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12 Chapter 1. Introduction

We are concerned with verified numerical computation methods for solutions to the

following elliptic problem:

⎧⎨
⎩ −Δu(x) = f(u(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded polygonal domain (i.e., an open connected bounded set with

polygonal shape) in R
2, Δ is the usual Laplace operator, and f : R → R is a given

nonlinear function. Our objective includes the problem of finding a solution to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu(x) = f(u(x)), x ∈ Ω,

u(x) > 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(1.2)

Therefore, we also discuss the positivity of the verified solution to (1.1) if necessary.

If a solution u to (1.1) is also a solution to (1.2), then u is called positive solution

to (1.1). In this thesis we employ, as typical choices of f , f(t) = |t|p−1t (p > 1) and

f(t) = ε−2(t − t3) with a small parameter ε > 0 related with the so called singular

perturbation phenomenon. In some places of this thesis, the convexity of Ω will

be assumed; the main reason is that we require the H2-regularity of solution u for

deriving an L∞-error estimation (see Section 2.2).

1.1 Background

Numerical analysis plays an important role in a wide range of scientific and engi-

neering fields to understand various phenomena, especially derived from biology and

physics. However, the usual numerical analysis generally accompanies several kinds

of errors (e.g., rounding errors, truncated errors, and discretization errors), which

may cause serious fault in final results. On the other hand, numerical computation

with its quantitative error estimation (including rounding errors, truncated errors,
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discretization errors, and so on) is called “verified numerical computation”. Our in-

terest is in verified numerical computation methods for the elliptic problems (1.1)

and (1.2), and their related problems. Since problem (1.1) (including (1.2)) arises

from various models, especially derived from biology and physics, this problem has

been widely investigated both analytically and numerically. For example, we can find

some analytical results in [10, 6].

Verified numerical computation methods for elliptic problems originate from [15,

17], and have been further developed by many researchers. These methods enable

us to obtain an explicit ball containing the exact solution to a target equation, and

therefore have the additional advantage that quantitative information of the exact

solution is provided accurately in a strict mathematical sense. In the verification

procedure of these methods, tight estimations of several constants are required. For

example, a norm bound K for the inverse of a linearized operators, which will be

defined in (2.7), has to be estimated explicitly. Moreover, the norm bound Cp(Ω)

for the embedding H1
0 (Ω) ↪→ Lp (Ω) is also important. More precisely, Cp(Ω) is a

positive number that satisfies

‖u‖Lp(Ω) ≤ Cp(Ω) ‖u‖H1
0 (Ω) for all u ∈ H1

0 (Ω). (1.3)

For simple notation, we denote Cp(Ω) by Cp if no confusion arises. The precision in

evaluating these bounds directly affects the precision of the verification results for

target equations. Occasionally, rough estimations of the bounds lead to failure in the

verification. Therefore, accurately estimating such bounds is essential.

1.2 Organization

The remainder of thesis is organized as follows: In Chapter 2, we prepare the notation

used throughout this thesis, and introduce the verification theory based on [18, 19].

In Chapter 3, we discuss a method of estimating the norm bound of the inverse of
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a linearized operator. In Chapter 4, we propose a method of evaluating the best

constant Cp(Ω) for the embedding H1
0 (Ω) ↪→ Lp (Ω) with Ω = (0, 1)2. In Chapter 5,

we apply the present method to the verified numerical computation for some concrete

problems. Chapter 6 concludes this thesis with mentioning future work.



Chapter 2

Preparation and verification theory
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In this chapter, we present verification methods (including existing theory) for (1.1).

We apply the methods summarized in [18, 19] to obtaining a rigorous numerical

inclusion of solutions to (1.1).

Throughout this thesis, we use the following notation:

• Lp (Ω) (1 ≤ p < ∞) is the functional space of pth power Lebesgue integrable

functions over Ω;

• L∞ (Ω) is the functional space of Lebesgue measurable functions over Ω;

• Hk(Ω) (k > 0) is the kth order L2-Sobolev space on Ω;

• H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω in the trace sense};

• We denote V = H1
0 (Ω);

• We denote V ∗ = H−1 (Ω)(:=(dual of V )) with the usual sup-norm;

• The L2-inner product and the L2-norm are simply denoted by (·, ·) and ‖·‖,
respectively, if no confusion arises;

• B (x, r; ‖ · ‖) denotes the closed ball whose center is x and whose radius is

r ≥ 0 in the sense of the norm ‖ · ‖;
• For function u, we define

u+ = max {u, 0} and u− = max {−u, 0} ,

respectively. If u ∈ H1(Ω), then u+, u− ∈ H1(Ω), and

∇u+ =

⎧⎨
⎩ ∇u, u > 0

0, u ≤ 0
, ∇u− =

⎧⎨
⎩ −∇u, u ≤ 0

0, u > 0
;

a proof can be found, e.g., in [6, Lemma 7.6].

We assume that f(u(·)) ∈ V ∗ for each u ∈ V , and denote

F :

⎧⎨
⎩ V → V ∗,

u 
→ f(u(·)).
(2.1)
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We need F defined in (2.1) is Fréchet differentiable (the Fréchet derivative of F at

ω ∈ V is denoted by F ′
ω). For this purpose, we require the nonlinearity f to satisfy

f(0) = 0, (2.2)

f ∈ C1(Ω), (2.3)

f ′(x)− f ′(0) ≤ C|x|p (x ∈ Ω), (2.4)

with C > 0 and 1 < p < ∞; recall that Ω ⊂ R
2. Our objective f(t) = |t|p−1t (p > 1)

and f(t) = ε−2(t− t3) (ε > 0) satisfy these conditions.

Let û ∈ V denote some approximate solution to (1.1) constructed numerically,

e.g., by a finite element basis, a Fourier-Galerkin basis, or a Legendre polynomial basis

(in this thesis, we will employ a Legendre polynomial basis; therefore û ∈ C∞(Ω)).

We define the operator F : V → V ∗ as F(u) := −Δu−F (u) (u ∈ V ), more precisely,

which is given by

〈F(u), v〉 := (∇u,∇v)− (F (u) , v) for u, v ∈ V.

Note that, the Fréchet differentiability of F leads to that of F , and the Fréchet

derivative F ′
ω : V → V ∗ of F at ω ∈ V is given by F ′

ωu = −Δu− F ′
ωu (u ∈ V ). We

first rewrite (1.1) into

F(u) = 0, (2.5)

and discuss a rigorous inclusion of a solution to (2.5). In other words, we first consider

the existence of a weak solution to (1.1) (a solution to (2.5) in V ), and then we discuss

its H2-regularity if necessary.
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2.1 Inclusion in H1
0 (Ω)

We use the following theorem, which is similar to the Newton-Kantrovich theorem,

for deriving a rigorous inclusion of a solution to (2.5).

Theorem 2.1 ([19]). Let F : V → V ∗ be a Fréchet differentiable operator, and let

û ∈ V be some numerical approximation of a solution to F(u) = 0. Suppose that

there exist δ > 0, K > 0, and a non-decreasing function g satisfying

‖F (û)‖V ∗ ≤ δ, (2.6)

‖u‖V ≤ K ‖F ′
ûu‖V ∗ for all u ∈ V, (2.7)∥∥F ′

û+u −F ′
û

∥∥
B(V,V ∗) ≤ g (‖u‖V ) for all u ∈ V, (2.8)

and

g(t) → 0 as t → 0, (2.9)

where F ′
û is the Fréchet derivative of F at û ∈ V . Moreover, suppose that some α > 0

exists such that

δ ≤ α

K
−G (α) and Kg (α) < 1, (2.10)

where G(t) :=

∫ t

0

g(s)ds. Then, there exists a solution u ∈ V to the equation F(u) =

0 satisfying

‖u− û‖V ≤ α. (2.11)

Furthermore, the solution is unique under the side condition (2.11).

Remark 2.2. For û ∈ V that satisfies Δû+F (û) ∈ L2 (Ω), the norm of the residual
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‖F (û)‖V ∗ is bounded by

C2 ‖Δû+ F (û)‖L2(Ω) .

Here, C2 is the norm bound for the embedding V ∗ ↪→ L2(Ω) (the same embedding

constant for L2(Ω) ↪→ V ), and the L2-norm (in the above formula) can be computed

by a numerical integration method with verification.

We will discuss a method for computing the bound K for the operator for the

operator norm of F ′−1
û in Chapter 3.

An explicit construction of the function g satisfying (2.8) and (2.9) is determined

for each f . For f(t) = |t|p−1t (p ≥ 2) and f(t) = ε−2(t− t3) (ε > 0), one can employ

g(t) = p(p− 1)C3
p+1t

(
‖û‖Lp+1(Ω) + Cp+1t

)p−2

(2.12)

and

g(t) = 6ε−2C3
4 t
(
‖û‖L4(Ω) + C4t

)
, (2.13)

respectively, where δ and K are the constants in (2.6) and (2.7) for û ∈ V . The proof

can be found in [14, Theorem 3.1].

Our objective includes a verified numerical computation for positive solutions to

(1.1), i.e., solutions to (1.2). When f(t) = |t|p−1t (p > 1), we derive numerical

inclusions of the positive solutions to (2.5) on the basis of the following Theorem 2.3.

Note that, we will describe an inclusion method for the case that f(t) = ε−2(t − t3)

(ε > 0) in the next section, because this requires an additional consideration of

inclusions in the sense of L∞-error.

Theorem 2.3. Let f(t) = |t|p−1t (p > 1) (therefore, F (u) = |u|p−1 u). Moreover, let

û ∈ V be some numerical approximation of a solution to (2.5). Suppose that there

exist δ > 0, K > 0, and a non-decreasing function g satisfying (2.6)–(2.9), and that
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some α > 0 exists satisfying (2.10). If we have

‖û−‖V + α < C
− p+1

p−1

p+1 , (2.14)

then there exists a positive solution u ∈ V to (2.5) satisfying (2.11). Furthermore,

the solution is unique under the side condition (2.11).

Proof. The existence of solution u satisfying (2.11) is ensured on the basis of Theorem

2.1. Therefore, we prove the positivity of u.

Let us first prove

‖u−‖V ≤ ‖û−‖V + α. (2.15)

We express u ∈ V by the form u = û + αω with ω ∈ V satisfying ‖ω‖V ≤ 1. Since

b ≥ (a− b)−(:= max{−(a− b), 0}) for nonnegative numbers a, b ∈ R, we have

u− =(û+ αω)−

=(û+ − û− + αω+ − αω−)−

=(û+ + αω+ − (û− + αω−))−

≤û− + αω−,

which implies (2.15).

We then prove the positivity of u. Since u satisfies that

(∇u,∇v) =
(|u|p−1u, v

)
for all v ∈ V,

we have

‖u−‖2V = (∇u,∇u−) =
(|u|p−1u, u−

)
(2.16)
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by fixing v = u−. Moreover, we have

(
up−1|u|, u−

)
=

∫
Ω

u−(x)p+1dx

= ‖u−‖p+1
Lp+1(Ω)

≤Cp+1
p+1 ‖u−‖p+1

V ; (2.17)

note that, since u satisfies the homogeneous Dirichlet boundary condition, u− = 0 on

the boundary of supp (u−). Therefore, it follows from (2.16) and (2.17) that

‖u−‖2V
(
1− Cp+1

p+1 ‖u−‖p−1
V

) ≤ 0.

Since (2.14) ensures that 1−Cp+1
p+1 ‖u−‖p−1

V > 0, we have ‖u−‖V = 0, i.e., the solution

u is nonnegative in Ω. Therefore, the maximum principle ensures that u is positive

in Ω (because |u|p−1u ≥ 0 when u is nonnegative).

2.2 Inclusion in L∞(Ω)

In this subsection, we discuss a method that gives an L∞-error bound for a solution

to (1.1) from a known H1
0 -error bound, that is, we compute an explicit bound for

‖u− û‖L∞(Ω) for a solution u ∈ V to (1.1) satisfying

‖u− û‖V ≤ α (2.18)

with α > 0 and û ∈ V . We assume that Ω is convex and polygonal to obtain such

an error estimation; this condition gives the H2-regularity of solutions to (1.1) (and

therefore, ensures their boundedness) a priori. More precisely, when Ω is a convex

polygonal domain, a weak solution u ∈ V to the Poisson equation

(u, v)V = (h, v)L2(Ω) for all v ∈ V (2.19)
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for h ∈ L2 (Ω) is H2-regular (see, e.g., [7, Section 3.3]). A solution u satisfying (2.18)

can be written in the form u = û + αω with some ω ∈ V, ‖ω‖V ≤ 1. Moreover, ω

satisfies

⎧⎨
⎩ −Δαω = F (û+ αω) + Δû in Ω,

ω = 0 on ∂Ω,

and therefore is also H2-regular if Δû ∈ L2(Ω). We then use the following theorem

to obtain an L∞ error estimation.

Theorem 2.4 ([18]). For all u ∈ H2 (Ω),

‖u‖L∞(Ω) ≤ c0‖u‖L2(Ω) + c1‖∇u‖L2(Ω) + c2‖D2u‖L2(Ω)

with

cj =
γj∣∣Ω∣∣
[
max
x0∈Ω

∫
Ω

|x− x0|2jdx
]1/2

, (j = 0, 1, 2),

where D2u denotes the Hesse matrix of u,
∣∣Ω∣∣ is the measure of Ω, and

γ0 = 1, γ1 = 1.1548, γ2 = 0.22361.

For n = 3, other values of γ0, γ1, and γ2 have to be chosen (see [18]).

Remark 2.5. The norm of the Hesse matrix of u is precisely defined by

‖D2u‖L2(Ω) =

√√√√ 2∑
i,j=1

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
2

L2(Ω)

.

Moreover, since Ω is polygonal, ‖D2u‖L2(Ω) = ‖Δu‖L2(Ω) for all u ∈ H2(Ω) ∩ V (see,

e.g., [7]).
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Remark 2.6. Explicit values of each cj are provided for some special domains Ω in

[18, 19]. According to these papers, one can choose, for Ω = (0, 1)2,

c0 = γ0, c1 =

√
2

3
γ1, and c2 =

γ3
3

√
28

5
.

For the application of Theorem 2.4 to the L∞ estimation of solutions to (1.1), we

consider the concrete nonlinearities f(t) = |t|p−1t and f(t) = ε−2(t− t3), where p ≥ 2

and ε > 0. Recall that, for the H2-regularity of solution u, we restrict Ω ⊂ R
2 to a

convex polygonal domain in the following two theorems.

Theorem 2.7. Let f(t) = |t|p−1t (p > 1), and let û ∈ V be some numerical approx-

imation of a solution to (2.5) such that Δû ∈ L2 (Ω). Moreover, let c0, c1, and c2

be as in Theorem 2.4. Suppose that there exist δ > 0, K > 0, and a non-decreasing

function g satisfying (2.6)–(2.9), and that some α > 0 exists satisfying (2.10). Then,

there exists a solution u ∈ V ∩ L∞(Ω) to (2.5) satisfying

‖u− û‖L∞(Ω) ≤ c0C2α + c1α+

c2

⎛
⎝2p−

3
2pαC3

√
‖û‖2(p−1)

L6(p−1)(Ω)
+

α2(p−1)

2p− 1
C

2(p−1)
6(p−1) +

∥∥Δû+ |û|p−1 û
∥∥
L2(Ω)

⎞
⎠ . (2.20)

Proof. Owing to Theorem 2.4, we have

‖u− û‖L∞(Ω) = α ‖ω‖L∞(Ω)

≤ α
(
c0 ‖ω‖L2(Ω) + c1 ‖ω‖V + c2 ‖Δω‖L2(Ω)

)
≤ α

(
c0C2 + c1 + c2 ‖Δω‖L2(Ω)

)
.

The last term ‖Δω‖L2(Ω) is estimated by

α ‖Δω‖L2(Ω) = ‖F (û+ αω) + Δû‖L2(Ω)
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= ‖F (û+ αω)− F (û) + F (û) + Δû‖L2(Ω)

≤ ‖F (û+ αω)− F (û)‖L2(Ω) + ‖Δû+ F (û)‖L2(Ω) .

Since the mean value theorem ensures that

∫
Ω

(F (û+ αω)− F (û))2 dx

=

∫
Ω

(
αω(x)

∫ 1

0

F ′
û+tαω (x) dt

)2

dx

=

∫
Ω

(
αω(x)

∫ 1

0

p |û(x) + αtω(x)|p−1 dt

)2

dx

=p2α2

∫
Ω

ω(x)2
(∫ 1

0

|û(x) + αtω(x)|p−1 dt

)2

dx

≤p2α2

∫
Ω

ω(x)2
∫ 1

0

|û(x) + αtω(x)|2(p−1) dtdx

≤p2α2 ‖ω‖2L3(Ω)

∫ 1

0

∥∥∥|û+ αωt|2(p−1)
∥∥∥
L3(Ω)

dt

=p2α2 ‖ω‖2L3(Ω)

∫ 1

0

‖û+ αωt‖2(p−1)

L6(p−1)(Ω)
dt

≤p2α2 ‖ω‖2L3(Ω)

∫ 1

0

(
‖û‖L6(p−1)(Ω) + tα ‖ω‖L6(p−1)(Ω)

)2(p−1)

dt

≤22(p−1)−1p2α2 ‖ω‖2L3(Ω)

{
‖û‖2(p−1)

L6(p−1)(Ω)
+

∫ 1

0

(
tα ‖ω‖L6(p−1)(Ω)

)2(p−1)

dt

}

=22p−3p2α2 ‖ω‖2L3(Ω)

(
‖û‖2(p−1)

L6(p−1)(Ω)
+

α2(p−1)

2p− 1
‖ω‖2(p−1)

L6(p−1)(Ω)

)

≤22p−3p2α2C2
3

(
‖û‖2(p−1)

L6(p−1)(Ω)
+

α2(p−1)

2p− 1
C

2(p−1)
6(p−1)

)
.

it follows that

α ‖Δω‖L2(Ω) ≤ 2p−
3
2pαC3

√
‖û‖2(p−1)

L6(p−1)(Ω)
+

α2(p−1)

2p− 1
C

2(p−1)
6(p−1) + ‖Δû+ F (û)‖L2(Ω) .

Consequently, the L∞ error of u is estimated as asserted in (2.20).
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Theorem 2.8. Let f(t) = ε−2(t − t3) (ε > 0), and let û ∈ V be some numerical

approximation of a solution to (2.5) such that Δû ∈ L2 (Ω). Moreover, let c0, c1, and

c2 be as in Theorem 2.4. Suppose that there exist δ > 0, K > 0, and a non-decreasing

function g satisfying (2.6)–(2.9), and that some α > 0 exists satisfying (2.10). Then,

there exists a solution u ∈ V ∩ L∞(Ω) to (2.5) satisfying

‖u− û‖L∞(Ω) ≤ c0C2α + c1α + c2

(
αε−2C3

(
1 + 3 ‖û‖2L12(Ω)

+3αC12 ‖û‖L12(Ω) + α2C2
12

)
+
∥∥Δû+ ε−2(û− û3)

∥∥
L2(Ω)

)
. (2.21)

Proof. Owing to Theorem 2.4, we have

‖u− û‖L∞(Ω) = α ‖ω‖L∞(Ω)

≤ α
(
c0 ‖ω‖L2(Ω) + c1 ‖ω‖V + c2 ‖Δω‖L2(Ω)

)
≤ α

(
c0C2 + c1 + c2 ‖Δω‖L2(Ω)

)
.

The last term ‖Δω‖L2(Ω) is estimated by

α ‖Δω‖L2(Ω) = ‖F (û+ αω) + Δû‖L2(Ω)

= ‖F (û+ αω)− F (û) + F (û) + Δû‖L2(Ω)

≤ ‖F (û+ αω)− F (û)‖L2(Ω) + ‖Δû+ F (û)‖L2(Ω) .

Since the mean value theorem ensures that

∫
Ω

(F (û+ αω)− F (û))2 dx

=

∫
Ω

(
αω(x)

∫ 1

0

F ′ (û(x) + tαω(x)) dt

)2

dx

=

∫
Ω

(
αω(x)

∫ 1

0

ε−2
{
(1− 3(û(x) + tαω(x))2

}
dt

)2

dx
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=α2ε−4

∫
Ω

ω(x)2
(∫ 1

0

{
1− 3(û(x) + tαω(x))2

}
dt

)2

dx

=α2ε−4

∫
Ω

ω(x)2
(∫ 1

0

(
1− 3û(x)2 − 6tαω(x)û(x)− 3t2α2ω(x)2

)
dt

)2

dx

≤α2ε−4 ‖ω‖2L3(Ω)

∥∥∥∥∥
(∫ 1

0

(
1− 3û2 − 6tαωû− 3t2α2ω2

)
dt

)2
∥∥∥∥∥
L3(Ω)

=α2ε−4 ‖ω‖2L3(Ω)

∥∥∥∥
∫ 1

0

(
1− 3û2 − 6tαωû− 3t2α2ω2

)
dt

∥∥∥∥
2

L6(Ω)

≤α2ε−4 ‖ω‖2L3(Ω)

(
1 + 3

∥∥û2
∥∥
L6(Ω)

+ 3α ‖ωû‖L6(Ω) + α2
∥∥ω2
∥∥
L6(Ω)

)2
≤α2ε−4 ‖ω‖2L3(Ω)

(
1 + 3 ‖û‖2L12(Ω) + 3α ‖û‖L12(Ω) ‖ω‖L12(Ω) + α2 ‖ω‖2L12(Ω)

)2
≤α2ε−4C2

3

(
1 + 3 ‖û‖2L12(Ω) + 3αC12 ‖û‖L12(Ω) + α2C2

12

)2

it follows that

α ‖Δω‖L2(Ω)

≤αε−2C3

(
1 + 3 ‖û‖2L12(Ω) + 3αC12 ‖û‖L12(Ω) + α2C2

12

)
+ ‖Δû+ F (û)‖L2(Ω) .

Consequently, the L∞ error of u is estimated as asserted in (2.21).

We derive numerical inclusions of the positive solutions to (2.5) on the basis of

the following theorem, when f(t) = ε−2(t− t3) (ε > 0).

Theorem 2.9. Let f(t) = ε−2(t−t3) (ε > 0). Moreover, let û ∈ V be some numerical

approximation of a solution to (2.5) such that Δû ∈ L2 (Ω). Suppose that there exist

δ > 0, K > 0, and a non-decreasing function g satisfying (2.6)–(2.9), and that some

α > 0 exists such that (2.10). There exists a positive solution u ∈ V ∩L∞(Ω) to (2.5)

satisfying (2.11) and (2.21), if we have

ε−2 < λ1(supp (û− β)−), (2.22)
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where β > 0 is the right side of (2.21) and λ1(supp (û− β)−) is the minimum eigen-

value of −Δ on H1
0 (supp (û− β)−).

Proof. The existence of solution u satisfying (2.11) and (2.21) is ensured on the basis

of Theorem 2.1 and 2.8, respectively. Therefore, we prove the positivity of u. Since

(∇u,∇u−) = ε−2
(
u− u3, u−

)
,

we have

‖∇u−‖2L2(Ω) =ε−2
(
u− u3, u−

)
=ε−2

∫
Ω

(
u−(x)− u−(x)3

)
u−(x)dx

≤ε−2 ‖u−‖2L2(Ω)

≤ ε−2

λ1(supp u−)
‖∇u−‖2L2(Ω) .

Therefore, it follows that

1− ε−2

λ1(supp u−)
≥ 1− ε−2

λ1(supp (û− β)−)
> 0,

since supp u− ⊂ supp (û − β)−. Hence, if (2.22), we have ‖∇u−‖L2(Ω) = 0, i.e., the

solution u is nonnegative in Ω. The maximum principle moreover ensures that u is

positive in Ω.

Remark 2.10. For a domain Ω− such that supp (û− β)− ⊂ Ω−, we have

λ1(Ω−) ≤ λ1(supp (û− β)−). (2.23)

Therefore, in an actual computation, we choose such Ω− with simple shape and com-

pute λ1(Ω−) as a lower bound of λ1(supp (û − β)−) (see Section 5.1 for an explicit

Ω−).
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2.3 Simple upper bounds for embedding constant

In this section, we show two formulas for deriving rough upper bounds for the em-

bedding constant Cp satisfying (1.3), with a simple computation.

We prepare the following theorem, which provides the best constant in the classical

Sobolev inequality with critical exponents on R
2.

Theorem 2.11 (T. Aubin [1] and G. Talenti [22]). Let u be any function in W 1,q (Rn)

(n ≥ 2), where q is any real number such that 1 < q < n. Moreover, set p =

nq/ (n− q). Then, u ∈ Lp (Rn) and

(∫
Rn

|u(x)|p dx
) 1

p

≤ Tp

(∫
Rn

|∇u(x)|q2 dx
) 1

q

holds for

Tp = π− 1
2n− 1

q

(
q − 1

n− q

)1− 1
q

⎧⎨
⎩ Γ

(
1 + n

2

)
Γ (n)

Γ
(

n
q

)
Γ
(
1 + n− n

q

)
⎫⎬
⎭

1
n

, (2.24)

where |∇u|2 = ((∂u/∂x1)
2 + (∂u/∂x2)

2 + · · ·+ (∂u/∂xn)
2)

1/2
, and Γ denotes the

gamma function.

The following corollary, obtained from Theorem 2.11, provides a simple bound for

Cp for a bounded domain Ω.

Corollary 2.12. Let Ω ⊂ R
n (n ≥ 2) be a bounded domain. Let p be a real number

such that p ∈ (n/(n − 1), 2n/(n − 2)] if n ≥ 3 and p ∈ (n/(n − 1),∞) if n = 2.

Moreover, set q = np/(n+ p). Then, (1.3) holds for

Cp = |Ω| 2−q
2q Tp,

where Tp is the constant in (2.24).
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Proof. By zero extension outside Ω, we may regard u ∈ H1
0 (Ω) as an element u ∈

W 1,q (Rn); note that q < 2. Therefore, from Theorem 2.11,

‖u‖Lp(Ω) ≤ Tp

(∫
Ω

|∇u (x)|q2 dx
) 1

q

. (2.25)

Hölder’s inequality gives

∫
Ω

|∇u (x)|q2 dx ≤
(∫

Ω

|∇u (x)|q·
2
q

2 dx

) q
2
(∫

Ω

1
2

2−q dx

) 2−q
2

= |Ω| 2−q
2

(∫
Ω

|∇u (x)|22 dx
) q

2

,

that is,

(∫
Rn

|∇u (x)|q2 dx
) 1

q

≤ |Ω| 2−q
2q ‖∇u‖L2(Ω) , (2.26)

where |Ω| is the measure of Ω. From (2.25) and (2.26), it follows that

‖u‖Lp(Ω) ≤ |Ω| 2−q
2q Tp ‖∇u‖L2(Ω) .

Remark 2.13. The case that p = 2 is ruled out in Corollary 2.12, but it is well

known that

‖u‖L2(Ω) ≤
1√
λ1

‖u‖V ,

where λ1 is the first eigenvalue of the following problem:

(∇u,∇v) = λ (u, v) for all v ∈ V. (2.27)
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Note that, when Ω = (0, 1)2, λ1 = 2π2.

Using the following theorem, an upper bound of the embedding constant can be

obtained when the minimal point of the spectrum of −Δ on V is explicitly estimated.

Theorem 2.14 ([20]). Let λ1 ∈ [0,∞) denote the minimal point of the spectrum of

−Δ on V for a bounded domain Ω ⊂ R
n (n = 2, 3, · · · ).

a) Let n = 2 and p ∈ [2,∞). With the largest integer ν satisfying ν ≤ p/2, (1.3)

holds for

Cp =

(
1

2

) 1
2
+ 2ν−3

p [p
2

(p
2
− 1
)
· · ·
(p
2
− ν + 2

)] 2
p
λ
− 1

p

1 ,

where
p

2

(p
2
− 1
)
· · ·
(p
2
− ν + 2

)
= 1 if ν = 1.

b) Let n ≥ 3 and p ∈ [2, 2n/(n − 2)]. With s := n(p−1 − 2−1 + n−1) ∈ [0, 1], (1.3)

holds for

Cp =

(
n− 1√
n (n− 2)

)1−s

λ
− s

2
1 .



Chapter 3

Norm of inverse of linearized
operator

31



32 Chapter 3. Norm of inverse of linearized operator

In this chapter, we discuss the invertibility of the linearized operator F ′
û, and an

explicit estimation of the operator norm
∥∥F ′−1

û

∥∥
B(V ∗,V )

. We check the invertibility of

F ′
û by confirming that the point spectrum of an operator does not contain zero (see

Theorem 3.2). The eigenvalues (in the point spectrum) are evaluated by the theory

which originates from Liu-Oishi’s theorm [12].

3.1 Verification for invertibility

We compute a bound K in (2.7) for the operator norm of F ′−1
û by the following

theorem, proving simultaneously that this inverse operator exists and is defined on

the whole of V ∗. In this chapter, for estimating the inverse norm
∥∥F ′−1

û

∥∥
B(V ∗,V )

, we

endow V with inner product

(·, ·)V = (∇·,∇·)L2(Ω) + τ (·, ·)L2(Ω) (3.1)

and norm ‖·‖V :=
√

(·, ·)V , where τ is a nonnegative number chosen as

τ > −f ′(û(x)) (x ∈ Ω). (3.2)

Remark 3.1. We endow the weighted inner product (3.1) only when we compute

the inverse norm
∥∥F ′−1

û

∥∥
B(V ∗,V )

. We denote the V with the usual inner product

(∇·,∇·)L2(Ω) and the τ -weighted inner product (3.1) by V0 and Vτ , respectively. Since

∥∥F ′−1
û

∥∥
B(V ∗

0 ,V0)
≤ ∥∥F ′−1

û

∥∥
B(V ∗

τ ,Vτ )
,

for any nonnegative τ , we employ the value of
∥∥F ′−1

û

∥∥
B(V ∗

τ ,Vτ )
as an upper bound

of
∥∥F ′−1

û

∥∥
B(V ∗

0 ,V0)
. We use the all verification theorems provided in Chapter 1 with

endowing V with the usual inner product (∇·,∇·)L2(Ω).

Theorem 3.2. Let Φ : V → V ∗ be the canonical isometric isomorphism, i.e., Φ is
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given by

〈Φu, v〉 := (u, v)V for u, v ∈ V.

If the point spectrum of Φ−1F ′
û (denoted by σp(Φ

−1F ′
û)) does not contain zero, then

the inverse of F ′
û exists and

∥∥F ′−1
û

∥∥
B(V ∗,V )

≤ μ−1
0 , (3.3)

where

μ0 = min
{|μ| : μ ∈ σp

(
Φ−1F ′

û

) ∪ {1}} . (3.4)

Proof. We prove this theorem by adapting a theory of Fredholm operators, i.e., we

have recourse to the fact that the injectivity and the surjectivity of a Fredholm

operator are equivalent.

The operator N := Φ − F ′
û from V to V ∗ is given by 〈Nu, v〉 = ((τ + F ′

û)u, v)

for all u, v ∈ V . Thus, actually N maps V into L2(Ω). Hence, N : V → V ∗

is compact, owing to the compactness of the embedding L2(Ω) ↪→ V ∗; note that

Ω ⊂ R
2. Therefore, F ′

û is a Fredholm operator, and the spectrum σ (Φ−1F ′
û) of

Φ−1F ′
û is given by

σ
(
Φ−1F ′

û

)
= 1− σ

(
Φ−1N

)
= 1− {σp

(
Φ−1N

) ∪ {0}} = σp

(
Φ−1F ′

û

) ∪ {1}.

Since Φ−1F ′
û is self-adjoint, we have, for all u ∈ V ,

‖F ′
ûu‖2V ∗ =

∥∥Φ−1F ′
û

∥∥2
V
=

∫ ∞

−∞
μ2d (Eμu, u)V

≥μ2
0

∫ ∞

−∞
d (Eμu, u)V = μ2

0 ‖u‖2V ,
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where Eμ is the resolution of the identity of Φ−1F ′
û. Hence, F ′

û is one to one, and

therefore is also onto. This implies (3.3).

3.2 Related eigenvalue problem

The eigenvalue problem Φ−1F ′
ûu = μu in V is equivalent to

(∇u,∇v)− (F ′
ûu, v) = μ (u, v)V for all v ∈ V.

Since μ = 1 is already known to be in σ (Φ−1F ′
û), it suffices to look for eigenvalues

μ �= 1. By setting λ = (1− μ)−1, we further transform this eigenvalue problem into

Find u ∈ V and λ ∈ R s.t. (u, v)V = λ ((τ + F ′
û)u, v) for all v ∈ V. (3.5)

Owing to (3.2), (3.5) is an eigenvalue problem, the spectrum of which consists of a

sequence {λk}∞k=1 of eigenvalues converging to +∞. In order to compute K on the

basis of Theorem 3.2, we concretely enclose the eigenvalue λ of (3.5) that minimizes

the corresponding absolute value of |μ| (= |1− λ−1|), by considering the following

approximate eigenvalue problem

Find u ∈ VN and λN ∈ R

s.t. (uN , vN)V = λN ((τ + F ′
û)uN , vN) for all vN ∈ VN , (3.6)

where VN is a finite-dimensional subspace of V .

We estimate the error between the kth eigenvalue λk of (3.5) and the kth eigen-

value λN
k of (3.6), by considering the weak formulation of the Poisson equation (2.19)

for given h ∈ L2 (Ω); it is well known that this equation has a unique solution u ∈ V

for each h ∈ L2 (Ω). Moreover, we introduce the orthogonal projection P τ
N : V → VN
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defined by

(P τ
Nu− u, vN)V = 0 for all u ∈ V and vN ∈ VN .

The following theorem enables us to estimate the error between λk and λN
k .

Theorem 3.3 ([23, 11]). Suppose that there exists a positive number Cτ
N such that

‖uh − P τ
Nuh‖V ≤ Cτ

N ‖h‖L2(Ω) (3.7)

for any h ∈ L2 (Ω) and the corresponding solution uh ∈ V to (2.19). Then,

λN
k

λN
k (Cτ

N)
2 ‖τ + f ′(û(·))‖L∞(Ω) + 1

≤ λk ≤ λN
k ,

The inequality on the right is well known as a Rayleigh-Ritz bound, which is

derived from the min-max principle:

λk = min
Hk⊂V

(
max

v∈Hk\{0}
‖v‖2V

‖av‖2L2(Ω)

)
≤ λN

k ,

where we set a =
√
τ + f ′(û(·)) and the minimum is taken over all k-dimensional

subspaces Hk of V . Moreover, proofs of the inequality on the left can be found in

[23, 11]. Assuming the H2-regularity of solutions to (2.19) (e.g., when Ω ⊂ R
2 is

convex [7, Section 3.3]), [23, Theorem 4] ensures the left inequality. A more general

statement, that does not require the H2-regularity, can be found in [11, Theorem

2.1]. Bath theorems were proved on the basis of Liu-Oishi’s theorem [12].

Remark 3.4. When the H2-regularity of solutions to (2.19) is confirmed a priori,

e.g., when Ω is a convex polygonal domain [7, Section 3.3], (3.7) can be replaced by

‖u− P τ
Nu‖V ≤ Cτ

N ‖−Δu+ τu‖L2(Ω) for all u ∈ H2(Ω) ∩ V. (3.8)



36 Chapter 3. Norm of inverse of linearized operator

An explicit values of Cτ
N for a given subspace VN will be discussed in Section 3.3.

3.3 Interpolation constant

In this section, we discuss the interpolation constant Cτ
N satisfying (3.8), where we

select Ω = (0, a)n (a > 0) and the finite dimensional subspace VN of V is spanned by

a Legendre polynomial basis {φi1φi2 · · ·φin}Ni1,i2,··· ,in=1. Each φi is defined by

φm(x) =
1

m(m+ 1)
x(a− x)

dQm

dx
(x), m = 1, 2, 3, · · · (3.9)

with the Legendre polynomials Qm defined by

Qm =
(−1)m

amm!

(
d

dx

)m

xm(a− x)m, m = 0, 1, 2, · · · . (3.10)

The following theorem, which was previously proposed in [9], gives an explicit value

of C0
N with τ = 0 for the one-dimensional case.

Lemma 3.5 ([9]). Let Ω = (0, a) (a > 0) and let V be endowed with the inner product

(3.1) with τ = 0. Moreover, let the finite dimensional subspace VN of V be spanned

by a Legendre polynomial basis {φi}i=1 defined by (3.9). Then, we may select

C0
N = a

√
max {ΛN,1,ΛN,2}, (3.11)

for satisfying (3.8), where

ΛN,1 =
1

2(2N + 1)(2N + 5)
+

1

4(2N + 5)
√
2N + 3

√
2N + 7

,

and

ΛN,2 =
1

4(2N + 5)
√
2N + 3

√
2N + 7

+
1

2(2N + 5)(2N + 9)
+

+
1

4(2N + 9)
√
2N + 7

√
2N + 11

.
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Remark 3.6. We may use the same constant C0
N in the one-dimensional case for

higher-dimensional cases in which Ω = (0, a)n (see, [16]).

Theorem 3.7. Let Ω = (0, a)n (a > 0) and let V be endowed with the inner product

(3.1) with any τ ≥ 0. Moreover, let the finite dimensional subspace VN of V be

spanned by a Legendre polynomial basis {φi1φi2 · · ·φin}Ni1,i2,··· ,in=1, where each φm is

defined by (3.9). Then, we may select

Cτ
N = C0

N

√
1 + τ(C0

N)
2,

for satisfying (3.8), where C0
N is computed by (3.11).

Proof. Let {(λi, φi)}∞i=1 be the set of eigenpairs of the problem:

−Δφ = λφ in V,

where the derivatives on the left side are understood in the sense of distributions.

Since the set of the eigenvalues {φi}∞i=1 forms an orthonormal basis of L2(Ω), any

u ∈ H2(Ω) ∩ V is expressed in the form u =
∞∑
i=1

aiφi, where ai = (u, φi). Therefore,

it follows that

‖−Δu+ τu‖2 =
∞∑
i=1

a2i
{
(−Δφi,−Δφi)− 2τ (−Δφi, φi) + τ 2 (φi, φi)

}

=
∞∑
i=1

a2i
(
λ2
i + 2τλi + τ 2

)
(φi, φi)

=
∞∑
i=1

a2i (λi + τ)2 .

This ensures that, for any τ ≥ 0,

‖−Δu‖ ≤ ‖−Δu+ τu‖ for all u ∈ H2(Ω) ∩ V (3.12)
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Moreover, because of the definition of the projection P τ
N , we have

‖u− P τ
Nu‖τ ≤ ∥∥u− P 0

Nu
∥∥
τ
. (3.13)

Using Aubin-Nitsche’s trick, we have

‖u− P 0
Nu‖ ≤ C0

N‖∇
(
u− P 0

Nu
) ‖. (3.14)

From (3.12), (3.13), and (3.14), it follow that

‖u− P τ
Nu‖2τ ≤‖∇(u− P 0

Nu)‖2 + τ
∥∥u− P 0

Nu
∥∥2

≤ (1 + τ(C0
N)

2
) ‖∇ (u− P 0

Nu
) ‖2

≤ (1 + τ(C0
N)

2
)
(C0

N)
2 ‖−Δu‖2

≤ (1 + τ(C0
N)

2
)
(C0

N)
2 ‖−Δu+ τu‖2 .
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In this chapter, we consider the best constant for the embedding H1
0 (Ω) ↪→ Lp(Ω),

i.e., the smallest constant Cp that satisfies (1.3) with 2 < p < ∞.

Such constants are important in studies on partial differential equations (PDEs).

In particular, verified numerical computation methods of our interest require explicit

bounds for the embedding constant corresponding to a target equation at various

points within them. Moreover, the precision in evaluating the embedding constants

directly affects the precision of the verification results for the target equation. Occa-

sionally, rough estimates of the embedding constants lead to failure in the verification.

Therefore, accurately estimating such embedding constants is essential.

It is well known that the best constant in the classical Sobolev inequality has

been proposed [1, 22] (see Theorem 2.11). A rough upper bound of Cp for a bounded

domain Ω ⊂ R
n can be obtained from the best constant by considering zero extension

outside Ω (see Corollary 2.12). Moreover, Plum [20] proposed another estimation

formula that requires not the boundedness of Ω but an explicit lower bound for the

minimum eigenvalue of −Δ (see Theorem 2.14). Although these formulas enable us

to easily compute the upper bound of Cp, little is known about the best constant.

In this chapter, we consider a numerical method for obtaining a verified sharp

inclusion of the best constant Cp that satisfies (1.3) for Ω = (0, 1)2. For the sake of

convenience, we replace the notation Cp with Cp+1 (1 < p < ∞). The smallest value

of Cp+1 can be written as

Cp+1 = sup
u∈H1

0 (Ω)\{0}
Φ (u) , (4.1)

where Φ (u) = ‖u‖Lp+1(Ω) / ‖u‖H1
0 (Ω).

The boundedness of Cp+1 in (4.1) is ensured by considering zero extension outside

Ω (see Corollary 2.12). In addition, it is true that the supremum Cp+1 in (4.1) can be

realized by an extremal function in H1
0 (Ω). A proof of this fact is sketched as follows.

Let {ui} ∈ H1
0 (Ω) be a sequence such that ‖ui‖H1

0 (Ω) = 1 and ‖ui‖Lp+1(Ω) → Cp+1 as
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i → ∞. The Rellich–Kondrachov compactness theorem (see, e.g., [6, Theorem 7.22])

ensures that there exists a subsequence {uij} that converges to some u∗ in Lp+1(Ω).

Moreover, there exists a subsequence {uik} ⊂ {uij} that converges to some u′ ∈
H1

0 (Ω) in the weak topology of H1
0 (Ω) because H

1
0 (Ω) is a Hilbert space. Since {uik}

converges to u∗ in Lp+1(Ω), it follows that u∗ = u′. Hence, u∗ ∈ H1
0 (Ω)(⊂ Lp+1(Ω))

and ‖u∗‖Lp+1(Ω) = Cp+1.

Since |u| ∈ H1(Ω) for all u ∈ H1(Ω) (see, e.g., [6, Lemma 7.6]) and Φ(u∗) =

Φ(|u∗|), we are looking for the extremal function u∗ such that u∗ ≥ 0 (in fact, the

later discussion additionally proves that u∗ > 0 in Ω). The Euler-Lagrange equation

for the variational problem is

⎧⎨
⎩ −Δu = lup in Ω,

u = 0 on ∂Ω
(4.2)

with some positive constant l (see, e.g., [3] for a detailed proof). Since Φ is scale-

invariant (i.e., Φ(ku∗) = Φ(u∗) for any k > 0), it suffices to consider the case that

l = 1 for finding an extremal function u∗ of Φ (recall that we consider the case that

p > 1). Moreover, the strong maximum principle ensures that nontrivial solutions

u to (4.2) such that u ≥ 0 in Ω are positive in Ω. Therefore, in order to find

the extremal function u∗, we consider the problem of finding weak solutions to the

following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4.3)

This problem has a unique solution when Ω = (0, 1)2. Therefore, we can obtain an

inclusion of Cp+1 as ‖u∗‖Lp+1(Ω) / ‖u∗‖H1
0 (Ω) by enclosing the solution u∗ to (4.3) using

the method provided in Chapter 2.
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As a verified result, we prove the following theorem by using our method through

a computer-assisted technique:

Theorem 4.1. For the square Ω = (0, 1)2, the smallest values of Cp (p = 3, 4, 5, 6, 7)

that satisfy (1.3) are enclosed as follows:

C3 ∈ [0.25712475017618, 0.25712475017620];

C4 ∈ [0.28524446071925, 0.28524446071929];

C5 ∈ [0.31058015094505, 0.31058015094512];

C6 ∈ [0.33384042151102, 0.33384042151112];

C7 ∈ [0.35547994288611, 0.35547994288634].

Remark 4.2. Since it follows from a simple variable transformation that

Cp((a, b)
2) = (b− a)

2
pCp((0, 1)

2), (4.4)

the values in Theorem 4.1 can be directly used for all squares (a, b)2 (−∞ < a <

b < ∞) by multiplying them with (b − a)2/p. Moreover, these values can be applied

to deriving an explicit upper bound of Cp (Ω) for a general domain Ω ⊂ (a, b)2 by

considering zero extension outside Ω, while the precision of the upper bound depends

on the shape of Ω.

4.1 Method for estimating the best embedding con-

stant

In this section, we propose a method for estimating the embedding constant Cp+1

defined in (4.1) for the square Ω = (0, 1)2. The following theorem provides an explicit

estimation of the embedding constant from a verified solution to (4.3).
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Theorem 4.3. Let Ω = (0, 1)2. If there exists a solution to (4.3) in a closed ball

B(û, α ; ‖ · ‖H1
0 (Ω)) with û ∈ H1

0 (Ω) satisfying ‖û‖H1
0 (Ω) > 2α, then the embedding

constant Cp+1 (Ω) defined in (4.1) is estimated as

‖û‖Lp+1(Ω)

‖û‖H1
0 (Ω)

≤ Cp+1 ≤
‖û‖Lp+1(Ω)

‖û‖H1
0 (Ω) − 2α

.

Proof. It is clear that ‖û‖Lp+1(Ω) / ‖û‖H1
0 (Ω) is a lower bound of Cp+1. A solution to

(4.3) is unique when Ω = (0, 1)2. This was proved in [4], whereas the symmetric

result [5] which was used in the proof, has to be replaced with [2]. Therefore, the

ratio ‖u‖Lp+1(Ω) / ‖u‖H1
0 (Ω) is maximized by the solution u to (4.3). By writing the

solution to (4.3) as û+ αv with v ∈ H1
0 (Ω) , ‖v‖H1

0 (Ω) ≤ 1, we have that

Cp+1 =
‖û+ αv‖Lp+1(Ω)

‖û+ αv‖H1
0 (Ω)

≤ ‖û‖Lp+1(Ω) + αCp+1

‖û‖H1
0 (Ω) − α

.

In other words, it follows that

(
‖û‖H1

0 (Ω) − 2α
)
Cp+1 ≤ ‖û‖Lp+1(Ω) .

Hence, when ‖û‖H1
0 (Ω) > 2α, ‖û‖Lp+1(Ω) /(‖û‖H1

0 (Ω)− 2α) becomes an upper bound of

Cp+1.

4.2 Numerical result of the best constant

In this section, we present some numerical examples where the best values of the

embedding constants on the square domain Ω = (0, 1)2 are estimated to yield The-

orem 4.1. The upper bounds for the embedding constants on the L-shaped domain

(0, 2)2\[1, 2]2 through the application of Theorem 4.1 are also presented. All com-

putations were carried out on a computer with Intel Xeon E7-4830 2.20 GHz×40

processors, 2 TB RAM, CentOS 6.6, and MATLAB 2012b. All rounding errors were
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strictly estimated by using toolboxes for the verified numerical computations: the

INTLAB version 9 [21] and KV library version 0.4.16 [8]. Therefore, the accuracy of

all results was guaranteed mathematically.

We consider the cases where p = 2, 3, 4, 5, and 6, which correspond to the critical

point problems for embedding constants Cp+1. We computed approximate solutions

û to (4.3), which are displayed in Fig. 4.1, with Legendre polynomials, i.e., we con-

structed û as

û =
N∑

i,j=1

ui,jφiφj, ui,j ∈ R, (4.5)

where each φi is defined by

φn(x) =
1

n(n+ 1)
x(1− x)

dPn

dx
(x), n = 1, 2, 3, · · · (4.6)

with the Legendre polynomials Pn defined by

Pn =
(−1)n

n!

(
d

dx

)n

xn(1− x)n, n = 0, 1, 2, · · · . (4.7)

We then proved the existence of solutions u to (4.3) in an H1
0 -ball B(û, α1; ‖ · ‖H1

0 (Ω))

and an L∞-ball B(û, α2; ‖ · ‖L∞(Ω)), both centered around the approximations û.

This was done on the basis of Theorems 2.3 and 2.7. The bound K for the inverse

norm
∥∥F ′−1

û

∥∥
B(V ∗,V )

was estimated by the method described in Chapter 3.

Table 4.2 presents the verification results, where we can find the condition (2.14)

was satisfied. The last column in the table presents intervals containing Cp+1 ((0, 1)
2),

e.g., 1.23789456 represents the interval [1.23456,1.23789]. These intervals yield the results

in Theorem 4.1. Table 4.2 compares the lower and upper bounds derived by our

method, the upper bounds derived by Corollary 2.12, and the upper bounds derived

by Plum’s formula [20] (Theorem 2.14).
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In addition, we applied the results of Theorem 4.1 to estimate the upper bounds

of the embedding constants on (0, 2)2\[1, 2]2. Since (0, 2)2\[1, 2]2 ⊂ (0, 2)2, which

is the smallest square that encloses (0, 2)2\[1, 2]2, Cp((0, 2)
2\[1, 2]2) is bounded by

22/pCp((0, 1)
2) owing to the discussion in Remark 4.2. Table 4.3 compares 22/pCp((0, 1)

2)

derived by our method, the upper bounds for Cp((0, 2)
2\[1, 2]2) derived by Corollary

2.12, and the upper bounds for Cp((0, 2)
2\[1, 2]2) derived by Theorem 2.14. Theorem

2.14 requires a concrete value for the minimum eigenvalue of −Δ. Therefore, we

employed the result of λ1 ≥ 9.5585 presented in [13, Table 5.1].

Table 4.1: Verification results for the cases p = 2, 3, 4, 5, and 6 on Ω = (0, 1)2.

Except for the last column, these values represent the upper bounds for the cor-

responding constants. The upper bound for C
− p+1

p−1

p+1 was computed using the rough

upper bound for Cp+1 derived by Corollary 2.12.

p N δ K α β C
− p+1

p−1

p+1 (rough) Cp+1 (best)

2 100 8.8360e-13 1.4589 1.2891e-12 3.6431e-12 - 0.2571247501762018

3 150 3.9872e-13 1.6644 6.6365e-13 4.3638e-12 9.8697 0.285244460719295

4 150 3.0202e-13 1.9342 5.8413e-13 2.0029e-11 - 0.3105801509451205

5 150 3.1562e-13 2.2451 7.0884e-13 1.7246e-10 4.0152 0.3338404215111202

6 200 4.8054e-13 2.7255 1.3106e-12 4.7697e-08 - 0.3554799428863411

Table 4.2: Estimates of Cp derived by our method, Corollary 2.12, and Theorem 2.14

for square Ω = (0, 1)2.

Cp Our method Corollary 2.12 Theorem 2.14

C3 0.2571247501762018 0.27991104681668 0.32964899322075

C4 0.285244460719295 0.31830988618380 0.39894228040144

C5 0.3105801509451205 0.35780388458051 0.48909030972535

C6 0.3338404215111202 0.39585399866620 0.55266945714001

C7 0.3554799428863411 0.43211185419351 0.63763213907292
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Table 4.3: Same as Table 4.2 but for Ω = (0, 2)2\[1, 2]2.

Cp Our method (22/pCp((0, 1)
2)) Corollary 2.12 Theorem 2.14

C3 0.40816009891676 0.40370158699565 0.41978967493887

C4 0.40339658494102 0.41891936927236 0.47823908300428

C5 0.40981296610112 0.44572736933656 0.56542767015609

C6 0.42061257436764 0.47539569585243 0.62367087563741

C7 0.43333490417428 0.50554097277928 0.70723155088841



4.2. Numerical result of the best constant 47

p = 2, max
x∈Ω

û(x) ≈ 29.2571 p = 3, max
x∈Ω

û(x) ≈ 6.6232

p = 4, max
x∈Ω

û(x) ≈ 4.0491 p = 5, max
x∈Ω

û(x) ≈ 3.1721

p = 6, max
x∈Ω

û(x) ≈ 2.7435

Figure 4.1: Approximate solutions to (4.3) on Ω = (0, 1)2 for p = 2, 3, 4, 5, and 6.
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In this Chapter, we consider the application of the verification method described in

Chapters 2 and 3 to the stationary problems of the Allen-Cahn equation:

⎧⎨
⎩ −Δu = ε−2(u− u3) in Ω,

u = 0 on ∂Ω
(5.1)

and also

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = ε−2(u− u3) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(5.2)

where ε > 0. The small parameter ε > 0 causes the singular perturbation of solutions

to the above problems, which makes their verification difficult. Indeed, we observed

that small ε makes the constants required in the verification process (δ, K, and so

on) large.

All computations were carried out on a computer with Intel Xeon E7-4830 2.20

GHz×40 processors, 2 TB RAM, CentOS 6.6, and MATLAB 2012b. All rounding

errors were strictly estimated by using toolboxes for the verified numerical computa-

tions: the INTLAB version 9 [21] and KV library version 0.4.16 [8]. Therefore, the

accuracy of all results was guaranteed mathematically.

5.1 Positive solutions

In this section, we present verification results for positive solutions to (5.1), i.e.,

solutions to (5.2). We constructed approximate solutions û to problem (5.2) using

a Legendre polynomial basis. These solutions are displayed in Fig. 5.1. On the

basis of Theorem 2.9, we verified the existence of solutions to (5.2) in the balls

B(û, α; ‖∇ · ‖L2(Ω)) and B(û, β; ‖ · ‖L∞(Ω)). We present the verification results for

ε = 0.1, 0.05, and 0.025 in Table 5.1. To check the condition required in Theorem 2.9,
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we set Ω− = (0, 1)2\[0.009765625, 0.990234375]2 and proved λ1(supp (û− β)−) ⊂ Ω−

in all the cases, for computing the lower bounds of λ1(supp (û − β)−) (see again

Remark 2.10). The upper and lower bounds for the first eigenvalue λ1(Ω−) were

rigorously computed using the method in [12, 11] with a piecewise linear finite element

basis.

ε = 0.1 ε = 0.05 ε = 0.025

Figure 5.1: Approximate solutions to (5.2) on Ω = (0, 1)2.

Table 5.1: Verification results for (5.2) on Ω = (0, 1)2.

ε N δ K α β ε−2 λ1(Ω−) ∈

0.1 80 3.4571e-16 2.7081 5.8208e-16 4.5702e-15 1.0e+02 [0.9585, 1.0032]e+05

0.05 80 2.6679e-14 3.5469 9.4879e-14 3.9127e-12 4.0e+02 ′′

0.025 80 3.5439e-09 3.9098 1.3856e-08 2.6113e-06 1.6e+03 ′′

5.2 Nonpositive solutions

In this section, we present verification results for nonpositive solutions to (5.1).

We again constructed approximate solutions û to problem (5.1) using a Legendre

polynomial basis, which are displayed in Fig. 5.2. On the basis of the method de-

scribed in Chapters 2 and 3, we verified the existence of solutions to (5.1) in the balls
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B(û, α; ‖∇ · ‖L2(Ω)) and B(û, β; ‖ · ‖L∞(Ω)). We present the verification results for

ε = 0.1, 0.08, 0.06, and 0.04 in Table 5.2.

Table 5.2: Verification results for (5.1) on Ω = (0, 1)2.

ID ε N δ K α β

(A)

0.1 100 3.5313e-17 1.1129e+03 3.9582e-14 1.4449e-13

0.08 100 4.8566e-14 1.0333e+01 5.0234e-13 1.0207e-11

0.06 100 1.2760e-09 5.3305e+01 6.8014e-08 3.1047e-06

0.04 150 1.2163e-09 3.1060e+03 3.8993e-06 4.9775e-04

(B)

0.1 100 3.2618e-17 2.6031e+02 8.7312e-15 3.1113e-14

0.08 100 2.3806e-16 1.4712e+01 4.0746e-15 5.4577e-14

0.06 100 3.0612e-14 1.2236e+01 3.7486e-13 1.3881e-11

0.04 120 7.0273e-11 1.6153e+03 1.1357e-07 1.4317e-05

(C)

0.1 80 3.2642e-17 2.6279e+02 8.7312e-15 3.1120e-14

0.08 80 9.0597e-14 1.2806e+01 1.1607e-12 1.8513e-11

0.06 80 6.4217e-10 1.3308e+01 8.5457e-09 3.2865e-07

0.04 120 6.9481e-10 8.1587e+02 5.6752e-07 7.1235e-05
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ε = 0.1

(A) (B) (C)

ε = 0.08

ε = 0.06

ε = 0.04

Figure 5.2: Approximate (nonpositive) solutions to (5.1) on Ω = (0, 1)2.
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In this thesis, we proposed verified numerical computation methods for solutions to

the problem (1.1) and (1.2) on bounded polygonal domain Ω. We treated the cases

in which f(t) = |t|p−1t (p > 1) and f(t) = ε−2(t − t3) with a small parameter ε > 0

related with the so called singular perturbation phenomenon. In Chapter 2, we intro-

duced a verification theory for deriving H1
0 - and L∞-estimations of a given numerical

approximation of a solution to (1.1). With imposing some additional condition on the

numerical approximation, this theory can be extended to the verification of a positive

solution to (1.1), i.e., a solution to (1.2). When we consider the L∞-estimation of an

approximate solution, the convexity of Ω is additionally required. In Chapter 3, we

proposed a method for estimating the norm bound
∥∥F ′−1

û

∥∥
B(V ∗,V )

. This method is

based on Theorem 3.2, and the problem of estimating this norm bound is reduced to

the eigenvalue problem (3.5). We estimated the eigenvalues of the problem (3.5) on

the basis of Theorem 3.3. In Chapter 4, we proposed a method of evaluating the best

constant Cp(Ω) for the embedding H1
0 (Ω) ↪→ Lp (Ω) with Ω = (0, 1)2. The best con-

stant of Cp(Ω) is achieved by a solution (4.3), and actually (4.3) has a unique solution

when Ω = (0, 1)2. We derived sharp inclusions of the best constant by verifying the

solution to (4.3) using the method provided in Chapters 2 and 3. In Chapter 5, we

applied the methods proposed in this thesis to the verified numerical computation

for stationary problem of Allen-Cahn equation.

In future work, we would like to extend our verification method to more general

problems, e.g., problem (1.1) with more complicated domain Ω (including unbounded

one), parabolic and hyperbolic partial differential equations, and partial differential

equations of higher order.
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