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1. INTRODUCTION

Consider a compact hyperbolic surface ¥ (possibly with boundary). The space SC(X)
of subset currents on ¥ can be thought of as a measure-theoretic completion of the space
of conjugacy classes of finitely generated subgroups of m1(X), which was introduce by
Kapovich and Nagnibeda [KN13] as a generalization of the space GC(X) of geodesic cur-
rents on ¥. The space GC(X) introduced by Bonahon [Bon86] has been used successfully
in the study of the mapping class group and the Teichmiiller space of 3. In this dis-
sertation we generalize several results on GC(X) to SC(X). Especially, we extend the
(geometric) intersection number i of two homotopy classes of closed curves on ¥ to a
continuous R>¢-bilinear functional igc on SC(X), which is also an extension of Bonahon’s
intersection number igc on GC(X).

1.1. Background. In general, the notion of geodesic currents can be defined on an infinite
hyperbolic group G, which was introduced by Bonahon [Bon88b]. We usually do not
consider finite hyperbolic groups. A geodesic current on G is a locally finite (i.e. finite on
any compact subset) G-invariant Borel measure on the space 02G of 2-element subsets of
the boundary 0G. The space GC(G) of geodesic currents on G, which is equipped with
weak-* topology, can be thought of as a completion of the space of conjugacy classes of
infinite cyclic subgroups of G with positive real weight in the following meaning. For an

infinite-order element g € G' we can define a counting geodesic current 7, corresponding
1
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to (g) by

ng= Y Sur(lg):
u(g)eG/(g)
where 0 ((g)) is the Dirac measure at the limit set A({(g)) of (g). For h € G we can see that
Nhgh-1 = Ng- Bonahon [Bon88b] proved that the set of all positive real weighted counting
geodesic currents on G:
{Cng ‘ c€R>p, g€l \ {id}}7

where ¢, is called a rational geodesic current on G, is a dense subset of GC(G). We call
this property the denseness property of rational geodesic currents.

In the case that a hyperbolic group G is the fundamental group m(X) of a compact
hyperbolic surface ¥, a conjugacy class of an infinite cyclic subgroup (or its generator)
corresponds to a homotopy class of unoriented closed curve on ¥ and also corresponds to
an unoriented closed geodesic on ¥. We write GC(71(X)) simply as GC(X) and call GC(X)
the space of geodesic currents on ¥ when we identify 0m(X) with the (ideal) boundary of
the universal cover of Y. In this situation, an element of 0oG corresponds to a geodesic
line in the universal cover of 3.

For two closed curves cp,cs on X, which are continuous maps from S' to ¥, the inter-
section number 7 of ¢, co is the number of contractible components of the fiber product
of S1 and S! corresponding to ci,ca. If ¢, co are simple and transversal, then i(c1,c2)
coincides with the cardinality of ¢;(S') Nea(S1). The intersection number i of two homo-
topy classes of (unoriented) closed curves [¢1], [c2] is the minimum of i(¢], ¢) taken over all
cy € [c1], ) € [e2]. For two non-trivial elements g1, g2 € G we can define i(g1, g2) to be the
intersection number of homotopy classes of unoriented closed curve on 3 corresponding to
g1, 92. Note that if ¢1, co are closed geodesics on 3, then i(c1, ca) = i([c1], [e2]). Such ¢, o
are said to be in minimal position. Bonahon [Bon86] proved that there exists a unique
continuous R>¢-bilinear functional igc from GC(X) x GC(X) to R>p such that for any
non-trivial elements g1, go € m(X) we have

1GC (7791 ) 7792) = i(glv 92)-

The uniqueness of iqc is the result of the denseness property of rational geodesic currents.
In this meaning, we say that igc is an extension of i. Bonahon [Bon88| proved that
there exists an embedding L from the Teichmiiller space 7(X) of ¥ to GC(X), and for
m € T(X) and a non-trivial g € m;(X) the intersection number igc(L(m),ny) coincides
with the length of the (unoriented) m-geodesic corresponding to g, which we call the m-
length of g. This implies that there exists a unique m-length functional ¢,, on GC(X) such
that for every non-trivial element g € m1(X), ¢ (ng) equals the m-length of g.

The notion of subset currents is also defined on an infinite hyperbolic group G. A subset
current on G is a locally finite G-invariant Borel measure on the space H(9G) of closed
subsets of G containing at least 2 points, which is endowed with the Vietoris topology.
The Vietoris topology on H(9G) coincides with the topology induced by the Hausdorff
distance. A geodesic current on G is a subset current on G since 02G is a G-invariant
closed subspace of H(0G). Kapovich and Nagnibeda [KN13| introduced the notion of
subset currents on hyperbolic groups and particularly studied the space SC(F') of subset
currents on a free group F of finite rank. For a finitely generated subgroup H of F' they
defined a counting subset current ng by

nH ‘= Z 5gA(H)7
gHEF/H

where d, (g is the Dirac measure at the limit set A(H) of H on H(OF). We can see that
Ngtg—1 = nu for g € F. They proved that the set SC,.(F) of all positive real weighted
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counting subset currents on F', which are called rational subset currents on F', is a dense
subset of SC(F'). In this meaning the space SC(F') can be thought of as a measure-theoretic
completion of the set of conjugacy classes of finitely generated subgroups of F.

Let A be a finite connected graph whose fundamental group is isomorphic to F and
whose vertices have degree larger than or equal to 2. For a non-trivial finitely generated
subgroup H of F' we define a A-core graph Ay to be the smallest subgraph of the covering
space corresponding to H such that the inclusion map is a homotopy equivalence map.
Some properties of counting subset currents tell us that the A-core graph Ay is closely
related with ng. Let H' be a k-index subgroup of H. Then we can see that ng = kng
by the definition. This property corresponds to the fact that we have a k-fold covering
map from Ap to Ay. Note that we have x(Aps) = kx(Ap), where x(Apg) is the Euler
characteristic of Ag. We define the reduced rank of a non-contractible connected graph
to be the negative of the Euler characteristic and define the reduced rank of a contractible
graph to be 0. We define the reduced rank rk of a free group Fy of rank N € NU {0}
to be max{N — 1,0}. By the definition, the reduced rank of a connected graph whose
fundamental group is isomorphic to F equals the reduced rank of Fy.

A finitely generated subgroup of F' is also a free group of finite rank, and we can
consider tk as a map from the set of finitely generated subgroups of F to Z>o. Kapovich
and Nagnibeda [KN13] extended the reduced rank rk to a continuous Rx¢-linear functional
rk on SC(F). In fact, they constructed Rso-linear functionals V#, E# from SC(F) to R
satisfying the condition that for every non-trivial finitely generated subgroup H of F,
V#(ng) equals the number of vertices of Ay and E¥ (ng) equals the number of edges of
Ap. Then we can obtain the reduced rank functional rk as E# — V#.

For two finitely generated subgroup H, K of F' we define the product N of H and K by

NH,K):= Y rtk(HngKg™),
HgKeH\F/K

where H\F/K is the set of all double cosets of H and K. By using this product AN/ the
Strengthened Hanna Neumann Conjecture can be written as follows: the inequality

N(H, K) < Tk(H)Tk(K)

follows for any two finitely generated subgroups H and K of F. This conjecture was
individually proved by Friedman [Fril5] and Mineyev [Minl2]. Geometrically, the product
N (H, K) equals the sum of the reduced rank of all connected components of the fiber
product graph Ay xa Ag when H and K are non-trivial. In [Sas15] the product N was
extended to a continuous R>¢-bilinear functional N' on SC(F') x SC(F). As a corollary,
we can obtain the following inequality:

N(p,v) < tk(p)rk(v)
for any two subset currents p,v € SC(F).

1.2. Main results. First, we develop a fundamental theory of subset currents on hyper-
bolic groups. We prove that the space of subset currents on an infinite hyperbolic group
G is a locally compact, separable and completely metrizable space in Section 2. For a
subgroup H of G we define a G-invariant measure ng on H(9G) by

M= Y Seah):
gHeG/H

If H is a finite group, then we define n to be the zero measure. We prove that ny is a
locally finite measure if and only if H is a quasi-convex subgroup of G. In this case we
call ng a counting subset current on GG and call a positive real weighted counting subset
current on GG a rational subset current on G.
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More generally, for a point S € H(OG) we can define a G-invariant measure ng by
taking the G-orbit of S. Explicitly,

ns = Z dgA(Stab(S))»
gStab(S)EG /Stab(5S)
where Stab(5) is the stabilizer S with respect to the action of G. Then we can see that ng
is locally finite if and only if Stab(.S) is a quasi-convex subgroup of G and S = A(Stab(5)).

Therefore the set SC,(G) of all rational subset currents on G is a natural subset of
SC(G) consisting of “discrete measures”. Hence we are interested in whether SC,(G) is
a dense subset of SC(G). Note that the R>¢-linear subspace Span((SC,(G))) of SC(G)
generated by SC,(G) is a natural subspace of SC(G) consisting of “discrete measures”,
and we are also interested in whether Span(SC,(G)) is a dense subset of SC(G). Both of
these problems are still open problems in contrary to the result of Bonahon on the space
of geodesic currents on a hyperbolic group. The difficulty comes from the nature that
constructing quasi-convex subgroups is much harder than finding generators of infinite
cyclic subgroups. We say that an infinite hyperbolic group G has the denseness property
of rational subset currents if SC,(G) is a dense subset of SC(G).

Kapovich and Nagnibeda [KN13] first proved that SC,(F) is a dense subset of the sub-
space Span(SC,(F')) of SC(F') generated by SC,.(F'), and then proved that Span(SC, (F'))
is a dense subset of SC(F'). Bonahon [Bon88b] also divided the proof of the denseness
property of rational geodesic currents for a hyperbolic group into such two steps.

From the viewpoint of the application of subset currents, solving either one of the
two problems mentioned in the above for a surface group is important. Actually, the
former of the two problems was presented by Kapovich and Nagnibeda in [KN13]. In this
dissertation, we solve the problem and obtain the following theorem:

Theorem 1. For a compact hyperbolic surface ¥ the fundamental group w1 (%) of ¥ has
the denseness property of rational subset currents.

Note that if a compact hyperbolic surface ¥ has a boundary, then 71(X) is a free group
of finite rank. A subgroup H of 71 () is a quasi-convex subgroup of 71(X) if and only if H
is a finitely generated subgroup of 71(3). Our method of proving the denseness property
for a surface group is partially based on the method of proving the denseness property for
a free group of finite rank in [Kapl13]. We take a sequence of finite-rank free subgroups
{H,} of the surface group 7;(X) “approximating” m(X), and construct a subset current
on H, based on a given subset current p € SC(m (X)) for a sufficiently large n. From the
subset current on H,, we can obtain a subset current on (%) sufficiently close to pu.

We write SC(71(X2)) simply as SC(X) and call SC(X) the space of subset currents on X
when we identify d71(3) with the boundary of the universal cover of X.

From now on, we will talk about several continuous extensions of invariants of finitely
generated subgroups (or pairs of finitely generated subgroups) of 7;(X) to continuous R>o-
linear (or Rx>g-bilinear) functionals on SC(X). The outline of the strategy to prove the
extensions is the same as that by Bonahon and Kapovich-Nagnibeda. First, we construct
an R>-linear functional on SC(X) associating a counting subset current for a non-trivial
finitely generated subgroup of 71 (X) with a certain invariant. Then we prove the continuity
of the functional, which is the main part of the proof. Finally, we see that such a functional
is unique by the denseness property of rational subset currents. In this way we can obtain
a concrete expression of the functional.

Since SC(X) is a completely metrizable space and the set SC,(X) of rational subset
currents on X is a dense subset of SC(X), we can extend a continuous functional on
SC,(X) uniquely to a continuous functional on SC(X). We will also use this method in
Section 6.
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Let I" be a non-trivial torsion-free convex-cocompact Kleinian group acting on the n-
dimensional hyperbolic space H™ for n > 2. Then I' is a hyperbolic group, and we
identify the boundary OI' with the limit set A(I') C OH". From the assumption, I acts
on the convex hull CH(A(T")) of A(I') cocompactly, which implies that the volume of the
convex core Cp := I'\CH(A(T")) is finite. Then every non-trivial quasi-convex subgroup
H of T" also acts on the convex hull CH(A(H)) cocompactly. We prove that there exists a
continuous R>g-linear functional Vol on SC(I") such that for every non-trivial quasi-convex
subgroup H of I', Vol(ny) equals the volume of the convex core Cy corresponding to H.

In the case that n = 2, the Fuchsian group I' is a free group of finite rank or a sur-
face group, and from the Gauss-Bonnet theorem we can see that the area of C'y equals
—27mx(Ch). We define the reduced rank rk of a surface group to be the negative of the Eu-
ler characteristic of a closed surface whose fundamental group is isomorphic to the surface
group. Then we obtain the following theorem, which is a generalization of the reduced
rank functional on SC(F') in [KN13].

Theorem 2. Let ¥ be a compact hyperbolic surface. There erists a unique continuous
R>o-linear functional tk on SC(X) such that for every finitely generated subgroup H of
m1(X) we have

k(i) = TK(H).

From the definition of the reduced rank for surface groups, we can extend the product
N to the product of two finitely generated subgroups H and K of 71(X) for a closed
hyperbolic surface >, that is,

N(H,K) := Z tk(HNgKg™t).
HgKeH\m(X)/K

In the case that H and K are non-trivial, the product N'(H, K) equals the sum of the re-
duced rank of all connected components of the fiber product C'y x5, Cx. The reduced rank
of non-contractible component is the negative of the Fuler characteristic and the reduced
rank of contractible component is 0. As a generalization of the intersection functional N
on SC(F), for a compact surface ¥ we prove the following theorem.

Theorem 3. Let ¥ be a compact hyperbolic surface. There exists a unique continuous
R>q-bilinear functional N on SC(X) such that for any two finitely generated subgroups H
and K of m1(X) we have

N, nx) = N(H, K).

As far as the author knows, the surface group version of the Strengthened Hanna Neu-
mann Conjecture is still an open problem. By using the continuity of A" and rk if we can
prove the inequality for a dense subset of SC(X), then the conjecture is true for any two
subgroups of 71 (X) for a closed hyperbolic surface 3. This gives us a new approach to the
conjecture.

The intersection functional N"on SC(X) also has the property that for every u € SC(X)
we have

N(nﬂl(Z)a /'L) = rk(ﬂ)
In this meaning N can be thought of as a generalization of the reduced rank functional
rk.

Our method of proving the above theorem is based on the method of constructing the
intersection functional A" on SC(F) in [Sasl5]. We will use the denseness property of
rational subset currents for 71(X) in order to prove the existence of the functional N.
Since the reduced rank of a contractible component is not the Euler characteristic, we
need to count the number of contractible components of the fiber product Cy Xy, Ck. For
this purpose we can use the intersection number igc on SC(X) x SC(X).
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The intersection number ¢ of H and K is defined to be the number of contractible
components of Cy Xy, Ck. Note that if H and K are infinite cyclic groups generated by
91,92 € m1(X) respectively, then i(H, K) = i(g1,g2) since Cy and Ck are geodesics and
in minimal position. Then we prove the following theorem:

Theorem 4. Let ¥ be a compact hyperbolic surface. There exists a unique continuous
R>o-bilinear functional isc on SC(X) such that for any two finitely generated subgroups
H and K of m(X) we have

isc(nm,nk) = i(H, K).

Note that i(H, K) depends on X if 7r1(X) is a free group, since there exist other compact
hyperbolic surfaces that are not homeomorphic to ¥ but whose fundamental groups are
isomorphic to m(X).

We also introduce the intersection number of two simple compact surfaces on a compact
surface ¥, which is not necessarily hyperbolic. Let S be a compact surface or S'. A pair
of S and a continuous map s from S to X is called a simple compact surface on X if s is
a locally injective and the restriction of s to each component of the boundary 95 is not
nullhomotopic and does not have a sub-arc forming a nullhomotopic closed curve on .
Note that a simple compact surface on 3 can be a closed curve on 3.

For two simple compact surfaces (51, s1), (S2, s2) on ¥ we define the intersection number
of (S1,s1), (52, s2), denoted by i(s1,s2), to be the number of contractible components of
the fiber product S7 x5 S2 corresponding to si,s2. When we consider the intersection
number, we always assume that s; and so are “transverse”, that is, the restriction of s;
and so to any components of their boundaries intersect transversely or virtually coincide
if they intersect. We say that two closed curves ¢y, co on X virtually coincide if there exist
a closed curve ¢ on ¥ and mi,mg € N such that ¢; equals ¢™i up to reparametrization
for i = 1,2. We define the intersection number of two homotopy classes [s1], [s2] of simple
compact surfaces to be the minimum of i(s], s,) taken over s} € [s1] and &), € [so] that are
transverse. If i(s1, s2) = i([s1], [s2]), then we say that s1, se are in minimal position.

In the case that ¥ is a hyperbolic surface, we can see that for any simple compact surface
(S,s) on ¥ there exists a finitely generated subgroup H of m1(X) such that the pair of
the convex core Cp and the natural projection from Cp to ¥ induced by the universal
covering belongs to the homotopy class [s]. We also introduce the notion of an immersed
bigon formed by s1, so and generalize the well-known bigon criterion for two closed curves
on X to two simple compact surfaces on X.

Theorem 5. Let (S1,51),(S2,s2) be transverse simple compact surfaces on a compact
surface Y. If s1 and so do not form an immersed bigon, then si,s2 are in minimal
position. If either Si or Sy is S, then the converse is also true.

As a corollary, we can see that for two non-trivial finitely generated subgroups H and
K of m1(X) for a compact hyperbolic surface ¥, Cy and Ck are in minimal position, that
is,

i(H,K) =1i(Cp,Ck) = i([Cul, [Ck]).

For a non-trivial finitely generated subgroup H of 71(2) of a compact hyperbolic surface
Y, we can see that every component of the boundary of the convex core C'y is a closed
geodesic on Y., and for each closed geodesic ¢ on ¥ we can obtain a counting geodesic
current 7. on GC(X), which equals 7, for g € m1(X) freely homotopic to c. We denote by
0Cy the set of all boundary components of C'y when no confusion can arise. Then we
can obtain a projection B from SC(X) onto GC(X):

Theorem 6. Let ¥ be a compact hyperbolic surface. There exists a unique continuous
R>o-linear map

B: SC(X) — GC(D)
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such that for every non-trivial and non-cyclic finitely generated subgroup H of m(X) we
have

1
B(nH) = 5 Z TNe
cedCy
and the restriction of B to GC(X) is the identity map.

Note that if Cp is empty, then B(ng) is the zero measure. For non-trivial g € m1(X)
we interpret dC(gy as {Cy, Cy-1} and B(ng) as $(g +1y-1) (= ny).
Concerning the projection B we can obtain the following theorem:

Theorem 7. For any u,v € SC(X) the following inequality follows:

isc(p, v) <ico(B(w), B(v)).
If either u or v belongs to GC(X), then the equality holds.

From the above theorem, since L(m) belongs to GC(X) for m € T(S), we can generalize
the m-length functional £, on GC(X) to the m-length functional ¢,, on SC(X) by defining

U (1) :=igc(L(m), p)

for p € SC(X). Then we can see that for every non-trivial finitely generated subgroup H
of m1(X) we have

bnn) = 5 3 o),
cedCy
where £,,,(c) is the m-length of c.

In the case that 3 has no boundary, Bonahon’s result with respect to the embedding of
the Teichmiiller space 7 (2) to GC(X) by sending a hyperbolic metric m to the Liouville
current corresponding to m was extended to all negatively curved Riemannian metrics by
Otal in [Ota90], to negatively curved cone metrics by Hersonsky and Paulin in [HP97],
and to (singular) flat metrics by Duchin-Leininger-Rafi in [DLR10] (which includes the
case that ¥ has boundary). For any such metric m on ¥, we can obtain an associated
geodesic current L,, € GC(X), and for non-trivial g € m(X), the intersection number
icc(Lm,ng) equals the m-length of g. Hence for any such metric m on ¥ we obtain the
m-length functional ¢,, on SC(X).

Consider two quasi-convex subgroups H and J of a hyperbolic group G. Assume that J
is a subgroup of H. Then we have a continuous R>o-linear map ¢/ from SC(.J) to SC(H)
by defining

)= D hw)
hJeH/J
for p € SC(J), where h,(u) is the push-forward of p by the homeomorphism h on H(9J).
We write qu[ simply as tp. For a quasi-convex subgroup K of H we denote by 77% the
counting subset current on H corresponding to K. Then we can see that

ur(ni) = nx € SC(G).

When we prove the denseness property for a surface group, we will use this map in order
to obtain a subset current on G from a subset current on a quasi-convex subgroup H. By
using map tg we can also obtain the following theorem.

Theorem 8. Let H be a finite index subgroup of an infinite hyperbolic group G. If H has
the denseness property of rational subset currents, then G also has the denseness property
of rational subset currents.

This theorem gives us a hint to the proof of the denseness property for a surface group.
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1.3. Future study. Consider the automorphism group Aut(G) of a hyperbolic group G.
The group Aut(G) acts on the boundary dG continuously, which induces a continuous
action on H(JG). Moreover, by considering the push-forward of subset currents by ¢ €
Aut(G) we have a continuous R>¢-linear action of Aut(G) on SC(G). Since a subset
current is G-invariant, the action of the inner automorphisms is trivial. Hence we have a
continuous R>p-linear action of the outer automorphism group Out(G) on SC(G), which
can be thought of as the generalization of the action of Out(G) on the set of all conjugacy
classes of quasi-convex subgroups of G. In fact, for a quasi-convex subgroup H of G and
[¢] € Out(G) we have
[el(nm) = Np(m)-

From the Dehn-Nielsen-Baer theorem, the mapping class group MCG(X) of a closed
surface ¥ is isomorphic to a 2-index subgroup of Out(m(X)). Note that GC(G) is an
Out(G)-invariant subspace of SC(G).

We can see that our maps tk, isc, N, and B on SC(X) are Out(m(X))-invariant,
especially, MCG(X)-invariant, for a closed hyperbolic surface ¥. We plan to investigate
MCG(X) by using SC(X) and functionals on SC(X).

1.4. Organization of dissertation. In Section 2, we will introduce subset currents on
a hyperbolic group G and develop a general theory on the space SC(G). We also give a
short introduction to the background of measure theory related to subset currents.

In Section 3, we will prove the existence of the volume functional Vol on SC(T') for a
non-trivial torsion-free convex-cocompact Kleinian group I' on H” for n > 2 (see Theorem
3.3). As a corollary, we obtain the reduced rank functional rk on SC(X) for a compact
hyperbolic surface ¥ (see Corollary 3.11).

In Section 4, we will give the natural continuous Rx>g-linear map ¢y from SC(H) to
SC(G) for a quasi-convex subgroup H of a hyperbolic group G. By using the map vy we
prove that if a hyperbolic group G has the denseness property of rational subset currents,
then the finite index extension of G also has the denseness property of rational subset
currents (see Theorem 4.3). We present a method of extending a functional on SC(H) to
a functional on SC(G) if H is a finite index subgroup of G in Subsection 4.2.

In Section 5, first, we will review several facts on the intersection number of two closed
curves on a compact surface ¥, and then introduce the intersection number of two simple
compact surfaces on . We prove the bigon criterion for two simple compact surfaces
on ¥ as a generalization of the bigon criterion for two (simple) closed curves on X (see
Theorem 5.14). Finally, we prove the existence of the intersection number igc on SC(X)
(see Theorem 5.35). During the proof, we introduce some new techniques for proving the
continuity of a functional on SC(X).

In Section 6, we will introduce the product N of two finitely generated subgroups of
71(X) for a compact hyperbolic surface 3. Our proof of the bigon criterion for two simple
compact surfaces on Y gives a geometric characterization of N' and also gives us an idea
for extending N to an R>-bilinear functional on SC(X). Our proof of the continuity of
N on SC(X) is partially based on the proof of the continuity of igc.

In Section 7, we will prove the existence of the continuous Rx>¢-linear projection B from
SC(X) onto GC(X) for a compact hyperbolic surface ¥ (see Theorem 7.1). By using the
projection B and the denseness property of rational subset currents for 7;(X), we obtain
the inequality on the intersection number on SC(X) and GC(X) (see Theorem 7.4). As
a corollary, we also obtain the m-length functional ¢, on SC(X) for an element m of the
Teichmiiller space of X.

In Section 8, our goal is proving the denseness property of rational subset currents for a
surface group 71 (%) for a closed hyperbolic surface ¥ (see Theorem 8.20). In Subsection
8.1, we will give a proof of the denseness property for a free group F' of finite rank based on
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the proof by Kapovich in [Kap13]. In the proof we give some new ideas for understanding
the denseness property. In Subsection 8.2, we will give a sequence of finitely generated
subgroups H,, of F' so that the union of the image of SC(H,,) by the natural map ¢z, taken
over all n is a dense subset of SC(F’). Finally, in Subsection 8.3, we will prove the denseness
property for m(X). Several methods for this proof have been introduced in Subsection
8.1 and 8.2 in advance but also we generalize some of those methods. Especially, we use a
sequence of finitely generated subgroups of w1 (%), which are finite-rank free groups. A lot
of constants are involved in the proof, and we need to be careful of the relation between
constants. We note that we will use the denseness property for surface groups in several
sections before Section 8.

1.5. Acknowledgements. I would like to thank my supervisor, Prof. Katsuhiko Mat-
suzaki, whose enormous support and insightful comments were invaluable during the course
of my study. I also appreciate the feedback offered by Prof. Ilya Kapovich during my stay
at University of Illinois at Urbana-Champaign from March to May in 2016. The author
is supported by JSPS KAKENHI Grant Number JP16J02814.

2. SUBSET CURRENTS ON HYPERBOLIC GROUPS

First we define the hyperspace of a topological space, which consists of compact subsets.
Later, we consider only the case where the topological space is the (Gromov) boundary of
a hyperbolic group, which is compact metrizable. The hyperspace is used for considering
limit sets of subgroups of the hyperbolic group.

Definition 2.1 (See [Kec95, Subsection 4.F]). Let X be a topological space. We will

denote by ﬁ(X ) the set of all compact subsets of X including () with the Vietoris topology,
which is generated by the sets of the form

{SeHX)|ScU}yand {SeH(X)|SNU # 0}
for an open subset U C X. We call 7/-Z(X ) the hyperspace of X consisting of compact sets.

Theorem 2.2 (See [Kec95, Theorem 4.26]). If X is a compact metrizable space, then so
is H(X). In particular, H(X) is separable.

2.1. Space of subset currents on a hyperbolic group. Let G be an infinite hyperbolic
group. We do not consider the case that G is a finite group throughout this dissertation.
Fix a finite generating set of G and denote by Cay(G) the Cayley graph of G with respect
to the generating set. When we want to emphasize a generating set A of GG, we will denote
by Cay(G, A) the Cayley graph of G with respect to A. We consider a connected graph
as a metric space by endowing the graph with the path metric such that every edge has
length 1.

Since the boundary 0G of G is compact metrizable, the space 7—A[(8G) is compact metriz-
able by Theorem 2.2. Now, we consider an open subspace

H(OG) := {S € H(OG) | #S > 2}

of H(dG). Then H(AG) is a locally compact separable metrizable space.
Let dgpe be a metric on G that is compatible with its topology. Then we can define
the Hausdorff distance dpaus on H(OG) as

diaus (51, S2) := max {rré%xdag(s,Sg),rré%xdag(Sl,s)} (S1, 52 € H(OG)).
S 1 S 2

It is easy to see that the Hausdorff distance is compatible with the subspace topology
on H(0G) given by the Vietoris topology. When we consider the topology of H(0G),
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the Hausdorff distance dgaus is convenient. Note that dygaus actually can be defined on

H(9G) \ {0}.

Since G acts on OG continuously, the action extends to the continuous action on H(9G).

Definition 2.3 (Subset currents on G). A subset current on G is a G-invariant locally
finite Borel measure on H(OG). The space of subset currents on G is denoted by SC(G).
We give SC(G) the weak-x topology. (See Subsection 2.2 for the definitions of measure-
theoretic terminology.)

Remark 2.4. For a finite hyperbolic group G, since the boundary G is empty, we define
SC(G) to be the set consisting of the zero measure. In the case that G is an infinite cyclic
group, the boundary dG consists of two points and G acts on OG trivially. Hence SC(G)
is the R>¢-linear space generated by do¢.

For S € H(0G) the weak convex hull WC(S) C Cay(G) of S is the union of all geo-
desic lines connecting two points of S. A geodesic line in a metric space is an isometric
embedding of R into the metric space. For each vertex g € V(Cay(G)) we consider a
subset

Ay :={S e H(OG) | WC(S) > g}.
Since for any g € G and S € H(IG) we have gWC(S) = WC(g(S)),

Aiq) = | g4ia = |J 4y = H(0G)

geG geG
Lemma 2.5. The set Ay is a compact subset of H(OG) for every g € G.

Proof. Recall that the space H(E)G) is compact. Therefore, it suffices to show that the set
Aiq is closed in H(8G). Consider a sequence {S,} C Ajq converging to S € H(dG). It is
clear that S # (). For each n € N take &,,(, € S, such that there exists a geodesic line
~n containing id and joining &, to (,. We can take convergent subsequences {{, } and
{Ck, } by the compactness of OG. Since S,, converges to S in the Hausdorff distance dygays,
the sequences {¢, } and {(, } converge to &, € S, respectively. From the Ascoli-Arzela
theorem there exists a subsequence of ~;, that converges uniformly on compact subsets to
a geodesic line v joining & to . Since each vy, contains the vertex id, so is 7. Therefore,
WC(S) contains id, which proves our claim. O

From the above lemma, we can see that G acts on H(9G) cocompactly. By applying
Theorem 2.23 in Subsection 2.2 to SC(G), we have the following theorem.

Theorem 2.6. The space SC(G) is a locally compact, separable and completely metrizable
space.

We assume some background knowledge on the properties of limit sets of subgroups of
hyperbolic groups.

For each subgroup H of G we have the limit set A(H) C OG. We usually consider the
case that A(H) # (), which implies A(H) € H(OG). We define a measure ng on H(9G) as

Y Gans

gHeG/H

where dgp (g is the Dirac measure at gA(H). It is easy to check that ny is G-invariant.
When the limit set A(H) is empty, we define 1y to be the zero measure.

A subgroup H of G is called quasi-convex if H is a quasi-convex subset of Cay(G), that
is, there exists k£ > 0 such that any geodesic connecting two points of H is included in
the k-neighborhood of H. A subgroup H of G is quasi-convex if and only if H acts on
the weak convex hull WC(A(H)) cocompactly (see [Swe01]). The following lemma is a
generalization of [KN13, Lemma 4.4] in the case of hyperbolic groups.
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Lemma 2.7. Let H be a subgroup of G. The measure ny is locally finite if and only if H
1S quUasi-convex.

Proof. We generalize the compact subset Ajq C H(9G). For r > 0 we define A(id, r) to be
a subset of H(J0G) consisting of S € H(IG) such that WC(S) intersects the closed ball
B(id, r) centered at id with radius r. Note that A(id,0) = A;q and A;jq can be not an open
set. Nevertheless, we can see that if r is sufficiently large compared with the hyperbolic
constant of Cay(G), then the interior Int(A(id, 7)) includes A;jq, and so

G(Int(A®id, 1)) = H(IG).

Therefore, any compact subset of H(J(G)) is covered by a finite union of g(A(id,r)) (g €
G). Moreover, any compact subset of H(9(G)) is covered by a finite union of A, (g € G)

since we have
Ad,r) = | Ay,
geGNB(id,r)
which is a finite union. As a result, a G-invariant measure p on H(9G) is locally finite if
and only if p(A;iq) is finite.
For the measure ny we have
na(Aia) = #{gH € G/H | WC(gA(H)) > id}
— #{gH € G/H | gWC(A(H)) > id}
= #{gH € G/H | WC(A(H)) > g~'}.

For 1 H,goH € G/H with g1 H # goH, thereisno h € H that sends gl_1 to 92—1' Therefore,
nm (Aig) equals the number of vertices of the quotient graph H\WC(A(H)) of WC(A(H))
by H. Hence, 1 (Aiq) is finite if and only if H acts on WC(A(H)) cocompactly, which
completes the proof. O

In general, for any S € H(0G) we can obtain a G-invariant Borel measure (not neces-
sarily locally finite)
ns ‘= Z 595

gHeG/H
on H(0G), where H := Stabg(S) = {g € G | g(S) = S}, the stabilizer of S. For any
G-invariant Borel measure p on H(9G), if p has an atom S, that is, u({S}) > 0, then
w(E) > p({S})ns(E) for every Borel subset E C H(IG). Therefore, if p is locally finite,
then so is ng.

Theorem 2.8. Let S € H(OG). The measure ng is locally finite if and only if H =
Stabg(S) is quasi-convex and S = A(H). In particular, if a subset current p € SC(G) has
an atom S, then H is quasi-convex and S = A(H).

Proof. The“if” part follows by Lemma 2.7. We prove the “only if” part. Assume that
ng is locally finite. From the proof of Lemma 2.7, ns(A;q) equals the number of vertices
of the quotient graph H\WC(S), which implies that H acts on WC(S) cocompactly.
Note that for every & € S there exists a sequence of W(C(S) converging to £ and we
can take the sequence from H(x) for some z € WC(S). Therefore S = A(H) and H is
quasi-convex. ]

Definition 2.9. We call ny the counting subset current for a quasi-convex subgroup H of
G. A subset current p € SC(G) is called rational if there exists a quasi-convex subgroup
H of G and ¢ € Rx>q such that yu = eny. We denote by SC,(G) the set of all rational
subset currents on G.

Counting subset currents have the following properties:
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Proposition 2.10. For two quasi-convex subgroups Hi, Ha of G,
(1) if Hy is a k-index subgroup of Ha, then ng, = kngm,;
(2) if Hy is conjugate to Ha, then ng, = nm,.
Proof. Assume that H; is a k-index subgroup of Hy. Note that A(H;) = A(Hz). Take a

complete system of representatives R of G/Hy. Then a map sending (g,hH;) € R x H;
to ghHy € G/H; is a bijective map. Hence

nm= Y Gy =), Y Sgna()

gH1€G/H; gERhHléHg/Hl
D ILINCAR
geR

Next, we assume that H; = goHng_l for go € G. Note that A(Hy) = goA(Hz). Take
a complete system of representatives R of G/Hs. Then goRg, Lis a complete system of
representatives of G/H; since

G=||gH2=|] 909H295" = | | (90995 ") H1.

geR geR gER
Hence
NH, = Z 5gogg(;1A(H1) = Z 6909A(H2) = Z 69A(H2) = NH>;
geER geER gH2€G/Ho
which is the required equation. O

Kapovich and Nagnibeda [KN13] proved the following theorem, which played a fun-
damental role in their study of the space of subset currents on a free group. Kapovich
[Kap13] gave another proof to the following theorem.

Theorem 2.11 (See [KN13, Theorem 5.8 and [Kapl3]). For a free group F' of finite rank,
the set SC,.(F') of all rational subset currents on F is a dense subset of SC(F).

Note that a subgroup H of F' is quasi-convex if and only if H is finitely generated. By
Proposition 2.10 (2) and Theorem 2.11, we can thought of SC(F') as a measure-theoretic
completion of the set of all conjugacy classes of finitely generated subgroups of F'.

We say that an infinite hyperbolic group G has the denseness property of rational subset
currents if the set of all rational subset currents on G is a dense subset of SC(G). Recall
that the space SC(G) is separable for any hyperbolic group G. If G has the denseness
property of rational subset currents, then we have a concrete countable dense subset of
SC(G) as follows:

{qnu | ¢ € Q>p and H is a quasi-convex subgroup of G}.

In Subsection 8.3, we will prove that surface groups have the denseness property of
rational subset currents (see Theorem 8.20). In Subsection 4.1, we will prove that for a
hyperbolic group G and a finite index subgroup H of G, if H has the denseness property of
rational subset currents, then G also has the denseness property of rational subset currents
(see Theorem 4.3).

From the above, it is natural to propose the following problem.

Problem 2.12. Does any infinite hyperbolic group G have the denseness property of ra-
tional subset currents?

Note that from the viewpoint of the application, it is sufficient to see that the R>¢-linear
subspace Span(SC,(G)) generated by SC,(G) is a dense subset of SC(G). In the case that
G is a free group F of finite rank, Kapovich-Nagnibeda [KN13] first proved that SC,(F)
is a dense subset of Span(SC,(F')), and then they proved that Span(SC,(F)) is a dense
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subset of SC(F'), which implies that SC,(F') is a dense subset of SC(F"). However, for a
general infinite hyperbolic group G, we do not know whether SC,.(G) is a dense subset of
Span(SC,(G)) or not.

Let G be an infinite hyperbolic group with denseness property of rational subset cur-
rents. The denseness property of rational subset currents has a lot of application. For
example, if we have an R>o-linear functional on SC(G) that is a continuous extension
of an invariant of a quasi-convex subgroup of G, then we can see that the functional is
unique. We will use this argument frequently in this dissertation for the case that G is the
fundamental group of a compact hyperbolic surface. In addition, if we have a continuous
functional ¢ on SC,(G), then ¢ is uniquely extended to a continuous functional on SC(G)
since SC(G) is a completely metrizable space. In the proof of Proposition 6.7, we will use
argument.

2.2. Measure theory background. In this subsection, we give an introduction to the
space of measures. Most of the contents are well-known in the measure theory (see [Bog07,
Section 8] for more detail). First, we consider the space of locally finite measures with
weak-* topology, and then we consider a group action additionally.

Let (X,d) be a locally compact second countable metric space. We consider the space
M (X) of locally finite Borel measures on X in this subsection. Our goal is to see that the
space M (X) with the weak- topology is second countable and completely metrizable.

First we recall some definitions from the measure theory.

Definition 2.13. A Borel measure p on X is called locally finite if p(K) is finite for any
compact subset K C X. A Borel measure p on X is called regular if for any Borel subset
EcCX,
p(E) =inf{u(O) | O C X: open and E C O}
and if for any Borel subset F C X with u(FE) < oo,
pu(E) =sup{p(K) | K C X: compact and E D K}.

Since X is a locally compact second countable metric space, locally finite Borel measures
are regular (see [Rud86, 2.18 Theorem]).

Definition 2.14. Let C.(X) be the space of compactly supported continuous functions
from X to R with the topology of uniform convergence on compact sets. This means
that f, converges to f in C.(X) if there exists a compact subset K C X such that
suppfn, suppf C K, and f, converges to f uniformly. With this topology, for any
p € M(X) the functional

felC.(X »—>/fdu

is continuous. We often denote [ fdu briefly by pu(f
A sequence {p,} C M(X) converges to p € M(X) in the weak-+ topology if and only if
for any f € C.(X) we have p,(f) = u(f) (n — 0).

Proposition 2.15. The space C.(X) is separable.

Proof. It X is compact, then we can see that C.(X) = C(X) is separable from the Stone-
Weierstrass Theorem. In a general case, we take a sequence of compact subsets K, C
X (n € N) satisfying the condition that

(%) X = U K, and K,, C Int(K,,4+1) for any n € N.
neN
This implies X = (J, ¢y Int(K;,). Then we have

= |J{f € C(X) [ suppf € Ko}

neN
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Since {f € C.(X) | suppf C K,,} C C(K,,) is separable for every n € N, so is C.(X). O

Now, we define a metric dys on M(X) as follows. Fix a sequence of compact subsets
K, ¢ X (n € N) satisfying the condition (x). Then take a countable dense subset
C ={¢n | n € N} C C.(X) containing a compactly supported continuous function x,, for
each n € N with x, > 0 and x,(z) = 1 for any = € K,,, which implies that p(x,) > p(Ky)
for any p € M(X). Moreover, from the proof of Proposition 2.15, we can assume that for
any f € C.(X) with suppf C K, for some n € N there exists a sequence {f;} of C such
that {f;} converges to f and suppf; C K, for each j. For p,v € M(X) and n € N we
define

dn(p, v) := max {|p(pn) — v(¢n)|, 1}
and

dy(p,v) = Z 27", (p, v).
neN

Theorem 2.16. The metric dy; on M(X) is compatible with the weak-+ topology.

Proof. For pin,n € M(X) (n € N), it is easy to see that das(pn, ) — 0 (n — oo) if and
only if p,(f) — u(f) (n — oo) for any f € C. Assume that das(pn, ) = 0 (n — 00). It
is sufficient to prove that p,(f) — p(f) for any f € C.(X). We can take k € N such that
there exists a sequence {f;} C C converging to f uniformly and suppf;,suppf C K}. Since

tn(xk) — p(xx) (n — o0), the sequence {pn(xk) fnen is bounded and so is {pn (K%) }nen-
Therefore, for any € > 0 and a sufficiently large j € N we have

|n () = (O] <[t () = (D] |1 F7) = pCF)] + |l f5) = w(F)]
<IF = Fillootn (Kk) + l1n(f5) = 1( I = Filloo s (K)
<2e + [pn(f5) — n(f7)l.
Hence if n € N is sufficiently large, then |u,(f)—u(f)| < 3e. This completes the proof. [

Theorem 2.17. The metric space (M (X),dyr) is complete.

Proof. Let {un} be a Cauchy sequence in (M (X),dpr). For any f € C we can see that
{pn(f)} is also a Cauchy sequence. Since R is complete, we obtain a map

O:C—>R; fr— li_)m tn(f).

Then we extend the map ® to a positive linear functional from C.(X) to R by using
the denseness of C' in C.(X). Finally from the Riesz-Markov-Kakutani representation
theorem, there exists a unique locally finite measure p such that we have

O(f) = /fdu for any f € Co(X).
The measure g is the limit of the Cauchy sequence {puy,}. O

To see that M(X) is separable, we decompose X into “small” subsets by using the
condition that X is a locally compact second countable metric space, whose property is
similar to that of the Euclidean space. Note that on a metric space being separable is
equivalent to being second countable, and we use both words according to each situation.

For each n € N we take a family of Borel subsets {EY}ea, satisfying the following
conditions:

(1) X is a disjoint union of {E} }xea,;

(2) for any compact subset K C X only finitely many EY intersect K, which in
particular implies that A,, is countable;

(3) the diameter of EY is smaller than 1/n.
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For each EY we fix p} € EY. Since A, is countable for each n € N, the set P := {p} |
n € N, A € Ay} is also countable. For each (p,q) € P x Q>0 we consider a measure
qd, € M(X), where §, is the Dirac measure at p, that is, for any Borel subset E C X, if
E > p, then 6,(E) =1; if E # p, then §,(F) = 0. Now, set

D= U {Zk: %i%p;

keN \i=1

(pi,qi) € P x on} 7

which is countable.
Theorem 2.18. The set D is a dense subset of M(X). Hence M(X) is separable.

Proof. Take an arbitrary p € M(X). For each n € N set
pn =Y (ER)6pp
AEA,
Then take ¢y € Q>¢ such that

1
S (B — a3l < -
AEA,

Moo= @iy
AEA,
Next, recall the sequence of compact subsets {K,,} of X satisfying the condition (x). For
each n € N the restriction of u, to K,,, denoted by v, is contained in D since only finitely
many EY (A € Ay,) intersect K.
Now, we prove that the sequence {v,} converges to pu. Take an arbitrary f € C.(X).
For a sufficiently large n € N the support of f is included in K, and so

[ tiv = [ rai = 3 s},

AEA,

and set

Hence

) = (DI < | 3 (a5 0R) = m(EDSBR))

AEA,

<[Iflloe D lak — u(ER)]

AEA,
1
U fller =0 (1= 00)

From the above, it is sufficient to prove that p,(f) converges to u(f). Note that

() = 3 wENIWY) = [ Y Fhxedn
€A, AEA,
where x gy is the characteristic function of EY. Since f is continuous and the diameter of
EY tends to 0, the function )\, f (P})XEy converges pointwise to f. Therefore ju,(f)
converges to p(f) by the bounded convergence theorem. O

Let G be a group acting on X continuously and cocompactly, that is, there exists a
compact subset K C X such that G(K) := J,c 9(K) = X. We define an action of G on
M(X) by pushing forward, namely, for 4 € M(X) and g € G we define g.(p) € M(X) to
be the push-forward of p by g, explicitly,

g+ (L)(E) := p(g~ " (E))
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for any Borel subset £ C X. A measure p € M(X) is said to be G-invariant if we have
g«(p) = p for any g € G. Set
Ma(X) :={p € M(X) | p: G-invariant }.

We will prove that the space Mg (X) is locally compact, separable and completely metriz-
able. The topological property of Mg (X) is similar to that of the space of probability
measures on a compact metric space with weak-* topology. A locally compact second
countable Hausdorff space is completely metrizable in general.

Lemma 2.19. For u € M(X) the following are equivalent:

(1) p is G-invariant;
(2) for any f € Co(X) and g € G

/fdu=/fogdu;

(3) forany f € C and g € G

[ tin= [ ogdn

Proof. (1)=(2): For the characteristic function xg of a Borel subset £ C X and for g € G,
we have

/xEdu = uw(E) = ulg™H(E)) = /Xgl(E)dM = /XE ° gdp.

Recall that any f € C.(X) can be approximated by step functions, each of which is a
finite sum of constant multiplication of characteristic functions. Hence, (2) follows.

(2)=(1): First, we check that u(J) = g«(u)(J) for any g € G and any compact subset
J C X. The characteristic function x; can be approximated by a sequence { f,} C C.(X),
that is to say,

/rxJ ~ fuldi = 0 (n = oo).

Therefore, x4-1(7) is approximated by the sequence {f, o g}, and so we have

p(g—H(J)) = /xgl(J>du—nlggo/fnogdu

—ti [ fud = [ xodn =)

n—oo
Since p is regular, we have u(E) = g.(u)(E) for any g € G and any Borel subset £ C X
with u(F) < co. In general, we can decompose a Borel subset £ C X into a disjoint union

of countably many Borel subsets { E), }neny with E = U, E, and p(E,) < oo for any n € N
since X is a union of countably many compact subsets. Then,

WE) =Y pu(En) = gu()(En) = gu(p)(E)

neN neN
for any g € G.
(2)=(3): Obvious.
(3)=-(2): This follows from the denseness of C' in C.(X). O

Proposition 2.20. The space Ma(X) is a closed subspace of M (X). Hence Mg(X) is
also a separable complete metric space.

Proof. Let pin, € Mg(X) (n € N) and assume that p,, converges to p € M(X). For any
f € C.(X) and g € G we have

pn(fog) — p(fog)and un(f) = p(f) (n — o).
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Hence u(f o g) = p(f), which implies p € Mg(X). O

Recall that G acts on X cocompactly. Since X is locally compact, any compact subset
of X is included in a finite union of relatively compact open subsets of X. Therefore, we
can take a compact subset K C X such that G(Int(K)) = X.

Proposition 2.21. Let K be a compact subset of X with G(Int(K)) = X. Let p,v €
Mg(X). If the restriction of p to K equals that of v, then u = v.

Proof. Since p and v are regular, it is sufficient to show that u(J) = v(J) for any compact
subset J C X. From the assumption we can take g1, ... g, € G such that

Jc | Ja(K).
=1

Then by using g1(K), ..., gm(K), we divide J into Ji, ..., Jy, such that J; C ¢;(K) and J
is a disjoint union of Ji,..., J,,. Hence

This completes the proof. O

By Proposition 2.21, we see that the property of Mg (X) is similar to that of M (Y") for
a compact metric space Y. To prove the local compactness of Mg (X) we use the following
lemma:

Lemma 2.22 (See [Rud86, 2.13 Theorem|). Let K be a compact subset of X. Suppose
Vi,...,Vy, are open subsets of X and

KcW©vu.---uv,.
Then there exists continuous functions hi,...,hy, € Co(X) such that h; > 0, supph; C V;
and hy(xz) + -+ -+ hp(x) =1 for any z € K.

The collection {hy,...,h,} is called a partition of unity on K, subordinate to the cover
{Vi,...,Vp}.

Theorem 2.23. The space Mg(X) is a locally compact, separable and complete metric
space.

Proof. We need to prove only that Mg(X) is locally compact. Take any pu € Mg(X).
Recall that we included the functions yi with respect to the compact subsets Kj in the
set C' when we defined the metric dy; on M (X). Take a sufficiently large k € N such that
G(Int(Kj)) = X and then take kp € N such that the function x; appears in the definition
of di,. Now, we take ¢ > 0 with ¢ < 2750 and prove that the closed ball

B(i,) = {v € Ma(X) | dur(s,v) <}
is compact. For any v € B(u,c) we have
275 max{|u(xn) = v(xk)|s 1} < dur(p,v) <e <270
by the definition of dj;. Thus
n(xk) — v ()l <1,

which implies
v(Kg) < vixe) <1+ pxe)-
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Put K := Ky and M := 1+ p(xx).
Now, we take any sequence {u,} C B(u,e) and prove that {p,} contains a convergent
subsequence. Set
Ck :={f € C[suppf C K},
which is countable. For each f € Ckg

/ fdpn

which implies that the sequence {u,(f)} is bounded and has a convergent subsequence.
From the diagonalization argument, we can take a subsequence {ft¢(n)} of {1} such that
{#gm)(f)} is a convergent sequence for any f € Cx. Then we obtain a map ®: Cx — R
as

< N lloopn () < (| flloo M,

O(f) = lim pgym)(f) (f € Ck).

By the choice of C, for any f € C.(X) with suppf C K there is a sequence in Cg
converging to f. Hence we can extend ® to a positive linear functional on {f € C.(X) |
suppf C K} such that ®(f) = lim,,e0 ftg(n)(f)- Finally, we extend ® to a positive linear
functional on C.(X) as follows. For every f € C.(X) take g1,...,gm € G such that

suppf C g1(Int(K)) U - - U gn (Int(K)).

By using Lemma 2.22, take a partition of unity {h1, ..., h;,} on suppf, subordinate to the
cover {g1(Int(K)),...,gm(Int(K))}. Then f = f1 + -+ f, for fi:=fh; (i=1,...,m).
Note that suppf; C supph; C g;(Int(K)), and so supp(f; o g;) = g; ‘(suppf;) C Int(K).
Now, we define ®(f) as

o(f) =3 ®(fi 0 gy)-
=1

To see that ®(f) does not depend on the choice of h; and g;, we check that the following
equality holds:

m
> d(fiog) = Lim g (f)-
i=1
Actually we have
m m m
; B(fi 0 gi) = ;nlggo Hom) (fi © 9i) = ;7}5& Ho (fi) = Hm jig)(f)-
1= 1= 1=
From the above equality, we can see that fi4,)(f) converges to ®(f) for any f € C.(X).
From the Riesz-Markov-Kakutani representation theorem we obtain v € M(X) where
[g(ny converges. Since Mg(X) is a closed subspace of M(X), we have v € B(u,¢), which
completes the proof. O

3. VOLUME FUNCTIONALS ON KLEINIAN GROUPS

First, we recall some fundamental notions on Kleinian groups. Let H" be the n-
dimensional hyperbolic space for n > 2 and dyn the distance function on H"™. We usu-
ally consider the Poincaré ball model of H". We will denote by Isom(H") the group of
orientation-preserving isometries of H". The action of Isom(H") extends to the boundary
OH", which is homeomorphic to (n — 1)-dimensional sphere S"~!. A Kleinian group is a
discrete subgroup of Isom(H"). It is known that a subgroup I' of Isom(H") is discrete if
and only if I' acts on H" properly discontinuously. Here, we remark that our definition of
Kleinian group includes Fuchsian groups, which is a discrete subgroup of Isom(H?). The
limit set of a Kleinian group I', denoted by A(T'), is the set of accumulation points of the
orbits I'(x) in OH™ for x € H", which is independent of the choice of . More generally,
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the limit set of a subset X of H", denoted by X (c0), is the set of accumulation points of X
in OH"™. For a closed subset S C OH" containing at least two points, we define the convex
hull CH(S) of S to be the smallest convex closed subset of H" containing all geodesic
lines connecting two points of S.

By the definition, a Kleinian group I' acts on the convex hull of the limit set A(T"),
denoted by CHp. The quotient space I'\C' Hr, denoted by CT, is called the convex core of
I'. We say that a Kleinian group I' is convez-cocompact if the convex core CT is compact.
A group is said to be torsion-free if it does not have any non-trivial element with finite
order. It is known that a Kleinian group I' is torsion-free if and only if I' acts on H" freely.
Note that if a Kleinian group I' is finite, then A(I"), CHr and Cr are empty.

In this section, we consider only a torsion-free convex-cocompact Kleinian group whose
limit set contains infinitely many points, which is said to be non-elementary. Let I' be a
Kleinian group satisfying the above condition. Since I' acts on C'Hp properly discontinu-
ously and cocompactly by isometry, I" is a hyperbolic group by the Svarc-Milnor Lemma.
We identify the limit set A(I") with the boundary of OT'. A subgroup H of I is quasi-convex
if and only if H is convex-cocompact.

Recall that H(IT") is the hyperspace of OI' consisting of all closed subsets of OH con-
taining at least two points. Let mp» be the measure on H" induced by the Riemannian
metric on H", which implies that myg» is invariant with respect to the action of Isom(H").
Note that the set of measurable subsets for mpg» coincides with that for the restriction of
Lebesgue measure to the Poincaré ball model of H™. A measurable subset A C C'Hr is
called a (geometric) fundamental domain for the action of I on C'Hp if the boundary 0A
of A in C Hy has measure zero with respect to myn, I'(A) = CHp and g(A)N A is included
in 0A or empty for any non-trivial g € I". We define the volume of Cr to be myn(A) for
a fundamental domain A for the action of I on C'Hr, which is independent of the choice
of A. Actually, the following lemma follows:

Lemma 3.1. Let A be a fundamental domain for the action of ' on CHp. Let B be a

measurable subset of C Hrp satisfying the condition that I'(B) = CHr and g(B) N B has
measure zero for any g € I'. Then we have

mpyn (A) = myn (B).

Proof. From the assumption, for any measurable subset X of C'Hr and any finite subset
I'g of I" we have

mn (X) > mgn U e®B) | nX | => mu(9BnX).
g€lo g€ely

Hence by taking a limit on Iy we have

mpn (X) > mpn (9B N X).
gel’

Since the opposite inequality is obvious, we have

mgn (X) =Y mgn (9B N X),
gel
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Therefore
mpn(A) =Y mgn (9B N A)
gel
= Z mmyn (B N g_lA)
gel’
= Mmpgynr (B),
which is our claim. O

A measurable subset B of C Hr satisfying the condition in the above lemma is called a
measure-theoretic fundamental domain for the action of I' on C Hrp.

Since I acts on C'Hr cocompactly, we can take a fundamental domain Fr for the action
of I' on C'Hr such that Fr is convex and bounded. The Dirichlet domain centered at any
point z € CHr,

{2 € CHy | dgge (. 2) < dy»(g(z), 2) for any g € T},
is a compact convex geometric fundamental domain. We define a function fr: H(oT') —
R>o by
fF(S) = mHn(C’H(S) N ]:F)
for S € H(IT).

Proposition 3.2. The function fr is a continuous function with compact support.

For the moment, we assume that the above proposition follows. Then we can define the
continuous R>¢-linear functional f7t: SC(I') — Rx>q by

fr(w) ZZ/deu

for p € SC(I'). Now, we check that f{(ny) equals the volume of the convex core Cy
for a non-trivial quasi-convex subgroup H of I'. Let R C I' be a complete system of
representatives of I'/H. Then we have

fe(n) = / fedng = " FAG)

gHeT/H

=Y mar(gCHp N Fr)
geER

= mu(CHu N g~ (Fr))

geER

=mpg~ | CHg N U g_l(fr)
geER

In the last of the above equation we used the property that for any non-trivial g € I" the
intersection g(Fr) N Fr has measure zero. Note that R~' = {g~! | ¢ € R} is a complete
system of representatives of H\I'. Then it is sufficient to prove that

A=CHun | g '(Fr)
geER

is a measure-theoretic fundamental domain for the action of H on CHp. First, we check
that H(A) = CHy. Take any * € CHp. Then there exists g € I', go € R and h € H
such that g(x) € Fr and g = goh~!. Therefore

x € g N Fr) = hgy L (Fr) C h(A).
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This concludes that H(A) = CHp. For a non-trivial h € H we have

hA)NA=CHgn [ ) he'(Fr) ngy'(Fr)
g1,92€R

If gghgfl =1id for g1,g92 € R, then goh = g1 and so h = id, a contradiction. Hence gghgfl
is not the identity element for any g1, go € R. Therefore we have

hgy (Fr) N gy ' (Fr) € g5 (0Fr)
and so
h(A)NAC CHy NT(0Fr).

This implies that h(A) N A has measure zero.

Therefore, f{:(ny) equals the volume of the convex core Cy for every non-trivial quasi-
convex subgroup H of T

From the above argument, we obtain the following main theorem in this section.

Theorem 3.3. There exists a continuous R>q-linear functional
Vol: SC(F) — RZO

such that for every non-trivial quasi-convex subgroup H of ', Vol(ny) equals the volume
of the convex core Cg.

Now, we prepare some lemmas for proving Proposition 3.2.

Lemma 3.4. Let X be a convex subset of H". Then the boundary 0X has measure zero
with respect to myn and X is measurable.

Proof. Recall that H" is the Poincaré ball model of the n-dimensional hyperbolic space,
that is, H" is the unit open ball of R™. We can assume that X contains 0 without loss of
generality since the action of Isom(H™) on H" is transitive and myn is Isom(H")-invariant.
Let my, be the Lebesgue measure on R™. It is sufficient to see that X has measure zero
with respect to mp,.

First, we consider the case that X contains 0 as an interior point. Since X is convex,
for any = € X there exists a unique geodesic joining 0 to x, which is also a geodesic in R".
Therefore X is a star-like domain centered at 0 in R™. For ¢ > 0 set

Xy ={tr eR" |z € X}

Since 0 is an interior point of X, there exists a small open ball U C X containing 0. For
to € 10,1) and x € Xy, there exists t > 1 such that tz € X and the convex hull of U U {tz}
in H" contains x as an interior point, so x is an interior point of X, which implies that
for any ¢p € [0,1) the set X3, is included in the interior Int(X) of X. Then for any ¢ > 1

Int(X) := {tx | z € Int(X)}
includes X since for any z € X we have z/t € Int(X) and
1
r=t (ta:> € Int(X):.
Note that Int(X); is similar to Int(X) in R™. Hence we have
mr(Int(X):) = t"mp(Int(X)).

Therefore for any ¢ > 1 we have

0X C Int(X); \ Int(X).
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As a result, we obtain

mr(0X) < mp(Int(X);) — mp(Int(X))
=" —1)mr(Int(X)) =0 (¢t —1).

This implies that the boundary X has measure zero with respect to the Lebesgue measure
mp. The equation X = (0X N X) U Int(X) implies the measurability of X.

If X does not contain any interior points and contains 0, then X is included in a
hyperplane of R™, which implies that both X and 0X have measure zero. g

From the proof of the above lemma, we see that we can apply some techniques of convex
geometry in Euclidean spaces to H" by using 0 as a base point. Let dg» be the Euclidean
metric on R"™.

A hyperplane in H” is a totally geodesic codimension-1 submanifold. Here, “totally
geodesic” means that for any two different points in the submanifold the geodesic line
passing through the two points is included in the submanifold. Actually, any hyperplane
of H" is isometric to H"~! and its limit set is homeomorphic to S™ 2.

Any hyperplane divides H" into two connected components, and the union of the hy-
perplane and one of the connected components is called a half-space of H". In this case
the hyperplane is the boundary of the half-space in H. The following property of a convex
set is well-known in R™ and also follows in H": for a convex subset X of H", x € 0X and
an exterior point y of X there exists a half-space U of H" such that U D X, x € 9U and
y¢Uu.

From the above property we can see that for any closed convex subset X of H" the
intersection of all half-spaces including X coincides with X. Therefore for any S € H(9T)
the convex hull CH(S) coincides with the intersection of all half-spaces whose limit sets
contain S.

Recall that H(0T") is a metric space with a Hausdorff distance dyays, which is compatible
with the Hausdorff distance induced by the restriction of dgn to OI'. In this section we
use the Hausdorff distance D induced by dgrn~ instead of dyg.us. Note that we can consider
the distance D for any two non-empty subsets of H U 0H.

Take S,S" € H(OT') such that #S = #S5’ = 2. Then we can see that for any ¢ > 0
there exists 6 > 0 such that if D(S,S5") < §, then D(CH(S),CH(S’)) < e. This property
follows since for S € H(IT') with #S = 2, CH(S) is the intersection of H" and a circle in
R™ intersecting OH™ orthogonally at each point of S.

For a hyperplane H of H" the union of all geodesic lines connecting two points of the
limit set H(co) coincides with H itself. Therefore for a hyperplane H of H" and € > 0 there
exists & > 0 such that if a hyperplane H' satisfies the condition that D(H (c0), H'(00)) < 4,
then D(H,H') < e.

Consider the hyperplane H := (R"~! x {0}) "H". For a > 0 we call the set

H,:= (R" ! x [~a,a]) NH"
the [a]-neighborhood of H. Then we can see that a hyperplane H' of H" is included in H,
if and only if we have
D(H',H) < D(CH((R"! x {a}) N OH"), H).

Note that for any hyperplane H' of H" there exists ¢ € Isom(H") such that ¢(H') = H.
Then we define the [a]-neighborhood H/, of H' by ¢~!(H,).

Lemma 3.5. Let S € H(IT') and {Sk}ren a sequence in H(OT') converging to S. For any
exterior point x of CH(S) there exists N € N such that if k > N, then x is an exterior
point of CH(Sk).
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Proof. We can assume that OI' = OH without loss of generality since H(9I') can be con-
sidered as a subspace of H(OH). Take a half-space U of H" such that CH(S) C U and
x ¢ U. Note that z is also an exterior point of U and we can take the [a]-neighborhood
(OU), of U such that x & (OU),. Then there exists a half-space U’ of H" such that x
is an exterior point of U’, and U and (9U), are included in U’. Therefore if we take a
sufficiently large N € N and k > N, then Sy C U'(c0), which implies that x is an exterior
point of CH (Sk). O

Lemma 3.6. Let S € H(IT') and {Sk}ren a sequence in H(OT') converging to S. For any
interior point x of CH(S) there exists N € N such that if k > N, then x is an interior
point of CH(Sk).

Proof. We can assume that 0I' = OH without loss of generality. We also assume that
x = 0 in H". Note that an isometry of H" fixing 0 is also the restriction of an isometry
of R"” to H". Take r > 0 such that the open ball B(0,r) centered at 0 with radius r with
respect to dyn is included in CH(S). Take a half-space U such that U D> B(0,r) and
the hyperbolic distance from 0 to OU equals r, that is, OU is tangent to the boundary of
B(0,7). Then there exists € > 0 such that for any half-space U’ of H" if D(U,U’) < ¢,
then U’ D B(0,7/2). Moreover, for this ¢ > 0, we can see that for any two half-spaces
Ui, Uz of H", if Uy D B(0,r) and D(Uy,Us) < €, then Uz D B(0,r/2).

Assume that k is sufficiently large and D(S, Si) < /2. Take any half-space V' of H"
such that V' O CH(Sk). By considering the [a]-neighborhood of 9V, there exists a half-
space V' of H" such that D(V(c0),V'(c0)) < &, D(V,V') < e and V' D CH(S). Since
V' > B(0,r), we have V' O B(0,r/2). This implies that CH (Sy) D B(0,r/2). O

Lemma 3.7. For a bounded subset K of CHr the set
AK):={S e H(T) | CH(S)N K # 0}

is a relatively compact subset of H(OI'). Moreover, for any compact subset E of H(OT)
there exists a bounded subset K of CHr such that E C A(K).

Proof. From Lemma 2.5, for a Cayley graph Cay(I") with respect to a finitely generating
set and g € I' the set

Ay ={SeH©r)|WC(S) > g}
is a compact subset of H(JI'). Take xy € H". Then we have a quasi-isometry

0: Cay(I') — CHr; g — g(xo).

Recall that 6 induces a homeomorphism 06 from II" to A(T"), which is independent of the
choice of xg. We identify OI" with A(T") by this homeomorphism. Take a quasi-inverse 6’
to #. Since K is bounded, §'(K) is also bounded in Cay(T"). For S € A(K) we can see
that the weak convex hull WC(S) in Cay(T") intersects the c-neighborhood of ¢'(K) for
some ¢ > 0 by the property of quasi-isometry. Hence the set A(K) is included in a union
of Agy,..., Ay, forsome gi,...gm € I'. Since Ay is compact for any g € I, the set A(K)
is relatively compact.

From the proof of Lemma 2.7, for any compact subset E of H(OI') there exist finitely
many elements gi,...,gm, € I' such that F is included in the union of Ay, ,..., A, . Then
by considering 6({g1,...,9m}) we can take a bounded subset K of H" such that for any
g; and any S € Ay, the convex hull CH(S) in H" must intersects K. This implies that
E C A(K). O

Proof of Proposition 3.2. The support of f is included in the closure of A(Fr), which is
compact since Fr is bounded. Now, we prove the continuity of f. Let S € H(JI'). Let
{Sk} be a sequence in H(IT") converging to S. It is sufficient to see that myn (C'H (Sk)NFr)
converges to myn (CH (S)NFr). By the bounded convergence theorem it is sufficient to see
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that the characteristic function of CH(Sy) N Fr converges pointwise to the characteristic
function of C'H(S) N Fr almost everywhere. Actually, from Lemmas 3.4, 3.5 and 3.6 this
claim follows. O

If the dimension n is 2, then we can obtain a stronger result than Lemmas 3.5 and 3.6.
We will write H instead of H?.

Lemma 3.8. Let S € H(OH). For any e > 0 there exists § > 0 such that if D(S,S’) < ¢
for S" € H(OH), then D(CH(S),CH(S")) < e.

Proof. In this proof we use only the Euclidean metric d in R? and the Hausdorff distance
D induced by d. However, we will use the term “geodesic” as a geodesic in H.

First of all, we consider the description of CH(S) in the case that S # OH. Since S is
a closed subset of OH = S!, the complement S¢ = 9H \ S is a union of at most countably
many open intervals {I)} ca of OH, that is,

S=0H\ | | I
AEA

For each I, we consider the interior Int(CH(I))) in H, which equals the union of all
geodesic line connecting two points of Iy. Then we can see that

CH(S)=H\ | | Int(CH(T})).
A€A

Note that the boundary 0CH(S) coincides with the union of all geodesic line connecting
the two points of 91y taken over A € A.

Fix ¢ > 0. First, we consider the case that #S = 2. Then we can take § > 0 such that
for any S’ € H(OH) with #5" = 2 and D(S,S’) < § we have D(CH(S),CH(S")) < e.
Now, we do not assume that #5” = 2. Then 0H \ S’ is a disjoint union of countably many
intervals {I)}aea. Since D(S,S’) < 4, there exists two A1, Ao € A such that

D(S,0H\ (I, UI,)) < 6.

Then we can see that D(CH(S),CH(S")) < e.

Next, we consider the case that S = JH. Take 6 > 0 such that if the diameter of an
open interval I C OH is smaller than 24, then the diameter of C'H(I) is smaller than
. Then for S’ € H(OH) with D(S,S’) < ¢, the complement S¢ never includes an open
interval with diameter > 26 . Therefore D(CH(S),CH(S")) < e.

Finally, we consider the case that S # OH and #S > 3. Take open intervals {I)} cp of
OH such that OH \ S is a disjoint union of {I}. Take ¢ > 0 satisfying the following two
conditions:

(1) for any S1,S52 € H(OH) with #S51 = #S2 = 2, if D(5,52) < 0, then we have
D(CH(51),CH(52)) <&

(2) if the diameter of an open interval I C OH is smaller than 24, then the diameter
of CH(I) is smaller than .

Take S" € H(OH) with D(S,S") < 6 and open intervals {I}} cas of OH such that OH \ S’
is a disjoint union of {I}}.

Take x € CH(S). First, we consider the case that d(x,0CH(S)) < . Then there
exists A € A such that d(x, CH(0I))) < e. If the diameter of I is smaller than or equal
to 2§, then the diameter of CH(T)) is smaller than ¢ and there exists £ € S such that
CH(0I)) is included in the (§ + €)-neighborhood of . This implies that x belongs to the
(0 4 2¢)-neighborhood of CH(S"). If the diameter of I is larger than 20, then there exists
N € A such that D(CH(0I,),CH(91},)) < e, which implies that z is contained in the
2e-neighborhood of CH(S").



SUBSET CURRENTS ON SURFACES 25

Next, we consider the case that d(xz, 0CH(S)) > e. Assume that z ¢ CH(S’), that is,
there exists \' € A’ such that z € Int(CH(I},)). If the diameter of I}, is smaller than or
equal to 20, then we can see that x is included in the (0 + €)-neighborhood of CH(S’) by
the same argument as the above. If the diameter of I}, is larger than 26, then there exists
A € A such that D(CH(d1,),CH(8I},)) < . Since x ¢ Int(CH(I,)), we have

x € Int(CH(I},)) \ Int(CH(Ty)),

which implies that d(z, CH(JI))) < e. This is a contradiction. Hence z € CH(5’).
Therefore, in any cases CH (S) is included in the (§ 4 2¢)-neighborhood of CH(S’). By

the same way as the above we can see that CH(S’) is included in (§ + 2¢)-neighborhood

of CH(S). This completes the proof. O

From Lemmas 3.7 and 3.8, we see that if Y is a bounded open subset of H, then A(Y")
is a relatively compact open subset of H(0H); if Y is a compact subset of H, then A(Y)
is also a compact subset of H(0H).

Recall that ﬁ(aH) is the hyperspace of JH consisting of all closed subsets of OH. We
define a map ® from H(0H) to H(H U OH) as follows. For S € H(dH) if #S > 2,
then ®(S) := CH(S)U S; if #S = 1, then ®(S) := S; if S = 0, then ®(0) := 0.
Note that for Si,S2 € H(0H), we have D(CH(S),CH(S2)) = D(®(S1),®(S2)). From
Lemma 3.8, we sce that ® is continuous at every § € H(9H) C H(dH). It is easy to
see that ® is continuous at every S € ﬁ(E)H) from the proof of Lemma 3.8. Moreover,
® is uniformly continuous since ﬁ(aH) is compact by Theorem 2.2. Hence we obtain the
following proposition:

Proposition 3.9. For any € > 0 there exists 6 > 0 such that for S1,S € H(OH) if
D(Sl,SQ) < 5, then D(CH(Sl),CH(SQ)) <e.

In the case that the dimension n is 2, the area of the convex core Cr equals —27x(Cr)
from the Gauss-Bonnet theorem for the Euler characteristic of Cr. We define the Euler
characteristic x(G) of a group G to be the Euler characteristic of a K (G, 1)-space if we
can take a K(G,1)-space as a finite-dimensional CW-complex. Here, we can see that Cr
is a finite-dimensional CW-complex and a K (I", 1)-space since the universal cover C Hr of
Cr is contractible. Then we obtain the following corollary from Theorem 3.3:

Corollary 3.10. Let I' be a torsion-free convex-cocompact Fuchsian group. Then there
exists a unique continuous R>o-linear functional

X:SC(I') = Rcg={reR|r <0}
such that for every non-trivial quasi-convex subgroup H of I' we have
x(nu) = x(H).

Note that a torsion-free convex-cocompact Fuchsian group is isomorphic to a surface
group or a free group of finite rank since Cr is a compact hyperbolic surface possibly
with boundary or a closed geodesic. The uniqueness of the functional x is a result of the
denseness property of rational subset currents for I' (see Theorem 8.21). We also remark
that in the above corollary our claim is independent of the action of I" on H.

For a non-trivial free group F' of finite rank the reduced rank tk(F) of F is defined to
be —x(F), which coincides with rank(F') — 1. We define the reduced rank of the trivial
group to be 0. In the same way, for a surface group I' we define the reduced rank rk(T)
of I to be —x(I'). Then we have the following corollary. Note that in the case that ' is a
free group of finite rank the following corollary was proved in [KN13, Theorem 8.1].



26 D. SASAKI

Corollary 3.11. Let I be a surface group or a free group of finite rank. Then there exists
a unique continuous R>q-linear functional

tk: SC(T') — Rx
such that for every quasi-convex subgroup H of I we have

TR (1) = TR(H).

We call tk the reduced rank functional on SC(T').
Let H be a quasi-convex subgroup of I' and K a finite index subgroup of H. Then
nk = [H : Kng, where [H : K] is the index of K in H. Since rk is R>¢-linear, we have

TK(K) = tK(ni) = TK([H : Klu) = [H : KtK(n) = [H : KJFk(H).
This property comes from the property that Ck is a [H : K]-fold covering of C.

4. SUBGROUPS, INCLUSION MAPS AND FINITE INDEX EXTENSION

Let G be a hyperbolic group. Since a quasi-convex subgroup H of G is also a hyperbolic
group, we want to consider a relation between SC(G) and SC(H ), especially, in the case
that H is a finite index subgroup of G. We assume that both G and H are infinite groups.
First, we identify the boundary 0H of H with the limit set A(H) in OG. Then the space
H(OH) is a closed subspace of H(JG). Note that if H is a finite index subgroup of G,
then OH = 0G. Now we consider an infinite quasi-convex subgroup J of H and identify
0J with A(J) in 0G. For p € SC(J) we consider i as a measure on H(OH), where the
support of y is included in H(9J). Recall that the support of a measure p is the smallest
closed subset such that the restriction of p to the exterior of the closed subset is the zero
measure.

4.1. Natural continuous R>(-linear maps between subgroups. We can define a

natural continuous Rx¢-linear map ¢4 from SC(J) to SC(H) as follows. Since H acts on
H(OH), we define the push-forward h.(p) of u € SC(J) by h € H by

he(u)(B) == p(h™1(B))
for every Borel subset E of H(OH). Note that the support of h.(u) is included in
h(H(0J)) C H(OH). Since p is J-invariant, h.(u) = p for h € J. Now, we define a
measure (5 (u) on H(OH) by

H) = 3 halp).
hJEH/J

Lemma 4.1. Let H, J be infinite quasi-convex subgroups of an infinite hyperbolic group G
with J C H. For any p € SC(J) the measure )] (1) is an H-invariant locally finite Borel
measure on H(OH), that is, (1) is a subset current on H. Moreover, the map

o SC(J) — SC(H)
s a continuous R>q-linear map.

Proof. First we check that % (u) is H-invariant. For g € H we have
g (W)= > gu(h(w) = D (gh)e(w) = D hulp),
hJE€H/J hJEH/J hJ€H/J

which implies that ¢ (1) is H-invariant. From Lemma 2.5, by considering the Cayley
graph Cay(H) of H with respect to a finite generating set of H and id € Cay(H ), the set

Al = (S e H(OH) | WC(S) 3 id}
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is a compact subset of H(9H ) and for any compact subset K of H(90H) is included in a
finite union of hlAg, ey hmAg for some hi,...,h,, € H.

Now, for the local finiteness, it is sufficient to see that ¢f (1)(Af) is finite. Since J is a
quasi-convex subgroup of H, the counting subset current

7= Z ORA(T)

hJ€H/J
on H is locally finite. Hence there are at most finitely many hyJ, ..., h,J € H/J such
that
hiA(T), ..., h;A(J) € AR,

For h € H satisfying the condition that hA(J) & A that is, WC(RA(J)) > id, we can
see that h#(8.J) N Al = 0 since for any S € hH(0.J) the weak convex hull WC(S) is
included in WC(hA(J)). Note that AZ N h;(H(0.J)) is a compact subset of h;(H(0.J)) for
t=1,...,m. Therefore we have

m

o () (Al) = D (ha)a( Z ANH(T)) <

=1

Finally, we check that /] is continuous. Take pp,u € SC(J) (n € N) such that pu,
converges to p by taking n — oco. Take any compactly supported continuous function
f: H(OH) — R. Since the intersection of a compact subset of H(OH) and H(0J) is
compact, the restriction of f to hH(9.J) is a continuous function with compact support for
any h € H. From the above argument, there are at most finitely many hy.J, ... hy,J € H/J
such that the support of f intersects each of hiH(9J), ..., hy, H(0J). Therefore

[ty = Y [ fan.n)

hJEH/J

ZZ/thid(Mn)
X [ romdvy= 3 [ g = [ sad

hJEH/J

This implies that ¢ (u,) converges to % (u). O

Since A(J) is J-invariant, the Dirac measure d, (s = nj is a subset current on J. Then

we can see that
= > hdagy= Y. Gy =07
hJeH/J hJeH/J

For simplicity of notation, we write ¢f; instead of L%. Then we can see that the compo-
sition g o W& equals ¢;. Actually, for u € SC(J),

wodf(w= Y g D hw

gHEG/H hJEH/J

= > ge (e (1))

gHEG/H hJcH/J

S SRR

gHEG/H hJcH/ ]
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Let {gi}, {h;} be complete systems of representatives of G/H and H/J respectively. Then
{gih;} is a complete system of representatives of G/.J. Hence

vr o df (1) =) (gihg)e(m) = Y (9)(n) = ().
Then, we can see that
ty(SC(J)) =ty o L?(SC(J)) C vy (SC(H)).
Moreover, we have
LH(U?) =LlHO© b?(ﬂj) =17,
where 77 is the counting subset current for J on G. It follows that . maps a rational

subset current on H to a rational subset current on G, since ¢g is R>¢-linear. As a result,
we obtain the following theorem:

Theorem 4.2. Let H be an infinite quasi-convex subgroup of an infinite hyperbolic group
G. Then vy is a continuous R>g-linear map from SC(H) to SC(G) satisfying the condition
that for every quasi-convexr subgroup J of H we have
LH(775[ ) =nJ-
If H has the denseness property of rational subset currents, then such a map is unique.
Let H be a finite index subgroup of G. We denote by [G : H] the index of H in G. Then
a subset current on G can be considered as a subset current on H since H(0G) = H(0H).

Therefore SC(G) can be considered as an R>¢-linear subspace of SC(H). Moreover, for
u € SC(G) we have

()= > gw)= Y n=I[G:Hu
gHeG/H gHEG/H
Then we have the following theorem.

Theorem 4.3. Let H be a finite index subgroup of a hyperbolic group G. Then vy is
surjective. Moreover, if H has the denseness property of rational subset currents, then G
also has the denseness property of rational subset currents.

Proof. Take any p € SC(G). Then we see that
1 1
= :H =

which implies that vf is surjective.

By considering p as a subset current on H we can take a sequence of rational subset
currents {u,} on H such that {u,} converges to p. Since ty is continuous, {cg(pn)}
converges to tg(u) = [G : H|u. Since {vg(un)} is a sequence of rational subset currents

on G, the sequence
1
e )

is a sequence of rational subset currents on G converging to . g

Remark 4.4. Recall that Span(SC,(G)) is the R>p-linear subspace of SC(G) generated by
the set SC,.(G) of all rational subset currents on G. Even if we consider Span(SC,(H)) and
Span(SC,(G)) instead of SC,(H) and SC,(G) in the above theorem, the same statement
follows.
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4.2. Finite index extension of functionals. Let G be an infinite hyperbolic group.
From the previous subsection, for a finite index subgroup I' of G we can consider SC(G)
as an R>¢-linear subspace of SC(I'). By using this fact, we provide a method for extending
functionals on SC(I") to functionals on SC(G). Especially, we will consider the case that
I' is a free group of finite rank or a surface group.

Assume that the hyperbolic group G has a finite index subgroup I' that is isomorphic to
a free group of finite rank or a surface group. For example, a finitely generated Fuchsian
group satisfies this property. From Theorem 8.21 and Theorem 4.3, the set of all rational
subset currents on G is dense in SC(G).

Supplementation 4.5. Let H be a group. Let J, K be finite index subgroups of H.
Then the following formula is well-known:

[J:JNK]=[JK : K],

where JK may not be a subgroup of H but JK can be represented as a disjoint union of
cosets of K. From the above formula we can see that JN K is also a finite index subgroup
of H. Actually, we have

H:JNK|]=[H:J|[J:JNK|=[H:J|[JK:K|<|[H:J|[H:K].
Next, we consider the conjugacy class of I' in G,
Conj(T') := {gl'g™! | g € G}.

Then we have a surjective map ¢ from G/T" to Conj(T"), which is defined by ¢(gI') := gI'g~*.
Since T is a finite index subgroup of G, the cardinality of Conj(I") is also finite. Note that
gl'g~! for any g € G is also a finite index subgroup of G. Actually, if G is a disjoint union
of 1T, ..., gmI, then G = gGg~! is a disjoint union of

1 1

_ _ 1 _

(9919 gTg™", -, (99mg )gTg ™"
Let I'g be the intersection of all gI'g~! € Conj(I'). Then I'y is a finite index normal
subgroup of G. Since [’y is also a finite index subgroup of I', the group I'y is isomorphic
to a free group of finite rank or a surface group. Therefore, we can take I' as a finite index
normal subgroup of G. Then we have the exact sequence:

{id} - I - G — G/T' — {id},
which implies that G is a finite extension of " by G/T.

Lemma 4.6. Let G be a hyperbolic group with a finite index subgroup I" that is isomorphic
to a free group of finite rank or a surface group. A subgroup H of G is quasi-convez if and
only if H is finitely generated.

Proof. The “only if” part is known from the property of quasi-convexity. Assume that H
is finitely generated. The intersection H NT' is a finite index subgroup of H since

[H:HNT|=[HT: T <[G:T] < 0.

Therefore HNT is also finitely generated (see the following supplementation). Since HNT'
is a finitely generated subgroup of I', H N T is a quasi-convex subgroup of I' and also a
quasi-convex subgroup of G. Then H is quasi-isometric to H NI" in G, which implies that
H is a quasi-convex subgroup of G. O

Supplementation 4.7. We give a short proof for the claim “any finite index subgroup
of a finitely generated subgroup is finitely generated”. Let H be a group with a finite
generating A. Let J be a finite index subgroup of H. Consider the Cayley graph Cay(H, A)
with respect to A. For the action of J on Cay(H, A) we can take a compact fundamental
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domain F satisfying the condition that F is connected, J(F) = Cay(H, A) and gF N F is
empty or included in OF for any non-trivial g € J. Then we can see that the set
{geJgFnNF#0}
is a finite generating set of J.
For a quasi-convex subgroup H of GG, the intersection H NI is a finite index subgroup

of H from the proof of Lemma 4.6. Recall that for a finite index subgroup J of I' the
reduced rank of J equals [I" : J]rk(T"), that is,
_ 1 —
k(") = ——=rk(J).
Now, we define the reduced rank rk(H) of H by
_ 1 _
k(H) := ——rk(HNT).
) = a0

We check that this definition is independent of the choice of I'. Take a finite index subgroup
I'" of G isomorphic to a free group of finite rank or a surface group. Then we have
[H:HNT)JHNT:HNTNI]=[H: HNT NI
=[H:HNU)J[HNT: HNTNT'|

and so

1 _
———rk(HNT
mEnT HND)
= ! ! tk(HNT NTY)
C[H:HNT|[HNT:HNI'NTY]

1 _

:memFmpqumrmF)

1 1 —
= tk(HNTNTY)

[H:HNIM[[HNI": HNI'NT|
1 _
= rk(HNI).
manr] )
Recall that I' is a finite index subgroup of GG isomorphic to a free group or a surface

group and we have the reduced rank functional rkp on SC(T") from Corollary 3.11. We
define the reduced rank functional rkg on SC(G) by

rkr (k)

() = [Glﬂ

for pn € SC(G), that is,
_ 1
I‘kG = mrkr‘sc(c;).

Then we have the following theorem:

Theorem 4.8. Let G be a hyperbolic group with a finite index subgroup U' that is isomor-
phic to a free group of finite rank or a surface group. Then the following equality holds on
SC(T):

rkg o up = rkr.
Moreover, tkg is a unique continuous Rxo-linear functional on SC(G) satisfying the con-
dition that for every quasi-convex subgroup H of G we have

Tk (n§}) = TR(H).
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Proof. First, we consider the case that I' is a normal subgroup of G. Take a quasi-convex
subgroup H of I'" and a complete system of representatives {7;} of I'/H. For g € G the
set {g7:97 '} is a complete system of representatives of I'/(gHg~!) since

T=gTg'=yg <|_| %H> g =] |(gvig " )gHg".
i .

2

Then we have
g+(npy) = Zg*(‘swiA(H)) = Z OgyiA(H) = Z Ogrig=1AlgHg™ ) = ngHg‘l‘
Note that tk(¢Hg ') = rk(H). Therefore

_ 1
rke o ir(nfy) = mfkl“ Z g+ (ny)
’ gleG/T

1 1 r
= | 2 e
gI'eG/T’
1 —
= T > tk(gHg™)

gT'eG/T

1
G :T]

From the denseness property of rational subset currents for I' we have rkg o i = rkr.
From now on, we do not assume that I' is a normal subgroup of G. We can take

a normal subgroup I'g of G such that I'g is a finite index normal subgroup of I" from

Supplementation 4.5. Note that we have rkp o LFO = EFO from the above argument. Hence

(G : TRK(H) = tke (o).

(tkg o ir) oall:o =rkg o tr, = rkr, = rkr o Lll:o.

Since the map Lll:o from SC(T'y) to SC(T") is surjective by Theorem 4.3, we obtain the

required equality
rkg o up = rkp.
Take a quasi-convex subgroup H of G. Then 771?1 = éﬁf} ngmr, and we have

rka (nf) = mﬂic(ﬁgmr)
= mﬁ(} © LF(ml}mr)
= mﬁr(ngmr)
= EAT flm F]E(H NT) =r1k(H).
This completes the proof. O

5. INTERSECTION NUMBER

Let ¥ be a non-contractible compact surface (possibly with boundary). We always
assume that a surface is connected. In this section, our goal is to generalize the notion of
the intersection number of two closed curves on X to the intersection number of two “simple
compact surfaces” on ¥ by using the fiber product. Moreover, we extend the intersection
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number of two simple compact surfaces to a continuous R>¢-bilinear functional on SC(X)
in the case that X is a compact hyperbolic surface in Subsection 5.3.

5.1. Intersection number of closed curves. In this subsection, we review the notion
of the intersection number of closed curves on 3.

A continuous map c: S — ¥ is called a closed curve on ¥. For two closed curves ¢y, ca
on X we will denote by ¢ Xy cg the fiber product corresponding to ¢y, co. Explicitly,

c1 xx o= {(x,y) € ST x S | ¢1(2) = e2(y)}

Supplementation 5.1. Let X,Y, Z be topological spaces. Let f: X — Z, g: Y — Z be

continuous maps. In the topological category, the fiber product X Xz Y corresponding to
f, g is defined to be

XxzY ={(z,y) € X xY | f(z) =gy},

equipped with the subspace topology of X x Y. If Z is Hausdorff, then X x Y is closed
since X X z Y is the preimage of the diagonal component of Z x Z with respect to the map

[xg: X XY = ZxZ; (z,y)— (f(x),9(y)).

Therefore, if Z is Hausdorff and X,Y are compact, then X Xz Y is compact.
If f, g are injective, then the map

¢: X xzY = f(X)Ng(Y); (z,y) = f(=)

is a bijective continuous map. Therefore, if ¢1, co are simple closed curves, then ¢y Xy ¢ is
homeomorphic to ¢;(S*) Nea(Sh). More generally, if f, g are embedding maps, then ¢ is a
homeomorphism. In fact, the maps f_1|f(X)mg(y), g ! | f(x)ng(v) are continuous maps from
f(X)Ng(Y) to X and Y, which induce a continuous map from f(X)Ng(Y) to X xz Y
and this map is the inverse map of ¢.

We will denote by [c] the homotopy class of a closed curve ¢ on ¥.. We say that a closed
curve c is nullhomotopic if ¢ is homotopic to a constant map.

Definition 5.2 (Intersection number of two closed curves). Let ¢, co be closed curves on
Y. The intersection number i(cy,ca) of ¢1,co is the number of contractible components of
the fiber product ¢; X5 co. We define the intersection number i([c1], [c2]) of two homotopy
classes [c1], [c2] by
i(lea)s[e2]) ==, min ~ i(cy, ch).
ch €ler],ch€lea]

If ¢} € [c1] and ¢, € [co] attain the minimum of the intersection number of two homotopy
classes, we say that ¢| and ¢, are in minimal position.

Note that a closed curve on ¥ has an orientation induced by an orientation of S but
we usually do not care about the orientation since it does not influence the intersection
number.

For a closed curve ¢ on ¥ and m € N, we have the closed curve ¢™ on ¥, which can
be considered as an m-fold covering of ¢. For another closed curve ¢ on ¥ we have
i(c™, ) =m-i(c,c). We say that two closed curves ¢, co on ¥ virtually coincide if there
exist a closed curve c on ¥ and m1, me € N such that ¢; equals ¢™ up to reparametrization.

We usually consider only the case that two closed curves on ¥ intersect transversely
or virtually coincide if they intersect . When we say that two closed curves on X are
transverse, we allow them to virtually coincide.

From the above definition of the intersection number, it is natural to ask when two closed
curves are in minimal position. The bigon criterion is one of the well-known answer.
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Definition 5.3 (Bigon). A bigon is a closed disk D with two subsets e, e2 of 9D, called
edges, satisfying the condition that each of e; and es is homeomorphic to a closed interval,
0D = e; Uey and e N ey is two points, called vertices.

Let Iy, Is be closed intervals of R. Let f; be a continuous map from I; to a 2-dimensional
manifold M possibly with boundary (i = 1,2). We say that f; and fo form an immersed
bigon if there exists a locally injective continuous map b from a bigon D into M such that
there exists a homeomorphism b; from the edge e; of D to I; and f; o b; coincides with the
restriction of b to e; for « = 1,2. In this case we say that f; and fo form an immersed
bigon b. If b is an embedding map, then we say that f; and fy form a bigon b.

A sub-arc of a continuous map f from a 1-dimensional manifold I possibly boundary
to a topological space is the restriction of f to a subset of I that is homeomorphic to a
closed interval. We say that a sub-arc of a closed curve ¢ forms a closed curve if the image
of the endpoints of the sub-arc is one point.

Let 1, co be closed curves on 3. Let p: R — S! be a universal covering of S' We say
that ¢; and c¢o form an immersed bigon if there exist sub-arcs p1, pe of p such that ¢; o p;
and co o po form an immersed bigon. We say that ¢; and co form a bigon if there exist
sub-arcs fi, fo of ¢1, co such that fi; and fo form a bigon.

Example 5.4. See Figure 1. Two closed curves on a closed surface of genus 2 form an
immersed bigon but do not form a bigon. The points p, g are the vertexes of the immersed
bigon. The intersection number of those closed curves is 2 but they are not in minimal
position. By “enlarging” the inner simple closed curve, the intersection number of those
closed curves will be 0.

N

FI1GURE 1. Two closed curves form an immersed bigon but do not form a bigon.

Let c¢1,co be transverse closed curves on ¥ such that sub-arcs fi, fo of c¢1,co form a
bigon. We can modify f; by a homotopy in the bigon such that f; and fs coincides, and
then we can modify a neighborhood of f; by a homotopy such that f; and fo are disjoint.
Therefore, if two transverse closed curves form a bigon, then we can reduce the intersection
number by a homotopy. The following lemma says that the converse is also true in the
case that closed curves are simple.

Lemma 5.5 (The bigon criterion (see [FM12, Proposition 1.7])). Let c1,co be transverse
simple closed curves on X. Then two simple closed curves ci,co do not form a bigon if
and only if c1,ca are in minimal position.

In the case that a closed curve ¢ is not simple, ¢ can have a sub-arc which forms a
nullhomotopic closed curve on ¥. Such a nullhomotopic closed curve is easy to reduce
(but difficult to deal with), so we usually assume that a non-simple closed curve do not
have a sub-arc forming a nullhomotopic closed curve.

Lemma 5.6 (The bigon criterion 2). Let c1, ¢y be transverse closed curves on ¥. Assume
that no sub-arc of ¢; forms a nullhomotopic closed curve on ¥ fori=1,2. Then c1,co do
not form an immersed bigon if and only if c1,co are in minimal position.
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We can obtain Lemma 5.6 as a corollary to Theorem 5.14, which we will prove later.

Recall that any non-nullhomotopic closed curve on a surface with a Riemannian metric
of constant curvature 0 or —1 is homotopic to a closed geodesic on the surface. Especially,
in the case that the constant curvature of the surface is —1, which is called a hyperbolic
surface, such a closed geodesic is unique. When we consider a geodesic on ¥, we always
assume that 3 has a Riemannian metric with constant curvature 0 or —1. The following
theorem is well-known, which is a direct corollary to Lemma 5.6.

Theorem 5.7. Two closed geodesics on ¥ are in minimal position.

We can see that our definition of the intersection number works effectively in the case
that two closed geodesics coincide (cf. Example 5.8). The half of i([c], [¢]) is called the
self-intersection number of a closed curve ¢ on X, which coincides with the half of i(¢/, ¢/)
for a closed geodesic ¢ homotopic to c if ¢ is not nullhomotopic.

Example 5.8. We see an example of a closed geodesic with self-intersection, which means
that the self-intersection number of the closed geodesic is positive. In the left picture of

FI1GURE 2. The closed geodesic ¢ has one self-intersection in the left picture.
In the right picture, the intersection number of ¢ and ¢/, which is homotopic
to ¢, equals 2.

Figure 2, the closed geodesic ¢ on a closed hyperbolic surface ¥ of genus 2 is not simple.
Take a,b € S' with a # b such that c(a) = c(b) = p. Then we can see that the fiber
product ¢ Xy ¢ equals

{(z,z) € S' x S* |z € SYY LU {(a,b)} LU {(b,a)},

which includes two contractible components {(a,b)} and {(b,a)}. Hence the intersection
number of ¢ and ¢ equals 2 and the self-intersection number of ¢ equals 1. In the right
picture of Figure 2, two closed curves ¢ and ¢’ are in minimal position since they do not
form any immersed bigon. The closed curve ¢’ is homotopic to ¢ and the intersection
number of ¢ and ¢ equals 2.

5.2. Intersection number of surfaces. Now, we generalize the notion of the intersec-
tion number of two closed curves on X to the intersection number of “two simple compact
surfaces” on ¥, and we prove “the bigon criterion” for this intersection number (see The-
orem 5.14).

Definition 5.9 (Intersection number of two simple compact surfaces). Let S be a compact
surface possibly with boundary or S = S'. A simple compact surface is a pair of S and a
continuous map s: S — X satisfying the following condition:
(1) s is locally injective;
(2) the restriction of s to each component of the boundary 95 of S is not nullhomotopic
and does not have a sub-arc forming a nullhomotopic closed curve on 3.

If S = S, then we regard the boundary 95 as S. Here, we remark that in the case that
S = S' a simple compact surface (S, s) on ¥ may not be a simple closed curve on ¥. We
will often write s instead of (.5, s) for simplicity.

A simple compact surface (571, s1) is said to be homotopic to a simple compact surface
(S2, s2) if there exist a homeomorphism f: S; — S2 and a continuous function F': S X
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[0,1] — ¥ such that F(-,0) = s; and F(f~1(:),1) = s3. Being homotopic is an equivalence
relation and the equivalence class of a compact surface (.5, s), called a homotopy class, is
denoted by [S, s] or [s]. Note that if S = S!, then changing the orientation of (S, s) does
not change the homotopy class of (S, s).

Let (S1,s1),(S52,s2) be two simple compact surfaces on ¥. We say that (S1,s1) and
(S92, s2) are transverse if the restriction of s; and s3 to any components of their boundaries
intersect transversely or virtually coincide (if they intersect). We consider only the case
that two simple compact surfaces are transverse.

The intersection number i(s1,s2) of s1, sy is the number of contractible components of
the fiber product S xx So corresponding to si,s2. We define the intersection number
i([s1], [s2]) of two homotopy classes [s1],[s2] to be the minimum of i(s], s;) taken over
sy € [s1] and s}, € [so] that are transverse. If two transverse simple closed surfaces
sy € [s1] and s}, € [so] attain the minimum of the intersection number of two homotopy
classes, we say that s and s, are in minimal position.

We note that for a simple compact surface (S, s) on X, the surface S can not be a closed
disk by the definition.

In the definition of a simple compact surface (.5, s) on ¥, the required property of the
continuous map s seems to be strict. However, in the following example, we will see that
if s does not have this property, then the definition of the intersection number does not
work well.

Example 5.10. First, we consider a simple model of the fiber product of two 2-dimensional
manifolds over a 2-dimensional manifold. Set X := [-1,1] x R;Y := R x [-1,1] and
Z :=R2. The fiber product corresponding to the inclusion maps from X,Y to Z is home-
omorphic to X NY = [—1,1] x [—1,1], which implies that the number of contractible
components of the fiber product is one. Let iy be the inclusion map from Y to Z. We
define a continuous map f: X — Z to be

L (lall = 1)
fl@): {x+ 0,200 o)) (] < 1)

for x € X, where || - || is the Euclidean norm. We can see that the following map F': X X
[0,1] — Z is a homotopy from the inclusion map to f:

E (el > 1)
Flot): {w+ (0,261~ lel)) (el < 1)

for (z,t) € X x [0,1]. We consider the fiber product X xz Y corresponding to f,iy and
want to say that X xzY is connected and not contractible. Then we can see that that we
can reduce the number of contractible components of the fiber product of two dimensional
spaces by a homotopy which deforms a “local” part of one of the spaces.

Let px be the natural projection from X x 7Y onto X, that is, px maps (z,y) € X xzY
to z € X. We can see that px(X xzY) = f~1(Y), which includes the umit circle
St = {xz € X | ||z|| = 1} but does not contain (0,0) since f(0,0) = (0,2) ¢ Y.

Now, we consider a closed curve ¢ : S' — X xz Y defined by ¢(z) = (z,z) for z € S'.
Then we can see that px o ¢ is not nullhomotopic in f~(Y) since (0,0) € f~(Y), which
implies that ¢ is not nullhomotopic in X xz Y.

Finally, we check that X xz Y is connected. Take any (z,y) € X xz Y. If ||z|| > 1,
then z = y and a line segment joining 1/||z||x to x induces a path joining 1/||z||(z,x) to
(x,z). We consider the case that ||z|| < 1. Note that = # (0,0) and y = f(x). Set

1

o= TRl e



36 D. SASAKI

for t € [0,1]. Then we can see that the path (a(t)z, f(a(t)x)) € X xz Y for t € [0,1]
joining 1/||z||(z,z) € ¢(S') to (,y). Therefore X xz Y is path-connected.

See Figure 3 and its caption. The pairs (5, s1) and (S, s2) are simple compact surfaces
on Y. Then we can see that the fiber product of (.S, s1) and (S, s2), which is homeomorphic
to s1(5)Ns2(S), includes two contractible components, which implies that the intersection
number of (5, s1) and (5, s2) equals 2. However, we can modify s; (or s3) and obtain s}
by the same way as above, then the intersection number of (5, s}) and (S, s2) will be 0.
By Theorem 5.14, we can see that (.5, s1) and (.5, s2) are in minimal position. This implies
that (S,s]) is not a simple compact surface on X, which implies that s} is not locally
injective.

by

FiGURE 3. The left picture represents a compact surface S of genus 2 with
2 boundary components. The right picture represents two inclusion maps
s1 and s9 from S to a closed surface X of genus 8.

The following theorem, which is a corollary to Theorem 5.14, is a generalization of
Theorem 5.7.

Theorem 5.11. Let (S1,51), (52, s2) be simple compact surfaces on X. If the restriction
of s; to each component of 0S; is a closed geodesic on X for i = 1,2, then s1 and s are
in minimal position.

Example 5.12. Consider the case that X is a hyperbolic surface. Recall that for a non-
trivial finitely generated subgroup H of the fundamental group m(X) of ¥ we have the
convex core Ci and the map pr: Cy — X, which is induced by the universal covering
map (see the first part of Section 3). Then (Cy,pp) is a simple compact surfaces on 3
satisfying the condition that the restriction of py to each component of dCy; is a closed
geodesic on ¥. We will prove that any simple compact surface (S, s) on ¥ that is not a
cylinder is homotopic to a convex core (Cp,pp) for a finitely generated subgroup H of
71(X) in Proposition 5.21.

In Subsection 5.3, we will consider the intersection number of Cy and Ck for non-trivial
finitely generated subgroups H and K of m;(X) and extend it to a continuous Rx>-bilinear
functional on SC(X).

We define the notion of an immersed bigon formed by two simple compact surfaces on
3 in order to characterize the condition that they are in minimal position.

Definition 5.13 (Bigon formed by simple compact surfaces). Let (Si,s1) and (S2, s2) be
simple compact surfaces on ¥. We say that s; and ss form an immersed bigon if there
exist components By, By of 051,053 such that si|p, and sa|p, form an immersed bigon.

Theorem 5.11 is a direct consequence from the following lemma since geodesics never
form a bigon. Proving the following lemma is our goal in this subsection.

Theorem 5.14 (The bigon criterion 3). Let (S1, s1), (S2, s2) be transverse simple compact
surfaces on X. If s1 and so do not form an immersed bigon, then si,ss are in minimal
position. If either S1 or Sy is St, then the converse is also true.
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The following lemma, which is intuitively obvious, plays a fundamental role in proving
the bigon criterions.

Lemma 5.15. Let M be a contractible 2-dimensional manifold (possibly with boundary).
Let I, I5 be intervals of R and f; be an embedding map from I; to M fori=1,2. Assume
that f1, fa are transverse. If fi(I1) divides M into two connected components My, My and
there exist a,b,c € Iy with a < b < ¢ such that fa(a), fa(c) € My and fa(b) € Ma, then
there exist sub-arcs of fi1, fo that form a bigon.

Proof. By the assumption fa|(,) intersects fi transversely. Then we can take a sub-
interval [a’, ¢] of [a, ¢] containing b such fo((a’, ")) C My and fa(d'), f2(c') € f1(I1), which
implies that the union of a sub-arc of f; and f|(y ) forms a simple closed curve c in M.
From the Jordan curve theorem, ¢ divides M into two subsets such that one of the subsets
is contractible. From the Riemann mapping theorem and Carathéodory’s theorem, there
exists an embedding map b from a closed disk D to M U c(S!) such that b(0D) coincides
with ¢(S1). This completes the proof. O

The following lemma is useful to understand a simple compact surface on 3.

Lemma 5.16. Let S be a compact surface possibly with boundary and s a continuous
map from S to 3. If s is locally injective, then the restriction of s to S\ 9S is a local
homeomorphism and s(S \ 9S) N OX = (.

Proof. Take z € S\ 8S and a compact neighborhood U C S\ dS of z such that U
is homeomorphic to a closed disk and s|y is injective. Since U is compact, the map
sly: U — s(U) is homeomorphic. Since U \ {z} is non-contractible, so is s(U) \ {s(x)},
which implies s(z) ¢ 0¥X. Then we can assume that s(U) does not intersect 93. Since
OU is homeomorphic to S!, so is s(AU). By applying the Jordan curve theorem to s(0U)
we can see that s(OU) divides ¥ into two regions 31, 32. Assume that ¥; contains s(x).
Then s(Int(U)) coincides with ¥;. Therefore Int(U) is homeomorphically mapped to ¥;
by s, which is an open neighborhood of s(z). Hence our claim follows. O

From the above lemma, we can obtain the following proposition immediately:

Proposition 5.17. Let ¥ be a sphere and (S,s) a simple compact surface on 3. Then
S is also a sphere and s is a homeomorphism from S to ¥. Moreover, the intersection
number of any two simple compact surfaces on 3 equals zero.

Proof. By the definition of simple compact surfaces on ¥, the compact surface S does
not have a boundary. By Lemma 5.16, s is a local homeomorphism, which implies that
s is a covering map since S is compact. Since a sphere is simply-connected, s must be
a homeomorphism from S to 3. Moreover, the fiber product of any two simple compact
surfaces on ¥ is homeomorphic to a sphere, which implies that the intersection number of
these simple compact surfaces equals 0. O

By the above proposition, any two simple compact surfaces on a sphere are always in
minimal position. From now on, we assume that ¥ is not a sphere.

The following lemma related to a bigon and an immersed bigon will be used in Lemma
5.24.

Lemma 5.18. Let M be S or the universal cover ¥ of X. Let b be a locally injective
continuous map from a closed disk D to M. If the restriction of b to the boundary 0D of
D is injective, then so is b. Hence b is an embedding map.

Proof. We can assume that M does not have boundary since M can be embedded into a
2-dimensional orientable manifold without boundary whose universal cover is contractible.
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It is sufficient to prove that the map b: D — b(D) is a local homeomorphism. In fact,
if b: D — b(D) is a local homeomorphism, then we can see that b: D — b(D) is a
covering map since D is compact. Note that b|gp is injective. Hence b: D — b(D) is a
homeomorphism. N

First, we consider the case that M is 3. Since M does not have boundary, M is
homeomorphic to R?. From the Jordan curve theorem, b(0D) divides M into the interior
region M; and the exterior region My of M. We prove that b(Int(D)) = M;. Assume
that b(z) € My for some = € Int(D). Since My is path-connected, we can take a path
¢:]0,1] — My such that £(0) = b(z) and £(1) & b(D). Let t be the maximum of ¢~1(b(D)).
Then t € (0,1), £(t) € b(D) and there exists y € Int(D) such that b(y) = ¢(¢t). By
Lemma 5.16, b(y) is an interior point of b(D), which contradicts that ¢ is the maximum of
¢=Y(b(D)). Therefore b(Int(D)) C M;.

To see that M; C b(Int(D)), assume that there exists z € M; such that z ¢ b(D). Since
0D is a contractible closed curve in D, b(0D) is also a contractible closed curve in b(D),
which contradicts that z & b(D). Hence b(Int(D)) = M;.

Take any x € dD. Then there exists an open neighborhood V of x in D such the
restriction of b to V' is a homeomorphism onto b(V) and V' is homeomorphic to a closed disk.
Then we can take a contractible open neighborhood U of b(x) such that (U \ Ma) C b(V)
since b(D) = b(OD) U My. Set W := b=1(U) N V. Then W is an open neighborhood of =
and

b(W)=UnbV)=U\ My =UnNb(D)
is an open subset of b(D). Hence b is a local homeomorphism onto b(D).
In the case that M is X, we take a lift b: D — ¥ of b with respect to the universal
covering 7: ¥ — ¥. Then b|pp is injective and b is a local homeomorphism onto b(D).
This implies that b = 7w o b is a local homeomorphism onto b(D). O

The following lemma, which characterizes simple compact surfaces on 3, will play a
fundamental role in proving Theorem 5.14.

Lemma 5.19. Let (S,s) be a simple compact surface on ¥.. Then there exist a covering
s': S — X and an embedding map f from S into S’ such that f is a homotopy equivalence
and s = s' o [._ Moreover, the embedding map f lifts to an embedding map from the
universal cover S of S into the universal cover X of 3.

Proof. Let p: S — S be the universal covering of .S and 7: 3 — ¥ the universal covering of
Y. Take a base point = of 3 such that z € s(S). Take base points y € S, yeSandzx € 5
such that p(§) =y, s(y) = z and 7(Z) = . Then we have a lift 3: (S,7) — (%, %) of the
map sop: (§ ,¥) — (X, x) with respect to 7. Then we obtain the following commutative
diagram of based topological spaces:

(5,9) —= (£,7)

pl l
(S, y) —= (X, 2)

If S =0, then s: S — X is a covering map and our statement follows immediately. If
S = S, then we can see that S is homeomorphic to R and the lift 5 is an embedding map
since no sub-arc of the closed curve s forms a nullhomotopic closed curve. In this case,

there exists g € m1(3,z) corresponding to (5, s) such that (g) acts on 5(S). Let S’ be
the quotient space (g)\X and s’ the covering map from S’ to ¥ induced by the universal
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covering map 7. Then 5 induces an embedding map f from S to S’. Hence our claim
follows.

From now on, we assume that S # S' and 95 # 0.

Step 1. Construct S’: Let By, ... B, be all connected components of 9S. We can con-

sider ¢; := s|p; as a closed curve on X since B; is homeomorphic to S Lfor j=1,...,m.

For each B; we can take a component § of &S such that the restriction of 5 to § is a
universal covering of B;. We will apply the same argument as that for S = S' to each cj.
Set ¢; := $|p;, which is an embedding map from B into 3. We endow Bj with an orien-
tation such that the left-hand side of B, is the interior of S, which 1nduces the orientation
of /35/ and C?(A;) Let U; C 5 be the right-hand side of @(N) including Q(E}) Note
that if ¢;(B;) C 0%, then U; = c]( ;). Since ¢;  ¢j is a lift of ¢;, there exists g; € (2, x)
corresponding to ¢; such that (g;) acts on ¢;( ]) and also acts on Uj;. Set L; := (g;)\Uj.
Now, we obtain S’ by gluing S to L; along B; and (gﬂ\c?(ﬁ}) for j =1,...,m. Since U;
is a subset of i, the universal covering map induce the map 7; from L; to 3. Then by
gluing those maps 71, ..., T, and s, we obtain a continuous map s’ from S’ to X.

Step 2. Prove the map s': S’ — ¥ is a covering map: Take z € . We prove that there
exists a connected open neighborhood W of z such that the restriction of s’ to every
connected component of s'~1(W) is a homeomorphism onto W.

First, we consider the case that z € s(S) and s7!(z) N 9S = (). In this case z ¢ 9%.
Since S is compact and s is locally injective, s71(2) is a finite set. In fact, if s71(2) is an
infinite set, then s~!(z) has an accumulation point w, which contradicts the assumption
that s is locally injective. We can take a contractible open neighborhood V' of z such
that s71(V) N AS = 0. Then the restriction of 7 to each connected component of 7=1(V)
is a homeomorphism onto V and 7*(V) N 5(0S) = 0. Hence the restriction of mj to

each connected component of 7T;1(V) C L; is a homeomorphism onto V' and 7T;1(V) N

(gi)\¢;(Bj) =0 for every j =1,...,m

For each u € s71(z) we can take a connected open neighborhood V,, of u such that the
restriction of s to V,, is homeomorphic to an open subset of ¥ not intersecting 0%. Let
M denote the complement of the union of all V,, for v € s7!(z) in S. Since S is compact,
so is M. If we take a connected open neighborhood W of z included in V, ¥\ s(M) and
s(Vy) for every u, then W satisfies the required condition.

In the case that z € s(.59), if the contractible open neighborhood V' as above is sufficiently
small, then V' does not intersect s(.S) and satisfies the required condition.

Finally, we consider the case that z € s(S) and s~!(z) intersects 9S. Note that if
z € 0%, then s71(2) C 9S. For each u € s7!(z) \ &S we can take a connected open
neighborhood V;, of w in S such that the restriction of s to V,, is homeomorphic to an
open subset of ¥. For v € s71(2) N dS take a lift v € B, of v when v € B;. Since s is

locally injective, so is s. Hence there is an open neighborhood W5 of v in S and an open
neighborhood W of §(v) in ¥ such that s maps W35 homeomorphically to s(S)NW, and W
is homeomorphically projected onto an open subset O, of ¥ by m. We also have an open
subset W; of L; by projecting WNU; onto L;. Now we can see that W, := p(W5)UW; in S’
is an open neighborhood of v in S and s’ maps W, homeomorphically to O,. Let M be the
complement of the union of all V,, for u € s71(2)\ 85 and all W, for v € s7}(2)NdS in S.
Then we can see that M is a compact subset of S and s(M) is a closed subset of ¥.. Now,
take a contractible open neighborhood O of z included in s(V;,) for every u € s71(2)\ 85,
O, for every v € s71(2)N9S and ¥\ s(M). Then O satisfies the required condition, that
is, the restriction of s’ to each connected component of s'~!(0) is a homeomorphism onto

0.
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Step 3. Prove that f,s have the stated properties: The inclusion map f from S to S’ is

an embedding map since S is compact. Each L; = (g;)\U; is homotopy equivalent to S?
and so the inclusion map f is a homotopy equlvalence We get a universal covering map
7' from (,7%) to (S',y), which is a lift of the covering map 7: % — ¥ with respect to s'.
Now, we check that the map s: S — ¥ is a lift of f, that is, fop = 7’ 0 5. Then we get
the following commutative diagram of based topological spaces.

(5.9) > (£,7)

/

P (S y) / ”
PN

S, y) p X,z

Take yo € S and a path ¢ from 7 to yo. Then f o p(yo) is the terminal point of the lift
of sopol to (5, y), and 7 o (yo) is the terminal point of the lift of T 050 £ to (5, y).
Since sop = 7o 3, we have f op(yg) = 7’ o 5(yo). Therefore, 5 is a lift of f.

Finally, we check that the map s is an embedding map. First, we check the injectivity
of 5. Let y1,y2 € S and assume that 5(y1) = S(y2). Let £ be a path from y; to yo.
Since 5(y1) = 5(y2), we have a nullhomotopic closed curve ' o §o £ in S, which equals
fopol. Since f is injective and a homotopy equivalence, p o £ is also a nullhomotopic
closed curve in S, which implies that y; = y5. To see that the inverse map 57 !: 5(5) — S
is continuous, take zo € 5(S) and an open neighborhood V of §!(z0). We can assume
that the restriction of p to V' is a homeomorphism onto an open subset of S. Take a small
open neighborhood W' of fop(s ~L(z0)) = 7/(wp) such that WN.S C p(V) and there exists
an open neighborhood W of zo such that the restriction of ™ to W is homeomorphic to
W. Then we can see that 3~ 1(W N3(S)) = pL(W N S)NV C V, which concludes that

571 is continuous. This completes the proof. ]

Remark 5.20. Under the setting in the above lemma, we can also see that the map
5:8 5 Yisa proper map, that is, for any compact subset K of 3 the preimage 5 1(K)
is a compact subset of S since (S ) is a closed subset of 5.

If either S does not have a boundary or S is a surface whose boundary is mapped to a
boundary of 3 by s, then the map s itself is a covering map.

The map s: .S — X induces an injective group homomorphism sy from the fundamental
group 71 (S) of S to 71 (X). By identifying 71 (S) with s4(71(S)) we can see that the map
5:8 5 Yisa m1(5)-equivariant embedding and we can identify S’ with the quotient
space 7T1<S)\§. Moreover, we can classify a simple compact surface on ¥ (that is not
homeomorphic to a cylinder) by using non-trivial finitely generated subgroups of (%)
(see Proposition 5.21 for the case that ¥ is a compact hyperbolic surface).

Consider the case that S is a cylinder and S = ' x [0, 1]. Then s|g1 oy is homotopic to
s|s1x 1} and the property of (S, 5) is the same as that of the closed curve (S x{0}, s|s10})
on ¥ (see Proof of Theorem 5.14 in p.48).

If ¥ is a cylinder, then both 71 (X) and 7;(S) are isomorphic to Z. Hence S is homeo-
morphic to S! or a cylinder.

Consider the case that ¥ is a torus and S is neither a cylinder nor S*. Since (%)
is isomorphic to Z? and a non-trivial subgroup of Z? is isomorphic to Z or Z2, m1(S) is
isomorphic to Z2. Then S is also a torus and s is a finite-fold covering map.
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Therefore we can say that the case that ¥ is a compact hyperbolic surface and 7 (.5) is
non-cyclic is essentially new when we consider the intersection number of simple compact
surfaces on X.

Proposition 5.21. Let X be a compact hyperbolic surface. For any simple compact surface
(S,s) on X that is not a cylinder, there exists a finitely generated subgroup H of the
fundamental group of ¥ such that the convex core (Cr,pp) is homotopic to (S, s).

Proof. The notation in this proof is based on the proof of Lemma 5.19. We consider the
universal cover 3. of 3 as a closed convex subspace of the hyperbolic plane H. From Lemma
5.19, there exists a covering S’ of ¥ and a homotopy equivalent embedding map f from S
to S’. Let H be a subgroup of the fundamental group of ¥ corresponding to the covering
S’ of ¥. Since S is a compact surface or S, H is finitely generated.

In the case that S # S!, since S and C have the same genus and the same number of
boundary components, there exists a homeomorphism ¢ from S to Cg. Even if S = S!,
we have a homeomorphism ¢ from S to Cp. Note that if S is a cylinder, S is not
homeomorphic to Cy since Cy is homeomorphic to S1. The homeomorphism ¢ extends
to an H-equivariant homeomorphism ¢ from S to the convex hull of the limit set of H,
which is the universal cover of CH and included in ¥. Note that we also have an H-
equivariant embedding s: S>3 C H.

Now, we define a homotopy F: S x [0,1] — & from 3 to ¢ by the rule that for (z,t) €
S x [0,1], F(x,t) is the point on the geodesic from $(z) to ¢(z) in H that divides the
length of the geodesic in ¢ : (1 —t). Note that 3 is a convex subspace of H. Since H acts
on ¥ by isometry, F is H-equivariant, that is, for any (z,t) € S x [0,1] and h € H we
have F'(hx,t) = hF(x,t). Therefore F' induces a homotopy F”: S x [0,1] — ¥ such that
for (z,t) € S x [0,1] and Z € S with p(Z) = z, F'(z,t) = n(F(Z,t)). We can see that
F'(-,0) = s and F'(-,1) = pg o ¢ since for (x,1) € S x [0,1] and & € S with p(Z) = z we
have _

F'(z,1) = 70 ¢(T) = py o ¢(x).
Therefore (S, s) is homotopic to (Cr,py) by the homotopy F’ and the homeomorphism
}. O

Let (S, s) be a simple compact surface on X. Let (7', ¢) be a simple compact surface on
¥ homotopic to (5, s) for i = 1,2. We identify S with T for simplicity of notation. Let
F:S5x[0,1] - X bea v homotopy from s to ¢. Consider the universal covering p: S— S
of S and a lift 5: S — ¥ of s. Then F’ := F(p( ), ) is a homotopy from sop to top. Since

we have a lift 5 of s o p with respect to 7: Y Y, there exists a unique lift F of F from
the homotopy lifting property (see the following commutative diagram).

A

Here the map from S to S x [0,1] maps z € S to (x 0) € §x[0,1]. Since 7o F(z,1) =
F'(z,1) = F(p(x),1) = top(z) for z € S, the map ¢ := F(-,1): § — X is a lift of .

Consider a Riemannian metric of constant curvature 0 or —1 on 3, which induces a
Riemannian metric on 3. Then the fundamental group 71 () of ¥ acts on Y isometrically
and we have the following lemma:

M<¥M

Lemma 5.22. The Hausdorff distance between 5(S) and £(S) is finite.
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Proof. Let d be the distance function on . Let H be the subgroup of 71 (X) corresponding
to S. Then both § and ¢ are H-equivariant maps by Remark 5.20. This implies that H
acts on both 3(S) and £(S) cocompactly. Take = € 5(S) and y € #(S). Then there exists
R > 0 such that

H(B(z,R)) D 5(5) and H(B(y, R)) D i(5),
where B(z, R) is the closed ball centered at z with radius R. Hence for any z € 5(S5) there
exists h € H such that d(z, hz) < R. Then we have

d(2,5(8)) = d(h™'2,5(3)) < d(h™'z,2) + d(z,y) < R+ d(z, ).

We can apply this argument to w € ¢(5). Therefore the Hausdorff distance between 5(5)

and £(S) is finite. O

Let (S1,s1),(S2,s2) be transverse simple compact surfaces on . We are going to
construct the cubic commutative diagram in Proposition 5.29, which will be used for
proving Theorem 5.14. Our construction of the cubic diagram is originally based on that
in [Min11], which was used for studying the Strengthened Hanna Neumann Conjecture.
The product A, which will be studied in Section 6, is a certain term appearing in the
inequality of the conjecture, and we will also use the cubic diagram for studying the
product N.

Let G be the fundamental group of . From Lemma 5.19 we can take a covering
s;:S! — X such that there is an embedding map f; from S; to S; with s; = s} o f;
(i =1,2). Let H; be a subgroup of G corresponding to the covering space S;. We identify
S! with Hl\i and 71 (5;) with H;. Let s;: §Z — ¥ be a lift of s; for 1 =1,2. Then s; is an
Hj-equivariant embedding map.

Let A; C G be a complete system of representatives of G/H;. Assume that the identity
element id belongs to A;. We endow A; with the discrete topology and define §Z to be the
direct product S; X A;, which is equipped with the direct product topology. We define a
continuous map §; from Sito ¥ by

Sile,9) = goFi(x) = g(5i(@) ((z,9) € 5).
Note that g o s; is also a lift of s; for any g € A;. For g,¢' € G if gH; = ¢'H;, then

g05i(Si) =g 05(S)
since s; is H;-equivariant. Therefore, (§Z, 5;) can be considered as a space consisting of all
lifts of s;. R R B
We define a continuous action of G on S; such that s;: S; — X is a G-equivariant
map. Let g € G and (z,g9) € S;. We can choose g, € A; such that ggo = gjh for some

h € H;. Then we define g(z, go) to be (hz, g{,). We can see that 5; is G-equivariant from
the following equation:

Si(9(z, 90)) = Si(ha, ) = goh(si(x)) = g9g90(5i(z)) = 9(Si(z, g0)).

We can see that (g192)(x, go) = g1(ga(z, go)) for any g1, g2 € G and (x, go) € S;. Therefore,
we get an action of G on S;.
The stabilizer of a connected component

(Siv90) = {(z.90) € Si | x € S;} € 5;
equals goHigo_1 for gg € A;. Especially, the stabilizer of (§“ id) is H;. For g € G, g0, g/ € H;
with ggoH; = g\H;, we have ¢(Si,90) = (Si,g(). As a result, for any two connected

components of S; there exists g € G such that g maps one component to the other
component. Therefore, the quotient space G\S; can be identified with H;\S; = S;. By
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this identification we get the canonical projection p; from §, to S;. From the construction
of §; and p;, we have the following commutative diagram.

by
by

S; = {(9Hi,z) € G/H; x £ | x € g0 5i(5;)}

)

_

>
-

- -
Si

2

)

Remark 5.23. Set

for i = 1,2. Let o; be the canonical projection from &; onto Z that is, 0;(gH;, ) = .
We see that (SZ, 5;) is “isomorphic” to (S;,0;). Define a map 7;: S — &, by

7i(x, g0) == (g0Hi, go 0 5i(x))

for (x, go) € S;. Then 7; is a homeomorphism. Moreover, we can define a natural diagonal
action of G on &; by

9(9'Hi, z) := (99’ H;, g)
for g € G and (¢'H;,z) € &;. Then we can check that 7; is a G-equivariant homeomor-
phism. Actually, for g € G and (x, go) € S; take h € H; and g6 € A; such that ggo = g\h.
Then g(x, go) = (hz, g})). Hence

Ti(hx, 95) = (90Hi, g5 © 5i(hx)) = (990Hi, goh o 5i(x)) = (990 H;, 9(gj © 5i(2))).

We can identify (Si7 ;) with (&;, 0;) through 7;, and (&;, 0;) is convenient to consider the
action of G. Moreover, (&;,0;) can be associated with the counting subset current 7y, on
G naturally. We will consider this association more concretely in the next subsection.

We say that 1t g1 0 051 and d ga o 0 89 form a bigon for (g1, g2) € A1 X Ag if there exist boundary
components Bl,Bg of 51,5’2 such that sub-arcs of (g1 o 51)|~ and (g9 o 52)|~ form a

bigon. From the following lemma, we can see that considering Sl, Sg is useful for finding
an immersed bigon formed by s; and ss.

Lemma 5.24. Two simple compact surfaces s1 and sy form an immersed bigon if and
only if g1 0 51 and gz o 3 form a bigon for some (g1,92) € A1 X As.

Proof. If part: Assume that g; o §1 and gs o §3 form a bigon b: D — 3 for some (g1, g2) €
A1 x Ay. Take components E and E; of &,S’vl and 8:5’; such that ¢g; o §V1|§1 and g 0 52]52
form the bigon b. Then we can see that mob: D — ¥ is an immersed bigon formed by
Sl’Pl(E) and 82‘ 2(B2)

Only if part: Assume that the restriction of s1,s2 to boundary components By, By of
S1,52 form an immersed bigon b: D — 3. Take a boundary component E of S~’z such
that pz(E) = B; for i = 1,2, which implies that pi\E
the definition of an immersed bigon formed by closed curves, there exists a subset I; of

is a universal covering of B;. By

E such that [; is homeomorphic to a closed interval and s; o p1|7, and sg o pa|s, form
the immersed bigon b. Let b; be a homeomorphism from the edge e; of D to I; such that
s; o p; o b; coincides with the restriction of b to e; for i« = 1,2. Take a lift b:D — % ofb
with respect to the universal covering 7 : Y — 3. Then E\ez is a lift of s; o p; o b; and there
exists ; € G such that g|ez coincides with 7; o 5; 0 b;. Take g; € A; and h; € H; such that
~v; = gih;. Then ~; 0 §; 0b; = g; 0 5; 0 h; o b; since §; is H;-equivariant. This implies that
g1 © 81|p, (1) and g2 © $a|p,(1,) form the immersed bigon b. Note that S; is an embedding
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map and b is locally injective. Hence the restriction of b to &D is injective, which implies
that b is an embedding map by Lemma 5.18. Therefore, g1 0 s1 and g3 o 52 form the bigon
b. O

In order to consider the intersection of g; o §1(§I) and g9 o éé(g;) for every (g1,92) €
Ay x Az, we take the fiber product Sy x5 S corresponding to (51, 51), (S2, 52). Explicitly,

S1 x5 S2 1= {((z1,91), (x2,92)) € S1 X S2 | 51(21,91) = 52(22, g2) },
which can be identified with the formal union of the fiber product of connected components
of S and S5. Therefore we have

S1 X5 Sp = |_| (S1,91) x5 (52, 92).
(g1,92)EA1 XAz
Since the restriction of §; to each connected component of S is an embedding map, the

fiber product (Sl,gl) (Sg,gg) is homeomorphic to g1 o 31(5’1) Ngs o 32(52) for any
(91,92) € A1 x Ao (see Supplementatlon 5.1). Therefore, we have

@;xi@% |_| 910§1(§I)ﬁ9208~2(§;)
(91,92) €A1 x A2

- L 910 51(S1) N g2 0 53(S).
(91H1,92H2)€G/H1xG/H>

> {(g1H1,g2H>,w) € G/Hy x G/Hy x 3 |
© € g1081(51) N gao&(Sa)}.

Here, we remark that g, o 51(51) N g2 o 52(52) can be empty.

Let ¢; be the canonical prOJectlon from 51 X5 52 to S The action of G on 51 and Sg
induces the action of G on Sl X5 52 such that gbl is a G-equivariant map. Explicitly, for
g € G and ((z1,91), (z2,92)) € S’I X5 :9’;, we define

9((z1,91), (22, 92)) := (9(21, 91), 922, 92))-
Note that (g(x1,91), g(z2,g2)) belongs to N X5 S, since

51(9(z1,91)) = g51(21, 1) = g52(22, g2) = 52(9(72, g2)).

We will prove that the quotient space G\E X5 S”; is homeomorphic to S Xy S3 in Propo-
sition 5.29, which will plays an essential role in proving Theorem 5.14.

Lemma 5.25. If the intersection g; oévl(gz)ﬂgzos}(gg) is not empty for (g1,92) € A1 X Ag,
then any connected component of g1 o .571(/;571) Ngo o ,9”,5(/5’;) s contractible. Moreover, for
any compact connected component M of g1 o §1(:S’\I) Ngo o §2(:§;) with interior points, the
number of boundary components of g1 o 8~1(§I) surrounding M equals that of go o @(S’;)
Therefore M can be considered as a polygon with even sides.

Proof. Let M be a connected component of g1 o 51 (:9:) Ngoo .?2(:9;) In the case that either
Sy or Sy is St our claim follows obviously. If Sy (or S3) does not have boundary, then M
coincides with gy o s~2(§;) (or g1 o 571(:371) respectively) and M is contractible.

We consider the case that neither Sy nor Sy is S I and both S} and S have boundaries.
We can assume that 3 does not have boundary by embedding S into R? or H2. Then M
is a connected subspace of 3 surrounded by the boundaries g; o 51(85’1) and g9 0 S9 (852).
Each component B of giogfi(8§i) is homeomorphic to R and divides ¥ into two contractible
components since there exists u € H; with infinite-order such that (u) acts on B. Hence
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we can see that M\ OM is a simply-connected region since the interior region of any simple
closed curve on M \ OM is included in M \ OM. Note that s; and sy are transverse. Then
we can see that M is a 2-dimensional manifold with boundary. By the Riemann mapping
theorem, M \ OM is contractible, which implies that M is contractible.

Now, we assume that M is compact and has some interior points. We can see that M
is surrounded by finite boundary components of g1 o évl(:qvl) and gg o 52(:6‘;) from Lemma
5.22. Since S; is a 2-dimensional manifold with boundary, any boundary component of
gi © §,(5~'Z) does not intersect other boundary components of g; o 51(5*1) for ¢ = 1,2, which
implies that the number of boundary components of gy oévl(rS’vl) surrounding M equals that

of go 0 52(S2). This completes the proof. O
The following proposiﬁi\on, W/}iich is corresponding to Remark 5.23, is useful to under-
stand the fiber product 51 x§ Sa.
Proposition 5.26. Set
Z .= {(g1H1,92Ha,x) € G/Hy x G/Hy x 33 |
T € g1051(S1) Nga o 55(S2)}-
Define a map 0 from 3\1 X5 3‘; to Z as
0((z1,91), (22, 92)) == (91H1, g2H2, g1 0 51(21))
for ((z1,91), (z2,92)) € 3’; X5 :5'\2 Then 6 is a homeomorphism.
Define a natural action of G on Z as
9(g1Hu, g2Hz, @) := (991H1, 992 H2, g)
for (g1Hy, g2Hs,z) € G/Hy x G/Hy x Y and g € G. Then 6 is a G-equivariant map.
Moreover, the map §; o ¢; 0 071 is the projection for i = 1,2, that is,
§iogio0 N (giHy,g2Hs, x) = w.

This implies that the following diagram is commutative.

@;xi@;LZ

bi l lprojection

Proof. For (g1,92) € Aj X Ag, the restriction of 6 to (E, g1) X5 (:S’;, g2) is a homeomorphism
onto — —~
{(91H1, g2H2,2) | € g1 0 51(51) N g2 0 52(52)}

since (:S’vl,gl) X5 (:5'2,92) is mapped homeomorphically to g1 o é](:S’vl) Ngs o 52(:5‘\;) by
$1 0 ¢1, which maps ((z1,91), (2, 92)) to g1 o $1(x). Recall that A; is a complete system
of representatives of G/H;. Therefore 6 is a homeomorphism.

To see that 6 is G-equivariant, take ((x1,91), (z2,92)) € N X5 Sy and g € G. Take
gi € A; such that gg; = g.h; for some h; € H;. Then we have g(z;,g;) = (hjz,g.) for
1=1,2, and so

0((hiz1, g1), (haw2, g5))

(91 H1, gy Ha, g1 0 S1(hix1))
(991H1,992H2, gg1 0 51(x1))
= g0((x1, g1), (72, g2))-

0(9((x1,91), (22, 92)))
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Finally, for (g1 H1, g2H2, z) € Z take ((x1, ), (22, 5)) € N X5 Sy such that

0((z1,91), (22, 95)) = (91H1, g2 H, ).
Note that 57 o ¢1 = 53 0 ¢9. Then
Sio ¢io0 " (g1Hy, g2Ha,x) = 51 0 ¢1((z1, 91), (22, 95))
= g1 051(z1)
=z
for ¢ = 1,2. This completes the proof. U

Remark 5.27. From the above proposition, we can identify S’I X5 3‘; with Z and we can
see that the choice of A; does not influence the fiber product 3\1 X5 3;

For (g1,92) € A1 xAg, if (/S\I, g1) xi(:g\;, g2) is not empty, then the stabilizer of (:S’\I, g1) X5
(:S';, g2) is g1 Hy 91 e g2Hogy5 1 Hence the quotient space G\S'\l X5 3; is homeomorphic to
a formal union of

(91H197" N g2Ha295 )\ (g1 0 51(S1) N g2 © 52(S2))

over [g1Hi1,g2H2] € G\(G/H; x G/Hs), which is the quotient set associated with the
diagonal action of G on G/H; x G/Hs. Actually, for any g € G and (g1,92) € A1 X Ag,
there exists unique (g7, g5) € A1 x Ay such that (gg1 H1,992H2) = (g} H1, g5H2), and then
we have

9 ((S1,91) x5: (S2.92)) = (S1.9%) x5; (S, 95).
Hence each [g1H1, g2H2] € G\(G/H; x G/H>) corresponds to a connected component of
G\S1 x5 S2, which is possibly empty.

Lemma 5.28. The map S; o ¢;: S’; X5 3; ~Yisa proper map and G acts on §I X5 S*;
freely and properly discontinuously.

Proof. Recall that s;: 5’; S Yisa proper map because é}(g',) is a closed subset of ¥ and
s; is an embedding map. Let J be a compact subset of X. Recall the equation:

SixgS= || (Sng1) x5 (S200).
(91,92)EA1 X A2

For each (g1,92) € A1 X Ag the intersection
(S1,91) X5 (S, 92) N (5 0 1) ~1(J)
={((z1, 1), (72, 92)) € (S1,91) X (S2,92) | g1 0 51(21) = ga 0 S3(w2) € J}
={((z1,91), (x2,92)) € (g1 051) " (])) x (920 52) "' (J)) |
g1o51(x1) = g2 0 52(22)}

=((g105)7(J), 1) x5 (920 52) 7' (J), 92)

is compact since (g; 0 5;)H(J) = & '(g; ' J) is compact for i = 1,2.

We prove that there are only finitely many g; € A; such that (g; 05;)~(J) is not empty,
that is, g; o SNZ(S‘,) NJ # () for i = 1,2. In the case that ¥ is a cylinder or a torus,
the fundamental group G of ¥ acts on S as parallel translations and our claim follows
immediately.

In the case that ¥ is a compact hyperbolic surface, we apply Lemma 3.7 to the counting
subset current ny, on G. Since ng, (A(J)) is finite, there are only finitely many gH; € G/H;
such that gCHp, intersects the compact subset J. Note that the Hausdorff distance
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between gCHp, and g; o fsvz(gl) is finite by Lemma 5.22. Hence there are only finitely
many g; € A; such that g; o 5’](5‘1) NJ#0.

Therefore (5; o ¢;)~1(J) is a union of finite compact subsets and so compact. Since
5;0¢; is a G—eq/tlivariant map and G acts on ¥ freely and properly discontinuously, G also

acts on 51 Xg Sy freely and properly discontinuously. O

From the above lemma, we can see that for any connected component M of S“I X5 g;
if the stabilizer Stab(M) of M is non-trivial, then the fundamental group of the quotient
space Stab(M)\M is isomorphic to Stab(M ), which implies that Stab(M)\M is not con-
tractible. Since GG does not have a torsion, the stabilizer of a connected component M of
S1 X5 So is trivial if and only if M is compact.

Since the maps p; o ¢; from S1 X5 S2 to S; satisfy the condition that s o (p1 0 ¢1) =
s9 0 (p1 © ¢1), we can obtain a map ® from S’I X5 Sy to S x5 S (see the following
commutative diagram).

51 Xf} SQ

N

Explicitly, for (z1,91), (z2,g2) € S x5 Sa,
(I)((fUl,gl), (562792)) = (151(331,91)752(952,92))-

Proposition 5.29. Let o = ((z1,01), (22, 92)), 8 = ((y1, u1), (y2,u2)) € EN X5 S. There
exists g € G such that g(a) = 8 if and only if ®(a) = ®(B). Therefore, the map ® induces
an injective continuous map ¥ from the quotient space G\S’I xigg to S1 Xy .Se. Moreover,
W is a homeomorphism. Then we obtain the following cubic commutative diagram.

I 52
1
P
S1 = )
Sl X S2 52
pi 7
52
S1 by

51

FEvery map from a space in the upper square to a space in the lower square is a canonical
projection with respect to G-action, and every map in the upper square is G-equivariant.
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Proof. Assume that there exists g € G such that g(a) = 5. Since ¢; is G-equivariant and
D; is a canonical projection with respect to the action of G on S;,

() = (ga) = (g(z1,91), 9(x2, 92))
= (P1(9(z1,91)), p2(9(22, 92)))
= (p1(z1,91), P2(22, 92))
= o(w).

Next, we assume that ®(«) = ®(5), that is,

(ﬁ(x17gl)715\2(1"2792)) = (ﬁ(ylpul)a@(927u2))-
There exist v1,v2 € G such that

U1(~’B1>91) = (yl,ul),’vz(@,gz) = (yz,uz)-

It is sufficient to see that v; = w9, which implies that v1ac = B. Since «, 8 belong to
Sl Xf} SQ, we have

51(x1, 91) = 52(2, 92), 51(y1,w1) = 52(y2, u2).

Therefore

v151(71,91) = 51(v1(w1,91)) = 51(y1,u1)
= S52(y2, u2) = S2(va(x2, g2)) = vasa(w2, g2) = v251(x1,91).

This implies that v1 = vy since G acts on D freely.

To see the surjectivity of ¥, we check that ® is surjective. Take an arbitrary (z1, 22) €
S1 x5 Se. Take (x;,9;) € S\’Z such that p;(z;,g;) = z for i = 1,2. Since s1(z1) = sa(z2)
and s; 0 p; = 70 &;, we can see that §1(z1,91), 52(22,92) € 7 1(s1(21)). Hence there exists
g € G such that gs1(z1,91) = S2(x2, g2), that is, (g(z1, g1), (x2,92)) € Sy X5 Ss. Therefore
we have

®(g(z1,91), (2, 92)) = (P1(9(21, 91)), P2(22, 92)) = (21, 22).

From the above, V¥ is a bljectlve continuous map. Hence it is sufficient to prove that the
quotlent space G\Sl X5 Sg is compact. Since X is compact, there exist a compact subset
K of 3 such that ﬂ'(K) = ¥, that is, G(K) = . Then (5; o ¢;) 1 (K) is also a compact
subset of §I X5 3‘; by Lemma 5.28. Then we can see that

G((5i 0 ¢:)"HK)) = 51 x5 52

since §; o ¢; is G-equivariant. Therefore the quotient space G\S’I X5 3’; is compact, which
completes the proof. O

Let (73,t;) be a simple compact surface on ¥ homotopic to (5;,s;) for i = 1,2. We
identify S; with T} for simplicity of notation. Recall that we have a lift ¢;: S = % of ¢
such that the Hausdorff distance between ;(S;) and #;(S;) is finite by Lemma 5.22. Then,
we can obtain the same diagram in Proposition 5.29 for simple compact surfaces (77, tl),

(T, t2) on ¥ and their lifts (S~1,t~1), (/S;,i;)

Proof of Theorem 5.14. We classify our proof into several cases. We use Lemma 5.24 and

consider gy o 31, g2 0 85 for (gl, g2) € A1 x Ag instead of sy, s2. We will say that a boundary

component 31 of g1 0 sl(Sl) and a boundary component Bg of go o 32(52) form a blgon if

there exist a boundary component Bll of 51 and a boundary component Bgl of 5’2 such

that g; o Si(BZ'/) = Bi for i = 1,2 and sub-arcs of g; o 51|§1/ and g9 o 32|§2/ form a bigon.
Case 1: The surface X is a sphere.
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See Proposition 5.17. Note that if 3 is not a sphere, S; can not be a sphere by Lemma
5.19.

Case 2: The surface X is a cylinder.

The simple compact surface S; must be S! or a cylinder since s; induces an injective
group homomorphism from the fundamental group of S; to that of 3, which is isomorphic
to Z. Then we can see that i([s1], [s2]) = 0 for any simple compact surfaces s, s2 on X since
we can deform s; and sp by homotopies such that their images do not intersect. Now, we
consider the intersection of g 0 $1(S1) and g2 0 52(S2) for (g1, g2) € A1 X Ag. The universal
cover S; of S; is homeomorphic to R or R x [0,1]. Note that an infinite cychc group H;
acts on S; and the stabilizer of g1 0 31(51) Nggo 32(5’2) is nglg1 ﬂg2H292 = H| N Ho,
which is also an infinite cychc group. If g1 o 31(5'1) Ngso 52(52) # (), then Hy N Hy acts
on gp o 31(5’1) Ngs o 52(52) which implies that g1 o 31(51) Ngs o 52(52) is non-compact
connected, or an infinite union of compact connected components.

If g1 051(S1)Ngao 52(52) is an infinite union of compact connected components, then
we can see that g1 o 51 and gz o 53 form a bigon. Actually, any compact component
of g1 o sl(Sl) N go o 52(52) is surrounded by both g; o 51(851) and g9 o 52(65’2) which
implies that there exists a boundary component B of gio 31(851) such that B intersects a
boundary component of go o 52(8:9’;) infinitely many times. Note that the restriction of s;
and so to any components of their boundaries are transverse. Therefore g1 0 §1 and g9 0 55
form a bigon by Lemma 5.15.

From the above, we can see that if g1 o 51 and g2 o s3 do not form a bigon, then
g1 051(S1) N g2 0 52(S2) is empty or non-compact connected. By Lemma 5.24, if s; and s
do not form an immersed bigon, then 57 Xy .52 does not have any contractible components,
that is, i(sl, 82) =0= i([Sl], [82]).

The converse does not follow if S7,.59 are cylinders. For example, consider the case that

S =Rx[-4,4], g105(51) =R x [-2,2]

and
g2 0 852(52) = {(z,y) € R? |sinz —2 <y <sinz + 2}.

Then g 057 and g9 0 §3 form a bigon but g; o 571(51) Ngoo 32(55) is non-compact connected.
If either S or So is S, then the converse follows immediately from the above argument.

Case 3: The surface X is a torus.

We assume that ¥ = Z?\R?, which is the quotient space of R? by the natural action of
72 from left. Note that a nontrivial subgroup of G = Z? is isomorphic to Z? or Z. First, we
consider the case that Hj is isomorphic to Z2. Then Hj is a subgroup of G of finite index,
which implies that S is a torus and s; is a covering map. Therefore §1(S1) = Y= R?, and
s0 (S1,91) X5 (52, 92) does not include a compact component for any (g1, 92) € A1 x As.
As a result, i(s1,s2) = 0.

Now, we assume that both H; and H» are isomorphic to Z, which implies that S; is S!
or a cylinder for ¢ = 1,2. If H; N Hs is not trivial, then we can apply the same argument
in the case that ¥ is a cylinder to this case. Therefore we consider the case that H; N Ho
is trivial. Take (a;,b;) € H; such that (a;, b;) generates H;. Then two vectors (a1, b1) and
(a2,b2) are linearly independent over the ring Z.

Note that the image sZ(S ) divides ¥ into two 0 regions since H; acts on g; o 5:1(S;) for

= 1,2. Hence g1 o 51(51) intersects g9 o 32(52) for any (g1,92) € A1 x Ay and the
intersection includes at least one compact connected component of 3. Moreover, we can
see that if g1 051(S1)Ng2082(S2) includes more than one compact components, then g; 0 $7
and go o S5 form a bigon. Actually, any boundary components of g; o é”l(:S’vl) must go into
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g2 0 52(S2) and go out the opposite side at least once. If g1 0 51(51) N g2 0 $2(S2) have more
than one compact components, then a boundary component of g; o §1(S7) must intersect
a boundary component of gs o 53(S2) more than once, and their sub-arcs form a bigon by
Lemma 5.15.

From the above, if s; and s3 do not form an immersed bigon, then si, so are in minimal
position. If either S; or Sy is S*, then the converse follows immediately from the above
argument.

Case 4: The surface ¥ is a compact hyperbolic surface.

In this case we thought of ¥ as a closed convex subspace of the hyperbolic plane H.
See the beginning part of Section 3 for some definitions and notation related to hyperbolic
geometry.

Take (g1, g92) € A1 X Aa. We prove that if g; o 51 and g2 0 §3 do not form a bigon, then
the number of compact connected components of g; o 53(’5}) Ngso 52(%) is minimum in
the homotopy classes [s1] and [s3]. Note that the limit set (g; o §;(5;))(00) = gsA(H;)
coincides with (g; o ;(5;))(00) from Lemma 5.22. We classify our proof into several cases
under the relation between g1 A(H;) and goA(Hs). Since Hy, Hy are finitely generated, we
have

g1A(Hy) N goA(Ha) = A(g1H1gy ' N g2Hagy ).

Case 4-1: The intersection g1 A(Hi) N g2A(H2) is not empty.

In this case, glﬂlgl_l N ggHggz_l is not trivial and acts on ¢; o s~1(§1) Ngg o 53(35) We
prove that if g; o 51(:5':) Ngso 52(:5';) includes a compact connected component M, then
g1 081 and g20 s form a blgon In other words, if g1 0 51 and g9 0 9 do not form a bigon,
then g o 51(5’1) Ngs o 32(5’2) does not have a compact connected component.

Consider the case that S is S, which 1mphes that Hj is an infinite cyclic group.
Since nglgfl N QQHgg; is not tr1v1a1 nglg1 N nggg;l is a finite index subgroup of
g1 Hy 91 . Assume that g1 o 81(51) Ngso 52(52) includes a compact connected component
M. Then the compact connected component M must be a point or homeomorphic to a
closed interval by the assumption on the simple compact surfaces s; and so . If M is a
point, then S5 is also S* and g; o s~1(5’~1) intersects go o s}(g’;) transversely infinitely many
times and their sub-arcs form a bigon by Lemma 5.15. Hence we consider the case that M
is homotopic to a closed interval. Note that each endpoint of M is the 1ntersect10n point
of g1 031(51) with a boundary component of go0 SQ(SQ) Since 91H191 ﬁggHggQ acts on
g1 0 évl(:S’vl) Nge o é}(Sg) g10 31(51) intersects boundary components of g o 32(52) infinitely
many times. By giving an orientation to g; o 31(51) we can see that if g1 o sl(Sl) goes out
from a boundary component B of g2 © 52(52) then g; o 31(51) must go into g o 32(52)
through the same boundary component B. This implies that g; o 51(51) Nggo 52(5’2) and
B form a bigon by Lemma 5.15.

Next, consider the case that neither S; nor Sy is S'. Assume that g 057 (S~1) Ngo os~2(§;)
includes a compact connected component M. By Lemma 5.25, a compact connected
component M of gj o 51(S1) N g2 o 32(52) is a region surrounded by g; o 81(8S1) and
g2 0 .?2(8:5’;) Take a boundary component B of g1 o sl(Sl) and a non-trivial element
u € g1Hyg; ! such that B form a side of M and (u) acts on B. If B(co) N gaA(Hs) # 0,
then there is m € N such that ™ € goHag, ' and B(c0) C gaA(Hs,) since u is a hyperbolic
element of the isometry group of H. By applying the above argument in the case that

Sy = S to B and (u™), we can see that B and a boundary component of gs o 32(52) form
a bigon.
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To obtain a contradiction, we assume that g 0§17 and g2 0 S5 do not form a bigon. Then
any boundary component of gj o évl(:S'vl) forming a side of M goes into g o (?2(:5';) and goes
out from go o 33(3*}) only once. Note that every non-trivial element of GG is a hyperbolic
element in Isom(H) and for non-trivial v1,v2 € G either the intersection of A((g1)) and
A({g2)) is empty or A({(g1)) = A({g2)). Hence if a boundary component B of g; o 31(51)
goes into gy o 52(52) and goes out from gy o SQ(SQ) exactly once, then the limit set B(co)

of B does not intersect g2A(H3) from the above argument. Therefore the intersection of
91A(Hy) and goA(Hs) is empty since M is compact. This contradicts our assumption that
91A(Hy1) N gaA(Hz2) is not empty. Hence g1 o §1 and g3 o $2 form a bigon.

Case 4-2: The intersection g1 A(H1) N goA(H2) = () and there exist two closed intervals
11, I> of OH satisfying the condition that

LNy = ¢ and I; D glA(Hl) fori=1,2.

In this case, two convex hulls CH(I;),CH(I3) do not intersect. Take a boundary
component B; of g; o sl(S ) such that CH( i(00)) is closest to the geodesic line CH(01;)
for 2 = 1,2. Then 31 and Bg form a bigon if and only if g; o 51(51) and ¢o o 52(5'2)
intersects. Therefore if g; o 31(5’1) Ngeo 32(52) includes a compact connected component
M, then 31 and Bg form a bigon

Case 4-3: The intersection g1A(H1) N g2A(H2) = () and there do not exist two closed
intervals I, Is of OH satisfying the condition in Case 4-2.

This assumption implies that there exist a boundary component B of g1 © 51(S1) such
that any interval of §H connecting the two points in B(co) must intersect goA(Hs). In this
case g1 o 31(51) must intersect g o 32(52) Since g1 A(H1) N gaA(Hs) = (), the intersection
g1 031(51) N QQOSQ(SQ) is compact. Therefore we prove that if g1 087 and g 055 do not form
a bigon, then g; o 51(51) Ngso SQ(SQ) includes exactly one compact connected component.

In the case that S; is S, if g1 o 51 and ¢» o 53 do not form a bigon, then g; o 51(51)
intersects go o .?2(3;) at a point, or goes into go o 32(52) and goes out from gy o .?2(3’;)
exactly once, which implies that gy o sl(Sl) Ngs o 52(52) includes exactly one compact
connected component.

Therefore, we assume that neither S; nor Sy is S'. We also assume that g; o évl(:S'vl) and
g2 © 5(:6’;) do not form a bigon. Then any boundary component B of g1 0 évl(gz) satisfies
either one of the following two conditions

(1) there exists an interval I in OH connecting the two points in B(co) such that
I' N g2A(Hz) = 0
(2) any interval I in OH connecting the two points in B (00) must intersect goA(Hy).

If B satisfies the condition (1), then B does not intersect 92 052(52) by the argument in the
case that S; = S!. If B satisfies the condition (2), then B goes into gs o 52(52) and goes
out from go 032(5'2) exactly once, which divides g 032(5’2) into two connected components
and one of the connected components contains g; o 31(5’1) N g o 82(5’2). Therefore, g1 o
§1(:9v1) Ngso évg(:S’vg) is connected, and our claim follows.

From Case 4-1, 4-2 and 4-3, we can see that if g1 o 1 and g9 o 32 do not form a
bigon, then the number of a compact connected components g; o 51(51) Ngs o 82(32) is
minimum in the homotopy classes [s1] and [s3]. Moreover, i([s1], [s2]) equals the number
of [g1H1,g2H2) € G\G/H; x G/H; satisfying the condition of Case 4-3 by Remark 5.27.
From Proposition 5.29 and Lemma 5.24, if s; and s do not form an immersed bigon, then
s1 and so are in minimal position. If either S; or Sy is S', then the converse follows by
considering each case, 4-1, 4-2 and 4-3. O
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Supplementation 5.30. Let ¥ = Z?\R%. Assume that s, s2 do not form a bigon, both
H, and Hs are infinite cyclic groups and H; N Hs is trivial. In this setting we calculate
the intersection number i(s1, s2) = i([s1], [s2]).

We have proved that g1 o 5~1(§I) Ngo o s}(/S\;) contains exactly one compact connected
component for (g1,¢92) € A1 X Ay. From Remark 5.27 and Proposition 5.29, S; x5 So is

homeomorphic to the formal union of

(91H1g7 ! N g2Hag3 )\ (g1 © 51(S1) N g2 0 52(S2))

over [g1Hi,g2Hs] € G\(G/H; x G/H3). Therefore i(sy,s2) equals the cardinality of
G\(G/Hi x G/H3). Define a map 7: G/(H; U Hy) — G\(G/H; x G/H>) as

7(9(H1 U Hz)) = [H1, gH>]

for g(H; U Hs) € G/(Hy U Hy). The map 7 is well-defined. Actually, since G = Z? is
commutative, for (hy, hs) € Hy x Hy we have

[H1, (ghiho) Ho] = [Hu, (h1g) Ha] = [H1, gH).

We prove that 7 is bijective. The surjectivity of 7 follows immediately since 7 is well-
defined. We check the injectivity of 7. For g, ¢ € G, assume that

7(g(H1 U Hz)) = 7(¢'(H1 U Hy)),

that is, [Hy,gH2| = [H1, g’ Hs]. Then we can take hy € Hy such that hygHy = ¢’ Hy, which
implies that there exists hy € Hy such that highs = ¢’. Hence

gl<H1 U H2> = gh1h2<H1 U H2> = g<H1 U H2>

From the above, i(s1,s2) equals the index [G : (Hy U Hs)]. Note that (H; U Ha) is a
finite index subgroup of G. Let (a;,b;) be a generator of H;. In order to calculate the
index [G : (H; U Ha)] we consider the area of the covering space of ¥ corresponding to
(H1UH>). The area of the quotient space (H;UH>)\R? equals the area of the parallelogram
formed by the two vectors (aq,b1), (az,b2), that is, |ajby — bias|. Since the area of ¥ is 1,
(G : (Hy U Hs)| = |a1be — byaz|. Therefore

i(Sl,SQ) = i([sﬂ, [82]) = |a1b2 — bla2|.

Even if Hy, Hs are infinite cyclic and Hy N Hsy is not trivial, we have the same formula since
i(s1,s2) = 0 and the area of the parallelogram formed by the two vectors (ai, b1), (a2, b2)
equals 0.

This result is well-known in the case that si, so are simple closed curves on the torus
3 = Z*\R? (see [FM12, 1.2.3 Intersection Numbers]).

5.3. Continuous extension of intersection number. First, we recall several facts on
geodesic currents on hyperbolic groups in [Bon88b].
Let G be an infinite hyperbolic group. Set

8:G = {S € H(G) | #S = 2}.

We endow 0»G with the subspace topology of H(OG), which coincides with the topology
induced by the Hausdorff distance.

Definition 5.31 (Geodesic currents on hyperbolic groups). A geodesic current on G is a
G-invariant locally finite Borel measure on d>G. The space of geodesic currents on G is

denoted by GC(G). We give GC(G) the weak-* topology.

Since 0»G is a G-invariant closed subspace of H(0G), we can consider GC(G) as an
R>¢-linear closed subspace of SC(G). A subset current on G whose support is included in
02G can be considered as a geodesic current on G. By restricting a subset current to 902G,
we can obtain an R>¢-linear map from SC(G) to GC(G) but this map is not continuous in
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general (see Theorem 5.33). We will construct a continuous R>-linear projection B from
SC(G) to GC(G) in the case that G is the fundamental group of a compact hyperbolic
surface (see Section 7).

For g € G with infinite order, since its limit set A({g)) belongs to 02G, the counting
subset current 7, can be considered as a geodesic current on G. We will write 7, instead
of n(g and call n, the counting geodesic current for g € G. It g € G has a finite order,
then we define 1, to be the zero measure on d2G. A geodesic current p is called rational
if there exist g € G and r € R>( such that u = cn,.

Bonahon [Bon88b| proved the following theorem

Theorem 5.32 (See [Bon88b, Theorem 7]). For any infinite hyperbolic group G, the set
of all rational geodesic currents on G is a dense subset of GC(G).

In the case of subset currents, the same denseness property was proved for free groups
of finite rank in [KN13, Theorem 5.8]. In Subsection 8.3 we will prove that surface groups
have the denseness property of rational subset currents.

If a hyperbolic group G is virtually cyclic, that is, #0G = 2, then SC(G) coincides with
GC(@G). From the above theorem we can prove the following theorem:

Theorem 5.33. Let G be an infinite hyperbolic group. Assume that G is mot virtually
cyclic, that is, the boundary OG includes infinitely many points. For any p € GC(QG) there
exists a sequence { Hy }nen of quasi-convex subgroups of G and a sequence {cp}nen of R>g
such that Hy, is non-cyclic and isomorphic to a free group of finite rank, and the sequence
of rational subset currents c,ng, converges to .

Proof. From Theorem 5.32, it is sufficient to prove the statement in the case that p = 7,
for g € G with infinite order.

Take g € G with infinite order. Take h € G with infinite order such that A((h)) N
A({(g)) = 0. By using the Ping-Pong Lemma, for a sufficiently large m € N the subgroup
H := (¢, h™) is isomorphic to the free group of rank 2 (see [FM12, Part III, I, 3.20
Proposition]). Moreover, we can see that if m is sufficiently large, then H is a quasi-
convex subgroup of G.

Set a := ¢, b := h™. Define a subgroup H,, of H by

H, := (a",b)

for n € N. Then we can see that the sequence of rational counting subset currents %nﬁn
on H converges to the counting geodesic current n/ on H by using [KN13, Proposition
3.7] (see Proposition 8.6 for detail). By using the map ¢z in Section 4, we see that %an
converges to 7,. Note that

Na = Tlgm = Mg

by Proposition 2.10. Hence %m{n converges to 7g. ]

Let ¥ be a compact hyperbolic surface. Let G be the fundamental group of ¥, which is
isomorphic to a free group of finite rank or a surface group. When we identify the boundary
0G of G with the limit A(f]) 0f§~] in H, we will say subset currents on X instead of subset
currents on G. Geodesic currents on X is also used in the same meaning. We will denote
by SC(X) (GC(X), respectively) the space of subset currents (geodesic currents) on .

Recall that a non-trivial conjugacy class of GG is corresponding to a non-trivial free
homotopy class of an oriented closed curve on G, which contains a unique oriented closed
geodesic. Hence a non-trivial conjugacy class of GG is corresponding to an oriented closed
geodesic on G. In addition, for non-trivial g € G the conjugacy class of (g) is corresponding
to an unoriented closed geodesic on X, which coincides with the convex core C4. The
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map p,) from C,y to ¥ is induced by the universal covering map. We will write Cy instead
of g and call Cy the (unoriented) closed geodesic corresponding to g.
Bonahon [Bon86] proved the following theorem:

Theorem 5.34 (See [Bon86, Proposition 4.5]). There exists a unique continuous sym-
metric R>o-bilinear functional

1GC: GC(E) X GC(E) — RZO
such that for any g,h € G we have

iac(ng, mn) = i(Cy, Ch).

Recall that a subgroup H of G is quasi-convex if and only if H is finitely generated.
For two non-trivial finitely generated subgroups H and K of GG, we have the convex cores
(Cx,pn) and (Ck,pk) of H and K. From Theorem 5.11, (Cg,py) and (Ck,pr) are
simple compact surfaces on ¥ in minimal position. We will prove the following theorem
in this subsection, which is a generalization of Theorem 5.34:

Theorem 5.35 (Intersection number of subset currents). There exists a unique continuous
symmetric R>o-bilinear functional

isc: SC(X) x SC(X) — R>p
such that for any non-trivial finitely generated subgroups H and K of G we have

isc(mu,nx) = i(Chy, Ck).

Remark 5.36. In the case that X has boundary, GG is a free group of finite rank. We
remark that for a free group F of finite rank a surface whose fundamental group is isomor-
phic to F' is not unique up to homeomorphism. Therefore the functional igc on SC(F) is
not uniquely determined.

However, if G is a surface group, then a surface whose fundamental group is isomorphic
to G is unique up to homeomorphism. Moreover, G is homeomorphic to S and for two
non-trivial finitely generated subgroup H and K of G we can see that the intersection
number of Cy and Ck can be determined by the relation between giA(H) and goA(K)
for [g1H, 92K € G\G/H x G/K (see Case 4 of the proof of Theorem 5.14). Therefore, if
G is a surface group, we can call igc the intersection number on SC(G).

The strategy to prove Theorem 5.35 is almost the same as that for proving the existence
of the volume functional in Section 3. First, we construct an R>g-bilinear functional on
SC(X) such that the functional associates any pair of counting subset currents (9, k)
with i(Cy, Ck) for any non-trivial finitely generated subgroups H and K of G. Then we
prove the continuity of the functional, which is the main part of the proof. The uniqueness
of the functional follows by the denseness property of rational subset currents.

Note that by restricting igc to GC(X) x GC(X) we can obtain igc. If we want to obtain
only igc, then by assuming that H, K are cyclic and all (S1, S2) € H(OG) x H(OG) belong
to 092G X 0@, several parts of the following argument will be shorter or obvious, and our
argument will give a new proof to Theorem 5.34.

We consider X as a closed convex subspace of the hyperbolic plane H. Recall that for
simple compact surfaces (51, s1),(S2,s2) on ¥ we constructed (Si,51), (52,52) and the
fiber product S’I X5 3; Let H, K be non-trivial finitely generated subgroups of G. From
Remark 5.23 and Proposition 5.26, we set

CHy :={(gH,z) € G/H xS |z € gCHpy}
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and set

CHy x5 CHy = {(91H, 92K, x) € G/H x G/K x % |

x € g1CHy Ng2CHg}.
Then G acts on C/'ﬁH by
u(gH, ) := (ugH, ux)
for u € G and (gH,z) € C/'I\{H Moreover, G acts on @H X5 C/‘EK by
u(g1H, g2 K, ) := (ug1 H, ugo K, ux)

for w € G and (g1 H, g2K,x) € C/*EH X5 C/’ITIK. By the same way as that for simple

compact surfaces (S1, s1), (S2,s2) on ¥ in Proposition 5.29, we can obtain the following
cubic commutative diagram for H and K:

@H Xi @K @K
P
CHpy 5
CH X CK CK
PK
Ch o by

The map from C/’T{H to ¥ is the projection, that is, (¢H,x) is mapped to x € Y. The
map from C/'EH X5 C/'?IK to @H is also the projection. The quotient space G\C/’ﬁH is
identified with C'y and the quotient space G\@H X5 C/'?IK is identified with C'y x5 Ck
by Proposition 5.26.

By the definition, i(Cy, Ck ) equals the number of contractible components of Cgy x5 C .
A contractible component of C'y Xy Cx comes from the G-orbit of a compact connected
component of C/'?IH X5 @K

We note that the “size” of a contractible component of CH H X5 CH K are sometimes
big and sometimes small. We measure the “size” of the compact connected component by
using a fundamental domain F for the action of G on .

Definition 5.37 (Size of a compact connected component). For x € 5. we take the Dirich-
let domain F = F, centered at z. Since G acts on 3 freely and properly discontinuously
F is a compact polygon. By removing some edges and vertices of the boundary of F we
can modify F such that G(F) = ¥ and gF N F = () for any non-trivial g € G. We define
Fin(G) to be the family of all non-empty finite subset of G. Note that for any non-empty
bounded subset X of ¥ there exists a unique Gy € Fin(G) such that Go(F) covers X
precisely, that is, X C Go(F) and X NgF # () for every g € G. Then we say that the size
of X with respect to F is Gy. For Gy € Fin(G) we define Cr(Gp; H, K) to be the number

of compact connected components of CH i x5 C'H g whose size with respect to F are Go.
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Now, we consider the natural action of G on Fin(G) from left and take a complete
system of representatives {G,};ecs of G\Fin(G).

Lemma 5.38. The following equality holds:
i(Cu,Cx) =Y _ Cr(Gy; H,K).
Jj€J
Proof. Since i(Cp, Ck) is the number of contractible components of G\CHH X CHK, it
is sufficient to see that for any compact connected component M of CH H X5 C’H i there
exist unique j € J and g € G such that M is precisely covered by gG;(F). Actually, we
have a unique Gy € Fin(G) such that Go(F) cover M precisely and there exists unique
Jj € J and g € G such that gG; = Gy. Hence our claim follows. O
For Gy € Fin(G) set
Cr(Gy) :={(51,52) € H(OG) x H(IG) |
CH(S1) NCH(S>) is precisely covered by Go(F)}.
We can check that Cr(Gyp) is a Borel subset of H(0G) x H(9G) from Lemma 3.8. Then
for the product measure ngy X nx we have
ng X UK(C]:(G())) = C]:(G();H, K)
Actually,

naxng = D Goan | x| D deax

gHEG/H gKeG/K

- Z 591A(H) X 5921\(1()
(g1H,92 K)eG/HXG/K

= > O(g1 A(H),g2A(K)):
(91H,92K)€G/HXG/K
where 6y, A(H),g.A(K)) 13 the Dirac measure at (g1A(H), goA(K)) on H(IG) x H(IG). In
addition,
CHpyg XECHK’E |_| g1CHpg NgoCHg.
(91H,92K)eG/HXG/K
Hence
ni X Nk (Cr(Go)) =#{(91H,92K) € G/H x G/K |
9g1CHp N goCH is precisely covered by Go(F)}
=Cr(Go; H, K).
As a result, we obtain the following equation:
i(Cu,Cr) =Y nir x i (Cx(Gy)).
Jj€J
Note that for G1,G2 € Fin(G) with G1 # Ga the intersection Cr(G1) N Cr(Ge) is
empty by the definition.

Definition 5.39. We define a map igc from SC(X) x SC(X) to R>¢ by

isc(u,v) =pxv ||| Cr(Gy)
jeJ

for p,v € SC(X).
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By the definition of igc we can see that isc(nmg,nx) = i(Ch,Ck) for any non-trivial
finitely generated subgroups H and K of G. Moreover, igc is a symmetric R>o-bilinear
functional. The remaining problem is proving the continuity of igc.

First, we check that definition of igc is independent of the choice of F and {G;}. Set

T :={(81,55) € H(IG) x H(IG) | CH(Sy) N CH(Ss) # 0 is bounded}.

Then 7 is a G-invariant open subset of H(0G) x H(OG) with respect to the diagonal action
of G. Moreover, G acts on Z freely.

Lemma 5.40. The set
Q:=| | Cr(G))
j€J
is a Borel fundamental domain for the action of G on T satisfying the condition that
G(Q) =7 and gQNQ is empty for any non-trivial g € G. Therefore, the definition of igc
is independent of the choice of F and {G,}.

Proof. First, we remark that the definition Z is independent of the choice of F and {G;}.
Moreover, in the case that G is a surface group, the definition of Z is independent of X.

For (S1,S52) € T there exists a unique Gy € Fin(G) such that Go(F) cover CH(S1) N
CH(Ss) precisely. Hence

7= |_| Cr(Go).
Go€Fin(G)
Then we can see that G(Q) = Z and g@Q N Q is empty for any non-trivial ¢ € G, which
implies that @ is a Borel fundamental domain for the action of G on Z. By the same way
as that for Lemma 3.1, we can see that isc is independent of the choice of F and {G;}. O

The following proposition is known as the Portmanteau theorem for probability mea-
sures on a metric space (see [Bil99, Theorem 2.1]), which will be used later in order to prove
the continuity of igc. We will use the argument in this proof for proving the continuity of
a certain functional in Section 6.

Proposition 5.41. Let p,, pu € SC(X) (n € N). The following are equivalent:

(1) pp converges to p in the weak-x topology;

(2) limsup,,_, n(K) < u(K) for any compact subset K of H(OG), and
liminf,, o0 pn(U) > p(U) for any relatively compact open subset U of H(OG);

(3) limy 00 pin(E) = u(E) for any relatively compact Borel subset E of H(OG) with
n(OF) = 0;

(4) limy,—yo0 [ fdun = [ fdu for any bounded function f : H(OG) — R>o with compact
support which is continuous at p-a.e, that is, the set A(f) of non-continuous points
of f has measure zero with respect to u. FExplicitly,

A(f) :=={S € H(OG) | f is not continuous at S}.

For product measures pu, X vy, (fin, vy € SC(X),n € N) and p x v (u,v € SC(X)) the same
result follows by the same proof.

Proof. Since H(0G) is a locally compact, separable and metrizable space, we can take a
metric d on H(OG) compatible with the topology such that (H(9G),d) is a proper metric
space, that is, every closed ball with respect to d is a compact subset of H(9G). We will
use this property of d in the proof of (3) = (4).

(4) = (1): Obvious.

(1) = (2): For a compact subset K of H(0G), set

K, :={x € H(OG) | d(z,K) < %}
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for n € N. Then the characteristic function y g, converges pointwise to x g, which implies
that

w(Kn) = /XKnd,u — /XKdM = pu(K) (n — 00).

Fix € > 0. Then there exists N € N such that u(Ky) < u(K)+e. By the Urysohn Lemma
we have a continuous function f: H(9G) — R satisfying the condition that f|x = 1,
fligy)e =0and 0 < f(S) <1 for any S € H(IG). Then we have

lim sup p,, (K) < limsup/fd,un = /fd,u < u(Ky) < p(K) +e.

n—oo n—o0

Since € > 0 is arbitrary, we have

lim sup pin (K) < p(K).

n—oo

For a relatively compact open subset U of H(9G), set
1
Up:={xeU|dzU° > ﬁ}

for n € N. Then the characteristic function xy, converges pointwise to xy, which implies
that

u() = [ xvdi = [ xwdn=u0) (0 o).

Fix € > 0. Then there exists N € N such that u(Ux) > u(U) —e. By the Urysohn Lemma
we have a continuous function f: H(JG) — R satisfying the condition that f|y, = 1,
flaonye =0 and 0 < f(S) <1 for any S € H(IG). Then we have

n—o0

limint 0,(U) = liminf [ fap, = [ fou > p(Uy) = n(0) -
Since € > 0 is arbitrary, we have
lim inf 1, (U) > (V).
(2) = (3): Since Int(E) C E C E and 0F = E \ Int(E), we have
w(t(E)) = j(B) = u(E).

Therefore,
lim sup i, (E) < limsup pin (E) < u(E) = p(E)
:MELIEX()E)) < 1inrr_1>i£?;wjlnt(E)) < lim inf 11, (E),
and so

Jim pn (E) = p(E).
(3) = (4): This is the main part of this proof. We can assume that f > 0 without loss

of generality. Let suppf denote the support of f. Set

C :=sup{f(x) | z € H(OG)}
and

Ay :={x € H(OG) | f(x) >t}
for each ¢ € [0,C]. Note that [ fdu equals the area of

U= {(z,y) e H(OG) xR [0 <y < f(x)}

with respect to the product measure of 1 X mg, where mg is the Lebesgue measure on R.
Since

U= {(z,y) € H(0G) x R | y € [0,C],x € A},
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we have . c
[ tdn= [ wagdmao), [ fdi = [ na(a)dma(o).
0 0

By the bounded convergence theorem, it is sufficient to prove that u,(4;) (t € (0,C]) is
uniformly bounded, and p,(A¢) converges pointwise to u(A;) for mr-a.e. t € [0, C].

First, we see that u,(A:) (¢t € (0,C]) is uniformly bounded. Note that Ay = H(IG).
For any t € (0,C], A; is included in L := suppf, which is compact. Since (H(9G),d) is a
proper metric space, the closed r-neighborhood of L, denoted by B(L,r), is also compact
for r > 0. Set C(L,r) := {x € H(OG) | d(L,x) = r} for r > 0, which includes the
boundary 0B(L,r). Then we have

B(L,1)=Lu || C(Z,7).
0<r<1
Since the interval (0, 1] is an uncountable set, there exists ro € (0, 1] such that C(L,rg)
has zero measure with respect to p (see Lemma 5.46 for more general statement). Then
w(0B(L,rg)) = 0, which implies that p,(B(L,rp)) converges to u(B(L,rg)) by the as-
sumption. Hence there exists M > 0 such that p,(A:;) < M for any n € N and t € (0,7].

Next, we see that p,(A;) converges pointwise to u(A;) for mg-a.e. t € [0,C]. From the

assumption (3), it is sufficient to see that for mg-a.e. t € [0,C] we have p(9A;) = 0. Set
By i= {z € H(OG) | f(z) = 1)

for t € [0,C]. We prove that 0A; C By U A(f) for each t € [0,C]. Take z € JA; and

assume that f is continuous at x, which implies that x & A(f). If f(z) > t, then there

exists an open neighborhood V of x such that for any 2’ € V we have f(x’) > ¢, which

implies that V' C A; and contradicts the assumption that z € 9A;. Therefore f(x) =t

and z € B;.

Since p(A(f)) = 0, it is sufficient to prove that for mg-a.e. ¢ € [0, C] we have u(B;) = 0.
Note that p(A;) is a decreasing function with respect to ¢t. Therefore p(A;) has at most
countably many non-continuous points. If p(A;) is continuous at tg > 0, then B;, C
(Ag—c \ Aig+e) for any small € > 0 and

0 < 1(Bry) < Tim((Ary2) — p(Aiys=)) = 0.

Therefore pu(B;) = 0 except countably many points of [0, C'|. This completes the proof. [

In order to prove the continuity of isc, we focus on the boundary of Cr(Gj) for j € J.
We assume that G; contains id for every j € J.

Since CH(S1) N CH(S2) is a compact convex subset of H surrounded by geodesics for
(S1,52) € Z, CH(S1) N CH(S2) can be considered as a polygon. We define Br to be a
subset of Z consisting of points (57, .S2) satisfying one of the following conditions:

Brl) a vertex of CH(S1) N CH(S2) belongs to 0.F;

Br2) an edge of CH(S1) N CH(S2) overlaps an edge of F;

Bx3) an edge of CH(S1) N CH(S2) is tangent to a vertex of F.
A geodesic ¢ in H is said to be tangent to a vertex of a (convex) polygon P of H if the
intersection of £ and P is exactly the vertex. Note that Bx does not depend on edges and
vertices removed from the Dirichlet domain F,. Hence for any y € ¥ and the Dirichlet
domain F, centered at y we can define B, as above. Set

Ar:={(S,5) € G x .G | CH(S) N F # 0}.
The subsets B and Ar are closed in H(9G) x H(9G).

Lemma 5.42. For {id} € Fin(G) the boundary OCx({id}) of Cr({id}) in H(OG) x H(IG)
1s included in the union of Br and Ar.
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Proof. First of all, we remark that for S € H with #S > 3 for any interior point z of
CH(S) there exists an open neighborhood U of S such that for any S’ € U the convex
hull CH(S’) also contains z as an interior point from Lemma 3.8.

Let (S1,52) € 0Cx({id}). By the definition, for any open neighborhood O of (Si, S2)
both O N Cr({id}) and O N Cx({id})¢ are non-empty.

Claim 1: If S1 = Sy =: S, then (S,S) € Ar.

If #S5 > 3, then the interior of CH(S) is not bounded in > and we can take z €
Int(CH(S)) \ F. Then take an open neighborhood U of S such that for any S’ € U the
convex hull CH(S’) also contains z as an interior point. Now, we can see that U x U is
an open neighborhood of (5,.5) and does not intersect C'x({id}), which contradicts the
assumption that (5,9) € dCx({id}). Hence #S = 2. If CH(S) does not intersects F,
then there exists a neighborhood U of S such that for any S’ € U the convex hull of S’
does not intersects F. Therefore (S,5) € Ax. This argument will be used frequently in
this proof, and we will not remark it.

Claim 2: If S # So, then S1 N Sy = ().

To obtain a contradiction, suppose that S; # So and S; N Sy # (). From the proof of
Claim 1, #(S1 N S2) must be smaller than 3 and the interior of CH(S;) N CH(S2) must
be included in F. Since S # Sa, we can assume that S; > 3 from Claim 1. If #S5 = 2,
then CH(S5) is a boundary component of C'H(S7) or included in the interior of CH(Sy).
In both cases, there exists an open neighborhood U of (51, S2) such that U C Cx({id})¢,
a contradiction.

Now, we can assume that #51, #S2 > 3. If #(51NS2) = 1, then CH (S1)NC H (S2) must
be empty and there exists an open neighborhood U of (S, S2) such that U C Cx({id})¢, a
contradiction. If #(S1 NSy) = 2, then CH(S7) and C'H(S2) have one common boundary
component and Int(CH(S7)) NInt(CH(S2)) is empty. Even in this case, there exists an
open neighborhood U of (51, S2) such that U C Cr({id})¢. Therefore in any cases we can
obtain a contradiction.

Claim 3: If S1 # S, then (S1,S2) € Br.

Since S1NSy = 0, the intersection C'H(S1)NCH (S2) should be non-empty and bounded.
If CH(S1) NCH(Ss) contains an exterior point of F, then (S, S2) ¢ Cx({id}) from the
proof of Claim 1. Hence CH(S1) N CH(Ss) is included in F. If CH(S1) N CH(Ss) is
included in the interior of F, then for (S}, S5) sufficiently close to (S1,S2) the intersection
CH(S]) N CH(S%) is also included in the interior of F. Therefore, CH(S1) N CH(S2) is
not included in the interior of F, which implies that (57, S2) satisfies the condition (Br1)
or (Br2). O

Lemma 5.43. For G; € Fin(G) the boundary OCr(Gj) is included in G;(Br U AF).

Proof. Let (S1,52) € 0Cr(G;). By the same way for Claim 1 in the above lemma, we can
see that if S; = Sy =: S, then (S5,5) € Gj(Ar). Note that

Gj(A]:) = {(S, S) € 0bG X 0-G ‘ CH(S) N Gj(f) =+ @}

Since (9,5) € OCx(G,), the convex hull CH(S) should intersect gF for every g € Gj.
Therefore there may not exist such (5, .9).

By the same way for Claim 2 in the above lemma, we can see that if S; # Sy, then
S1 NSy = 0. Now, we prove that if S; NSy = 0, then (S1,52) € Gj(Br). In this case,
the intersection C'H (S1) NC'H(S2) must be included in G;(F). Since (S, S2) € dCx(G;),
for every € > 0 there exists a polygon P such that the Hausdorff distance between P
and CH(S1) N CH(S2) is smaller than €, and P is not precisely covered by G (F), which

implies that P is not included in G;(F), or P does not intersect g(F) for some g € Gj.

If for every € > 0 the e-neighborhood of CH(S1) N CH(S>) is not included in G;(F),
then a vertex of CH(S1) N CH(S2) belongs to 0G;(F) or an edge of CH(S1) N CH(Ss)
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overlaps an edge of 9Gj(F), which implies that for some g € G, g71(S1, S2) satisfies the
condition (Bx1) or (Bx2) and belongs to Br.

If there exists € > 0 such that the e-neighborhood of CH (S1) N CH(S2) is included in
G (F), then there exists gy € G; such that CH(S1)NCH(S2) does not contain an interior
point of go(F). Since CH(S1)NCH(Ss) intersects go(F) and both CH(S1) NCH(S) and
F are polygons, 90_1(51, Sy) satisfies at least one of the conditions to belong to Br. In
this case we need the condition (Bx3). Therefore in any cases (S1,52) € G;(Br). O

Our immediate goal is to prove Lemma 5.47, which says that for any u, v € SC(X) there
exists a Dirichlet domain F such that

o X V(B]:) =0.

By taking a path ¢ : [0,1] — ¥ starting from x we can obtain a family of Dirichlet domains
{]:c(t)}te[o,u- We investigate how OF, changes when x moves along c. Recall that each
edge of the Dirichlet domain F, is a sub-arc of the perpendicular bisector of the geodesic
joining z to g(x), denoted by [z, g(z)], for g € G. We say that such perpendicular bisector
surround F,. Since G acts on ¥ cocompactly and properly discontinuously, there are
only finitely many perpendicular bisectors surrounding F, for any y € ¥. Fix g € G and
consider how the perpendicular bisector of [z, g(x)] moves when xz moves along c¢. From
now on, we consider the Poincaré disk model of H and we will use the Euclidean geometry

for considering geodesics of H.

Lemma 5.44. Let £ be a geodesic line of H. Take vy1,yo € H such that y1,yo belong the
same connected component of H\ £. Let y, be the foot of the perpendicular line from y; to
¢ fori=1,2. If du(y1,yy) = du(y2, y5) and b is the perpendicular bisector of [y1,y2], then
b is also the perpendicular bisector of [y}, yh] C L.

Proof. Take an isometry ¢ such that ¢ maps the midpoint between y; and v5 to 0 € H.
Now, from the Euclidean geometry it is easy to see that the perpendicular bisector of

[6(y1), @(y2)] is also the perpendicular bisector of [¢(y}), d(v5)] C #(£). Since ¢ is an
isometry of Hl, this completes the proof. O

Fix non-trivial ¢ € G. For y € Y we define by(y) to be the perpendicular bisector of
[y, g(y)]. Let zg,yo be the feet of the perpendicular lines from z,y € 3 to the axis Ax(g)
of g, respectively. For any z € H the hyperbolic distance from z to Ax(g) coincides with
that from g(z) to Ax(g). Hence, we have by(z) = bg(xo) and by(y) = by(yo) from the
above lemma. Therefore, the bisector by (z) coincides with by(y) if and only if zp = yo.
Moreover, if by(z) does not coincides with by (y), then by(z) does not intersect by(y).

Recall that the translation length of g is the hyperbolic distance between a point z €
Ax(g) and g(z). Take an isometry ¢ of Isom(H) such that ¢ fixes the axis of g and ¢? = g.
Then the translation length of ¢ is a half of that of g and by(y) equals ¢(¢,) for the
perpendicular line £, from y to the axis of g.

Now, we consider how the vertices of F, moves when x moves along c. Since a vertex
of F, is the intersection of two bisectors bg, (z) and by, (z) for some g1, g2 € G, we have
a map ®g4 g, from an open neighborhood of = to a neighborhood of by, (z) N by, (z). Note
that if by, () and by, () intersects at a point, then there exists an open neighborhood U
of x such that by, (y) and by, (y) also intersects at a point for any y € U. From the above

construction of by, (y) for y € 3, we can see that ®4, 4, is a C>°-map on U. Therefore we
have the following lemma:

Lemma 5.45. Let g1, g2 be non-trivial elements of G. Assume that by, (z) and bg,(x)
intersects at a point for x € X. Then there exists an open neighborhood U of x and an
injective C*°-map ®g, g, from U to X which mapsy € U to the intersection point of by, (y)
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and by, (y). Since Oy, 4, is injective, a subset of U consisting of points y satisfying the
condition that the Jacobian of ®4, 4, at y equals 0 is a closed subset of U without interior
points.

Proof. We check only the injectivity of ®4, 4,. For any y € U, the perpendicular line from
y to Ax(g1) and that to Ax(go) intersects at y and by, (y) and by, (y) intersects at a point.
Assume that @y, 4,(y) = @y, g.(2) for y,z € U. Then by, (y) = by, (2) and by, (y) = by, (2).
Therefore the foot of the perpendicular line from y to Ax(g;) coincides with that from z
for ¢ = 1,2, which implies that y = z. ([l

Note that for any = € 5 and any non-trivial gi,g2 € G with g1 # g2, by, (z) never
coincide with by, (x) since gi(x) # ga(x).

The following measure-theoretic lemma will plays an essential role in proving Lemma
5.47.

Lemma 5.46. Let (X, p) be a measurable space, where p is a measure on X . Let {Ax}aea
be an uncountable family of measurable subsets of X. Let B be a measurable subset of X
such that B includes | Jycp Ax. Assume that pi(B) < oo and there exists M > 0 such that
for any x € X we have

#H{AeA|Ay>z} <M.
Such a family {Ay\} is said to be M-essentially disjoint. Then a subset
Aso = {A e A | u(4y) > 0}
s countable.

Proof. To obtain a contradiction, suppose that As( is uncountable. For each n € N

consider a subset
1

n— 1}’
where if n = 1, then 1/(n — 1) means co. Since p(Ay) < p(B) < oo for any A € A, we
have

1
Ani={Ae A~ <p(dy) <

Asg = |_| Ay,
neN
Then we can see that there exists ng € N such that A,, is uncountable. Since {A,} is
M-essentially disjoint, for any finitely many Ay,..., Ay € A, we have

g 1 o 1 1
Ay) > — Ay) > — k- —.
M(l:LJl /\k)— M;/"[’( /\z)— M nO
Therefore for a countably infinite subset L C A,, we have
k
Ay) >
w4 > Mg
AEL
for any k € N. Hence
p(lJ Ax) = oo,
AeLl
which contradicts our assumption that pu(B) < oo. O

Lemma 5.47. There exists a smooth curve c: [0,1] — £ such that for any p,v € SC(X),
the set

{t €[0,1] | p x v(Bx,,) > 0}
is countable. Therefore for almost all t € [0, 1] we have p X V(ch(t)) =0.
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Proof. Take a relatively compact open subset U of Y and a compact subset K of ¥ such
that K includes the Dirichlet domain F, for any y € U. Since G acts on X properly
discontinuously, there exists M; > 0 such that

#{9€ G |by(y) N K # 0 for some y € U} < M;.

Note that if by(y) N K # 0, then the hyperbolic distance from y to g(y) is smaller than or
equal to twice the diameter of K. Take all g1,...,gm € G\ {id} such that by, (y) N K # 0
for some y € U. Then m < M;, which implies that the number of edges of the Dirichlet
domain F, for any y € U is less than M;.

From Lemma 5.44 and the argument following it, we can take a smooth curve c: [0,1] —
U satisfying the following condition:

(x) for any t1,ty € [0,1] with ¢; # to the foot of the perpendicular line from c(t1) to
Ax(g;) is different from that from c(t2) for any i = 1,...,m.

Then for any ti,t2 € [0,1] with ¢; # t2 and g;, the bisector by, (c(t1)) and by, (c(t2)) are
disjoint. We will modify c later.

In order to apply Lemma 5.46 to the family {Bzr,, }icjo,1), We prove that for any
(51,82) € Z, the cardinality of {t € [0,1] | (51,52) € Bg,,} is uniformly bounded.
Since K is compact, there exists Ms > 0 such that the number of boundary components
of CH(S) intersecting K is less than M, for any S € H(OG), which implies that for
(S1,52) € Z the number of edges of the polygon CH(S1) N CH(S3) intersecting K is less
than 2Ms.

For (S1,52) € T and each vertex v of CH(S1) N CH(S2), v belongs to by, (c(t)) at most
once for t € [0,1] for each g;, that is, the number of ¢ € [0, 1] such that v € 0F .y is less
than Mj. This corresponds to the condition (Br1). By the same way we can see that for
each edge e of CH(S1) N CH(S2) the number of ¢ € [0, 1] such that e overlaps an edge of
Fe is less than My. This corresponds to the condition (Bz2).

Now, we want to see that for each edge e of CH(S1) N CH(S2) the number of ¢ € [0, 1]
such that e is tangent to a vertex of F,y is uniformly bounded. For any pair of g;, g;
such that by, (c(0)) and by, (c(0)) intersect at a point belonging to K, we can assume that
U is sufficiently small and we can define the map ®,, ;. on U. We can also assume that
if by, (c(0)) and by, (c(0)) intersect at a point belonging to the complement K*, then by, ()
and by, (x) do not intersect at a point belonging to K for any z € U. If @, , ocis a geodesic
and @, ;. (c(t)) is a vertex of F ) for every ¢ € [0, 1], then an edge e of CH(S1) NCH(S2)
can be tangent to @, ,.(c(t)) for every ¢ € [0,1]. This is an undesirable case.

We modify ¢ such that c satisfies the above condition () and the condition that any
geodesic meets @y, ;. o c at most 2 times for any pair of g;, g;. From Lemma 5.45 we can
assume that the Jacobian of @, ;. at y is not 0 for every y € U and every pair of g;, g;.

We use the Euclidean geometry on the Poincaré disk model of H in oder to modify
c. Since K is bounded in H, there exists a constant Ry > 0 such that any geodesic in
H passing through K is a sub-arc of a line or a circle with radius larger than Ry in the
Euclidean plane containing H, whose absolute value of curvature is less than 1/Ry. If the
absolute value of the curvature of a smooth curve « is larger than 1/Ry and the length
of ~ is small enough, then v is approximated by a sub-arc of a circle with radius smaller
than Ry and any line or a circle with radius larger than Ry in the Euclidean plane meets
~ at most twice. Note that if the absolute value of the curvature of v is larger than 1/Ry
and smaller than L, then the length of « should be smaller than 7/L, which is the length
of a half-circle with radius 1/L. Now, we prove the following claim:

Claim: We can modify ¢ so that c satisfies the condition (x), and the absolute of the
curvature of ®4, . o c is larger than 1/Rq for any pair of gi, g;.
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Suppose the above claim and prove the statement of the lemma. First, we can see that
for each edge e of CH(S1) N CH(S2) the number of ¢ € [0, 1] such that e is tangent to a
vertex of F ;) is less than 2 since the number of vertices of F;) is less than 2M;. Recall
that the number of edges of CH(S1) N CH(S2) intersecting K is at most 2Ms. Therefore
for each (S1,52) € T the number of ¢ € [0,1] such that B, containing (S1,S52) is at
most 2Ma(M; + M, + 2M;). Note that the union of ch(t> over t € [0,1] is included in

{(S1,82) € H(OG) x H(OG) | CH(S1) N CH(S2) N K # 0},

which is compact. Hence by applying Lemma 5.46 to u x v and the family {B Fett) }te[o,l}’
the set

{t€[0,1] | u x v(Bg,,) > 0}
is countable.

Now we prove Claim in the above. Set ¢(t) = (u(t),v(t)) for t € [0,1] and set ®(u,v) :=
Dy, g, (u,v) = (a(u,v), B(u,v)) for (u,v) € U. Let ¢’ denote the derivative of c. We denote
by «, the partial derivative of a with respect to u at ¢(t) for some t € [0,1]. Recall that
the curvature k. of ¢ is

W — o'

(w2 + U/2)% '

We have
(aoc) = ayu' + ay,
(@ 0¢) = auutt + 2004,V + @t + agu” + ay”,
and
(aoc)(Boc) —(Boc)(aoce) =¢+1h,
where
¢ = (aufy — Butw)(u'v” —v'u")
and
Y =(aut’ + ') (Buutt? + 2BtV + Buuv'?)
— (Butt + Bot") (! + 200UV + ryyv™?).
Then
Kdoc = ¢+ ¢ 3 -
((oce)?+(Boc)?)2
Since @, ;. is given for any pair g;, g;, we can regard the partial derivatives v, By, . ., Buv

appeared in Koo as almost constant. Note that the Jacobian of ®, which is (a8, — Bucw),
is not 0. We modify the second derivatives u”,v” so that (u'v"” —v'u”) > 0 is large. Then
Kaoc(t) is larger than 1/Ry. Note that «' and v' do not have to change so much if we
restrict ¢ to a short interval [0, 7] for some small r > 0.

For example, consider a function f(t) = (¢t + 1)* — at — 1 around 0 for a large a € N.
Then we have f'(t) = a(t + 1)~ ! —a, f"(t) = a(a — 1)(t + 1)*~2. Consider the case that
u' > 0. Set ¢(t) := (u(t),v(t) + f(t)) for t € [0,7] for a sufficiently small » > 0. Then
¢ is close to ¢, ¢ is close to ¢, and (v(t) + f(t))” is sufficiently large for t € [0,7]. Since
o', v u” 0" is bounded in U, u/(v" + ) — (v/ + f")u” is sufficiently large, which implies
that the absolute value of the curvature of ® o¢ is sufficiently large. Note that if ¢ is close
to c and @ is close to ¢ on [0, 7], then ¢ also satisfies the condition (x). This completes
the proof. O
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Remark 5.48. For a subset K of 3 set
AK):={S e H(OG) | CH(S)NK # 0}.

If K is open or compact, then so is A(K) respectively from Lemma 3.8. By using the
curve ¢ in Lemma 5.47, we can see that for any p € SC(X), a set

{t €10,1] | n(0A(Fer))) > 0}
is countable. In fact, the boundary of A(F)),

OA(Fo1y)) = {5 € H(9G) |
CH(S)N Int(]:c(t)) =0 and CH(S)N 8]:6(25)) #0}.

Hence for S € H(IG), if S € OA(Fy)), then there exists a boundary component B of
CH(S) such that B is tangent to a vertex of JF) or overlaps an edge of F ).

Proof of Theorem 5.35. Take (pn,vn), (u,v) € SC(X) x SC(X) (n € N) such that (g, vy)
converges to (u,v). Then the product measure p, X v, converges to u X v in the weak-x
topology in H(OG) x H(OG) by general theory (see [Bil99, Theorem 2.8] for the case of

probability measures). From Lemma 5.47 and Remark 5.48 there exists € ¥ such that
WOA(F,)) = vOA(F.)) = u x v(Bx,) = 0.

We remove some vertices and edges from F = F, such that G(F) = 5 and gFNF =10
for any non-trivial ¢ € G. Then p,(A(F)), vn(A(F)) converges to u(A(F)),v(A(F))
respectively by Proposition 5.41. Set

M = sup{un(A(F)),vn(A(F)) | n € N}.
We prove the following claim.
Claim: pi, X v, (Cr(G;)) converges to p x v(Cr(Gy)) for any j € J.

Assume Claim and prove that igc (i, vpn) converges to isc(u, v). Recall that G contains
id for every j € J. Hence

|| C#(Gj) C A(F) x A(F),
JjeJ

which implies that
Z.Un x v, (Cr(Gy)) < M?
Jj€J

for any n € N. Therefore

nlglgo isc(Hns Vn) = HIEEOZF% X vn(Cr(Gy))
JjeJ
= uxv(Cr(Gy)) =isc(uv),
jedJ
which proves the theorem.

Now, we prove Claim in the above. Fix j € J and € > 0. From Proposition 5.41, we
consider the boundary dCrz(G;). Recall that 0Cr(G;) C G;j(Br UAF) for j € J and we
have

Gj(AF) ={(8,8) € H(OG) x H(OG) | #S =2,CH(S) N G;(F) # 0},
which is included in the compact set A(G;(F)). Note that p x v(G;(Br)) = 0 since
p x v(Br) = 0. Hence, if 4 x v(Gj(Ar)) = 0, then immediately we can see that p x
v(0Cr(Gj)) = 0, which implies that p, x v,(Cr(Gj)) converges to u x v(Cr(G;)) by
Proposition 5.41. From now on, we assume that p x v(G;(Ar)) > 0.
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From the Fubini’s theorem we have

nxv(Gi(Ar)) = /XGj(A;)(Sl,Sz)dM X v

= / (/XGj(A}-)(Slv‘SQ)dM(Sl)) dv(S2)

- / ({52} dn(Ss)
02GNA(G;(F))
- T H({SHr({S)),

S€02GNA(G,j(F)): common atom of p1,v

where X, (a,) is the characteristic function of Gj(Ax) on H(OG) x H(IG). Recall that
a point S € H(IG) is called an atom of p if pu({S}) > 0. Since p,v are locally finite
measures, they have at most countably many atoms. Therefore there exist finite common

atoms S1,..., S, € oG N A(G;(F)) of p, v such that

(%) nx v(Gi(AF) <Y nxv({(Sk S} +e.
k=1

We will construct an open neighborhood V' of {(S1,51),...,(Sm,Sm)} such that p, x
(VN Cr(Gj)) < e for any n € N.

Since #5; = 2 and Si is an atom of a subset current, there exists g € G such that
Sk = A({gx)) from Lemma 2.8. Hence gi(Skx) = Sk. Since u(0A(F)) = v(0A(F)) = 0,
we have p(0A(gF)) = v(0A(gF)) = 0 for any g € G, which implies that CH(S})) passes
through the interior of gF for any g € G;. Hence Sy, € Int(A(G;(F))). Then we can take
an open neighborhood Oy, C Int(A(G;(F))) of Si. Take an arbitrary L € N and set

L

Uy = ﬂ(gk)fl(ok)-

=1

Then Uy is also an open neighborhood of S, and
9e(Ur), - -+, (g1)*(Ux) C Oy C Int(A(G,(F))).

Now, we consider the intersection of Uy x Uy and Cr(G;). Note that gCr(G;) N
Cr(G;) = 0 for any non-trivial g € G. Therefore

9k (Ur X Us NCE(Gy)) ..., (ge)" (Uk x Up N Cx(Gy))
are pairwise disjoint, and for any n € N we have

U X I/n(Uk x Ui N C]:(GJ))
L

Ly (U<gk>l<vk < U cf<Gj>>)

=1

< i X (A(GH(F)) x AGy(F)

ST Y X (@A) x (AF)

91,92€G;
o (#GM)*
- L
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Set V := (Uy x Uy)U---U (Up, X Up,). Then we have

— (#G; M) m(#G;M)?
fin X vp(V N Cr(G S; < A

Then we can take a sufficiently large L such that

fin X (VN CE(Gy)) < e

Note that V' contains all of (S1,S51),..., (Sm, Sm)-
Since Cr(G;) NG;(Ar) =0, we can see that
Int(Cx(G;)) = Cr(Gj) \ G;j(BrF).
Then from Proposition 5.41 and Equation (x), we have
X U(CH(Gy)) = p x (Int(Cr(G5)))
Slilginf tn X v (Int(Cr(Gy)))
<liminf p,, x v, (Cx(Gy))

n—o0

<limsup py, X v, (Cr(Gj))

n—oo
<limsup pin X v, (Cr(Gj) \ V)

n—oo

+ lim sup py, X vp(Cr(G5) NV)
n—oo

<limsup pn, X v (Cr(Gj)\ V) +¢€

n—oo
< x W(CHG\ V) +e
<uxv(Cr(Gy)) + pxv(Gi(AF)\ V) +e
<p x v(Cr(Gj)) + 2e.

Since € > 0 is arbitrary,
Jim gy, X v (Cr(Gy)) = p x v(Cr(Gy))-

This completes the proof. O

6. INTERSECTION FUNCTIONAL N ON SUBSET CURRENTS

Let X be a compact hyperbolic surface possibly with boundary and G the fundamental
group of ¥. The notation in this section is based on that in Section 5 and we consider the
universal cover 3 of X as a subspace of the hyperbolic plane H. We identify 0G with the
limit set A(G) C OH.

Recall that for two non-trivial finitely generated subgroups H and K of G we have
considered the fiber product Cy x5 Ck corresponding to the convex cores (Cp, py) and
(Ck,pK). Now, instead of contractible components of Cy Xy Cx we study the non-
contractible components of CH x5 Ck. Note that Cy Xy Ck can be considered as the
quotient space G\ CH H X5 CH x and every non-contractible component of Cy Xy Ck is
corresponding to

(1Hgy " N g2aK g3 Y\(91CHy N g2CH)

for [g1H, g2 K] € G\(G/H x G/K) with giHgy' N g2 Kgy ' # 0. If sCHy N goCHy = 0)
for [g1H, go K] € G\(G/H x G/K), then g1Hg;* N g2 K gy * is trivial.
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Definition 6.1 (Product N'). We define the product N of two finitely generated subgroups
H and K of G by

l91H,92 K]€G\(G/HxG/K)

See [Sas15| for the background of A in the case that G is a free group of finite rank.

Remark 6.2. Let H, K be finitely generated subgroups of G. From [Sas15, Theorem 4.1],
we have a bijective map from G\(G/H x G/K) to the set of all double cosets H\G/K,

which maps [g1H, g2 K] to Hg; Lgo K. Since rk is invariant up to conjugacy, we obtain

NH,K)= Y tk(HngKg™).
HgKcH\G/K

In the case that G is a free group of finite rank, this expression of the product N is often
used for stating the Strengthened Hanna Neumann Conjecture, which can be written as
follows: for any finitely generated subgroups H and K of G the inequality

N(H, K) < Tk(H)Tk(K)

holds. This conjecture was individually proved by by Friedman [Fril5] and Mineyev
[Min12]. As far as the author knows, the surface group version of the Strengthened Hanna
Neumann Conjecture is still an open problem.

Next, we consider a geometrical expression of the product N. For each [g1H, g2 K] €
G\(G/H x G/K), if g1 Hgy ' N go K gy ' # {id}, then g1CHpy N g2CHy is non-empty and
there exists a corresponding connected component of Cyr x5 C'x whose fundamental group
is isomorphic to g1 Hg; 'Ng. K 9y . We define the reduced rank rk(M ) of a non-contractible
compact surface or a circle M to be —x(M) and the reduced rank of a contractible space
M to be 0. Then we can see that

MCCyxsCk

where the sum is taken over all connected components of C'y x»Ck. Note that a connected
component of Cy xy Ck is not necessarily a surface.

Our goal in this section is to prove the following theorem. In the case that G is a free
group of finite rank, this theorem is proved in [Sas15, Theorem 3.2].

Theorem 6.3. There exists a unique symmetric continuous R>q-bilinear functional
N:SC(X) x SC(X) = Rxg
such that for any non-trivial finitely generated subgroups H and K of G we have
N, nx) = N(H, K).

In the case that G is a free group F’ of finite rank, from the above theorem, we can see

that the inequality

N (p,v) < tk(p)rk(v)
holds for any u,v € SC(F'), which is a direct corollary to the Strengthened Hanna Neu-
mann Conjecture.

Note that for any finitely generated subgroup H of G we have N(G,H) = tk(H).
Hence N(ng,-) coincides with the reduced rank functional rk by the denseness property
of rational subset currents for G.

The guidelines for proving Theorem 6.3 is almost the same as that in [Sas15]. The main
objects considered in [Sas15] are graphs and trees but our main objects here are surfaces
and circles. One of the keys for proving Theorem 6.3 is the Gauss-Bonnet Theorem. Note
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that a boundary component of a 2-dimensional connected component of Cp Xy Ck is not
totally geodesic but piecewise geodesic. Moreover, C'y X Ck contains a 1 or 0-dimensional
object if either H or K is cyclic.

In order to apply the Gauss-Bonnet Theorem to Cr Xy C'i, we introduce some notation.
For a corner v of a piecewise geodesic, which is called a vertex, we define An(v) to be
the exterior angle of v. If a 1-dimensional connected component M of Cy Xy Ck has
a boundary, then M is a geodesic segment. For an end-point v of the geodesic segment,
which is called a vertex, we define An(v) to be m. If a connected component M of Cy x5 Ck
is a point, then we also call M a vertex of Cy x5, Cx and define An(M) to be 2w. By
applying the Gauss-Bonnet Theorem to each connected component M of Cy x5 Ck, we
have the following formula

2x(M) = —Area(M) + Z An(v),

v: vertex of M

and so

(GB) 21X (Cr x5 Cx) = —Area(Cy x5, Cx) + > An(v).

v:vertexof Cyg X Ck

Note that x(Cy xx Ck) (or Area(Cy xx Ck)) is the sum of the Euler characteristic (or
the area, respectively) of each connected component of Cy Xy Ck. If M is a 1-dimensional
or 0-dimensional connected component of Cy x» C'x, then the area of M is 0.

Since the Euler characteristic of a contractible component is 1, we have the following
equation:

N(H,K)=—x(Cy xx Cg) +i(Cy,Ck).

We will extend x to a symmetric continuous R>¢-bilinear functional from SC(X) x SC(X)
to R by using Formula (GB). In order to do that, we will extend both the “area term”
and the “angle term” in Formula (GB) to symmetric continuous R>q-bilinear functionals
from SC(X) x SC(X) to Rxo.

First, we extend the “area term” by using the same method of Theorem 3.3. Take a

Dirichlet domain F for the action of G on Y. Recall that my is the measure on H induced
by the Riemannian metric on H. We define a function f from H(9G) x H(9G) to R by

f(Sl, Sg) = mH(C’H(Sl) N CH(SQ) N ]:)
for (51, 52) € H(OG) x H(9G).
Proposition 6.4. The function f is a continuous function with compact support. The

functional f* from SC(X) x SC(X) to R>o defined by

[ (psv) = /fdu xv (u,v€SCE))

s a symmetric continuous R>q-bilinear functional satisfying the condition that for any
non-trivial finitely generated subgroups H and K of G we have

f*(T]H,T]K) = Area(C’H X CK)

Proof. For any (S1,52) € H(0G) x H(OG) satisfying the condition that either CH (S1)NF
or CH(S2) NF is empty, we have f(S1,S2) = 0. This implies that the support of f is

included in A(F) x A(F), which is compact. Hence f has a compact support. We can
prove that f is continuous by the same way as the proof of Proposition 3.2.



70 D. SASAKI

Now, we check that f*(ng,nKx) = Area(Cy x5 Ck) for any non-trivial finitely generated
subgroups H and K of G. First we have

e, i) = /deH X MK
_ > (g1 A(H)g2A(K))

(g1 H,92K)eG/HxG/K

= > m(g1CHy N gsCHyc 0 F).
(g1H,92K)eG/HxG/K

Set
P:={(q1H,3:K,z) € G/H x G/K xS |z € iCHy N goCHy N F}.

We can extend the measure my to the measure on G/H x G/K x 5 naturally since
G/H x G/K is a countable discrete space. Then we have my(P) = f*(nm,nk). From
the proof of Lemma 3.1, it is sufficient to see that P is a measure-theoretic fundamental
domain for the action of G on @H X5 @K, that is, G(P) = @H X5 C/’I\{K and gPNP
has measure zero for any non-trivial g € ( G.

For any (g1H,g2K,z) € CHy X5 CHf there exists g € G such that gz € F. Then

9(q1H, 92K, x) € P. Hence G(P) = CHy X5 CHp. For any g € G the projection of the

intersection gP N P onto ) equals gF N F. Hence gP N P has measure zero.

Now, we give another proof of the equality f*(nm,nx) = Area(Cy x5 Ck) by considering
each connected component of Cp X5 Cg. The fiber product Cy x5y Ck is the disjoint
union of

My gk = (91Hg ' Ng2K g5 )\(1CHp N goCHk)
over all [g1H, g2K]| € G\(G/H x G/K). Fix g1,92 € G and set J := 91H91_1 ﬂggKgQ_I,
which is the stabilizer of giCHy NgoCHg in CH g X5 CH k. The preimage of My, i g,k
with respect to the quotient map ® from CH H X5 CH Kk to Oy xs Ok coincides with

{(991H,99:K,7) € G/H x G/K xH | g € G,x € gg1H N gga K}

>~ |_| g(QICHHHQQCHK>
gJeG/JT

Take a complete system of representatives R of G/J. Now, we prove that a set

A= U (iCHy N goCH)Ng L F
geER

is a measure-theoretic fundamental domain for the action of J on gtCHy N g2C Hg, Note
that R~! is a complete system of representatives of J\G, which implies that

J\Ug'F| =6
g€eER

and u1g~! # usg~! for any g € R and uy,us € J with uy # ug. Hence J(A) = g1CHy N
92CHpg and u(A) N A has measure zero for any non-trivial w € J. From the proof of
Lemma 3.1, we can see that my(A) equals the area of My 1 g, K-

Now, we prove that Area(Cy xx Cx) = f*(ng,nKx). We have a bijective map from
G/J to [g1H, g2 K] which maps gJ € G/J to (991 H, gg2K) € [g1H, g2 K]. Since my is a
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G-invariant measure, we have

mu(A) = Z mu((g1CHy N goCHg) N g L F)
geER

= > mu(gyCHy N gyCHg N F).
(91 H,95K)€l91H,92 K]
Note that G/H x G/K is the disjoint union of [g1 H, g2 K| € G\(G/H x G/K). Hence

(s k)

= Z mu(g1CHyg N g2CHK N F)
(1 H,92K)eG/HxG/K

- > > mu(¢iCHy N goCHk N F)
[91H,92 K|€G\(G/H*G/K) (91 H,g5 K)€[91 H,g2 K]

= Z Area(Mgy, H g K)

l91H,92 K]€G\(G/HxG/K)
=Area(Cy xx Ck).

This completes the proof. U

Now, we extend the “angle term” to a symmetric continuous R>¢-bilinear functional on
SC(X) x SC(X) by using the method of proving the extension of the intersection number.
Let F = F; be the Dirichlet domain centered at x € 3. We remove some edges and
vertices of F such that G(F) = ¥ and gF N F = () for any non-trivial g € G. For
(S1,52) € H(OG) x H(OG) with CH(S1) NCH(S2) # 0, a vertex of CH(S1) NCH(Ss) is
the intersection point of a boundary component of C H(S1) and that of CH(S2). We define
the angle An(v) at v to be the exterior angle at v. Define a function ¢ from H(0G) x H(0G)
to R by

¢r(S1,52) = Z An(v).
v: vertex of CH(S1)NCH(S2) in F
for (S1,952) € H(OG) x H(OG). From the proof of Proposition 6.4, we can see that for

non-trivial finitely generated subgroups H and K of G the restriction of the quotient map
D to

{(ng,ggK,x) S G/H X G/K X i | r € qgCHyNgCHg ﬂ]:}
is a bijection onto Cy Xy, Ck. Therefore we obtain

/¢fdﬂH X MK
- Z ¢r(1A(H), g2A(K))

(91H,92K)eG/HXG/K

= > > An(v)

(g1H,g2 K)eG/H xG/ K v: vertex of g1 CHygNg2CH in F

= Z An(v).

v:vertexof Cyg xsCk

We define the symmetric R>g-bilinear functional ¢*% from SC(X) x SC(X) to R>g by

OF(p,v) = /¢]—'dﬂ X v

for p,v € SC(X). We prove that the restriction of ¢% to the set SC,(X) of rational
subset currents on X is continuous in Proposition 6.7. Then by the denseness property
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of rational subset currents for G = m1(%), ¢%[sc, (n)xsc,(x) 18 uniquely extended to a
symmetric R>q-bilinear functional from SC(X) x SC(X) to Rx>o.

We note that the map ¢ is not continuous and we need to understand the set A(¢r) of
non-continuous points of ¢+ in order to apply Proposition 5.41 to ¢ . For any S € H(9G),
the number of boundary components of CH(S) intersecting a bounded subset of H is
bounded by a constant independent of S. Hence it is sufficient to consider a finite number
of boundary components of C'H(S) intersecting a neighborhood of F for S € H(9G) when
we see how the value of ¢ changes.

Let S € H(0G) and By,...,Bj the boundary components of CH(S) intersecting a
neighborhood of F. Assume that #S > 3. For a sufficiently small neighborhood U of S
we can see that for any S’ € U there exist boundary components Bj, ..., B; of CH(S')
such that Bf,. .., By, is the boundary components of C'H (S’) intersecting the neighborhood
of F and the Hausdorff distance between B; and B, which is induced by the Euclidean
metric, is small for every ¢ = 1,..., k from Lemma 3.8. Moving the boundary component
By of CH(S) in U means taking a path from S to a point S” € U such that for every
point S’ in the path B; = Bj for i = 2,...,k. Moving the boundary component B of
CH(S) a little means taking a (sufficiently) small open neighborhood U of S and moving
By of CH(S)in U.

Let (S1,S52) € H(OG) x H(OG). Assume that a boundary component By of CH(S)
and a boundary component By of C'H(S2) intersect at a point v. If we move the boundary
components By and B a little , then the intersection point and the exterior angle at the
point change continuously.

Now, we define C'r to be a subset of H(OG) x H(OG) consisting of points (S7,.52)
satisfying the condition that there exists a vertex of CH(S1) N CH(S2) belonging to dF.
We can see that Cr is included in A(¢r) by Lemma 3.8. Moreover, Cr is a closed
subset of H(0G) x H(OG) by Lemma 3.8. Note that for (S1,S52) € Cr the intersection
CH(S1) N CH(S2) is not necessarily bounded.

Next, we define Dr to be a subset of H(9G) x H(IG) consisting of points (S, S2)
satisfying the condition that CH(S;) and C'H(S2) share one boundary component B =
CH(S) for S € 0LG, CH(Sl) N CH(SQ) = B, and B NnF #* 0. For (51,52) € Dr we
have ¢f<51,52) =0,5:=5 N5 € G and CH(Sl) N CH(SQ) = CH(S) Note that
for (S1,52) € Dr the cardinality of S; can be 2. Let (S1,S2) € Dr and S = S; N So.
Assume that #5S1,#S2 > 3 and CH(S) passes through the interior Int(F) of F. Then
we see that there exists S’ € 9,G close to S such that CH(S) and CH(S’) intersect at a
point in Int(F). Hence by moving the boundary component CH (S) of S to CH(S’) there
exists S| € H(OG) close to Sy such that ¢£(S],S2) is close to m, which implies that ¢r
is not continuous at (S7,S2). We see that Dx is a closed subset of H(OG) x H(OG) by
Lemma 3.8.

For S € 0,G with CH(S) N F # (), we see that (S,S) € Dr. Moreover, ¢ is not
continuous at (S,5). Recall that we used the subset

Ar={(S,S) € DG x 3G | CH(S) N F # 0}.

for proving Theorem 5.35. During the proof of the continuity of ¢%, Dx will plays the
same role as Ax in the proof of Theorem 5.35.

Lemma 6.5. The set A(¢r) of non-continuous points of ¢pr is included in Cr L Dg.

Proof. Take any (S1,52) € H(0G) x H(0G) \ (CrU Dr). It is sufficient to prove that ¢r
is continuous at (57, 52). Since Cr LI Dr is a cosed subset of H(9G) x H(OG) we can take
an open neighborhood U of (S7,52) such that U N (Cr U Dg) = 0. Since (S1,52) € Cr,
any vertex of CH(S1) NCH(S2) is contained in the interior of F or the exterior of F. We
divides the proof into several cases. We assume that U is sufficiently small in each case.
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Case 1: F does not contain any vertex of CH(S1) N CH(S2).

If there exists no S € 092G such that CH(S) is a common boundary component of
CH(Sy) and CH(S3), and CH(S)NF # 0, then we can take a sufficiently small open
neighborhood U of (51, S2) such that F does not contain any vertex of CH(S]) NCH (S%)
for (S7,5%) € U, which implies that ¢ (57, S5) = 0 and ¢ is continuous at (S1, S2). Now,
we assume that there exists S € d»G such that CH(S) is a common boundary component
of CH(S1) and CH(S3), and CH(S) N F # . Since (S1,S2) & Dy, CH(S1) N CH(S3) \
CH(S) is not empty. Hence even if CH(S]) N CH(S)) has a vertex contained in F for
(S1,5%) € U, the exterior angle at the vertex is small. Therefore, ¢ is continuous at
(S1,52).

From now on, we assume that F contains at least one vertex of CH(S1) N CH(S2).

Case 2: Both S and Sy belong to 02G, that is, CH(S1) N CH(S2) is a point contained
in F.

Since (S1,S52) € Cr, CH(S1) N CH(S2) is an interior point of F. Then we can take
an small open neighborhood V of CH(S1) N CH(S2) included in F such that if U is
sufficiently small, then for any (S7,S55) € U we have CH(S]) N CH(S,) C V. Hence
the area of CH(S]) N CH(SY) is smaller than that of V for any (S7,5%) € U. From the
Gauss-Bonnet Theorem, we have

2 < Z An(v) < Area(V) + 2m.
v: vertex of CH(S])NCH(SY)

Since ¢£(S1,S2) = 27, ¢ is continuous at (S, .52).

Case 3: Only one of S; and S belongs to 02G.

In this case CH(S1) NCH(S?) is a geodesic segment or a geodesic half-line. We assume
that #S57 = 2 and #S3 > 3. Let v be a vertex of CH(S1) N CH(S3) contained in the
interior of F. Note that the geodesic line C'H(S1) meets a boundary component B of
CH(S2) at v. Take (S7,55) € U and assume that U is sufficiently small. If #S] = 2,
then CH(S]) meets CH(S%) at a point v close to v, which is also contained in F. Hence
An(v) = 7 = An(v'). If #S] > 2, then CH(S]) has two boundary components Bi, By
meeting a boundary component B’ of CH(S}), which is close to B, at w;, wa respectively,
which are contained in F. The vertices wi, wy are contained in a small open neighborhood
of v. Then the interior angle at w; is close to the exterior angle at wo, which implies that
the sum An(w;) + An(ws) is close to m = An(v). Therefore ¢r is continuous at (Si,.52).

Case 4: Both #57 and #5S5, are larger than 2.

Recall that at most finitely many boundary components of CH(S7), CH(S2) intersect
a neighborhood of F, which implies that F includes at most finitely many vertices of
CH(S1)NCH(S2). Hence we can see that ¢r is continuous at (51, S2) by considering the
movement of boundary components of CH(S;) and CH(S2) in U. O

From the argument in the above proof, we can prove that ¢r is a Borel function.
Moreover, the support of ¢ is included in the compact subset A(F) x A(F) since F
is compact. Recall that the number of vertices of CH(S1) N CH(S2) in F is uniformly
bounded for any (S1,S2) € H(OG) x H(OG). Hence ¢r is a bounded Borel function with
compact support. B N

For the Dirichlet domain F, centered at x € ¥ for the action of G on ¥ we can define
Cr, by the same way as Cr. From the proof of Lemma 5.47, there exists a smooth curve
c: 0,1 — Y such that for any pu,v € SC(X), the set

{t€[0.1] | ux UCr) > 0}

is countable. In order to apply the same method of proving the continuous extension of
the intersection number on SC(X), we prove the following lemma:
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Lemma 6.6. Let F' be a Dirichlet domain for the action of G on 3. By removing some
edges and vertices of F', we assume that G(F') =X and gF' N F' =0 for any non-trivial
g € G. Then for any u,v € SC(X) we have

/¢fdu>< Vz/qspdu X v,

Proof. For a subset U of 3 we define a function oy by
$u (S, S2) = > An(v)
v: vertexof CH(S1)NCH(S2) in U

for (S1,52) € H(OG) x H(OG). Then we can see that for any family of pairwise disjoint

subsets {Uy} of ¥ we have
¢L|)\U)\ - Z (bU)\'
A

For a subset U of ¥ and g € G we have Ggu(S1,S2) = du (9151, g7 1S,) for any (S1,52) €
H(OG) x H(OG). Note that ¢4, rng, 7 is a Borel function for any gi, g2 € G. Since pu x v
is G-invariant, we obtain

[ osuxv= [ oucaresmduxv

= Z / Prngrrdp X v

geG

= Z/tﬁglfmf/du X v

geG

= /¢f/dﬂ X V.

This completes the proof. O
The following proposition is the main part of our proof of Theorem 6.3.
Proposition 6.7. There exists a unique symmetric continuous R>q-bilinear functional
: SC(X) x SC(X) — R>g
such that for any non-trivial finitely generated subgroups H and K of G we have
Y, nK) = > An(v).

v:vertexof Cyg xXxCk

Proof. 1t is sufficient to prove that the restriction of ¢’ to SC,(3) x SC,.(X) is continuous.
Take (fin,vn) € SCH(X) x SC,(X) (n € N) converging to (u,v) € SC,(X). We prove that
% (fin, vn) converges to ¢’-(u,v) partially following the proof of (3) = (4) in Proposition
5.41. We will also use the method that we used in the proof of Theorem 5.35.

Fix ¢ > 0. By moving the base point of the Dirichlet domain, we can assume that F
satisfies the condition that

HOA(F)) = vOAF)) = p x v(Cr) = 0.

Set
M := sup{pn(A(F)), vn(A(F)) | n € N},

C = sup{¢F (51, 52) | (51,52) € H(IG) x H(OG)},
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and set

Ay = {(51,52) € H(OG) x H(IG) | ¢pF(S1,S2) > t},
B :={(51,52) € H(0G) x H(IG) | ¢pF(S1,52) =t}
for t € [0, C]. Then we have

C
brduxv= [ ux v(A)dma(0)
0
and
C
OFdp, X vy = / tn X Up(Ap)dmg(t).
0

Now, it is sufficient to prove that p, x v,(A;) converges pointwise to pu x v(A;) for mpr-a.e.
t € [0,C]. Note that A; C A(F) for any t > 0. Therefore j1,, X v (Az), p x v(Ay) < M2.

We know that 04; C By U A(¢r) and pu x v(B;) = 0 for mpr-a.e. t € [0,C]. From the
proof of Proposition 5.41, if u X v(A(¢x)) = 0, then pu, X v, (A¢) would converge pointwise
to u x v(As) for mp-a.e. t € [0,C]. However, we have A(¢r) C CrU Dx from Lemma 6.5,
and p x v(Dg) is not necessarily equal to zero. Hence, we need to evaluate the influence
of u x v(Dx).

From now on, we assume that u x v(Dz) > 0. Note that for any (S1, S2) € Dr we have
¢F(S1,52) = 0. Therefore A; N Dx = () for every t > 0. Moreover, if u x v(B;) = 0, then
px v(As) = p x v(Int(4;)), which will be used later. Fix § > 0 such that M2§ < . Then
we have

0 6
/ T U(At)dmR(t),/ i X vp(Ap)dmg(t) < e.
0 0

Similarly to the proof of Theorem 5.35, we construct an open subset V' of H(0G) x H(0G)
such that p, x v,(A:NV) <e forany n € N;t € [§,C], and u x v(Dr\ V) = 0.

Since u, v are rational subset currents on ¥ and D is compact, there exists (S¥, S%) €
Dz for k =1,...,m such that (S¥, %) is an atom of u x v for every k and

pxv(Dr) = uxv({(St,55)}).
k=1
In order to obtain this equation, we have restricted ¢*% to SC,(3) x SC,.(X).

Let (S1,52) € {(S¥,S5) e1...m. Let B := CH(S;) N CH(S2). Since S; is the limit
set of a finitely generated subgroup of G for ¢ = 1,2, there exists ¢ € G such that
A((g)) = B(oo) and g(51,52) = (51,52). Since p(9A(F)) = v(0A(F)) = 0, (51,52)
belongs to Int(A(F)) x Int(A(F)), that is, B passes through Int(F).

Since g can be considered as a self-homeomorphism of H(9G) x H(IG) fixing (57, .52),
for any L € N we can take an open neighborhood U of (S1,S2) such that

g(U),...,g"(U) c Int(A(F)) x Int(A(F)).

Take a compact convex polygon O of H such that O includes g(F),...,g"(F). We can
also assume that U is sufficiently small such that

Area(CH(T1)NCH(T2)NO) < 1

for any £ =1,...,L and (T, T%) € ¢*(U).

Now, we consider Wy := ¢“(U N A;) for t € [6,C] and £ = 1,..., L. Take a € N such
that ad > 27 + 1. Note that « is independent of L. We prove that Wy,..., Wy are
(av — 1)-essentially disjoint, that is, for any (77,7%) € H(0G) x H(IG) we have

#{E ’ Wg > (Tl,TQ)} <a-—1.
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To obtain a contradiction, suppose that there exist 1 </ < o < --- < £y < L such that

W = ﬁ W,
s=1

is not empty. Take (T1,Ty) € W. Since (T, T2) € Wy,, we have ¢r(g Ty, g Tp) > 0,
which implies that ¢y, #(T1,72) > 6. Note that ¢y, #(T1,T2) equals the sum of the

exterior angle of vertices of CH(T) N CH(Ty) in g*F. Hence the sum of the exterior
angle of vertices of CH(Ty) N CH(T») in O is larger than or equal to ad. Note that
CH(T1) N CH(T3) N O is a convex polygon. From the Gauss-Bonnet Theorem, we have

Area(CH(TY)NCH(T2)NO) > ad — 27 > 1,

a contradiction.
Hence W1, ..., W}, are in particular a-essentially disjoint and

L L
1
Hn X Vnp <£_LJ1 WZ) > E ;_1 Hn X Vn(WZ)

1
= aZM” X vn(U N Ay)
/=1

L
= E'LLTL X Vn(UﬂAt)

Since Wy is included in A(F) x A(F) for every £ =1,..., L, we have

aM2
L

HnXVn(Ath) <

From the above, we can take an open neighborhood Uy of (Sf , Séf) such that

aM?
L

Hn X Vn(Athk) <
forevery k=1,...,m. Set V:=U; U---UU,,. Then

aM? maM2
7 .

m
pn X va(AeNV) <)
k=1

By taking a sufficiently large L, we have
pn X U (AiNV) <e

for any n € N and t € [0, C]. Moreover, u x v(Dr\ V) = 0.
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From Proposition 5.41, for any t € [§, C| with u x v(B;) = 0 we have
X v(Ay) = px v(Int(Ag))
<liminf p, X vp(Int(A:)) < liminf p, X v, (Ar)
n—00 n—0o0

<limsup gy, x Vn(At)

n—oo
<limsup pin, X vp (A \ V) + limsup p,, X v (A NV)
n—oo n—oo

<limsup py, x V(A \ V) +¢e

n—oo

e x (A V) + e

<pu X v(A) +puxv(QA\V)+e

<puXv(A)+puxv(De\V)+e

<u x v(A4y) +e.
Since € > 0 is arbitrary, for mg-a.e. t € [0, C],

nh_}n;o tn X Un(Ay) = o x v(Ay).

Then

C c
/ tn X Un(Ag)dmg(t) — / wx v(Ay)dmg(t)
0 0

)
< [l v (40) = (A1)
0
C
[ o) = X v A9 a0
)
C
<2M?§ —|—/ |tn X vp(Ay) — X v(Ag)|dmg(t)
)

C
<2 +/ |pin X vp(Ay) — p X v(Ag)|dmg(t).
0

Note that the last term

C
/5 in X vn(Ay) — o % w(Ag)|dmz ()

converges to 0 when n — co. Since € > 0 is arbitrary,
C C
/ fn X Up(Ay)dmg(t) — wx v(Ay)dmg(t).
0 n—oo 0
This completes the proof. O
Proof of Theorem 6.3. Recall that by the Gauss-Bonnet Theorem for non-trivial finitely
generated subgroups H and K of G we have

27TX(CH X CK) = —Area(CH X CK) + Z An(v).

v::vertex of Cyg x»Cg

From Propositions 6.4 and 6.7 we define a functional X to be
1 *

which is a continuous R>g-bilinear functional from SC(X) x SC(X) to R sending (9w, nx)
to x(Chg x5 Ck). Since f* and 1 are symmetric, so is X.
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Recall that
N(H,K)=—x(Cu xx Ck) +i(Ch,Ck).
Hence we define a functional N to be —X + igc. Then N is a symmetric continuous
R>p-bilinear functional from SC(X) x SC(X) to R sending (nm,nk) to N(H, K). Since
N(H, K) > 0 for any finitely generated subgroups H and K of G, we have N (u,v) > 0 for
any p,v € SC(X) from the denseness property of rational subset currents for G = m (X).
The uniqueness of A/ also follows by the denseness property of rational subset currents. [J

7. PROJECTION B FROM SUBSET CURRENTS ONTO GEODESIC CURRENTS

Let X be a compact hyperbolic surface possibly with boundary and G the fundamental
group of ¥. The notation in this section is based on that in Sections 5 and 6, and we
consider the universal cover 3 of ¥ as a subspace of H. We identify dG with A(G) C OH.

Take a non-trivial finitely generated subgroup H of G. We consider the case that convex
core Cy has a boundary. The restriction of the map py: Cyp — ¥ to each boundary
component of Cr can be considered as a closed geodesic on 3. We denote by dC the set
of all boundary components of Cp. In the case that H is an infinite cyclic group, that is,
Ch itself is a closed geodesic on X, we consider a copy of C, denoted by C%;, and denote
by 0Cp the set consisting of Cy and CY,;. If Cy does not have a boundary, that is, H is
a surface group, then 0Cy is an empty set.

A closed geodesic ¢ on ¥ induces a counting geodesic current 7.. Explicitly, n. = 1,
for ¢ € G such that a representative of g is freely homotopic to c¢. If ¢ is a boundary
component of Cp, then we can take h € H such that n. = n,. The following theorem is
the main theorem in this section:

Theorem 7.1. There exists a unique continuous R>q-linear map
B: SC(¥) — GC(%)
such that for any non-trivial finitely generated subgroup H of G we have
> e
cedCy
Especially, the restriction of B to GC(X) is the identity map.

Note that if 9Cp is empty, then B(ny) is the zero measure in the above theorem.

7.1. Construction of projection B. Take a non-trivial finitely generated subgroup H
of G with 9Cy # (). For a boundary component ¢ of C'y we regard ¢ as an element of H
such that n. = 7,,. Note that an element h € H satisfying the condition that n. = 7, is
not unique. Recall that we have the continuous R>¢-linear map ¢g from SC(H) to SC(X)
(see Section 4). Then we have

Some= D )= | Y. D e

c€dCy c€dCy c€dCy h{c)eH/(c)

For S € H(OG) we define b(.5) to be the set of all connected components of OH\ S. Since
OH is homeomorphic to S*, b(S) consists of at most countably many open intervals. For
S € H(0G) and « € b(S), the boundary da belongs to d2G. Now, we prove the following
lemma:

Lemma 7.2. The following equality holds:

oD = Y. doa

c€dCy h{c)e H/(c) a€b(A(H))
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Proof. First, we consider the case that H is an infinite cyclic group. Then c is a generator
of H and the left hand side equals 26, (g, which coincides the right hand side. Actually,
this is the reason of the definition of 0Cy.

From now on, we assume that H is not an infinite cyclic group and dCp is not empty.
We define a map ¢ from 0Cy x H/(c) to b(A(H)) as follows. For each ¢ € 0Cy we
have a cyclic subgroup (c) of H, and the convex hull CH, of the limit set A({c)) is a
boundary component of CHp. For h(c) € H/(c), we define ¢)(c, h(c)) to be the open
interval connecting the two points of hA({c)) and not intersecting A(H), which implies
that ¥ (c, h{c)) € b(A(H)). Then 09 (c, h{c)) = hA({c)). Hence, it is sufficient to see that
1 is a bijective map.

First, we see that 1 is surjective. Take o € b(A(H)). Then there exists a boundary
component B of CHy such that B(oo) = da. Take ¢ € 9Cy corresponding to B. There
exists h € H such that hA({c)) = B(o0) = da.. Hence ¥(c, h{c)) = a.

Next, we see that ¢ is injective. Take c1,co € OCy and hi{c1) € H/{c1),ha{c2) €
H/(ca). It is sufficient to see that if hiA({c1)) = h2A({c2)), then ¢; = ¢o and hi{c1) =
ha{ca). Since h51h10H<01> = CH.,), we can see that c; = cy. Set h := h2_1h1, which
fixes A({c1)). Since ¢; is a simple closed geodesic on Cy, there exists no element hg of H
such that ¢; = hf for some k > 2. Therefore h = ¢} for some k € Z, which implies that
hi{c1) = ha{ce). This completes the proof. O

From the above lemma, we have

Z Nle = lH Z 00a

c€dCy a€b(A(H))

The strategy to prove Theorem 7.1 is as follows. First, we construct a measure B(u) on
oG for p € SC(X). Next, we check that B(nm) equals 1/23 50, 7 for any non-trivial
finitely generated subgroup H of G. Then we prove that B(u) is a geodesic current on %
for any p € SC(X) and B is an R>¢-linear map from SC(X) to GC(X). Finally, we prove
that B is continuous. The uniqueness of B follows by the denseness property of rational
subset currents for G.

We will denote by O the set of all open intervals of 0H. We endow O with the topology
induced by the Hausdorff distance. A set b(S) is a subset of O for S € H(0G). Define a
function ¢ from H(OG) x O to R by

p(S,a) == xps)(a)  ((S,a) € H(IG) x 0),

that is, if a € b(S), then ¢(S,a) = 1; if a & b(.S), then ¢(S,a) = 0. For a € O we have
a Dirac measure 0, on O. Then ¢(S,a) = d,(b(5)) for (S,a) € H(OG) x O. We have
©(S,a) = 1if and only if CH(0«) is a boundary component of CH(S). We denote by M
the counting measure on O, that is, for any subset U of O, M(U) is the cardinality of U.
For a Borel subset F of 05G, set

b(E) = ] b(s) co.
SekE

Then for any o € O, a belongs to b(E) if and only if da belongs to E.
Now, for u € SC(X) we define a measure B(u) on 92G by
1
BE) =5 [ ([ es.ains)) av)
b(E)

for a Borel subset E of 92G. We can see that the preimage ¢ ~1(0) is an open subset of
H(OG) x O, which implies that ¢ is a Borel function on H(9G) x O. Actually, (S,«) €
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©~1(0) implies that da is not a boundary component of CH(S). It is easy to see that this
is an “open condition” from Lemma 3.8.

Take a non-trivial finitely generated subgroup H of GG. Note that the action of G on H
induces the action of G on O. Then for any Borel subset E of 092G we have

UH)(E

- </<p (S, a)dnu S)) dM(a)

b(E)

- </b (5. a)dM(a >>dnH<S>

H),a)dM(a) = Sa (b(gA(H)))dM(a)
zC“; / gHEZG/H/b(E) !
=2 o

Sa(B(E))dM(a) =Y D by (b(E))

gHEG/H acb(A(H))

acb(A(H

= 9+(0a) (0(E)) = 11 ( > 5a> (b(E))
)
LH< > 5%) (B)= ) ne(E).
a€b(A(H)

cedCy

Hence we see that

Blw) =5 > m(B)

cedCy
Lemma 7.3. For any p € SC(X) the measure B(u) on oG is a geodesic current on .

Proof. First, we check that B(u) is G-invariant. Take a Borel subset E of G and g € G.
Since p is G-invariant, we have

w860)= [ (/ ets.c0auts)) amia)

" (/ ets.cvauts)) amia)
., (/ ts.gduts) ) antien

., ([ etois.0iu(s) ) ast(a)

. (] ets.cnus)) ania)
_ 2B(E).

Il

Next, we check that B(u) is a locally finite measure. Take a compact subset K of 3.
From Lemma 3.7, it is sufficient to see that B(u)(A2(K)) < oo for

Ay(K) = {8 € &G | CH(S) N K # 0}
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From the Fubini Theorem we have

28(0) (4a() = | o (f ets.cauts)) amia)
-/ ( /b iy 85 a)dM(a)) ap(S).

3(9) = / (5, a)dM(a)
b(A2(K))

for S € H(OG). Tt is sufficient to prove that ¢ is a bounded function with compact support.
Take S € H(OG). We can see that ¢(5) equals the number of boundary components of S
passing through K, which is uniformly bounded since K is bounded. Finally, we see that
the support of ¢ is included in A(K). Take S € H(0G) \ A(K). Then CH(S) N K =,
which implies that $(S) = 0. This completes the proof. O

Set

Proof of Theorem 7.1. From the above lemma, we can see that B is an R>p-linear map
from SC(X) to GC(X). It is sufficient to prove that B is continuous. Take p,, € SC(X) (n €
N) converging to u € SC(X). From Proposition 5.41, it is sufficient to prove that for any
relatively compact Borel subset E of 0,G with B(p)(0F) = 0 the sequence B(uy)(E)
converges to B(u)(E).

Take a relatively compact Borel subset E of 0oG with B(u)(OF) = 0. Define a map
(ﬁ: H(@G) — RZO by

3(5) = /b L PAS.MGa)

for S € H(OG). Then we have

28(1)(E) = [ . ([ (5. xtin(s) ) amie) = [ g,

and
25((E) = | Gan

From the proof of Lemma 7.3, @ is a bounded function with compact support. It is
sufficient to prove that the set A(p) of non-continuous points of @ has measure zero with
respect to p from Proposition 5.41.

Since B(u)(0F) = 0, we obtain

0 = 2B(1) (OF) = / ( /b P a)dM(a)) dpu(S).

Note that for Si,Se € 02G, if b(S1) Nb(S2) # 0, then S; = S3. We can see that for
S € H(0G)
| e(s.apir(a) = #(4(5) nboE))
b(OE)

Set
U:={S € H(OG)|b(S)NbOE) # 0}.

Then for the characteristic function xy of U on H(9G) we have

xu(S) < /b oy PE M@
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for S € H(0G), which implies that

u() = [xvdn< | ( / - so(S,oodM(a)) apu(S) = 0.

Therefore u(U) = 0.
Now, we prove that A(p) C U. Take S € H(OG)\ U, which implies that b(S)Nb(OE) =
(). First, we see that

b(S) C b(Int(E) U E").
Hence, §(5) = #(b(S) Nb(Int(E))). Since E is relatively compact, we can take a compact
subset K of ¥ such that E C Ay(K) by Lemma 3.7. Note that there are only finitely
many ag, ..., € b(S) satisfying the condition that CH(d«;) N K # (). Hence we do not
need to consider a € b(S) \ {a1,...,a,}. Since each a; belongs to b(Int(E)) or b(E®),
we can take an open neighborhood V' of S in H(OG) such that for any S’ € V we have
b(S’") Nb(OFE) = () and
#(b(S") Nb(Int(E))) = #(b(S) N b(Int(E))).

This implies that @ is constant on V. Hence @ is continuous at S. O
7.2. Application of projection B. In this subsection, we consider the application of

the projection B. The following theorem relates the intersection number igc on SC(X) to
the intersection number igc on GC(X).

Theorem 7.4. For any subset currents u,v € SC(X) the following inequality follows:

isc(p,v) <ico(B(w), B(v)).
If either p or v belongs to GC(X), then the equality holds.

Proof. From the denseness property of rational subset currents and rational geodesic cur-
rents on Y, it is sufficient to prove that the inequality and the equality holds for nz and
N for non-trivial finitely generated subgroups H and K of G. Recall that

CHy ={(gH,z) € G/Hx % | x € gCHy}.
Set
OCHpy :={(gH,x) e G/H x X |z € g(0CHy)} C CHy.

First we consider the case that neither H nor K is cyclic and Cy and Cx have bound-
aries. Note that if Cy has no boundary, then the equality holds immediately since
i(Cx,Ck) = 0. Recall that from Lemma 7.2, we have

Z Nle = tH Z dda

cedCy aeb(A(H))
By considgrjlg the corresponﬂe\nce between the Dirac measures in the equality, we can
identify 0CH i with | | o a0y CH (). Moreover, we obtain a natural inclusion map
v || OHpy xg Gy s Ol x5 Ol
(,d)EDCH xCk
Since the inclusion map ¢ is G-equivariant, ¢ induces an inclusion map

|_| C<C> Xy C<d>‘—>CH X CK.
(C,d)G@CHXacK
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Since CHy and C'Hg are surfaces with boundaries, we can see that any contractible
component of Cir Xy Ck is a polygon with 2¢-edges for £ > 2, each of whose vertices is the
intersection point of a boundary component of Cy and that of C'x. Therefore we have

(Cn o)<t 3 Y i)

ce0Cp dedCy
that is,
isc(nm, i) < ice(B(nm), Bk ))-
In the case that both H and K are infinite cyclic groups, the equality is obvious. Assume

that H is an infinite cyclic group, K is not cyclic and Cx has a boundary. By the same
way as the above, we have an inclusion map

|_| CH X C<d> — CH X CK.
dedCk
We can see that any contractible component of C'y Xy C'x is a geodesic segment, each
of whose endpoints is the intersection point of C'y and a boundary component of Ck.
Therefore we have .
i(Cn, Cx) =5 Y i(Cu,d),
dedCk
that is,
isc(na, k) = ice(B(nu), B(nk))-
This completes the proof. U

For two transverse simple compact surfaces (51, s1), (S2, $2) on ¥ not forming a bigon,
the same inequality also follows by the same proof as above, that is, we have

. 1 .
i(s1,82) < 1 Z i(c1,c2)

(01,62)€851 X 0S2

if S; and Sy are not S', where 0.5; is the set of boundary components of S;. We also have

i(s1, $2) :% Z i(s1,c¢),
c€DSa
if 51 = St.

Bonahon [Bon88] proved that there exists an embedding L from the Teichmiiller space
T(X) of ¥ to GC(X), and for m € T(X) and a non-trivial g € G the intersection number
icc(L(m),ng) coincides with the m-length of the (unoriented) geodesic corresponding to
g, which is denoted by ¢,,,(g) and called the m-length of g. This implies that there exists
a unique m-length functional ¢,,, = igc(L(m), ) on GC(X) such that for every non-trivial
element g € G, £, (ny) equals £,,,(g).

From Theorem 7.4, we can generalize the m-length functional ¢,,, on GC(X) to the
m-length functional on SC(X) for m € T(S) by defining

U (1) = isc(L(m), p)
for p € SC(X). Then we can see that for every non-trivial finitely generated subgroup H
of G we have )
b (nar) = ) Z U (c),
cedCy
where ¢,,(c) is the m-length of c.

In the case that ¥ has no boundary, the above Bonahon’s result was extended to all neg-
atively curved Riemannian metrics by Otal in [Ota90], to negatively curved cone metrics
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by Hersonsky and Paulin in [HP97], and to (singular) flat metrics by Duchin-Leininger-
Rafi in [DLR10] (which includes the case that ¥ has boundary). For any such metric
m on X, we can obtain an associated geodesic current L,, € GC(X), and for non-trivial
g € m1(X), the intersection number igc(Lm, ny) equals the m-length of g. Hence for any
such metric m on ¥ we also have the m-length functional ¢,, on SC(X).

Supplementation 7.5. We can construct the functional ¢, on SC(X) more directly in
the case that m is a hyperbolic metric on 3. We can apply the method which we have
used for the construction of the volume functional and the intersection number on SC(X).

Assume that m coincides with the given hyperbolic metric on ¥. Take the Dirichlet
domain F = F, centered at x € S with respect to the action of G on Z and modify F
by removing some edges and vertexes from F such that G(F) = > and gFNF =0 for
any non-trivial g € G. For S € H(OG) we define \x(S) to be the half of the sum of the
length of each component of F N 9CH(S). Then Ar: H(OG) — R>¢ is a non-continuous
bounded Borel function with compact support. We can see that the R>¢-linear functional

A% defined by
Ar(p) = [ A

for € SC(X) associates a counting subset currents 1y with £,,(nz) for non-trivial finitely
generated subgroup H of G by the same way as that for the volume functional in Section 3.
Note that for S € 0»G such that CH(S) passes through the interior of F, Ar is continuous
at S. Hence the set A(A\r) of non-continuous points of A consists of S € H(IG) satisfying
the condition that a boundary component of C'H(S) partially coincides with an edge of
F.

We can prove the continuity of A% by using the technique of moving the center of the
Dirichlet domain F in Lemma 5.47. Actually, we can see that A% does not depend on

F by the same way as Lemma 6.6. For any pu € SC(X) there exists x € 3 such that
(A(Ax,)) = 0. Hence if a sequence {pi,}nen of SC(X) converges to pu, then A% (fin)
converges to A% () by Proposition 5.41. Therefore A} is continuous.

Now, we consider the case that X is a closed hyperbolic surface. For any simple closed
geodesic ¢ on X, which is not a boundary component of ¥, by cutting 3 along ¢ and
regarding the cut end as the boundary, we can obtain a compact hyperbolic surface or a
pair of compact hyperbolic surfaces ¥ — c. Moreover, the inclusion map induces a locally
injective continuous map s from ¥ — ¢ to 3, which is a simple compact surface on ¥ or a
pair of simple compact surfaces on . Then we can obtain a finitely generated subgroup
H or a pair of finitely generated subgroups Hi, Ho of G corresponding to ¥ — c¢. Set
n(X — ¢) :== ng or nu, + nu, respectively. Then we have

B(n(X —¢)) = ne.
Hence the above construction of (X — ¢) can be regarded as a section of the projection 5.
However, in the case that ¢ has self-intersection, then we can not perform the same
construction. Nevertheless, from the Scott theorem in [Sco78, Sco85], ¢ is geometric in a
finite covering space of 3, that is, there exists a finite index subgroup G of G such that
(G1 contains an element corresponding to ¢ and c lifts to a simple closed geodesic ¢; on

the convex core Cg,. Then we obtain a subset current n(C¢g, — ¢1) on Gi. Moreover, we
have the projection Bg, from SC(G;) = SC(Cg,) to GC(G1) and

Ba,(n(Cqy —c1)) = Ney s

which is the counting geodesic current on G; corresponding to c;.
Recall that for any non-trivial finitely generated subgroup H of G we have the map ¢y
from SC(H) to SC(G) = SC(X). Then ¢, (1e,) = ne, and g, (n(Cq, — 1)) is a subset
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current on G. By Theorem 7.6, we see that

B(LG1 (U(CGl - cl))) =Gy (BG1 (77(0@1 - Cl))) =G (7701) = Te-

Hence g, (n(Cq, — c1)) is a required subset current on G, which is a counting subset
current on G or a sum of two counting subset currents on G. Note that tg, (n(Cg, — c1))
depends on the choice of G.

From now on, we do not assume that ¥ is a closed surface. Let H be a finitely generated
subgroup of G. We mainly consider the case that H is non-cyclic. Then we have the
projection By from SC(H) to GC(H) by considering H as the fundamental group of Cp.
We will write Bg instead of B from now on. Note that (7 maps a geodesic current on H
to a geodesic current on G.

Theorem 7.6. For any non-trivial finitely generated subgroup H of G we have the fol-
lowing commutative diagram:
By
SC(H) ——= GC(H)
LH\L LH\GC(H)
SC(G) —— GC(G).
Bg
Proof. In the case that H is cyclic, then SC(H) coincides with GC(H) and the claim is

trivial. Hence we consider the case that H is non-cyclic.
We can see that for any non-trivial ﬁnitely generated subgroup K of H we have

Be o (ng) Z Ne =t © B (i)
CE@CK

since the convex core C'ir and its boundary do not depend on H. By the denseness property
of rational subset currents we have the equality

B ovn(p) = vm o Bu(p)

for any p € SC(H).
We also give a direct proof. Take a complete system of representatives R of G/H. For
any p € SC(H) and any Borel subset F C 092G we have

2B (111 (1)) (E) = /b . /H o PS D 0.(®) | amee)

gHEeG/H
—gGZR / / o P8, ()M (@)
_ 1a
2};/ /M (S, g™ ) dpu(S)dM ()

—Z/ / o P15 ()M )

:ZQBH(M)(Q_ E) =2tg o Bu(p)(E),

geER

which is the required equality. O
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8. DENSENESS PROPERTY OF RATIONAL SUBSET CURRENTS

Recall that for an infinite hyperbolic group G a subset current p on SC(G) is called
rational if there exist ¢ € R>¢ and a quasi-convex subgroup H of G such that u = cng (see
Subsection 2.1). We denote by SC,(G) the set of all rational subset currents on G. We
say that G has the denseness property (of rational subset currents) if SC,(G) is a dense
subset of SC(G). In this section, our goal is to prove the denseness property for a surface
group.

In Subsection 8.1, we give a proof of the denseness property for a free group F' of finite
rank assuming that the subspace Span(SC, (F)) of SC(F) generated by SC,(F) is a dense
subset of SC(F'). Our proof is based on that in [Kap13] but we introduce the notion of an
SC-graph on F', which will play a fundamental role in proving the denseness property for
a surface group.

In Subsection 8.2, we consider a certain sequence of finitely generated subgroups H,, of
a free group F' of rank 2 and we see that the sequence of SC(H,,) approximates SC(F')
(see Theorem 8.13).

In Subsection 8.3, we prove the denseness property of rational subset currents for a
surface group G by applying the method in the proof of Theorem 8.13 in Subsection 8.2.
A certain sequence of finitely generated subgroups of G that are isomorphic to a free group
will play an essential role in the proof.

8.1. Denseness property of free groups. For a free group F of finite rank, the dense-
ness property for F' was first proved by Kapovich and Nagnibeda in [KN13] (see 2.11).
Kapovich in [Kapl3] gave another self-contained proof to the denseness property for F.
We change some parts of the proof in [Kapl3] such that our method can apply to the
proof of the denseness property for a surface group. Our method of proving the denseness
is constructing a sequence pu,, of Span(SC,(F")) converging to a given u € SC(F).

Fix a free group F' of rank N > 2. Fix a free basis B of F'. We denote by X the
Cayley graph of F' with respect to B. The set of vertices of X is denoted by V(X), which
is identified with F'. We give a path metric d = dx to X such that each edge of X has
length one. We identify OF with 0X. The quotient space F\X is a graph consisting of
one vertex attached N loops. For a closed subset S of OF = 0X with #S > 2 the convex
hull CH(S) of S in X is a union of all geodesic lines connecting two points of S. We
denote by H(OF) the space of closed subsets of OF containing at least 2 points and endow
H(OF) with the Hausdorff distance dgays induced by a metric on OF compatible with the
topology. The limit set Y (c0) of a subset Y C X is the set of accumulation points of ¥
in 0X. -

Recall that we have constructed C'H gy for a non-trivial finitely generated subgroup H
of the ﬂlildamental group of a compact hyperbolic surface . Now, we define a similar
space CHp on X for a non-trivial finitely generated subgroup H of F. For the convex
hull CHy := CH(A(H)) C X of the limit set A(H) we define

CHy ={(gH,z) € F/H x X |z € gCHy}.

We have the projection map from CH g to X.

We can consider CH g as a geometric realization of the counting subset current ng.
Actually, for gH € F/H each connected component gCHp of CH g corresponds to the
Dirac measure at gA(H).

Definition 8.1 (SC-graph). Let Y be a graph, which is not necessarily connected, and
f a graph morphism from Y to X, which is a continuous map sending vertices of Y to
vertices of X and edges of Y to edges of X. We call the pair (Y, f) a graph on X. Now, we
assume that F' acts on Y. When we consider a group action on a graph, we always assume
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that each element of the group acts as a graph isomorphism. We call (Y, f) a SC-graph
on (F, X) (or simply F) if (Y, f) satisfies the following conditions:

SC1) f is an F-equivariant map;

SC2) the restriction of f to each connected component Y of Y is injective and the image

f(Yy) coincides with CH (f(Yp)(00));

SC3) #f71(id) < co.
We denote by Comp(Y) the set of all connected components of Y. Since each Yy €
Comp(Y) can be identified with f(Yp) C X, we will write f(Yp) simply Yy when no
confusion can arise. Moreover, we often omit the projection f when we consider an SC-
graph on F.

The graph CH g for a non-trivial finitely generated subgroup H of F' is an SC-graph
on F.
For an SC-graph (Y, f) on F' we can define a subset current (YY) on F' by

)= > Spv)e0):
YoeComp(Y')

We check that the measure n(Y’) is a subset current on F'. Since f is an F-equivariant map,
F acts on the set Comp(Y') of connected components of Y. Hence n(Y') is an F-invariant
measure. Explicitly, for g € G and a Borel subset E of H(JF') we have

1Y) g 'E)= > Syl (E)
Yo€Comp(Y)

= #{Yo € Comp(Y) | (9/(Y0))(0) € E}

= #{Yo € Comp(Y) | (f(9Y0))(c0) € E}.
Now we check that 7(Y") is locally finite. Recall that for g € F = V(X))

Ay ={S e H(OF) | CH(S) > g}
and it is sufficient to see that n(Y)(Aia) < oo from the proof of Lemma 2.7. By the
definition of an SC-graph on F,
1(Y)(Aia) = #{Yo € Comp(Y) | f(Yo) 3 id} = #f 7" (id) < oo.

Remark 8.2. If Y7,...,Y,, are SC-graphs on F, then the formal union | |, Y} is also an
SC-graph on F'. We can see that

m m
77(|_| Yy) = ZU(Yk)'
k=1 k=1
From Theorem 2.8 and the condition (SC2), for an SC-graph Y on F' there exist finitely
generated subgroups Hi, ... H,, of F' such that Y is isomorphic to

m
CHp,
k=1
and we have

n(Y) = Z TH},-
k=1

Actually, for each connected component Yy € Comp(Y) and for the stabilizer H =
Stab(Yp) we have Yy = CHy. If Y\ F(Yy) is not empty, then Y \ F(Yp) can be con-
sidered as an SC-graph on F' and we can see that

n(Y) =n(Y \ F(Yo)) + ns-
Hence an SC-graph on F' corresponds to a finite sum of counting subset currents on F'.
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Fix p € SC(F'). Assume that we have v € Span(SC,(F')) close to u. Then v can be
represented by a finite sum of the rational subset currents, that is,

m
V= Z aEnH,
k=1

for a; > 0 and non-trivial finitely generated subgroups Hy of F for k=1,...,m. We can
assume that a;, is a rational number for £ = 1,...,m. Then we can take M € N such that
by == May, € N for any k. Therefore we can see that M p is approximated by

> b, =n(| ||| CHu,).
p

k=1 by,

where L, CH H, means the by copies of CH Hy-

Now, we introduce the notion of a round-graph and the subset cylinder with respect to
it, which was introduced in [KN13, Kap13]. We will introduce a generalized round-graph
in Subsection 8.2.

Definition 8.3 (Round-graph, see [Kapl3, Definition 3.3]). Let » € N. For v € V(X)) we
denote by B(v,r) the closed ball centered at v with radius r. A subgraph 7" of B(v,r) is
called a round-graph centered at v with radius r if 7' > v and there exists S € H(OF') such
that

T =CH(S)NB(v,r).

We denote by R, (v) the set of all round-graphs centered at v with radius r. For T' € R, (v)
we define the subset cylinder SCyl(T') with respect to T by

SCyl(T) :=={S € H(OF) | CH(S) N B(v,r) =T}.
We denote by R, the union of R,(v) over all v € V(X).

Remark 8.4 (Property of subset cylinders). A subset cylinder SCyl(T") is an open and
closed subset of H(JOF) for any T' € R,(v), which implies that if a sequence u, €
SC(F) (n € N) converges to p1 € SC(F'), then u,(SCyl(T)) converges to u(SCyl(T))
by Proposition 5.41. Moreover, for any S € H(9F) and v € CH(S) N V(X) we have a
sequence of round-graphs

{CH<S) N B(”? n)}neNa

and the family of SCyl(CH(S) N B(v,n)) for n € N forms a fundamental system of open
neighborhoods of S.

For T € R,(v) and g € F we can see that g7 is a round-graph centered at gv with
radius r and SCyl(¢7") = ¢SCyl(T). This implies that F' acts on R,. Since a subset
current u € SC(F) is F-invariant, u(SCyl(¢T)) = p(SCyl(T)) for any T € R,(v) and
g € F. Therefore, we usually consider only round-graphs centered at id € V(X).

For Ty, Ty € R, (v) if Th # Ty, then SCyl(T1)NSCyl(T2) = (). Note that #R,(v) is finite
for any » € N and v € V(X)) since X is a locally finite graph. Moreover, for any r € N we
have

A, = || scy).
TeR,(v)

For vi,vy € V(X) and T1 € R, (v1),T> € R,(va), if SCyl(T1) N SCyl(T3) # 0 and
B(vi,7) N B(va, 1) # 0, then we have

Ty N B(vy,r) N B(vg,r) = To N B(vy,r) N B(ve, ).
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Lemma 8.5. Let v € V(X) and ri,r2 € N with ri <ry. For any T € R, (v) we have the
following equality:
scy(my = || scyur).
T'€Rry (v)
T'NB(v,r1)=T

Proof. Let S belong to the left side. Then CH(S) N B(v,r
T':= CH(S) N B(v,r2). Then we can see that 77N B(v,r1) =T and S € SCyl(T").

Let S belong to the right side. There exists 7" € R,,(v) such that 7N B(v,r1) = T
and S € SCyl(T"), which implies that CH(S) N B(v,r1) = T N B(v,r1) = T, and so
S € SCyl(T). O

From the above lemma, for p € SC(F) if we know p(SCyl(T)) for every T € R,(id),
then we can calculate pu(SCyl(7”)) for every ' € N with ' < r and every T € R,..

The following proposition is useful for seeing that a sequence of subset currents on F
converges to a subset current on F":

1) =T and CH(S) 3 v. Set

Proposition 8.6 (See [KN13, Proposition 3.7]). Let u,pu, € SC(F) (n € N). Then u,
converges to p if and only if for any r € N and any T € R,(id) we have

Jim 1, (SCyI(T)) = u(SCyI(T))-

Proof. The “only if” part follows immediately by Remark 8.4. We prove the “if” part.
Note that for any r € N and T' € R, we have

Jim 2, (SCyI(T)) = p(SCyl(T))

from the assumption. Let f be a continuous function from H(OF') to R with compact sup-
port. Fix e > 0. We construct a step function approximating f by using subset cylinders.
From Lemma 3.7, since the support suppf of f is compact, we can take gi1,...,9m € F
such that

m
suppf C U Ay,
i=1
We can take M > 0 such that

vzl (O (U)

Take 6 > 0 such that for any Si, Sy € H(OF), if the Hausdorff distance dyjays(S1,52) < 9,
then |f(S1) — f(S2)| < /M. Take r € N such that for any ¢g; and T' € R,(g;) the diameter
of SCyl(T) is smaller than 6. We also assume that r is large enough such that for every
i=1,...,m, B(gi,) contains g1, ..., gm.

Now, we prove that there exist T1,...,71 € R,(g1) U+ -+ U R, (gm) such that

m L
A4y, = | |SCyl(T)
i=1 j=1

Set O := R, (g1) U+ UR(gm). I SCyl(T1) NSCyl(Ts) # 0 for T1 € Ry (94,), T2 € Rr(gi,)
and i1 < 19, then we remove 15 from O. We continue this operation for each pair of
T1, T, € O one by one. Finally, we can obtain O satisfying the condition that for any
11,15 € O, if Th # T3, then SCyl(Tl) N SCyl(Tg) = (.

Take any S € U; Ay, and take the smallest 7o such that S € Agio- Then there exists T €
Rr(gi,) such that S € SCyl(T"). Since CH (S) does not contain g1, .. ., gi,—1, I’ = CH(S)N
B(gi,,r) also does not contain g¢i,...,¢gi,—1. Note that B(g;,,r) contains gi, ..., gi,—1,
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which implies that SCyl(T) N SCyl(T") = ) for any 7" € R, (g1) L - - - U R, (giy—1) by the
last part of Remark 8.4. Hence T' € O. Therefore we have

OA% = || scyim).
=1

TeO
For each T' € O set

= inf S).
ar SESlélyl(T)f( )

We define a step function ¢ by
¢ = arxscy(r)-

TeO

‘/fdu—/cﬁdu‘ < [17 - dldn

<e.

[t [ o,

From the assumption, for a sufficiently large n € N we have

[ ot~ [ oau] < 3 Jarllpn(sCyI(T) - w5y

Then we have

By the same way, we also have

<e.

TeO
<e€
Hence
‘/fd,un—/fdu‘ < 3e.
This completes the proof. ]

From the proof of the above we have the following corollary:

Corollary 8.7 (See [KN13, Proposition 3.7]). Let u € SC(F'). The family of
{v € SC(F) | |u(SCyl(T")) — v(SCyl(T"))| < € for every T € R,(id)}
fore >0 and r € N forms a fundamental system of open neighborhoods of .

Let p € SC(F),e > 0 and r € N. We will construct an SC-graph I on F' such that
there exists M € N such that

pSCYI(T)) — 2-n(T)(SCH(T))| < e

for any T' € Riq(r). We say that this SC-graph I' approximates u. If we can obtain such
an SC-graph T, then we see that Span(SC,(F)) is a dense subset of SC(F') by Corollary
8.7. We will write simply nr instead of n(T').

Now, we consider the value np(SCyl(T")) for an SC-graph I" and T' € Riq(r). From the
definition of nr we have

nr(SCyl(T')) = #{Y € Comp(T") | Y(c0) € SCyl(T")}
=#{Y € Comp(I") | Y N B(id,r) = T'}.
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This equation means that nr(SCyl(T")) coincides with the number of components of T’
whose restriction to B(id,r) equals 7. This is the most important idea for constructing
an SC-graph I' approximating u since we have an information of u(SCyl(T)) for every
T € R,(id). Even if u(SCyl(T)) is not an integer, we can take ¢ € Q approximating
u(SCyl(T)) and Mgq is an integer for some M € N.

We also note that for T' € R, (id), nr(SCyl(T)) also equals the number of vertices v
of the quotient graph F\I' satisfying the condition that for the connected component
Y of I containing id as a lift of v we have B(id,r) N Y = T, which means that the “r-
neighborhood” of v equals T'. In the case that I' = @ for a non-trivial finitely generated
subgroup H of F, it is easy to calculate np(SCyl(T)) = ng(SCyl(T")) since F\@ can
be identified with H\CHp.

For two vertices u,v € V(X), we want to combine a round-graph centered at u with a
round-graph centered at v. We will use the following definition.

Definition 8.8. Let r € N and u,v € V(X). We denote by B(u,v,r) the intersection of
B(u,r) and B(v,r). For T} € Ry(u),T>» € R,(v) we say that T7 and T3 are connectable if
Ty N B(u,v,r) = To N B(u,v,r). Note that B(u,v,r) can be empty and then 77 and 75
are connectable for any 71 € R, (u), T2 € R, (v).

Assume that B(u,v,r) is not empty. A subgraph J of B(u,v,r) is called a (u, v)-round-
graph with radius r if J 5 u,v and there exists S € H(9F) such that

J=CH(S)N B(u,v,r).
We denote by R, (u,v) the set of all (u,v)-round-graph with radius r. For J € R, (u,v)
we define the subset cylinder SCyl(.J) with respect to J by
SCyl(J) :={S € H(OF) | CH(S)N B(u,v,r) = J}.
For T € R, (u), Ty € R, (v) we say that 71 and Ty are J-connectable for J € R, (u,v) if
T1 N B(u,v,r) =J =To N B(u,v,r).

Remark 8.9 (Property of (u,v)-round-graph). Let u,v € V(X)) with B(u,v,r) # ). For
T € Ry(u) if T > v, then the intersection T'N B(u,v,r) belongs to R,(u,v). For any
J € R, (u,v) we have

seyl(y= || sCyiT) = || scy).
TeR(u) T'ER(v)
TNB(u,v,r)=J T'NB(u,v,r)=J

This implies that for any pu € SC(F') we have the equation:

(+7) SousCyT) = Y u(SCylT").

TeER(u) T'eRr(v)
TNB(uv,r)=J T'NB(u,v,r)=J

This equation will be used for constructing an SC-graph approximating .

Lemma 8.10. Let P be a geodesic path fromu € V(X) tov € V(X), which passes through
Vo = U, V1, ...,V =0 € V(X) in this order. Take T; € Ry (v;) fori=0,1,...,m. If T;_y
and T; are connectable for every i =1,...m, then Ty and Ty, are connectable.

Proof. Since P is a geodesic path in the tree X, we have
m

B(vg, v, 1) C ﬂB(vi,r),
i=0

which implies
m

B(vg, v, r) C ﬂ B(vi—1,v3,7).
i=1
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From the assumption,

Ti—1 N B(vi—1,vi,7r) = T; N B(vi—1,v4,7)

for every i = 1,...,m. Therefore
To N B(vg, v, r) = T1 N B(vg, v, 1) =+ -+ = Tppy N B(vg, vy, 7).
This completes the proof. ]

Recall that B is a free basis of F. For T' € R,(id), if u(SCyl(T)) is not a rational
number, we want to approximate it by a rational number satisfying the equation (x;) in
Remark 8.9 for two vertices id and u € B. Since #R,(id,u) is finite and F' acts on R,
the system of the equations () for all w € B and J € R,(id,u) in Remark 8.9 can be
considered as a finite homogeneous system of linear equations with respect to variables
u(SCyl(T)) for T' € R,(id). Hence we can apply the following lemma to the system of the
equations (x7) for all w € B and J € R,(id, u).

Lemma 8.11. Let m,n be positive integers. Let u = Huy,...,u,) € R™ with u; > 0 for
every i. Let A = [a;j] be an m x n matriz with a;; € Z. Assume that Au = 0. Then for
any € > 0 there exists v € R™ such that every coefficient of v is a non-negative rational
number, Av =0 and ||u —v|| < e.

Proof. The proof is by induction on n. It is clearly true for n = 1. Assume that n > 1.
First, we consider the case that every u; > 0. Since every entry of A is an integer, we have
eigenvectors wy, ..., w; € Q" associated with the eigenvalue 0 and

k
u = E C;W;
=1

for some ¢; € R. We can take d; € Q approximating ¢; for ¢ = 1,...,k such that every

coefficient of v := ), d;w; is a positive rational number and ||u — v|| < . Moreover,
Av =0.
Next, we consider the case that some of u; equal 0. We can assume that
Uy, ..., up >0, and Uy =+ =up = 0.

Set ' := Yu1,...,u), A" := [aijli<j<k. Then A’v' = 0. By the induction hypothesis,
there exists w = {wy, ..., w;) € R¥ such that every w; is a non-negative rational number,
A'w =0 and ||[u' — w|| < e. Then the vector v = (w1, ..., wy,0,...,0) € R™ is a required
vector. g

Fix p € SC(F) and assume that p is not the zero measure. Fix ¢ > 0 and r € N. From
the above lemma, we can take a map

0: Rr — Zzo
satisfying the following conditions:

(1) 6 is F-invariant;
(2) there exists M € N for any T' € R, we have

]A}em - M(SCyl(T))‘ <e

(3) for any u € B and J € R,(id, u) the following equation holds:

Y= o).

TER(id) T €Rr(u)
TNB(id,u,r)=J T'NB(id,u,r)=J
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Since 6 is F-invariant, for any two adjacent vertices u,v € V(X) and J € R, (u,v) we have

oooum= > eI
TER(u) T'e€R(v)
TNB(u,v,r)=J T'NB(rw,r)=J
The following theorem, which was proved in [Kap13] and named Integral weight realiza-
tion theorem, is the key for proving the denseness property for F'. Note that the I'-graph
A in [Kapl3] corresponds to the quotient graph F\I' for the SC-graph I on F in the
following theorem.

Theorem 8.12. Let 0 be an F-invariant map from R, to Z>o satisfying the condition
that for any u € B and J € R,(id) we have

Yoo = d>e).
TER(id) T €Rr(u)
TNB(id,u,r)=J T'NB(id,u,r)=J
Assume that (T) > 0 for some T € R,(id). Then there exists an SC-graph I' on F such
that np(SCyl(T')) = 6(T) for any T € R,.

Proof. We define the vertex set V(I') of I" to be the set

{v(9,T,1) }ger, Ter, (9),i=1,...0(T)
If 0(T) = 0 for T € R,(g), there exists no vertex v(g,T,7). We regard v(g,T,i) as a
copy of v(g,T,1) for i = 2,...,0(T) and we usually write it v(g,T") for short when no
confusion can arise. We define an action of F on V(I') by hv(g,T,i) := v(hg, hT,1) for
h € F,v(g,T,i) € V(I'). Note that 8(T") = §(hT) since 0 is F-invariant. A map ¢ from
V(I') to V(X) = F is defined to be the natural projection, that is, ¢(v(g,T)) = g for
v(g,T) € V(T).

Next, We define the edge set E(I') of I' by connecting two vertices in V(I') satisfying
certain condition. Since we require that F acts on E(I'), we first connect a vertex in ¢! (id)
to a vertex in +~!(u) by an edge for every u € B, and then we copy the edge by using the
action of F' on V(I"). For each u € B we connect a vertex v(id, T, 7) to a vertex v(u,T”,i’)
if T'and 7" is J-connectable for some J € R,(id,u). Since for each J € R, (id, u) we have

X, M= Y uT),
TER(id) T €Rr(u)
TNB(id,u,r)=J T'NB(id,u,r)=J
the number of vertices v(id, T,i) € ¢~!(id) with TN B(id,u,r) = J equals the number
of vertices v(u,T’,i') € +=(u) with T" N B(id,u,r) = J. Hence there exists one-to-one
correspondence between ¢! (id) and +~!(u) satisfying the above condition. Note that

#7Md) = ) 6(T) < oo

TeR-(id)

From the one-to-one correspondence and the action of F' on V(I'), we obtain the edge set
E(T).

We see that if v(id,T,4) is connected to v(u,T”,i"), then wv(g,T,i) is connected to
v(gu, gT',i") for every g € F. Moreover, for v(id,T,i) € V(') if T contains u € B,
then J := T N B(id,u,r) € R,(id,u) and there exists v(u,T”’,i") € V(T') such that T" and
T" are J-connectable and v(id,T,4) and v(u,T”,i') is connected by an edge in I'. The
map ¢ sends the edge connecting v(g,T') to v(gu,T’) to the edge connecting g to gu for
g € F,u € B. Then we obtain a graph (I',¢) on X such that ¢ is an F-equivariant map.

Now, we check that (I',¢) satisfies the condition to be an SC-graph on F. It is sufficient
to prove that for each connected component Y of I' the restriction of ¢ to Y is injective
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and «(Y) = CH(1(Y)(00)). Actually, since ¢ is locally injective map from the above
construction and X is a tree, the restriction of ¢ to each connected component is injective.

To see +(Y) = CH(.(Y)(00)), it is sufficient to see that every vertex v of Y has a degree
larger than 1. Let v(g,T") be a vertex of Y. Since there exists S € H(OF') such that
T = B(g,r) N CH(S) and CH(S) > g, the degree of ¢g in T is larger than 1. We prove
that «(Y) N B(g,1) = TN B(g,1). Take a vertex ¢’ of V(X) adjacent to g. In the case
that ¢’ € T, since J := TN B(g,4¢',7) € Rr(g,¢’), there exists v(¢’,T") € V(T') such that
T and T are J-connectable and v(g,T') is connected to v(¢’,T7") by an edge. If ¢’ & T,
then we see that there exists no vertex v(¢’,T") € V(YY) connected to v(g,T) by an edge
from the construction of I'. Hence «(Y) N B(g,1) = T N B(g,1). Therefore the degree of
v(g,T) in Y is larger than 1. Hence (I',¢) is an SC-graph on (F, X).

Finally, we check that for every T' € R, (id) we have np(SCyl(T)) = 6(T'). From now on,
we identify each connected component Y of I' with ¢«(Y"). Note that we have 6(T) copies
of v(id, T, 1) € V(TI'). It is sufficient to prove that for T' € R, (id) with #(T) > 0 and for
Y € Comp(T") if Y contains a vertex v(id, T'), then Y N B(id,r) =T

Let T € R,(id) with #(T") > 0 and assume that v(id, T") € V(Y) for Y € Comp(T"). From
the above argument, for any v(g;,T1) € V(Y'), there exists v(g2,T2) € V(Y) adjacent to
v(g1,T1) if and only if g1 and g9 are adjacent vertices of T7. Moreover, we have YNB(g,1) =
T'NB(g,1) for every v(g,T') € V(Y). From Lemma 8.10, we can see that for every vertex
v(g,T") € V(Y), T and T" are connectable, that is, TN B(id, g,r) = 7' N B(id, g,r). For
each g € V(T) N B(id,r — 1), by induction on the distance from id to g, we can see that
there exists v(g,T") € V(Y) such that

Y NB(g,1) =T'NnB(g,1) =T"'n B(id, g,7) N B(g, 1)
=TNB(id,g,7) N B(g,1) =T N B(g,1).
Therefore Y N B(id,r) = T'. This completes the proof. O

By applying Theorem 8.12 to the map # approximating u, we obtain an SC-graph (T', )
on F' such that np(SCyl(T")) = 6(T) for any T' € R,. Therefore, for any T € R, we have

SnR(SCYI(T)) — u(SOA(T))| < .

This completes the proof of the denseness property of rational subset currents for a free
group of finite rank.

8.2. Approximation by a sequence of subgroups. In this subsection we assume that
the rank of F' is 2 and its free basis B = {z,y} for simplicity. Every theorem in this
subsection can be proved for any free group of finite rank by modifying the definitions and
the proofs a little.

For each edge e of the Cayley graph X = Cay(F, B) we say that e is labeled ¢ € B if e
is an edge corresponding to £ in X. For an integer n > 2 we consider a normal subgroup
G, of F generated by

{z.y" gy~ ey ™2,y ey
Note that the quotient graph G,,\ X is a graph consisting of an n-gon each of whose edges
are labeled y and each of whose vertices is attached a loop labeled z. The subgroup G,
is an n-index subgroup of F'. Recall that we have a continuous R>p-linear map ¢¢,, from
SC(Gy,) to SC(F) (see Section 4). Since G, is a finite index subgroup of F', the map ¢¢,,
is surjective.

Let H,, be a subgroup of G,, generated by

{y" yry ™ yPey 2,y ey
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We can obtain the quotient graph H,\CHp, by removing certain one loop labeled x in
G, \X. From Proposition 8.6 and the argument following Corollary 8.7, we can see that

the sequence
1
— NH,
n n>2

of rational subset currents converges to np. From this property, we can guess that H,
approximates F' in some sense. Actually, we will prove the following theorem in this
subsection.

Theorem 8.13. The union

ta, (SCr(Hy))
n=2

is a dense subset of SC(F).

Remark 8.14. Recall that the map (g, is a surjective continuous R>o-linear map from
SC(G,) to SC(F) since G, is a finite index subgroup of F. Moreover, we also have

ti, (SC(Hy)) = ta, © 15" (SC(Hy)) C i, (SC(Gr)) = SC(F).

Roughly speaking, since the “difference” between H, and G, is “small” for a large n,
Theorem 8.13 follows.

As a corollary to Theorem 8.14, we see that SC,.(F') is a dense subset of SC(F’) since
tm, (SCr(Hy)) is included in SC, (F) for every n > 2.

Our method of proving Theorem 8.13 is as follows: Let p € SC(F'). Fix ¢ > 0 and
r € N. This determines the open neighborhood

{v € SC(F) | |u(SCyl(T")) — v(SCyl(T"))| < € for every T' € R,.(id) }

of . Then for a sufficiently large n, we find a subset current v € Span(SC, (H,,)) such that
tm, (V) belongs to the above neighborhood. Note that every H,, is a free group of finite
rank, and for a free group H of finite rank SC,(H) is a dense subset of Span(SC, (H)).
During the proof, we do not use the fact that a free group of finite rank has the denseness
property of rational subset currents.

In order to obtain v we will construct an SC-graph (Y, f) on (H,, CHp, ), which means
that (Y, f) satisfies the following conditions:

(1) fis an Hy-equivariant graph morphism from Y to CHp, ;
(2) the restriction of f to each connected component Y of Y is injective and the image
f(Yy) coincides with CH(f(Yp)(00));
(3) %1 (id) < oc.
Then we can obtain a subset current ny € Span(SC,(H,)) by

M=) S50
YoeComp(Y)

Note that we often identify Yy with f(Yp).

Remark 8.15. Theorem 8.13 gives us a new idea to construct an approximating rational
subset current. Explicitly, for an infinite hyperbolic group G if we have a sequence { H,, } of
quasi-convex subgroups of G such that a,np, converges to ng for a sequence {a,} of R>g
and H, is a free group of finite rank, then for any p € SC(G) we may be able to construct
v € SpanSC,(Hy,) such that ¢y, (v) approximates p for a sufficiently large n € N. In the
case that GG is a surface group, we will prove the denseness property for G by using this
idea (see Theorem 8.22).
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Recall that when we proved the denseness property of rational subset currents for F,
we used the Cayley graph X of F', which is a tree, and we constructed an SC-graph on
X. However, for the Cayley graph of a general hyperbolic group it is much more difficult
to construct a subgraph like an SC-graph on the Cayley graph. The difficulty comes from
that the Cayley graph of a hyperbolic group is a é-hyperbolic space for é > 0 and almost
everything on a dé-hyperbolic space is vaguely determined in some sense. For example,
a geodesic line connecting two points of the boundary is not unique but unique up to
some constant. During the proof of Theorem 8.22 we have to prove a lot of lemmas
corresponding to such a constant. However, the basic idea of the proof of Theorem 8.22
is the same as that of Theorem 8.13.

Now, we consider the action of H,, on CHp,. Note that
F/Gp=A{Gn,yGn,...,y" G}

and
n—1 '
U B'1/2)
i=0

is a fundamental domain for the action of G on X. We see that
n—1
F:=CHp,n ] B 1/2).
i=0
is a fundamental domain for the action of H,, on CHp, and for any non-trivial h € H,
the intersection of hF N F is empty or a midpoint of an edge. Note that

n—1
U B, 1/2)\F
i=0

equals a half-edge labeled x attached to id since the canonical projection pg, from CHp,
onto H,\C Hpy, maps id to the vertex of H,\C Hp, that is not attached a loop labeled z..
Then we see that the set

{h € H,\ {id} | R\ FNF £ 0}
is a generating set of H,,. We can take its subset B, such that
{h € H,\ {id} | \FNF #0} = B,uB, ",

and then B,, is a free basis of H,.

Now, we consider the Cayley graph X,, := Cay(H,, By,) of H,, with respect to B,,, which
is a tree. From the definition of B,, there is one-to-one correspondence between a vertex h
of X;, and hF C X. Moreover, hy, he, € V(X,,) are adjacent if and only if hy F NhoF # 0,
which means that h;F and hoF are also adjacent.

We generalize the notion of a round-graph centered at a vertex with radius » € N and
define a round-graph of r-neighborhood of a subset of X in order to consider a round-graph
of r-neighborhood of hF for h € H,.

Definition 8.16 (Round-graph of r-neighborhood). Let r > 0. For a non-empty bounded
subset Y of X we denote by B(Y,r) the r-neighborhood of Y, that is,

BY,r):={zx e X |d(z,Y) <r}.

A subset T of B(Y,r) is called a round-graph of r-neighborhood of Y if TNY # ) and
there exists S € H(OF) such that

T =CH(S)N B(Y,r).
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We denote by R,(Y) the set of all round-graphs of r-neighborhood of Y. For T' € R, (Y)
we define the subset cylinder SCyl(T') with respect to T by

SCyl(T) := {S € H(OF) | CH(S) N B(Y,r) = T}.

For two non-empty subset Y and Z of X we denote by B(Y, Z,r) the intersection of
B(Y,r) and B(Z,r). For Th € R, (Y), Ty € R.(Z) we say that T} and T are connectable
itThNB(Y,Z,r)=T,NB(Y,Z,r). Note that B(Y, Z,r) can be empty, and then 77 and
Ty are connectable for any 77 € R, (Y), T2 € R, (Z).

Assume that B(Y, Z,r) is not empty. A subset J of B(Y, Z,r) is called a (Y, Z)-round-
graph of r-neighborhood of Y, Z if JNY # (), J N Z # () and there exists S € H(OF) such
that J = CH(S)N B(Y, Z,r). We denote by R, (Y, Z) the set of all (Y, Z)-round-graph
of r-neighborhood of Y, Z. For J € R, (Y, Z) we define the subset cylinder SCyl(J) with
respect to J by

SCyl(J) = {S € H(OF) | CH(S) N B(Y, Z,r) = J}.

For Th € R (Y),T> € R-(Z) we say that T} and T, are J-connectable for J € R,.(Y, Z) if
T NB(Y,Z,7) =J=TyNB(Y, Z,1).

For J € R, (Y, Z) the following equation holds:

SCyl(J) = || scyum),
TeR,(Y)
TNB(Y,Z,r)=J

which implies that for any p € SC(F) we have

Yo uSCyT) = > u(SCylT")).
TER(Y) T eR-(Z)
TNB(Y,Z,r)=J T'NB(Y,Z,r)=J

Lemma 8.17. Letr > 0. Let hg, h1, ..., hy be pairwise disjoint elements of Hy, such that

hi—1F is adjacent to h;F fori=1,...,m. Take T; € R.(h;F) fori=0,1,...,m. If T;_1
and T; are connectable for every i =1,...m, then Ty and T, are connectable.

Proof. The proof is almost the same as that of Lemma 8.10. Since X is a tree, we have

B(hOF, hmf,’f’) - ﬂ B(hif7r))
=0
which implies
m—1

B(hoF, hnF,7) C () B(hiF, higaF,r).
i=0
From the assumption,

Ti_1N B(hz;lf, h; F, 7“) =T;N B(hz;lf, h; F, ’l“).

for every i = 1, ..., m. Therefore
To N B(hoF, hpF,r) =Ty N B(hoF, hpF,1) =+ =T, N B(hoF, hyy F, 7).
This completes the proof. U

Now, we begin to prove Theorem 8.13. We divides the proof into 5 steps and we will
refer these steps in the proof of the denseness property for surface groups.
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Step 1. Fix u € SC(F). Fix € > 0 and r € N, which determine the open neighborhood
U(r,e) of u:
U(r,e) :={v € SC(G) | |u(SCyl(T")) — v(SCyl(T"))| < ¢ for every T € R,(id)}.
Take a sufficiently large n € N. Set p := r + n. Recall that
Ro= || R,(v).
VeV (X)
From Lemma 8.11, we can take a map
0: R, = Zx
satisfying the following conditions:

(1) 0 is F-invariant;
(2) there exists M € N such that ﬁ@ approximates p, that is, for every T' € R,

‘]\ZG(T) - u(SCyl(T»‘ <,

where ¢ > 0 depends on p,e,r and n;
(3) for any u € B and any J € R,(id, u) we have

o) = >ooou).

TeR,(id) T'ERp(u)
TNB(id,u,p)=J T'NB(id,u,r)=J

The above conditions (1) and (3) imply that for any adjacent vertices v,w € V(X) and

J € R,(v,w) we have
oooum= > 1.

TeR,(v) T'€Rp(w)
TNB(v,w,p)=J T'NB(v,w,r)=J

For each h € H, and T € R, (hF) we define 0(T") by
oT):= > T,

T'€Rp(v)
T'\B(hF,r)=T

where v is a vertex of T'N hF. Note that the diameter of F is n and so B(hF,r) C
B(v,r +n) = B(v, p) for any vertex v of T N hF.

Lemma 8.18. The definition of 0(T) is independent of the choice of v and the map
0: |_| Rr(hf) — ZZO

heH,

is Hy-invariant. Moreover, for any u € By, and any J € R.(F,uF) we have the following
equation:

> 0(T) = > o(T").

TR, (F) T'€R, (uF)
TOB(FuF,r)=J T'NB(FuF,r)=J

Proof. For h € H, and T € R, (hF) we have

SCyl(T) = | ] SCyl(T"),

T'e€Rp(v)

T'NB(hF,r)=T
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Let v’ be another vertex of T'N hF. It is sufficient to consider the case that v’ is adjacent
to v. Since B(hF,r) C B(v,v', p), we can obtain

S - Y%
T'eRp(v) JERp(v,0") T'eRp(v)
T'NB(hF,r)=T JNB(hF,r)=T T'NB(v,',p)=J

D SIND MR CE

JERp(v,0") T'ERH(v')
JNB(hF,r)=T T'NB(v,’,p)=J

= > ).
T'eR, (V)
T'0NB(hF,r)=T

Therefore, 0(T) is independent of the choice of v. Moreover, the map
0: | | Re(hF) = Zxo
heH,

is Hy-invariant by the definition.
Let u € By, and J € R, (F,uF). Since uF and F intersect at a midpoint of an edge,
there exist two adjacent vertices v, w of J such that v € F and w € uF. Then we have

> 0(T) = > >

TeR,(F) TeER(F) T'€R,p(v)
TNB(FuF,r)=J TNB(FuF,r)=J T'NB(F,r)=T
= X ) >, um)
TeER(F) J'€Ry(v,w) T'€Rp(v)

TNB(FuF,r)=J JNB(FuF,r)=T T'NB(v,w,r)=J’

= 2 D 2. 1)

TeR(F) J'€ERp(v,w) T eERp(w)
TNB(F,uF,r)=J J'NB(FuF,r)=T T'NB(v,w,r)=J"

Yy
TER(F) T €Rp(w)
TNB(FuF,r)=J T'NB(F,r)=T

= > 0(T")
T'€Rp(w)
T'NB(FuF,r)=J

S S S
T €Ry(uF) T"eRp(w)
T'NB(FuF,r)=J T"NB(uF,r)=T'

= > ).
T Ry (uF)
T'NB(FuF,r)=J

This is the required equation. ]
From the above lemma and its proof we can see that # can be considered as a measure

as long as we consider a value of “small” round-graphs by 6. Explicitly, for any subset Y
of X and ¢ € N satisfying the condition that B(Y,¢) C B(v, p) for a vertex v € Y, we can

define
0T := Y 0T
T'eR,(v)
T'NB(Y,0)=T
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for any T € R¢(Y). Moreover, if £:0(T) is sufficiently close to u(SCyl(T)) for every
T € R,(id), then 7;0(T) is also close to u(SCyl(T)) for T € Ry(Y).

Step 2. By using the map 6, we construct a graph (I',¢) on X,, = Cay(H,, B,) by the
same way as we did in the proof of Theorem 8.12. Then the graph (T',:) satisfies the
following conditions:
(1) ¢: T' = X,, is an Hp-equivariant map;
(2) the restriction of ¢ to each connected component of I" is injective;
(3) #.71(id) < o0
We define the vertex set V(I') of I' by

V(L) == {v(h T,9) YheH,, TeR (hF), i=1,...0(T)-

If 9(T) = 0 for T € R,(hF), then we do not have any vertex v(h,T,i). We will write
v(h,T) instead of v(h,T,i) when no confusion can arise. Since for each u € B, and

J € Ry (F,uF) we have
o= > eI,

TeER(F) T'€Rr(uF)
TNB(FuF,r)=J T'NB(FuF,r)=J

we can define a certain one-to-one correspondence between

{v(id, T)}rp(Furn=s and {v(u, T") }ropF ur =J-

For this correspondence we connect two vertices by an edge, and we perform this operation
for every u € B,, and every J € R, (F,uF). Finally, for every u € B, and h € H,, we
connect v(h,T,i) to v(hu,hT’,i") by an edge if v(id, T,i) and v(u,T,i") are connected by
an edge. In this way we obtain the edge set E(I") of T.

From the construction of I', we see that H,, acts on I', and if v(hy,T1),v(h2,T2) € V(T')
are connected by an edge, then hy and hy are adjacent in X, and 17,75 are J-connectable
for some J € R, (h1F,hoF). Moreover, for v(h,T) € V(T') if there exists h’ adjacent to
h in X,, such that T NA'F # 0, then T N B(hF,h'F,r) € R,.(hF,hF) and there exists
T" € Ry(h'F) such that v(h,T) and v(h/,T") are connected by an edge.

We also have an Hj,-equivariant map ¢ from I' to X,, such that «(v(h,T)) = h for
v(h,T) € V(I'). Moreover, the restriction of ¢ to each connected component Y of I is
injective since X, is a tree. By the definition of ¢, we have

= Y T

TER(F)
<2 Z ) >, T
veV(F)TeR,(v TeR,(id)

Finally, we note that a connected component Y of I' may contain a vertex with degree
0 or 1 since edges with label z are not attached to the vertex h € H, C V(CHpy,).
For example, consider the subgroup (z) of F' and its limit set {x*°,z7>°}. Then T :=
CH({z>®,z=*°})NB(F,r) € R.(F) and TNCHpy, = {id}. We see that v(id,T) will be a
vertex with degree 0 in I' if §(T") > 0. Therefore even if we define a subset current np on
H,, by the same way as we did for an SC-graph on F', np loses some information on (7).

Step 3. We construct a graph (|I'|, |¢|) on X from (I, ¢) satisfying the following conditions:
(1) |¢]: |T'| = X is an Hp-equivariant map;

(2) the restriction of |¢| to each connected component of |I'| is injective;

(3) #0471 (id) < oc.
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For each connected component Y of I' we define a subgraph |Y| of X by

Y= |J Tnhr
v(h,T)EV(Y)

and define |I'| to be the formal union of |Y| over all connected component Y of I". By the
definition, |V is included in | |,cy hF = CHp,. Let |i| be the natural projection from
IT'| to X, that is, the restriction of |¢| to Y| for each Y € Comp(I") is the inclusion map.
The action of H,, on I'" and on X induce the action of H,, on |I'|. Let hg € H,, and = € |Y|
for Y € Comp(T"). For a moment, we write (Y, z) instead of = to emphasize that x is a
point of |Y|. Then there exists v(h,T) € V(Y) such that x € TN hF. Since H, acts on
T, there exists v(hoh, hoT) € V(hoY) and hox € hoT N hohF. Then we define ho(Y, ) to
be (hoY, hoz), which is a point of |hgY|. We see that the map |¢| is H,-equivariant by the
definition.

Lemma 8.19. Let Y be a connected component of I'. Let v(h,T) € V(Y), v € V(T)NhF.
Then we have

Y| N B(v,r)=CHpg, NT N B(v,r).
Moreover, |Y| is connected.

Proof. Inclusion C : Let w € |Y| N B(v,r). There exists v(h',T7’) € V(Y) such that
w € T'Nh'F. Since Y is connected there exist a geodesic path of vertices v(ho,Tp) =
v(h,T),v(h1,T1),...,0(hm, Tn) = v(h',T") € V(Y). Since T;_; and T; are connectable for
i=1,...,m, T and T" are also connectable from Lemma 8.17. Since B(v,r) C B(hF,r),
we have

T Nh'FnBv,r)=T"NBhF,NF,r)Nh'Fn B(v,r)
=T N B(hF,hF,r)nh'FnB(v,r)

and so
weT' NKFnB(v,r)Cc CHy, NT N B(v,r).

Inclusion D : Let w € CHy,, NT N B(v,r). Then there exists a geodesic path P from
v to win CHy, NT N B(v,r) since all of CHy,,T and B(v,r) are trees. We can take
a sequence hg = h,hy,..., hy, € Hy such that P passes through h;F in this order and
w € hpF. From the construction of the edge set of I' there exists T; € R, (h;F) for
i = 1,...,m such that v(hy,T1),...,v(hm,Tn) € V(Y), T and T} are connectable, and
T; and T;41 are connectable for ¢ = 1,2,...,m — 1. From Lemma 8.17, T" and T, are
connectable and so

w €T N B(hF, hpF,r) N hpF N B(v,r)
=T N B(hF, hpF,7) 0 hyF N B(v, 7).

This implies that w € T,,, N hp F N B(v,r) C |Y|N B(v, 7).
Finally, we check that |Y'| is connected. Take any geodesic path of vertices

Q}(ho, To), ’U(hl, Tl), ... ,Q}(hm, Tm) (S V(Y)

Since T;_1 and T; are connectable, there exists an edge e; in T;_1 N T; connecting h; 1 F
and h;F fori =1,...,m. Note that T;Nh;F is connected. Therefore |Y| is connected. [
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From the above lemma we have
#|.| 7' (id) =#{Z € Comp(|T']) | Z > id}
=#{Y € Comp(I") | v(id,T") € V(Y),T > id}

= 0(T)
TeER(F)
T3id
= Z 0(T) < 0.
TER,(id)
T3id
Therefore we can see that (|I'|, |¢|) satisfies all conditions to be an SC-graph on (H,,, CHp,)
except the condition that for every connected component Z of |I'| we have CH (Z(c0)) = Z.
The reason is that there exists a vertex v of Z with degree 1 or 0 in Z. Such a vertex v
belongs to H, C V(CHp,) by the construction of H,. This implies that there are finite
vertices of |¢|7!(id) with degree less than 2 and any vertex of |I'| with degree less than 2
belongs to the H,-orbit of those vertices.

Step 4. We construct an SC-graph (I',7) on (H,,CHy,) from (|T,|¢|), that is, (T',7)
satisfies the following conditions:

(1) 7 T — CHp,, is an Hy,-equivariant map;

(2) the restriction of 7 to each connected component Z of I' is injective and 7(Z) =
CH(1(Z)(0));

(3) #171(id) < o0.

Let v be a vertex of [¢|~(id) with degree less than 2. If the degree of v is 0, then
we remove H,(v) from |I'|. Now, we consider the case the degree of v is 1. Then there
exists either an edge connecting a vertex of |¢|71(y) to v or an edge connecting a vertex
of |¢|71(y~!) and v. Assume that there exists an edge connecting a vertex of |¢|~1(y~!)
to v. Take a subgraph P of C'Hy, consisting of two edges connecting id and y, y and yx.
Consider the formal union

Tju || »(p)

heH,

Note that H,, acts on this formal union from left. For every h € H,, we attach the vertex
of hP corresponding to h to hv in |I'|, and the vertex of hP corresponding to h(yx) to
the vertex of (hyzy!)P corresponding to (hyxy 1)y = hyxr. Note that if h € H,, then
hyry~! € H,. Since this attachment of H, (P) to |T| is H,-invariant, we obtain a graph
IT'|" such that H,, acts on |[I'|" and the degree of hv in |I'|" equals 2. For h € H,, and the
vertex h(y) € h(P) the degree of h(y) in |I'| is 3. Moreover [i] is extended to an H,-
equivariant map ¢’ from || to CHp, such that the restriction of || to every connected
component is injective since C Hy,, is a tree.

In the case that there exists an edge connecting a vertex of |¢|~!(y) to v, we can perform
the same operation by using a subgraph of CHp, consisting of two edges connecting id
and y~!, y~! and y~'a.

We perform this operation until every vertex of |I'| has a degree larger than or equal to
2. The resulting graph is denoted by (f,?), which is an SC-graph on (H,,CHp,). Let C;
be the number of vertices of [¢|~!(id) with degree 1 in |I'|. Then we need to perform the

above operation exactly C' times in order to obtain I'.

Step 5. Set

Mp = Y. 0z() € Span(SC,(Hy)).
ZeComp(T)
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We prove that LHn(nF) belongs to the open neighborhood U (r,¢) of u for a sufficiently
large n.

Take T' € R,(id). Then we have
v, () (SCYUT)) = Y gulnp) (SCYI(T))

gHn€F/Hy,

= > np(SCyl(gT'T)).
gHneF/Hy
If g7'T is not included in CHpy, for g € F, then SCyl(T) N H(OA(H,)) = 0 and so
ns(SCyl(g'T)) = 0. Since the fundamental domain F for the action of H, on CHp,

includes vertices id,y, ...,y" !, we have

V(CHg,) = H, UH,y - Hyy" L.

This implies that if gH, € G/H, is different from every y~'H, for i = 0,1,...,n — 1,
then g~ ¢ V(CHpy, ), which implies that 7z(SCyl(g~'T)) = 0. Note that 7' > id and so
g 'T 5 g~!. Therefore we have

n—1
vz, (1) (SCYI(T)) = D~ np(SCyl(y'T)).
=0
Now, we can assume that n is much larger than r. For each ¢ = 0,1,...,n — 1 we

calculate and evaluate 7(SCyl(y“T")). The point is that any connected component Z of r
satisfies the condition that CH(Z(o0)) = Z, which implies that Z(oco) belongs to SCyl(T")
forv e V(X) and T € R, (v) if and only if Z N B(v,r) = T. Hence we have

ns(SCyl(y'T)) =#{Z € Comp(T) | Z(c0) € SCyl(y'T)}
=#{Z € Comp(T') | ZN B(y',r) = y'T}.

Case 1: The number i belongs to {r,...,n —r}.
In this case we note that B(y',r) C CHp,. Consider a connected component Y of I
with |Y] 3 y*. Since y* € F, there exists v(id, T7") € V(Y) and we have

Y| N B(y',r)=CHg, NT' N B(y',r) =T N By, )
by Lemma 8.19. Hence for the connected component Z of r containing Y|, we also see
that ZN B(yi,r) = |Y|NB(y', 7). Note that for a connected component Z of T containing

y', Z must include a subgraph |Y| for a connected component Y of I and |Y| 3 y*. Hence
we have

np(SCyl(y'T))
—#{Z € Comp(T') | ZN B(y',r) = y'T}
=#{Y € Comp(T) | [Y|N B(y',7) = y'T}
=#{Y € Comp(T) | v(id, T") € V(Y), T’ N B(y',r) = y'T}
= >, 1

T'eRr(F)
T'NB(y',r)=y'T

= > 1
T'eR,(y")
T'NB(y’ ,r)=y'T
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= ) eT)=06).
T'eR,(id)
T'NB(id,r)=T

Note that
scylmy = || scyu).

T'€R,(id)
T'NB(id,r)=T
Recall that we took 6 after fixing n and p = r +n. Since 7;0(1") is close to pu(SCyl(T"))
for 7" € R,(id) and the cardinality of R,(id) is finite and depends on p, 70(T) is also
close to u(SCyl(T)).

Case 2: The number i belongs to {0,...,r —1,n—r+1,...,n—1}.

For a connected component Z of r containing ¢ the intersection of Z and B(y,r) is
influenced by our construction of T from IT'|. The point is that we can make r/n as small
as we like since we choose n after r. Recall that C; is the number of vertices of |¢|~!(id)
with degree 1 in |I'|. Then we have

n:(SCyl(y'T))
=#{Z € Comp(I') | ZN B(y',7) = y'T}
<#{Z € Comp(I') | Z > ¢}
<#{Y € Comp(T) | v(id, T") € V(Y),T' > y'} + C4
< > T+ G

r
r

T'eRp(y")
< Y T+
T'eR,(id)
Note that
Cr<#l7'Gd) < D 6(T)
T'eR,(id)
and
|| scyi(T) = A
T'eR,(id)
Hence for

o(id) = > 0T,

T'e€R,(id)

+0(id) is also close to p(Aiq) and there exists a constant C' depending on p(A;q) such
that

%9(1@ <c

Then we see that
ne(SCyl(y'T)) < 2C M.
Note that
6(T) <6(id) < CM.
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From Case 1 and Case 2 we have

37 () (SCHI(T)) = SCHI(T)|
< %em _ ,u(SCyl(T))‘ + 2;]\_41 20M
< %H(T) - ,u(SCyl(T))‘ + 2;]\_410@) Gl
< |0(m) - u(SCyl(T))‘ 2= 1C

Therefore, if we take n sufficiently large and take 6 such that ﬁ@ is sufficiently close to u,
then we have

7, O (SCYUT)) — w(SCH(T)) | < &

for every T' € R,(id). This completes the proof of Theorem 8.13.

8.3. Denseness property of surface groups. We prove the following theorem in this
subsection, which is our main result:

Theorem 8.20. For a surface group G, the set SC,.(G) of rational subset currents on G
is a dense subset of SC(G).

Note that the fundamental group of a compact hyperbolic surface is a free group of
finite rank or a surface group. Hence we also have the following theorem:

Theorem 8.21. For a compact hyperbolic surface ¥, the set SC,(X) of rational subset
currents on 3 is a dense subset of SC(X).

Let > be a closed hyperbolic surface and G the fundamental group of 3. In this
subsection we write SC(G) to denote the space of subset currents on G since we consider
both the universal cover H of ¥ and the Cayley graph of G with respect to a finite
generating set.

The strategy to prove Theorem 8.20 is based on the proof of Theorem 8.13 in the
previous subsection. However, in this case our proof will be more complicated. We first
take a certain sequence of finitely generated subgroups { H,,} of G, which are free groups of
finite rank, but we need to modify H, during the proof. Recall that in Step 4 of the proof
of Theorem 8.13 we constructed the graph (I',7) from (|T'[,|¢|). We need to modify H,, in
this context. Explicitly, we take ug € G independent of n such that H, := (Hy,, U{up})
is isomorphic to the free Ezoduct of H, and satisfies several conditions, and then we
construct v € Span(SCy(Hy)) such that ¢z (v) is sufficiently close to a given subset

current ;1 € SC(G). Note that ¢ 7 (SC(I/-I-';)) includes g, (SC(Hy)) since vy, = 17 © ng
We can obtain Theorem 8.20 as a corollary to the following theorem:

Theorem 8.22. There exists a sequence of finitely generated subgroups {ﬁ\n}nGN such
that each Hy is a free group of finite rank and the union

U vz (SC(H,))

neN
is a dense subset of SC(G).

For the simplicity of describing subgroups of G, we assume that the genus of 3 is 2 in
this subsection. We construct ¥ by gluing edges of an octagon by the fundamental way.
This construction gives 3 a CW-complex structure, a base point xg of G and a generating
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set Bg of G. Set X := Cay(G, Bg). We also fix a hyperbolic metric on ¥ and assume
that there exists a closed geodesic ¢y passing through the base point xy and dividing X
into two compact surfaces, each of which is a torus with one boundary component and
contains two generators of G (see Figure 4).

5 o

FIGURE 4. The four closed curves except ¢y and ¢q represent the 1-skeleton
of the CW-complex structure of 3 and also represent the generating set Bg
of G.

The CW-complex structure on ¥ induces the CW-complex structure on the universal
cover H of ¥. Fix a lift zg of zg in H. Then we can see that there exists a G-equivariant
homeomorphism ® from the Cayley graph X to the 1-skeleton H(!) of H such that ®(g) =
gy for every g € G. Moreover, the map ® is a quasi-isometry from the Svarc-Milnor
Lemma.

Take a closed geodesic ¢; cutting one of the handles of ¥ (see Figure 4). For n > 2 we
can obtain an n-fold covering space " of & by cutting ¥ along ¢; and gluing n-copies of
¥\ ¢1 along ¢; (see the left of Figure 5 for §~14). Let ps, be the covering map from n
to ¥ and Zo" a lift of 7 in . Let G,, be the image of the homomorphism (ps,, )4 from
Wl(i”,%”) to G = m1(X, zg). Consider a lift ¢y" of ¢y passing through zp" in 3. Then
co"t divides ¥ into two connected components, one of which is a torus with one boundary
component and the other of which is an n-genus surface with one boundary component,
denoted by ¥, (see the right of Figure 5 for ¥4). The point is that ¥, “approximates”
7 if s large.

~

FIGURE 5. The four closed curves on %4 are the copies of ¢y.

Set Hy, := (psnls,)#m1(Xn, T0") < G. Since ¢p" is a closed geodesic of >, the convex
core Cp,, is identified with ¥,,. Then CHpy, contains zp. We can see that %an converges
to ng in SC(G) from the proof of Theorem 8.22.

We fix § > 0 such that X is a §-hyperbolic space.

Remark 8.23 (Constants related to ¢). This remark is the most important remark in
this subsection. In the case of a free group F' of finite rank, the Cayley graph of F' with
respect to a free basis is a tree, which is a 0-hyperbolic space. Then we could construct
subtrees or geodesics of the Cayley graph clearly. However, when we construct something
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on X, we will be always annoyed with some positive constants coming from §. Here, we
introduce some notations in order to reduce complicatedness of such constants. We will
use a symbol ¢’ to represent a constant depending only on d, which can be different in
each situation. Even if a constant depends on not only d but also objects not depending
on n appeared in the above, such as H, ®, and the degree of a vertex of X, we say only
that the constant depends on §. We say that a quasi-geodesic v is a d-quasi-geodesic if
there exist a > 1,b > 0 depending only on § such that v is (a, b)-quasi-geodesic.

Definition 8.24 (Convex hull in X'). We identify 0G with the boundary 0.X of X. Recall
that for S € H(OG) the weak convex hull WC(S) of S in X is the union of all geodesic
lines connecting two points of S. It is known that WC(S) is not necessarily a convex
subset of X but ¢’-quasi-convex subset of X, that is, any geodesic path connecting two
points of WC(S) is included in the (closed) §’-neighborhood B(WC(S),d’) of WC(S).
We introduce a notion of conver hull CH(S) of S in X. Note that X is a planar graph
since X is homeomorphic to the 1-skeleton H®.

Let &, € OG with £ # 1. We give an orientation to a geodesic line ¢ joining & to 7.
Since X is planar, we can define the left side Left(¢) of £ and the right side Right(¢) of ¢,
each of which includes . We say that an edge e of WC({,n}) is leftmost if e is included
in the left side of ¢ for every geodesic line ¢ from & to n. We can define a rightmost
edge of WC({{,n}) by the same way. Then we can see that the union of all leftmost
edges forms a quasi-geodesic line joining & to 1, which is denoted by Left(£,n). The union
of all rightmost edges also forms a quasi-geodesic line Right(£,n) joining £ to n. Note
that Left(£,n) = Right(n,£). We define the convex hull CH ({{,n}) of {£,n} to be the
intersection of the right side of Left(£,n) and the left side of Right(,n).

Let S € H(0G). If S = 0G, then we define CH(S) to be X. Assume that S # JG.
Recall that OG \ S is the union of at most countably many open intervals {I)} ca. We
give an orientation to G, which induces an orientation on each Iy. For the orientation of
I, we give an orientation to 0Ipn = {&),mr} such that the limit set of the right side of a
geodesic line joining &) to ny equals IT,. Now, we define CH(S) to be the intersection of
the left side of Right(&y, 7)) taken over all A € A. We call each Right({), 7)) a boundary
component of CH (S) and the union of Right (£, ny) taken over all A € A the boundary of
CH(S). Note that every boundary component of CH(S) is a J-quasi-geodesic line.

From the definition of CH (S) for S € H(9G) we can see that CH(S) has the following

properties:

(1) CH(S) is a ¢’-quasi-convex connected subgraph of X;

(2) CH(S) D WC(S);

(3) CH(S) is included in the §’-neighborhood of WC(S);

(4) for every x,y € CH(S) there exists a d-quasi-geodesic joining z to y in CH(S).
If a geodesic joining x to y goes out from C'H (S), then we can consider a d-quasi geodesic
traveling along the boundary of CH(S). As a result, we can see the property (4).

Now, we can define the notion of round-graphs and subset cylinders with respect to
round-graphs by using the convex hull defined in the above by the same way as Definition
8.16. Note that for a round-graph T € R, (id) we can see that SCyl(T") is a Borel subset
of H(OG) but neither open nor closed. Therefore, we need to develop a new neighborhood
of ;1 € SC(G) instead of Corollary 8.7.

Notation 8.25. Let Y be a non-empty bounded subset of X. Recall that d = dx is
the path metric on X such that each edge of X has length one. Let a,7 > 0. For
T, T, € R.(Y) we denote by Ty ~ Ty if Ty C B(T»,a) and T> C B(T1,a). Let d be a

visual metric on X := X U9X. Let dyayus be the Hausdorff distance on H(OG) induced
by the restriction of d+ to 0X = 9G.
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Lemma 8.26. Let a > 0. Let Y be a non-empty bounded subset of X. The supremum
of daus(S1,S2) taken over all S1 € SCyl(T1), So € SCyl(Ts) for all Ty, Ty € R, (Y) with

Ty ~ Ty converges to 0 when r — oo.
a

Proof. To obtain a contradiction, suppose that there exists € > 0 such that for any r¢g > 0
there exist r > rg and 11,7 € R,(Y) with 71 ~ Ty and S; € SCyl(T1), 52 € SCyl(T?)
a

such that dpaus(S1,S2) > €. For such Sp, Se we can assume that there exists £ € S; such
that d< (&, S2) > e without loss of generality. Then there exists ¢’ > 0 depending only on
e such that d (&, CH(S2)) > €’. Let Bx(&,¢") be the closed ball centered at £ with radius
¢’ with respect to dy. Then Bx(§,¢') N CH(S2) = 0.

Now, we assume that r is sufficiently large. Then By(&,")NB(Y,r) # 0, and Bx(§,€')
also intersects Ty since CH(S1) N B(Y,r) = T1. Moreover, Bx(&,€’) also intersects T
since T1 C B(T»,a) for the fixed constant a > 0. Therefore B(§,¢’) intersects C'H (S2),
a contradiction. O

From the above lemma we can see that the supremum of the diameter of SCyl(7) in
H(OG) taken over T' € R, (Y) tends to 0 when r — oo.

The following lemma is a technical lemma that will be used in the proofs of Lemmas
8.28 and 8.30.

Lemma 8.27. Leta,b > 0. LetY be a b-quasi-conver subset of X. Letvg € X andyp € Y.
Assume that r > 0 is much larger than a,b,d(y,y'). If x belongs to B(Y,a) N B(vg,T),
then x also belongs to B(Y N B(vg,r),2(a+ b+ d(vo, y0)))-

Proof. Suppose that x belongs to B(Y,a) N B(vy,r). Take y € Y such that d(z,y) < a. If
y belongs to B(vg, ), then our claim follows. Hence we assume that d(vg,y) > r. Take a
geodesic ¢ joining yo to y. Note that d(yo,y) > d(vo,y) — d(yo,vo) > 7 — d(yo,v0). Hence
we can take p € £ such that d(yo,p) =7 — b — d(vo,y0). Then we have

d(p,y) = d(yo,y) — d(yo,p) < d(yo,v0) + d(vo,y) — 4+ b+ d(vo, yo)
<a+ b+ Qd(vo, yo).

Since Y is b-quasi-convex, there exists p’ € Y such that d(p,p’) < b. Then

d(vo, p') < d(vo,0) + d(yo,p) + d(p,p) <1,
which implies that p’ € B(vg,r). Moreover, we have

d(z,p') < d(w,y) + d(y,p) + d(p,p') < a+ (a+ b+ 2d(vo, y0)) + .
Therefore « belongs to B(Y N B(vo, ), 2(a + b+ d(vo, y0)))- O
For U C H(0G) and a > 0 set

By (U, a) :={S € H(3G) | duaus(U, S) < a},

the a-neighborhood of U in H(JG). Then we have the following lemma:

Lemma 8.28. Let ¢,a > 0. LetY be a non-bounded subset of X with Y (o0) € H(IG).
Let y € Y. There exists r > 0 such that if Y N B(y,r) € R.(y) and

Y N B(y,r) ~ WC(Y (o)) N B(y,r),
then Y (00) belongs to By (SCyl(Y N B(y,r)),¢).

Proof. Take S € SCyl(Y N B(y,r)), which implies that CH(S) N B(y,r) =Y N B(y, 7).
Take ¢’ > 0 such that CH(Y (00)) is included in B(WC(Y (0)),d") and WC(Y (c0)) is



SUBSET CURRENTS ON SURFACES 109

d’-quasi-convex. It is sufficient to prove that there exists a constant o > 0 depending only
on a and ¢’ such that

CH(Y (o0)) N B(y,r) ~ CH(S)N B(y,r).

Then from Lemma 8.26, we see that the Hausdorff distance between Y (00) and S is smaller
than ¢ if r is sufficiently large.

Since CH(Y (00)) is included in B(WC(Y (00)),d’), we can take y' € WC(Y') such that
d(y,y') < ¢. Take z € CH(Y(o0)) N B(y,r). Then z belongs to B(WC(Y (00)),d’) N
B(y,r). From Lemma 8.27, x belongs to B(WC(Y (o)) N B(y,r),6d"). From the assump-
tion, we have

B(WC(Y ()N B(y,r),60') C B(Y N B(y,r),65 + a)
= B(CH(S)N B(y,r),68 + a).
Hence
CH(Y (00)) N B(y,r) C B(CH(S) N B(y,r),68 + a).
Since WC'(Y (00)) C CH(Y (00)), we have
CH(S)NB(y,r) =Y NB(y,r) C BWWC(Y()) N B(y,r),a)
C B(CH(Y (c0)) N B(y,r),a).
Therefore
CH(Y (o)) N B(y,r) ol CH(S)N B(y,r).
This completes the proof. ]

Let u € SC(G). For compactly supported continuous functions fi,..., fr on H(IG)
and € > 0 we have an open neighborhood U(fi, ..., fi;€) of u defined by

v esC(@) | \ [ s~ | siaw

< e foreveryi=1,...,k},

and the family of all such open neighborhoods of p forms a fundamental system of open
neighborhoods of .

Since the proof of Theorem 8.20 is long and includes many constants, we will write
Setting when we fix something.

Setting 1: Fix y € SC(G) and compactly supported continuous functions fi,. .., fi on
H(0G) and €, > 0. We assume that 4 is not the zero measure. Take r, € N such that

A(id,r,) = {S € H(0G) | CH(S) N B(id, r,,) # 0}

includes the support of f; for every ¢t =1,..., k.

The set A(id, r,) is a compact subset of H(9G). Since each f; is compactly supported,
fi is a uniformly continuous function.

Let m be a Borel measure on a topological space 2. Set |m| := m(2). For a non-empty
Borel subset A of 2 we denote by m|4 the restriction of m to A. The support of m,
denoted by suppm, is the smallest closed subset A of € such that m(A¢) = 0. Then
Im| = m(£2) = m(supp m).

The following lemma describes a condition of subset currents to belong to the open
neighborhood U(f1, ..., fi;€u) of .

Lemma 8.29. Let 7‘; > ru. There exist p > 0,61 > 0,62 > 0 such that if v € SC(F)
satisfies the following conditions, then v € U(f1,..., fri€u):
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(1) there exist Borel measures v',vp on H(OG) for T € R,(B(id,r,)) such that

Vagary = D, vrlagan) +v5
TER,(B(idr),))

(2) suppvr C By (SCyl(T),e1) for every T € R,(B(id,1},));
(3) || < e2;
(4) |lvr| — p(SCyl(T'))| < e2 for every T € R,(B(id, r,@))

Proof. Let f be an element of {fi,..., fi}. Since supp f is included in A(id,r,), we have

oo oo

g ))/deT—l—/de/— 3 /SCYI(T) fdu

TER,(B(id,r), TeR,(B(id,r},))

= Z / Jvr = /SCyl(T) e

TeR,(B(id,r!))
Let e3 > 0. From Lemma 8.26, for a sufficiently large p and small €; > 0 the diameter
of K1 := By(SCyl(T),e1) is sufficiently small, and then we have

S)— inf f(9) <
SsengTf() Sler;(Tf() €3

+ || max | f|.

for T € R,(B(id,r,)). Set

My = sup f(9).
SeKrp

Then for each T' € R, (B(id, 7))

‘ / fdvp — / Fdy
SCyl(T)

:‘ /fdl/T — MT‘VT’ +MT’VT‘

- Mru(SCH(T) + Mrp(sCyi1) - [ o
y

<eslvr| + |Mrlea + e3u(SCyl(T'))
<ez(u(SCyl(T)) + e2) + [Mr|e2 + e3u(SCyl(T)).

[ v~ [ sau

<esu(A(id, TL)) + e2e3# R, (B(id, T’L))
+ #R,(B(id, 7)) - €2 - max | f| + e3p(A(id, 7)) + e2 max | f].

Now, we assume that e3 is sufficiently small. Then we need to take small £; and large p.
Hence #R,(B(id,r,)) will be large. Finally, we take ez sufficiently small. Then we can

obtain
‘/fdu—/fd,u‘ < ey

This completes the proof. ]

Hence
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Setting 2: The gap between ’I“;L and r, depends on 4, and r;L will be determined later.
We fix p,e1,e2 > 0 satisfying the condition in the above lemma. We assume that p is
much larger than constants depending on §.

We will construct v satisfying the condition in the above lemma as a finite sum of
rational subset currents on SC(G). When we check the condition (2) in the above lemma,
we will use Lemma 8.28. Recall that we constructed the SC-graph (f,l) on F' in Step
4 in the previous subsection such that each connected component Z of r satisfying the
condition that Z = CH(Z(c0)). Since the Cayley graph of F with respect to a free
basis is a tree, the condition that every vertex of Z has degree larger than 1 implies that
Z = CH(Z()). In the case of the Cayley graph X of G we need to give a new criterion
in order to use Lemma 8.28.

Lemma 8.30. Let Y be a non-bounded subset of X andy € Y. Assume that Y is c-quasi-
convex in X for a constant ¢ > 0. Take r > 0 much larger than ¢ and §. If for every
z € YN B(y,r) there exists a 0-quasi-geodesic line £ in'Y such that d(z,¢) < c, then there
ezists a > 0 depending only on ¢ and & such that

Y N B(y,r) ~ WC(Y (<)) N B(y,r).

Proof. Take z € Y N B(y,r). From the assumption there exists a J-quasi-geodesic line ¢
in Y such that z € B(¢,¢). Then the §’-neighborhood of a geodesic line ¢’ connecting two
endpoints of ¢ includes ¢, which implies that

ze€ B8 +c)c BIWC(Y(0)),d + ).

Note that WC(Y (00)) is 6”-quasi-convex for §” > 0 depending only on ¢ and there exists
y' € WC(Y (00)) such that d(y,y’) <"+ ¢. Then from Lemma 8.27 we see that

2 € BWC(Y ()N B(y,r),2(8' +c+ 8"+ +¢)).

Take z € WC(Y (00)) N B(y,r). Let £ be a geodesic line connecting two points of Y (c0)
passing through 2. Since Y is c-quasi-convex, ¢ is included in B(Y, ' + ¢), which implies
that z € B(Y, 0" +¢) N B(y,r). Hence z belongs to B(Y N B(y,r),2(8' + c+¢)) by Lemma
8.27. From the above, a := 2(20" + 2¢ + §”) satisfies the condition in our claim. O

In order to use the above lemma we need to see the existence of d-quasi-geodesic lines
in Y. Hence when we construct a graph from round-graphs, we need to construct a quasi-
geodesic line in each connected component of the graph. For the purpose, we modify the
definition of a round-graph in Definition 8.16.

Definition 8.31 (Round-graph with information of geodesics). Let r > 0. Let Y be a
non-empty bounded subset of X and 7" € R, (Y). Let y1,...,vm be subsets of B(Y,r) such
that for every ~; there exists a geodesic line ¢ such that N B(Y,r) = ;. Note that ~; can
be non-connected, but we call ; a geodesic in B(Y,r). We call a pair (T,{71,...,7m}) a
round-graph of r-neighborhood of Y with information of geodesics if there exists S € H(IG)
satisfying the following conditions:

(1) TNY #0;

(2) T = CH(S) N B(Y,r);

(3) for every ~y; there exists a geodesic line ¢ connecting two points of S such that

(N B(Y,r) =
(4) for every geodesic line ¢ connecting two points of S there exists 7; such that
(NB(Y,r)=";.

From the conditions (3) and (4), we see that WC(S) N B(Y,r) = |J; 7. We denote by
R:(Y) the set of all round-graphs of r-neighborhood of Y with information of geodesics.
For T, = (T, vyr) € R:(Y), we define |T}| to be T' and we will write the pair (T, y7) simply
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as T. In this notation T € R (Y') means that T = (|T|,vyr). We call an element of yr a
geodesic of T'.

For T € R (Y) we define the subset cylinder SCyl(T) with respect to T" to be a subset
of H(OG) consisting of S satisfying the conditions (2), (3), (4) in the above. For a subset
Z of B(Y,r) the restriction of T' to Z, denoted by T|z, is defined to be the pair of |T|NZ
and the set consisting of Z N~ for every v € ~p.

Let Y, Z be non-empty bounded subsets of X. For 71 € R:(Y),T> € R} (Z) we say that
Ty and Ty are connectable if T1|p(y,z,) = T2|B(v,z,)- Note that B(Y, Z,r) can be empty
and then 77 and T are connectable for any Th € RA(Y),T> € Ri(Z).

Assume that B(Y, Z,r) is not empty. A pair of a subset J of B(Y,Z,r) and a set of
geodesics 1 ..., vm in B(Y, Z,r) is called a (Y, Z)-round-graph of r-neighborhood of Y, Z
with information of geodesics if there exists S € H(IG) satisfying the following conditions:

(1) JNY #£0,JNZ # 0,
(2) J=CH(S)NB(Y, Z,r);
(3) for every ~y; there exists a geodesic line ¢ connecting two points of S such that
(NB(Y,Z,r)=";.
(4) for every geodesic line ¢ connecting two points of S there exists 7; such that
(NB(Y,Z,r)=";.
We denote by R} (Y, Z) the set of all (Y, Z)-round-graph of r-neighborhood of Y, Z with
information of geodesics. For J € R} (Y, Z) we define the subset cylinder SCyl(J) with
respect to J to be a subset of H(9G) consisting of S satisfying the conditions (2), (3), (4)
in the above. For Th € R(Y), Ty € R;(Z) we say that 11 and T are J-connectable for
JeRI(Y,Z) it Th|pry,zry = J = T2|Bry.zm):

Remark 8.32. For T' € R}(Y) we can see that the subset cylinder with respect to 7" is
included in the subset cylinder with respect to |T'| since 7" has more information than |T'|.
Actually, for every Ty € R, (Y') we have

SCyl(Ty) = || sCyl(T

TeERLY)
|T=To
For J € R:(Y, Z) the following equation holds:
seyl(y = || scyiD),
TeRL(Y)

T\gey,z,m=T

which implies that for any v € SC(F') we have

ST ouSCT) = > w(SCyl(T)).
TeR(Y) T'eR:(Z)
T|B(Y,Z,r):J TllB(Y,Z,r):J

Setting 3: Fix n € N with n > 2. We will assume that n is sufficiently large.

Recall that we have a homeomorphism ® from X to HV. Set Xp, := &~ 1(CHp, "NHW).
Then X, is an Hy-invariant subgraph of X. Moreover, we can see that for any two points
x,y € Xg, there exists a geodesic joining = to y in Xy, since X = H® is a planar graph
and X, is surrounded by geodesic lines in X, which are called boundary components
of Xp,. We denote by 0Xp, the union of boundary components of Xy, and call it the
boundary of Xpu,. We see that V(0Xpy,) equals H,,. Note that the CW-complex structure
on ¥ induces a CW-complex structure on " and Yn = CH includes all vertices of ¥".
We say call the intersection of ¥,, and the 1-skeleton of 3" the 1-skeleton of Yn, which
can be identified with the quotient graph H,\ Xy, .
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Consider the action of H, on CHpy, C H. Take a bounded connected fundamental
domain Fy for the action of H, on CHp, such that H,(F) = CHpg,, hF NF = () for non-
trivial h € H,,, Fy is a polygon, and we can obtain a free basis B,, of H,, as side-pairing
transformations of Fy, that is,

B, UB,' = {h e H,\ {id} | hFy N Fo # 0}.

Set F = &~ 1(Fyn H(l)). Then F is a fundamental domain for the action of H,, on Xg,
and we also have

B,UB; ' ={he H,\{id} | \»FNF # 0}.
The fundamental domain F is a non-connected subset of Xz, in general. We can assume
that 7 > id and F contains exactly n vertices since the 0-skeleton of 3" consists of n
vertices.

Set X,, := Cay(Hy, By). Then X, is a tree, and each vertex h € V(X,,) corresponds to
hF C Xg,. From the property of B, we can see that two vertices hi,he € V(X,,) are
adjacent if and only if hy # ho and hyF N hoF # (.

Setting 4: Fix a sufficiently large pg. We will take p1, p2, p3 later such that p3 < ps <
p1 < po, where the gaps depend on some constants depending on n and §. We assume
that all of pg, p1, p2, p3 are much larger than any constants depending on §.

By the same way as Step 1 in the previous subsection, we can take a map

0: || R (v) = Zsg
veV(X)
satisfying the following conditions:
(1) 6 is G-invariant;
(2) there exist M € N such that ;0 approximates y, that is, £:0(T) is sufficiently
close to u(SCyl(T')) for every T' € R} (v);
(3) for any u € Bg and any J € R}, (id,u) we have

Yo )= ).
TeR;, (id) T'eR;, (u)
T‘B(id,u,po):‘] TllB(id,u,pO):J

We note that the same equation as the above follows for any adjacent uw,v € V(X) and
J € Ry, (u,v).

In addition, we can define §(T") for every round-graph 7' (with information of geodesics)
included in B(v, pg) for some v € V(X) and we can assume that +-0(T) is also close to
n(SCyl(T)).

For appropriate r > 0 we will define §(7T') for h € H,, and T' € R} (hF). We note that
|T| N hF # ( by the definition but |T| N hF may contain no vertex. Nevertheless we
can take a vertex v € |T| N B(hF,1). Hence we need to see that B(hF,r) is included in
B(v, po). Moreover, in order to see that the §(7") is independent of the choice of v we need
to consider a geodesic connecting two vertices of B(hJF, 1), and for every vertex w on the
geodesic B(hJF,r) should be included in B(w, po).

Setting 5: Assume that pg is sufficiently larger than the diameter of F, which depends
on n. Since F is bounded, there exists a constant cx > 0 depending on F such that
B(F,1) is cr-quasi-convex. Set

p1 = po —diamF —cr — 1.

For two vertices v,v’ € B(F, 1) and any vertex w on a geodesic ¢ joining v to v, we see
that B(w, pg) D B(F,p1). Therefore we can prove the following lemma by the same way
as the proof of Lemma 8.18.
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Lemma 8.33. For each h € Hy, and T € R}, (hF) we define 6(T) by
oT):= Y o1,

T'e€Ry, (v)
T'|gnr.p)=T
where v is a vertex of |T| N B(hF,1). Then the definition of 0(T) is independent of the
choice of v and we obtain an H,-invariant map

0: | | R; (hF)— Zso.
heH,
Moreover, for any uw € By, and any J € R, (F,uF) we have the following equation:
oooum= > e1).
TeR;, (F) T'eR;, (uF)
T|B(F uFpy)=J T'|B(F uF,py)=J
Following Step 2 in the previous subsection, we construct a graph (I',¢) on (Hy,, X,).
Then the graph (T, ¢) satisfies the following conditions:
(1) ¢: T'— X, is an Hjp-equivariant map;
(2) the restriction of ¢ to each connected component of I' is injective;
(3) #:71(id) < oo.
Explicitly,
V(L) :=A{v(h, T, 0) }nen,, rery, (hF), i=1,...0(T)-
If two vertices v(hy,T1),v(he, T2) of V(I') are connected by an edge, then hy and hy are
adjacent in X,, and T, T are J-connectable for some J € R;l(hl}", hoF). For v(h,T) €
V(T') if there exists A’ adjacent to h in X, such that T'N h'F # 0, then T|prnr,p) €
R;(hF,h'F) and there exists 7" € R (h'F) such that v(h,T) and v(h',T") are connected
by an edge in I. The map ¢ maps v(h,T) € V(') to h € X,,. Finally, we check that

i) = Y 6(T)

TeR;, (F)
< Y Y UT)=#V(B(F,1) Y. 6(T)< .
VeV (B(F,1)) TER} (v) TeR}, (id)

We construct a graph (|T'],|¢|) on Xg, from (I',¢) by the same way as we did in Step 3
in the previous subsection. Explicitly, for each connected component Y of I' we define a
subgraph |Y| of X by

= |J [TInhF
v(h,T)eV(Y)

and define |I'| to be the formal union of |Y'| over all connected component Y of I'. Note
that |Y'| could be non-connected but |Y| is a subgraph of X although hAF is just a subset
of X for h € H,,. Consider the case that an edge e of X, is covered by hi.F,..., hpF for
hi,...h; € H,. Then we can assume that h; and h;y; are adjacent for ¢ = 1,...,k — 1.
Hence if Y contains a vertex v(h;,Tj) € V(Y') with |T};| D e, then there exists v(h;, T;) €
V)fori=1,...,5—1,574+1,...,k such that v(h;, T;) and v(h;t+1,T;+1) are adjacent in
Y for every ¢ =1,...,k — 1. Since T; and T are connectable for every i =1,...,k — 1,
|T;| includes e for every i. Therefore |Y| includes e.

The map |¢| is an Hy,-equivariant map from |I'| to X, and the restriction of |¢| to |Y|
for each connected component Y of T' is the inclusion map. Hence we will identify |Y|
with [¢|(]Y]).
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Now, we want to prove a certain lemma corresponding to Lemma 8.17. Note that
Lemma 8.17 deeply depends on the property that the space X is a tree in the previous
subsection.

Let ¢ be the inclusion map from H,, to X sending h € H,, to h € V(X) = G. Since H,,
is a quasi-convex subgroup of G, we can extend ¢ to a quasi-isometric embedding from
X, to X.

Lemma 8.34. Assume that ¢ is (a,c)-quasi-isometric embedding for a > 1,¢ > 0, which
depend onmn. LetY be a connected component of U'. Letv =v(h,T),v' =v(h,T") € V(Y).
et _ p1 — a(2diamF + c)(diam.F + 1)

N 1+ 2a(diamF + 1)

and assume that py > 0. Then T|gur ) € R, (WF) and T'|gvr p,) € R}, (K'F) are
connectable.

Proof. We denote by dp, the path metric on X,, = Cay(H,, B,). We identify Y with +(Y),
which is a subtree of X,,. Take the geodesic ¢ from v to v/ in Y, which passes through
vertices vg = v,v1,...,0, = v’ in this order. Note that m = dp,(h,h'). Since v;—1 =
v(hi—1,T;—1),v; = v(hi, T;) are connected by an edge, T;—1 and T; are J;-connectable for
some J; € Ry (hi-1F,h;F) for i =1,...,m. This implies that the restriction of T to

U := B(hoF, p1) N B(h1F, p1) N--- N B(hyF, p1)

coincides with that of 77 to U. Therefore it is sufficient to see that B(hJF,h'F,p2) is
included in U.
From the assumption we have

P2

1
-m—c<d(h,h)<am+ec.
a
Since F > id, hF and h'F contain h and h’ respectively and so
1
d(hF, N F)> m—c- 2diamF.

If d(hF, W F) > 2pa, then B(hF, W F,p2) = 0 and T|pr,p,) and T'|pgyr ) are con-
nectable. Therefore it is sufficient to consider the case that

1
—m — ¢ — 2diamF < 2pg9,
a

that is, m < a(2ps + 2diamF + ¢).
Since h;_1, h; are adjacent, for any a > 0 we have

B(hi_l]-",a — diamF — 1) - B(hzf, Oz)
for every i = 1,...,m. Hence

B(hoF,p —m(diamF + 1)) C B(mF,p — (m — 1)(diamF + 1))

C B(hnF,p),
which implies that
B(hoF, p1 — mdiamF —m) C U.
Since m < a(2p2 + 2diamF + ¢), we have
p1 — m(diamF + 1) > p; — a(2p2 + 2diamF + c¢)(diamF + 1).

We can see that
p1 — a(2p2 + 2diamF + c)(diamF + 1) = po.
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In fact,
p1 — a(2p2 + 2diamF + c)(diamF + 1) — pa
=p1 — a(2diamF + c¢)(diamF + 1) — p2(1 4 2a(diamF + 1))
=0.
Hence
B(hF, W F,p2) C B(hoF,p2) CU.
This completes the proof. ]

Setting 6: We take po in the above lemma. Recall that the length of a d-quasi-geodesic
connecting two points with distance d is smaller than or equal to §’d +¢’. We also assume
that ph :=0"pa +9' < p1 — 1.

Now, we prove the following lemma corresponding to Lemma 8.19.

Lemma 8.35. Let Y be a connected component of I'. Let v(h,T) € V(Y), v € |T|N
B(hF,1). Assume that B(v,ph) C Xg, = @ H(CHg, NHWY). Then we have

Y11 B(o, p2) = IT] 1 B(v, pa).
Moreover, for the connected component Z of |Y| containing v,
Z 1 B(v,p2) = V|0 B(v, po) = |T| 1 B(v, po).

Proof. Take z € |Y| N B(v, p2). There exists v(hg, Tp) € V(Y') such that = € |Tp| N hoF.
Since T'| g(nr,py) and To|p(noF,ps) are connectable, we have

x € |To| N B(hF, hoF,p2) = |T| N B(hF, hoF, p2).

Hence = € |T| N B(v, p2).

Take x € |T| N B(v,p2) and S € SCyl(T). Then = € CH(S) N B(v, p2). The point is
that we can take a d-quasi-geodesic ¢ joining v to x in CH(S). Hence ¢ is included in
B(v, ph)(C B(hF,ph+ 1)), which implies that

¢ C|T|NB(hF,phy+1)=CH(S)NB(hF,py+1).

From the construction of I' there exists a path of vertices v(hgy, Tp) = v(h,T), ..., v(hm, Tr)
in Y such that ¢ passes through h;F in this order and = € h,,F. Since T|p(sr,p,) and
Ton|B(hyF,po) are connectable, we have

x € |T| N B(hF, hyF, p2) = |Tim| N B(hF, hyF, p2).

This implies that x € |T;,,| N Ay F C Y.

From the above for every x € |T'| N B(v, p2) there exists a path ¢ joining v to z in |Y]|,
which implies that x € Z N B(v, p2) for the connected component Z of |Y| containing v.
Hence Z N B(v, p2) = |Y| N B(v, p2). O

In the above proof, we took a d-quasi-geodesic ¢ in C'H(S) connecting two points of
CH(S). This is the reason why we introduce the notion of the convex hull and define the
round-graph by using the convex hull instead of the weak convex hull.

Let Y be a connected component of I". Take adjacent vertices v(h,T),v(h',T") € V(Y)
and v € yp with y N hF # 0. Then T|pr,p,) and T'|gusF,p,) are J-connectable for
J =T|ghF,nF,p)- This implies that there exists ~' € v such that

YN B(hF, W F, p2) =+ N B(hF,h'F,p2) (#0).

Therefore we can extend vN B(hF, p2) by connecting v N B(hF, p2) to yN B(RK'F, p2) and
we can perform this operation over and over until the extension of v N B(hF, p2) meets
the boundary of CHp,,.
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By the definition, there exists a geodesic line ¢ such that ¢ N B(hF,p1) = =, which
implies that the extension of v N B(hF, p2) is 2pe-local geodesic, that is, every sub-arc
with length less than or equal to 2ps is a geodesic segment. It is known that L-local
geodesic for L > 0 will be d-quasi-geodesic if L is larger than a constant depending on
0. We can assume that po is sufficiently large such that the extension of v N B(hF, p2)
is a 0-quasi-geodesic. Note that the extension of v N B(hF, p2) will be a d-quasi-geodesic
line if it does not meet the boundary of Xy, . We call each extension of v N B(hF, p2) for
v € yr a Y-quasi-geodesic. If the extension of v N B(hF, p2) is a d-quasi-geodesic line,
then we call it a Y-quasi-geodesic line.

In order to apply Lemma 8.30 to each connected component of |T'|, we prove that every
connected component of |I'| is ¢’-quasi-convex.

Lemma 8.36. Let Y be a connected component of I' and Z a connected component of |Y|.
Then Z is a 8 -quasi-convex subgraph of X .

Proof. Let x,y € Z. Consider a shortest path ¢ joining « to y in Z. We prove that £ is a
d-quasi-geodesic in X and then Z is ¢’-quasi-convex from the stability of quasi-geodesics.
In order to see that ¢ is J-quasi-geodesic, it is sufficient to see that for a large constant
L > 0 depending on 9, ¢ is L-local §-quasi-geodesic, that is, every sub-arc of ¢ with length
less than or equal to L is d-quasi-geodesic. We can assume that py is much larger than
L. Then it is sufficient to consider the case that d(z,y) < L(< p2) and prove that there
exists a §-quasi-geodesic joining x to y.

Take v(h,T) € Y such that x € hF, which implies that y € B(hF,L). Take S €
SCyl(T'), which implies that CH(S) N B(hF,p1) = |T|. Then we can take a d-quasi-
geodesic v joining z to y in CH(S) and ~ is included in CH(S) N B(z, p5).

Now it is sufficient to see that v is included in Xp,,. Actually, if v is included in Xp, ,
then we can see that « is included in Z by the same argument in Lemma 8.35, which is
the desired conclusion.

We prove that x and y are included in the same connected component of the intersection
of CH(S) and Xp,. Then we can take 7 such that v is included in CH(S) N Xp, since
every boundary component of CH(S) is a d-quasi-geodesic line and we can consider a
d-quasi-geodesic traveling along the boundary of CH(S). Hence  is included in Z, which
is the desired conclusion.

To obtain a contradiction, suppose that the connected component of CH(S) N X,
containing x is different from that containing y. Then a path ¢ joining x to y need to
“take a detour”, that is, a geodesic [z, y] joining x to y in Xy, must meets a boundary
component b of CH(S) at z. Take v(h/,T") € V(Y) such that z € h'F, which implies that
bNh'F # (. We consider the extension of b B(h'F, p2) by the same way as we did in the
above in order to obtain a Y-quasi-geodesic. The extension of b N B(h'F, p2) is a d-quasi
geodesic and can be considered as a boundary component of Z. Then we see that a path
joining x to y in Xy, must cross the extension of bN B(h'F, p2), which implies that there
exists no path joining x to y in Z, a contradiction. O

Now, we assume the following condition for a while:

Assumption (): For every v(h,T) € V(I') and every v € yr with yNhF, the extension
of v N B(hF, p2) is a d-quasi-geodesic line if v (or its extension) contains a point z with
B(z,Cy) C X, for a constant Cy > 0 independent of n.

Set

M= Y 6z(00) € SC(Hy).

ZeComp(|T])



118 D. SASAKI

Under Assumption (x) we prove that

1
vi=——uig,(nr)

nM
belongs to the open neighborhood U(fi,..., fr;€,) of p for a sufficiently large n by using
Lemma 8.29. Note that nr is a subset current on H,,. In the case that |I'| does not satisfy
the condition in Assumption (x), we construct I from || by a similar way as we did in
Step 4 in the previous subsection such that T satisfies the condition in Assumption ().

During the construction of T the constant Cp will plays an essential role.

Let Y € Comp(l'), Z € Comp(|Y]), g € V(Z). Take v(h,T) € V(Y) such that g €
|T| N hF. Assume that B(g,ph) C Xp,. Then Z N B(g, p2) = |T| N B(g, p2) from Lemma
8.35. By the definition of the convex hull, there exists a constant d; > 0 depending on §
such that for every z € B(g, po — d1) there exists v € v such that d(x,v) < d;.

Setting 7: Set p3 := p2 — §1 — Cp and assume that p3 > 0.

Lemma 8.37 (Under Assumption (x)). Assume that ps is sufficiently large. Let Z €
Comp(|T'|), g € V(Z). If B(g, ph) is included in Xy, , then

971 Z(00) € Bu(SCyl(g~'Z N B(id, p3)), e1).

Proof. Take Y € Comp(I') such that Z € Comp(|Y]|). Take v(h,T) € V(Y) such that
g € |T|NhF. Then, for x € Z N B(g, p3) we can take v € yp such that d(z,v) < 1, and
then v contains a point y such that d(z,y) < é; and B(y,Cy) C Xp,. By considering a
path from ¢ to y included in |T| N B(hF, p2), we can take v(h',T') € V(Y) and ' € vy
such that y € y N A F N |T'| and

y € 7N B(WF,W'F, p2) =~ 0 B(hF W' F, ps).

Hence from Assumption (x), the extension of v/ N B(h'F, p2) will be a Y-quasi-geodesic
line ¢ in Z, and d(z,¢) < 4;.

As a result, we see that for every x € Z N B(g, p3) there exists a Y-quasi-geodesic line
¢ in Z such that d(x,¢) < §;. Now, we can apply Lemma 8.30 to Z and we can see that
for a constant a > 0 depending only on § (and ¢;), we have

201 B(g.pa) oy WO(Z(02)) 1 Blg. ).

Note that Z N B(g, p3) = |T| N B(g, p3) € Rp;(g9). Now, we assume that ps is sufficiently
large to apply Lemma 8.28 to the constant e; > 0 and g~'Z N B(id, p3). The constant r
in Lemma 8.28 depends on the base point y but as long as we use id as the base point we
do not need to consider the problem. Therefore we have

9~ Z(00) € Bu(SCyl(g™'Z N B(id, p3)), €1).
This completes the proof. ]

Take a complete system of representatives Ag of G/H,,. To apply Lemma 8.29 to v we
consider the restriction of v to A(id,r,). Set

A1 :={g € Ao | gCH(A(Hy)) N B(id, ry) # 0},

which is a finite set. Note that CH(A(H,,)) is the convex hull of A(H,,) in X. We write
CHp, to represent the convex hull of A(H,,) in H. Then

v, () A,y = Y 9+ 00| AGdr,)-
geEM

Since every boundary component of X, is a geodesic line, CH(A(H,,)) includes Xg,, .
Hence if gXp, N B(id, r,) # 0 for g € Ag, then g € A;. Recall that F contains exactly n
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vertices of Xp, . Let g1 = id, g;l, ..., g- ! be the vertices of F. Then we can assume that
g1, 9n € A1

Lemma 8.38. The sequence

1\ (g1 0n))

tends to 0 when n — oo.

Proof. First, we have
401 =#{gH, € G/H,| gCH(A(H,)) N B(id,1,) £ 0}
—#{gH, € G/H,| gB(CH(A(H,)),r,) > id)
=#{gH, € G/Hy| B(CH(A(H)),r) > 97"}
=#V (Hn\B(CH(A(Hp)),74))-
Note that CH(A(H,)) i Xp,. From the definition of Xp, the quotient H,\ X, is

isomorphic to the 1-skeleton of ¥, and includes n vertices. Moreover, the degree of every
vertex of 3, except zo" coincides with the degree of id in X, denoted by degy (id). Since

B(CH(A(Hy)),ry)) C B(Xn,, 1.+ §) =Xy, UB(0Xpy,, T+ 5
and V(8Xp, ) = H,, we have
#V (H\B(CH(A(H,)), 7)) — #V (H\X1,)
<HV(Hp\B(Xp,,ry+ ) — #V (H\Xn,)
<(degx (id))™ 7,

which implies

S

%# (A \{g1, -+, 90}) < — (degy (id)) ™"

This proves our claim. O
Setting 8: Set A := {g; | B(g; ', pb) C Xu, }.

Remark 8.39 (About constants pg, p1, p2, Py, p3). Since we need to take sufficiently large
p3, which depends on constants related to 6 and the neighborhood U(f1,..., frieu) of p,
we determine ps, p2, p1 and po in this order. The point is that ps, p2, p are independent
of n.

Lemma 8.40. The sequence
1
—# (A1 \ A
A\
tends to 0 when n — oo.

Proof. Recall that ® is a quasi-isometric map from X to H. Then the restriction of ®
to X, is also a quasi-isometric map to CHpg,. There exists a constant ¢ depending on
ph and ® such that if B(g;,p2) ¢ Xm,, then ®(g;) is contained in the c-neighborhood
of the boundary of CHp,. By considering the quotient space %, = H,\CHpg, and
the c-neighborhood of the boundary component ¢y" of ¥,, the number of g; such that
B(g; L p5) ¢ Xm, is bounded by a constant depending on ¢ and independent of n. This
proves our claim. ]
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From the above setting, we have

LHn(UF |A id,ry) — Z g* nr |A(1d )
gEML

= Z —i—z g*(nF)‘A(id,m)‘

geEM\A  g€EA

We mainly consider the sum taken over g € A and

D g aar) = Y ez

geA geA \ ZeComp(|T'|) A(id,ru)

- Z Z 0g2(oc)-

geN  ZeComp(|T])
gZ(o0)eA(id,ry)

Now, we consider Z € Comp(|I'|) with gZ(c0) € A(id,r,) for g € A. For Z we denote

by Yz the connected component Y of I' such that Z is a connected component of |Y|.
Recall that from Lemma 8.36, Z is §’-quasi-convex. Hence

WC(Z(x)) C B(Z,§),
and we can take a constant o > 0 depending on § such that
CH(Z(x)) C B(Z,a).

Since gCH (Z(o0)) N B(id,r,) # 0, we see that Z N B(g~ ru—i—a)aé(b

Setting 9: For the constant « in the above, we set r = r, + «, which is the constant
appeared in Lemma 8.29. We assume that ps > 27“2& + p.

The following lemma does not depend on Assumption (x).

Lemma 8.41. Let g € A and Z € Comp(|I'|) with gZ(c0) € A(id,r,). Then gZ N
B(id, r, + p) is an element of R,(B(id,},)).

Proof. Note that Z N B (g_l,rL) contains a vertex gg since Z is a subgraph of X. Then

there exists v(ho,To) € V(Yz) such that go € hoF N |Tp|. Hence ggo € g|To| N B(id, r},).
Since pz > 2, + p, we have

B(g~", 7, + p) C Blgo, 27, + p) C B(hoF, p2).
Since g € A, we have B(g™1, p) C Xp,. By Lemma 8.35 we have
ZNB(g ", +p) = |To| N B(g™", 7, + p).
Hence
97 N B(id, ", + p) = g|To| N B(id, ', + p),

which is an element of R,(B(id, r},)). O
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From the above lemma, we have

> e g

geA

= > 092 (00)| Alid,ry)

geN  ZeComp(|T))
9Z(c0)NB(id,ry,)#0

= > > Og2(00) | A(id,r,.) -

geEATER,(B(id,r,))  Z€Comp(|T)
9ZNB(id,r; +p)=T

For each T' € R,(B(id, r),) set

vz, ()7 =Y > 092 (c0)-

geA  ZeComp(|T))
9ZNB(id,r,,+p)=T

Then
> g(n0)l agidr,) = > )7l agde)-

geA TeR,(B(id,r,))

For every T' € R,(B(id,r},)) we can define 6(T') by the same way as we did in Lemma
8.18. Explicitly, for some vertex u € T'N B(id, r:L)

0(T) = > (1),
T’G’R;O (u)
|T'|NB(id,r},+p)=T

which is independent of the choice of u. Moreover, for every g € G we can define 6(g7T)
by the same way, and we have 0(gT) = 6(T). Note that T' € R,(B(id,r;)) does not

include information of geodesics. We can see that --6(T) is also close to pu(SCyl(T)) for
T € R,(B(id, r),)), since we take ¢ after r/,, p.

Lemma 8.42 (Under Assumption (x)). For each T € R,(B(id,r),)) we have

supp(err, (nr)r) € By (SCyl(T), e1).

Moreover,

ler, (ne)r| = #A - 0(T).
Proof. For g € A we consider Z € Comp(|T'|) satisfying the condition that gZ N B(id, ), +
p) = T. Take a vertex u € T'N B(id,r},) = gZ N B(id,r],). Then g~'u € ZN B(g~*,r),)
and take v(ho,Tp) € V(Yz) such that hoF N|Tp| > g~ u. Note that

B(g~'u, ), +p) C B(g~ "2}, +p) C B(g~".p2) C Xu,

since g € A. Hence
To|NB(g ' ry+p)=Z0B(g i, +p) =g 'T,
which implies
glTol N B(id, r, + p) = gZ N B(id, r, + p) = T.
From Lemma 8.37
9Z(o0) € Bu(SCyl(gZ N B(id, p3)), €1).
We can assume that p3 > 7, + p. Then T' = (9Z N B(id, p3)) N B(id, r}, + p), and so we

have
SCyl(gZ N B(id, p3)) C SCyl(T),
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which implies that

gZ(0) € By(SCyl(T),e1).

Therefore we obtain

supp(em, (nr)r) € By (SCyl(T),e1).

Now, we calculate |cg, (nr)7|. From the above argument, for g € A and Z € Comp(|T'|),
we have gZ N B(id,r, + p) = T if and only if for hy € H, with hoF > g~ " there exists
v(ho,Tp) € V(Yz) such that

TolNB(g~ "7}, +p) =g 'T.
Note that hg depends on g. Therefore we have

|vm, ()7

=Y #{Z € Comp(T'|) | gZ N B(id, 7}, + p) = T}
geN

— 5" #{Z € Comp(|T) |

geA
Fv(ho, To) € V(Yz) s.t. hoF 3 g uand |To| N B(g™ ", 7, 4+ p) =g T}

=2 > 0(T)
geA gfluGho]:,ToeRzl (ho]:)
|T0|QB(id,rL+p):g_1T

=2 > > T
9EA g ucho FT0ERS (hoF) T'ERS (97 u)
ITo|NB(id,r;,+p)=9'T T'|phgF,p)=T0

=2 >, D)
geA T'eR; (97 u)
|T'|NB(id,r},+p)=g~'T

=> 0(g'T) = #A-6(T).

geA

This completes the proof. O

For g € V(X) = G we set

0g)= > O(T)

TeR;, (9)

Then we can see that 6(g) = 6(id) for every g € V(X). Note that

|| SCyl(T) = A(g,0) = {S € H(0G) | CH(S) > g}.
TeR}, (9)
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Now, we consider the other part of ¢y, (nr). Let g € A; \ A. Then
| (g (n0)) Agia, ) |
=nr(A(g™", 7))
=#{Z € Comp(|'|) | CH(Z(00)) N B(g™",r,) # 0}
<#{Z € Comp(IT'|) | ZN B(g~",7},) # 0}

< Y. #{ZeComp(I))| Z 30}
veV(B(g~1,r,))

= > #{v(hy,T) € V() | |T| N hoF 3 v}
veV(B(g~1,r),))
) >,
veV(B(g=1,1,)) TERS, (hoF)
|T|Nhy F3v

= > > o)
veV(B(g~1.r],)) TER (v)
=#V(B(id, r,))0(id).
Since 6(id) is close to 1(A(g,0)), we can see that |(g.(nr)) | AGid,r,) | is bounded by a constant

independent of n.
For T € R,(B(id,r),)) set

IN

1
vr = WLHn (nr)r
and 1
r._
Vo= m Z g*(nF)|A(id7m)-
geEAI\A

Then we have

1
V] aGd,r,) =t ()| AGia )

- Z VT|A(ida7’u) + v
TeR,(B(id,ry,))

Now, we prove that for a sufficiently large n € N, we have v € U(fi, ..., fx;€,) by using
Lemma 8.29. From Lemma 8.42 for every T' € R,(B(id, r,)) we have

suppry C By (SCyl(T), 1)

and

|lvr| — p(SCyI(T))]

| o) - M(SCyl(T))‘

Aﬁf (1)~ 0T ‘ ] u(SCYI(T ))‘
Sk L ‘ H(SCYI(T ))‘

Since +;0(T) is close to ,u(SCyl( )), from Lemma 8.38 and 8.40, if n is sufficiently large,
then we have

|[vr| = w(SCYI(T))| < e2.
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Finally,
#(A1\A) : : #(A1\A) : 0(id)
Hence if n is sufficiently large, then we have
|l/,| < €9.

Therefore we see that v belongs to U(fi, ..., fx;€,) under Assumption (x).

Now, we consider the case that the condition in Assumption (%) does not follow. Let
Y € Comp(T"). Consider a Y-quasi-geodesic ¢ in |Y|. From the construction of X, the
degree of a vertex v in X, is less than the degree of v in X if and only if v belongs to
H, C V(X). This implies that we can not extend the Y-quasi-geodesic ¢ to a Y-quasi-
geodesic line if and only if ¢ meets a vertex of H,. This situation corresponds to the
situation that |I'| has a vertex with degree less than 2 in the previous subsection. Recall
that in that case we constructed the SC-graph (I',7) on (H,, CHy,) from (|T,|¢|) in Step
4.

We also construct such a graph T' from |T| so that Assumption (x) follows in T'. Ex-
plicitly, T' O |T'| and if we have a Y-quasi-geodesic £ in |Y| containing a point  such that
B(z,Cy) C X, for a constant Cp > 0, then we can extend ¢ to a d-quasi-geodesic line in
the connected component W of T including £. The point is that we need to modify the
subgroup H, in contrary to the previous subsection.

In order to extend a d-quasi-geodesic segment ~ to a §-quasi-geodesic line, we consider a
piecewise quasi-geodesic curve in H, which is a curve consisting of at most countably many
quasi-geodesic pieces. From the fundamental hyperbolic geometry in H, we can see that
if a piecewise geodesic curve ¢ satisfies the following conditions, then ¢ is an (a, ¢)-quasi-
geodesic for constants a > 1, ¢ > 0 depending on the following constants 6y > 0, L > 0:

(1) every interior angle of ¢ is bounded below by some 6y > 0;
(2) the length of every geodesic piece of ¢ is larger than L > 0 depending on 6.

For a piecewise quasi-geodesic curve ¢, we can obtain a piecewise geodesic curve ¢ by
connecting endpoints of each quasi-geodesic piece of ¢ by a geodesic segment. Then we
can see that if ¢ satisfies the following conditions, then /¢ is an (a, ¢)-quasi-geodesic for
constants a > 1, ¢ > 0 depending on the following constants s > 1, > 0,60y > 0:

(1) there exist s > 1,¢ > 0 such that every quasi-geodesic piece of ¢ is a (s, t)-quasi-
geodesic.

(2) every interior angle of ¢’ is bounded below by some 6y > 0;

(3) the length of every geodesic piece of ¢ is larger than Ly > 0 depending on s, ¢ and
Bo.

Since we need to consider a quasi-geodesic line in X, we want to check whether a
piecewise quasi-geodesic in X is a quasi-geodesic or not. By using the quasi-isometry &
from X to H we can see that a curve £ in X is an (d/,)-quasi-geodesic if ®(¢) is an
(a, ¢)-quasi-geodesic in H. The constants a’, ¢’ depend on a,c and ®. From the above, we
obtain the following lemma, which will be used for proving that a piecewise quasi-geodesic
curve £ in X is a quasi-geodesic in X.

Lemma 8.43. Let ¢ be a piecewise quasi-geodesic curve in X. Assume that every quasi-
geodesic piece of £ is an (a,c)-quasi-geodesic for a > 1,¢ > 0. Let {' be the piecewise
geodesic of H consisting of geodesic segments connecting endpoints of ®(vy) for each quasi-
geodesic piece v of £. Fix 6y > 0. If £ satisfies the following conditions, then £ is an
(d',d)-quasi-geodesic in X for constants a’ > 1,¢ > 0:

(1) every interior angle of ¢' is bounded below by Oy;



SUBSET CURRENTS ON SURFACES 125

(2) the length of every quasi-geodesic piece of € is larger than Lo > 0, which depends
on a,c, by, ®
The constants a’,c depend on a,c, Oy, P

We will use the above lemma for the case that 6 is close to 7/2. Note that if a, ¢ depend
only on ¢, then o', depend only on 6,0y, ®, which implies that o', ¢ are independent of
n.

Now, we prepare some items for modifying H,, and construct a graph I" from |T'|. Recall
the construction of 3,. Let B be the boundary component of C'Hy, passing through zQ-
Then B is a lift of the closed curve co, and hg = [co] € G = (2, 20) acts on B. Note
that B coincides with the axis of ho in H. The point is that B and hg do not depend on
n.

We give an orientation to B such that the left side of B is the interior of CHp, . Then
we take a non-trivial element ug € G satisfying the following conditions:

(1) the axis Axg(ug) of up in H is included in the right side of B;
(2) the hyperbolic distance dg(B, Axg(ug)) between B and Axpg(ug) is sufficiently
large;
(3) the translation length 7 (ug) of ug in H is also sufficiently large.
Note that dg(B, Axs(ug)) and 7 (uo) depend on constants related to § but do not depend
on n.

For ug in the above, we can take a d-quasi-geodesic line Ax(ug) in X connecting the
two points of A({u)) such that Ax(up) is (u)-invariant, which can be considered as an axis
of up in X. For hg there exists a unique geodesic line Ax(hg) in X connecting the two
points of B(co) = A((ho)) such that Ax(hg) includes (ho)(C V(X)). Note that Ax(ho)
coincides with the boundary component of Xy, passing through id. Then we can see
that d(Ax(up), Ax(ho)) is sufficiently large and the translation length 7x(up) in X is also
sufficiently large.

Take a geodesic £x (up) joining a point p,, of Ax(ug) to a point h of (hg) such that the
length of £x (ug) equals d(B, Ax(ug)). Here, we can assume that h = id by using A~ 'uh
instead of u. See Figure 6 for the setting. Then we can obtain the following lemma:

Ax(ho)

AX(U())

Pu,

Xy lx (uo) <

FIGURE 6.

Lemma 8.44. Let v be a 0-quasi-geodesic in Xg, from v € Xy, to id. Consider a
piecewise quasi-geodesic v' by connecting v to €x(ug) at id, and connecting {x (ug) to a
quasi-geodesic half-line of Ax(ug) at py,. If the length of v is sufficiently large, then ~' is
a 0-quasi-geodesic half-line.

Proof. The point is that ®({x(ug)) is close to the common perpendicular of B and
Axp(ug). Then we can apply Lemma 8.43 to «/. O
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Set -
H, = (H, U {ug}).
We assume that the translation length 7x (ug) and d(Ax(hg), Ax(ug)) are sufficiently large
such that hg and ug generate a Schottky subgroup of G. Then by the Ping-Pong argument,

I/{; satisfies the following properties:

(1) H, is isomorphic to the free product of H, and (ug);
(2) for any g € Hy, \ H,, we have

9(Xm,) N Xn, = 0;
(3) for every non-trivial h € H,, we have
h(Ax(ug)) N Ax(ug) = 0.

We consider each connected component of |I'| as a subgraph of X, and then for g € I;T;
we define g|T'| to be the formal union of the image of connected components of |T'| by g.
Set

T = {(gHn, ) | gHy € o /Hy, @ € gIT}.

Then |I'|* is homeomorphic to the formal union |_|g He T,/ H, g|T'|. Note that this way of

constructing |I'|* corresponds to the map ng from SC(H,,) to SC(I/{\n). Then H,, acts on
ICJ" by
9(g' Hy, ) = (99'Hy, gz)
for g € H, and (¢'H,,z) € |T|*.
Take the sub-arc [py,, uo(Pu,)] of Ax(ug) joining py, to ug(pu,). Set
P = lx(uo) U [Pug, to(Puo)]-
Note that this subgraph P of X corresponds to the subgraph P for constructing T in the
previous subsection. By the Ping-Pong argument, we can see that for every non-trivial
h € H,, hPN P # 0 if and only if h = ugp or uy' and hP N P = {ug(puy)} or {pug}
respectively.

Let v(h,T) € V(I') and take v € yp with yNhF # . Fix a constant Cy > 0 independent
of n. Consider the case that v contains a point x with B(x,Cy) C Xy, and the extension
v of v N B(hF, p2) is not a §-quasi-geodesic line. In this case 4/ must meet a vertex g of
H, = V(0Xpy,). By considering g~!(v') instead of 7/, we can assume that 7/ meets id.
In this setting, the length of 4/ is larger or equal to Cp, and so we can assume that the
length of +' is sufficiently large to apply Lemma 8.44 to +'.

Now, we consider the formal union

T u | ] AP
heH,
Note that I/{\n acts on this union from left. First, for every h € I/{\n we attach the vertex h

of hP to the vertex h of hy' C |T'|*. Then for every h € H,, we attach the vertex h(uo(py,))
of hP to the vertex hug(py,) of hugP. By this operation of the attachment we obtain |T'|’

such that I, acts on IT'|" and the connected component of |I'|" including 4 includes £ x (ug)

and Ax(ug). Hence for every h € H,, we can extend hy’ to a d-quasi geodesic line by using
Lemma 8.44.
We can perform this operation for the formal union [I'|' U| |, _7 h(P) and repeat the

same operation until |I'|" satisfies the condition that for every v(h,T) € V(T') and v € ~vp
with vhF # () if -y contains a point x with B(x,Cy) C X, , then there exists a -quasi-
geodesic line £ in |T'| such that ¢ includes v N B(hF, p2). Then we denote by T the graph
that we obtain as the result of the above operation. Note that in order to obtain T we
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perform the above operation at most #[:|~!(id) times since in the case that two quasi-
geodesics v and 2 meet id in the same connected component, it is sufficient to perform
the above operation only once. We have

#e| 7 (id) =#{Z € Comp(|T) | Z > id}
=#{v(id,T) € V(T) | |T] > id}

= D )
TeR;, (F)
|T|>id
=0(id).

Let m be the number of times we perform the above operation. Then m < #(id). Denote
by P; the copy of P that we used in the j-th operation for j =1,...,m.

The projection from the formal union [I'[* U| ], -7 h(P) to X induces a map ¢ from r

to X. We can see that the restriction of 7 to each connected component W of T is injective
from the Ping-Pong argument. We identify each connected component W of I with z(W).

Now, we define ng by
= Y e

W eComp(T)

Then we can see that np € SC(EL). The local finiteness of 7 follows by the argument
below. Set

|78

We prove that v belongs to the open neighborhood U(f1, ..., fi;€u) of p for a large n by
using Lemma 8.29.

Lemma 8.45. FEvery connected component off is a &' -quasi-convex subgraph of X.

Proof. Let W be a connected component of [. Take x,y € W. We prove that there
exists a d-quasi-geodesic joining x to y included in the ¢’-neighborhood of W. Then by
the stability of quasi-geodesics, W is ¢’-quasi-convex. If x,y belong to Z for a connected
component Z of [T'|*, then W includes Z and there exists a d-quasi-geodesic joining z to
y in Z by Lemma 8.36.

Hence we consider the case that for different connected components Z, Z’ of |T'|*, z € Z
and y € Z'. Take a shortest path ¢ from x to y in W. From the construction of T there
exists a sequence of connected components Zy = Z,Z1,...,Z, = Z' of |T|* such that ¢
passes through these components in this order. From Z;_; to Z;, the path ¢ passes through
hi;P when ¢ goes out from Z;_;, and passes through h;P when ¢ goes into Z; for some

hi, b} € lEI\n Since the translation length 7(ug) and the length of ¢x(ug) are sufficiently
large, the restriction of £ to this part is a d-quasi-geodesic in X.

Now, for each i = 1,..., k we take the mid-point m; of h;({x (uo)) and m/ of h}(¢x (ug))
and consider a geodesic [m}, m;41] joining m} to m;;; in X, which is included in the
§’-neighborhood of the union of Z;, h}(¢x(uo)) and hit1(€x(ug)). Then we consider the
following path ¢’ from x to y:

(1) starts from 2 and bounds for m/ along ¢;

(2) from mj to m;y1 travels along the geodesic [mj, m;y1], and from m;q to mj
travels along £ for i = 1,..., k;

(3) from mj, to y travel along £.

The path ¢ is a piecewise quasi-geodesic in X and if the translation length 7(ug) and the
length of £x (ug) are sufficiently large, then ¢ is a d-quasi-geodesic in X.
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In other cases we can construct the almost same piecewise quasi-geodesic joining = to
1. ]

Then we obtain the following lemma for the constant ps = ps — §; — Cp, which corre-
sponds to Lemma 8.37 under Assumption ().

Lemma 8.46. Assume that ps is sufficiently large. Let W € Comp(f), ge V(W) If
B(g, ph) is included in X, , then

g~ W (o) € By (SCyl(g™'W N B(id, p3)), €1)-
Proof. Since B(g,ph) C Xn

n’

there exists a connected component Z of |T'| such that
W N B(g,p5) = Z N B(g, po)

by the construction of . Then by the same argument as that in the proof of Lemma 8.37,
we see that W N B(g, p3) = Z N B(g, p3) belongs to R,,(g), and

g~'W(o0) € Bu(SCyl(g™'W N B(id, p3)), 1)
if p3 is sufficiently large. O

Now, we construct a subgraph X 7 of X such that every connected component of T is
included in X 7. By the same way as we did for |I'|, we set

X5 = {(gHn,x) € Hy/H, x X |z € X, }
and consider the formal union
X, U || mP)
heH,

For every h € lr/{':I we attach the vertex h of hP to the vertex of h of X}; and attach the
vertex h(uo(py,)) of hP to the vertex hug(py,) of hugP. By this attachment we obtain
a connected graph X7 and the inclusion map from Xy U| [, 7 h(P) to X induces an

injective map from X~ to X from the property of lfl:l Hence we can consider X 7~ as an

subgraph of X, which is I/—I\n—invariant. Moreover, by the same argument as that in Lemma
8.45, we see that X is a d’-quasi-convex subgraph of X and for every z € X i there
exists a d-quasi-geodesic line passing through z. Hence we have

Xg o CH(A(H,)).

Note that the quotient graph Hn\X can be described as follows. Recall that H,,\ Xy,
can be identified with the 1-skeleton of E By attaching the vertex p,, of P to the vertex
u(puy ), we obtain a graph P’, which is homotopic to a circle. Then we attach the vertex

id of P’ to the vertex zo" of H,\ Xy, . The resulting graph is isomorphic to I/{;\X i
Take a complete system of representatives /AXO of G/ I/{\n Set

Ay :={g € Ao | gCH(A(H,)) N B(id, r,) # 0},
which is a finite set. Then

LHy, (nr ‘A id,ry) Z g« (nr |A id,rp)"

g€A1
Recall that F includes exactly n vertices S g1 = id, g5 L , g, } of Xy . By considering
the action of H on XA, we see that ngn, ..., gnH, are mutually disjoint. Hence we

can assume that gi,...,g, € /A\l.
The following lemma corresponds to Lemma 8.38.
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Lemma 8.47. The sequence

7# <K1 \ {gla cee agn}>
tends to 0 when n — oo.

Proof. Note that the translation length 7(ug) and the length of ¢x(up) are independent
of n. Hence #V (P) is independent of n.
First, we have

#8y =#{gHn € G/Hy| gCH(A(Hy)) N Blid, 1) # 0}
=#V (H\B(CH(A(Hy)),74))-
Since Xz ~ CH(A( n)), we have

#A1 < #V(HN\B(X 7,1 + ).

From the definition of X g we have

V(H\X ) = #V(H,\Xn,) + #V(P) -

Note that V (H,\Xz,) corresponds to {H,g; ', ..., Hyg, '}. By considering the degree of
each vertex of H,\ X7 we have

V(H\B(CH(A(Hy)), 7)) — #V (H\Xa,)
<#HV( n\B( oo et ') — #V(H\Xg,)
<#V(P)(degx (id))™ ",

which implies

%# <K1 \{g1,--- ,gn}) < %#V(P) (degx(id))r”+5,,

This proves our claim. O

From the above proof it is easy to see that the argument for [ is almost the same as
that for |I'| under Assumption (x). Moreover, since #V (P) is a constant not depending
on n, #V(P) does not influence our argument. For the completeness of the proof, we
continue. N

Recall that A = {g; | B(g; ', pb) C Xu,}. We also see that 1#(A1\ A) tends to 0 when
n — oo by the same argument as that in Lemma 8.40. Then

(771“ |A id,ry) — Z Gx 77{‘ |A(1d Tw)
gen;

— Z —I-Z g*(nf)‘A(id,m)’

g€K1 \A geA

and we mainly consider the sum taken over g € A.

First we have
PRGOS > OgW(c0)-

geA 9EA WeComp(T)
gW (c0)€eA(id,ry)
Note that every connected component W of Tisé -quasi-convex. By the same argument
as before, for a constant 8 > 0 depending on 4, we see that if g\ (oc0) € A(id,r,), then
gW N B(id,r, + B8) # 0.
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Setting 10: From now on, we denote r, + 3 by r;t, which is the constant appeared in
Lemma 8.29. We assume that py > QTL + p.

~

Lemma 8.48. Let g € A and W € Comp(I') with gW(o0) € A(id,r,). Then gW N
B(id, 7, + p) is an element of R,(B(id,r},)).

Proof. The point is that B(g_l,rij) C B(g',p2) C Xp, implies that there exists a

connected component Z of |I'| such that Z C W and
W B(g™ p2) =ZNB(g™", p2).

Hence we have
gW N B(id, ), + p) = gZ N B(id, r, + p),
which is an element of R,(B(id, r},)) from Lemma 8.41. O

For T € R,(B(id,r},)) we set

L[f[; (ﬁf)T = Z Z 5gW(oo)

geA WeComp(T)
gW (c0)NB(id,r), ) =T

Then
> gl atdr,) = > g )

geA TeR,(B(id,r/,))
Now, we prove the following lemma, which corresponds to Lemma 8.42:

Lemma 8.49. For each T € R,(B(id,r},)) we have

supp (¢ (np)1) C Bu(SCyl(T), €1).
Moreover,
leiz (np)r| = #A - 0(T).
Proof. Fix T € R,(B(id, r},)). For g € A consider W € Comp(T') with gWNB(id, T, tp) =
T. From Lemma 8.46, we have
gW (o0) € By(SCyl(gW N B(id, p3)), 1)
We assume that p3 > 7}, + p. Since T' = (gW N B(id, p3)) N B(id, ), + p),
SCyl(gW N B(id, p3)) C SCyl(T),

and so
gW (o0) € By (SCyl(T), e1).
Therefore

supp (e (n3)1) C Bu(SCyl(T), €1).
Now, we calculate vz (np)r|. Fix g € A. Take a vertex u € T'N B(id, ;). Take

W € Comp().
Suppose that gW N B(id,r;, + p) = T. Then there exists a connected component Z of
II'| such that Z C W and

WNB(g ' p2) =ZN0B(g ", p2).
Moreover, for v(h/,T") € V(Yz) with g~'u € K F N |T’|, we have
T = gW N B(id,r, + p) = gZ N B(id, r,, + p) = g|T'| N B(id, 7, + p)
by the same argument as that in the proof of Lemma 8.42. Hence
TN B(g~r, +p) =9 'T.
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Conversely, suppose that there exists a connected component Z of |I'| and v(h/,T") €

V(Yyz) with g~ tu € K F N |T'| such that Z C W and
'\ N B(g~rl,+p) =g 'T.
Then
wn B(gilvp2) =ZnN B(.qil?pQ)’
and so
gW N B(id,r, + p) = gZ N B(id,r, + p) = g|T'| N B(id, r, + p) = T.

Hence the number of W € Comp(I') satisfying the condition that gW N B(id, r,tp) =T

equals the number of Z € Comp(|T'|) satisfying the condition that there exists v(h',T") €
V(Yyz) with g~tu € W F N |T'| such that

TN B(g~',rl,+p) =g 'T.
Therefore, from the proof of Lemma 8.42 we have
ez (np)7|
=" #{W € Comp(T) | gW N B(id, 7, + p) = T}
geA

~ 3" #{Z € Comp(IT) |

geA
Ju(h,T") € V(Yy) s.t. WF 3 g tuand T' N B(g_l,r; +p)=g T}
= 0(g7'T) = #A-0(T).
geN
This completes the proof. O

Now, we consider the other part of ¢ 7 (15). Let g € Ay \ A. Then we have

|(9+(np )| AGia.r,)|
=np(A(g™" 7))
=#{W € Comp(L') | CH(W (c0)) N B(g™ ", ) # 0}
<#{W € Comp(T') | W N B(g™",7},) # 0}.
If WnB(g'r,) #0for We Comp(T'), then there exists Z € Comp(|T|) such that
Z Cc W and ZNB(g~',r,) # 0, or there exist j € {1,...,m} and go € H,, such that
goP; € W and goP; N B(gil,ril) # 0. Note that goP; N B(gfl,r;) # () implies that
B(ggoPj,r),) > id. Hence for each j € {1,...,m} the number of gy € f]; satisfying the
condition that goP; N B (g_l,r;L) # () is less than or equal to the number of vertices of
B(ggoPj,,,), which is less than
D := #V(P)(degx (id))™.
Therefore,
‘(9*(77f))|A(id,m)‘
< > #{ZeComp(T|)|Z>0v}+mD
veV(B(g~1,r,))
<#V(B(g~",r),))0(id) + mD.
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For T' € R,(B(id, r},)) set
) 1
Yro= oA ba, ()T

and set

1
1% 3:m Z 9*(77f>‘A(idJ‘u)'
g€ \A

Then we have
1
vlagdr,) = i, 8 Add.r,)

- Z VT‘A(idﬂ”u) + V.
TeR,(B(id,ry,))

We prove that for a sufficiently large n € N we have v € U(f1, ..., fi;€,) by using Lemma
8.29. From Lemma 8.49, for every T' € R,(B(id, r},)) we have

lor] — w(SCYL(T))]
:‘1#1\9( ) — J(SCyI(T >‘

_ %#7[\9( T) -~ 0T ‘ ’ p(SCyI(T ))‘
AR o)+ 9(T)—M(SC}’1(T))‘~

Therefore if n is sufficiently large and +;0(7) is close to u(SCyl(T')), then
el — W(SCHIT))]| < .

Finally,
1 <O oy (1) oG) + )
<HRAD oy (g1 )06 + 001 D)
FOAD (1, ) + ) 20,

Since #(A \ A)/n tends to 0 when n — oo, for a sufficiently large n € N we have
|l/,| < €9.

Therefore v belongs to the open neighborhood U(fi,..., fi;€,) of p. This completes the
proof of Theorem 8.20 and 8.22. Q.E.D.

From Theorem 8.22, it is natural to propose the following problem:

Problem 8.50. Let G be an infinite hyperbolic group. Is there a sequence of quasi-convex
subgroups {Hy }nen of G such that each H, is a free group of finite rank and the union

U wm. (SC(H,))

neN
is a dense subset of SC(G)?
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This problem gives us an approach to Problem 2.12. Moreover, if this problem is solved
affirmatively, then we can say that an infinite hyperbolic group can be approximated by
free quasi-convex subgroups in the meaning of subset currents. We note that for an infinite
hyperbolic group G and for every S € H(9G) there exists a quasi-convex subgroup H of
G such that H is a free group of finite rank and the limit set A(H) is sufficiently close to
S.

REFERENCES

[Bil99] P. Billingsley: Convergence of Probability Measures, Second edition, Wiley Series in Probability
and Statistics: Probability and Statistics. Wiley, New York, 1999. x+277 pp.

[Bog07] V. 1. Bogachev: Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007.

[Bon86] F. Bonahon: Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no.
1, 71-158.

[Bon88] F. Bonahon: The geometry of Teichmiiller space via geodesic currents, Invent. Math. 92 (1988),
no. 1, 139-162.

[Bon88b] F. Bonahon: Geodesic currents on negatively curved groups, Arboreal group theory (Berkeley,
CA, 1988), pp. 143-168, Math. Sci. Res. Inst. Publ. 19 (Springer, New York, 1991).

[DLR10] M. Duchin, C. J. Leininger, K. Rafi: Length spectra and degeneration of flat metrics, Invent.
Math. 182 (2010), no. 2, 231-277.

[FM12] B. Farb, D. Margalit: A primer on mapping class groups, Princeton Mathematical Series, 49.
Princeton University Press, Princeton, NJ, 2012. xiv+472 pp.

[Fril5] J. Friedman: Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann
conjecture: with an appendiz by Warren Dicks, Mem. Amer. Math. Soc. 233 (2015), no. 1100,
xii+106 pp.

[HP97] S. Hersonsky, F. Paulin: On the rigidity of discrete isometry groups of negatively curved spaces,
Comment. Math. Helv. 72 (1997), no. 3, 349-388.

[Kap13] I. Kapovich: An integral weight realization theorem for subset currents on free groups, preprint,
2013, arXiv:1211.5836.

[KN13] I. Kapovich, T. Nagnibeda: Subset currents on free groups, Geom. Dedicata 166 (2013), 307-348.

[Kec95] A.S. Kechris: Classical descriptive set theory, Graduate Texts in Mathematics, 156. Springer-
Verlag, New York, 1995. xviii+402 pp.

[Min11] I. Mineyev: The topology and analysis of the Hanna Neumann conjecture, J. Topol. Anal. 3
(2011), no. 3, 307-376.

[Minl12] I. Mineyev: Submultiplicativity and the Hanna Neumann Conjecture, Ann. of Math. (2) 175
(2012), 393-414.

[Ota90] J.P. Otal: Le spectre marqué des longueurs des surfaces d courbure négative, Ann. of Math. (2)
131 (1990), no. 1, 151-162.

[Rud86] W. Rudin: Real and complex analysis, Third edition. McGraw-Hill Book Co., New York, 1987.
xiv+416 pp.

[Sasl5] D. Sasaki: An intersection functional on the space of subset currents on a free group, Geom.
Dedicata 174 (2015), 311-338.

[Sco78] P. Scott: Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978),
no. 3, 555-565.

[Sco85] P. Scott: Correction to ‘subgroups of surface groups are almost geometric’, J. London Math. Soc.
(2) 32 (1985), no. 2, 217-220.

[SweOl] E. Swenson: Quasi-convex groups of isometries of megatively curved spaces, Topol. Appl. 110
(2001), 119-129.

FACULTY OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO 3-4-1, SHINJUKU, TOKYO
169-8555, JAPAN
E-mail address: dounnu-daigaku@moegi.waseda. jp



List of original papers

Dounnu Sasaki: An intersection functional on the space of subset currents on a free group,
Geom. Dedicata 174 (2015), 311-338.



	1. Introduction
	1.1. Background
	1.2. Main results
	1.3. Future study
	1.4. Organization of dissertation
	1.5. Acknowledgements

	2. Subset currents on hyperbolic groups
	2.1. Space of subset currents on a hyperbolic group
	2.2. Measure theory background

	3. Volume functionals on Kleinian groups
	4. Subgroups, inclusion maps and finite index extension
	4.1. Natural continuous R0-linear maps between subgroups
	4.2. Finite index extension of functionals

	5. Intersection number
	5.1. Intersection number of closed curves
	5.2. Intersection number of surfaces
	5.3. Continuous extension of intersection number

	6. Intersection functional N on subset currents
	7. Projection B from subset currents onto geodesic currents
	7.1. Construction of projection B
	7.2. Application of projection B

	8. Denseness property of rational subset currents
	8.1. Denseness property of free groups
	8.2. Approximation by a sequence of subgroups
	8.3. Denseness property of surface groups

	References



