended to an Ito-type
stochastic differential equation with a(t) = α(t) + σdw(t) as

dN(t) = (α(t) +
σ2

2
+ βN(t))N(t)dt+N(t)σdw(t) (5.2)

N(t) is the number of detected faults by timet, α(t) + σ2/2 + σdw(t) is the
differential of the number of detected faults per unit time, γ(t) = N(t)σdw(t)
is the uncertainty term, σ is the dispersion, and β is the non-linear carrying
capacity term.

5.3.1 Uncertainty and Time-dependence

In development, faults are detected and debugged. The detected faults are
counted and used to predict when the project will end. A project has a lot
of uncertain elements, and the predicted development period is almost never
long enough. GSRM can describe the uncertainty of the applied development
and calculate the uncertainty of fault detection.

5.3 Generalized Software Reliability Model 49

I describe the uncertainty as σdw, which is basically Gaussian white noise
and can be obtained from past data. Because the uncertainty is difficult to
calculate from equation (5.1), I assume there are some limits to obtain σdw
in quantitative manner. The result can be useful. I start by defining a in
terms of σdw from equation (5.1) as

a = α(t) + σdw(t) (5.3)

However, equation (5.1) cannot be solved due to the time-dependence of a
as shown in equation (5.3). Therefore, I assume that a is time-independent
with an added term δ, which is small. This assumption allows equation (5.1)
to be solved, and can be rewritten as

dN(t)

dt
= N(t)(α + δ + bN(t)) (5.4)

Equation (5.4) can be solved as

N =
Nmax

1 + b exp{−(α + δ)t} (5.5)

This equation is a logistic equation where δ is the origin of the uncertainty.
α + δ is the gradient. The sign of δ can be positive or negative. If δ is
negative, the gradient of the equation is small, whereas if it is positive, the
gradient of the equation is large.

The sign of δ provides the limitation of the uncertainty. If δ is negative
(positive), the growth of the graph provides the lower (upper) limit. The
lower and upper limits are calculated in the next section. δ is calculated as

δi = − 1

ti
ln

{
1

b

(
Nmax

Ni

− 1

)}
− α (5.6)

The subscript i indicates that the data is for the ith fault detected at ti. i
differs from the approximate value at ti. Finally, the average and variance
of δ are obtained, which are used to construct an equation for the software
reliability growth model.

By using δ and its distribution, which are Gaussian white noise, I can
predict the range of the required development period. The range due to
uncertainties is obtained using the equations below.

50 Chapter 5 Predicting Time Range of Development Based on GSRM

I assume that the detected faults obey equation (5.4) and that the detec-
tion rate has an uncertainty δ that is time independent, which leads to

N+(t) =
Nmax

1 + b exp{−(α + δ)t} (5.7)

N−(t) =
Nmax

1 + b exp{−(α− δ)t} (5.8)

For N+(t), the rate of development is faster than for N(t). For N−(t), the
rate of development is slower than for N(t). Using these equations, I can
establish the range from the shortest development period to the longest.
The development periods are expressed as

t±(t) = − 1

α± δ

[
ln

{
1

b

(
Nmax

N
− 1

)}]
(5.9)

5.3.2 Time Range of Development

The development period usually ends when a certain percentage of expected
faults (typically 95%) are detected and removed. Using equation (5.9), the
range of the development period can be calculated before the development
period actually ends. The range is defined as Δt = t− − t+, and is expressed
as

Δt =

(
−2δ

α2 − δ2

)[
ln

{
1

b

(
Nmax

N
− 1

)}]
(5.10)

By calculating the development period range in the development, the delay
risk can be predicted as well as the delay range. Figure 5.2 depicts the
relations among these equations.

Figure 5.2 shows the time range of the same data with Figure 5.1. In
figure 5.1, the time range is 26.30 weeks, however in figure 5.2 the time range
is 6.40 weeks. These results show my method is more meaningful to predict
the end of the development than that of NHPP.

5.4 Evaluation and Discussion

5.4.1 Comparison with the NHPP models

The exponential model is one of many proposed reliability models. In this
section, I discuss the differences between GSRM and exponential model us-

5.4 Evaluation and Discussion 51

Figure 5.2: Relationship between the equations for N(t), N+(t) and N−(t),
and Δt, t+ and t−.

ing actual development data for a given situation when the growth rate is
time-independent. This limitation is imposed because the exponential model
cannot be applied to other time-dependent situations.

Dataset 1

This development dataset is from reference [9] written by Goel and Okuk-
moto. The data are originally from the U.S. Navy Fleet Computer Program-
ming Center, and consist of the errors in software development. Figure 5.3
plots the results using the exponential model and GSRM. The parameters
for both GSRM and the exponential model are calculated by R, which is
a language and environment for statistical computing and graphics. The
residual sum of squares(RSS) and Akaike’s Information Criterion (AIC) are
calculated from these models and the development data (Table 5.1). These
results show that GSRM provides a better approximation than the NHPP
models because GSRM is more flexible due to the non-linear term.

52 Chapter 5 Predicting Time Range of Development Based on GSRM

Figure 5.3: Comparison of GSRM and the exponential model.

Table 5.1: Comparison of GSRM and NHPP models using dataset 1.

Exponential model S-Shaped model GSRM
RSS 67.21 35.14 11.2
AIC 106.5 87.62 59.90

5.4 Evaluation and Discussion 53

Dataset 2

The second development dataset is from reference [45] written by C. Stringfel-
low et al. The data come from three releases of a large medical record system,
which consists of 188 software components (Table 5.2). The data contain the
cumulative number of faults and their detected times for the three different
releases of a software program. Figures 5.4-5.6 plot the results for each re-

Table 5.2: Dataset 2. Number of weeks for development and the number of
faults for the three different releases of a large medical record system.

Weeks Number of faults
Release 1 18 176
Release 2 17 204
Release 3 13 77

lease using the exponential model and GSRM. The parameters are calculated
by R for both GSRM and the exponential model. Then these equations and
developmental data are used to calculate RSS and the AIC (Table 5.3). Fur-
thermore, δ is calculated, and the upper and lower limits are simulated and
calculated. Almost all of the real data points are contained within the calcu-
lated upper and lower limits. GSRM produces a good fit for release 1 (Figure
5.4) as the curve for the lower limit corresponds to the worst-case scenario,
indicating that if the development is continued until 95% of the 176 faults
are detected, five more weeks are necessary than it actually took to complete
the development. However, the upper and lower limits are almost the same
for the release 2 (Figure 5.5), suggesting that the development does not have
critical uncertainties. Additionally, the GSRM results realize a good fit for
release 3 (Figure. 5.6), and although most of the data points are within the
curves for the upper and lower limits, a few are above the upper curve.

Dataset 3

I collected the third development dataset from Yahoo Japan Corporation
in 2013. The data comes from a platform of a search engine. A platform
consists of seven major modules: messaging, storage, UI, common, consumer,
control-api, and data-api. The modules manage development using Jenkins

54 Chapter 5 Predicting Time Range of Development Based on GSRM

Table 5.3: Comparison of GSRM with the NHPP models using dataset 2.

Exponential model S-Shaped model GSRM
Release 1 RSS 4612 3246 1310

AIC 158.9 152.6 136.3
Release 2 RSS 696.1 3489 473.7

AIC 119.4 145.8 112.8
Release 3 RSS 264.8 181.1 158.8

AIC 84.07 79.14 77.43

and track faults with it. Table 5.4 shows each module’s faults. Figures 5.7-
5.9 plot the actual number of faults and the predicted number of faults using
GSRM for messaging, common and consumer. Table 5.5 compares GSRM to
the NHPP models. The results demonstrate that GSRM more accurately.

Table 5.4: Number of faults in dataset 3.
Module Name Days Number of faults Predicted faults
messaging 206 240 232.88
storage 194 50 54.63
UI 187 148 144.09

common 184 134 126.72
consumer 157 63 58.50
control-api 190 73 68.08
data-api 183 147 144.60

5.4.2 Prediction of time ranges

The time range (Δt) when a development is predicted to end is calculated
using GSRM as well as by the exponential model. In the exponential model,
the range is determined by using the upper and lower boundaries to define a
confidence interval of 90%.

Dataset 2

In dataset 2, Δt is determined by GSRM when the upper and lower bound-
aries cross the 85% mark of the total number of predicted faults. Table 5.6

5.4 Evaluation and Discussion 55

Figure 5.4: Cumulative number of detected faults for the entire project of
release 1 versus the elapsed number of weeks. release1, Exponential, My
Model, +, and − represent the actual data, the fit using Exponential model,
the fit using GSRM, the predicted upper limit, and the predicted lower limit,
respectively.

56 Chapter 5 Predicting Time Range of Development Based on GSRM

Figure 5.5: Cumulative number of detected faults for the entire project of
release 2 versus the elapsed number of weeks. Legend is the same as Figure
5.4.

5.4 Evaluation and Discussion 57

Figure 5.6: Cumulative number of detected faults for the entire project of
release 3 versus the elapsed number of weeks. Legend is the same as Figure
5.4.

58 Chapter 5 Predicting Time Range of Development Based on GSRM

Table 5.5: Comparison of GSRM and the NHPP models using dataset 3.

Module Name Exponential S-Shaped GSRM
messaging RSS 50626 31510 12240

AIC 1971 1857 1632
storage RSS 409 592 232

AIC 253 592 226
UI RSS 47250 8160 2416

AIC 1279 1019 841
common RSS 357852 6824 7124

AIC 1443 912 920
consumer RSS 13168 622 514

AIC 521 329 319
control-api RSS 1913 1500 784

AIC 451 433 388
data-api RSS 9560 3359 1001

AIC 1036 883 707

Figure 5.7: Plot of the number of faults over time for the messaging module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,
respectively.

5.4 Evaluation and Discussion 59

Figure 5.8: Plot of the number of faults over time for the common module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,
respectively.

shows Δt for GSRM and the exponential model. Δt’s obtained by GSRM
have a 40% narrower width than those obtained by the exponential model,
and each dataset lies almost entirely within the time ranges obtained by
GSRM. Table 5.7 shows Δt predicted based on GSRM using a partial dataset.
The values of Δt decrease as the development proceeds and the amount of
data used for the predictions increases. The results indicate that GSRM can
be used to predict delays in development.

Table 5.6: Predicted ranges of the exponential model and GSRM for each
dataset. Unit time is weeks.

Exponential model GSRM
Release 1 31.002 3.739
Release 2 2.890 1.051
Release 3 9.601 3.739

60 Chapter 5 Predicting Time Range of Development Based on GSRM

Figure 5.9: Plot of the number of faults over time for the consumer module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,
respectively.

Table 5.7: Δt for each releases. Unit time is weeks.
All [1:15] [1:12] [1:9] [1:7]

Release 1 5.314 6.395 8.436 - -
Release 2 0.771 0.727 0.679 - 0.263
Release 3 2.287 - 4.075 2.754 3.254

5.4 Evaluation and Discussion 61

Dataset 3

In dataset 3, Δt for GSRM or the exponential model is determined when
the upper and lower boundaries cross the 70% mark of the total number of
predicted faults (Table 5.8).

Table 5.8: Ranges of the exponential model and GSRM in dataset 3.

Module Name Exponential model GSRM
messaging 1309 58.13
storage 219 86.92
UI 3308 17.01

common 58162 -
consumer NaN -
control-api 421 14.62
data-api 444 72.41

All of the ranges from GRSM are less than those of exponential. At
least one of the exponential ranges is 2.5 times greater than those of GRSM,
demonstrating that the exponential model’s range is not meaningful for pre-
dicting when development will end.

Table 5.9 shows Δt of each module’s faults and that predicted using
GSRM and a partial dataset. By comparing to the data in Table 5.4, some
modules are well predicted during development, and almost all the GSRM
results are well fitted and meaningful to predict when development will end.
However, the common and consumer modules cannot be predicted because
the predictions using partial data are inaccurate. The prediction using the
partial dataset for the common (consumer) module is 101.74 (98.03) days,
while the actual development is 184 (157) days.

5.4.3 Summary

Wide applicability (RQ1)

My simulations applied the reliability growth models to nine types of de-
velopment situations, which are characterized by two uncertainty elements
related to fault detection. Although existing models can describe only one
of these situations with additional limitations, GSRM can describe several
of these situations. This is primarily because existing models cannot handle

62 Chapter 5 Predicting Time Range of Development Based on GSRM

Table 5.9: Number of faults in dataset 3.
Module Name Predicted end days Predicted left days Number of faults
messaging 173.33 25 198
storage 201.36 60 41
UI 184.69 57 117

common 101.74 -23 107
consumer 98.03 -3 52
control-api 199.85 76 58
data-api 156.39 43 124

Module Name Predicted faults Predicted range
messaging 230 58.13
storage 49 86.92
UI 173 17.01

common 96 -
consumer 53 -
control-api 97 14.62
data-api 145 72.41

time-dependent growth rates without limitations. In contrast, GSRM can
handle time-dependence, and only the appropriate type of situation must be
inputted. Additionally, GSRM has a scheme for development uncertainties
and can construct a model involving uncertainties.

Comparison with NHPP model (RQ2)

Given a situation where the growth rate is time-independent, I used two
actual datasets and compared GSRM to the NHPPmodel. The results show a
precise convergence of the numbers of faults and the appropriate development
terms with GSRM. The convergence precision is at least 12% higher for
GSRM than for the NHPP model, demonstrating that GSRM can describe
software growth more realistically than previously proposed models based
on the NHPP model. Thus, GSRM may provide developers with a more
accurate plan for releasing software.

5.5 Related work 63

Predictions involving uncertainties (RQ3)

For two datasets, GSRM is able to model the uncertainties, and calculate
Δt to predict not only the total development time, but also how long devel-
opment will be delayed due to uncertainties. Δt cannot be obtained with
other models. Therefore, existing models can only predict the day when the
development will be end, but not the length of a delay.

Internal validity threats

In comparing models, I use two datasets, both of which were obtained by
one organization or company. Therefore, the data could contain mistakes
or some other false elements. Moreover, the data were too old to compare
with recent developments. However, recent studies also use these data so the
validity should be protected.

External validity threats

We only tested GSRM with two datasets, which is insufficient to make gener-
alizations about GSRM. Moreover, the datasets are old and the scales of their
systems are smaller than recent systems. A future project will use datasets
related to large-scale systems. Additionally, I only compared GSRM with
the NHPP model (exponential model). There are a lot of other proposed
and applied models. Although these other models have similar origins as the
NHPP model, GSRM should also be compared to them.

5.5 Related work

Many different types of software reliability growth models exist. Yamada
et al. proposed an extend NHPP model, which is related to test-domain
dependence [58]. The test-domain dependent model includes the notion that
the tester’s skills should improve by degrees; thus, skills grow over time. The
test-domain dependent model adds additional assumptions to the NHPP
model.

Although water fall development has not been applied to software re-
liability models, Fujii et al. developed a quantitative software reliability
assessment method via incremental development processes, which is a type

64 Chapter 5 Predicting Time Range of Development Based on GSRM

of agile software development based on the familiar non-homogeneous Pois-
son processes [6]. Fujii et al. used both the number of faults and software
metrics to demonstrate software reliability predictions via a case study.

M. Xie et al. studied about the predictions and estimations of software
release time with the exponential model [51]. They changed the values of
parameters which were obtained from the software development in progress
and estimated the optimal software release time. Their method can estimate
a later release time and earlier release time, however, their method needs
the concrete values to change, like the 10% of the parameters. My method
does not need such concrete values to change because my method predicts
the release time by evaluating the differences between the model and actual
values.

S. Inoue et al. proposed a cost-optimal software release planning by
using a bootstrap method [21]. They focused on the cost optimizations for
software developments and employed the software reliability growth model
and a bootstrap method. By using a cost condition, they evaluated the
optimal software release time intervals with a bootstrap confidence intervals.
On the other hand, my method did not treat cost optimizations. In the
future work, I should compare my method with their method by adding the
cost optimization to my method.

5.6 Conclusion

GSRM can be used to predict the length of the development when the team
composition drastically changes during development as well as to simulate
and analyze nine types of developments. Furthermore, I was able to define
uncertainty values from actual data containing information on the faults
during development, and apply GSRM to three datasets to calculate Δt,
including the range of possible development times considering the uncertainty
values. I also examined how well GSRM can predict the required development
time using actual datasets. By using past data, GSRM can calculate the
uncertainties with and predict how long a project will take. In the future,
I aim to find methods to quantitatively evaluate teams or team members
considering uncertainties and to optimize teams to suit particular projects
using GSRM.

Chapter 6

Detection of Unexpected
Situations by Applying
Software Reliability Growth
Models to Test Phases

6.1 Introduction to This Chapter

I apply SRGMs to the datasets of two projects developed by Fujitsu Labs Ltd.
in order to determine when SRGMs provide ill-fitted or unexpected results.
I assume that the detected faults differ by test phase, and this difference is
the source of misfit between the model and actual data. To investigate the
source of unexpected results, two different SRGMs are used. In the first case,
SRGM is applied to the entire dataset. In the second case, the dataset is
divided into test phases, SRGM is applied to each phase separately, and the
results are summed. Separating the faults into test phases and combining
the results provides a better fitting model.

6.1.1 Motivating example

I found two problems when applying SRGMs to an actual dataset. One is an
ill-fit between the model and the dataset. The other is when I applied SRGM
to a dataset during the middle of development, the values were overestimated
compared to the anticipated ones.

66
Chapter 6 Detection of Unexpected Situations by Applying Software

Reliability Growth Models to Test Phases

Figure 6.1: (A) Difference between the actual data and the model. Solid and
dashed lines represent the actual data and SRGM, respectively. Cumulative
number of detected faults for all of Project 1 as a function of elapsed time.

6.1 Introduction to This Chapter 67

Figure 6.2: (B) Case where SRGM overestimates expectations. Solid, dashed,
and dotted-dashed lines represent the actual data, SRGM, and the time I
applied SRGM, respectively. Cumulative number of detected faults for all of
Project 1 as a function of elapsed time.

68
Chapter 6 Detection of Unexpected Situations by Applying Software

Reliability Growth Models to Test Phases

Figure 6.1 indicates that the model and the actual data do not fit well
during the early, middle, and end of development for the cumulative project.
If the model does not fit the actual data, developers and managers cannot
decide development plans and release times. Moreover, the misfit leads to
difficulties determining when testing is complete. Herein I assume that the
misfit is due to the difference between test phases. Test processes are sep-
arated by purpose (e.g., unit test, integration test, system test). Therefore,
the detected faults depend on the test phase and related modules or features.

Figure 6.2 indicates that when I applied SRGM to the middle of devel-
opment (at the dashed-dotted line) the model overestimates the actual data.
This means that developers and managers will not believe the model be-
cause it indicates that too many faults will be found. It is assumed that
when developers and managers apply SRGM depends on the development
situation.

This study aims to answer the following research questions:

1. RQ1: How precise is the SRGM model when faults are separated by
test phase?

2. RQ2: Can continuous fault predictions and monitoring detect unex-
pected situations?

6.2 Background

Software reliability is important when releasing software. Several approaches
have been proposed to measure reliability. One is to model fault growth,
which is a type of SRGM. Because software development includes numerous
uncertainties and dynamics regarding development processes and circum-
stances, this section explains SRGM, its uncertainties, and dynamics as well
as provides a motivating example.

I have proposed a model called the Generalized Software Reliability Model
(GSRM) to treat the uncertainties and dynamics regarding development pro-
cesses and circumstances [17] and studies about predicting release time. I
have proposed a method to predict the release time of open source software
(OSS) by using GSRM [18] and agile development [50]. Additionally, I have
implemented applying GSRM to company’s datasets [15].

6.2 Background 69

6.2.1 Software Reliability Growth Model (SRGM)

Although many software reliability models have been proposed, the most
popular is the non-homogeneous Poisson process (NHPP) model. However,
a recent study has suggested the Logistic model is the best model followed
by the Gompertz model with regard to fitness [40]. In my study, I employ
the Logistic model and Gompertz model using development data containing
the number of faults detected for a given time. These models are common
in Japan.

The equation of the Logistic model is given by

NL(t) =
Nmax

1 + exp{−AL(t− BL)} (6.1)

where NL(t) is the number of faults detected by time t. If t → ∞, NL(t)
becomes Nmax. The parameters, Nmax, AL and BL can be calculated using R,
which is a language and environment for statistical computing and graphics.
The equation of the Gompertz model is given as

NG(t) = Nmax exp(−AGBG
t) (6.2)

where NG(t) is the number of faults detected by time t. If t → ∞, NG(t)
becomes Nmax. The parameters, Nmax, AG and BG can be calculated using
R.

6.2.2 Project monitoring

Although several methods exist to monitor projects, there are several con-
cerns in software development. The Engineering Project Management using
the Engineering Cockpit is one method to manage and monitor project sit-
uations [29]. It provides developers and managers with the project specific
information.

Nakai et al. studied how to identify the state of a project and the quality
of a project based on GQM [3] and project monitoring [31]. They employed
Jenkins, which is a continuous integration tool to visualize and collect fault
data, lines of codes, test coverage, etc. They tried to judge the status of the
project from the collected data based on the GQM method.

Ohira et al. developed the Empirical Project Monitor (EPM), which
automatically collects and analyzes data that are versioning histories, mail

70
Chapter 6 Detection of Unexpected Situations by Applying Software

Reliability Growth Models to Test Phases

archives, and issue tracking records from multiple software repositories [35].
EPM provides graphs of collected and analyzed data to help developers and
managers. However, EPM is not applicable to analyze SRGMs or to visualize
the results.

6.3 Proposal to detect unexpected situations

I propose the following method to detect unexpected situations using software
reliability growth models:

1. Separate faults into the phases that they are detected.

2. Apply SRGM daily to each fault.

3. Detect any unusual situations regarding the predicted number of faults.

The first step clarifies the fault data because the faults detected depend
on the phase. For example, faults detected in a unit test relate to a specific
module or feature, whereas faults detected in an integration test relate two
modules or features. Consequently, the fault level depends on the phase that
the fault is detected. Additionally, phases progress differently.

The second step applies the SRGM to the faults by phase to provide
the detailed situation of each phase. Moreover, to monitor the behavior
of SRGM, I apply it to each fault individually. In this Chapter, I apply
SRGM daily to the data of two projects. I focused on the behavior about
the predicted total numbers of faults, which is the model’s parameter Nmax.

The third step monitors the behavior of the SRGM to detect unusual
situations. In the motivating example, I mentioned that SRGM sometimes
overestimates the expected results. It is assumed that unexpected situa-
tions occur in developments. In this Chapter, I assess when SRGM behaves
unexpectedly in developments.

6.4 Evaluation and Results

I show the results for two projects on large-scale embedded software devel-
oped by Fujitsu Ltd. Herein these projects are identified as Project 1 and
Project 2. These projects’ qualities have been guaranteed by quality assur-
ance divisions and sufficiently tested. Figures 6.3 and 6.4 show the number

6.4 Evaluation and Results 71

of faults separated by the test phase when there are eight phases. Although
the actual data of Project 1 and Project 2 contain more than eight phases,
I treated only eight because the other phases do not have enough faults to
model by SRGM.

Figure 6.3: Cumulative number of detected faults for all of Project 1 repre-
sented as a function of elapsed time. In the legend, A, B, C, D, E, F, G and
H represent the number of faults separated by test phase.

6.4.1 Fitness of model (RQ 1)

I evaluated the fitness of SRGMs in two cases. Case 1 applies SRGM to all
the faults in the model simultaneously. Case 2 separates the faults the into
eight test phases, applies SRGM to each phase, and then sums the results to
treat as one model.

I show the results of Project 1 and 2 in Figs. 6.5 and 6.6, respectively.
It is should be noted that these figures do not indicate actual values because
the information is confidential. The separated faults model (case 2) provides
a better fitness than the simultaneous model (case 1). Table 6.1 shows the
residual sum of squares (RSS) ratio for each model.

These values are divided by the RSS value of case 1. Therefore, the
separated model (case 2) for both projects indicates a good fitness because

72
Chapter 6 Detection of Unexpected Situations by Applying Software

Reliability Growth Models to Test Phases

Figure 6.4: Cumulative number of detected faults for all of Project 2 repre-
sented as a function of elapsed time. In the legend, A, B, C, D, E, F, G and
H represent the number of faults separated by test phase.

Table 6.1: Comparison of the simultaneous model (CASE 1) with the sepa-
rated model (CASE 2) using RSS ratio datasets.

Case 1 Case 2
Project 1 1.000 0.345
Project 2 1.000 0.190

6.4 Evaluation and Results 73

Figure 6.5: Cumulative number of predicted faults by SRGMs for all of
Project 1 represented as a function of elapsed time. In the legend, A, B, C,
D, E, F, G and H represent the number of faults separated by test phase.

the RSS values of the separated models (case 2) are smaller than those of
the combined models (case 1).

6.4.2 Monitoring Predicted Faults (RQ 2)

I monitored the results of SRGMs by applying them daily to detect unex-
pected values. Figures 6.7 and 6.8 show the results for monitoring the max-
imum predicted number of faults for Project 1 and Project 2, respectively.
Figure 6.7 has two irregular points when the maximum predicted number
of faults is too large, whereas Fig. 6.8 has five irregular points when the
maximum predicted number of faults is too large.

I interviewed the project manager about the situations when the graph
indicates an irregular point. In figure 6.7, the first irregular point coincides
with the time that developers thought it was difficult to continue on sched-
ule because several problems remained. The second irregular point is when
developers tried to reschedule the release plan because several problems re-
occurred.

In figure 6.8, from the first irregular point to the third, several prob-

74
Chapter 6 Detection of Unexpected Situations by Applying Software

Reliability Growth Models to Test Phases

Figure 6.6: Cumulative number of predicted faults by SRGMs for all of
Project 2 as a function of elapsed time. In the legend, A, B, C, D, E, F, G
and H represent the number of faults separated by test phase.

6.4 Evaluation and Results 75

Figure 6.7: Cumulative maximum predicted number of faults by SRGMs for
all of Project 1 as a function of elapsed time. In the legend, A, B, C, D, E,
F, G and H represent the number of faults separated by test phase.

76
Chapter 6 Detection of Unexpected Situations by Applying Software

Reliability Growth Models to Test Phases

Figure 6.8: Cumulative maximum predicted number of faults by SRGMs for
all of Project 2 as a function of elapsed time. In the legend, A, B, C, D, E,
F, G and H represent the number of faults separated by test phase.

6.5 Conclusion 77

lems occurred intermittently. At the fourth irregular point, several problems
reoccurred and developers stopped tests and restarted other tests. At the
fifth irregular point, developers detected more faults than ever because they
refined and created new test cases.

In the two projects, the irregular points are the same as the unexpected
situations. Hence, the results show that monitoring the behavior should
detect unexpected situations early.

6.4.3 Thread to validity

In this Chapter, I only treat two similar projects from the same organiza-
tion. However, other researches have treated similar projects in the same
organization. Additionally, my results found unexpected situations in the
two projects, which I assumed are coincidental and are not related to this
research.

6.5 Conclusion

I successfully obtained a good fitness model by separating faults by test
phase and applying SRGM. Moreover, I found unexpected situations in de-
velopment by monitoring the faults and the behavior of the SRGM. These
results demonstrate that if developers and managers monitor the behavior
of the SRGM results from the beginning of development, they can detect
several unexpected situations earlier than ever.

To provide insight to developers and managers who have trouble with
development, I plan to evaluate my method by applying it to ongoing projects
and other datasets belonging to other domains or organizations.

In the Chapter 3, I assumed that the numbers of detected faults per
unit time contained uncertainty and proposed GSRM which can treat un-
certainty. In this Chapter, the unexpected situations are almost related to
sudden increases of detected faults. This is a piece of evidence that the num-
bers of detected faults per unit time contain uncertainty. In the future work,
I plan to analyze the relations between the unexpected situations and the
uncertainties in developments.

Chapter 7

Project Management Using
Cross Project Software
Reliability Growth Model

7.1 Introduction to This Chapter

Over the past few decades, several companies have employed software relia-
bility growth models (SRGMs) to evaluate reliability, which is an important
component of software [8] [56] [55] [54] [4]. However, SRGMs have several
issues. SRGMs sometimes misfit the actual data in ongoing developments.
In addition, the results do not always match the developers’ expectations.

If SRGMs misfit the actual data, the managers and developers will decide
wrong plans, for example stopping testing early or release software which has
not been tested enough. On the other hand, if the results of SRGMs indicate
that the faults are enough detected or not enough detected contrary to the
managers and developers’ expectations, they will decide wrong plans too. If
software is released with several faults left, the company which have released
it will take time to debug it or cause damage or affect negatively to its users.

In order to avoid such misfitting and mismatching the developers’ expec-
tations, I propose new good accuracy SRGMs using person hours. I assume
that SRGMs based on calendar time cannot realize accurate predictions, be-
cause many kinds of SRGMs treat calendar time, which includes holidays
and non-testing time and does not reflect the actual efforts by developers.

7.2 Background 79

7.1.1 Research Questions

This study aims to answer the following research questions:

1. RQ1: Do the results from SRGMs based on person hours differ from
those based on calendar time?

2. RQ2: If the results differ, which model more precisely describes the
relation between faults and detection time?

3. RQ3: Are there any metrics that can compare the progress against
other developments?

4. RQ4: If such metrics exist, can they compare the progress between
different developments?

My contributions are as follows:

• SRGMs based on person hours and calendar time are compared in nine
empirical projects.

• A method to compare SRGMs is derived.

• A method to monitor the progress of a project in person hours is de-
veloped and implemented in test cases.

In this Chapter, I compared the SRGMs based on person hours and calen-
der time in nine empirical projects. The results indicated the SRGMs based
on person hours tend to be good fitting, so using SRGMs based on person
hours would make precise plan.

7.2 Background

Several approaches have been proposed to measure reliability due to its im-
portance when releasing software. Software development includes numerous
uncertainties and dynamics regarding development processes and circum-
stances. This section explains SRGMs, their uncertainties and dynamics as
well as provides a motivating example.

I have proposed a model called the Generalized Software Reliability Model
(GSRM) to treat the uncertainties and dynamics regarding development pro-
cesses and circumstances[17]. Previously, I have predicted the release times
of open source software (OSS) using GSRM [18] and agile development [50].
Additionally, I have applied GSRM to company’s datasets [15].

80
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

7.2.1 Software Reliability Growth Model (SRGM)

This section treats some example software reliability models, while the next
section explains my model. Although numerous models have been proposed,
the most famous is the non-homogeneous Poisson process (NHPP) model.

Some methods quantitatively assess software reliability from fault data
observed in the software-testing phase using a software reliability model based
on the counting faults [8] model. Similarly, my approach is also based on the
counting faults model. By counting the faults and measuring the detection
time, a software reliability model is formulated assuming that fault detec-
tion is based on a stochastic process. The NHPP model assumes that the
stochastic process for the relationship between fault detection and detection
time is a Poisson process. In actual developments, counting faults predicts
the remaining faults and provides an indication about the end of the devel-
opment.

First consider the general NHPP model, where the probability of detect-
ing n faults is described as

Pr{N(t) = n} =
{H(t)}n

n!
exp {−H(t)} (7.1)

where N(t) is the number of faults detected by time t, H(t) is the expected
cumulative number of faults detected [5]. Assuming that the total number
of faults before testing is constant, Nmax, the number of detected faults at
a unit of time is assumed to be proportional to the remaining faults. These
assumptions are expressed as

dH(t)

dt
= c(Nmax −H(t)) (7.2)

where c is a proportionality constant. The solution to the above equation is

H(t) = Nmax(1− exp (−ct)) (7.3)

This model, which is called an exponential software reliability growth model,
was originally proposed by Goel and Okumoto [9]. In this Chapter, I compare
my model to this model.

Equation (7.3) provides an exponential shaped graph. However, in actual
developments the number of faults curve does not fit the exponential shaped;
it usually fits a logistic curve or Gompertz curve [2], which are more complex
than an exponential shaped graph. Consequently, I propose a new model

7.2 Background 81

that can fit a logistic curve or an exponential shaped curve for use in actual
developments.

Although many software reliability models have been proposed, the most
popular is the non-homogeneous Poisson process (NHPP) model, but a recent
study has suggested that the Logistic model followed by the Gompertz [36]
model are the most suitable with respect to fitness [40]. In this study, I
employ the Logistic model and the Gompertz model using development data
containing the number of faults detected for a given time. These models are
common in Japan.

The Logistic model is expressed by

NL(t) =
Nmax

1 + exp{−AL(t− BL)} (7.4)

where NL(t) is the number of faults detected by time t. If t → ∞, NL(t)
becomes Nmax. The parameters, Nmax, AL and BL can be calculated using
Levenberg-Marquardt method with R, which is a language and environment
for statistical computing and graphics.

The Gompertz model is given by

N ′
G(t) = N ′

max exp(−A′
GB

′
G
t′
) (7.5)

where NG(t) is the number of faults detected by time t. If t → ∞, NG(t)
becomes Nmax (0 < BG < 1). The parameters, Nmax, AG and BG can be
calculated using Levenberg-Marquardt method with R.

7.2.2 Project monitoring

Although multiple methods exist to monitor projects, there are several con-
cerns in software development. The Engineering Project Management us-
ing the Engineering Cockpit is one method to manage and monitor project
situations [29]. It provides developers and managers with project specific
information.

Nakai et al. studied how to identify the state and the quality of a project
based on goal, question, metric (GQM) [3] and project monitoring [31]. They
employed Jenkins, which is a continuous integration tool to visualize and
collect fault data, lines of codes, test coverage, etc. Then they evaluated the
project status using the collected data based on the GQM method.

82
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

Ohira et al. developed the Empirical Project Monitor (EPM), which auto-
matically collects and analyzes data from versioning histories, mail archives,
and issue tracking records from multiple software repositories [35]. EPM
provides graphs of the collected and analyzed data to help developers and
managers. However, EPM is not applicable to analyze SRGMs or to visualize
the results.

7.2.3 Motivating example

Figures 7.1 and 7.2 show my motivating examples. Figure 7.1 indicates that
the number of faults based on calendar time, which includes holidays and non-
testing time, does not reflect the actual efforts by developers. I hypothesize
that SRGMs based on calendar time cannot realize accurate predictions.
Herein the accuracy of a model based on calendar time is compared to that
based on person hours by evaluating nine projects developed by Sumitomo
Electric Industries, Ltd.

Figure 7.2 shows an example of two fault datasets, where the x-axis rep-
resents the calendar time and the y-axis represents the number of faults. For
comparison, the scales of the x- and y-axes are the same for Project P2 and
Project P5. Therefore, the total time is longer and more faults are detected
for Project P2 than Project P5.

However, criteria to compare these projects do not exist because each
project depends on its lines of code, domain, developers, budget, etc. In this
Chapter, I evaluate the fault density as functions of calendar time, person
hours, and number of tested cases. This evaluation realizes a method to
compare different projects.

7.3 Proposal to compare SRGM between projects

I propose an extension of SRGM to cover fault densities as well as a method
to apply the person hours to SRGMs.

7.3 Proposal to compare SRGM between projects 83

�

Figure 7.1: Examples of calendar time and person hours.

84
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

Figure 7.2: Example of a comparison between projects.

7.3.1 Extension of SRGM to fault densities

The equation of the Logistic model for fault densities and rates of used person
hours is given by

DL(t
′) =

Dmax

1 + exp{−A′
L(t

′ − B′
L)}

(7.6)

whereDL(t) is the fault density by the rate of used person hours t′. If t′ → ∞,
DL(t) becomes Dmax. The parameters, Dmax, A

′
L and B′

L can be calculated
using Levenberg-Marquardt method with R. The equation of the Gompertz
model for fault densities and rates of used person hours is given as

DG(t
′) = Dmax exp(−A′

GB
′
G
t′
) (7.7)

whereDG(t
′) is the number of faults detected by the rate of used person hours

t′. If t′ → ∞, DG(t
′) becomes Dmax (0 < B′

G < 1) . The parameters, Dmax,
A′

G and B′
G can be calculated using Levenberg-Marquardt method with R.

7.3.2 Comparison of projects

Figure 7.3 overviews my method, which compares the results of SRGMs
between projects with different lines of code, numbers of test cases, total

7.3 Proposal to compare SRGM between projects 85

person hours, and numbers of faults. My method has three steps:

1. Divide the number of detected faults by the created lines of code for
all data. Convert the person hours to the rate of used person hours.

2. Merge all data into one dataset. Rearrange it into chronological order.

3. Apply SRGM to the new dataset.

I consider the SRGM from the new dataset as a leveled SRGM of all datasets.

Figure 7.3: Overview to compare the results of SRGM between projects.

The first step converts the fault data of each project into the fault density
and the rate of used person hours because the numbers of faults and the terms

86
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

depend on the project. For example, consider a scenario where 100 person
hours are required to detect 20 faults in Project 1, but 50 person hours are
necessary to detect 10 faults in Project 2. If only the number of faults and
person hours are treated, the effort of the developers and the difficulty of
project cannot be evaluated. Additionally, I assume that the fault densities
and the rates of used person hours are values that can be used to compare
and monitor projects because the fault densities values are the same and the
rate of used person hours converge.

The second step merges the converted dataset into one dataset to create
an averaged SRGM. Moreover, to model the merged dataset, the data is
rearranged in chronological order. This study models the dataset to SRGM
by a nonlinear least-squares method through R.

The third step applies the merged dataset to SRGM based on the fault
densities and the rate of used person hours. The results indicate the leveled
line of development, which can be used to help managers and developers
assess the progress of a development. If the dataset for a development strays
from the leveled line, it means that the development is not going well at that
time.

7.4 Evaluation and Results

I evaluated my method via case studies. Then I applied my proposed method
to datasets from nine projects developed by Sumitomo Electric Industries,
Ltd. using the same framework.

7.4.1 Evaluation design and result

To answer RQ1 (Do the results from SRGMs based on person hours differ
from those based on calendar time?) and RQ2 (If the results differ, which
model more precisely describes the relation between faults and detection
time?), I compared the differences between models based on calendar time
and person hours. Specifically, I applied the Logistic model and the Gom-
pertz model to nine project datasets using calendar time and person hours.
Then I calculated the residual sums of square (RSS) for each model and com-
pared the results. RSS indicates the differences between actual data and a
model. A small RSS value indicates the model is a good fit for the actual
data.

7.4 Evaluation and Results 87

To answer RQ3 (Are there any metrics that can compare the progress
against other developments?) and RQ4 (If such metrics exist, can they com-
pare the progress between different developments?), I compared the correla-
tions between the metrics in the collected datasets, the lines of code that only
developers created, the numbers of faults, the number of test cases estimated
by developers, the number of test cases that developers tested, calendar time,
and person hours. Specifically, I evaluated the correlations between the met-
rics and then applied the Logistic model and the Gompertz models, which
are based on the fault density, person hours, and test cases, to the calcu-
lated RSS for each model. Finally, I compared the correlation to answer
RQ3. Then I compared the RSS results and interviewed the managers to
quantitatively and qualitatively answer RQ4.

In this evaluation, I collect nine projects data from Sumitomo Electric
Industries, Ltd. including function points, lines of code, number of fault, a
number of estimated test cases and the time series of detected fault days,
a number of implemented test cases, and the person hours. These projects
are developed for business applications throgh web from 2013 to 2015 with a
same framework which has been developed by Sumitomo Electric Industries,
Ltd.

Comparison between calendar time and person hours

I compared SRGMs based on calendar time (Figure 7.4) to those based on
person hours (7.5). In Figure 7.4 (7.5), the x-axis represents the calendar
time (person hours) and the y-axis represents the number of faults. In Figure
7.6, the x-axis represents the number of implemented test cases and the y-
axis represents the number of faults. The legends, which are the same in
Figs. 7.4 – 7.6, indicate the nine project datasets, which are labeled P1 to
P9.

Figures 7.4 and 7.5 suggest that there is a difference in understanding
the growth of faults between calendar time and person hours. To clearly
understand this difference, I applied SRGMs (the Logistic model and the
Gompertz model) to the calendar datasets and person hour datasets, and
evaluated the residual sum of squares (RSS), which is typically used to eval-
uate the differences between the data and the model (Table 7.1). The model
with the best fit has the smallest RSS. For all datasets, SRGMs based on
calendar time produce larger RSSs than SRGMs based on person hours.

88
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

Figure 7.4: Relation of the number of faults and calendar time.

7.4 Evaluation and Results 89

Figure 7.5: Relation of the number of faults and person hours.

90
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

Figure 7.6: Relation of the number of faults and implemented test cases.

7.4 Evaluation and Results 91

Table 7.1: Comparison of SRGMs based on calendar time and person hours

Project RSS (Calendar Time) RSS (Person Hours)
Logistic Gompertz Logistic Gompertz

P1 122.99 115.07 26.99 23.06
P2 130.38 100.66 113.5 85.75
P3 12.82 12.65 6.911 6.317
P4 177.1 NaN 35.26 68.97
P5 13.4 12.91 11.57 10.95
P6 0.08373 0.2568 0.002522 0.01944
P7 12.82 12.65 6.911 6.317
P8 3993 2460 2936 1408
P9 34.19 28.75 11.13 4.284

Table 7.2: Comparison of SRGMs based on calendar time and person hours

Project Calendar Time / Person Hours
Logistic Gompertz

P1 0.2194 0.2004
P2 0.8705 0.8519
P3 0.5391 0.4994
P4 0.1991 NaN
P5 0.8634 0.8482
P6 0.0301 0.0757
P7 0.5391 0.4994
P8 0.7353 0.5724
P9 0.3255 0.1490

92
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

Comparison of values

To evaluate the correlations between each value, I compared the function
points (FP), lines of code (LOC), number of fault (Fault), fault densities of
LOC (Fault/LOC), fault densities of FP (Fault/FP), number of estimated
test cases (TC), number of implemented test cases (TC), total calendar time,
and total person hours (Table 7.3). All the values are from the end of the
project. Because the datasets are developed within the same framework, the
FP represents the function points targeting the extended function. Similar
to FP, the developers created the LOC. In Table II, the Fault correlation
values of the person hours, Implemented TC, and Calendar time are large
(0.95582, 0.93433, and 0.92996, respectively), indicating that the number of
faults is strongly related to person hours, number of implemented test cases,
and calendar time.

Compare the projects

I compared the results of SRGMs based on person hours to SRGMs based
on the implemented test cases for the nine projects (Table 7.4).

Rates of used person hours

Figure 7.7 shows the results of the model using fault densities and the rate of
used person hours, where the x-axis represents the rate of used person hours
and the y-axis represents the fault density. The legend indicates the nine
project datasets, which are labeled as P1 to P9.

Rates of tested cases

Figure 7.8 shows the results of the model using the fault densities and the
rate of tested cases, where the x-axis represents the rate of implemented test
case and the y-axis represents the fault density. The legend is the same as
Figure 7.7.

7.4 Evaluation and Results 93

Table 7.3: Correlations between each value

FP LOC Fault

FP 1 0.9008 0.93883
LOC 0.9008 1 0.77178
Fault 0.93883 0.77178 1

Fault/LOC 0.12692 -0.12702 0.42154
Fault/FP -0.1931 -0.30505 0.14561

Estimated TC 0.7648 0.63311 0.77432
Implemented TC 0.91526 0.72619 0.93433
Calendar time 0.93732 0.81877 0.92996
Person hours 0.98159 0.83476 0.95582

Fault/LOC Fault/FP Estimated TC

FP 0.12692 -0.1931 0.7648
LOC -0.12702 -0.30505 0.63311
Fault 0.42154 0.14561 0.77432

Fault/LOC 1 0.83274 0.43197
Fault/FP 0.83274 1 0.02498

Estimated TC 0.43197 0.02498 1
Implemented TC 0.39555 0.01007 0.93057
Calendar time 0.22485 -0.05423 0.76607
Person hours 0.20124 -0.1113 0.7607

Implemented TC Calendar time Person Hours

FP 0.91526 0.93732 0.98159
LOC 0.72619 0.81877 0.83476
Fault 0.93433 0.92996 0.95582

Fault/LOC 0.39555 0.22485 0.20124
Fault/FP 0.01007 -0.05423 -0.1113

Estimated TC 0.93057 0.76607 0.7607
Implemented TC 1 0.90194 0.92417
Calendar time 0.90194 1 0.9478
Person hours 0.92417 0.9478 1

94
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

Table 7.4: Comparison of SRGMs based on person hours and implemented
test cases

Project RSS (Person Hours) RSS (implemented test cases)
Logistic Gompertz Logistic Gompertz

P1 26.99 23.06 20.59 15.73
P2 113.5 85.75 200.6 176.9
P3 6.911 6.317 6.852 6.200
P4 35.26 68.97 29.52 25.31
P5 11.57 10.95 15.33 13.94
P6 0.002522 0.01944 0.02495 0.06991
P7 6.911 6.317 6.852 6.200
P8 2936 1408 4095 2469
P9 11.13 4.284 13.27 9.947

Table 7.5: Comparison of SRGMs based on person hours and implemented
test cases

Project Person Hours / implemented test cases
Logistic Gompertz

P1 1.170 1.120
P2 1.324 0.427
P3 1.094 0.922
P4 0.511 2.336
P5 1.056 0.714
P6 0.1297 0.7792
P7 1.094 0.9219
P8 2.085 0.3438
P9 2.598 0.3228

7.4 Evaluation and Results 95

Figure 7.7: Results of the fault densities and the rates of used person hours.

Figure 7.8: Results of the fault densities and the rates of used person hours.

96
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

7.4.2 Discussion

RQ1 (Do the results of SRGMs using person hours differ from those
using calendar time?)

SRGMs based on calendar time and those based on person hours produce
different results, implying that SRGMs based on person hours only reflect
actual efforts and do not consider non-working time. Table 7.1 shows that
all the RSSs for all projects differ based on person hours and calendar times,
demonstrating that SRGMs based on person hours and calendar time have
unique features (RQ1). However, several projects have similar RSSs between
calendar time and person hours, indicating that developers worked on the
project during holidays and did not stop testing.

RQ2 (How do they differ?)

SRGMs based on person hours are more precise than SRGMs based on cal-
endar time. For all dataset, the RSSs based on person hours are lower than
those based on calendar time. Table 7.1 indicates that Project P6 (P2) has
the greatest (smallest) decrease of about 97% (13%) when using person hours.
For Project P6, the RSS of the Logistic model in calendar time is 0.08373,
and the RSS of the Logistic model in person hours is 0.002522. The value of
RSS of person hours divided by calendar time is around 3%. On the other
hand, the RSS of the Logistic model in calendar time for Project P2 is 130.38
and the RSS of the Logistic model in person hours is 113.5. The value of
RSS of person hours divided by calendar time is around 87%. These results
confirm that there is difference between SRGMs based on calendar time and
person hours (RQ2).

RQ3 (Do specific metrics evaluate progress?)

The number of faults is significantly related to person hours and tested cases
in the nine project datasets, suggesting that the person hours required to
determine the number of faults can be modeled. The largest correlation co-
efficient with the number of faults is Person Hours, which is 0.95582 followed
by Function Point (0.93883), Implemented test cases (0.93433), and Calen-
dar time (0.92996). Except for Function Point, I monitored the values as
a time series. Because the Function Point occurs at the beginning of de-
velopment, estimating the number of faults is useful using Function Points.

7.4 Evaluation and Results 97

Thus, specific metrics can be used to evaluate progress (RQ3).Because the
fault density and rates of used person hours are related, SRGMs based on
the faults density, rate of used person hours, and rate of used tested cases
provide better fitting models than those based on calendar time. Moreover,
the nine managers that I interviewed indicated that the leveled lines should
assist in confirming progress. Table 7.4 shows that the fitness of SRGMs
based on person hours and implemented test cases depends on the project.
For Project P9, the RSS of the Logistic model in person hours is 11.13, and
the RSS of the Logistic model in implemented test cases is 13.27. The value
of the RSS of person hours divided by implemented test cases is around 260%,
which is the largest rate in Table 7.4.

Figure 7.9: Fault densities and rates of used person hours for project B and
E and the leveled Gompertz model

RQ4 (Can progress of projects be directly compared?)

Figure 7.2 shows an example of the fault densities and the rates of person
hours for Projects P2 and P5 as well as the leveled lines of the Gompertz
model through nine projects. Although the two projects cannot be compared
in Figure 7.9 due to differences in the x- and y-axes, the axes in Figure 7.2
are the same. Additionally, leveled lines can be prepared for the projects,

98
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

demonstrating that the progress of different projects can be directly com-
pared (RQ4).

Moreover, I have introduced a system for using my method in Sumit-
omo Electric Industries, Ltd. and made a request to several managers and
developers for using my method. After several months, I had interviewed
the managers and developers who had used my method for about 3 hours.
My interviews about the models indicate that leveled SRGMs provide useful
information about the progress of the projects.

7.4.3 Limitations

Internal validity threats

I treated only three relations between the numbers of faults and calendar
time, between the numbers of faults and person hours, and between the
numbers of faults and implemented. The number of faults can be related to
other factors, for example, the skills of developers. In this research, I was not
able to collect and evaluate the skills of developers and other data. The skills
of developers influence the speeds of detections of faults because experts can
detect the fault earlier than beginners detect. In the comparison, I used nine
datasets from the same company. Therefore, the data may contain mistakes
or other false elements. Moreover, the data contains several domains.

External validity threats

I only tested SRGMs based on person hours with nine datasets, which is
insufficient to make generalizations about SRGMs based on person hours.
Additionally the nine datasets which I collected are developed by a waterfall
model. I could not evaluate the differences of development styles.

7.5 Related work

Many different types of software reliability growth models exist. Yamada et
al. proposed an extend NHPP model, which is related to the test-domain
dependence [58]. Test-domain dependent models include the notion that the
tester’s skills should improve by degrees; thus, skills grow over time. The test-
domain-dependent model adds additional assumptions to the NHPP model.

7.6 Conclusion 99

Fujii et al. developed a quantitative software reliability assessment method
via incremental development processes, which is a type of agile software de-
velopment based on familiar non-homogeneous Poisson processes [6]. Fujii
et al. used both the number of faults and software metrics to demonstrate
software reliability predictions via a case study.

Rana et al. study about improving SRGMs predictive accuracy using his-
torical projects data [41]. They collected defect report data from three com-
panies. They applied several SRGMs to a past project’s defect report data
from one company and applied the SRGMs to another data from the same
company with the parameters which were obtained from the past project.
They concluded that the SRGMs using the past project were more accurate
than making asymptote predictions without using such information.

Several researchers study about the cross project fault prediction and
management. Zimmermann et al. studied cross-project defect prediction
models in points of lines of codes and bugs and other factors [60]. For 12 real-
world applications including open source software and enterprise software,
they ran cross-project predictions using finished projects datasets. In this
Chapter, I focus on the time series of projects and monitoring the projects
in points of person hours and implemented test cases.

Kuo et al. proposed a new scheme for constructing software reliability
growth models based on NHPP [26]. Their scheme provides a model which
considers testing efforts and fault detection rates. They estimate the test-
ing efforts and predict the trends of fault detection rates which can be ob-
tained from historical records of previous releases or other similar software
projects. My method did not need the estimation of testing efforts and used
the projects developed by the same company and using the same framework.

7.6 Conclusion

Using SRGMs based on person hours, I successfully modeled nine actual
datasets. SRGMs based on person hours can more precise model compared to
SRGMs based on calendar time. SRGMs based on person hours are between
13% and 97% more precise than those based on calendar time.

Moreover, I propose leveled SRGMs based on the fault density and the
rates of person hours as well as the rates of used test cases. My interviews
of managers about the models indicate that leveled SRGMs provide useful
information about the progress of the projects.

100
Chapter 7 Project Management Using Cross Project Software Reliability

Growth Model

In the future work, I plan to apply this method to GSRM. To apply this
method to GSRM makes it possible to compare the uncertainties of projects.

Chapter 8

Project Management Using
Cross Project Software
Reliability Growth Model
Considering System Scale

8.1 Introduction to This Chapter

Several researchers have proposed software reliability growth models (SRGMs),
which have been used to assess and predict software reliability. These models,
which are applied to one project dataset, predict the number of faults that
will be detected. Prior to developing such a model, several faults must be
identified. In industrial studies, managers often want to predict the number
of faults in a current project based on previous projects in the same domain
and scale. However, previous models do not always predict the new project.
Moreover, if a project does not have the same domain and scale as a past
project, a previous model cannot be applied. In such situations, managers
and developers cannot determine when to end the test phases or release a
project.

I proposed a cross project SRGM to monitor a project by comparing
it other past projects [12]. My method creates a leveled SRGM from old
project datasets and helps managers and developers decide when to end the
test phases or release a project by comparing the situation of the new project
and a leveled SRGM. Since the leveled SRGM contains all kinds of projects,

102
Chapter 8 Project Management Using Cross Project Software Reliability

Growth Model Considering System Scale

not all projects can be compared with the leveled SRGM. For example, since
one project is always under the leveled SRGM, the managers of the project
cannot decide to end test phases.

In this Chapter, I extend my method by classifying the projects contained
within the leveled SRGM. Prior to the test phases, I selected system scale
parameters such as the LOC, number of test cases, and test density (which
is defined as the number of test cases divided by LOC) as classification pa-
rameters to create a leveled SRGM.

This study aims to answer the following research questions:

1. RQ1: Do the results from the classified leveled SRGMs differ from those
of the unclassified SRGMs?

2. RQ2: If the results differ, which classification more precisely describes
the results?

My contributions are as follows:

• Three types of classified SRGMs are compared in nine empirical projects.

• A method to monitor the progress of a project is derived.

In this Chapter, I classify and compare three leveled SRGMs in nine
empirical projects. The results indicate that the leveled SRGMs classified by
test density tend to be a good fit. Thus, employing leveled SRGMs classified
by test density can help managers and developers determine when to each
the test phases or release a project.

8.2 Motivating Example

Figure 8.1 shows the results of my method, which were obtained by a leveled
SRGM from the datasets for nine projects developed by Sumitomo Electric
Industries, Ltd. Leveled SRGMs do not seem appropriate for projects P2
and P5 because these projects are far from the leveled SRGM line.

In Figure 8.1, I show the results of my method. The results are obtained
a leveled SRGM from the datasets for nine projects developed by Sumitomo
Electric Industries, Ltd. It would seem to be not good for project P2 and
P5 to use the leveled SRGM’s since project B and E are far from the leveled
SRGM’s line.

8.3 Proposal of classified leveled SRGM considering system scale 103

Figure 8.1: Fault densities and rates of used person hours for projects P2
and P5 and the leveled Gompertz model

8.3 Proposal of classified leveled SRGM con-

sidering system scale

I propose that a classified leveled SRGM considering the system scale should
resolve the project dependency.

8.3.1 Comparison of projects

Figure 7.3 overviews my method, which compares the results of SRGMs
between projects with different lines of code, numbers of test cases, total
person hours, and number of faults. My method has three steps:

1. Divide the number of detected faults by the created lines of code for
all data. Convert the person hours to the rate of used person hours.

2. Merge all the data into one dataset. Rearrange the data in chronological
order.

3. Apply a SRGM to the new dataset.

104
Chapter 8 Project Management Using Cross Project Software Reliability

Growth Model Considering System Scale

I consider the SRGM from the new dataset to be a leveled SRGM of all
datasets.

In order to consider the system scales, I classified projects into two groups
by the median of lines of code, the number of estimated test cases, and test
density before the first step.

8.4 Evaluation and Results

I evaluated my method via case studies. Then I applied my proposed method
to the datasets from nine projects developed by Sumitomo Electric Industries,
Ltd. using the same framework. It is should be noted that figures and tables
do not indicate actual values because the information is confidential.

8.4.1 Evaluation design and result

To answer RQ1 (Do the results from the classified leveled SRGMs differ from
those of the unclassified SRGMs?) and RQ2 (If the results differ, which clas-
sification more precisely describes the results?), I compared the differences
between models classified by lines of code (LOC), the number of estimated
test cases (test case), and test density. Specifically, I applied the Gompertz
model to nine project datasets and classified them into two groups by the
median of each value. Table 8.1 shows the details of projects. Then I cal-
culated the residual sums of square (RSS) for each model and compared the
results. RSS indicates the differences between the actual data and a model,
where a small value indicates a good model fit.

In this evaluation, I collected data from nine projects from Sumitomo
Electric Industries, Ltd., including lines of code, number of fault, number of
estimated test cases, and the time series of detected fault in days and person
hours. I compared the unclassified SRGM (Figure 3) to the SRGMs classified
by LOC (Figure 8.3), test case (Figure 8.4), and test density (Figure 8.5). In
Figures Figure 8.2 – 8.5, the x-axis represents the rate of used person hours,
while the y-axis indicates the fault density. The legends, which are the same
in Figs. 8.2 – 8.5, denote the nine project datasets, which are labeled P1 to
P9.

8.4 Evaluation and Results 105

Table 8.1: Details of projects.

Project LOC Number of test case Test density
P1 Small Large Large
P2 Small Small Large
P3 Large Large Small
P4 Small Small Large
P5 Large Small Small
P6 Large Small Small
P7 Small Small Small
P8 Large Large Small
P9 Small Large Large

Figure 8.2: Results of the unclassified SRGM and the projects.

106
Chapter 8 Project Management Using Cross Project Software Reliability

Growth Model Considering System Scale

Figure 8.3: Results of the SRGM model classified by LOC and the projects.

8.4 Evaluation and Results 107

Figure 8.4: Results of the SRGM model classified by the test case and the
projects.

108
Chapter 8 Project Management Using Cross Project Software Reliability

Growth Model Considering System Scale

Figure 8.5: Results of the SRGM model classified by the test density and the
projects.

8.4 Evaluation and Results 109

8.4.2 Discussion

RQ1 (Do the results from the classified leveled SRGMs differ from
those of the unclassified SRGMs?)

Table 8.2 shows the RSS of the classified and unclassified leveled SRGMs.
Each value indicates the RSS of the model. The sum is the total of the
values of the large group and the values of the small group. The results of
the SRGM do differ based on the classification.

Table 8.2: Comparison of the RSS of the classified and unclassified leveled
SRGMs.

Classification Large Small Sum
None - - 161.80
Case 97.15 52.56 149.71
LOC 96.29 59.74 156.03

Density 19.15 104.7 123.85

RQ2 (If the results differ, which classification more precisely de-
scribes the results?)

Table 8.2 indicates that the most precise model in the large group is the
classification by test density, but this is the worst model in the small group.
However, for the total optimization, the classification by test density gives
the most precise model. In the large and the small groups, the classification
by LOC and test case yield almost the same value. In the total optimization,
the unclassified SRGM provides the worst model.

Figure 8.6 shows the Gompertz model classified by the test density and
P2, and P5. The leveled SRGMs more precisely describe the data than the
unclassified leveled SRGM in Figure 8.1. Thus, the leveled SRGM classified
by the test density has the smallest RSS in these models, implying that the
classification by test density gives the most precise model.

110
Chapter 8 Project Management Using Cross Project Software Reliability

Growth Model Considering System Scale

Figure 8.6: Fault densities and rates of used person hours for P2 and P5 and
the leveled Gompertz models classified by test density.

8.5 Conclusion

I proposed a leveled SRGM which treated cross project datasets by classi-
fying system scales of projects to compare software products developed by
the same company in the same domain. I successfully modeled nine actual
datasets by classifying with system scale parameters. The SRGM classified
by test density can more precisely model the data than other classifications,
including no classification.

In the future, I plan to use other dividing methods such as the k-means
clustering since this work divided nine projects into two group by the median.
Additionally, I plan to apply this method to GSRM. To apply this method
to GSRM makes it possible to compare the uncertainties of projects.

Chapter 9

Conclusion

9.1 Summary of This Thesis

In this thesis, I present a Generalized Software Reliability Model (GSRM)
and its empirical applications. Chapter 3 presents the GSRM, a new software
reliability growth model. Nine types of developments are simulated and
analyzed with the GSRM. Additionally, three types of uncertainties, which
are related to actual development situations, are formulated.

Chapter 4 shows a technique to predict the release time based on the
GSRM. Using the GSRM, I successfully predict the release dates and the
number of issues about OSS.

Chapter 5 demonstrates a technique to predict the ranges of release de-
velopment time, Δt, based on the GSRM. The uncertainty values are defined
from actual data containing information on the faults during development.
I apply the GSRM to three datasets to calculate Δt, including the range of
possible development times considering the uncertainty values.

Chapter 6 describes a technique to detect unexpected situations in a
development by separating faults by the test phase and applying the SRGM.
I found unexpected situations in a development by monitoring the faults and
the behavior of the SRGM.

Chapter 7 discusses a technique to compare projects by extending SRMGs
with the fault density and the person hours. This technique is named a
leveled SRGM. I employ a leveled SRGM to successfully compared nine actual
datasets.

Finally, Chapter 8 demonstrates a technique to compare projects by ex-

112 Chapter 9 Conclusion

tending the leveled SRGM by classifying datasets considering system scales.

9.2 Future Work

There are several additional issues in terms of the GSRM (Chapter 3), the
detection of unexpected situations (Chapter 6), and the project management
technique (Chapter 7 and 8). To address the issues with the GSRM, I plan
to evaluate teams or team members using quantitative methods while con-
sidering uncertainties to optimize teams for a particular project using the
GSRM. To resolve the unexpected situations and to provide insight to devel-
opers and managers who have trouble with development, I plan to evaluate
my method by applying it to ongoing projects and other datasets belonging
to other domains or organizations. Additionally, I plan to use other dividing
methods (e.g., such as k-means clustering) since this work divided the nine
projects into two group by the median.

Figure 9.1: Overview of future work.

Figure 9.1 overviews my future work with regard to model uncertainty
and the software development process. For area (4), I intend to analyze the

9.2 Future Work 113

uncertainties about the verification process and specify the elements of un-
certainties. In my opinion, the detection of faults is related to the dispersion
of developers’ skills. I plan to propose a method to evaluate developers’ skills
and analyze the relation between their dispersions and uncertainties.

On the other hand, for areas (5) and (6), my intent is to extend the GSRM
to include the implementation phase. I plan to model elements of uncertain-
ties such as violations of the coding convention and analyze the relation
between their dispersions and uncertainties. In my opinion, numerous cod-
ing convention violations is an indicator that the developers misunderstood
what other developers coded. Such a misunderstanding creates uncertain
situations in developments.

Finally, I plan to propose a comprehensive model, which includes uncer-
tain elements in implementation and verification that helps developers and
managers to control their developments.

�

� �

�

�

�

�

�

Figure 9.2: Overview of the future work in software reliability models.

Figure 9.2 overviews my future work on software reliability models. I will
compare the GSRM with metrics-based software reliability models and phase-
type software reliability models. To compare the GSRM with other software

114 Chapter 9 Conclusion

reliability models, I plan to collect datasets containing faults data, metrics
data, and the numbers of developers. In this thesis, I could not compare
the GSRM with the metrics-based SRM because the datasets lacked metrics
data and the number of developers. To compare these two, I need to devise a
system that can collect the time series of metrics data or analyze open source
repositories with the source codes.

About the extensions of the uncertainties, I will try to extend other mod-
els to treat the uncertainties. My GSRM approach can be applied to other
SRGMs based on the NHPP model because I just extended an existing NHPP
model by adding a stochastic variable to its parameters. Of course, I intend
to survey the possibility of similar extensions because it is unclear whether
such extensions are suitable for other NHPP models.

Finally, I would like to mention the application targets of software relia-
bility models. Software reliability models are applied in a lot of domains such
as military systems [9], medical record systems [45], automotive systems [40],
etc. However, to the best of my knowledge, the relations between software
reliability models and application domains have not been studied. To ana-
lyze the relations between them, I participated in the research team about
software quality evaluation based on ISO/IEC 25022 and ISO/IEC 25023.
The research team aims to evaluate a lot of software products and analyze
the relations between product quality and quality in use [32]. I plan to ana-
lyze the relations between the software reliability models and the application
domains.

Bibliography 115

Acknowledgments

To finish the work presented in this thesis, I owe much to a lot of persons.
First, I would like to thank Prof. Hironori Washizaki for his supervision and
support on my research. This thesis was accomplished with the help of Prof.
Yoshiaki Fukazawa, Prof. Kazunori Ueda, Assoc. Prof. Hiroyuki Okamura as
sub-examiners, and other professors of the Department of Computer Science
and Engineering, Waseda University.

I also show sincere thanks to Assist. Prof. Kazunori Sakamoto (National
Institute of Informatics), Prof. Kenichi Matsumoto (Graduate School of In-
formation Science, Nara Institute of Science and Technology), Assist. Prof.
Akinori Ihara (Graduate School of Information Science, Nara Institute of
Science and Technology), Mr. Ken Asoh (Yahoo Japan Corporation), Mr.
Kazuyoshi Takahashi (Yahoo Japan Corporation), Mr. Kentarou Ogawa
(Yahoo Japan Corporation), Mr. Maki Mori (Yahoo Japan Corporation),
Mr. Takashi Hino (Yahoo Japan Corporation), Mr. Yosuke Hayakawa (Ya-
hoo Japan Corporation), Mr. Yasuyuki Tanaka (Yahoo Japan Corporation),
Mr. Shinichi Yamada (Yahoo Japan Corporation), Mr. Daisuke Miyazaki
(Yahoo Japan Corporation), Mr. Teppei Yamaguchi (Yahoo Japan Corpora-
tion), Mr. Tomoaki Yagi (Yahoo Japan Corporation), Mr. Hiroyuki Shibata
(Yahoo Japan Corporation), Ms. Mikako Ishigaki (Yahoo Japan Corpora-
tion), Mr. Kazuki Munakata (Fujitsu Labs Ltd.), Ms. Sumie Morita (Fujitsu
Labs Ltd.), Mr. Tadahiro Uehara (Fujitsu Labs Ltd.), Ms. Rieko Yamamoto
(Fujitsu Labs Ltd.), and Mr. Nobuhiro Nakamura (Sumitomo Electric Indus-
tries, Ltd.). Plenty of discussions and advice have simulated and deepened
my research analysis.

A part of this thesis was accomplished with the help of the members
in Washizaki Laboratory, Waseda University. I would like to thank Mr.
Hidenori Nakai, Ms. Chihiro Uchida, Mr. Toru Yagishita, Mr. Chi Jieming,
Mr. Watanabe Yasuhiro, Mr. Masaki Hosono, and Mr. Yuki Noyori. I

116

am also thankful to all staffs and members in Washizaki Laboratory and
Fukazawa Laboratory. Also, many (anonymous) referees contributed to the
improvement of this thesis via conferences and paper submissions. Finally, I
would like to thank my family for their support.

Bibliography

[1] Nesar Ahmad, Mohammed GM Khan, and Loriza S Rafi. Analysis of
an inflection s-shaped software reliability model considering log-logistic
testing-effort and imperfect debugging. International Journal of Com-
puter Science and Network Security, 11(1):161–171, 2011.

[2] Mohd Anjum, Md Asraful Haque, and Nesar Ahmad. Analysis and
ranking of software reliability models based on weighted criteria value.
International Journal of Information Technology and Computer Science
(IJITCS), 5(2):1, 2013.

[3] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal
question metric approach. In Encyclopedia of Software Engineering,
pages 528–532. John Wiley & Sons, Inc, 1994.

[4] X. Cai and M. R. Lyu. Software reliability modeling with test cover-
age: Experimentation and measurement with a fault-tolerant software
project. In The 18th IEEE International Symposium on Software Reli-
ability (ISSRE ’07), pages 17–26, Nov 2007.

[5] Tadashi Dohi and Toshio Nakagawa. Stochastic Reliability and Main-
tenance Modeling: Essays in Honor of Professor Shunji Osaki on His
70th Birthday. Springer Publishing Company, Incorporated, 2013.

[6] Toshiya Fujii, Tadashi Dohi, and Takaji Fujiwara. Towards quantitative
software reliability assessment in incremental development processes. In
Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE ’11, pages 41–50, New York, NY, USA, 2011. ACM.

[7] Takuya Fukamachi, Naoyasu Ubayashi, Shintaro Hosoai, and Yasutaka
Kamei. Modularity for uncertainty. In Proceedings of the Seventh In-

117

118

ternational Workshop on Modeling in Software Engineering, MiSE ’15,
pages 7–12, Piscataway, NJ, USA, 2015. IEEE Press.

[8] A.L. Goel. Software reliability models: Assumptions, limitations,
and applicability. Software Engineering, IEEE Transactions on, SE-
11(12):1411–1423, Dec 1985.

[9] Amrit L Goel and Kazu Okumoto. Time-dependent error-detection rate
model for software reliability and other performance measures. IEEE
transactions on Reliability, 3:206–211, 1979.

[10] K. Goseva-Popstojanova and S. Kamavaram. Assessing uncertainty in
reliability of component-based software systems. In Software Reliabil-
ity Engineering, 2003. ISSRE 2003. 14th International Symposium on,
pages 307–320, Nov 2003.

[11] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a
feature: How misclassification impacts bug prediction. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13,
pages 392–401, Piscataway, NJ, USA, 2013. IEEE Press.

[12] K. Honda, N. Nakamura, H. Washizaki, and Y. Fukazawa. Case study:
Project management using cross project software reliability growth
model. In 2016 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pages 39–46, Aug 2016.

[13] K. Honda, N. Nakamura, H. Washizaki, and Y. Fukazawa. Case study:
Project management using cross project software reliability growth
model considering system scale (to appear in). In Software Reliability
Engineering Workshops (ISSREW), 2016 IEEE International Sympo-
sium on, Oct 2016.

[14] K. Honda, H. Washizaki, Y. Fukazawa, K. Munakata, S. Morita, T. Ue-
hara, and R. Yamamoto. Detection of unexpected situations by applying
software reliability growth models to test phases. In Software Reliability
Engineering Workshops (ISSREW), 2015 IEEE International Sympo-
sium on, pages 2–5, Nov 2015.

[15] Kiyoshi Honda, Hidenori Nakai, Hironori Washizaki, Yoshiaki Fukazawa,
Ken Asoh, Kaz Takahashi, Kentarou Ogawa, Maki Mori, Takashi Hino,

Bibliography 119

Yosuke HAYAKAWA, et al. Predicting time range of development based
on generalized software reliability model. In 21st Asia-Pacific Software
Engineering Conference (APSEC 2014), 2014.

[16] Kiyoshi Honda, Hironori Washizaki, and Yoshiaki Fukazawa. A General-
ized Software Reliability Model Considering Uncertainty and Dynamics
in Development, pages 342–346. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[17] Kiyoshi Honda, Hironori Washizaki, and Yoshiaki Fukazawa. A gener-
alized software reliability model considering uncertainty and dynamics
in development. In Jens Heidrich, Markku Oivo, Andreas Jedlitschka,
and MariaTeresa Baldassarre, editors, Product-Focused Software Process
Improvement, volume 7983 of Lecture Notes in Computer Science, pages
342–346. Springer Berlin Heidelberg, 2013.

[18] Kiyoshi Honda, Hironori Washizaki, and Yoshiaki Fukazawa. Predict-
ing release time based on generalized software reliability model (gsrm).
In Computer Software and Applications Conference (COMPSAC), 2014
IEEE 38th Annual, pages 604–605. IEEE, 2014.

[19] Rong-Huei Hou, Sy-Yen Kuo, and Yi-Ping Chang. Applying vari-
ous learning curves to hyper-geometric distribution software reliability
growth model. In Software Reliability Engineering, 1994. Proceedings.,
5th International Symposium on, pages 8–17, Nov 1994.

[20] Chin-Yu Huang and Michael R Lyu. Estimation and analysis of some
generalized multiple change-point software reliability models. Reliability,
IEEE Transactions on, 60(2):498–514, 2011.

[21] S. Inoue and S. Yamada. Bootstrap interval estimation methods for cost-
optimal software release planning. In 2013 IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 621–626, Oct 2013.

[22] Sunil Kamavaram and Katerina Goseva-Popstojanova. Entropy as a
measure of uncertainty in software reliability. In 13th Int?l Symp. Soft-
ware Reliability Engineering, pages 209–210, 2002.

[23] Yasutaka Kamei, Akito Monden, and Ken-ichi Matsumoto. Empiri-
cal evaluation of svm-based software reliability model. In Proc. Fifth

120

ACM/IEEE Int’l Symp. Empirical Software Eng, volume 2, pages 39–
41, 2006.

[24] N. Karunanithi, D. Whitley, and Y. K. Malaiya. Prediction of software
reliability using connectionist models. IEEE Transactions on Software
Engineering, 18(7):563–574, Jul 1992.

[25] Brian W Kernighan and Phillip James Plauger. The elements of pro-
gramming style. The elements of programming style, by Kernighan,
Brian W.; Plauger, PJ New York: McGraw-Hill, c1978., 1, 1978.

[26] Sy-Yen Kuo, Chin-Yu Huang, and M. R. Lyu. Framework for model-
ing software reliability, using various testing-efforts and fault-detection
rates. IEEE Transactions on Reliability, 50(3):310–320, Sep 2001.

[27] Sy-Yen Kuo, Chin-Yu Huang, and Michael R Lyu. Framework for mod-
eling software reliability, using various testing-efforts and fault-detection
rates. Reliability, IEEE Transactions on, 50(3):310–320, 2001.

[28] Richard Lai and Mohit Garg. A detailed study of nhpp software relia-
bility models. Journal of Software, 7(6):1296–1306, 2012.

[29] T. Moser, R. Mordinyi, D. Winkler, and S. Biffl. Engineering project
management using the engineering cockpit: A collaboration platform
for project managers and engineers. In Industrial Informatics (INDIN),
2011 9th IEEE International Conference on, pages 579–584, July 2011.

[30] J. D. Musa and K. Okumoto. A logarithmic poisson execution time
model for software reliability measurement. In Proceedings of the 7th
International Conference on Software Engineering, ICSE ’84, pages 230–
238, Piscataway, NJ, USA, 1984. IEEE Press.

[31] H. Nakai, K. Honda, H. Washizaki, Y. Fukazawa, K. Asoh, K. Takahashi,
K. Ogawa, M. Mori, T. Hino, Y. Hayakawa, Y. Tanaka, S. Yamada,
and D. Miyazaki. Initial industrial experience of gqm-based product-
focused project monitoring with trend patterns. In Software Engineering
Conference (APSEC), 2014 21st Asia-Pacific, volume 2, pages 43–46,
Dec 2014.

[32] H. Nakai, N. Tsuda, K. Honda, H. Washizaki, and Y. Fukazawa. Ini-
tial framework for software quality evaluation based on iso/iec 25022

Bibliography 121

and iso/iec 25023. In 2016 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pages 410–411,
Aug 2016.

[33] E.A. Nguyen, C.F. Rexach, D.P. Thorpe, and A.E. Walther. The im-
portance of data quality in software reliability modeling. In Software
Reliability Engineering (ISSRE), 2010 IEEE 21st International Sympo-
sium on, pages 220–228, Nov 2010.

[34] Mitsuru Ohba. Inflection S-Shaped Software Reliability Growth Model,
pages 144–162. Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.

[35] Masao Ohira, Reishi Yokomori, Makoto Sakai, Ken-ichi Matsumoto,
Katsuro Inoue, and Koji Torii. Empirical project monitor: A tool for
mining multiple project data. In International Workshop on Mining
Software Repositories (MSR2004), pages 42–46. IET, 2004.

[36] Koji Ohishi, Hiroyuki Okamura, and Tadashi Dohi. Gompertz software
reliability model: Estimation algorithm and empirical validation. Jour-
nal of Systems and Software, 82(3):535 – 543, 2009.

[37] H. Okamura and T. Dohi. Building phase-type software reliability mod-
els. In 2006 17th International Symposium on Software Reliability En-
gineering, pages 289–298, Nov 2006.

[38] H. Okamura, Y. Etani, and T. Dohi. A multi-factor software reliability
model based on logistic regression. In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, pages 31–40,
Nov 2010.

[39] Ping-Feng Pai and Wei-Chiang Hong. Software reliability forecasting by
support vector machines with simulated annealing algorithms. Journal
of Systems and Software, 79(6):747 – 755, 2006.

[40] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner.
Evaluating long-term predictive power of standard reliability growth
models on automotive systems. In Software Reliability Engineering (IS-
SRE), 2013 IEEE 24th International Symposium on, pages 228–237,
Nov 2013.

122

[41] Rakesh Rana, Miroslaw Staron, Christian Berger, Jrgen Hansson, Mar-
tin Nilsson, Fredrik Trner, Wilhelm Meding, and Christoffer Hglund.
Selecting software reliability growth models and improving their pre-
dictive accuracy using historical projects data. Journal of Systems and
Software, 98:59 – 78, 2014.

[42] Y. s. Su, C. y. Huang, Y. s. Chen, and J. x. Chen. An artificial neural-
network-based approach to software reliability assessment. In TENCON
2005 - 2005 IEEE Region 10 Conference, pages 1–6, Nov 2005.

[43] N. Schneidewind and M. Hinchey. A complexity reliability model. In
Software Reliability Engineering, 2009. ISSRE ’09. 20th International
Symposium on, pages 1–10, Nov 2009.

[44] Yogesh Singh and Pradeep Kumar. Prediction of software reliability
using feed forward neural networks. In Computational Intelligence and
Software Engineering (CiSE), 2010 International Conference on, pages
1–5. IEEE, 2010.

[45] C. Stringfellow and A.Amschler Andrews. An empirical method for
selecting software reliability growth models. Empirical Software Engi-
neering, 7(4):319–343, 2002.

[46] Catherine V Stringfellow. An integrated method for improving testing
effectiveness and efficiency. 2007.

[47] Yoshinobu Tamura and Shigeru Yamada. A flexible stochastic differen-
tial equation model in distributed development environment. European
Journal of Operational Research, 168(1):143–152, 2006.

[48] Naoyasu Ubayashi, Di Ai, Peiyuan Li, Yu Ning Li, Shintaro Hosoai, and
Yasutaka Kamei. Uncertainty-aware architectural interface. In Pro-
ceedings of the 9th International Workshop on Advanced Modularization
Techniques, AOAsia 2014, pages 4–6, New York, NY, USA, 2014. ACM.

[49] Linda Wallace, Mark Keil, and Arun Rai. Understanding software
project risk: a cluster analysis. Information & Management, 42(1):115–
125, 2004.

Bibliography 123

[50] H. Washizaki, K. Honda, and Y. Fukazawa. Predicting release time for
open source software based on the generalized software reliability model.
In Agile Conference (AGILE), 2015, pages 76–81, Aug 2015.

[51] M. Xie and G.Y. Hong. A study of the sensitivity of software release
time. Journal of Systems and Software, 44(2):163 – 168, 1998.

[52] Fei Xing and Ping Guo. Support Vector Regression for Software Relia-
bility Growth Modeling and Prediction, pages 925–930. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[53] S. Yamada, J. Hishitani, and S. Osaki. Software-reliability growth with
a weibull test-effort: a model and application. IEEE Transactions on
Reliability, 42(1):100–106, Mar 1993.

[54] Shigeru Yamada. Recent developments in software reliability modeling
and its applications. In Stochastic Reliability and Maintenance Modeling,
pages 251–284. Springer, 2013.

[55] Shigeru Yamada, Mitsuhiro Kimura, Hiroaki Tanaka, and Shunji Osaki.
Software reliability measurement and assessment with stochastic differ-
ential equations. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 77(1):109–116, 1994.

[56] Shigeru Yamada, Mitsuru Ohba, and S. Osaki. S-shaped reliability
growth modeling for software error detection. Reliability, IEEE Trans-
actions on, R-32(5):475–484, Dec 1983.

[57] Shigeru Yamada, Mitsuru Ohba, and S. Osaki. s-shaped software relia-
bility growth models and their applications. Reliability, IEEE Transac-
tions on, R-33(4):289–292, 1984.

[58] Shigeru Yamada, Hiroshi Ohtera, and Mitsuru Ohba. Testing-domain
dependent software reliability models. Computers and Mathematics with
Applications, 24(12):79 – 86, 1992.

[59] Nan Zhang, Gang Cui, and Hongwei Liu. A stochastic software reliabil-
ity growth model with learning and change-point. In World Automation
Congress (WAC), 2012, pages 399–403, June 2012.

124

[60] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel
Giger, and Brendan Murphy. Cross-project defect prediction: A large
scale experiment on data vs. domain vs. process. In Proceedings of the
the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 91–100, New York, NY, USA, 2009.
ACM.

List of Publications

Journal Papers

� Generalized Software Reliability Model Considering Un-
certainty and Dynamics: Model and Applications
Kiyoshi Honda (first author), Hironori Washizaki and Yoshiaki
Fukazawa
International Journal of Software Engineering and Knowledge En-
gineering (IJSEKE), World Scientific, pp.1–28, Sep. 2017 (to ap-
pear), (reviewed).
(related to Chapter 3)

•

32(4), , pp.103
– 114, Nov. 2015, (reviewed).

International Conference Presentations

• Identifying Potential Problems and Risks in GQM+Strategies
Models Using Metamodel and Design Principles
Chimaki Shimura, Hironori Washizaki, Takanobu Kobori, Yohei
Aoki, Kiyoshi Honda, Yoshiaki Fukazawa, Katsutoshi Shintani
and Takuto Nonomura
50th Annual Hawaii International Conference on System Sciences
(HICSS 50), IEEE, pp.1–10, Jan. 2017, (reviewed).

• Evaluating Software Product Quality based on SQuaRE
Series

126

Hidenori Nakai, Naohiko Tsuda, Kiyoshi Honda, Hironori Washizaki,
Yoshiaki Fukazawa
2016 IEEE Region 10 Conference (TENCON), pp.3708–3711, Nov.
2016, (reviewed).

� Case Study: Project Management Using Cross Project
Software Reliability Growth Model Considering System
Scale
Kiyoshi Honda (first author), Nobuhiro Nakamura, Hironori Washizaki
and Yoshiaki Fukazawa
2016 IEEE International Symposium on Software Reliability En-
gineering Workshops(ISSREW), IEEE, pp.1–4, Oct. 2016, (re-
viewed).
(related to Chapter 8)

• Initial Framework for a Software Quality Evaluation based
on ISO/IEC 25022 and ISO/IEC 25023
Hidenori Nakai, Naohiko Tsuda, Kiyoshi Honda, Hironori Washizaki,
and Yoshiaki Fukazawa
The 2016 IEEE International Conference on Software Quality, Re-
liability & Security (QRS 2016), IEEE, pp. 410–411, Aug. 2016,
(reviewed).

� Case Study: Project Management Using Cross Project
Software Reliability Growth Model
Kiyoshi Honda (first author), Nobuhiro Nakamuray, Hironori Washizaki
and Yoshiaki Fukazawa
The 2016 IEEE International Conference on Software Quality, Re-
liability & Security Companion, IEEE, pp.39-46, Aug. 2016, (re-
viewed).
(related to Chapter 7)

• GO-MUC: A Strategy Design Method Considering Re-
quirements of User and Business by Goal-Oriented Mea-
surement
Chihiro Uchida, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa,
Kentaro Ogawa, Tomoaki Yagi, Mikako Ishigaki, Masashi Naka-
gawa
9th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE 2016), IEEE, pp. 93-96, May
2016, (reviewed).

Publications 127

� Software Reliability Growth Model Considering Uncer-
tainty and Dynamics in Development
Kiyoshi Honda (first author), Hironori Washizaki, Yoshiaki Fukazawa
23rd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER 2016), IEEE, pp.1–1, Mar.
2016, (reviewed).

• Toward selecting a reliable version of OSS library based
on bug-fixing curve
Keisuke Fujino, Akinori Ihara, Kiyoshi Honda, Hironori Washizaki,
Kenichi Matsumoto
23rd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER 2016), Poster, Mar. 2016,
(reviewed).

� Case Study: Software Reliability Growth Model Based
on Person Hours
Kiyoshi Honda (first author), Nobuhiro Nakamura, Hironori Washizaki
and Yoshiaki Fukazawa
7th IEEE International Workshop on Empirical Software Engi-
neering in Practice (IWESEP), Poster, Mar. 2016, (reviewed).

� Detection of Unexpected Situations by Applying Software
Reliability Growth Models to Test Phases
Kiyoshi Honda (first author), Hironori Washizaki, Yoshiaki Fukazawa,
Kazuki Munakatay, Sumie Moritay, Tadahiro Ueharay, and Rieko
Yamamoto
2016 IEEE International Symposium on Software Reliability En-
gineering Workshops(ISSREW), IEEE, pp.2-5, Nov. 2015, (re-
viewed).
(related to Chapter 6)

• Predicting Release Time for Open Source Software based
on the Generalized Software Reliability Model
Hironori Washizaki, Kiyoshi Honda, Yoshiaki Fukazawa
Proceedings of Agile Conference 2015, IEEE, pp.76–81, Aug. 2015
(reviewed).

• Comparative Study on Programmable Robots as Pro-
gramming Educational Tools
Shohei Yamazaki, Kazunori Sakamoto, Kiyoshi Honda, Hironori

128

Washizaki, Yoshiaki Fukazawa
Proceedings of the 17th Australasian Computing Education Con-
ference (ACE 2015), Australian Computer Society Inc., pp.155–
164, Jan. 2015, (reviewed).

� Predicting Time Range of Development Based on Gener-
alized Software Reliability Model
Kiyoshi Honda (first author), Hidenori Nakai, Hironori Washizaki,
Yoshiaki Fukazawa (Waseda University), Ken Asoh, Kaz Taka-
hashi, Kentarou Ogawa, Maki Mori, Takashi Hino, Yosuke Hayakawa,
Yasuyuki Tanaka, Shinichi Yamada, Daisuke Miyazaki
21st Asia-Pacific Software Engineering Conference (APSEC 2014),
IEEE, pp.351–358, Dec. 2014, (reviewed).
(related to Chapter 5)

• Initial Industrial Experience of GQM-based Product-Focused
Project Monitoring with Trend Patterns
Hidenori Nakai, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa,
Ken Asoh, Kaz Takahashi, Kentarou Ogawa, Maki Mori, Takashi
Hino, Yosuke Hayakawa, Yasuyuki Tanaka, Shinichi Yamada, Daisuke
Miyazaki
21st Asia-Pacific Software Engineering Conference (APSEC 2014),
pp.43–46, Dec. 2014, (reviewed).

• Continuous Product-Focused Project Monitoring with Trend
Patterns and GQM
Hidenori Nakai, Kiyoshi Honda, Hironori Washizaki, Yoshiaki Fukazawa,
Ken Asoh, Kaz Takahashi, Kentarou Ogawa, Maki Mori, Takashi
Hino, Yosuke Hayakawa, Yasuyuki Tanaka, Shinichi Yamada, Daisuke
Miyazaki
Proceedings of the 2nd International Workshop on Quantitative
Approaches to Software Quality (QuASoC 2014), IEEE, pp. 69–
74, Dec. 2014, (reviewed).

• Toward Monitoring Bugs-fixing Process after the Releases
in Open Source Software
Keisuke Fujino, Akinori Ihara, Kiyoshi Honda, Hironori Washizaki
and Kenichi Matsumoto
6th International Workshop on Empirical Software Engineering in
Practice (IWESEP 2014), Poster, Nov. 2014, (reviewed).

Publications 129

� Predicting the Release Time Based on a Generalized Soft-
ware Reliability Model (GSRM)
Kiyoshi Honda (first author), Hironori Washizaki, Yoshiaki Fukazawa
Proceedings of the 38th Annual IEEE International Computers,
Software, and Applications Conference (COMPSAC), IEEE, pp.604–
605, Jul. 2014, (reviewed).
(related to Chapter 4)

� A Generalized Software Reliability Model Considering
Uncertainty and Dynamics in Development
Kiyoshi Honda (first author), Hironori Washizaki, YoshiakiFukazawa
Proceedings of 14th International Conference of Product Focused
Software Development and Process Improvement (PROFES 2013),
Springer, pp.342–346, Jun. 2013, (reviewed).

Domestic Conference Presentations

• GO-MUC (Goal-Oriented Measurement for Usability and
Conflict):

HCD-Net 2016, Poster, Jun. 2016, (reviewed).

•
(first author), , , ,

2016
, , pp.57 – 58, Jan. 2016, (reviewed).

•

(first author)
22

(FOSE 2015), Poster, Nov. 2015, (reviewed).

•
(first author), ,

2015
, , pp.37 – 38, Jan. 2015, (reviewed).

130

• OSS

21
(FOSE 2014), , pp.57–62, Dec. 2014, (reviewed).

•

(first author), , ,
21

(FOSE 2014), Poster, Dec. 2014, (reviewed).

�
(first author) , ,

2014
, , pp.15–16, Jan. 2014, (reviewed).

• GQM
, , ,

2014
, , pp.105–106, Jan. 2014, (reviewed).

• CI
(first author)

SQiP 2014, Oral presentation, Sep. 2014, (reviewed).

•

20
(FOSE 2013), , pp.227–232, Nov. 2013,

(reviewed).

Annual Convention Presentation

•

, , , , , ,
,

33 , ,
pp.1–8, Sep. 2016, (reviewed).

Publications 131

•

(first author)
33 , Poster, Sep. 2016, (re-

viewed).

•
(first author)

32 , Poster, Sep. 2015, (re-
viewed).

•

, , 29(5), pp.
105–110, Jan. 2014, (reviewed).

•

(first author)
. SS, ,
, 114(271), pp.13–16, Oct. 2014,

(reviewed).

•

31 , ,
pp.1–8, Sep. 2014, (reviewed).

�
(first author)

SE , 2013-SE-180(8), ,
pp.1–8, May 2013, (reviewed).

Other Publications and Presentations

• Software Reliability Growth Model with Uncertainties
and Dynamics in Development
Kiyoshi Honda (first author)

132

5th AsianWorkshop of Advanced Software Engineering (AWASE2016),
Oral presentation, Mar. 2016.

• Vol.1 (
, pp.8–15)

, Edited by TEF
, Self-publishing, Sep. 2013.

	thesis_A4
	signature_A4

