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12 Chapter 1. Introduction

We are concerned with verified numerical computation methods for solutions to the

following elliptic problem:

—Au(z) = f(u(z)), =€,

(1.1)
u(z) =0, x € 09,

where 2 is a bounded polygonal domain (i.e., an open connected bounded set with
polygonal shape) in R?, A is the usual Laplace operator, and f : R — R is a given

nonlinear function. Our objective includes the problem of finding a solution to

~Au(x) = f(ulx)), EQ,
u(r) > 0, r €, (1.2)
u(z) =0, x € 09.

Therefore, we also discuss the positivity of the verified solution to (1.1) if necessary.
If a solution u to (1.1) is also a solution to (1.2), then u is called positive solution
to (1.1). In this thesis we employ, as typical choices of f, f(t) = [¢t[P~' (p > 1) and
f(t) = e2(t — t*) with a small parameter ¢ > 0 related with the so called singular
perturbation phenomenon. In some places of this thesis, the convexity of 2 will
be assumed; the main reason is that we require the H?-regularity of solution u for

deriving an L*>-error estimation (see Section 2.2).

1.1 Background

Numerical analysis plays an important role in a wide range of scientific and engi-
neering fields to understand various phenomena, especially derived from biology and
physics. However, the usual numerical analysis generally accompanies several kinds
of errors (e.g., rounding errors, truncated errors, and discretization errors), which
may cause serious fault in final results. On the other hand, numerical computation

with its quantitative error estimation (including rounding errors, truncated errors,
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discretization errors, and so on) is called “verified numerical computation”. Our in-
terest is in verified numerical computation methods for the elliptic problems (1.1)
and (1.2), and their related problems. Since problem (1.1) (including (1.2)) arises
from various models, especially derived from biology and physics, this problem has
been widely investigated both analytically and numerically. For example, we can find
some analytical results in [10, 6].

Verified numerical computation methods for elliptic problems originate from [15,
17], and have been further developed by many researchers. These methods enable
us to obtain an explicit ball containing the exact solution to a target equation, and
therefore have the additional advantage that quantitative information of the exact
solution is provided accurately in a strict mathematical sense. In the verification
procedure of these methods, tight estimations of several constants are required. For
example, a norm bound K for the inverse of a linearized operators, which will be
defined in (2.7), has to be estimated explicitly. Moreover, the norm bound C,(2)
for the embedding Hj(Q2) < LP(Q) is also important. More precisely, C,(Q) is a

positive number that satisfies
ull o) < Co(Q) lullgaq) for allu e Hy (). (1.3)

For simple notation, we denote C,(2) by C, if no confusion arises. The precision in
evaluating these bounds directly affects the precision of the verification results for
target equations. Occasionally, rough estimations of the bounds lead to failure in the

verification. Therefore, accurately estimating such bounds is essential.

1.2 Organization

The remainder of thesis is organized as follows: In Chapter 2, we prepare the notation
used throughout this thesis, and introduce the verification theory based on [18, 19].

In Chapter 3, we discuss a method of estimating the norm bound of the inverse of
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a linearized operator. In Chapter 4, we propose a method of evaluating the best
constant C,,(Q) for the embedding HJ(Q2) — LP (Q) with Q = (0,1)%. In Chapter 5,
we apply the present method to the verified numerical computation for some concrete

problems. Chapter 6 concludes this thesis with mentioning future work.
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Preparation and verification theory
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Chapter 2. Preparation and verification theory

In this chapter, we present verification methods (including existing theory) for (1.1).

We apply the methods summarized in [18, 19] to obtaining a rigorous numerical

inclusion of solutions to (1.1).

Throughout this thesis, we use the following notation:

LP (Q) (1 < p < o0) is the functional space of pth power Lebesgue integrable
functions over €2;

L (£2) is the functional space of Lebesgue measurable functions over
H*(Q) (k > 0) is the kth order L?-Sobolev space on ;

H} Q) :={ue H(Q) : u=0on dQ in the trace sense};

We denote V' = H} (Q2);

We denote V* = H~! (Q)(:=(dual of V)) with the usual sup-norm;

The L%inner product and the L?mnorm are simply denoted by (-,-) and ||,
respectively, if no confusion arises;

B (z,r; || -||) denotes the closed ball whose center is z and whose radius is
r > 0 in the sense of the norm || - [|;

For function u, we define

uy = max{u,0} and u_ = max{—u,0},

respectively. If u € H'(Q), then vy, u_ € H*(Q), and

Vu, uv>0 —Vu, u<0
VU+ — s VU_ = ’
0, u <0 0, u >0

a proof can be found, e.g., in [6, Lemma 7.6].

We assume that f(u(-)) € V* for each v € V, and denote

VooV
F: (2.1)

u = flu().
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We need F defined in (2.1) is Fréchet differentiable (the Fréchet derivative of F' at

w € V is denoted by F). For this purpose, we require the nonlinearity f to satisfy

f(0) =0, (2.2)
feci(), (2.3)
f(x) = f1(0) < ClafP (z € Q), (2.4)

with C' > 0 and 1 < p < oo; recall that Q C R?. Our objective f(¢) = [t|P~'t (p > 1)
and f(t) = e 2(t — t3) (¢ > 0) satisfy these conditions.

Let & € V denote some approximate solution to (1.1) constructed numerically,
e.g., by a finite element basis, a Fourier-Galerkin basis, or a Legendre polynomial basis
(in this thesis, we will employ a Legendre polynomial basis; therefore & € C>(Q)).
We define the operator F : V. — V* as F(u) := —Au—F (u) (u € V'), more precisely,

which is given by

(F(u),v) := (Vu,Vov) — (F (u),v) foru,veV.

Note that, the Fréchet differentiability of F' leads to that of F, and the Fréchet
derivative F, : V. — V* of F at w € V is given by Flu = —Au— F/u (u € V). We

first rewrite (1.1) into

F(u) =0, (2.5)

and discuss a rigorous inclusion of a solution to (2.5). In other words, we first consider
the existence of a weak solution to (1.1) (a solution to (2.5) in V'), and then we discuss

its H2-regularity if necessary.
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2.1 Inclusion in H;(Q)

We use the following theorem, which is similar to the Newton-Kantrovich theorem,

for deriving a rigorous inclusion of a solution to (2.5).

Theorem 2.1 ([19]). Let F : V. — V* be a Fréchet differentiable operator, and let
u € V be some numerical approzimation of a solution to F(u) = 0. Suppose that

there exist 6 > 0, K >0, and a non-decreasing function g satisfying

|F (@)]ly. <9, (2.6)

|ull,, < K ||Foully. forall ueV, (2.7)

H}—éw - ‘F?QHB(V,V*) < g(llully) forallueV, (2.8)
and

g(t) =0 as t =0, (2.9)

where F, is the Fréchet deriwative of F atu € V.. Moreover, suppose that some o > 0

exists such that

)< —=—G(a) and Kg(a) <1, (2.10)

Q@
K

t
where G(t) = / g(s)ds. Then, there exists a solution w € V' to the equation F(u) =
0

0 satisfying
|u—all, <o (2.11)

Furthermore, the solution is unique under the side condition (2.11).

Remark 2.2. Fora € V that satisfies Au+ F(a) € L*(2), the norm of the residual
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| F (@)||y« is bounded by
Co [|At+ F(a)]| 2q) -

Here, Cy is the norm bound for the embedding V* — L?(Q) (the same embedding
constant for L*(2) < V), and the L?*-norm (in the above formula) can be computed
by a numerical integration method with verification.

We will discuss a method for computing the bound K for the operator for the
operator norm of .7-"1’{1 in Chapter 3.

An explicit construction of the function g satisfying (2.8) and (2.9) is determined
for each f. For f(t) = [t|P~ % (p > 2) and f(t) =& 2(t — %) (¢ > 0), one can employ

A p_2
9) = p(p = DC3iat (il ris ) + Coiat) (2.12)

and

g(t) = 6=72C5t (|Jill ) + Cit) (2.13)

respectively, where § and K are the constants in (2.6) and (2.7) for w € V.. The proof
can be found in [14, Theorem 3.1].

Our objective includes a verified numerical computation for positive solutions to
(1.1), i.e., solutions to (1.2). When f(t) = [t|/"* (p > 1), we derive numerical
inclusions of the positive solutions to (2.5) on the basis of the following Theorem 2.3.
Note that, we will describe an inclusion method for the case that f(t) = e 2(¢t — t?)
(¢ > 0) in the next section, because this requires an additional consideration of

inclusions in the sense of L>®-error.

Theorem 2.3. Let f(t) = [t|P"'t (p > 1) (therefore, F(u) = |u|’" w). Moreover, let
u € V be some numerical approximation of a solution to (2.5). Suppose that there

exist 0 > 0, K >0, and a non-decreasing function g satisfying (2.6)—(2.9), and that
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some « > 0 exists satisfying (2.10). If we have

p+1

[a—lly +a < C[?—l—?? (2.14)

then there exists a positive solution w € V' to (2.5) satisfying (2.11). Furthermore,

the solution is unique under the side condition (2.11).

Proof. The existence of solution u satisfying (2.11) is ensured on the basis of Theorem

2.1. Therefore, we prove the positivity of u.

Let us first prove
Jully < fla-lly + . (2.15)

We express u € V by the form v = @ 4+ aw with w € V satisfying ||w||;, < 1. Since

b > (a—0b)_(:=max{—(a — b),0}) for nonnegative numbers a,b € R, we have

which implies (2.15).

We then prove the positivity of u. Since u satisfies that
(Vu, Vo) = (JufP"'u,v) forallv eV,
we have

Ju_|l? = (Vu, Vu_) = (Jul~ u, us) (2.16)
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by fixing v = u_. Moreover, we have

(v’ Hul, u-) :/Qu_(x)p“dx

+1
= ||U_HZ£,,+1(Q)
1 +1
<Cpiy lu-IF" (2.17)
note that, since u satisfies the homogeneous Dirichlet boundary condition, u_ = 0 on

the boundary of supp (u_). Therefore, it follows from (2.16) and (2.17) that
Iy (1= G llu-|7) < 0.

Since (2.14) ensures that 1 — Cgill Ju_||?~" > 0, we have |[u_||,, = 0, i.e., the solution
u is nonnegative in 2. Therefore, the maximum principle ensures that u is positive

in  (because |u[P"'u > 0 when u is nonnegative). O

2.2 Inclusion in L*())

In this subsection, we discuss a method that gives an L*°-error bound for a solution
to (1.1) from a known Hj-error bound, that is, we compute an explicit bound for

| — @[ () for a solution u € V' to (1.1) satisfying
Ju—il, <a (2.13)

with @ > 0 and @ € V. We assume that €2 is convex and polygonal to obtain such
an error estimation; this condition gives the H?-regularity of solutions to (1.1) (and
therefore, ensures their boundedness) a priori. More precisely, when 2 is a convex

polygonal domain, a weak solution v € V' to the Poisson equation

(w,v)y = (h,v)2q) forallveV (2.19)
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for h € L*(Q) is H%regular (see, e.g., [7, Section 3.3]). A solution u satisfying (2.18)
can be written in the form v = @ + aw with some w € V, [jw|,, < 1. Moreover, w

satisfies

—Aaw = F (4 + aw) + At in
w =170 on 0f),

and therefore is also H?-regular if Ad € L*(2). We then use the following theorem

to obtain an L error estimation.

Theorem 2.4 ([18]). For all u € H?* (),
ull o) < collullz2) + al|Vaull2@) + c2l| D*ul| 2(q)
with

o€

/2
C':% |:H1aX/|x_x0’2]d$:| ) (]:07172)7
where D*u denotes the Hesse matriz of u, m} is the measure of Q, and
Yo =1, 71 = 1.1548, v = 0.22361.

For n = 3, other values of vy, 71, and vo have to be chosen (see [18]).

Remark 2.5. The norm of the Hesse matriz of u is precisely defined by

2

[EIPEENDS

i,7=1

2

0%u
8x,~8xj

LQ(Q)'

Moreover, since Q is polygonal, ||D2u||L2(Q) = [[Au||2(q) for allu € H*(Q)NV (see,
e.g., [7]).
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Remark 2.6. Ezplicit values of each c; are provided for some special domains ) in

(18, 19]. According to these papers, one can choose, for Q = (0,1)2,

2 Y3 28
¢ =", €1 = §71, and ¢y = g g

For the application of Theorem 2.4 to the L> estimation of solutions to (1.1), we
consider the concrete nonlinearities f(t) = |t[P~'t and f(t) = e ?(t — 1), where p > 2
and € > 0. Recall that, for the H2-regularity of solution u, we restrict Q C R? to a

convex polygonal domain in the following two theorems.

Theorem 2.7. Let f(t) = [t|P~ (p > 1), and let 4 € V be some numerical approz-
imation of a solution to (2.5) such that At € L*(Q). Moreover, let ¢y, c1, and cy
be as in Theorem 2.4. Suppose that there exist 6 > 0, K > 0, and a non-decreasing
function g satisfying (2.6)—(2.9), and that some o > 0 ewists satisfying (2.10). Then,
there ezists a solution uw € V N L®(Q) to (2.5) satisfying

lu = @ o () < coCoa + cra+

a2(p=1)
e | 27 2pa03\/||u||i((§p13) _102(p A+ ]|y, | (2:20)

Proof. Owing to Theorem 2.4, we have

[v = ll poo () = |9l e 0

< a (co |l ooy + e llly + 2 1Al ey

<« <COCQ +c1+ e HAwHLQ(Q)> .
The last term [|Awl| ;g is estimated by

a|[Awl| 2y = [[F (@ + aw) + Adl| 2 g,
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= ||F (@ +aw) — F (@) + F (@) + Ad| 12

< F (4 + aw) = F (@) j2q) + 1A%+ F(@)]] 120 -
Since the mean value theorem ensures that

/Q (F (it + aw) — F () da

:/Q <ozw( )/OIF;HW( )dt)2dx
_ /Q (aw(x) /O o lae) + atw(@)! dt)2d:p
_paaz/ (/ l(z) + ot (z) P 1dt)2d:p

<p2a2/ / a(z) + atw(z) 2P dtda

<pa ol [ [+ awr

L3(Q)

—pa? ] / i+ awt]200), g dt

- ) v, 2(p—1)
vl ol | (Il + o lollisoie) " d
1 2(p—1)
§22(p_1)_1p2042||w||ig {” HLG(p () +/0 (tO‘HWHLG(p—U(Q)> dt}
2(p—1)
923,22 @ 1)
—05a? folfy (N0 o+ o Il

2(p—1)
§22p—3p2azc§ (Hﬁ’|’2(p_1) i Qv C,2(10—1)) ‘

L6(r—=1)(Q) 2p -1 6(p—1)

it follows that

a2(P—1) 2p
0 |80y < 27 BpaCiy [l D )+ G Coom) + 18+ F (@)

Consequently, the L error of u is estimated as asserted in (2.20). O
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Theorem 2.8. Let f(t) = e 2(t — t3) (¢ > 0), and let u € V be some numerical
approzimation of a solution to (2.5) such that Au € L? (). Moreover, let ¢y, c1, and
co be as in Theorem 2.4. Suppose that there exist 6 > 0, K > 0, and a non-decreasing
function g satisfying (2.6)—(2.9), and that some o > 0 exists satisfying (2.10). Then,
there exists a solution uw € V N L>®(Q) to (2.5) satisfying

[t = t[| oo () < CoCa0r + crav + ¢ (048_203 (1 + 3 all7 12

+3aCha ||| 120y + a20122> +]|Ad+ (0 — a3)HL2(Q)) . (2.21)

Proof. Owing to Theorem 2.4, we have

[t = tf| foo () = @ |9]] oo
< a(eo ol ooy + 1 llly + 2 Al ey

<a <c002 +oi e ||AwHL2(Q)> .
The last term [|Awl| ;5 is estimated by

a[|Aw|[12iq) = [[F (@ + aw) + Adl| 12
= |F' (& + aw) — F (@) + F (@) + At 2o

< | (@ + aw) = F ()| gy + [[AG+ F (@) 2 -

Since the mean value theorem ensures that

2

_ /Q (aw(g;) /0 e (ﬂ(m)+taw(z))dt) de
_ /Q (aw(m) /0 15_2{(1—3(ﬂ(x)+taw(x))2}dt)2da:
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1 2
=a%e! / w(z)? (/ {1-3(a(z) + taw(x))*} dt) dx
Q 0
1 2
=a’e™? / w(z)? (/ (1 - 3a(z)* — 6taw(z)a(z) — 3t*a’w(z)?) dt) dx
Q 0
1 2
<a?e™* ||w||ig(ﬂ) (/ (1 - 3a° — 6tawd — 3t°a’w?) dt)
0

L3()
2

1
=2 kuig(ﬂ) / (1 —3a6* — 6tawi — 3t°a’w?) dt
0

L5(Q)

2
<a’e™! ||W||ig(g) ( ) 1 3a [witl| o (g +a’ HWQHLG >

2
2
<o oy (1+ 31l + 30 Nl Il ey + 0 ol )

<aleiC2 (1 + 3l 120 + 3aCha [|8l] 120y + a20122>
it follows that

allAwll )

<ae*Cy (1 +3 ||U||L12(Q) + 3aCha ||| 12 ) + a20122> + A+ F (@) 20 -
Consequently, the L> error of u is estimated as asserted in (2.21). ]

We derive numerical inclusions of the positive solutions to (2.5) on the basis of

the following theorem, when f(t) = e~ 2(t — t3) (¢ > 0).

Theorem 2.9. Let f(t) = e 2(t—t3) (¢ > 0). Moreover, let i € V be some numerical
approzimation of a solution to (2.5) such that At € L*(Q). Suppose that there exist
0 >0, K >0, and a non-decreasing function g satisfying (2.6)—(2.9), and that some
a > 0 exists such that (2.10). There exists a positive solution u € V N L>®(Q) to (2.5)
satisfying (2.11) and (2.21), if we have

72 < M(supp (@ — B)_), (2.22)
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where > 0 is the right side of (2.21) and A\;(supp (@ — 5)_) is the minimum eigen-
value of —A on H}(supp (@ — )_).

Proof. The existence of solution u satisfying (2.11) and (2.21) is ensured on the basis

of Theorem 2.1 and 2.8, respectively. Therefore, we prove the positivity of u. Since
(Vu,Vu_) =& (u—u’,u_),
we have

2 —
IVu_|l720) =2 2 (u—u’u)

- 2
<e ? |lu-|lz2(0)
-2

€ 2
<————||Vu_ :
= (supp w_) [Vu HL2(Q)
Therefore, it follows that
o2 o2
- >1- ; >0,
A1 (supp u-) A1 (supp (@ — f8)-)

since supp u— C supp (¢ — §)-. Hence, if (2.22), we have |[Vu_||;») =0, i.e., the
solution u is nonnegative in (2. The maximum principle moreover ensures that u is

positive in 2. 0

Remark 2.10. For a domain Q2_ such that supp (¢ — ) C Q_, we have
A(€22) < Ai(supp (@ — fB)-). (2.23)

Therefore, in an actual computation, we choose such C2_ with simple shape and com-
pute A\ (Q2_) as a lower bound of \i(supp (4 — 3)_) (see Section 5.1 for an explicit
Qo).
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2.3 Simple upper bounds for embedding constant

In this section, we show two formulas for deriving rough upper bounds for the em-
bedding constant C), satisfying (1.3), with a simple computation.
We prepare the following theorem, which provides the best constant in the classical

Sobolev inequality with critical exponents on R2.

Theorem 2.11 (T. Aubin [1] and G. Talenti [22]). Let u be any function in W4 (R™)
(n > 2), where q is any real number such that 1 < q < n. Moreover, set p =

ng/ (n—q). Then, uw € L? (R") and

([ o da:)’l’ <n([. |w<x>rzdx);

holds for

3=

1
. — 1\ a r(1+2)r
T, =n3n"i (q > (1+3) () , (2.24)
r

n—q (2)T(1+n-2)

where |Vul, = ((0u/dz1)*+ (Ou/dz9)* + -+ + (0u)02,)2)"?, and T denotes the

gamma function.

The following corollary, obtained from Theorem 2.11, provides a simple bound for

C, for a bounded domain €2.

Corollary 2.12. Let Q C R" (n > 2) be a bounded domain. Let p be a real number
such that p € (n/(n —1),2n/(n —2)] if n > 3 and p € (n/(n — 1),00) if n = 2.
Moreover, set ¢ = np/(n+ p). Then, (1.3) holds for

2—q
Cp = ‘Q‘ 2 Tpv

where T, is the constant in (2.24).



2.3. Simple upper bounds for embedding constant 29

Proof. By zero extension outside €, we may regard u € H} () as an element u €

Wha (R™); note that ¢ < 2. Therefore, from Theorem 2.11,

1
q

ooy <7, ( [ IVu@ltr)” (225)

Holder’s inequality gives
2—q

/Q'V““”)'gdz < ( /QWu <x>|§'3dx) ( / 122qu)2
=107 (/Q|vu(x)|§dx>2,

[S]NY

that is,

a 2-q
([ vutigas) <005 19l (2.26)
where [Q] is the measure of 2. From (2.25) and (2.26), it follows that

2-q
[l oy < 122 T [Vl 2 -

Remark 2.13. The case that p = 2 is ruled out in Corollary 2.12, but it is well

known that

1
[l 20y < —=llully
L2(Q) \/)\—1 1%

where Ay s the first eigenvalue of the following problem:

(Vu,Vv) = X (u,v) forallveV. (2.27)
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Note that, when = (0,1)2, A\; = 272,

Using the following theorem, an upper bound of the embedding constant can be

obtained when the minimal point of the spectrum of —A on V is explicitly estimated.

Theorem 2.14 (]20]). Let A\; € [0,00) denote the minimal point of the spectrum of
—A on'V for a bounded domain Q@ C R" (n=2,3,---).

a) Letn =2 and p € [2,00). With the largest integer v satisfying v < p/2, (1.3)
holds for

o= (3) T BG)Gorey)
p

whereg<§—1>---<g—y+2>zlifl/zl.

b) Letn >3 and p € [2,2n/(n —2)]. With s :=n(p~t -2 +n"1) € [0,1], (1.3)
holds for
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In this chapter, we discuss the invertibility of the linearized operator F;, and an
explicit estimation of the operator norm H]—"&’l H BV’ We check the invertibility of
F! by confirming that the point spectrum of an operator does not contain zero (see
Theorem 3.2). The eigenvalues (in the point spectrum) are evaluated by the theory

which originates from Liu-Oishi’s theorm [12].

3.1 Verification for invertibility

We compute a bound K in (2.7) for the operator norm of F, ' by the following

theorem, proving simultaneously that this inverse operator exists and is defined on

the whole of V*. In this chapter, for estimating the inverse norm H]—"{lH By We
endow V' with inner product
(v = (Vo Vo)) + 7 () 120 (3.1)
and norm |||y, :== /(*, )y, where 7 is a nonnegative number chosen as
7> —f(a(x)) (x€Q). (3.2)

Remark 3.1. We endow the weighted inner product (3.1) only when we compute

the inverse norm H]—"{{lHB(V* We denote the V' with the usual inner product

7V) ’

(V. V) 120y and the T-weighted inner product (3.1) by Vo and V;, respectively. Since

17 W g0 < 17 e ey

for any nonnegative T, we employ the value of H]—"{lHB( as an upper bound

ViE V)
of H'F;;ilHB(VO*,VO)' We use the all verification theorems provided in Chapter 1 with

endowing V' with the usual inner product (V-, V) 2q,.

Theorem 3.2. Let ® : V — V* be the canonical isometric isomorphism, i.e., O is
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given by
(Pu,v) := (u,v),, foru,veV.

If the point spectrum of ®'F) (denoted by o,(®~1F})) does not contain zero, then

the inverse of F, exists and

HHL_IHB(V*,V) < g (3.3)

where
po =min {|p| : p€ o, (PF,) U{1}}. (3.4)

Proof. We prove this theorem by adapting a theory of Fredholm operators, i.e., we
have recourse to the fact that the injectivity and the surjectivity of a Fredholm

operator are equivalent.
The operator N := & — F/ from V to V* is given by (Nu,v) = (17 + F})u,v)
for all u,v € V. Thus, actually N maps V into L*(2). Hence, N : V — V*

is compact, owing to the compactness of the embedding L?*(2) < V*; note that

Q) C R?. Therefore, F, is a Fredholm operator, and the spectrum o (®~'F,) of

u

O~ F! is given by
o (P7'F) =1-0(®7'N) =1— {0, (P7'N)U{0}} =0, (' F) U{1}.
Since @~ F/ is self-adjoint, we have, for all u € V/,

IFaily- =07 7l = [t (B

>0 / A (B, u), = 2 ull?

o0
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where E,, is the resolution of the identity of ®~'F;. Hence, F} is one to one, and

therefore is also onto. This implies (3.3). O

3.2 Related eigenvalue problem

The eigenvalue problem ®~'F\u = pu in V is equivalent to
(Vu, Vv) — (Fju,v) = p(u,v),, forallve V.

Since g = 1 is already known to be in o (®~1F)), it suffices to look for eigenvalues

p # 1. By setting A = (1 — p)~!, we further transform this eigenvalue problem into
Find u € V and A € Rs.t. (u,v),, = AN((7 + F})u,v) forallveV. (3.5)

Owing to (3.2), (3.5) is an eigenvalue problem, the spectrum of which consists of a
sequence { g}, of eigenvalues converging to +oo. In order to compute K on the
basis of Theorem 3.2, we concretely enclose the eigenvalue A of (3.5) that minimizes
the corresponding absolute value of |u| (= |1 —A7!|), by considering the following

approximate eigenvalue problem

Find v € Vy and \Y € R

st. (un,vn)y = AN (T + F))un,vy) for all vy € Vi, (3.6)

where Vy is a finite-dimensional subspace of V.

We estimate the error between the kth eigenvalue A\; of (3.5) and the kth eigen-
value Y of (3.6), by considering the weak formulation of the Poisson equation (2.19)
for given h € L? (Q); it is well known that this equation has a unique solution v € V

for each h € L? (2). Moreover, we introduce the orthogonal projection Pf : V — Vy
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defined by
(Pyu—u,vn)y,, =0 forallu eV and vy € Vy.

The following theorem enables us to estimate the error between \; and A}

Theorem 3.3 ([23, 11]). Suppose that there ezists a positive number CF, such that
[un — PRunlly < CF [Pl 20 (3.7)

for any h € L*(Q) and the corresponding solution uj, € V to (2.19). Then,

Ay

<
AV (CR)2 T+ f(a()) |y +1

>\k S )\276\/"

The inequality on the right is well known as a Rayleigh-Ritz bound, which is

derived from the min-max principle:

2
A\ = min max w = AkN?
H,CV \ veH;\{0} ||Cw||L2(Q)

where we set a = /7 + f'(u(-)) and the minimum is taken over all k-dimensional
subspaces Hj of V. Moreover, proofs of the inequality on the left can be found in
[23, 11]. Assuming the HZ%-regularity of solutions to (2.19) (e.g., when Q C R? is
convex [7, Section 3.3]), [23, Theorem 4] ensures the left inequality. A more general
statement, that does not require the H?-regularity, can be found in [11, Theorem

2.1]. Bath theorems were proved on the basis of Liu-Oishi’s theorem [12].

Remark 3.4. When the H?-reqularity of solutions to (2.19) is confirmed a priori,

e.g., when Q is a convex polygonal domain [7, Section 3.3|, (3.7) can be replaced by

lu—PRully < CF |-Au+7ull 2 forall u e H*(Q)NV. (3.8)
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An explicit values of C; for a given subspace Vi will be discussed in Section 3.3.

3.3 Interpolation constant

In this section, we discuss the interpolation constant C7}; satisfying (3.8), where we
select Q = (0,a)™ (a > 0) and the finite dimensional subspace Vy of V' is spanned by
a Legendre polynomial basis {¢;, ¢, - - - ¢zn}f\1[12 i,—1- Bach ¢; is defined by

1 dQ.,

b(@) = —sa(a— 1)

o (), m=1,2,3,--- (3.9)

with the Legendre polynomials (), defined by

(=)™ (d\"
= — ) 2™a—-2)", m=0,1,2,-- . 1
Qu =" (7o) #™a—a)™, m=0,12 (3.10)

The following theorem, which was previously proposed in [9], gives an explicit value

of C\ with 7 = 0 for the one-dimensional case.

Lemma 3.5 ([9]). Let Q = (0,a) (a > 0) and let V' be endowed with the inner product
(3.1) with 7 = 0. Moreover, let the finite dimensional subspace Viy of V' be spanned
by a Legendre polynomial basis {¢;},_, defined by (3.9). Then, we may select

cY = a\/max {AN1,ANna}, (3.11)
for satisfying (3.8), where
1 1
AN,l = + )
202N +1)(2N +5)  4(2N +5)v2N +3V2N + 7
and
Ay = ! + ! +
M2 T 42N +5)vV2N +3v2N + 7 2(2N +5)(2N +9)
1

+ .
42N 4 9)v2N + 7v2N + 11
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Remark 3.6. We may use the same constant C% in the one-dimensional case for

higher-dimensional cases in which @ = (0,a)™ (see, [16]).

Theorem 3.7. Let Q = (0,a)" (a > 0) and let V' be endowed with the inner product
(3.1) with any 7 > 0. Moreover, let the finite dimensional subspace Vi of V be
spanned by a Legendre polynomial basis {¢i, ¢y -+ i, }21\1[,2
defined by (3.9). Then, we may select

where each ¢, s

o yin=17

Cf = Ch\/1+7(CR 2,

for satisfying (3.8), where C% is computed by (3.11).

Proof. Let {(\;, ¢;)}52, be the set of eigenpairs of the problem:
—Ap=Xp in V,

where the derivatives on the left side are understood in the sense of distributions.

Since the set of the eigenvalues {¢;}2°, forms an orthonormal basis of L?*(f2), any

u € H*(Q) NV is expressed in the form u = Z a;¢;, where a; = (u, ¢;). Therefore,
i=1
it follows that

|—Bu+rul® =3 a? {(~A¢i, —A¢) = 27 (— A1, 6) + 72 (61 6)}
=1

= Z 2 ()\2 + 27—)\2 + 7'2) (gbz, ¢z)
i=1

i )\—i-T

=1

This ensures that, for any 7 > 0,

|—Aul| < |[—Au+ 7u|| for allu € H*(Q) NV (3.12)
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Moreover, because of the definition of the projection Pf, we have
|lu — PRull, < Hu—P](\),uHT. (3.13)
Using Aubin-Nitsche’s trick, we have
lu = Pyul| < IV (u — Pyu) || (3.14)
From (3.12), (3.13), and (3.14), it follow that

[ = PRull? <[V (u— PRu)|* + 7 |ju — Plul|”
<(1+7CHH IV (u — Pyu) |?
< (14 7(C%)%) (CH)? || —Aul?
< (1+7(C)?) (C)? ||—Au + 7ul]*
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In this chapter, we consider the best constant for the embedding H}(Q) — LP(Q),
i.e., the smallest constant C, that satisfies (1.3) with 2 < p < oc.

Such constants are important in studies on partial differential equations (PDEs).
In particular, verified numerical computation methods of our interest require explicit
bounds for the embedding constant corresponding to a target equation at various
points within them. Moreover, the precision in evaluating the embedding constants
directly affects the precision of the verification results for the target equation. Occa-
sionally, rough estimates of the embedding constants lead to failure in the verification.
Therefore, accurately estimating such embedding constants is essential.

It is well known that the best constant in the classical Sobolev inequality has
been proposed [1, 22] (see Theorem 2.11). A rough upper bound of C,, for a bounded
domain 2 C R" can be obtained from the best constant by considering zero extension
outside 2 (see Corollary 2.12). Moreover, Plum [20] proposed another estimation
formula that requires not the boundedness of €2 but an explicit lower bound for the
minimum eigenvalue of —A (see Theorem 2.14). Although these formulas enable us
to easily compute the upper bound of (), little is known about the best constant.

In this chapter, we consider a numerical method for obtaining a verified sharp
inclusion of the best constant C, that satisfies (1.3) for Q = (0,1)?. For the sake of
convenience, we replace the notation C, with C,41 (1 < p < 00). The smallest value

of Cpy1 can be written as

Cpr1= sup P(u), (4.1)
ueH; (2)\{0}
where ® (1) = [ull s oy / 1] 1
The boundedness of C)4 in (4.1) is ensured by considering zero extension outside
Q2 (see Corollary 2.12). In addition, it is true that the supremum C,4; in (4.1) can be
realized by an extremal function in H] (€2). A proof of this fact is sketched as follows.

Let {u;} € Hj (Q) be a sequence such that ||“i||H5(Q) =1 and [Ju;l|pps1(g) = Cps1 as
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i — 00. The Rellich-Kondrachov compactness theorem (see, e.g., [6, Theorem 7.22))
ensures that there exists a subsequence {u;,} that converges to some u* in LP™(Q).
Moreover, there exists a subsequence {u; } C {u;} that converges to some u' €
H () in the weak topology of HJ(£2) because H}(€2) is a Hilbert space. Since {u;, }
converges to u* in LPTH(Q), it follows that u* = «’. Hence, u* € H(Q)(C L,y41(22))
and ||u*||LP+1(Q) = Lpti-

Since |u| € H'(Q) for all w € H'(Q) (see, e.g., [6, Lemma 7.6]) and ®(u*) =
®(|u*]), we are looking for the extremal function u* such that v* > 0 (in fact, the
later discussion additionally proves that «* > 0 in Q). The Euler-Lagrange equation

for the variational problem is

—Au = luP in §,
u=0>0 on 0f

(4.2)

with some positive constant [ (see, e.g., [3] for a detailed proof). Since ® is scale-
invariant (i.e., ®(ku*) = ®(u*) for any k > 0), it suffices to consider the case that
[ =1 for finding an extremal function u* of ® (recall that we consider the case that
p > 1). Moreover, the strong maximum principle ensures that nontrivial solutions
u to (4.2) such that w > 0 in Q are positive in Q. Therefore, in order to find
the extremal function u*, we consider the problem of finding weak solutions to the

following problem:

—Au=uP in €,
u>0 in Q, (4.3)
u=20 on 0f).

This problem has a unique solution when Q = (0,1)?. Therefore, we can obtain an
inclusion of Cpi1 as [[u*|| o) / Hu*||H&(Q) by enclosing the solution u* to (4.3) using

the method provided in Chapter 2.
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As a verified result, we prove the following theorem by using our method through

a computer-assisted technique:

Theorem 4.1. For the square Q = (0, 1)2, the smallest values of C, (p = 3,4,5,6,7)
that satisfy (1.3) are enclosed as follows:

C 0.25712475017618, 0.25712475017620];

5 € [ I;
C, e [0.28524446071925, 0.28524446071929];
Cs € [0.31058015094505, 0.31058015094512];
Cs € [0.33384042151102, 0.33384042151112];
[ ]

C7 € (0.35547994288611, 0.35547994288634].

Remark 4.2. Since it follows from a simple variable transformation that
2
Cp((a,b)*) = (b= a)Cp((0,1)?), (4.4)

the values in Theorem 4.1 can be directly used for all squares (a,b)* (—o0 < a <
b < 00) by multiplying them with (b — a)?/?. Moreover, these values can be applied
to deriving an explicit upper bound of C, () for a general domain Q C (a,b)?* by
considering zero extension outside 2, while the precision of the upper bound depends

on the shape of §2.

4.1 Method for estimating the best embedding con
stant

In this section, we propose a method for estimating the embedding constant Cpyq
defined in (4.1) for the square 2 = (0,1)2. The following theorem provides an explicit

estimation of the embedding constant from a verified solution to (4.3).
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Theorem 4.3. Let Q = (0,1)%. If there exists a solution to (4.3) in a closed ball
B, o ; || - ) with a € Hy (Q) satisfying H'&HH&(Q) > 2a, then the embedding
constant Cpiq () defined in (4.1) is estimated as

|l o410

1| o1 o
= il gy ) — 20

~ = Op+1
Tl s

Proof. 1t is clear that |4l jp41 (o) / [l g1 (o) 15 @ lower bound of Cpyy. A solution to
(4.3) is unique when Q = (0,1)2. This was proved in [4], whereas the symmetric
result [5] which was used in the proof, has to be replaced with [2]. Therefore, the

ratio [[ul| o1 (q) / [ull g3 ) is maximized by the solution u to (4.3). By writing the

solution to (4.3) as @ + av with v € Hy (Q), [|v 1 (q) < 1, we have that

&+ avll o) Nl o) + aCpa

lo+avllgq =l —o

Cpt1 =
In other words, it follows that

(il g = 20) Cosr < oo -

Hence, when H’&”Hé(Q) > 20, (|| a1 o /(Hﬁuﬂg(g) — 2a) becomes an upper bound of

Coir. O

4.2 Numerical result of the best constant

In this section, we present some numerical examples where the best values of the
embedding constants on the square domain 2 = (0, 1)2 are estimated to yield The-
orem 4.1. The upper bounds for the embedding constants on the L-shaped domain
(0,2)*\[1,2]* through the application of Theorem 4.1 are also presented. All com-
putations were carried out on a computer with Intel Xeon E7-4830 2.20 GHzx40
processors, 2 TB RAM, CentOS 6.6, and MATLAB 2012b. All rounding errors were
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strictly estimated by using toolboxes for the verified numerical computations: the
INTLAB version 9 [21] and KV library version 0.4.16 [8]. Therefore, the accuracy of

all results was guaranteed mathematically.

We consider the cases where p = 2, 3, 4, 5, and 6, which correspond to the critical
point problems for embedding constants C,,,. We computed approximate solutions
@ to (4.3), which are displayed in Fig. 4.1, with Legendre polynomials, i.e., we con-

structed @ as

N
U= Z u;j¢i9j, wij €R, (4.5)
ij=1
where each ¢; is defined by
1 dp,
(1) = —— (1 — . n=1,223 - 4.6
ou(w) = oty e (- ) @), (1.6

with the Legendre polynomials P, defined by

PH—T o 2"(1—x)", n=0,1,2,---. (4.7)
We then proved the existence of solutions u to (4.3) in an Hy-ball B(w, a1 || - || g1 a))
and an L*-ball B(u,as; || - ||z(@)), both centered around the approximations .

This was done on the basis of Theorems 2.3 and 2.7. The bound K for the inverse

norm H]—"q;_lH By Was estimated by the method described in Chapter 3.

v

Table 4.2 preserits the verification results, where we can find the condition (2.14)
was satisfied. The last column in the table presents intervals containing C), 1 ((0,1)?),
e.g., 1.23782 represents the interval [1.23456,1.23789]. These intervals yield the results
in Theorem 4.1. Table 4.2 compares the lower and upper bounds derived by our

method, the upper bounds derived by Corollary 2.12, and the upper bounds derived
by Plum’s formula [20] (Theorem 2.14).
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In addition, we applied the results of Theorem 4.1 to estimate the upper bounds
of the embedding constants on (0,2)*\[1,2]%. Since (0,2)?\[1,2]* C (0,2)?, which
is the smallest square that encloses (0,2)?\[1,2]%, C,((0,2)*\[1,2]?) is bounded by
2%/P(C,((0,1)?) owing to the discussion in Remark 4.2. Table 4.3 compares 22/PC,,((0, 1)?)
derived by our method, the upper bounds for C,((0,2)?\[1,2]?) derived by Corollary
2.12, and the upper bounds for C,((0,2)%\[1, 2]?) derived by Theorem 2.14. Theorem
2.14 requires a concrete value for the minimum eigenvalue of —A. Therefore, we

employed the result of \; > 9.5585 presented in [13, Table 5.1].

Table 4.1: Verification results for the cases p = 2, 3,4, 5, and 6 on Q = (0,1)%

Except for the last column, these values represent the upper bounds for the cor-
_ptl
C nt

p+1
upper bound for ), derived by Corollary 2.12.

responding constants. The upper bound for was computed using the rough

p| N ) K « B C;ETE (rough) Cps1 (best)

2 | 100 8.8360e-13 1.4589 1.2891e-12 3.6431le-12 - 0.257124750176%%
31150 3.9872e-13 1.6644 6.6365e-13 4.3638e-12 9.8697 0.28524446071922
41150 3.0202e-13 1.9342 5.8413e-13  2.0029¢-11 - 0.31058015094512
5| 150 3.1562e-13 2.2451 7.0884e-13 1.7246e-10 4.0152 0.33384042151143
6 | 200 4.8054e-13 2.7255 1.3106e-12  4.7697e-08 - 0.35547994288631

Table 4.2: Estimates of C), derived by our method, Corollary 2.12, and Theorem 2.14
for square Q = (0,1)%.

Cp

Our method

Corollary 2.12

Theorem 2.14

Cs
Cy
Cs
Cs
Cr

0.25712475017639
0.28524446071922
0.31058015094542
0.33384042151132
0.35547994288657

0.27991104681668
0.31830988618380
0.35780388458051
0.39585399866620
0.43211185419351

0.32964899322075
0.39894228040144
0.48909030972535
0.55266945714001
0.63763213907292
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Table 4.3: Same as Table 4.2 but for Q = (0,2)2\[1,2]%.

Our method (22/7C,((0,1)2))

Corollary 2.12

Theorem 2.14

C3
Cy
Cs
Cs
Cy

0.40816009891676
0.40339658494102
0.40981296610112
0.42061257436764
0.43333490417428

0.40370158699565
0.41891936927236
0.44572736933656
0.47539569585243
0.50554097277928

0.41978967493887
0.47823908300428
0.56542767015609
0.62367087563741
0.70723155088841
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Figure 4.1: Approximate solutions to (4.3) on 2 = (0,1)? for p = 2, 3, 4, 5, and 6.
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In this Chapter, we consider the application of the verification method described in

Chapters 2 and 3 to the stationary problems of the Allen-Cahn equation:

—Au=¢e?(u—u®) inQ,

(5.1)
u=20 on 0f?
and also
—Au=¢e?(u—wu?) inQ,
u >0 in €, (5.2)

u=20 on 0f),

where € > 0. The small parameter £ > 0 causes the singular perturbation of solutions
to the above problems, which makes their verification difficult. Indeed, we observed
that small € makes the constants required in the verification process (J, K, and so
on) large.

All computations were carried out on a computer with Intel Xeon E7-4830 2.20
GHzx40 processors, 2 TB RAM, CentOS 6.6, and MATLAB 2012b. All rounding
errors were strictly estimated by using toolboxes for the verified numerical computa-
tions: the INTLAB version 9 [21] and KV library version 0.4.16 [8]. Therefore, the

accuracy of all results was guaranteed mathematically.

5.1 Positive solutions

In this section, we present verification results for positive solutions to (5.1), i.e.,
solutions to (5.2). We constructed approximate solutions % to problem (5.2) using
a Legendre polynomial basis. These solutions are displayed in Fig. 5.1. On the
basis of Theorem 2.9, we verified the existence of solutions to (5.2) in the balls
B(t,; |V - ||2¢)) and B(w, B; || - [[z()). We present the verification results for
e = 0.1, 0.05, and 0.025 in Table 5.1. To check the condition required in Theorem 2.9,



5.2. Nonpositive solutions 51

we set - = (0,1)%\[0.009765625, 0.990234375]? and proved \;(supp (¢ — 3)_) C Q_
in all the cases, for computing the lower bounds of A\;(supp (¢ — §)_) (see again
Remark 2.10). The upper and lower bounds for the first eigenvalue A\;(Q_) were
rigorously computed using the method in [12, 11] with a piecewise linear finite element

basis.
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06 06 06 06 06 106
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e=0.1 e =0.05 e =0.025

Figure 5.1: Approximate solutions to (5.2) on Q = (0,1)2.

Table 5.1: Verification results for (5.2) on Q = (0,1)2.

€ N o K o B g2 A(Q2) €

0.1 80 3.457le-16 2.7081 5.8208¢-16 4.5702e-15 1.0e+02 [0.9585,1.0032]e+05
0.05 | 80 2.6679e-14 3.5469 9.4879e-14 3.9127e-12  4.0e+-02 "

0.025 | 80 3.5439e-09 3.9098 1.3856e-08 2.6113e-06 1.6e+4-03 "

5.2 Nonpositive solutions

In this section, we present verification results for nonpositive solutions to (5.1).
We again constructed approximate solutions @ to problem (5.1) using a Legendre
polynomial basis, which are displayed in Fig. 5.2. On the basis of the method de-

scribed in Chapters 2 and 3, we verified the existence of solutions to (5.1) in the balls
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B(t,; |V - ||2)) and B(w, B; || - [[z()). We present the verification results for

e = 0.1, 0.08, 0.06, and 0.04 in Table 5.2.

Table 5.2: Verification results for (5.1) on Q = (0,1)%.

N

K

B

0.1

0.08

0.06

0.04

100

100

100

150

3.5313e-17

4.8566e-14

1.2760e-09

1.2163e-09

1.1129e+4-03

1.0333e+01

5.3305e+-01

3.1060e4-03

3.9582e-14

5.0234e-13

6.8014e-08

3.8993e-06

1.4449e-13

1.0207e-11

3.1047e-06

4.9775e-04

0.1

0.08

0.06

0.04

100

100

100

120

3.2618e-17

2.3806e-16

3.0612e-14

7.0273e-11

2.6031e+02

1.4712e+01

1.2236e+01

1.6153e+03

8.7312e-15

4.0746e-15

3.7486e-13

1.1357e-07

3.1113e-14

5.4577e-14

1.3881e-11

1.4317e-05

0.1

0.08

0.06

0.04

80

80

80

120

3.2642e-17

9.0597e-14

6.4217e-10

6.9481e-10

2.6279e4-02

1.2806e+01

1.3308e+01

8.1587e+-02

8.7312e-15

1.1607e-12

8.5457e-09

5.6752e-07

3.1120e-14

1.8513e-11

3.2865e-07

7.1235e-05
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Figure 5.2: Approximate (nonpositive) solutions to (5.1) on Q = (0,1).
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o6 Chapter 6. Conclusion

In this thesis, we proposed verified numerical computation methods for solutions to
the problem (1.1) and (1.2) on bounded polygonal domain 2. We treated the cases
in which f(t) = |¢[P~'t (p > 1) and f(t) = e (¢t — t*) with a small parameter ¢ > (
related with the so called singular perturbation phenomenon. In Chapter 2, we intro-
duced a verification theory for deriving Hj- and L>-estimations of a given numerical
approximation of a solution to (1.1). With imposing some additional condition on the
numerical approximation, this theory can be extended to the verification of a positive
solution to (1.1), i.e., a solution to (1.2). When we consider the L>-estimation of an
approximate solution, the convexity of €2 is additionally required. In Chapter 3, we
proposed a method for estimating the norm bound H‘/—_;{L_IHB(V*,V)' This method is
based on Theorem 3.2, and the problem of estimating this norm bound is reduced to
the eigenvalue problem (3.5). We estimated the eigenvalues of the problem (3.5) on
the basis of Theorem 3.3. In Chapter 4, we proposed a method of evaluating the best
constant C,(Q) for the embedding H}(Q2) — L? (Q) with Q = (0,1)?. The best con-
stant of C,(2) is achieved by a solution (4.3), and actually (4.3) has a unique solution
when ©Q = (0,1)%. We derived sharp inclusions of the best constant by verifying the
solution to (4.3) using the method provided in Chapters 2 and 3. In Chapter 5, we
applied the methods proposed in this thesis to the verified numerical computation
for stationary problem of Allen-Cahn equation.

In future work, we would like to extend our verification method to more general
problems, e.g., problem (1.1) with more complicated domain €2 (including unbounded
one), parabolic and hyperbolic partial differential equations, and partial differential

equations of higher order.



Bibliography

1]

2]

[10]

[11]

[12]

Thierry Aubin. Problemes isopérimétriques et espaces de Sobolev. Journal of
Differential Geometry, 11(4):573-598, 1976.

Henri Berestycki and Louis Nirenberg. On the method of moving planes
and the sliding method. Boletim da Sociedade Brasileira de Matemdtica-
Bulletin/Brazilian Mathematical Society, 22(1):1-37, 1991.

Tom Carroll and Jesse Ratzkin. Interpolating between torsional rigidity and prin-
cipal frequency. Journal of Mathematical Analysis and Applications, 379(2):818—
826, 2011.

Lucio Damascelli, Massimo Grossi, and Filomena Pacella. Qualitative properties
of positive solutions of semilinear elliptic equations in symmetric domains via
the maximum principle. In Annales de I’THP Analyse non linéaire, volume 16,
pages 631-652, 1999.

Basilis Gidas, Wei-Ming Ni, and Louis Nirenberg. Symmetry and related prop-
erties via the maximum principle. Communications in Mathematical Physics,
68(3):209-243, 1979.

David Gilbarg and Neil S Trudinger. FElliptic partial differential equations of
second order, volume 224. Springer Science & Business Media, 2001.

Pierre Grisvard. Flliptic problems in nonsmooth domains, volume 69. SIAM,
2011.

Masahide Kashiwagi. KV library, 2016. http://verifiedby.me/kv/.

Seiji Kimura and Nobito Yamamoto. On explicit bounds in the error for the
Hj}-projection into piecewise polynomial spaces. Bulletin of informatics and
cybernetics, 31(2):109-115, 1999.

Pierre Louis Lions. On the existence of positive solutions of semilinear elliptic
equations. SIAM review, 24(4):441-467, 1982.

Xuefeng Liu. A framework of verified eigenvalue bounds for self-adjoint differ-
ential operators. Applied Mathematics and Computation, 267:341-355, 2015.

Xuefeng Liu and Shin’ichi Oishi. Verified eigenvalue evaluation for the lapla-
cian over polygonal domains of arbitrary shape. SIAM Journal on Numerical
Analysis, 51(3):1634-1654, 2013.

27



[13]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Xuefeng Liu, Tomoaki Okayama, and Shin "ichi Oishi. High-precision eigenvalue
bound for the laplacian with singularities. In Computer Mathematics, pages
311-323. Springer, 2014.

P.J. McKenna, F. Pacella, M. Plum, and D. Roth. A uniqueness result for a
semilinear elliptic problem: A computer-assisted proof. Journal of Differential
Equations, 247(7):2140-2162, 2009.

Mitsuhiro T Nakao. A numerical approach to the proof of existence of solutions
for elliptic problems. Japan Journal of Applied Mathematics, 5(2):313-332, 1988.

Mitsuhiro T Nakao, Nobito Yamamoto, and Seiji Kimura. On the best con-
stant in the error bound for the Hj-projection into piecewise polynomial spaces.
Journal of Approximation Theory, 93(3):491-500, 1998.

Michael Plum. Computer-assisted existence proofs for two-point boundary value
problems. Computing, 46(1):19-34, 1991.

Michael Plum. Explicit H?-estimates and pointwise bounds for solutions of
second-order elliptic boundary value problems. Journal of Mathematical Analysis
and Applications, 165(1):36-61, 1992.

Michael Plum. Computer-assisted enclosure methods for elliptic differential
equations. Linear Algebra and its Applications, 324(1):147-187, 2001.

Michael Plum. Existence and multiplicity proofs for semilinear elliptic bound-
ary value problems by computer assistance. Jahresbericht der Deutschen Math-
ematiker Vereinigung, 110(1):19-54, 2008.

Siegfried M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77-104. Kluwer Academic Publish-
ers, Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

Giorgio Talenti. Best constant in Sobolev inequality. Annali di Matematica pura
ed Applicata, 110(1):353-372, 1976.

Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, and Shin’ichi Oishi. Verified
norm estimation for the inverse of linear elliptic operators using eigenvalue eval-
uation. Japan Journal of Industrial and Applied Mathematics, 31(3):665-679,
2014.

o8



ERERE #t (I%) FAHRFE HREEEE

K 4

H —pk

(2016 4 12 A Hi{F)

T Al

A FEFR  FEATHRRGES | FEF « FEATHEA B (HEEET)

ZA
(i}

RALTE

[1] Akitoshi Takayasu, Kaname Matsue, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi,
Shin'ichi Oishi: Numerical validation of blow-up solutions for ODEs, to appear in Journal of
Computational and Applied Mathematics.

[2] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, and Shin'ichi Oishi: Sharp numerical
inclusion of the best constant for embedding H} (Q2) < L?(£2) on bounded convex domain,
Journal of Computational and Applied Mathematics, 311, 306-313 (2017), to appear.
Electronically published in doi.org/10.1016/j.cam.2016.07.021.

[3] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, and Shin'ichi Oishi: Estimation of the
Sobolev embedding constant on domains with minimally smooth boundary using extension
operator, Journal of Inequalities and Applications, 1, 1-23 (2015).

[4] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, and Shin'ichi Oishi: Numerical
verification of positiveness for solutions to semilinear elliptic problems, JSIAM Letters 7,
73-76 (2015).

[5] Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, and Shin'ichi Oishi: Verified norm
estimation for the inverse of linear elliptic operators using eigenvalue evaluation, Japan
Journal of Industrial and Applied Mathematics, 31, 665-679 (2014).

[6] HF—pk, PEMRSEAN, KAatE— M5 TRE O IEEAR I 64 D48 FEORAEAT = 5
fE &% 75 (Verified numerical computation method for positive solutions to elliptic
differential equations) , RIMS #ff9t4E 4> TELGMEBAIC ) 72 B i -7 D S e B 10,
2016 4710 H 19 H~10 H 21 H.

[7] BIMRSR AR, P —pk, KAHE— : & 2 mEBRICE A2 72/ M B R F o
i DO AFAEMENT X T 5 B R HGEW] 1L (Computer-assisted proof for existence of
solutions to PDEs using an infinite eigenvalue) , RIMS WF9t4E [BIGEIIC )T 7= 4K
fIEfEAT O FrERH 11,2016 47 10 4 19 H~10 H 21 A.

[8] BEMRSE K, MW —pk, KAadE— « A5 NEEEIZ T 2N H AR TR o fif
DOFHFEE HFTERERYE  (Computer assisted existence proof of solutions to system of
partial differential equations with bounded convex polygonal domains) , The Twenty-Eighth
RAMP Symposium, 2016 4% 10 H 13 H~10 H 14 H.

[9] Kazuaki Tanaka, Kouta Sekine, Shin'ichi Oishi: On verified numerical computation for
positive solutions to elliptic boundary value problems, Computer Arithmetic and Validated
Numerics, SCAN2016, Sep. 26-29, 2016.

[10] Kouta Sekine, Kazuaki Tanaka, Shin'ichi Oishi: A norm estimation for an inverse of linear
operator using a minimal eigenvalue, Computer Arithmetic and Validated Numerics,
SCAN2016, Sep. 26-29, 2016.

[11] Akitoshi Takayasu, Kaname Matsue, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi,
and Shin’ichi Oishi: Verified numerical computations for blow-up solutions of ODEs,
Computer Arithmetic and Validated Numerics, SCAN2016, Sep. 26-29, 2016.




ERERE #t (I%) FAHRFE HREEEE

i AH ) A R - FATHORGEA R - FATHEA @EaE (HEEEET)
AT [12] Kazuaki Tanaka, Shin'ichi Oishi: On verified numerical computation for elliptic Dirichlet

boundary value problems using sub- and super-solution method, The fifth Asian conference
on Nonlinear Analysis and Optimization, Toki Messe, Niigata, Japan, August 1-6, 2016.

[13] Kouta Sekine, Kazuaki Tanaka, Shin'ichi Oishi: Estimation for optimal constant satisfying an
inequality for linear operator using minimal eigenvalue, The fifth Asian conference on
Nonlinear Analysis and Optimization, Toki Messe, Niigata, Japan, August 1-6, 2016.

[14] Kaname Matsue, Akitoshi Takayasu, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi,
and Shin’ichi Oishi: Rigorous numerics of blowup solutions for ODEs, The 11th AIMS
Conference on Dynamical Systems, Differential Equations and Applications, July 1-5, 2016.

[15] Kazuaki Tanaka, Kouta Sekine, Shin'ichi Oishi: Numerically verifiable condition for
positivity of solution to elliptic equation, The 11th East Asia SIAM. June, 20-22, 2016.

[16] mEZ2sufc, MLE, Ex KEF 1, B —ik, KOfE, KaE— : im=a s 7 b
1% D 2 5555 RSO MR MR O BRI, B ARG SE 2015 FEHES
RWRE, MPERERFER—BITA T RE Y /8%, 20165823 H4 AH~3 H5H.

[17] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, Shin'ichi Oishi: Numerical verification
for positiveness of solutions to self-adjoint elliptic problems, JSST 2015 International
Conference on Simulation Technology, Oct. 12-14, 2015.

[18] Kazuaki Tanaka and Shin'ichi Oishi: Computer-assisted analysis for solutions to nonlinear
elliptic Neumann problems, JSST 2014 International Conference on Simulation Technology,
Oct. 29-31, 2014.

[19] Kazuaki Tanaka and Shin'ichi Oishi: Numerical verification for periodic stationary solutions
to the Allen-Cahn equation, Thel6th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics, SCAN2014, Sep. 21-26, 2014.

[20] mZsehd, ILE, fix REAF, HHF—hAk, KAME, KAEE— : Verified numerical
enclosure of blow-up time for ODEs, H A% 74x 2015 (FEAFES, RUELFEZE R, 2015
F9HI3H~9H 16 H.

[21] MR —pk, BIRSEK, KOME, RatE—  FEMTRIR O TR O MO EFEIEC ST 5
BAERIMRRELS, BRI 2015 FEFR, SRR, 201549 4 9 H~9 A
11 A.

[22] ZILEER, HH—hak, BIRZK, RBIRA, KAatE—  ZRESINEIZ X 5 = A0 E
® Delaunay (2% 9 2 EEAOMGE, B ARSHEERSS 2015 FEFES, SRR,
2015429 H9 H~9 H 11 H.

[23] mZesohd, MILE, fex KREA41, BHP—ik, KOG, KaE— g iRlo
FRIEARI T T DR ELRFEAT S Bl EHE, B ARG AEEE TS 2015 FFEHES, &R KF,
201549 H9 H~9 A 11 H.




ERERE #t (I%) FAHRFE HREEEE

]l

BN FEF  FEATHRRGEES | FEH < FEATHEA EAE (HiEEET)

ol

2l

Z DAl
(R R H
—XER)

< DAl

(52H)

[24] BEMR A, WP —K, @i, WWRE : 7~ 2 Vv AZRA U EREA & 5
B FHRE O AN K RS TR A~ DI, 54 7 [0 B AR KA pE TR 5 it i
e, AAKRT, 2014412 H 6 .

[25] HH—5k, KIEOME, BIRZAK, KAaEE— : An a priori estimation of the Sobolev embedding
constant and its application to numerical verification for solutions to PDEs, # 10 [F] H At
MBI RME RS RE, FHRFEE T v S AREIIE 8 5iH, 2014 43
H 19 H~3 )20 H.

[26] Kazuaki Tanaka and Shin'ichi Oishi: Numerical verification for stationary solutions to the
Allen-Cahn equation, The International Workshop on Numerical Verification and its
Applications, Waseda Univ. Nishiwaseda campus, Japan, March, 2014.

[27] Kazuaki Tanaka, Makoto Mizuguchi, Kouta Sekine, Akitoshi Takayasu, Shin'ichi Oishi:
Estimation of an embedding constant on Lipschitz domains using extension operators, JSST
2013 International Conference on Simulation Technology. Sep. 11-13, 2013.

[28] MWt —pk, EZesehe, BIHE, KAtk —  #ERHAEHFE O Neumann 5F FI2B1T
DR ERZEAT X WER S 7 v A5, B ARIGHEESE 2013 FEFAS, 77 0 A G
], f& R bAE R T, 2013 429 H 9 H~9 A 11 H.

[29] Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, Shin'ichi Oishi: Verified norm estimation
for the inverse of linear elliptic operators and its application, The 9th East Asia SIAM. June
18-20, 2013.

[30] S —hk, @&k, BTG, Kat—  o{ERZE VLA B 7285
Neumann 5% FUE [ RE O A2 614 2 K R AEAT & BUEFHE, B A B S22 2013 4
FEEA RS, FHPERPAILFT v o232, 201343 A 14 H~3 H 15 H.

[31] M —pk, @i, BIE, KAt — SRR HRE R 3 O Neumann 508 FI23B1)
B REERREST X WIER R 2 v A5EN, B ARG HEEETES 2012 FEFES, HENEHZE
ATV, AbREHENTH, 201248 H 28 H~9 H 2 H. (ZFDOhzEn 5 1F)

[32] A& HLEER, B —pk, B K, RBIR /A, KAaHE— : Delaunay =70 E DR R
AT S B A RIS kT 2858, BAIDHEESS 2016 4R 4L, ALIUNERS
Y, 20169 A 12 H~9 H 14 H. (Z DA R & —F5K 2 1)

[33] & IR, M —pk, BIREK, BIRwA, KAatE—, BANGHEFEEY2 2016 AR
=, BERAY—H ZH.

[34] M —pk, 2016 FERIDFLEFRIESE ZH.

[35] Kazuaki Tanaka, JSST 2014 International Conference, Student Presentation Award %2 /.

[36] Kazuaki Tanaka, JSST 2013 International Conference, Student Presentation Award %% /.




