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1. Introduction

Consider a compact hyperbolic surface Σ (possibly with boundary). The space SC(Σ)
of subset currents on Σ can be thought of as a measure-theoretic completion of the space
of conjugacy classes of finitely generated subgroups of π1(Σ), which was introduce by
Kapovich and Nagnibeda [KN13] as a generalization of the space GC(Σ) of geodesic cur-
rents on Σ. The space GC(Σ) introduced by Bonahon [Bon86] has been used successfully
in the study of the mapping class group and the Teichmüller space of Σ. In this dis-
sertation we generalize several results on GC(Σ) to SC(Σ). Especially, we extend the
(geometric) intersection number i of two homotopy classes of closed curves on Σ to a
continuous R≥0-bilinear functional iSC on SC(Σ), which is also an extension of Bonahon’s
intersection number iGC on GC(Σ).

1.1. Background. In general, the notion of geodesic currents can be defined on an infinite
hyperbolic group G, which was introduced by Bonahon [Bon88b]. We usually do not
consider finite hyperbolic groups. A geodesic current on G is a locally finite (i.e. finite on
any compact subset) G-invariant Borel measure on the space ∂2G of 2-element subsets of
the boundary ∂G. The space GC(G) of geodesic currents on G, which is equipped with
weak-∗ topology, can be thought of as a completion of the space of conjugacy classes of
infinite cyclic subgroups of G with positive real weight in the following meaning. For an
infinite-order element g ∈ G we can define a counting geodesic current ηg corresponding
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to ⟨g⟩ by
ηg :=

∑
u⟨g⟩∈G/⟨g⟩

δuΛ(⟨g⟩),

where δΛ(⟨g⟩) is the Dirac measure at the limit set Λ(⟨g⟩) of ⟨g⟩. For h ∈ G we can see that
ηhgh−1 = ηg. Bonahon [Bon88b] proved that the set of all positive real weighted counting
geodesic currents on G:

{cηg | c ∈ R≥0, g ∈ G \ {id}},
where cηg is called a rational geodesic current on G, is a dense subset of GC(G). We call
this property the denseness property of rational geodesic currents.

In the case that a hyperbolic group G is the fundamental group π1(Σ) of a compact
hyperbolic surface Σ, a conjugacy class of an infinite cyclic subgroup (or its generator)
corresponds to a homotopy class of unoriented closed curve on Σ and also corresponds to
an unoriented closed geodesic on Σ. We write GC(π1(Σ)) simply as GC(Σ) and call GC(Σ)
the space of geodesic currents on Σ when we identify ∂π1(Σ) with the (ideal) boundary of
the universal cover of Σ. In this situation, an element of ∂2G corresponds to a geodesic
line in the universal cover of Σ.

For two closed curves c1, c2 on Σ, which are continuous maps from S1 to Σ, the inter-
section number i of c1, c2 is the number of contractible components of the fiber product
of S1 and S1 corresponding to c1, c2. If c1, c2 are simple and transversal, then i(c1, c2)
coincides with the cardinality of c1(S

1)∩ c2(S1). The intersection number i of two homo-
topy classes of (unoriented) closed curves [c1], [c2] is the minimum of i(c′1, c

′
2) taken over all

c′1 ∈ [c1], c
′
2 ∈ [c2]. For two non-trivial elements g1, g2 ∈ G we can define i(g1, g2) to be the

intersection number of homotopy classes of unoriented closed curve on Σ corresponding to
g1, g2. Note that if c1, c2 are closed geodesics on Σ, then i(c1, c2) = i([c1], [c2]). Such c1, c2
are said to be in minimal position. Bonahon [Bon86] proved that there exists a unique
continuous R≥0-bilinear functional iGC from GC(Σ) × GC(Σ) to R≥0 such that for any
non-trivial elements g1, g2 ∈ π1(Σ) we have

iGC(ηg1 , ηg2) = i(g1, g2).

The uniqueness of iGC is the result of the denseness property of rational geodesic currents.
In this meaning, we say that iGC is an extension of i. Bonahon [Bon88] proved that
there exists an embedding L from the Teichmüller space T (Σ) of Σ to GC(Σ), and for
m ∈ T (Σ) and a non-trivial g ∈ π1(Σ) the intersection number iGC(L(m), ηg) coincides
with the length of the (unoriented) m-geodesic corresponding to g, which we call the m-
length of g. This implies that there exists a unique m-length functional ℓm on GC(Σ) such
that for every non-trivial element g ∈ π1(Σ), ℓm(ηg) equals the m-length of g.

The notion of subset currents is also defined on an infinite hyperbolic group G. A subset
current on G is a locally finite G-invariant Borel measure on the space H(∂G) of closed
subsets of ∂G containing at least 2 points, which is endowed with the Vietoris topology.
The Vietoris topology on H(∂G) coincides with the topology induced by the Hausdorff
distance. A geodesic current on G is a subset current on G since ∂2G is a G-invariant
closed subspace of H(∂G). Kapovich and Nagnibeda [KN13] introduced the notion of
subset currents on hyperbolic groups and particularly studied the space SC(F ) of subset
currents on a free group F of finite rank. For a finitely generated subgroup H of F they
defined a counting subset current ηH by

ηH :=
∑

gH∈F/H

δgΛ(H),

where δΛ(H) is the Dirac measure at the limit set Λ(H) of H on H(∂F ). We can see that
ηgHg−1 = ηH for g ∈ F . They proved that the set SCr(F ) of all positive real weighted
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counting subset currents on F , which are called rational subset currents on F , is a dense
subset of SC(F ). In this meaning the space SC(F ) can be thought of as a measure-theoretic
completion of the set of conjugacy classes of finitely generated subgroups of F .

Let ∆ be a finite connected graph whose fundamental group is isomorphic to F and
whose vertices have degree larger than or equal to 2. For a non-trivial finitely generated
subgroup H of F we define a ∆-core graph ∆H to be the smallest subgraph of the covering
space corresponding to H such that the inclusion map is a homotopy equivalence map.
Some properties of counting subset currents tell us that the ∆-core graph ∆H is closely
related with ηH . Let H ′ be a k-index subgroup of H. Then we can see that ηH′ = kηH
by the definition. This property corresponds to the fact that we have a k-fold covering
map from ∆H′ to ∆H . Note that we have χ(∆H′) = kχ(∆H), where χ(∆H) is the Euler
characteristic of ∆H . We define the reduced rank of a non-contractible connected graph
to be the negative of the Euler characteristic and define the reduced rank of a contractible
graph to be 0. We define the reduced rank rk of a free group FN of rank N ∈ N ∪ {0}
to be max{N − 1, 0}. By the definition, the reduced rank of a connected graph whose
fundamental group is isomorphic to FN equals the reduced rank of FN .

A finitely generated subgroup of F is also a free group of finite rank, and we can
consider rk as a map from the set of finitely generated subgroups of F to Z≥0. Kapovich

and Nagnibeda [KN13] extended the reduced rank rk to a continuous R≥0-linear functional

rk on SC(F ). In fact, they constructed R≥0-linear functionals V
#, E# from SC(F ) to R≥0

satisfying the condition that for every non-trivial finitely generated subgroup H of F ,
V #(ηH) equals the number of vertices of ∆H and E#(ηH) equals the number of edges of
∆H . Then we can obtain the reduced rank functional rk as E# − V #.

For two finitely generated subgroup H,K of F we define the product N of H and K by

N (H,K) :=
∑

HgK∈H\F/K

rk(H ∩ gKg−1),

where H\F/K is the set of all double cosets of H and K. By using this product N the
Strengthened Hanna Neumann Conjecture can be written as follows: the inequality

N (H,K) ≤ rk(H)rk(K)

follows for any two finitely generated subgroups H and K of F . This conjecture was
individually proved by Friedman [Fri15] and Mineyev [Min12]. Geometrically, the product
N (H,K) equals the sum of the reduced rank of all connected components of the fiber
product graph ∆H ×∆ ∆K when H and K are non-trivial. In [Sas15] the product N was
extended to a continuous R≥0-bilinear functional N on SC(F ) × SC(F ). As a corollary,
we can obtain the following inequality:

N (µ, ν) ≤ rk(µ)rk(ν)

for any two subset currents µ, ν ∈ SC(F ).

1.2. Main results. First, we develop a fundamental theory of subset currents on hyper-
bolic groups. We prove that the space of subset currents on an infinite hyperbolic group
G is a locally compact, separable and completely metrizable space in Section 2. For a
subgroup H of G we define a G-invariant measure ηH on H(∂G) by

ηH :=
∑

gH∈G/H

δgΛ(H).

If H is a finite group, then we define ηH to be the zero measure. We prove that ηH is a
locally finite measure if and only if H is a quasi-convex subgroup of G. In this case we
call ηH a counting subset current on G and call a positive real weighted counting subset
current on G a rational subset current on G.
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More generally, for a point S ∈ H(∂G) we can define a G-invariant measure ηS by
taking the G-orbit of S. Explicitly,

ηS :=
∑

gStab(S)∈G/Stab(S)

δgΛ(Stab(S)),

where Stab(S) is the stabilizer S with respect to the action of G. Then we can see that ηS
is locally finite if and only if Stab(S) is a quasi-convex subgroup of G and S = Λ(Stab(S)).

Therefore the set SCr(G) of all rational subset currents on G is a natural subset of
SC(G) consisting of “discrete measures”. Hence we are interested in whether SCr(G) is
a dense subset of SC(G). Note that the R≥0-linear subspace Span((SCr(G))) of SC(G)
generated by SCr(G) is a natural subspace of SC(G) consisting of “discrete measures”,
and we are also interested in whether Span(SCr(G)) is a dense subset of SC(G). Both of
these problems are still open problems in contrary to the result of Bonahon on the space
of geodesic currents on a hyperbolic group. The difficulty comes from the nature that
constructing quasi-convex subgroups is much harder than finding generators of infinite
cyclic subgroups. We say that an infinite hyperbolic group G has the denseness property
of rational subset currents if SCr(G) is a dense subset of SC(G).

Kapovich and Nagnibeda [KN13] first proved that SCr(F ) is a dense subset of the sub-
space Span(SCr(F )) of SC(F ) generated by SCr(F ), and then proved that Span(SCr(F ))
is a dense subset of SC(F ). Bonahon [Bon88b] also divided the proof of the denseness
property of rational geodesic currents for a hyperbolic group into such two steps.

From the viewpoint of the application of subset currents, solving either one of the
two problems mentioned in the above for a surface group is important. Actually, the
former of the two problems was presented by Kapovich and Nagnibeda in [KN13]. In this
dissertation, we solve the problem and obtain the following theorem:

Theorem 1. For a compact hyperbolic surface Σ the fundamental group π1(Σ) of Σ has
the denseness property of rational subset currents.

Note that if a compact hyperbolic surface Σ has a boundary, then π1(Σ) is a free group
of finite rank. A subgroup H of π1(Σ) is a quasi-convex subgroup of π1(Σ) if and only if H
is a finitely generated subgroup of π1(Σ). Our method of proving the denseness property
for a surface group is partially based on the method of proving the denseness property for
a free group of finite rank in [Kap13]. We take a sequence of finite-rank free subgroups
{Hn} of the surface group π1(Σ) “approximating” π1(Σ), and construct a subset current
on Hn based on a given subset current µ ∈ SC(π1(Σ)) for a sufficiently large n. From the
subset current on Hn we can obtain a subset current on π1(Σ) sufficiently close to µ.

We write SC(π1(Σ)) simply as SC(Σ) and call SC(Σ) the space of subset currents on Σ
when we identify ∂π1(Σ) with the boundary of the universal cover of Σ.

From now on, we will talk about several continuous extensions of invariants of finitely
generated subgroups (or pairs of finitely generated subgroups) of π1(Σ) to continuous R≥0-
linear (or R≥0-bilinear) functionals on SC(Σ). The outline of the strategy to prove the
extensions is the same as that by Bonahon and Kapovich-Nagnibeda. First, we construct
an R≥0-linear functional on SC(Σ) associating a counting subset current for a non-trivial
finitely generated subgroup of π1(Σ) with a certain invariant. Then we prove the continuity
of the functional, which is the main part of the proof. Finally, we see that such a functional
is unique by the denseness property of rational subset currents. In this way we can obtain
a concrete expression of the functional.

Since SC(Σ) is a completely metrizable space and the set SCr(Σ) of rational subset
currents on Σ is a dense subset of SC(Σ), we can extend a continuous functional on
SCr(Σ) uniquely to a continuous functional on SC(Σ). We will also use this method in
Section 6.
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Let Γ be a non-trivial torsion-free convex-cocompact Kleinian group acting on the n-
dimensional hyperbolic space Hn for n ≥ 2. Then Γ is a hyperbolic group, and we
identify the boundary ∂Γ with the limit set Λ(Γ) ⊂ ∂Hn. From the assumption, Γ acts
on the convex hull CH(Λ(Γ)) of Λ(Γ) cocompactly, which implies that the volume of the
convex core CΓ := Γ\CH(Λ(Γ)) is finite. Then every non-trivial quasi-convex subgroup
H of Γ also acts on the convex hull CH(Λ(H)) cocompactly. We prove that there exists a
continuous R≥0-linear functional Vol on SC(Γ) such that for every non-trivial quasi-convex
subgroup H of Γ, Vol(ηH) equals the volume of the convex core CH corresponding to H.

In the case that n = 2, the Fuchsian group Γ is a free group of finite rank or a sur-
face group, and from the Gauss-Bonnet theorem we can see that the area of CH equals
−2πχ(CH). We define the reduced rank rk of a surface group to be the negative of the Eu-
ler characteristic of a closed surface whose fundamental group is isomorphic to the surface
group. Then we obtain the following theorem, which is a generalization of the reduced
rank functional on SC(F ) in [KN13].

Theorem 2. Let Σ be a compact hyperbolic surface. There exists a unique continuous
R≥0-linear functional rk on SC(Σ) such that for every finitely generated subgroup H of
π1(Σ) we have

rk(ηH) = rk(H).

From the definition of the reduced rank for surface groups, we can extend the product
N to the product of two finitely generated subgroups H and K of π1(Σ) for a closed
hyperbolic surface Σ, that is,

N (H,K) :=
∑

HgK∈H\π1(Σ)/K

rk(H ∩ gKg−1).

In the case that H and K are non-trivial, the product N (H,K) equals the sum of the re-
duced rank of all connected components of the fiber product CH×ΣCK . The reduced rank
of non-contractible component is the negative of the Euler characteristic and the reduced
rank of contractible component is 0. As a generalization of the intersection functional N
on SC(F ), for a compact surface Σ we prove the following theorem.

Theorem 3. Let Σ be a compact hyperbolic surface. There exists a unique continuous
R≥0-bilinear functional N on SC(Σ) such that for any two finitely generated subgroups H
and K of π1(Σ) we have

N (ηH , ηK) = N (H,K).

As far as the author knows, the surface group version of the Strengthened Hanna Neu-
mann Conjecture is still an open problem. By using the continuity of N and rk if we can
prove the inequality for a dense subset of SC(Σ), then the conjecture is true for any two
subgroups of π1(Σ) for a closed hyperbolic surface Σ. This gives us a new approach to the
conjecture.

The intersection functional N on SC(Σ) also has the property that for every µ ∈ SC(Σ)
we have

N (ηπ1(Σ), µ) = rk(µ).

In this meaning N can be thought of as a generalization of the reduced rank functional
rk.

Our method of proving the above theorem is based on the method of constructing the
intersection functional N on SC(F ) in [Sas15]. We will use the denseness property of
rational subset currents for π1(Σ) in order to prove the existence of the functional N .
Since the reduced rank of a contractible component is not the Euler characteristic, we
need to count the number of contractible components of the fiber product CH ×ΣCK . For
this purpose we can use the intersection number iSC on SC(Σ)× SC(Σ).
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The intersection number i of H and K is defined to be the number of contractible
components of CH ×Σ CK . Note that if H and K are infinite cyclic groups generated by
g1, g2 ∈ π1(Σ) respectively, then i(H,K) = i(g1, g2) since CH and CK are geodesics and
in minimal position. Then we prove the following theorem:

Theorem 4. Let Σ be a compact hyperbolic surface. There exists a unique continuous
R≥0-bilinear functional iSC on SC(Σ) such that for any two finitely generated subgroups
H and K of π1(Σ) we have

iSC(ηH , ηK) = i(H,K).

Note that i(H,K) depends on Σ if π1(Σ) is a free group, since there exist other compact
hyperbolic surfaces that are not homeomorphic to Σ but whose fundamental groups are
isomorphic to π1(Σ).

We also introduce the intersection number of two simple compact surfaces on a compact
surface Σ, which is not necessarily hyperbolic. Let S be a compact surface or S1. A pair
of S and a continuous map s from S to Σ is called a simple compact surface on Σ if s is
a locally injective and the restriction of s to each component of the boundary ∂S is not
nullhomotopic and does not have a sub-arc forming a nullhomotopic closed curve on Σ.
Note that a simple compact surface on Σ can be a closed curve on Σ.

For two simple compact surfaces (S1, s1), (S2, s2) on Σ we define the intersection number
of (S1, s1), (S2, s2), denoted by i(s1, s2), to be the number of contractible components of
the fiber product S1 ×Σ S2 corresponding to s1, s2. When we consider the intersection
number, we always assume that s1 and s2 are “transverse”, that is, the restriction of s1
and s2 to any components of their boundaries intersect transversely or virtually coincide
if they intersect. We say that two closed curves c1, c2 on Σ virtually coincide if there exist
a closed curve c on Σ and m1,m2 ∈ N such that ci equals c

mi up to reparametrization
for i = 1, 2. We define the intersection number of two homotopy classes [s1], [s2] of simple
compact surfaces to be the minimum of i(s′1, s

′
2) taken over s′1 ∈ [s1] and s

′
2 ∈ [s2] that are

transverse. If i(s1, s2) = i([s1], [s2]), then we say that s1, s2 are in minimal position.
In the case that Σ is a hyperbolic surface, we can see that for any simple compact surface

(S, s) on Σ there exists a finitely generated subgroup H of π1(Σ) such that the pair of
the convex core CH and the natural projection from CH to Σ induced by the universal
covering belongs to the homotopy class [s]. We also introduce the notion of an immersed
bigon formed by s1, s2 and generalize the well-known bigon criterion for two closed curves
on Σ to two simple compact surfaces on Σ.

Theorem 5. Let (S1, s1), (S2, s2) be transverse simple compact surfaces on a compact
surface Σ. If s1 and s2 do not form an immersed bigon, then s1, s2 are in minimal
position. If either S1 or S2 is S1, then the converse is also true.

As a corollary, we can see that for two non-trivial finitely generated subgroups H and
K of π1(Σ) for a compact hyperbolic surface Σ, CH and CK are in minimal position, that
is,

i(H,K) = i(CH , CK) = i([CH ], [CK ]).

For a non-trivial finitely generated subgroup H of π1(Σ) of a compact hyperbolic surface
Σ, we can see that every component of the boundary of the convex core CH is a closed
geodesic on Σ, and for each closed geodesic c on Σ we can obtain a counting geodesic
current ηc on GC(Σ), which equals ηg for g ∈ π1(Σ) freely homotopic to c. We denote by
∂CH the set of all boundary components of CH when no confusion can arise. Then we
can obtain a projection B from SC(Σ) onto GC(Σ):

Theorem 6. Let Σ be a compact hyperbolic surface. There exists a unique continuous
R≥0-linear map

B : SC(Σ) → GC(Σ)
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such that for every non-trivial and non-cyclic finitely generated subgroup H of π1(Σ) we
have

B(ηH) =
1

2

∑
c∈∂CH

ηc

and the restriction of B to GC(Σ) is the identity map.

Note that if ∂CH is empty, then B(ηH) is the zero measure. For non-trivial g ∈ π1(Σ)
we interpret ∂C⟨g⟩ as {Cg, Cg−1} and B(ηg) as

1
2(ηg + ηg−1) (= ηg).

Concerning the projection B we can obtain the following theorem:

Theorem 7. For any µ, ν ∈ SC(Σ) the following inequality follows:

iSC(µ, ν) ≤ iGC(B(µ),B(ν)).
If either µ or ν belongs to GC(Σ), then the equality holds.

From the above theorem, since L(m) belongs to GC(Σ) for m ∈ T (S), we can generalize
the m-length functional ℓm on GC(Σ) to the m-length functional ℓm on SC(Σ) by defining

ℓm(µ) := iSC(L(m), µ)

for µ ∈ SC(Σ). Then we can see that for every non-trivial finitely generated subgroup H
of π1(Σ) we have

ℓm(ηH) =
1

2

∑
c∈∂CH

ℓm(c),

where ℓm(c) is the m-length of c.
In the case that Σ has no boundary, Bonahon’s result with respect to the embedding of

the Teichmüller space T (Σ) to GC(Σ) by sending a hyperbolic metric m to the Liouville
current corresponding to m was extended to all negatively curved Riemannian metrics by
Otal in [Ota90], to negatively curved cone metrics by Hersonsky and Paulin in [HP97],
and to (singular) flat metrics by Duchin-Leininger-Rafi in [DLR10] (which includes the
case that Σ has boundary). For any such metric m on Σ, we can obtain an associated
geodesic current Lm ∈ GC(Σ), and for non-trivial g ∈ π1(Σ), the intersection number
iGC(Lm, ηg) equals the m-length of g. Hence for any such metric m on Σ we obtain the
m-length functional ℓm on SC(Σ).

Consider two quasi-convex subgroups H and J of a hyperbolic group G. Assume that J
is a subgroup of H. Then we have a continuous R≥0-linear map ιHJ from SC(J) to SC(H)
by defining

ιHJ (µ) :=
∑

hJ∈H/J

h∗(µ)

for µ ∈ SC(J), where h∗(µ) is the push-forward of µ by the homeomorphism h on H(∂J).
We write ιGH simply as ιH . For a quasi-convex subgroup K of H we denote by ηHK the
counting subset current on H corresponding to K. Then we can see that

ιH(ηHK ) = ηK ∈ SC(G).

When we prove the denseness property for a surface group, we will use this map in order
to obtain a subset current on G from a subset current on a quasi-convex subgroup H. By
using map ιH we can also obtain the following theorem.

Theorem 8. Let H be a finite index subgroup of an infinite hyperbolic group G. If H has
the denseness property of rational subset currents, then G also has the denseness property
of rational subset currents.

This theorem gives us a hint to the proof of the denseness property for a surface group.
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1.3. Future study. Consider the automorphism group Aut(G) of a hyperbolic group G.
The group Aut(G) acts on the boundary ∂G continuously, which induces a continuous
action on H(∂G). Moreover, by considering the push-forward of subset currents by φ ∈
Aut(G) we have a continuous R≥0-linear action of Aut(G) on SC(G). Since a subset
current is G-invariant, the action of the inner automorphisms is trivial. Hence we have a
continuous R≥0-linear action of the outer automorphism group Out(G) on SC(G), which
can be thought of as the generalization of the action of Out(G) on the set of all conjugacy
classes of quasi-convex subgroups of G. In fact, for a quasi-convex subgroup H of G and
[φ] ∈ Out(G) we have

[φ](ηH) = ηφ(H).

From the Dehn-Nielsen-Baer theorem, the mapping class group MCG(Σ) of a closed
surface Σ is isomorphic to a 2-index subgroup of Out(π1(Σ)). Note that GC(G) is an
Out(G)-invariant subspace of SC(G).

We can see that our maps rk, iSC, N , and B on SC(Σ) are Out(π1(Σ))-invariant,
especially, MCG(Σ)-invariant, for a closed hyperbolic surface Σ. We plan to investigate
MCG(Σ) by using SC(Σ) and functionals on SC(Σ).

1.4. Organization of dissertation. In Section 2, we will introduce subset currents on
a hyperbolic group G and develop a general theory on the space SC(G). We also give a
short introduction to the background of measure theory related to subset currents.

In Section 3, we will prove the existence of the volume functional Vol on SC(Γ) for a
non-trivial torsion-free convex-cocompact Kleinian group Γ on Hn for n ≥ 2 (see Theorem
3.3). As a corollary, we obtain the reduced rank functional rk on SC(Σ) for a compact
hyperbolic surface Σ (see Corollary 3.11).

In Section 4, we will give the natural continuous R≥0-linear map ιH from SC(H) to
SC(G) for a quasi-convex subgroup H of a hyperbolic group G. By using the map ιH we
prove that if a hyperbolic group G has the denseness property of rational subset currents,
then the finite index extension of G also has the denseness property of rational subset
currents (see Theorem 4.3). We present a method of extending a functional on SC(H) to
a functional on SC(G) if H is a finite index subgroup of G in Subsection 4.2.

In Section 5, first, we will review several facts on the intersection number of two closed
curves on a compact surface Σ, and then introduce the intersection number of two simple
compact surfaces on Σ. We prove the bigon criterion for two simple compact surfaces
on Σ as a generalization of the bigon criterion for two (simple) closed curves on Σ (see
Theorem 5.14). Finally, we prove the existence of the intersection number iSC on SC(Σ)
(see Theorem 5.35). During the proof, we introduce some new techniques for proving the
continuity of a functional on SC(Σ).

In Section 6, we will introduce the product N of two finitely generated subgroups of
π1(Σ) for a compact hyperbolic surface Σ. Our proof of the bigon criterion for two simple
compact surfaces on Σ gives a geometric characterization of N and also gives us an idea
for extending N to an R≥0-bilinear functional on SC(Σ). Our proof of the continuity of
N on SC(Σ) is partially based on the proof of the continuity of iSC.

In Section 7, we will prove the existence of the continuous R≥0-linear projection B from
SC(Σ) onto GC(Σ) for a compact hyperbolic surface Σ (see Theorem 7.1). By using the
projection B and the denseness property of rational subset currents for π1(Σ), we obtain
the inequality on the intersection number on SC(Σ) and GC(Σ) (see Theorem 7.4). As
a corollary, we also obtain the m-length functional ℓm on SC(Σ) for an element m of the
Teichmüller space of Σ.

In Section 8, our goal is proving the denseness property of rational subset currents for a
surface group π1(Σ) for a closed hyperbolic surface Σ (see Theorem 8.20). In Subsection
8.1, we will give a proof of the denseness property for a free group F of finite rank based on
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the proof by Kapovich in [Kap13]. In the proof we give some new ideas for understanding
the denseness property. In Subsection 8.2, we will give a sequence of finitely generated
subgroups Hn of F so that the union of the image of SC(Hn) by the natural map ιHn taken
over all n is a dense subset of SC(F ). Finally, in Subsection 8.3, we will prove the denseness
property for π1(Σ). Several methods for this proof have been introduced in Subsection
8.1 and 8.2 in advance but also we generalize some of those methods. Especially, we use a
sequence of finitely generated subgroups of π1(Σ), which are finite-rank free groups. A lot
of constants are involved in the proof, and we need to be careful of the relation between
constants. We note that we will use the denseness property for surface groups in several
sections before Section 8.

1.5. Acknowledgements. I would like to thank my supervisor, Prof. Katsuhiko Mat-
suzaki, whose enormous support and insightful comments were invaluable during the course
of my study. I also appreciate the feedback offered by Prof. Ilya Kapovich during my stay
at University of Illinois at Urbana-Champaign from March to May in 2016. The author
is supported by JSPS KAKENHI Grant Number JP16J02814.

2. Subset currents on hyperbolic groups

First we define the hyperspace of a topological space, which consists of compact subsets.
Later, we consider only the case where the topological space is the (Gromov) boundary of
a hyperbolic group, which is compact metrizable. The hyperspace is used for considering
limit sets of subgroups of the hyperbolic group.

Definition 2.1 (See [Kec95, Subsection 4.F]). Let X be a topological space. We will

denote by Ĥ(X) the set of all compact subsets of X including ∅ with the Vietoris topology,
which is generated by the sets of the form

{S ∈ Ĥ(X) | S ⊂ U} and {S ∈ Ĥ(X) | S ∩ U ̸= ∅}

for an open subset U ⊂ X. We call Ĥ(X) the hyperspace of X consisting of compact sets.

Theorem 2.2 (See [Kec95, Theorem 4.26]). If X is a compact metrizable space, then so

is Ĥ(X). In particular, Ĥ(X) is separable.

2.1. Space of subset currents on a hyperbolic group. Let G be an infinite hyperbolic
group. We do not consider the case that G is a finite group throughout this dissertation.
Fix a finite generating set of G and denote by Cay(G) the Cayley graph of G with respect
to the generating set. When we want to emphasize a generating set A of G, we will denote
by Cay(G,A) the Cayley graph of G with respect to A. We consider a connected graph
as a metric space by endowing the graph with the path metric such that every edge has
length 1.

Since the boundary ∂G of G is compact metrizable, the space Ĥ(∂G) is compact metriz-
able by Theorem 2.2. Now, we consider an open subspace

H(∂G) := {S ∈ Ĥ(∂G) | #S ≥ 2}

of Ĥ(∂G). Then H(∂G) is a locally compact separable metrizable space.
Let d∂G be a metric on ∂G that is compatible with its topology. Then we can define

the Hausdorff distance dHaus on H(∂G) as

dHaus(S1, S2) := max {max
s∈S1

d∂G(s, S2),max
s∈S2

d∂G(S1, s)} (S1, S2 ∈ H(∂G)).

It is easy to see that the Hausdorff distance is compatible with the subspace topology
on H(∂G) given by the Vietoris topology. When we consider the topology of H(∂G),
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the Hausdorff distance dHaus is convenient. Note that dHaus actually can be defined on

Ĥ(∂G) \ {∅}.
Since G acts on ∂G continuously, the action extends to the continuous action on H(∂G).

Definition 2.3 (Subset currents on G). A subset current on G is a G-invariant locally
finite Borel measure on H(∂G). The space of subset currents on G is denoted by SC(G).
We give SC(G) the weak-∗ topology. (See Subsection 2.2 for the definitions of measure-
theoretic terminology.)

Remark 2.4. For a finite hyperbolic group G, since the boundary ∂G is empty, we define
SC(G) to be the set consisting of the zero measure. In the case that G is an infinite cyclic
group, the boundary ∂G consists of two points and G acts on ∂G trivially. Hence SC(G)
is the R≥0-linear space generated by δ∂G.

For S ∈ H(∂G) the weak convex hull WC(S) ⊂ Cay(G) of S is the union of all geo-
desic lines connecting two points of S. A geodesic line in a metric space is an isometric
embedding of R into the metric space. For each vertex g ∈ V (Cay(G)) we consider a
subset

Ag := {S ∈ H(∂G) |WC(S) ∋ g}.
Since for any g ∈ G and S ∈ H(∂G) we have gWC(S) =WC(g(S)),

G(Aid) =
∪
g∈G

gAid =
∪
g∈G

Ag = H(∂G).

Lemma 2.5. The set Ag is a compact subset of H(∂G) for every g ∈ G.

Proof. Recall that the space Ĥ(∂G) is compact. Therefore, it suffices to show that the set

Aid is closed in Ĥ(∂G). Consider a sequence {Sn} ⊂ Aid converging to S ∈ Ĥ(∂G). It is
clear that S ̸= ∅. For each n ∈ N take ξn, ζn ∈ Sn such that there exists a geodesic line
γn containing id and joining ξn to ζn. We can take convergent subsequences {ξkn} and
{ζkn} by the compactness of ∂G. Since Sn converges to S in the Hausdorff distance dHaus,
the sequences {ξkn} and {ζkn} converge to ξ, ζ ∈ S, respectively. From the Ascoli-Arzelà
theorem there exists a subsequence of γkn that converges uniformly on compact subsets to
a geodesic line γ joining ξ to ζ. Since each γkn contains the vertex id, so is γ. Therefore,
WC(S) contains id, which proves our claim. □

From the above lemma, we can see that G acts on H(∂G) cocompactly. By applying
Theorem 2.23 in Subsection 2.2 to SC(G), we have the following theorem.

Theorem 2.6. The space SC(G) is a locally compact, separable and completely metrizable
space.

We assume some background knowledge on the properties of limit sets of subgroups of
hyperbolic groups.

For each subgroup H of G we have the limit set Λ(H) ⊂ ∂G. We usually consider the
case that Λ(H) ̸= ∅, which implies Λ(H) ∈ H(∂G). We define a measure ηH on H(∂G) as

ηH :=
∑

gH∈G/H

δgΛ(H),

where δgΛ(H) is the Dirac measure at gΛ(H). It is easy to check that ηH is G-invariant.
When the limit set Λ(H) is empty, we define ηH to be the zero measure.

A subgroup H of G is called quasi-convex if H is a quasi-convex subset of Cay(G), that
is, there exists k > 0 such that any geodesic connecting two points of H is included in
the k-neighborhood of H. A subgroup H of G is quasi-convex if and only if H acts on
the weak convex hull WC(Λ(H)) cocompactly (see [Swe01]). The following lemma is a
generalization of [KN13, Lemma 4.4] in the case of hyperbolic groups.
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Lemma 2.7. Let H be a subgroup of G. The measure ηH is locally finite if and only if H
is quasi-convex.

Proof. We generalize the compact subset Aid ⊂ H(∂G). For r ≥ 0 we define A(id, r) to be
a subset of H(∂G) consisting of S ∈ H(∂G) such that WC(S) intersects the closed ball
B(id, r) centered at id with radius r. Note that A(id, 0) = Aid and Aid can be not an open
set. Nevertheless, we can see that if r is sufficiently large compared with the hyperbolic
constant of Cay(G), then the interior Int(A(id, r)) includes Aid, and so

G(Int(A(id, r))) = H(∂G).

Therefore, any compact subset of H(∂(G)) is covered by a finite union of g(A(id, r)) (g ∈
G). Moreover, any compact subset of H(∂(G)) is covered by a finite union of Ag (g ∈ G)
since we have

A(id, r) =
∪

g∈G∩B(id,r)

Ag,

which is a finite union. As a result, a G-invariant measure µ on H(∂G) is locally finite if
and only if µ(Aid) is finite.

For the measure ηH we have

ηH(Aid) = #{gH ∈ G/H |WC(gΛ(H)) ∋ id}
= #{gH ∈ G/H | gWC(Λ(H)) ∋ id}
= #{gH ∈ G/H |WC(Λ(H)) ∋ g−1}.

For g1H, g2H ∈ G/H with g1H ̸= g2H, there is no h ∈ H that sends g−1
1 to g−1

2 . Therefore,
ηH(Aid) equals the number of vertices of the quotient graph H\WC(Λ(H)) of WC(Λ(H))
by H. Hence, ηH(Aid) is finite if and only if H acts on WC(Λ(H)) cocompactly, which
completes the proof. □

In general, for any S ∈ H(∂G) we can obtain a G-invariant Borel measure (not neces-
sarily locally finite)

ηS :=
∑

gH∈G/H

δgS

on H(∂G), where H := StabG(S) = {g ∈ G | g(S) = S}, the stabilizer of S. For any
G-invariant Borel measure µ on H(∂G), if µ has an atom S, that is, µ({S}) > 0, then
µ(E) ≥ µ({S})ηS(E) for every Borel subset E ⊂ H(∂G). Therefore, if µ is locally finite,
then so is ηS .

Theorem 2.8. Let S ∈ H(∂G). The measure ηS is locally finite if and only if H :=
StabG(S) is quasi-convex and S = Λ(H). In particular, if a subset current µ ∈ SC(G) has
an atom S, then H is quasi-convex and S = Λ(H).

Proof. The“if” part follows by Lemma 2.7. We prove the “only if” part. Assume that
ηS is locally finite. From the proof of Lemma 2.7, ηS(Aid) equals the number of vertices
of the quotient graph H\WC(S), which implies that H acts on WC(S) cocompactly.
Note that for every ξ ∈ S there exists a sequence of WC(S) converging to ξ and we
can take the sequence from H(x) for some x ∈ WC(S). Therefore S = Λ(H) and H is
quasi-convex. □
Definition 2.9. We call ηH the counting subset current for a quasi-convex subgroup H of
G. A subset current µ ∈ SC(G) is called rational if there exists a quasi-convex subgroup
H of G and c ∈ R≥0 such that µ = cηH . We denote by SCr(G) the set of all rational
subset currents on G.

Counting subset currents have the following properties:
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Proposition 2.10. For two quasi-convex subgroups H1,H2 of G,

(1) if H1 is a k-index subgroup of H2, then ηH1 = kηH2;
(2) if H1 is conjugate to H2, then ηH1 = ηH2.

Proof. Assume that H1 is a k-index subgroup of H2. Note that Λ(H1) = Λ(H2). Take a
complete system of representatives R of G/H2. Then a map sending (g, hH1) ∈ R ×H1

to ghH1 ∈ G/H1 is a bijective map. Hence

ηH1 =
∑

gH1∈G/H1

δgΛ(H1) =
∑
g∈R

∑
hH1∈H2/H1

δghΛ(H1)

=
∑
g∈R

kδgΛ(H2) = kηH2 .

Next, we assume that H1 = g0H2g
−1
0 for g0 ∈ G. Note that Λ(H1) = g0Λ(H2). Take

a complete system of representatives R of G/H2. Then g0Rg
−1
0 is a complete system of

representatives of G/H1 since

G =
⊔
g∈R

gH2 =
⊔
g∈R

g0gH2g
−1
0 =

⊔
g∈R

(g0gg
−1
0 )H1.

Hence
ηH1 =

∑
g∈R

δg0gg−1
0 Λ(H1)

=
∑
g∈R

δg0gΛ(H2) =
∑

gH2∈G/H2

δgΛ(H2) = ηH2 ,

which is the required equation. □
Kapovich and Nagnibeda [KN13] proved the following theorem, which played a fun-

damental role in their study of the space of subset currents on a free group. Kapovich
[Kap13] gave another proof to the following theorem.

Theorem 2.11 (See [KN13, Theorem 5.8] and [Kap13]). For a free group F of finite rank,
the set SCr(F ) of all rational subset currents on F is a dense subset of SC(F ).

Note that a subgroup H of F is quasi-convex if and only if H is finitely generated. By
Proposition 2.10 (2) and Theorem 2.11, we can thought of SC(F ) as a measure-theoretic
completion of the set of all conjugacy classes of finitely generated subgroups of F .

We say that an infinite hyperbolic group G has the denseness property of rational subset
currents if the set of all rational subset currents on G is a dense subset of SC(G). Recall
that the space SC(G) is separable for any hyperbolic group G. If G has the denseness
property of rational subset currents, then we have a concrete countable dense subset of
SC(G) as follows:

{qηH | q ∈ Q≥0 and H is a quasi-convex subgroup of G}.
In Subsection 8.3, we will prove that surface groups have the denseness property of

rational subset currents (see Theorem 8.20). In Subsection 4.1, we will prove that for a
hyperbolic group G and a finite index subgroup H of G, if H has the denseness property of
rational subset currents, then G also has the denseness property of rational subset currents
(see Theorem 4.3).

From the above, it is natural to propose the following problem.

Problem 2.12. Does any infinite hyperbolic group G have the denseness property of ra-
tional subset currents?

Note that from the viewpoint of the application, it is sufficient to see that the R≥0-linear
subspace Span(SCr(G)) generated by SCr(G) is a dense subset of SC(G). In the case that
G is a free group F of finite rank, Kapovich-Nagnibeda [KN13] first proved that SCr(F )
is a dense subset of Span(SCr(F )), and then they proved that Span(SCr(F )) is a dense
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subset of SC(F ), which implies that SCr(F ) is a dense subset of SC(F ). However, for a
general infinite hyperbolic group G, we do not know whether SCr(G) is a dense subset of
Span(SCr(G)) or not.

Let G be an infinite hyperbolic group with denseness property of rational subset cur-
rents. The denseness property of rational subset currents has a lot of application. For
example, if we have an R≥0-linear functional on SC(G) that is a continuous extension
of an invariant of a quasi-convex subgroup of G, then we can see that the functional is
unique. We will use this argument frequently in this dissertation for the case that G is the
fundamental group of a compact hyperbolic surface. In addition, if we have a continuous
functional ϕ on SCr(G), then ϕ is uniquely extended to a continuous functional on SC(G)
since SC(G) is a completely metrizable space. In the proof of Proposition 6.7, we will use
argument.

2.2. Measure theory background. In this subsection, we give an introduction to the
space of measures. Most of the contents are well-known in the measure theory (see [Bog07,
Section 8] for more detail). First, we consider the space of locally finite measures with
weak-∗ topology, and then we consider a group action additionally.

Let (X, d) be a locally compact second countable metric space. We consider the space
M(X) of locally finite Borel measures on X in this subsection. Our goal is to see that the
space M(X) with the weak-∗ topology is second countable and completely metrizable.

First we recall some definitions from the measure theory.

Definition 2.13. A Borel measure µ on X is called locally finite if µ(K) is finite for any
compact subset K ⊂ X. A Borel measure µ on X is called regular if for any Borel subset
E ⊂ X,

µ(E) = inf{µ(O) | O ⊂ X : open and E ⊂ O}
and if for any Borel subset E ⊂ X with µ(E) <∞,

µ(E) = sup{µ(K) | K ⊂ X : compact and E ⊃ K}.
SinceX is a locally compact second countable metric space, locally finite Borel measures

are regular (see [Rud86, 2.18 Theorem]).

Definition 2.14. Let Cc(X) be the space of compactly supported continuous functions
from X to R with the topology of uniform convergence on compact sets. This means
that fn converges to f in Cc(X) if there exists a compact subset K ⊂ X such that
suppfn, suppf ⊂ K, and fn converges to f uniformly. With this topology, for any
µ ∈M(X) the functional

f ∈ Cc(X) 7→
∫
fdµ

is continuous. We often denote
∫
fdµ briefly by µ(f).

A sequence {µn} ⊂M(X) converges to µ ∈M(X) in the weak-∗ topology if and only if
for any f ∈ Cc(X) we have µn(f) → µ(f) (n→ ∞).

Proposition 2.15. The space Cc(X) is separable.

Proof. If X is compact, then we can see that Cc(X) = C(X) is separable from the Stone-
Weierstrass Theorem. In a general case, we take a sequence of compact subsets Kn ⊂
X (n ∈ N) satisfying the condition that

(∗) X =
∪
n∈N

Kn and Kn ⊂ Int(Kn+1) for any n ∈ N.

This implies X =
∪

n∈N Int(Kn). Then we have

Cc(X) =
∪
n∈N

{f ∈ Cc(X) | suppf ⊂ Kn}.
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Since {f ∈ Cc(X) | suppf ⊂ Kn} ⊂ C(Kn) is separable for every n ∈ N, so is Cc(X). □

Now, we define a metric dM on M(X) as follows. Fix a sequence of compact subsets
Kn ⊂ X (n ∈ N) satisfying the condition (∗). Then take a countable dense subset
C = {ϕn | n ∈ N} ⊂ Cc(X) containing a compactly supported continuous function χn for
each n ∈ N with χn ≥ 0 and χn(x) = 1 for any x ∈ Kn, which implies that µ(χn) ≥ µ(Kn)
for any µ ∈M(X). Moreover, from the proof of Proposition 2.15, we can assume that for
any f ∈ Cc(X) with suppf ⊂ Kn for some n ∈ N there exists a sequence {fj} of C such
that {fj} converges to f and suppfj ⊂ Kn for each j. For µ, ν ∈ M(X) and n ∈ N we
define

dn(µ, ν) := max {|µ(ϕn)− ν(ϕn)|, 1}
and

dM (µ, ν) :=
∑
n∈N

2−ndn(µ, ν).

Theorem 2.16. The metric dM on M(X) is compatible with the weak-∗ topology.

Proof. For µn, µ ∈ M(X) (n ∈ N), it is easy to see that dM (µn, µ) → 0 (n → ∞) if and
only if µn(f) → µ(f) (n → ∞) for any f ∈ C. Assume that dM (µn, µ) → 0 (n → ∞). It
is sufficient to prove that µn(f) → µ(f) for any f ∈ Cc(X). We can take k ∈ N such that
there exists a sequence {fj} ⊂ C converging to f uniformly and suppfj , suppf ⊂ Kk. Since
µn(χk) → µ(χk) (n→ ∞), the sequence {µn(χk)}n∈N is bounded and so is {µn(Kk)}n∈N.
Therefore, for any ε > 0 and a sufficiently large j ∈ N we have

|µn(f)− µ(f)| ≤|µn(f)− µn(fj)|+ |µn(fj)− µ(fj)|+ |µ(fj)− µ(f)|
≤∥f − fj∥∞µn(Kk) + |µn(fj)− µ(fj)|+ ∥f − fj∥∞µ(Kk)

≤2ε+ |µn(fj)− µ(fj)|.

Hence if n ∈ N is sufficiently large, then |µn(f)−µ(f)| ≤ 3ε. This completes the proof. □
Theorem 2.17. The metric space (M(X), dM ) is complete.

Proof. Let {µn} be a Cauchy sequence in (M(X), dM ). For any f ∈ C we can see that
{µn(f)} is also a Cauchy sequence. Since R is complete, we obtain a map

Φ: C → R; f 7→ lim
n→∞

µn(f).

Then we extend the map Φ to a positive linear functional from Cc(X) to R by using
the denseness of C in Cc(X). Finally from the Riesz-Markov-Kakutani representation
theorem, there exists a unique locally finite measure µ such that we have

Φ(f) =

∫
fdµ for any f ∈ Cc(X).

The measure µ is the limit of the Cauchy sequence {µn}. □

To see that M(X) is separable, we decompose X into “small” subsets by using the
condition that X is a locally compact second countable metric space, whose property is
similar to that of the Euclidean space. Note that on a metric space being separable is
equivalent to being second countable, and we use both words according to each situation.

For each n ∈ N we take a family of Borel subsets {En
λ}λ∈Λn satisfying the following

conditions:

(1) X is a disjoint union of {En
λ}λ∈Λn ;

(2) for any compact subset K ⊂ X only finitely many En
λ intersect K, which in

particular implies that Λn is countable;
(3) the diameter of En

λ is smaller than 1/n.
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For each En
λ we fix pnλ ∈ En

λ . Since Λn is countable for each n ∈ N, the set P := {pnλ |
n ∈ N, λ ∈ Λn} is also countable. For each (p, q) ∈ P × Q≥0 we consider a measure
qδp ∈ M(X), where δp is the Dirac measure at p, that is, for any Borel subset E ⊂ X, if
E ∋ p, then δp(E) = 1; if E ̸∋ p, then δp(E) = 0. Now, set

D :=
∪
k∈N

{
k∑

i=1

qiδpi

∣∣∣ (pi, qi) ∈ P ×Q≥0

}
,

which is countable.

Theorem 2.18. The set D is a dense subset of M(X). Hence M(X) is separable.

Proof. Take an arbitrary µ ∈M(X). For each n ∈ N set

µn :=
∑
λ∈Λn

µ(En
λ )δpnλ .

Then take qnλ ∈ Q≥0 such that ∑
λ∈Λn

|µ(En
λ )− qnλ | <

1

n

and set
µ′n :=

∑
λ∈Λn

qnλδpnλ .

Next, recall the sequence of compact subsets {Kn} of X satisfying the condition (∗). For
each n ∈ N the restriction of µ′n to Kn, denoted by νn, is contained in D since only finitely
many En

λ (λ ∈ Λn) intersect Kn.
Now, we prove that the sequence {νn} converges to µ. Take an arbitrary f ∈ Cc(X).

For a sufficiently large n ∈ N the support of f is included in Kn, and so∫
fdνn =

∫
fdµ′n =

∑
λ∈Λn

qnλf(p
n
λ).

Hence

|νn(f)− µn(f)| ≤

∣∣∣∣∣∣
∑
λ∈Λn

(
qnλf(p

n
λ)− µ(En

λ )f(p
n
λ)
)∣∣∣∣∣∣

≤∥f∥∞
∑
λ∈Λn

|qnλ − µ(En
λ )|

≤∥f∥∞
1

n
→ 0 (n→ ∞).

From the above, it is sufficient to prove that µn(f) converges to µ(f). Note that

µn(f) =
∑
λ∈Λn

µ(En
λ )f(p

n
λ) =

∫ ∑
λ∈Λn

f(pnλ)χEn
λ
dµ,

where χEn
λ
is the characteristic function of En

λ . Since f is continuous and the diameter of

En
λ tends to 0, the function

∑
λ∈Λn

f(pnλ)χEn
λ
converges pointwise to f . Therefore µn(f)

converges to µ(f) by the bounded convergence theorem. □
Let G be a group acting on X continuously and cocompactly, that is, there exists a

compact subset K ⊂ X such that G(K) :=
∪

g∈G g(K) = X. We define an action of G on

M(X) by pushing forward, namely, for µ ∈M(X) and g ∈ G we define g∗(µ) ∈M(X) to
be the push-forward of µ by g, explicitly,

g∗(µ)(E) := µ(g−1(E))
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for any Borel subset E ⊂ X. A measure µ ∈ M(X) is said to be G-invariant if we have
g∗(µ) = µ for any g ∈ G. Set

MG(X) := {µ ∈M(X) | µ : G-invariant}.
We will prove that the space MG(X) is locally compact, separable and completely metriz-
able. The topological property of MG(X) is similar to that of the space of probability
measures on a compact metric space with weak-∗ topology. A locally compact second
countable Hausdorff space is completely metrizable in general.

Lemma 2.19. For µ ∈M(X) the following are equivalent:

(1) µ is G-invariant;
(2) for any f ∈ Cc(X) and g ∈ G∫

fdµ =

∫
f ◦ gdµ;

(3) for any f ∈ C and g ∈ G ∫
fdµ =

∫
f ◦ gdµ.

Proof. (1)⇒(2): For the characteristic function χE of a Borel subset E ⊂ X and for g ∈ G,
we have ∫

χEdµ = µ(E) = µ(g−1(E)) =

∫
χg−1(E)dµ =

∫
χE ◦ gdµ.

Recall that any f ∈ Cc(X) can be approximated by step functions, each of which is a
finite sum of constant multiplication of characteristic functions. Hence, (2) follows.

(2)⇒(1): First, we check that µ(J) = g∗(µ)(J) for any g ∈ G and any compact subset
J ⊂ X. The characteristic function χJ can be approximated by a sequence {fn} ⊂ Cc(X),
that is to say, ∫

|χJ − fn|dµ→ 0 (n→ ∞).

Therefore, χg−1(J) is approximated by the sequence {fn ◦ g}, and so we have

µ(g−1(J)) =

∫
χg−1(J)dµ = lim

n→∞

∫
fn ◦ gdµ

= lim
n→∞

∫
fndµ =

∫
χJdµ = µ(J).

Since µ is regular, we have µ(E) = g∗(µ)(E) for any g ∈ G and any Borel subset E ⊂ X
with µ(E) <∞. In general, we can decompose a Borel subset E ⊂ X into a disjoint union
of countably many Borel subsets {En}n∈N with E = ⊔nEn and µ(En) <∞ for any n ∈ N
since X is a union of countably many compact subsets. Then,

µ(E) =
∑
n∈N

µ(En) =
∑
n∈N

g∗(µ)(En) = g∗(µ)(E)

for any g ∈ G.
(2)⇒(3): Obvious.
(3)⇒(2): This follows from the denseness of C in Cc(X). □

Proposition 2.20. The space MG(X) is a closed subspace of M(X). Hence MG(X) is
also a separable complete metric space.

Proof. Let µn ∈ MG(X) (n ∈ N) and assume that µn converges to µ ∈ M(X). For any
f ∈ Cc(X) and g ∈ G we have

µn(f ◦ g) → µ(f ◦ g) and µn(f) → µ(f) (n→ ∞).
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Hence µ(f ◦ g) = µ(f), which implies µ ∈MG(X). □
Recall that G acts on X cocompactly. Since X is locally compact, any compact subset

of X is included in a finite union of relatively compact open subsets of X. Therefore, we
can take a compact subset K ⊂ X such that G(Int(K)) = X.

Proposition 2.21. Let K be a compact subset of X with G(Int(K)) = X. Let µ, ν ∈
MG(X). If the restriction of µ to K equals that of ν, then µ = ν.

Proof. Since µ and ν are regular, it is sufficient to show that µ(J) = ν(J) for any compact
subset J ⊂ X. From the assumption we can take g1, . . . gm ∈ G such that

J ⊂
m∪
i=1

gi(K).

Then by using g1(K), . . . , gm(K), we divide J into J1, . . . , Jm such that Ji ⊂ gi(K) and J
is a disjoint union of J1, . . . , Jm. Hence

µ(J) =
m∑
i=1

µ(Ji) =
m∑
i=1

µ(g−1
i (Ji))

=
m∑
i=1

ν(g−1
i (Ji)) =

m∑
i=1

ν(Ji) = ν(J).

This completes the proof. □
By Proposition 2.21, we see that the property of MG(X) is similar to that of M(Y ) for

a compact metric space Y . To prove the local compactness ofMG(X) we use the following
lemma:

Lemma 2.22 (See [Rud86, 2.13 Theorem]). Let K be a compact subset of X. Suppose
V1, . . . , Vn are open subsets of X and

K ⊂ V1 ∪ · · · ∪ Vn.
Then there exists continuous functions h1, . . . , hn ∈ Cc(X) such that hi ≥ 0, supphi ⊂ Vi
and h1(x) + · · ·+ hn(x) = 1 for any x ∈ K.

The collection {h1, . . . , hn} is called a partition of unity on K, subordinate to the cover
{V1, . . . , Vn}.

Theorem 2.23. The space MG(X) is a locally compact, separable and complete metric
space.

Proof. We need to prove only that MG(X) is locally compact. Take any µ ∈ MG(X).
Recall that we included the functions χk with respect to the compact subsets Kk in the
set C when we defined the metric dM on M(X). Take a sufficiently large k ∈ N such that
G(Int(Kk)) = X and then take k0 ∈ N such that the function χk appears in the definition
of dk0 . Now, we take ε > 0 with ε < 2−k0 and prove that the closed ball

B(µ, ε) := {ν ∈MG(X) | dM (µ, ν) ≤ ε}
is compact. For any ν ∈ B(µ, ε) we have

2−k0 max{|µ(χk)− ν(χk)|, 1} ≤ dM (µ, ν) ≤ ε < 2−k0

by the definition of dM . Thus
|µ(χk)− ν(χk)| < 1,

which implies
ν(Kk) ≤ ν(χk) < 1 + µ(χk).
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Put K := Kk and M := 1 + µ(χk).
Now, we take any sequence {µn} ⊂ B(µ, ε) and prove that {µn} contains a convergent

subsequence. Set
CK := {f ∈ C | suppf ⊂ K},

which is countable. For each f ∈ CK∣∣∣∣∫ fdµn

∣∣∣∣ ≤ ∥f∥∞µn(K) ≤ ∥f∥∞M,

which implies that the sequence {µn(f)} is bounded and has a convergent subsequence.
From the diagonalization argument, we can take a subsequence {µϕ(n)} of {µn} such that
{µϕ(n)(f)} is a convergent sequence for any f ∈ CK . Then we obtain a map Φ: CK → R
as

Φ(f) := lim
n→∞

µϕ(n)(f) (f ∈ CK).

By the choice of C, for any f ∈ Cc(X) with suppf ⊂ K there is a sequence in CK

converging to f . Hence we can extend Φ to a positive linear functional on {f ∈ Cc(X) |
suppf ⊂ K} such that Φ(f) = limn→∞ µϕ(n)(f). Finally, we extend Φ to a positive linear
functional on Cc(X) as follows. For every f ∈ Cc(X) take g1, . . . , gm ∈ G such that

suppf ⊂ g1(Int(K)) ∪ · · · ∪ gm(Int(K)).

By using Lemma 2.22, take a partition of unity {h1, . . . , hm} on suppf , subordinate to the
cover {g1(Int(K)), . . . , gm(Int(K))}. Then f = f1 + · · ·+ fm for fi := fhi (i = 1, . . . ,m).
Note that suppfi ⊂ supphi ⊂ gi(Int(K)), and so supp(fi ◦ gi) = g−1

i (suppfi) ⊂ Int(K).
Now, we define Φ(f) as

Φ(f) :=
m∑
i=1

Φ(fi ◦ gi).

To see that Φ(f) does not depend on the choice of hi and gi, we check that the following
equality holds:

m∑
i=1

Φ(fi ◦ gi) = lim
n→∞

µϕ(n)(f).

Actually we have
m∑
i=1

Φ(fi ◦ gi) =
m∑
i=1

lim
n→∞

µϕ(n)(fi ◦ gi) =
m∑
i=1

lim
n→∞

µϕ(n)(fi) = lim
n→∞

µϕ(n)(f).

From the above equality, we can see that µϕ(n)(f) converges to Φ(f) for any f ∈ Cc(X).
From the Riesz-Markov-Kakutani representation theorem we obtain ν ∈ M(X) where
µϕ(n) converges. Since MG(X) is a closed subspace of M(X), we have ν ∈ B(µ, ε), which
completes the proof. □

3. Volume functionals on Kleinian groups

First, we recall some fundamental notions on Kleinian groups. Let Hn be the n-
dimensional hyperbolic space for n ≥ 2 and dHn the distance function on Hn. We usu-
ally consider the Poincaré ball model of Hn. We will denote by Isom(Hn) the group of
orientation-preserving isometries of Hn. The action of Isom(Hn) extends to the boundary
∂Hn, which is homeomorphic to (n − 1)-dimensional sphere Sn−1. A Kleinian group is a
discrete subgroup of Isom(Hn). It is known that a subgroup Γ of Isom(Hn) is discrete if
and only if Γ acts on Hn properly discontinuously. Here, we remark that our definition of
Kleinian group includes Fuchsian groups, which is a discrete subgroup of Isom(H2). The
limit set of a Kleinian group Γ, denoted by Λ(Γ), is the set of accumulation points of the
orbits Γ(x) in ∂Hn for x ∈ Hn, which is independent of the choice of x. More generally,
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the limit set of a subset X of Hn, denoted by X(∞), is the set of accumulation points of X
in ∂Hn. For a closed subset S ⊂ ∂Hn containing at least two points, we define the convex
hull CH(S) of S to be the smallest convex closed subset of Hn containing all geodesic
lines connecting two points of S.

By the definition, a Kleinian group Γ acts on the convex hull of the limit set Λ(Γ),
denoted by CHΓ. The quotient space Γ\CHΓ, denoted by CΓ, is called the convex core of
Γ. We say that a Kleinian group Γ is convex-cocompact if the convex core CΓ is compact.
A group is said to be torsion-free if it does not have any non-trivial element with finite
order. It is known that a Kleinian group Γ is torsion-free if and only if Γ acts on Hn freely.
Note that if a Kleinian group Γ is finite, then Λ(Γ), CHΓ and CΓ are empty.

In this section, we consider only a torsion-free convex-cocompact Kleinian group whose
limit set contains infinitely many points, which is said to be non-elementary. Let Γ be a
Kleinian group satisfying the above condition. Since Γ acts on CHΓ properly discontinu-
ously and cocompactly by isometry, Γ is a hyperbolic group by the Švarc-Milnor Lemma.
We identify the limit set Λ(Γ) with the boundary of ∂Γ. A subgroup H of Γ is quasi-convex
if and only if H is convex-cocompact.

Recall that H(∂Γ) is the hyperspace of ∂Γ consisting of all closed subsets of ∂H con-
taining at least two points. Let mHn be the measure on Hn induced by the Riemannian
metric on Hn, which implies that mHn is invariant with respect to the action of Isom(Hn).
Note that the set of measurable subsets for mHn coincides with that for the restriction of
Lebesgue measure to the Poincaré ball model of Hn. A measurable subset A ⊂ CHΓ is
called a (geometric) fundamental domain for the action of Γ on CHΓ if the boundary ∂A
of A in CHΓ has measure zero with respect to mHn , Γ(A) = CHΓ and g(A)∩A is included
in ∂A or empty for any non-trivial g ∈ Γ. We define the volume of CΓ to be mHn(A) for
a fundamental domain A for the action of Γ on CHΓ, which is independent of the choice
of A. Actually, the following lemma follows:

Lemma 3.1. Let A be a fundamental domain for the action of Γ on CHΓ. Let B be a
measurable subset of CHΓ satisfying the condition that Γ(B) = CHΓ and g(B) ∩ B has
measure zero for any g ∈ Γ. Then we have

mHn(A) = mHn(B).

Proof. From the assumption, for any measurable subset X of CHΓ and any finite subset
Γ0 of Γ we have

mHn(X) ≥ mHn

 ∪
g∈Γ0

g(B)

 ∩X

 =
∑
g∈Γ0

mHn(gB ∩X).

Hence by taking a limit on Γ0 we have

mHn(X) ≥
∑
g∈Γ

mHn(gB ∩X).

Since the opposite inequality is obvious, we have

mHn(X) =
∑
g∈Γ

mHn(gB ∩X).
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Therefore

mHn(A) =
∑
g∈Γ

mHn(gB ∩A)

=
∑
g∈Γ

mHn(B ∩ g−1A)

= mHn(B),

which is our claim. □
A measurable subset B of CHΓ satisfying the condition in the above lemma is called a

measure-theoretic fundamental domain for the action of Γ on CHΓ.
Since Γ acts on CHΓ cocompactly, we can take a fundamental domain FΓ for the action

of Γ on CHΓ such that FΓ is convex and bounded. The Dirichlet domain centered at any
point x ∈ CHΓ,

{z ∈ CHΓ | dHn(x, z) ≤ dHn(g(x), z) for any g ∈ Γ},
is a compact convex geometric fundamental domain. We define a function fΓ : H(∂Γ) →
R≥0 by

fΓ(S) := mHn(CH(S) ∩ FΓ)

for S ∈ H(∂Γ).

Proposition 3.2. The function fΓ is a continuous function with compact support.

For the moment, we assume that the above proposition follows. Then we can define the
continuous R≥0-linear functional f

∗
Γ : SC(Γ) → R≥0 by

f∗Γ(µ) :=

∫
fΓdµ

for µ ∈ SC(Γ). Now, we check that f∗Γ(ηH) equals the volume of the convex core CH

for a non-trivial quasi-convex subgroup H of Γ. Let R ⊂ Γ be a complete system of
representatives of Γ/H. Then we have

f∗Γ(ηH) =

∫
fΓdηH =

∑
gH∈Γ/H

f(gΛ(H))

=
∑
g∈R

mHn(gCHH ∩ FΓ)

=
∑
g∈R

mHn(CHH ∩ g−1(FΓ))

= mHn

CHH ∩
∪
g∈R

g−1(FΓ)

 .

In the last of the above equation we used the property that for any non-trivial g ∈ Γ the
intersection g(FΓ) ∩ FΓ has measure zero. Note that R−1 = {g−1 | g ∈ R} is a complete
system of representatives of H\Γ. Then it is sufficient to prove that

A := CHH ∩
∪
g∈R

g−1(FΓ)

is a measure-theoretic fundamental domain for the action of H on CHH . First, we check
that H(A) = CHH . Take any x ∈ CHH . Then there exists g ∈ Γ, g0 ∈ R and h ∈ H
such that g(x) ∈ FΓ and g = g0h

−1. Therefore

x ∈ g−1(FΓ) = hg−1
0 (FΓ) ⊂ h(A).
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This concludes that H(A) = CHH . For a non-trivial h ∈ H we have

h(A) ∩A = CHH ∩

 ∪
g1,g2∈R

hg−1
1 (FΓ) ∩ g−1

2 (FΓ)

 .

If g2hg
−1
1 = id for g1, g2 ∈ R, then g2h = g1 and so h = id, a contradiction. Hence g2hg

−1
1

is not the identity element for any g1, g2 ∈ R. Therefore we have

hg−1
1 (FΓ) ∩ g−1

2 (FΓ) ⊂ g−1
2 (∂FΓ)

and so

h(A) ∩A ⊂ CHH ∩ Γ(∂FΓ).

This implies that h(A) ∩A has measure zero.
Therefore, f∗Γ(ηH) equals the volume of the convex core CH for every non-trivial quasi-

convex subgroup H of Γ.
From the above argument, we obtain the following main theorem in this section.

Theorem 3.3. There exists a continuous R≥0-linear functional

Vol : SC(Γ) → R≥0

such that for every non-trivial quasi-convex subgroup H of Γ, Vol(ηH) equals the volume
of the convex core CH .

Now, we prepare some lemmas for proving Proposition 3.2.

Lemma 3.4. Let X be a convex subset of Hn. Then the boundary ∂X has measure zero
with respect to mHn and X is measurable.

Proof. Recall that Hn is the Poincaré ball model of the n-dimensional hyperbolic space,
that is, Hn is the unit open ball of Rn. We can assume that X contains 0 without loss of
generality since the action of Isom(Hn) on Hn is transitive and mHn is Isom(Hn)-invariant.
Let mL be the Lebesgue measure on Rn. It is sufficient to see that ∂X has measure zero
with respect to mL.

First, we consider the case that X contains 0 as an interior point. Since X is convex,
for any x ∈ X there exists a unique geodesic joining 0 to x, which is also a geodesic in Rn.
Therefore X is a star-like domain centered at 0 in Rn. For t ≥ 0 set

Xt := {tx ∈ Rn | x ∈ X}.

Since 0 is an interior point of X, there exists a small open ball U ⊂ X containing 0. For
t0 ∈ [0, 1) and x ∈ Xt0 there exists t > 1 such that tx ∈ X and the convex hull of U ∪{tx}
in Hn contains x as an interior point, so x is an interior point of X, which implies that
for any t0 ∈ [0, 1) the set Xt0 is included in the interior Int(X) of X. Then for any t > 1

Int(X)t := {tx | x ∈ Int(X)}

includes X since for any x ∈ X we have x/t ∈ Int(X) and

x = t

(
1

t
x

)
∈ Int(X)t.

Note that Int(X)t is similar to Int(X) in Rn. Hence we have

mL(Int(X)t) = tnmL(Int(X)).

Therefore for any t > 1 we have

∂X ⊂ Int(X)t \ Int(X).
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As a result, we obtain

mL(∂X) ≤ mL(Int(X)t)−mL(Int(X))

= (tn − 1)mL(Int(X)) → 0 (t→ 1).

This implies that the boundary ∂X has measure zero with respect to the Lebesgue measure
mL. The equation X = (∂X ∩X) ∪ Int(X) implies the measurability of X.

If X does not contain any interior points and contains 0, then X is included in a
hyperplane of Rn, which implies that both X and ∂X have measure zero. □

From the proof of the above lemma, we see that we can apply some techniques of convex
geometry in Euclidean spaces to Hn by using 0 as a base point. Let dRn be the Euclidean
metric on Rn.

A hyperplane in Hn is a totally geodesic codimension-1 submanifold. Here, “totally
geodesic” means that for any two different points in the submanifold the geodesic line
passing through the two points is included in the submanifold. Actually, any hyperplane
of Hn is isometric to Hn−1 and its limit set is homeomorphic to Sn−2.

Any hyperplane divides Hn into two connected components, and the union of the hy-
perplane and one of the connected components is called a half-space of Hn. In this case
the hyperplane is the boundary of the half-space in H. The following property of a convex
set is well-known in Rn and also follows in Hn: for a convex subset X of Hn, x ∈ ∂X and
an exterior point y of X there exists a half-space U of Hn such that U ⊃ X, x ∈ ∂U and
y ̸∈ U .

From the above property we can see that for any closed convex subset X of Hn the
intersection of all half-spaces including X coincides with X. Therefore for any S ∈ H(∂Γ)
the convex hull CH(S) coincides with the intersection of all half-spaces whose limit sets
contain S.

Recall thatH(∂Γ) is a metric space with a Hausdorff distance dHaus, which is compatible
with the Hausdorff distance induced by the restriction of dRn to ∂Γ. In this section we
use the Hausdorff distance D induced by dRn instead of dHaus. Note that we can consider
the distance D for any two non-empty subsets of H ∪ ∂H.

Take S, S′ ∈ H(∂Γ) such that #S = #S′ = 2. Then we can see that for any ε > 0
there exists δ > 0 such that if D(S, S′) < δ, then D(CH(S), CH(S′)) < ε. This property
follows since for S ∈ H(∂Γ) with #S = 2, CH(S) is the intersection of Hn and a circle in
Rn intersecting ∂Hn orthogonally at each point of S.

For a hyperplane H of Hn the union of all geodesic lines connecting two points of the
limit setH(∞) coincides withH itself. Therefore for a hyperplaneH of Hn and ε > 0 there
exists δ > 0 such that if a hyperplaneH ′ satisfies the condition that D(H(∞),H ′(∞)) < δ,
then D(H,H ′) < ε.

Consider the hyperplane H := (Rn−1 × {0}) ∩Hn. For a > 0 we call the set

Ha := (Rn−1 × [−a, a]) ∩Hn

the [a]-neighborhood of H. Then we can see that a hyperplane H ′ of Hn is included in Ha

if and only if we have

D(H ′,H) ≤ D(CH((Rn−1 × {a}) ∩ ∂Hn),H).

Note that for any hyperplane H ′ of Hn there exists ϕ ∈ Isom(Hn) such that ϕ(H ′) = H.
Then we define the [a]-neighborhood H ′

a of H ′ by ϕ−1(Ha).

Lemma 3.5. Let S ∈ H(∂Γ) and {Sk}k∈N a sequence in H(∂Γ) converging to S. For any
exterior point x of CH(S) there exists N ∈ N such that if k ≥ N , then x is an exterior
point of CH(Sk).
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Proof. We can assume that ∂Γ = ∂H without loss of generality since H(∂Γ) can be con-
sidered as a subspace of H(∂H). Take a half-space U of Hn such that CH(S) ⊂ U and
x ̸∈ U . Note that x is also an exterior point of U and we can take the [a]-neighborhood
(∂U)a of ∂U such that x ̸∈ (∂U)a. Then there exists a half-space U ′ of Hn such that x
is an exterior point of U ′, and U and (∂U)a are included in U ′. Therefore if we take a
sufficiently large N ∈ N and k ≥ N , then Sk ⊂ U ′(∞), which implies that x is an exterior
point of CH(Sk). □
Lemma 3.6. Let S ∈ H(∂Γ) and {Sk}k∈N a sequence in H(∂Γ) converging to S. For any
interior point x of CH(S) there exists N ∈ N such that if k ≥ N , then x is an interior
point of CH(Sk).

Proof. We can assume that ∂Γ = ∂H without loss of generality. We also assume that
x = 0 in Hn. Note that an isometry of Hn fixing 0 is also the restriction of an isometry
of Rn to Hn. Take r > 0 such that the open ball B(0, r) centered at 0 with radius r with
respect to dHn is included in CH(S). Take a half-space U such that U ⊃ B(0, r) and
the hyperbolic distance from 0 to ∂U equals r, that is, ∂U is tangent to the boundary of
B(0, r). Then there exists ε > 0 such that for any half-space U ′ of Hn if D(U,U ′) < ε,
then U ′ ⊃ B(0, r/2). Moreover, for this ε > 0, we can see that for any two half-spaces
U1, U2 of Hn, if U1 ⊃ B(0, r) and D(U1, U2) < ε, then U2 ⊃ B(0, r/2).

Assume that k is sufficiently large and D(S, Sk) < ε/2. Take any half-space V of Hn

such that V ⊃ CH(Sk). By considering the [a]-neighborhood of ∂V , there exists a half-
space V ′ of Hn such that D(V (∞), V ′(∞)) < ε, D(V, V ′) < ε and V ′ ⊃ CH(S). Since
V ′ ⊃ B(0, r), we have V ⊃ B(0, r/2). This implies that CH(Sk) ⊃ B(0, r/2). □
Lemma 3.7. For a bounded subset K of CHΓ the set

A(K) := {S ∈ H(∂Γ) | CH(S) ∩K ̸= ∅}
is a relatively compact subset of H(∂Γ). Moreover, for any compact subset E of H(∂Γ)
there exists a bounded subset K of CHΓ such that E ⊂ A(K).

Proof. From Lemma 2.5, for a Cayley graph Cay(Γ) with respect to a finitely generating
set and g ∈ Γ the set

Ag = {S ∈ H(∂Γ) |WC(S) ∋ g}
is a compact subset of H(∂Γ). Take x0 ∈ Hn. Then we have a quasi-isometry

θ : Cay(Γ) → CHΓ; g 7→ g(x0).

Recall that θ induces a homeomorphism ∂θ from ∂Γ to Λ(Γ), which is independent of the
choice of x0. We identify ∂Γ with Λ(Γ) by this homeomorphism. Take a quasi-inverse θ′

to θ. Since K is bounded, θ′(K) is also bounded in Cay(Γ). For S ∈ A(K) we can see
that the weak convex hull WC(S) in Cay(Γ) intersects the c-neighborhood of θ′(K) for
some c > 0 by the property of quasi-isometry. Hence the set A(K) is included in a union
of Ag1 , . . . , Agm for some g1, . . . gm ∈ Γ. Since Ag is compact for any g ∈ Γ, the set A(K)
is relatively compact.

From the proof of Lemma 2.7, for any compact subset E of H(∂Γ) there exist finitely
many elements g1, . . . , gm ∈ Γ such that E is included in the union of Ag1 , . . . , Agm . Then
by considering θ({g1, . . . , gm}) we can take a bounded subset K of Hn such that for any
gi and any S ∈ Agi the convex hull CH(S) in Hn must intersects K. This implies that
E ⊂ A(K). □
Proof of Proposition 3.2. The support of f is included in the closure of A(FΓ), which is
compact since FΓ is bounded. Now, we prove the continuity of f . Let S ∈ H(∂Γ). Let
{Sk} be a sequence inH(∂Γ) converging to S. It is sufficient to see thatmHn(CH(Sk)∩FΓ)
converges tomHn(CH(S)∩FΓ). By the bounded convergence theorem it is sufficient to see
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that the characteristic function of CH(Sk) ∩ FΓ converges pointwise to the characteristic
function of CH(S) ∩ FΓ almost everywhere. Actually, from Lemmas 3.4, 3.5 and 3.6 this
claim follows. □

If the dimension n is 2, then we can obtain a stronger result than Lemmas 3.5 and 3.6.
We will write H instead of H2.

Lemma 3.8. Let S ∈ H(∂H). For any ε > 0 there exists δ > 0 such that if D(S, S′) < δ
for S′ ∈ H(∂H), then D(CH(S), CH(S′)) < ε.

Proof. In this proof we use only the Euclidean metric d in R2 and the Hausdorff distance
D induced by d. However, we will use the term “geodesic” as a geodesic in H.

First of all, we consider the description of CH(S) in the case that S ̸= ∂H. Since S is
a closed subset of ∂H = S1, the complement Sc = ∂H \ S is a union of at most countably
many open intervals {Iλ}λ∈Λ of ∂H, that is,

S = ∂H \
⊔
λ∈Λ

Iλ.

For each Iλ we consider the interior Int(CH(Iλ)) in H, which equals the union of all
geodesic line connecting two points of Iλ. Then we can see that

CH(S) = H \
⊔
λ∈Λ

Int(CH(Iλ)).

Note that the boundary ∂CH(S) coincides with the union of all geodesic line connecting
the two points of ∂Iλ taken over λ ∈ Λ.

Fix ε > 0. First, we consider the case that #S = 2. Then we can take δ > 0 such that
for any S′ ∈ H(∂H) with #S′ = 2 and D(S, S′) < δ we have D(CH(S), CH(S′)) < ε.
Now, we do not assume that #S′ = 2. Then ∂H\S′ is a disjoint union of countably many
intervals {Iλ}λ∈Λ. Since D(S, S′) < δ, there exists two λ1, λ2 ∈ Λ such that

D(S, ∂H \ (Iλ1 ∪ Iλ2)) < δ.

Then we can see that D(CH(S), CH(S′)) < ε.
Next, we consider the case that S = ∂H. Take δ > 0 such that if the diameter of an

open interval I ⊂ ∂H is smaller than 2δ, then the diameter of CH(I) is smaller than
ε. Then for S′ ∈ H(∂H) with D(S, S′) < δ, the complement Sc never includes an open
interval with diameter > 2δ . Therefore D(CH(S), CH(S′)) < ε.

Finally, we consider the case that S ̸= ∂H and #S ≥ 3. Take open intervals {Iλ}λ∈Λ of
∂H such that ∂H \ S is a disjoint union of {Iλ}. Take δ > 0 satisfying the following two
conditions:

(1) for any S1, S2 ∈ H(∂H) with #S1 = #S2 = 2, if D(S1, S2) < δ, then we have
D(CH(S1), CH(S2)) < ε;

(2) if the diameter of an open interval I ⊂ ∂H is smaller than 2δ, then the diameter
of CH(I) is smaller than ε.

Take S′ ∈ H(∂H) with D(S, S′) < δ and open intervals {I ′λ}λ∈Λ′ of ∂H such that ∂H \ S′

is a disjoint union of {I ′λ}.
Take x ∈ CH(S). First, we consider the case that d(x, ∂CH(S)) < ε. Then there

exists λ ∈ Λ such that d(x,CH(∂Iλ)) < ε. If the diameter of Iλ is smaller than or equal
to 2δ, then the diameter of CH(Iλ) is smaller than ε and there exists ξ ∈ S′ such that
CH(∂Iλ) is included in the (δ + ε)-neighborhood of ξ. This implies that x belongs to the
(δ+2ε)-neighborhood of CH(S′). If the diameter of Iλ is larger than 2δ, then there exists
λ′ ∈ Λ′ such that D(CH(∂Iλ), CH(∂I ′λ′)) < ε, which implies that x is contained in the
2ε-neighborhood of CH(S′).
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Next, we consider the case that d(x, ∂CH(S)) > ε. Assume that x ̸∈ CH(S′), that is,

there exists λ′ ∈ Λ′ such that x ∈ Int(CH(I ′λ′)). If the diameter of I ′λ′ is smaller than or
equal to 2δ, then we can see that x is included in the (δ + ε)-neighborhood of CH(S′) by
the same argument as the above. If the diameter of I ′λ′ is larger than 2δ, then there exists

λ ∈ Λ such that D(CH(∂Iλ), CH(∂I ′λ′)) < ε. Since x ̸∈ Int(CH(Iλ)), we have

x ∈ Int(CH(I ′λ′)) \ Int(CH(Iλ)),

which implies that d(x,CH(∂Iλ)) < ε. This is a contradiction. Hence x ∈ CH(S′).
Therefore, in any cases CH(S) is included in the (δ+2ε)-neighborhood of CH(S′). By

the same way as the above we can see that CH(S′) is included in (δ + 2ε)-neighborhood
of CH(S). This completes the proof. □

From Lemmas 3.7 and 3.8, we see that if Y is a bounded open subset of H, then A(Y )
is a relatively compact open subset of H(∂H); if Y is a compact subset of H, then A(Y )
is also a compact subset of H(∂H).

Recall that Ĥ(∂H) is the hyperspace of ∂H consisting of all closed subsets of ∂H. We

define a map Φ from Ĥ(∂H) to Ĥ(H ∪ ∂H) as follows. For S ∈ Ĥ(∂H) if #S ≥ 2,
then Φ(S) := CH(S) ∪ S; if #S = 1, then Φ(S) := S; if S = ∅, then Φ(∅) := ∅.
Note that for S1, S2 ∈ H(∂H), we have D(CH(S1), CH(S2)) = D(Φ(S1),Φ(S2)). From

Lemma 3.8, we see that Φ is continuous at every S ∈ H(∂H) ⊂ Ĥ(∂H). It is easy to

see that Φ is continuous at every S ∈ Ĥ(∂H) from the proof of Lemma 3.8. Moreover,

Φ is uniformly continuous since Ĥ(∂H) is compact by Theorem 2.2. Hence we obtain the
following proposition:

Proposition 3.9. For any ε > 0 there exists δ > 0 such that for S1, S2 ∈ H(∂H) if
D(S1, S2) < δ, then D(CH(S1), CH(S2)) < ε.

In the case that the dimension n is 2, the area of the convex core CΓ equals −2πχ(CΓ)
from the Gauss-Bonnet theorem for the Euler characteristic of CΓ. We define the Euler
characteristic χ(G) of a group G to be the Euler characteristic of a K(G, 1)-space if we
can take a K(G, 1)-space as a finite-dimensional CW-complex. Here, we can see that CΓ

is a finite-dimensional CW-complex and a K(Γ, 1)-space since the universal cover CHΓ of
CΓ is contractible. Then we obtain the following corollary from Theorem 3.3:

Corollary 3.10. Let Γ be a torsion-free convex-cocompact Fuchsian group. Then there
exists a unique continuous R≥0-linear functional

χ : SC(Γ) → R≤0 = {r ∈ R | r ≤ 0}

such that for every non-trivial quasi-convex subgroup H of Γ we have

χ(ηH) = χ(H).

Note that a torsion-free convex-cocompact Fuchsian group is isomorphic to a surface
group or a free group of finite rank since CΓ is a compact hyperbolic surface possibly
with boundary or a closed geodesic. The uniqueness of the functional χ is a result of the
denseness property of rational subset currents for Γ (see Theorem 8.21). We also remark
that in the above corollary our claim is independent of the action of Γ on H.

For a non-trivial free group F of finite rank the reduced rank rk(F ) of F is defined to
be −χ(F ), which coincides with rank(F ) − 1. We define the reduced rank of the trivial
group to be 0. In the same way, for a surface group Γ we define the reduced rank rk(Γ)
of Γ to be −χ(Γ). Then we have the following corollary. Note that in the case that Γ is a
free group of finite rank the following corollary was proved in [KN13, Theorem 8.1].
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Corollary 3.11. Let Γ be a surface group or a free group of finite rank. Then there exists
a unique continuous R≥0-linear functional

rk: SC(Γ) → R≥0

such that for every quasi-convex subgroup H of Γ we have

rk(ηH) = rk(H).

We call rk the reduced rank functional on SC(Γ).
Let H be a quasi-convex subgroup of Γ and K a finite index subgroup of H. Then

ηK = [H : K]ηH , where [H : K] is the index of K in H. Since rk is R≥0-linear, we have

rk(K) = rk(ηK) = rk([H : K]ηH) = [H : K]rk(ηH) = [H : K]rk(H).

This property comes from the property that CK is a [H : K]-fold covering of CH .

4. Subgroups, inclusion maps and finite index extension

Let G be a hyperbolic group. Since a quasi-convex subgroup H of G is also a hyperbolic
group, we want to consider a relation between SC(G) and SC(H), especially, in the case
that H is a finite index subgroup of G. We assume that both G and H are infinite groups.
First, we identify the boundary ∂H of H with the limit set Λ(H) in ∂G. Then the space
H(∂H) is a closed subspace of H(∂G). Note that if H is a finite index subgroup of G,
then ∂H = ∂G. Now we consider an infinite quasi-convex subgroup J of H and identify
∂J with Λ(J) in ∂G. For µ ∈ SC(J) we consider µ as a measure on H(∂H), where the
support of µ is included in H(∂J). Recall that the support of a measure µ is the smallest
closed subset such that the restriction of µ to the exterior of the closed subset is the zero
measure.

4.1. Natural continuous R≥0-linear maps between subgroups. We can define a
natural continuous R≥0-linear map ιHJ from SC(J) to SC(H) as follows. Since H acts on
H(∂H), we define the push-forward h∗(µ) of µ ∈ SC(J) by h ∈ H by

h∗(µ)(E) := µ(h−1(E))

for every Borel subset E of H(∂H). Note that the support of h∗(µ) is included in
h(H(∂J)) ⊂ H(∂H). Since µ is J-invariant, h∗(µ) = µ for h ∈ J . Now, we define a
measure ιHJ (µ) on H(∂H) by

ιHJ (µ) :=
∑

hJ∈H/J

h∗(µ).

Lemma 4.1. Let H, J be infinite quasi-convex subgroups of an infinite hyperbolic group G
with J ⊂ H. For any µ ∈ SC(J) the measure ιHJ (µ) is an H-invariant locally finite Borel
measure on H(∂H), that is, ιHJ (µ) is a subset current on H. Moreover, the map

ιHJ : SC(J) → SC(H)

is a continuous R≥0-linear map.

Proof. First we check that ιHJ (µ) is H-invariant. For g ∈ H we have

g∗(ι
H
J (µ)) =

∑
hJ∈H/J

g∗(h∗(µ)) =
∑

hJ∈H/J

(gh)∗(µ) =
∑

hJ∈H/J

h∗(µ),

which implies that ιHJ (µ) is H-invariant. From Lemma 2.5, by considering the Cayley
graph Cay(H) of H with respect to a finite generating set of H and id ∈ Cay(H), the set

AH
id = {S ∈ H(∂H) |WC(S) ∋ id}
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is a compact subset of H(∂H) and for any compact subset K of H(∂H) is included in a
finite union of h1A

H
id , . . . , hmA

H
id for some h1, . . . , hm ∈ H.

Now, for the local finiteness, it is sufficient to see that ιHJ (µ)(AH
id) is finite. Since J is a

quasi-convex subgroup of H, the counting subset current

ηHJ :=
∑

hJ∈H/J

δhΛ(J)

on H is locally finite. Hence there are at most finitely many h1J, . . . , hmJ ∈ H/J such
that

h1Λ(J), . . . , hmΛ(J) ∈ AH
id .

For h ∈ H satisfying the condition that hΛ(J) ̸∈ AH
id , that is, WC(hΛ(J)) ∋ id, we can

see that hH(∂J) ∩ AH
id = ∅ since for any S ∈ hH(∂J) the weak convex hull WC(S) is

included in WC(hΛ(J)). Note that AH
id ∩hi(H(∂J)) is a compact subset of hi(H(∂J)) for

i = 1, . . . ,m. Therefore we have

ιHJ (µ)(AH
id) =

m∑
i=1

(hi)∗(µ)(A
H
id) =

m∑
i=1

µ(h−1
i AH

id ∩H(∂J)) <∞.

Finally, we check that ιHJ is continuous. Take µn, µ ∈ SC(J) (n ∈ N) such that µn
converges to µ by taking n → ∞. Take any compactly supported continuous function
f : H(∂H) → R. Since the intersection of a compact subset of H(∂H) and H(∂J) is
compact, the restriction of f to hH(∂J) is a continuous function with compact support for
any h ∈ H. From the above argument, there are at most finitely many h1J, . . . hmJ ∈ H/J
such that the support of f intersects each of h1H(∂J), . . . , hmH(∂J). Therefore∫

fdιHJ (µn) =
∑

hJ∈H/J

∫
fdh∗(µn)

=
m∑
i=1

∫
f ◦ hid(µn)

→
n→∞

m∑
i=1

∫
f ◦ hid(µ) =

∑
hJ∈H/J

∫
fdh∗(µ) =

∫
fdιHJ (µ).

This implies that ιHJ (µn) converges to ι
H
J (µ). □

Since Λ(J) is J-invariant, the Dirac measure δΛ(J) = ηJJ is a subset current on J . Then
we can see that

ιHJ (ηJJ ) =
∑

hJ∈H/J

h∗δΛ(J) =
∑

hJ∈H/J

δhΛ(J) = ηHJ .

For simplicity of notation, we write ιH instead of ιGH . Then we can see that the compo-
sition ιH ◦ ιHJ equals ιJ . Actually, for µ ∈ SC(J),

ιH ◦ ιHJ (µ) =
∑

gH∈G/H

g∗

 ∑
hJ∈H/J

h∗(µ)


=

∑
gH∈G/H,hJ∈H/J

g∗(h∗(µ))

=
∑

gH∈G/H,hJ∈H/J

(gh)∗(µ).
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Let {gi}, {hj} be complete systems of representatives of G/H and H/J respectively. Then
{gihj} is a complete system of representatives of G/J . Hence

ιH ◦ ιHJ (µ) =
∑
i,j

(gihj)∗(µ) =
∑

gJ∈G/J

(g)∗(µ) = ιJ(µ).

Then, we can see that

ιJ(SC(J)) = ιH ◦ ιHJ (SC(J)) ⊂ ιH(SC(H)).

Moreover, we have

ιH(ηHJ ) = ιH ◦ ιHJ (ηJJ ) = ηJ ,

where ηJ is the counting subset current for J on G. It follows that ιH maps a rational
subset current on H to a rational subset current on G, since ιH is R≥0-linear. As a result,
we obtain the following theorem:

Theorem 4.2. Let H be an infinite quasi-convex subgroup of an infinite hyperbolic group
G. Then ιH is a continuous R≥0-linear map from SC(H) to SC(G) satisfying the condition
that for every quasi-convex subgroup J of H we have

ιH(ηHJ ) = ηJ .

If H has the denseness property of rational subset currents, then such a map is unique.

Let H be a finite index subgroup of G. We denote by [G : H] the index of H in G. Then
a subset current on G can be considered as a subset current on H since H(∂G) = H(∂H).
Therefore SC(G) can be considered as an R≥0-linear subspace of SC(H). Moreover, for
µ ∈ SC(G) we have

ιH(µ) =
∑

gH∈G/H

g∗(µ) =
∑

gH∈G/H

µ = [G : H]µ.

Then we have the following theorem.

Theorem 4.3. Let H be a finite index subgroup of a hyperbolic group G. Then ιH is
surjective. Moreover, if H has the denseness property of rational subset currents, then G
also has the denseness property of rational subset currents.

Proof. Take any µ ∈ SC(G). Then we see that

ιH

(
1

[G : H]
µ

)
=

1

[G : H]
[G : H]µ = µ,

which implies that ιH is surjective.
By considering µ as a subset current on H we can take a sequence of rational subset

currents {µn} on H such that {µn} converges to µ. Since ιH is continuous, {ιH(µn)}
converges to ιH(µ) = [G : H]µ. Since {ιH(µn)} is a sequence of rational subset currents
on G, the sequence {

1

[G : H]
ιH(µn)

}
is a sequence of rational subset currents on G converging to µ. □

Remark 4.4. Recall that Span(SCr(G)) is the R≥0-linear subspace of SC(G) generated by
the set SCr(G) of all rational subset currents on G. Even if we consider Span(SCr(H)) and
Span(SCr(G)) instead of SCr(H) and SCr(G) in the above theorem, the same statement
follows.
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4.2. Finite index extension of functionals. Let G be an infinite hyperbolic group.
From the previous subsection, for a finite index subgroup Γ of G we can consider SC(G)
as an R≥0-linear subspace of SC(Γ). By using this fact, we provide a method for extending
functionals on SC(Γ) to functionals on SC(G). Especially, we will consider the case that
Γ is a free group of finite rank or a surface group.

Assume that the hyperbolic group G has a finite index subgroup Γ that is isomorphic to
a free group of finite rank or a surface group. For example, a finitely generated Fuchsian
group satisfies this property. From Theorem 8.21 and Theorem 4.3, the set of all rational
subset currents on G is dense in SC(G).

Supplementation 4.5. Let H be a group. Let J,K be finite index subgroups of H.
Then the following formula is well-known:

[J : J ∩K] = [JK : K],

where JK may not be a subgroup of H but JK can be represented as a disjoint union of
cosets of K. From the above formula we can see that J ∩K is also a finite index subgroup
of H. Actually, we have

[H : J ∩K] = [H : J ][J : J ∩K] = [H : J ][JK : K] ≤ [H : J ][H : K].

Next, we consider the conjugacy class of Γ in G,

Conj(Γ) := {gΓg−1 | g ∈ G}.

Then we have a surjective map ϕ fromG/Γ to Conj(Γ), which is defined by ϕ(gΓ) := gΓg−1.
Since Γ is a finite index subgroup of G, the cardinality of Conj(Γ) is also finite. Note that
gΓg−1 for any g ∈ G is also a finite index subgroup of G. Actually, if G is a disjoint union
of g1Γ, . . . , gmΓ, then G = gGg−1 is a disjoint union of

(gg1g
−1)gΓg−1, . . . , (ggmg

1
)gΓg−1.

Let Γ0 be the intersection of all gΓg−1 ∈ Conj(Γ). Then Γ0 is a finite index normal
subgroup of G. Since Γ0 is also a finite index subgroup of Γ, the group Γ0 is isomorphic
to a free group of finite rank or a surface group. Therefore, we can take Γ as a finite index
normal subgroup of G. Then we have the exact sequence:

{id} → Γ → G→ G/Γ → {id},

which implies that G is a finite extension of Γ by G/Γ.

Lemma 4.6. Let G be a hyperbolic group with a finite index subgroup Γ that is isomorphic
to a free group of finite rank or a surface group. A subgroup H of G is quasi-convex if and
only if H is finitely generated.

Proof. The “only if” part is known from the property of quasi-convexity. Assume that H
is finitely generated. The intersection H ∩ Γ is a finite index subgroup of H since

[H : H ∩ Γ] = [HΓ : Γ] ≤ [G : Γ] <∞.

Therefore H∩Γ is also finitely generated (see the following supplementation). Since H∩Γ
is a finitely generated subgroup of Γ, H ∩ Γ is a quasi-convex subgroup of Γ and also a
quasi-convex subgroup of G. Then H is quasi-isometric to H ∩Γ in G, which implies that
H is a quasi-convex subgroup of G. □

Supplementation 4.7. We give a short proof for the claim “any finite index subgroup
of a finitely generated subgroup is finitely generated”. Let H be a group with a finite
generating A. Let J be a finite index subgroup ofH. Consider the Cayley graph Cay(H,A)
with respect to A. For the action of J on Cay(H,A) we can take a compact fundamental
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domain F satisfying the condition that F is connected, J(F) = Cay(H,A) and gF ∩F is
empty or included in ∂F for any non-trivial g ∈ J . Then we can see that the set

{g ∈ J | gF ∩ F ̸= ∅}
is a finite generating set of J .

For a quasi-convex subgroup H of G, the intersection H ∩ Γ is a finite index subgroup
of H from the proof of Lemma 4.6. Recall that for a finite index subgroup J of Γ the
reduced rank of J equals [Γ : J ]rk(Γ), that is,

rk(Γ) =
1

[Γ : J ]
rk(J).

Now, we define the reduced rank rk(H) of H by

rk(H) :=
1

[H : H ∩ Γ]
rk(H ∩ Γ).

We check that this definition is independent of the choice of Γ. Take a finite index subgroup
Γ′ of G isomorphic to a free group of finite rank or a surface group. Then we have

[H : H ∩ Γ][H ∩ Γ : H ∩ Γ ∩ Γ′] = [H : H ∩ Γ ∩ Γ′]

= [H : H ∩ Γ′][H ∩ Γ′ : H ∩ Γ ∩ Γ′]

and so
1

[H : H ∩ Γ]
rk(H ∩ Γ)

=
1

[H : H ∩ Γ]

1

[H ∩ Γ : H ∩ Γ ∩ Γ′]
rk(H ∩ Γ ∩ Γ′)

=
1

[H : H ∩ Γ ∩ Γ′]
rk(H ∩ Γ ∩ Γ′)

=
1

[H : H ∩ Γ′]

1

[H ∩ Γ′ : H ∩ Γ ∩ Γ′]
rk(H ∩ Γ ∩ Γ′)

=
1

[H : H ∩ Γ′]
rk(H ∩ Γ′).

Recall that Γ is a finite index subgroup of G isomorphic to a free group or a surface
group and we have the reduced rank functional rkΓ on SC(Γ) from Corollary 3.11. We
define the reduced rank functional rkG on SC(G) by

rkG(µ) :=
1

[G : Γ]
rkΓ(µ)

for µ ∈ SC(G), that is,

rkG =
1

[G : Γ]
rkΓ|SC(G).

Then we have the following theorem:

Theorem 4.8. Let G be a hyperbolic group with a finite index subgroup Γ that is isomor-
phic to a free group of finite rank or a surface group. Then the following equality holds on
SC(Γ):

rkG ◦ ιΓ = rkΓ.

Moreover, rkG is a unique continuous R≥0-linear functional on SC(G) satisfying the con-
dition that for every quasi-convex subgroup H of G we have

rkG(η
G
H) = rk(H).
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Proof. First, we consider the case that Γ is a normal subgroup of G. Take a quasi-convex
subgroup H of Γ and a complete system of representatives {γi} of Γ/H. For g ∈ G the
set {gγig−1} is a complete system of representatives of Γ/(gHg−1) since

Γ = gΓg−1 = g

(⊔
i

γiH

)
g−1 =

⊔
i

(gγig
−1)gHg−1.

Then we have

g∗(η
Γ
H) =

∑
i

g∗(δγiΛ(H)) =
∑
i

δgγiΛ(H) =
∑
i

δgγig−1Λ(gHg−1) = ηΓgHg−1 .

Note that rk(gHg−1) = rk(H). Therefore

rkG ◦ ιΓ(ηΓH) =
1

[G : Γ]
rkΓ

 ∑
gΓ∈G/Γ

g∗(η
Γ
H)


=

1

[G : Γ]
rkΓ

 ∑
gΓ∈G/Γ

ηΓgHg−1


=

1

[G : Γ]

∑
gΓ∈G/Γ

rk(gHg−1)

=
1

[G : Γ]
[G : Γ]rk(H) = rkΓ(η

Γ
H).

From the denseness property of rational subset currents for Γ we have rkG ◦ ιΓ = rkΓ.
From now on, we do not assume that Γ is a normal subgroup of G. We can take

a normal subgroup Γ0 of G such that Γ0 is a finite index normal subgroup of Γ from
Supplementation 4.5. Note that we have rkΓ ◦ ιΓΓ0

= rkΓ0 from the above argument. Hence

(rkG ◦ ιΓ) ◦ ιΓΓ0
= rkG ◦ ιΓ0 = rkΓ0 = rkΓ ◦ ιΓΓ0

.

Since the map ιΓΓ0
from SC(Γ0) to SC(Γ) is surjective by Theorem 4.3, we obtain the

required equality

rkG ◦ ιΓ = rkΓ.

Take a quasi-convex subgroup H of G. Then ηGH = 1
[H:H∩Γ]η

G
H∩Γ, and we have

rkG(η
G
H) =

1

[H : H ∩ Γ]
rkG(η

G
H∩Γ)

=
1

[H : H ∩ Γ]
rkG ◦ ιΓ(ηΓH∩Γ)

=
1

[H : H ∩ Γ]
rkΓ(η

Γ
H∩Γ)

=
1

[H : H ∩ Γ]
rk(H ∩ Γ) = rk(H).

This completes the proof. □

5. Intersection number

Let Σ be a non-contractible compact surface (possibly with boundary). We always
assume that a surface is connected. In this section, our goal is to generalize the notion of
the intersection number of two closed curves on Σ to the intersection number of two “simple
compact surfaces” on Σ by using the fiber product. Moreover, we extend the intersection
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number of two simple compact surfaces to a continuous R≥0-bilinear functional on SC(Σ)
in the case that Σ is a compact hyperbolic surface in Subsection 5.3.

5.1. Intersection number of closed curves. In this subsection, we review the notion
of the intersection number of closed curves on Σ.

A continuous map c : S1 → Σ is called a closed curve on Σ. For two closed curves c1, c2
on Σ we will denote by c1 ×Σ c2 the fiber product corresponding to c1, c2. Explicitly,

c1 ×Σ c2 := {(x, y) ∈ S1 × S1 | c1(x) = c2(y)}.

Supplementation 5.1. Let X,Y, Z be topological spaces. Let f : X → Z, g : Y → Z be
continuous maps. In the topological category, the fiber product X ×Z Y corresponding to
f, g is defined to be

X ×Z Y := {(x, y) ∈ X × Y | f(x) = g(y)},

equipped with the subspace topology of X × Y . If Z is Hausdorff, then X ×Z Y is closed
since X×Z Y is the preimage of the diagonal component of Z×Z with respect to the map

f × g : X × Y → Z × Z; (x, y) 7→ (f(x), g(y)).

Therefore, if Z is Hausdorff and X,Y are compact, then X ×Z Y is compact.
If f, g are injective, then the map

ϕ : X ×Z Y → f(X) ∩ g(Y ); (x, y) 7→ f(x)

is a bijective continuous map. Therefore, if c1, c2 are simple closed curves, then c1×Σ c2 is
homeomorphic to c1(S

1)∩ c2(S1). More generally, if f, g are embedding maps, then ϕ is a
homeomorphism. In fact, the maps f−1|f(X)∩g(Y ), g

−1|f(X)∩g(Y ) are continuous maps from
f(X) ∩ g(Y ) to X and Y , which induce a continuous map from f(X) ∩ g(Y ) to X ×Z Y
and this map is the inverse map of ϕ.

We will denote by [c] the homotopy class of a closed curve c on Σ. We say that a closed
curve c is nullhomotopic if c is homotopic to a constant map.

Definition 5.2 (Intersection number of two closed curves). Let c1, c2 be closed curves on
Σ. The intersection number i(c1, c2) of c1, c2 is the number of contractible components of
the fiber product c1×Σ c2. We define the intersection number i([c1], [c2]) of two homotopy
classes [c1], [c2] by

i([c1], [c2]) := min
c′1∈[c1],c′2∈[c2]

i(c′1, c
′
2).

If c′1 ∈ [c1] and c
′
2 ∈ [c2] attain the minimum of the intersection number of two homotopy

classes, we say that c′1 and c′2 are in minimal position.

Note that a closed curve on Σ has an orientation induced by an orientation of S1 but
we usually do not care about the orientation since it does not influence the intersection
number.

For a closed curve c on Σ and m ∈ N, we have the closed curve cm on Σ, which can
be considered as an m-fold covering of c. For another closed curve c′ on Σ we have
i(cm, c′) = m · i(c, c′). We say that two closed curves c1, c2 on Σ virtually coincide if there
exist a closed curve c on Σ andm1,m2 ∈ N such that ci equals c

mi up to reparametrization.
We usually consider only the case that two closed curves on Σ intersect transversely

or virtually coincide if they intersect . When we say that two closed curves on Σ are
transverse, we allow them to virtually coincide.

From the above definition of the intersection number, it is natural to ask when two closed
curves are in minimal position. The bigon criterion is one of the well-known answer.
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Definition 5.3 (Bigon). A bigon is a closed disk D with two subsets e1, e2 of ∂D, called
edges, satisfying the condition that each of e1 and e2 is homeomorphic to a closed interval,
∂D = e1 ∪ e2 and e1 ∩ e2 is two points, called vertices.

Let I1, I2 be closed intervals of R. Let fi be a continuous map from Ii to a 2-dimensional
manifold M possibly with boundary (i = 1, 2). We say that f1 and f2 form an immersed
bigon if there exists a locally injective continuous map b from a bigon D into M such that
there exists a homeomorphism bi from the edge ei of D to Ii and fi ◦ bi coincides with the
restriction of b to ei for i = 1, 2. In this case we say that f1 and f2 form an immersed
bigon b. If b is an embedding map, then we say that f1 and f2 form a bigon b.

A sub-arc of a continuous map f from a 1-dimensional manifold I possibly boundary
to a topological space is the restriction of f to a subset of I that is homeomorphic to a
closed interval. We say that a sub-arc of a closed curve c forms a closed curve if the image
of the endpoints of the sub-arc is one point.

Let c1, c2 be closed curves on Σ. Let p : R → S1 be a universal covering of S1 We say
that c1 and c2 form an immersed bigon if there exist sub-arcs p1, p2 of p such that c1 ◦ p1
and c2 ◦ p2 form an immersed bigon. We say that c1 and c2 form a bigon if there exist
sub-arcs f1, f2 of c1, c2 such that f1 and f2 form a bigon.

Example 5.4. See Figure 1. Two closed curves on a closed surface of genus 2 form an
immersed bigon but do not form a bigon. The points p, q are the vertexes of the immersed
bigon. The intersection number of those closed curves is 2 but they are not in minimal
position. By “enlarging” the inner simple closed curve, the intersection number of those
closed curves will be 0.

p
q

Figure 1. Two closed curves form an immersed bigon but do not form a bigon.

Let c1, c2 be transverse closed curves on Σ such that sub-arcs f1, f2 of c1, c2 form a
bigon. We can modify f1 by a homotopy in the bigon such that f1 and f2 coincides, and
then we can modify a neighborhood of f1 by a homotopy such that f1 and f2 are disjoint.
Therefore, if two transverse closed curves form a bigon, then we can reduce the intersection
number by a homotopy. The following lemma says that the converse is also true in the
case that closed curves are simple.

Lemma 5.5 (The bigon criterion (see [FM12, Proposition 1.7])). Let c1, c2 be transverse
simple closed curves on Σ. Then two simple closed curves c1, c2 do not form a bigon if
and only if c1, c2 are in minimal position.

In the case that a closed curve c is not simple, c can have a sub-arc which forms a
nullhomotopic closed curve on Σ. Such a nullhomotopic closed curve is easy to reduce
(but difficult to deal with), so we usually assume that a non-simple closed curve do not
have a sub-arc forming a nullhomotopic closed curve.

Lemma 5.6 (The bigon criterion 2). Let c1, c2 be transverse closed curves on Σ. Assume
that no sub-arc of ci forms a nullhomotopic closed curve on Σ for i = 1, 2. Then c1, c2 do
not form an immersed bigon if and only if c1, c2 are in minimal position.
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We can obtain Lemma 5.6 as a corollary to Theorem 5.14, which we will prove later.
Recall that any non-nullhomotopic closed curve on a surface with a Riemannian metric

of constant curvature 0 or −1 is homotopic to a closed geodesic on the surface. Especially,
in the case that the constant curvature of the surface is −1, which is called a hyperbolic
surface, such a closed geodesic is unique. When we consider a geodesic on Σ, we always
assume that Σ has a Riemannian metric with constant curvature 0 or −1. The following
theorem is well-known, which is a direct corollary to Lemma 5.6.

Theorem 5.7. Two closed geodesics on Σ are in minimal position.

We can see that our definition of the intersection number works effectively in the case
that two closed geodesics coincide (cf. Example 5.8). The half of i([c], [c]) is called the
self-intersection number of a closed curve c on Σ, which coincides with the half of i(c′, c′)
for a closed geodesic c′ homotopic to c if c is not nullhomotopic.

Example 5.8. We see an example of a closed geodesic with self-intersection, which means
that the self-intersection number of the closed geodesic is positive. In the left picture of

c

p

c'

c

Figure 2. The closed geodesic c has one self-intersection in the left picture.
In the right picture, the intersection number of c and c′, which is homotopic
to c, equals 2.

Figure 2, the closed geodesic c on a closed hyperbolic surface Σ of genus 2 is not simple.
Take a, b ∈ S1 with a ̸= b such that c(a) = c(b) = p. Then we can see that the fiber
product c×Σ c equals

{(x, x) ∈ S1 × S1 | x ∈ S1} ⊔ {(a, b)} ⊔ {(b, a)},
which includes two contractible components {(a, b)} and {(b, a)}. Hence the intersection
number of c and c equals 2 and the self-intersection number of c equals 1. In the right
picture of Figure 2, two closed curves c and c′ are in minimal position since they do not
form any immersed bigon. The closed curve c′ is homotopic to c and the intersection
number of c and c′ equals 2.

5.2. Intersection number of surfaces. Now, we generalize the notion of the intersec-
tion number of two closed curves on Σ to the intersection number of “two simple compact
surfaces” on Σ, and we prove “the bigon criterion” for this intersection number (see The-
orem 5.14).

Definition 5.9 (Intersection number of two simple compact surfaces). Let S be a compact
surface possibly with boundary or S = S1. A simple compact surface is a pair of S and a
continuous map s : S → Σ satisfying the following condition:

(1) s is locally injective;
(2) the restriction of s to each component of the boundary ∂S of S is not nullhomotopic

and does not have a sub-arc forming a nullhomotopic closed curve on Σ.

If S = S1, then we regard the boundary ∂S as S. Here, we remark that in the case that
S = S1, a simple compact surface (S, s) on Σ may not be a simple closed curve on Σ. We
will often write s instead of (S, s) for simplicity.

A simple compact surface (S1, s1) is said to be homotopic to a simple compact surface
(S2, s2) if there exist a homeomorphism f : S1 → S2 and a continuous function F : S1 ×
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[0, 1] → Σ such that F (·, 0) = s1 and F (f
−1(·), 1) = s2. Being homotopic is an equivalence

relation and the equivalence class of a compact surface (S, s), called a homotopy class, is
denoted by [S, s] or [s]. Note that if S = S1, then changing the orientation of (S, s) does
not change the homotopy class of (S, s).

Let (S1, s1), (S2, s2) be two simple compact surfaces on Σ. We say that (S1, s1) and
(S2, s2) are transverse if the restriction of s1 and s2 to any components of their boundaries
intersect transversely or virtually coincide (if they intersect). We consider only the case
that two simple compact surfaces are transverse.

The intersection number i(s1, s2) of s1, s2 is the number of contractible components of
the fiber product S1 ×Σ S2 corresponding to s1, s2. We define the intersection number
i([s1], [s2]) of two homotopy classes [s1], [s2] to be the minimum of i(s′1, s

′
2) taken over

s′1 ∈ [s1] and s′2 ∈ [s2] that are transverse. If two transverse simple closed surfaces
s′1 ∈ [s1] and s

′
2 ∈ [s2] attain the minimum of the intersection number of two homotopy

classes, we say that s′1 and s′2 are in minimal position.

We note that for a simple compact surface (S, s) on Σ, the surface S can not be a closed
disk by the definition.

In the definition of a simple compact surface (S, s) on Σ, the required property of the
continuous map s seems to be strict. However, in the following example, we will see that
if s does not have this property, then the definition of the intersection number does not
work well.

Example 5.10. First, we consider a simple model of the fiber product of two 2-dimensional
manifolds over a 2-dimensional manifold. Set X := [−1, 1] × R, Y := R × [−1, 1] and
Z := R2. The fiber product corresponding to the inclusion maps from X,Y to Z is home-
omorphic to X ∩ Y = [−1, 1] × [−1, 1], which implies that the number of contractible
components of the fiber product is one. Let iY be the inclusion map from Y to Z. We
define a continuous map f : X → Z to be

f(x) :=

{
x (∥x∥ ≥ 1)

x+ (0, 2(1− ∥x∥)) (∥x∥ ≤ 1)

for x ∈ X, where ∥ · ∥ is the Euclidean norm. We can see that the following map F : X ×
[0, 1] → Z is a homotopy from the inclusion map to f :

F (x, t) :=

{
x (∥x∥ ≥ 1)

x+ (0, 2t(1− ∥x∥)) (∥x∥ ≤ 1)

for (x, t) ∈ X × [0, 1]. We consider the fiber product X ×Z Y corresponding to f, iY and
want to say that X×Z Y is connected and not contractible. Then we can see that that we
can reduce the number of contractible components of the fiber product of two dimensional
spaces by a homotopy which deforms a “local” part of one of the spaces.

Let pX be the natural projection from X×ZY onto X, that is, pX maps (x, y) ∈ X×ZY
to x ∈ X. We can see that pX(X ×Z Y ) = f−1(Y ), which includes the unit circle
S1 = {x ∈ X | ∥x∥ = 1} but does not contain (0, 0) since f(0, 0) = (0, 2) ̸∈ Y .

Now, we consider a closed curve c : S1 → X ×Z Y defined by c(x) = (x, x) for x ∈ S1.
Then we can see that pX ◦ c is not nullhomotopic in f−1(Y ) since (0, 0) ̸∈ f−1(Y ), which
implies that c is not nullhomotopic in X ×Z Y .

Finally, we check that X ×Z Y is connected. Take any (x, y) ∈ X ×Z Y . If ||x|| ≥ 1,
then x = y and a line segment joining 1/||x||x to x induces a path joining 1/||x||(x, x) to
(x, x). We consider the case that ||x|| < 1. Note that x ̸= (0, 0) and y = f(x). Set

a(t) :=
1

(1− t)||x||+ t
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for t ∈ [0, 1]. Then we can see that the path (a(t)x, f(a(t)x)) ∈ X ×Z Y for t ∈ [0, 1]
joining 1/||x||(x, x) ∈ c(S1) to (x, y). Therefore X ×Z Y is path-connected.

See Figure 3 and its caption. The pairs (S, s1) and (S, s2) are simple compact surfaces
on Σ. Then we can see that the fiber product of (S, s1) and (S, s2), which is homeomorphic
to s1(S)∩s2(S), includes two contractible components, which implies that the intersection
number of (S, s1) and (S, s2) equals 2. However, we can modify s1 (or s2) and obtain s′1
by the same way as above, then the intersection number of (S, s′1) and (S, s2) will be 0.
By Theorem 5.14, we can see that (S, s1) and (S, s2) are in minimal position. This implies
that (S, s′1) is not a simple compact surface on Σ, which implies that s′1 is not locally
injective.

S

Figure 3. The left picture represents a compact surface S of genus 2 with
2 boundary components. The right picture represents two inclusion maps
s1 and s2 from S to a closed surface Σ of genus 8.

The following theorem, which is a corollary to Theorem 5.14, is a generalization of
Theorem 5.7.

Theorem 5.11. Let (S1, s1), (S2, s2) be simple compact surfaces on Σ. If the restriction
of si to each component of ∂Si is a closed geodesic on Σ for i = 1, 2, then s1 and s2 are
in minimal position.

Example 5.12. Consider the case that Σ is a hyperbolic surface. Recall that for a non-
trivial finitely generated subgroup H of the fundamental group π1(Σ) of Σ we have the
convex core CH and the map pH : CH → Σ, which is induced by the universal covering
map (see the first part of Section 3). Then (CH , pH) is a simple compact surfaces on Σ
satisfying the condition that the restriction of pH to each component of ∂CH is a closed
geodesic on Σ. We will prove that any simple compact surface (S, s) on Σ that is not a
cylinder is homotopic to a convex core (CH , pH) for a finitely generated subgroup H of
π1(Σ) in Proposition 5.21.

In Subsection 5.3, we will consider the intersection number of CH and CK for non-trivial
finitely generated subgroups H and K of π1(Σ) and extend it to a continuous R≥0-bilinear
functional on SC(Σ).

We define the notion of an immersed bigon formed by two simple compact surfaces on
Σ in order to characterize the condition that they are in minimal position.

Definition 5.13 (Bigon formed by simple compact surfaces). Let (S1, s1) and (S2, s2) be
simple compact surfaces on Σ. We say that s1 and s2 form an immersed bigon if there
exist components B1, B2 of ∂S1, ∂S2 such that s1|B1 and s2|B2 form an immersed bigon.

Theorem 5.11 is a direct consequence from the following lemma since geodesics never
form a bigon. Proving the following lemma is our goal in this subsection.

Theorem 5.14 (The bigon criterion 3). Let (S1, s1), (S2, s2) be transverse simple compact
surfaces on Σ. If s1 and s2 do not form an immersed bigon, then s1, s2 are in minimal
position. If either S1 or S2 is S1, then the converse is also true.
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The following lemma, which is intuitively obvious, plays a fundamental role in proving
the bigon criterions.

Lemma 5.15. Let M be a contractible 2-dimensional manifold (possibly with boundary).
Let I1, I2 be intervals of R and fi be an embedding map from Ii to M for i = 1, 2. Assume
that f1, f2 are transverse. If f1(I1) divides M into two connected components M1,M2 and
there exist a, b, c ∈ I2 with a < b < c such that f2(a), f2(c) ∈ M1 and f2(b) ∈ M2, then
there exist sub-arcs of f1, f2 that form a bigon.

Proof. By the assumption f2|[a,c] intersects f1 transversely. Then we can take a sub-
interval [a′, c′] of [a, c] containing b such f2((a

′, c′)) ⊂M2 and f2(a
′), f2(c

′) ∈ f1(I1), which
implies that the union of a sub-arc of f1 and f2|[a′,c′] forms a simple closed curve c in M .
From the Jordan curve theorem, c dividesM into two subsets such that one of the subsets
is contractible. From the Riemann mapping theorem and Carathéodory’s theorem, there
exists an embedding map b from a closed disk D to M1 ∪ c(S1) such that b(∂D) coincides
with c(S1). This completes the proof. □

The following lemma is useful to understand a simple compact surface on Σ.

Lemma 5.16. Let S be a compact surface possibly with boundary and s a continuous
map from S to Σ. If s is locally injective, then the restriction of s to S \ ∂S is a local
homeomorphism and s(S \ ∂S) ∩ ∂Σ = ∅.

Proof. Take x ∈ S \ ∂S and a compact neighborhood U ⊂ S \ ∂S of x such that U
is homeomorphic to a closed disk and s|U is injective. Since U is compact, the map
s|U : U → s(U) is homeomorphic. Since U \ {x} is non-contractible, so is s(U) \ {s(x)},
which implies s(x) ̸∈ ∂Σ. Then we can assume that s(U) does not intersect ∂Σ. Since
∂U is homeomorphic to S1, so is s(∂U). By applying the Jordan curve theorem to s(∂U)
we can see that s(∂U) divides Σ into two regions Σ1,Σ2. Assume that Σ1 contains s(x).
Then s(Int(U)) coincides with Σ1. Therefore Int(U) is homeomorphically mapped to Σ1

by s, which is an open neighborhood of s(x). Hence our claim follows. □

From the above lemma, we can obtain the following proposition immediately:

Proposition 5.17. Let Σ be a sphere and (S, s) a simple compact surface on Σ. Then
S is also a sphere and s is a homeomorphism from S to Σ. Moreover, the intersection
number of any two simple compact surfaces on Σ equals zero.

Proof. By the definition of simple compact surfaces on Σ, the compact surface S does
not have a boundary. By Lemma 5.16, s is a local homeomorphism, which implies that
s is a covering map since S is compact. Since a sphere is simply-connected, s must be
a homeomorphism from S to Σ. Moreover, the fiber product of any two simple compact
surfaces on Σ is homeomorphic to a sphere, which implies that the intersection number of
these simple compact surfaces equals 0. □

By the above proposition, any two simple compact surfaces on a sphere are always in
minimal position. From now on, we assume that Σ is not a sphere.

The following lemma related to a bigon and an immersed bigon will be used in Lemma
5.24.

Lemma 5.18. Let M be Σ or the universal cover Σ̃ of Σ. Let b be a locally injective
continuous map from a closed disk D to M . If the restriction of b to the boundary ∂D of
D is injective, then so is b. Hence b is an embedding map.

Proof. We can assume that M does not have boundary since M can be embedded into a
2-dimensional orientable manifold without boundary whose universal cover is contractible.
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It is sufficient to prove that the map b : D → b(D) is a local homeomorphism. In fact,
if b : D → b(D) is a local homeomorphism, then we can see that b : D → b(D) is a
covering map since D is compact. Note that b|∂D is injective. Hence b : D → b(D) is a
homeomorphism.

First, we consider the case that M is Σ̃. Since M does not have boundary, M is
homeomorphic to R2. From the Jordan curve theorem, b(∂D) divides M into the interior
region M1 and the exterior region M2 of M . We prove that b(Int(D)) = M1. Assume
that b(x) ∈ M2 for some x ∈ Int(D). Since M2 is path-connected, we can take a path
ℓ : [0, 1] →M2 such that ℓ(0) = b(x) and ℓ(1) ̸∈ b(D). Let t be the maximum of ℓ−1(b(D)).
Then t ∈ (0, 1), ℓ(t) ∈ b(D) and there exists y ∈ Int(D) such that b(y) = ℓ(t). By
Lemma 5.16, b(y) is an interior point of b(D), which contradicts that t is the maximum of
ℓ−1(b(D)). Therefore b(Int(D)) ⊂M1.

To see that M1 ⊂ b(Int(D)), assume that there exists z ∈M1 such that z ̸∈ b(D). Since
∂D is a contractible closed curve in D, b(∂D) is also a contractible closed curve in b(D),
which contradicts that z ̸∈ b(D). Hence b(Int(D)) =M1.

Take any x ∈ ∂D. Then there exists an open neighborhood V of x in D such the
restriction of b to V is a homeomorphism onto b(V ) and V is homeomorphic to a closed disk.
Then we can take a contractible open neighborhood U of b(x) such that (U \M2) ⊂ b(V )
since b(D) = b(∂D) ⊔M1. Set W := b−1(U) ∩ V . Then W is an open neighborhood of x
and

b(W ) = U ∩ b(V ) = U \M2 = U ∩ b(D)

is an open subset of b(D). Hence b is a local homeomorphism onto b(D).

In the case that M is Σ, we take a lift b̃ : D → Σ̃ of b with respect to the universal

covering π : Σ̃ → Σ. Then b̃|∂D is injective and b̃ is a local homeomorphism onto b(D).

This implies that b = π ◦ b̃ is a local homeomorphism onto b(D). □

The following lemma, which characterizes simple compact surfaces on Σ, will play a
fundamental role in proving Theorem 5.14.

Lemma 5.19. Let (S, s) be a simple compact surface on Σ. Then there exist a covering
s′ : S′ → Σ and an embedding map f from S into S′ such that f is a homotopy equivalence
and s = s′ ◦ f . Moreover, the embedding map f lifts to an embedding map from the

universal cover S̃ of S into the universal cover Σ̃ of Σ.

Proof. Let p : S̃ → S be the universal covering of S and π : Σ̃ → Σ the universal covering of

Σ. Take a base point x of Σ such that x ∈ s(S). Take base points ỹ ∈ S̃, y ∈ S and x̃ ∈ Σ̃

such that p(ỹ) = y, s(y) = x and π(x̃) = x. Then we have a lift s̃ : (S̃, ỹ) → (Σ̃, x̃) of the

map s ◦ p : (S̃, ỹ) → (Σ, x) with respect to π. Then we obtain the following commutative
diagram of based topological spaces:

(S̃, ỹ)

p

��

s̃ // (Σ̃, x̃)

π

��
(S, y) s

// (Σ, x)

If ∂S = ∅, then s : S → Σ is a covering map and our statement follows immediately. If

S = S1, then we can see that S̃ is homeomorphic to R and the lift s̃ is an embedding map
since no sub-arc of the closed curve s forms a nullhomotopic closed curve. In this case,

there exists g ∈ π1(Σ, x) corresponding to (S, s) such that ⟨g⟩ acts on s̃(S̃). Let S′ be

the quotient space ⟨g⟩\Σ̃ and s′ the covering map from S′ to Σ induced by the universal
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covering map π. Then s̃ induces an embedding map f from S to S′. Hence our claim
follows.

From now on, we assume that S ̸= S1 and ∂S ̸= ∅.
Step 1. Construct S′: Let B1, . . . Bm be all connected components of ∂S. We can con-

sider cj := s|Bj as a closed curve on Σ since Bj is homeomorphic to S1 for j = 1, . . . ,m.

For each Bj we can take a component B̃j of ∂S̃ such that the restriction of s̃ to B̃j is a
universal covering of Bj . We will apply the same argument as that for S = S1 to each cj .

Set c̃j := s̃|Bj , which is an embedding map from B̃j into Σ̃. We endow Bj with an orien-
tation such that the left-hand side of Bj is the interior of S, which induces the orientation

of B̃j and c̃j(B̃j). Let Uj ⊂ Σ̃ be the right-hand side of c̃j(B̃j) including c̃j(B̃j). Note

that if cj(Bj) ⊂ ∂Σ, then Uj = c̃j(B̃j). Since c̃j is a lift of cj , there exists gj ∈ π1(Σ, x)

corresponding to cj such that ⟨gj⟩ acts on c̃j(B̃j) and also acts on Uj . Set Lj := ⟨gj⟩\Uj .

Now, we obtain S′ by gluing S to Lj along Bj and ⟨gj⟩\c̃j(B̃j) for j = 1, . . . ,m. Since Uj

is a subset of Σ̃, the universal covering map induce the map πj from Lj to Σ. Then by
gluing those maps π1, . . . , πm and s, we obtain a continuous map s′ from S′ to Σ.

Step 2. Prove the map s′ : S′ → Σ is a covering map: Take z ∈ Σ. We prove that there

exists a connected open neighborhood W of z such that the restriction of s′ to every
connected component of s′−1(W ) is a homeomorphism onto W .

First, we consider the case that z ∈ s(S) and s−1(z) ∩ ∂S = ∅. In this case z ̸∈ ∂Σ.
Since S is compact and s is locally injective, s−1(z) is a finite set. In fact, if s−1(z) is an
infinite set, then s−1(z) has an accumulation point w, which contradicts the assumption
that s is locally injective. We can take a contractible open neighborhood V of z such
that s−1(V ) ∩ ∂S = ∅. Then the restriction of π to each connected component of π−1(V )

is a homeomorphism onto V and π−1(V ) ∩ s̃(∂S̃) = ∅. Hence the restriction of πj to

each connected component of π−1
j (V ) ⊂ Lj is a homeomorphism onto V and π−1

j (V ) ∩
⟨gj⟩\c̃j(B̃j) = ∅ for every j = 1, . . . ,m.

For each u ∈ s−1(z) we can take a connected open neighborhood Vu of u such that the
restriction of s to Vu is homeomorphic to an open subset of Σ not intersecting ∂Σ. Let
M denote the complement of the union of all Vu for u ∈ s−1(z) in S. Since S is compact,
so is M . If we take a connected open neighborhood W of z included in V , Σ \ s(M) and
s(Vu) for every u, then W satisfies the required condition.

In the case that z ̸∈ s(S), if the contractible open neighborhood V as above is sufficiently
small, then V does not intersect s(S) and satisfies the required condition.

Finally, we consider the case that z ∈ s(S) and s−1(z) intersects ∂S. Note that if
z ∈ ∂Σ, then s−1(z) ⊂ ∂S. For each u ∈ s−1(z) \ ∂S we can take a connected open
neighborhood Vu of u in S such that the restriction of s to Vu is homeomorphic to an

open subset of Σ. For v ∈ s−1(z) ∩ ∂S take a lift ṽ ∈ B̃j of v when v ∈ Bj . Since s is

locally injective, so is s̃. Hence there is an open neighborhood Wṽ of ṽ in S̃ and an open

neighborhoodW of s̃(ṽ) in Σ̃ such that s̃ mapsWṽ homeomorphically to s̃(S̃)∩W , andW
is homeomorphically projected onto an open subset Ov of Σ by π. We also have an open
subsetWj of Lj by projectingW∩Uj onto Lj . Now we can see thatWv := p(Wṽ)∪Wj in S

′

is an open neighborhood of v in S′ and s′ mapsWv homeomorphically to Ov. LetM be the
complement of the union of all Vu for u ∈ s−1(z) \∂S and all Wv for v ∈ s−1(z)∩∂S in S.
Then we can see that M is a compact subset of S and s(M) is a closed subset of Σ. Now,
take a contractible open neighborhood O of z included in s(Vu) for every u ∈ s−1(z) \ ∂S,
Ov for every v ∈ s−1(z) ∩ ∂S and Σ \ s(M). Then O satisfies the required condition, that
is, the restriction of s′ to each connected component of s′−1(O) is a homeomorphism onto
O.
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Step 3. Prove that f, s̃ have the stated properties: The inclusion map f from S to S′ is

an embedding map since S is compact. Each Lj = ⟨gj⟩\Uj is homotopy equivalent to S1

and so the inclusion map f is a homotopy equivalence. We get a universal covering map

π′ from (Σ̃, x̃) to (S′, y), which is a lift of the covering map π : Σ̃ → Σ with respect to s′.

Now, we check that the map s̃ : S̃ → Σ̃ is a lift of f , that is, f ◦ p = π′ ◦ s̃. Then we get
the following commutative diagram of based topological spaces.

(S̃, ỹ)

p

��

s̃ // (Σ̃, x̃)

π

��

π′

{{vv
vv
vv
vv
v

(S′, y)

s′

$$H
HH

HH
HH

HH

(S, y) s
//

, �

f
::vvvvvvvvv

(Σ, x)

Take y0 ∈ S̃ and a path ℓ from ỹ to y0. Then f ◦ p(y0) is the terminal point of the lift
of s ◦ p ◦ ℓ to (S′, y), and π′ ◦ s̃(y0) is the terminal point of the lift of π ◦ s̃ ◦ ℓ to (S′, y).
Since s ◦ p = π ◦ s̃, we have f ◦ p(y0) = π′ ◦ s̃(y0). Therefore, s̃ is a lift of f .

Finally, we check that the map s̃ is an embedding map. First, we check the injectivity

of s̃. Let y1, y2 ∈ S̃ and assume that s̃(y1) = s̃(y2). Let ℓ be a path from y1 to y2.
Since s̃(y1) = s̃(y2), we have a nullhomotopic closed curve π′ ◦ s̃ ◦ ℓ in S′, which equals
f ◦ p ◦ ℓ. Since f is injective and a homotopy equivalence, p ◦ ℓ is also a nullhomotopic

closed curve in S, which implies that y1 = y2. To see that the inverse map s̃−1 : s̃(S̃) → S̃

is continuous, take x0 ∈ s̃(S̃) and an open neighborhood V of s̃−1(x0). We can assume
that the restriction of p to V is a homeomorphism onto an open subset of S. Take a small
open neighborhood W of f ◦p(s̃−1(x0)) = π′(x0) such that W ∩S ⊂ p(V ) and there exists

an open neighborhood W̃ of x0 such that the restriction of π′ to W̃ is homeomorphic to

W . Then we can see that s̃−1(W̃ ∩ s̃(S̃)) = p−1(W ∩ S) ∩ V ⊂ V , which concludes that
s̃−1 is continuous. This completes the proof. □

Remark 5.20. Under the setting in the above lemma, we can also see that the map

s̃ : S̃ → Σ̃ is a proper map, that is, for any compact subset K of Σ̃ the preimage s̃−1(K)

is a compact subset of S̃ since s̃(S̃) is a closed subset of Σ̃.
If either S does not have a boundary or S is a surface whose boundary is mapped to a

boundary of Σ by s, then the map s itself is a covering map.
The map s : S → Σ induces an injective group homomorphism s# from the fundamental

group π1(S) of S to π1(Σ). By identifying π1(S) with s#(π1(S)) we can see that the map

s̃ : S̃ → Σ̃ is a π1(S)-equivariant embedding and we can identify S′ with the quotient

space π1(S)\Σ̃. Moreover, we can classify a simple compact surface on Σ (that is not
homeomorphic to a cylinder) by using non-trivial finitely generated subgroups of π1(Σ)
(see Proposition 5.21 for the case that Σ is a compact hyperbolic surface).

Consider the case that S is a cylinder and S = S1× [0, 1]. Then s|S1×{0} is homotopic to

s|S1×{1} and the property of (S, s) is the same as that of the closed curve (S1×{0}, s|S1×{0})
on Σ (see Proof of Theorem 5.14 in p.48).

If Σ is a cylinder, then both π1(Σ) and π1(S) are isomorphic to Z. Hence S is homeo-
morphic to S1 or a cylinder.

Consider the case that Σ is a torus and S is neither a cylinder nor S1. Since π1(Σ)
is isomorphic to Z2 and a non-trivial subgroup of Z2 is isomorphic to Z or Z2, π1(S) is
isomorphic to Z2. Then S is also a torus and s is a finite-fold covering map.
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Therefore we can say that the case that Σ is a compact hyperbolic surface and π1(S) is
non-cyclic is essentially new when we consider the intersection number of simple compact
surfaces on Σ.

Proposition 5.21. Let Σ be a compact hyperbolic surface. For any simple compact surface
(S, s) on Σ that is not a cylinder, there exists a finitely generated subgroup H of the
fundamental group of Σ such that the convex core (CH , pH) is homotopic to (S, s).

Proof. The notation in this proof is based on the proof of Lemma 5.19. We consider the

universal cover Σ̃ of Σ as a closed convex subspace of the hyperbolic plane H. From Lemma
5.19, there exists a covering S′ of Σ and a homotopy equivalent embedding map f from S
to S′. Let H be a subgroup of the fundamental group of Σ corresponding to the covering
S′ of Σ. Since S is a compact surface or S1, H is finitely generated.

In the case that S ̸= S1, since S and CH have the same genus and the same number of
boundary components, there exists a homeomorphism ϕ from S to CH . Even if S = S1,
we have a homeomorphism ϕ from S to CH . Note that if S is a cylinder, S is not
homeomorphic to CH since CH is homeomorphic to S1. The homeomorphism ϕ extends

to an H-equivariant homeomorphism ϕ̃ from S̃ to the convex hull of the limit set of H,

which is the universal cover of CH and included in Σ̃. Note that we also have an H-
equivariant embedding s̃ : S̃ → Σ̃ ⊂ H.

Now, we define a homotopy F : S̃ × [0, 1] → Σ̃ from s̃ to ϕ̃ by the rule that for (x, t) ∈
S̃ × [0, 1], F (x, t) is the point on the geodesic from s̃(x) to ϕ̃(x) in H that divides the

length of the geodesic in t : (1− t). Note that Σ̃ is a convex subspace of H. Since H acts

on Σ̃ by isometry, F is H-equivariant, that is, for any (x, t) ∈ S̃ × [0, 1] and h ∈ H we
have F (hx, t) = hF (x, t). Therefore F induces a homotopy F ′ : S × [0, 1] → Σ such that

for (x, t) ∈ S × [0, 1] and x̃ ∈ S̃ with p(x̃) = x, F ′(x, t) = π(F (x̃, t)). We can see that

F ′(·, 0) = s and F ′(·, 1) = pH ◦ ϕ since for (x, 1) ∈ S × [0, 1] and x̃ ∈ S̃ with p(x̃) = x we
have

F ′(x, 1) = π ◦ ϕ̃(x̃) = pH ◦ ϕ(x).
Therefore (S, s) is homotopic to (CH , pH) by the homotopy F ′ and the homeomorphism
ϕ. □

Let (S, s) be a simple compact surface on Σ. Let (T, t) be a simple compact surface on
Σ homotopic to (S, s) for i = 1, 2. We identify S with T for simplicity of notation. Let

F : S × [0, 1] → Σ be a homotopy from s to t. Consider the universal covering p : S̃ → S

of S and a lift s̃ : S̃ → Σ̃ of s. Then F ′ := F (p(·), ·) is a homotopy from s◦p to t◦p. Since
we have a lift s̃ of s ◦ p with respect to π : Σ̃ → Σ, there exists a unique lift F̃ of F ′ from
the homotopy lifting property (see the following commutative diagram).

S̃

��

s̃ // Σ̃

π

��
S̃ × [0, 1]

F̃

;;

F ′
// Σ

Here the map from S to S × [0, 1] maps x ∈ S to (x, 0) ∈ S × [0, 1]. Since π ◦ F̃ (x, 1) =
F ′(x, 1) = F (p(x), 1) = t ◦ p(x) for x ∈ S̃, the map t̃ := F̃ (·, 1) : S̃ → Σ̃ is a lift of t.

Consider a Riemannian metric of constant curvature 0 or −1 on Σ, which induces a

Riemannian metric on Σ̃. Then the fundamental group π1(Σ) of Σ acts on Σ̃ isometrically
and we have the following lemma:

Lemma 5.22. The Hausdorff distance between s̃(S̃) and t̃(S̃) is finite.
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Proof. Let d be the distance function on Σ̃. Let H be the subgroup of π1(Σ) corresponding
to S. Then both s̃ and t̃ are H-equivariant maps by Remark 5.20. This implies that H

acts on both s̃(S̃) and t̃(S̃) cocompactly. Take x ∈ s̃(S̃) and y ∈ t̃(S̃). Then there exists
R > 0 such that

H(B(x,R)) ⊃ s̃(S̃) and H(B(y,R)) ⊃ t̃(S̃),

where B(x,R) is the closed ball centered at x with radius R. Hence for any z ∈ s̃(S̃) there
exists h ∈ H such that d(z, hx) ≤ R. Then we have

d(z, s̃(S̃)) = d(h−1z, s̃(S̃)) ≤ d(h−1z, x) + d(x, y) ≤ R+ d(x, y).

We can apply this argument to w ∈ t̃(S̃). Therefore the Hausdorff distance between s̃(S̃)

and t̃(S̃) is finite. □

Let (S1, s1), (S2, s2) be transverse simple compact surfaces on Σ. We are going to
construct the cubic commutative diagram in Proposition 5.29, which will be used for
proving Theorem 5.14. Our construction of the cubic diagram is originally based on that
in [Min11], which was used for studying the Strengthened Hanna Neumann Conjecture.
The product N , which will be studied in Section 6, is a certain term appearing in the
inequality of the conjecture, and we will also use the cubic diagram for studying the
product N .

Let G be the fundamental group of Σ. From Lemma 5.19 we can take a covering
s′i : S

′
i → Σ such that there is an embedding map fi from Si to S′

i with si = s′i ◦ fi
(i = 1, 2). Let Hi be a subgroup of G corresponding to the covering space S′

i. We identify

S′
i with Hi\Σ̃ and π1(Si) with Hi. Let s̃i : S̃i → Σ̃ be a lift of si for i = 1, 2. Then s̃i is an
Hi-equivariant embedding map.

Let Λi ⊂ G be a complete system of representatives of G/Hi. Assume that the identity

element id belongs to Λi. We endow Λi with the discrete topology and define Ŝi to be the

direct product S̃i × Λi, which is equipped with the direct product topology. We define a

continuous map ŝi from Ŝi to Σ̃ by

ŝi(x, g) := g ◦ s̃i(x) = g(s̃i(x)) ((x, g) ∈ Ŝi).

Note that g ◦ s̃i is also a lift of si for any g ∈ Λi. For g, g
′ ∈ G if gHi = g′Hi, then

g ◦ s̃i(S̃i) = g′ ◦ s̃i(S̃i)

since s̃i is Hi-equivariant. Therefore, (Ŝi, ŝi) can be considered as a space consisting of all
lifts of si.

We define a continuous action of G on Ŝi such that ŝi : Ŝi → Σ̃ is a G-equivariant

map. Let g ∈ G and (x, g0) ∈ Ŝi. We can choose g′0 ∈ Λi such that gg0 = g′0h for some
h ∈ Hi. Then we define g(x, g0) to be (hx, g′0). We can see that ŝi is G-equivariant from
the following equation:

ŝi(g(x, g0)) = ŝi(hx, g
′
0) = g′0h(s̃i(x)) = gg0(s̃i(x)) = g(ŝi(x, g0)).

We can see that (g1g2)(x, g0) = g1(g2(x, g0)) for any g1, g2 ∈ G and (x, g0) ∈ Ŝi. Therefore,

we get an action of G on Ŝi.
The stabilizer of a connected component

(S̃i, g0) := {(x, g0) ∈ Ŝi | x ∈ S̃i} ⊂ Ŝi

equals g0Hig
−1
0 for g0 ∈ Λi. Especially, the stabilizer of (S̃i, id) isHi. For g ∈ G, g0, g

′
0 ∈ Hi

with gg0Hi = g′0Hi, we have g(S̃i, g0) = (S̃i, g
′
0). As a result, for any two connected

components of Ŝi there exists g ∈ G such that g maps one component to the other

component. Therefore, the quotient space G\Ŝi can be identified with Hi\S̃i = Si. By
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this identification we get the canonical projection p̂i from Ŝi to Si. From the construction
of ŝi and p̂i, we have the following commutative diagram.

Ŝi
ŝi //

p̂i
��

Σ̃

π

��
Si si

// Σ

Remark 5.23. Set

Si := {(gHi, x) ∈ G/Hi × Σ̃ | x ∈ g ◦ s̃i(S̃i)}

for i = 1, 2. Let σi be the canonical projection from Si onto Σ̃, that is, σi(gHi, x) = x.

We see that (Ŝi, ŝi) is “isomorphic” to (Si, σi). Define a map τi : Ŝi → Si by

τi(x, g0) := (g0Hi, g0 ◦ s̃i(x))

for (x, g0) ∈ Ŝi. Then τi is a homeomorphism. Moreover, we can define a natural diagonal
action of G on Si by

g(g′Hi, x) := (gg′Hi, gx)

for g ∈ G and (g′Hi, x) ∈ Si. Then we can check that τi is a G-equivariant homeomor-

phism. Actually, for g ∈ G and (x, g0) ∈ Ŝi take h ∈ Hi and g
′
0 ∈ Λi such that gg0 = g′0h.

Then g(x, g0) = (hx, g′0). Hence

τi(hx, g
′
0) = (g′0Hi, g

′
0 ◦ s̃i(hx)) = (gg0Hi, g

′
0h ◦ s̃i(x)) = (gg0Hi, g(g

′
0 ◦ s̃i(x))).

We can identify (Ŝi, ŝi) with (Si, σi) through τi, and (Si, σi) is convenient to consider the
action of G. Moreover, (Si, σi) can be associated with the counting subset current ηHi on
G naturally. We will consider this association more concretely in the next subsection.

We say that g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon for (g1, g2) ∈ Λ1×Λ2 if there exist boundary

components B̃1, B̃2 of S̃1, S̃2 such that sub-arcs of (g1 ◦ s̃1)|B̃1
and (g2 ◦ s̃2)|B̃2

form a

bigon. From the following lemma, we can see that considering Ŝ1, Ŝ2 is useful for finding
an immersed bigon formed by s1 and s2.

Lemma 5.24. Two simple compact surfaces s1 and s2 form an immersed bigon if and
only if g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon for some (g1, g2) ∈ Λ1 × Λ2.

Proof. If part: Assume that g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon b : D → Σ̃ for some (g1, g2) ∈
Λ1 × Λ2. Take components B̃1 and B̃2 of ∂S̃1 and ∂S̃2 such that g1 ◦ s̃1|B̃1

and g2 ◦ s̃2|B̃2

form the bigon b. Then we can see that π ◦ b : D → Σ is an immersed bigon formed by
s1|p1(B̃1)

and s2|p2(B̃2)
.

Only if part: Assume that the restriction of s1, s2 to boundary components B1, B2 of

S1, S2 form an immersed bigon b : D → Σ. Take a boundary component B̃i of S̃i such

that pi(B̃i) = Bi for i = 1, 2, which implies that pi|B̃i
is a universal covering of Bi. By

the definition of an immersed bigon formed by closed curves, there exists a subset Ii of

B̃i such that Ii is homeomorphic to a closed interval and s1 ◦ p1|I1 and s2 ◦ p2|I2 form
the immersed bigon b. Let bi be a homeomorphism from the edge ei of D to Ii such that

si ◦ pi ◦ bi coincides with the restriction of b to ei for i = 1, 2. Take a lift b̃ : D → Σ̃ of b

with respect to the universal covering π : Σ̃ → Σ. Then b̃|ei is a lift of si ◦ pi ◦ bi and there

exists γi ∈ G such that b̃|ei coincides with γi ◦ s̃i ◦ bi. Take gi ∈ Λi and hi ∈ Hi such that
γi = gihi. Then γi ◦ s̃i ◦ bi = gi ◦ s̃i ◦ hi ◦ bi since s̃i is Hi-equivariant. This implies that

g1 ◦ s̃1|h1(I1) and g2 ◦ s̃2|h2(I2) form the immersed bigon b̃. Note that s̃i is an embedding
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map and b is locally injective. Hence the restriction of b̃ to ∂D is injective, which implies

that b̃ is an embedding map by Lemma 5.18. Therefore, g1 ◦ s̃1 and g2 ◦ s̃2 form the bigon

b̃. □
In order to consider the intersection of g1 ◦ s̃1(S̃1) and g2 ◦ s̃2(S̃2) for every (g1, g2) ∈

Λ1 ×Λ2, we take the fiber product Ŝ1 ×Σ̃
Ŝ2 corresponding to (Ŝ1, ŝ1), (Ŝ2, ŝ2). Explicitly,

Ŝ1 ×Σ̃
Ŝ2 := {((x1, g1), (x2, g2)) ∈ Ŝ1 × Ŝ2 | ŝ1(x1, g1) = ŝ2(x2, g2)},

which can be identified with the formal union of the fiber product of connected components

of Ŝ1 and Ŝ2. Therefore we have

Ŝ1 ×Σ̃
Ŝ2 =

⊔
(g1,g2)∈Λ1×Λ2

(S̃1, g1)×Σ̃
(S̃2, g2).

Since the restriction of ŝi to each connected component of Ŝi is an embedding map, the

fiber product (S̃1, g1) ×Σ̃
(S̃2, g2) is homeomorphic to g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) for any

(g1, g2) ∈ Λ1 × Λ2 (see Supplementation 5.1). Therefore, we have

Ŝ1 ×Σ̃
Ŝ2 ∼=

⊔
(g1,g2)∈Λ1×Λ2

g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2)

=
⊔

(g1H1,g2H2)∈G/H1×G/H2

g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2).

∼= {(g1H1, g2H2, x) ∈ G/H1 ×G/H2 × Σ̃ |

x ∈ g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2)}.

Here, we remark that g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) can be empty.

Let ϕi be the canonical projection from Ŝ1 ×Σ̃
Ŝ2 to Ŝi. The action of G on Ŝ1 and Ŝ2

induces the action of G on Ŝ1 ×Σ̃
Ŝ2 such that ϕi is a G-equivariant map. Explicitly, for

g ∈ G and ((x1, g1), (x2, g2)) ∈ Ŝ1 ×Σ̃
Ŝ2, we define

g((x1, g1), (x2, g2)) := (g(x1, g1), g(x2, g2)).

Note that (g(x1, g1), g(x2, g2)) belongs to Ŝ1 ×Σ̃
Ŝ2 since

ŝ1(g(x1, g1)) = gŝ1(x1, g1) = gŝ2(x2, g2) = ŝ2(g(x2, g2)).

We will prove that the quotient space G\Ŝ1×Σ̃
Ŝ2 is homeomorphic to S1×Σ S2 in Propo-

sition 5.29, which will plays an essential role in proving Theorem 5.14.

Lemma 5.25. If the intersection g1◦s̃1(S̃1)∩g2◦s̃2(S̃2) is not empty for (g1, g2) ∈ Λ1×Λ2,

then any connected component of g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is contractible. Moreover, for

any compact connected component M of g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) with interior points, the

number of boundary components of g1 ◦ s̃1(S̃1) surrounding M equals that of g2 ◦ s̃2(S̃2).
Therefore M can be considered as a polygon with even sides.

Proof. LetM be a connected component of g1 ◦ s̃1(S̃1)∩g2 ◦ s̃2(S̃2). In the case that either
S1 or S2 is S1, our claim follows obviously. If S1 (or S2) does not have boundary, then M

coincides with g2 ◦ s̃2(S̃2) (or g1 ◦ s̃1(S̃1) respectively) and M is contractible.
We consider the case that neither S1 nor S2 is S1 and both S1 and S2 have boundaries.

We can assume that Σ̃ does not have boundary by embedding Σ̃ into R2 or H2. Then M

is a connected subspace of Σ̃ surrounded by the boundaries g1 ◦ s̃1(∂S̃1) and g2 ◦ s̃2(∂S̃2).
Each component B̃ of gi◦s̃i(∂S̃i) is homeomorphic to R and divides Σ into two contractible

components since there exists u ∈ Hi with infinite-order such that ⟨u⟩ acts on B̃. Hence
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we can see thatM \∂M is a simply-connected region since the interior region of any simple
closed curve on M \∂M is included in M \∂M . Note that s1 and s2 are transverse. Then
we can see that M is a 2-dimensional manifold with boundary. By the Riemann mapping
theorem, M \ ∂M is contractible, which implies that M is contractible.

Now, we assume that M is compact and has some interior points. We can see that M

is surrounded by finite boundary components of g1 ◦ s̃1(S̃1) and g2 ◦ s̃2(S̃2) from Lemma

5.22. Since S̃i is a 2-dimensional manifold with boundary, any boundary component of

gi ◦ s̃i(S̃i) does not intersect other boundary components of gi ◦ s̃i(S̃i) for i = 1, 2, which

implies that the number of boundary components of g1◦ s̃1(S̃1) surroundingM equals that

of g2 ◦ s̃2(S̃2). This completes the proof. □
The following proposition, which is corresponding to Remark 5.23, is useful to under-

stand the fiber product Ŝ1 ×Σ̃
Ŝ2.

Proposition 5.26. Set

Z := {(g1H1, g2H2, x) ∈ G/H1 ×G/H2 × Σ̃ |

x ∈ g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2)}.

Define a map θ from Ŝ1 ×Σ̃
Ŝ2 to Z as

θ((x1, g1), (x2, g2)) := (g1H1, g2H2, g1 ◦ s̃1(x1))

for ((x1, g1), (x2, g2)) ∈ Ŝ1 ×Σ̃
Ŝ2. Then θ is a homeomorphism.

Define a natural action of G on Z as

g(g1H1, g2H2, x) := (gg1H1, gg2H2, gx)

for (g1H1, g2H2, x) ∈ G/H1 × G/H2 × Σ̃ and g ∈ G. Then θ is a G-equivariant map.
Moreover, the map ŝi ◦ ϕi ◦ θ−1 is the projection for i = 1, 2, that is,

ŝi ◦ ϕi ◦ θ−1(g1H1, g2H2, x) = x.

This implies that the following diagram is commutative.

Ŝ1 ×Σ̃
Ŝ2

θ //

ϕi

��

Z

projection
��

Ŝi si
// Σ̃

Proof. For (g1, g2) ∈ Λ1×Λ2, the restriction of θ to (S̃1, g1)×Σ̃
(S̃2, g2) is a homeomorphism

onto
{(g1H1, g2H2, x) | x ∈ g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2)}

since (S̃1, g1) ×Σ̃
(S̃2, g2) is mapped homeomorphically to g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) by

s̃1 ◦ ϕ1, which maps ((x1, g1), (x2, g2)) to g1 ◦ s̃1(x). Recall that Λi is a complete system
of representatives of G/Hi. Therefore θ is a homeomorphism.

To see that θ is G-equivariant, take ((x1, g1), (x2, g2)) ∈ Ŝ1 ×Σ̃
Ŝ2 and g ∈ G. Take

g′i ∈ Λi such that ggi = g′ihi for some hi ∈ Hi. Then we have g(xi, gi) = (hix, g
′
i) for

i = 1, 2, and so

θ(g((x1, g1), (x2, g2))) = θ((h1x1, g
′
1), (h2x2, g

′
2))

= (g′1H1, g
′
2H2, g

′
1 ◦ s̃1(h1x1))

= (gg1H1, gg2H2, gg1 ◦ s̃1(x1))
= gθ((x1, g1), (x2, g2)).
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Finally, for (g1H1, g2H2, x) ∈ Z take ((x1, g
′
1), (x2, g

′
2)) ∈ Ŝ1 ×Σ̃

Ŝ2 such that

θ((x1, g
′
1), (x2, g

′
2)) = (g1H1, g2H2, x).

Note that ŝ1 ◦ ϕ1 = ŝ2 ◦ ϕ2. Then
ŝi ◦ ϕi ◦ θ−1(g1H1, g2H2, x) = ŝ1 ◦ ϕ1((x1, g′1), (x2, g′2))

= g′1 ◦ s̃1(x1)
= x

for i = 1, 2. This completes the proof. □

Remark 5.27. From the above proposition, we can identify Ŝ1 ×Σ̃
Ŝ2 with Z and we can

see that the choice of Λi does not influence the fiber product Ŝ1 ×Σ̃
Ŝ2.

For (g1, g2) ∈ Λ1×Λ2, if (S̃1, g1)×Σ̃
(S̃2, g2) is not empty, then the stabilizer of (S̃1, g1)×Σ̃

(S̃2, g2) is g1H1g
−1
1 ∩ g2H2g

−1
2 . Hence the quotient space G\Ŝ1 ×Σ̃

Ŝ2 is homeomorphic to
a formal union of

(g1H1g
−1
1 ∩ g2H2g

−1
2 )\(g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2))

over [g1H1, g2H2] ∈ G\(G/H1 × G/H2), which is the quotient set associated with the
diagonal action of G on G/H1 × G/H2. Actually, for any g ∈ G and (g1, g2) ∈ Λ1 × Λ2,
there exists unique (g′1, g

′
2) ∈ Λ1 ×Λ2 such that (gg1H1, gg2H2) = (g′1H1, g

′
2H2), and then

we have

g
(
(S̃1, g1)×Σ̃

(S̃2, g2)
)
= (S̃1, g

′
1)×Σ̃

(S̃2, g
′
2)).

Hence each [g1H1, g2H2] ∈ G\(G/H1 × G/H2) corresponds to a connected component of

G\Ŝ1 ×Σ̃
Ŝ2, which is possibly empty.

Lemma 5.28. The map ŝi ◦ ϕi : Ŝ1 ×Σ̃
Ŝ2 → Σ̃ is a proper map and G acts on Ŝ1 ×Σ̃

Ŝ2
freely and properly discontinuously.

Proof. Recall that s̃i : S̃i → Σ̃ is a proper map because s̃i(S̃i) is a closed subset of Σ̃ and

s̃i is an embedding map. Let J be a compact subset of Σ̃. Recall the equation:

Ŝ1 ×Σ̃
Ŝ2 =

⊔
(g1,g2)∈Λ1×Λ2

(S̃1, g1)×Σ̃
(S̃2, g2).

For each (g1, g2) ∈ Λ1 × Λ2 the intersection

(S̃1, g1)×Σ̃
(S̃2, g2) ∩ (ŝi ◦ ϕi)−1(J)

={((x1, g1), (x2, g2)) ∈ (S̃1, g1)× (S̃2, g2) | g1 ◦ s̃1(x1) = g2 ◦ s̃2(x2) ∈ J}
={((x1, g1), (x2, g2)) ∈ ((g1 ◦ s̃1)−1(J))× ((g2 ◦ s̃2)−1(J)) |

g1 ◦ s̃1(x1) = g2 ◦ s̃2(x2)}
=((g1 ◦ s̃1)−1(J), g1)×Σ̃

((g2 ◦ s̃2)−1(J), g2)

is compact since (gi ◦ s̃i)−1(J) = s̃i
−1(g−1

i J) is compact for i = 1, 2.
We prove that there are only finitely many gi ∈ Λi such that (gi ◦ s̃i)−1(J) is not empty,

that is, gi ◦ s̃i(S̃i) ∩ J ̸= ∅ for i = 1, 2. In the case that Σ is a cylinder or a torus,

the fundamental group G of Σ acts on Σ̃ as parallel translations and our claim follows
immediately.

In the case that Σ is a compact hyperbolic surface, we apply Lemma 3.7 to the counting
subset current ηHi onG. Since ηHi(A(J)) is finite, there are only finitely many gHi ∈ G/Hi

such that gCHHi intersects the compact subset J . Note that the Hausdorff distance
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between gCHHi and gi ◦ s̃i(S̃i) is finite by Lemma 5.22. Hence there are only finitely

many gi ∈ Λi such that gi ◦ s̃i(S̃i) ∩ J ̸= ∅.
Therefore (ŝi ◦ ϕi)−1(J) is a union of finite compact subsets and so compact. Since

ŝi ◦ϕi is a G-equivariant map and G acts on Σ̃ freely and properly discontinuously, G also

acts on Ŝ1 ×Σ̃
Ŝ2 freely and properly discontinuously. □

From the above lemma, we can see that for any connected component M of Ŝ1 ×Σ̃
Ŝ2

if the stabilizer Stab(M) of M is non-trivial, then the fundamental group of the quotient
space Stab(M)\M is isomorphic to Stab(M), which implies that Stab(M)\M is not con-
tractible. Since G does not have a torsion, the stabilizer of a connected component M of

Ŝ1 ×Σ̃
Ŝ2 is trivial if and only if M is compact.

Since the maps p̂i ◦ ϕi from Ŝ1 ×Σ̃
Ŝ2 to Si satisfy the condition that s1 ◦ (p̂1 ◦ ϕ1) =

s2 ◦ (p̂1 ◦ ϕ1), we can obtain a map Φ from Ŝ1 ×
Σ̃
Ŝ2 to S1 ×Σ S2 (see the following

commutative diagram).

Ŝ1 ×Σ̃
Ŝ2

p̂1◦ϕ1

��<
<<

<<
<<

<<
<<

<<
<<

<<
<

p̂2◦ϕ2

**UUU
UUUU

UUUU
UUUU

UUUU
UU

Φ &&
S1 ×Σ S2

��

// S2

s2
��

S1 s1
// Σ

Explicitly, for (x1, g1), (x2, g2) ∈ Ŝ1 ×Σ̃
Ŝ2,

Φ((x1, g1), (x2, g2)) = (p̂1(x1, g1), p̂2(x2, g2)).

Proposition 5.29. Let α = ((x1, g1), (x2, g2)), β = ((y1, u1), (y2, u2)) ∈ Ŝ1 ×Σ̃
Ŝ2. There

exists g ∈ G such that g(α) = β if and only if Φ(α) = Φ(β). Therefore, the map Φ induces

an injective continuous map Ψ from the quotient space G\Ŝ1×Σ̃
Ŝ2 to S1×ΣS2. Moreover,

Ψ is a homeomorphism. Then we obtain the following cubic commutative diagram.

Ŝ1 ×Σ̃
Ŝ2

ϕ2 //

Φ

��

ϕ1

��<
<<

<<
<<

<<
<<

<<
<<

Ŝ2

ŝ2

��:
::

::
::

::
::

::
::

p̂2

��

Ŝ1
ŝ1 //

p̂1

��

Σ̃

π

��

S1 ×Σ S2

��>
>>

>>
>>

>>
>>

>>
>>

>
// S2

s2

��<
<<

<<
<<

<<
<<

<<
<<

S1 s1
// Σ

Every map from a space in the upper square to a space in the lower square is a canonical
projection with respect to G-action, and every map in the upper square is G-equivariant.
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Proof. Assume that there exists g ∈ G such that g(α) = β. Since ϕi is G-equivariant and

p̂i is a canonical projection with respect to the action of G on Ŝi,

Φ(β) = Φ(gα) = Φ(g(x1, g1), g(x2, g2))

= (p̂1(g(x1, g1)), p̂2(g(x2, g2)))

= (p̂1(x1, g1), p̂2(x2, g2))

= Φ(α).

Next, we assume that Φ(α) = Φ(β), that is,

(p̂1(x1, g1), p̂2(x2, g2)) = (p̂1(y1, u1), p̂2(y2, u2)).

There exist v1, v2 ∈ G such that

v1(x1, g1) = (y1, u1), v2(x2, g2) = (y2, u2).

It is sufficient to see that v1 = v2, which implies that v1α = β. Since α, β belong to

Ŝ1 ×Σ̃
Ŝ2, we have

ŝ1(x1, g1) = ŝ2(x2, g2), ŝ1(y1, u1) = ŝ2(y2, u2).

Therefore

v1ŝ1(x1, g1) = ŝ1(v1(x1, g1)) = ŝ1(y1, u1)

= ŝ2(y2, u2) = ŝ2(v2(x2, g2)) = v2ŝ2(x2, g2) = v2ŝ1(x1, g1).

This implies that v1 = v2 since G acts on Σ̃ freely.
To see the surjectivity of Ψ, we check that Φ is surjective. Take an arbitrary (z1, z2) ∈

S1 ×Σ S2. Take (xi, gi) ∈ Ŝi such that p̂i(xi, gi) = zi for i = 1, 2. Since s1(z1) = s2(z2)
and si ◦ p̂i = π ◦ ŝi, we can see that ŝ1(x1, g1), ŝ2(x2, g2) ∈ π−1(s1(z1)). Hence there exists

g ∈ G such that gŝ1(x1, g1) = ŝ2(x2, g2), that is, (g(x1, g1), (x2, g2)) ∈ Ŝ1×Σ̃
Ŝ2. Therefore

we have

Φ(g(x1, g1), (x2, g2)) = (p̂1(g(x1, g1)), p̂2(x2, g2)) = (z1, z2).

From the above, Ψ is a bijective continuous map. Hence it is sufficient to prove that the

quotient space G\Ŝ1 ×Σ̃
Ŝ2 is compact. Since Σ is compact, there exist a compact subset

K of Σ̃ such that π(K) = Σ, that is, G(K) = Σ̃. Then (ŝi ◦ ϕi)−1(K) is also a compact

subset of Ŝ1 ×Σ̃
Ŝ2 by Lemma 5.28. Then we can see that

G((ŝi ◦ ϕi)−1(K)) = Ŝ1 ×Σ̃
Ŝ2

since ŝi ◦ ϕi is G-equivariant. Therefore the quotient space G\Ŝ1 ×Σ̃
Ŝ2 is compact, which

completes the proof. □
Let (Ti, ti) be a simple compact surface on Σ homotopic to (Si, si) for i = 1, 2. We

identify Si with Ti for simplicity of notation. Recall that we have a lift t̃i : S̃ → Σ̃ of ti
such that the Hausdorff distance between s̃i(S̃i) and t̃i(S̃i) is finite by Lemma 5.22. Then,
we can obtain the same diagram in Proposition 5.29 for simple compact surfaces (T1, t1),

(T2, t2) on Σ and their lifts (S̃1, t̃1), (S̃2, t̃2).

Proof of Theorem 5.14. We classify our proof into several cases. We use Lemma 5.24 and
consider g1 ◦ s̃1, g2 ◦ s̃2 for (g1, g2) ∈ Λ1×Λ2 instead of s1, s2. We will say that a boundary

component B̃1 of g1 ◦ s̃1(S̃1) and a boundary component B̃2 of g2 ◦ s̃2(S̃2) form a bigon if

there exist a boundary component B̃1
′
of S̃1 and a boundary component B̃2

′
of S̃2 such

that gi ◦ s̃i(B̃i
′
) = B̃i for i = 1, 2 and sub-arcs of g1 ◦ s̃1|B̃1

′ and g2 ◦ s̃2|B̃2
′ form a bigon.

Case 1: The surface Σ is a sphere.
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See Proposition 5.17. Note that if Σ is not a sphere, Si can not be a sphere by Lemma
5.19.

Case 2: The surface Σ is a cylinder.
The simple compact surface Si must be S1 or a cylinder since si induces an injective

group homomorphism from the fundamental group of Si to that of Σ, which is isomorphic
to Z. Then we can see that i([s1], [s2]) = 0 for any simple compact surfaces s1, s2 on Σ since
we can deform s1 and s2 by homotopies such that their images do not intersect. Now, we

consider the intersection of g1 ◦ s̃1(S̃1) and g2 ◦ s̃2(S̃2) for (g1, g2) ∈ Λ1×Λ2. The universal

cover S̃i of Si is homeomorphic to R or R × [0, 1]. Note that an infinite cyclic group Hi

acts on S̃i and the stabilizer of g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is g1H1g
−1
1 ∩ g2H2g

−1
2 = H1 ∩H2,

which is also an infinite cyclic group. If g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) ̸= ∅, then H1 ∩H2 acts

on g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2), which implies that g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is non-compact
connected, or an infinite union of compact connected components.

If g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is an infinite union of compact connected components, then
we can see that g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon. Actually, any compact component

of g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is surrounded by both g1 ◦ s̃1(∂S̃1) and g2 ◦ s̃2(∂S̃2), which
implies that there exists a boundary component B̃ of g1 ◦ s̃1(∂S̃1) such that B̃ intersects a

boundary component of g2 ◦ s̃2(∂S̃2) infinitely many times. Note that the restriction of s1
and s2 to any components of their boundaries are transverse. Therefore g1 ◦ s̃1 and g2 ◦ s̃2
form a bigon by Lemma 5.15.

From the above, we can see that if g1 ◦ s̃1 and g2 ◦ s̃2 do not form a bigon, then

g1 ◦ s̃1(S̃1)∩ g2 ◦ s̃2(S̃2) is empty or non-compact connected. By Lemma 5.24, if s1 and s2
do not form an immersed bigon, then S1×ΣS2 does not have any contractible components,
that is, i(s1, s2) = 0 = i([s1], [s2]).

The converse does not follow if S1, S2 are cylinders. For example, consider the case that

Σ̃ = R× [−4, 4], g1 ◦ s̃1(S̃1) = R× [−2, 2]

and

g2 ◦ s̃2(S̃2) = {(x, y) ∈ R2 | sinx− 2 ≤ y ≤ sinx+ 2}.

Then g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon but g1 ◦ s̃1(S̃1)∩g2 ◦ s̃2(S̃2) is non-compact connected.
If either S1 or S2 is S1, then the converse follows immediately from the above argument.

Case 3: The surface Σ is a torus.
We assume that Σ = Z2\R2, which is the quotient space of R2 by the natural action of

Z2 from left. Note that a nontrivial subgroup of G = Z2 is isomorphic to Z2 or Z. First, we
consider the case that H1 is isomorphic to Z2. Then H1 is a subgroup of G of finite index,

which implies that S1 is a torus and s1 is a covering map. Therefore s̃1(S̃1) = Σ̃ = R2, and

so (S̃1, g1) ×Σ̃
(S̃2, g2) does not include a compact component for any (g1, g2) ∈ Λ1 × Λ2.

As a result, i(s1, s2) = 0.
Now, we assume that both H1 and H2 are isomorphic to Z, which implies that Si is S

1

or a cylinder for i = 1, 2. If H1 ∩H2 is not trivial, then we can apply the same argument
in the case that Σ is a cylinder to this case. Therefore we consider the case that H1 ∩H2

is trivial. Take (ai, bi) ∈ Hi such that (ai, bi) generates Hi. Then two vectors (a1, b1) and
(a2, b2) are linearly independent over the ring Z.

Note that the image s̃i(S̃i) divides Σ̃ into two regions since Hi acts on gi ◦ s̃i(S̃i) for

i = 1, 2. Hence g1 ◦ s̃1(S̃1) intersects g2 ◦ s̃2(S̃2) for any (g1, g2) ∈ Λ1 × Λ2 and the

intersection includes at least one compact connected component of Σ̃. Moreover, we can

see that if g1◦ s̃1(S̃1)∩g2◦ s̃2(S̃2) includes more than one compact components, then g1◦ s̃1
and g2 ◦ s̃2 form a bigon. Actually, any boundary components of g1 ◦ s̃1(S̃1) must go into
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g2 ◦ s̃2(S̃2) and go out the opposite side at least once. If g1 ◦ s̃1(S̃1)∩ g2 ◦ s̃2(S̃2) have more

than one compact components, then a boundary component of g1 ◦ s̃1(S̃1) must intersect

a boundary component of g2 ◦ s̃2(S̃2) more than once, and their sub-arcs form a bigon by
Lemma 5.15.

From the above, if s1 and s2 do not form an immersed bigon, then s1, s2 are in minimal
position. If either S1 or S2 is S1, then the converse follows immediately from the above
argument.

Case 4: The surface Σ is a compact hyperbolic surface.

In this case we thought of Σ̃ as a closed convex subspace of the hyperbolic plane H.
See the beginning part of Section 3 for some definitions and notation related to hyperbolic
geometry.

Take (g1, g2) ∈ Λ1 × Λ2. We prove that if g1 ◦ s̃1 and g2 ◦ s̃2 do not form a bigon, then

the number of compact connected components of g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is minimum in

the homotopy classes [s1] and [s2]. Note that the limit set (gi ◦ s̃i(S̃i))(∞) = giΛ(Hi)

coincides with (gi ◦ t̃i(S̃i))(∞) from Lemma 5.22. We classify our proof into several cases
under the relation between g1Λ(H1) and g2Λ(H2). Since H1,H2 are finitely generated, we
have

g1Λ(H1) ∩ g2Λ(H2) = Λ(g1H1g
−1
1 ∩ g2H2g

−1
2 ).

Case 4-1: The intersection g1Λ(H1) ∩ g2Λ(H2) is not empty.

In this case, g1H1g
−1
1 ∩ g2H2g

−1
2 is not trivial and acts on g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2). We

prove that if g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) includes a compact connected component M , then
g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon. In other words, if g1 ◦ s̃1 and g2 ◦ s̃2 do not form a bigon,

then g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) does not have a compact connected component.
Consider the case that S1 is S1, which implies that H1 is an infinite cyclic group.

Since g1H1g
−1
1 ∩ g2H2g

−1
2 is not trivial, g1H1g

−1
1 ∩ g2H2g

−1
2 is a finite index subgroup of

g1H1g
−1
1 . Assume that g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) includes a compact connected component

M . Then the compact connected component M must be a point or homeomorphic to a
closed interval by the assumption on the simple compact surfaces s1 and s2 . If M is a

point, then S2 is also S1 and g1 ◦ s̃1(S̃1) intersects g2 ◦ s̃2(S̃2) transversely infinitely many
times and their sub-arcs form a bigon by Lemma 5.15. Hence we consider the case thatM
is homotopic to a closed interval. Note that each endpoint of M is the intersection point

of g1 ◦ s̃1(S̃1) with a boundary component of g2 ◦ s̃2(S̃2). Since g1H1g
−1
1 ∩ g2H2g

−1
2 acts on

g1 ◦ s̃1(S̃1)∩g2 ◦ s̃2(S̃2), g1 ◦ s̃1(S̃1) intersects boundary components of g2 ◦ s̃2(S̃2) infinitely
many times. By giving an orientation to g1 ◦ s̃1(S̃1) we can see that if g1 ◦ s̃1(S̃1) goes out
from a boundary component B̃ of g2 ◦ s̃2(S̃2), then g1 ◦ s̃1(S̃1) must go into g2 ◦ s̃2(S̃2)
through the same boundary component B̃. This implies that g1 ◦ s̃1(S̃1)∩ g2 ◦ s̃2(S̃2) and
B̃ form a bigon by Lemma 5.15.

Next, consider the case that neither S1 nor S2 is S
1. Assume that g1◦ s̃1(S̃1)∩g2◦ s̃2(S̃2)

includes a compact connected component M . By Lemma 5.25, a compact connected

component M of g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is a region surrounded by g1 ◦ s̃1(∂S̃1) and

g2 ◦ s̃2(∂S̃2). Take a boundary component B̃ of g1 ◦ s̃1(S̃1) and a non-trivial element

u ∈ g1H1g
−1
1 such that B̃ form a side of M and ⟨u⟩ acts on B̃. If B̃(∞) ∩ g2Λ(H2) ̸= ∅,

then there is m ∈ N such that um ∈ g2H2g
−1
2 and B̃(∞) ⊂ g2Λ(H2) since u is a hyperbolic

element of the isometry group of H. By applying the above argument in the case that

S1 = S1 to B̃ and ⟨um⟩, we can see that B̃ and a boundary component of g2 ◦ s̃2(S̃2) form
a bigon.
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To obtain a contradiction, we assume that g1 ◦ s̃1 and g2 ◦ s̃2 do not form a bigon. Then

any boundary component of g1 ◦ s̃1(S̃1) forming a side of M goes into g2 ◦ s̃2(S̃2) and goes

out from g2 ◦ s̃2(S̃2) only once. Note that every non-trivial element of G is a hyperbolic
element in Isom(H) and for non-trivial γ1, γ2 ∈ G either the intersection of Λ(⟨g1⟩) and

Λ(⟨g2⟩) is empty or Λ(⟨g1⟩) = Λ(⟨g2⟩). Hence if a boundary component B̃ of g1 ◦ s̃1(S̃1)
goes into g2 ◦ s̃2(S̃2) and goes out from g2 ◦ s̃2(S̃2) exactly once, then the limit set B̃(∞)

of B̃ does not intersect g2Λ(H2) from the above argument. Therefore the intersection of
g1Λ(H1) and g2Λ(H2) is empty sinceM is compact. This contradicts our assumption that
g1Λ(H1) ∩ g2Λ(H2) is not empty. Hence g1 ◦ s̃1 and g2 ◦ s̃2 form a bigon.

Case 4-2: The intersection g1Λ(H1) ∩ g2Λ(H2) = ∅ and there exist two closed intervals
I1, I2 of ∂H satisfying the condition that

I1 ∩ I2 = ∅ and Ii ⊃ giΛ(Hi) for i = 1, 2.

In this case, two convex hulls CH(I1), CH(I2) do not intersect. Take a boundary

component B̃i of gi ◦ s̃i(S̃i) such that CH(B̃i(∞)) is closest to the geodesic line CH(∂Ii)

for i = 1, 2. Then B̃1 and B̃2 form a bigon if and only if g1 ◦ s̃1(S̃1) and g2 ◦ s̃2(S̃2)
intersects. Therefore if g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) includes a compact connected component

M , then B̃1 and B̃2 form a bigon
Case 4-3: The intersection g1Λ(H1) ∩ g2Λ(H2) = ∅ and there do not exist two closed

intervals I1, I2 of ∂H satisfying the condition in Case 4-2.

This assumption implies that there exist a boundary component B̃ of g1 ◦ s̃1(S1) such
that any interval of ∂H connecting the two points in B̃(∞) must intersect g2Λ(H2). In this

case g1 ◦ s̃1(S̃1) must intersect g2 ◦ s̃2(S̃2). Since g1Λ(H1) ∩ g2Λ(H2) = ∅, the intersection

g1◦ s̃1(S̃1)∩g2◦ s̃2(S̃2) is compact. Therefore we prove that if g1◦ s̃1 and g2◦ s̃2 do not form

a bigon, then g1 ◦ s̃1(S̃1)∩ g2 ◦ s̃2(S̃2) includes exactly one compact connected component.

In the case that S1 is S1, if g1 ◦ s̃1 and g2 ◦ s̃2 do not form a bigon, then g1 ◦ s̃1(S̃1)
intersects g2 ◦ s̃2(S̃2) at a point, or goes into g2 ◦ s̃2(S̃2) and goes out from g2 ◦ s̃2(S̃2)
exactly once, which implies that g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) includes exactly one compact
connected component.

Therefore, we assume that neither S1 nor S2 is S1. We also assume that g1 ◦ s̃1(S̃1) and
g2 ◦ s̃2(S̃2) do not form a bigon. Then any boundary component B̃ of g1 ◦ s̃1(S̃1) satisfies
either one of the following two conditions

(1) there exists an interval I in ∂H connecting the two points in B̃(∞) such that
I ∩ g2Λ(H2) = ∅;

(2) any interval I in ∂H connecting the two points in B̃(∞) must intersect g2Λ(H2).

If B̃ satisfies the condition (1), then B̃ does not intersect g2◦ s̃2(S̃2) by the argument in the

case that S1 = S1. If B̃ satisfies the condition (2), then B̃ goes into g2 ◦ s̃2(S̃2) and goes

out from g2 ◦ s̃2(S̃2) exactly once, which divides g2 ◦ s̃2(S̃2) into two connected components

and one of the connected components contains g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2). Therefore, g1 ◦
s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is connected, and our claim follows.

From Case 4-1, 4-2 and 4-3, we can see that if g1 ◦ s̃1 and g2 ◦ s̃2 do not form a

bigon, then the number of a compact connected components g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) is
minimum in the homotopy classes [s1] and [s2]. Moreover, i([s1], [s2]) equals the number
of [g1H1, g2H2] ∈ G\G/H1 × G/H2 satisfying the condition of Case 4-3 by Remark 5.27.
From Proposition 5.29 and Lemma 5.24, if s1 and s2 do not form an immersed bigon, then
s1 and s2 are in minimal position. If either S1 or S2 is S1, then the converse follows by
considering each case, 4-1, 4-2 and 4-3. □



52 D. SASAKI

Supplementation 5.30. Let Σ = Z2\R2. Assume that s1, s2 do not form a bigon, both
H1 and H2 are infinite cyclic groups and H1 ∩H2 is trivial. In this setting we calculate
the intersection number i(s1, s2) = i([s1], [s2]).

We have proved that g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2) contains exactly one compact connected
component for (g1, g2) ∈ Λ1 × Λ2. From Remark 5.27 and Proposition 5.29, S1 ×Σ S2 is
homeomorphic to the formal union of

(g1H1g
−1
1 ∩ g2H2g

−1
2 )\(g1 ◦ s̃1(S̃1) ∩ g2 ◦ s̃2(S̃2))

over [g1H1, g2H2] ∈ G\(G/H1 × G/H2). Therefore i(s1, s2) equals the cardinality of
G\(G/H1 ×G/H2). Define a map τ : G/⟨H1 ∪H2⟩ → G\(G/H1 ×G/H2) as

τ(g⟨H1 ∪H2⟩) = [H1, gH2]

for g⟨H1 ∪ H2⟩ ∈ G/⟨H1 ∪ H2⟩. The map τ is well-defined. Actually, since G = Z2 is
commutative, for (h1, h2) ∈ H1 ×H2 we have

[H1, (gh1h2)H2] = [H1, (h1g)H2] = [H1, gH2].

We prove that τ is bijective. The surjectivity of τ follows immediately since τ is well-
defined. We check the injectivity of τ . For g, g′ ∈ G, assume that

τ(g⟨H1 ∪H2⟩) = τ(g′⟨H1 ∪H2⟩),
that is, [H1, gH2] = [H1, g

′H2]. Then we can take h1 ∈ H1 such that h1gH2 = g′H2, which
implies that there exists h2 ∈ H2 such that h1gh2 = g′. Hence

g′⟨H1 ∪H2⟩ = gh1h2⟨H1 ∪H2⟩ = g⟨H1 ∪H2⟩.
From the above, i(s1, s2) equals the index [G : ⟨H1 ∪ H2⟩]. Note that ⟨H1 ∪ H2⟩ is a

finite index subgroup of G. Let (ai, bi) be a generator of Hi. In order to calculate the
index [G : ⟨H1 ∪ H2⟩] we consider the area of the covering space of Σ corresponding to
⟨H1∪H2⟩. The area of the quotient space ⟨H1∪H2⟩\R2 equals the area of the parallelogram
formed by the two vectors (a1, b1), (a2, b2), that is, |a1b2 − b1a2|. Since the area of Σ is 1,
[G : ⟨H1 ∪H2⟩] = |a1b2 − b1a2|. Therefore

i(s1, s2) = i([s1], [s2]) = |a1b2 − b1a2|.
Even if H1,H2 are infinite cyclic and H1∩H2 is not trivial, we have the same formula since
i(s1, s2) = 0 and the area of the parallelogram formed by the two vectors (a1, b1), (a2, b2)
equals 0.

This result is well-known in the case that s1, s2 are simple closed curves on the torus
Σ = Z2\R2 (see [FM12, 1.2.3 Intersection Numbers]).

5.3. Continuous extension of intersection number. First, we recall several facts on
geodesic currents on hyperbolic groups in [Bon88b].

Let G be an infinite hyperbolic group. Set

∂2G := {S ∈ H(∂G) | #S = 2}.
We endow ∂2G with the subspace topology of H(∂G), which coincides with the topology
induced by the Hausdorff distance.

Definition 5.31 (Geodesic currents on hyperbolic groups). A geodesic current on G is a
G-invariant locally finite Borel measure on ∂2G. The space of geodesic currents on G is
denoted by GC(G). We give GC(G) the weak-∗ topology.

Since ∂2G is a G-invariant closed subspace of H(∂G), we can consider GC(G) as an
R≥0-linear closed subspace of SC(G). A subset current on G whose support is included in
∂2G can be considered as a geodesic current on G. By restricting a subset current to ∂2G,
we can obtain an R≥0-linear map from SC(G) to GC(G) but this map is not continuous in
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general (see Theorem 5.33). We will construct a continuous R≥0-linear projection B from
SC(G) to GC(G) in the case that G is the fundamental group of a compact hyperbolic
surface (see Section 7).

For g ∈ G with infinite order, since its limit set Λ(⟨g⟩) belongs to ∂2G, the counting
subset current η⟨g⟩ can be considered as a geodesic current on G. We will write ηg instead
of η⟨g⟩ and call ηg the counting geodesic current for g ∈ G. If g ∈ G has a finite order,
then we define ηg to be the zero measure on ∂2G. A geodesic current µ is called rational
if there exist g ∈ G and r ∈ R≥0 such that µ = cηg.

Bonahon [Bon88b] proved the following theorem

Theorem 5.32 (See [Bon88b, Theorem 7]). For any infinite hyperbolic group G, the set
of all rational geodesic currents on G is a dense subset of GC(G).

In the case of subset currents, the same denseness property was proved for free groups
of finite rank in [KN13, Theorem 5.8]. In Subsection 8.3 we will prove that surface groups
have the denseness property of rational subset currents.

If a hyperbolic group G is virtually cyclic, that is, #∂G = 2, then SC(G) coincides with
GC(G). From the above theorem we can prove the following theorem:

Theorem 5.33. Let G be an infinite hyperbolic group. Assume that G is not virtually
cyclic, that is, the boundary ∂G includes infinitely many points. For any µ ∈ GC(G) there
exists a sequence {Hn}n∈N of quasi-convex subgroups of G and a sequence {cn}n∈N of R≥0

such that Hn is non-cyclic and isomorphic to a free group of finite rank, and the sequence
of rational subset currents cnηHn converges to µ.

Proof. From Theorem 5.32, it is sufficient to prove the statement in the case that µ = ηg
for g ∈ G with infinite order.

Take g ∈ G with infinite order. Take h ∈ G with infinite order such that Λ(⟨h⟩) ∩
Λ(⟨g⟩) = ∅. By using the Ping-Pong Lemma, for a sufficiently large m ∈ N the subgroup
H := ⟨gm, hm⟩ is isomorphic to the free group of rank 2 (see [FM12, Part III, Γ, 3.20
Proposition]). Moreover, we can see that if m is sufficiently large, then H is a quasi-
convex subgroup of G.

Set a := gm, b := hm. Define a subgroup Hn of H by

Hn := ⟨an, b⟩

for n ∈ N. Then we can see that the sequence of rational counting subset currents 1
nη

H
Hn

on H converges to the counting geodesic current ηHa on H by using [KN13, Proposition
3.7] (see Proposition 8.6 for detail). By using the map ιH in Section 4, we see that 1

nηHn

converges to ηa. Note that

ηa = ηgm = mηg

by Proposition 2.10. Hence 1
mnηHn converges to ηg. □

Let Σ be a compact hyperbolic surface. Let G be the fundamental group of Σ, which is
isomorphic to a free group of finite rank or a surface group. When we identify the boundary

∂G of G with the limit Λ(Σ̃) of Σ̃ in H, we will say subset currents on Σ instead of subset
currents on G. Geodesic currents on Σ is also used in the same meaning. We will denote
by SC(Σ) (GC(Σ), respectively) the space of subset currents (geodesic currents) on Σ.

Recall that a non-trivial conjugacy class of G is corresponding to a non-trivial free
homotopy class of an oriented closed curve on G, which contains a unique oriented closed
geodesic. Hence a non-trivial conjugacy class of G is corresponding to an oriented closed
geodesic on G. In addition, for non-trivial g ∈ G the conjugacy class of ⟨g⟩ is corresponding
to an unoriented closed geodesic on Σ, which coincides with the convex core C⟨g⟩. The
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map p⟨g⟩ from C⟨g⟩ to Σ is induced by the universal covering map. We will write Cg instead
of C⟨g⟩ and call Cg the (unoriented) closed geodesic corresponding to g.

Bonahon [Bon86] proved the following theorem:

Theorem 5.34 (See [Bon86, Proposition 4.5]). There exists a unique continuous sym-
metric R≥0-bilinear functional

iGC : GC(Σ)×GC(Σ) → R≥0

such that for any g, h ∈ G we have

iGC(ηg, ηh) = i(Cg, Ch).

Recall that a subgroup H of G is quasi-convex if and only if H is finitely generated.
For two non-trivial finitely generated subgroups H and K of G, we have the convex cores
(CH , pH) and (CK , pK) of H and K. From Theorem 5.11, (CH , pH) and (CK , pK) are
simple compact surfaces on Σ in minimal position. We will prove the following theorem
in this subsection, which is a generalization of Theorem 5.34:

Theorem 5.35 (Intersection number of subset currents). There exists a unique continuous
symmetric R≥0-bilinear functional

iSC : SC(Σ)× SC(Σ) → R≥0

such that for any non-trivial finitely generated subgroups H and K of G we have

iSC(ηH , ηK) = i(CH , CK).

Remark 5.36. In the case that Σ has boundary, G is a free group of finite rank. We
remark that for a free group F of finite rank a surface whose fundamental group is isomor-
phic to F is not unique up to homeomorphism. Therefore the functional iSC on SC(F ) is
not uniquely determined.

However, if G is a surface group, then a surface whose fundamental group is isomorphic
to G is unique up to homeomorphism. Moreover, ∂G is homeomorphic to S1 and for two
non-trivial finitely generated subgroup H and K of G we can see that the intersection
number of CH and CK can be determined by the relation between g1Λ(H) and g2Λ(K)
for [g1H, g2K] ∈ G\G/H ×G/K (see Case 4 of the proof of Theorem 5.14). Therefore, if
G is a surface group, we can call iSC the intersection number on SC(G).

The strategy to prove Theorem 5.35 is almost the same as that for proving the existence
of the volume functional in Section 3. First, we construct an R≥0-bilinear functional on
SC(Σ) such that the functional associates any pair of counting subset currents (ηH , ηK)
with i(CH , CK) for any non-trivial finitely generated subgroups H and K of G. Then we
prove the continuity of the functional, which is the main part of the proof. The uniqueness
of the functional follows by the denseness property of rational subset currents.

Note that by restricting iSC to GC(Σ)×GC(Σ) we can obtain iGC. If we want to obtain
only iGC, then by assuming that H,K are cyclic and all (S1, S2) ∈ H(∂G)×H(∂G) belong
to ∂2G× ∂2G, several parts of the following argument will be shorter or obvious, and our
argument will give a new proof to Theorem 5.34.

We consider Σ̃ as a closed convex subspace of the hyperbolic plane H. Recall that for

simple compact surfaces (S1, s1), (S2, s2) on Σ we constructed (Ŝ1, ŝ1), (Ŝ2, ŝ2) and the

fiber product Ŝ1 ×Σ̃
Ŝ2. Let H,K be non-trivial finitely generated subgroups of G. From

Remark 5.23 and Proposition 5.26, we set

ĈHH := {(gH, x) ∈ G/H × Σ̃ | x ∈ gCHH}
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and set

ĈHH ×
Σ̃
ĈHK := {(g1H, g2K,x) ∈ G/H ×G/K × Σ̃ |

x ∈ g1CHH ∩ g2CHK}.

Then G acts on ĈHH by

u(gH, x) := (ugH, ux)

for u ∈ G and (gH, x) ∈ ĈHH . Moreover, G acts on ĈHH ×
Σ̃
ĈHK by

u(g1H, g2K,x) := (ug1H,ug2K,ux)

for u ∈ G and (g1H, g2K,x) ∈ ĈHH ×
Σ̃
ĈHK . By the same way as that for simple

compact surfaces (S1, s1), (S2, s2) on Σ in Proposition 5.29, we can obtain the following
cubic commutative diagram for H and K:

ĈHH ×
Σ̃
ĈHK

//

Φ

��

""E
EE

EE
EE

EE
EE

EE
EE

EE
ĈHK

��=
==

==
==

==
==

==
==

=

��

ĈHH
//

��

Σ̃

π

��

CH ×Σ CK

##F
FF

FF
FF

FF
FF

FF
FF

FF
FF

// CK

pK

��?
??

??
??

??
??

??
??

?

CH pH
// Σ

The map from ĈHH to Σ̃ is the projection, that is, (gH, x) is mapped to x ∈ Σ̃. The

map from ĈHH ×
Σ̃
ĈHK to ĈHH is also the projection. The quotient space G\ĈHH is

identified with CH and the quotient space G\ĈHH ×
Σ̃
ĈHK is identified with CH ×Σ CK

by Proposition 5.26.
By the definition, i(CH , CK) equals the number of contractible components of CH×ΣCK .

A contractible component of CH ×Σ CK comes from the G-orbit of a compact connected

component of ĈHH ×
Σ̃
ĈHK .

We note that the “size” of a contractible component of ĈHH ×
Σ̃
ĈHK are sometimes

big and sometimes small. We measure the “size” of the compact connected component by

using a fundamental domain F for the action of G on Σ̃.

Definition 5.37 (Size of a compact connected component). For x ∈ Σ̃ we take the Dirich-

let domain F = Fx centered at x. Since G acts on Σ̃ freely and properly discontinuously
F is a compact polygon. By removing some edges and vertices of the boundary of F we

can modify F such that G(F) = Σ̃ and gF ∩ F = ∅ for any non-trivial g ∈ G. We define
Fin(G) to be the family of all non-empty finite subset of G. Note that for any non-empty

bounded subset X of Σ̃ there exists a unique G0 ∈ Fin(G) such that G0(F) covers X
precisely, that is, X ⊂ G0(F) and X ∩gF ̸= ∅ for every g ∈ G0. Then we say that the size
of X with respect to F is G0. For G0 ∈ Fin(G) we define CF (G0;H,K) to be the number

of compact connected components of ĈHH ×
Σ̃
ĈHK whose size with respect to F are G0.
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Now, we consider the natural action of G on Fin(G) from left and take a complete
system of representatives {Gj}j∈J of G\Fin(G).
Lemma 5.38. The following equality holds:

i(CH , CK) =
∑
j∈J

CF (Gj ;H,K).

Proof. Since i(CH , CK) is the number of contractible components of G\ĈHH ×
Σ̃
ĈHK , it

is sufficient to see that for any compact connected component M of ĈHH ×
Σ̃
ĈHK there

exist unique j ∈ J and g ∈ G such that M is precisely covered by gGj(F). Actually, we
have a unique G0 ∈ Fin(G) such that G0(F) cover M precisely and there exists unique
j ∈ J and g ∈ G such that gGj = G0. Hence our claim follows. □

For G0 ∈ Fin(G) set

CF (G0) := {(S1, S2) ∈ H(∂G)×H(∂G) |
CH(S1) ∩ CH(S2) is precisely covered by G0(F)}.

We can check that CF (G0) is a Borel subset of H(∂G) ×H(∂G) from Lemma 3.8. Then
for the product measure ηH × ηK we have

ηH × ηK(CF (G0)) = CF (G0;H,K).

Actually,

ηH × ηK =

 ∑
gH∈G/H

δgΛ(H)

×

 ∑
gK∈G/K

δgΛ(K)


=

∑
(g1H,g2K)∈G/H×G/K

δg1Λ(H) × δg2Λ(K)

=
∑

(g1H,g2K)∈G/H×G/K

δ(g1Λ(H),g2Λ(K)),

where δ(g1Λ(H),g2Λ(K)) is the Dirac measure at (g1Λ(H), g2Λ(K)) on H(∂G) ×H(∂G). In
addition,

ĈHH ×
Σ̃
ĈHK

∼=
⊔

(g1H,g2K)∈G/H×G/K

g1CHH ∩ g2CHK .

Hence

ηH × ηK(CF (G0)) =#{(g1H, g2K) ∈ G/H ×G/K |
g1CHH ∩ g2CHK is precisely covered by G0(F)}

=CF (G0;H,K).

As a result, we obtain the following equation:

i(CH , CK) =
∑
j∈J

ηH × ηK(CF (Gj)).

Note that for G1, G2 ∈ Fin(G) with G1 ̸= G2 the intersection CF (G1) ∩ CF (G2) is
empty by the definition.

Definition 5.39. We define a map iSC from SC(Σ)× SC(Σ) to R≥0 by

iSC(µ, ν) := µ× ν

⊔
j∈J

CF (Gj)


for µ, ν ∈ SC(Σ).



SUBSET CURRENTS ON SURFACES 57

By the definition of iSC we can see that iSC(ηH , ηK) = i(CH , CK) for any non-trivial
finitely generated subgroups H and K of G. Moreover, iSC is a symmetric R≥0-bilinear
functional. The remaining problem is proving the continuity of iSC.

First, we check that definition of iSC is independent of the choice of F and {Gj}. Set
I := {(S1, S2) ∈ H(∂G)×H(∂G) | CH(S1) ∩ CH(S2) ̸= ∅ is bounded}.

Then I is a G-invariant open subset of H(∂G)×H(∂G) with respect to the diagonal action
of G. Moreover, G acts on I freely.

Lemma 5.40. The set
Q :=

⊔
j∈J

CF (Gj)

is a Borel fundamental domain for the action of G on I satisfying the condition that
G(Q) = I and gQ∩Q is empty for any non-trivial g ∈ G. Therefore, the definition of iSC
is independent of the choice of F and {Gj}.

Proof. First, we remark that the definition I is independent of the choice of F and {Gj}.
Moreover, in the case that G is a surface group, the definition of I is independent of Σ.

For (S1, S2) ∈ I there exists a unique G0 ∈ Fin(G) such that G0(F) cover CH(S1) ∩
CH(S2) precisely. Hence

I =
⊔

G0∈Fin(G)

CF (G0).

Then we can see that G(Q) = I and gQ ∩ Q is empty for any non-trivial g ∈ G, which
implies that Q is a Borel fundamental domain for the action of G on I. By the same way
as that for Lemma 3.1, we can see that iSC is independent of the choice of F and {Gj}. □

The following proposition is known as the Portmanteau theorem for probability mea-
sures on a metric space (see [Bil99, Theorem 2.1]), which will be used later in order to prove
the continuity of iSC. We will use the argument in this proof for proving the continuity of
a certain functional in Section 6.

Proposition 5.41. Let µn, µ ∈ SC(Σ) (n ∈ N). The following are equivalent:

(1) µn converges to µ in the weak-∗ topology;
(2) lim supn→∞ µn(K) ≤ µ(K) for any compact subset K of H(∂G), and

lim infn→∞ µn(U) ≥ µ(U) for any relatively compact open subset U of H(∂G);
(3) limn→∞ µn(E) = µ(E) for any relatively compact Borel subset E of H(∂G) with

µ(∂E) = 0;
(4) limn→∞

∫
fdµn =

∫
fdµ for any bounded function f : H(∂G) → R≥0 with compact

support which is continuous at µ-a.e, that is, the set ∆(f) of non-continuous points
of f has measure zero with respect to µ. Explicitly,

∆(f) := {S ∈ H(∂G) | f is not continuous at S}.
For product measures µn × νn (µn, νn ∈ SC(Σ), n ∈ N) and µ× ν (µ, ν ∈ SC(Σ)) the same
result follows by the same proof.

Proof. Since H(∂G) is a locally compact, separable and metrizable space, we can take a
metric d on H(∂G) compatible with the topology such that (H(∂G), d) is a proper metric
space, that is, every closed ball with respect to d is a compact subset of H(∂G). We will
use this property of d in the proof of (3) ⇒ (4).

(4) ⇒ (1): Obvious.
(1) ⇒ (2): For a compact subset K of H(∂G), set

Kn := {x ∈ H(∂G) | d(x,K) <
1

n
}



58 D. SASAKI

for n ∈ N. Then the characteristic function χKn converges pointwise to χK , which implies
that

µ(Kn) =

∫
χKndµ→

∫
χKdµ = µ(K) (n→ ∞).

Fix ε > 0. Then there exists N ∈ N such that µ(KN ) ≤ µ(K)+ε. By the Urysohn Lemma
we have a continuous function f : H(∂G) → R satisfying the condition that f |K ≡ 1,
f |(KN )c ≡ 0 and 0 ≤ f(S) ≤ 1 for any S ∈ H(∂G). Then we have

lim sup
n→∞

µn(K) ≤ lim sup
n→∞

∫
fdµn =

∫
fdµ ≤ µ(KN ) ≤ µ(K) + ε.

Since ε > 0 is arbitrary, we have

lim sup
n→∞

µn(K) ≤ µ(K).

For a relatively compact open subset U of H(∂G), set

Un := {x ∈ U | d(x,U c) ≥ 1

n
}

for n ∈ N. Then the characteristic function χUn converges pointwise to χU , which implies
that

µ(Un) =

∫
χUndµ→

∫
χUdµ = µ(U) (n→ ∞).

Fix ε > 0. Then there exists N ∈ N such that µ(UN ) ≥ µ(U)−ε. By the Urysohn Lemma
we have a continuous function f : H(∂G) → R satisfying the condition that f |UN

≡ 1,
f |(U)c ≡ 0 and 0 ≤ f(S) ≤ 1 for any S ∈ H(∂G). Then we have

lim inf
n→∞

µn(U) ≥ lim inf
n→∞

∫
fdµn =

∫
fdµ ≥ µ(UN ) ≥ µ(U)− ε.

Since ε > 0 is arbitrary, we have

lim inf
n→∞

µn(U) ≥ µ(U).

(2) ⇒ (3): Since Int(E) ⊂ E ⊂ E and ∂E = E \ Int(E), we have

µ(Int(E)) = µ(E) = µ(E).

Therefore,

lim sup
n→∞

µn(E) ≤ lim sup
n→∞

µn(E) ≤ µ(E) = µ(E)

=µ(Int(E)) ≤ lim inf
n→∞

µn(Int(E)) ≤ lim inf
n→∞

µn(E),

and so
lim
n→∞

µn(E) = µ(E).

(3) ⇒ (4): This is the main part of this proof. We can assume that f ≥ 0 without loss
of generality. Let suppf denote the support of f . Set

C := sup{f(x) | x ∈ H(∂G)}
and

At := {x ∈ H(∂G) | f(x) ≥ t}
for each t ∈ [0, C]. Note that

∫
fdµ equals the area of

U := {(x, y) ∈ H(∂G)× R | 0 ≤ y ≤ f(x)}
with respect to the product measure of µ×mR, where mR is the Lebesgue measure on R.
Since

U = {(x, y) ∈ H(∂G)× R | y ∈ [0, C], x ∈ Ay},
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we have ∫
fdµ =

∫ C

0
µ(At)dmR(t),

∫
fdµn =

∫ C

0
µn(At)dmR(t).

By the bounded convergence theorem, it is sufficient to prove that µn(At) (t ∈ (0, C]) is
uniformly bounded, and µn(At) converges pointwise to µ(At) for mR-a.e. t ∈ [0, C].

First, we see that µn(At) (t ∈ (0, C]) is uniformly bounded. Note that A0 = H(∂G).
For any t ∈ (0, C], At is included in L := suppf , which is compact. Since (H(∂G), d) is a
proper metric space, the closed r-neighborhood of L, denoted by B(L, r), is also compact
for r ≥ 0. Set C(L, r) := {x ∈ H(∂G) | d(L, x) = r} for r > 0, which includes the
boundary ∂B(L, r). Then we have

B(L, 1) = L ⊔
⊔

0<r≤1

C(L, r).

Since the interval (0, 1] is an uncountable set, there exists r0 ∈ (0, 1] such that C(L, r0)
has zero measure with respect to µ (see Lemma 5.46 for more general statement). Then
µ(∂B(L, r0)) = 0, which implies that µn(B(L, r0)) converges to µ(B(L, r0)) by the as-
sumption. Hence there exists M > 0 such that µn(At) ≤M for any n ∈ N and t ∈ (0, r].

Next, we see that µn(At) converges pointwise to µ(At) for mR-a.e. t ∈ [0, C]. From the
assumption (3), it is sufficient to see that for mR-a.e. t ∈ [0, C] we have µ(∂At) = 0. Set

Bt := {x ∈ H(∂G) | f(x) = t}
for t ∈ [0, C]. We prove that ∂At ⊂ Bt ∪ ∆(f) for each t ∈ [0, C]. Take x ∈ ∂At and
assume that f is continuous at x, which implies that x ̸∈ ∆(f). If f(x) > t, then there
exists an open neighborhood V of x such that for any x′ ∈ V we have f(x′) > t, which
implies that V ⊂ At and contradicts the assumption that x ∈ ∂At. Therefore f(x) = t
and x ∈ Bt.

Since µ(∆(f)) = 0, it is sufficient to prove that formR-a.e. t ∈ [0, C] we have µ(Bt) = 0.
Note that µ(At) is a decreasing function with respect to t. Therefore µ(At) has at most
countably many non-continuous points. If µ(At) is continuous at t0 > 0, then Bto ⊂
(At0−ε \At0+ε) for any small ε > 0 and

0 ≤ µ(Bt0) ≤ lim
ε→0

(µ(At0−ε)− µ(At0+ε)) = 0.

Therefore µ(Bt) = 0 except countably many points of [0, C]. This completes the proof. □
In order to prove the continuity of iSC, we focus on the boundary of CF (Gj) for j ∈ J .

We assume that Gj contains id for every j ∈ J .
Since CH(S1) ∩ CH(S2) is a compact convex subset of H surrounded by geodesics for

(S1, S2) ∈ I, CH(S1) ∩ CH(S2) can be considered as a polygon. We define BF to be a
subset of I consisting of points (S1, S2) satisfying one of the following conditions:

BF1) a vertex of CH(S1) ∩ CH(S2) belongs to ∂F ;
BF2) an edge of CH(S1) ∩ CH(S2) overlaps an edge of F ;
BF3) an edge of CH(S1) ∩ CH(S2) is tangent to a vertex of F .

A geodesic ℓ in H is said to be tangent to a vertex of a (convex) polygon P of H if the
intersection of ℓ and P is exactly the vertex. Note that BF does not depend on edges and

vertices removed from the Dirichlet domain Fx. Hence for any y ∈ Σ̃ and the Dirichlet
domain Fy centered at y we can define BFy as above. Set

∆F := {(S, S) ∈ ∂2G× ∂2G | CH(S) ∩ F ̸= ∅}.
The subsets BF and ∆F are closed in H(∂G)×H(∂G).

Lemma 5.42. For {id} ∈ Fin(G) the boundary ∂CF ({id}) of CF ({id}) in H(∂G)×H(∂G)
is included in the union of BF and ∆F .



60 D. SASAKI

Proof. First of all, we remark that for S ∈ H with #S ≥ 3 for any interior point z of
CH(S) there exists an open neighborhood U of S such that for any S′ ∈ U the convex
hull CH(S′) also contains z as an interior point from Lemma 3.8.

Let (S1, S2) ∈ ∂CF ({id}). By the definition, for any open neighborhood O of (S1, S2)
both O ∩ CF ({id}) and O ∩ CF ({id})c are non-empty.

Claim 1: If S1 = S2 =: S, then (S, S) ∈ ∆F .

If #S ≥ 3, then the interior of CH(S) is not bounded in Σ̃ and we can take z ∈
Int(CH(S)) \ F . Then take an open neighborhood U of S such that for any S′ ∈ U the
convex hull CH(S′) also contains z as an interior point. Now, we can see that U × U is
an open neighborhood of (S, S) and does not intersect CF ({id}), which contradicts the
assumption that (S, S) ∈ ∂CF ({id}). Hence #S = 2. If CH(S) does not intersects F ,
then there exists a neighborhood U of S such that for any S′ ∈ U the convex hull of S′

does not intersects F . Therefore (S, S) ∈ ∆F . This argument will be used frequently in
this proof, and we will not remark it.

Claim 2: If S1 ̸= S2, then S1 ∩ S2 = ∅.
To obtain a contradiction, suppose that S1 ̸= S2 and S1 ∩ S2 ̸= ∅. From the proof of

Claim 1, #(S1 ∩ S2) must be smaller than 3 and the interior of CH(S1) ∩ CH(S2) must
be included in F . Since S1 ̸= S2, we can assume that S1 ≥ 3 from Claim 1. If #S2 = 2,
then CH(S2) is a boundary component of CH(S1) or included in the interior of CH(S1).
In both cases, there exists an open neighborhood U of (S1, S2) such that U ⊂ CF ({id})c,
a contradiction.

Now, we can assume that #S1,#S2 ≥ 3. If #(S1∩S2) = 1, then CH(S1)∩CH(S2) must
be empty and there exists an open neighborhood U of (S1, S2) such that U ⊂ CF ({id})c, a
contradiction. If #(S1 ∩ S2) = 2, then CH(S1) and CH(S2) have one common boundary
component and Int(CH(S1)) ∩ Int(CH(S2)) is empty. Even in this case, there exists an
open neighborhood U of (S1, S2) such that U ⊂ CF ({id})c. Therefore in any cases we can
obtain a contradiction.

Claim 3: If S1 ̸= S2, then (S1, S2) ∈ BF .
Since S1∩S2 = ∅, the intersection CH(S1)∩CH(S2) should be non-empty and bounded.

If CH(S1)∩CH(S2) contains an exterior point of F , then (S1, S2) ̸∈ ∂CF ({id}) from the
proof of Claim 1. Hence CH(S1) ∩ CH(S2) is included in F . If CH(S1) ∩ CH(S2) is
included in the interior of F , then for (S′

1, S
′
2) sufficiently close to (S1, S2) the intersection

CH(S′
1) ∩ CH(S′

2) is also included in the interior of F . Therefore, CH(S1) ∩ CH(S2) is
not included in the interior of F , which implies that (S1, S2) satisfies the condition (BF1)
or (BF2). □
Lemma 5.43. For Gj ∈ Fin(G) the boundary ∂CF (Gj) is included in Gj(BF ⊔∆F ).

Proof. Let (S1, S2) ∈ ∂CF (Gj). By the same way for Claim 1 in the above lemma, we can
see that if S1 = S2 =: S, then (S, S) ∈ Gj(∆F ). Note that

Gj(∆F ) = {(S, S) ∈ ∂2G× ∂2G | CH(S) ∩Gj(F) ̸= ∅}.
Since (S, S) ∈ ∂CF (Gj), the convex hull CH(S) should intersect gF for every g ∈ Gj .
Therefore there may not exist such (S, S).

By the same way for Claim 2 in the above lemma, we can see that if S1 ̸= S2, then
S1 ∩ S2 = ∅. Now, we prove that if S1 ∩ S2 = ∅, then (S1, S2) ∈ Gj(BF ). In this case,

the intersection CH(S1)∩CH(S2) must be included in Gj(F). Since (S1, S2) ∈ ∂CF (Gj),
for every ε > 0 there exists a polygon P such that the Hausdorff distance between P
and CH(S1) ∩CH(S2) is smaller than ε, and P is not precisely covered by Gj(F), which
implies that P is not included in Gj(F), or P does not intersect g(F) for some g ∈ Gj .

If for every ε > 0 the ε-neighborhood of CH(S1) ∩ CH(S2) is not included in Gj(F),
then a vertex of CH(S1) ∩ CH(S2) belongs to ∂Gj(F) or an edge of CH(S1) ∩ CH(S2)
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overlaps an edge of ∂Gj(F), which implies that for some g ∈ Gj , g
−1(S1, S2) satisfies the

condition (BF1) or (BF2) and belongs to BF .
If there exists ε > 0 such that the ε-neighborhood of CH(S1) ∩ CH(S2) is included in

Gj(F), then there exists g0 ∈ Gj such that CH(S1)∩CH(S2) does not contain an interior

point of g0(F). Since CH(S1)∩CH(S2) intersects g0(F) and both CH(S1)∩CH(S2) and
F are polygons, g−1

0 (S1, S2) satisfies at least one of the conditions to belong to BF . In
this case we need the condition (BF3). Therefore in any cases (S1, S2) ∈ Gj(BF ). □

Our immediate goal is to prove Lemma 5.47, which says that for any µ, ν ∈ SC(Σ) there
exists a Dirichlet domain F such that

µ× ν(BF ) = 0.

By taking a path c : [0, 1] → Σ̃ starting from x we can obtain a family of Dirichlet domains
{Fc(t)}t∈[0,1]. We investigate how ∂Fx changes when x moves along c. Recall that each
edge of the Dirichlet domain Fx is a sub-arc of the perpendicular bisector of the geodesic
joining x to g(x), denoted by [x, g(x)], for g ∈ G. We say that such perpendicular bisector

surround Fx. Since G acts on Σ̃ cocompactly and properly discontinuously, there are

only finitely many perpendicular bisectors surrounding Fy for any y ∈ Σ̃. Fix g ∈ G and
consider how the perpendicular bisector of [x, g(x)] moves when x moves along c. From
now on, we consider the Poincaré disk model of H and we will use the Euclidean geometry
for considering geodesics of H.

Lemma 5.44. Let ℓ be a geodesic line of H. Take y1, y2 ∈ H such that y1, y2 belong the
same connected component of H \ ℓ. Let y′i be the foot of the perpendicular line from yi to
ℓ for i = 1, 2. If dH(y1, y

′
1) = dH(y2, y

′
2) and b is the perpendicular bisector of [y1, y2], then

b is also the perpendicular bisector of [y′1, y
′
2] ⊂ ℓ.

Proof. Take an isometry ϕ such that ϕ maps the midpoint between y′1 and y′2 to 0 ∈ H.
Now, from the Euclidean geometry it is easy to see that the perpendicular bisector of
[ϕ(y1), ϕ(y2)] is also the perpendicular bisector of [ϕ(y′1), ϕ(y

′
2)] ⊂ ϕ(ℓ). Since ϕ is an

isometry of H, this completes the proof. □
Fix non-trivial g ∈ G. For y ∈ Σ̃ we define bg(y) to be the perpendicular bisector of

[y, g(y)]. Let x0, y0 be the feet of the perpendicular lines from x, y ∈ Σ̃ to the axis Ax(g)
of g, respectively. For any z ∈ H the hyperbolic distance from z to Ax(g) coincides with
that from g(z) to Ax(g). Hence, we have bg(x) = bg(x0) and bg(y) = bg(y0) from the
above lemma. Therefore, the bisector bg(x) coincides with bg(y) if and only if x0 = y0.
Moreover, if bg(x) does not coincides with bg(y), then bg(x) does not intersect bg(y).

Recall that the translation length of g is the hyperbolic distance between a point z ∈
Ax(g) and g(z). Take an isometry ϕ of Isom(H) such that ϕ fixes the axis of g and ϕ2 = g.
Then the translation length of ϕ is a half of that of g and bg(y) equals ϕ(ℓy) for the
perpendicular line ℓy from y to the axis of g.

Now, we consider how the vertices of Fx moves when x moves along c. Since a vertex
of Fx is the intersection of two bisectors bg1(x) and bg2(x) for some g1, g2 ∈ G, we have
a map Φg1,g2 from an open neighborhood of x to a neighborhood of bg1(x) ∩ bg2(x). Note
that if bg1(x) and bg2(x) intersects at a point, then there exists an open neighborhood U
of x such that bg1(y) and bg2(y) also intersects at a point for any y ∈ U . From the above

construction of bgi(y) for y ∈ Σ̃, we can see that Φg1,g2 is a C∞-map on U . Therefore we
have the following lemma:

Lemma 5.45. Let g1, g2 be non-trivial elements of G. Assume that bg1(x) and bg2(x)

intersects at a point for x ∈ Σ̃. Then there exists an open neighborhood U of x and an

injective C∞-map Φg1,g2 from U to Σ̃ which maps y ∈ U to the intersection point of bg1(y)
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and bg2(y). Since Φg1,g2 is injective, a subset of U consisting of points y satisfying the
condition that the Jacobian of Φg1,g2 at y equals 0 is a closed subset of U without interior
points.

Proof. We check only the injectivity of Φg1,g2 . For any y ∈ U , the perpendicular line from
y to Ax(g1) and that to Ax(g2) intersects at y and bg1(y) and bg2(y) intersects at a point.
Assume that Φg1,g2(y) = Φg1,g2(z) for y, z ∈ U . Then bg1(y) = bg1(z) and bg2(y) = bg2(z).
Therefore the foot of the perpendicular line from y to Ax(gi) coincides with that from z
for i = 1, 2, which implies that y = z. □

Note that for any x ∈ Σ̃ and any non-trivial g1, g2 ∈ G with g1 ̸= g2, bg1(x) never
coincide with bg2(x) since g1(x) ̸= g2(x).

The following measure-theoretic lemma will plays an essential role in proving Lemma
5.47.

Lemma 5.46. Let (X,µ) be a measurable space, where µ is a measure on X. Let {Aλ}Λ∈Λ
be an uncountable family of measurable subsets of X. Let B be a measurable subset of X
such that B includes

∪
λ∈ΛAλ. Assume that µ(B) <∞ and there exists M > 0 such that

for any x ∈ X we have

#{λ ∈ Λ | Aλ ∋ x} ≤M.

Such a family {Aλ} is said to be M -essentially disjoint. Then a subset

Λ>0 := {λ ∈ Λ | µ(Aλ) > 0}
is countable.

Proof. To obtain a contradiction, suppose that Λ>0 is uncountable. For each n ∈ N
consider a subset

Λn := {λ ∈ Λ | 1
n
≤ µ(Aλ) <

1

n− 1
},

where if n = 1, then 1/(n − 1) means ∞. Since µ(Aλ) ≤ µ(B) < ∞ for any λ ∈ Λ, we
have

Λ>0 =
⊔
n∈N

Λn.

Then we can see that there exists n0 ∈ N such that Λn0 is uncountable. Since {Aλ} is
M -essentially disjoint, for any finitely many λ1, . . . , λk ∈ Λn0 we have

µ(

k∪
i=1

Aλk
) ≥ 1

M

k∑
i=1

µ(Aλi
) ≥ 1

M
· k · 1

n0
.

Therefore for a countably infinite subset L ⊂ Λn0 we have

µ(
∪
λ∈L

Aλ) ≥
k

Mn0

for any k ∈ N. Hence
µ(
∪
λ∈L

Aλ) = ∞,

which contradicts our assumption that µ(B) <∞. □

Lemma 5.47. There exists a smooth curve c : [0, 1] → Σ̃ such that for any µ, ν ∈ SC(Σ),
the set

{t ∈ [0, 1] | µ× ν(BFc(t)
) > 0}

is countable. Therefore for almost all t ∈ [0, 1] we have µ× ν(BFc(t)
) = 0.
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Proof. Take a relatively compact open subset U of Σ̃ and a compact subset K of Σ̃ such

that K includes the Dirichlet domain Fy for any y ∈ U . Since G acts on Σ̃ properly
discontinuously, there exists M1 > 0 such that

#{g ∈ G | bg(y) ∩K ̸= ∅ for some y ∈ U} < M1.

Note that if bg(y)∩K ̸= ∅, then the hyperbolic distance from y to g(y) is smaller than or
equal to twice the diameter of K. Take all g1, . . . , gm ∈ G \ {id} such that bgi(y) ∩K ̸= ∅
for some y ∈ U . Then m < M1, which implies that the number of edges of the Dirichlet
domain Fy for any y ∈ U is less than M1.

From Lemma 5.44 and the argument following it, we can take a smooth curve c : [0, 1] →
U satisfying the following condition:

(∗) for any t1, t2 ∈ [0, 1] with t1 ̸= t2 the foot of the perpendicular line from c(t1) to
Ax(gi) is different from that from c(t2) for any i = 1, . . . ,m.

Then for any t1, t2 ∈ [0, 1] with t1 ̸= t2 and gi, the bisector bgi(c(t1)) and bgi(c(t2)) are
disjoint. We will modify c later.

In order to apply Lemma 5.46 to the family {BFc(t)
}t∈[0,1], we prove that for any

(S1, S2) ∈ I, the cardinality of {t ∈ [0, 1] | (S1, S2) ∈ BFc(t)
} is uniformly bounded.

Since K is compact, there exists M2 > 0 such that the number of boundary components
of CH(S) intersecting K is less than M2 for any S ∈ H(∂G), which implies that for
(S1, S2) ∈ I the number of edges of the polygon CH(S1) ∩ CH(S2) intersecting K is less
than 2M2.

For (S1, S2) ∈ I and each vertex v of CH(S1)∩CH(S2), v belongs to bgi(c(t)) at most
once for t ∈ [0, 1] for each gi, that is, the number of t ∈ [0, 1] such that v ∈ ∂Fc(t) is less
than M1. This corresponds to the condition (BF1). By the same way we can see that for
each edge e of CH(S1) ∩ CH(S2) the number of t ∈ [0, 1] such that e overlaps an edge of
Fc(t) is less than M1. This corresponds to the condition (BF2).

Now, we want to see that for each edge e of CH(S1) ∩CH(S2) the number of t ∈ [0, 1]
such that e is tangent to a vertex of Fc(t) is uniformly bounded. For any pair of gi, gj
such that bgi(c(0)) and bgj (c(0)) intersect at a point belonging to K, we can assume that
U is sufficiently small and we can define the map Φgi,gj on U . We can also assume that
if bgi(c(0)) and bgj (c(0)) intersect at a point belonging to the complement Kc, then bgi(x)
and bgj (x) do not intersect at a point belonging toK for any x ∈ U . If Φgi,gj ◦c is a geodesic
and Φgi,gj (c(t)) is a vertex of Fc(t) for every t ∈ [0, 1], then an edge e of CH(S1)∩CH(S2)
can be tangent to Φgi,gj (c(t)) for every t ∈ [0, 1]. This is an undesirable case.

We modify c such that c satisfies the above condition (∗) and the condition that any
geodesic meets Φgi,gj ◦ c at most 2 times for any pair of gi, gj . From Lemma 5.45 we can
assume that the Jacobian of Φgi,gj at y is not 0 for every y ∈ U and every pair of gi, gj .

We use the Euclidean geometry on the Poincaré disk model of H in oder to modify
c. Since K is bounded in H, there exists a constant R0 > 0 such that any geodesic in
H passing through K is a sub-arc of a line or a circle with radius larger than R0 in the
Euclidean plane containing H, whose absolute value of curvature is less than 1/R0. If the
absolute value of the curvature of a smooth curve γ is larger than 1/R0 and the length
of γ is small enough, then γ is approximated by a sub-arc of a circle with radius smaller
than R0 and any line or a circle with radius larger than R0 in the Euclidean plane meets
γ at most twice. Note that if the absolute value of the curvature of γ is larger than 1/R0

and smaller than L, then the length of γ should be smaller than π/L, which is the length
of a half-circle with radius 1/L. Now, we prove the following claim:

Claim: We can modify c so that c satisfies the condition (∗), and the absolute of the
curvature of Φgi,gj ◦ c is larger than 1/R0 for any pair of gi, gj.
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Suppose the above claim and prove the statement of the lemma. First, we can see that
for each edge e of CH(S1) ∩ CH(S2) the number of t ∈ [0, 1] such that e is tangent to a
vertex of Fc(t) is less than 2M1 since the number of vertices of Fc(t) is less than 2M1. Recall
that the number of edges of CH(S1) ∩CH(S2) intersecting K is at most 2M2. Therefore
for each (S1, S2) ∈ I the number of t ∈ [0, 1] such that BFc(t)

containing (S1, S2) is at

most 2M2(M1 +M1 + 2M1). Note that the union of BFc(t)
over t ∈ [0, 1] is included in

{(S1, S2) ∈ H(∂G)×H(∂G) | CH(S1) ∩ CH(S2) ∩K ̸= ∅},

which is compact. Hence by applying Lemma 5.46 to µ× ν and the family {BFc(t)
}t∈[0,1],

the set

{t ∈ [0, 1] | µ× ν(BFc(t)
) > 0}

is countable.
Now we prove Claim in the above. Set c(t) = (u(t), v(t)) for t ∈ [0, 1] and set Φ(u, v) :=

Φgi,gj (u, v) = (α(u, v), β(u, v)) for (u, v) ∈ U . Let c′ denote the derivative of c. We denote
by αu the partial derivative of α with respect to u at c(t) for some t ∈ [0, 1]. Recall that
the curvature κc of c is

κc =
u′v′′ − v′u′′

(u′2 + v′2)
3
2

.

We have

(α ◦ c)′ = αuu
′ + αvv

′,

(α ◦ c)′′ = αuuu
′2 + 2αuvu

′v′ + αvvv
′2 + αuu

′′ + αvv
′′,

and

(α ◦ c)′(β ◦ c)′′ − (β ◦ c)′(α ◦ c)′′ = ϕ+ ψ,

where

ϕ = (αuβv − βuαv)(u
′v′′ − v′u′′)

and

ψ =(αuu
′ + αvv

′)(βuuu
′2 + 2βuvu

′v′ + βvvv
′2)

− (βuu
′ + βvv

′)(αuuu
′2 + 2αuvu

′v′ + αvvv
′2).

Then

κΦ◦c =
ϕ+ ψ

((α ◦ c)′2 + (β ◦ c)′2)
3
2

.

Since Φgi,gj is given for any pair gi, gj , we can regard the partial derivatives αu, βu, . . . , βvv
appeared in κΦ◦c as almost constant. Note that the Jacobian of Φ, which is (αuβv−βuαv),
is not 0. We modify the second derivatives u′′, v′′ so that (u′v′′ − v′u′′) > 0 is large. Then
κΦ◦c(t) is larger than 1/R0. Note that u′ and v′ do not have to change so much if we
restrict c to a short interval [0, r] for some small r > 0.

For example, consider a function f(t) = (t + 1)a − at − 1 around 0 for a large a ∈ N.
Then we have f ′(t) = a(t+ 1)a−1 − a, f ′′(t) = a(a− 1)(t+ 1)a−2. Consider the case that
u′ > 0. Set ĉ(t) := (u(t), v(t) + f(t)) for t ∈ [0, r] for a sufficiently small r > 0. Then
ĉ is close to c, ĉ′ is close to c′, and (v(t) + f(t))′′ is sufficiently large for t ∈ [0, r]. Since
u′, v′, u′′, v′′ is bounded in U , u′(v′′ + f ′′) − (v′ + f ′)u′′ is sufficiently large, which implies
that the absolute value of the curvature of Φ ◦ ĉ is sufficiently large. Note that if ĉ is close
to c and ĉ′ is close to c′ on [0, r], then ĉ also satisfies the condition (∗). This completes
the proof. □
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Remark 5.48. For a subset K of Σ̃ set

A(K) := {S ∈ H(∂G) | CH(S) ∩K ̸= ∅}.

If K is open or compact, then so is A(K) respectively from Lemma 3.8. By using the
curve c in Lemma 5.47, we can see that for any µ ∈ SC(Σ), a set

{t ∈ [0, 1] | µ(∂A(Fc(t))) > 0}

is countable. In fact, the boundary of A(Fc(t)),

∂A(Fc(t)) = {S ∈ H(∂G) |
CH(S) ∩ Int(Fc(t)) = ∅ and CH(S) ∩ ∂Fc(t)) ̸= ∅}.

Hence for S ∈ H(∂G), if S ∈ ∂A(Fc(t)), then there exists a boundary component B of
CH(S) such that B is tangent to a vertex of Fc(t) or overlaps an edge of Fc(t).

Proof of Theorem 5.35. Take (µn, νn), (µ, ν) ∈ SC(Σ)× SC(Σ) (n ∈ N) such that (µn, νn)
converges to (µ, ν). Then the product measure µn × νn converges to µ× ν in the weak-∗
topology in H(∂G) × H(∂G) by general theory (see [Bil99, Theorem 2.8] for the case of

probability measures). From Lemma 5.47 and Remark 5.48 there exists x ∈ Σ̃ such that

µ(∂A(Fx)) = ν(∂A(Fx)) = µ× ν(BFx) = 0.

We remove some vertices and edges from F = Fx such that G(F) = Σ̃ and gF ∩ F = ∅
for any non-trivial g ∈ G. Then µn(A(F)), νn(A(F)) converges to µ(A(F)), ν(A(F))
respectively by Proposition 5.41. Set

M := sup{µn(A(F)), νn(A(F)) | n ∈ N}.

We prove the following claim.
Claim: µn × νn(CF (Gj)) converges to µ× ν(CF (Gj)) for any j ∈ J .
Assume Claim and prove that iSC(µn, νn) converges to iSC(µ, ν). Recall thatGj contains

id for every j ∈ J . Hence ⊔
j∈J

CF (Gj) ⊂ A(F)×A(F),

which implies that ∑
j∈J

µn × νn(CF (Gj)) ≤M2

for any n ∈ N. Therefore

lim
n→∞

iSC(µn, νn) = lim
n→∞

∑
j∈J

µn × νn(CF (Gj))

=
∑
j∈J

µ× ν(CF (Gj)) = iSC(µ, ν),

which proves the theorem.
Now, we prove Claim in the above. Fix j ∈ J and ε > 0. From Proposition 5.41, we

consider the boundary ∂CF (Gj). Recall that ∂CF (Gj) ⊂ Gj(BF ⊔∆F ) for j ∈ J and we
have

Gj(∆F ) = {(S, S) ∈ H(∂G)×H(∂G) | #S = 2, CH(S) ∩Gj(F) ̸= ∅},
which is included in the compact set A(Gj(F)). Note that µ × ν(Gj(BF )) = 0 since
µ × ν(BF ) = 0. Hence, if µ × ν(Gj(∆F )) = 0, then immediately we can see that µ ×
ν(∂CF (Gj)) = 0, which implies that µn × νn(CF (Gj)) converges to µ × ν(CF (Gj)) by
Proposition 5.41. From now on, we assume that µ× ν(Gj(∆F )) > 0.
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From the Fubini’s theorem we have

µ× ν(Gj(∆F )) =

∫
χGj(∆F )(S1, S2)dµ× ν

=

∫ (∫
χGj(∆F )(S1, S2)dµ(S1)

)
dν(S2)

=

∫
∂2G∩A(Gj(F))

µ({S2})dν(S2)

=
∑

S∈∂2G∩A(Gj(F)): common atomof µ,ν

µ({S})ν({S}),

where χGj(∆F ) is the characteristic function of Gj(∆F ) on H(∂G) ×H(∂G). Recall that

a point S ∈ H(∂G) is called an atom of µ if µ({S}) > 0. Since µ, ν are locally finite
measures, they have at most countably many atoms. Therefore there exist finite common
atoms S1, . . . , Sm ∈ ∂2G ∩A(Gj(F)) of µ, ν such that

(∗) µ× ν(Gj(∆F )) <
m∑
k=1

µ× ν({(Sk, Sk)}) + ε.

We will construct an open neighborhood V of {(S1, S1), . . . , (Sm, Sm)} such that µn ×
νn(V ∩ CF (Gj)) < ε for any n ∈ N.

Since #Sk = 2 and Sk is an atom of a subset current, there exists gk ∈ G such that
Sk = Λ(⟨gk⟩) from Lemma 2.8. Hence gk(Sk) = Sk. Since µ(∂A(F)) = ν(∂A(F)) = 0,
we have µ(∂A(gF)) = ν(∂A(gF)) = 0 for any g ∈ Gj , which implies that CH(Sk) passes
through the interior of gF for any g ∈ Gj . Hence Sk ∈ Int(A(Gj(F))). Then we can take
an open neighborhood Ok ⊂ Int(A(Gj(F))) of Sk. Take an arbitrary L ∈ N and set

Uk :=

L∩
l=1

(gk)
−l(Ok).

Then Uk is also an open neighborhood of Sk and

gk(Uk), . . . , (gk)
L(Uk) ⊂ Ok ⊂ Int(A(Gj(F))).

Now, we consider the intersection of Uk × Uk and CF (Gj). Note that gCF (Gj) ∩
CF (Gj) = ∅ for any non-trivial g ∈ G. Therefore

gk (Uk × Uk ∩ CF (Gj)) , . . . , (gk)
L (Uk × Uk ∩ CF (Gj))

are pairwise disjoint, and for any n ∈ N we have

µn × νn(Uk × Uk ∩ CF (Gj))

=
1

L
µn × νn

(
L⊔
l=1

(gk)
l(Uk × Uk ∩ CF (Gj))

)

≤ 1

L
µn × νn(A(Gj(F))×A(Gj(F)))

≤ 1

L

∑
g1,g2∈Gj

µn × νn((g1A(F))× (g2A(F)))

≤(#GjM)2

L
.
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Set V := (U1 × U1) ∪ · · · ∪ (Um × Um). Then we have

µn × νn(V ∩ CF (Gj)) ≤
m∑
k=1

(#GjM)2

L
≤ m(#GjM)2

L
.

Then we can take a sufficiently large L such that

µn × νn(V ∩ CF (Gj)) < ε.

Note that V contains all of (S1, S1), . . . , (Sm, Sm).
Since CF (Gj) ∩Gj(∆F ) = ∅, we can see that

Int(CF (Gj)) = CF (Gj) \Gj(BF ).

Then from Proposition 5.41 and Equation (∗), we have

µ× ν(CF (Gj)) = µ× ν(Int(CF (Gj)))

≤ lim inf
n→∞

µn × νn(Int(CF (Gj)))

≤ lim inf
n→∞

µn × νn(CF (Gj))

≤ lim sup
n→∞

µn × νn(CF (Gj))

≤ lim sup
n→∞

µn × νn(CF (Gj) \ V )

+ lim sup
n→∞

µn × νn(CF (Gj) ∩ V )

≤ lim sup
n→∞

µn × νn(CF (Gj) \ V ) + ε

≤µ× ν(CF (Gj) \ V ) + ε

≤µ× ν(CF (Gj)) + µ× ν(Gj(∆F ) \ V ) + ε

<µ× ν(CF (Gj)) + 2ε.

Since ε > 0 is arbitrary,

lim
n→∞

µn × νn(CF (Gj)) = µ× ν(CF (Gj)).

This completes the proof. □

6. Intersection functional N on subset currents

Let Σ be a compact hyperbolic surface possibly with boundary and G the fundamental
group of Σ. The notation in this section is based on that in Section 5 and we consider the

universal cover Σ̃ of Σ as a subspace of the hyperbolic plane H. We identify ∂G with the
limit set Λ(G) ⊂ ∂H.

Recall that for two non-trivial finitely generated subgroups H and K of G we have
considered the fiber product CH ×Σ CK corresponding to the convex cores (CH , pH) and
(CK , pK). Now, instead of contractible components of CH ×Σ CK we study the non-
contractible components of CH ×Σ CK . Note that CH ×Σ CK can be considered as the

quotient space G \ ĈHH ×
Σ̃
ĈHK and every non-contractible component of CH ×Σ CK is

corresponding to

(g1Hg
−1
1 ∩ g2Kg−1

2 )\(g1CHH ∩ g2CHK)

for [g1H, g2K] ∈ G\(G/H ×G/K) with g1Hg
−1
1 ∩ g2Kg−1

2 ̸= ∅. If g1CHH ∩ g2CHK = ∅
for [g1H, g2K] ∈ G\(G/H ×G/K), then g1Hg

−1
1 ∩ g2Kg−1

2 is trivial.
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Definition 6.1 (ProductN ). We define the productN of two finitely generated subgroups
H and K of G by

N (H,K) :=
∑

[g1H,g2K]∈G\(G/H×G/K)

rk(g1Hg
−1
1 ∩ g2Kg−1

2 ).

See [Sas15] for the background of N in the case that G is a free group of finite rank.

Remark 6.2. Let H,K be finitely generated subgroups of G. From [Sas15, Theorem 4.1],
we have a bijective map from G\(G/H × G/K) to the set of all double cosets H\G/K,
which maps [g1H, g2K] to Hg−1

1 g2K. Since rk is invariant up to conjugacy, we obtain

N (H,K) =
∑

HgK∈H\G/K

rk(H ∩ gKg−1).

In the case that G is a free group of finite rank, this expression of the product N is often
used for stating the Strengthened Hanna Neumann Conjecture, which can be written as
follows: for any finitely generated subgroups H and K of G the inequality

N (H,K) ≤ rk(H)rk(K)

holds. This conjecture was individually proved by by Friedman [Fri15] and Mineyev
[Min12]. As far as the author knows, the surface group version of the Strengthened Hanna
Neumann Conjecture is still an open problem.

Next, we consider a geometrical expression of the product N . For each [g1H, g2K] ∈
G\(G/H ×G/K), if g1Hg

−1
1 ∩ g2Kg−1

2 ̸= {id}, then g1CHH ∩ g2CHK is non-empty and
there exists a corresponding connected component of CH×ΣCK whose fundamental group
is isomorphic to g1Hg

−1
1 ∩g2Kg−1

2 . We define the reduced rank rk(M) of a non-contractible
compact surface or a circle M to be −χ(M) and the reduced rank of a contractible space
M to be 0. Then we can see that

N (H,K) =
∑

M⊂CH×ΣCK

rk(M),

where the sum is taken over all connected components of CH×ΣCK . Note that a connected
component of CH ×Σ CK is not necessarily a surface.

Our goal in this section is to prove the following theorem. In the case that G is a free
group of finite rank, this theorem is proved in [Sas15, Theorem 3.2].

Theorem 6.3. There exists a unique symmetric continuous R≥0-bilinear functional

N : SC(Σ)× SC(Σ) → R≥0

such that for any non-trivial finitely generated subgroups H and K of G we have

N (ηH , ηK) = N (H,K).

In the case that G is a free group F of finite rank, from the above theorem, we can see
that the inequality

N (µ, ν) ≤ rk(µ)rk(ν)

holds for any µ, ν ∈ SC(F ), which is a direct corollary to the Strengthened Hanna Neu-
mann Conjecture.

Note that for any finitely generated subgroup H of G we have N (G,H) = rk(H).
Hence N (ηG, ·) coincides with the reduced rank functional rk by the denseness property
of rational subset currents for G.

The guidelines for proving Theorem 6.3 is almost the same as that in [Sas15]. The main
objects considered in [Sas15] are graphs and trees but our main objects here are surfaces
and circles. One of the keys for proving Theorem 6.3 is the Gauss-Bonnet Theorem. Note
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that a boundary component of a 2-dimensional connected component of CH ×Σ CK is not
totally geodesic but piecewise geodesic. Moreover, CH×ΣCK contains a 1 or 0-dimensional
object if either H or K is cyclic.

In order to apply the Gauss-Bonnet Theorem to CH×ΣCK , we introduce some notation.
For a corner v of a piecewise geodesic, which is called a vertex, we define An(v) to be
the exterior angle of v. If a 1-dimensional connected component M of CH ×Σ CK has
a boundary, then M is a geodesic segment. For an end-point v of the geodesic segment,
which is called a vertex, we define An(v) to be π. If a connected componentM of CH×ΣCK

is a point, then we also call M a vertex of CH ×Σ CK and define An(M) to be 2π. By
applying the Gauss-Bonnet Theorem to each connected component M of CH ×Σ CK , we
have the following formula

2πχ(M) = −Area(M) +
∑

v: vertex of M

An(v),

and so

(GB) 2πχ(CH ×Σ CK) = −Area(CH ×Σ CK) +
∑

v: vertex of CH×ΣCK

An(v).

Note that χ(CH ×Σ CK) (or Area(CH ×Σ CK)) is the sum of the Euler characteristic (or
the area, respectively) of each connected component of CH×ΣCK . IfM is a 1-dimensional
or 0-dimensional connected component of CH ×Σ CK , then the area of M is 0.

Since the Euler characteristic of a contractible component is 1, we have the following
equation:

N (H,K) = −χ(CH ×Σ CK) + i(CH , CK).

We will extend χ to a symmetric continuous R≥0-bilinear functional from SC(Σ)× SC(Σ)
to R by using Formula (GB). In order to do that, we will extend both the “area term”
and the “angle term” in Formula (GB) to symmetric continuous R≥0-bilinear functionals
from SC(Σ)× SC(Σ) to R≥0.

First, we extend the “area term” by using the same method of Theorem 3.3. Take a

Dirichlet domain F for the action of G on Σ̃. Recall that mH is the measure on H induced
by the Riemannian metric on H. We define a function f from H(∂G)×H(∂G) to R by

f(S1, S2) := mH(CH(S1) ∩ CH(S2) ∩ F)

for (S1, S2) ∈ H(∂G)×H(∂G).

Proposition 6.4. The function f is a continuous function with compact support. The
functional f∗ from SC(Σ)× SC(Σ) to R≥0 defined by

f∗(µ, ν) :=

∫
fdµ× ν (µ, ν ∈ SC(Σ))

is a symmetric continuous R≥0-bilinear functional satisfying the condition that for any
non-trivial finitely generated subgroups H and K of G we have

f∗(ηH , ηK) = Area(CH ×Σ CK).

Proof. For any (S1, S2) ∈ H(∂G)×H(∂G) satisfying the condition that either CH(S1)∩F
or CH(S2) ∩ F is empty, we have f(S1, S2) = 0. This implies that the support of f is
included in A(F) × A(F), which is compact. Hence f has a compact support. We can
prove that f is continuous by the same way as the proof of Proposition 3.2.
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Now, we check that f∗(ηH , ηK) = Area(CH×ΣCK) for any non-trivial finitely generated
subgroups H and K of G. First we have

f∗(ηH , ηK) =

∫
fdηH × ηK

=
∑

(g1H,g2K)∈G/H×G/K

f(g1Λ(H)g2Λ(K))

=
∑

(g1H,g2K)∈G/H×G/K

mH(g1CHH ∩ g2CHK ∩ F).

Set

P := {(g1H, g2K,x) ∈ G/H ×G/K × Σ̃ | x ∈ g1CHH ∩ g2CHK ∩ F}.

We can extend the measure mH to the measure on G/H × G/K × Σ̃ naturally since
G/H × G/K is a countable discrete space. Then we have mH(P ) = f∗(ηH , ηK). From
the proof of Lemma 3.1, it is sufficient to see that P is a measure-theoretic fundamental

domain for the action of G on ĈHH ×
Σ̃
ĈHK , that is, G(P ) = ĈHH ×

Σ̃
ĈHK and gP ∩P

has measure zero for any non-trivial g ∈ G.

For any (g1H, g2K,x) ∈ ĈHH ×
Σ̃
ĈHK there exists g ∈ G such that gx ∈ F . Then

g(g1H, g2K,x) ∈ P . Hence G(P ) = ĈHH ×
Σ̃
ĈHK . For any g ∈ G the projection of the

intersection gP ∩ P onto Σ̃ equals gF ∩ F . Hence gP ∩ P has measure zero.
Now, we give another proof of the equality f∗(ηH , ηK) = Area(CH×ΣCK) by considering

each connected component of CH ×Σ CK . The fiber product CH ×Σ CK is the disjoint
union of

Mg1H,g2K := (g1Hg
−1
1 ∩ g2Kg−1

2 )\(g1CHH ∩ g2CHK)

over all [g1H, g2K] ∈ G\(G/H × G/K). Fix g1, g2 ∈ G and set J := g1Hg
−1
1 ∩ g2Kg−1

2 ,

which is the stabilizer of g1CHH ∩ g2CHK in ĈHH ×
Σ̃
ĈHK . The preimage of Mg1H,g2K

with respect to the quotient map Φ from ĈHH ×
Σ̃
ĈHK to CH ×Σ CK coincides with

{(gg1H, gg2K,x) ∈ G/H ×G/K ×H | g ∈ G, x ∈ gg1H ∩ gg2K}
∼=

⊔
gJ∈G/J

g(g1CHH ∩ g2CHK).

Take a complete system of representatives R of G/J . Now, we prove that a set

A :=
∪
g∈R

(g1CHH ∩ g2CHK) ∩ g−1F

is a measure-theoretic fundamental domain for the action of J on g1CHH ∩ g2CHK , Note
that R−1 is a complete system of representatives of J\G, which implies that

J

∪
g∈R

g−1F

 = G(F)

and u1g
−1 ̸= u2g

−1 for any g ∈ R and u1, u2 ∈ J with u1 ̸= u2. Hence J(A) = g1CHH ∩
g2CHK and u(A) ∩ A has measure zero for any non-trivial u ∈ J . From the proof of
Lemma 3.1, we can see that mH(A) equals the area of Mg1H,g2K .

Now, we prove that Area(CH ×Σ CK) = f∗(ηH , ηK). We have a bijective map from
G/J to [g1H, g2K] which maps gJ ∈ G/J to (gg1H, gg2K) ∈ [g1H, g2K]. Since mH is a
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G-invariant measure, we have

mH(A) =
∑
g∈R

mH((g1CHH ∩ g2CHK) ∩ g−1F)

=
∑

(g′1H,g′2K)∈[g1H,g2K]

mH(g
′
1CHH ∩ g′2CHK ∩ F).

Note that G/H ×G/K is the disjoint union of [g1H, g2K] ∈ G\(G/H ×G/K). Hence

f∗(ηH , ηK)

=
∑

(g1H,g2K)∈G/H×G/K

mH(g1CHH ∩ g2CHK ∩ F)

=
∑

[g1H,g2K]∈G\(G/H×G/K)

∑
(g′1H,g′2K)∈[g1H,g2K]

mH(g
′
1CHH ∩ g′2CHK ∩ F)

=
∑

[g1H,g2K]∈G\(G/H×G/K)

Area(Mg1H,g2K)

=Area(CH ×Σ CK).

This completes the proof. □
Now, we extend the “angle term” to a symmetric continuous R≥0-bilinear functional on

SC(Σ)× SC(Σ) by using the method of proving the extension of the intersection number.

Let F = Fx be the Dirichlet domain centered at x ∈ Σ̃. We remove some edges and

vertices of F such that G(F) = Σ̃ and gF ∩ F = ∅ for any non-trivial g ∈ G. For
(S1, S2) ∈ H(∂G)×H(∂G) with CH(S1) ∩CH(S2) ̸= ∅, a vertex of CH(S1) ∩CH(S2) is
the intersection point of a boundary component of CH(S1) and that of CH(S2). We define
the angle An(v) at v to be the exterior angle at v. Define a function ϕ fromH(∂G)×H(∂G)
to R by

ϕF (S1, S2) :=
∑

v: vertex of CH(S1)∩CH(S2) inF

An(v).

for (S1, S2) ∈ H(∂G) × H(∂G). From the proof of Proposition 6.4, we can see that for
non-trivial finitely generated subgroups H and K of G the restriction of the quotient map
Φ to

{(g1H, g2K,x) ∈ G/H ×G/K × Σ̃ | x ∈ g1CHH ∩ g2CHK ∩ F}
is a bijection onto CH ×Σ CK . Therefore we obtain∫

ϕFdηH × ηK

=
∑

(g1H,g2K)∈G/H×G/K

ϕF (g1Λ(H), g2Λ(K))

=
∑

(g1H,g2K)∈G/H×G/K

∑
v: vertex of g1CHH∩g2CHK inF

An(v)

=
∑

v: vertex of CH×ΣCK

An(v).

We define the symmetric R≥0-bilinear functional ϕ
∗
F from SC(Σ)× SC(Σ) to R≥0 by

ϕ∗F (µ, ν) =

∫
ϕFdµ× ν

for µ, ν ∈ SC(Σ). We prove that the restriction of ϕ∗F to the set SCr(Σ) of rational
subset currents on Σ is continuous in Proposition 6.7. Then by the denseness property



72 D. SASAKI

of rational subset currents for G = π1(Σ), ϕ
∗
F |SCr(Σ)×SCr(Σ) is uniquely extended to a

symmetric R≥0-bilinear functional from SC(Σ)× SC(Σ) to R≥0.
We note that the map ϕF is not continuous and we need to understand the set ∆(ϕF ) of

non-continuous points of ϕF in order to apply Proposition 5.41 to ϕF . For any S ∈ H(∂G),
the number of boundary components of CH(S) intersecting a bounded subset of H is
bounded by a constant independent of S. Hence it is sufficient to consider a finite number
of boundary components of CH(S) intersecting a neighborhood of F for S ∈ H(∂G) when
we see how the value of ϕF changes.

Let S ∈ H(∂G) and B1, . . . , Bk the boundary components of CH(S) intersecting a
neighborhood of F . Assume that #S ≥ 3. For a sufficiently small neighborhood U of S
we can see that for any S′ ∈ U there exist boundary components B′

1, . . . , B
′
k of CH(S′)

such that B′
1, . . . , B

′
k is the boundary components of CH(S′) intersecting the neighborhood

of F and the Hausdorff distance between Bi and B
′
i, which is induced by the Euclidean

metric, is small for every i = 1, . . . , k from Lemma 3.8. Moving the boundary component
B1 of CH(S) in U means taking a path from S to a point S′′ ∈ U such that for every
point S′ in the path Bi = B′

i for i = 2, . . . , k. Moving the boundary component B1 of
CH(S) a little means taking a (sufficiently) small open neighborhood U of S and moving
B1 of CH(S) in U .

Let (S1, S2) ∈ H(∂G) × H(∂G). Assume that a boundary component B1 of CH(S1)
and a boundary component B2 of CH(S2) intersect at a point v. If we move the boundary
components B1 and B2 a little , then the intersection point and the exterior angle at the
point change continuously.

Now, we define CF to be a subset of H(∂G) × H(∂G) consisting of points (S1, S2)
satisfying the condition that there exists a vertex of CH(S1) ∩ CH(S2) belonging to ∂F .
We can see that CF is included in ∆(ϕF ) by Lemma 3.8. Moreover, CF is a closed
subset of H(∂G) × H(∂G) by Lemma 3.8. Note that for (S1, S2) ∈ CF the intersection
CH(S1) ∩ CH(S2) is not necessarily bounded.

Next, we define DF to be a subset of H(∂G) × H(∂G) consisting of points (S1, S2)
satisfying the condition that CH(S1) and CH(S2) share one boundary component B =
CH(S) for S ∈ ∂2G, CH(S1) ∩ CH(S2) = B, and B ∩ F ̸= ∅. For (S1, S2) ∈ DF we
have ϕF (S1, S2) = 0, S := S1 ∩ S2 ∈ ∂2G and CH(S1) ∩ CH(S2) = CH(S). Note that
for (S1, S2) ∈ DF the cardinality of Si can be 2. Let (S1, S2) ∈ DF and S = S1 ∩ S2.
Assume that #S1,#S2 ≥ 3 and CH(S) passes through the interior Int(F) of F . Then
we see that there exists S′ ∈ ∂2G close to S such that CH(S) and CH(S′) intersect at a
point in Int(F). Hence by moving the boundary component CH(S) of S to CH(S′) there
exists S′

1 ∈ H(∂G) close to S1 such that ϕF (S
′
1, S2) is close to π, which implies that ϕF

is not continuous at (S1, S2). We see that DF is a closed subset of H(∂G) × H(∂G) by
Lemma 3.8.

For S ∈ ∂2G with CH(S) ∩ F ̸= ∅, we see that (S, S) ∈ DF . Moreover, ϕF is not
continuous at (S, S). Recall that we used the subset

∆F = {(S, S) ∈ ∂2G× ∂2G | CH(S) ∩ F ̸= ∅}.
for proving Theorem 5.35. During the proof of the continuity of ϕ∗F , DF will plays the
same role as ∆F in the proof of Theorem 5.35.

Lemma 6.5. The set ∆(ϕF ) of non-continuous points of ϕF is included in CF ⊔DF .

Proof. Take any (S1, S2) ∈ H(∂G)×H(∂G) \ (CF ⊔DF ). It is sufficient to prove that ϕF
is continuous at (S1, S2). Since CF ⊔DF is a cosed subset of H(∂G)×H(∂G) we can take
an open neighborhood U of (S1, S2) such that U ∩ (CF ⊔DF ) = ∅. Since (S1, S2) ̸∈ CF ,
any vertex of CH(S1)∩CH(S2) is contained in the interior of F or the exterior of F . We
divides the proof into several cases. We assume that U is sufficiently small in each case.
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Case 1: F does not contain any vertex of CH(S1) ∩ CH(S2).
If there exists no S ∈ ∂2G such that CH(S) is a common boundary component of

CH(S1) and CH(S2), and CH(S) ∩ F ̸= ∅, then we can take a sufficiently small open
neighborhood U of (S1, S2) such that F does not contain any vertex of CH(S′

1)∩CH(S′
2)

for (S′
1, S

′
2) ∈ U , which implies that ϕF (S

′
1, S

′
2) = 0 and ϕF is continuous at (S1, S2). Now,

we assume that there exists S ∈ ∂2G such that CH(S) is a common boundary component
of CH(S1) and CH(S2), and CH(S) ∩ F ̸= ∅. Since (S1, S2) ̸∈ DF , CH(S1) ∩ CH(S2) \
CH(S) is not empty. Hence even if CH(S′

1) ∩ CH(S′
2) has a vertex contained in F for

(S′
1, S

′
2) ∈ U , the exterior angle at the vertex is small. Therefore, ϕF is continuous at

(S1, S2).
From now on, we assume that F contains at least one vertex of CH(S1) ∩ CH(S2).
Case 2: Both S1 and S2 belong to ∂2G, that is, CH(S1) ∩CH(S2) is a point contained

in F .
Since (S1, S2) ̸∈ CF , CH(S1) ∩ CH(S2) is an interior point of F . Then we can take

an small open neighborhood V of CH(S1) ∩ CH(S2) included in F such that if U is
sufficiently small, then for any (S′

1, S
′
2) ∈ U we have CH(S′

1) ∩ CH(S′
2) ⊂ V . Hence

the area of CH(S′
1) ∩ CH(S′

2) is smaller than that of V for any (S′
1, S

′
2) ∈ U . From the

Gauss-Bonnet Theorem, we have

2π ≤
∑

v: vertex of CH(S′
1)∩CH(S′

2)

An(v) ≤ Area(V ) + 2π.

Since ϕF (S1, S2) = 2π, ϕ is continuous at (S1, S2).
Case 3: Only one of S1 and S2 belongs to ∂2G.
In this case CH(S1)∩CH(S2) is a geodesic segment or a geodesic half-line. We assume

that #S1 = 2 and #S2 ≥ 3. Let v be a vertex of CH(S1) ∩ CH(S2) contained in the
interior of F . Note that the geodesic line CH(S1) meets a boundary component B of
CH(S2) at v. Take (S′

1, S
′
2) ∈ U and assume that U is sufficiently small. If #S′

1 = 2,
then CH(S′

1) meets CH(S′
2) at a point v′ close to v, which is also contained in F . Hence

An(v) = π = An(v′). If #S′
1 > 2, then CH(S′

1) has two boundary components B1, B2

meeting a boundary component B′ of CH(S′
2), which is close to B, at w1, w2 respectively,

which are contained in F . The vertices w1, w2 are contained in a small open neighborhood
of v. Then the interior angle at w1 is close to the exterior angle at w2, which implies that
the sum An(w1) + An(w2) is close to π = An(v). Therefore ϕF is continuous at (S1, S2).

Case 4: Both #S1 and #S2 are larger than 2.
Recall that at most finitely many boundary components of CH(S1), CH(S2) intersect

a neighborhood of F , which implies that F includes at most finitely many vertices of
CH(S1)∩CH(S2). Hence we can see that ϕF is continuous at (S1, S2) by considering the
movement of boundary components of CH(S1) and CH(S2) in U . □

From the argument in the above proof, we can prove that ϕF is a Borel function.
Moreover, the support of ϕF is included in the compact subset A(F) × A(F) since F
is compact. Recall that the number of vertices of CH(S1) ∩ CH(S2) in F is uniformly
bounded for any (S1, S2) ∈ H(∂G)×H(∂G). Hence ϕF is a bounded Borel function with
compact support.

For the Dirichlet domain Fx centered at x ∈ Σ̃ for the action of G on Σ̃ we can define
CFx by the same way as CF . From the proof of Lemma 5.47, there exists a smooth curve

c : [0, 1] → Σ̃ such that for any µ, ν ∈ SC(Σ), the set

{t ∈ [0, 1] | µ× ν(CFc(t)) > 0}

is countable. In order to apply the same method of proving the continuous extension of
the intersection number on SC(Σ), we prove the following lemma:
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Lemma 6.6. Let F ′ be a Dirichlet domain for the action of G on Σ̃. By removing some

edges and vertices of F ′, we assume that G(F ′) = Σ̃ and gF ′ ∩F ′ = ∅ for any non-trivial
g ∈ G. Then for any µ, ν ∈ SC(Σ) we have∫

ϕFdµ× ν =

∫
ϕF ′dµ× ν.

Proof. For a subset U of Σ̃ we define a function ϕU by

ϕU (S1, S2) :=
∑

v: vertex of CH(S1)∩CH(S2) in U

An(v)

for (S1, S2) ∈ H(∂G) ×H(∂G). Then we can see that for any family of pairwise disjoint

subsets {Uλ} of Σ̃ we have

ϕ⊔λUλ
=
∑
λ

ϕUλ
.

For a subset U of Σ̃ and g ∈ G we have ϕgU (S1, S2) = ϕU (g
−1S1, g

−1S2) for any (S1, S2) ∈
H(∂G)×H(∂G). Note that ϕg1F∩g2F ′ is a Borel function for any g1, g2 ∈ G. Since µ× ν
is G-invariant, we obtain ∫

ϕFdµ× ν =

∫
ϕ⊔g∈GF∩gF ′dµ× ν

=
∑
g∈G

∫
ϕF∩gF ′dµ× ν

=
∑
g∈G

∫
ϕg−1F∩F ′dµ× ν

=

∫
ϕF ′dµ× ν.

This completes the proof. □

The following proposition is the main part of our proof of Theorem 6.3.

Proposition 6.7. There exists a unique symmetric continuous R≥0-bilinear functional

ψ : SC(Σ)× SC(Σ) → R≥0

such that for any non-trivial finitely generated subgroups H and K of G we have

ψ(ηH , ηK) =
∑

v: vertex of CH×ΣCK

An(v).

Proof. It is sufficient to prove that the restriction of ϕ∗F to SCr(Σ)×SCr(Σ) is continuous.
Take (µn, νn) ∈ SCr(Σ) × SCr(Σ) (n ∈ N) converging to (µ, ν) ∈ SCr(Σ). We prove that
ϕ∗F (µn, νn) converges to ϕ

∗
F (µ, ν) partially following the proof of (3) ⇒ (4) in Proposition

5.41. We will also use the method that we used in the proof of Theorem 5.35.
Fix ε > 0. By moving the base point of the Dirichlet domain, we can assume that F

satisfies the condition that

µ(∂A(F)) = ν(∂A(F)) = µ× ν(CF ) = 0.

Set

M := sup{µn(A(F)), νn(A(F)) | n ∈ N},

C := sup{ϕF (S1, S2) | (S1, S2) ∈ H(∂G)×H(∂G)},
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and set

At := {(S1, S2) ∈ H(∂G)×H(∂G) | ϕF (S1, S2) ≥ t},
Bt := {(S1, S2) ∈ H(∂G)×H(∂G) | ϕF (S1, S2) = t}

for t ∈ [0, C]. Then we have∫
ϕFdµ× ν =

∫ C

0
µ× ν(At)dmR(t)

and ∫
ϕFdµn × νn =

∫ C

0
µn × νn(At)dmR(t).

Now, it is sufficient to prove that µn×νn(At) converges pointwise to µ×ν(At) for mR-a.e.
t ∈ [0, C]. Note that At ⊂ A(F) for any t > 0. Therefore µn × νn(At), µ× ν(At) ≤M2.

We know that ∂At ⊂ Bt ∪∆(ϕF ) and µ × ν(Bt) = 0 for mR-a.e. t ∈ [0, C]. From the
proof of Proposition 5.41, if µ×ν(∆(ϕF )) = 0, then µn×νn(At) would converge pointwise
to µ×ν(At) for mR-a.e. t ∈ [0, C]. However, we have ∆(ϕF ) ⊂ CF ⊔DF from Lemma 6.5,
and µ× ν(DF ) is not necessarily equal to zero. Hence, we need to evaluate the influence
of µ× ν(DF ).

From now on, we assume that µ×ν(DF ) > 0. Note that for any (S1, S2) ∈ DF we have
ϕF (S1, S2) = 0. Therefore At ∩DF = ∅ for every t > 0. Moreover, if µ× ν(Bt) = 0, then
µ× ν(At) = µ× ν(Int(At)), which will be used later. Fix δ > 0 such that M2δ < ε. Then
we have ∫ δ

0
µ× ν(At)dmR(t),

∫ δ

0
µn × νn(At)dmR(t) < ε.

Similarly to the proof of Theorem 5.35, we construct an open subset V ofH(∂G)×H(∂G)
such that µn × νn(At ∩ V ) ≤ ε for any n ∈ N, t ∈ [δ, C], and µ× ν(DF \ V ) = 0.

Since µ, ν are rational subset currents on Σ and DF is compact, there exists (Sk
1 , S

k
2 ) ∈

DF for k = 1, . . . ,m such that (Sk
1 , S

k
2 ) is an atom of µ× ν for every k and

µ× ν(DF ) =

m∑
k=1

µ× ν({(Sk
1 , S

k
2 )}).

In order to obtain this equation, we have restricted ϕ∗F to SCr(Σ)× SCr(Σ).

Let (S1, S2) ∈ {(Sk
1 , S

k
2 )}k=1,...,m. Let B := CH(S1) ∩ CH(S2). Since Si is the limit

set of a finitely generated subgroup of G for i = 1, 2, there exists g ∈ G such that
Λ(⟨g⟩) = B(∞) and g(S1, S2) = (S1, S2). Since µ(∂A(F)) = ν(∂A(F)) = 0, (S1, S2)
belongs to Int(A(F))× Int(A(F)), that is, B passes through Int(F).

Since g can be considered as a self-homeomorphism of H(∂G)×H(∂G) fixing (S1, S2),
for any L ∈ N we can take an open neighborhood U of (S1, S2) such that

g(U), . . . , gL(U) ⊂ Int(A(F))× Int(A(F)).

Take a compact convex polygon O of H such that O includes g(F), . . . , gL(F). We can
also assume that U is sufficiently small such that

Area(CH(T1) ∩ CH(T2) ∩O) < 1

for any ℓ = 1, . . . , L and (T1, T2) ∈ gℓ(U).
Now, we consider Wℓ := gℓ(U ∩ At) for t ∈ [δ, C] and ℓ = 1, . . . , L. Take α ∈ N such

that αδ > 2π + 1. Note that α is independent of L. We prove that W1, . . . ,WL are
(α− 1)-essentially disjoint, that is, for any (T1, T2) ∈ H(∂G)×H(∂G) we have

#{ℓ |Wℓ ∋ (T1, T2)} ≤ α− 1.
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To obtain a contradiction, suppose that there exist 1 ≤ ℓ1 < ℓ2 < · · · < ℓα ≤ L such that

W :=
α∩

s=1

Wℓs

is not empty. Take (T1, T2) ∈ W . Since (T1, T2) ∈ Wℓs , we have ϕF (g
−ℓsT1, g

−ℓsT2) ≥ δ,
which implies that ϕgℓsF (T1, T2) ≥ δ. Note that ϕgℓsF (T1, T2) equals the sum of the

exterior angle of vertices of CH(T1) ∩ CH(T2) in gℓsF . Hence the sum of the exterior
angle of vertices of CH(T1) ∩ CH(T2) in O is larger than or equal to αδ. Note that
CH(T1) ∩ CH(T2) ∩O is a convex polygon. From the Gauss-Bonnet Theorem, we have

Area(CH(T1) ∩ CH(T2) ∩O) ≥ αδ − 2π > 1,

a contradiction.
Hence W1, . . . ,WL are in particular α-essentially disjoint and

µn × νn

(
L∪

ℓ=1

Wℓ

)
≥ 1

α

L∑
ℓ=1

µn × νn(Wℓ)

=
1

α

L∑
ℓ=1

µn × νn(U ∩At)

=
L

α
µn × νn(U ∩At).

Since Wℓ is included in A(F)×A(F) for every ℓ = 1, . . . , L, we have

µn × νn(At ∩ U) ≤ αM2

L
.

From the above, we can take an open neighborhood Uk of (Sk
1 , S

k
2 ) such that

µn × νn(At ∩ Uk) ≤
αM2

L

for every k = 1, . . . ,m. Set V := U1 ∪ · · · ∪ Um. Then

µn × νn(At ∩ V ) ≤
m∑
k=1

αM2

L
≤ mαM2

L
.

By taking a sufficiently large L, we have

µn × νn(At ∩ V ) ≤ ε

for any n ∈ N and t ∈ [δ, C]. Moreover, µ× ν(DF \ V ) = 0.
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From Proposition 5.41, for any t ∈ [δ, C] with µ× ν(Bt) = 0 we have

µ× ν(At) = µ× ν(Int(At))

≤ lim inf
n→∞

µn × νn(Int(At)) ≤ lim inf
n→∞

µn × νn(At)

≤ lim sup
n→∞

µn × νn(At)

≤ lim sup
n→∞

µn × νn(At \ V ) + lim sup
n→∞

µn × νn(At ∩ V )

≤ lim sup
n→∞

µn × νn(At \ V ) + ε

=µ× ν(At \ V ) + ε

≤µ× ν(At) + µ× ν(∂At \ V ) + ε

≤µ× ν(At) + µ× ν(DF \ V ) + ε

≤µ× ν(At) + ε.

Since ε > 0 is arbitrary, for mR-a.e. t ∈ [δ, C],

lim
n→∞

µn × νn(At) = µ× ν(At).

Then ∣∣∣∣∫ C

0
µn × νn(At)dmR(t)−

∫ C

0
µ× ν(At)dmR(t)

∣∣∣∣
≤
∫ δ

0
|µn × νn(At)− µ× ν(At)|dmR(t)

+

∫ C

δ
|µn × νn(At)− µ× ν(At)|dmR(t)

≤2M2δ +

∫ C

δ
|µn × νn(At)− µ× ν(At)|dmR(t)

≤2ε+

∫ C

δ
|µn × νn(At)− µ× ν(At)|dmR(t).

Note that the last term ∫ C

δ
|µn × νn(At)− µ× ν(At)|dmR(t)

converges to 0 when n→ ∞. Since ε > 0 is arbitrary,∫ C

0
µn × νn(At)dmR(t) →

n→∞

∫ C

0
µ× ν(At)dmR(t).

This completes the proof. □

Proof of Theorem 6.3. Recall that by the Gauss-Bonnet Theorem for non-trivial finitely
generated subgroups H and K of G we have

2πχ(CH ×Σ CK) = −Area(CH ×Σ CK) +
∑

v:: vertex of CH×ΣCK

An(v).

From Propositions 6.4 and 6.7 we define a functional χ̂ to be

1

2π
(−f∗ + ψ),

which is a continuous R≥0-bilinear functional from SC(Σ)× SC(Σ) to R sending (ηH , ηK)
to χ(CH ×Σ CK). Since f∗ and ψ are symmetric, so is χ̂.
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Recall that
N (H,K) = −χ(CH ×Σ CK) + i(CH , CK).

Hence we define a functional N to be −χ̂ + iSC. Then N is a symmetric continuous
R≥0-bilinear functional from SC(Σ) × SC(Σ) to R sending (ηH , ηK) to N (H,K). Since
N (H,K) ≥ 0 for any finitely generated subgroups H and K of G, we have N (µ, ν) ≥ 0 for
any µ, ν ∈ SC(Σ) from the denseness property of rational subset currents for G = π1(Σ).
The uniqueness of N also follows by the denseness property of rational subset currents. □

7. Projection B from subset currents onto geodesic currents

Let Σ be a compact hyperbolic surface possibly with boundary and G the fundamental
group of Σ. The notation in this section is based on that in Sections 5 and 6, and we

consider the universal cover Σ̃ of Σ as a subspace of H. We identify ∂G with Λ(G) ⊂ ∂H.
Take a non-trivial finitely generated subgroup H of G. We consider the case that convex

core CH has a boundary. The restriction of the map pH : CH → Σ to each boundary
component of CH can be considered as a closed geodesic on Σ. We denote by ∂CH the set
of all boundary components of CH . In the case that H is an infinite cyclic group, that is,
CH itself is a closed geodesic on Σ, we consider a copy of CH , denoted by C ′

H , and denote
by ∂CH the set consisting of CH and C ′

H . If CH does not have a boundary, that is, H is
a surface group, then ∂CH is an empty set.

A closed geodesic c on Σ induces a counting geodesic current ηc. Explicitly, ηc = ηg
for g ∈ G such that a representative of g is freely homotopic to c. If c is a boundary
component of CH , then we can take h ∈ H such that ηc = ηh. The following theorem is
the main theorem in this section:

Theorem 7.1. There exists a unique continuous R≥0-linear map

B : SC(Σ) → GC(Σ)

such that for any non-trivial finitely generated subgroup H of G we have

B(ηH) =
1

2

∑
c∈∂CH

ηc.

Especially, the restriction of B to GC(Σ) is the identity map.

Note that if ∂CH is empty, then B(ηH) is the zero measure in the above theorem.

7.1. Construction of projection B. Take a non-trivial finitely generated subgroup H
of G with ∂CH ̸= ∅. For a boundary component c of CH we regard c as an element of H
such that ηc = η⟨c⟩. Note that an element h ∈ H satisfying the condition that ηc = η⟨h⟩ is
not unique. Recall that we have the continuous R≥0-linear map ιH from SC(H) to SC(Σ)
(see Section 4). Then we have

∑
c∈∂CH

ηc =
∑

c∈∂CH

ιH(ηH⟨c⟩) = ιH

 ∑
c∈∂CH

∑
h⟨c⟩∈H/⟨c⟩

δhΛ(⟨c⟩)

 .

For S ∈ H(∂G) we define b(S) to be the set of all connected components of ∂H\S. Since
∂H is homeomorphic to S1, b(S) consists of at most countably many open intervals. For
S ∈ H(∂G) and α ∈ b(S), the boundary ∂α belongs to ∂2G. Now, we prove the following
lemma:

Lemma 7.2. The following equality holds:∑
c∈∂CH

∑
h⟨c⟩∈H/⟨c⟩

δhΛ(⟨c⟩) =
∑

α∈b(Λ(H))

δ∂α.
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Proof. First, we consider the case that H is an infinite cyclic group. Then c is a generator
of H and the left hand side equals 2δΛ(H), which coincides the right hand side. Actually,
this is the reason of the definition of ∂CH .

From now on, we assume that H is not an infinite cyclic group and ∂CH is not empty.
We define a map ψ from ∂CH × H/⟨c⟩ to b(Λ(H)) as follows. For each c ∈ ∂CH we
have a cyclic subgroup ⟨c⟩ of H, and the convex hull CH⟨c⟩ of the limit set Λ(⟨c⟩) is a
boundary component of CHH . For h⟨c⟩ ∈ H/⟨c⟩, we define ψ(c, h⟨c⟩) to be the open
interval connecting the two points of hΛ(⟨c⟩) and not intersecting Λ(H), which implies
that ψ(c, h⟨c⟩) ∈ b(Λ(H)). Then ∂ψ(c, h⟨c⟩) = hΛ(⟨c⟩). Hence, it is sufficient to see that
ψ is a bijective map.

First, we see that ψ is surjective. Take α ∈ b(Λ(H)). Then there exists a boundary
component B of CHH such that B(∞) = ∂α. Take c ∈ ∂CH corresponding to B. There
exists h ∈ H such that hΛ(⟨c⟩) = B(∞) = ∂α. Hence ψ(c, h⟨c⟩) = α.

Next, we see that ψ is injective. Take c1, c2 ∈ ∂CH and h1⟨c1⟩ ∈ H/⟨c1⟩, h2⟨c2⟩ ∈
H/⟨c2⟩. It is sufficient to see that if h1Λ(⟨c1⟩) = h2Λ(⟨c2⟩), then c1 = c2 and h1⟨c1⟩ =
h2⟨c2⟩. Since h−1

2 h1CH⟨c1⟩ = CH⟨c2⟩, we can see that c1 = c2. Set h := h−1
2 h1, which

fixes Λ(⟨c1⟩). Since c1 is a simple closed geodesic on CH , there exists no element h0 of H
such that c1 = hk0 for some k ≥ 2. Therefore h = ck1 for some k ∈ Z, which implies that
h1⟨c1⟩ = h2⟨c2⟩. This completes the proof. □

From the above lemma, we have

∑
c∈∂CH

ηc = ιH

 ∑
α∈b(Λ(H))

δ∂α

 .

The strategy to prove Theorem 7.1 is as follows. First, we construct a measure B(µ) on
∂2G for µ ∈ SC(Σ). Next, we check that B(ηH) equals 1/2

∑
c∈∂CH

ηc for any non-trivial

finitely generated subgroup H of G. Then we prove that B(µ) is a geodesic current on Σ
for any µ ∈ SC(Σ) and B is an R≥0-linear map from SC(Σ) to GC(Σ). Finally, we prove
that B is continuous. The uniqueness of B follows by the denseness property of rational
subset currents for G.

We will denote by O the set of all open intervals of ∂H. We endow O with the topology
induced by the Hausdorff distance. A set b(S) is a subset of O for S ∈ H(∂G). Define a
function φ from H(∂G)×O to R by

φ(S, α) := χb(S)(α) ((S, α) ∈ H(∂G)×O),

that is, if α ∈ b(S), then φ(S, α) = 1; if α ̸∈ b(S), then φ(S, α) = 0. For α ∈ O we have
a Dirac measure δα on O. Then φ(S, α) = δα(b(S)) for (S, α) ∈ H(∂G) × O. We have
φ(S, α) = 1 if and only if CH(∂α) is a boundary component of CH(S). We denote by M
the counting measure on O, that is, for any subset U of O, M(U) is the cardinality of U .
For a Borel subset E of ∂2G, set

b(E) :=
∪
S∈E

b(S) ⊂ O.

Then for any α ∈ O, α belongs to b(E) if and only if ∂α belongs to E.
Now, for µ ∈ SC(Σ) we define a measure B(µ) on ∂2G by

B(µ)(E) :=
1

2

∫
b(E)

(∫
φ(S, α)dµ(S)

)
dM(α)

for a Borel subset E of ∂2G. We can see that the preimage φ−1(0) is an open subset of
H(∂G) × O, which implies that φ is a Borel function on H(∂G) × O. Actually, (S, α) ∈



80 D. SASAKI

φ−1(0) implies that ∂α is not a boundary component of CH(S). It is easy to see that this
is an “open condition” from Lemma 3.8.

Take a non-trivial finitely generated subgroup H of G. Note that the action of G on H
induces the action of G on O. Then for any Borel subset E of ∂2G we have

2B(ηH)(E)

=

∫
b(E)

(∫
φ(S, α)dηH(S)

)
dM(α)

=

∫ (∫
b(E)

φ(S, α)dM(α)

)
dηH(S)

=
∑

gH∈G/H

∫
b(E)

φ(gΛ(H), α)dM(α) =
∑

gH∈G/H

∫
b(E)

δα(b(gΛ(H)))dM(α)

=
∑

gH∈G/H

∫
b(gΛ(H))

δα(b(E))dM(α) =
∑

gH∈G/H

∑
α∈b(Λ(H))

δg(α)(b(E))

=
∑

gH∈G/H

∑
α∈b(Λ(H))

g∗(δα)(b(E)) = ιH

 ∑
α∈b(Λ(H))

δα

 (b(E))

=ιH

 ∑
α∈b(Λ(H))

δ∂α

 (E) =
∑

c∈∂CH

ηc(E).

Hence we see that

B(ηH) =
1

2

∑
c∈∂CH

ηc(E).

Lemma 7.3. For any µ ∈ SC(Σ) the measure B(µ) on ∂2G is a geodesic current on Σ.

Proof. First, we check that B(µ) is G-invariant. Take a Borel subset E of ∂2G and g ∈ G.
Since µ is G-invariant, we have

2B(gE) =

∫
b(gE)

(∫
φ(S, α)dµ(S)

)
dM(α)

=

∫
gb(E)

(∫
φ(S, α)dµ(S)

)
dM(α)

=

∫
b(E)

(∫
φ(S, gα)dµ(S)

)
dM(α)

=

∫
b(E)

(∫
φ(g−1S, α)dµ(S)

)
dM(α)

=

∫
b(E)

(∫
φ(S, α)dµ(S)

)
dM(α)

= 2B(E).

Next, we check that B(µ) is a locally finite measure. Take a compact subset K of Σ̃.
From Lemma 3.7, it is sufficient to see that B(µ)(A2(K)) <∞ for

A2(K) = {S ∈ ∂2G | CH(S) ∩K ̸= ∅}.
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From the Fubini Theorem we have

2B(µ)(A2(K)) =

∫
b(A2(K))

(∫
φ(S, α)dµ(S)

)
dM(α)

=

∫ (∫
b(A2(K))

φ(S, α)dM(α)

)
dµ(S).

Set

φ̂(S) :=

∫
b(A2(K))

φ(S, α)dM(α)

for S ∈ H(∂G). It is sufficient to prove that φ̂ is a bounded function with compact support.
Take S ∈ H(∂G). We can see that φ̂(S) equals the number of boundary components of S
passing through K, which is uniformly bounded since K is bounded. Finally, we see that
the support of φ̂ is included in A(K). Take S ∈ H(∂G) \ A(K). Then CH(S) ∩K = ∅,
which implies that φ̂(S) = 0. This completes the proof. □

Proof of Theorem 7.1. From the above lemma, we can see that B is an R≥0-linear map
from SC(Σ) to GC(Σ). It is sufficient to prove that B is continuous. Take µn ∈ SC(Σ) (n ∈
N) converging to µ ∈ SC(Σ). From Proposition 5.41, it is sufficient to prove that for any
relatively compact Borel subset E of ∂2G with B(µ)(∂E) = 0 the sequence B(µn)(E)
converges to B(µ)(E).

Take a relatively compact Borel subset E of ∂2G with B(µ)(∂E) = 0. Define a map
φ̂ : H(∂G) → R≥0 by

φ̂(S) :=

∫
b(E)

φ(S, α)dM(α)

for S ∈ H(∂G). Then we have

2B(µn)(E) =

∫
b(E)

(∫
φ(S, α)dµn(S)

)
dM(α) =

∫
φ̂dµn

and

2B(µ)(E) =

∫
φ̂dµ.

From the proof of Lemma 7.3, φ̂ is a bounded function with compact support. It is
sufficient to prove that the set ∆(φ̂) of non-continuous points of φ̂ has measure zero with
respect to µ from Proposition 5.41.

Since B(µ)(∂E) = 0, we obtain

0 = 2B(µ)(∂E) =

∫ (∫
b(∂E)

φ(S, α)dM(α)

)
dµ(S).

Note that for S1, S2 ∈ ∂2G, if b(S1) ∩ b(S2) ̸= ∅, then S1 = S2. We can see that for
S ∈ H(∂G) ∫

b(∂E)
φ(S, α)dM(α) = #(b(S) ∩ b(∂E)).

Set

U := {S ∈ H(∂G) | b(S) ∩ b(∂E) ̸= ∅}.
Then for the characteristic function χU of U on H(∂G) we have

χU (S) ≤
∫
b(∂E)

φ(S, α)dM(α)
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for S ∈ H(∂G), which implies that

µ(U) =

∫
χUdµ ≤

∫ (∫
b(∂E)

φ(S, α)dM(α)

)
dµ(S) = 0.

Therefore µ(U) = 0.
Now, we prove that ∆(φ̂) ⊂ U . Take S ∈ H(∂G)\U , which implies that b(S)∩b(∂E) =

∅. First, we see that

b(S) ⊂ b(Int(E) ⊔ Ec
).

Hence, φ̂(S) = #(b(S)∩ b(Int(E))). Since E is relatively compact, we can take a compact

subset K of Σ̃ such that E ⊂ A2(K) by Lemma 3.7. Note that there are only finitely
many α1, . . . αm ∈ b(S) satisfying the condition that CH(∂αi) ∩K ̸= ∅. Hence we do not
need to consider α ∈ b(S) \ {α1, . . . , αm}. Since each αi belongs to b(Int(E)) or b(E

c
),

we can take an open neighborhood V of S in H(∂G) such that for any S′ ∈ V we have
b(S′) ∩ b(∂E) = ∅ and

#(b(S′) ∩ b(Int(E))) = #(b(S) ∩ b(Int(E))).

This implies that φ̂ is constant on V . Hence φ̂ is continuous at S. □

7.2. Application of projection B. In this subsection, we consider the application of
the projection B. The following theorem relates the intersection number iSC on SC(Σ) to
the intersection number iGC on GC(Σ).

Theorem 7.4. For any subset currents µ, ν ∈ SC(Σ) the following inequality follows:

iSC(µ, ν) ≤ iGC(B(µ),B(ν)).

If either µ or ν belongs to GC(Σ), then the equality holds.

Proof. From the denseness property of rational subset currents and rational geodesic cur-
rents on Σ, it is sufficient to prove that the inequality and the equality holds for ηH and
ηK for non-trivial finitely generated subgroups H and K of G. Recall that

ĈHH = {(gH, x) ∈ G/H × Σ̃ | x ∈ gCHH}.

Set

∂ĈHH := {(gH, x) ∈ G/H × Σ̃ | x ∈ g(∂CHH)} ⊂ ĈHH .

First we consider the case that neither H nor K is cyclic and CH and CK have bound-
aries. Note that if CH has no boundary, then the equality holds immediately since
i(CH , CK) = 0. Recall that from Lemma 7.2, we have

∑
c∈∂CH

ηc = ιH

 ∑
α∈b(Λ(H))

δ∂α

 .

By considering the correspondence between the Dirac measures in the equality, we can

identify ∂ĈHH with
⊔

c∈∂CH
ĈH⟨c⟩. Moreover, we obtain a natural inclusion map

ι :
⊔

(c,d)∈∂CH×∂CK

ĈH⟨c⟩ ×Σ̃
ĈH⟨d⟩ ↪→ ĈHH ×

Σ̃
ĈHK .

Since the inclusion map ι is G-equivariant, ι induces an inclusion map⊔
(c,d)∈∂CH×∂CK

C⟨c⟩ ×Σ C⟨d⟩ ↪→ CH ×Σ CK .
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Since CHH and CHK are surfaces with boundaries, we can see that any contractible
component of CH ×ΣCK is a polygon with 2ℓ-edges for ℓ ≥ 2, each of whose vertices is the
intersection point of a boundary component of CH and that of CK . Therefore we have

i(CH , CK) ≤ 1

4

∑
c∈∂CH

∑
d∈∂CK

i(c, d),

that is,

iSC(ηH , ηK) ≤ iGC(B(ηH),B(ηK)).

In the case that bothH andK are infinite cyclic groups, the equality is obvious. Assume
that H is an infinite cyclic group, K is not cyclic and CK has a boundary. By the same
way as the above, we have an inclusion map⊔

d∈∂CK

CH ×Σ C⟨d⟩ ↪→ CH ×Σ CK .

We can see that any contractible component of CH ×Σ CK is a geodesic segment, each
of whose endpoints is the intersection point of CH and a boundary component of CK .
Therefore we have

i(CH , CK) =
1

2

∑
d∈∂CK

i(CH , d),

that is,

iSC(ηH , ηK) = iGC(B(ηH),B(ηK)).

This completes the proof. □
For two transverse simple compact surfaces (S1, s1), (S2, s2) on Σ not forming a bigon,

the same inequality also follows by the same proof as above, that is, we have

i(s1, s2) ≤
1

4

∑
(c1,c2)∈∂S1×∂S2

i(c1, c2)

if S1 and S2 are not S1, where ∂Si is the set of boundary components of Si. We also have

i(s1, s2) =
1

2

∑
c∈∂S2

i(s1, c),

if S1 = S1.
Bonahon [Bon88] proved that there exists an embedding L from the Teichmüller space

T (Σ) of Σ to GC(Σ), and for m ∈ T (Σ) and a non-trivial g ∈ G the intersection number
iGC(L(m), ηg) coincides with the m-length of the (unoriented) geodesic corresponding to
g, which is denoted by ℓm(g) and called the m-length of g. This implies that there exists
a unique m-length functional ℓm = iGC(L(m), ·) on GC(Σ) such that for every non-trivial
element g ∈ G, ℓm(ηg) equals ℓm(g).

From Theorem 7.4, we can generalize the m-length functional ℓm on GC(Σ) to the
m-length functional on SC(Σ) for m ∈ T (S) by defining

ℓm(µ) := iSC(L(m), µ)

for µ ∈ SC(Σ). Then we can see that for every non-trivial finitely generated subgroup H
of G we have

ℓm(ηH) =
1

2

∑
c∈∂CH

ℓm(c),

where ℓm(c) is the m-length of c.
In the case that Σ has no boundary, the above Bonahon’s result was extended to all neg-

atively curved Riemannian metrics by Otal in [Ota90], to negatively curved cone metrics
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by Hersonsky and Paulin in [HP97], and to (singular) flat metrics by Duchin-Leininger-
Rafi in [DLR10] (which includes the case that Σ has boundary). For any such metric
m on Σ, we can obtain an associated geodesic current Lm ∈ GC(Σ), and for non-trivial
g ∈ π1(Σ), the intersection number iGC(Lm, ηg) equals the m-length of g. Hence for any
such metric m on Σ we also have the m-length functional ℓm on SC(Σ).

Supplementation 7.5. We can construct the functional ℓm on SC(Σ) more directly in
the case that m is a hyperbolic metric on Σ. We can apply the method which we have
used for the construction of the volume functional and the intersection number on SC(Σ).

Assume that m coincides with the given hyperbolic metric on Σ. Take the Dirichlet

domain F = Fx centered at x ∈ Σ̃ with respect to the action of G on Σ̃, and modify F
by removing some edges and vertexes from F such that G(F) = Σ̃ and gF ∩ F = ∅ for
any non-trivial g ∈ G. For S ∈ H(∂G) we define λF (S) to be the half of the sum of the
length of each component of F ∩ ∂CH(S). Then λF : H(∂G) → R≥0 is a non-continuous
bounded Borel function with compact support. We can see that the R≥0-linear functional
λ∗F defined by

λ∗F (µ) :=

∫
λFdµ

for µ ∈ SC(Σ) associates a counting subset currents ηH with ℓm(ηH) for non-trivial finitely
generated subgroup H of G by the same way as that for the volume functional in Section 3.
Note that for S ∈ ∂2G such that CH(S) passes through the interior of F , λF is continuous
at S. Hence the set ∆(λF ) of non-continuous points of λF consists of S ∈ H(∂G) satisfying
the condition that a boundary component of CH(S) partially coincides with an edge of
F .

We can prove the continuity of λ∗F by using the technique of moving the center of the
Dirichlet domain F in Lemma 5.47. Actually, we can see that λ∗F does not depend on

F by the same way as Lemma 6.6. For any µ ∈ SC(Σ) there exists x ∈ Σ̃ such that
µ(∆(λFx)) = 0. Hence if a sequence {µn}n∈N of SC(Σ) converges to µ, then λ∗Fx

(µn)
converges to λ∗Fx

(µ) by Proposition 5.41. Therefore λ∗F is continuous.

Now, we consider the case that Σ is a closed hyperbolic surface. For any simple closed
geodesic c on Σ, which is not a boundary component of Σ, by cutting Σ along c and
regarding the cut end as the boundary, we can obtain a compact hyperbolic surface or a
pair of compact hyperbolic surfaces Σ− c. Moreover, the inclusion map induces a locally
injective continuous map s from Σ− c to Σ, which is a simple compact surface on Σ or a
pair of simple compact surfaces on Σ. Then we can obtain a finitely generated subgroup
H or a pair of finitely generated subgroups H1,H2 of G corresponding to Σ − c. Set
η(Σ− c) := ηH or ηH1 + ηH2 respectively. Then we have

B(η(Σ− c)) = ηc.

Hence the above construction of η(Σ− c) can be regarded as a section of the projection B.
However, in the case that c has self-intersection, then we can not perform the same

construction. Nevertheless, from the Scott theorem in [Sco78, Sco85], c is geometric in a
finite covering space of Σ, that is, there exists a finite index subgroup G1 of G such that
G1 contains an element corresponding to c and c lifts to a simple closed geodesic c1 on
the convex core CG1 . Then we obtain a subset current η(CG1 − c1) on G1. Moreover, we
have the projection BG1 from SC(G1) = SC(CG1) to GC(G1) and

BG1(η(CG1 − c1)) = ηc1 ,

which is the counting geodesic current on G1 corresponding to c1.
Recall that for any non-trivial finitely generated subgroup H of G we have the map ιH

from SC(H) to SC(G) = SC(Σ). Then ιG1(ηc1) = ηc, and ιG1(η(CG1 − c1)) is a subset
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current on G. By Theorem 7.6, we see that

B(ιG1(η(CG1 − c1))) = ιG1(BG1(η(CG1 − c1))) = ιG1(ηc1) = ηc.

Hence ιG1(η(CG1 − c1)) is a required subset current on G, which is a counting subset
current on G or a sum of two counting subset currents on G. Note that ιG1(η(CG1 − c1))
depends on the choice of G1.

From now on, we do not assume that Σ is a closed surface. Let H be a finitely generated
subgroup of G. We mainly consider the case that H is non-cyclic. Then we have the
projection BH from SC(H) to GC(H) by considering H as the fundamental group of CH .
We will write BG instead of B from now on. Note that ιH maps a geodesic current on H
to a geodesic current on G.

Theorem 7.6. For any non-trivial finitely generated subgroup H of G we have the fol-
lowing commutative diagram:

SC(H)
BH //

ιH
��

GC(H)

ιH |GC(H)

��
SC(G)

BG

// GC(G).

Proof. In the case that H is cyclic, then SC(H) coincides with GC(H) and the claim is
trivial. Hence we consider the case that H is non-cyclic.

We can see that for any non-trivial finitely generated subgroup K of H we have

BG ◦ ιH(ηHK ) =
1

2

∑
c∈∂CK

ηc = ιH ◦ BH(ηHK )

since the convex core CK and its boundary do not depend onH. By the denseness property
of rational subset currents we have the equality

BG ◦ ιH(µ) = ιH ◦ BH(µ)

for any µ ∈ SC(H).
We also give a direct proof. Take a complete system of representatives R of G/H. For

any µ ∈ SC(H) and any Borel subset E ⊂ ∂2G we have

2BG(ιH(µ))(E) =

∫
b(E)

∫
H(∂G)

φ(S, α)d

 ∑
gH∈G/H

g∗(µ)(S)

 dM(α)

=
∑
g∈R

∫
b(E)

∫
H(∂H)

φ(gS, α)dµ(S)dM(α)

=
∑
g∈R

∫
b(E)

∫
H(∂H)

φ(S, g−1α)dµ(S)dM(α)

=
∑
g∈R

∫
g−1(b(E))

∫
H(∂H)

φ(S, α)dµ(S)dM(α)

=
∑
g∈R

2BH(µ)(g−1E) = 2ιH ◦ BH(µ)(E),

which is the required equality. □



86 D. SASAKI

8. Denseness property of rational subset currents

Recall that for an infinite hyperbolic group G a subset current µ on SC(G) is called
rational if there exist c ∈ R≥0 and a quasi-convex subgroup H of G such that µ = cηH (see
Subsection 2.1). We denote by SCr(G) the set of all rational subset currents on G. We
say that G has the denseness property (of rational subset currents) if SCr(G) is a dense
subset of SC(G). In this section, our goal is to prove the denseness property for a surface
group.

In Subsection 8.1, we give a proof of the denseness property for a free group F of finite
rank assuming that the subspace Span(SCr(F )) of SC(F ) generated by SCr(F ) is a dense
subset of SC(F ). Our proof is based on that in [Kap13] but we introduce the notion of an
SC-graph on F , which will play a fundamental role in proving the denseness property for
a surface group.

In Subsection 8.2, we consider a certain sequence of finitely generated subgroups Hn of
a free group F of rank 2 and we see that the sequence of SC(Hn) approximates SC(F )
(see Theorem 8.13).

In Subsection 8.3, we prove the denseness property of rational subset currents for a
surface group G by applying the method in the proof of Theorem 8.13 in Subsection 8.2.
A certain sequence of finitely generated subgroups of G that are isomorphic to a free group
will play an essential role in the proof.

8.1. Denseness property of free groups. For a free group F of finite rank, the dense-
ness property for F was first proved by Kapovich and Nagnibeda in [KN13] (see 2.11).
Kapovich in [Kap13] gave another self-contained proof to the denseness property for F .
We change some parts of the proof in [Kap13] such that our method can apply to the
proof of the denseness property for a surface group. Our method of proving the denseness
is constructing a sequence µn of Span(SCr(F )) converging to a given µ ∈ SC(F ).

Fix a free group F of rank N ≥ 2. Fix a free basis B of F . We denote by X the
Cayley graph of F with respect to B. The set of vertices of X is denoted by V (X), which
is identified with F . We give a path metric d = dX to X such that each edge of X has
length one. We identify ∂F with ∂X. The quotient space F\X is a graph consisting of
one vertex attached N loops. For a closed subset S of ∂F = ∂X with #S ≥ 2 the convex
hull CH(S) of S in X is a union of all geodesic lines connecting two points of S. We
denote by H(∂F ) the space of closed subsets of ∂F containing at least 2 points and endow
H(∂F ) with the Hausdorff distance dHaus induced by a metric on ∂F compatible with the
topology. The limit set Y (∞) of a subset Y ⊂ X is the set of accumulation points of Y
in ∂X.

Recall that we have constructed ĈHH for a non-trivial finitely generated subgroup H
of the fundamental group of a compact hyperbolic surface Σ. Now, we define a similar

space ĈHH on X for a non-trivial finitely generated subgroup H of F . For the convex
hull CHH := CH(Λ(H)) ⊂ X of the limit set Λ(H) we define

ĈHH := {(gH, x) ∈ F/H ×X | x ∈ gCHH}.

We have the projection map from ĈHH to X.

We can consider ĈHH as a geometric realization of the counting subset current ηH .

Actually, for gH ∈ F/H each connected component gCHH of ĈHH corresponds to the
Dirac measure at gΛ(H).

Definition 8.1 (SC-graph). Let Y be a graph, which is not necessarily connected, and
f a graph morphism from Y to X, which is a continuous map sending vertices of Y to
vertices of X and edges of Y to edges of X. We call the pair (Y, f) a graph on X. Now, we
assume that F acts on Y . When we consider a group action on a graph, we always assume
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that each element of the group acts as a graph isomorphism. We call (Y, f) a SC-graph
on (F,X) (or simply F ) if (Y, f) satisfies the following conditions:

SC1) f is an F -equivariant map;
SC2) the restriction of f to each connected component Y0 of Y is injective and the image

f(Y0) coincides with CH(f(Y0)(∞));
SC3) #f−1(id) <∞.

We denote by Comp(Y ) the set of all connected components of Y . Since each Y0 ∈
Comp(Y ) can be identified with f(Y0) ⊂ X, we will write f(Y0) simply Y0 when no
confusion can arise. Moreover, we often omit the projection f when we consider an SC-
graph on F .

The graph ĈHH for a non-trivial finitely generated subgroup H of F is an SC-graph
on F .

For an SC-graph (Y, f) on F we can define a subset current η(Y ) on F by

η(Y ) :=
∑

Y0∈Comp(Y )

δf(Y0)(∞).

We check that the measure η(Y ) is a subset current on F . Since f is an F -equivariant map,
F acts on the set Comp(Y ) of connected components of Y . Hence η(Y ) is an F -invariant
measure. Explicitly, for g ∈ G and a Borel subset E of H(∂F ) we have

η(Y )(g−1E) =
∑

Y0∈Comp(Y )

δY0(∞)(g
−1(E))

= #{Y0 ∈ Comp(Y ) | (gf(Y0))(∞) ∈ E}
= #{Y0 ∈ Comp(Y ) | (f(gY0))(∞) ∈ E}.

Now we check that η(Y ) is locally finite. Recall that for g ∈ F = V (X)

Ag = {S ∈ H(∂F ) | CH(S) ∋ g}
and it is sufficient to see that η(Y )(Aid) < ∞ from the proof of Lemma 2.7. By the
definition of an SC-graph on F ,

η(Y )(Aid) = #{Y0 ∈ Comp(Y ) | f(Y0) ∋ id} = #f−1(id) <∞.

Remark 8.2. If Y1, . . . , Ym are SC-graphs on F , then the formal union
⊔

k Yk is also an
SC-graph on F . We can see that

η(

m⊔
k=1

Yk) =

m∑
k=1

η(Yk).

From Theorem 2.8 and the condition (SC2), for an SC-graph Y on F there exist finitely
generated subgroups H1, . . . Hm of F such that Y is isomorphic to

m⊔
k=1

ĈHHk

and we have

η(Y ) =

m∑
k=1

ηHk
.

Actually, for each connected component Y0 ∈ Comp(Y ) and for the stabilizer H =
Stab(Y0) we have Y0 = CHH . If Y \ F (Y0) is not empty, then Y \ F (Y0) can be con-
sidered as an SC-graph on F and we can see that

η(Y ) = η(Y \ F (Y0)) + ηH .

Hence an SC-graph on F corresponds to a finite sum of counting subset currents on F .
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Fix µ ∈ SC(F ). Assume that we have ν ∈ Span(SCr(F )) close to µ. Then ν can be
represented by a finite sum of the rational subset currents, that is,

ν =

m∑
k=1

akηHk

for ak > 0 and non-trivial finitely generated subgroups Hk of F for k = 1, . . . ,m. We can
assume that ak is a rational number for k = 1, . . . ,m. Then we can take M ∈ N such that
bk :=Mak ∈ N for any k. Therefore we can see that Mµ is approximated by∑

k

bkηHk
= η(

m⊔
k=1

⊔
bk

ĈHHk
),

where ⊔bkĈHHk
means the bk copies of ĈHHk

.
Now, we introduce the notion of a round-graph and the subset cylinder with respect to

it, which was introduced in [KN13, Kap13]. We will introduce a generalized round-graph
in Subsection 8.2.

Definition 8.3 (Round-graph, see [Kap13, Definition 3.3]). Let r ∈ N. For v ∈ V (X) we
denote by B(v, r) the closed ball centered at v with radius r. A subgraph T of B(v, r) is
called a round-graph centered at v with radius r if T ∋ v and there exists S ∈ H(∂F ) such
that

T = CH(S) ∩B(v, r).

We denote by Rr(v) the set of all round-graphs centered at v with radius r. For T ∈ Rr(v)
we define the subset cylinder SCyl(T ) with respect to T by

SCyl(T ) := {S ∈ H(∂F ) | CH(S) ∩B(v, r) = T}.

We denote by Rr the union of Rr(v) over all v ∈ V (X).

Remark 8.4 (Property of subset cylinders). A subset cylinder SCyl(T ) is an open and
closed subset of H(∂F ) for any T ∈ Rr(v), which implies that if a sequence µn ∈
SC(F ) (n ∈ N) converges to µ ∈ SC(F ), then µn(SCyl(T )) converges to µ(SCyl(T ))
by Proposition 5.41. Moreover, for any S ∈ H(∂F ) and v ∈ CH(S) ∩ V (X) we have a
sequence of round-graphs

{CH(S) ∩B(v, n)}n∈N,
and the family of SCyl(CH(S) ∩ B(v, n)) for n ∈ N forms a fundamental system of open
neighborhoods of S.

For T ∈ Rr(v) and g ∈ F we can see that gT is a round-graph centered at gv with
radius r and SCyl(gT ) = gSCyl(T ). This implies that F acts on Rr. Since a subset
current µ ∈ SC(F ) is F -invariant, µ(SCyl(gT )) = µ(SCyl(T )) for any T ∈ Rr(v) and
g ∈ F . Therefore, we usually consider only round-graphs centered at id ∈ V (X).

For T1, T2 ∈ Rr(v) if T1 ̸= T2, then SCyl(T1)∩SCyl(T2) = ∅. Note that #Rr(v) is finite
for any r ∈ N and v ∈ V (X) since X is a locally finite graph. Moreover, for any r ∈ N we
have

Av =
⊔

T∈Rr(v)

SCyl(T ).

For v1, v2 ∈ V (X) and T1 ∈ Rr(v1), T2 ∈ Rr(v2), if SCyl(T1) ∩ SCyl(T2) ̸= ∅ and
B(v1, r) ∩B(v2, r) ̸= ∅, then we have

T1 ∩B(v1, r) ∩B(v2, r) = T2 ∩B(v1, r) ∩B(v2, r).
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Lemma 8.5. Let v ∈ V (X) and r1, r2 ∈ N with r1 ≤ r2. For any T ∈ Rr1(v) we have the
following equality:

SCyl(T ) =
⊔

T ′∈Rr2 (v)

T ′∩B(v,r1)=T

SCyl(T ′).

Proof. Let S belong to the left side. Then CH(S) ∩ B(v, r1) = T and CH(S) ∋ v. Set
T ′ := CH(S) ∩B(v, r2). Then we can see that T ′ ∩B(v, r1) = T and S ∈ SCyl(T ′).

Let S belong to the right side. There exists T ′ ∈ Rr2(v) such that T ′ ∩ B(v, r1) = T
and S ∈ SCyl(T ′), which implies that CH(S) ∩ B(v, r1) = T ′ ∩ B(v, r1) = T , and so
S ∈ SCyl(T ). □

From the above lemma, for µ ∈ SC(F ) if we know µ(SCyl(T )) for every T ∈ Rr(id),
then we can calculate µ(SCyl(T ′)) for every r′ ∈ N with r′ ≤ r and every T ′ ∈ Rr′ .

The following proposition is useful for seeing that a sequence of subset currents on F
converges to a subset current on F :

Proposition 8.6 (See [KN13, Proposition 3.7]). Let µ, µn ∈ SC(F ) (n ∈ N). Then µn
converges to µ if and only if for any r ∈ N and any T ∈ Rr(id) we have

lim
n→∞

µn(SCyl(T )) = µ(SCyl(T )).

Proof. The “only if” part follows immediately by Remark 8.4. We prove the “if” part.
Note that for any r ∈ N and T ∈ Rr we have

lim
n→∞

µn(SCyl(T )) = µ(SCyl(T ))

from the assumption. Let f be a continuous function from H(∂F ) to R with compact sup-
port. Fix ε > 0. We construct a step function approximating f by using subset cylinders.
From Lemma 3.7, since the support suppf of f is compact, we can take g1, . . . , gm ∈ F
such that

suppf ⊂
m∪
i=1

Agi .

We can take M > 0 such that

M > sup
n∈N

{
µn

(
m∪
i=1

Agi

)}
, µ

(
m∪
i=1

Agi

)
.

Take δ > 0 such that for any S1, S2 ∈ H(∂F ), if the Hausdorff distance dHaus(S1, S2) < δ,
then |f(S1)−f(S2)| < ε/M . Take r ∈ N such that for any gi and T ∈ Rr(gi) the diameter
of SCyl(T ) is smaller than δ. We also assume that r is large enough such that for every
i = 1, . . . ,m, B(gi, r) contains g1, . . . , gm.

Now, we prove that there exist T1, . . . , TL ∈ Rr(g1) ⊔ · · · ⊔ Rr(gm) such that

m∪
i=1

Agi =

L⊔
j=1

SCyl(T ).

Set O := Rr(g1)⊔ · · · ⊔Rr(gm). If SCyl(T1)∩ SCyl(T2) ̸= ∅ for T1 ∈ Rr(gi1), T2 ∈ Rr(gi2)
and i1 < i2, then we remove T2 from O. We continue this operation for each pair of
T1, T2 ∈ O one by one. Finally, we can obtain O satisfying the condition that for any
T1, T2 ∈ O, if T1 ̸= T2, then SCyl(T1) ∩ SCyl(T2) = ∅.

Take any S ∈ ∪iAgi and take the smallest i0 such that S ∈ Agi0
. Then there exists T ∈

Rr(gi0) such that S ∈ SCyl(T ). Since CH(S) does not contain g1, . . . , gi0−1, T = CH(S)∩
B(gi0 , r) also does not contain g1, . . . , gi0−1. Note that B(gi0 , r) contains g1, . . . , gi0−1,
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which implies that SCyl(T ) ∩ SCyl(T ′) = ∅ for any T ′ ∈ Rr(g1) ⊔ · · · ⊔ Rr(gi0−1) by the
last part of Remark 8.4. Hence T ∈ O. Therefore we have

m∪
i=1

Agi =
⊔
T∈O

SCyl(T ).

For each T ∈ O set
aT := inf

S∈SCyl(T )
f(S).

We define a step function ϕ by

ϕ =
∑
T∈O

aTχSCyl(T ).

Then we have ∣∣∣∣∫ fdµ−
∫
ϕdµ

∣∣∣∣ ≤ ∫ |f − ϕ| dµ

≤ ε

M
µ

(
m∪
i=1

Agi

)
< ε.

By the same way, we also have ∣∣∣∣∫ fdµn −
∫
ϕdµn

∣∣∣∣ < ε.

From the assumption, for a sufficiently large n ∈ N we have∣∣∣∣∫ ϕdµn −
∫
ϕdµ

∣∣∣∣ ≤ ∑
T∈O

|aT ||µn(SCyl(T ))− µ(SCyl(T ))|

< ε

Hence ∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ < 3ε.

This completes the proof. □
From the proof of the above we have the following corollary:

Corollary 8.7 (See [KN13, Proposition 3.7]). Let µ ∈ SC(F ). The family of

{ν ∈ SC(F ) | |µ(SCyl(T ))− ν(SCyl(T ))| < ε for every T ∈ Rr(id)}
for ε > 0 and r ∈ N forms a fundamental system of open neighborhoods of µ.

Let µ ∈ SC(F ), ε > 0 and r ∈ N. We will construct an SC-graph Γ on F such that
there exists M ∈ N such that∣∣∣∣µ(SCyl(T ))− 1

M
η(Γ)(SCyl(T ))

∣∣∣∣ < ε

for any T ∈ Rid(r). We say that this SC-graph Γ approximates µ. If we can obtain such
an SC-graph Γ, then we see that Span(SCr(F )) is a dense subset of SC(F ) by Corollary
8.7. We will write simply ηΓ instead of η(Γ).

Now, we consider the value ηΓ(SCyl(T )) for an SC-graph Γ and T ∈ Rid(r). From the
definition of ηΓ we have

ηΓ(SCyl(T )) = #{Y ∈ Comp(Γ) | Y (∞) ∈ SCyl(T )}
= #{Y ∈ Comp(Γ) | Y ∩B(id, r) = T}.
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This equation means that ηΓ(SCyl(T )) coincides with the number of components of Γ
whose restriction to B(id, r) equals T . This is the most important idea for constructing
an SC-graph Γ approximating µ since we have an information of µ(SCyl(T )) for every
T ∈ Rr(id). Even if µ(SCyl(T )) is not an integer, we can take q ∈ Q approximating
µ(SCyl(T )) and Mq is an integer for some M ∈ N.

We also note that for T ∈ Rr(id), ηΓ(SCyl(T )) also equals the number of vertices v
of the quotient graph F\Γ satisfying the condition that for the connected component
Y of Γ containing id as a lift of v we have B(id, r) ∩ Y = T , which means that the “r-

neighborhood” of v equals T . In the case that Γ = ĈHH for a non-trivial finitely generated

subgroup H of F , it is easy to calculate ηΓ(SCyl(T )) = ηH(SCyl(T )) since F\ĈHH can
be identified with H\CHH .

For two vertices u, v ∈ V (X), we want to combine a round-graph centered at u with a
round-graph centered at v. We will use the following definition.

Definition 8.8. Let r ∈ N and u, v ∈ V (X). We denote by B(u, v, r) the intersection of
B(u, r) and B(v, r). For T1 ∈ Rr(u), T2 ∈ Rr(v) we say that T1 and T2 are connectable if
T1 ∩ B(u, v, r) = T2 ∩ B(u, v, r). Note that B(u, v, r) can be empty and then T1 and T2
are connectable for any T1 ∈ Rr(u), T2 ∈ Rr(v).

Assume that B(u, v, r) is not empty. A subgraph J of B(u, v, r) is called a (u, v)-round-
graph with radius r if J ∋ u, v and there exists S ∈ H(∂F ) such that

J = CH(S) ∩B(u, v, r).

We denote by Rr(u, v) the set of all (u, v)-round-graph with radius r. For J ∈ Rr(u, v)
we define the subset cylinder SCyl(J) with respect to J by

SCyl(J) := {S ∈ H(∂F ) | CH(S) ∩B(u, v, r) = J}.
For T1 ∈ Rr(u), T2 ∈ Rr(v) we say that T1 and T2 are J-connectable for J ∈ Rr(u, v) if
T1 ∩B(u, v, r) = J = T2 ∩B(u, v, r).

Remark 8.9 (Property of (u, v)-round-graph). Let u, v ∈ V (X) with B(u, v, r) ̸= ∅. For
T ∈ Rr(u) if T ∋ v, then the intersection T ∩ B(u, v, r) belongs to Rr(u, v). For any
J ∈ Rr(u, v) we have

SCyl(J) =
⊔

T∈Rr(u)

T∩B(u,v,r)=J

SCyl(T ) =
⊔

T ′∈Rr(v)

T ′∩B(u,v,r)=J

SCyl(T ).

This implies that for any µ ∈ SC(F ) we have the equation:

(∗J)
∑

T∈Rr(u)

T∩B(u,v,r)=J

µ(SCyl(T )) =
∑

T ′∈Rr(v)

T ′∩B(u,v,r)=J

µ(SCyl(T ′)).

This equation will be used for constructing an SC-graph approximating µ.

Lemma 8.10. Let P be a geodesic path from u ∈ V (X) to v ∈ V (X), which passes through
v0 = u, v1, . . . , vm = v ∈ V (X) in this order. Take Ti ∈ Rr(vi) for i = 0, 1, . . . ,m. If Ti−1

and Ti are connectable for every i = 1, . . .m, then T0 and Tm are connectable.

Proof. Since P is a geodesic path in the tree X, we have

B(v0, vm, r) ⊂
m∩
i=0

B(vi, r),

which implies

B(v0, vm, r) ⊂
m∩
i=1

B(vi−1, vi, r).
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From the assumption,

Ti−1 ∩B(vi−1, vi, r) = Ti ∩B(vi−1, vi, r)

for every i = 1, . . . ,m. Therefore

T0 ∩B(v0, vm, r) = T1 ∩B(v0, vm, r) = · · · = Tm ∩B(v0, vm, r).

This completes the proof. □

Recall that B is a free basis of F . For T ∈ Rr(id), if µ(SCyl(T )) is not a rational
number, we want to approximate it by a rational number satisfying the equation (∗J) in
Remark 8.9 for two vertices id and u ∈ B. Since #Rr(id, u) is finite and F acts on Rr,
the system of the equations (∗J) for all u ∈ B and J ∈ Rr(id, u) in Remark 8.9 can be
considered as a finite homogeneous system of linear equations with respect to variables
µ(SCyl(T )) for T ∈ Rr(id). Hence we can apply the following lemma to the system of the
equations (∗J) for all u ∈ B and J ∈ Rr(id, u).

Lemma 8.11. Let m,n be positive integers. Let u = t(u1, . . . , un) ∈ Rn with ui ≥ 0 for
every i. Let A = [aij ] be an m × n matrix with aij ∈ Z. Assume that Au = 0. Then for
any ε > 0 there exists v ∈ Rn such that every coefficient of v is a non-negative rational
number, Av = 0 and ||u− v|| < ε.

Proof. The proof is by induction on n. It is clearly true for n = 1. Assume that n > 1.
First, we consider the case that every ui > 0. Since every entry of A is an integer, we have
eigenvectors w1, . . . , wk ∈ Qn associated with the eigenvalue 0 and

u =
k∑

i=1

ciwi

for some ci ∈ R. We can take di ∈ Q approximating ci for i = 1, . . . , k such that every
coefficient of v :=

∑
i diwi is a positive rational number and ||u − v|| < ε. Moreover,

Av = 0.
Next, we consider the case that some of ui equal 0. We can assume that

u1, . . . , uk > 0, and uk+1 = · · · = un = 0.

Set u′ := t(u1, . . . , uk), A
′ := [aij ]1≤j≤k. Then A′u′ = 0. By the induction hypothesis,

there exists w = t(w1, . . . , wk) ∈ Rk such that every wi is a non-negative rational number,
A′w = 0 and ||u′ − w|| < ε. Then the vector v = t(w1, . . . , wk, 0, . . . , 0) ∈ Rn is a required
vector. □

Fix µ ∈ SC(F ) and assume that µ is not the zero measure. Fix ε > 0 and r ∈ N. From
the above lemma, we can take a map

θ : Rr → Z≥0

satisfying the following conditions:

(1) θ is F -invariant;
(2) there exists M ∈ N for any T ∈ Rr we have∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣ < ε;

(3) for any u ∈ B and J ∈ Rr(id, u) the following equation holds:∑
T∈Rr(id)

T∩B(id,u,r)=J

θ(T ) =
∑

T ′∈Rr(u)

T ′∩B(id,u,r)=J

θ(T ′).
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Since θ is F -invariant, for any two adjacent vertices u, v ∈ V (X) and J ∈ Rr(u, v) we have∑
T∈Rr(u)

T∩B(u,v,r)=J

θ(T ) =
∑

T ′∈Rr(v)

T ′∩B(r,v,r)=J

θ(T ′).

The following theorem, which was proved in [Kap13] and named Integral weight realiza-
tion theorem, is the key for proving the denseness property for F . Note that the Γ-graph
∆ in [Kap13] corresponds to the quotient graph F\Γ for the SC-graph Γ on F in the
following theorem.

Theorem 8.12. Let θ be an F -invariant map from Rr to Z≥0 satisfying the condition
that for any u ∈ B and J ∈ Rr(id) we have∑

T∈Rr(id)

T∩B(id,u,r)=J

θ(T ) =
∑

T ′∈Rr(u)

T ′∩B(id,u,r)=J

θ(T ′).

Assume that θ(T ) > 0 for some T ∈ Rr(id). Then there exists an SC-graph Γ on F such
that ηΓ(SCyl(T )) = θ(T ) for any T ∈ Rr.

Proof. We define the vertex set V (Γ) of Γ to be the set

{v(g, T, i)}g∈F, T∈Rr(g), i=1,...,θ(T )

If θ(T ) = 0 for T ∈ Rr(g), there exists no vertex v(g, T, i). We regard v(g, T, i) as a
copy of v(g, T, 1) for i = 2, . . . , θ(T ) and we usually write it v(g, T ) for short when no
confusion can arise. We define an action of F on V (Γ) by hv(g, T, i) := v(hg, hT, i) for
h ∈ F, v(g, T, i) ∈ V (Γ). Note that θ(T ) = θ(hT ) since θ is F -invariant. A map ι from
V (Γ) to V (X) = F is defined to be the natural projection, that is, ι(v(g, T )) = g for
v(g, T ) ∈ V (Γ).

Next, We define the edge set E(Γ) of Γ by connecting two vertices in V (Γ) satisfying
certain condition. Since we require that F acts on E(Γ), we first connect a vertex in ι−1(id)
to a vertex in ι−1(u) by an edge for every u ∈ B, and then we copy the edge by using the
action of F on V (Γ). For each u ∈ B we connect a vertex v(id, T, i) to a vertex v(u, T ′, i′)
if T and T ′ is J-connectable for some J ∈ Rr(id, u). Since for each J ∈ Rr(id, u) we have∑

T∈Rr(id)

T∩B(id,u,r)=J

θ(T ) =
∑

T ′∈Rr(u)

T ′∩B(id,u,r)=J

θ(T ′),

the number of vertices v(id, T, i) ∈ ι−1(id) with T ∩ B(id, u, r) = J equals the number
of vertices v(u, T ′, i′) ∈ ι−1(u) with T ′ ∩ B(id, u, r) = J . Hence there exists one-to-one
correspondence between ι−1(id) and ι−1(u) satisfying the above condition. Note that

#ι−1(id) =
∑

T∈Rr(id)

θ(T ) <∞.

From the one-to-one correspondence and the action of F on V (Γ), we obtain the edge set
E(Γ).

We see that if v(id, T, i) is connected to v(u, T ′, i′), then v(g, T, i) is connected to
v(gu, gT ′, i′) for every g ∈ F . Moreover, for v(id, T, i) ∈ V (Γ) if T contains u ∈ B,
then J := T ∩ B(id, u, r) ∈ Rr(id, u) and there exists v(u, T ′, i′) ∈ V (Γ) such that T and
T ′ are J-connectable and v(id, T, i) and v(u, T ′, i′) is connected by an edge in Γ. The
map ι sends the edge connecting v(g, T ) to v(gu, T ′) to the edge connecting g to gu for
g ∈ F, u ∈ B. Then we obtain a graph (Γ, ι) on X such that ι is an F -equivariant map.

Now, we check that (Γ, ι) satisfies the condition to be an SC-graph on F . It is sufficient
to prove that for each connected component Y of Γ the restriction of ι to Y is injective
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and ι(Y ) = CH(ι(Y )(∞)). Actually, since ι is locally injective map from the above
construction and X is a tree, the restriction of ι to each connected component is injective.

To see ι(Y ) = CH(ι(Y )(∞)), it is sufficient to see that every vertex v of Y has a degree
larger than 1. Let v(g, T ) be a vertex of Y . Since there exists S ∈ H(∂F ) such that
T = B(g, r) ∩ CH(S) and CH(S) ∋ g, the degree of g in T is larger than 1. We prove
that ι(Y ) ∩ B(g, 1) = T ∩ B(g, 1). Take a vertex g′ of V (X) adjacent to g. In the case
that g′ ∈ T , since J := T ∩ B(g, g′, r) ∈ Rr(g, g

′), there exists v(g′, T ′) ∈ V (Γ) such that
T and T ′ are J-connectable and v(g, T ) is connected to v(g′, T ′) by an edge. If g′ ̸∈ T ,
then we see that there exists no vertex v(g′, T ′) ∈ V (Y ) connected to v(g, T ) by an edge
from the construction of Γ. Hence ι(Y ) ∩ B(g, 1) = T ∩ B(g, 1). Therefore the degree of
v(g, T ) in Y is larger than 1. Hence (Γ, ι) is an SC-graph on (F,X).

Finally, we check that for every T ∈ Rr(id) we have ηΓ(SCyl(T )) = θ(T ). From now on,
we identify each connected component Y of Γ with ι(Y ). Note that we have θ(T ) copies
of v(id, T, 1) ∈ V (Γ). It is sufficient to prove that for T ∈ Rr(id) with θ(T ) > 0 and for
Y ∈ Comp(Γ) if Y contains a vertex v(id, T ), then Y ∩B(id, r) = T .

Let T ∈ Rr(id) with θ(T ) > 0 and assume that v(id, T ) ∈ V (Y ) for Y ∈ Comp(Γ). From
the above argument, for any v(g1, T1) ∈ V (Y ), there exists v(g2, T2) ∈ V (Y ) adjacent to
v(g1, T1) if and only if g1 and g2 are adjacent vertices of T1. Moreover, we have Y ∩B(g, 1) =
T ′∩B(g, 1) for every v(g, T ′) ∈ V (Y ). From Lemma 8.10, we can see that for every vertex
v(g, T ′) ∈ V (Y ), T and T ′ are connectable, that is, T ∩ B(id, g, r) = T ′ ∩ B(id, g, r). For
each g ∈ V (T ) ∩ B(id, r − 1), by induction on the distance from id to g, we can see that
there exists v(g, T ′) ∈ V (Y ) such that

Y ∩B(g, 1) = T ′ ∩B(g, 1) =T ′ ∩B(id, g, r) ∩B(g, 1)

=T ∩B(id, g, r) ∩B(g, 1) = T ∩B(g, 1).

Therefore Y ∩B(id, r) = T . This completes the proof. □

By applying Theorem 8.12 to the map θ approximating µ, we obtain an SC-graph (Γ, ι)
on F such that ηΓ(SCyl(T )) = θ(T ) for any T ∈ Rr. Therefore, for any T ∈ Rr we have∣∣∣∣ 1MηΓ(SCyl(T ))− µ(SCyl(T ))

∣∣∣∣ < ε.

This completes the proof of the denseness property of rational subset currents for a free
group of finite rank.

8.2. Approximation by a sequence of subgroups. In this subsection we assume that
the rank of F is 2 and its free basis B = {x, y} for simplicity. Every theorem in this
subsection can be proved for any free group of finite rank by modifying the definitions and
the proofs a little.

For each edge e of the Cayley graph X = Cay(F,B) we say that e is labeled ℓ ∈ B if e
is an edge corresponding to ℓ in X. For an integer n ≥ 2 we consider a normal subgroup
Gn of F generated by

{x, yn, yxy−1, y2xy−2, . . . , yn−1xy−n+1}.

Note that the quotient graph Gn\X is a graph consisting of an n-gon each of whose edges
are labeled y and each of whose vertices is attached a loop labeled x. The subgroup Gn

is an n-index subgroup of F . Recall that we have a continuous R≥0-linear map ιGn from
SC(Gn) to SC(F ) (see Section 4). Since Gn is a finite index subgroup of F , the map ιGn

is surjective.
Let Hn be a subgroup of Gn generated by

{yn, yxy−1, y2xy−2, . . . , yn−1xy−n+1}.
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We can obtain the quotient graph Hn\CHHn by removing certain one loop labeled x in
Gn\X. From Proposition 8.6 and the argument following Corollary 8.7, we can see that
the sequence {

1

n
ηHn

}
n≥2

of rational subset currents converges to ηF . From this property, we can guess that Hn

approximates F in some sense. Actually, we will prove the following theorem in this
subsection.

Theorem 8.13. The union
∞∪
n=2

ιHn(SCr(Hn))

is a dense subset of SC(F ).

Remark 8.14. Recall that the map ιGn is a surjective continuous R≥0-linear map from
SC(Gn) to SC(F ) since Gn is a finite index subgroup of F . Moreover, we also have

ιHn(SC(Hn)) = ιGn ◦ ιGn
Hn

(SC(Hn)) ⊂ ιGn(SC(Gn)) = SC(F ).

Roughly speaking, since the “difference” between Hn and Gn is “small” for a large n,
Theorem 8.13 follows.

As a corollary to Theorem 8.14, we see that SCr(F ) is a dense subset of SC(F ) since
ιHn(SCr(Hn)) is included in SCr(F ) for every n ≥ 2.

Our method of proving Theorem 8.13 is as follows: Let µ ∈ SC(F ). Fix ε > 0 and
r ∈ N. This determines the open neighborhood

{ν ∈ SC(F ) | |µ(SCyl(T ))− ν(SCyl(T ))| < ε for every T ∈ Rr(id)}

of µ. Then for a sufficiently large n, we find a subset current ν ∈ Span(SCr(Hn)) such that
ιHn(ν) belongs to the above neighborhood. Note that every Hn is a free group of finite
rank, and for a free group H of finite rank SCr(H) is a dense subset of Span(SCr(H)).
During the proof, we do not use the fact that a free group of finite rank has the denseness
property of rational subset currents.

In order to obtain ν we will construct an SC-graph (Y, f) on (Hn, CHHn), which means
that (Y, f) satisfies the following conditions:

(1) f is an Hn-equivariant graph morphism from Y to CHHn ;
(2) the restriction of f to each connected component Y0 of Y is injective and the image

f(Y0) coincides with CH(f(Y0)(∞));
(3) #f−1(id) <∞.

Then we can obtain a subset current ηY ∈ Span(SCr(Hn)) by

ηY :=
∑

Y0∈Comp(Y )

δf(Y0)(∞).

Note that we often identify Y0 with f(Y0).

Remark 8.15. Theorem 8.13 gives us a new idea to construct an approximating rational
subset current. Explicitly, for an infinite hyperbolic group G if we have a sequence {Hn} of
quasi-convex subgroups of G such that anηHn converges to ηG for a sequence {an} of R≥0

and Hn is a free group of finite rank, then for any µ ∈ SC(G) we may be able to construct
ν ∈ SpanSCr(Hn) such that ιHn(ν) approximates µ for a sufficiently large n ∈ N. In the
case that G is a surface group, we will prove the denseness property for G by using this
idea (see Theorem 8.22).
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Recall that when we proved the denseness property of rational subset currents for F ,
we used the Cayley graph X of F , which is a tree, and we constructed an SC-graph on
X. However, for the Cayley graph of a general hyperbolic group it is much more difficult
to construct a subgraph like an SC-graph on the Cayley graph. The difficulty comes from
that the Cayley graph of a hyperbolic group is a δ-hyperbolic space for δ > 0 and almost
everything on a δ-hyperbolic space is vaguely determined in some sense. For example,
a geodesic line connecting two points of the boundary is not unique but unique up to
some constant. During the proof of Theorem 8.22 we have to prove a lot of lemmas
corresponding to such a constant. However, the basic idea of the proof of Theorem 8.22
is the same as that of Theorem 8.13.

Now, we consider the action of Hn on CHHn . Note that

F/Gn = {Gn, yGn, . . . , y
n−1Gn}

and
n−1∪
i=0

B(yi, 1/2)

is a fundamental domain for the action of G on X. We see that

F := CHHn ∩
n−1∪
i=0

B(yi, 1/2).

is a fundamental domain for the action of Hn on CHHn and for any non-trivial h ∈ Hn

the intersection of hF ∩ F is empty or a midpoint of an edge. Note that

n−1∪
i=0

B(yi, 1/2) \ F

equals a half-edge labeled x attached to id since the canonical projection pHn from CHHn

onto Hn\CHHn maps id to the vertex of Hn\CHHn that is not attached a loop labeled x..
Then we see that the set

{h ∈ Hn \ {id} | hF ∩ F ≠ ∅}

is a generating set of Hn. We can take its subset Bn such that

{h ∈ Hn \ {id} | hF ∩ F ̸= ∅} = Bn ⊔B−1
n ,

and then Bn is a free basis of Hn.
Now, we consider the Cayley graph Xn := Cay(Hn, Bn) of Hn with respect to Bn, which

is a tree. From the definition of Bn there is one-to-one correspondence between a vertex h
of Xn and hF ⊂ X. Moreover, h1, h2,∈ V (Xn) are adjacent if and only if h1F ∩h2F ̸= ∅,
which means that h1F and h2F are also adjacent.

We generalize the notion of a round-graph centered at a vertex with radius r ∈ N and
define a round-graph of r-neighborhood of a subset of X in order to consider a round-graph
of r-neighborhood of hF for h ∈ Hn.

Definition 8.16 (Round-graph of r-neighborhood). Let r > 0. For a non-empty bounded
subset Y of X we denote by B(Y, r) the r-neighborhood of Y , that is,

B(Y, r) := {x ∈ X | d(x, Y ) ≤ r}.

A subset T of B(Y, r) is called a round-graph of r-neighborhood of Y if T ∩ Y ̸= ∅ and
there exists S ∈ H(∂F ) such that

T = CH(S) ∩B(Y, r).
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We denote by Rr(Y ) the set of all round-graphs of r-neighborhood of Y . For T ∈ Rr(Y )
we define the subset cylinder SCyl(T ) with respect to T by

SCyl(T ) := {S ∈ H(∂F ) | CH(S) ∩B(Y, r) = T}.

For two non-empty subset Y and Z of X we denote by B(Y,Z, r) the intersection of
B(Y, r) and B(Z, r). For T1 ∈ Rr(Y ), T2 ∈ Rr(Z) we say that T1 and T2 are connectable
if T1 ∩ B(Y, Z, r) = T2 ∩ B(Y,Z, r). Note that B(Y,Z, r) can be empty, and then T1 and
T2 are connectable for any T1 ∈ Rr(Y ), T2 ∈ Rr(Z).

Assume that B(Y, Z, r) is not empty. A subset J of B(Y, Z, r) is called a (Y,Z)-round-
graph of r-neighborhood of Y, Z if J ∩ Y ̸= ∅, J ∩Z ̸= ∅ and there exists S ∈ H(∂F ) such
that J = CH(S) ∩ B(Y, Z, r). We denote by Rr(Y, Z) the set of all (Y, Z)-round-graph
of r-neighborhood of Y, Z. For J ∈ Rr(Y,Z) we define the subset cylinder SCyl(J) with
respect to J by

SCyl(J) = {S ∈ H(∂F ) | CH(S) ∩B(Y, Z, r) = J}.

For T1 ∈ Rr(Y ), T2 ∈ Rr(Z) we say that T1 and T2 are J-connectable for J ∈ Rr(Y, Z) if
T1 ∩B(Y, Z, r) = J = T2 ∩B(Y, Z, r).

For J ∈ Rr(Y, Z) the following equation holds:

SCyl(J) =
⊔

T∈Rr(Y )

T∩B(Y,Z,r)=J

SCyl(T ),

which implies that for any µ ∈ SC(F ) we have∑
T∈Rr(Y )

T∩B(Y,Z,r)=J

µ(SCyl(T )) =
∑

T ′∈Rr(Z)

T ′∩B(Y,Z,r)=J

µ(SCyl(T ′)).

Lemma 8.17. Let r > 0. Let h0, h1, . . . , hm be pairwise disjoint elements of Hn such that
hi−1F is adjacent to hiF for i = 1, . . . ,m. Take Ti ∈ Rr(hiF) for i = 0, 1, . . . ,m. If Ti−1

and Ti are connectable for every i = 1, . . .m, then T0 and Tm are connectable.

Proof. The proof is almost the same as that of Lemma 8.10. Since X is a tree, we have

B(h0F , hmF , r) ⊂
m∩
i=0

B(hiF , r),

which implies

B(h0F , hmF , r) ⊂
m−1∩
i=0

B(hiF , hi+1F , r).

From the assumption,

Ti−1 ∩B(hi−1F , hiF , r) = Ti ∩B(hi−1F , hiF , r).

for every i = 1, . . . ,m. Therefore

T0 ∩B(h0F , hmF , r) = T1 ∩B(h0F , hmF , r) = · · · = Tm ∩B(h0F , hmF , r).

This completes the proof. □

Now, we begin to prove Theorem 8.13. We divides the proof into 5 steps and we will
refer these steps in the proof of the denseness property for surface groups.
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Step 1. Fix µ ∈ SC(F ). Fix ε > 0 and r ∈ N, which determine the open neighborhood
U(r, ε) of µ:

U(r, ε) := {ν ∈ SC(G) | |µ(SCyl(T ))− ν(SCyl(T ))| < ε for every T ∈ Rr(id)}.

Take a sufficiently large n ∈ N. Set ρ := r + n. Recall that

Rρ =
⊔

v∈V (X)

Rρ(v).

From Lemma 8.11, we can take a map

θ : Rρ → Z≥0

satisfying the following conditions:

(1) θ is F -invariant;
(2) there exists M ∈ N such that 1

M θ approximates µ, that is, for every T ∈ Rρ∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣ < ε′,

where ε′ > 0 depends on µ, ε, r and n;
(3) for any u ∈ B and any J ∈ Rρ(id, u) we have∑

T∈Rρ(id)

T∩B(id,u,ρ)=J

θ(T ) =
∑

T ′∈Rρ(u)

T ′∩B(id,u,r)=J

θ(T ′).

The above conditions (1) and (3) imply that for any adjacent vertices v, w ∈ V (X) and
J ∈ Rρ(v, w) we have ∑

T∈Rρ(v)

T∩B(v,w,ρ)=J

θ(T ) =
∑

T ′∈Rρ(w)

T ′∩B(v,w,r)=J

θ(T ′).

For each h ∈ Hn and T ∈ Rr(hF) we define θ(T ) by

θ(T ) :=
∑

T ′∈Rρ(v)

T ′∩B(hF ,r)=T

θ(T ′),

where v is a vertex of T ∩ hF . Note that the diameter of F is n and so B(hF , r) ⊂
B(v, r + n) = B(v, ρ) for any vertex v of T ∩ hF .

Lemma 8.18. The definition of θ(T ) is independent of the choice of v and the map

θ :
⊔

h∈Hn

Rr(hF) → Z≥0

is Hn-invariant. Moreover, for any u ∈ Bn and any J ∈ Rr(F , uF) we have the following
equation: ∑

T∈Rr(F)

T∩B(F ,uF ,r)=J

θ(T ) =
∑

T ′∈Rr(uF)

T ′∩B(F ,uF ,r)=J

θ(T ′).

Proof. For h ∈ Hn and T ∈ Rr(hF) we have

SCyl(T ) =
⊔

T ′∈Rρ(v)

T ′∩B(hF ,r)=T

SCyl(T ′),
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Let v′ be another vertex of T ∩ hF . It is sufficient to consider the case that v′ is adjacent
to v. Since B(hF , r) ⊂ B(v, v′, ρ), we can obtain∑

T ′∈Rρ(v)

T ′∩B(hF ,r)=T

θ(T ′) =
∑

J∈Rρ(v,v′)

J∩B(hF ,r)=T

∑
T ′∈Rρ(v)

T ′∩B(v,v′,ρ)=J

θ(T ′)

=
∑

J∈Rρ(v,v′)

J∩B(hF ,r)=T

∑
T ′∈Rρ(v′)

T ′∩B(v,v′,ρ)=J

θ(T ′)

=
∑

T ′∈Rρ(v′)

T ′∩B(hF ,r)=T

θ(T ′).

Therefore, θ(T ) is independent of the choice of v. Moreover, the map

θ :
⊔

h∈Hn

Rr(hF) → Z≥0

is Hn-invariant by the definition.
Let u ∈ Bn and J ∈ Rr(F , uF). Since uF and F intersect at a midpoint of an edge,

there exist two adjacent vertices v, w of J such that v ∈ F and w ∈ uF . Then we have∑
T∈Rr(F)

T∩B(F ,uF ,r)=J

θ(T ) =
∑

T∈Rr(F)

T∩B(F ,uF ,r)=J

∑
T ′∈Rρ(v)

T ′∩B(F ,r)=T

θ(T ′)

=
∑

T∈Rr(F)

T∩B(F ,uF ,r)=J

∑
J ′∈Rρ(v,w)

J ′∩B(F ,uF ,r)=T

∑
T ′∈Rρ(v)

T ′∩B(v,w,r)=J ′

θ(T ′)

=
∑

T∈Rr(F)

T∩B(F ,uF ,r)=J

∑
J ′∈Rρ(v,w)

J ′∩B(F ,uF ,r)=T

∑
T ′∈Rρ(w)

T ′∩B(v,w,,r)=J ′

θ(T ′)

=
∑

T∈Rr(F)

T∩B(F ,uF ,r)=J

∑
T ′∈Rρ(w)

T ′∩B(F ,r)=T

θ(T ′)

=
∑

T ′∈Rρ(w)

T ′∩B(F ,uF ,r)=J

θ(T ′)

=
∑

T ′∈Rr(uF)

T ′∩B(F ,uF ,r)=J

∑
T ′′∈Rρ(w)

T ′′∩B(uF ,r)=T ′

θ(T ′)

=
∑

T ′∈Rr(uF)

T ′∩B(F ,uF ,r)=J

θ(T ′).

This is the required equation. □
From the above lemma and its proof we can see that θ can be considered as a measure

as long as we consider a value of “small” round-graphs by θ. Explicitly, for any subset Y
of X and ℓ ∈ N satisfying the condition that B(Y, ℓ) ⊂ B(v, ρ) for a vertex v ∈ Y , we can
define

θ(T ) :=
∑

T ′∈Rρ(v)

T ′∩B(Y,ℓ)=T

θ(T ′)
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for any T ∈ Rℓ(Y ). Moreover, if 1
M θ(T ) is sufficiently close to µ(SCyl(T )) for every

T ∈ Rρ(id), then
1
M θ(T ) is also close to µ(SCyl(T )) for T ∈ Rℓ(Y ).

Step 2. By using the map θ, we construct a graph (Γ, ι) on Xn = Cay(Hn, Bn) by the
same way as we did in the proof of Theorem 8.12. Then the graph (Γ, ι) satisfies the
following conditions:

(1) ι : Γ → Xn is an Hn-equivariant map;
(2) the restriction of ι to each connected component of Γ is injective;
(3) #ι−1(id) <∞.

We define the vertex set V (Γ) of Γ by

V (Γ) := {v(h, T, i)}h∈Hn, T∈Rr(hF), i=1,...,θ(T ).

If θ(T ) = 0 for T ∈ Rr(hF), then we do not have any vertex v(h, T, i). We will write
v(h, T ) instead of v(h, T, i) when no confusion can arise. Since for each u ∈ Bn and
J ∈ Rr(F , uF) we have ∑

T∈Rr(F)

T∩B(F ,uF ,r)=J

θ(T ) =
∑

T ′∈Rr(uF)

T ′∩B(F ,uF ,r)=J

θ(T ′),

we can define a certain one-to-one correspondence between

{v(id, T )}T∩B(F ,uF ,r)=J and {v(u, T ′)}T ′∩B(F ,uF ,r)=J .

For this correspondence we connect two vertices by an edge, and we perform this operation
for every u ∈ Bn and every J ∈ Rr(F , uF). Finally, for every u ∈ Bn and h ∈ Hn we
connect v(h, T, i) to v(hu, hT ′, i′) by an edge if v(id, T, i) and v(u, T, i′) are connected by
an edge. In this way we obtain the edge set E(Γ) of Γ.

From the construction of Γ, we see that Hn acts on Γ, and if v(h1, T1), v(h2, T2) ∈ V (Γ)
are connected by an edge, then h1 and h2 are adjacent in Xn and T1, T2 are J-connectable
for some J ∈ Rr(h1F , h2F). Moreover, for v(h, T ) ∈ V (Γ) if there exists h′ adjacent to
h in Xn such that T ∩ h′F ̸= ∅, then T ∩ B(hF , h′F , r) ∈ Rr(hF , h′F) and there exists
T ′ ∈ Rr(h

′F) such that v(h, T ) and v(h′, T ′) are connected by an edge.
We also have an Hn-equivariant map ι from Γ to Xn such that ι(v(h, T )) = h for

v(h, T ) ∈ V (Γ). Moreover, the restriction of ι to each connected component Y of Γ is
injective since Xn is a tree. By the definition of ι, we have

#ι−1(id) =
∑

T∈Rr(F)

θ(T )

≤
∑

v∈V (F)

∑
T∈Rρ(v)

θ(T ) = #V (F)
∑

T∈Rρ(id)

θ(T ) <∞.

Finally, we note that a connected component Y of Γ may contain a vertex with degree
0 or 1 since edges with label x are not attached to the vertex h ∈ Hn ⊂ V (CHHn).
For example, consider the subgroup ⟨x⟩ of F and its limit set {x∞, x−∞}. Then T :=
CH({x∞, x−∞})∩B(F , r) ∈ Rr(F) and T ∩CHHn = {id}. We see that v(id, T ) will be a
vertex with degree 0 in Γ if θ(T ) > 0. Therefore even if we define a subset current ηΓ on
Hn by the same way as we did for an SC-graph on F , ηΓ loses some information on θ(T ).

Step 3. We construct a graph (|Γ|, |ι|) on X from (Γ, ι) satisfying the following conditions:

(1) |ι| : |Γ| → X is an Hn-equivariant map;
(2) the restriction of |ι| to each connected component of |Γ| is injective;
(3) #|ι|−1(id) <∞.
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For each connected component Y of Γ we define a subgraph |Y | of X by

|Y | :=
∪

v(h,T )∈V (Y )

T ∩ hF

and define |Γ| to be the formal union of |Y | over all connected component Y of Γ. By the
definition, |Y | is included in

⊔
h∈Hn

hF = CHHn . Let |ι| be the natural projection from
|Γ| to X, that is, the restriction of |ι| to |Y | for each Y ∈ Comp(Γ) is the inclusion map.
The action of Hn on Γ and on X induce the action of Hn on |Γ|. Let h0 ∈ Hn and x ∈ |Y |
for Y ∈ Comp(Γ). For a moment, we write (Y, x) instead of x to emphasize that x is a
point of |Y |. Then there exists v(h, T ) ∈ V (Y ) such that x ∈ T ∩ hF . Since Hn acts on
Γ, there exists v(h0h, h0T ) ∈ V (h0Y ) and h0x ∈ h0T ∩ h0hF . Then we define h0(Y, x) to
be (h0Y, h0x), which is a point of |h0Y |. We see that the map |ι| is Hn-equivariant by the
definition.

Lemma 8.19. Let Y be a connected component of Γ. Let v(h, T ) ∈ V (Y ), v ∈ V (T )∩hF .
Then we have

|Y | ∩B(v, r) = CHHn ∩ T ∩B(v, r).

Moreover, |Y | is connected.

Proof. Inclusion ⊂ : Let w ∈ |Y | ∩ B(v, r). There exists v(h′, T ′) ∈ V (Y ) such that
w ∈ T ′ ∩ h′F . Since Y is connected there exist a geodesic path of vertices v(h0, T0) =
v(h, T ), v(h1, T1), . . . , v(hm, Tm) = v(h′, T ′) ∈ V (Y ). Since Ti−1 and Ti are connectable for
i = 1, . . . ,m, T and T ′ are also connectable from Lemma 8.17. Since B(v, r) ⊂ B(hF , r),
we have

T ′ ∩ h′F ∩B(v, r) =T ′ ∩B(hF , h′F , r) ∩ h′F ∩B(v, r)

=T ∩B(hF , h′F , r) ∩ h′F ∩B(v, r)

and so

w ∈ T ′ ∩ h′F ∩B(v, r) ⊂ CHHn ∩ T ∩B(v, r).

Inclusion ⊃ : Let w ∈ CHHn ∩ T ∩ B(v, r). Then there exists a geodesic path P from
v to w in CHHn ∩ T ∩ B(v, r) since all of CHHn , T and B(v, r) are trees. We can take
a sequence h0 = h, h1, . . . , hm ∈ Hn such that P passes through hiF in this order and
w ∈ hmF . From the construction of the edge set of Γ there exists Ti ∈ Rr(hiF) for
i = 1, . . . ,m such that v(h1, T1), . . . , v(hm, Tm) ∈ V (Y ), T and T1 are connectable, and
Ti and Ti+1 are connectable for i = 1, 2, . . . ,m − 1. From Lemma 8.17, T and Tm are
connectable and so

w ∈T ∩B(hF , hmF , r) ∩ hmF ∩B(v, r)

=Tm ∩B(hF , hmF , r) ∩ hmF ∩B(v, r).

This implies that w ∈ Tm ∩ hmF ∩B(v, r) ⊂ |Y | ∩B(v, r).
Finally, we check that |Y | is connected. Take any geodesic path of vertices

v(h0, T0), v(h1, T1), . . . , v(hm, Tm) ∈ V (Y ).

Since Ti−1 and Ti are connectable, there exists an edge ei in Ti−1 ∩ Ti connecting hi−1F
and hiF for i = 1, . . . ,m. Note that Ti∩hiF is connected. Therefore |Y | is connected. □
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From the above lemma we have

#|ι|−1(id) =#{Z ∈ Comp(|Γ|) | Z ∋ id}
=#{Y ∈ Comp(Γ) | v(id, T ) ∈ V (Y ), T ∋ id}

=
∑

T∈Rr(F)
T∋id

θ(T )

=
∑

T∈Rρ(id)
T∋id

θ(T ) <∞.

Therefore we can see that (|Γ|, |ι|) satisfies all conditions to be an SC-graph on (Hn, CHHn)
except the condition that for every connected component Z of |Γ| we have CH(Z(∞)) = Z.
The reason is that there exists a vertex v of Z with degree 1 or 0 in Z. Such a vertex v
belongs to Hn ⊂ V (CHHn) by the construction of Hn. This implies that there are finite
vertices of |ι|−1(id) with degree less than 2 and any vertex of |Γ| with degree less than 2
belongs to the Hn-orbit of those vertices.

Step 4. We construct an SC-graph (Γ̂, ι̂) on (Hn, CHHn) from (|Γ|, |ι|), that is, (Γ̂, ι̂)
satisfies the following conditions:

(1) ι̂ : Γ̂ → CHHn is an Hn-equivariant map;

(2) the restriction of ι̂ to each connected component Z of Γ̂ is injective and ι̂(Z) =
CH(ι̂(Z)(∞));

(3) #ι̂−1(id) <∞.

Let v be a vertex of |ι|−1(id) with degree less than 2. If the degree of v is 0, then
we remove Hn(v) from |Γ|. Now, we consider the case the degree of v is 1. Then there
exists either an edge connecting a vertex of |ι|−1(y) to v or an edge connecting a vertex
of |ι|−1(y−1) and v. Assume that there exists an edge connecting a vertex of |ι|−1(y−1)
to v. Take a subgraph P of CHHn consisting of two edges connecting id and y, y and yx.
Consider the formal union

|Γ| ⊔
⊔

h∈Hn

h(P )

Note that Hn acts on this formal union from left. For every h ∈ Hn we attach the vertex
of hP corresponding to h to hv in |Γ|, and the vertex of hP corresponding to h(yx) to
the vertex of (hyxy−1)P corresponding to (hyxy−1)y = hyx. Note that if h ∈ Hn, then
hyxy−1 ∈ Hn. Since this attachment of Hn(P ) to |Γ| is Hn-invariant, we obtain a graph
|Γ|′ such that Hn acts on |Γ|′ and the degree of hv in |Γ|′ equals 2. For h ∈ Hn and the
vertex h(y) ∈ h(P ) the degree of h(y) in |Γ|′ is 3. Moreover |ι| is extended to an Hn-
equivariant map |ι|′ from |Γ|′ to CHHn such that the restriction of |ι|′ to every connected
component is injective since CHHn is a tree.

In the case that there exists an edge connecting a vertex of |ι|−1(y) to v, we can perform
the same operation by using a subgraph of CHHn consisting of two edges connecting id
and y−1, y−1 and y−1x.

We perform this operation until every vertex of |Γ| has a degree larger than or equal to

2. The resulting graph is denoted by (Γ̂, ι̂), which is an SC-graph on (Hn, CHHn). Let C1

be the number of vertices of |ι|−1(id) with degree 1 in |Γ|. Then we need to perform the

above operation exactly C1 times in order to obtain Γ̂.

Step 5. Set

η
Γ̂
:=

∑
Z∈Comp(Γ̂)

δZ(∞) ∈ Span(SCr(Hn)).
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We prove that 1
nM ιHn(ηΓ̂) belongs to the open neighborhood U(r, ε) of µ for a sufficiently

large n.

Take T ∈ Rr(id). Then we have

ιHn(ηΓ̂)(SCyl(T )) =
∑

gHn∈F/Hn

g∗(ηΓ̂)(SCyl(T ))

=
∑

gHn∈F/Hn

η
Γ̂
(SCyl(g−1T )).

If g−1T is not included in CHHn for g ∈ F , then SCyl(T ) ∩ H(∂Λ(Hn)) = ∅ and so
η
Γ̂
(SCyl(g−1T )) = 0. Since the fundamental domain F for the action of Hn on CHHn

includes vertices id, y, . . . , yn−1, we have

V (CHHn) = Hn ⊔Hny ⊔ · · ·Hny
n−1.

This implies that if gHn ∈ G/Hn is different from every y−iHn for i = 0, 1, . . . , n − 1,
then g−1 ̸∈ V (CHHn), which implies that η

Γ̂
(SCyl(g−1T )) = 0. Note that T ∋ id and so

g−1T ∋ g−1. Therefore we have

ιHn(ηΓ̂)(SCyl(T )) =
n−1∑
i=0

η
Γ̂
(SCyl(yiT )).

Now, we can assume that n is much larger than r. For each i = 0, 1, . . . , n − 1 we

calculate and evaluate η
Γ̂
(SCyl(yiT )). The point is that any connected component Z of Γ̂

satisfies the condition that CH(Z(∞)) = Z, which implies that Z(∞) belongs to SCyl(T )
for v ∈ V (X) and T ∈ Rr(v) if and only if Z ∩B(v, r) = T . Hence we have

η
Γ̂
(SCyl(yiT )) =#{Z ∈ Comp(Γ̂) | Z(∞) ∈ SCyl(yiT )}

=#{Z ∈ Comp(Γ̂) | Z ∩B(yi, r) = yiT}.

Case 1: The number i belongs to {r, . . . , n− r}.
In this case we note that B(yi, r) ⊂ CHHn . Consider a connected component Y of Γ

with |Y | ∋ yi. Since yi ∈ F , there exists v(id, T ′) ∈ V (Y ) and we have

|Y | ∩B(yi, r) = CHHn ∩ T ′ ∩B(yi, r) = T ′ ∩B(yi, r)

by Lemma 8.19. Hence for the connected component Z of Γ̂ containing |Y |, we also see

that Z ∩B(yi, r) = |Y | ∩B(yi, r). Note that for a connected component Z of Γ̂ containing
yi, Z must include a subgraph |Y | for a connected component Y of Γ and |Y | ∋ yi. Hence
we have

η
Γ̂
(SCyl(yiT ))

=#{Z ∈ Comp(Γ̂) | Z ∩B(yi, r) = yiT}
=#{Y ∈ Comp(Γ) | |Y | ∩B(yi, r) = yiT}
=#{Y ∈ Comp(Γ) | v(id, T ′) ∈ V (Y ), T ′ ∩B(yi, r) = yiT}

=
∑

T ′∈Rr(F)

T ′∩B(yi,r)=yiT

θ(T ′)

=
∑

T ′∈Rρ(yi)

T ′∩B(yi,r)=yiT

θ(T ′)
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=
∑

T ′∈Rρ(id)

T ′∩B(id,r)=T

θ(T ′) = θ(T ).

Note that

SCyl(T ) =
⊔

T ′∈Rρ(id)

T ′∩B(id,r)=T

SCyl(T ′).

Recall that we took θ after fixing n and ρ = r + n. Since 1
M θ(T ′) is close to µ(SCyl(T ′))

for T ′ ∈ Rρ(id) and the cardinality of Rρ(id) is finite and depends on ρ, 1
M θ(T ) is also

close to µ(SCyl(T )).
Case 2: The number i belongs to {0, . . . , r − 1, n− r + 1, . . . , n− 1}.
For a connected component Z of Γ̂ containing yi the intersection of Z and B(yi, r) is

influenced by our construction of Γ̂ from |Γ|. The point is that we can make r/n as small
as we like since we choose n after r. Recall that C1 is the number of vertices of |ι|−1(id)
with degree 1 in |Γ|. Then we have

η
Γ̂
(SCyl(yiT ))

=#{Z ∈ Comp(Γ̂) | Z ∩B(yi, r) = yiT}

≤#{Z ∈ Comp(Γ̂) | Z ∋ yi}
≤#{Y ∈ Comp(Γ) | v(id, T ′) ∈ V (Y ), T ′ ∋ yi}+ C1

≤
∑

T ′∈Rρ(yi)

θ(T ′) + C1

≤
∑

T ′∈Rρ(id)

θ(T ′) + C1

Note that

C1 ≤ #|ι|−1(id) ≤
∑

T ′∈Rρ(id)

θ(T ′)

and ⊔
T ′∈Rρ(id)

SCyl(T ) = Aid.

Hence for

θ(id) :=
∑

T ′∈Rρ(id)

θ(T ′),

1
M θ(id) is also close to µ(Aid) and there exists a constant C depending on µ(Aid) such
that

1

M
θ(id) ≤ C.

Then we see that

η
Γ̂
(SCyl(yiT )) ≤ 2CM.

Note that

θ(T ) ≤ θ(id) ≤ CM.
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From Case 1 and Case 2 we have∣∣∣∣ 1

nM
ιHn(ηΓ̂)(SCyl(T ))− µ(SCyl(T ))

∣∣∣∣
≤
∣∣∣∣n− 2r + 1

nM
θ(T )− µ(SCyl(T ))

∣∣∣∣+ 2r − 1

nM
· 2CM

≤
∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣+ 2r − 1

nM
θ(T ) +

2(2r − 1)C

n

≤
∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣+ 3(2r − 1)C

n
.

Therefore, if we take n sufficiently large and take θ such that 1
M θ is sufficiently close to µ,

then we have ∣∣∣∣ 1

nM
ιHn(ηΓ̂)(SCyl(T ))− µ(SCyl(T ))

∣∣∣∣ < ε

for every T ∈ Rr(id). This completes the proof of Theorem 8.13.

8.3. Denseness property of surface groups. We prove the following theorem in this
subsection, which is our main result:

Theorem 8.20. For a surface group G, the set SCr(G) of rational subset currents on G
is a dense subset of SC(G).

Note that the fundamental group of a compact hyperbolic surface is a free group of
finite rank or a surface group. Hence we also have the following theorem:

Theorem 8.21. For a compact hyperbolic surface Σ, the set SCr(Σ) of rational subset
currents on Σ is a dense subset of SC(Σ).

Let Σ be a closed hyperbolic surface and G the fundamental group of Σ. In this
subsection we write SC(G) to denote the space of subset currents on G since we consider
both the universal cover H of Σ and the Cayley graph of G with respect to a finite
generating set.

The strategy to prove Theorem 8.20 is based on the proof of Theorem 8.13 in the
previous subsection. However, in this case our proof will be more complicated. We first
take a certain sequence of finitely generated subgroups {Hn} of G, which are free groups of
finite rank, but we need to modify Hn during the proof. Recall that in Step 4 of the proof

of Theorem 8.13 we constructed the graph (Γ̂, ι̂) from (|Γ|, |ι|). We need to modify Hn in

this context. Explicitly, we take u0 ∈ G independent of n such that Ĥn := ⟨Hn ∪ {u0}⟩
is isomorphic to the free product of Hn and satisfies several conditions, and then we

construct ν ∈ Span(SCr(Ĥn)) such that ι
Ĥn

(ν) is sufficiently close to a given subset

current µ ∈ SC(G). Note that ι
Ĥn

(SC(Ĥn)) includes ιHn(SC(Hn)) since ιHn = ι
Ĥn

◦ ιĤn
Hn

.

We can obtain Theorem 8.20 as a corollary to the following theorem:

Theorem 8.22. There exists a sequence of finitely generated subgroups {Ĥn}n∈N such

that each Ĥn is a free group of finite rank and the union∪
n∈N

ι
Ĥn

(SC(Ĥn))

is a dense subset of SC(G).

For the simplicity of describing subgroups of G, we assume that the genus of Σ is 2 in
this subsection. We construct Σ by gluing edges of an octagon by the fundamental way.
This construction gives Σ a CW-complex structure, a base point x0 of G and a generating
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set BG of G. Set X := Cay(G,BG). We also fix a hyperbolic metric on Σ and assume
that there exists a closed geodesic c0 passing through the base point x0 and dividing Σ
into two compact surfaces, each of which is a torus with one boundary component and
contains two generators of G (see Figure 4).

Figure 4. The four closed curves except c0 and c1 represent the 1-skeleton
of the CW-complex structure of Σ and also represent the generating set BG

of G.

The CW-complex structure on Σ induces the CW-complex structure on the universal
cover H of Σ. Fix a lift x̃0 of x0 in H. Then we can see that there exists a G-equivariant
homeomorphism Φ from the Cayley graph X to the 1-skeleton H(1) of H such that Φ(g) =
gx̃0 for every g ∈ G. Moreover, the map Φ is a quasi-isometry from the Švarc-Milnor
Lemma.

Take a closed geodesic c1 cutting one of the handles of Σ (see Figure 4). For n ≥ 2 we

can obtain an n-fold covering space Σ̃n of Σ by cutting Σ along c1 and gluing n-copies of

Σ \ c1 along c1 (see the left of Figure 5 for Σ̃4). Let p
Σ̃n be the covering map from Σ̃n

to Σ and x̃0
n a lift of x0 in Σ̃n. Let Gn be the image of the homomorphism (p

Σ̃n)# from

π1(Σ̃
n, x̃0

n) to G = π1(Σ, x0). Consider a lift c̃0
n of c0 passing through x̃0

n in Σ̃n. Then

c̃0
n divides Σ̃n into two connected components, one of which is a torus with one boundary

component and the other of which is an n-genus surface with one boundary component,
denoted by Σn (see the right of Figure 5 for Σ4). The point is that Σn “approximates”

Σ̃n if n is large.

Figure 5. The four closed curves on Σ̃4 are the copies of c1.

Set Hn := (p
Σ̃n |Σn)#π1(Σn, x̃0

n) < G. Since c̃0
n is a closed geodesic of Σ̃n, the convex

core CHn is identified with Σn. Then CHHn contains x̃0. We can see that 1
nηHn converges

to ηG in SC(G) from the proof of Theorem 8.22.
We fix δ > 0 such that X is a δ-hyperbolic space.

Remark 8.23 (Constants related to δ). This remark is the most important remark in
this subsection. In the case of a free group F of finite rank, the Cayley graph of F with
respect to a free basis is a tree, which is a 0-hyperbolic space. Then we could construct
subtrees or geodesics of the Cayley graph clearly. However, when we construct something
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on X, we will be always annoyed with some positive constants coming from δ. Here, we
introduce some notations in order to reduce complicatedness of such constants. We will
use a symbol δ′ to represent a constant depending only on δ, which can be different in
each situation. Even if a constant depends on not only δ but also objects not depending
on n appeared in the above, such as H, Φ, and the degree of a vertex of X, we say only
that the constant depends on δ. We say that a quasi-geodesic γ is a δ-quasi-geodesic if
there exist a ≥ 1, b ≥ 0 depending only on δ such that γ is (a, b)-quasi-geodesic.

Definition 8.24 (Convex hull in X). We identify ∂G with the boundary ∂X of X. Recall
that for S ∈ H(∂G) the weak convex hull WC(S) of S in X is the union of all geodesic
lines connecting two points of S. It is known that WC(S) is not necessarily a convex
subset of X but δ′-quasi-convex subset of X, that is, any geodesic path connecting two
points of WC(S) is included in the (closed) δ′-neighborhood B(WC(S), δ′) of WC(S).
We introduce a notion of convex hull CH(S) of S in X. Note that X is a planar graph

since X is homeomorphic to the 1-skeleton H(1).
Let ξ, η ∈ ∂G with ξ ̸= η. We give an orientation to a geodesic line ℓ joining ξ to η.

Since X is planar, we can define the left side Left(ℓ) of ℓ and the right side Right(ℓ) of ℓ,
each of which includes ℓ. We say that an edge e of WC({ξ, η}) is leftmost if e is included
in the left side of ℓ for every geodesic line ℓ from ξ to η. We can define a rightmost
edge of WC({ξ, η}) by the same way. Then we can see that the union of all leftmost
edges forms a quasi-geodesic line joining ξ to η, which is denoted by Left(ξ, η). The union
of all rightmost edges also forms a quasi-geodesic line Right(ξ, η) joining ξ to η. Note
that Left(ξ, η) = Right(η, ξ). We define the convex hull CH({ξ, η}) of {ξ, η} to be the
intersection of the right side of Left(ξ, η) and the left side of Right(ξ, η).

Let S ∈ H(∂G). If S = ∂G, then we define CH(S) to be X. Assume that S ̸= ∂G.
Recall that ∂G \ S is the union of at most countably many open intervals {Iλ}λ∈Λ. We
give an orientation to ∂G, which induces an orientation on each Iλ. For the orientation of
Iλ we give an orientation to ∂IΛ = {ξλ, ηλ} such that the limit set of the right side of a
geodesic line joining ξλ to ηλ equals Iλ. Now, we define CH(S) to be the intersection of
the left side of Right(ξλ, ηλ) taken over all λ ∈ Λ. We call each Right(ξλ, ηλ) a boundary
component of CH(S) and the union of Right(ξλ, ηλ) taken over all λ ∈ Λ the boundary of
CH(S). Note that every boundary component of CH(S) is a δ-quasi-geodesic line.

From the definition of CH(S) for S ∈ H(∂G) we can see that CH(S) has the following
properties:

(1) CH(S) is a δ′-quasi-convex connected subgraph of X;
(2) CH(S) ⊃WC(S);
(3) CH(S) is included in the δ′-neighborhood of WC(S);
(4) for every x, y ∈ CH(S) there exists a δ-quasi-geodesic joining x to y in CH(S).

If a geodesic joining x to y goes out from CH(S), then we can consider a δ-quasi geodesic
traveling along the boundary of CH(S). As a result, we can see the property (4).

Now, we can define the notion of round-graphs and subset cylinders with respect to
round-graphs by using the convex hull defined in the above by the same way as Definition
8.16. Note that for a round-graph T ∈ Rr(id) we can see that SCyl(T ) is a Borel subset
of H(∂G) but neither open nor closed. Therefore, we need to develop a new neighborhood
of µ ∈ SC(G) instead of Corollary 8.7.

Notation 8.25. Let Y be a non-empty bounded subset of X. Recall that d = dX is
the path metric on X such that each edge of X has length one. Let a, r > 0. For
T1, T2 ∈ Rr(Y ) we denote by T1 ∼

a
T2 if T1 ⊂ B(T2, a) and T2 ⊂ B(T1, a). Let dX be a

visual metric on X := X ∪ ∂X. Let dHaus be the Hausdorff distance on H(∂G) induced
by the restriction of dX to ∂X = ∂G.
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Lemma 8.26. Let a > 0. Let Y be a non-empty bounded subset of X. The supremum
of dHaus(S1, S2) taken over all S1 ∈ SCyl(T1), S2 ∈ SCyl(T2) for all T1, T2 ∈ Rr(Y ) with
T1 ∼

a
T2 converges to 0 when r → ∞.

Proof. To obtain a contradiction, suppose that there exists ε > 0 such that for any r0 > 0
there exist r ≥ r0 and T1, T2 ∈ Rr(Y ) with T1 ∼

a
T2 and S1 ∈ SCyl(T1), S2 ∈ SCyl(T2)

such that dHaus(S1, S2) > ε. For such S1, S2 we can assume that there exists ξ ∈ S1 such
that dX(ξ, S2) > ε without loss of generality. Then there exists ε′ > 0 depending only on
ε such that dX(ξ, CH(S2)) > ε′. Let BX(ξ, ε′) be the closed ball centered at ξ with radius
ε′ with respect to dX . Then BX(ξ, ε′) ∩ CH(S2) = ∅.

Now, we assume that r0 is sufficiently large. Then BX(ξ, ε′)∩B(Y, r) ̸= ∅, and BX(ξ, ε′)
also intersects T1 since CH(S1) ∩ B(Y, r) = T1. Moreover, BX(ξ, ε′) also intersects T2
since T1 ⊂ B(T2, a) for the fixed constant a > 0. Therefore BX(ξ, ε′) intersects CH(S2),
a contradiction. □

From the above lemma we can see that the supremum of the diameter of SCyl(T ) in
H(∂G) taken over T ∈ Rr(Y ) tends to 0 when r → ∞.

The following lemma is a technical lemma that will be used in the proofs of Lemmas
8.28 and 8.30.

Lemma 8.27. Let a, b > 0. Let Y be a b-quasi-convex subset of X. Let v0 ∈ X and y0 ∈ Y .
Assume that r > 0 is much larger than a, b, d(y, y′). If x belongs to B(Y, a) ∩ B(v0, r),
then x also belongs to B(Y ∩B(v0, r), 2(a+ b+ d(v0, y0))).

Proof. Suppose that x belongs to B(Y, a)∩B(v0, r). Take y ∈ Y such that d(x, y) ≤ a. If
y belongs to B(v0, r), then our claim follows. Hence we assume that d(v0, y) > r. Take a
geodesic ℓ joining y0 to y. Note that d(y0, y) ≥ d(v0, y)− d(y0, v0) ≥ r − d(y0, v0). Hence
we can take p ∈ ℓ such that d(y0, p) = r − b− d(v0, y0). Then we have

d(p, y) = d(y0, y)− d(y0, p) ≤ d(y0, v0) + d(v0, y)− r + b+ d(v0, y0)

≤ a+ b+ 2d(v0, y0).

Since Y is b-quasi-convex, there exists p′ ∈ Y such that d(p, p′) ≤ b. Then

d(v0, p
′) ≤ d(v0, y0) + d(y0, p) + d(p, p′) ≤ r,

which implies that p′ ∈ B(v0, r). Moreover, we have

d(x, p′) ≤ d(x, y) + d(y, p) + d(p, p′) ≤ a+ (a+ b+ 2d(v0, y0)) + b.

Therefore x belongs to B(Y ∩B(v0, r), 2(a+ b+ d(v0, y0))). □

For U ⊂ H(∂G) and a > 0 set

BH(U, a) := {S ∈ H(∂G) | dHaus(U, S) ≤ a},

the a-neighborhood of U in H(∂G). Then we have the following lemma:

Lemma 8.28. Let ε, a > 0. Let Y be a non-bounded subset of X with Y (∞) ∈ H(∂G).
Let y ∈ Y . There exists r > 0 such that if Y ∩B(y, r) ∈ Rr(y) and

Y ∩B(y, r) ∼
a
WC(Y (∞)) ∩B(y, r),

then Y (∞) belongs to BH(SCyl(Y ∩B(y, r)), ε).

Proof. Take S ∈ SCyl(Y ∩ B(y, r)), which implies that CH(S) ∩ B(y, r) = Y ∩ B(y, r).
Take δ′ > 0 such that CH(Y (∞)) is included in B(WC(Y (∞)), δ′) and WC(Y (∞)) is



SUBSET CURRENTS ON SURFACES 109

δ′-quasi-convex. It is sufficient to prove that there exists a constant α > 0 depending only
on a and δ′ such that

CH(Y (∞)) ∩B(y, r) ∼
α
CH(S) ∩B(y, r).

Then from Lemma 8.26, we see that the Hausdorff distance between Y (∞) and S is smaller
than ε if r is sufficiently large.

Since CH(Y (∞)) is included in B(WC(Y (∞)), δ′), we can take y′ ∈WC(Y ) such that
d(y, y′) ≤ δ′. Take x ∈ CH(Y (∞)) ∩ B(y, r). Then x belongs to B(WC(Y (∞)), δ′) ∩
B(y, r). From Lemma 8.27, x belongs to B(WC(Y (∞))∩B(y, r), 6δ′). From the assump-
tion, we have

B(WC(Y (∞)) ∩B(y, r), 6δ′) ⊂ B(Y ∩B(y, r), 6δ′ + a)

= B(CH(S) ∩B(y, r), 6δ′ + a).

Hence

CH(Y (∞)) ∩B(y, r) ⊂ B(CH(S) ∩B(y, r), 6δ′ + a).

Since WC(Y (∞)) ⊂ CH(Y (∞)), we have

CH(S) ∩B(y, r) = Y ∩B(y, r) ⊂ B(WC(Y (∞)) ∩B(y, r), a)

⊂ B(CH(Y (∞)) ∩B(y, r), a).

Therefore

CH(Y (∞)) ∩B(y, r) ∼
6δ′+a

CH(S) ∩B(y, r).

This completes the proof. □

Let µ ∈ SC(G). For compactly supported continuous functions f1, . . . , fk on H(∂G)
and ε > 0 we have an open neighborhood U(f1, . . . , fk; ε) of µ defined by

{ν ∈ SC(G) |
∣∣∣∣∫ fidµ−

∫
fidν

∣∣∣∣ < ε for every i = 1, . . . , k},

and the family of all such open neighborhoods of µ forms a fundamental system of open
neighborhoods of µ.

Since the proof of Theorem 8.20 is long and includes many constants, we will write
Setting when we fix something.

Setting 1: Fix µ ∈ SC(G) and compactly supported continuous functions f1, . . . , fk on
H(∂G) and εµ > 0. We assume that µ is not the zero measure. Take rµ ∈ N such that

A(id, rµ) := {S ∈ H(∂G) | CH(S) ∩B(id, rµ) ̸= ∅}

includes the support of fi for every i = 1, . . . , k.
The set A(id, rµ) is a compact subset of H(∂G). Since each fi is compactly supported,

fi is a uniformly continuous function.
Let m be a Borel measure on a topological space Ω. Set |m| := m(Ω). For a non-empty

Borel subset A of Ω we denote by m|A the restriction of m to A. The support of m,
denoted by suppm, is the smallest closed subset A of Ω such that m(Ac) = 0. Then
|m| = m(Ω) = m(suppm).

The following lemma describes a condition of subset currents to belong to the open
neighborhood U(f1, . . . , fk; εµ) of µ.

Lemma 8.29. Let r′µ ≥ rµ. There exist ρ > 0, ε1 > 0, ε2 > 0 such that if ν ∈ SC(F )
satisfies the following conditions, then ν ∈ U(f1, . . . , fk; εµ):



110 D. SASAKI

(1) there exist Borel measures ν ′, νT on H(∂G) for T ∈ Rρ(B(id, r′µ)) such that

ν|A(id,rµ) =
∑

T∈Rρ(B(id,r′µ))

νT |A(id,rµ) + ν ′;

(2) supp νT ⊂ BH(SCyl(T ), ε1) for every T ∈ Rρ(B(id, r′µ));
(3) |ν ′| < ε2;
(4) ||νT | − µ(SCyl(T ))| < ε2 for every T ∈ Rρ(B(id, r′µ)).

Proof. Let f be an element of {f1, . . . , fk}. Since supp f is included in A(id, rµ), we have∣∣∣∣∫ fdν −
∫
fdµ

∣∣∣∣
=

∣∣∣∣∣∣
∑

T∈Rρ(B(id,r′µ))

∫
fdνT +

∫
fdν ′ −

∑
T∈Rρ(B(id,r′µ))

∫
SCyl(T )

fdµ

∣∣∣∣∣∣
≤

∑
T∈Rρ(B(id,r′µ))

∣∣∣∣∣
∫
fdνT −

∫
SCyl(T )

fdµ

∣∣∣∣∣+ |ν ′|max |f |.

Let ε3 > 0. From Lemma 8.26, for a sufficiently large ρ and small ε1 > 0 the diameter
of KT := BH(SCyl(T ), ε1) is sufficiently small, and then we have

sup
S∈KT

f(S)− inf
S∈KT

f(S) < ε3

for T ∈ Rρ(B(id, r′µ)). Set

MT := sup
S∈KT

f(S).

Then for each T ∈ Rρ(B(id, r′µ))∣∣∣∣∣
∫
fdνT −

∫
SCyl(T )

fdµ

∣∣∣∣∣
=

∣∣∣∣∣
∫
fdνT −MT |νT |+MT |νT |

−MTµ(SCyl(T )) +MTµ(SCyl(T ))−
∫
SCyl(T )

fdµ

∣∣∣∣∣
≤ε3|νT |+ |MT |ε2 + ε3µ(SCyl(T ))

≤ε3(µ(SCyl(T )) + ε2) + |MT |ε2 + ε3µ(SCyl(T )).

Hence ∣∣∣∣∫ fdν −
∫
fdµ

∣∣∣∣
≤ε3µ(A(id, r′µ)) + ε2ε3#Rρ(B(id, r′µ))

+ #Rρ(B(id, r′µ)) · ε2 ·max |f |+ ε3µ(A(id, r
′
µ)) + ε2max |f |.

Now, we assume that ε3 is sufficiently small. Then we need to take small ε1 and large ρ.
Hence #Rρ(B(id, r′µ)) will be large. Finally, we take ε2 sufficiently small. Then we can
obtain ∣∣∣∣∫ fdν −

∫
fdµ

∣∣∣∣ < εµ.

This completes the proof. □
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Setting 2: The gap between r′µ and rµ depends on δ, and r′µ will be determined later.
We fix ρ, ε1, ε2 > 0 satisfying the condition in the above lemma. We assume that ρ is
much larger than constants depending on δ.

We will construct ν satisfying the condition in the above lemma as a finite sum of
rational subset currents on SC(G). When we check the condition (2) in the above lemma,

we will use Lemma 8.28. Recall that we constructed the SC-graph (Γ̂, ι̂) on F in Step

4 in the previous subsection such that each connected component Z of Γ̂ satisfying the
condition that Z = CH(Z(∞)). Since the Cayley graph of F with respect to a free
basis is a tree, the condition that every vertex of Z has degree larger than 1 implies that
Z = CH(Z(∞)). In the case of the Cayley graph X of G we need to give a new criterion
in order to use Lemma 8.28.

Lemma 8.30. Let Y be a non-bounded subset of X and y ∈ Y . Assume that Y is c-quasi-
convex in X for a constant c ≥ 0. Take r > 0 much larger than c and δ. If for every
z ∈ Y ∩B(y, r) there exists a δ-quasi-geodesic line ℓ in Y such that d(z, ℓ) ≤ c, then there
exists a > 0 depending only on c and δ such that

Y ∩B(y, r) ∼
a
WC(Y (∞)) ∩B(y, r).

Proof. Take z ∈ Y ∩ B(y, r). From the assumption there exists a δ-quasi-geodesic line ℓ
in Y such that z ∈ B(ℓ, c). Then the δ′-neighborhood of a geodesic line ℓ′ connecting two
endpoints of ℓ includes ℓ, which implies that

z ∈ B(ℓ′, δ′ + c) ⊂ B(WC(Y (∞)), δ′ + c).

Note that WC(Y (∞)) is δ′′-quasi-convex for δ′′ > 0 depending only on δ and there exists
y′ ∈WC(Y (∞)) such that d(y, y′) ≤ δ′ + c. Then from Lemma 8.27 we see that

z ∈ B(WC(Y (∞)) ∩B(y, r), 2(δ′ + c+ δ′′ + δ′ + c)).

Take z ∈WC(Y (∞))∩B(y, r). Let ℓ be a geodesic line connecting two points of Y (∞)
passing through z. Since Y is c-quasi-convex, ℓ is included in B(Y, δ′ + c), which implies
that z ∈ B(Y, δ′+ c)∩B(y, r). Hence z belongs to B(Y ∩B(y, r), 2(δ′+ c+ c)) by Lemma
8.27. From the above, a := 2(2δ′ + 2c+ δ′′) satisfies the condition in our claim. □

In order to use the above lemma we need to see the existence of δ-quasi-geodesic lines
in Y . Hence when we construct a graph from round-graphs, we need to construct a quasi-
geodesic line in each connected component of the graph. For the purpose, we modify the
definition of a round-graph in Definition 8.16.

Definition 8.31 (Round-graph with information of geodesics). Let r > 0. Let Y be a
non-empty bounded subset of X and T ∈ Rr(Y ). Let γ1, . . . , γm be subsets of B(Y, r) such
that for every γi there exists a geodesic line ℓ such that ℓ∩B(Y, r) = γi. Note that γi can
be non-connected, but we call γi a geodesic in B(Y, r). We call a pair (T, {γ1, . . . , γm}) a
round-graph of r-neighborhood of Y with information of geodesics if there exists S ∈ H(∂G)
satisfying the following conditions:

(1) T ∩ Y ̸= ∅;
(2) T = CH(S) ∩B(Y, r);
(3) for every γi there exists a geodesic line ℓ connecting two points of S such that

ℓ ∩B(Y, r) = γi;
(4) for every geodesic line ℓ connecting two points of S there exists γi such that

ℓ ∩B(Y, r) = γi.

From the conditions (3) and (4), we see that WC(S) ∩ B(Y, r) =
∪

i γi. We denote by
R∗

r(Y ) the set of all round-graphs of r-neighborhood of Y with information of geodesics.
For T∗ = (T, γT ) ∈ R∗

r(Y ), we define |T∗| to be T and we will write the pair (T, γT ) simply
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as T . In this notation T ∈ R∗
r(Y ) means that T = (|T |, γT ). We call an element of γT a

geodesic of T .
For T ∈ R∗

r(Y ) we define the subset cylinder SCyl(T ) with respect to T to be a subset
of H(∂G) consisting of S satisfying the conditions (2), (3), (4) in the above. For a subset
Z of B(Y, r) the restriction of T to Z, denoted by T |Z , is defined to be the pair of |T | ∩Z
and the set consisting of Z ∩ γ for every γ ∈ γT .

Let Y,Z be non-empty bounded subsets of X. For T1 ∈ R∗
r(Y ), T2 ∈ R∗

r(Z) we say that
T1 and T2 are connectable if T1|B(Y,Z,r) = T2|B(Y,Z,r). Note that B(Y, Z, r) can be empty
and then T1 and T2 are connectable for any T1 ∈ R∗

r(Y ), T2 ∈ R∗
r(Z).

Assume that B(Y, Z, r) is not empty. A pair of a subset J of B(Y, Z, r) and a set of
geodesics γ1 . . . , γm in B(Y, Z, r) is called a (Y, Z)-round-graph of r-neighborhood of Y, Z
with information of geodesics if there exists S ∈ H(∂G) satisfying the following conditions:

(1) J ∩ Y ̸= ∅, J ∩ Z ̸= ∅;
(2) J = CH(S) ∩B(Y, Z, r);
(3) for every γi there exists a geodesic line ℓ connecting two points of S such that

ℓ ∩B(Y, Z, r) = γi.
(4) for every geodesic line ℓ connecting two points of S there exists γi such that

ℓ ∩B(Y, Z, r) = γi.

We denote by R∗
r(Y, Z) the set of all (Y, Z)-round-graph of r-neighborhood of Y,Z with

information of geodesics. For J ∈ R∗
r(Y,Z) we define the subset cylinder SCyl(J) with

respect to J to be a subset of H(∂G) consisting of S satisfying the conditions (2), (3), (4)
in the above. For T1 ∈ R∗

r(Y ), T2 ∈ R∗
r(Z) we say that T1 and T2 are J-connectable for

J ∈ R∗
r(Y, Z) if T1|B(Y,Z,r) = J = T2|B(Y,Z,r).

Remark 8.32. For T ∈ R∗
r(Y ) we can see that the subset cylinder with respect to T is

included in the subset cylinder with respect to |T | since T has more information than |T |.
Actually, for every T0 ∈ Rr(Y ) we have

SCyl(T0) =
⊔

T∈R∗
r(Y )

|T |=T0

SCyl(T ).

For J ∈ R∗
r(Y, Z) the following equation holds:

SCyl(J) =
⊔

T∈R∗
r(Y )

T |B(Y,Z,r)=T

SCyl(T ),

which implies that for any ν ∈ SC(F ) we have∑
T∈R∗

r(Y )

T |B(Y,Z,r)=J

ν(SCyl(T )) =
∑

T ′∈R∗
r(Z)

T ′|B(Y,Z,r)=J

ν(SCyl(T ′)).

Setting 3: Fix n ∈ N with n ≥ 2. We will assume that n is sufficiently large.

Recall that we have a homeomorphism Φ fromX toH(1). SetXHn := Φ−1(CHHn∩H(1)).
Then XHn is an Hn-invariant subgraph of X. Moreover, we can see that for any two points
x, y ∈ XHn there exists a geodesic joining x to y in XHn since X ∼= H(1) is a planar graph
and XHn is surrounded by geodesic lines in X, which are called boundary components
of XHn . We denote by ∂XHn the union of boundary components of XHn and call it the
boundary of XHn . We see that V (∂XHn) equals Hn. Note that the CW-complex structure

on Σ induces a CW-complex structure on Σ̃n and Σn = CHn includes all vertices of Σ̃n.

We say call the intersection of Σn and the 1-skeleton of Σ̃n the 1-skeleton of Σn, which
can be identified with the quotient graph Hn\XHn .
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Consider the action of Hn on CHHn ⊂ H. Take a bounded connected fundamental
domain F0 for the action of Hn on CHHn such that Hn(F) = CHHn , hF ∩F = ∅ for non-
trivial h ∈ Hn, F0 is a polygon, and we can obtain a free basis Bn of Hn as side-pairing
transformations of F0, that is,

Bn ⊔B−1
n = {h ∈ Hn \ {id} | hF0 ∩ F0 ̸= ∅}.

Set F = Φ−1(F0 ∩ H(1)). Then F is a fundamental domain for the action of Hn on XHn

and we also have

Bn ⊔B−1
n = {h ∈ Hn \ {id} | hF ∩ F ̸= ∅}.

The fundamental domain F is a non-connected subset of XHn in general. We can assume

that F ∋ id and F contains exactly n vertices since the 0-skeleton of Σ̃n consists of n
vertices.

Set Xn := Cay(Hn, Bn). Then Xn is a tree, and each vertex h ∈ V (Xn) corresponds to
hF ⊂ XHn . From the property of Bn, we can see that two vertices h1, h2 ∈ V (Xn) are
adjacent if and only if h1 ̸= h2 and h1F ∩ h2F ̸= ∅.

Setting 4: Fix a sufficiently large ρ0. We will take ρ1, ρ2, ρ3 later such that ρ3 ≤ ρ2 ≤
ρ1 ≤ ρ0, where the gaps depend on some constants depending on n and δ. We assume
that all of ρ0, ρ1, ρ2, ρ3 are much larger than any constants depending on δ.

By the same way as Step 1 in the previous subsection, we can take a map

θ :
⊔

v∈V (X)

R∗
ρ0(v) → Z≥0

satisfying the following conditions:

(1) θ is G-invariant;
(2) there exist M ∈ N such that 1

M θ approximates µ, that is, 1
M θ(T ) is sufficiently

close to µ(SCyl(T )) for every T ∈ R∗
ρ(v);

(3) for any u ∈ BG and any J ∈ R∗
ρ0(id, u) we have∑

T∈R∗
ρ0

(id)

T |B(id,u,ρ0)
=J

θ(T ) =
∑

T ′∈R∗
ρ0

(u)

T ′|B(id,u,ρ0)
=J

θ(T ′).

We note that the same equation as the above follows for any adjacent u, v ∈ V (X) and
J ∈ R∗

ρ0(u, v).
In addition, we can define θ(T ) for every round-graph T (with information of geodesics)

included in B(v, ρ0) for some v ∈ V (X) and we can assume that 1
M θ(T ) is also close to

µ(SCyl(T )).
For appropriate r > 0 we will define θ(T ) for h ∈ Hn and T ∈ R∗

r(hF). We note that
|T | ∩ hF ̸= ∅ by the definition but |T | ∩ hF may contain no vertex. Nevertheless we
can take a vertex v ∈ |T | ∩ B(hF , 1). Hence we need to see that B(hF , r) is included in
B(v, ρ0). Moreover, in order to see that the θ(T ) is independent of the choice of v we need
to consider a geodesic connecting two vertices of B(hF , 1), and for every vertex w on the
geodesic B(hF , r) should be included in B(w, ρ0).

Setting 5: Assume that ρ0 is sufficiently larger than the diameter of F , which depends
on n. Since F is bounded, there exists a constant cF > 0 depending on F such that
B(F , 1) is cF -quasi-convex. Set

ρ1 := ρ0 − diamF − cF − 1.

For two vertices v, v′ ∈ B(F , 1) and any vertex w on a geodesic ℓ joining v to v′, we see
that B(w, ρ0) ⊃ B(F , ρ1). Therefore we can prove the following lemma by the same way
as the proof of Lemma 8.18.
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Lemma 8.33. For each h ∈ Hn and T ∈ R∗
ρ1(hF) we define θ(T ) by

θ(T ) :=
∑

T ′∈R∗
ρ0

(v)

T ′|B(hF,ρ1)
=T

θ(T ′),

where v is a vertex of |T | ∩ B(hF , 1). Then the definition of θ(T ) is independent of the
choice of v and we obtain an Hn-invariant map

θ :
⊔

h∈Hn

R∗
ρ1(hF) → Z≥0.

Moreover, for any u ∈ Bn and any J ∈ Rρ1(F , uF) we have the following equation:∑
T∈R∗

ρ1
(F)

T |B(F,uFρ1)=J

θ(T ) =
∑

T ′∈R∗
ρ1

(uF)

T ′|B(F,uF,ρ1)=J

θ(T ′).

Following Step 2 in the previous subsection, we construct a graph (Γ, ι) on (Hn, Xn).
Then the graph (Γ, ι) satisfies the following conditions:

(1) ι : Γ → Xn is an Hn-equivariant map;
(2) the restriction of ι to each connected component of Γ is injective;
(3) #ι−1(id) <∞.

Explicitly,

V (Γ) := {v(h, T, i)}h∈Hn, T∈R∗
ρ1

(hF), i=1,...,θ(T ).

If two vertices v(h1, T1), v(h2, T2) of V (Γ) are connected by an edge, then h1 and h2 are
adjacent in Xn and T1, T2 are J-connectable for some J ∈ R∗

ρ1(h1F , h2F). For v(h, T ) ∈
V (Γ) if there exists h′ adjacent to h in Xn such that T ∩ h′F ̸= ∅, then T |B(hF ,h′F ,ρ1) ∈
R∗

r(hF , h′F) and there exists T ′ ∈ R∗
ρ1(h

′F) such that v(h, T ) and v(h′, T ′) are connected
by an edge in Γ. The map ι maps v(h, T ) ∈ V (Γ) to h ∈ Xn. Finally, we check that

#ι−1(id) =
∑

T∈R∗
ρ1

(F)

θ(T )

≤
∑

v∈V (B(F ,1))

∑
T∈R∗

ρ0
(v)

θ(T ) = #V (B(F , 1))
∑

T∈R∗
ρ0

(id)

θ(T ) <∞.

We construct a graph (|Γ|, |ι|) on XHn from (Γ, ι) by the same way as we did in Step 3
in the previous subsection. Explicitly, for each connected component Y of Γ we define a
subgraph |Y | of X by

|Y | :=
∪

v(h,T )∈V (Y )

|T | ∩ hF

and define |Γ| to be the formal union of |Y | over all connected component Y of Γ. Note
that |Y | could be non-connected but |Y | is a subgraph of X although hF is just a subset
of X for h ∈ Hn. Consider the case that an edge e of Xn is covered by h1F , . . . , hkF for
h1, . . . hk ∈ Hn. Then we can assume that hi and hi+1 are adjacent for i = 1, . . . , k − 1.
Hence if Y contains a vertex v(hj , Tj) ∈ V (Y ) with |Tj | ⊃ e, then there exists v(hi, Ti) ∈
V (Y ) for i = 1, . . . , j − 1, j + 1, . . . , k such that v(hi, Ti) and v(hi+1, Ti+1) are adjacent in
Y for every i = 1, . . . , k − 1. Since Ti and Ti+1 are connectable for every i = 1, . . . , k − 1,
|Ti| includes e for every i. Therefore |Y | includes e.

The map |ι| is an Hn-equivariant map from |Γ| to XHn and the restriction of |ι| to |Y |
for each connected component Y of Γ is the inclusion map. Hence we will identify |Y |
with |ι|(|Y |).
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Now, we want to prove a certain lemma corresponding to Lemma 8.17. Note that
Lemma 8.17 deeply depends on the property that the space X is a tree in the previous
subsection.

Let ϕ be the inclusion map from Hn to X sending h ∈ Hn to h ∈ V (X) = G. Since Hn

is a quasi-convex subgroup of G, we can extend ϕ to a quasi-isometric embedding from
Xn to X.

Lemma 8.34. Assume that ϕ is (a, c)-quasi-isometric embedding for a ≥ 1, c ≥ 0, which
depend on n. Let Y be a connected component of Γ. Let v = v(h, T ), v′ = v(h′, T ′) ∈ V (Y ).
Set

ρ2 :=
ρ1 − a(2diamF + c)(diamF + 1)

1 + 2a(diamF + 1)

and assume that ρ2 > 0. Then T |B(hF ,ρ2) ∈ R∗
ρ2(hF) and T ′|B(h′F ,ρ2) ∈ R∗

ρ2(h
′F) are

connectable.

Proof. We denote by dBn the path metric on Xn = Cay(Hn, Bn). We identify Y with ι(Y ),
which is a subtree of Xn. Take the geodesic ℓ from v to v′ in Y , which passes through
vertices v0 = v, v1, . . . , vm = v′ in this order. Note that m = dBn(h, h

′). Since vi−1 =
v(hi−1, Ti−1), vi = v(hi, Ti) are connected by an edge, Ti−1 and Ti are Ji-connectable for
some Ji ∈ R∗

ρ1(hi−1F , hiF) for i = 1, . . . ,m. This implies that the restriction of T to

U := B(h0F , ρ1) ∩B(h1F , ρ1) ∩ · · · ∩B(hmF , ρ1)
coincides with that of T ′ to U . Therefore it is sufficient to see that B(hF , h′F , ρ2) is
included in U .

From the assumption we have

1

a
m− c ≤ d(h, h′) ≤ am+ c.

Since F ∋ id, hF and h′F contain h and h′ respectively and so

d(hF , h′F) ≥ 1

a
m− c− 2diamF .

If d(hF , h′F) > 2ρ2, then B(hF , h′F , ρ2) = ∅ and T |B(hF ,ρ2) and T ′|B(h′F ,ρ2) are con-
nectable. Therefore it is sufficient to consider the case that

1

a
m− c− 2diamF ≤ 2ρ2,

that is, m ≤ a(2ρ2 + 2diamF + c).
Since hi−1, hi are adjacent, for any α > 0 we have

B(hi−1F , α− diamF − 1) ⊂ B(hiF , α)
for every i = 1, . . . ,m. Hence

B(h0F , ρ−m(diamF + 1)) ⊂ B(h1F , ρ− (m− 1)(diamF + 1))

...

⊂ B(hmF , ρ),
which implies that

B(h0F , ρ1 −mdiamF −m) ⊂ U.

Since m ≤ a(2ρ2 + 2diamF + c), we have

ρ1 −m(diamF + 1) ≥ ρ1 − a(2ρ2 + 2diamF + c)(diamF + 1).

We can see that
ρ1 − a(2ρ2 + 2diamF + c)(diamF + 1) = ρ2.



116 D. SASAKI

In fact,

ρ1 − a(2ρ2 + 2diamF + c)(diamF + 1)− ρ2

=ρ1 − a(2diamF + c)(diamF + 1)− ρ2(1 + 2a(diamF + 1))

=0.

Hence

B(hF , h′F , ρ2) ⊂ B(h0F , ρ2) ⊂ U.

This completes the proof. □

Setting 6: We take ρ2 in the above lemma. Recall that the length of a δ-quasi-geodesic

connecting two points with distance d is smaller than or equal to δ′d+ δ′. We also assume
that ρ′2 := δ′ρ2 + δ′ ≤ ρ1 − 1.

Now, we prove the following lemma corresponding to Lemma 8.19.

Lemma 8.35. Let Y be a connected component of Γ. Let v(h, T ) ∈ V (Y ), v ∈ |T | ∩
B(hF , 1). Assume that B(v, ρ′2) ⊂ XHn = Φ−1(CHHn ∩H(1)). Then we have

|Y | ∩B(v, ρ2) = |T | ∩B(v, ρ2).

Moreover, for the connected component Z of |Y | containing v,
Z ∩B(v, ρ2) = |Y | ∩B(v, ρ2) = |T | ∩B(v, ρ2).

Proof. Take x ∈ |Y | ∩ B(v, ρ2). There exists v(h0, T0) ∈ V (Y ) such that x ∈ |T0| ∩ h0F .
Since T |B(hF ,ρ2) and T0|B(h0F ,ρ2) are connectable, we have

x ∈ |T0| ∩B(hF , h0F , ρ2) = |T | ∩B(hF , h0F , ρ2).
Hence x ∈ |T | ∩B(v, ρ2).

Take x ∈ |T | ∩ B(v, ρ2) and S ∈ SCyl(T ). Then x ∈ CH(S) ∩ B(v, ρ2). The point is
that we can take a δ-quasi-geodesic ℓ joining v to x in CH(S). Hence ℓ is included in
B(v, ρ′2)(⊂ B(hF , ρ′2 + 1)), which implies that

ℓ ⊂ |T | ∩B(hF , ρ′2 + 1) = CH(S) ∩B(hF , ρ′2 + 1).

From the construction of Γ there exists a path of vertices v(h0, T0) = v(h, T ), . . . , v(hm, Tm)
in Y such that ℓ passes through hiF in this order and x ∈ hmF . Since T |B(hF ,ρ2) and
Tm|B(hmF ,ρ2) are connectable, we have

x ∈ |T | ∩B(hF , hmF , ρ2) = |Tm| ∩B(hF , hmF , ρ2).
This implies that x ∈ |Tm| ∩ hmF ⊂ |Y |.

From the above for every x ∈ |T | ∩ B(v, ρ2) there exists a path ℓ joining v to x in |Y |,
which implies that x ∈ Z ∩ B(v, ρ2) for the connected component Z of |Y | containing v.
Hence Z ∩B(v, ρ2) = |Y | ∩B(v, ρ2). □

In the above proof, we took a δ-quasi-geodesic ℓ in CH(S) connecting two points of
CH(S). This is the reason why we introduce the notion of the convex hull and define the
round-graph by using the convex hull instead of the weak convex hull.

Let Y be a connected component of Γ. Take adjacent vertices v(h, T ), v(h′, T ′) ∈ V (Y )
and γ ∈ γT with γ ∩ hF ̸= ∅. Then T |B(hF ,ρ2) and T ′|B(h′F ,ρ2) are J-connectable for
J = T |B(hF ,h′F ,ρ2). This implies that there exists γ′ ∈ γT ′ such that

γ ∩B(hF , h′F , ρ2) = γ′ ∩B(hF , h′F , ρ2) (̸= ∅).
Therefore we can extend γ ∩B(hF , ρ2) by connecting γ ∩B(hF , ρ2) to γ ∩B(h′F , ρ2) and
we can perform this operation over and over until the extension of γ ∩ B(hF , ρ2) meets
the boundary of CHHn .
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By the definition, there exists a geodesic line ℓ such that ℓ ∩ B(hF , ρ1) = γ, which
implies that the extension of γ ∩ B(hF , ρ2) is 2ρ2-local geodesic, that is, every sub-arc
with length less than or equal to 2ρ2 is a geodesic segment. It is known that L-local
geodesic for L > 0 will be δ-quasi-geodesic if L is larger than a constant depending on
δ. We can assume that ρ2 is sufficiently large such that the extension of γ ∩ B(hF , ρ2)
is a δ-quasi-geodesic. Note that the extension of γ ∩B(hF , ρ2) will be a δ-quasi-geodesic
line if it does not meet the boundary of XHn . We call each extension of γ ∩B(hF , ρ2) for
γ ∈ γT a Y -quasi-geodesic. If the extension of γ ∩ B(hF , ρ2) is a δ-quasi-geodesic line,
then we call it a Y -quasi-geodesic line.

In order to apply Lemma 8.30 to each connected component of |Γ|, we prove that every
connected component of |Γ| is δ′-quasi-convex.

Lemma 8.36. Let Y be a connected component of Γ and Z a connected component of |Y |.
Then Z is a δ′-quasi-convex subgraph of X.

Proof. Let x, y ∈ Z. Consider a shortest path ℓ joining x to y in Z. We prove that ℓ is a
δ-quasi-geodesic in X and then Z is δ′-quasi-convex from the stability of quasi-geodesics.
In order to see that ℓ is δ-quasi-geodesic, it is sufficient to see that for a large constant
L > 0 depending on δ, ℓ is L-local δ-quasi-geodesic, that is, every sub-arc of ℓ with length
less than or equal to L is δ-quasi-geodesic. We can assume that ρ2 is much larger than
L. Then it is sufficient to consider the case that d(x, y) ≤ L(< ρ2) and prove that there
exists a δ-quasi-geodesic joining x to y.

Take v(h, T ) ∈ Y such that x ∈ hF , which implies that y ∈ B(hF , L). Take S ∈
SCyl(T ), which implies that CH(S) ∩ B(hF , ρ1) = |T |. Then we can take a δ-quasi-
geodesic γ joining x to y in CH(S) and γ is included in CH(S) ∩B(x, ρ′2).

Now it is sufficient to see that γ is included in XHn . Actually, if γ is included in XHn ,
then we can see that γ is included in Z by the same argument in Lemma 8.35, which is
the desired conclusion.

We prove that x and y are included in the same connected component of the intersection
of CH(S) and XHn . Then we can take γ such that γ is included in CH(S) ∩XHn since
every boundary component of CH(S) is a δ-quasi-geodesic line and we can consider a
δ-quasi-geodesic traveling along the boundary of CH(S). Hence γ is included in Z, which
is the desired conclusion.

To obtain a contradiction, suppose that the connected component of CH(S) ∩ XHn

containing x is different from that containing y. Then a path ℓ joining x to y need to
“take a detour”, that is, a geodesic [x, y] joining x to y in XHn must meets a boundary
component b of CH(S) at z. Take v(h′, T ′) ∈ V (Y ) such that z ∈ h′F , which implies that
b∩h′F ̸= ∅. We consider the extension of b∩B(h′F , ρ2) by the same way as we did in the
above in order to obtain a Y -quasi-geodesic. The extension of b ∩B(h′F , ρ2) is a δ-quasi
geodesic and can be considered as a boundary component of Z. Then we see that a path
joining x to y in XHn must cross the extension of b∩B(h′F , ρ2), which implies that there
exists no path joining x to y in Z, a contradiction. □

Now, we assume the following condition for a while:
Assumption (∗): For every v(h, T ) ∈ V (Γ) and every γ ∈ γT with γ∩hF , the extension

of γ ∩ B(hF , ρ2) is a δ-quasi-geodesic line if γ (or its extension) contains a point x with
B(x,C0) ⊂ XHn for a constant C0 > 0 independent of n.

Set

ηΓ :=
∑

Z∈Comp(|Γ|)

δZ(∞) ∈ SC(Hn).
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Under Assumption (∗) we prove that

ν :=
1

nM
ιHn(ηΓ)

belongs to the open neighborhood U(f1, . . . , fk; εµ) of µ for a sufficiently large n by using
Lemma 8.29. Note that ηΓ is a subset current on Hn. In the case that |Γ| does not satisfy
the condition in Assumption (∗), we construct Γ̂ from |Γ| by a similar way as we did in

Step 4 in the previous subsection such that Γ̂ satisfies the condition in Assumption (∗).
During the construction of Γ̂ the constant C0 will plays an essential role.

Let Y ∈ Comp(Γ), Z ∈ Comp(|Y |), g ∈ V (Z). Take v(h, T ) ∈ V (Y ) such that g ∈
|T | ∩ hF . Assume that B(g, ρ′2) ⊂ XHn . Then Z ∩B(g, ρ2) = |T | ∩B(g, ρ2) from Lemma
8.35. By the definition of the convex hull, there exists a constant δ1 > 0 depending on δ
such that for every x ∈ B(g, ρ2 − δ1) there exists γ ∈ γT such that d(x, γ) ≤ δ1.

Setting 7: Set ρ3 := ρ2 − δ1 − C0 and assume that ρ3 > 0.

Lemma 8.37 (Under Assumption (∗)). Assume that ρ3 is sufficiently large. Let Z ∈
Comp(|Γ|), g ∈ V (Z). If B(g, ρ′2) is included in XHn, then

g−1Z(∞) ∈ BH(SCyl(g
−1Z ∩B(id, ρ3)), ε1).

Proof. Take Y ∈ Comp(Γ) such that Z ∈ Comp(|Y |). Take v(h, T ) ∈ V (Y ) such that
g ∈ |T | ∩ hF . Then, for x ∈ Z ∩ B(g, ρ3) we can take γ ∈ γT such that d(x, γ) ≤ δ1, and
then γ contains a point y such that d(x, y) ≤ δ1 and B(y, C0) ⊂ XHn . By considering a
path from g to y included in |T | ∩ B(hF , ρ2), we can take v(h′, T ′) ∈ V (Y ) and γ′ ∈ γT ′

such that y ∈ γ ∩ h′F ∩ |T ′| and

y ∈ γ ∩B(hF , h′F , ρ2) = γ′ ∩B(hF , h′F , ρ2).

Hence from Assumption (∗), the extension of γ′ ∩ B(h′F , ρ2) will be a Y -quasi-geodesic
line ℓ in Z, and d(x, ℓ) ≤ δ1.

As a result, we see that for every x ∈ Z ∩ B(g, ρ3) there exists a Y -quasi-geodesic line
ℓ in Z such that d(x, ℓ) ≤ δ1. Now, we can apply Lemma 8.30 to Z and we can see that
for a constant a > 0 depending only on δ (and δ1), we have

Z ∩B(g, ρ3) ∼
a
WC(Z(∞)) ∩B(g, ρ3).

Note that Z ∩ B(g, ρ3) = |T | ∩ B(g, ρ3) ∈ Rρ3(g). Now, we assume that ρ3 is sufficiently
large to apply Lemma 8.28 to the constant ε1 > 0 and g−1Z ∩ B(id, ρ3). The constant r
in Lemma 8.28 depends on the base point y but as long as we use id as the base point we
do not need to consider the problem. Therefore we have

g−1Z(∞) ∈ BH(SCyl(g
−1Z ∩B(id, ρ3)), ε1).

This completes the proof. □

Take a complete system of representatives Λ0 of G/Hn. To apply Lemma 8.29 to ν we
consider the restriction of ν to A(id, rµ). Set

Λ1 := {g ∈ Λ0 | gCH(Λ(Hn)) ∩B(id, rµ) ̸= ∅},

which is a finite set. Note that CH(Λ(Hn)) is the convex hull of Λ(Hn) in X. We write
CHHn to represent the convex hull of Λ(Hn) in H. Then

ιHn(ηΓ)|A(id,rµ) =
∑
g∈Λ1

g∗(ηΓ)|A(id,rµ).

Since every boundary component of XHn is a geodesic line, CH(Λ(Hn)) includes XHn .
Hence if gXHn ∩ B(id, rµ) ̸= ∅ for g ∈ Λ0, then g ∈ Λ1. Recall that F contains exactly n
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vertices of XHn . Let g1 = id, g−1
2 , . . . , g−1

n be the vertices of F . Then we can assume that
g1, . . . , gn ∈ Λ1.

Lemma 8.38. The sequence

1

n
#(Λ1 \ {g1, . . . , gn})

tends to 0 when n→ ∞.

Proof. First, we have

#Λ1 =#{gHn ∈ G/Hn| gCH(Λ(Hn)) ∩B(id, rµ) ̸= ∅}
=#{gHn ∈ G/Hn| gB(CH(Λ(Hn)), rµ) ∋ id}
=#{gHn ∈ G/Hn| B(CH(Λ(Hn)), rµ) ∋ g−1}
=#V (Hn\B(CH(Λ(Hn)), rµ)).

Note that CH(Λ(Hn)) ∼
δ′
XHn . From the definition of XHn the quotient Hn\XHn is

isomorphic to the 1-skeleton of Σn and includes n vertices. Moreover, the degree of every
vertex of Σn except x̃0

n coincides with the degree of id in X, denoted by degX(id). Since

B(CH(Λ(Hn)), rµ)) ⊂ B(XHn , rµ + δ′) = XHn ∪B(∂XHn , rµ + δ′)

and V (∂XHn) = Hn, we have

#V (Hn\B(CH(Λ(Hn)), rµ))−#V (Hn\XHn)

≤#V (Hn\B(XHn , rµ + δ′))−#V (Hn\XHn)

≤
(
degX(id)

)rµ+δ′
,

which implies

1

n
#(Λ1 \ {g1, . . . , gn}) ≤

1

n

(
degX(id)

)rµ+δ′
.

This proves our claim. □

Setting 8: Set Λ := {gi | B(g−1
i , ρ′2) ⊂ XHn}.

Remark 8.39 (About constants ρ0, ρ1, ρ2, ρ
′
2, ρ3). Since we need to take sufficiently large

ρ3, which depends on constants related to δ and the neighborhood U(f1, . . . , fk; εµ) of µ,
we determine ρ3, ρ2, ρ1 and ρ0 in this order. The point is that ρ3, ρ2, ρ

′
2 are independent

of n.

Lemma 8.40. The sequence

1

n
#(Λ1 \ Λ)

tends to 0 when n→ ∞.

Proof. Recall that Φ is a quasi-isometric map from X to H. Then the restriction of Φ
to XHn is also a quasi-isometric map to CHHn . There exists a constant c depending on
ρ′2 and Φ such that if B(gi, ρ2) ̸⊂ XHn , then Φ(gi) is contained in the c-neighborhood
of the boundary of CHHn . By considering the quotient space Σn = Hn\CHHn and
the c-neighborhood of the boundary component c̃0

n of Σn, the number of gi such that
B(g−1

i , ρ′2) ̸⊂ XHn is bounded by a constant depending on c and independent of n. This
proves our claim. □
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From the above setting, we have

ιHn(ηΓ)|A(id,rµ) =
∑
g∈Λ1

g∗(ηΓ)|A(id,rµ)

=

 ∑
g∈Λ1\Λ

+
∑
g∈Λ

 g∗(ηΓ)|A(id,rµ).

We mainly consider the sum taken over g ∈ Λ and

∑
g∈Λ

g∗(ηΓ)|A(id,rµ) =
∑
g∈Λ

 ∑
Z∈Comp(|Γ|)

δgZ(∞)

∣∣∣∣∣
A(id,rµ)

=
∑
g∈Λ

∑
Z∈Comp(|Γ|)

gZ(∞)∈A(id,rµ)

δgZ(∞).

Now, we consider Z ∈ Comp(|Γ|) with gZ(∞) ∈ A(id, rµ) for g ∈ Λ. For Z we denote
by YZ the connected component Y of Γ such that Z is a connected component of |Y |.
Recall that from Lemma 8.36, Z is δ′-quasi-convex. Hence

WC(Z(∞)) ⊂ B(Z, δ′),

and we can take a constant α > 0 depending on δ such that

CH(Z(∞)) ⊂ B(Z,α).

Since gCH(Z(∞)) ∩B(id, rµ) ̸= ∅, we see that Z ∩B(g−1, rµ + α) ̸= ∅.
Setting 9: For the constant α in the above, we set r′µ := rµ + α, which is the constant

appeared in Lemma 8.29. We assume that ρ2 ≥ 2r′µ + ρ.
The following lemma does not depend on Assumption (∗).

Lemma 8.41. Let g ∈ Λ and Z ∈ Comp(|Γ|) with gZ(∞) ∈ A(id, rµ). Then gZ ∩
B(id, r′µ + ρ) is an element of Rρ(B(id, r′µ)).

Proof. Note that Z ∩ B(g−1, r′µ) contains a vertex g0 since Z is a subgraph of X. Then
there exists v(h0, T0) ∈ V (YZ) such that g0 ∈ h0F ∩ |T0|. Hence gg0 ∈ g|T0| ∩B(id, r′µ).

Since ρ2 ≥ 2r′µ + ρ, we have

B(g−1, r′µ + ρ) ⊂ B(g0, 2r
′
µ + ρ) ⊂ B(h0F , ρ2).

Since g ∈ Λ, we have B(g−1, ρ′2) ⊂ XHn . By Lemma 8.35 we have

Z ∩B(g−1, r′µ + ρ) = |T0| ∩B(g−1, r′µ + ρ).

Hence

gZ ∩B(id, r′µ + ρ) = g|T0| ∩B(id, r′µ + ρ),

which is an element of Rρ(B(id, r′µ)). □
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From the above lemma, we have∑
g∈Λ

g∗(ηΓ)|A(id,rµ)

=
∑
g∈Λ

∑
Z∈Comp(|Γ|)

gZ(∞)∩B(id,r′µ)̸=∅

δgZ(∞)|A(id,rµ)

=
∑
g∈Λ

∑
T∈Rρ(B(id,r′µ))

∑
Z∈Comp(|Γ|)

gZ∩B(id,r′µ+ρ)=T

δgZ(∞)|A(id,rµ).

For each T ∈ Rρ(B(id, r′µ) set

ιHn(ηΓ)T :=
∑
g∈Λ

∑
Z∈Comp(|Γ|)

gZ∩B(id,r′µ+ρ)=T

δgZ(∞).

Then ∑
g∈Λ

g∗(ηΓ)|A(id,rµ) =
∑

T∈Rρ(B(id,r′µ))

ιHn(ηΓ)T |A(id,rµ).

For every T ∈ Rρ(B(id, r′µ)) we can define θ(T ) by the same way as we did in Lemma
8.18. Explicitly, for some vertex u ∈ T ∩B(id, r′µ)

θ(T ) =
∑

T ′∈R∗
ρ0

(u)

|T ′|∩B(id,r′µ+ρ)=T

θ(T ′),

which is independent of the choice of u. Moreover, for every g ∈ G we can define θ(gT )
by the same way, and we have θ(gT ) = θ(T ). Note that T ∈ Rρ(B(id, r′µ)) does not

include information of geodesics. We can see that 1
M θ(T ) is also close to µ(SCyl(T )) for

T ∈ Rρ(B(id, r′µ)), since we take θ after r′µ, ρ.

Lemma 8.42 (Under Assumption (∗)). For each T ∈ Rρ(B(id, r′µ)) we have

supp(ιHn(ηΓ)T ) ⊂ BH(SCyl(T ), ε1).

Moreover,

|ιHn(ηΓ)T | = #Λ · θ(T ).

Proof. For g ∈ Λ we consider Z ∈ Comp(|Γ|) satisfying the condition that gZ ∩B(id, r′µ+

ρ) = T . Take a vertex u ∈ T ∩ B(id, r′µ) = gZ ∩ B(id, r′µ). Then g−1u ∈ Z ∩ B(g−1, r′µ)

and take v(h0, T0) ∈ V (YZ) such that h0F ∩ |T0| ∋ g−1u. Note that

B(g−1u, r′µ + ρ) ⊂ B(g−1, 2r′µ + ρ) ⊂ B(g−1, ρ2) ⊂ XHn

since g ∈ Λ. Hence

|T0| ∩B(g−1, r′µ + ρ) = Z ∩B(g−1, r′µ + ρ) = g−1T,

which implies

g|T0| ∩B(id, r′µ + ρ) = gZ ∩B(id, r′µ + ρ) = T.

From Lemma 8.37

gZ(∞) ∈ BH(SCyl(gZ ∩B(id, ρ3)), ε1).

We can assume that ρ3 ≥ r′µ + ρ. Then T = (gZ ∩ B(id, ρ3)) ∩ B(id, r′µ + ρ), and so we
have

SCyl(gZ ∩B(id, ρ3)) ⊂ SCyl(T ),
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which implies that

gZ(∞) ∈ BH(SCyl(T ), ε1).

Therefore we obtain

supp(ιHn(ηΓ)T ) ⊂ BH(SCyl(T ), ε1).

Now, we calculate |ιHn(ηΓ)T |. From the above argument, for g ∈ Λ and Z ∈ Comp(|Γ|),
we have gZ ∩ B(id, r′µ + ρ) = T if and only if for h0 ∈ Hn with h0F ∋ g−1u there exists
v(h0, T0) ∈ V (YZ) such that

|T0| ∩B(g−1, r′µ + ρ) = g−1T.

Note that h0 depends on g. Therefore we have

|ιHn(ηΓ)T |

=
∑
g∈Λ

#{Z ∈ Comp(|Γ|) | gZ ∩B(id, r′µ + ρ) = T}

=
∑
g∈Λ

#{Z ∈ Comp(|Γ|) |

∃v(h0, T0) ∈ V (YZ) s.t. h0F ∋ g−1u and |T0| ∩B(g−1, r′µ + ρ) = g−1T}

=
∑
g∈Λ

∑
g−1u∈h0F ,T0∈R∗

ρ1
(h0F)

|T0|∩B(id,r′µ+ρ)=g−1T

θ(T0)

=
∑
g∈Λ

∑
g−1u∈h0F ,T0∈R∗

ρ1
(h0F)

|T0|∩B(id,r′µ+ρ)=g−1T

∑
T ′∈R∗

ρ0
(g−1u)

T ′|B(h0F,ρ1)
=T0

θ(T ′)

=
∑
g∈Λ

∑
T ′∈R∗

ρ0
(g−1u)

|T ′|∩B(id,r′µ+ρ)=g−1T

θ(T ′)

=
∑
g∈Λ

θ(g−1T ) = #Λ · θ(T ).

This completes the proof. □

For g ∈ V (X) = G we set

θ(g) =
∑

T∈R∗
ρ0

(g)

θ(T ).

Then we can see that θ(g) = θ(id) for every g ∈ V (X). Note that

⊔
T∈R∗

ρ0
(g)

SCyl(T ) = A(g, 0) = {S ∈ H(∂G) | CH(S) ∋ g}.
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Now, we consider the other part of ιHn(ηΓ). Let g ∈ Λ1 \ Λ. Then∣∣(g∗(ηΓ))|A(id,rµ)

∣∣
=ηΓ(A(g

−1, rµ))

=#{Z ∈ Comp(|Γ|) | CH(Z(∞)) ∩B(g−1, rµ) ̸= ∅}
≤#{Z ∈ Comp(|Γ|) | Z ∩B(g−1, r′µ) ̸= ∅}

≤
∑

v∈V (B(g−1,r′µ))

#{Z ∈ Comp(|Γ|) | Z ∋ v}

=
∑

v∈V (B(g−1,r′µ))

#{v(hv, T ) ∈ V (Γ) | |T | ∩ hvF ∋ v}

≤
∑

v∈V (B(g−1,r′µ))

∑
T∈R∗

ρ1
(hvF)

|T |∩hvF∋v

θ(T )

=
∑

v∈V (B(g−1,r′µ))

∑
T∈R∗

ρ0
(v)

θ(T )

=#V (B(id, r′µ))θ(id).

Since θ(id) is close to µ(A(g, 0)), we can see that
∣∣(g∗(ηΓ))|A(id,rµ)

∣∣ is bounded by a constant
independent of n.

For T ∈ Rρ(B(id, r′µ)) set

νT :=
1

nM
ιHn(ηΓ)T

and

ν ′ :=
1

nM

∑
g∈Λ1\Λ

g∗(ηΓ)|A(id,rµ).

Then we have

ν|A(id,rµ) =
1

nM
ιHn(ηΓ)|A(id,rµ)

=
∑

T∈Rρ(B(id,r′µ))

νT |A(id,rµ) + ν ′.

Now, we prove that for a sufficiently large n ∈ N, we have ν ∈ U(f1, . . . , fk; εµ) by using
Lemma 8.29. From Lemma 8.42 for every T ∈ Rρ(B(id, r′µ)) we have

suppνT ⊂ BH(SCyl(T ), ε1)

and ∣∣|νT | − µ(SCyl(T ))
∣∣

=

∣∣∣∣ 1

nM
#Λθ(T )− µ(SCyl(T ))

∣∣∣∣
=

∣∣∣∣ 1M #Λ

n
θ(T )− 1

M
θ(T )

∣∣∣∣+ ∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣
=
n−#Λ

n

1

M
θ(T ) +

∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣ .
Since 1

M θ(T ) is close to µ(SCyl(T )), from Lemma 8.38 and 8.40, if n is sufficiently large,
then we have ∣∣|νT | − µ(SCyl(T ))

∣∣ < ε2.
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Finally,

|ν ′| ≤ #(Λ1 \ Λ)
nM

#V (B(id, r′µ))θ(id) =
#(Λ1 \ Λ)

n
#V (B(id, r′µ))

θ(id)

M
.

Hence if n is sufficiently large, then we have

|ν ′| < ε2.

Therefore we see that ν belongs to U(f1, . . . , fk; εµ) under Assumption (∗).

Now, we consider the case that the condition in Assumption (∗) does not follow. Let
Y ∈ Comp(Γ). Consider a Y -quasi-geodesic ℓ in |Y |. From the construction of XHn the
degree of a vertex v in XHn is less than the degree of v in X if and only if v belongs to
Hn ⊂ V (X). This implies that we can not extend the Y -quasi-geodesic ℓ to a Y -quasi-
geodesic line if and only if ℓ meets a vertex of Hn. This situation corresponds to the
situation that |Γ| has a vertex with degree less than 2 in the previous subsection. Recall

that in that case we constructed the SC-graph (Γ̂, ι̂) on (Hn, CHHn) from (|Γ|, |ι|) in Step
4.

We also construct such a graph Γ̂ from |Γ| so that Assumption (∗) follows in Γ̂. Ex-

plicitly, Γ̂ ⊃ |Γ| and if we have a Y -quasi-geodesic ℓ in |Y | containing a point x such that
B(x,C0) ⊂ XHn for a constant C0 > 0, then we can extend ℓ to a δ-quasi-geodesic line in

the connected component W of Γ̂ including ℓ. The point is that we need to modify the
subgroup Hn in contrary to the previous subsection.

In order to extend a δ-quasi-geodesic segment γ to a δ-quasi-geodesic line, we consider a
piecewise quasi-geodesic curve in H, which is a curve consisting of at most countably many
quasi-geodesic pieces. From the fundamental hyperbolic geometry in H, we can see that
if a piecewise geodesic curve ℓ satisfies the following conditions, then ℓ is an (a, c)-quasi-
geodesic for constants a ≥ 1, c ≥ 0 depending on the following constants θ0 > 0, L > 0:

(1) every interior angle of ℓ is bounded below by some θ0 > 0;
(2) the length of every geodesic piece of ℓ is larger than L > 0 depending on θ0.

For a piecewise quasi-geodesic curve ℓ, we can obtain a piecewise geodesic curve ℓ′ by
connecting endpoints of each quasi-geodesic piece of ℓ by a geodesic segment. Then we
can see that if ℓ satisfies the following conditions, then ℓ is an (a, c)-quasi-geodesic for
constants a ≥ 1, c ≥ 0 depending on the following constants s ≥ 1, t ≥ 0, θ0 > 0:

(1) there exist s ≥ 1, t ≥ 0 such that every quasi-geodesic piece of ℓ is a (s, t)-quasi-
geodesic.

(2) every interior angle of ℓ′ is bounded below by some θ0 > 0;
(3) the length of every geodesic piece of ℓ′ is larger than L0 > 0 depending on s, t and

θ0.

Since we need to consider a quasi-geodesic line in X, we want to check whether a
piecewise quasi-geodesic in X is a quasi-geodesic or not. By using the quasi-isometry Φ
from X to H we can see that a curve ℓ in X is an (a′, c′)-quasi-geodesic if Φ(ℓ) is an
(a, c)-quasi-geodesic in H. The constants a′, c′ depend on a, c and Φ. From the above, we
obtain the following lemma, which will be used for proving that a piecewise quasi-geodesic
curve ℓ in X is a quasi-geodesic in X.

Lemma 8.43. Let ℓ be a piecewise quasi-geodesic curve in X. Assume that every quasi-
geodesic piece of ℓ is an (a, c)-quasi-geodesic for a ≥ 1, c ≥ 0. Let ℓ′ be the piecewise
geodesic of H consisting of geodesic segments connecting endpoints of Φ(γ) for each quasi-
geodesic piece γ of ℓ. Fix θ0 > 0. If ℓ satisfies the following conditions, then ℓ is an
(a′, c′)-quasi-geodesic in X for constants a′ ≥ 1, c′ ≥ 0:

(1) every interior angle of ℓ′ is bounded below by θ0;
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(2) the length of every quasi-geodesic piece of ℓ is larger than L0 > 0, which depends
on a, c, θ0,Φ.

The constants a′, c′ depend on a, c, θ0,Φ.

We will use the above lemma for the case that θ0 is close to π/2. Note that if a, c depend
only on δ, then a′, c′ depend only on δ, θ0,Φ, which implies that a′, c′ are independent of
n.

Now, we prepare some items for modifying Hn and construct a graph Γ̂ from |Γ|. Recall
the construction of Σn. Let B̃ be the boundary component of CHHn passing through x̃0.

Then B̃ is a lift of the closed curve c0, and h0 := [c0] ∈ G = π1(Σ, x0) acts on B̃. Note

that B̃ coincides with the axis of h0 in H. The point is that B̃ and h0 do not depend on
n.

We give an orientation to B̃ such that the left side of B̃ is the interior of CHHn . Then
we take a non-trivial element u0 ∈ G satisfying the following conditions:

(1) the axis AxH(u0) of u0 in H is included in the right side of B̃;

(2) the hyperbolic distance dH(B̃,AxH(u0)) between B̃ and AxH(u0) is sufficiently
large;

(3) the translation length τH(u0) of u0 in H is also sufficiently large.

Note that dH(B̃,AxH(u0)) and τH(u0) depend on constants related to δ but do not depend
on n.

For u0 in the above, we can take a δ-quasi-geodesic line Ax(u0) in X connecting the
two points of Λ(⟨u⟩) such that Ax(u0) is ⟨u⟩-invariant, which can be considered as an axis
of u0 in X. For h0 there exists a unique geodesic line Ax(h0) in X connecting the two

points of B̃(∞) = Λ(⟨h0⟩) such that Ax(h0) includes ⟨h0⟩(⊂ V (X)). Note that Ax(h0)
coincides with the boundary component of XHn passing through id. Then we can see
that d(Ax(u0),Ax(h0)) is sufficiently large and the translation length τX(u0) in X is also
sufficiently large.

Take a geodesic ℓX(u0) joining a point pu0 of Ax(u0) to a point h of ⟨h0⟩ such that the

length of ℓX(u0) equals d(B̃,Ax(u0)). Here, we can assume that h = id by using h−1uh
instead of u. See Figure 6 for the setting. Then we can obtain the following lemma:

Figure 6.

Lemma 8.44. Let γ be a δ-quasi-geodesic in XHn from v ∈ XHn to id. Consider a
piecewise quasi-geodesic γ′ by connecting γ to ℓX(u0) at id, and connecting ℓX(u0) to a
quasi-geodesic half-line of Ax(u0) at pu0. If the length of γ is sufficiently large, then γ′ is
a δ-quasi-geodesic half-line.

Proof. The point is that Φ(ℓX(u0)) is close to the common perpendicular of B̃ and
AxH(u0). Then we can apply Lemma 8.43 to γ′. □
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Set
Ĥn := ⟨Hn ∪ {u0}⟩.

We assume that the translation length τX(u0) and d(Ax(h0),Ax(u0)) are sufficiently large
such that h0 and u0 generate a Schottky subgroup of G. Then by the Ping-Pong argument,

Ĥn satisfies the following properties:

(1) Ĥn is isomorphic to the free product of Hn and ⟨u0⟩;
(2) for any g ∈ Ĥn \Hn we have

g(XHn) ∩XHn = ∅;
(3) for every non-trivial h ∈ Hn we have

h(Ax(u0)) ∩Ax(u0) = ∅.

We consider each connected component of |Γ| as a subgraph of X, and then for g ∈ Ĥn

we define g|Γ| to be the formal union of the image of connected components of |Γ| by g.
Set

|Γ|∗ := {(gHn, x) | gHn ∈ Ĥn/Hn, x ∈ g|Γ|}.
Then |Γ|∗ is homeomorphic to the formal union

⊔
gH∈Ĥn/Hn

g|Γ|. Note that this way of

constructing |Γ|∗ corresponds to the map ιĤn
Hn

from SC(Hn) to SC(Ĥn). Then Ĥn acts on
|Γ|∗ by

g(g′Hn, x) := (gg′Hn, gx)

for g ∈ Ĥn and (g′Hn, x) ∈ |Γ|∗.
Take the sub-arc [pu0 , u0(pu0)] of Ax(u0) joining pu0 to u0(pu0). Set

P := ℓX(u0) ∪ [pu0 , u0(pu0)].

Note that this subgraph P of X corresponds to the subgraph P for constructing Γ̂ in the
previous subsection. By the Ping-Pong argument, we can see that for every non-trivial

h ∈ Ĥn, hP ∩ P ̸= ∅ if and only if h = u0 or u−1
0 and hP ∩ P = {u0(pu0)} or {pu0},

respectively.
Let v(h, T ) ∈ V (Γ) and take γ ∈ γT with γ∩hF ̸= ∅. Fix a constant C0 > 0 independent

of n. Consider the case that γ contains a point x with B(x,C0) ⊂ XHn and the extension
γ′ of γ ∩B(hF , ρ2) is not a δ-quasi-geodesic line. In this case γ′ must meet a vertex g of
Hn = V (∂XHn). By considering g−1(γ′) instead of γ′, we can assume that γ′ meets id.
In this setting, the length of γ′ is larger or equal to C0, and so we can assume that the
length of γ′ is sufficiently large to apply Lemma 8.44 to γ′.

Now, we consider the formal union

|Γ|∗ ⊔
⊔

h∈Ĥn

h(P ).

Note that Ĥn acts on this union from left. First, for every h ∈ Ĥn we attach the vertex h

of hP to the vertex h of hγ′ ⊂ |Γ|∗. Then for every h ∈ Ĥn we attach the vertex h(u0(pu0))
of hP to the vertex hu0(pu0) of hu0P . By this operation of the attachment we obtain |Γ|′

such that Ĥn acts on |Γ|′ and the connected component of |Γ|′ including γ′ includes ℓX(u0)

and Ax(u0). Hence for every h ∈ Ĥn we can extend hγ′ to a δ-quasi geodesic line by using
Lemma 8.44.

We can perform this operation for the formal union |Γ|′ ⊔
⊔

h∈Ĥn
h(P ) and repeat the

same operation until |Γ|′ satisfies the condition that for every v(h, T ) ∈ V (Γ) and γ ∈ γT
with γhF ̸= ∅ if γ contains a point x with B(x,C0) ⊂ XHn , then there exists a δ-quasi-

geodesic line ℓ in |Γ|′ such that ℓ includes γ ∩B(hF , ρ2). Then we denote by Γ̂ the graph

that we obtain as the result of the above operation. Note that in order to obtain Γ̂ we



SUBSET CURRENTS ON SURFACES 127

perform the above operation at most #|ι|−1(id) times since in the case that two quasi-
geodesics γ1 and γ2 meet id in the same connected component, it is sufficient to perform
the above operation only once. We have

#|ι|−1(id) =#{Z ∈ Comp(|Γ|) | Z ∋ id}
=#{v(id, T ) ∈ V (Γ) | |T | ∋ id}

=
∑

T∈R∗
ρ1

(F)

|T |∋id

θ(T )

=θ(id).

Let m̂ be the number of times we perform the above operation. Then m̂ ≤ θ(id). Denote
by Pj the copy of P that we used in the j-th operation for j = 1, . . . , m̂.

The projection from the formal union |Γ|∗ ⊔
⊔

h∈Ĥn
h(P ) to X induces a map ι̂ from Γ̂

to X. We can see that the restriction of ι̂ to each connected componentW of Γ̂ is injective

from the Ping-Pong argument. We identify each connected component W of Γ̂ with ι̂(W ).
Now, we define η

Γ̂
by

η
Γ̂
:=

∑
W∈Comp(Γ̂)

δW (∞).

Then we can see that η
Γ̂
∈ SC(Ĥn). The local finiteness of η

Γ̂
follows by the argument

below. Set

ν :=
1

nM
ι
Ĥn

(η
Γ̂
) ∈ SC(G).

We prove that ν belongs to the open neighborhood U(f1, . . . , fk; εµ) of µ for a large n by
using Lemma 8.29.

Lemma 8.45. Every connected component of Γ̂ is a δ′-quasi-convex subgraph of X.

Proof. Let W be a connected component of Γ̂. Take x, y ∈ W . We prove that there
exists a δ-quasi-geodesic joining x to y included in the δ′-neighborhood of W . Then by
the stability of quasi-geodesics, W is δ′-quasi-convex. If x, y belong to Z for a connected
component Z of |Γ|∗, then W includes Z and there exists a δ-quasi-geodesic joining x to
y in Z by Lemma 8.36.

Hence we consider the case that for different connected components Z,Z ′ of |Γ|∗, x ∈ Z

and y ∈ Z ′. Take a shortest path ℓ from x to y in W . From the construction of Γ̂ there
exists a sequence of connected components Z0 = Z,Z1, . . . , Zk = Z ′ of |Γ|∗ such that ℓ
passes through these components in this order. From Zi−1 to Zi, the path ℓ passes through
hiP when ℓ goes out from Zi−1, and passes through h′iP when ℓ goes into Zi for some

hi, h
′
i ∈ Ĥn. Since the translation length τ(u0) and the length of ℓX(u0) are sufficiently

large, the restriction of ℓ to this part is a δ-quasi-geodesic in X.
Now, for each i = 1, . . . , k we take the mid-point mi of hi(ℓX(u0)) and m

′
i of h

′
i(ℓX(u0))

and consider a geodesic [m′
i,mi+1] joining m′

i to mi+1 in X, which is included in the
δ′-neighborhood of the union of Zi, h

′
i(ℓX(u0)) and hi+1(ℓX(u0)). Then we consider the

following path ℓ′ from x to y:

(1) starts from x and bounds for m′
1 along ℓ;

(2) from m′
i to mi+1 travels along the geodesic [m′

i,mi+1], and from mi+1 to m′
i+1

travels along ℓ for i = 1, . . . , k;
(3) from m′

k to y travel along ℓ.

The path ℓ′ is a piecewise quasi-geodesic in X and if the translation length τ(u0) and the
length of ℓX(u0) are sufficiently large, then ℓ′ is a δ-quasi-geodesic in X.
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In other cases we can construct the almost same piecewise quasi-geodesic joining x to
y. □

Then we obtain the following lemma for the constant ρ3 = ρ2 − δ1 − C0, which corre-
sponds to Lemma 8.37 under Assumption (∗).

Lemma 8.46. Assume that ρ3 is sufficiently large. Let W ∈ Comp(Γ̂), g ∈ V (W ). If
B(g, ρ′2) is included in XHn, then

g−1W (∞) ∈ BH(SCyl(g
−1W ∩B(id, ρ3)), ε1).

Proof. Since B(g, ρ′2) ⊂ XHn , there exists a connected component Z of |Γ| such that

W ∩B(g, ρ′2) = Z ∩B(g, ρ′2)

by the construction of Γ̂. Then by the same argument as that in the proof of Lemma 8.37,
we see that W ∩B(g, ρ3) = Z ∩B(g, ρ3) belongs to Rρ3(g), and

g−1W (∞) ∈ BH(SCyl(g
−1W ∩B(id, ρ3)), ε1)

if ρ3 is sufficiently large. □

Now, we construct a subgraph X
Ĥn

of X such that every connected component of Γ̂ is

included in X
Ĥn

. By the same way as we did for |Γ|, we set

X∗
Hn

:= {(gHn, x) ∈ Ĥn/Hn ×X | x ∈ gXHn}
and consider the formal union

X∗
Hn

⊔
⊔

h∈Ĥn

h(P ).

For every h ∈ Ĥn we attach the vertex h of hP to the vertex of h of X∗
Hn

and attach the
vertex h(u0(pu0)) of hP to the vertex hu0(pu0) of hu0P . By this attachment we obtain
a connected graph X

Ĥn
and the inclusion map from X∗

Hn
⊔
⊔

h∈Ĥn
h(P ) to X induces an

injective map from X
Ĥn

to X from the property of Ĥn. Hence we can consider X
Ĥn

as an

subgraph of X, which is Ĥn-invariant. Moreover, by the same argument as that in Lemma
8.45, we see that X

Ĥn
is a δ′-quasi-convex subgraph of X and for every x ∈ X

Ĥn
there

exists a δ-quasi-geodesic line passing through x. Hence we have

X
Ĥn

∼
δ′
CH(Λ(Ĥn)).

Note that the quotient graph Ĥn\XĤn
can be described as follows. Recall that Hn\XHn

can be identified with the 1-skeleton of Σn. By attaching the vertex pu0 of P to the vertex
u0(pu0), we obtain a graph P ′, which is homotopic to a circle. Then we attach the vertex

id of P ′ to the vertex x̃0
n of Hn\XHn . The resulting graph is isomorphic to Ĥn\XĤn

.

Take a complete system of representatives Λ̂0 of G/Ĥn. Set

Λ̂1 := {g ∈ Λ̂0 | gCH(Λ(Ĥn)) ∩B(id, rµ) ̸= ∅},
which is a finite set. Then

ιHn(ηΓ̂)|A(id,rµ) =
∑
g∈Λ̂1

g∗(ηΓ)|A(id,rµ).

Recall that F includes exactly n vertices g1 = id, g−1
2 , . . . , g−1

n of XHn . By considering

the action of Ĥn on X
Ĥn

, we see that g1Ĥn, . . . , gnĤn are mutually disjoint. Hence we

can assume that g1, . . . , gn ∈ Λ̂1.
The following lemma corresponds to Lemma 8.38.
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Lemma 8.47. The sequence

1

n
#
(
Λ̂1 \ {g1, . . . , gn}

)
tends to 0 when n→ ∞.

Proof. Note that the translation length τ(u0) and the length of ℓX(u0) are independent
of n. Hence #V (P ) is independent of n.

First, we have

#Λ̂1 =#{gĤn ∈ G/Ĥn| gCH(Λ(Ĥn)) ∩B(id, rµ) ̸= ∅}

=#V (Ĥn\B(CH(Λ(Ĥn)), rµ)).

Since X
Ĥn

∼
δ′
CH(Λ(Ĥn)), we have

#Λ̂1 ≤ #V (Ĥn\B(X
Ĥn
, rµ + δ′)).

From the definition of X
Ĥn

we have

#V (Ĥn\XĤn
) = #V (Hn\XHn) + #V (P )− 2.

Note that V (Hn\XHn) corresponds to {Hng
−1
1 , . . . ,Hng

−1
n }. By considering the degree of

each vertex of Ĥn\XĤn
we have

#V (Ĥn\B(CH(Λ(Ĥn)), rµ))−#V (Hn\XHn)

≤#V (Ĥn\B(X
Ĥn
, rµ + δ′))−#V (Hn\XHn)

≤#V (P )
(
degX(id)

)rµ+δ′
,

which implies
1

n
#
(
Λ̂1 \ {g1, . . . , gn}

)
≤ 1

n
#V (P )

(
degX(id)

)rµ+δ′
.

This proves our claim. □

From the above proof it is easy to see that the argument for Γ̂ is almost the same as
that for |Γ| under Assumption (∗). Moreover, since #V (P ) is a constant not depending
on n, #V (P ) does not influence our argument. For the completeness of the proof, we
continue.

Recall that Λ = {gi | B(g−1
i , ρ′2) ⊂ XHn}. We also see that 1

n#(Λ̂1 \Λ) tends to 0 when
n→ ∞ by the same argument as that in Lemma 8.40. Then

ι
Ĥn

(η
Γ̂
)|A(id,rµ) =

∑
g∈Λ̂1

g∗(ηΓ̂)|A(id,rµ)

=

 ∑
g∈Λ̂1\Λ

+
∑
g∈Λ

 g∗(ηΓ̂)|A(id,rµ),

and we mainly consider the sum taken over g ∈ Λ.
First we have ∑

g∈Λ
g∗(ηΓ̂)|A(id,rµ) =

∑
g∈Λ

∑
W∈Comp(Γ̂)

gW (∞)∈A(id,rµ)

δgW (∞).

Note that every connected component W of Γ̂ is δ′-quasi-convex. By the same argument
as before, for a constant β > 0 depending on δ, we see that if gW (∞) ∈ A(id, rµ), then
gW ∩B(id, rµ + β) ̸= ∅.
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Setting 10: From now on, we denote rµ + β by r′µ, which is the constant appeared in

Lemma 8.29. We assume that ρ2 ≥ 2r′µ + ρ.

Lemma 8.48. Let g ∈ Λ and W ∈ Comp(Γ̂) with gW (∞) ∈ A(id, rµ). Then gW ∩
B(id, r′µ + ρ) is an element of Rρ(B(id, r′µ)).

Proof. The point is that B(g−1, r′µ) ⊂ B(g−1, ρ2) ⊂ XHn implies that there exists a
connected component Z of |Γ| such that Z ⊂W and

W ∩B(g−1, ρ2) = Z ∩B(g−1, ρ2).

Hence we have
gW ∩B(id, r′µ + ρ) = gZ ∩B(id, r′µ + ρ),

which is an element of Rρ(B(id, r′µ)) from Lemma 8.41. □
For T ∈ Rρ(B(id, r′µ)) we set

ι
Ĥn

(η
Γ̂
)T :=

∑
g∈Λ

∑
W∈Comp(Γ̂)

gW (∞)∩B(id,r′µ)=T

δgW (∞).

Then ∑
g∈Λ

g∗(ηΓ̂)|A(id,rµ) =
∑

T∈Rρ(B(id,r′µ))

ι
Ĥn

(η
Γ̂
)T .

Now, we prove the following lemma, which corresponds to Lemma 8.42:

Lemma 8.49. For each T ∈ Rρ(B(id, r′µ)) we have

supp(ι
Ĥn

(η
Γ̂
)T ) ⊂ BH(SCyl(T ), ε1).

Moreover,
|ι
Ĥn

(η
Γ̂
)T | = #Λ · θ(T ).

Proof. Fix T ∈ Rρ(B(id, r′µ)). For g ∈ Λ considerW ∈ Comp(Γ̂) with gW∩B(id, r′µ+ρ) =
T . From Lemma 8.46, we have

gW (∞) ∈ BH(SCyl(gW ∩B(id, ρ3)), ε1).

We assume that ρ3 > r′µ + ρ. Since T = (gW ∩B(id, ρ3)) ∩B(id, r′µ + ρ),

SCyl(gW ∩B(id, ρ3)) ⊂ SCyl(T ),

and so
gW (∞) ∈ BH(SCyl(T ), ε1).

Therefore
supp(ι

Ĥn
(η

Γ̂
)T ) ⊂ BH(SCyl(T ), ε1).

Now, we calculate |ι
Ĥn

(η
Γ̂
)T |. Fix g ∈ Λ. Take a vertex u ∈ T ∩ B(id, r′µ). Take

W ∈ Comp(Γ̂).
Suppose that gW ∩ B(id, r′µ + ρ) = T . Then there exists a connected component Z of

|Γ| such that Z ⊂W and

W ∩B(g−1, ρ2) = Z ∩B(g−1, ρ2).

Moreover, for v(h′, T ′) ∈ V (YZ) with g
−1u ∈ h′F ∩ |T ′|, we have

T = gW ∩B(id, r′µ + ρ) = gZ ∩B(id, r′µ + ρ) = g|T ′| ∩B(id, r′µ + ρ)

by the same argument as that in the proof of Lemma 8.42. Hence

|T ′| ∩B(g−1, r′µ + ρ) = g−1T.



SUBSET CURRENTS ON SURFACES 131

Conversely, suppose that there exists a connected component Z of |Γ| and v(h′, T ′) ∈
V (YZ) with g

−1u ∈ h′F ∩ |T ′| such that Z ⊂W and

|T ′| ∩B(g−1, r′µ + ρ) = g−1T.

Then

W ∩B(g−1, ρ2) = Z ∩B(g−1, ρ2),

and so

gW ∩B(id, r′µ + ρ) = gZ ∩B(id, r′µ + ρ) = g|T ′| ∩B(id, r′µ + ρ) = T.

Hence the number ofW ∈ Comp(Γ̂) satisfying the condition that gW ∩B(id, r′µ+ρ) = T
equals the number of Z ∈ Comp(|Γ|) satisfying the condition that there exists v(h′, T ′) ∈
V (YZ) with g

−1u ∈ h′F ∩ |T ′| such that

|T ′| ∩B(g−1, r′µ + ρ) = g−1T.

Therefore, from the proof of Lemma 8.42 we have

|ι
Ĥn

(η
Γ̂
)T |

=
∑
g∈Λ

#{W ∈ Comp(Γ̂) | gW ∩B(id, r′µ + ρ) = T}

=
∑
g∈Λ

#{Z ∈ Comp(|Γ|) |

∃v(h′, T ′) ∈ V (YZ) s.t. h
′F ∋ g−1u and T ′ ∩B(g−1, r′µ + ρ) = g−1T}

=
∑
g∈Λ

θ(g−1T ) = #Λ · θ(T ).

This completes the proof. □

Now, we consider the other part of ι
Ĥn

(η
Γ̂
). Let g ∈ Λ̂1 \ Λ. Then we have∣∣(g∗(ηΓ̂))|A(id,rµ)

∣∣
=η

Γ̂
(A(g−1, rµ))

=#{W ∈ Comp(Γ̂) | CH(W (∞)) ∩B(g−1, rµ) ̸= ∅}

≤#{W ∈ Comp(Γ̂) |W ∩B(g−1, r′µ) ̸= ∅}.

If W ∩ B(g−1, r′µ) ̸= ∅ for W ∈ Comp(Γ̂), then there exists Z ∈ Comp(|Γ|) such that

Z ⊂ W and Z ∩ B(g−1, r′µ) ̸= ∅, or there exist j ∈ {1, . . . , m̂} and g0 ∈ Ĥn such that

g0Pj ⊂ W and g0Pj ∩ B(g−1, r′µ) ̸= ∅. Note that g0Pj ∩ B(g−1, r′µ) ̸= ∅ implies that

B(gg0Pj , r
′
µ) ∋ id. Hence for each j ∈ {1, . . . , m̂} the number of g0 ∈ Ĥn satisfying the

condition that g0Pj ∩ B(g−1, r′µ) ̸= ∅ is less than or equal to the number of vertices of
B(gg0Pj , r

′
µ), which is less than

D := #V (P )
(
degX(id)

)r′µ .
Therefore, ∣∣(g∗(ηΓ̂))|A(id,rµ)

∣∣
<

∑
v∈V (B(g−1,r′µ))

#{Z ∈ Comp(|Γ|) | Z ∋ v}+ m̂D

≤#V (B(g−1, r′µ))θ(id) + m̂D.
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For T ∈ Rρ(B(id, r′µ)) set

νT :=
1

nM
ι
Ĥn

(η
Γ̂
)T

and set

ν ′ :=
1

nM

∑
g∈Λ̂1\Λ

g∗(ηΓ̂)|A(id,rµ).

Then we have

ν|A(id,rµ) =
1

nM
ι
Ĥn

(η
Γ̂
)|A(id,rµ)

=
∑

T∈Rρ(B(id,r′µ))

νT |A(id,rµ) + ν ′.

We prove that for a sufficiently large n ∈ N we have ν ∈ U(f1, . . . , fk; εµ) by using Lemma
8.29. From Lemma 8.49, for every T ∈ Rρ(B(id, r′µ)) we have

∣∣|νT | − µ(SCyl(T ))
∣∣

=

∣∣∣∣ 1

nM
#Λθ(T )− µ(SCyl(T ))

∣∣∣∣
=

∣∣∣∣ 1M #Λ

n
θ(T )− 1

M
θ(T )

∣∣∣∣+ ∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣
=
n−#Λ

n

1

M
θ(T ) +

∣∣∣∣ 1M θ(T )− µ(SCyl(T ))

∣∣∣∣ .
Therefore if n is sufficiently large and 1

M θ(T ) is close to µ(SCyl(T )), then∣∣|νT | − µ(SCyl(T ))
∣∣ < ε2.

Finally,

|ν ′| <#(Λ̂1 \ Λ)
nM

(#V (B(g−1, r′µ))θ(id) + m̂D)

≤#(Λ̂1 \ Λ)
nM

(#V (B(g−1, r′µ))θ(id) + θ(id)D)

=
#(Λ̂1 \ Λ)

n

(
#V (B(g−1, r′µ)) +D

) θ(id)
M

.

Since #(Λ̂ \ Λ)/n tends to 0 when n→ ∞, for a sufficiently large n ∈ N we have

|ν ′| < ε2.

Therefore ν belongs to the open neighborhood U(f1, . . . , fk; εµ) of µ. This completes the
proof of Theorem 8.20 and 8.22. Q.E.D.

From Theorem 8.22, it is natural to propose the following problem:

Problem 8.50. Let G be an infinite hyperbolic group. Is there a sequence of quasi-convex
subgroups {Hn}n∈N of G such that each Hn is a free group of finite rank and the union∪

n∈N
ιHn(SC(Hn))

is a dense subset of SC(G)?
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This problem gives us an approach to Problem 2.12. Moreover, if this problem is solved
affirmatively, then we can say that an infinite hyperbolic group can be approximated by
free quasi-convex subgroups in the meaning of subset currents. We note that for an infinite
hyperbolic group G and for every S ∈ H(∂G) there exists a quasi-convex subgroup H of
G such that H is a free group of finite rank and the limit set Λ(H) is sufficiently close to
S.
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