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Chapter 1

Introduction

1.1 Introduction

In this thesis, we study the Cauchy problem of the semirelativistic equation
i0pu £ (m? — A)Y2 u=F(u), tc[0,T), r€R, (SR)
u(0) = uy, z €R,

where v is a complex valued function of (¢,z) € R x R, F' : C — C denotes nonlinearity, 9, = 9/0t,
m € R, A = 92 = (0/dx)? is the Laplacian in R. Moreover, the operator (m? — A)'/2 is defined as a
Fourier multiplier with symbol (m? + £¢2)1/2. Namely, we define (m? — A)/2u = F~1(m? + £2)Y/2Fu(€),
where £ is a real variable, § is the Fourier transform defined by

Fu(€) = \/7/ x) exp(—izf)dx

and §~! is the inverse Fourier transform defined by

F! u(x) \/7/ ) exp(iz€)d

For simplicity, we describe §u as .

The aim of this thesis is to study the solvability and well-posedness of the Cauchy problem (SR)
with power type nonlinearity. Specifically, we study the relationship between the smoothness of initial
data wug and the solvability and well-posedness of (SR) with some power type nonlinearities. Here, we
say u: [0,T) = #*(R) is a time-local solution to the Cauchy problem (SR) for the initial data ug if u
satisfies the following weak equation corresponding to (SR):

/0 (ult) | 0+ (m® = D) 26(1)) gy mydt = (uo | $(0))(w) +/O (F(u(t)) | () mydt

for any ¢ € & (R?), where ¥ (R") is the set of all smooth rapidly decreasing functions, #*(R") is the
dual of #(R"), and (- | -)(r) is the dual product of #(R). We also say u : R — ¥'(R) is a time-global
solution to the Cauchy problem (SR) for the initial data wug if u is a time-local solution for any T' € R.
Let X € #*(R) be a Banach space. We say the Cauchy problem (SR) is time-locally well-posed with
respect to X, if any initial data ug € X, we have some T € R which depend only on ||ug||x such that
we have a unique solution u € C([0,7); X) to (SR) and the solution map from X to C([0,7); X) is

)
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continuous. We also say (SR) is ill-posed if (SR) is not time-locally well-posed and (SR) is time-globally
well-posed if (SR) is time-locally well-posed for any T' € R. In this thesis, we consider nonlinearity of
the following forms:

F(z) = MNz|P, MNz[P7lz, 2P, AZP,

where p > 1, A is a non-zero complex number and Z is a complex conjugate of z. It is widely known
that for general differential equations, the condition of initial data for the solvability and well-posedness
depends on form of nonlinearity, A, and p. So the aim of this thesis is to study the sharp condition of
initial data for the solvability and well-posedness of (SR) for each form, A and p.

1.2 Physical Background

To motivate our problem, we revisit four fundamental equations with regard to quantum and relativis-
tic quantum mechanics: the Schrédinger, Klein-Gordon, Dirac, and semirelativistic equations. The
Schrédinger equation is the first model to describe quantum particles. The origin of the Schrédinger
equation is the following non-relativistic energy equation of a free particle,

=2 (1.2.1)

where E is energy, p is momentum, and m is mass of free particle. The free Schrodinger equation is
derived by quantizing (1.2.1) as follows:

0
E: 1 h— = —1
zhat, P ihV,

On the other hand, in special relativity, the relativistic energy equation of a free particle is described by
E = \/m2c* + |p|?c?, (1.2.2)

where ¢ is the speed of light. By quantizing (1.2.2), the following free semirelativistic equation is
obtained:

ih%w = (m%c* — E2R2A)Y 2.

Although, the semirelativistic equation is naturally derived by simple quantizing of the relativistic energy
of a free particle, the semirelativistic equation had not been considered as a fundamental equation of
a free relativistic particle, since the operator (1 — A)'/2 is non-local. To avoid the non-local operator,
free Klein-Gordon equation is introduced by quantizing the squared energy:

E2 _ m204 + |p|262.

However, since the Klein-Gordon equation is second order in time, the free Klein-Gordon equation
does not admit a positive definite energy. To obtain the definite relativistic density and energy, the
free Dirac equation has been considered as a modification of the free Klein-Gordon equation. By this
modification, the energy of the free Dirac equation is definite but negative definite for some initial
data. To justify this non-positive definiteness, many physical ideas have been considered. However, we
may now have enough mathematical knowledge to consider semirelativistic equations directly without
any modification of non-local operator. So in this thesis, we consider some fundamental properties of
semirelativistic equation.

The semirelativistic equations have been used also in other physical model. For example, with
Hartree type nonlinearity, the semirelativistic equation is used to describe boson stars. For the details
of the model boson stars, we refer the reader to [22, 29, 66, 67]. Moreover, the mass-less semirelativistic
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equation is obtained by Laskin by the generalized Feynman path integral. In this case, the mass-less
semirelativistic equation is called as fractional Schrodinger equation. For the details of the relationship
between fractional Schrodinger equation and generalized path integral, we refer the reader to [46, 63,
64, 65]. Even in non-quantum physics, semirelativistic equation has been used to describe physical
phenomenon. For instance, the mass-less semirelativistic equation with power type nonlinearity is used
as a model of wave turbulence. In this case, semirelativistic equation is called as half wave equation.
For the details of the model of wave turbulence, we refer the reader to [18, 62, 74].

In this thesis, we consider the semirelativistic equation with power type nonlinearity, since power
type nonlinearity may be considered as one of the most fundamental nonlinearity and used as an ap-
proximation of general nonlinearity. So, this thesis is devoted to understand foundation of the nonlinear
semirelativistic equation.

1.3 Preliminaries

In this section, we prepare some basic knowledge to state our main results and discuss further.

1.3.1 Banach Space
Let X and Y be Banach spaces over C. We define the norm of X NY as

lullxay = [lullx + fJully-

We denote the dual of X as X*. We call X as a reflexive Banach space, if X is identified with X**.
The following lemmas are essential statements. For the details, for instance, we refer the reader to
[16].

Lemma 1.3.1. Moreover, Let k € N and (Xj)§:1 is a sequence of Banach spaces. Let T is a k-linear

operator from H§:1 X into Y. Then there exists C > 0 such that for any x € H§:1 X,

k
IT(@)lly < C T lasllx,-

j=1

Lemma 1.3.2. Let X be a reflexive Banach space and (x,,)nen be a bounded sequence of X. Then there
exists a weakly convergent subsequence of (Tpn)nen. Moreover, let x is a weak limit of (xn)nen, then
llz]|x <liminf, ||| x.

Here, we also prepare fundamental argument of quotient spaces. Let X be a Banach space and
M C X be a subspace. Then for any = € X, we denote an equivalent class of = as [r] and define [z] as

[]={yeX | x—ye M}

We also denote the set of all equivalent classes in X with regard to M as X/M and define the norm of
X/M as

= inf = inf ||z + )
Illxsar = inf lyllx = inf o+ 2lLx
The following lemma is also basic and we use it in Chapter 2.

Lemma 1.3.3. Let X be a Banach space and M be a closed subspace. Then X/M is also a Banach
space.
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We say a normed space X is embedded into another normed space Y, if X C Y and there exists
C > 0 such that
z]ly < Cllz|x

for any x € X and denote X — Y.
Next, we consider the following X-valued equation

x = L(xg) + Ng(z, - ,x) (1.3.1)

with z¢ € Xo, where X, is a Banach space, L : Xo — X is a linear map and N : X* — X is a k-linear
map. We say (1.3.1) is quantitatively well-posed in Xy and X if L and N satisfy

k
IL(zo)lx < Cllzollxo, N ((z)f=1)lx < O T llwsllx.
j=1

The following contraction argument is basic to construct solutions for (1.3.1).

Lemma 1.3.4 ([3]). Let (1.3.1) be quantitatively well-posed in Xo and X. Then there exists Cy and
e > 0 such that for any © with ||z||x < e, we have a unique solution x satisfying ||z||x < Coe and

z= ZAj(xo), (1.3.2)

where
Ai(zo) = L(xo),
Aj(xo) = > Ni((Aj (20))izy)-
ik 21300 =]
If Aj(zo) ¢ X for some j, it doesn’t imply that there exists no solutions for (1.3.1) but it is impossible

to construct a solution by (1.3.2) successively. If A; is not continuous map form X, to X for some j,
the solution map for (1.3.1) is called not C7, since

&
= 4 2o ¢ Ai(ao)
j'=1

Although the discontinuity of some A; seems not sufficient to show the discontinuity of the solution
map, under an appropriate condition, we can show the discontinuity of the solution map from the
discontinuity of some A;.

Lemma 1.3.5 ([3]). Let (1.3.1) be quantitatively well-posed in Xy and X. Let Xog — Yy and X — Y.
Let the solution map of (1.3.1) ug — u be continuous from Bx,(r) = {uo € Xo | Juollx, < 70} with
|- |lve into {u € X | |Ju||x < r} with |- ||y for some ro,r > 0. Then each A; is a continuous map form
Bx,(r) ={uo € Xo | |luollx, < 7o} with | - |y, into X with | -|y.

o0

TS Ay (pro)

p=0

j'=1 p=0

1.3.2 Lebesgue Space

Here, we collect some basic statements of the Lebesgue space. Let n € N and let X be a Banach space.
Let 1 < p < oo. For a measurable X valued function f on D C R", we denote the LP norm of f as

Ilfllr(p;x) and define || f||z»(p;x) as

1/p
(o I lae) it 0<p<oc,
inf{C eR | ||fllx <C, ae.on D}, if p=co

Hf”LT’(D;X) =
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and we denote LP(D; X) is all X valued measurable functions whose L? norm is finite. We also define
LL (R"™; X) as a set of all measurable functions f : R* — X such that f € L!(D; X) for any compact set

loc

D. Tt is widely known that if X is a Banach space, then LP(D; X) is a Banach space for any 1 < p < oc.
It is also basic fact that if X is a reflexive Banach space, then LP(D; X) is a reflexive Banach space for
any 1 < p < oo and the dual space of LP(D; X) is identified with L? (D; X*), where

oo if p=1,

/ P .
P =951 if 1<p<oo,

1 if p=o0.

For simplicity, we abbreviate LP(D;C) as LP(D). Moreover, for complex valued functions f and g on
R™, we denote the convolution of f and g as f % g and define f x g as

[rg(@)= [ flz—y)g(y)dy.

Rn

Here, we collect 4 more basic facts. For the details of them, for instance, we refer the reader to
[16, 33].

Lemma 1.3.6. Let f € L. _(R™). If for any ¢ € C°(R"),

loc

f(@)p(x)dr =0,

R

then f =0 a.e., where C°(R™) is the set of all compact supported smooth functions on R™.

1 1 1
Lemma 1.3.7 (the Holder inequailty). Let D C R™. Let p,q,r € [1,00] satisfy — = — + —. Then, for
p q T
measurable functions f,g on D,
I fallzepy < IfllLacpyllgllzr Dy,
where the equality holds if f = g.
1 1 1
Lemma 1.3.8 (the Young inequality). Let p,q,r € [1,00] satisfy 1+ - = =+ —. Then , for measurable
p q T
functions f,g on R™, the following estimate holds:
£ * gllLe®ny < | fllaen)llgllLrgn)-

Lemma 1.3.9 (the Hausdorf-Young ineqality). Let p € [2,00|. Then, for measurable functions f,g on
R™, the following estimate holds:

I8 fllr@®ny < N fll Lo vy

Moreover, the Fourier transform is a unitary operator on L*(R™).

1.3.3 Sobolev Space

Here, we collect some basic statements of the Sobolev space. For s € R and 1 < p < 0o, we define the
inhomogeneous Sobolev space of order s based on L?(R™) as

{fes*(®R") | (1-A)"2f e LP(RM)},

and denote it as HS(R™), where (1 — A)*/2 is a Fourier multiplier with symbol (1 + [£[?)*/2, namely,

(1= A2 f =311+ [¢1)/°3F.
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For simplicity, we denote (1 + [£]?)!/2 as (). We also define the norm of H3(R") as

£ 11 zrg my = (L = )2 f|| o ).
Similarly, we also define the homogeneous Sobolev space of order s based on LP(R") as
{fe"®RM)/PR") | (-A)2f e L*(R")}

and denote it as H; (R™), where 2 (R") is the set of all polynomials on R” and (—A)*/2 is a Fourier
multiplier with symbol |£|®. We define the norm of H;(]R") as

1 1Lz ey = 1(=2)2 fll o).
For simplicity, we denote H3(R™) as H*(R") and H3(R") as H*(R").
The following estimates are basic in this thesis:

Lemma 1.3.10 ([6, 88] the Sobolev embedding). If s1 —n/p1 = s2 —n/p2, 1 < p1 < p2 < o0, and
s1 > s, Hpt(R™) — Hp2(R™) and HyH(R™) — Hp2(R™). Moreover, if s—n/p >0, Hy(R") < L>*(R")
and Hy(R"™) = L>*(R"™)

Lemma 1.3.11. For f,g € #(R") and a,b,c € R, the estimates
I fallz—o@ny < CIf Nl eyl gl e e (1.3.3)
holds if and only if

a+b+c>g, a+b>0, b+c>0, and c+a>0,

or
a—i—b—l—czg, a+b>0, b+c>0, and c+a>0.

Especially, when —a = b= c=s, (1.3.3) holds with s > n/2. A simple proof for the sharp sufficient
condition (1.3.3) is shown in chapter A.2 and an improved estimate with —a = b = ¢ is argued in
Appendix A.3.

The following lemma is also useful to extend the time-local solution.

Lemma 1.3.12 ([15, 17, 81]). Let s > n/2. There exists C = C(n, s) such that for f € H*(R"),

£l ey < Ol linraqgoy 10m(L+ 1 Fllareceny) + 1.

1.3.4 Besov Space

Here, we collect some basic statements of the Besov space. Let ¢ € ¥ (R™) satisfy ¢E > 0 and supp (;AS C
{€eR™[1/2 < [¢] < 2} and

D 0T =1

J=—0

if £ # 0. We denote ¢; as 27"¢(27-). Then, for s € R, 1 < p,q < 0o, we define the inhomogeneous Besov
space of order s based on LP(R") as

{fe"®R")/P®R") | (2Y]; * fllLrrn))jez € 17},

and denote it as B;”q(R”). We also define the norm of B;’q(R") as

Hf“Bg,q(]R") = [|1257]|¢; * fHLP(R”)“l;?'
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Lemma 1.3.13 ([6]). For any s € R and 1 < p < o0, B;’qo — B;’ql if 1 < qo < g1 < oo. Moreover,
for any s € R, H*(R") ~ B;z(R")

Lemma 1.3.14 ([35]). Let F € C1(C,C) satisfy F(0) = F,(0) = Fx(0) = 0 and assume that for p > 1,

max(|F,(21) — F.(22)], [Fz(21) — Fz(22)])

Clz1 — zo| max(|z1], |22])P72 if p>2,
0‘21—2’2|p_1 if 1<p<?2

IN

(1.3.4)

for all z1,29 € C, where F, = %(%F — ia%F) and Fs = %(%F + ia%F) with = Rez and y = Im 2.
Let 0 < s <min{2,p} and 1 <l,r,q < oo with (p—1)/qg=1/l—1/r. Then
-1
1P g3 2 < Ol oyl Iy

We remark that |z[P~12z and |z|P satisfy (1.3.4) since

0
e = [P (= Dalsl
X

0 o _
a*ylzlpflz = il2P (0 — Dyl2P 3,
512l = palzP2,

0 _
gy 1" =l

and with a € R

l21]* = 22" =

o / (1= 0)[2a] + B]22])*LdB(|21] — | 22])

< (Jza] + |22 o1 — 2.

1.4 Earlier Works

Here, we introduce some earlier works for the well-posedness of the Cauchy problem for semirelativistic
equation with power type nonlinearity in the case of R. By using the Duhamel’s formula, (SR) is
rewritten into the following integral equation:

u(t) = U(£t)ug — z/o U(x(t —t")F(u(t'))dt (ISR)

where U(t) is a semirelativistic propagator defined by U(t) = exp(it(m? — A)Y/?). If F(z) = Az|P~ 'z
or Az|P with p > 1 and 1/2 < s < min(2, p), then for any A, (ISR) is time-locally well-posed. Moreover,
if F(z) = A\2%Z" with non-negative integers a,b and s > 1/2, then for any A, (ISR) is time-locally
well-posed. These time-local well-posedness are obtained by standard contraction argument based on
H?(R). In particular, we can show that the solution map of (ISR) is a contraction map on H*(R) by
the unitarity of U(t) in H*(R) and Lemmas 1.3.10, 1.3.11, and 1.3.14. Moreover, in [15], Borgna and
Rial showed that if F'(2) = |2|?z and s > 1/2, then (ISR) is time-globally well-posed. In [62], Krieger,
Lenzmann, and Raphaél showed that if F|(2) = |z|?z and s > 1/2, then (ISR) is time-globally well-posed.
In [15, 62], they extend time-local H*®(R) valued solutions with s > 1/2 by conserved energy and Lemma
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1.3.12. Moreover, Krieger, Lenzmann, and Raphaél obtained H'/2(R) valued time-global solutions by
limits of sequences of smooth approximating solutions. However, we remark that contraction argument
based on Lemmas 1.3.10, 1.3.11, and 1.3.14 is not applicable in the H*(R™) setting with s < n/2, where
n € N. It is because that although the uniform control of solutions is necessary for the construction, it
is impossible to control solutions uniformly only by H®(R™) norm of solutions with s < n/2.

On the other hand, for F(z) = A|z[P or A|z[P=12z or Az? or A\zP, (SR) is invariant under the following
scaling transformation:

1
up(t, ) = pr=Tu(pt, px)

with p > 0. Then pff,f‘ ) is called a scaling critical exponent corresponding to H®(R") if
14—
Hup(O)HHs(Rn) =prt 2 ”uOHHS(]R") = ||U0||Hs(]Rn)
for any p > 0 with p = pff). In this case,
2
P =1+

n —2s

and the regularity 35515 ) corresponding to pgff‘ ) is given by

SR) - n . ].
s = 275 T (1.4.1)

Based on this scaling criticality, we classify Cauchy problems into three. A Cauchy problem is called
(SR) (SR)

H* supercritical if p > prn.s’. We call a Cauchy problem H?® critical if p = pp_s’. A Cauchy problem
is also called H® subcritical if p < pSfSR ). From the view point of the regularity, we call our problem

supercritical if s < 5551?), critical if s = sgff), subcritical if s > sg{?f). On the analogy of the Schrédinger

and Klein-Gordon equations, in subcritical and critical cases, (SR) is expected time-locally well-posed.
From the view point of scaling criticality, in [55], Inui showed that for F(z) = A|z|P, in H® subcritical and
critical cases, there exists no time-global solutions for some H?® initial data. He also shows that in H®
supercritical, there exists no time-local solutions for some H* initial data. However, in some subcritical
and critical case, the solvability, well-posedness, and ill-posedness of (SR) had not been shown.

1.5 Main Statement

The aim of this thesis is to obtain the lowest regularity s with which (SR) is solvable or well-posed in the
frame work of H*(R) in one spacial dimension case. Since (SR) has the invariant scaling transformation,
the scaling critical exponent seems to give the sharp criteria for the solvability and time-local well-
posedness. However, at least in the case of R, there is a gap between S$LS f’ ) and 1 /2 with which (SR) is
proved to be time-globally well-posed in the prior works. To consider the solvability and well-posedness
for s,, < s < 1/2, we need more sharp linear estimate for U(t), a priori estimate of energy, and
nonlinear estimate for F(z).

At first, to obtain the solvability and well-posedness of (SR) for s < 1/2, we focus on nonlinear
interaction. Here, in order to consider a sharp nonlinear estimate with simple nonlinearities, we put
F(z) = \2%2" with X\ € C\{0} and (a,b) = (2,0) or (1,1) or (0,2). Then, we have the following sharp
criteria to construct time-local solutions by iteration scheme.

Theorem 1. (SR) with A € C\{0} and F(z) = Xz? is time-locally well-posed if s > 0. If —1/2 < s < 0,
then for initial data ug satisfying

o = F X [1,00) ()27 € HY(R)\L*(R)
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with 0 < e < —2s/3,

/t U(£(t — t’))(U(j:t’)uo /t U(£((t" —t’))(U(:tt’)uo)zdt”) dt" ¢ H*(R). (1.5.1)
0 0

Therefore, the solution map of (SR) with F(z) = Xz2 is not C3. If s < —1/2, then for a sequence of
initial datum ugj, defined by

wo e =n" F (= k) + x4+ k),

there exists C > 0 such that for any k, ||uokllm= < C and for somet > 0,

lim sup
k—o0

‘ / +(t — ') U (£t uo 1 2at’ H = oo0. (1.5.2)
Hs(R)

Therefore, the solution map of (SR) with F(z) = \z? is not C2.
In addition, if —1/2 < s < 1/2, then for initial data ug satisfying

uo = F M X000y ()2 € H(R)\H'*(R)
with 0 <e <1/6 —s/3,

/0 Ut — ) (T ol (8 o) & H*(R), (1.5.3)

/Ot U(£(t =) (U(£t)uo)?)dt' & H*(R). (1.5.4)

Therefore, the solution map of (SR) with F(z) = X|z|? and \z? are not C?. If s < —1/2, then for a
sequence of initial datum ug i defined by

uo e =n" F X1 (- — k)]

and for somet > 0

lim sup
k—o0

£t — ) (U (£ )uo U (£t Yuo ) dt’ H = o0, (1.5.5)
H*(R)

lim sup
k—o0

/ Ut — ) (U (£ )uo)?) i’

0

= 00. (1.5.6)
He(R)

Therefore, the solution map of (SR) with F(z) = M|z|? and A\2? are not C?.

Remark 1.5.1. We remark that (1.5.1), (1.5.2), (1.5.3), (1.5.4), (1.5.5), and (1.5.6) imply that the
associated solution maps are not C3, C%, C?, C?, C2, and C? respectively, since we can regard (SR) as
(1.3.1) with L(uo)(t) = U(£t)uo and

= /Ot U(x(t—t")F(u(t'))dt'.

With Xo = H*(R), X = C([0,T); H*(R)), these discontinuity results are obtained.

(SR) with F(z) = \z? is quantitatively well-posed in L*(R) and C([0,T); L*(R)) for some T > 0.
(SR) with F(z) = Xz and \|z|? are also quantitatively well-posed in H*(R) and C([0,T]); H*(R)) for
s> 1/2 and some T > 0. However, Lemma 1.3.5 is not applicable to these Cauchy problems to show
their ill-posedness with the sequences of initial data above. It is because the sequences of initial data in
Theorem 1 are not bounded in associated spaces of initial data, in which (SR) is quantitatively well-posed.
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The well-posedness in Theorem 1 follows from a sharp bilinear estimate of the Fourier restriction
norm. On the other hand, (1.5.1), (1.5.2), (1.5.3), (1.5.4) (1.5.5), and (1.5.6) follow from direct calcula-
tions. Especially to calculate (1.5.1) and (1.5.3), we use a special cancellation of spacial frequency. This
cancellation makes (SR) with quadratic nonlinearity not be solvable with iteration argument even in
the scaling subcritical case, where sgiR) = —1/2. Moreover, a similar phenomena of Theorem 1 occurs
in the case of the Cauchy problem for semilinear systems. We discuss the case of semilinear systems in
Appendix A.1. We remark that the smoothness of solution maps in the H /2 (R) setting is still not
shown.

At second, we revisit the construction of solutions by a priori energy estimate. Here, we put F(z) =
Mz|P~'z with 1 < p < 3 and consider (SR) in the H'/2(R) setting. We remark that for any n € N,
the charge and energy of (SR) with F(z) = A|z|P~!z correspond to L?(R™) and H'/?(R"), respectively.
We also remark that in the H*(R) setting with s > 1/2, the time-local well-posedness follows from
the unitarity of U(4t) and the Sobolev embedding L> < H*(R). On the other hand, in the H/2?(R)
setting, it is impossible to show the time-local well-posedness by the unitarity of U(4t) since H'/?(R)
is not embedded into L>*(R). However, by using the energy conservation, we obtain the following
well-posedness result.

Theorem 2. (SR) with F(z) = \|z|P~'z is time-globally well-posed in the H'/*(R) setting if
e l<p<3and A <0,
e l<p<3and A>0,
e p=23,A>0, and [Jul| 2w < 1.

Remark 1.5.2. The condition in Theorem 2 is is for controlling H'/?(R) norm of solutions uniformly
in time by the conserved energy.

Theorem 2 follows from a priori estimate of solutions. Kenig, Ponce, and Vega obtained the same
result when p = 3 by using the compactness argument based on Lemma 1.3.2. On the other hand,
Theorem 2 may be shown by more direct way based explicitly on completeness of L?(R). To simplify
the construction of solutions, here, the Yosida type smoothness operator plays an important role. In
particular, a sequence of approximation solutions connected with Yosida type smoothness operator is
shown to be a Cauchy sequence in L?(R) and the limit of the sequence is a time-global solution.

We remark that if F(z) = A|z|?z, then from a similar calculation to (1.5.1), the solution map is
shown to be not C? in the H*(R) setting with —1/2 < s < 1/2. This means, in this case, H'/?(R) gives
the sharp criteria so that for any H*(R) initial data, the associated time local solutions can be obtained
by iteration scheme. We also remark that s%R) =0.

At last, we consider the solvability of (SR) with F(z) = A|z|P. In Theorem 1, it is asserted that
if p=2and s € (—o0,—1/2) U (—1/2,1/2), then it is impossible to construct solutions by a standard
iteration scheme in the H*(R) setting. But Theorem 1 doesn’t imply that there is no time-local solutions

pr) < 1/2. In supercritical case: s < sgépR), Inui showed

that there exist no weak time-local solutions for some H*®(R) initial data in [55], but if spr) <s<1/2,
then there expected to be time-local solutions to (SR). Here, we show that there exist no weak time-local
solutions with some H'/?(R) initial data. To state our statement clearly, we define the weak time-local

solutions for (SR) with F' = A|z|P. For T' > 0, we define function spaces A and Ay for T > 0 as follows:

in this case. We remark that for any p > 1, s

A = C([0,00); H*(R;R)) N C' ([0, 00); H' (R; R)),
Ar ={¢ € X; supp¢ C (—o00,T) x R}.

Let (- | -) be the usual L*(R) scalar product defined by (f | g) = [; fg. Then we define weak time-local
solutions to (SR) as follows:
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Definition 1.5.3. Let F(z) = \|z|P with A € C\{0} and p > 1. Let T > 0 and up € Li. (R). We say

loc

that u is a time-local weak solution to (SR), if u belongs to Li ([0, T); LP(R)) and the following identity

loc

T

T
/0 (u()|iBrp(t) = (m? — AY/24(8))dt = i(uo|th(0)) + A / (lut)[?|16(t))dt

holds for any v € A, where the double-sign corresponds to the sign of (SR).
With this weak time-local solutions, we have the following:

Theorem 3. Let F(z) = A|z|P with A € C\{0} and p > 1. Then for any f € L{ (R) satisfying

loc

36 > 0s.t. f>0on (—6,0),
f is decreasing on (0, ),
lim f(e) = oo,

there exists no T > 0 such that there exists a local weak solution to (SR) with ug = —i\f.

Remark 1.5.4. We remark that

f(z) = i %6_477112 cos(2™x)

m=1

belongs to H'/?(R) and satisfies the condition of Theorem 3. For the details of the character of f, we
refer the reader to [84]. This implies that Theorem 3 also asserts that for some H'/2(R) initial data,
there exist no weak time-local solutions to (SR) with F' = \|z|P. We also remark that for s > 1/2, there
exists no H*(R) function with a singularity at the origin, since H*(R) — L*(R).

If the Duhamel term of semirelativistic equation has smoothness property like that of Schrodinger
or Klein-Gordon equations, then even in the H*(R) setting with spr) < s < 1/2, we have time-local
solution to (SR) for any H*(R) initial data. Theorem 3 also implies that at least in the case of R, the
Duhamel term doesn’t have a similar smoothness property to construct time-local solution.

Theorem 3 follows from a test function method which is introduced by Zhang in [93, 94]. To apply the
test function method, we deform (SR) in order to cancel the non-locality of (m? — A)'/2, since pointwise
estimates of test functions are necessary for test function methods. Moreover, we use a special sequence
of test functions introduced by a study of the non-existence of solutions of an advection equations so
that we obtain the non-existence of weak time-local solutions to (SR) in scaling subcritical case.

1.6 Outline

At the end of this chapter, we give a brief outline of this thesis. In Chapter 2, we give an explanation of
Fourier restriction method and proof of Theorem 1. In Chapter 3, we prove a priori estimates for charge
and energy of solutions to (SR) and we prove Theorem 2. In Chapter 4, we explain how to deform
(SR) in order to cancel (m? — A)'/2 and show Theorem 3 with a special sequence of test functions. In
Appendix A.1, we study the semirelativistic system by revisiting Fourier restriction method and a priori
estimate. In Appendix A.2, we give an simple proof of Lemma 1.3.11 from the view point of weighted
integral inequality and discuss about the condition of weights so that the associated integral inequality
holds. In Appendix A.3, we show the sharp bilinear estimate of H*(R™) norm, fractional Leibniz rule,
from the view point of Fourier multiplier.
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Chapter 2

Well-Posedness of (SR) with
Quadratic Nonlinearity

2.1 Introduction

In this chapter, we study the following Cauchy problems of semirelativistic equations:

ipu+ (m? — A)V2u= %, te[0,T], zeR, (2.1.1)
u(0) = o, veR h
iOpu+ (m? — A)V2u = Aul?, t€[0,T], weR, (2.1.2)
u(o) = Uo, r e R, h
i(‘?tu:lz(mQ—A)l/zu: AUQ; te [O7T]7 x GR, (2 13)
u(0) = uo, zeR h

with A € C\{0}.

The purpose of this chapter is to show the criteria of the order of the Sobolev spaces with which
each time-local solutions of (2.1.1), (2.1.2), and (2.1.3) can be constructed by contraction argument.

To motivate our problem, we revisit the earlier works: [13, 15, 62, 73]. Borgna and Rial studied the
Cauchy problem for a single semirelativistic equation with cubic nonlinearity in [15] and they proved
the existence of time-global solutions in the H®(R) setting with s > 1/2. The method of their proof
depends essentially on the Sobolev embedding H*(R) «— L*°(R). In the case where s < 1/2, however,
the method loses its meaning because the uniform control by H® norm breaks down. In the limiting
case s = 1/2, a Vladimirov type argument [76, 77, 92] implies that the uniqueness of weak solutions
constructed by a compactness argument, see [62]. Meanwhile, Strichartz type estimates are known to
be sharper linear estimate for Duhamel term but we remark that Strichartz type estimates are not
sufficient for a contraction argument unless the uniform control by H® norm is available. A similar
situation happens in the case of nonlinear Dirac equations in space dimensions n > 2 [14, 30, 70, 71, 72].
We neither can not apply the Delgado-Candy trick which is the special technique for the Dirac equation
in one dimension. This technique depends on algebraic structure of the Dirac equation to divided
solutions into free solution part and uniform bounded part. However, the semirelativistic equation does
not have the algebraic structure. See [13, 73].

From the view point of scaling criticality, (2.1.1), (2.1.2), and (2.1.3) are expected to be time-locally
well-posed in the H*(R) setting with s > 557323) = —1/2. By focusing on the structure of nonlinearity,
we have the following results:

17
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Theorem 2.1.1. (2.1.1) is time-locally well-posed if s > 0. Moreover, T(s) = T(0), where T(s) is the
mazximal existence time of solutions defined by

T(s) =T(s,up) =sup{T >0 | sup |ju(t): H*|| < oc}.
0<t<T

Theorem 2.1.2. The solution map of (2.1.1) is not C* in the H*(R) setting with —1/2 < s < 0. In
particular, if —1/2 < s < 0, then for initial data

u = F ! [X[1.00) ()27 € HY(R)

with 0 < e < —2s/3,

/t U(£(t—1t")) (U(:tt’)uo /t U(£((t" - t'))(U(j:t”)uo)zdt") dt' ¢ H*°(R). (2.1.4)
0 0

Theorem 2.1.3. The solution map of (2.1.1) is not C? in the H*(R) setting with s < —1/2. In
particular, if s < —1/2, then for a sequence of initial datum ug i defined by

uo e =k 5F X1y — k) + x-1,1 (- + K)],

then there exists C' > 0 such that for any k, |luo||gs®) < C and

lim sup
k—o0

t
/ U((t — t’))U(it/)uojdt’H = . (2.1.5)
0 H#(R)

Theorem 2.1.4. The solution maps of (2.1.2) and (2.1.3) are not C? in the H*(R) setting with —1/2 <
s < 1/2. In particular, if —1/2 < s < 1/2, then for initial data

U = 3_1[X[0,oo)<'>_1/2_8_6} € H*(R)

with 0 <e <1/6 —s/3,
/Ot U(x(t — ) (U (£t )uoU (£t )uo)dt’ ¢ H*(R), (2.1.6)
/0 U(E(t—t)((U(£t)ug)?)dt’ ¢ H*(R). (2.1.7)

Theorem 2.1.5. The solution map of (2.1.1) is not C? in the H*(R) setting with s < —1/2. In
particular, if s < —1/2, then for a sequence of initial datum ug i defined by

uo e =k5F " (x—1,(€ — k)

then there exists C > 0 such that for any k, ||uokl|n= < C and

lim sup H /t U((t — ) (U (£t )uoU (£t )uo ) dt’
0

= ij’
k—o0 Hs(R)
t
lim sup H / U(E(t =) ((U(£t )ug)?)dt’ = 0.
k—oo |l Jo H#(R)
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The well-posedness of (2.1.1) follows from Fourier restriction method which is introduced Bourgain
in [9, 10, 11]. It is natural to introduce Fourier restriction method to study (2.1.1),(2.1.2), and (2.1.3)
in the H?® setting with 0 < s < 1/2. Tt is because Strichartz type estimates are not sufficient to study
(2.1.1),(2.1.2), and (2.1.3) and therefore it seems difficult to improve linear estimates for their Duhamel
terms. In addition, the charge and energy of solutions to (2.1.1),(2.1.2), and (2.1.3) are not conserved.
Therefore, we don’t expect compactness argument helpful to study them. The Fourier restriction method
is a method to study (SR) with Fourier restriction norms defined below. We can estimate nonlinearity
sharply with Fourier restriction norm, since Fourier restriction norm is a L? norm weighted by Fourier
multipliers with regard to the main part of the Cauchy problem. In particular, one can easily see the
nonlinear interaction of each of frequencies of time and space by these Fourier multipliers. However,
in the L?(R) setting, we see that it seems difficult to construct time-local solutions to (2.1.1) based
only on the Fourier restriction norm, by showing the failure of the corresponding nonlinear estimates.
Therefore, we also introduce auxiliary norms below.

The non-smoothness of solution maps follows from direct calculations of Duhamel term with linear
solution. We remark that Theorem 2.1.5 is shown by a similar method to the proof of Theorem 2.1.3,
so we omit the proof of Theorem 2.1.5.

The rest of this chapter is organized as follows. In section 2.2, we give notation and collect basic
facts. In section 2.3, we show Theorem 2.1.1 with Fourier restriction method. In section 2.4, we show
Theorem 2.1.2. In section 2.5, we show Theorem 2.1.3. In section 2.6, we show Theorem 2.1.4.

2.2 Preliminary
2.2.1 Notation
For u:R? > (t,z) = u(t,z) € C, let

i(r6) = <= [ alt O exp(-itr)ds

u(r,€) = — | a(t, &) exp(—it7)dt.

Var Ju '
Form >0, s,b € R, T, € R, and T' > 0, we define Fourier restriction norms as follows:
lull e, = €)= V2 & il ey,

HUHX:,Lbi [To,To+T]

= inf{||u’|Xs,b

m,+

u'(t,z) = u(t,x) on [Ty, To + T] x R, }
supp v’ C [Tp — 2T, Tp + 27| x R ’

lall e o 41y

- inf{||u'||Xs,bi ‘ W (t,2) = u(t, ) on [To, To + T] X R}.

We also define auxiliary norms as follows:

lullys . = €)* (T + v/m? + €2) 7 | L2k L1 =),

”u‘ Y 4 [To, To+T]

= inf { ||U/||Y;’hi

u'(t,x) = u(t,x) on [Tp, To + T] x R,
supp v’ C [Tp — 2T, To + 2T] x R ’
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2 1/2
1 (7 Ol einr v, ) = (/}R(/RIJ“(T,&)IdT) d£> :

s,b
We define a norm space X", as follows:

where

Xile = (u € PEXE) | ullgys, < oo}

We also define X;’f’i [To, To + 11, X/S’Z[TO, To+T),Y,, +,and Yy, [Ty, To+T] similarly. We abbreviate

these spaces as : X3 = Xg:i, Y=Y,
Let ¢ be a smooth function with 0 < ¢ < 1, ¢(¢t) = 1if |[¢t| < 1 and ¢(¢) =0 if |[¢| > 2. For T > 0,
let ¢ (t) = (T1).

2.2.2 Basic Characteristics of Fourier Restriction Norms

Here we collect some basic facts of Fourier restriction norms and auxiliary norms.

Lemma 2.2.1. For any s,b>0,T >0 and m,Tp € R, Xf,;f’i and Xf,fi [To, To + T are Banach spaces.
proof. For any s,b > 0, and m € R,

)7 (r £/m2 + €27 L*(R x R)

={f e L*(RxR) < oo}

| ||f||<£)—9<7—i m2+§2)_bL2(lR><]R)

is a Banach space, where
11l - et ey o 2y = 106" (7 £ VM2 + )" Fll 2.

Indeed, let (f;);en is a Cauchy sequence in () ~%(r4/m?2 + £2) P L2(RxR), then ((£)*(t£1/m?2 + £2)° f,.)nen
converges a L? function F in L*(R x R). Then (£)~%(r £ /m2 + £2)7bF is the limit of (f;);en in
(6)75 (1 &+ /m2 + €2)7PL?(R x R). Since Xf,;f’i is the set of the inverse Fourier transformations of all
elements of (£)7*(1 £ /m2 + £2)"°L%(R x R), an’f’i is also a Banach space. On the other hand,

B={feL*(RxR)|supp f C [Ty — 2T, Tp + 2T] x R}

is also shown to be a closed subspace of L*(R x R) as follows. Let (fj)jen C B, f € L*(R x R) be
the limit of (f;)jen. Let ¢ € C°(R x R) satisty ¢ = 0 on [Ty — 27,75 + 27| x R and ¢ > 0 on
[To — 2T, Ty + 2T)¢ x R. Then for any ¢’ € C*°(R x R) satisfying supp ¢’ C [To — 27T, Ty + 27])° x R,

‘ /R /R CIC dtda /R /R C(f — fu)C dtda

nlggo”C/HLZ(]RX]R)HJC_anLZ(JRx]R)

=0.

lim
n— o0

IN

Therefore, f € B and B is closed. Similarly
M ={f € L*(RxR) |supp f C [T, To + T]° x R}

is also closed subspace of L?(R x R). Then, since Xj;?i — L*(R x R), (BN Xf,;f’i ol ||Xs,bi)

is also a Banach space and B N M N Xf,fi is a close subspace of (B N X;;’lfi). By Lemma 1.3.2,

Xfrfi [To, To+T] = (BN Xﬁ;?i)\(B NMnN Xf,;?i) is also a Banach space. Q.E.D.
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Lemma 2.2.2. Ifue€ Xf,;{’i, then w € Xi{??'

proof. Since

Fle) = b [ Fentgy — L[ emieegy — T
§17€) = = | Fetde = o [ femietis = 5700
we are done. Q.E.D.

Due to the next lemma, we may put m = 0 with respect to the Fourier restriction and auxiliary
norms without loss of generality.

Lemma 2.2.3. For any m, M € R, Xf;;l_”i o~ X]S\fi, Yy o = Y3 o with equivalent norms.
proof. The lemma follows from the following inequality:
R

1
e

(+ T E) — (7 + I )
(7 /M2 +€2)
v+ VT~ |+ I €

REN
<14 |m— M|

for any &, 7 € R. Q.E.D.

2.2.3 Linear Estimates
Here we collect some linear estimates with X,‘j;f’i and Y3 .

Lemma 2.2.4 ([36, (2.19)]). Let m € R. For any s,b >0 and ug € H®,
)T ol = Il sl (22,1
In addition, for any 0 <T <1,

||¢T(t)U(:|:t)uO”Xs,1é2 5 HUOHHs (222)

proof. The equality (2.2.1) follows from
1 )
= [ expl-itryuOF(U tyusi
R

= o= [ et 7 P = @)l
= (7 F V/m? + )i §).
The estimate (2.2.2) follows form
Il 2@y < 1WrllLe@) + 1Vl g2,
= T2l 2@y + 19l 12 gy
< Yl a2 )
Q.E.D.
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Proposition 2.2.1 ([36, Lemma 2.1.]). Let m € R, 0<T <1 and let s > 0. Then,

for F e X;;;l/z NY,, +. In addition, let 6 > 0 and b satisfy —1/2<b—1+6 <0<b. Then,
8,b—146

for Fre X"

Lemma 2.2.5 ([36, Lemma 2.2.]). Letm € R. If F €Y} ., then [ Uy (- —t')F(t')dt' € C(R; H*) and

it satisfies the estimate

wﬂwAlMiu—ﬂ»Fw>ﬁf

X SME e

< T5\|F||Xs,b;+5

W@AWﬂhﬂwwﬁ’

s,b
XM,:F

SIF
C(R:H#)

vau;'

H /O U(x(- =) F(t)dt

To extract a positive power of T', we use the following lemma.

Lemma 2.2.6 ([36, Lemma 3.1.]). Let s € R, 0 < b <V, T >0 and let f € Xi’bl satisfy suppf C
[-T,T] x R. Then,

b
Il S T )Ilf\lxi,bu

where
b —b if b <1/2,

YD) =Y —b+e if YV =1/2,
1/2—b/26 if b >1/2
with € > 0 sufficiently small.

proof. By the Holder inequality,
IEY* (7 £ 1€ Fll 2 rxy
< @ (£ 160" FY" (| o oy 16 T
= IF1% 16)° 2=y xR

5,b
XL

1-b/b’
HL%'/(b'*bJ(RxR)

If ¥ > 1/2, then
1€)* Flla—r. sy S T2 FllL2Reszoe mo))
< T2 FllL2 e )
S T1/2Hf||X:SEb"
Moreover, if b’ < 1/2, then by the unitarity of U and the Sobolev embedding,
14€)* Bl f1ll L2 rxm) = I6) "B U (£1) f]ll L2 (mxm)
ST 14€)° T2 [U (£6) Il L2re; L270-20) Ry )
STV IO T [UED fll p2mesre 2,
=T f] o
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In the case b’ = 1/2, for any € > 0,
IE) Bl Ml c2xry € T2 5N Fll ggre < T8 £l gra
Q.ED.

2.2.4 Bilinear and Trilinear Estimates

In this section, we derive nonlinear estimates for X,‘i;f’i and Y7 | by the method originally proposed in
(86].

Lemma 2.2.7. Let p > 1 and let a, B, v > 0 satisfy o« + B+ > 1/p. Then, there exists a positive
constant C' such that the inequality

-+ 60) " F * gl < I+ 62)° Flall{- + 63) gl 2 ey

holds for any real numbers §1, 02, 03 and any f, g such that all the norms on the right hand side are
finite.

proof. By the Holder and Young inequalities,

{4617 f * gllLe )

< ||« o o
I s g I 20l mpaga

<O s ssm @y IFIl 1 (1] —
L2 p@HAT (R) L2 PETATD (R)

[T e I+ 0202 Fll 2@yl + 85) Vgl 2 ey,

<

where if the denominator of an exponent is 0, we interpret the exponent as co. Then, we obtain the
lemma. Q.E.D.

Lemma 2.2.8. Let p and « satisfyp > 1 and 0 < « < 1/p. Let B,7,k satisfy 0 < 8,7,k < 1/2 and
a+pB+v+k>1/p+1/2. Then, there exists a positive constant C' such that the inequality

(- +01)"“f * g bl r(w)
< O+ 82)° fllr2yll{ + 63) gl L2y 1 + 64) Rl L2 (R

holds for any real numbers 61, 92,603,904 and any f, g, h such that all the norms on the right hand side
are finite.

proof. Let e =a+ B+ ~v+ K —1/p—1/2. By the Holder and the Young inequalities,

(- +01) " f* g *hl|Lr(w)

Slfxgx h||LP1(R)

S llzez@®)llg * Bl Les )

Sl ez 19l Lea 1] Les ()

S+ 52>6f||L2(]R)H<' +63) gl L2 ) I + 64) "Rl L2 (w),
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where
1 1 %5
7—77Q+7’
PP atf+y+k
1 1 €
7:,+ﬂ_’87’
p2 2 atfB+y+k
1 1 1
— = 41—,
D3 D1 b2
1 1 €
11 e
pa 2 at+B+y+k
1 1+ KE
— =4 K-—.
ps 2 a+B+v+k
Therefore, we obtain the lemma. Q.E.D.

For s > 0, we define A(s) as

0 if s<1/2,
A(s) = (2.2.3)
s—1/2+¢ if s>1/2,
where € > 0 is sufficiently small. Here we state our main nonlinear estimates.
Proposition 2.2.2. Let s > 0 and 0 < p < 1/2. Then, the inequality
0l o172 e S Wl ool nsams =+l oo ol o (22.4)

holds for any u < XM gpd v e x52,

We remark that the regularity A(s) in the both terms of u on the right hand side is less than the
regularity s on the left hand side. Therefore, the estimate (2.2.4) with s > 0 does not follow directly
from (2.2.4) with s = 0 and the Peetre’s inequality: (£)* < ((€ —n)® + (n)®) for & > 0. We can

~

exchange the smoothness with respect to the space-time variables into the smoothness with respect to
the space variable by using (2.2.7) from the nice combination of signs in (2.2.4). This technique is found
in Lemma 5 of [86].

The symmetry inequality

luvll omrznys S lull @ arzllollgoarz— + llull ez [Vl <02
holds by (2.2.4) with taking complex conjugate of v and v.
proof. It is enough to show
luvllgomarz S llull xroarzlloll oo + llull yrcrarz—ollvll o2 (2.2.5)
and
luvllyy S llullrerarzllvllysarz-e + Jullreaz-pl[v]l goar2. (2.2.6)

Let
M(T7§7U’ 77) = ma‘X(|T+ |§||7

T—o—E=nl|,lo—1Inl])-
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Then, the triangle inequality implies
€] + 1€ = nl + Inl < 3M(7,&,0,7). (2.2.7)
Also, we decompose the integral region as follows:
Ay ={(1,&,0,m) | M(1,6,0.m) = |7+ [¢][},
Az = {(7—7530—’”) ‘ M(T7£70—777) = |7_ — 0= ‘5777”}7
Az ={(r,&0,m) | M(1,§,0,n) = ‘U - |77||}
Then we show each of (2.2.5) and (2.2.6) in two different cases: where s > 0 and where s = 0.

(a) X norm estimate with s > 0.
By the Minkowski inequality,

@ [+l xa e ity — o6 ) o) dody

L2(R, XR¢)

b

d
L2 (R)

~

/<->S‘1/211(-,77) dn
R

where

i) = | [ [t~ o6 ) o) do

L2(R)
By Lemma 2.2.7

11(5777) 5 H< - |€ - n|>1/2_pﬂ('a€ - 77)HL2(R)H< - |77|>1/25("77)HL2(R)-

Since
1 1
5—5—1—)\(5)—&—5257
1
5—5—}—)\(5)>07

and Lemma 1.3.11,

@ [+ 180, = 0.6 = ) Slown) doas

/ (VY213 (1m) di
R

S, ||/U;||X)\(s),1/2—p ||11HX5,1/2.
L2(R) - B

Similarly, for j = 2,3,

L2(R, xR¢)

< ‘
~Y )

L2(R)

/ (V25 ) dny
R

where

L2(]R)’

o) = | +16h 2 [ =0~ le= a2t — 0.6 1) )| o

) = |+ 160 [t = a2t o, = ) o) o

L2(®)
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By Lemma 2.2.7,

L&) SIC— 1€ =a)2a(, € =)l I = D2 7P0C, m) 2 ).
L&) S G = 1€ = a2 77a(, € =)@l (- = )20(, n)ll 2 my-

Then, for j = 2,3, by Lemma 1.3.11
’ /R<->S’1/21j(-,77)d77

S lull xa@arzlloll goarz— + llull aoarz=o [Vl o2
(b) X norm estimate with s = 0.

By Lemmas 1.3.11 and 2.2.7,

L?(R)

HU’UHXO’*Uz

VATV (m) dn

L2(R)

S ||u|\Xgm||v||Xgm + ullgoaa—o ol o

where Iy, I, and I3 are defined as in the case (a).

(¢) Y norm estimate with s > 0.
By the Minkowski inequality,

@ [t + 1 a6 onmitr = ov6 = ot ) dod

L2(R¢; LY (R,))

)

L2(®)

~

< ‘

/ (V20 () dy
R

where

(e = H< e [ [~ 0.~ o) do

L1 (R)
By Lemma 2.2.7,

T S = 1€ =aD27Pa(, € = m) e I — D) Y20(, )l 2 sy

Then, we obtain
H / G 1/2J1 d77

by Lemma 1.3.11. Similarly, for j = 2,3,

SJ ||UHX>\(3),1/27‘) ||'UHX5,1/2
L2(R) - _

H //R2 (T +[€))"'xa, (1, & o, n)u(T — 0,6 — n)v(o,n) dodn

/R (Y25 ) di

L2 (Rg; L' (Rr))

< ’
~ )

L2(R)
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where

Ll(R)’

Jz(f,n)H<~+€|>1/R<~0|€n| V2Jii(. — 0, € — )i(o,n)| do

Js(é,n)=H<-+§|>_1/R<U—77I 2(i(. — 0, — n)iloym)| do

L'(®)

By Lemma 2.2.7,

J2(€m) S I = 1€ =) 2a(, € =)l I = )20 ¢, 0) | 2 ey,
J3(&,m) SN = 1€ =nD27Pa(, & =)l 2@ ¢ — )23, m) o2 gy

Then,

| [or 2 an

S lull xrearzllvll gore-p + llull xaoarz-p [0 o172

L2(R)

follows from Lemma 1.3.11.

(d) Y norm estimate with s = 0.
By Lemmas 1.3.11 and 2.2.7,

Huv Y|

Ay YA (m) dn

L2(R)

S \|U||ng1/2\|v||xgvl/2fn + lull oo ol o,
where Jy, Jo, and J3 are defined as in the case (c).

Q.E.D.

Remark 2.2.3. Proposition 2.2.2 is almost optimal. See Proposition 2.3.3 and Corollary 2.3.1.

Remark 2.2.4. The trick of exchanging smoothness is not applicable to the bilinear estimates Xi’b*1 —
X2PX5 and X071 <5 XPPXDP which one needs to use Fourier restriction method for (2.2.4) and
(2.2.5). In addition, the bilinear estimates X"~ " < X% in and X" — X*P X3P fail for s <1/2

and any b € R. For any s <1/2 and b € R, let i = (1 ££)~0"1(E) 75"/ 2log(€)~3/%. Then, us € Xi’b
and

s w0 = ] o = oo
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These estimates are calculated as follows:

||U+U+ijrvb

@+ [ 7= le=ab o i) - e 2 dogle — )

()2 log(n) "3 *dodn

L2(R, xRe)

§ p—n+l
s(r b—1 r—o o\ —1 o —1l/¢ o \—s—1/2 —s—1/2
> ertrrert [ " om0 )

~log (& — n) =3/ *log(n) ~*/*dodn

L2({(,)16>2, —1<74+£<+1)}

2 H<->‘1/2 log(-) %/ /0.<77>‘110g<n>‘3/4dn

2 1162 10g() V2| L2 (2,00) = 00

L2(2,00)

and

lJupu- HXib

@410 [[ =l = e -y

~log(& — n) =3/ *log(n) ~*/*dodn

L2(R, xR¢)

0 n+1
s(ir b—1 r—o o \—1 o —1/¢ o \—s—1/2 —s—1/2
>t [ o em e e = )

log(& — n) =¥ *log(n) ~*/*dodn

L2({(,)16>2, —1<7+¢<1})

= OO,
L2(2,00)

> H<->1/2 togl) /% [ (o) logtn)
0

and the remainders are estimated similarly.
Corollary 2.2.1. Let s >0,0<p<1/2 and let T > 0. Then,
lvll g -1r20yy S TP Null xacrrz [0l g2

(s),1/2 s,1/2

for any u € Xi and v € XI'" such that supp u, supp v C [-T,T] x R.

proof. By Proposition 2.2.2 and Lemma 2.2.6, we obtain (2.2.8).

2.3 Proof of Theorem 2.1.1

We separate the proof for the existence and for the persistence of regularity.

Chapter 2. (SR) with Quadratic Nonlinearity

(2.2.8)

Q.E.D.
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2.3.1 Proof of Existence of Solutions

Let s >0, ug € H° and let 0 < T' < 1. We define a solution map &4 as
t _—
Oy (u)(t) = U(£t)ug — i)\/ U(x(t—1t)) u(t’)2dt', (2.3.1)
0

where double-sign corresponds (2.1.1). We also define a metric space

s s,1/2
BL(R,[0,T]) = {ue X3"?)0, 7] | lull o172,y < R}

with metric
di(ul, UQ) = Hu1 — u2||Xj:,l/2[0’T].

We see (B5(R,[0,T]),d%) is a complete metric space for any s > 0. We prove that ®4 is a contraction
map on B (R,[0,T]) for sufficiently large R and sufficiently small 7.

Let u € B%(R,[0,T]) and let v’ € Xil/z satisfy
w'=u on [0,7] xR, suppu C[-2T,2T] x R.

Then, @4 (u) is defined on [0, 7] x R. Moreover,

t 9 t __o

’(/JT(t)/ U(E(t—t) w(t) dt' = / U(E(t —t") u@) dt’

0 0

on [0,7] x R and their supports are contained in [—27,2T] x R. Then,
||(I)i(u) ||X;’1/2[0,T]

t
— 2
< N0l + [ [ V(e = ) W0 ar

x>'20,1)

By Lemma 2.2.4,
IO (L) woll o2 7y < [T (OU(EL) ol y1/2 < ol

By Lemma 2.2.2, Proposition 2.2.1, and Corollary 2.2.1,

H /Ot U((t — ') u(@) dt’

X;W[O,T]

r(t) / U((t — ) (@) dt

< inf
u/

X;l/z
—2

<inf ||w"]| ys.— .

~ | HX? 1/203/i

<inf TP 1|2 .

~ [[u ||Xi,1/2

= TPHUHX:SF’I/Q[O,T]

< T’R?
for 0 < p < 1/2. This implies that @, is a map from B3 (R,[0,T]) into itself for some R and 7.
Moreover, let u1,us € BL(R,[0,T]) and let uy,us € X3 satisty

w; =u; on [0,T] xR, suppujC [-2T,27T] x R.
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We have, by Lemma 2.2.2,

||q)i(u1) - ‘I)i(u2) HX;I/Z‘[(),T]

S nt {0 s+ T = vy |

=S R A

SRR A PO A

g TpR||U1 — UQHX;I/Q[O,T]'
Therefore, ®4 is a contraction map on B% (R, [0,T]) with sufficiently small 7" and this means we have
a unique local solution u € XfF’l/Z[O, T] to (2.3.1) in H*(R) setting with s > 0.

2.3.2 Proof of Persistence Regularity

Let s > 0 and let ug € H*(R). By the proof of Subsection 2.3.1, we have the maximal existence time
T(s") > 0 for 0 < s’ < s such that there is a unique local solution u € C([0,T(s")), H* (R)). Since
s > A(s), we have T'(s) < T(A(s)), where A(s) is as in (2.2.3). We show that if T'(s) < T'(A(s)), then

sup |u(t) || m=(r) < 00, (2.3.2)
te[0,T(s))

namely, T'(s) = T'(A\(s)) from the point of view of blow-up alternative argument. Let 77 = min(1, W)
For sufficiently large C, we define R; > 0 as

Ry =2C (1 +  sup Iu(t)||H*<s>(R)> < 00
t€[0,T(s)+T1]

We have 0 < Ty < T such that for any 0 < Ty < T'(s) and any 0 < T < Ty, ®4 is a contraction map
on B} (Ry, [Ty, To +T)). Let 0 < p < 1/2, and let ur, uz € B (Ry, [Ty, To + T)). Let uf, uy € X3/

:F
and uf,uf € Xg(s)’l/z satisfy
uy =wu; on [Ty, To+T] xR, supp u; C [To — 2T, Tp + 2T x R,
uj =u; on [Ty, To +T] x R, supp uj C [To — 2T, Tp +2T] x R

for j = 1,2. Then, by Proposition 2.2.2,

19 (u)ll o172, 1y

< ||U(:tt)u(T0)||X;1/2[TO) To+T]

+ H)\/t U (t — ') () dt

To

X221y, To+T)

< ClalTo) sy + CT? inf [ | oo [t ]| o1/
uf uf F F

S Cllu(TO)HH“(R) + CTpRlHulHX:SF‘I/z[To,TOJrT]'

Let
Ra(To) = 2C(1 + [[u(To) | = (r))
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and let
T3 = min(Ty, (8CRy)~Y/?, T(s) — Tp).

Then, for 0 < T < T3, ® is a map on
BY) (Ry, [Ty, To + T1) N B (Ra(To), [To, To + T1).
In addition,

”(I)i(ul) - (Di(uz)HXfF’l/Q[To, To+T)]

< HA [ vt~ )@ e )

To

’)c;*l/Z[TO, To+T)

7

o s " r
<CT upg:{uéH%HX;(s)mHul Uall xsr2

1

o % r
+CT uz)hriﬂué ||U2||X$<s>,1/2||u1 U2||X;1/2

S ||U1 - UQHX-;:J/Q[TO, To+T)"

o] =

Therefore, @4 is a contraction map and v is guaranteed in both X:’\F(S)’l/2[T0, To+T] and X:SF’l/Q[TO7 To+

T]. If T(s) — Ty < min(Ty, (3CR;)~'/*), then T3 = T(s) — Ty and

sup Ry (To),

Hu” s,1/2 <
Te,T(s)-Ty)  F 10 TotT]

which together with Proposition 2.2.2 implies

sup ”ﬂan;[To, To+T) < CRQ(TO)2.
T€[0,T(s)~To)

Then, by lemma 2.2.5,

sup  |Ju(t) ||z r) < C*Ra(Tp)>.
t€[To,T(s))

Thus, we obtain (2.3.2) and T'(s) = T'(A(s)) = T(0).

2.3.3 Proof of Local Well-Posedness without Y Norm

In this subsection, we clarify why the auxiliary space Y is important in our argument. We give an
alternative proof of the existence of solutions for s > 0, without using the auxiliary norm Y. On the
other hand, we shall explain why we need the norm Y at least in our argument if s = 0. It is important
that §(s) in the proof below is strictly positive. We exchange it into the positive power of T'. Then, the
contraction argument is completed when 7' is sufficiently small.

The following estimate is used to give a simple proof of Theorem 2.1.1 with s > 0.

Proposition 2.3.1. Lete >0, p >0, b, € R satisfy

1
b+d+¢e, p+d+e <1,
b—E, b—P207
s+e>1/2.



32 Chapter 2. (SR) with Quadratic Nonlinearity

Then,

el gomses S lllgeelloll ams + lull geosllol oo (23.3)

s,b
for any u,v € X
proof. We use the same notation as in the proof of Proposition 2.2.2. We show only

el cr-ss e 0] ems + [l oo ol o0

Since ||, [€ —nl,|n| < 3M(7,&,0,7n) and Lemma 2.2.7,

i@ [ e+ e xastr o) it = 6 =) o) do

L2(R, xRe)

)

L2(R)

< H [l =y R eon) d

where

Ky () = H< #1697 [ i~ o~ o) do

L2(R)

By Lemma 2.2.7,
Ki(&n) S 1= 1€ =ah)*=Pa( & = m)llzz@ (- = D)0 )l 22 my-

Similarly, for j = 2,3,

@ [+, it = 6 =) o) do

L2 (R, xRe)

S /(-)5_8/3<- — )~ BK (€, ) dnl 2y,
where

b

L*(®)

Koy = H< + |£|>b—1+5/<. — &€ =n)elu(- — o,& —n) 0(o,n)| do
R

= H< + el / (- = 0.6 = m)- = n)*T(o,m)| do
R

L2(R)
By Lemma 2.2.7,
Ka(&m) S NC = 1€ =nD)*aC, € = m)llz@ll(- — 1)~ 0(, m)l L2 ),
K3(&m) S G = 1€ =)=, € =)l (- = Inh*oC,m) L2 my-
Then, we obtain (2.3.3) by Lemma 1.3.11. Q.E.D.

Remark 2.3.2. b=1/2 , 5 =0, ¢ = 1/2 are the only numbers that ensures (2.3.3) for s = 0. See
Proposition 2.5.5.
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A simple proof of existence of solution for s > 0. Let s > 0, ug € H® and let 0 < T < 1. We take
b(s) = min(3/4, (1 + s)/2) > 1/2 and 6(s) = min(1/4, s/2) > 0 for Proposition 2.3.1.
We define a metric space

B2(R,T) = {ue X", 1] ; lll 1oy < B}

(0,77
with metric
déF(uhug) = ||’LL1 — ’U,QHX:;,L,(S)[O’T].

We see (BZ(R,T'),d~) is a complete metric space. We prove that ®. defined as (2.3.1) is a contraction
map on BEZ(R,T) for sufficiently large R and sufficiently small T'.

Let u € BE(R,T) and let v’ € XfF’b(S) satisfy
v'=u on [0,7] xR.
We have

||¢i(u)||X$,b(s)[0’T] S ||U(:|:t) u0||X;=b(s)[0,T]

+ HA/OtU(j:(tt/)) w(@y dt’

X';"b(s)[O,T].
By Lemma 2.2.4,

10 woll ooz < IOV E) wollyoes S oo ey
By Propositions 2.2.1 and 2.3.1, we obtain

H /Ot U(£(t — t'))u(t) dt’

X;j’b(s) [0,7]

r(t) / U((t — )@ dt

< inf
u/

5,b(s)
Xe

: —2

< IBfT‘;(S)H’LL’ ‘|X;b<s>,1+5<s)
H S

S nfT (S)||U'||§(;b<s>

4
ST (Q”u”xib(s)[mﬂ

< T R2,

Thus, @4 is a map from BZ(R,T) to BE(R,T) for some R and T'. Moreover, let ui,us € BE(R,T)
and let u),uf € X:SF’b(S) satisfy

u; =u; on [0,7] xR
for j = 1,2. Then, we have

19 (01) = @ (1) | o000 01,

S 11n£2 T2 |[(uf + uh) () — wh)|| yemor-1450o
4(s) . ’
ST 1’113{u,2 et e

ull - ué”xi’b(s)

6(s) . ,
+T ) uévqu,rlllf;ué Hu?“x;b(s)

uy — Ul oo

S T(s(S)RH’U,l — u2||X%:s,b(s)[O7T] .
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Thus, @4 is a contraction map on B’; (R,T) for sufficiently small T Q.E.D.
The following proposition implies that we can not take 6 > 0 when s = 0 in the above proof.
Proposition 2.3.3. For any b € [0,1/2) U (1/2,1], there exists a pair (u,v) € X" x X°° such that
||U'U||X5)r,b—1 = o0. (2.3.4)

Also for any 6 > 0, there exists a pair (u,v) € X025 X0V guch that
||uv||Xo,—1/2+5 = OQ. (2.3.5)
+
Remark 2.3.4. This is the reason why we use not only the norm Xi’b but also the norm Y, since
Proposition 2.2.1 requires Y7 norm when b = 1/2. Moreover, support restricted functions is necessary

to estimate Duhamel term by time in order to apply contraction argument to Cauchy problem (2.1.1),
since Proposition 2.2.1 doesn’t give such an estimate when b= 1/2.

Proof of Proposition 2.3.3. Suppose 1/2 < b <1. Let 0 < 2¢ <b—1/2 and let

ai(r,€) = 0i(r, &) = (€) 7T (1 — ¢y T2
fr>2r1—-1<&<7+1, then

(r + Je)t! / / (e — )V (o — )2 — o — € — )M dodn

> (2 4 1) / () EE(E — ) E S — (€ — ) — o)~ %dn

£
2 27+ 107! / (L+&+nE—n)~2=dy

0
13

2 e [ iy
0

2 (r+ 1)

~

This implies uiv1 & Xﬂ’bil. Moreover, suppose 0 < b < 1/2. Let b and § satisfy 0 < 2¢ < 1/2 — b and
let

Up(1,€) = (€) 755 (r — |¢|) b2,

Oa(r,€) = (7T T — [T+ e T
Since for any real number a and b, {(a + b) < (a)(b), for £ > 0,
1 [ mEe e = —

A7 =0 =€ =) T — o+ | —nl) 2 dody

> (r+ [t / / (e — )02 o g )oY/

AT — o+ € =)V dody

0
> (r 4 &)t / R () Wk Rl S e

—00

2T+ )72 g L2 o (L2).
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Therefore, ugvy & X?r’b_l. We complete the proof of (2.3.4).
Suppose § > 0 and b = 1/2. Let ¢ satisfy 0 < 2e < § and let

U3(1,€) = G3(1,€) = (€)F = (r — ¢y I E

Ifr>27—-1<¢<7+1, then

(1) [ A= = ) = o — e = ) dody

6 1 1

2 r )72 [t — e = =l = o
3

2 (r+ 1720 [ (1 (e - ) 2wy
0

3
Z <27+1>—1/2+5/ <§>_1_28d’l7
0

> T+ 1)V
This yields uzvs & Xg’b_l and we obtain (2.3.5). Q.E.D.
Corollary 2.3.1. For any b € R and s <0, there exists a pair u,v € X" such that

HU'U”Xi,b—l = o0. (2.3.6)

Remark 2.3.5. Proposition 2.3.83 and Corollary 2.3.1 show that Proposition 2.2.2 is almost optimal.

Proof of Corollary 2.3.1. Suppose 1/2 <b < 1. Let 0 < & < —s and let
w(r,€) = Bi(7, ) = (§) 7T (r — [¢) T
Ifr>27—-1<€¢<7+1, then
(€7 + )~
: / /R )T )T B g )T A — g gl dodn

¢ ) 1
2 <€>S<27+1>b‘1/0 ()5 TETEE — )T E T (r — |6 — | — |n]) "2 2Edy

3
> (€)% (2r + 1) / (14 €+ n(E — )~ V2<dy

3
Z<27_+1>b71/ <§->72571725dn
0

> (r+1)712

~

This implies ujv; ¢ Xj_’bil. Moreover, suppose 0 < b < 1/2. Let b and § satisfy 0 < 2¢ < 1/2 — b and
let

wp(r,€) = () — e A
Ta(r,€) = (€) 75T (1 — [e]) o (r + |y T2,
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Since for any real number a and b, {a + b) < (a)(b), for £ > 0,
@+ [ e o - g
Ar—o—lg—n) T — o+ & —nl) " =dody

2l ] e —

A7 — o+ € —nl) """V dody

0
2+t [ - gy
R AT+ T T LEo(LY).

Therefore, ugvy & Xg_’b_l. We complete the proof of (2.3.6). Q.E.D.

2.4 Proof of Theorem 2.1.2

In this section, we prove Theorem 2.1.2 by direct calculation. For simplicity, we show only (2.1.4) with
U(t). Let =1/2 < s < 0. Let ug = § ' xes1(€)71/2757¢.

5|/ U1 (v [ v - O ar ) ar 6
— exp(ity/m? + €2) / / exp(—it'g(€, m))io(—€ + m)J (¢, m)dma,

where

g(&m) = Vm2 + 2+ /m2 + (€ —m)? + \/m? +n? (2.4.1)
and

t
J(tm) = / / exp(it'g(n1, 72) Yo (. — 12)fo(2)dradlt.
0 R

Let (ug,,) be a sequence of #(R) such that @, is non-negative function and ¢, (£) converges ()
from below monotonically for any £. Let

Jn(t,m) = —i(Jn1(t,m) — Jn2(t,m)),

" 1
Foalt, :/711 (11— 1210 1 (1) da
a(tm) ) o (M — n2)to.n(n2)dn2

Tn2(t,m) = /R W n (M — 12)to,n (12)dn2.

Then,

L exp(it . . N
Hx|.|<1 /71 Wumn(' — 112)t0,n (n2)dn2

< ”uO,nHiIS(]R)
L2(R)
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and

exp(itg(- R .
Hx| o / PG 1) o i ()i
n2|>1 9( n2)

L*(R)

TT90m) U0, (§ — M2)ti0,n (12)dn2

H 1+9 17112 L2(R)

H —02) "2 (02) "Mt 1 (- — m2)ti0,n (n2)dn2
L2(R)

S ||u0,n||Hs(R)-

Therefore ||.Ja(t, )| g ) S

(R)" Similarly,

H //eXp —it'g(-, 1)) a0, (— - 1) T2 (') dipr dt’

L(®)

SH<> /9(771)0n(+m)j (' m)dnidt’ .

< HuO,n”HS(R)”JnJ”HS(R)

S HUO,HH%S(R)‘

On the other hand, let

b(&, 11, m2)
=g(&m)— g, n2)

=Vm2+ 2 +ym?+ (E—m)2—m2+ + (m —n2)? —\/m? + 15

Then, [b(&,m1,m2)| < 2m when £ >0, { —m1 <0, 1 — 12 <0, and 12 < 0. Indeed, if b(&,n1,72) >

then

‘b(fﬂhﬂh)‘
= Vm? + &+ /m? + (= m)? — V/m? + (1 —12)* — \/m? + 1}

< (m+ &)+ (m+ 1§ —ml) = (m —n2l) - (Inzl)

= 2m,

and if b(&,m1,m2) < 0, then

b(é» n, 772)|

= —Vm2+ & — /m2+ (= m)2+Vm? + (m —m)? +\/m? + 13
=&l =& = ml+ (m +[m = n2f) + (m + |n2])

=2m.
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If € > 1 and ¢ is sufficiently small, then Reexp(itb(§,m1,12)) > 1/2 and

t
sup |[()°Re / / exp(—it'g(-, 1) aom (= F1) Iz (¢, 1)yt
neN 0 R LZ(R)
t N

= sup <'>SRe/ /eXp(—it/b('»maﬂz))ﬁo,n(—'+771)/7ﬁ0,n(771—ﬂz)ﬁo,n(ﬁz)dnzdmdt'

neN 0 JR 9(m1,m2) L2(R)

m

> sup | (-)° / o (— - ) () ! / i (11 — 1210, (172) iy

neN R 0 L2(R)

o0 m
> 1l¢ye / (- — )2 () / (= 1o)™Y ()22 iy

L*(R)

2 <'>S/ (=) 7S () TR

L2 (R)

2 60 [ oy,
2 ||<'>_25_1/2_3€”L2(R)-

~

Since € < —25/3, —2s —1/2 -3¢ > —1/2,

L2(R)

/0 ' U(t_t/)(U(t/)uO /O ' U(t” —t’)(U(t’)uo)zdt”> dt’ ¢ H*(R).

2.5 Proof of Theorem 2.1.3

In this section, we prove Theorem 2.1.3 by direct calculation. At first, we decompose the Duhamel term
with linear solution into 4 terms as follows:

t ., 4 .
s[ / U((t — )T (& Yy dt}(ﬁ) = 32509

where

Ji(t,€) = k=% / ep(Eitg(&,m) — 1X[—1,1] (& —n+k)x—1,(n+ k)dndt',

Jafe, ) =2 [ CPEIEIZD0 et i Ry
R +i -1

Js(t,€) =k~ /]R = Z‘(ZS;’?)) X(=1.1(§ = 0 = k)x(—1,0(n + k)dndt’,
e, =i [ SPEIEDZD e = b)xgorg o~ Ryt

and ¢ is defined in (2.4.1). If J; # 0, then & ~ —2k, n,£ —n ~ —k, and therefore ||.J; (¢, M@ Sk
If Jy # 0, then & ~ 2k, n,& — 1 ~ k, and therefore || Jy(t, Me=® S k™~ Moreover, Jo = J3 and if
Ja # 0, then € —n ~ —k and 7 ~ k, and therefore k ~ 1 and ||Ja(t,-)|

He(R) 2 n~25~1. This means

t e —
H/ U(i(t—t’))U(it’)u07k2dt’ >k 5 0
0

as k — oo.
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2.6 Proof of Theorem 2.1.4

In this section, we prove Theorem 2.1.4 by direct calculation.

2.6.1 (2.1.2) with —1/2 < s < 1/2

We estimate

3[/ U(£(t — 1) (U )uoU (£t )uo)dt’ | (€)
0

= /0 /Rexp(fit’(\/m2 +E2+/m?2+ (E—n)? - Vm? +1?))
o (1 — €)to(n) dndt’.

For preparation, we remind the estimate

—m S Vm? 24 /m? 4 (= 2 = /m? 2 < 2m

for 0 < £ < 7. Indeed,

VM2 € 4 Vm? (- €2 = Vm? 40
ZE+n—&—Vm? 4

>§4n—€E—n—m=—m

and

Vm? € 4 Vm? 4 (0= €2 = Vm? 40
<&t —&—/mi iR

<2m+E&E+n—£&—n=2m.

Let Gip = X[0,00) (:y=*=1/2=¢ where ¢ > 0. We estimate the Duhamel term by duality with § [X[0,00) (ys=1/2=¢] ¢
H~#*(R). In particular, we estimate the following dual product:

Re<31[><[o,oo)<'>51/26]

/ U(£(t — t’))(U(:l:t’)uoU(j:t’)uo)dt/>
0 He(R)

[ee] t )
_ iy 21 2 2 — 2 2 1 2\ 74/
Re/o /0/5 exp( it' (V/m? + € +\/m +(E&—-n) Vm +n?))dt
R e B A XS

For sufficiently small ¢ and 0 < & <,

Re((exp(=it/(v/m? + € + /m? + (€~ n)” = Vm2 +1%)) = 1/2.
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Then,

Re<8‘1[x[o,oo><->‘s‘1/2—5] /0 U(i(t—t’))(U(it’)uoU(it’)uo)dt’>

Ho (R)

Zt/g/o /5 <€>s—1/2—5<€_77>—s—1/2—5<,,7>—s_1/2_5 d77 df
= t/Q/O /}E (€ 2o ()71 dn de
2o [Tlgmr — s

0

fore <1/6 —s/3.

2.6.2 (2.1.3) with —1/2 < s < 1/2

We estimate

3[ [ vt = )it ar ¢
0

t
= [ expl-it (VT € T (€2 = ) i) dndt.
0o Jr
For preparation, we remind the estimate

—2m < \/m? + €2~ \/m? 4 (= 2~ Vm? + 2 <m

for 0 < n < €. Indeed,

Vm? 4+ €2 —/m? + (€)% — /m? +?

> &= Vm? 4 (E-n)? — Vm? i
2{—m—&+n—n—m=-2m

and

Vm? € = m? 4 (€= ) = Vim0
Sm €+ y/m? 4 (€= )2 = V/m? 4
sm+{—&+n—n=m.

Let o = X[0,00) (") "*71/27%, where e > 0. We estimate the Duhamel term by duality with §~*[x[0,00)(-)*"1/>7¢] €
H~*(R) and a restriction of the interval of the integral;

Re<sl[><g>o<~>“/“} / U(i(tt’>><0<ﬂ'>uo)2dt'>

H (R)

o) t 3
—Re [ [ [Cexpl-it (Vi € T = €= ) - )
o Jo Jo
ST )T A ) T e
For sufficiently small ¢t and 0 < & <,

Re(exp(fit’(\/m2 +&2 — \/m2 +(€&—n)?2- \/m2 +n2))) >1/2.
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Then,

Re<5‘l[><m,oo>]<->‘s‘” e, /O U((t - t’))(U<it’)uo)2dt’>
e A A e e R UL
> t/2 ‘/100 /£2£<§>—s—3/2—3adn d¢

S GRS

for e <1/6 —s/3.
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Chapter 3

Construction of Solutions for (SR)
with a Priori Estimate

3.1 Introduction

In this chapter, we consider the Cauchy problems for the semirelativistic equation

{i@tu + (m? — A)YV 24 = NulP~ 1, teR, zeR, (3.1.1)

U(O) = Ug, T € R,

with m, € R and A € R, where 9; = 9/0t and A is the Laplacian in R.

Here, we restate our main result.
Theorem 3.1.1. Let p, A € R, and uq satisfy one of the following:
e l<p<3and A<0,
e l<p<3and A>0,
e p=3,A>0, and ||ul|r2r) < 1.

Then for any ug € H'/?(R), there exists a global solution to (3.1.1). Moreover, let ug ., ug € H'/?(R)
satisfy uo., — uo in HY2(R) as n — oo, and let u, and u be the solutions of (3.1.1) with data v, and
ug, respectively. Then u, — u in L®(=T,T; H/?(R)) for any T > 0 as n — oo.

We prove Theorem 3.1.1 by a simple argument based on Yosida type approximation operator. We
remark that Theorem 3.1.1 can be obtained by standard compactness argument. For details of the
standard compactness argument, we refer the reader to [62]. On the other hand, in this chapter, we
directly introduce a sequence of approximation solutions which converges the associated H'/2(R) valued
solution in L>®(—T,T; H/?(R)) for any T > 0.

We give a brief outline of this chapter. In Section 3.2, we collect some basic estimates for the proof
of Theorem 3.1.1. In Section 3.3, we give a proof of Theorem 3.1.1.

3.2 Preliminary for the Proof of Theorem 3.1.1

In this section, we collect some basic estimates for the proof of Theorem 3.1.1.
The following three estimates are basic for the proof of Theorem 3.1.1

43



44 Chapter 3. (SR) with a Priori Estimate

Lemma 3.2.1. Let X be a Banach space such that X — X*, where X* is the dual of X. Let f,g €
C(R; X)NCHR; X*). Then (f,g) € C1(R;C) and

L0000 = <;tf(t)‘g(t)>x + <f<t> ig<t>>x,

where (- | -)x is the dual product for X and X*.
Lemma 3.2.2 ([77]). Let 2 < p < co. There exists C > 0 such that for any 1 € H'/?(R),

[Pllr@) < CVPIDI 12 wR)-
Lemma 3.2.3 (Lemma 2.4). Letr > 1 and a, b, T > 0. Let f:[0,T] — [0,00) satisfy

f0<ats [ P

for all0 <t <T. Then, f(t) < (al/r +br= )" for all0 <t <T.

We consider the following integral equation associated with (3.1.1) and corresponding approximation
equation:

u(t) = U(£t)ug — i)\/o U(£(t — ) u(t") P~ u(t")dt’, (3.2.1)
u,(t) = U(£t)Jyug — iA /t U(£(t =), (| Tou, ()P~ Tou, () dt (3.2.1),
0

where J, is approximation operator of Yosida type defined by J, = T 1% (p? + €2)713.
It is easily seen that (3.2.1) and (3.2.1), has time-local solution in the H!(R) setting. If u €
C([0,T); HY(R)) is a solution for (3.2.1), then u € C*([0,T]; L?(R)), since by the Sobolev embedding,

_ —1
P~ ull 2y < Nl ol S el -

and therefore, the Duhamel term of (3.2.1) is differentiable as L?(R) valued function. It is easily seen
that H'(R) valued solutions for (3.2.1), are also differentiable as L?(R) valued function. Then we have
the following time-local well-posedness in H'/?(R) setting:

Lemma 3.2.4. There exists a unique time-local solution to (3.2.1), in C([0,T); H*(R)) for any p >0
and HY?(R) initial data.

proof. For any s€ R and p > 1

2

P
p2+,2

1, F ey = ‘ (9 f

L2(R)

< max(p, 1*||(-)**f

L*(R)
< max(p, 12| fll s> m)-

Therefore, The fact that solution map
t
O (u) = U(Et)J,up — i)\/ U(E(t =), (|Jpu, ()P~ T pu, () dt!
0

is a contraction map in C([0,T]; H'(R)) follows from Lemma 1.3.14. Q.E.D.
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Moreover, we have the following conservation laws.

Proposition 3.2.1. Let ug € H'/?(R). Let u € C(R; H/2(R)) N C*(R; H'/2(R)) be a solution to the
integral equation (3.2.1) for the initial data ug. Then, ||u(t)||z2®) = |luollr2w) for any t.

Let p> 0. Let u, € C(R; HY/2(R))NCY(R; H~Y/2(R)) be a solution to the integral equation (3.2.1),,
for the initial data Jyug. Then, ||u,(t)][z2@m) = [|JpuollL2w) for any t.

proof. The following formal calculations are justified by extending L?(R) scalar product to H~'/2(R)-
H'2(R) duality:

d .
ﬁnu(t)”%z(ua) = 2Re(vu(t) | u(t)) /2@y = 2Im(i0pu(t) | u(t)) /2w

— 2 (m? — A2 u(t) + Afu(®)P ult) | u(0)) 172 e
= 2Im|[u(?)||r+1 () = 0,

d .
el ()13 = 2Re(@rttp (1) | 10 () gy = 2t (8) | (1)) o2

= 2Im<$(m2 - A)l/z up(t) + )‘Jp|Jp“(t)|p_1Jp“(t) | Jp“(t»Hl/Q(R)
= 2Iml|J,u(t)|| Lr+1 () = 0,
where we used the following identity:
(m* = A2 f ) = ((m* + D)2 F 1 F) = [m% + )Y f G -
Q.E.D.
Proposition 3.2.2. Let A € R and ugp € HY/?(R). Let u € C(R; H'(R)) N CY(R; L2(R)) be a solution
to the integral equation (3.2.1) for the initial data ug. Then E(u(t)) = E(ug) for any t, where

E(f) = ll(m® = A) V4 fl[Ra gy — ||f||’£ﬁi1(]R

Let p > 0. Let u, € C(R; H'(R)) N C’l(IR L%(R)) be a solution to the integral equation (3.2.1), for
the initial data Jyug. Then, E,(u,(t)) = E,(Jyu) for any t, where

A
Eo(f) = lm? = 8/ Ff ey = ~Z 11

proof. If u € C(R; H(R))NCY(R; L2(R)), then the squared norms ||(m? — A)1/4u||L2(R) is differentiable
and we have

%Il(m2 — A)tu(t)||22m) = 2Re(¥i3tU(t) £ Nu(t)[P~ u(t) | £0pu(t))

1
KA oy

p+1ﬁ
d 1 . _
%H(mz - A)““p(t)H%?(R) = 2Re(Fidsu,(t) £ M| Jyun(8) P~ T pu,(t) | £, (t))
A d 1

= g g Oy
Q.E.D.

Then, we have the following H'/?(R) boundedness of solutions to (3.2.1),. Therefore, H'/?(R)
valued time-local solutions of (3.2.1), are extended globally in time.
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Lemma 3.2.5. For any ugp € HY%(R) and T > 0, the associated solution u, € C([0,T); H/2(R) to
(3.2.1), satisfies that if 1 <p <3 and A <0, then

||“p||Loo(0,T;H1/2(1R)) < Ep(Jpuo),
ifl<p<3and >0, then

2

20Cy p+1 v
HupHioo(O’T;Hl/Z(R)) < 2EP(‘]Pu0) + (ﬁ'uoiz(ﬂ{)> ’

and if p=3, A >0, and |luo| r2®) < 2A~ 1/20 z, then
Ep(Jpuo)

2
||up||L°°(0,T;H1/2(R)) = 1 INoL.

g4

)
||u0||L2(R)

where Cy p, is a best constant of the the Gagliardo-Nirenberg inequality

p—2

[fllLr@) < Copll £(E )||Lz @Ol 12 gy
proof. If A < 0, then Propositions 3.2.2, for any ¢ € [0,7),
(Ol g2y < Ep(up(t)) = Ep(Jpuo).
Ifl<p<3and A >0, for any t € [0,T),
et ()11 2y < Hm® = 8) 20, (1)1 2
A
< Bylup(0) + =37 )

ACPEL
+
< E,y(Jpuo) + p%lluollm ®)llup(t )IIHW

Therefore,
22CPH L w5
1 vy < 2Enpin) + (22 oy
Moreover, if p =3, A > 0, and [Jug||2(r) < 2)\_1/20;2, then
gl Zn'Joto)
UpllLoo (0,111 /2(R)) = 1 ACM .
||UO||L2(R)

Q.ED.

By using the energy conservation, we also obtain the following continuity lemma.

Lemma 3.2.6. Let (f,)nen be a bounded sequence in L>°(R; H'/2(R)) which converges to f € L=(R, H'/?(R))
in L2(R) as n — oo locally uniformly. If (E(f,))nen converges to E(f) as n — oo locally uniformly,
then || f(t) — fu(t)l m1/2@) — O locally uniformly.

proof. Since H'/?(R) is a Hilbert space,
1£(8) = fa ()32 gy = 2Re((1 = A)VAF() | (1= A)VAF) = fu(8) = IF O3 /2m) + 1 Fa O 1072 gy

Since (fn)nen converges f in L?(R) as n — oo locally uniformly, 2Re((1 — A4 £(t) | (1 —A)Y4(f(t) —
fa(t))) also goes to 0 locally uniformly. Moreover, since (E(fy,))nen converges to E(f) as n — oo locally
uniformly, (|| fn(-)lg1/2(r))nen converges to || f ()|l g1/2ry as n — oo locally uniformly, Q.E.D.
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3.3 Proof of Theorem 3.1.1
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In this section, we divide the proof of Theorem 3.1.1 into two parts: proof of the existence of solutions

and proof of the continuity in time and the continuous dependence on initial data.

3.3.1 Proof of Existence of Solutions

Let ug € HY/?(R). By Lemma 3.2.5 and Proposition 3.2.1, there exists M = M (), p, ug) such that

sup [[up|| Loo (m; 112 (m)) < M.
p>0

For t € R, we estimate

[up(t) = ue ()]l L2 ()

<(Jp = Jo)uoll 2wy Jr|)‘|/ H (1= Jo) (1 Tpup(t )|p71quP(t/))HL2(R)dt/

+|)\|/ (1= Jo) (I Jouo (t )|P—1,]ng(t’))HL2(R)dt’

—%Myﬂ|WauAfn“*LmAﬂ>fLLuAﬂWF%uuxfnu%mdﬁ

For sufficiently large r, by the Holder, Gagliardo-Nirenberg inequalities, and Lemma 3.2.2,

15t ()P Ty () = ot ()P Tt () 2

< C(ptp ()P + [t (1)) (T 1) = Totto (1) | 22e)
< CIpttp ()2 gy + 1Tt (121 )

(L = )t () gy + 1L = Tyt () )

O ()72 gy + ot 2k ) () = 1 ()]

< OMPH([[(1 = T )up () /aey + 111 = Jo Yo () |1/ )

+ O DA () — g (8| ol

where C' is independent of r. Since

2 1/4
ek
P2+ E2 = pi/a
we have
(L= To)uo () | rraqry < o7 Hluo () | ey < Mp™H/4
Similarly,

(L= ) (587 Ty () 2
< P71/4|||qup(t/)|p71qup(t/)||H1/4(R)
< Cp—1/4|||qup(t’)|P‘1qup(t')||B;{;(R)'
By Lemma 1.3.14 and the Sobolev embedding,

1P g () 5273y = It () 10 (s

< CMP

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)
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with some positive constant C'. Combining (3.3.1), (3.3.2), (3.3.3), and (3.3.5),
[ (t) = uo ()| L2 m)
< Clp~ Y4+ o714 4 orle=1/2 /Ot (1) = o ()| - (3.3.6)
By (3.3.6) and Lemma 3.2.3,
g (8) = uo (D)l 2y < C((p7 1/ 4+ 0 VYT 4 p0=D/2)",

For any € > 0, let 7 > log,(1/¢), t < log,(1/e)3=P)/2 p o > 24+2/(log:(1/e)

((p—1/4 +0_—1/4)1/r _|_T(p—3)/2t)7" < 210g26 —c.

This shows that u, is a Cauchy net in L>°(—1/4,1/4; L?(R)). By repeating this argument, u, is shown
to be a Cauchy net in L°° (=T, T; L?(R)) for any T > 0 and therefore (u,,),>o converges locally uniformly
in time. Let u € L>(R, H'/2) be the L?(R) limit of u,. Since lupll Lo (mm1/2(R)y < M for any p > 0, by
Lemma 1.3.2, u is also estimated by |[ul| e (g, z1/2ry) < M. Then we have

H/ £t~ 1) (|Jp“p(tl)\p_lqup(t’))dt’
_/0 U((t — ) [u(t) P~ u(t')dt’

t
</
0

* ./ot H'Jp“p(t/”p_lJp“p(t/) = [u ()P~ u(t')

L2(®)

dt’
L2(R)

CENAI(EANG AN )]

dt’.
L2(R)

For any 0 < t' < t, |[(1 = J,)(|pus(t)|P~ Ty, ()| L2m) goes to 0 as p — oo by (3.3.4) and (3.3.5).
Moreover, by a similar calculation to (3.3.2), it is shown that

120 ()P~ Ty (t') — Ju(t) [P~ u(t) ]| 2wy
< C+ Crem D2 u, (¢) — u(t) |y

holds. Then, by the Lebesgue dominated convergence theorem,
H / (= )y (1 ()P Ty (1) )
- [ ot =t p e sar

L2 (R)

/H (1= 7)) ()7 Ty, (1))

dt’
L2(R)

for any ¢ € R as p — oo. This means, each of the terms of (3.2.1), converges those of (3.2.1) in L?(R)
for any ¢ and therefore, u € L>®(R; H'/?(R)) is a solution to (3.1.1).
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3.3.2 Proof of the Continuity of Solutions

In this subsection, we prove that energy conservation and continuity in time of H/?(R) valued solution,
and the continuous dependence of solutions on initial data in the energy space H'/2 (R).

Let uy o and ug g € HY?(R). Let uy and ug € L>(R; H'/2(R)) be the solutions of (3.1.1) with initial
data u1,0 and us o, respectively. Then, by the same argument as in subsection 3.3.1, for any ¢t € R and
p>2

t
1-1
ur(t) — w2 ()l L2y S lluro — uz0llL2r) +p/ [|ua(t) — U2(t'){|L2(H§)pdt'~
0
Then by Lemma 3.2.3 we obtain

1
s () = us ()| 22 S (uao — usolZa +1)"/7.

This shows that the solutions of (3.1.1) for H'/2(R) initial data is unique and that the solutions depends
on initial data continuously in L?(R) locally uniformly in time.

Next, we show the energy conservation. Let ug € H'/?(R) and u € L= (R; H'/2(R)) be the solution
of (3.1.1) for the initial data ug. Let p > 0 and u, € L>®(R; H*/?) be the solutions of (3.2.1), for the
initial data J,uo. By Lemma 1.3.2, for any ¢ € R,

E(u(t)) < liprr_l}%)rclf E,(u,(t)) = lipn_l}'gf E,(Jyuo) < E(uo).
Moreover, since u is the unique solution, the solution for the initial data u(t) coincides with wu(- + t).
Then we obtain the inverse inequality by the same argument. This shows the energy conservation.

Since H'/2(R) valued solution of (3.1.1) are in C(R; L?(R)), they are also continuous in H'/2(R)
by the energy conservation and Lemma 3.2.6. Similarly to the continuously dependence of solutions
in L2(R), it is shown that an H'/?(R) valued solution also continuously depends on the initial data in
H'?(R) for each t € R. Since an H'/?(R) valued solution is in C(R; H'/?(R)), by Lemma 3.2.6 again,
H'/2(R) valued solutions continuously depend on the initial data in H'/2(R) locally uniformly in time.
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Chapter 4

Nonexistence of Solutions to (SR)
without Gauge Invariance

4.1 Introduction

In this chapter, we consider the Cauchy problem for the semirelativistic equations
i0pu £ (m? — A)Y2u = Mul?, teR, z R, (41.1)
u(0) = wo, z eR, o

with A € C\{0} and m € R.

Here, we are interested in the local solvability of the Cauchy problem of (4.1.1). In general spacial
dimension n, by the standard contraction argument, we have the unique local solution to (4.1.1) for
s >n/2 and ug € H*(R™). Moreover, (4.1.1) is expected to have a local solution for any H*®(R™) initial

data with s > sgpr), where sgi,R) is defined as (1.4.1). However, in Chapter 2, it is shown that for n = 1,
p =2, and s < 1/2, the solution map (4.1.1) is not C? in H*(R). This means that it is impossible
to obtain local solution to (4.1.1) by an iteration argument. In this chapter, we discuss about (4.1.1)
further from a negative standpoint and we show the sharp criteria of the smoothness of initial data so
that for any H*(R) initial data and for sufficiently small T' > 0, we have a time-local solution to (4.1.1)
in C([0,T), H*(R)).

Nonexistence results for local and global solutions have been obtained by test function method which
is introduced by Zhang in [93, 94]. There is a large literature on test function method and we refer the
reader to [52, 53, 54, 55]. Test function method is a method to deny the existence of weak solutions
by showing a contradiction of weak equations with a sequence of test functions. To apply test function
method to (4.1.1), however, a serious difficulty arises when we try to handle the non-local operator
(m? — A)/2. Tt is because in order to show a contradiction of a weak equation, we need to cancel
unknown weak solutions in the weak equation. In order to cancel weak solutions, the positivity of
nonlinearity and pointwise estimate of test functions are required but it seems difficult to estimate a
test function with (m? — A)l/ 2 pointwisely, since (m? — A)'/2 is non-local. To overcome this difficulty,
we apply —Im\(id; F (m? — A)Y/2) to (4.1.1) to obtain

OIm(Au) + m2Im(Au) = 02Im(Au) — Alm(Au) + m*Tm(Au) = —|A|?0; |ulP. (4.1.2)

We remark that this transformation is a modified derivation of Klein-Gordon equation from semirela-
tivistic equation in Section 1.2. In Section 4.2, we revisit the transformation of (4.1.1).

o1
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By (4.1.2) and the associated test function method, it can be shown that there exists no global
solutions to (4.1.1) with m = 0 and n = 1 for 1 < p < 2. In [55], Inui shows that the large data
blow-up for s > sgi,R) and nonexistence of local solutions for s < s, to (4.1.1) with n > 1 and m € R
by improving test function method for (4.1.2). We also remark that similar nonexistence results are

obtained for the Cauchy problem of nonlinear Schrédinger equations
i0su + Au = A|ulP

in the case of R by Inui and Ikeda in [52, 53] and Ikeda and Wakasugi in [54] and in the case of
T™ = R"/27xZ"™ by Oh in [78]. We remark that in earlier works above, in the case of R™, the non-existence
of solutions are argued by scaling criticality. But in this chapter, we show that the non-existence of
solutions to (4.1.1) is obtained even in scaling subcritical case.

To restate our main result, we reintroduce the definition of time-local weak solutions of (4.1.1). For
T > 0, we define function spaces A and Ar as follows:

A= C([0,00); H*(R; R)) N C* ([0, 00); H' (R; R)),
Ap ={¢ € X| suppy C (—o0,T) x R}.

Let (- | -) be the usual L? scalar product defined by (f | g) = [ fg. Then we define weak local solutions
to (4.1.1).

Definition 4.1.1. Let T > 0 and ug € LL (R). We say that u is a weak time-local solution to (4.1.1),

loc

if u belongs to Li (0,T; L*(R) N LP(R)) and the following identity

loc

| oo =t = 8P uw)it = itwle) <3 [ (uploe)a @

holds for any ¢ € Ar, where the double-sign corresponds to the sign of (4.1.1).
Then we restate our main result below:

Theorem 4.1.1. Let 1 < p < co and let f € L _(R;R) satisfy

loc
36 >0s.t. f>0on (—4,9) and f is decreasing on (0,0), (4.1.4)
lim f(e) = o0.

Then there exists no T > 0 such that there ezists a local weak solution to (4.1.1) with ug = fix_lf.

In Remark 1.5.4, Tt is shown that there exists f € H'/?(R) such that f satisfies (4.1.4) and (4.1.5).
Since H*(R) < L>®(R) with s > 1/2, this means that H'/?(R) is the threshold so that for any H*(R)
initial data and some T' > 0, we have a solution in C'([0,T), H*(R))NC*([0,T), H*~*(R)) to the Cauchy
problem of (4.1.1).

In Section 4.3, We give a proof of Theorem 4.1.1. The difficulty to prove Theorem 4.1.1 is the
construction of a sequence of test functions to obtain the nonexistence results in scaling subcritical
case. Since the sequence of test functions introduced by Zhang in [93, 94] is constructed by the scaling
transformation under which (4.1.1) is invariant, it seems impossible to obtain the nonexistence results
in scaling subcritical case with his test functions. To overcome this difficulty, we cancel the second
derivatives of test functions and break the balance of scaling for test functions. In particular, we use a
test function of the form

U(t,x) = ¢1(t + 2)da(t — ).
A direct calculation gives
Dip(t, ) = 4¢) (t + 2)$5(t — x)
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and 1 allows us to scale only ¢o without any loss. We remark that with a test function of the form

U(t, ) = d1(t)d2(),

scaling only ¢ causes a loss and the nonexistence result of [55] seems to be optimal from the view point
of the scaling criticality. In Section 4.3, we give a detailed proof of Theorem 4.1.1 with this idea.

4.2 Preliminary

In this section, we revisit the modification of (4.1.1) in order to apply a test function method.
The corresponding local weak solutions to (4.1.2) are defined as follows:

Definition 4.2.1. Let T > 0 and ug € L}, (R). We say that u is a weak time-local solution to (4.1.2),
if u belong to L .(0,T; L?(R) N LP(R)) and the following identity

loc

/0 (Im (u)( ‘Dw 1/1(t))dt
— - (Re(uo)(m? - A)l%@)) + (Re(i%uo) |0r(0))

T
+? [ (utPlo o) (42.1)

holds for 1 € C?(R?;R) with suppt) C (—00,T) x R, where the double-sign corresponds to the sign of
(4.1.1).

Weak time-local solutions to (4.1.1) are shown to be those to (4.1.2) as follows:
Lemma 4.2.1. Let ug € L3(R). Then, time-local weak solutions to (4.1.1) are those to (4.1.2).

proof. Let ¢ € C?(R%R). Then (—A)Y/2¢ and ;¢ belong to A. By taking real and imaginary parts
of (4.1.3) with 1 replaced by A\(—A)Y2¢ and A\d,¢, respectively, we obtain

Re /0 " Ru(t)]ioe(t) £ 0,(~A) (1)) dt

:/Oo £)|07 &( )dtj:/ (Re(Au(t))|0:(—A)2¢(t))dt
0 0
—(0(0)[8:$(0)) + A /0 (lu(®)[? 0 (2)) dt

Im /Ooo (Nu(t)|i0(—=A) 2 (t) F Ag(t))dt

- —/ (Re(hu(t))|0y(—A)/2(t))dt F /OO (u()| A () dt
0 0
= (Re(Auo)|(—A)2¢(0)).
By combining those identities, we obtain (4.2.1). Q.E.D.

Remark 4.2.2. For L*(R) initial data and T > 0, solutions to (4.1.1) which belong to Li, (0,T; LP(R))N
C([0,7); L*(R)) N C*([0,T), H 1 (R)) are also shown to satisfy (4.1.3) and therefore they are also weak
time-local solutions to (4.1.2).
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4.3 Proof of Theorem 4.1.1

For simplicity, we take A = 1. Assume that for 0 < T < 7" < min(1, ), there is a local weak solution
0 (4.1.1) on [0,T"]. Let ¢ € C*(R;]0, 1]) satisfy

1 if y<o0,
Ply) =\ if 0<y<T,
0 if y>T.

Let 0 < p <1 and let ¢,(y) = é(y/p) , ¢,(y) = ¢'(y/p). Let | € Z satisty I > p’ and let

Yot @) = —o(t — x)l¢p(t +a)l.
Then
supp ), C (—00,T] x [—min(1,6), min(1,)].
The first term of the right hand side of (4.2.1) is canceled since f is real-valued, and we estimate other

00
2
terms on the right hand side of (4.2.1) by (4.1.4) as follows:
(Re(iuo) | 9rp,(0))

Tp

>p ; f (@)1, ()|, (x) " da
> f(pd),

T
A(Mmmawwwm

T
> p*11/0 ([u@)IP |16, (t +2)ldp(t + 2)' " (t — 2)")dt

= p M |u(®)[ @) (t + )Pyt + ) Pt — ) PN 0 ey -
Let
I = |u(t)|@),(t +2)[VPdy(t + ) DPp(t — )| 1o o 1)) -
By the Holder and Young inequalities,

T
\Aammw>m%wmﬂswfwu@mwmﬂmmw
T
‘/0 (Im(Xu)(t) \ Dd)p(t))dt‘

T
< 407112/ |(Im(Au)(8) | ¢'(t — 2)¢),(t + @)t — 2) " g, (¢ +2)' ) dt

0

- 1+1/p’
< 4p 1l2||¢/||L00(/]1§) ||1||LP’({(t z);0<t+z<p, Ogtfmgl})l

_ pfl/p2(2p' 1)/p’ l2||¢ HlL—;l/Ié))I

<p I +pP /p 1—192p'—1;2p'—p /p||¢ ”p +1
where 1/p' =1 —1/p. By (4.2.1) and the estimates above, we have
F(pd) < 21/p/m2||u(t)||L1([07T];LP([7171])) 492’1 p? /p =172p"—p /p||¢ ”p '+1 =
and by taking p | 0, this is a contradiction to (4.1.5).
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Chapter A.1

Study of Semirelativistic System

A.1.1 Introduction

In this chapter, we study the following semirelativistic systems:

i0wu + (m2 — A)V?u = uv, teR, z€R,

10w — (m2 — A2y = §u2, teR, z eR, (A.1.1.1)
(u(0),v(0)) = (uo, vo), z €R,

10w+ (m2 — A)V2u = av, teR, x€R,

i+ (m2 — A)V?v =242 teR, z€eR, (A.1.1.2)
(u(0),v(0)) = (uo,vo), z €R,

where A € C\{0}.

The aim of this chapter is to show that (A.1.1.1) has a similar property to (2.1.1) and (A.1.1.2) has
a similar property to (3.1.1). We remark that the systems (A.1.1.1) and (A.1.1.2) are also regarded as
a semirelativistic approximation of the Schrédinger system

{z&tu + ZLAu = M\, (A.1.1.3)

10 + £ Av = pu?,
where o; € {—1,1}. We refer the reader to [48, 49, 50, 51] for recent results on the Cauchy problem for
(A.1.1.3). In the case of the Cauchy problem for (A.1.1.3) in the L?(R) x L?(R) setting, the signs of o7,

o9 are not essential [50].

Since the charge of solutions to (A.1.1.1) is conserved, we have the following well-posedness of
(A.1.1.1):

Theorem A.1.1.1. (A.1.1.1) is time-globally well-posed in H*(R)x H*(R) setting with s > 0. Moreover,
for (ug,v) € L*(R) x L2(R), a pair of L*(R) x L2(R) solutions (u,v) corresponding to (ug,vo) satisfies

lu(t) |2y + cllv®)lz2®) = lluoll2®) + cllvoll 2 (r)-
We also have the following non-smoothness result for the solution map of (A.1.1.1).

Theorem A.1.1.2. The solution map of (A.1.1.1) is not C* in the H*(R) x H*(R) setting with —1/2 <
s < 0. In particular, if —1/2 < s < 0, then for some t > 0 and initial data

ug = 3_1[X[1,oo)<'>_1/2_5_8] € H*(R)

o7
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and
V0 = § X(—oo—1y ()77 € HO(R)
with 0 < e < —2s/3,

/Ot Ul(t—t’)<U2(—t’)v0 /Ot/ UL (t” —t’)(Ul(t”)uo[Jg(—t”)Uo)dt") dt' ¢ H*(R), (A.1.1.4)

where Uy (t) = exp(it(m? — A)Y/?) and Uy(t) = exp(it(m?2 — A)/?).

Theorem A.1.1.3. The solution map of (A.1.1.1) is not C? in the H*(R) x H*(R) setting with s <
—1/2. In particular, if s < —1/2, then for some t > 0 and a sequence of initial datum gy defined by
Vo,k = Ugk = kisgfl[X[—l,l](' — k) + x[-1,1( + k)]

then there exists C' > 0 such that for any k, ||uok||g- < C and
¢
lim sup H/ Uy (t — t’)(Ug(—t’)vo,kUl(t’)uo,k)dt’H = 0. (A.1.1.5)
k—o00 0 H#(R)

On the other hand, since the energy of solutions to (A.1.1.2) is conserved, we have the following
well-posedness of (A.1.1.2):

Theorem A.1.1.4. Let A € C. For any ug x vg € H/?(R) x HY?(R), there exists a global solution
to (A.1.1.2). Moreover, let ug pn,von and ug,vo € Hl/Q(R) satisfy (uom,v0,n) = (Uo,v0) in Hl/z(R) X
HY2(R) asn — oo, and let (un,vy,) and (u,v) be the pairs of solutions of (A.1.1.2) with data (ug ,vo.n)
and (ug,vy), respectively. Then (un,vy,) = (u,v) in L®(=T,T; H/?(R) x H2(R)) for any T > 0 as
n — 0o.

We also have the following non-smoothness result for the solution map of (A.1.1.2).

Theorem A.1.1.5. The solution maps of (A.1.1.2) is not C? in the H*(R) setting with —1/2 < s < 1/2.
In particular, if —1/2 < s < 1/2, then for some t > 0, initial data

up = g—l[x[()?oo)<_>—1/2—s—e} c HS(R)

and
vy = %’71[X(—oo,0]<'>71/27876] c HS(R)
with 0 <e <1/6 —s/3,

/Ot Up(t —t') (U2 (t)voUs (t')ug)dt’ & H*(R). (A.1.1.6)

Theorem A.1.1.6. The solution map of (A.1.1.2) is not C? in the H*(R) setting with s < —1/2. In
particular, if s < —1/2, then for some t > 0 and a sequence of initial datum ug j, defined by

uo e =vo =k *F " [x(—1,1y(- — k)]

then there exists C' > 0 such that for any k, |[uox||gs®) < C and

— 00 (A.1.1.7)

t S —
/ Uy (t — U1 (¢ ) uo g Uz (t Yoo gdt’
0 Hs(R)

lim sup ‘
k—o0

for some t > 0.
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Theorems A.1.1.2, A.1.1.3, A.1.1.5, and A.1.1.6 can be proved by the same way as Theorems 2.1.2,
2.1.3, 2.1.4, and 2.1.5. Tt is because, there is no difference between U; and Us to show (A.1.1.4),
(A.1.1.5), (A.1.1.6), and (A.1.1.7).

Theorem A.1.1.1 is obtained almost similarly to Theorem 2.1.1, since v in (A.1.1.1) can be regarded
as u. The difference between Theorems 2.1.1 and A.1.1.1 is the charge conservation. Since the charge of
solutions to (A.1.1.1) is conserved, by the persistence of regularity, we have a unique pair of time-global
solutions to (A.1.1.1). For details see Section A.1.2.

Also theorem A.1.1.2 is obtained almost similarly to Theorem 3.1.1, since the H/?(R) norms of
and v can be controlled their conserved energy and charge. In Section A.1.3, we show only how the
H'/2(R) norms of u and v are controlled.

A.1.2 Sketch of Proof of Theorem A.1.1.1

In this section, we show the charge conservation of solutions to (A.1.1.1) only. The construction of
solutions and persistence of regularity can be obtained by a similar argument in the proof of Theorem
2.1.1 based on the following Banach space

X P[Ty, To + T) = X>°[Ty, Ty + T x X3°[To, Ty + 7.
In particular, we show the following charge conservation law:
[u()[ 72wy + v Z2) = luollZzr) + cllvollZe -

Although we can justify a formal proof of the L?(IR) conservation by the approximation argument by
smooth solutions, here, we derive the conservation laws directly without approximation. In particular,
we derive the conservation law by using associated integral equations in the framework of Bourgain
method as we studied in the previous sections. For the Schrodinger equation, there is a direct proof of
the conservation laws in the framework of the Strichartz estimate [79]. To our knowledge, the direct
proof of conservation law without smooth approximation had not been studied unless the Strichartz
estimate hold. If one calculate the energy by integral equations without Strichartz estimate, a difficulty
arises when one try to justify the each step of calculation. Especially, the integrability of each terms
is a typical problem here, since only the boundedness of the Fourier restriction norms of solutions is
available. To guarantee the integrability in each step, we use the following Lemma and Proposition.

Lemma A.1.2.1. Let p and « satisfyp > 1 and 0 < a < 1/p. Let 5,7,k satisfy 0 < 58,7,k < 1/2 and
a+B+v+rk=1/p+1/2+¢ withe > 0. Then there exists a positive constant C such that the inequality

-+ 01) = f * g * h| Lo (m)
< O+ 62)° fll 2 |- + 03) gl L2yl + 04) Rl p2(r)

holds for any real numbers 61, d2,03,04 and any f, g, h such that all the norms on the right hand side
are finite.

proof. By the Holder and the Young inequalities,

(- +01) " f * g * hl| Lo (m)

S *g* R pe (R)

S W llzez®)llg * bl Les w)

S llzrz @) llgll ea ) 17| s (m)

S+ 0P Fllzew ¢+ 65) gl Loyl (- + 64) Al 22wy,
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where
1 1 Qe 1 1 €
— = - S *:*'Fﬁ—ﬁi,
p1 P at+fB+y+r p2 2 at+tB+y+k
1 1 1 1 1 YE
—=—+1-—, — =5ty =TT
ps D1 D2 pa 2 at+f+y+E
1 1 KE
ps 2 a+B+y+rK
Therefore, we obtain the lemma. Q.E.D.

Proposition A.1.2.1.
||<7'> u(o — p,& —n)v(p,n)w(r — o, f)HLl(R XRe XRy XR, XRy;)

< Nl ovre 1] yoa72 ol o

forcmyuvwéXOl/2

proof. Let
N(Ta§7a'7p7€) = ma‘X(|T|a |O- _p:l: |§ - 77||7 |p:l: ‘77||a |T —o+t |§||)a
Then we have |£] + | — n| + |n| < 4N. We also separate the integral region as follows
Bl = {(7'70"§,P>77) |N(T,§,U,p, )
:{(T7Ua§7p7n) |N(Ta§70'7p7 )_|U_p:t‘€ 77||}
BS = {(730,5,/3,77) |N(7',57CT,/7, ) |pi |77||}
B4:{(7'707§»P»77) |N(77£,07p7 ) |7—_0—:|:|£‘|}

By Lemmas 2.2.7, A.1.2.1 and the Hélder inequality,

IxB, (1, €, 0,m)(T) " (o — p,& = n)0(p, MWO(T — 0, )| L1(R, xRe xRy xR, xR,)

STy g T A )

(o = p, & —n)v(p,muw(r — 0,8l (r, XRe XRy XR, XR,)
SO T AN £ 16— a2 € = n)ll 2 e.
K £ 102507, ) 2 | g g I £ 160207, )23, xme)

< Nl yosz2 oll cose ol o

Moreover,

IXB, (T,&, 0,m)(T)~ ' u(o — p,§ —n)v(p,n)uw(r — o, §)||L1(R XxRe xRy xR, XRy;)
S THO T )T o — p£ (€ — )/

u(o — p, & = )v(p,Mw(T — 0,8)|| L1 (R, xRe xR, xR, xR,)

SOV ) T £ € = nl)Pa(r, € — )2 ey

A £ D20 D 2@ | 21 ) 16T £ 1D 2B (T, )l 2 (R o)

S lullggaallol el oo

The other integrals are estimated similarly. Q.E.D.
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Then we show the charge conservation with Proposition A.1.2.1. Let (ug,vo) € L*(R) x L*(R) and
let T' > 0 sufficiently small. Then we have a pair of extensions (u,v) € X2 XO /2

of the solutions
for the Cauchy problem (A.1.1.1) such that for any ¢ € [0,T],

u(t) = Uy (H)ug — in / UL (t — ¢ ya(@yo()dt',
0
v(t) = Ua(—t)vg — ic*lX/ Us(t — t)u(t')?dt’.
0

Then
lulZ @) = HUl(t)UH2L2(R
2
() —Z)\/ Uy (=t )u()o(t))dt
L*(R)
= ||UO||%2(R) — 2:[11’1(’&0 A/O g[Ul(—tl>u(t/)U(t/)]dtl)
t 2
+ | [ s omeear
0 L2(R)
We have
exp(itt) —1
/ sy = [ D= fryar
iT
for any f € L'(R) such that f € (-L*(R). Moreover, the inequalities

Hsmv]||mR§;L1<Rt» < ullzageny o) < fullonre ol goura

hold by the Hélder inequality and

////R %a@ —a,n—&)(p,n)u(o — -, €) dé dodndp € L*(R)

by Proposition A.1.2.1. Then

2

H)\/t UL (=t Yu(t o (t')]dt’

L2(R)

= 2Re / / AF[u(t)v Ag[ / /Ul(t’—t”)mv(t”)dt” dt'de
— 9Im / / STl o () [0 (o] — STu(P)])dt'de
- 21m<a0 A /O s[Ul(t')u(tf)v(t')}dt')

+ 2Im )\/////R %ﬂ(p o, —&)i(p,n)lo — 7,£) dr dé do dn dp.

Finally we obtain

lu(t) 72y — luollZa gy

— 9Im )\/////R e}{p(i:#ﬂ(p o = &ilo — 7.8 (p, ) dr dé do diy dp.
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Similarly, we have
[o(OI72 @y = |U2(=t)0] 72wy
t
c—lX/ F [U2(t)u(t')?] dt’)
0

13 /O S0~ Yu(t')2d]

= ||UO||L2(]R) — 2Im (’lA]O

L2(R)
and
t 2
13 / SalUn (¢ )u(t)2)dt"
0 L2(R)
t t’
= —2Im / / IS [u(t)?] S[icl)\ / Up(t" — t)u(t)2dt" | dt'd¢
RJO 0
t
= 2Im(f)0 071X/ ”S[Ug(t')u(t’)Z]dt')
0
+ %Im X///// %ﬂ(o = p, & —n)u(p,n)v(e — 7,€) dr d§ do dn dp.
]RE')
Then

(12w = llvollZm)

= 2¢ 'Im X/////RS %ﬂ(o —p, & —n)u(p,n)o(o — 1,€) dr dé do dn dp.

In addition,

ik [[[[[[ EPED= o o~ it )i € dr dedodndp
—Im)\/////oeXp ”:)) Wo — p,& —n)ilp,n) B(o — 7€) dr de do dndp
~ Tm\ ///// exp( m)) W+ 0 —p, & —n)ulp,n) 3(p, &) dé do dn dp’ dr
~ Tm) /////R %a(y =T e nValeT — ) B €) dé do’ dydyl dr’

N
= Im\ ///// Ma(pl —ol,n — f’)ﬂ(a’ _ 7_/’5/) 5(P/»77/) dfl do’! dﬂ' dp/ dT/,
5 1T

where p =0 —71,0'=p—71,7 = —7,& =n, and ¥/ = &. Finally, we have

)72 @y + o172y = lluoll72 ) + cllvollZz(r)
for ¢ € [0, 7.

A.1.3 Proof of Theorem A.1.1.2

Here, we show how the H'/2(R) norms of u and v are controlled. At first, we show the conservation
law of charge and energy.



A.1.3. Proof of Theorem A.1.1.2 63

Lemma A.1.3.1. Let (ug,vp) € Hl/Q(R)XHl/Q(R). Let (u,v) € C(R; HI/Q(R)XHUQ(R»ﬂcl(R? H_l/Q(R)X
H~'/2(R)) be solutions to the integral equations (A.1.1.2) for the initial data (ug,vo). Then (Q(u(t),v(t)) =
(Q(ug,vg)) for any t, where

Q(f,9) = 122 + cllglliz)-

proof. The following formal calculations are justified by extending L?(R) scalar product to H~'/2(R)-
H'2(R) duality:

d
anu(t)”?ﬁ(n@ = 2Re(Opu(t) | u(t)) /2 (w)

(
= 21m<z@tu( ) | u( )>H1/2(R)
= 2Im(—(m = A)"2 u(t) + Nu(t)o(t) | u(t) 2wy
= 2Im(Ao(t) | u(t )2>

d
%”v(t)”%,Z(R) = 2Re(0pv(t) | v(1)) g1/2(m)

(
= QIm(zatv( ) | ”U( )>H1/2(]R)
= 21m< ( )1/2 ’U(t) + c_1Xu(t)2 | ’U(t)>H1/2(R)
- —glm()\v(t) | u(t)?).
(&
Therefore, we obtain that

[u(t)[[ 22y + o172 = luoll2w) + cllvollFz

for any t.
Q.E.D.

Lemma A.1.3.2. Let (up,vo) € H/?(R)x H'/2(R). Let (u,v) € C(R; H'(R)x H'(R))NC*(R; L?(R) x
L?(R)) be solutions to the integral equations (A.1.1.2) for the initial data (ug,vo). Then E(u(t),v(t)) =
E(ug,vo) for any t, where

1 C
E(f,9) = l|(m = A)3 fl[ 72 + 5ll(m3 — 8) /9] — Re(Ag | £2) (A.1.3.1)
for any t.
proof. ||(m?2 — A)1/4u||%2(R) and ||(m? — A)1/4v||2LQ(R) are differentiable and we have

2 — AV )2 ey = 2Re(=i0u(t) + Na(o(?) | Q)
= Re(W(®) | a,(u(t)?)

d 1 , A
%H(m% - A)4v(t)||2L2(R) = 2Re( — 100 + Eu(t)2 atv(t)>
2
= ZRe(@,() (1) | u(t)?).
Therefore, we obtain that E(u(t),v(t)) = E(ug, vg) for any t, Q.E.D.

By Lemmas A.1.3.1 and A.1.3.2, we obtain the H'/?(R) boundedness of solutions to (A.1.1.2), as
shown below. By using this H'/?(R) boundedness of solutions, Theorem A.1.1.2 follows from a similar
proof to Theorem 3.1.1 with the corresponding approximation integral equations. At the last of this
section, we show the H'/2(R) boundedness of solutions to (A.1.1.2).
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Proposition A.1.3.1. Let (up,v0) € H'(R) x H'(R) and let (u,v) € C([-T,T]; H'(R) x H'(R)) be
solutions to the integral equations (A.1.1.2) for the initial data (ug,vo) with some T > 0. Then

sup lu(®) | gr/2m@) + [0 g1/2@) S V E(uo, vo) + Q(uo, vo).

te[—T,T)

proof. It is enough to show

c
sup ||(m?; — A)l/Qu(t)HQLZ(R) + §H(m3 - A)l/QU(t)H%z(R)
te[-T,T)
S E(Uo, UO) =+ Q(u()a UO)Q'
We note that by the Holder and Gagliardo-Nirenberg inequalities,
(Ao(t) [ w?(@)] S ()] w7 @)
S o@lle2@ )l e @) 1)l g1/ @)

< 2= Q0. o) (m = ) /2u(0) e

Then
1 c
[(m%, = A)Tu(t)|[ o) + 5 ll(m3 - A)1/4U(t)”%2(R)
2
= E(ug,v) + Re(Mv(t) | u(t)?)
1
< E(ug,vo) + %Q(UOWO)H("MQL = D) 2u(t)| 2wy
This shows

1 C
[(m2 — A)Tu(t)]|F2 ) + §||(mi = A ()7 m
4
< 2E(ug,v0) + EQ(UOWO)Q-

Q.E.D.



Chapter A.2

Study of Weighted Integral

A.2.1 Introduction

In this chapter, we revisit Lemma 1.3.11 by studying the boundedness of integral operators of convolution
type in the Lebesgue space with weights. Moreover, a special attention will be made on an optimality
criterion with respect to the growth rate of weights.

To illustrate the problem, we revisit the standard property that the Sobolev space H*(R™) =
(1 — A)~=*/2L%(R™) forms an algebra for s > n/2 from the point of view from the weighted L?(R")-
boundedness of convolution. The corresponding bilinear estimate in the Sobolev space takes the form

ol ars ey < Cllal e e 0] 110y (A2.1.1)

The bilinear estimate of this type was may be traced back at least to the paper by Saut and Temam
[85]. There are many papers on further refinements and improvements on this subject as well as various
applications to nonlinear partial differential equations. (see for instance [2, 23, 28, 31, 34, 35, 56, 57,
60, 61, 69, 73, 83, 85, 87, 89, 90] and references therein.)

In the Fourier representation, multiplication of functions is realized by convolution of the corre-
sponding Fourier transformed functions:

§(un) (€) = (2m)"/2 (0% 0)(€) = (2m)"? / a(e — n)o(m)dn

and the estimate (A.2.1.1) is equivalent to the bilinear estimate of the form
||OJ(11 * f}) ||L2(Rn) < C||wﬂ||L2(Rn) ||OJ1A]HL2(]RT,,)

with w(€) = (1 + [€|2)*/2, which is also rewritten as

() ()]

By a duality argument, (A.2.1.2) is equivalent to the trilinear estimate of the form

Lagn) < Cllaflpz@e) 9] L2 (ny.- (A2.1.2)

1 1 . .
/ n / M) Sy gy M€~ MR (©) dnde

< Cllall 2@ 191 L2 ey 19| L2 R - (A.2.1.3)
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By a simple change of variables, (A.2.1.3) is equivalent to

1 | N
| [ st mg i@t +n) dnde

< CllilLz@n) 9] L2 @n) D] L2 ) - (A.2.1.4)

This gives a motivation to study the boundedness of the integrals of the form

/n / wo(z + y)wi(z)w2(y) f(z + y)g(z)h(y) dz dy (A.2.1.5)

with weight functions wg, wy, we, where wy and wsy are supposedly the inverse weight of wy.
The following theorem is basic in this direction.

Theorem A.2.1.1. Let 2 < p < oo and let wy, wy, wy be non-negative, continuous functions on [0, 00)
satisfying

M, = ilig wif (2r)wy (r)|Jwi (] - DllzrBry) < 00, (A.2.1.6)
Mp = sup wif (2r)w (r)[wa(| - Dl zr(B(ry) < 005 (A2.1.7)
where
wif (r) = sup wo(p),
0<p<r

B(r) ={z e R"; |z| < r}.
Then, the trilinear estimate
[ wotia sl wnlel) waly) 1 + v)gCa)hio)] de dy
< (M1 + M) || fll e @y 9]l Lo ey 1] o e (A2.18)
holds for all f € LP(R"™), g, h € ¥’ (R™), where p’ is the dual exponent defined by 1/p+1/p' = 1.

proof. For f € LP(R™) we define the translation by y € R™ by (7,f)(z) = f(z +y). For S C R", we
denote by xg its characteristic function. Then, by the Holder and Minkowski inequalities, we obtain

// i wo(|z + y|)w1 (|Jz))w (ly) | f (x + y)g(z)h(y)| dx dy
< //R”XRn w#(2|y|)XB(|y|)(-T)wl(|x‘)w2(|y|)|Tyf(q;)g(x)h<y)‘ dz dy

< /R wil ClyDlxaayhwi(| - Do 175 - 9l Lo @y w2y Aw)] dy

< Millll7y f - gll Lo ey | oy 1ol £ (rem)
= M| fllzr@nllgll Lo oy 1l 2o )



A.2.1. Introduction 67

where LP(R}) is the LP(R™) norm for the variable y. Similarly,

i oll o el -+ D) dody
< [ i Clelyxaqa @ elwasDlr.woh)] e dy

< /R wg @le)lxs(enwa(] - Dlize@n 7 f - kil Lo @oywr () |g(2)| da

< Mall[l72 f - hll o (gl 2o

9l (R™)

= Mo fll e @) 91l Lo ey |1 Pl Lo (R -
Summing those inequalities, we have (A.2.1.8). Q.E.D.

Corollary A.2.1.1. Let 2 < p < 0o and let wy, wy, wy be non-negative, continuous functions on [0, 00)
satisfying

M= SU%WO(QT)W(T)HMU “DzeBey) < oo, (A.2.1.9)
>
M) = st;;gwo(2r)w1(r)||w2(| “Der ey < o0, (A.2.1.10)
and the estimate
wo(r) < C'wo(R) (A.2.1.11)

for any r and R with 0 < r < R with C' > 1 independent of v and R. Then, the trilinear estimate

/ / wo(|z + 1) wi(|]) waly]) 1£(y + 2)g(x)h(y)| dz dy
< C'(M] + M|l 19l 1o oy 1 o
holds for all f € LP(R™), g, h € L¥' (R").

proof. By (A.2.1.11), we have w (2r) < C'wo(2r) for any r > 0. Then, the corollary follows from
Theorem A.2.1.1 Q.E.D.

The bilinear estimate (A.2.1.1) follows by choosing p = 2, wo(r) = (1 4+ 72)*/2, wi(r) = wa(r) =
(14 r2)~%/2 with s > n/2, which ensures the required square integrability. Moreover, Lemma 1.3.11
also follows by choosing p = 2, wo(r) = (1 +72)~%2 wi(r) = (1 + )72, and wa(r) = (1 + r?)=¢/2
which also ensures the required square integrability. A natural question then arises in connection with
minimal growth rate at infinity in space for wg, 1/wy, 1/wy. Weight functions of the form w(r) =
(14 7r2)"/2(1 +log(1+7))* with s > 1/2 may be the first candidate with wg = w, w; = ws = 1/w. This
is not optimal since w(r) = (1 +r2)"/2(1 + log(1 +7))"/2(1 + log(1 + log(1 + r)))” with s > 1/2 has a
slower growth with keeping the required square integrability.

To describe emerging extra logarithmic factors in such an iteration procedure, it is convenient to
introduce the following set ¥ consisting of positive, continuous functions w on [0, co) satisfying 1/w €
LL (0,00) and the following assumptions (A1) and (A2):

loc

(A1) For any a € R, there exists C, > 1 such that for any r and R with 0 < r < R, w satisfies the

inequality
r @ R a
w(r)</0 w(lp)de) gCaw(R)<A wgp)de) .
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(A2) There exists C' > 0 such that the inequality
w(2r) < Cw(r)
holds for all r > 0.

Example 1. The function w defined by w(r) = 1 + r belongs to ¥ with C, = 1 for a > —1,
C, = e*t(—a)~ for a < —1, and C = 2.

Example 2. The function w defined by w(r) = (1 4+ r)° with s > 1 belongs to ¥ with C, = 1 for
a > —s,

as—a—s 2s4+a—as

Co=(—a)"%a+s—as) =1 s 1

for a < —s, and C = 2°.
Example 3. The function w defined by w(r) = (1412)%/2 for s > 1 belong to ¥ with C, = 1 for a > 0,
Cu = % (—a) 1% (1 492 )t/

for a < 0, where r; , is defined uniquely by

Ts,a a
Foa(l+72,)"2 ! ( [ a e 1) _
0

and C' = 25.

Example 4. Let w(r) = 1+1log(1 + ) and a = —2. Then,

—2 -2
"1 "1 1

as 7 — 0o0. This means w & % .

Example 5. The function w defined by w(r) = (1 + r)(1 + log(1 4 r)) belongs to ¥ with C, = 1 for
a >0,
Co=(=a)"*(1+ 7ZS,LL)71(1 + log(1 + 7:3,&))71(2 + log(7s,a))*

for a < 0, where 75 , is uniquely defined by

(2 +log(1 + 7)) (1 + log(1 + log(L +7.0)) ) = lal,

and C =2+ 2log 2.
Remark A.2.1.1. For w € &, we apply (A1) with a =0 to obtain
|
— dp
/0 w(p)
2r T T

1 1 1

< —dp:/ —dp+/ ——dp
/0 w(p) o w(p) o wip+r)
)

< (1+C /0 ﬁdp. (A.2.1.12)
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Theorem A.2.1.2. Let 2 <p < oo and let w € F. Let wy, wyi, wy be defined by

wntr) = (e ([CLapen)
wi(r) = (1 + r)(”l)/pw(r)l/p</or ﬁdpr 1) -
wo(r) = (1+ r)(”l)/pw(r)l/p</or ﬁdp + 1) h

with a,b,c € R satisfying either (i) or (ii):
(i) a+b+c>1/p, a+b>0, a+c>0.

(i) a+b+c>1/p, a+b>0, a+c>0.

Then, there exists C > 0 such that the trilinear estimate

/ / e+ gl (alwa((y)l @+ (ko) dy
’V'LX n
< C 1oy lgl o oy 1A ot oy (A.2.1.13)

holds for all f € LP(R™), g, h € L? (R™).

Remark A.2.1.2. In the case fooo w™t(p)dp < o0, we can choose any a,b, c for (A.2.1.13). In the case
where p = 2 and b = ¢ = 0, assumption (i) is equivalent to a > 1/2. In the case where p = 2 and
b =c > 0, assumption (i) is equivalent to a > 1/2 — 2b with a > —b. In the case where p = 2 and
—a = b= c, assumption (i) breaks down and (ii) is equivalent to —a =b=c> 1/2.

Proof of Theorem A.2.1.2. We prove that wg, w1, wy defined in the theorem satisfy the assumptions
(A.2.1.9)-(A.2.1.11) in Corollary A.2.1.1. Let r and R satisfy 0 <r < R. By (Al),

v —ap R —ap
w(r)(/o w(p)dp—i—l> < Capw(R)</O wdp—i— 1) ,

wo(r) < CYP wo(R). (A.2.1.14)

—ap

which yields

By (A2) and (A.2.1.12),

wp(2r) = (14 2r) " D/Pu(2r) /7 ( / ! %dp + 1>
o w(r

Tl

< 2=1/p(1 4 ) (=D /P VPP (1 4 )+ / B
o w(p)

=2 =D/PCYP(1 4 Cy) "Vt (r), (A.2.1.15)

which yields

—a—b
wo (2r)w: (r) < 2 D/PCHP(1 4 Cp) "9+ (/ ﬁdp + 1> . (A.2.1.16)
0



70 Chapter A.2. Study of Weighted Integral

We estimate wy(| - |) in LP(B(r)) as

—pe 1/p
T 1 p 1
Dl < Pl O Alwron Lt A21.1
s ). (Bm)wnl( / w(p)< [t 1) a) (A2L17)

where wy,_1 is the surface measure of the unit ball. To estimate the right hand side of (A.2.1.17) and
M of Corollary A.2.1.1, we distinguish four cases:

(i) c<0. (i) 0<ec< 1/p. (iii) ¢ = 1/p. (iv) ¢ > 1/p.
(i) In the case where ¢ < 0, we estimate

—pc

[ ([ i) e [ ([ siget)
(/0 w(ldp—l-1>1pc.

1/p—a—b—c
[
0 w

Then, M/ is estimated as follows:

M < sup 2= V/POL/P(1 4 Cp) -0+
r>0

2(n—1)/Pcl/p(1 + Co)( a)+

(ii) In the case where 0 < ¢ < 1/p, we estimate

—pe 1—pc
U AV 1 Tl
[ ()(/ ()d> d((/ ()d> )
1 T o
< 1“pC<UA UKU)dJ_+1> .

M| < ——2=D/PCl/p(1 4 )9+,
1—pc

Then, M] is estimated as follows:

(iii) In the case where ¢ = 1/p, we estimate

/Orw(lp)</0pw(10)d0+1>_1dp:10g<1+/0Tw(1p)dp>.

Since a + b > 0, M is estimated as follows:

M < CYP(1 4 Cp)=9)+

—a—b
| |
-sup2n=1/p / dp+1 log 1+/ ——dp
r>0 o w(r) o w(p)

= 20=D/PCl/P(1 4 Cp) "D+ supr—2Plogr
r>1

1

2(%—1)/1’01/17(1 + CO)(—a)+ m_
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(iv) In the case where ¢ > 1/p, we estimate

T ro e
/ w<p>(/o w<a>d”“> &
1 "o o

1
< .
“pc—1

Since a 4+ b > 0, M] is estimated as follows:
M < #Q(H—l)/pcl/p(l + C())(_a)+~
1= pc—1
M is estimated similarly. Then, the estimate (A.2.1.13) follows from Corollary A.2.1.1. Q.E.D.

In a way similar to the proof of Theorem A.2.1.2, we have the following theorem for p = co.

Theorem A.2.1.3. Let w € F. Let wg, wy, we be defined by

wlr) = ([ w5a0+1) "
wlr) = ([ osae+1)

weo(r) = (/OT ﬁd/ﬂr 1)_C

a+b+c_>0 and a+b_+c¢>0,

with a,b, c € R satisfying

where b_ = —max(0, —b) = min(0,d), c— = —max(0, —¢) = min(0, ¢).
Then, there exists C > 0 such that the trilinear estimate

/ / ol + (el @ + p)o(@h(o)] do dy < 1l aon gl e e

holds for all f € L*°(R™), g,h € L*(R™).

Theorem A.2.1.2 shows the importance of the class F to the trilinear estimate such as (A.2.1.8).
Accordingly, below we study the class & in details. In Section A.2.2, we study a basic property of %.
In Section A.2.3, we introduce arbitrarily and infinitely iterates of logarithm in connection with ¥. A
part of the arguments in Sections 2 and 3 are essentially given by Ando, Horiuchi, and Nakai [1]. We
revisit them in the present framework for definiteness. In Section A.2.4, we study optimality of Theorem
A.2.1.2.

A.2.2 A Basic Property of ¥

In this section we prove:
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Proposition A.2.2.1. For w € ¥ and a € R, we define W, by

Wa(r)zw(r)</0rw(lp)dp+1> , r>0.

Then, W, € %.
proof. By definition, we see that W, is a positive, continuous function on [0, 00) satisfying 1/W, €
L{ (0,00). By (A2) and Remark A.2.1.1,

Wa(2r) < cw(r)</0 rw(lp)de) < C(Co+ 1) W (1),

where a4 = max(a,0). It remains to prove that W, satisfies (Al); For any a,b € R, there exists Cq
such that for any r» and R with 0 <r < R,

Wal(p)

holds. Let 0 < r < R. We note that (A1) property of w is equivalent to W,(r) < C,W,(R). We
distinguish three cases:

b b
L | S|
Wa(r)< /0 o 1) < Ca,bwa(R)< /O dp+1>

() b>0.  (ii)b<0,a>0.
(i) In the case where b > 0, we estimate

b b
" 1 L |
Wa(r)</0 Wa(p)de) gCaWa(R)</O Wa(p)de)
R b
s@%(R)(/O Wal(p)de),

(ii) In the case where b < 0, a > 0, we first notice that

1 R [b]
WG<R></0 Wa<p>dp“>

1 U | LS| i
A </ o d"’“)

(i) b < 0, a < 0.

as required.

Wa(p)
1 |b]
9(Ib]=1)+ T R
= W.m) <</ Wa<p>dp“> *(/ wa<p>dp> )
C,208-1)+

- N (S P A 1o
Wa(r) (/ mmdp“) T W@ </ Wa<p>dp> '

(A2.2.1)
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To estimate the second term on the right hand side of the last inequality of (A.2.2.1), we remark that

KRw&mdp:fﬁuéﬁ(préf”**>_zp
S/er(lp)</0rw(la)da+l>_adp
- (/()d)/

w(p)

and

Therefore,

IA
A/~ ——~ &

o
1 T
ngWa(r)</0 Wa(p)derl) . (A.2.2.2)

Combining (A.2.2.1) and (A.2.2.2) and taking the inverse of the resulting inequality, we find that W,
satisfies (Al).

(iii) In the case where b < 0, a < 0, we use the equality

la]+1

Tl 1 | |a]
— dp+1= / dp+1 +
A Walp) |ﬂ+1<oqwm ) jal +1




74 Chapter A.2. Study of Weighted Integral

to estimate

b
T 1
W, (r) </0 7Wa(p) dp + 1)

1 " a+(la|+1)b
< ww“)(/o w<p>“>

R 1 a+b—ab
< (la| + D'Cyrp—apw(R ——dp+1
(| | ) +b—ab ( ) 0 ’lU(p)

R 4 (lal+1)b
= |6
(|a| + 1) Ca+bfabWa(R) </0 w(p) dp + 1)
S (|a| + 1)‘blca+b—abWa(R) (

dp+1],
/0 Wal(p) ™

as required. Q.E.D.

A.2.3 Infinitely Iterated Logarithm

In this section, we introduce arbitrarily and infinitely iterated logarithm functions in connection with
class . The definition is different from that of [1] in the sense that convergence factors are introduced
in terms of the parameter 6 € (0, 1].

Definition A.2.3.1. Let 0 < 6 < 1. For non-negative integers n, the following functions lg ,, : [0,00) —
R are defined successively by:

loo(r) =1+,
lgvk(’l’) =1+ 910gla7k_1(T), k> 1.

Moreover, we define Lg i, : [0,00) — R by

k
LQJC(?") = H lg,j (7‘)
j=0

Remark A.2.3.2. For any k >0, lyp1(0) = Lg x(0) = 1. Moreover, lg (r) > 1 and Lg x(r) > 1 for all
r >0 since lg i, and Lg , are increasing functions. Explicitly, the derivative ll@,k: s given by

1
Lop—1(r)’

By a successive use of the elementary inequality log(1 + 1) <r forr > —1,

lyp(r) =0" r > 0.

0 <loglgx(r) < 0logly_1(r) <---<60%loglyo(r), r>0.

(oo}
This implies that for any 6 with 0 < 6 < 1, the series Zlog lo. k(1) converges with estimates
k=0

1
1-46

(o)
0< Zlog lop(r) < loglgo(r), r>0.
k=0
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Definition A.2.3.3. For any 6 with 0 < 0 <1, Ly is defined by
Lo(r) = H lo (1), r > 0.
k=0

Remark A.2.3.4. By Remark A.2.3.2, if 0 < 0 < 1, Ly converges with estimates
1< Lo(r) < (14n)YA=9 >0,

If 0 =1 and r > 0, we prove that Li(r) = 0o by contradiction. Assume that L1(r) < co. Then, for any
k we have

log L1 (r) > log Ly 1 (r)

k
" d
=/ Zlogll,j(p))dp
/0 dp \ =5
k
v 1
/0 = Ly;(p)
k

reL 1 B 1 (k+1)r
Z/o jz::oLLk(’“)dp_rZLl,k(T) = Ly(r) ~

=0

which yields a contradiction for k sufficiently large.
The main theorem in this section now reads:

Theorem A.2.3.1. For any 6 with 0 <6 <1, Ly € F. Moreover,

< 1
/0 mdr = o0. (A.2.3.1)

To prove Theorem A.2.3.1, we introduce some preliminary propositions. From now on, 6 denotes a
real number with 0 < 6 < 1 without particular comments.

Lemma A.2.3.1. For any a € R, there exists Cy , > 1 such that for any r and R with 0 <r <R

r 1 @ R 1 @
(I+7) (/0 mder 1) < Cya(l+R) (/0 mdﬁ 1) (A.2.3.2)

holds.
proof. For a > 0, (A.2.3.2) holds with C, = 1 by monotonicity. Let a < 0 and let my be defined by

"1
mg(r):/O md/ﬂrl.

Then,

, B 1 me(r) mo(r)
my(R) = Ly(R) = lo,1(R)lg,0(R) = Oloa(r) "

(R). (A.2.3.3)
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By (A.2.3.3), we have

molT R
< mg(r) + 91091((2) / lg.1(p)dp

me(r)

= mo(r) + e (19,1(3) _ ze,l(r))

me(r)

- 919}1(7“)
By Remark A.2.3.2 and (A.2.3.4), we obtain

(1 + T)mg(r)a — (me(T’)> (1 + 7’) (1971(7"))(1

lo(R). (A.2.3.4)

with some constant C, as required. Q.E.D.

Lemma A.2.3.2. For anyr,s >0,
Lo(lg,o(s)r) < Lg(s)Lg(r). (A.2.3.5)
proof. 1t is sufficient to prove that
lok(lo,o(s)r) <lgx(s)lgx(r) (A.2.3.6)
by induction on k£ > 0. For k =0,
loolloo(s)r) =141lgo(s)r=1+ 1+ s)r <(1+s)(1+7)=1g0(s)lgo(r)
Let k > 1 and assume (A.2.3.6);—1. Then,
lolo.o(s)r) =1+ 010g (lok-1(loo(s)r))
<1+ 6log (le,k—l(s)le,k—l(""))
< (1 +0log l97k_1(8)) (1 +0log lg7k_1(7“))
<lo,k(s)lo,k (1),
which completes the induction argument. Q.E.D.
Lemma A.2.3.3. For any non-negative integers k and j, lg r4; is represented by lg ) and lg ; as
lowss(r) = lo.s (le,k(r) - 1) (A.2.3.7)

for all r > 0.
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proof. We prove (A.2.3.7) by induction on j. For j = 0, we have
loi(r) =lo,0 (la,k(T) - 1)
for all £ > 0 by definition. Let 7 > 1 and assume that

lok+j—1(r) =lgj—1 (le,k(r) - 1)
holds for all £ > 0 and r > 0. Then,

loers (r) = 1+ 010g (lo s ( )
= 1+ 01og (Ig,j-1(lo.x(r) — 1))
1o (lox(r) - 1)
for all £k > 0 and r» > 0. This completes the induction argument. Q.E.D.

Proof of Theorem A.2.3.1. Let r, R satisfy 0 < r < R. Then, by Lemma A.2.3.1,

Le(T)(/OTLQ()dprl) 1+7’<Hl0k ></7lL91(p)dp+l>

a

Moreover, since lg o(1) = 2, we apply (A.2.3.5) with s = 1 to obtain
LQ(QT) S Lg(].)Lg(T)
Therefore, Ly € . We prove (A.2.3.1). It suffices to prove that there exists a sequence {rg;k > 0} of

positive numbers such that
Tk 1
——dp =
/o Lo(p)

as k — oo. Let rg = 1. Then, for any k > 1 there exists a unique 7 > 0 such that I . (r%) = lg,o(r0) = 2
since lg i, is an increasing function with lg ,(0) = 1 and lim, o lp 1 (r) = 00. Let 0 < p < r;. By Lemma
A.2.3.3,

Lg( La k— 1 H l0 k+j
< Lgk-1(p) H lok+j(Tk)

= Los1(p) [] 1o.s (ZM(”) - 1)
j=0

= Lo x—1(p) Lo (le,k(m) - 1)

=Ly r_1(p) Ly (19,0(7’0) - 1)
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By (A.2.3.7) and (A.2.3.8),

TR 1 |
dp > / dp
/0 Lo(p) Lo(1) Jo Lok—1(p)
1 1
— -1
Lo(1 ek(lg"““’“) )
1 1

~ Lo(1) 0% o

~—

as k — oo, as required. Q.E.D.

A.2.4 Optimality of Theorems A.2.1.2 and A.2.1.3.

In this section, we consider optimality of Theorems A.2.1.2 and A.2.1.3. To this end, we divide weight
functions w € F into two cases:

I:/ Lclr<oo. H:/ idr:oo.
o w(r) o w(r)

Theorem A.2.4.1. Let 2 < p < oo and let w € F. Let wg, wi, we be as in Theorem A.2.1.2 with a,
b, ce R.

(1) In the case I, the trilinear estimate in Theorem A.2.1.2 holds for any a, b, ¢ € R.
(2) In the case II, let a, b, c satisfy one of the conditions (i), (), (v), (vi):
(tii) a+b+c<1/p. (iv) a+b<0. (v) a+c¢<O0.

(vi)a+b+c=1/p and a+b=0o0ra+c=0".

Then, the trilinear estimate in Theorem A.2.1.2 fails for some f € LP(R™), g, h € o (R™).

Remark A.2.4.1. The conditions (iii), (iv), (v), and (vi) in Theorem A.2.4.1 consist of the negation
of the condition “(i) or (ii)” in Theorem A.2.1.2.

proof. In the case I, we easily see the trilinear estimate holds with any a, b, and ¢. To give a counter
example for the trilinear estimate in the case II, we divide the proof into three cases:

Ha+b+c<l/p. ({)a+b<Oora+c<0.
(iii) a+b+c=1/pand “a+b=0o0ra+c=0".

(i) In the case where a + b+ ¢ < 1/p, let § > 0 satisfy 6 # 1/p — ¢ and let

|| —1/p—3¢
ﬂ@=ﬂ+@b“”mMM)W<A J@@+Q ,

, , |z —1/p' =46
ola) = hta) = (1 1al) =D el ([T )
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Then, f € LP(R™) and g, h € L? (R™). For any = € R" with |z| > 2,

/1<| I<|x]/2 wo(|lz +y|) f(z + y)w2(ly|) h(y)dy

oyl q ~1/p—a—3
S L i)
1<lyl<el/2 \Jo w(p)

. (1) 1 vl q —1/p'—c—¢
) s (a1 a4 (241

y (Al),if 1/p+a+d > 0, then for any y € R™ with 0 < |y| < |z|/2,

2
300 )—1/p—a—(§(/|m 1 )—1/17—0.—5
U | — dp+1 . A.2.42
2 o w(p) (A.242)

|z+y| 1 —1/p—a—¢
4 )
w(p)

Y

|x|/2 >—1/p—a—6

< |m\ —-1/p—a—¢
< p/ 2) w2 1)
< Iml

2Cy w p)

Y

lz| 4 —1/p—a=$
> (200)1/P+“+5</0 w(p)dp-l—1> : (A.2.4.3)
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In addition, if 1/p — ¢ — & > 0, then for any x € R™ with |z| > 4,

/ ! Wl ~1/p e
L+ Jy) " (/ dp+1> dy
A IR P
|=|/2 r n—1 1 T —1/p'—c=45
= Wn— T ——dp+1 d
N PK <1+r> w@»(A w(p) ™’ ) '
217’”’&)"_1 </z|/2 1 ) 1/p—c—¢ </1 1 ) 1/p—c—6
D dr+1 - dr +1
1/17—0—5( 0 w(r) o w(r)
2w,y (/2 1 )‘1/P+C+5
> — | 1- ——dr+1
1/p—c—(5< o w(r)
|z]/2 1 1/p—c—§
. (/ dr + 1)
0 w(r)
1-n 2 —1/p+c+d
1/p—c—46 o w(r)
1 rl=l 1 1/p—c—3d
s —mdr 1
L o)
1/p'—c—6—n 2 —1/p+c+d
— f/"’_l_(s 1</ ! dr+1>
(1/p—c—08)Cy/P~° o w(r)
|z 1 1/p—c—§
: dr + 1> . A2.4.4
(A w(r) (A24.4)

If1/p—c— 36 <0, then

/ | o1y 1 lyl 1 —1/p'—c—6
L+ y[)—"" (/ dp—l—l) dy

1§|y\§\w|/2( v w(ly) \Jo w(p)

217nwn_1 </1 1 >1/pc§ (/|z/2 1 )1/;005
e ——dr +1 - Lot

up—c—6< 0 w(n) 0 )

2l=n, </1 1 >1/p—c—5 (/2 1 >1/p—c—5

> ——dr+1 — — dr+1

1/p— C—5< o w(r) o w(r)

: (/le wzr)dr + 1)1/,, } 6. (A.2.4.5)

By (A.2.4.1), (A.2.4.2), (A.2.4.3), (A.2.4.4), and (A.2.4.5), there exists a positive constant C' such that
for any x € R™ with |z| > 4

/1< 1<|xl/2 wo(lz +yl) f (= + y)wa(ly[)h(y)dy

|| 1 —a—c—20
>C (/O it 1) : (A.2.4.6)
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Finally by (A.2.4.6), we have

/ / wo(lz + y)wn (e wa (1Y) £ (= + 1) g (2)h(y)| da dy

20 [ a0 () et
n—1 ,c0 x —1/p'—a—b—c—36

con(s) e[ )

> Cwn(:>n1 log (/000 ﬁp)der 1> — log (/04 ﬁdﬂ+ 1))

=0

—1/p’'—a—b—c—36
) dz

withd < (1/p—a—b—c)/3.
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(ii) In the case where a+b < 0 or a+ ¢ < 0, by symmetry, it is sufficient to give a counter example only
in the case where a+b < 0. Let f and g be as in the case (iii) with 6 < —(a+0b)/2 and a+1/p+6 # 1.

Let

1

h(z) = XB(1)($)m~

Then, by (A.2.1.15), (A.2.4.4), and (A.2.4.5),

L ot sl (el £ o + g @)h(0) dy de

|z+y] 1 —a—1/p—§
o (L )
z>2 Jyl<1 \Jo w(p)

P B O L B R
a0 () wa ) !

dr

dr

N
Zc(log(/ngmdpﬂ) _log(/ngmdeD

with some positive constant C, as required.

(iii) In the case where a+b+c¢=1/p and a+b =0 or a + b = ¢, by symmetry, it is sufficient to give a
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counter example in the case where a + b = 0. Let

J(r):/oruj(l;))(/()pu}(lcr)da—i-l)_ldp—i-l,

|z|
F(@) = (14 [a)~ " Pa(Ja])~ 1/”( /

—1/p
dp+ 1) J(lel) P,

w(p)
@) = h(z)
, || -1/p’ )
= (1 Jay O uel) 2 ([T sapan) el

for 6 > 0. By (A1),

/Qrw(l(/opw(la)do—&-l)ldp—kl
L[ o) e
of w<r+p></opw(10>d"“>_ld”“

< (1+Co)J(r). (A.2.4.7)

IN

In addition, with any k& > 0 let r, > 0 satisfy

Tk 1
/ dp=2F—1,
o w(p)

where 7 is determined uniquely, since fOT 1/w(p)dp is a monotone increasing function of r. Then, we
estimate

e 2(/0%@“)1@
o) ([ L)

-2 =

)-3
-3
SRl

|

(A.2.4.8)

This shows lim, o J(r) = co. By (A.2.4.4), (A.2.4.5), and (A.2.4.7), for any € R" with |z| > 4 and
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0<d<1/p

/ wo(lz + 4 £ (@ + y)wa |y h(y)dy

1<]y|<]z]/2

lz+yl 4 —1/p—a 5
:/ (/ dp—i—l) J(|jz +y|)~HP
1<pyl<iel/2 \Jo  w(p)

(n_1) 1 vl q -1 -
(14 T / ——dp + 1> J TP Toq
1+ b ([ gaoet) T ay

" i 1/p-5
>C / dp—i—l) J(2|z|)~ /P
( o w(p) (@l

'/1|x|/2w(lr)</orw(lmdﬂ+1)_l‘](r)UplédT

T —1/p—a
> C(1 4 Co) /70— / L dp+1 " J(|)=1/P=
N 1/p=30\Jo w(p)

(il - ayirs)

5 1 5 S i/pma
> C(1+ Cy)~ Ve~ WV (1 —J(2) *1/1’) (/ ——dp + 1>
- 0

SJ(|z)7% (A.2.4.9)

with some positive constant C'. Then, by (A.2.4.9) and (A.2.4.8), for 0 < § < 1/(3p), we estimate

L oty (el £ o + )a(a)h(s) dy de

wollz +yPwr{jzwalyl) /(@ 2)h(y) dy dz
Z/|nc|>4/1<|y<z|/2 O(| +y‘) (| |) (|y\)f( +y)g( ) (y) Yy

>+ co)-l/P-él/Tl_d (1-J02P77)

. [loo wgr) (/OT ﬁp)der 1> 71J(|x|)71/p’735dr

> O+ Co)‘l/p“*l/pil_d (1 - J(2)5—1/P) (Tlggo log J(r) — log J(4))

= OO’
as required. Q.E.D.

Theorem A.2.4.2. Let w € F and let wy, w1, wo be as in Theorem A.2.1.2 with a, b, ¢ € R.
(1) In the case I, the trilinear estimate in Theorem A.2.1.2 holds for any a, b, c € R

(2) In the case II, let a, b, ¢ satisfy either (iii) or (i) or (v) in Theorem A.2.4.1, then the trilinear
estimate in Theorem A.2.1.2 fails for some f € L>(R"), g, h € L'(R").

(8) In the case II, let a = b = c = 0. Then, the trilinear estimates holds.



84 Chapter A.2. Study of Weighted Integral

proof. The proofs of (1) and (2) are the same as in the proof of Theorem A.2.4.1, while (3) follows
from the Holder and Young inequalities as below:

/ / oo+ gl (iauaul) £ e + )g(@)h(n)] dody
<[ i@t na@nt)] dedy
- / / 1F@)glz — v)h(y)| dydz

Rn xR™

< fllzee®ryllg * Al L1 me)
< I fllzee @eylgllr ey 1Rl 1 (-

Q.E.D.



Chapter A.3

Study of Fractional Leibniz Rule

A.3.1 Introduction

Here, we revisit Lemma 1.3.11 with —a = b = ¢ = s from the view point of the remainder of main
contribution.

One of the most important tools to obtain local well-posedness of nonlinear equations of mathematical
physics is based on the bilinear estimate of the form

I1D*(f D)o@y < CID® fllLos @) 9]l oz @) + Cllf [Les [1D°gll Lrs ey, (A.3.1.1)

where D* = (—A)*/? is the standard Riesz potential of order s € R and f,g € #(R™). A typical domain
for parameters s, p,p;,j = 1,--- ,4, where (A.3.1.1) is valid is

1 1 1 1 1

5s>0, 1<p,p1,p2,p3,ps <00, —=—+—=—+ —.

p p1 P2 P33 P4
Classical proof can be found in [44]. The estimate can be considered as natural homogeneous version of
the non-homogeneous inequality of type (A.3.1.1) involving Bessel potentials (1 — A)*/2 in the place of
D3, obtained by Kato and Ponce in [57] ( for this the estimates of type (A.3.1.1) are called Kato-Ponce
estimates, too). More general domain for parameters can be found in [41].

Another estimate showing the flexibility in the redistribution of fractional derivatives can be deduced

when 0 < s < 1. More precisely, Kenig, Ponce, and Vega [58] obtained the estimate

||Ds(fg) — fD%g— gDsfHLP(lR”) < CHDslfHLm (R™) |D52gHLp2(Rn), (A.3.1.2)
provided
0<s=s1+5 <1, 51,5 >0,
and
1 1 1
1<p,p1,p2 <00, —=—+—. (A.3.1.3)
p P11 P2

One can interpret the bilinear form
Cors(f,g) = fD°g+gD*f

as a correction term such that for any redistribution of the order s of the derivatives, i.e. for any
s1, 82 > 0, such that s; + so = s, we have

I1D*(fg) — Cors(f, 9)llr@ny < CD™ fllpr @y [[D*2 gl Lr2 m7), (A.3.1.4)

85
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i.e., we have flexible redistribution of the derivatives of the remainder D*(fg) — Cor,(f, g).

Estimates of the form (A.3.1.2) are of interest on their own in harmonic analysis [4, 5, 7, 12, 19,
25, 40, 42, 43, 44, 45, 57, 75, 91] as well as in applications to nonlinear partial differential equations
[8, 23, 27, 47, 58, 61, 68, 80, 82]. Our goal is to generalize (A.3.1.2) in the case where s > 1. In fact, for
s =2, we have D? = —A and

D*(fg) — fD?q — gD*f + 2V f - Vg = 0.

This means that we could expect (A.3.1.4) with appropriate correction terms in a general setting.

Typically, one can use paraproduct decomposition and reduce the proof of (A.3.1.4) separating
different frequency domains for the supports of f and g. In the case, when ]? is localized in low-
frequency domain and g is localized in high-frequency domain, the estimate (A.3.1.4) can be derived
from the commutator estimate

11D?, flgllr@ny < ClID®* fll Lo @y D*2 gl ez &)
where the assumption s < 1 plays a crucial role. More precisely, if we assume
supp f C {¢€ € R |¢] <2872}, supp g C {€ € R 281 < |¢| < 2841}, (A.3.1.5)

then we can use the relation
[D*, flg(x) = As(Df, D*~'g)(x),
where

A(RG)@) = [ [ eera (e Fe)Gmazan

is a Coifman-Meyer type bilinear operator with a symbol as(&,7) of Coifman-Meyer class supported in

the cone
I'={(&n) e R" xR™0 < [¢] < [n|/2}, (A.3.1.6)

Recall the definition of Coifman-Meyer class:
Definition A.3.1.1. We say that a symbol
o€ C®[R"\{0})
belongs to the Hormander class S°, if for all multi-indices o € NI, Ng = NU {0}, we have
080 (€)] < Calg| 71, vE£0.

We say that a bilinear symbol
a € CF(R" xR")\{(0,0)})

belongs to the Coifman-Meyer (CM) class, if
0805 a(&,n)| < Cap(€] + ) ~1=1A1.
for all multi-indices «, B8 : |a| + |B] < my, where my,, depends on the dimension only.

It is well-known that operators with symbols in SY give rise to bounded operators on LP(R™) : 1 <
p < oo spaces. The result of Coifman and Meyer (see [24, 26, 38, 59]) generalizes this result to bilinear
symbols. Namely, it states that bilinear operators

AFR.G)w) = [ [ el FEOGmdean
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with symbols in the CM class satisfy
IA(F, G)l[r®n) < Cpprpa | FllLer @) |Gl Lr2 (mm) (A3.1.7)

for all 1 < p,p1,pe < oo and 1/p=1/p; + 1/ps.
Applying Coifman-Meyer bilinear estimate for A; we can deduce the following estimate

Lemma A.3.1.1. Suppose f, g satisfy the assumptions (A.3.1.5) and p,p1,ps2 satisfy 1 < p,p1,p2 < 00
and 1/p =1/p1 + 1/pa. Then for any s > 0 we have

D%, flgll o (ny < CIID* fllos ny 1D~ gll o2 ). (A.3.1.8)

This estimate and the assumptions (A.3.1.5) explains the possibility to redistribute the fractional
derivatives. Namely, if f and g satisfy (A.3.1.5), we have the possibility to replace the right hand side
of (A.3.1.8) by C||D** f|| r1 (&) | D**g|| Lr2 mny for any couple (s1, s2) of non-negative real numbers with
0<sy1+ss=s<1.

Our main goal is to study a similar effect of arbitrary redistribution of fractional derivatives for s > 2
in the scale of Lebesgue and Triebel-Lizorkin spaces in R”.

First, we shall try to explain the correction term in (A.3.1.4), such that estimate of type

I[D*, flg — Cors(f, g)l|Leny < C|ID?f|l Lor ()

DS_2gHLp2 (R™)

will be fulfilled.
Let as(§,m,0) = |n + 6£]°. We also define

AT O)(f,9) = / ) / ) L oa, (€,n,6) F(€) (n)dedn, (A.3.1.9)
- ) al .
L= [ [ e Eoaen i@t

Then AJ(1)(f,9) = D*(f9), A2(0)(f,9) = fD*g, and AL(0)(f,9) = sV f - D*"*Vg. Moreover, we have
the following estimate:

Lemma A.3.1.2. For any multi-indices «, B one can find a constant C > 0 so that for

& n) el ={(&n) e R" xR"; 0 < [¢] < [n]/2},

one has the estimate

Sup |8§“8§a8(57n’9)| < C|77|S_|0‘\—\5\.
0<6<1

Lemma A.3.1.2 and the Coifman-Meyer estimate show that for any f, g € & which satisfy (A.3.1.5),

IAS(f, 9l o ey < CIF I Los ey D11 g|| oo ey

Since

0f'as(&m,0) = > ald¥as(,n,0)¢,

la|=m
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we have for any f, g € & which satisfy (A.3.1.5),
1D%, Al oy = 142 (F, 9) — A°0)(F, 0)ll ey (A.3.1.10)

1
< / 1AL0)(f, )| 1o ey O
<y / 1A2(0)(0° £, 0) | o e

|a]=1
< CIDfllLrr @y 1D°~ gl Lo @),
I[D?, flg = sV f - D*"*VgllLo@ny = A2(1)(f,9) — A20)(f, 9) — AL (0)(f, 9) || o (mn) (A.3.1.11)

1
< [ 1420 9)rent
<3 [ 1O e

|a]=2
< CID? fllper &) 1D 2 gl Loz .-

These estimates and the assumptions (A.3.1.5) explain the redistribution the fractional derivatives,
since we have the possibility to replace the right hand sides of the last inequalities of (A.3.1.10) and
(A.3.1.11) by C||D** f|| o1 e | D2 g|| Lr2 (mny and C||D* f|| oy (mry[[D%2 | Lr2 (n), Tespectively, for any
couple (s1, $2) of non-negative real numbers with s; + s3 = s. For details, see Lemma A.3.2.2.

To state the main results in this article, we introduce the following notation. Let ® € & be radial
function and satisfy d >0,

supp® C {€ e R™; 271 < |¢] < 2}, ZQ) I =1
JEL

for all £ € R”\{O} where & = F® is the Fourier transform of ®. We define ®; = §~ ( (277.)) =

20 (29.), @ Zk Pk, and Wy =1-37, P for j € Z. For simplicity, we denote ® = ®y and
U =0, For fed We define P; f, ngf, and Ps;f as

Pif=%;«f,  P<jf=V;xf, P>jf=<z<1’k:)*f

k>j

respectively, where % denotes the convolution.
We are ready now to state our main results.

Theorem A.3.1.1. Let £ € N. Let p,p1,p2 satisfy 1 < p,p1,p2 < o0 and 1/p = 1/p1 + 1/ps. Let
S, 81,89 satisfy 0 < s1,80 and £ —1 < s =51+ s9 < L. Then the following bilinear estimate

-1
HDS f9) - Z Z AL (0)(P<k—sf, Prg) — Z Z AL (0)(P<j-39, B f)

k€Z m=0 JEZ m=0
< OD® fllper @y [1D*2 gl Lr2 m7)

Lr(R")

holds for all f,g € &, where C' is a constant depending only on n,p,p1,ps.

Moreover, we have the generalization of (A.3.1.2) and simple correction term for s > 2 as a corollary
of Theorem A.3.1.1.
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Corollary A.3.1.1. Let p,p1,p2 satisfy 1 < p,p1,p2 < o0 and 1/p = 1/p1 + 1/pa. Let s, 51, 82 satisfy
0<s1,89 <1, and s = s1 + s2. Then the following bilinear estimate

|1D*(fg) — fD*g — gD* fll Lo mny < C|ID** flLer me) 1D*? gl Lr2 ()
holds for all f,ge .

Corollary A.3.1.2. Let p,p1,p2 satisfy 1 < p,p1,p2 < o0 and 1/p = 1/p1 + 1/p2. Let s, s1, s2 satisfy
0<s1,8 <2 ands=s;+ sy >2. Then the following bilinear estimate

ID*(fg) — fD°g — gD*f + sD* *(Vf - Vg)llLr@n) < CID** £l os )| D** g o2 ey
holds for oll f,g € &.

This article is organized as follows. In Section A.3.2, we collect some basic estimates and key
estimates for the commutators. In Section A.3.3, we prove Lemma A.3.1.2, Theorem A.3.1.1 and
Corollaries A.3.1.1, and A.3.1.2.

A.3.2 Preliminaries

We collect some preliminary estimates needed in the proofs of the main results. For the purpose, we
introduce some notations. Let u(p) = max{p, (p —1)"'}. For 1 <p < o0, 1 < g < o0, and s € R, let

F;, = F; ,(R") be the usual homogeneous Triebel-Lizorkin space with

1 s = 1@ Py luoanyary = 12 B )lisll e

It is well known that for s € Rand 1 < p < o0, F;z may be identified with H;, where H; = D °LP(R")

is the usual homogeneous Sobolev space and F};  is continuously embedded into Fg’oo. We also define
the Hardy-Littlewood maximal operator by

1
(Mf)(z) = SUD B - |f(z + y)|dy,

where B(r) = {¢ € R™ |¢| < r}. For = (z1,---,2,) € R?, we put (z) = (1 + |z|?>)*/2, where
|z|> = 2% + .-+ + 22. We adopt the standard multi-index notation such as 9% = 9" --- 93, where
Om =0/0xy, m=1,--- n.

Lemma A.3.2.1 ([39, Theorem 5.1.2]). The estimates
1) N ler@ny < Il < n@IfllLeen)

hold for 1 < p < oo and f € LP(R™).

Lemma A.3.2.2 ([39, Theorem 2.1.10]). Let s > 0. Then x- VDV € L*(R"). The estimate
ID* Pay f(2)] £ 2°¥j - VD W[y M F (2)

holds for any f € L (R™), k € Z, and x € R™, where C depends only on n.

loc

proof. For completeness, we give its proof here: Recall that (U;) and ¥ are radial Schwartz functions
satisfying

— ~

P J(€) = U(€)F(6),  Poof(€) = B(&)F(6).
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Using a rescaling argument, combined with the relation
D?P<y, = D*S3 P<gSor = 2°% 83, D* PcSor, S5 MSor = M,

one can reduce the proof of Lemma A.3.2.2 to the case when k = 0, where Sor f = f(27%x) and
Sy f = f(2Fz). Let p € C°°([0, 00); [0, 1]) satisfy

1 if 0<z<1/2,
p={\, if 1/2<z<],
0 if z>1,

and pgr(-) = p(-/R) for any R > 0. Let
F.(r)= / flz+ rw)dw, Gy (r) = / E(r)r'™ dr'.
sn—1 0

Since ¥ and D*¥ are radial functions, it is useful to introduce the notation ¢(| - |) = D*¥(-). By
integration by parts,

D*Peof| = i | [ 1o+ por() 0w
R

:B}i_rgo /0 E (r)r" tpp(r)s(r)dr
" d

= Jin | Go(Rpn(R)U(R) - GalOpr(0)6,(0)~ [ Gulr) S (o) s
0

=0 =0
< |51 /OOO e L () |dr M £ (2)

= / |z - VDU (z)|dx M f(z).
Q.E.D.

Remark A.3.2.1. One can show that ||z - VD*V| 11 (gny is bounded as follows:

/ - VDU (2)|da :/ (0 + 5)D*U(2) + D*V(2)(z)|dx
Rn n

< (n + S)HDS\I/HLl(Rn) —+ HDSV(I'\I/)HLl(Rn)
For any s > 0,

[ D*¥| 1 (rn) < C[[¥]

51, S CUWl gy + 190 garesm) < O] arerm,

where [s] = min{a € Z; a > s}. Moreover, since supp V¥ C R"\B(1), D*V(2¥) € & and DV (W) || Lo mn) <
00.

Lemma A.3.2.3 ([39, Theorem 2.1.6]). Let 1 < p < oo and f € LP(R™). Then the estimate

M fl| Loy < 3™2P || £l o gy
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holds.

Lemma A.3.2.4 (Fefferman-Stein[32][39, Theorem 1.2]). Let (f;),ez be a sequence of measurable func-
tions on R™. Let 1 <p < oo and 1 < g < oco. Then the estimate

IM f) | o (eysy < Crpt(@ICDI )l Lo (R )30
holds.

Lemma A.3.2.5. Let s1, S9, S3, 84, S5 be non-negative real numbers satisfying s, + so + s3 = s4+ S5 and
let 1 < p,p1,p2 < oo satisfy 1/p=1/p1 + 1/ps. Then

HDSl > PD*fP;D%yg
JEZ

< Cpu(p1)p (p2)||f|
Lr(R™)

proof. By the Holder and Fefferman-Stein inequalities, for any h € ¥ (R™),

‘/ D* > " P;D* f(x)P; D% g(x)h(x)dx

JEZ
=3 [ [ 10 ate ) B ) D Pig() (o) i
JEZ " "
/R 7D, 4] + |hl(5) D Py £(4) D Pyg(y) dy
JEZL

< Cp||I127 M P £ (y) 1212 M Pygl 1

< Cpulp1) (P2 1P| 1o (g || f]

SN L e

e llgllpee -
Q.E.D.
Recall the definition of the Hormander class S*.

Definition A.3.2.2. Let s € R. We say that a symbol
o€ C=([R"\{0})
belongs to the Hormander class S°, if for all multi-indices a,, we have
080 (6)] < Calé*71l, vE#0.

Lemma A.3.2.6. Let s > 0. If a € S%, then for all multi-indices o, 8 and (§,m) in the cone T', defined
n (A.3.1.6), we have

S 0202 a(n + 0€)| < Cogpln|*~ 117171,

proof. For o, € Njj,
0g0la(n + 0¢) = (02 P a)(n + 0€)01°.
and for (§,n) €T
1 3
—In| < < —=|n|.
5l < [n+06¢] < Sl

The required estimate is established and the proof is complete. Q.E.D.
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A.3.3 Proofs of Lemma A.3.1.2, Theorem A.3.1.1, and Corol-
laries A.3.1.1 and A.3.1.2.

A.3.3.1 Proof of Lemma A.3.1.2 and Theorem A.3.1.1
Proof of Lemma A.53.1.2. Since |- |* € S* and Lemma A.3.2.6, we are done. Q.E.D.

To prove Theorem A.3.1.1, Corollaries A.3.1.1 and A.3.1.2, we introduce the following notation. For
bilinear operator B, defined by

BEG) ) = [ [ e b nF(©Gndedn,

we can define
Jj+2
Bo(f.9) =Y B(P<i—sf.Prg). B~(f.9)=>_ > B(P;f Pig).
keZ JEL k=j—2
Obviously, we have the decomposition

B(f,9) = B«(f,9) + B~(f,9) + B«(g, f) (A.3.3.1)

and the symbol b« (€,n) of B« is defined by

be(6m) = > Wr_5(€) @1 (mB(E, ). (A:3.3.2)

kEZ
We have the following useful property.
Lemma A.3.3.1. Let s > k > 0 and s1, S2 are non-negative real numbers satisfying
s1<k, s1+s83=s

and let 1 < p,p1,p2 < 0o satisfy 1/p = 1/p1 + 1/pa. Then the bilinear form B« (f,g) with symbol of
type (A.3.3.2) with b in the Coifman - Meyer class satisfies

|IB<«(D* f,D* % g)llogny < CID** fllLor )1 D*2 gl L2 (rn)-

The proof follows from the Coifman - Meyer estimate (A.3.1.7) and we skip it.
Lemma A.3.2.6 implies:

Lemma A.3.3.2. Let s > 0. If a € S*(R™), then with a®(&,n,0) = |n+ 0|° we have

sup |0800as (€,n,0)] < Cly|*~1eI=1A1.
0<6<1

Another useful application of the Coifman - Meyer estimate (A.3.1.7) concerns the bilinear form
B(f,g) = D**(D*? fD%g). (A.3.3.3)
Lemma A.3.3.3. Let sy, 9, 83, 84, S5 be non-negative numbers satisfying

81+ 82+ 83 =84 + 85, S4 < S
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and let 1 < p,p1,pa < oo satisfy 1/p = 1/p1 + 1/pa. Then the bilinear form (A.3.3.3) satisfies
| B« (fs llLe®ny < CID** fl|Ler ey | D gl Loz (7Y -

Proof of Theorem A.3.1.1. Consider the bilinear form B(f,g) = D?(fg). We have the decomposition
(A.3.3.1). For the term B.(f,g) we can apply the estimate of Lemma A.3.2.5. Therefore, it is sufficient

to show that "

B«(f.9) Z ™ + 3 T2 (0°f, D*"y), (A.3.3.4)

m= |a|=¢

where T is a Coifman-Meyer bilinear form

12(FG) @) = [ [ e € Gudsdy

with symbol t% (&, ) in the CM class supported in {|£] < |n]/2}, so it satisfies the estimate
ITE(E Gl zr@ny < Cpprpol | Fll Los m) |Gl o2 (em) (A.3.3.5)

for all 1 < p,p1,p2 < oo with 1/p =1/p1 + 1/pa.
We can use the Taylor expansion with respect to 6:

as(€ —gi (&m0 + /1<1—9>f-1afa<5 0)do
7777 _m:Om 777 (f—l)' 0 0Ys anv

and note that (A.3.1.9) implies
B<<(fag): 9<<( )(f7 )

so the Taylor expansion for as(&,n,1) implies (A.3.3.4) with symbol

do
(laf = 1)!

|~ tled,

e En) =S T (€T / (1 B)ll-1glel92a, (¢, 1,)

kEZ

An application of Lemma A.3.3.2 shows that t& (£,7n) belongs to the CM class so the Coifman-Meyer
estimate proves (A.3.3.5) and completes the proof of the theorem. Q.E.D.

A.3.3.2 Proof of Corollary A.3.1.1

Let B(f,g9) = D*(fg) — fD?g — gD*f. Then the term B~ (f,g) can be estimated by Lemma A.3.2.5.
So it is sufficient to check the estimate

| B<(f,9)llLe@ny < ClID** fllLov mry | D*2 gl L2 (m)- (A.3.3.6)

The term B« (f,g) can be represented as

where
B'(f,9) = D*(f9) - [Dg
and
B'(f,g) = —gD°f.



94 Chapter A.3. Study of Fractional Leibniz Rule

The symbol of
BL(f,9) = A°(1)(P<k—3f, Prg) — A%(0)(P<j—3f, Prg),

can be represented as by the aid of the Taylor expansion

1
as(ga m, ]-) - as(gv m, 0) = /0 80%(57 n, G)de

0 as in (A.3.3.4) we have
BL(f,9)= Y T2(0°f,D°'g)

|a|=1

with symbol

1
e =3 T 5 ©)Bi() / 00%a(€. . 0)d6]| >+
keZ 0

in the CM class. Applying Lemma A.3.3.1, we get

IBL(f, @)llLe@ny < CID** fllLor ey [ D* gl 12 (rn) -

The term BL(f,g) can be estimated by the aid of Lemma A.3.3.1 again, so we get (A.3.3.6) and the
proof is complete.

A.3.3.3 Proof of Corollary A.3.1.2

Let B(f,g) = D*(fg) — fD*g—gD*f +sD*"2(Vf-Vg). The term B.(f,g) can be estimated by using
Lemma A.3.2.5. As in the proof of Corollary A.3.1.1, it is sufficient to show

||B<<(f, g)||Lp(Rn) < CHDslfHLm HDSQg”LPQ (R™)- (A337)

The term B« (f, g) can be represented as follows

B«(f,9) = BL(f,9) + BZ(f.9) + BZ(f.9),

where
B'(f,9) = D*(fg) — fD*g + sVf - D*"?Vy,
B'(f,g) =sD*"*(Vf-Vg)—sVf D ?Vg,
B (f,g) = —gD*f.
Then

BL(f.9) = AL c()(f,9) — AS < (0)(f,9) — AL < (0)(f.9) = Y T2(9°f,D*?y),
|a]=2

n

BY(f,9)=>_ s{AY 5 «(1)(Omf 0mg) — A5 < (0)(Om f, Omg)}

m=1

= Z Sf%(aaam.ﬂ Ds_gamg)
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with symbol

1
L (Em) = 3 TalOBin) [ (1= 06050 (6., )0l "2,
kEZ 0
_ o A 1
F(en) = 30 Ta(©Bal) | 0050, o(6.n.0)dsln|
keZ 0

in the CM class. Applying Lemma A.3.3.1, we can estimate BL (f,g), BX(f,g) and BZI(f,g) and
deduce (A.3.3.7).
This completes the proof.
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