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4.1 Nonlinear Stüeckelberg fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Below the scale Λ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Λ3 decoupling limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Vainshtein mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Λ2 decoupling limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Non-compact nonlinear sigma model . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Effective action inside the Vainshtein radius . . . . . . . . . . . . . . . . . . 46
4.5.3 No-go result of stable background without vector excitation . . . . . . . . . 47

5 Attractor universe 51
5.1 FLRW universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Dynamics of the universe with twin matter . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Cosmic no hair conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Stability in the early universe 65
6.1 Ghost condensate and cosmological Vainshtein mechanism . . . . . . . . . . . . . . 65
6.2 Scalar graviton with nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Adiabatic mode solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Stability conditions of scalar graviton . . . . . . . . . . . . . . . . . . . . . 71

6.3 Perturbations with matter effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.1 Adiabatic mode with matter perturbations . . . . . . . . . . . . . . . . . . 75
6.3.2 GR phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.3 Bigravity phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

i



ii CONTENTS

6.4 Transition from GR to bigravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 On dark matter 83
7.1 Dark matter from f -sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1.1 Cosmic pie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Dark matter halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.3 Cosmic structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Massive graviton as dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.1 Production of massive gravitons . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.2 Present abundance and gravitational waves . . . . . . . . . . . . . . . . . . 104

8 Astrophysical objects and Vainshtein screening 107
8.1 Static and spherically symmetric spacetime . . . . . . . . . . . . . . . . . . . . . . 108
8.2 Weak field approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Relativistic stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3.1 Regular compact objects in Λ2 decoupling limit . . . . . . . . . . . . . . . . 114
8.3.2 Regular compact objects: numerical results . . . . . . . . . . . . . . . . . . 123

8.4 Perturbations around static and spherically symmetric solution . . . . . . . . . . . 127
8.4.1 Odd parity perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4.2 Even parity perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Summary 133

A Constrained systems 137
A.1 Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Hamiltonian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3 Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B Instabilities 143
B.1 Ghost instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.2 Gradient instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.3 Tachyonic instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.4 Ostrogradsky instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



Chapter 1

Introduction

General Relativity (GR) is now widely accepted as the standard theory of gravity. GR has
passed a number of observational and experimental tests and the robustness of GR has been
confirmed with high accuracy, especially in Solar-System [1, 2]. Despite these successes of GR al-
ternative theories of gravity have been discussed from both theoretical and observational prospects.

A fundamental issue in physics is whether a graviton has a mass or not. According to the
Lovelock’s theorem, GR is the unique theory of gravity whose equation of motion is given by
a symmetric second rank tensor which is divergence free and constructed from only the metric
tensor with up to its second order derivatives in four dimensions [3]. From the particle physics
perspective, GR is thought as the unique theory of a massless spin-2 field; that is, the carrier of
the gravitational force, called graviton, is a massless spin-2 particle. However, the non-existence
of the mass of the graviton is not a trivial assumption since we know, for example, the carriers
of the electroweak forces are massive particles via the Higgs mechanism. Needless to say, some
constraints on the graviton mass have been obtained from the observations which agree with the
predictions of GR [4, 5]. For instance, the existence of the massive graviton should change the
gravitational law from the inverse square law. The inverse square law of the gravitational force
has been confirmed from the laboratory scales (∼ 10−4 cm) to the Solar System scales (∼ 1017

cm), thus the graviton mass may not exist in the range 10−2 eV � m � 10−23 eV. Nevertheless,
the existence of the graviton mass has not been excluded in a wide range of scales and the massive
graviton will provide significant deviations from the standard scenario. In particular, we mainly
focus on the case in which the carriers of the gravitational force are given by a massive graviton
and a massless graviton because this kind of theory might be natural to include a massive graviton
as we will see later (Chapter 3).

Fierz and Pauli proposed a linearized theory of massive spin-2 field in 1939, called Fierz-Pauli
theory [6]. Since the gravity should be described by a nonlinear theory of the metric tensor,
the Fierz-Pauli theory has to be extended into nonlinear orders when we interpret this massive
spin-2 field as the graviton. Another reason for the requirement of the nonlinear extension is
to obtain a continuous restoration from the massive field into the massless field by taking the
massless limit. The number of degrees of freedom of the massive spin-2 field is five which is larger
than that of the massless spin-2 field. It is known that an additional degree of freedom is not
decoupled even in the massless limit at the linear order and then the Newtonian gravity is not
recovered which is called the van Dam-Veltman-Zakharov (vDVZ) discontinuity [7, 8]. Vainshtein
then proposed that the vDVZ discontinuity can be evaded by taking into account nonlinear mass
terms, and the extra mode is screened inside the so-called Vainshtein radius, to recover the standard
gravitational interaction mediated only by the helicity-2 modes [9]. Boulware and Deser pointed
out, however, that such nonlinear extensions ruin the structure of the FP theory and introduce
the ghost instability associated with the sixth degree of freedom [10]. Although this nonlinear
ghost, often called Boulware-Deser (BD) ghost, appears in any simple nonlinear extensions of the
FP massive gravity theory, it was shown in 2010 by de Rham, Gabadadze, and Tolley that the
special choice of the mass term can eliminate such a ghost state at the decoupling limit [11, 12],
and later the proof was extended to fully nonlinear orders [13–16]. Furthermore, the nonlinear
ghost-free massive gravity, often dubbed dRGT theory, is generalized to the bigravity theory [17]
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2 CHAPTER 1. INTRODUCTION

and the multigravity theory [18] which contain massive graviton(s) as well as a massless graviton.
See [19–22] for reviews.

Although the theoretical development of the massive graviton is independent on any cosmo-
logical reasons, the nonlinear theories of massive graviton are often discussed in the context of
cosmology. Recent observation has confirmed the big bang scenario of the expanding Universe.
The cosmological parameters are determined very precisely [23]. However, those observations re-
veal new unsolved mysteries in cosmology, i.e., the accelerated expansion of the Universe and the
existence of dark matter. The discovery of these problems may suggest that a theory beyond
standard physic is required.

The basic assumptions of the big bang cosmology are the cosmological principle (homogeneity
and isotropy of the Universe) and the dynamics of the Universe is described by GR. The current
accelerating expansion of the Universe could be caused by an unknown “energy” dubbed dark
energy. The simplest candidate of dark energy is a cosmological constant (the vacuum expectation
value of some fields). The matter contents of the Universe may be phenomenologically given by
standard model particles, the cosmological constant Λ, and cold dark matter (CDM). However, the
theoretically expected value of a cosmological constant is too large to explain the observed value of
dark energy [24]. The origin of the accelerating expansion is one of the biggest mysteries in modern
cosmology [25,26]. An alternative approach is that this acceleration is caused by a “modification”
of the gravity from GR at the infrared regime (see [27–29] for reviews). On the other hand, the
origin of dark matter is also one of the biggest problems. Although many dark matter candidates
have been proposed in the context of the particle physic (see [30,31] for reviews), any dark matter
particles have not been discovered yet [32–37]. The existence of dark matter is confirmed via only
gravitational interactions. Hence, exploring dark matter candidate in the context of gravity is also
a considerable approach. The modified theories of gravity could give solutions to the cosmological
problems.

The modification of the gravity is strongly constrained by Solar System tests of the gravity.
For example, one may easily construct a theory of gravity which explains the present acceleration
of the Universe by the modification of the gravity instead of dark energy; however, in general, the
modification may change the local gravitational law as well. The effects of the modification of
gravity have to be screened at the Solar System level. Various screening mechanisms have been
proposed. One natural theory with such a screening mechanism is the massive gravity with a tiny
graviton mass because we may ignore the mass term in scales within the Compton wavelength.
However, as we mentioned above, the linear massive gravity is not restored into GR due to the
additional degree of freedom. The restoration to GR may be realized by nonlinear interactions in
scales below the Vainshtein radius.

The effect of the spacetime curvature is significant for the massive spin-2 field. The Fierz-Pauli
theory can be extended in a curved spacetime, although it is originally proposed in the Minkowski
spacetime. A simple case is that the spacetime is given by a maximally symmetric spacetime. In
this case two facts are well-known: (i) in de Sitter spacetime, the helicity-zero mode of the massive
graviton becomes a ghost, called Higuchi ghost, when the Higuchi bound is violated [38,39], and (ii)
there is no vDVZ discontinuity in the anti-de Sitter spacetime [40, 41]. The Higuchi bound reads
a lower bound of the graviton mass in order not to be a ghost state. Therefore, the linear massive
spin-2 field has no healthy massless limit in the de Sitter spacetime. In the anti-de Sitter spacetime,
on the other hand, the field has a continuous massless limit even though nonlinear interactions are
not taken into account. In particular, the Higuchi ghost is relevant to discussions of the cosmology
since similar type linear instabilities generally exist even in Friedmann-Lemâıtre-Robertson-Walker
(FLRW) spacetimes [42] and the early stage of the Universe may yield the violation of the Higuchi
bound. Of course, these discussions are based on the Fierz-Pauli theory which may not be directly
applied into those in the dRGT theory or in the nonlinear bigravity theory. Nevertheless, one
should confirm whether the Higuchi ghost exists or not and pay attention to a mechanism to evade
the ghost if exists.

In this thesis, focusing on the bigravity theory which contains a massive graviton as well as a
massless graviton, we discuss both cosmological and astrophysical aspects of the massive graviton.

The reasons for cosmological studies are related to the accelerating expansion of the Universe
or the origin of dark matter. The bigravity can yield various phenomenological features depending
on the graviton mass. The dynamics of the Universe should be changed by the graviton mass
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and then the accelerating expansion could be obtained by the tiny graviton mass as m ∼ 10−33

eV [43–52]. Another possibility is to explain the origin of dark matter when the graviton mass is
heavy enough. When a matter field is introduced in the “dark” sector, it acts as the dark matter
in the physical sector through the gravitational interactions for the gravitons with m � 10−27

eV [51, 53]. Furthermore, the massive graviton itself is also a candidate of dark matter when the
graviton mass is 10−23 eV � m � 107 eV [54] (see also [55,56]).

When we focus on the early stage of the Universe, the Higuchi type instability will be prob-
lematic. Indeed, the papers [57–62] showed that the homogeneous and isotropic solutions are
unstable due to the Higuchi type instability in bigravity. However, this instability may be resolved
by the cosmological Vainshtein mechanism [63]. We found the cosmological solution in which the
helicity-zero mode forms a condensed state around which the helicity-zero mode does not suffer
from the Higuchi type instability. The cosmological Vainshtein mechanism yields that the con-
tinuous massless limit can be taken without the Higuchi type instability even in the cosmological
background.

On the other hand, an astrophysical reason is to confirm the consistency with the predictions
of GR in Solar System, i.e., the existence of the Vainshtein mechanism which is essential to making
the graviton with m � 10−23 eV consistent with the Solar System observations. According to
the Vainshtein mechanism, the nonlinear theories of massive graviton must be restored into GR
in small scales. Vainshtein mechanism in massive gravity/bigravity has been discussed in [63–86].
In bigravity the Vainshtein screening of the extra degrees of freedom seems to be realized for
the spacetime around a star [79, 82, 85] and also the early universe [63] in which only the scalar
degree of freedom has an important role for the screening. However, we show that any Ricci flat
Vainshtein screening solution is unstable when we take into account the excitation of the scalar
graviton only [86]. Since the Vainshtein screening solution with the vector degrees of freedom has
not been found so far, the existence of the Vainshtein mechanism in vacuum spacetimes is still an
open question.

Structure of the thesis

Before showing our cosmological and astrophysical studies we devote general properties of
massive graviton in Chapters 2, 3, and 4.

In Chapter 2 we consider the linear theory of the massive graviton. We will show why the Fierz-
Pauli theory is the unique ghost-free theory of the massive spin-2 field and why the Fierz-Pauli
theory exhibits the vDVZ discontinuity and the Higuchi ghost. The observational constraints on
the graviton mass are also discussed in this chapter because these constraints are obtained based
on the linear theory.

We review the dRGT theory as well as the nonlinear bigravity theory in Chapter 3. First, we
count the number of the degree of freedom in generic nonlinear massive gravity and confirm that
there exists an additional mode. Then we introduce the Lagrangian of the dRGT theory and briefly
review the ghost-freeness of the dRGT theory. The bigravity theory is a straightforward extension
of the dRGT theory. We shall see that the theory contains a massless graviton and a massive
graviton by considering linear perturbations around a specific solution of the bigravity theory.
Furthermore, calculating second order perturbations, we define the energy-momentum tensors of
gravitons.

In Chapter 4 we discuss the Vainshtein mechanism. We will introduce two limits: the Λ3

decoupling limit and the Λ2 decoupling limit. The scale Λ3 is associated with the lowest strong
coupling scale of the massive graviton in the Minkowski spacetime [11, 12]. The scales below Λ3

are prohibited due to the ghost-freeness of the theory. In the Λ3 decoupling limit the helicity-zero
mode is not explicitly decoupled from the helicity-two modes. On the other hand, the helicity-zero
mode is expected to be decoupled due to the Vainshtein screening. The Vainshtein mechanism may
cause the increasing of the strong coupling scale. As a result, we may take the Λ2 decoupling limit
where the scale Λ2 gives the strong coupling scale around backgrounds in which the Vainshtein
mechanism is implemented [83, 84, 86]. The helicity-zero mode is decoupled in the Λ2 decoupling
limit. However, we will show that only the excitation of the helicity-zero mode suffers from the
instability in Ricci flat spacetimes. In vacuum regions of the spacetime, the helicity-one modes
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would be required to obtain a successful Vainshtein mechanism.
Our cosmological studies are summarized in Chapters 5, 6, and 7. In Chapter 5 we discuss the

dynamics of the homogeneous and isotropic universe and show both accelerating and decelerating
solutions are obtained as attractors in the late stage of the universe. The discussions about the
Higuchi type instability is devoted in Chapter 6. We find a stable cosmological solution in a simple
ansatz. In Chapter 7 we consider two possibilities to explain dark matter in the context of the
bigravity theory. We also discuss some observational aspects of our dark matter scenarios. These
cosmological studies show that the bigravity theory can give a solution to the dark components of
the Universe and also that the bigravity theory can be consistent with the big bang cosmology.

We consider static and spherically symmetric solutions and discuss astrophysical aspects of the
bigravity theory in Chapter 8. First, we review the results obtained in the weak field approximation.
The Vainshtein screening seems to be realized in the weak gravitational field. However, we show
that the Vainshtein screening can be broken due to the appearance of a curvature singularity in
the strong gravitational field. Furthermore, we also show that the weak field solutions are unstable
which is consistent with the general consequence discussed in Chapter 4. Therefore, the Vainshtein
screening is indeed unsuccessful in the static and spherically symmetric solutions in the bigravity
theory.

We summarize our results and give future prospects in Chapter 9.
Since knowledge about constrained systems is used to discuss spin-2 fields, we briefly review ba-

sics about the Lagrangian and the Hamiltonian formulations in constrained systems in Appendix A.
In Appendix B, we summarize instabilities of a field: the ghost instability, the gradient instability,
the tachyonic instability, and the Ostrogradsky instability.

Notation

The metric signature is (−,+, · · · ,+) and the curvature tensors are defined byRμ
αβγ = ∂αΓ

μ
βγ−

· · · andRμν = Rα
μαβ . The symmetrization and the anti-symmetrization are normalized: A(μBν) =

1
2 (AμBν + AνBμ) and A[μBν] =

1
2 (AμBν − AνBμ). Unless otherwise stated, we use the natural

units c = � = 1.



Chapter 2

Linear massive gravity

2.1 Free field Lagrangian

We consider linear tensor theories with a Lorentz invariance propagating on Minkowski back-
ground in four dimensions 1. We introduce a symmetric Lorentz tensor hμν with mass dimension
one, and consider a quadratic action of hμν which yields a linear order equation of motion of hμν .
Assuming the Lorentz invariance and the equivalence upon integration by parts, the generic kinetic
term can be rewritten as

Lspin−2
kin =

1

2
∂αhμν(a1∂αhμν + 2a2∂(μhν)α + a3∂αhημν + 2a4∂(μhην)α) , (2.1.1)

where a1, a2, a3, a4 are constants and h = hμ
μ. Note that one should not introduce any higher

derivative terms to avoid the Ostrogradsky’s instability (See Appendix B.4 for the Ostrogradsky’s
theorem). The Lagrangian (2.1.1) seems not to contain any higher derivative terms. However,
arbitrary coefficients lead to the Ostrogradsky instability arising from higher derivatives of vector
and/or scalar modes of hμν . We decompose the symmetric tensor hμμ into a transverse tensor hT

μν

and a vector field χμ,

hμν = hT
μν + 2∂(μχν) . (2.1.2)

Substituting this expression into the Lagrangian (2.1.1), the Lagrangian contains higher derivative
terms as

Lspin−2
kin ⊃ (a1 + a2)χ

μ�2χμ + (a1 + 3a2 + 2a3 + 4a4)χ
μ�∂μ∂νχ

ν − 2(a3 + a4)h
T�∂αχ

α . (2.1.3)

Therefore, the generic kinetic term of the tensor field suffers from the Ostrogradski instability even
if the original Lagrangian does not contain higher derivatives of hμν . To preserve the theory from
the Ostrogradski instability, the coefficients have to satisfy

a1 = −a2 = −a3 = a4 . (2.1.4)

Setting a1 = −1/4 to follow standard conventions, the unique ghost-free kinetic term is given by
the linearized Einstein-Hilbert term

Lspin−2
kin = LEH := −1

4
hμνEμν,αβhαβ , (2.1.5)

where

Eμν,αβhαβ = −1

2
∂2hμν − 1

2
∂μ∂νh+ ∂α∂(νh

α
μ) +

1

2
ημν

(
∂2h− ∂α∂βh

αβ
)
, (2.1.6)

is the Lichnerowicz operator. For the Einstein-Hilbert action, the appearance of the higher deriva-
tives is prohibited by the gauge invariance under the transformation

hμν → hμν + 2∂(μξν) . (2.1.7)

1The statement discussed here can be straightforwardly generalized into any dimensional spacetime.

5



6 CHAPTER 2. LINEAR MASSIVE GRAVITY

The gauge invariance indeed leads to that the vector field χμ turns to be a gauge mode. The higher
derivatives of the physical variables do not appear in the Einstein-Hilbert action.

Next, we consider the mass terms of the tensor field. The possible Lorentz invariant mass terms
are

Lspin−2
mass = −m2

8
(hμνh

μν + αh2) . (2.1.8)

Similarly to the case of generic kinetic terms, higher derivative terms would appear even if the
mass term do not contain derivatives. Thus, α should be determined by the Ostrogradsky-free
condition. We decompose hμν into the transverse tensor hT

μν , the transverse vector χT
μ and the

scalar χ,

hμν = hT
μν + 2∂(μχ

T
ν) + 2∂μ∂νχ . (2.1.9)

The higher derivative terms appear in

Lspin−2
mass ⊃ −m2(α+ 1)

(
(�χ)2 − 2χTμ�∂μχ

)
, (2.1.10)

thus, the higher derivatives are canceled out only when

α = −1 . (2.1.11)

As a result, the ghost-free Lorentz invariant mass term is uniquely given by the Fierz-Pauli mass
term [6],

Lspin−2
mass = LFP := −m2

8
(hμνh

μν − h2) , (2.1.12)

where the parameter m describes the mass of the tensor field hμν . Adding to the ghost-free kinetic
term, the Fierz-Pauli Lagrangian is given by

L = −1

4
hμνEμν,αβhαβ − m2

8
(hμνh

μν − h2) , (2.1.13)

which is the unique ghost-free Lorentz invariant theory of the massive tensor field.
Note that the Fierz-Pauli mass term is not gauge invariant. The appearance of the unstable

mode is protected by the existence of a non-trivial constraint instead of the gauge invariance. To
see this statement, we back to the Lagrangian

L = −1

4
hμνEμν,αβhαβ − m2

8
(hμνh

μν + αh2) . (2.1.14)

The variation with respect to hμν gives the field equation

Eαβ
μν hαβ +

m2

2
(hμν + αημνh) = 0 . (2.1.15)

Multiplying the field equation by ∂μ, we get the constraint equation

∂μ(hμν + αημνh) = 0 . (2.1.16)

The trace of the field equation leads

�h− ∂α∂βh
αβ +

m2

2
(1 + 4α)h = 0 . (2.1.17)

Combining Eq. (2.1.17) with Eq. (2.1.16), we obtain the equation for the trace of hμν

(1 + α)�h+
m2

2
(1 + 4α)h = 0 . (2.1.18)
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Hence the trace of hμν is dynamical when α �= −1 for which there is an additional degree of
freedom in addition to ones of the massive spin-2 field. On the other hand, h is non-dynamical
only when α = −1, and the degree of freedom actuary coincides with those of the massive spin-2
field. We note that the trace part indeed corresponds to the unstable mode, which can be seen by
introducing the tensor

hTT
μν = hμν − 2(1 + α)

3m2
∂μ∂νh− 1

3
(1 + α)ημνh , (2.1.19)

where hTT
μν is transverse-traceless by using the equations of motion. The Lagrangian is rewritten

as

L = −1

8

(
∂αh

TT
μν

)2
+

(1 + α)2

12
(∂αh)

2 + · · · . (2.1.20)

Hence the kinetic term of h has an opposite sign, and then h suffers from the ghost instability.
When α = −1, h is not a dynamical variable because the equation (2.1.18) is replaced with a
constraint equation. As a result, only when α = −1, there exists a non-trivial constraint equation
which removes the ghost mode. There is no such a constraint equation for the general mass term,
which is a reason for the existence of Boulware-Deser ghost [10]. We will revisit this problem in
the case of nonlinear mass terms in Section 3.1.

The linearized Einstein-Hilbert action describes the motion of the massless tensor field, while
the Fierz-Pauli action indeed gives the equation of motion of the massive tensor field. First, we
discuss the Einstein-Hilbert action in which unphysical degrees of freedom (i.e., gauge degrees of
freedom) exist. For the gauge transformation (2.1.7), the quantity h̄μν := hμν − 1

2ημνh transforms
as

∂μh̄new
μν = ∂μh̄old

μν −�χν .

Hence one can choose the harmonic gauge

∂μh̄μν = ∂μ

(
hμν − 1

2
ημνh

)
= 0 , (2.1.21)

with an appropriate gauge function χν . In the harmonic gauge, the linearized Einstein equation
without a source is given by

�h̄μν = 0 . (2.1.22)

However, the harmonic gauge is not complete gauge fixing since the quantity ∂μh̄μν is still invariant
under the gauge transformation with the gauge function satisfying �χμ = 0. In the Fourier space,
the linearized Einstein equation and the condition �χμ = 0 yield

h̄μν =
∑
k

h̄(k)
μν e

ikμx
μ

, χμ =
∑
k

χ(k)
μ eikμx

μ

, (2.1.23)

with kμkμ = 0, where h̄
(k)
μν and χ

(k)
μ are Fourier coefficients for the momentum kμ. By using the

residual gauge freedom, one can choose the transverse-traceless gauge

∂μh
μν = 0 , hμ

μ = 0 , uμhμν = 0 ,

where uμ is a constant timelike vector. Then the equation of motion is simply given by the massless
Klein-Gorden equation

�hμν = 0 . (2.1.24)

The gauge fixing conditions give eight conditions on ten components of hμν . Thus, the gauge
fixed variable has only two independent components which is indeed same as the number of the
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polarizations of the massless spin-2 field. For instance, when we choose the vector uμ = (1, 0, 0, 0)
and consider a plane wave traveling in the z direction kμ = (ω, 0, 0, ω), hμν is expressed as

hμν =

⎛
⎜⎜⎝
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞
⎟⎟⎠ eikμx

μ

, (2.1.25)

where h+ and h× express two independent polarizations.
In the case of the Fierz-Pauli action, there is no gauge freedom but there exist constraint

equations on hμν . In the vacuum, Eqs. (2.1.16) and (2.1.18) with α = −1 give the transverse-
traceless condition

∂μh
μν = 0 , h = 0 . (2.1.26)

Then, the field equation is reduced into the massive Klein-Gordon equation

(�−m2)hμν = 0 . (2.1.27)

We note that the transverse-traceless condition (2.1.26) give only five conditions on hμν . Therefore,
the residual degrees of freedom of hμν are five which is the same number as the number of the
polarizations of the massive spin-2 field.

2.2 vDVZ discontinuity

In the previous section, we discuss free propagating massless and massive tensor fields. Here,
we introduce a matter coupling

Lm =
κ

2
hμνT

μν , (2.2.1)

where Tμν is the energy-momentum tensor of a matter field and κ :=
√
8πG is the gravitational

coupling constant. Intuitively, the massive field is restored into the corresponding massless field
by taking a massless limit. However, in the tensor field, the massless limit of the tensor field does
not coincide with the massless one, which is known as the van Dam-Veltman-Zakharov (vDVZ)
discontinuity [7, 8].

Let us find solutions of massless and massive tensor field with a source. We assume the energy-
momentum tensor of the matter is conserved, i.e., ∂μT

μν = 0. The equation of motion of the
massless tensor field with a source is expressed by

∂2hμν
massless = −2κ

(
Tμν − 1

2
ημνT

)
, (2.2.2)

where we have chosen the harmonic gauge

∂μh
μν
massless =

1

2
∂νhmassless . (2.2.3)

On the other hand, the equation of motion for the massive graviton is given by

(∂2 −m2)hμν
massive = −2κ

(
Tμν − 1

3

(
ημν − ∂μ∂ν

m2

)
T

)
, (2.2.4)

where the massive graviton must satisfy the constraint equations

∂μh
μν
massive = ∂νhmassive ,

m2

2
hmassive = −κ

3
T . (2.2.5)

We define a tensor h̃μν
massive as

hmassive
μν = h̃massive

μν + 2∂μ∂ν φ̃ , (2.2.6)
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where φ̃ is assumed to satisfy

(∂2 −m2)φ̃ = − κ

3m2
T . (2.2.7)

Then the equation of motion of h̃μν
massive is given by

(∂2 −m2)h̃μν
massive = −2κ

(
Tμν − 1

3
ημνT

)
, (2.2.8)

Note that, although the massive tensor field has no gauge symmetry, the matter action is invariant
under (2.2.6):

Lm =
κ

2
hmassive
μν Tμν =

κ

2
h̃massive
μν Tμν + total divergence . (2.2.9)

Therefore, the matter field is not affected by φ̃. To discuss the tensor field observed by a matter,
it is sufficient to find a solution of h̃massive

μν rather than hmassive
μν .

The source terms of the massless and massive field equations are different which suggests the
existence of the vDVZ discontinuity. Indeed, the solution of the massive field is not restored into
the one of the massless field. To see explicitly the existence of the vDVZ discontinuity, we consider
a point source at the origin

Tμν = Mδμ0 δ
ν
0 δ

(3)(0) , (2.2.10)

where M is the mass of the source. The solution of the massless field is given by

κhmassless
00 =

2GM

r
, κhmassless

0i = 0 , κhmassless
ij =

2GM

r
δij , (2.2.11)

where r =
√
xixi. On the other hand, the solution of the massive field is given by

κh̃massive
00 =

4

3

2GM

r
e−mr , κh̃massive

0i = 0 , κh̃massive
ij =

2

3

2GM

r
e−mrδij , κφ̃ = −2GM

3m2r
e−mr ,

(2.2.12)

and then

κhmassive
00 =

4

3

2GM

r
e−mr ,

κhmassive
0i = 0 ,

κhmassive
ij =

2

3

2GM

r
e−mr

[
1 +mr +m2r2

m2r2
δij −

xixj

m2r4
(3 + 3mr +m2r2)

]
. (2.2.13)

Hence the physical prediction from the massive field is not restored into one from the massless field
in the massless limit,

hmassless
00 �= h̃massive

00 |m→0 , hmassless
ij �= h̃massive

ij |m→0 . (2.2.14)

The result implies that, when the gravity is mediated by a massive tensor field, the massive graviton
conflicts with the solar system experiment even if the graviton mass is tiny.

The above argument is based on the linear theory of the massive tensor field, however, from
the expression (2.2.13), one can find a linear approximation is no longer valid in the massless limit.
In the scale r � m−1, (ij)-component of hmassive

ij is approximated by

κhmassive
ij ≈ 4

3

GM

m2r3
(δij − 3xixj) . (2.2.15)

Therefore the linear approximation (κhμν � 1) is valid only when

r 	 rV :=

(
GM

m2

)
, (2.2.16)
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where rV is called the Vainshtein radius. For instance, when we set the graviton mass to be a
cosmological scale as m−1 ∼ 1028 cm, the Vainshtein radius for the sun (rS ∼ 105 cm) is

rV ∼ 1020 cm ∼ 0.01 kpc ,

which is much grater than 1 AU (∼ 1013 cm). Therefore, even in the weak gravitational field regime,
the nonlinear interactions of scalar graviton have to be taken into account. Below the Vainshtein
radius, the nonlinear interactions become relevant and then there would be no discontinuity due
to, so-called, the Vainshtein mechanism [9] which we shall discuss in Chapter 4 and Chapter 8.

2.3 Stüeckelberg trick and decoupling limit

In the previous section, we have shown that the massive tensor field has the vDVZ discontinuity
by constructing an explicit solution. In this section, we revisit the vDVZ discontinuity by intro-
ducing, so called, Stüeckelberg field which will make it clear why the massive field is not restored
to the corresponding massless field even in the massless limit.

In four dimensions, the degrees of freedom of the massless tensor field are only two: there
are two polarizations of helicity-2 modes. On the other hand, the massive tensor field contains
five degrees of freedom: one helicity-0, two helicity-1, and two helicity-2 modes. Therefore taking
a direct limit from the Firez-Pauli Lagrangian to the Einstein-Hilbert Lagrangian is not smooth
massless limit because degrees of freedom of helicity-0 and helicity-1 modes are lost. The smooth
limit must be that the degrees of freedom are neither added nor lost. To find a correct limit, the
trick is introducing the gauge symmetry by introducing new fields, which is called Stüeckelberg
trick.

The original Lagrangian of the massive tensor field is given by

L = −1

4
hμνEαβ

μν hαβ − m2

8
(hμνh

μν − h2) +
κ

2
hμνT

μν , (2.3.1)

in which there is no gauge symmetry. To yield a gauge symmetry, we introduce a vector field Aμ

with the replacement

hμν → hμν + 2∂(μAν) . (2.3.2)

Under this replacement, the kinetic term and the matter coupling term are unchanged, while the
mass term is changed. The replaced Lagrangian is expressed by

L = −1

4
hμνEαβ

μν hαβ − m2

8
(hμνh

μν − h2)− m2

8
FμνF

μν − m2

2
(hμν∂μAν − h∂μA

μ) +
κ

2
hμνTμν ,

(2.3.3)

where Fμν = 2∂[μAν]. One can see this Lagrangian is invariant under the transformation

hμν → hμν + 2∂(μξν) , Aμ → Aμ − ξμ . (2.3.4)

Choosing the unitary gauge Aμ = 0, the original Lagrangian is obtained. Therefore, two theories
(2.3.1) and (2.3.3) are equivalent. Introducing only the vector Stüeckelberg field is not sufficient
since the original theory contains the helicity-0 mode as well. We again take the Stüeckelberg trick
for the vector field Aμ, i.e., we replace the vector field with

Aμ → Aμ + ∂μφ . (2.3.5)

Then the Lagrangian is replaced with

L = −1

4
hμνEαβ

μν hαβ − m2

8
(hμνh

μν − h2)− m2

8
FμνF

μν

− m2

2
(hμν∂μAν − h∂μA

μ)− m2

2
(hμν∂μ∂νφ− h∂μ∂

μφ) +
κ

2
hμνTμν , (2.3.6)
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where this Lagrangian has two gauge symmetries: one is (2.3.4) and another is

Aμ → Aμ + ∂μχ , φ → φ− χ . (2.3.7)

Hence the number of degrees of freedom are unchanged, and the original Lagrangian is obtained
by choosing the unitary gauge Aμ = 0, φ = 0.

Next, we take a decoupling limit in which the fields decouple from some of them with keeping
the number of degrees of freedom. The direct m → 0 limit loses the degrees of freedom of φ and
Aμ. Hence we first normalize the fields Aμ and φ as follows:

Aμ → 1

m
Aμ , φ → 1

m2
φ . (2.3.8)

Then we take the m → 0 limit:

L = −1

4
hμνEαβ

μν hαβ − m2

8
(hμνh

μν − h2)− 1

8
FμνF

μν

− m

2
(hμν∂μAν − h∂μA

μ)− 1

2
(hμν∂μ∂νφ− h∂μ∂

μφ) +
κ

2
hμνTμν ,

m→0→ Lm→0 = −1

4
hμνEαβ

μν hαβ − 1

8
FμνF

μν − 1

2
(hμν∂μ∂νφ− h∂μ∂

μφ) +
κ

2
hμνTμν . (2.3.9)

The decoupling limit Lagrangian has two independent gauge symmetry

hμν → hμν + 2∂(μξν) , (2.3.10)

Aμ → Aμ + ∂μχ , (2.3.11)

which are the same ones of the massless vector field and the massless tensor field. The number
degrees of freedom of the decoupling limit Lagrangian is actuary same as one of the original
Lagrangian. Note that, although the vector field Aμ decouples from the tensor field, the scalar
field does not decouple from the tensor field which is the origin of the vDVZ discontinuity. It
becomes more clear by introducing a tensor field by

hμν = Hμν + φημν . (2.3.12)

The Lagrangian is given by

L = −1

4
HμνEαβ

μν Hαβ − 1

8
FμνF

μν − 3

4
(∂φ)2 +

κ

2
HμνTμν +

κ

2
φT . (2.3.13)

where the scalar field couples to matter field. As a result, the gravity is mediated not only by the
tensor field, but also by the scalar field even in the decoupling limit. The existence of the fifth
force mediated by the scalar graviton is the origin of the vDVZ discontinuity.

2.4 Fierz-Pauli theory on curved background

So far, we have considered the linear massive tensor field on the Minkowski background. In
this section, we shall study a linear massive tensor field propagating on a fixed curved background.
The linear action of the massive tensor field is given by the quadratic order Einstein-Hilbert action
around the curved background with the Fierz-Pauli mass term:

S =

∫
d4x

√−g [LEH + LFP]

=

∫
d4x

√−g

[
−1

4
hμνEμν,αβhαβ − Λ

4

(
h2 − 2hμνh

μν
)
− m2

8

(
hμνh

μν − h2
)]

, (2.4.1)

where Λ is a cosmological constant and

Eμν,αβhαβ = −1

2
�hμν − 1

2
∇μ∇νh+∇α∇(νh

α
μ) +

1

2
gμν

(
�h−∇α∇βh

αβ
)

− 2

(
hα

(μRν)α − 1

2
hRμν

)
− 1

4
(ḡμνh− 2hμν)R . (2.4.2)
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The massive tensor field does not have a gauge symmetry, since the mass term breaks the diffeo-
morphism. As in the case of the flat background, the gauge symmetry can be explicitly restored
by introducing the Stückelberg fields Aμ and φ as

hμν = Hμν + 2∇(μAν) + 2∇μ∇νφ . (2.4.3)

The variable hμν is invariant under the following gauge transformations:

Hμν → Hμν + 2∇(μξν) , Aμ → Aμ − ξμ , (2.4.4)

and

Aμ → Aμ +∇μχ , φ → φ− χ . (2.4.5)

We can interpret Hμν , Aμ, and φ as tensor, vector, and scalar modes, respectively.
The Einstein-Hilbert action preserves the diffeomorphism invariance, and therefore neither Aμ

nor φ appears in SEH. On the other hand, the FP mass term is rewritten by using the Stückelberg
fields as

LFP =− m2

8
(HμνH

μν −H2)− m2

8
FμνF

μν +
m2

2
RμνA

μAν − m2

2
(Hμν∇μAν −H∇μA

μ)

+
m2

2
Rμν∇μφ∇νφ+m2RμνA

μ∇νφ− m2

2
(Hμν∇μ∇νφ−H�φ) (2.4.6)

where Fμν = 2∇[μAν]. Note that the interaction terms between the tensor and the scalar graviton
modes produce the vDVZ discontinuity around the flat background as shown in the previous
section. On the other hand, the vDVZ discontinuity does not occur around a curved background
in the massless limit [40, 41].

In order to see the absence of the vDVZ discontinuity, we take a canonical normalization for
the vector mode as

Aμ → 1

m
Aμ

and for the scalar graviton mode as

φ → 1

m
√
R0

φ ,

instead of the normalization φ → φ/m2, where a positive constant R0 denotes a typical scale of
the background Ricci tensor, i.e. R0 ∼ O(Rμν). Then the scalar part of the action becomes

S2 ⊃
∫

d4x
√−g

[
Rμν

2R0
∇μφ∇νφ+

Rμν√
R0

Aμ∇νφ− m

2
√
R0

(Hμν∇μ∇νφ−H�φ)

]
. (2.4.7)

Therefore, when the effective graviton mass is negligible compared with the background Ricci
curvature (i.e. m2 � R0), the interaction between tensor and scalar modes vanishes, and then
there is no vDVZ discontinuity.

However, the kinetic term of the scalar graviton is modified from the standard one in such a
massless limit. Hence the ghost instability or the gradient instability may appear, depending on
the background Ricci curvature. For simplicity, we assume a maximally symmetric spacetime:

Rμν =
1

4
Rgμν , R = 4Λ . (2.4.8)

Using the normalizations

Aμ → 1

m
Aμ , φ → 1

m2
φ , (2.4.9)

and the redefinition of the variable

Hμν = Hμν + φgμν , (2.4.10)
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the action is given by

S =

∫
d4x

√−g

[
LEH[H]− m2

8
(HμνHμν −H2)− 1

8
F 2 +

R

4
AμA

μ − m

2
(Hμν∇μAν −H∇μA

μ)

− 3

4

(
1− R

6m2

)(
(∂φ)2 −m2φH− 2mφ∇μA

μ − 4m2φ2
) ]

. (2.4.11)

Hence the scalar mode would be a ghost when

1− R

6m2
< 0 . (2.4.12)

If the background spacetime is the AdS spacetime, there is no ghost even in the limit m → 0 and
there is no vDVZ discontinuity. However, in the de Sitter background, the helicity-0 mode becomes
a ghost so-called the Higuchi ghost in the limit m → 0. The action is free from the ghost when the
Higuchi bound

3m2 − 2Λ > 0 , (2.4.13)

is satisfied [38, 39], so the mass has the lower bound to be free from the ghost instability. At the
exact bound value 3m2 = 2Λ, the helicity-0 mode is decoupled and a new gauge symmetry appears
which is called partially massless [87, 88].

When the background spacetime is the FLRW spacetime

ds̄2g = a2(−dη2 + dx2) , (2.4.14)

the ghost or the gradient instability appears depending on the dynamics of the background space-
time [42] which we call the Higuch type instability. The kinetic term is expressed by

Rμν∇μπ∇νπ =
3H2

2a2
(1 + 3w)

[
(∂ηφ)

2 − w − 1

1 + 3w
(∂iφ)

2

]
, (2.4.15)

where w is the effective equation-of-state parameter of the background universe defined by

w = −1− 2H ′

3aH2
, (2.4.16)

and H = a′/a2 is the Hubble parameter where a prime is the derivative with respect to the
conformal time η. Therefore the Higuchi ghost type instability appears for w < −1/3, while the
gradient instability is found for −1/3 < w < 1. This fact indicates that an instability is unavoidable
if the background spacetime consists of an ordinary matter components (w < 1).

However, such an instability is quite obscure in the physical interpretation, since the natural
expectation would be that the massive theory should be restored to its corresponding massless
theory when the energy scale of the background spacetime is higher than the mass. The instability
may simply hint the possibility that the linear perturbations are no longer valid as in the case of
vDVZ discontinuity which we shall discuss in Chapter 6.

2.5 Experimental constraints on graviton mass

If the gravitational theory contains a massive graviton, one can discuss the graviton mass
bound from several experiments of the gravity. There are mainly two general features of the
massive graviton: the existence of the Yukawa-type potential and the modification of the dispersion
relation of the gravitational wave. These effects can be seen from the linear massive gravity and
the linear theory gives some constraints on the graviton mass; however, as already mentioned,
the linear theory cannot be used in scales below the Vainshtein radius. In the nonlinear regime,
the Vainshtein mechanism may give the restoration to predictions of GR. Even if the screening
mechanism works, a tiny deviation from GR should exist and it could constrain the graviton mass
but the Vainshtein mechanism is still subject to discussion (see Chapter 4 and Chapter 8). Hence,
in this section, we briefly discuss the constraints on the graviton mass only based on the linear
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theory of the massive gravity (see the reviews [1,4,5] and references therein for further discussions
of the graviton mass bound).

We can consider several gravitational theories with a massive graviton: one is the carrier of
the gravitational force is only the massive graviton and others are cases when the gravitational
force is mediated by massive gravitons and also the massless graviton. In the case of only massive
graviton, we can obtain strong upper bounds on the graviton mass since the gravitational force has
the Yukawa suppression in scales beyond the Compton wavelength; thus, large-scale gravitating
systems, e.g., galaxies and galaxy clusters, give a tight constraint on the graviton mass although the
constraints depend on the distributions of dark matter. However, for the bigravity and the multi-
gravity, these constraints cannot be used since the gravitational force can be propagated by the
massless graviton. Furthermore, if the massless graviton dominates the gravitational interactions
between matter in such theories, one cannot obtain any constraints on the graviton mass in the
case of weakly coupling massive graviton (see Fig. 2.1).

First, we discuss the case of the theory with only massive graviton. In this case, as mentioned
above, one of the tightest constraints comes from the consideration of galactic and cluster dynamics
[89] which gives

m � 10−29 eV , λ � 1024 cm , (2.5.1)

where λ = �

mc is the (reduced) Compton wavelength of the massive graviton. However, this
constraint depends on the distribution of dark matter. The most rigorous model independent
constraint on the Yukawa-type modification can be derived from solar system dynamics [90]. The
solid bound on the graviton mass from solar system is

m < 7.2× 10−23 eV , λ > 2.8× 1017 cm . (2.5.2)

Another type of constraint can be obtained by the direct detection of the gravitational wave.
Recently, Advanced LIGO detected the gravitational waves GW150914 from a binary black hole
merger [91]. For the massive gravitational wave, the lower frequency gravitational waves travel
slower than the higher ones. The graviton mass can be constrained by this difference of the
propagating speed of the gravitational waves. The analysis of GW150914 [2, 92] gives the bound

m < 1.2× 10−22 eV , λ > 1.7× 1017 cm . (2.5.3)

We note that, while the solar system constrains the existence of the Yukawa-type modification of
the gravity, GW150914 gives the constraint on the modification of the dispersion relation. These
constraints give rigorous and independent bounds on the graviton mass.

In this thesis, we will mainly focus on the bigravity theory which contains one massless graviton
and one massive graviton. Hence we then discuss the graviton mass constraints in the bigravity
theory. In general, the gravitational potential in the bigravity theory can be given by

Φ = −GM

r

(
1 + αe−r/λ

)
. (2.5.4)

In the case of α � 1, the graviton mass bounds for a large scale modification are obtained from the
solar system experiments similarly to the case of the only massive graviton. On the other hand,
one important difference from the case of the only massive graviton is that the graviton mass can
be heavy, i.e., a short scale modification of gravity is also possible. Since the Yukawa potential
can be ignored in the scale r 	 λ, the Newtonian behavior is reproduced at such a scale. The
laboratory scale experiments on the gravity constrain the existence of such a massive graviton with
the mass around 10−2 eV or lighter than it. Furthermore, if the graviton mass is about TeV scale,
the graviton mass can be constrained from the LHC. Since the graviton universally couples with
standard model particles, the massive graviton can be produced by some particle collision. The
produced massive graviton rapidly decays to other standard model particles if the mass scale of
the coupling to matter is TeV scale. The experimental constraints on the gravitational potential
(2.5.4) and on the massive graviton production are summarized in Fig. 2.1 from [4].
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Figure 2.1: Experimental constraints on the gravitational potential (2.5.4) adapted from Ref. [4].
The colored region is the excluded area at 95% confidence level (see [4] and references therein for
details).





Chapter 3

Nonlinear massive gravity and
bigravity

3.1 Nonlinear self-interactions

As discussed in Sec. 2.2, the Fierz-Pauli theory is no longer valid below the Vainshtein radius;
thus, nonlinear extensions of the Fierz-Pauli theory are needed and the nonlinear interactions have
to be taken into account. However, generic nonlinear extensions of the Fierz-Pauli theory lead to
an additional degree of freedom [10]. In this section, we count degrees of freedom of the general
nonlinear massive gravity by using the Hamiltonian formulation and show the appearance of the
additional degree of freedom for generic nonlinear interactions. The Hamiltonian formulation in a
constrained system is summarized in Appendix A.

3.1.1 Hamiltonian analysis in general relativity

First, we briefly discuss the Hamiltonian formulation in D = (d + 1)-dimensional GR. In the
Hamiltonian formulation, it is necessary to foliate the (d+1)-dimensional spacetime with a family
of d-dimensional spacelike hypersurfaces. Hence we use the ADM decomposition

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) , (3.1.1)

with the lapse function N , the shift vector N i, and the d-dimensional induced metric gij on the
spacelike hypersurface. Then the Einstein-Hilbert action is expressed as

LEH =
√−gR =

√
det(gij)N(dR+KijKij −K2) + boundary terms , (3.1.2)

where dR is the intrinsic curvature and Kij is the extrinsic curvature. While the intrinsic curvature
dR does not contain the time derivative, the extrinsic curvature can be expressed by

Kij =
1

2N
(ġij − 2D(iNj)) , (3.1.3)

where Di is the covariant derivative in gij ; thus the extrinsic curvature contains the time derivative
of gij . The momentum conjugate to gij is defined by

πij =
δ

δġij
(
√−gR)

=
√
det(gij)(K

ij −Kgij) . (3.1.4)

Since the Einstein-Hilbert action does not contain the time derivative of the lapse and the shift,
the momentum conjugates to them yield primary constraints

π0 =
δ

δṄ
(
√−gR) ≈ 0 , (3.1.5)

πi =
δ

δṄ i
(
√−gR) ≈ 0 . (3.1.6)

17
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As a result, the Hamiltonian in GR is given by

HT = π0v
0 + πiv

i +H , (3.1.7)

H = −NR0 −N iRi , (3.1.8)

where v0 and vi are Lagrangian multipliers and

R0 =
√

det(gij)
dR+

1√
det(gij)

(
1

2
πi

iπ
j
j − πijπij

)
, (3.1.9)

Ri = 2
√
det(gij) gijDk

(
πjk√
det(gij)

)
. (3.1.10)

The primary constraints should be preserved after a time evolution, so these conditions generate
secondary constraints

π̇0 = {π0, HT } = R0 ≈ 0 , (3.1.11)

π̇i = {πi, HT } = Ri ≈ 0 , (3.1.12)

where HT =
∫
ddxHT . Note that the preservations of secondary constraints are weakly satisfied,

thus they do not yield any constraint.
We find D primary constraints and D secondary constraints in GR. Poisson brackets of them

are calculated by

{πα, Rβ} ≈ 0 , (3.1.13)

and

{R0(x), R0(y)} = −
[
Ri(x)

∂

∂xi
δ(d)(x− y)−Ri(y)

∂

∂yi
δ(d)(x− y)

]
≈ 0 , (3.1.14)

{R0(x), Ri(y)} = −R0(y)
∂

∂xi
δ(d)(x− y) ≈ 0 , (3.1.15)

{Ri(x), Rj(y)} = −
[
Rj(x)

∂

∂xi
δ(d)(x− y)−Ri(y)

∂

∂yj
δ(d)(x− y)

]
≈ 0 , (3.1.16)

where we denote πα = (π0, πi), Rβ = (R0, Ri). All Poisson bracket are weakly zero, thus all
constraints are first class which is indeed associated with the general covariance of GR. As a result,
we find 2D primary constraints in terms of D(D + 1) canonical variables. The degrees of freedom
of GR in the phase space is thus

D(D + 1)− 2× 2D = D(D − 3) ,

which corresponds to D(D− 3)/2 independent degrees of freedom in the field space. This result is
indeed same as the number of the polarizations of the massless spin-2 field in D dimensions.

3.1.2 Hamiltonian analysis in massive gravity

Next, we move to the case of the massive gravity. We assume the Lagrangian of the general
nonlinear massive gravity as

LmGR = LEH + Lmass(N,N i, gij) . (3.1.17)

where Lmass(N,N i, gij) is assumed not to contain derivatives. Hence primary constrains are same
as the case of GR

π0 ≈ 0 , πi ≈ 0 , (3.1.18)

and then the Hamiltonian is given by

HT = π0v
0 + πiv

i +HGR − Lmass , (3.1.19)

HGR = −NR0 −N iRi . (3.1.20)
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The preservations of the primary constraints generate secondary constraint. While the mass term
does not affect the primary constraints, the mass term contribute the secondary constraints:

Cα(x) = {πα(x), HT } = Rα(x) + C̃α(x) ≈ 0 , (3.1.21)

where we define

C̃α(x) =
δLmass(x)

δNα(x)
, (3.1.22)

and we denote Nα = (N,N i). In general, the Poisson brackets of the constraints are no longer
weakly zero thus all constraints are second class. Furthermore, the preservations of the secondary
constraints are not trivially satisfied differently from the case of GR. The preservations of the
secondary constraints hold when

Dα(x) = {Cα(x), HT }

≈ {Cα(x), H}+
∫

d3y{C̃α(x), πβ(y)}vβ(y)

= {Cα(x), H}+ Lαβv
β(x) ≈ 0 , (3.1.23)

where

Lαβ := {C̃α(x), πβ(x)} =
δ2Lmass

δNαδNβ
. (3.1.24)

For general mass terms, the determinant of Lαβ is nonzero, thus there exists the inverse matrix
(L−1)αβ and then the Lagrangian multipliers are determined by

vα = −(L−1)αβ{Cβ(x), H} . (3.1.25)

Hence Eq. (3.1.23) is not constraint on the canonical variables but the equation to determine the
Lagrangian multipliers.

As a result, we have 2D second class constraints in terms of D(D+1) canonical variables. The
degrees of freedom of the nonlinear massive gravity is thus

D(D + 1)− 2D = D(D − 1) ,

in the phase space, or D(D−1)/2 in the field space. On the other hand, the number of polarizations
of the massive spin-2 field in D dimensions is given by

(D + 1)(D − 2)

2
=

D(D − 1)

2
− 1 .

Therefore the general nonlinear massive gravity contains an additional scalar degree of freedom as
well as ones of the massive spin-2 field. As shown in Section 2.1, this additional scalar corresponds
to the ghost mode, so-called Boulware-Deser ghost [10].

However, as also discussed in Section 2.1, the additional scalar can be eliminated by a nontrivial
constraint. When the determinant of Lαβ is nonzero, the preservations of the secondary constraints
yield the equations to determine the Lagrangian multipliers. However when the determinant of
Lαβ is weakly zero, some of the Lagrangian multipliers are undetermined by (3.1.23). Instead,
some of (3.1.23) give tertiary constraints on the canonical variables. To eliminate one degree of
freedom in the field space, two constraints are required in the phase space. Since there exist an
even number of second class constraints in general, even if there is only one tertiary constraint,
the preservation of the tertiary constraint may generate a quaternary constraint. Hence, if

det(Lαβ) ≈ 0 , (3.1.26)

is satisfied, the BD ghost could be eliminated. Indeed, we shall see in next section that the
ghost-free nonlinear massive gravity satisfies this condition.
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3.2 de Rham-Gabadadze-Tolley theory

As discussed in the previous section, the generic nonlinear interactions lead to the BD ghost.
However, de Rham, Gabadadze, and Tolley pointed out that the special choice of the mass term
can eliminate the BD ghost and proposed the ghost-free nonlinear massive gravity often dubbed
the dRGT theory [11, 12]. Although they showed the ghost-freeness in the decoupling limit which
will be detailed in Section 4.3, the proof was extended at fully nonlinear orders [13–16].

To construct the mass term of the metric gμν , we need a fictitious metric for the Stückelberg
fields called the fiducial metric fμν which is assumed to be non-dynamical in the dRGT theory.
Then the action of the dRGT theory is given by

S =
1

2κ2
g

∫
d4x

√−g

[
R− 2m2

4∑
n=0

cnUn(K)

]
, (3.2.1)

with

Kμ
ν = δμν − γμ

ν , (3.2.2)

where γμ
ν is a squat root of g−1f defined by the relation

γμ
ργ

ρ
ν = gμρfρν . (3.2.3)

The ghost-free mass term are constructed by the elementary symmetric polynomials of the eigen-
values of the matrix K. We define

U0(X) = 1 , (3.2.4)

U1(X) = [X] =
∑
i

λi , (3.2.5)

U2(X) =
1

2
([X]2 − [X2]) =

∑
i<j

λiλj , (3.2.6)

U3(X) =
1

3!
([X]3 − 3[X][X2] + 2[X3]) =

∑
i<j<k

λiλjλk , (3.2.7)

U4(X) =
1

4!
([X]4 − 6[X]2[X2] + 3[X2]2 + 8[X][X3]− 6[X4]) = λ1λ2λ3λ4 , (3.2.8)

where λi are eigenvalues of the matrix Xμ
ν and we use the notations Xnμ

ν = Xμ
α2X

α2
α3 · · ·Xαn

ν

and [Xn] = Xnμ
μ. We have introduced the constant term U0 and the tadpole term U1, for

completeness. The absence of the constant term and the tadpole term (i.e., c0 = c1 = 0) guarantees
the existence of the Minkowski vacuum with the Minkowski fiducial metric. Alternatively, these
quantities are expressed by

U0(X) = − 1

4!
εμνρσε

μνρσ (3.2.9)

U1(X) = − 1

3!
εμνρσε

ανρσXμ
α , (3.2.10)

U2(X) = −1

4
εμνρσε

αβρσXμ
αX

ν
β , (3.2.11)

U3(X) = − 1

3!
εμνρσε

αβγσXμ
αX

ν
βX

ρ
γ , (3.2.12)

U4(X) = − 1

4!
εμνρσε

αβγδXμ
αX

ν
βX

ρ
γX

σ
δ . (3.2.13)

Note that the potential term can be expressed by the elementary symmetric polynomials of the
eigenvalues of the matrix γ:

4∑
n=0

cnUn(K) =
4∑

n=0

bnUn(γ) , (3.2.14)
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with the relations between the coefficients cn and bn

c0 = b0 + 4b1 + 6b2 + 4b3 + b4,

c1 = −(b1 + 3b2 + 3b3 + b4),

c2 = b2 + 2b3 + b4, (3.2.15)

c3 = −(b3 + b4),

c4 = b4.

The existence of the Minkowski vacuum is realized when the coefficients bn satisfy

c0 = b0 + 3b1 + 3b2 + b3 = 0 , −c1 = b1 + 3b2 + 3b3 + b4 = 0 . (3.2.16)

A normalization of m to be the graviton mass around the Minkowski vacuum (c0 = c1 = 0) gives

c2 = b2 + 2b3 + b4 = −1 , (3.2.17)

in which the dRGT mass term is expanded to the Fierz-Pauli mass term at the quadratic order of
hμν := gμν − ημν with the graviton mass m.

In order to take the square root to obtain the explicit form of γμ
ν , it is useful to introduce the

vielbein systems, {e(a)μ } and {ω(a)
μ }, which are define by

gμν = ηabe
(a)
μ e(b)ν , fμν = ηabω

(a)
μ ω(b)

ν . (3.2.18)

We then redefine the square root γμ
ν as

γμ
ν = εηabe

μ(a)ω(b)
ν , (3.2.19)

where ε = ±1 comes from the square root. Changing the sign of ε corresponds to the following
transformation

γμ
ν ↔ −γμ

ν , (3.2.20)

for which the interaction term is invariant by changing the sign of the coupling constant as

bn ↔ (−1)nbn . (3.2.21)

Hence, we shall only consider the case of ε = +1 unless we reintroduce ε explicitly. While the metric
contains only 10 degrees of freedom, the vielbein contains 16 degrees of freedom. The additional 6
freedom comes from the gauge freedom of the local Lorentz symmetry of vielbein

e(a)μ → Λ(a)
(b)e

(b)
μ , (3.2.22)

where Λ(a)
(b) represents the transformations of local boost and local rotation of the vielbein. Two

definitions (3.2.3) and (3.2.19) are completely equivalent if we impose an additional constraint on
the vielbeins, called the symmetric vielbein condition,

eμ(a)ωμ(b) = eμ(b)ωμ(a) , (3.2.23)

which eliminates 6 degrees of freedom of the local Lorentz symmetry of vielbeins. Therefore,
the dRGT theory in the vielbein system contains only 6 gauge freedom associated with the local
Lorentz symmetry although the theory contains two independent vielbeins1.

Note that, as shown in [18], even if we do not assume the symmetric vielbein condition, the

condition can be obtained from the variation with respect to Λ
(a)
(b) when we assume the dRGT mass

term defined on the vielbein system. This formulation is called unconstrained vielbein formulation.
The equivalence is broken when we introduce the doubly coupled matter field which couples to

1We notice again that the vielbein ω
(a)
μ is not a dynamical field in the dRGT theory but a fictitious non-dynamical

field. In bigravity discussed in next section, the vielbein ω
(a)
μ is also a dynamical field.



22 CHAPTER 3. NONLINEAR MASSIVE GRAVITY AND BIGRAVITY

both vielbeins e
(a)
μ and ω

(a)
μ [93]. In this thesis, however, we do not consider the doubly coupled

matter field thus the vielbein system is equivalent to the metric system.
Let us see the ghost-freeness of the dRGT theory. The structure of the dRGT mass term will be

clear when we use the decoupling limit. The decoupling limit makes it clear why the generic mass
terms give a ghost mode and why the dRGT mass term can eliminate such a ghost mode. However,
we now do not use the decoupling limit. We discuss the general proof of the ghost-freeness of the
dRGT mass term without the decoupling limit. The discussions on the decoupling limit will be
done in next chapter.

Just for simplicity, we focus on the simplest case of the action

S =
1

2κ2
g

∫
d4x

√−g
(
R− 2m2[γ]

)
. (3.2.24)

Two metrics are decomposed into

ds2g = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) , (3.2.25)

ds2f = −M2dt2 + fij(dx
i +M idt)(dxj +M jdt) . (3.2.26)

Then one can calculate

N2g−1f = E0 +NE1 +N2E2 , (3.2.27)

Nγ = A+NB , (3.2.28)

where

E0 =

(
a0 aj

−a0c
i −ciaj

)
, (3.2.29)

E1 =

(
Mkdk dk

−a0d
i − ciMkdk −ajd

i − cidj

)
, (3.2.30)

E2 =

(
0 0

xMkDi
�D

�
k xDi

kD
k
j

)
, (3.2.31)

A =
1

M
√
x

(
a0 aj

−a0c
i −ciaj

)
, (3.2.32)

B =
√
x

(
0 0

MkDi
k Di

j

)
, (3.2.33)

with the quantities

a0 = M2 +MM ifijn
j , (3.2.34)

ai = Mfkin
k , (3.2.35)

ci = Mni +M i , (3.2.36)

di = Di
kn

k , di = fkid
k , (3.2.37)

x =
a0 − ckak

M2
= 1− nifijn

j , (3.2.38)

and ni, Di
j are defined by the relations

N i −M i = (Mδij +NDi
j)n

j , (3.2.39)

√
xDi

j =
√
(gik − didk) fkj , (3.2.40)

Then the potential term is expressed by

√−g [γ] = M
√

x det(gij) +N
√

x det(gij) [D] . (3.2.41)
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The independent variables are given by (N,N i, gij), however one can chose (N,ni, gij) as inde-
pendent variables instead of the original variables. This change of variables is valid when the
transformation is not singular, i.e.,

det

[
δN i

δnj

]
= det

[
Mδij +N

δ(Di
kn

k)

δnj

]
�≈ 0 (3.2.42)

By using the variables (N,ni, gij), the Lagrangian is given by

L = πij ġij + (Mni +M i)Ri +N(R0 +RiD
i
jn

j)− 2m2
√
x det(gij)(M +N [D]) , (3.2.43)

and then the Hamiltonian is expressed by

HT = π0v
0 + πiv

i +H , (3.2.44)

H = −(Mni +M i)Ri −N(R0 +RiD
i
jn

j) + 2m2
√

x det(gij)(M +N [D]) , (3.2.45)

where the primary constraints are

πα ≈ 0 . (3.2.46)

The preservations of the primary constrains yield secondary constraints

π̇0 = {π0,HT } = − δH
δN

= R0 +RiD
i
jn

j − 2m2
√

x det(gij) [D] ≈ 0 , (3.2.47)

π̇i = {πi,HT } = − δH
δni

= Cj
(
Mδji +N

δ(Dj
kn

k)

δni

)
≈ 0 . (3.2.48)

Note that the non-singular condition (3.2.42) prohibits the parenthesis in the second equation
vanishes. Hence the secondary constraints are given by

C0 := R0 +RiD
i
jn

j − 2m2
√
x det(gij) [D] ≈ 0 , (3.2.49)

Ci := Ri − 2m2
√

det(gij)/xn
kfki ≈ 0 , (3.2.50)

where we use

δ
√
x

δni
= −x−1/2fikn

k , (3.2.51)

δ[D]

δni
= −x−1/2nkfkj

δ

δni
(n�Dj

�) (3.2.52)

As discussed in the previous section, the BD ghost can be eliminated when the matrix

Lαβ =
δL

δnαnβ
(3.2.53)

has one zero eigenvalue, where nα = (N,ni). The matrix is calculated as

L00 = 0 , L0i = Cj
δ(Dj

kn
k)

δni
. (3.2.54)

and then L0i is zero by using the secondary constraints. As a result, det(L) ≈ 0 is satisfied and
the dRGT theory is free from the BD ghost.

The dRGT theory has no BD ghost, however, it has still been problematic in the context of
cosmology. It was revealed that the original dRGT theory does not admit any non-trivial flat or



24 CHAPTER 3. NONLINEAR MASSIVE GRAVITY AND BIGRAVITY

closed FLRW universe if the fiducial metric for the Stüeckelberg fields is Minkowski s one [94].
While this issue can be resolved either by open FLRW solutions [95] or by replacing the Minkowski
fiducial metric with an FLRW one [96], it was later shown that all homogeneous and isotropic
FLRW solutions in the dRGT theory are unstable due to either a linear ghost or a new type of
nonlinear ghost [97–99]. Therefore to discuss the cosmology, one should consider a curved fiducial
metric or generalize the theory. When we take a curved fiducial geometry, e.g. the FLRW or
an inhomogeneous background, it may be natural to promote it to a dynamical one. In fact, the
dRGT massive gravity theory has been generalized to such a theory with two dynamical metrics
which we discuss in the next section.

3.3 Bigravity theory

3.3.1 Hassan-Rosen bigravity

The dRGT theory contains a non-dynamical metric fμν . This metric can be dynamical when
the Einstein-Hilbert action for fμν is added and this generalization of the theory, called a bigravity
theory, is still free from the BD ghost shown by Hassan and Rosen [17]. As we will see later, while
the dRGT theory contains only a massive spin-2 field, the bigravity theory contains a massless
spin-2 field as well as a massive spin-2 field, with total seven degrees of freedom in the gravity
sector.

The gravitational part of the bigravity is given by

Sgrav =
1

2κ2
g

∫
d4x

√−gR(g) +
1

2κ2
f

∫
d4x

√
−fR(f)− m2

κ2

∫
d4x

√−g

4∑
n=0

bnUn(γ) , (3.3.1)

where gμν and fμν are two dynamical metrics, and R(g) and R(f) are their Ricci scalars. The
parameters κ2

g = 8πG and κ2
f = 8πG are the corresponding gravitational constants, while κ is

defined by κ2 = κ2
g + κ2

f .
The matter action Sm can be divided into three types:

Sm = Sg(g, ψg) + Sf (f, ψf ) + Sd(g, f, ψd) , (3.3.2)

where first two types of matter fields couple to either gμν or fμν , while the third type couples
to both metrics. The matter fields that couple to only one metric do not spoil the structure of
the gravitational part of the theory that eliminates the (would-be) BD ghost. On the other hand,
matter fields that couple to both metrics generically reintroduce the BD ghost. Although one can
construct a ghost-free double matter coupling via an effective composite metric at low energy scales,
such a coupling gives a ghost at high energy scales [93,100–106]. This would imply that the matter
should couple to only one metric. One way to avoid the difficulty of the double matter coupling
was proposed in the context of the partially constrained vielbein formulation that breaks Lorentz
invariance at the cosmological scale [107], making it possible to couple matter fields simultaneously
to both metrics without the BD ghost at all scales. In this thesis, however, we focus on the single
matter coupling:

Sm = Sg(g, ψg) + Sf (f, ψf ) , (3.3.3)

This restriction guarantees the weak equivalence principle as well as the ghost free condition. We
call the g-matter ψg and the f -matter ψf twin matter fluids.

Taking the variation of the action with respect to gμν and fμν , we find two sets of the Einstein
equations:

Gμ
ν = κ2

g(T
[γ]μ
g ν

+ T [m]μ
g ν

), (3.3.4)

Gμ
ν = κ2

f (T
[γ]μ
f ν

+ T
[m]μ
f ν

), (3.3.5)

where Gμ
ν and Gμ

ν are the Einstein tensors for gμν and fμν , respectively. The matter energy-
momentum tensors are given by

T [m]
g μν

= −2
δS

[m]
g

δgμν
, T

[m]
f μν

= −2
δS

[m]
f

δfμν
. (3.3.6)
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The γ-“energy-momentum” tensors from the interaction term are given by

T [γ]μ
g ν

=
m2

κ2
(τμν − U δμν), (3.3.7)

T
[γ]μ
f ν

= −
√−g√−f

m2

κ2
τμν , (3.3.8)

with

τμν = {b1 U0 + b2 U1 + b3 U2 + b4 U3}γμ
ν

− {b2 U0 + b3 U1 + b4 U2}(γ2)μν

+ {b3 U0 + b4 U1}(γ3)μν

− b4 U0 (γ
4)μν . (3.3.9)

The energy-momenta of matter fields are assumed to be conserved individually as

(g)

∇μT
[m]μ
g ν

= 0 ,
(f)

∇μT
[m]μ
f ν

= 0 , (3.3.10)

where
(g)

∇μ and
(f)

∇μ are covariant derivatives with respect to gμν and fμν . From the contracted
Bianchi identities for (3.3.4) and (3.3.5), the conservation of the γ-“energy-momenta” is also guar-
anteed as

(g)

∇μT
[γ]μ
g ν

= 0 ,
(f)

∇μT
[γ]μ
f ν

= 0 . (3.3.11)

3.3.2 Homothetic solutions

First we give one simple solution, in which we assume that two metrics are proportional;

fμν = K2 gμν , (3.3.12)

where K is a scalar function. In this case, since we find the tensor γμ
ν = K δμν , the γ-“energy-

momentum” is given by

κ2
gT

[γ]μ
g ν

= −Λg(K)δμν ,

κ2
fT

[γ]μ
f ν

= −Λf (K)δμν ,

where

Λg(K) = m2
κ2
g

κ2

(
b0 + 3b1K + 3b2K

2 + b3K
3
)
,

Λf (K) = m2
κ2
f

κ2

(
b4 + 3b3K

−1 + 3b2K
−2 + b1K

−3
)
. (3.3.13)

From the energy-momentum conservation (3.3.11), we find that K is a constant. As a result,
we find two sets of the Einstein equations with cosmological constants Λg and Λf :

Gμν(g) + Λg gμν = κ2
gT

[m]
g μν

, (3.3.14)

Gμν(f) + Λf fμν = κ2
fT

[m]
f μν

. (3.3.15)

Since two metrics are proportional, we have the constraints on the cosmological constants and
matter fields as

Λg(K) = K2Λf (K) , (3.3.16)

κ2
g T

[m]μ
g ν

= K2κ2
fT

[m]μ
f ν

. (3.3.17)
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The quartic equation (3.3.16) for K has at most four real roots, which give four different cosmo-
logical constants. The basic equations (3.3.14) (or (3.3.15)) are just the Einstein equations in GR
with a cosmological constant. Hence any solutions in GR with a cosmological constant are always
the solutions in the present bigravity theory. We shall call these solutions homothetic solutions
because of the proportionality of two metrics.

In the vacuum case, there exist Minkowski, de Sitter, and anti-de Sitter solutions depending
on the sign of the cosmological constant. Since K has at most four branches, the vacuum solution
cannot be determined uniquely. It implies that, even if we assume the existence of the Minkowski
vacuum in the bigravity theory, it could admit de Sitter vacuum as another branch of the vacuum
solution. The typical value of the emerged cosmological constant would be an order of magnitude
of the graviton mass square which implies that the present acceleration of the Universe can be
explained by the graviton mass. So before discussing more details of bigravity, we summarize
when the bigravity theory admits the de Sitter vacuum as well as the Minkowski vacuum [51,108].

To admit the trivial Minkowski vacuum, we set

c0 = c1 = 0 , c2 = −1 , (3.3.18)

where the parameters ci are defined by (3.2.15). Note that the setting c2 = −1 is not relevant
to the existence of the Minkowski vacuum, but it gives a normalization such that the parameter
m corresponds to the graviton mass propagating on the Minkowski vacuum. Then the coupling
constants bi are given by two parameters c3 and c4 as

b0 = 4c3 + c4 − 6 ,

b1 = 3− 3c3 − c4 ,

b2 = 2c3 + c4 − 1 , (3.3.19)

b3 = −(c3 + c4) ,

b4 = c4 .

In this case, one can easily find

Λg(1) = Λf (1) = 0 , (3.3.20)

thus K = 1 gives a root of the quartic equation (3.3.16) with zero cosmological constant. The rest
three roots of the equation (3.3.16) can be all real or one real and two complex. The de Sitter
solution can be found when the coupling constants satisfy

2c23 + 3c4 > 0 . (3.3.21)

This parameter space is classified into five regions depending on the sign of K and the magnitude
relations of the roots K. The de Sitter vacuum with K > 0 is found when

c3 < 0 , c3 + c4 < 0 , 2c23 + 3c4 > 0 [region (1)] ,

c3 > 3 , 3c3 + c4 < 3 , 2c23 + 3c4 > 0 [region (2)] .

We show the typical examples (Models A and B) for these regions in Table 3.1: For the coupling
constants which satisfy

c3 + c4 > 0, 3c3 + c4 < 3, 2c23 + 3c4 > 0 [region (3a)] ,

c3 + c4 < 0, 3c3 + c4 > 3, 2c23 + 3c4 > 0 [region (3b)] ,

c3 + c4 > 0, 3c3 + c4 > 3, 2c23 + 3c4 > 0 [region (3c)] ,

we obtain one de Sitter solution for K(dS) < 0. In Table 3.2, we show some examples (Models C,
D, and E).

In Fig.3.1, we show the regions (1), (2) and (3) where de Sitter solution exists are shown on
the c3-c4 plane. In the white region in Fig.3.1, there is no de Sitter solution. There exist either
three or one AdS spacetimes.

As a result, the bigravity theory can admit the de Sitter vacuum as well as the Minkowski
vacuum in an appropriate parameter space. However, the existence of several vacua give a question:
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Model (c3, c4) region K Λg vacuum

A (−1, 0) (1) −0.523476 −11.0162m2 AdS1
1 0 M

1.67319 −0.19723m2 AdS2
6.85028 6.2134m2 dS

B (4,−10) (2) −1.91031 −40.2009m2 AdS1
1 0 M

0.145979 0.132407m2 dS
0.59766 −0.070451m2 AdS2

Table 3.1: In the parameter regions (1) and (2), there exists one de Sitter solution with K(dS) > 0.
In addition, we find three other vacuum solutions (two anti-de Sitter (AdS) solutions as well as a
trivial Minkowski spacetime). We assume κf = κg.

model (c3, c4) region K Λg vacuum

C (1/2, 0) (3a) −2−
√
3 3

2

√
3m2 dS

−2 +
√
3 − 3

2

√
3m2 AdS1

1 0 M
3 −2m2 AdS2

D (5/2,−4) (3b) −2−
√
3 −36.1866m2 AdS1

−2 +
√
3 0.186534m2 dS

1/3 − 2
9m

2 AdS2
1 0 M

E (3, 0) (3c) −0.761557 14.8663m2 dS
0.636672 −0.077027m2 AdS1

1 0 M
4.12489 −11.7893m2 AdS2

Table 3.2: In the parameter region (3), there exists one de Sitter solution with K(dS) < 0. We also
find three other vacuum solutions (two AdS solutions as well as a trivial Minkowski spacetime).
The region (3) is divided into three sub-regions ((3a), (3b) and (3c)) depending on the properties
of the solutions. We assume κf = κg.

Figure 3.1: The de Sitter solutions with K > 0 and K < 0 are found in the regions (1) and (2)
and in the region (3), respectively. The region (3) is divided into three sub-regions ((3a), (3b) and
(3c)).
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Is the de Sitter spacetime an attractor as the universe expands? To explain the current accelerating
expansion of the Universe by the graviton mass, the de Sitter branch must be an attractor. On
the other hand, if the graviton mass does not explain the accelerating expansion (e.g., the case
when the graviton mass is quite large compared to the current energy density of the Universe), the
Minkowski branch must be an attractor. Indeed, the universe evolves into the de Sitter branch (or
the Minkowski branch) for general initial data which will be discussed in Chapter 5.

3.3.3 Linearization of bigravity theory

The bigravity theory contains one massless graviton and one massive graviton. This becomes
clear when we look at the linear perturbations around a homothetic solution. The unperturbed
solution is assumed to be homothetic, i.e.,

(0)

f μν = K2(0)

g μν , (3.3.22)

where (0) indicates background quantities. This provides solutions to the unperturbed part of
the two Einstein equations (3.3.14) and (3.3.15). A constant K is determined by the quartic
equation (3.3.16), and the matter energy-momenta satisfy the unperturbed part of (3.3.17). We
then consider the following perturbations:

gμν =
(0)

g μν + δgμν , (3.3.23)

fμν =
(0)

f μν +K2δfμν = K2
(

(0)

g μν + δfμν

)
(3.3.24)

where |δgμν |, |δfμν | � |(0)g μν |. The suffixes of δgμν as well as δfμν are raised and lowered by the

background metric
(0)

g μν .
We obtain the quadratic action for the perturbations of the metrics as,

S2 =

∫
d4x

√−ḡ

[
1

κ2
g

LEH

[
δg; Λg

]
+

K2

κ2
f

LEH

[
δf ; Λg

]
+ LFP

[
ϕ;m2

eff

]]

=

∫
d4x

√−ḡLEH

[
h; Λg

]
+

∫
d4x

√−ḡ
[
LEH

[
ϕ; Λg

]
+ LFP

[
ϕ;m2

eff

]]
, (3.3.25)

where the massless and massive graviton modes with mass dimension one are defined by

hμν =
κf

Kκgκ−
δgμν +

Kκg

κfκ−
δfμν , (3.3.26)

ϕμν =
1

κ−
(δgμν − δfμν) , (3.3.27)

with κ2
− = κ2

g +K−2κ2
f . The effective graviton mass meff in a homothetic background spacetime

is defined by

m2
g :=

m2κ2
g

κ2
(b1K + 2b2K

2 + b3K
3) , (3.3.28)

m2
f :=

m2κ2
f

K2κ2
(b1K + 2b2K

2 + b3K
3) , (3.3.29)

m2
eff := m2

g +m2
f

=
m2

κ2

(
κ2
g +

κ2
f

K2

)
(b1K + 2b2K

2 + b3K
3) . (3.3.30)

The quadratic Einstein-Hilbert Lagrangian and the FP mass term for a metric perturbation χμν

are defined by

LEH[χ; Λg] = −1

4
χμνEμν,αβχαβ − Λg

4

(
χ2 − 2χμνχ

μν
)
, (3.3.31)

LFP[χ;m
2
eff ] = −m2

eff

8

(
χμνχ

μν − χ2
)
. (3.3.32)



3.4. ENERGY-MOMENTUM TENSOR OF GRAVITONS IN BIGRAVITY 29

It is now explicit from (3.3.25) that the bigravity theory contains one massless and one massive
graviton since the action for hμν is given by the linearized Einstein-Hilbert action and the action
for ϕμν is given by the Fierz-Pauli action defined on a fixed curve spacetime.

3.4 Energy-momentum tensor of gravitons in bigravity

In the previous section, we showed the quadratic action of the bigravity can be decomposed
into the massless graviton and the massive graviton. Although these are decoupled at linear order,
the massless graviton and the massive graviton are coupled at non-linear order. The nonlinear
terms give a backreaction into the gravitational field, e.g., localized massive gravitons may form
the gravitational field. In GR, as derived by Isaacson [109], the energy-momentum tensor of the
high-frequency gravitational wave can be defined by evaluating the nonlinear terms of the Einstein
equation. Therefore, even in bigravity, we could define the energy-momentum tensors of both
massless and massive gravitons which may give backreactions into the gravitational field. In this
section, we define the energy-momentum tensors of gravitons in bigravity based on our paper [54].

As is well known in GR, the division of the spacetime geometry into a background and gravi-
tational waves requires a separation of scales for the two: the length or/and time scale associated
with the perturbation should be sufficiently shorter than the scale associated with the smooth
background [109]. In this situation the energy-momentum tensor of gravitational waves is defined
by the second order part of the perturbed Einstein equation averaged over a length or/and time
scale between the two scales. The same assumption and procedure can be employed to define the
energy-momentum tensor of the massless graviton in the context of bigravity.

Here we assume sufficiently high-frequency/momentum gravitational waves compared with the
spacetime geometry. When we consider high-frequency/momentum waves, the motion of such
waves could be decoupled from the dynamics of a background and they freely propagate around
the background. So, first we discuss the free propagating massless and massive gravitational waves.
For simplicity, we assume the background spacetime is the K = 1 Minkowski spacetime with the
coupling constant (3.2.15). The generalization to a curved background could be straightforward
when the frequency/momentum is sufficiently higher than the inverse of the curvature scale of the
background.

The quadratic action is expressed as

S2 =

∫
d4x

[
1

κ2
g

LEH

[
δg

]
+

1

κ2
f

LEH

[
δf

]
+ LFP

[
ϕ
]
+

1

2
δgμνT

μν
m

]

=

∫
d4x

[
LEH

[
h
]
+

1

2Mpl
hμνT

μν
m

]
+

∫
d4x

[
LEH

[
ϕ
]
+ LFP

[
ϕ
]
+

1

2MG
ϕμνT

μν
m

]
, (3.4.1)

where Tμν
m is the matter energy-momentum tensor which is introduced to compare the energy-

momentum tensor of matter with those of gravitons2. The gravitational coupling constants are
defined by

Mpl :=
κ

κgκf
, MG :=

κ

κ2
g

=
κf

κg
MPl . (3.4.2)

Note that we have assumed the matter contribute to only low-frequency/momentum modes. The
matter does not contribute to the motion of the high-frequency waves thus high-frequency/momentum
modes freely propagate around the background. Hence, the equations of motion of high-frequency
waves at linear order are given by

Eμν,αβhαβ = 0 , (3.4.3)

Eμν,αβϕαβ +
m2

2
(ϕμν − ϕημν) = 0 . (3.4.4)

2For simplicity, we introduce a matter field couple with only gμν . Although we can also introduce a matter field
couple with fμν , it is not so important for the discussion here
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Since the massless graviton has a gauge symmetry, we can choose the transverse-traceless gauge
for the massless eigenstate, i.e.,

∂μh
μ
ν = 0 , h = 0 , hμνu

ν = 0 , (3.4.5)

where uμ is a timelike vector. Since the massive graviton does not enjoy the gauge symmetry, we
cannot impose any gauge condition for the massive graviton. However, in vacuum, we can obtain
the transverse-traceless condition from the equation of motion:

∂μϕ
μ
ν = 0 , ϕ = 0 . (3.4.6)

As a result, the equations of motion are expressed as

∂2hμν = 0 , (3.4.7)

(∂2 −m2)ϕμν = 0 . (3.4.8)

The equations are the Klein-Gordon equations with and without the mass term, thus we can easily
find their solutions. However, the explicit forms of the solutions are not necessary to evaluate the
energy-momentum tensor.

As mentioned above, the graviton energy-momentum tensor can be defined by evaluating non-
linear terms of the Einstein equation. In the case of GR, there is no ambiguity to define the
energy-momentum tensor since there is only one Einstein equation. However, in the case of bigrav-
ity, there are two Einstein equation thus it is not clear how to define the energy-momentum tensor
from nonlinear terms of the Einstein equations. Therefore, we first consider another definition of
the energy-momentum tensor: the “canonical” energy-momentum tensor which is defined from the
Noether’s theorem.

In the classical field theory, when the Lagrangian is given, the canonical energy-momentum
tensor can be defined from the Noether’s theorem. However, since the Lagrangian has a freedom to
add a total divergence term, the energy-momentum tensor cannot be defined uniquely. To remove
this ambiguity, we define the canonical energy-momentum tensor by averaging over a spacetime
region. Hence we define the canonical energy-momentum tensor of a symmetric tensor field χμ as

Θμν
χ :=

〈
− δLχ

δ(∂μχαβ)
∂νχαβ + ημνLχ

〉
, (3.4.9)

where the symbol 〈· · · 〉 denotes an average over a spacetime region with a size larger than the
corresponding scale of the perturbation but smaller than the scale of the background, defined
through an appropriate window function. Specifically, the assumption of a large hierarchy of scales
makes it possible for us to ignore boundary terms of 〈· · · 〉 and perform integration by part, e.g., as

〈∂ρχμνχαβ〉 = −〈χμν∂ρχαβ〉︸ ︷︷ ︸
O(λ−1χ2)

+O(L−1χ2) ≈ −〈χμν∂ρχαβ〉 , (3.4.10)

where L, λ are scales of the average and the perturbations, respectively, which are assumed to
be L 	 λ. For the massless graviton hμν , the Lagrangian is given by the linearized Einstein-
Hilbert action. Assuming the transverse-traceless gauge, the canonical energy-momentum tensor
is calculated by

Θμν
gw =

〈
− δLEH

δ(∂μhαβ)
∂νhαβ + ημνLEH

〉
=

1

4
〈∂μhαβ∂νhαβ〉+

1

8
ημν〈hαβ∂

2hαβ〉 . (3.4.11)

The second term vanishes from the field equation (3.4.7), and then the canonical energy-momentum
tensor of the massless graviton is given by

Θμν
gw =

1

4
〈∂μhαβ∂νhαβ〉 . (3.4.12)
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The canonical energy-momentum tensor of the massive graviton can be obtained in a way similar
to the case of the massless graviton. By using the field equation (3.4.8) and the transverse-traceless
condition (3.4.6), the canonical energy-momentum tensor is given by

Θμν
G =

〈
−δ(LEH + LFP)

δ(∂μϕαβ)
∂νϕαβ + ημν(LEH + LFP)

〉
=

1

4
〈∂μϕαβ∂νϕαβ〉 . (3.4.13)

We note the averaging and the integration by part used to derive the energy-momentum tensor.
For the massless graviton with the transverse-traceless gauge (3.4.6), in both GR and bigravity,
the integration by part can be applied to the time derivative as well as the spatial derivatives
even if the average is over a spatial region, provided that the gravitational wave over the region
of integration can be considered as a wave propagating to one direction. For example, in a region
sufficiently far from a finite-size source a solution to the wave equation propagating to, say, the z
direction is written as F (t− z) and thus ∂t applied to it can be replaced by −∂z before performing
the spatial integration by part and then ∂z acted on another function of the form G(t− z) can be
replaced by −∂t. On the other hand, this argument does not apply to the massive graviton since a
wave of a massive field changes its shape as it propagates in one direction. Moreover, even for the
massless graviton, in either GR or bigravity, this argument does not seem to be valid for stochastic
gravitational waves, which come from every direction to every point. We thus employ an average
over a spacetime region to make it possible to do integration by part.

In general relativity, the energy-momentum tensor of the graviton defined from Noether’s the-
orem is also obtained from the nonlinear part of the Einstein equation. Here we consider up to
second order of the perturbation. For a transverse-traceless perturbation χμν := Mpl(gμν − ημν),
the second order part of the Ricci tensor is given by

M2
plδ

(2)

Rμν =
1

4
χαβ

,μχαβ,ν − 1

2
χμα,βχν

β,α +
1

2
χμ

α,βχνα,β +
1

2
χαβ(χαβ,μν − 2χα(μ,ν)β + χμν,αβ) ,

(3.4.14)

where we have imposed the transverse-traceless gauge condition. We define the energy-momentum
tensor of the graviton as

Tμν
χ := M2

pl〈δ
(2)

Gμν(χ)〉 = −
(
ημαηνβ − 1

2
ημνηαβ

)
M2

pl〈δ
(2)

Rαβ(χ)〉 . (3.4.15)

Integrating by part (under the high-frequency/momentum approximation) and using the equation
of motion χαβ,γ

,γ = 0, one can obtain

Tμν
χ =

1

4
〈χαβ,μχαβ

,ν〉 , (3.4.16)

which is the same as the result from the Noether’s theorem. Including the energy-momentum
tensors of the graviton as well as the matter, the Einstein equation is expressed as

Eμν,αβχαβ =
1

Mpl
(Tμν

m + Tμν
χ ) . (3.4.17)

Hence the energy-momentum tensor of the graviton is a source of the gravitational field. Note that
the conservation law of the energy-momentum tensor is guaranteed without taking an average over
a spacetime region. The divergence of Tμν

χ is calculated as

∂νT
μν
χ =

(
1

4
χαβ,μ − 1

2
χμα,β

)
χαβ,γ

,γ , (3.4.18)

which is zero due to the field equation.
The canonical energy-momentum tensor of the massive graviton would be a source of the

gravitational field in bigravity. We expand the equations (3.3.4) and (3.3.5) around the Minkowski
vacuum up to the second order of perturbations. We use the transverse-traceless gauge for the
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massless graviton continuously. The second order parts of T
[γ]μν
g and T

[γ]μν
f in terms of the mass

eigenstates are given by

δ
(2)

T [γ]μν
g =

m2

8κ2

[
(9κ2

g + κ2
f − 2c3κ

2)ϕμαϕν
α − (4κ2

g − c3κ
2)ϕαβϕαβη

μν
]

+m2κgκf

κ2

[
1

4
ϕα(μhν)

α − 1

2
hαβϕαβη

μν

]
, (3.4.19)

δ
(2)

T
[γ]μν
f =

m2

8κ2

[
(−5κ2

g + 3κ2
f + 2c3κ

2)ϕμαϕν
α − (−3κ2

g + κ2
f + c3κ

2)ϕαβϕαβη
μν

]
+m2κgκf

κ2

[
−1

4
ϕα(μhν)

α +
1

2
hαβϕαβη

μν

]
, (3.4.20)

where we use hμ
μ = 0 and ϕμ

μ = 0. Note that although both T
[γ]μν
g and T

[γ]μν
f are complicated,

the sum is simply given by

δ
(2)

T [γ]μν
g + δ

(2)

T
[γ]μν
f =

m2

2
ϕμαϕν

α − m2

8
ϕαβϕαβη

μν . (3.4.21)

We find the canonical energy-momentum tensors of massless and massive gravitons are ob-
tained as source terms of the field equation of the massless graviton with the coupling constant
Mpl. Including the energy-momentum tensors, the equation of motion of the massless graviton is
expressed by

Eμν,αβhαβ =
1

Mpl
(Tμν

m + Tμν
gw + Tμν

G ) , (3.4.22)

where the energy-momentum tensors of the massless graviton and the massive graviton are defined
by

Tμν
gw := −M2

plδ
(2)

Gμν(h)

= −1

4
hαβ,μhαβ

,ν +
1

2
hμ

α,βh
νβ,α − 1

2
hμα,βhν

α,β

− hα(μhν)
α,β

,β − 1

2
hαβ(hαβ

,μν − 2h(μ
α
,ν)

β + hμν
,αβ)

+ ημν
(
3

8
hαβ,γh

αβ,γ − 1

4
hαβ,γh

αγ,β +
1

2
hαβhαβ,γ

,γ

)
, (3.4.23)

Tμν
G := − 1

κ2
δ
(2)

Gμν(ϕ) + δ
(2)

T [γ]μν
g + δ

(2)

T
[γ]μν
f

= −1

4
ϕαβ,μϕαβ

,ν +
1

2
ϕμ

α,βϕ
νβ,α − 1

2
ϕμα,βϕν

α,β

− ϕα(μϕν)
α,β

,β − 1

2
ϕαβ(ϕαβ

,μν − 2ϕ(μ
α
,ν)

β + ϕμν
,αβ)

+ ημν
(
3

8
ϕαβ,γϕ

αβ,γ − 1

4
ϕαβ,γϕ

αγ,β +
1

2
ϕαβϕαβ,γ

,γ

)

+
m2

2
ϕμαϕν

α − m2

8
ϕαβϕαβη

μν . (3.4.24)

Averaging over a spacetime region, the energy-momentum tensors are reduced into

Tμν
gw =

1

4
〈hαβ,μhαβ

,ν〉 , (3.4.25)

Tμν
G =

1

4
〈ϕαβ,μϕαβ

,ν〉 , (3.4.26)

which are indeed the same as the canonical energy-momentum tensors defined from Noether’s
theorem. The energy-momentum tensors Tμν

gw and Tμν
G satisfy the conservation laws without the
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average over a spacetime region. The energy-momentum tensor of the massless graviton is the
same as that in the case of GR, while the divergence of that of the massive graviton is calculated
by

∂νT
μν
G =

(
1

4
ϕαβ,μ − 1

2
ϕμα,β

)
(ϕαβ,γ

,γ −m2ϕαβ) . (3.4.27)

Hence the conservation law of the energy-momentum tensor of the massive graviton is guaranteed
as well. As a result, we conclude that, in bigravity, both massless and massive gravitons are
sources of the gravity mediated by the massless graviton rather than either gμν , fμν or the massive
graviton.

Note that the coupling strength is given by only Mpl in the Einstein equation of the massless
graviton (3.4.22). The coupling MG gives the coupling strength between the massive graviton and
matter. Therefore, although the massive graviton is decoupled from the matter at the linear order
in the limit MG → ∞, the massive graviton is not decoupled from the massless graviton in this
limit. We also note that there is no mixing term between hμν and ϕμν in the equation (3.4.22). It
indicates that the cubic order Lagrangian would be schematically given by

L3 =
1

Mpl
h∂2h2 +

1

Mpl
h(∂2ϕ2 +m2ϕ2) +

1

MG
ϕ(∂2ϕ2 +m2ϕ2) . (3.4.28)

This structure shows that the massive graviton cannot decay to two massless gravitons although it
decay to some particles via the interaction 1

MG
ϕμνT

μν
m . The discussions about the limit MG → ∞

and the cubic order Lagrangian are more detailed in [55,56].





Chapter 4

Decoupling limits and Vainshtein
mechanism

The massive graviton generally contains five polarizations: one helicity-0 mode, two helicity-1
modes, and two helicity-2 modes. As discussed in Section 2.3, the Stüeckelberg trick is useful to
discuss these modes in the Fierz-Pauli theory. For example, one can see the helicity-0 mode is not
decoupled from the helicity-2 mode even in the massless limit. In this Chapter we consider this
kind of analysis in the dRGT massive gravity and the bigravity. We shall derive an effective theory
by taking a decoupling limit: In a limit, one can ignore the irrelevant interactions with keeping the
number of degree of freedom in which some of degrees of freedom could be decoupled from other
ones. The Stüeckelberg trick and the decoupling limit make it easy to see not only the appearance
and disappearance of the BD ghost but also the existence of the Vainshtein mechanism.

4.1 Nonlinear Stüeckelberg fields

In this section, we introduce Stüeckelberg fields in order that the action of massive gravity
recovers the gauge symmetry. In the Fierz-Pauli theory, it is sufficient to introduce the Stüeckelberg
fields at linear order. However, to discuss nonlinear theories of massive gravity, we should extend
Stüeckelberg fields to nonlinear orders.

Clearly, the metric perturbation usually defined by δgμν := gμν − (0)

g μν is not a covariant
quantity. To define a perturbation as a covariant quantity, we introduce Stüeckelberg fields as
scalar quantities φa (a = 0, 1, 2, 3) and define the tensor

Hμν := gμν − ∂μφ
a∂νφ

b(0)

g ab(φ) , (4.1.1)

where the suffixes of Hμν are raised and lowered by the metric gμν . Since the quantities φa

transform as scalars under diffeomorphisms xμ → Xα(x), the quantity fμν := ∂μφ
a∂νφ

b(0)

g ab(φ)
transforms like a metric tensor, so we call fμν the fiducial metric. We define the unitary gauge
where the Stüeckelberg fields are φa = δaμx

μ in which we simply obtain Hμν = δgμν . Hence, the
tensor Hμν can be recognized as a covariant form of the perturbation δgμν by introducing the
nonlinear Stüeckelberg fields. Using the covariant quantities, we can construct a covariant form
of generic nonlinear interactions. We have two covariant quantities gμν and Hμν (or fμν) under
diffeomorphisms. Then a covariant form of generic nonlinear interactions is given by

LNL = LNL(g,H) = LNL(g, f) . (4.1.2)

In the case of the flat fiducial metric fμν = ∂μφ
a∂νφ

bηab, the Stüeckelberg fields can be split
as φa = δμa (x

a + πa) and then fμν is expressed by

fμν = ημν(x) + 2∂(μπν)(x) + ∂μπα(x)∂νπ
α(x) , (4.1.3)

35
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where πμ is a vector field on the Minkowski spacetime. In this case the tensor Hμν is written as

Hμν =
hμν

Mpl
− 2∂(μπν) − ∂μπα∂νπ

α , (4.1.4)

with hμν := Mpl(gμν − ημν). Since πμ is the vector field, introducing new Stüeckelberg fields Aμ

and π, we can also split it as

πμ =
Aμ

mMpl
+

∂μπ

m2Mpl
. (4.1.5)

Then the tensorHμν can be decomposed into π,Aμ and hμν which can be regarded as the helicity-0,
the helicity-1 and the helicity-2 modes, respectively.

4.2 Below the scale Λ3

Before discussing the dRGT theory, we back to the general massive gravity. Generic nonlinear
interactions lead to the BD ghost as discussed in Section 3.1 which can be also seen in the decoupling
limit as the Ostrogradski instability [110, 111]. For simplicity, we only focus on the case of the
massive gravity around the Minkowski background until Section 4.4.

As explicitly shown in Section 2.3, the special structure of the Fierz-Pauli mass term schemat-
ically leads to

LFP = m2M2
plδg

2 = m2h2 +mh∂A+ h∂∂π + (∂A)2 , (4.2.1)

which does not contain any higher derivative terms, thus the Fierz-Pauli action is free from the
Ostrogradski instability. However generic nonlinear interactions, given by

LNL(g,H) = m2M2
pl

∑(
h

Mpl

)j (
∂A

mMpl

)k (
∂2π

m2Mpl

)�

=
∑

Λ
−(j+2k+3�−4)
j,k,� hj(∂A)k(∂∂π)� , (4.2.2)

where

Λj,k,� =
(
mk+2�−2M j+k+�−2

pl

)1/(j+2k+3�−4)

, (4.2.3)

with j, k, � ∈ N and j+ k+ � > 2, may contain higher derivative terms leading to the Ostrogradski
instability.

The lowest interaction scale is Λ5 := Λj=0,k=0,�=3 = (m4Mpl)
1/5 arising from the interactions

(∂2π)3. Clearly, this type of interactions contains higher derivatives. Therefore, to be free from
the Ostrogradski instability, the interactions at the scale Λ5 must be eliminated. However, even
if such a dangerous interaction is absent, there are infinite dangerous interactions (∂2π)� with the
coupling scale Λj=0,k=0,�>3 at the scales

Λ5 = (m4Mpl)
1/5 < Λj=0,k=0,�>3 < Λj=0,k=0,�→∞ = Λ3 = (m2Mpl)

1/3 , (4.2.4)

which lead to the Ostrogradski instability. Therefore, interactions below the scale Λ3 must be
absent in the ghost-free nonlinear massive gravity. Note that interactions with j > 0 or k > 0 give
large energy scale interactions. So we focus on only the helicity-0 sector of the massive graviton.

The most dangerous terms arises from the form of (∂2π)�. Thus we only focus on only self-
interactions of the scalar part here. Neglecting the vector and the tensor parts, the tensors are
given by

gμν ≈ ημν , Hμν ≈ − 2

m2Mpl
Πμν − 1

m4M2
pl

ηαβΠμαΠβν , (4.2.5)
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where Πμν := ∂μ∂νπ. Then the nonlinear interaction is constructed by a function of ημν and Πμν .
We expand the nonlinear interactions in terms of Πμν up to cubic order, for example, as

LNL = L2 + L3 +O(Π4) , (4.2.6)

where the Lorentz invariance leads to

L2(g,H) = −m2M2
pl(β1[H

2] + β2[H]2)

≈ − 1

m2
(β1[Π

2] + β2[Π]2) , (4.2.7)

L3(g,H) = −m2M2
pl(γ1[H

3] + γ2[H][H2] + γ3[H]3)

≈ − 1

m4Mpl
(γ1[Π

3] + γ2[Π][Π2] + γ3[Π]3) , (4.2.8)

with the notations Πnμ
ν = Πμ

α2Π
α2

α3 · · ·Παn
ν and [Πn] = Πnμ

μ, and β1, β2, γ1, γ2 and γ3 are
arbitrary constants. Those are general forms of quadratic and cubic Lagrangian constructed by Πμν

and ημν with the Lorentz invariance. Note that the generic quadratic order interaction contains
the higher derivatives as a form of (∂∂π)2. However, in the case of the Fierz-Pauli combination
(β2 = −β1), the quadratic order interaction becomes the total divergence term and then the action
does not contain the higher derivative terms. Indeed, the quadratic term is explicitly calculated as

[Π2]− [Π]2 = −εμνρσε
αβρσΠμ

αΠ
ν
ν = −∂μ(εμνρσε

αβρσ∂απ∂
ν∂βπ) + εμνρσε

αβρσ∂απ∂
μ∂ν∂βπ ,

where the last term vanishes due to the property of the antisymmetric tensor. Similarly to the
Fierz-Pauli combination, the following combinations are total divergence terms:

U0(Π) = − 1

4!
εμνρσε

μνρσ

= 1, (4.2.9)

U1(Π) = − 1

3!
εμνρσε

ανρσΠμ
α

= [Π], (4.2.10)

U2(Π) = −1

4
εμνρσε

αβρσΠμ
αΠ

ν
β

=
1

2!
([Π]2 − [Π2]), (4.2.11)

U3(Π) = − 1

3!
εμνρσε

αβγσΠμ
αΠ

ν
βΠ

ρ
γ

=
1

3!
([Π]3 − 3[Π][Π2] + 2[Π3]), (4.2.12)

U4(Π) = − 1

4!
εμνρσε

αβγδΠμ
αΠ

ν
βΠ

ρ
γΠ

σ
δ

=
1

4!
([Π4]− 6[Π2][Π]2 + 8[Π3][Π] + 3[Π2]2 − 6[Π4]) . (4.2.13)

Therefore, the cubic order interaction is the total divergence term when we chose γ2 = −3γ1
and γ3 = 2γ1. This procedure can be done at quartic order. On the other hand, clearly from
the property of the antisymmetric tensor, one cannot construct such terms at quintic order or
more higher orders. Since the original action of massive gravity should be constructed by gμν and
fμν (or Hμν), we should rewrite the total divergence combinations by using gμν and fμν without
appearance of higher orders of Πμν . So, we introduce a tensor γμ

ν :=
√

gμρfρν defined by the
relation √

gμρfρσ
√
gσρfρν = gμρfρν . (4.2.14)

In the case of (4.2.5), this square root of the matrix is explicitly given by√
gμρfρν ≈ δμν +

Πμ
ν

m2Mpl
. (4.2.15)
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Hence, the ghost-free nonlinear interactions would by given by

LGFNL = c2U2(K) + c3U3(K) + c4U4(K) , (4.2.16)

which is nothing but the dRGT mass term, where Kμ
ν is defined by (3.2.2). Note that, although

we do not include a constant term U0(K) and a tadpole term U1(K) in order that the Minkowski
spacetime is a vacuum solution, the ghost-free interactions can be extended to include them.

As a result, we have confirmed that the dangerous terms may appear below the scale Λ3 but
they are absent in the ghost-free massive gravity. The dRGT interaction does not contain self-
interactions of the scalar part π. However, the non-existence of the self-interaction of π leads to
the vDVZ discontinuity in the Fierz-Pauli theory since the scalar part appears in the interaction
between hμν and π which cannot disappear even in the massless limit. We hope this interaction
is screened when the nonlinear interactions are taken into account. Hence, we shall discuss the
nonlinear interactions between hμν and π in next section which interactions should be relevant to
the screening of the fifth force.

4.3 Λ3 decoupling limit

The dRGT theory is constructed by using the square root of the matrix which leads to a infinite
order polynomial of Hμν as

Kμ
ν = −

∞∑
n=1

d̄n(H
n)μν , (4.3.1)

with

d̄n =
(2n)!

(1− 2n)(n!)24n
. (4.3.2)

However, as shown in previous section, when we focus on only the scalar part, the matrix Kμ
ν is

simply given by a finite expression

Kμν |h=A=0 =
1

m2Mpl
Πμν . (4.3.3)

In this section we discuss the interactions between the tensor part and the scalar part by taking,
so called, the Λ3 decoupling limit [112] which also give a finite expression when we do not take
into account the vector part [11].

The Λ3 decoupling limit is defined by the limit

Mpl → ∞ , m → 0 , Λ3 := (m2Mpl)
1/3 : finite , (4.3.4)

in which all interactions beyond the scale of Λ3 disappear. Relevant interactions in this limit are
given by forms of h(∂2π)� or (∂A)2(∂2π)�. Since the vector part is decoupled from the tensor part
in the Λ3 decoupling limit, only the tensor-scalar interactions seem to be important for the vDVZ
discontinuity and the Vainshtein mechanism. Therefore, we only focus on the interactions of the
form of h(∂2π)�. The complete Λ3 decoupling limit including the vector part in the dRGT theory
is shown in [113], and the Λ3 decoupling limit in the bigravity is discussed in [114].

Note that, as discussed later in §. 4.5.3, the scalar graviton is not sufficient to obtain a stable
Vainshtein screening solution. The vector graviton should have an important role for the Vainshtein
mechanism. However, since an explicit example of the Vainshtein screening solution including the
vector graviton has not been found so far, the role of the vector graviton is not clear. In this and
next sections, thus, we only consider the role of the scalar graviton for the Vainshtein mechanism.
Nevertheless, the scalar graviton is worth noting for the Vainshtein mechanism.

Let us derive the interactions of the form of h(∂2π)�. By using the relation

δ[Kn]

δhμν

∣∣∣∣
h=A=0

=
n

2

(
1

Λ
3(n−1)
3

Πn−1
μν − 1

Λ3n
3

Πn
μν

)
, (4.3.5)
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we can obtain

δ

δhμν

√−gU (K)

∣∣∣∣
h=A=0

=
1

2

(
X(1)

μν +
β2

Λ3
3

X(2)
μν +

β3

Λ6
3

X(3)
μν

)
, (4.3.6)

where we define

X(1)
μν = − 1

2!
εμ

αβγενα′βγΠ
α′
α

= [Π]ημν −Πμν , (4.3.7)

X(2)
μν = − 1

2!
εμ

αβγενα′β′γΠ
α′
α Πβ

β′

=
1

2
ημν

(
[Π]2 − [Π2]

)
+Π2

μν − [Π]Πμν , (4.3.8)

X(3)
μν = − 1

3!
εμ

αβγενα′β′γ′Πα′
α Πβ′

β Πγ′
γ

=
1

6

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
−Π3

μν + [Π]Π2
μν − 1

2
([Π]2 − [Π2]) , (4.3.9)

and

β2 = c3 − 1 , β3 = −(c3 + c4) . (4.3.10)

Then the effective action with the Λ3 decoupling limit is given by

Leff = −1

4
hμνEμν,αβhαβ − 1

2
hμν

(
X(1)

μν +
β2

Λ3
3

X(2)
μν +

β3

Λ6
3

X(3)
μν

)
+

1

2Mpl
hμνTμν . (4.3.11)

Note that, although the interactions h(∂2π)2 or h(∂2π)3 seem to contain higher derivatives, the
special combinations do not lead to any higher derivatives in the equation of motion. Indeed, the
equation of motion of hμν trivially contains up to section order derivatives, and the variation with
respect to π gives

Mplε
αβγδεμνρσR

(1)μν
αβ

(
δργδ

σ
δ +

2β2

Λ3
3

Πρ
γδ

σ
δ +

β3

Λ6
3

Πρ
γΠ

σ
δ

)

= εαβγδεμνρσ∂
μ
[
(∂βh

ν
α − ∂αh

ν
β)

(
δργδ

σ
δ +

2β2

Λ3
3

Πρ
γδ

σ
δ +

β3

Λ6
3

Πρ
γΠ

σ
δ

)]
= 0 , (4.3.12)

which does not contain third or more higher order derivatives, where

R
(1)
μναβ =

1

Mpl

(
∂μ∂[βhα]ν + ∂ν∂[αhβ]μ

)
, (4.3.13)

is the linearized Riemann curvature. Hence, this action is free from the Ostrogradski instability
which is consistent with the BD ghost-freeness of the dRGT theory.

In the Fierz-Pauli theory, one can obtain an unmix action by taking a linearized conformal
transformation in which the scalar-tensor interaction vanishes. In the dRGT theory, although it
is possible to obtain an unmix action up to the cubic order by a field redefinition, the interaction
hX(3) cannot vanish. By performing the field redefinition as

hμν = h̃μν − πημν +
β2

Λ3
3

∂μπ∂νπ , (4.3.14)

the action is rewritten as

Leff =− 1

4
h̃μνEμν,αβh̃αβ +

5∑
n=2

αn

Λ
3(n−2)
3

Lgal
n − 1

2

β3

Λ6
3

h̃μνX(3)
μν

+
1

2Mpl
hμν T̃

μν − 1

2Mpl
πT +

β3

2MplΛ3
3

∂μπ∂νπT
μν , (4.3.15)
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where

Lgal
2 = −1

2
(∂π)2 , (4.3.16)

Lgal
3 = −1

2
(∂π)2[Π] , (4.3.17)

Lgal
4 = −1

2
(∂π)2([Π]2 − [Π2]) , (4.3.18)

Lgal
5 = − 1

12
(∂π)2([Π]3 − 3[Π][Π2] + 2[Π3]) . (4.3.19)

The dimensionless coefficients αn are given by

α2 =
3

2
, (4.3.20)

α3 =
3

2
β2 , (4.3.21)

α4 =
1

2
β2
2 − 2β3 , (4.3.22)

α5 = −15β2β3 . (4.3.23)

One can see that the action contains nonlinear derivative interactions of the scalar graviton π
which are important for the Vainshtein mechanism discussed in next section.

Note that the terms Ln, hX
(n) are called Galileon interactions since they are invariant under a

Galilean like transformation for the field as

π → π + c+ vμx
μ , (4.3.24)

with a constant c and a constant vector vμ. The Galieon type interactions were originally introduced
in Ref. [115] as a generalization of the decoupling limit of the Dvali-Gabadadze-Porrati (DGP)
theory [116–118]. The generalization of the Galileon scalar field including the gravity leads to
the general scalar-tensor theories, called the Horndeski theory and beyond Horndeski theories
[119–125]. The Horndeski theory is the most general scalar-tensor theory with the equations of
motion up to second order derivatives, while beyond Horndeski theories are more general scalar-
tensor theories with higher order derivative equations of motion but without the Ostrogradski
instability. Clearly from that the effective action of the massive gravity is reduced into the Galileon
type scalar-tensor theory, the Vainshtein mechanism has an important role not only in the massive
gravity but also in some classes of the scalar-tensor theories which have non-linear second order
derivative interactions. For example, the effective theory of the Horndeski theory for the Vainshtein
mechanism around the Minkowski spacetime is given by

LH =− 1

4
hμνEμν,αβhαβ +

5∑
n=2

α̃n

Λ3(n−2)
Lgal
n − 1

2

3∑
n=1

β̃n

Λ3(n−1)
hμνX(n)

μν +
1

2Mpl
hμνT

μν , (4.3.25)

where Λ gives the strong coupling scale and the coefficients α̃n and β̃n are determined by the
Horndeski action [126] (see [127–129] for effective theories for the Vainshtein mechanism around a
cosmological background).

4.4 Vainshtein mechanism

The Vainshtein mechanism is a mechanism to screen the fifth force mediated by the scalar field
by nonlinear second order derivative interactions. In the linear theory, the field profile of the scalar
field with a point source is proportional to r−1 and then the second order derivative of the scalar
field is typically proportional to r−3 where r is the distance from the source. Since ∂2π becomes
larger near the source (it increases faster than other type interactions such as the first derivative
interactions or the non-derivative interactions), the nonlinear second order derivative interactions
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could dominate over the linear terms inside some radius, called the Vainshtein radius. As already
mentioned in Section 2.2, in the massive gravity, the Vainshtein radius is given by

rV =

(
GM

m2

)
,

where M is the gravitational mass of the source. The typical value of the Vainshtein radius is
about 1020 cm for the sun with the cosmological scale graviton mass. The Vainshtein mechanism
in massive gravity and bigravity has been discussed in [63–79,81,82,85].

Since the nonlinear interactions are important for the Vainshtein mechanism, one cannot use
perturbative expansions and one has to take into account full nonlinear orders to discuss the
Vainshtein mechanism. The massive gravity contains the infinite number of interactions although
they can be resummed as finite terms by using the square root of the matrix. Therefore, the general
discussion for the Vainshtein mechanism is too difficult to analyze it. However, as shown in the
previous section, the massive gravity can be reduced to the finite order expression by taking the
Λ3 decoupling limit without the vector graviton. The effective action is given by a scalar-tensor
theory with Galileon type interactions which would be relevant to the Vainshtein mechanism. In
what follows, thus, we will discuss the Vainshtein mechanism based on a Galileon scalar theory.

We thus consider the cubic Galileon theory

L = −1

2
(∂π)2 − 1

Λ3
(∂π)2�π +

1

Mpl
πT , (4.4.1)

where T is the trace of the energy-momentum tensor of the source. The constant Λ gives the strong
coupling scale which controls the energy scale of the nonlinear interaction. As mentioned above,
the Galileon interaction (∂π)2�π will dominate over the standard kinetic term (∂π)2 close to the
source with ∂2π 	 Λ3. Hence one cannot use perturbative expansions around π = 0. However,
it is possible to use the perturbation around some background configuration. When we split the
energy-momentum tensor into a background contribution T0 and a perturbation δT with T0 	 δT ,
the scalar field is also split into a background configuration π0 and a perturbation φ as

π = π0 + φ . (4.4.2)

The quadratic action for the perturbation φ is then

L2 = −1

2
Zμν(π0)∂μφ∂νφ+

1

Mpl
φδT (4.4.3)

where the effective metric Zμν is give by

Zμν := ημν +
1

Λ3
X(1)μν(π0) . (4.4.4)

Note that the effective metric is symbolically Z ∼ 1+∂2π0/Λ
3. Hence, while the effective metric is

order unity in the linear regime (∂2π0 � Λ3), the effective metric has a large value in the nonlinear
regime (∂2π0 	 Λ3).

The idea of the screening is that the effective coupling between the scalar field and the matter
is suppressed by the background configuration of the scalar field. The canonically normalized
perturbation of the scalar field is given by

φ̃ =
√
Zφ , (4.4.5)

where Z is a constant to express the typical value of Zμν in some local region. In terms of the
normalized field, the action is

L2 = −1

2

Zμν

Z
∂μφ̃∂ν φ̃+

1

Meff
φ̃δT , (4.4.6)

where the effective coupling constant to the matter is defined by

Meff :=
√
ZMpl . (4.4.7)
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In the linear regime Z ∼ 1, the effective coupling constant recovers the original coupling constant.
However, the energy scale of the effective coupling becomes higher than the original one in the
nonlinear regime Z 	 1 which leads to the coupling to the matter is suppressed. Hence the effective
coupling to the matter depends on the configuration of the background and it can be screened in
the nonlinear regime. In particular, the strong coupling scale Λ is related to the graviton mass
as Λ = (m2Mpl)

1/3, the massless limit m → 0 leads to Z → ∞ which means the coupling to the
matter vanishes.

Another importance of the Vainshtein mechanism is that the strong coupling scale also depends
on the background configuration. In terms of the canonical normalized perturbation, the full action
is given by

L = −1

2

Zμν

Z
∂μφ̃∂ν φ̃− 1

Λ3
eff

(∂φ̃)2�φ̃+
1

Meff
φ̃δT , (4.4.8)

where the effective strong coupling scale is

Λeff :=
√
ZΛ . (4.4.9)

Hence the strong coupling scale rises in Z 	 1 which implies that the lowest energy scale of the
theory turns to the scale Λeff instead of Λ inside the Vainshtein radius and then there exists another
decoupling limit associated with the new scale Λeff . Indeed, we will introduce another decoupling
limit, called the Λ2 decoupling limit recently proposed by [83, 84] in next section. As discussed in
our paper [86], the Λ2 decoupling limit around a curved spacetime gives an effective action inside
the Vainshtein radius in which the Vainshtein mechanism is already implemented.

So far, we have included only the self-interaction of the scalar field. However, the massive
gravity contains the interactions as hX(n). Specifically, one cannot obtain the unmix action of
the scalar and the tensor fields even taking the field redefinition when hX(3) is included. The
existence of the mixing terms gives a qualitatively different effect from the self-interactions of the
scalar field. For completeness, we consider the general action (4.3.25). The case of the massive
gravity is obtained when α̃n = 0 and Λ = (m2Mpl)

1/3. Similarly to above discussion, the energy-
momentum tensor, the scalar field, and the tensor field are split into background quantities and
perturbations. Note that the linearized Einstein equation is given by

Eμν,αβhαβ
0 +

3∑
n=1

β̃n

Λ3(n−1)
X(n)

μν (π0) =
1

Mpl
T0μν , (4.4.10)

where hμν
0 , π0, and T0μν are background quantities. To obtain a successful Vainshtein screening,

the contributions from the scalar field to the Einstein equation should be sub-dominant. Hence,
the metric perturbation and the scalar field should satisfy the following inequalities:

∂2h0 	 ∂2π0 ,
1

Λ3
(∂2π0)

2 ,
1

Λ6
(∂2π0)

3 . (4.4.11)

These inequalities lead to that when the scale of the scalar field reaches the strong coupling scale,
i.e., ∂2π0 ∼ Λ3, the tensor field should satisfy the inequality

∂2h0 	 Λ3 . (4.4.12)

The quadratic Lagrangian for the scalar fluctuation is then

L2 = −1

2
(Zμν

gal + Zμν
h )∂μφ∂νφ+O(δh∂2δφ) , (4.4.13)

where

Zμν
gal = α̃2η

μν +

3∑
n=1

α̃n+2

Λ3n
X(n)μν(π0) , (4.4.14)

Zμν
h = −Mpl

4Λ3
εμαβγενα′β′γ′R(1)α′β′

αβ(h0)

(
β̃2δ

γ′
γ +

β̃3

Λ3
3

Πγ′
γ(π0)

)
. (4.4.15)
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Note that the kinetic mixing just gives a negligible contribution for the scalar field when the
Vainshtein mechanism works, i.e., Zgal 	 1 or Zh 	 1. The inequalities (4.4.11) and (4.4.12)
suggest

Zμν
gal � Zμν

h , (4.4.16)

thus the contributions from the self-interactions are also sub-dominant. We note that, when β̃3 = 0,
the matrix Zμν

h is comparable to Zμν
gal in vacuum region since the Einstein equation gives

Zμν
h = −Mplβ̃2

Λ3
G(1)

μν (h0) = β̃2

2∑
n=1

β̃n

Λ3n
X(n)(π0) ,

where G
(1)
μν is the linearized Einstein tensor. Hence, the self-interactions give non-negligible con-

tributions in vacuum region when β̃3 = 0. However, the case of β̃3 �= 0, the self-interactions can
be ignored and then the effective metric is approximated by Zμν

h . In this case, ∂2π0 	 Λ3 is not
necessary to obtain Zh 	 1. The inequality MplR

(1)(h0) ∼ ∂2h0 	 Λ3 gives a large value of the
effective metric Zμν

h even when

∂2π0 ∼ Λ3 . (4.4.17)

The curvature is typically R(1) ∼ GM/r3 for the point source then MplR
(1)(h0) 	 Λ3 is realized

in the region

r �
(
Mpl

Λ3
GM

)1/3

, (4.4.18)

which is nothing but the space region inside the Vainshtein radius of the massive gravity rV :=
(GM/m2)1/3 when Λ = (m2Mpl)

1/3.
Furthermore, the fact that the nonlinear interactions should be included in R 	 m2 suggests

something about the Higuchi instability. The Higuchi instability occurs when the universe satisfies
R ∼ H2 � m2. When the scalar graviton grows exponentially due to the Higuchi instability, all
relevant nonlinear interactions have to be taken into account when the scalar graviton reaches
∂2π ∼ Λ3

3. Then, the scalar graviton may condense into the value ∂2π ∼ Λ3
3. If this scenario

is possible, the Higuchi instability does not affect any observable quantities since the Vainshtein
mechanism screens all effects from the scalar graviton. Therefore, the Higuchi instability does
not spoil a successful background dynamics if the “cosmological” Vainshtein mechanism works. In
Chapter 6, we will discuss whether such a condensation state exists in a simple set up.

4.5 Λ2 decoupling limit

Although the lowest strong coupling scale of the dRGT theory is Λ3 around the Minkowski
vacuum, as discussed in previous section, the lowest scale can rise when the Vainshtein mechanism
works. Therefore, there would be another decoupling limit associated with the new scale around a
non-trivial background in which there may exist a smooth GR limit. In this section, we consider the
Λ2 decoupling limit proposed by [83,84] which considered the limit around a non-trivial Minkowski
background in which there exists a smooth GR limit where the Stüeckelberg fields have some non-
trivial expectation value

gμν = ημν +O(m2) , φa = φ̄a(x) �= xa . (4.5.1)

Our paper [86] extended the Λ2 decoupling limit around the Minkowki one to the limit around a
curved one in which an effective theory inside the Vainshtein radius can be obtained.

Before discussing the Vainshtein mechanism in Λ2 decoupling limit, let us consider a simple case
with a smooth GR limit. An example of a massive gravity with a smooth GR limit is the Fierz-
Pauli theory defined on AdS spacetime as mentioned in Section 2.4. Around the AdS background,
the scalar graviton gets a kinetic term due to the curvature of the AdS spacetime. While the strong
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coupling scale of the scalar graviton is Λ3 := (m2Mpl)
1/3 around the Minkowski spacetime, the

strong coupling scale rises to Λ∗ := (mMpl/L)
1/3 when L−1 	 m where L is the AdS radius. This

increasing of the strong coupling scale is similar to that in the Vainshtein mechanism. Indeed, as
shown in Section 2.4, the Fierz-Pauli theory on AdS spacetime has no vDVZ discontinuity and
then there exists a smooth GR limit due to the increasing of the strong coupling scale.

A difference between the Minkowski background and a curved background is that the vector
graviton gets the mass term as RμνA

μAν . When the vector graviton has no mass term, the
longitudinal mode of the vector is just a gauge mode. Therefore, the interactions between the
scalar graviton and the tensor graviton must remain to keep the degree of freedom of the scalar
graviton in the case of Fierz-Pauli theory on the Minkowski background. On the other hand, the
longitudinal mode is a physical mode when there is a mass term and the scalar Stüeckelberg field
is not necessary to be introduced. The Fierz-Pauli mass term on a curve spacetime is then

LFP,AdS =− m2

8
(hμνh

μν − h2)− 1

8
FμνF

μν +
1

2
RμνA

μAν − m

2
(hμν∇μAν − h∇μA

μ) . (4.5.2)

The limit m → 0 is a smooth limit since the gauge breaking term RμνA
μAν remains. Furthermore,

the limit cuts the interactions between the tensor one and the vector one. Therefore, the limit
m → 0 gives a smooth GR limit if RμνA

μAν does not produce any instability (e.g., the AdS
background).

Let us, then, consider the case of the dRGT mass term when the vector Stüeckelberg field is
introduced but the scalar Stüeckelberg field is not introduced around some appropriate background.
In this situation the scale Λ3 does not appear since the interactions with the scale Λ3 arise from
interactions between the scalar mode and other modes. The scalar mode is encoded in the vector
graviton as the longitudinal mode, so we have only self-interactions of the vector graviton or
interactions between the tensor graviton and the vector graviton. Then the interactions are

LdRGT =
∑

Λ
−(j+2k+4�−4)
j,k R�

0h
j(∂A)kA2� , (4.5.3)

with

Λj,k =
(
mk+2�−2M j+k+2�−2

pl

)1/(j+2k+4�−4)

. (4.5.4)

and R0 represents the scale of the background curvature. Note that, up to quadratic order with
R0 = 0, i.e., the case of the Fierz-Pauli mass term, the interactions are

LFP = −m2

8
(hμνh

μν − h2)− 1

8
FμνF

μν − m

2
(hμν∂μAν − h∂μA

μ) . (4.5.5)

The gauge breaking terms h∂A vanish in the limit with m → 0, thus, the scalar degrees of
freedom is lost in the Fierz-Pauli case. However, nonlinear self-interactions of the vector graviton
(j = 0, k ≥ 3) or the coupling to the curvature (j = 0, � ≥ 1), which may break the gauge invariance
of the vector mode, have the scale Λ2 and then they remain in the Λ2 decoupling limit defined by

m → 0 , Mpl → ∞ , Λ2 := (mMpl)
1/2 : finite . (4.5.6)

In the same limit, the couplings to the tensor mode (j ≥ 1) vanishes. Since the vDVZ discontinuity
is caused by the existence of the coupling to the tensor graviton, the disappearance of such inter-
actions leads to no vDVZ discontinuity. The Λ2 decoupling limit cuts the coupling to the tensor
one, but it keeps the gauge breaking terms of the vector one. The Λ2 decoupling limit, thus, gives
a smooth GR limit keeping correct degrees of freedom.

After the Λ2 decoupling limit the strong coupling scale of the scalar mode in no longer Λ3.
The scalar mode appears in the nonlinear interactions of the vector mode or in the coupling to the
curvature. The strong coupling scale must depend on the expectation value of the vector mode
or the scale of the curvature. To make the action after the Λ2 decoupling limit a viable effective
theory, the new strong coupling scale has to be greater than Λ3. For instance, the strong coupling
scale around the AdS background is given by Λ∗ = (mMpl/L)

1/3 ∼ (mMpl

√
R)1/3 which is clearly

greater than Λ3 in the Λ2 decoupling limit. Conversely, the Λ2 decoupling limit may give a viable
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effective theory when R 	 m2 in which the strong coupling scale of the scalar mode would be
higher than Λ3. Since interior regions of the Vainshtein radius mean R 	 m2, the Λ2 decoupling
limit may give an effective theory inside the Vainshtein radius.

In what follow we discuss the Λ2 decoupling limit around some non-trivial background in the
dRGT massive gravity and the bigravity. The tensor modes are decoupled from other modes by
taking the Λ2 decoupling limit. Then the action for the tensor mode is given by that in GR, while
the effective action for the Stückelberg fields is given by called the massive gravity nonlinear sigma
model where the degrees of freedom of the scalar and the vector gravitons are encoded in four
scalar fields. In particular, the Λ2 decoupling limit around a curved background gives an effective
theory inside the Vainshtein radius.

4.5.1 Non-compact nonlinear sigma model

Nonlinear sigma models are effective theories obtained from various areas of physics [130, 131]
which map from a base manifold to a target space. A typical action of a nonlinear sigma model is
given by

SNLSM = −
∫

d4x
1

2
ημν∂μφ

a∂νφ
bfab(φ) , (4.5.7)

where fab is the target space metric and φa are scalar fields. If the target space metric has a
Lorentzian signature (−,+, · · · ,+), the minus sign leads to a ghost mode in one of φa. Hence, to
avoid an existence of a ghost degree of freedom, the target space metric of nonlinear sigma models
should be positive definite. This requirement translates to the isometry group to be compact if
the target space has some symmetry.

An exception of a nonlinear sigma model with a Lorentzian signature is the p-brane Nambu-
Goto action

SNG = −Tp

2

∫
dp+1x

√
−det(∂μφa∂νφbfab(φ)) , (4.5.8)

where fab is a Lorentzian metric. The action has p + 1 diffeomorophism along the brane world-
volume which makes the (would-be) ghost mode a gauge mode. Hence, the (would-be) ghost degree
of freedom is eliminated by first class constraints in the Nambu-Goto action.

The paper [83] pointed out that one can construct nonlinear sigma models with a Lorentzian
target space in which the (would-be) ghost degree of freedom is eliminated by second class con-
straints. This class of “non-compact” nonlinear sigma models are given by

SNLSM =

∫
dDx

D∑
n=1

bn(φ)γ
μ1

[μ1
γμ2

μ2 · · · γμn
μn] , (4.5.9)

where bn(φ
a) are arbitrary functions of φa and γμ

μ is the square root of the matrix for N ≥ D
defined by

γμ
ργ

ρ
ν = gμρ(x)∂μφ

a∂νφ
bfab(φ) , (4.5.10)

with a Lorentzian metric fab(φ) and a = 0, 1, · · · , N − 1. Although the action is constructed by N
scalar fields, this class of nonlinear sigma models just has N − 1 degrees of freedom in general [84].
In particular, we call the cases D = N the massive gravity nonlinear sigma models since the action
is related with the dRGT mass term where fab and φa are recognized as the fiducial metric and
the Stückelberg fields, respectively. Note that, in the non-compact nonlinear sigma models, the
spacetime metric gμν is not a dynamical field. The action just describes motions of φa.

Let us focus on the massive gravity nonlinear sigma model withD = N = 4 and bn are constant.
In this case, the action of the massive gravity nonlinear sigma model is nothing but the dRGT
mass term in four dimensions. The massive gravity nonlinear sigma model has three degrees of
freedom. On the other hand, the dRGT theory in four dimensions has five degrees of freedom: two
tensor modes, two vector modes, and one scalar mode. Two additional degrees of freedom must
come from the Einstein-Hilbert action so must be tensor degrees of freedom. Hence, the dRGT
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mass term itself has scalar and vector degrees of freedom which is consistent with the previous
discussion. This is one important difference from the Fierz-Pauli mass term since the scalar degree
of freedom appears as coupling to the tensor degree of freedom in Fierz-Pauli mass term. The
dRGT mass term carries the scalar and the vector degrees of freedom even if the tensor ones are
not dynamical. Note that, however, the self-interactions of the scalar one are total divergence
terms and the scalar-vector interaction does not appear at quadratic order in dRGT mass term
around the Minkowski background. Hence, the scalar graviton is strong coupled around the trivial
background

gμν = ημν , φa = xa , (4.5.11)

when the couplings to tensor modes are ignored. To avoid the strong coupling, it should be
necessary that the Stückelberg fields have some non-trivial expectation value, or that the metric is
curved. The papers [83,84] considered the case of the non-trivial Minkowski background (4.5.1) in
which the vector modes are nonlinearly excited. On the other hand, our paper [86] discussed the
case of a curved metric in which the scalar graviton is not strong coupled without vector excitations
but the scalar graviton has an instability around a Ricci flat spacetime.

4.5.2 Effective action inside the Vainshtein radius

In this subsection, we show that massive gravity nonlinear sigma model gives an effective theory
of the vector and scalar gravitons inside the Vainshtein radius for general massive/bi-gravity as
long as we have the Vainshtein screening solutions. The results shown in this and next subsections
are based on our paper [86].

Let us start with the bigravity action (3.3.1) and (3.3.3). Notice that our set-up of the bigravity
is so general that it includes ghost-free massive gravity [11,12] as a special case. It is obtained by
fixing f -spacetime as the Minkowski one with the limit κf → 0 [132].

In what follows we set c0 = c1 = 0 and c2 = −11. We also introduce four Stüeckelberg fields
φa(x), with which the metric fμν can be written by

fμν(x) =
∂φa

∂xμ

∂φb

∂xν
fab(φ

a(x)) , (4.5.12)

to see the dynamics of the vector and scalar gravitons in a clear way.
It was shown in Refs. [83, 84] that in the case of ghost-free massive gravity, about non-trivial

vacua

gμν = ημν +O(m2) , φa = φ̄a(x) �= xa , (4.5.13)

and in the Λ2 decoupling limit, given by

m,κg, κf → 0 , Λ2 ≡
√
m/κg : finite , (4.5.14)

an interesting effective theory for φa, so-called the massive gravity nonlinear sigma model described
by the following action

S
(0)
MG−NLS = −Λ4

2

∫
d4x

√−η
4∑

n=2

cnUn(γNLS) , (4.5.15)

γNLS
μ
ργNLS

ρ
ν = ημρ(x)

∂φa

∂xρ

∂φb

∂xν
ηab(φ) . (4.5.16)

is obtained.
One interesting property of this massive gravity nonlinear sigma model is that its strong cou-

pling scale is given by Λ2. This is higher than Λ3 ≡ (m2/κg)
1/3 coming from the analysis around

1In general, the ghost-free interactions include a constant term U0 and a tadpole term U1(K). Although we drop
them here, just for simplicity, including these terms does not change our main conclusion.
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the trivial vacuum gμν = ημν , φ
a = xa. Another interesting property is that the vector and scalar

modes of graviton encoded in φa decouple with matter fields even in the linear regime, which does
not give vDVZ discontinuity and the Vainshtein mechanism is implemented automatically.

This suggests that as long as the Vainshtein screening works, even we start with more general
set-up described by Eq. (3.3.1), that is, not limiting gμν and fab to flat, not neglecting the f -matter
fields, we can expect that the massive gravity nonlinear sigma model is obtained as an effective
theory inside the Vainshtein radius. Actually, if the Vainshtein mechanism is working, the metrics
can be expressed by

gμν = gGR
μν + κgδgμν , (4.5.17)

fab = fGR
ab + κfδfab , (4.5.18)

where gGR
μν and fGR

ab are solutions in GR with the matter actions S
[m]
g and S

[m]
f , respectively, and

δgμν and δfab should be treated as perturbations. Here, gGR
μν (x) and fGR

ab (φ) are determined as

functions of xμ and φa, respectively, from which we can regard that gGR
μν and fGR

ab act as external
forces. Then with the undetermined variables φa, δgμν , δfab, the action can be expanded as

S = SGR(δg) + SGR(δf) + SMG−NLS(φ
a; gGR, fGR) + Λ4

2O(κgδg, κfδf) . (4.5.19)

where SGR are the perturbed actions for the metric perturbations which are same as those in GR.
SMG−NLS is the action of the massive gravity nonlinear sigma model given by

SMG−NLS = −Λ4
2

∫
d4x

√−gGR

4∑
n=2

cnUn(γNLS) , (4.5.20)

which generalizes Eq. (4.5.20) with the following replacements:

κg → κ , ημν → gGR
μν , ηab → fGR

ab . (4.5.21)

One may worry that the tadpole terms of the metric perturbations give the backreaction from
the Stüeckelberg fields to the spacetimes. Since the background spacetimes are given by the solu-
tions in GR, they appear only through the interaction terms between the Stüeckelberg fields and the
metric perturbations of order Λ4

2O(κgδg, κfδf). However, by taking the Λ2 decoupling limit given
by Eq. (4.5.14), the contributions from the tadpole terms are negligible and then the Stüeckelberg
fields and the metric perturbations are decoupled. Then, in this limit the Stüeckelberg fields are
simply determined by the massive gravity nonlinear sigma model (4.5.20) and the spacetimes are
completely same as those in GR. Therefore the massive gravity nonlinear sigma model with curved
metrics is the effective action of the Stüeckelberg fields as long as the Vainshtein mechanism works
and we have the same solutions as in GR.

Indeed, the Vainshtein screening solutions can be obtained by this effective action with curved
metrics. The Vainshtein mechanism for the static and spherically symmetric spacetime is found
with the interior and the exterior Schwarzschild metrics [85] (see also [79, 82]) and the cosmolog-
ical Vainshtein mechanism is found with the Friedmann-Lemâıtre-Robertson-Walker metric [63].
Although we denoted the procedure of the Λ2 decoupling limit just as the massless limit in these
papers, the limits used in [63, 85] are equivalent to the Λ2 decoupling limit shown above.

4.5.3 No-go result of stable background without vector excitation

In this section, we show that the scalar graviton generally suffers from a ghost and/or a gradient
instability when there is no vector graviton excitation in the massive gravity nonlinear sigma
model. For simplicity, we do not introduce the f -matter fields here thus we can assume fGR

ab is the
Minkowski spacetime. In this case, the Stüeckelberg field can be split as φa = δaμ(x

μ + πμ), then
fμν is expressed by

fμν = ημν + 2∂(μπν) + ∂μπα∂νπ
α , (4.5.22)
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where πμ is a vector field on the Minkowski spacetime. Furthermore, to see the existence of the
instability, we assume a weak gravitational field and ignore the vector graviton excitation:

gGR
μν = ημν + hGR

μν , (4.5.23)

πμ = ∂μπ . (4.5.24)

Note that we do not normalize the scalar graviton π to be mass dimension one in this subsection
since the strong coupling scale of the scalar mode cannot be fixed.

In a similar way to the Λ3 decoupling limit, the action can be expanded as

LMG−NLS = −Λ4
2

2
hGR μν

(
X(1)

μν + β2X
(2)
μν + β3X

(3)
μν

)
+O(h2

GR) . (4.5.25)

Note that, differently from the case of Λ3 decoupling limit, hGR
μν has been already fixed and it acts

as an external force for the field π.
The field π can be split into the background configuration π̄ and the perturbation δπ as

π = π̄ + δπ , (4.5.26)

with δπ � π̄. π̄ is determined by the the equation of motion

εαβγδεμνρσR
(1)μν

αβ

(
δργδ

σ
δ + 2β2Π̄

ρ
γδ

σ
δ + β3Π̄

ρ
γΠ̄

σ
δ

)
= εαβγδεμνρσ∂

μ
[
(∂βh

GRν
α − ∂αh

GRν
β)

(
δργδ

σ
δ + 2β2Π̄

ρ
γδ

σ
δ + β3Π̄

ρ
γΠ̄

σ
δ

) ]
= 0 , (4.5.27)

where R
(1)
μναβ is the linearized Riemann curvature and Π̄μν = ∂μ∂ν π̄. Then the quadratic order

action for the perturbation δπ is given by

L2 = −1

2
Zμν∂μδπ∂νδπ +O(h2

GR) , (4.5.28)

where

Zμν = −Λ4
2

4
εμαβγενα′β′γ′R(1)α′β′

αβ(β2δ
γ′

γ + β3Π̄
γ′

γ) . (4.5.29)

We note

Zμν = β2 × (Ricci curvatures) + β3 × Π̄× (Riemann and Ricci curvatures),

thus Zμν is identically zero for a Ricci flat spacetime when β3 = 0. For this case, we should take
into account next order contributions of hGR. In this section, however, we restrict our analysis to
the case of β3 �= 0 and assume Zμν is not zero.

The no-ghost and no-gradient instability condition is given by the signs of eigenvalues of Zμν

are [−,+,+,+], which is equivalent to all eigenvalues of Zμ
ν are positive. Hence we obtain

Zμ
μ > 0 , (4.5.30)

as a necessary condition of no-instabilities. However, we obtain

Zμ
μ ∝ Ricci curvatures .

Since the sum of the eigenvalues is zero for any Ricci flat spacetime, there is at least one negative
eigenvalue of Zμ

ν , which leads a ghost instability or a gradient instability. As a result, a ghost
and/or a gradient instability appears for any Ricci flat background.

For instance, the static and spherically symmetric solution is given by

hGR
tt =

2GM

r
, hGR

rr =
2GM

r
, others = 0 , (4.5.31)

∂μπ̄ = (0, rμ(r), 0, 0) , μ = ± 1√
β3

+O(GM/r) . (4.5.32)
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Then the matrix Zμν is given by

Zμν =
GM

√
β3

r3
× diag

[
0,∓2,± 1

r2
,± 1

r2 sin2 θ

]
. (4.5.33)

Hence the gradient instability appears from either the radial or the angular derivatives. Note that,
since the (tt)-component of Zμν is zero at leading order of GM/r, it seems that the scalar graviton
is infinitely strong coupled. However the kinetic term indeed appears at the next order of GM/r
and our effective action does not lose any degrees of freedom as we will see in Section 8.4.

Since the bigravity theory contains degrees of freedom of the vector graviton as well as one
of the scalar graviton and these are coupled to each other in a general background, one cannot
directly conclude the Vainshtein screening solution is unstable in a Ricci flat background spacetime.
Therefore we shall discuss general perturbations including vector gravitons around the static and
spherically symmetric background in the next section. Regardless of this, our result suggests
that the Vainshtein screening solutions cannot be supported only by the scalar graviton and the
excitation of the vector graviton has to be taken into account.

Note that our result can be also straightforwardly applied to the Horndeski theories. Based on
the effective action for the Vainshtein mechanism, the paper [126] showed the static and spherically
symmetric solution with the Vainshtein screening is unstable as long as the Horndeski theory
includes so-called L5 term. Actually, for the case of Horndeski theory, although other terms appear
in the effective action, they have been shown to be sub-dominant in Section 4.4 if we assume that
the Vainshtein screening is working.





Chapter 5

Attractor universe

One of the most attractive phenomenological application of the bigravity theory is to explain
the accelerating expansion of the Universe without dark energy. As already shown in §. 3.3.2, the
bigravity theory can admit the de Sitter solution as a vacuum solution where the typical value of
the effective cosmological constant would be an order of magnitude of the graviton mass square.
It implies that the bigravity theory may give the self-accelerating universe without dark energy
at the late stage of the Universe. Indeed, based on the ghost-free bigravity theory, many authors
have studied cosmological models [43–52] (see also [94–99, 133–137] for the cosmology in massive
gravity). However, the vacuum solution in bigravity is not unique. Therefore, it is not trivial
whether the accelerating expansion is naturally found in the late time for general initial data.
This is related to the so-called cosmic no-hair conjecture in GR, in which de Sitter solution is an
attractor for generic initial conditions if there exists a cosmological constant [138–149]. In this
chapter, we analyze the details of the evolution of the universe including both matter fields and
study whether the accelerating expansion is obtained as an attractor or not [51].

We explore whether the accelerating expansion of the universe is obtained as an attractor or
not. Therefore, we focus on the case when the bigravity theory admits the Minkowski solution
as well as the de Sitter solution as vacuum solutions. In this case, the five parameters bi in the
bigravity theory are given by only two free parameters c3 and c4 as (3.3.19) and the de Sitter
vacuum is realized in the parameter space shown in Fig. 3.1. The parameter space is classified
into five subspaces depending on the properties of the cosmological solutions shown below.

5.1 FLRW universe

Now we discuss the FLRW spacetime, which metrics are given by

ds2g = −N2
g (t)dt

2 + a2g(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (5.1.1)

ds2f = −N2
f (t)dt

2 + a2f (t)

(
dr2

1− kr2
+ r2dΩ2

)
, (5.1.2)

whereNg andNf are lapse functions, while ag and af are scale factors for gμν and fμν , respectively.
Since those variables must be positive, we choose the tetrads as

{e(a)μ } = diag

(
Ng,

ag√
1− kr2

, ag, ag sin θ

)
(5.1.3)

{ω(a)
μ } = diag

(
Nf ,

af√
1− kr2

, af , af sin θ

)
(5.1.4)

Then the gamma matrix defined by γμ
ν = εeμ(a)ω

(a)
ν is given by

γμ
ν = ε diag (A,B,B,B) , (5.1.5)

51
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where A = Nf/Ng, B = af/ag and ε = ±1. Setting Ã = εA, B̃ = εB, we find that the interaction
energy-momentum tensors are given by

T [γ]μ
g ν

= diag
[
−ρ[γ]g , P [γ]

g , P [γ]
g , P [γ]

g

]
, (5.1.6)

T
[γ]μ
f ν

= diag
[
−ρ

[γ]
f , P

[γ]
f , P

[γ]
f , P

[γ]
f

]
(5.1.7)

where

ρ[γ]g =
m2

κ2
(b0 + 3b1B̃ + 3b2B̃

2 + b3B̃
3), (5.1.8)

P [γ]
g = −m2

κ2

[
b0 + b1(Ã+ 2B̃) + b2(2ÃB̃ + B̃2) + b3ÃB̃2

]
, (5.1.9)

ρ
[γ]
f =

m2

κ2

(
b4 +

3b3

B̃
+

3b2

B̃2
+

b1

B̃3

)
, (5.1.10)

P
[γ]
f = −m2

κ2

[
b4 + b3

(
1

Ã
+

2

B̃

)
+ b2

(
2

ÃB̃
+

1

B̃2

)
+

b1

ÃB̃2

]
. (5.1.11)

The cosmic times for g- and f -metrics are defined by

τg =

∫
Ng(t)dt , τf =

∫
Nf (t)dt , (5.1.12)

respectively. Using the gauge freedom, in what follows, we set Ng = 1, in which gauge choice, the
time coordinate t is the same as the cosmic time of g-metric.

We assume that twin matter fields (g-matter and f -matter fluids) are described by perfect
fluids

T [m]μ
g ν

= diag [−ρg(t), Pg(t), Pg(t), Pg(t)] ,

T
[m]μ
f ν

= diag [−ρf (t), Pf (t), Pf (t), Pf (t)] ,

and assume that the universe consists of dust (non-relativistic matter) and radiation (relativistic
matter) for twin matter fluids. From the conservation equations,

ρ̇g + 3
ȧg
ag

(ρg + Pg) = 0 ,

ρ̇f + 3
ȧf
af

(ρf + Pf ) = 0 , (5.1.13)

where the dot denotes the derivative with respect to t, the energy densities are described by the
scale factors as

κ2
gρg = κ2

g(ρg,m + ρg,r) =
cg,m
a3g

+
cg,r
a4g

κ2
fρf = κ2

f (ρf,m + ρf,r) =
cf,m
a3f

+
cf,r
a4f

, (5.1.14)

where cg,m, cg,r, cf,m and cf,r are positive integration constants.
The Einstein equations with the metric ansatz (5.1.1) and (5.1.2) are reduced to the Friedmann

equations:

H2
g +

k

a2g
=

κ2
g

3

[
ρ[γ]g + ρg

]
, (5.1.15)

H2
f +

k

a2f
=

κ2
f

3

[
ρ
[γ]
f + ρf

]
, (5.1.16)

where

Hg =
ȧg
ag

, Hf =
ȧf

Nfaf
(5.1.17)
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are the Hubble expansion parameters.

The conservation equations for T
[γ]μ
g ν and T

[γ]μ
f ν

are reduced to one equation:

(
ȧf
ȧg

−A

)
(b1 + 2b2B̃ + b3B̃

2) = 0. (5.1.18)

These are two cases: The first parentheses vanishes or the second one does so. If the second

parentheses vanishes, B̃ is a constant, and then ρ
[γ]
g (B̃) and ρ

[γ]
f (B̃) are also constant. As a result,

the Friedmann equations (5.1.15) and (5.1.16) are the same as the ordinary ones in GR with
a cosmological constant. Since the evolution of the universe is well analyzed in GR, we will not
discuss this case furthermore1. Thus, we assume that the first parentheses vanishes. This condition
holds when

Hg = BHf . (5.1.19)

From two Friedmann equations (5.1.15), (5.1.16) with the condition (5.1.19), we find one alge-
braic equation

κ2
g

[
ρ[γ]g (B̃) + ρg(ag)

]
− κf

2B̃2
[
ρ
[γ]
f (B̃) + ρf (af )

]
= 0 . (5.1.20)

Since af = Bag = εB̃ag, this equation gives the relation between B̃ and ag. It also provides us

some information about the interaction term ρ
[γ]
g and ρ

[γ]
f in terms of twin matter fluids, which

will be used in the discussion about dark matter later.

The above equation (5.1.20) with (5.1.14) is rewritten into a quartic equation for ag as

B̃CΛ(B̃)a4g + B̃Cm(B̃)ag + Cr(B̃) = 0, (5.1.21)

where

CΛ(B̃) = B̃
[
κ2
gρ

[γ]
g (B̃)− κf

2B̃2ρ
[γ]
f (B̃)

]
= κ2

gB̃
(
b3B̃

3 + 3b2B̃
2 + 3b1B̃ + b0

)
− κ2

f

(
b4B̃

3 + 3b3B̃
2 + 3b2B̃ + b1

)
, (5.1.22)

Cm(B̃) = cg,mB̃ − εcf,m , (5.1.23)

Cr(B̃) = cg,rB̃
2 − cf,r . (5.1.24)

Solving (5.1.21), we obtain the relation ag = ag(B̃) and then af = εB̃ag(B̃). Plugging this relation

into the Friedmann equation (5.1.15), we find the equation for B̃ as

(
dB̃

dt

)2

+ Vg(B̃) = 0 , (5.1.25)

where the potential for B̃ is given by

Vg(B̃) =
a2g
a′2g

[
k

a2g(B̃)
− 1

3

(
κ2
gρ

[γ]
g (B̃) +

cg,m

a3g(B̃)
+

cg,r

a4g(B̃)

)]

with

a′g = −

(
CΛ + B̃C ′

Λ

)
a4g + (2cg,mB̃ − εcf,m)ag + 2cg,rB̃

B̃(4CΛa3g + Cm)
.

A prime denotes the derivative with respect to B̃.

1The behavior of the solution in the second case is same as that in dRGT theory. Since the cosmological solution
in dRGT theory was shown pathological due to the ghost instability [97–99], the second case would contain the
ghost instability.
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5.2 Attractors

The matter and radiation densities become equal at the redshift z = zeq ≈ 3000 in our universe.
Hence, after zeq, matter density is dominant in g-spacetime, which we assume in what follows since
we are interested in the present acceleration of the universe. We also assume a flat Universe with
k = 0 from observation2.

We mainly discuss when radiation density in f -spacetime can be also ignored. In this case,
(5.1.20) becomes

CΛ(B̃)a3g + Cm(B̃) = 0 , (5.2.1)

which gives

ag(B̃) = −
(
Cm(B̃)

CΛ(B̃)

) 1
3

. (5.2.2)

The potential for B̃ is given by

Vg(B̃) = −
3CmC

2
Λ

[
κ2
gρ

[γ]
g Cm − cg,mCΛ + 3kC

2
3

ΛC
1
3
m

]
(CΛC ′

m − CmC ′
Λ)

2
. (5.2.3)

If CΛ(B̃) = 0 as well as Cm(B̃) = 0 initially, B̃ is always constant and then we find the homothetic
solution as an exact solution:

A = B = |B̃�| ,
cf,m = |B̃�|cg,m (5.2.4)

We find the conventional matter dominant universe with/without a cosmological constant.
However, CΛ(B̃) does not usually vanish. For generic initial data, solving the equation (5.1.25)

for B̃, we obtain the scale factor ag by Eq. (5.2.2) with B̃(t), and then another scale factor af by

af (B̃) = εB̃ag(B̃) . (5.2.5)

The ratio A of the lapse functions is also given by

A(B̃) = ε

(
B̃ +

3CmCΛ

CΛC ′
m − CmC ′

Λ

)
. (5.2.6)

The potential Vg satisfies the following conditions at B̃ = B̃�:

Vg(B̃�) = 0, (5.2.7)

V ′
g(B̃�) = 0, (5.2.8)

V ′′
g (B̃�) = −6Λg(B̃�) . (5.2.9)

The AdS solution with Λg < 0 is isolated because the potential is not negative definite and then

Eq.(5.1.25) is satisfied only at B̃� = B̃(AdS). For the case of Λg > 0, on the other hand, there are

two allowed regions where the universe can exist; the left and right regions of the point B̃� = B̃(dS).

The potential near B̃(dS) is shown in Fig. 5.1. The potential form depends on the ratio of matter
densities rm ≡ cf,m/cg,m as well as the coupling parameters {bi}. Although there are two allowed

regions in the equation of motion for B̃, one side is not physical, that is, it corresponds to the
region where a scale factor becomes negative because from Eq. (5.2.2), we can evaluate the scale
factor near B̃ = B̃(dS) as

ag = −
[

cg,mB̃(dS) − εcf,m

C ′
Λ(B̃(dS))(B̃ − B̃(dS))

]1/3

∝ (B̃ − B̃(dS))
−1/3 (5.2.10)

2 Even if we consider the closed (k = 1) or open (k = −1) FLRW universe, our main result will not change.
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which changes the sign at B̃ = B̃(dS). Here C ′
Λ(B̃(dS)) is a constant. Which side of regions

is physical depends on the value of rm. For example, for Model B (c3 = 4 and c4 = −10), if

rm < r
(dS)
m = 0.145979, the left region is physically allowed, while for rm > r

(dS)
m , the right region

becomes physically possible (see Fig. 5.1, in which we plot both cases of rm = 0, and 0.3).

Figure 5.1: The potentials Vg(B̃) for Model B (c3 = 4, c4 = −10) with rm = 0 (the blue solid
curve), rm = 0.3 (the green dashed curve), or rm = 0.8 (the red dotted curve). The black dot
denotes de Sitter solution B̃(dS).

In both cases, B̃ evolves into B̃(dS) as an attractor. Near B̃(dS), the potential is approximated
as

Vg ≈ −3Λg(B̃ − B̃(dS))
2 . (5.2.11)

Hence we find the solution for B̃ as

B̃ ≈ B̃(dS) + C0 exp[±
√

3Λgt] , (5.2.12)

where C0 is an integration constant. The plus sign corresponds to an unstable evolution rolling
down from the potential peak, while the minus sign shows a stable solution which asymptotically
approaches to B̃(dS). The scale factor evolves as

ag ∝ exp

[√
Λg

3
t

]
(5.2.13)

(see Fig. 5.2). Hence de Sitter accelerating universe is obtained as an attractor. Note that if

r
(dS)
cr < rm(< r

(AdS)
m = 1.67319), where r

(dS)
cr = 0.41105, the potential is unbounded from below

and diverges at a finite value of B̃, where a singularity ( ˙̃B = ∞) appears as we will show later (see
the potential with rm = 0.8 in Fig. 5.1).

For the case of B̃(M) = 1, we find

Vg(B̃(M)) = V ′
g(B̃(M)) = V ′′

g (B̃(M)) = 0 , (5.2.14)

since Λg = 0. Evaluating also V ′′′
g (B̃(M)) as

V ′′′
g (B̃(M)) = 54

(
m2

f +m2
grm

1− rm

)
, (5.2.15)

we find that V ′′′
g is positive when rm < 1, then the left region (B̃ ≤ B̃(M)) is physically allowed,

while the right region (B̃ ≥ B̃(M)) is allowed if rm > 1. In this case, the potential is approximated
as

Vg = V0(B̃ − B̃(M))
3 (5.2.16)
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Figure 5.2: The evolution of the scale factor ag for the case of c3 = 4, c4 = −10. The bottom curve
corresponding to cf,m/cg,m = 2 (dashed green) shows the evolution to dust dominated universe,
while the top curve corresponding to cf,m/cg,m = 0 (solid blue) shows the evolution to de Sitter
spacetime.

with

V0 = 9

(
m2

f +m2
grm

1− rm

)
. (5.2.17)

Eq. (5.1.25) is integrated as

−V0(B̃ − B̃(M)) =
4

(t− t0)2
, (5.2.18)

where t0 is an integration constant. As a result, the asymptotic solution of the scale factor is

ag ∝ (B̃ − B̃(M))
−1/3 ∝ (t− t0)

2/3 , (5.2.19)

which is that of dust matter dominated universe (see Fig. 5.2). When B̃� = B̃(M), a dust matter
dominated universe is found as an attractor.

5.3 Dynamics of the universe with twin matter

We are interested in whether the cosmic no-hair conjecture holds. Hence we analyze our
system for various initial data and discuss which initial condition leads to de Sitter expansion.
In order to discuss whether de Sitter accelerating universe is naturally achieved as an attractor
or not, we survey all possible allowed initial data. Especially we focus on the ratio rm of energy
densities of twin matter fluids. The results are summarized on the rm-B̃ plane. For the parameter
region (1) and (2), we show two typical examples of Model A(c3 = −1, c4 = 0) and of Model
B(c3 = 4, c4 = −10), in Figs. 5.3 and 5.4, respectively. For the region (3), we also present the
typical results for Model C(c3 = 1/2, c4 = 0), D (c3 = 5/2, c4 = −4) and E (c3 = 3, c4 = 0) in Figs.
5.5, 5.6 and 5.7, respectively.

The colored regions denote the ranges of physically allowed initial data. The universes in the
stripe-shaded light-blue area evolve into de Sitter spacetime, while those in the crosshatched light-
green area evolve into the dust matter dominated universe. The universes started from the gray
shaded areas eventually find a future singularity.

We may probably easily understand that the spacetime evolves either de Sitter universe or the
matter dominant universe, depending on the initial conditions, because two homothetic solutions
are attractors. However, we also find singular spacetime for some initial data. Why a flat FLRW
universe can evolve into a future singularity, which never happens in GR? To explain how the
universe evolves into a singularity, we consider Model B (c3 = 4 and c4 = −10) (Fig. 5.4).
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Figure 5.3: The attractor regions in the rm-B̃ plane are shown for Model A (c3 = −1, c4 = 0).
The solid, dotted and dashed lines denote de Sitter, anti de Sitter and dust dominated universes,

respectively. r
(M)
m = 1, r

(AdS2)
m = 1.67319, and r

(dS)
m = 6.85028 give the boundary values, where the

properties of dynamics change. The initial data in the striped-shaded light-blue and crosshatched
light-green regions evolve into de Sitter and the dust dominated universe, respectively. BB denotes
an initial Big Bang singularity (ag = af = 0). The spacetime started from the other colored region
evolves into singularities, which are shown by dot-dashed curves. There exist two critical values

r
(dS)
cr = 2.4328 and r

(M)
cr = 1.67318. Beyond r

(dS)
cr , every spacetime evolves into de Sitter universe

if B > r
(AdS2)
m , while all spacetime with rm < r

(M)
cr evolves into the matter dominant universe if

B < r
(AdS2)
m .

Figure 5.4: The same figure as Fig. 5.3 for Model B (c3 = 4, c4 = −10). The boundary values

are given by r
(M)
m = 1, r

(AdS2)
m = 0.59766, and r

(dS)
m = 0.145979. Below the critical value r

(dS)
cr =

0.41105, every spacetime evolves into de Sitter universe if B < r
(AdS2)
m , while all spacetime with

rm > r
(M)
cr = 0.597663 evolves into the matter dominant universe if B > r

(AdS2)
m .
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Figure 5.5: The same figure as Fig. 5.3 for Model C (c3 = 1/2, c4 = 0). The de Sitter solution
exists in the case of ε = −1, while the matter dominant universe is found for ε = 1. Hence we
draw two figures of ε = ±1 separately. because there appears a singularity at B̃ = 0, where ε

changes the sign. The boundary values are given by r
(M)
m = 1, r

(AdS1)
m = 2−

√
3, r

(AdS2)
m = 3, and

r
(dS)
m = 2 +

√
3. Beyond the critical value r

(dS)
cr = 0.489757, every spacetime evolves into de Sitter

universe if ε = −1 and B > r
(AdS1)
m , while all spacetime with rm < r

(M)
cr = 2.99645 evolves into the

matter dominant universe if ε = 1 and B < r
(AdS2)
m .

Figure 5.6: The same figure as Fig. 5.5 for Model D (c3 = 5/2, c4 = −4) (ε = −1). The boundary

values are given by r
(M)
m = 1, r

(AdS1)
m = 2+

√
3, r

(AdS2)
m = 1/3, and r

(dS)
m = 2−

√
3. Below the critical

value r
(dS)
cr = 2.04183, every spacetime evolves into de Sitter universe if ε = −1 and B < r

(AdS1)
m ,

while all spacetime with rm > r
(M)
cr = 0.33729 evolves into the matter dominant universe if ε = 1

and B > r
(AdS2)
m .
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Figure 5.7: The same figure as Fig. 5.5 for Model E (c3 = 3, c4 = 0). The boundary values are given

by r
(M)
m = 1, r

(AdS1)
m = 0.636672, r

(AdS2)
m = 4.12489, and r

(dS)
m = 0.761557. Every spacetime with

ε = −1 evolves into de Sitter universe. The matter dominant universe is found for all spacetime

with ε = 1 and r
(AdS1)
m < rm < r

(AdS2)
m

If rm < r
(dS)
cr , the universe starts from a big bang initial singularity and evolves into de Sitter

spacetime. When r
(dS)
cr < rm < r

(AdS2)
m , the evolution of ag is the similar to the above case.

Starting from a big bang initial data (ag = 0), it evolves into de Sitter spacetime. However, the
behavior of af becomes strange. We show the time evolution of two scale factors in Figs. 5.8-5.10,
in which we set rm = 0.58.

Figure 5.8: The time evolution of two scale factors ag and af for Model B (c3 = 4, c4 = −10) with
cf,m/cg,m = 0.58.

af first increases and then turns to decrease. It eventually increases again, resulting in an
exponential expansion. In order to analyze the reason why the universe shows a transient collapse,
we show the time evolution of A and B in Fig. 5.9. We find that A becomes negative when af
decreases. It means that the time direction in this period turns to be reverse. It is the reason of
the collapse.

However there appears a singularity when Ã vanishes, i.e., ȧf = 0. Substituting Ã = ȧf/ȧg
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Figure 5.9: The time evolution of B(t) and A(t) for Model B with cf,m/cg,m = 0.58.

into the Ricci scalar R(f), we obtain

R(f) = 6

[
1

Nfaf

(
ȧf
Nf

)·
+

ȧ2f
N2

f a
2
f

+
k

a2f

]

= 6

(
ȧgäg
af ȧf

+
ȧ2g
a2f

+
k

a2f

)
. (5.3.1)

äg does not vanish at Ã = 0, because the r-r component of field equation of gμν is given by

2
äg
ag

+
ȧg

2

a2g
+

k

a2g
= m2

g

[
b0 + b1(Ã+ 2B̃)

+ b2(2ÃB̃ + B̃2) + b3ÃB̃2
]
− κ2

gPg . (5.3.2)

Thus, the Ricci scalar R(f) diverges at ȧf = 0 (Ã = 0) assuming ȧg �= 0. Note that the Ricci
scalar for gμν is finite at this point. It implies that g-spacetime is regular whereas f -spacetime is

singular at Ã = 0.
Note that it is possible to solve the equation for B̃ by use of the potential Vg even we find a

singularity in f -spacetime, because the interaction term does not diverge. However, it is impossible
to solve the equation by use of the cosmic time τf in f -spacetime. From Fig. 5.10, it is almost

Figure 5.10: The time evolution of two scale factors ag and af in terms of τf for Model B with
cf,m/cg,m = 0.58. Beyond the singularity, both scale factors decrease in time, and then increase
again after another singularity.

trivial that a singularity appears at the turning points of af .
Fig.5.9 implies that t(τf ) is not single-valued although τf (t) is a single-valued function. As a

result, the variables such as ag(τf ) or af (τf ) are not single-valued (see Fig.5.10).
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The reverse of the above case also occurs, that is, f -spacetime is regular anytime except for a
big bang singularity whereas g-spacetime becomes singular at ȧg = 0, when Ã = ∞. The sign of

Ã also changes beyond this singularity. This happens in the case of Model A (c3 = −1, c4 = 0).
In Figs. 5.3-5.7, we show the region of Ã < 0, on which boundaries (the solid and dashed

curves for Ã = 0 Ã = ∞, respectively) singularities appear. Hence if the universe starts from
the gray shaded area, it evolves into a singularity either at Ã = 0 or at Ã = ∞. If the universe
starts from a big bang singularity (ag = af = 0: red solid line), it evolves into a negative lapse
area through a singularity and eventually goes to a positive lapse area again, finding the de Sitter
accelerating universe (or the matter dominated universe). For the other initial data in the gray
area, the boundary does not correspond to a big bang singularity, but the universe is bounced at
the boundary. Either this spacetime evolves directly into a singularity at Ã = ∞, or it first goes to
the boundary and then it is bounced back to the singularity. Going through a negative lapse area,
both cases eventually evolve into a positive lapse area again. In any case, however, a singularity
formation cannot be avoided if the universe starts from the gray area.

As shown in Figs. 5.3-5.7, there exists critical values r
(dS)
cr (r

(M)
cr ) for rm = cf,m/cg,m, beyond (or

below) which both g- and f -spacetime are regular and then they evolve into de Sitter universe (or
the dust matter dominated universe). The universe never evolves into a singularity. The critical

value r
(dS/M)
cr can be found as follows: It is given by an extreme value of boundary curve of Ã = 0

or Ã = ∞, which are given by

rm|A=0 =
cf,m
cg,m

∣∣∣
A=0

= εB̃

(
1 +

CΛ

3CΛ − B̃C ′
Λ

)
, (5.3.3)

rm|A=∞ =
cf,m
cg,m

∣∣∣
A=∞

= ε

(
B̃ − CΛ

C ′
Λ

)
. (5.3.4)

The extremal condition gives the equation for B̃ at the critical point such that

(κ2
gb1 − κ2

fb3)B̃
2 + (κ2

gb0 − 3κ2
fb2)B̃ − 2κ2

fb1 = 0 ,

for Ã = 0 or

2κ2
gb3B̃

2 + (3κ2
gb2 − κ2

f b4)B̃ + (κ2
gb1 − κ2

f b3) = 0

for Ã = ∞, respectively. The roots of the above equation just provide a candidate for the critical
value B̃cr. Since the critical point must exist in the physically allowed region, we have to impose
the additional constraint for the critical value as

Vg(B̃cr, r
(dS/M)
cr ) < 0 . (5.3.5)

for B̃(dS/M) > B̃cr > rm or B̃(dS/M) < B̃cr < rm. These critical values r
(dS/M)
cr are shown in Figs.

5.3-5.7.
We summarize the results in this subsection in Table 5.1.
We show the conditions for the ratio rm and the initial value of B under which every spacetime

evolves into de Sitter universe or the matter dominant universe. The critical values depend on the
coupling constants {bi} (or c3 and c4) and κ2

f/κ
2
g. When spacetimes do not satisfy these conditions,

the universe will find a singularity unless we fine-tune the initial conditions.

5.4 Cosmic no hair conjecture

In the previous section, we discuss several examples, in which we showed that there are three
possibilities for the fate of spacetime: de Sitter accelerating universe, the matter dominant universe,
and spacetime with a future singularity, depending on the initial condition. Hence in the exact
sense, the cosmic no-hair conjecture does not hold, but de Sitter universe can be obtained from a
wide range of initial conditions. In this section, we shall further analyze how this result is generic
by surveying the possible coupling parameters {bk}, which are given by two free parameters c3 and
c4 as (3.3.19).
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Figure 5.11: The de Sitter solution (blue curves) and the necessary condition of rm for self-
acceleration (the stripe-shaded light-blue regions) are shown. We also shown the matter dominate
universe (the crosshatched light-green curve) and its necessary condition of rm. The dashed red
curves show AdS solutions with Λg < 0. If the universe starts from the yellow region, it evolves

into a singularity. The critical value r
(dS)
cr exists in the regions (1), (2), (3a) and (3b). The another

critical value r
(M)
cr appear if −1.09 < c3 < 0.55 for Case (I) and 2.27 < c3 < 4.09 for Case (II),

respectively.
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region ε rm B

de Sitter accelerating universe

(1) 1 rm > r
(dS)
cr B > r

(AdS2)
m

(2) 1 rm < r
(dS)
cr B < r

(AdS2)
m

(3a) −1 rm > r
(dS)
cr B > r

(AdS1)
m

(3b) −1 rm < r
(dS)
cr B < r

(AdS1)
m

(3c) −1 no condition no condition

matter dominant universe

(1) 1 rm < r
(M)
cr B < r

(AdS2)
m

(2) 1 rm > r
(M)
cr B > r

(AdS2)
m

(3a) 1 rm < r
(M)
cr B < r

(AdS2)
m

(3b) 1 rm > r
(M)
cr B > r

(AdS2)
m

(3c) 1 r
(AdS1)
cr < rm < r

(AdS2)
cr r

(AdS1)
cr < B < r

(AdS2)
cr

Table 5.1: The conditions for de Sitter accelerating universe or the matter dominant universe.
Every spacetime evolves into de Sitter universe or the matter dominant universe, if the given
conditions are satisfied for ε, rm and the initial value of B.

Here, just for simplicity, we study two typical cases with one free parameter c3: (I) b4 = c4 = 0
and (II) b0 = 4c3 + c4 − 6 = 0. The first and second cases include the region (1), (3a) and (3c),
and the region (2), (3b) and (3c), respectively. (See the corresponding red dashed lines in Fig.3.1.)

In Figs. 5.11 (a) and (b), for those two cases (I) and (II), we show which range of rm can reach
to de Sitter universe or the matter dominant universe, The blue solid curve and green dashed line
denote de Sitter solution and the matter dominated universe, respectively. For the dS solutions,
the value of ε is negative in the regions (3a), (3b) and (3c) while it is positive in the regions (1)
and (2).

In the region (3c), all spacetime evolves into either de Sitter self-accelerating universe or matter
dominant universe, except for the time reversed ones, which collapse into a big crunch. On the other

hand, in the regions (1), (2), (3a) and (3b), there exists a critical value r
(dS)
cr , beyond (below) which

spacetime with an appropriate initial condition evolves into de Sitter universe. However, the case
with other initial data will evolve into either matter dominant universe or find a singularity. We

note the critical values r
(M)
cr are extremely close to r

(AdS)
m and these appear only if −1.09 < c3 < 0.55

for Case (I) and 2.27 < c3 < 4.09 for Case (II). Outside these regions, magnitude relation between

Bcr and rm is Bcr > rm > r
(M)
m or Bcr < rm < r

(M)
m , which dose not satisfy the additional constraint

(5.3.5).
In order to see the dependence of gravitational constants κg and κf , we change the ratio of

gravitational constants κf/κg by fixing the coupling constants {bi}. In Figs.5.12 (a) and (b), we
show the results for different values of the ratio κ2

g/κ
2
g for Model B (c3 = 4, c4 = −10) and Model E

(c3 = 3, c4 = 0), respectively. The result is qualitatively same in Model B except for the existence

of r
(M)
cr , while it is quite different in Model E. For Model B, the critical value r

(M)
cr appears only if

κ2
f/κ

2
g < 1.26 as shown in Fig. 5.11. For Model E, all spacetime evolves into de Sitter universe if

0.522408 < κ2
f/κ

2
g < 13.0711, otherwise a critical value appears as Model B.

Hence we can conclude that no hair conjecture does not always hold in the exact sense, but
a self-accelerating universe can be found from natural (not fine-tuned) initial data for general
coupling parameters and gravitational constants.

We should note the effect of radiation. Although the present radiation density is much less
than matter density in our universe, it may not be the case for f -matter fields. Analyzing the
case that f -radiation density is not ignorable, we find that the dynamics of the universe does not
change so much from the matter dominated case.
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(a)

(b)

Figure 5.12: The similar figures to Fig. 5.11 for different values of κ2
f/κ

2
g. We plot the results for

(a) Model B (c3 = 4, c4 = −10) and (b) Model E (c3 = 3, c4 = 0). For Model B, in addition to the

critical value r
(dS)
cr another critical value r

(M)
cr appears if κ2

f/κ
2
g < 1.26. For Model E, no critical

value appears if 0.522408 < κ2
f/κ

2
g < 13.0711. All spacetime approach de Sitter universe.



Chapter 6

Stability in the early universe

When we obtain a homogeneous and isotropic solution, the next question is whether such a
background dynamics is stable against small perturbations. In modified theories of the gravity,
new gravitational degrees of freedom generally appear in addition to the usual tensor degrees of
freedom. The extra degrees of freedom can be pathological if the extra mode suffers from the
ghost instability and/or the gradient instability. When the instability exists only in IR regime,
the instability is not so pathological, rather it can be recast in the Jeans-like instability [150]. In
general, however, the existence of the ghost instability and/or the gradient instability suggests
that the time scale of the instability can be arbitrarily fast and then the instability exists in UV
regime. In order that the background dynamics is viable, the extra degrees of freedom have to be
free from the ghost instability and the gradient instability.

In bigravity, although the solution can be free from the instability at the late stage of the
universe, the instability exists at the early stage of the universe [57–62]. The instability should be
related to the Higuchi-type instability discussed in Section 2.4. Since the bigravity contains the
massive graviton and the Fierz-Pauli graviton becomes unstable when the background spacetime
is the FLRW spacetime with H2 � m2, the cosmology in bigravity may be also unstable when
the Hubble expansion rate is larger than the graviton mass. Indeed, the perturbations around
the homothetic background can be decomposed into the massless graviton mode and the massive
graviton mode where the massive graviton is described by the Fierz-Pauli theory, thus the homo-
thetic FLRW background must be unstable. Although perturbations around the general FLRW
solution in bigravity are no longer reduced to the Fierz-Pauli theory, the instability at the early
stage of the universe implies that the general FLRW solution also suffers from the Higuchi-type
instability.

However, such an instability is quite obscure in the physical interpretation, since the natural
expectation would be that one may not distinguish the massive theory from its corresponding
massless theory when the horizon scale is larger than the Compton wavelength. Hence, the in-
stability should be resolved without either a modification of the theory or an extra ingredient, if
the bigravity theory is a reliable theory in such an energy scale. The instability may simply hint
the possibility that the linear perturbations are no longer valid. Therefore, before we conclude
the bigravity theory breaks down in the early stage of the Universe, it is instructive to take into
account the nonlinear interactions. Indeed, in the paper [63], we found that a stable cosmological
solution can exist even at the early stage of the universe when the nonlinearity of the scalar mode
of the massive graviton is taken into account. We shall summarize the result of [63] in this chapter.

6.1 Ghost condensate and cosmological Vainshtein mecha-
nism

The existence of the ghost instability usually destroys the viability of the theory since the
energy of the unstable mode rapidly transfers to those of other modes and then the vacuum is
unstable. Indeed, quantum mechanically, the ghost mode leads to a divergent decay rate [151].

However, the ghost instability is controllable if the ghost mode forms a condensed state. This

65
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kind of models is dubbed the ghost condensate model [152]. A simple example is given by the
Lagrangian L = P (X) with

P (X) = −X +
X2

M4
. (6.1.1)

where X = − 1
2 (∂φ)

2 is the canonical kinetic term of the scalar field. The Lagrangian reads the
equation of motion

∂μ

[
∂μφ+

1

M4
∂μφ(∂φ)

2

]
= 0 . (6.1.2)

When we assume the ansatz φ = φ(t), the solutions are given by

φ = 0, vt , (6.1.3)

where v = M2. Clearly, this Lagrangian contains the ghost around the vacuum 〈φ〉 = 0 and then
the vacuum 〈φ〉 = 0 is unstable. On the other hand, when the velocity of the scalar field has a
non-zero expectation value 〈φ〉 = vt, the scalar field can be decomposed into the background and
the fluctuations in the form

φ = vt+ δφ(x) . (6.1.4)

Then the perturbed Hamiltonian reads

δH = (δφ̇)2 ≥ 0 , (6.1.5)

thus the perturbed Hamiltonian is bounded from below. Hence, the condensed state 〈φ〉 = vt
does not suffer from the instability and give a stable homogeneous and isotropic solution when the
gravitational effect is included.

As discussed in Section 2.4, the Fierz-Pauli theory on the FLRW spacetime is unstable in the
early stage of the universe due to the ghost instability or the gradient instability depending on
the dynamics of the universe. In bigravity, since the Fierz-Pauli theory is obtained around the
homothetic spacetime, the homothetic FLRW spacetime is unstable. However, similarly to the
ghost condensate, the existence of the instability is not a problem if the theory admits another
stable FLRW spacetime.

In the ghost condensate, the homogeneous and isotropic solution can be found because the
background value of the scalar field depends only on the time. In bigravity, however, it was shown
that the general homogeneous and isotropic solutions are unstable [57–62], which suggests that
the non-zero expectation value of the time derivative cannot give a stable solution. To obtain a
condensed state, spatial derivatives must be non-zero but they may spoil the homogeneity of the
spacetime in general.

The Higuchi-type instability arises from the scalar graviton which is encoded in the Stückelberg
fields. The instability would lead to the growth of Stückelberg fields and then the nonlinear
effects of Stückelberg fields have to be included. Although it seems that the spacetime becomes
inhomogeneous due to the growth of Stückelberg fields, the spacetime can be homogeneous when
the Vainshtein mechanism works in which the dynamics of the spacetime is decoupled from that
of Stückelberg fields. Therefore, the cosmological Vainshtein mechanism could give a successful
cosmology in which the Stückelberg fields are condensed with non-zero spatial derivatives but the
inhomogeneity of Stückelberg fields does not affect the spacetime due to the Vainshtein screening.

The unstable era H 	 m is a viable region of the Λ2 decoupling limit. As discussed in
Section 4.5, the Λ2 decoupling limit give an effective theory for the Vainshtein mechanism. The Λ2

decoupling limit can be taken if the curvature of the spacetime satisfies R 	 m2. Indeed, by using
the Einstein equation, the curvature is typically given by R ∼ M−2

pl T 4 where T is the temperature
of the matter fluid. Then the unstable era H 	 m reads T 	 Λ2. Since the Stückelberg field
does not give any effect on the spacetime in the Λ2 decoupling limit, the cosmological Vainshtein
mechanism could be realized in the universe with T 	 Λ2

For this reason, we shall consider the perturbation around the flat FLRW background retaining
nonlinearities of the Stüeckelberg fields. We then discuss whether the Stüeckelberg fields can
be stabilized by nonlinear interactions of the scalar graviton and whether the fifth force can be
screened in the early stage of the Universe.
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6.2 Scalar graviton with nonlinear effects

To ease the difficulty in analyzing non-linear effects for a generic spacetime, we restrict our
analysis to a spherically symmetric configuration of cosmological solutions. Even in a spherically
symmetric system, however, it is still difficult to discuss full nonlinear effects without resorting to
numerical simulations. Hence, we consider some simplified case.

We consider nonlinear perturbations on homothetic flat FLRW backgrounds:

ds̄2g = a2(η)(−dη2 + dr2 + r2dΩ2) , (6.2.1)

ds̄2f = K2a2(η)(−dη2 + dr2 + r2dΩ2) . (6.2.2)

where dΩ2 = dθ2 + sin2 θdϕ2. This homothetic solution satisfies

3H2 = κ2
gρ̄g + Λg, (6.2.3)

˙̄ρg
a

+ 3H(ρ̄g + P̄g) = 0 , (6.2.4)

with

Λg = K2Λf , (6.2.5)

κ2
gρ̄g = K2κ2

f ρ̄f , κ2
gP̄g = K2κ2

f P̄f , (6.2.6)

where H = ȧ/a2 and a dot is the derivative with respect to the conformal time η. We define the
effective equation-of-state parameter w by

w :=
κ2
gP̄g − Λg

κ2
gρ̄g + Λg

= −1− 2Ḣ

3aH2
. (6.2.7)

For general nonlinear perturbations, it is difficult, if not impossible, to do an analysis even
for spherically symmetric system without numerical simulations. Hence we discuss the following
approximated model. First we impose spherical symmetry at full order and assume that the g-
and f -spacetimes are approximated by the FLRW metric such that

ds2g = a2(ηg)
[
−e2Φgdη2g + e2Ψgdr2g + r2gdΩ

2
]
, (6.2.8)

ds2f = K2a2(ηf )
[
−e2Φf dη2f + e2Ψf dr2f + r2fdΩ

2
]
, (6.2.9)

where we introduce two coordinate systems (ηg, rg) and (ηf , rf ) to describe the approximated
FLRW spacetimes, which are given by different coordinate transformations from the original one
coordinate system (η, r) as

ηg = ηg(η, r), rg = rg(η, r),

ηf = ηf (η, r), rf = rf (η, r) .

The approximated FLRW spacetimes mean that we assume |Φg|, |Ψg| � 1 and |Φf |, |Ψf | � 1
because the mass interaction term, which is proportional to m2

eff/R0, where R0 is the scale of the
curvature, and gives the deviation from GR, is assumed be small. However they do not mean
(ηg, rg) ≈ (η, r) and (ηf , rf ) ≈ (η, r), in which case the deviation from homothetic spacetimes is
small and then can be described by the linear perturbations.

Although the bigravity theory allows one coordinate transformation, two independent coordi-
nate transformations can be possible apparently by introducing the Stückelberg field such that

ηf = ηg +Aη , rf = rg +Ar , (6.2.10)

where (Aη,Ar) is the Stückelberg field in the spherically symmetric case. Using a gauge freedom,
we can fix one coordinate system.

We also assume that for the unperturbed FLRW spacetimes, K and a are given by Eqs. (6.2.4),
(6.2.5) and (6.2.6) although they are not homothetic. This is allowed as we obtain the consistent
perturbation equations with this ansatz.



68 CHAPTER 6. STABILITY IN THE EARLY UNIVERSE

For the following discussions, we consider only a sub-horizon scale (aL � H−1) and a length
smaller than the Compton wavelength of the massive graviton (aL � m−1

eff ). This is because our
interest is the sub-horizon physics during the epoch H > meff and such a solution provides us a
stable cosmological Vainshtein mechanism. We define a dimensionless parameter as

ε :=
aL

H−1
= aLH , (6.2.11)

which satisfies ε � 1 for a sub-horizon scale.
For a spherically symmetric spacetime, we can divide the behavior of all variables into two:

one is a slowly changing longitudinal mode mainly due to the background expansion and matter
distributions, and the other is a fast changing wave-like oscillation mode of a scalar graviton. If
the wave amplitude of the oscillation mode is small, when we take an average over the typical scale
of the system aL, which is smaller than the horizon scale H−1, we find only longitudinal-mode
variables, which we call adiabatic modes. We then decompose all variables X into adiabatic and
oscillation modes as

X = Xad + χosc , (6.2.12)

with

Xad ≈ 〈X〉 , (6.2.13)

where 〈 〉 denotes an average over the typical scale of the system. Since we have assumed that the
amplitude of the oscillation mode is sufficiently small, we will ignore the back-reaction from the
oscillation mode to the adiabatic mode.

The dynamical time scale of the adiabatic mode is assumed to be the Hubble time scale, and
then its evolution is caused by the expansion of the Universe and of the density perturbations. On
the other hand, the oscillation mode comes from the degree of freedom of the scalar graviton. The
time scale of the oscillation mode may be the same order of the inhomogeneity scale. Then each
change rate is evaluated as

|∂ηXad| ∼ |aHXad| , (6.2.14)

|∂ηχosc| ∼ |∂rχosc| . (6.2.15)

Since we consider a sub-horizon scale (aL < H−1), the dynamical time scale of an oscillation mode
is much shorter than the Hubble expansion time, i.e.,

|∂rχosc| 	 |aHχosc| . (6.2.16)

Since the adiabatic mode may be obtained by taking the spatial average over the typical scale
of the system, if the oscillation mode is small, we can assume that the dynamics of the adiabatic
mode is decoupled from the dynamics of the oscillation mode. This assumption is valid if the small
oscillation mode has no instability. Hence we first consider the evolution of the adiabatic modes
without the oscillation modes. Then we study the dynamics of the oscillation modes around this
adiabatic solution.

6.2.1 Adiabatic mode solution

We first discuss the time evolution of the adiabatic modes for the case without matter perturba-
tions in order to see the behavior of non-linear Stückelberg field. The full analysis including matter
perturbations will be discussed in Section 6.3, and the explicit expressions will be summarized in
§. 6.3.1.

For the adiabatic modes, we fix the gauge freedom (6.2.10) by setting

ηg = η , rg = r , (6.2.17)

and introduce the dimensionless variables ν and μ to parametrize ηf and rf as

ηf = (1 + ν)η, rf = (1 + μ)r . (6.2.18)
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We assume that the time coordinate ηf and the radial coordinate rf point the same directions of
ηg and rg, respectively, i.e.,

ν > −1 , μ > −1 . (6.2.19)

We have assumed the weak inhomogeneous gravitational fields around the FLRW spacetimes, i.e.,

|Φg|, |Ψg|, |Φf |, |Ψf | � 1 , (6.2.20)

and

|rΦ′
g|, |rΨ′

g|, |rΦ′
f |, |rΨ′

f | � 1 , (6.2.21)

which means that the perturbations from homogeneous and isotropic spacetimes are small. Note
that this does not imply that the perturbations from the homothetic FLRW spacetime are small
because of the existence of the non-linear Stückelberg field, i.e., either ν or μ are not necessarily
small. The nonlinearities in the variables ν and μ must be retained. However we may assume those
variables are not so large such that the perturbations of gravitational fields are still small, i.e.,

|μΦg| � 1 , |rμ′Φg| � 1 , · · · . (6.2.22)

The spatial derivative of the adiabatic mode may be evaluated by

|∂rXad| ∼ L−1|Xad| , L � r , (6.2.23)

which leads with (6.2.14) to

|∂ηXad| ∼ ε|∂rXad| � |∂rXad| . (6.2.24)

Since the dynamical time scale of the adiabatic mode variables is given by H−1, our spherically
symmetric solution around the FLRW spacetimes must be restored to the static solution in the
limit of H → 0. The static and spherically symmetric solutions are explicitly shown in Chapter 8.

In a spherically symmetric static solution, the metric fμν has no non-diagonal component in
the coordinates (η, r). Hence the non-diagonal component of fμν is at most of the order of ε in the
present adiabatic solution around the FLRW spacetimes. The non-diagonal component is given by

fηr = −K2a2[e2Φf (η + ην)·ην′ − e2Ψf (r + rμ)′rμ̇] . (6.2.25)

where a prime denotes the derivative with respect to r. Because ν̇ ∼ aHν, μ̇ ∼ aHμ and
|Φf |, |Ψf | � 1, we find the leading contribution as, assuming K ∼ O(1),

fηr ∼ a2 O(ην′, εμ, εμ2) (6.2.26)

which must be O(ε). Since ην′ ∼ ν/ε ∼ O(ε), the Stückelberg variables ν and μ are evaluated as

|ν| � O(ε2), |μ| � O(1) . (6.2.27)

We expand all basic equations up to the second order of ε. The inhomogeneous gravitational
fields Φg,Ψg,Φf ,Ψf are determined by the Einstein equations, whose explicit solutions are given
by Eqs. (6.3.2)-(6.3.5) in §. 6.3.1. The Stückelberg variable ν is solved by the η component of the
interaction conservation law ∇αT

[γ]α
β = 0 as

∂

∂r

[
r2

2 + (rμ)′
(
ην′ + arHμ(2 + (rμ)′) + rμ̇

)

× (1 + 2β2μ+ β3μ
2)

]
= 0 , (6.2.28)
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where the parameters β2 and β3 are defined by

β2 :=
b2K

2 + b3K
3

b1K + 2b2K2 + b3K3
, (6.2.29)

β3 :=
b3K

3

b1K + 2b2K2 + b3K3
. (6.2.30)

Eq. (6.2.28) is integrable. An integral constant must be zero because of the regularity condition at
r = 0. Hence we obtain two cases: The first parenthesis in the square brackets of (6.2.28) vanishes
or the second one does so. If the second parenthesis vanishes, μ is a constant. However, barring
special tuning of model parameters, such a solution cannot reproduce the static result in the limit
of H → 0. Hence we conclude that the first parenthesis vanishes, i.e.,

ην′ = −Harμ(2 + (rμ)′)− rμ̇ , (6.2.31)

which determines ν by giving μ. This expression shows that the condition (6.2.27) is consistent.
Substituting (6.2.31), together with later obtained Eqs. (6.3.2)-(6.3.5), into the r component

of ∇αT
[γ]α

β = 0, we obtain an algebraic equation for another Stückelberg variable μ as

Cm2(μ) + CH2(μ) = 0 , (6.2.32)

where both Cm2 and CH2 are quintic functions of μ (The explicit forms are given in §. 6.3.1). These
terms have typical magnitudes given by

Cm2 ∼ m2
eff ×O(μ) , CH2 ∼ H2 ×O(μ) .

The equation (6.2.32) reproduces the static result (8.2.12) in the limit of H → 0 thus the expression
is consistent with our assumptions.

Since μ is determined by the algebraic equation (6.2.32), μ has no dynamical degree of free-
dom. It is not surprising because we have ignored the oscillation mode which corresponds to the
dynamical degree of freedom of the scalar graviton. As a result, the Stückelberg fields do not have
any dynamical freedom in the adiabatic mode solutions.

From now on, we focus on the period of the Universe with H 	 meff , which corresponds to the
early stage of the Universe. The algebraic equation (6.2.32) reduces

CH2 ≈ 0 . (6.2.33)

This equation has at most four roots, which are given by μ = −1 and

μ0 = 0, and μ± , (6.2.34)

where

μ± =
1 + (1− 3w)β2 ±

√
1− 4β2 + (1− 3w)2β2

2 + 3(1− w)(1 + 3w)β3

−2β2 + (1 + 3w)β3
. (6.2.35)

Since the root μ = −1 gives rf = 0 for any r, we do not adopt this solution, and consider only
the other three roots μ0 = 0, μ±. Since those roots are constants, which depend on the coupling
constants and equation-of-state parameter, we can classify the solutions of Eq. (6.2.32) by those
roots, which we call the μ0-branches.

When we do not include matter perturbations, neglecting the contributions from the interaction
terms (which are much smaller than ε2 for H 	 meff), the metric perturbations are solved as

Φg,Ψg,Φf ,Ψf ≈ 0 . (6.2.36)

Then two metrics are given by

ds2g = a2(η)
[
−dη2 + dr2 + r2dΩ2

]
,

ds2f = K2a2(ηf )
[
−dη2f + dr2f + r2fdΩ

2
]
, (6.2.37)
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where the coordinates (ηf , rf ), which correspond to the nonlinear modulations due to the adiabatic
Stückelberg fields, deviating from the physical coordinates as

ηf = η − 1

2
Har2(2μ0 + μ2

0), rf = (1 + μ0)r , (6.2.38)

where we have integrated Eq. (6.2.31) for ν setting μ = μ0.
The solution μ0 = 0 corresponds to the homothetic FLRW spacetimes, while we can also

find the other approximately homogeneous and isotropic solutions with μ0 = μ± in the massless
limit, in which the coordinate transformation from (η, r) to (ηf , rf ) is nonlinear. The solutions
with μ0 = μ± are valid up to the second order of ε with ε � 1 when the interaction terms can be
ignored. Thus the solutions with the nonlinear Stückelberg variable μ are not exactly homogeneous
and isotropic spacetimes, but approximate homogeneity and isotropy still hold in the sub-horizon
scales.

The solutions μ0 = μ± with the limit H 	 meff are indeed same as the solutions obtained
by the Λ2 decoupling limit. In the limit H 	 meff , we have ignored the back-reaction from the
Stückelberg variables to the variables of the spacetime. In this case, the dynamics of the spacetime
variables are determined by the Einstein equations in GR and the dynamics of the variables μ and
ν are determined by the conservation equation ∇αT

[γ]α
β = 0. On the other hand, when we take

the Λ2 decoupling limit first, the equations for Stückelberg variables are obtained by the variation
of the massive gravity nonlinear sigma model with the homothetic FLRW spacetimes with respect
to the Stückelberg variables. The equation of motion in the Λ2 decoupling limit actually coincides
with the equation with the limit H 	 meff .

6.2.2 Stability conditions of scalar graviton

Next, we consider the oscillation modes of perturbations. In the previous calculation, we
discussed a spherically symmetric solution based on the adiabatic potential approximation. It
does not contain the dynamical degree of freedom of the scalar graviton. In this subsection, we
analyze the stability of the solution against the fluctuations of the scalar graviton with the condition
H 	 meff .

We consider the following perturbations:

ds2g = a2(ηg)
[
−e2(Φg+φg)dη2g + e2(Ψg+ψg)dr2g + r2gdΩ

2
]
, (6.2.39)

ds2f = K2a2(ηf )
[
−e2(Φf+φf )dη2f + e2(Ψf+ψf )dr2f + r2fdΩ

2
]
. (6.2.40)

We divide the perturbations into the adiabatic and oscillation modes. When we take an average
over the typical scale of the system, the oscillation-mode perturbations do not contribute, and the
equations for the adiabatic equations are obtained. We solved them in the previous subsection.
When the oscillation-mode perturbations are defined by

χosc = X −Xad , (6.2.41)

the equations that govern their evolution are found by subtraction of the adiabatic modes from
the full perturbation equations.

Using a gauge freedom of the oscillation-mode perturbations, as in (6.2.10), we set two coordi-
nates as

ηg = η + δη(η, r) , rg = r + δr(η, r) , (6.2.42)

ηf = η − 1

2
Har2(2μ0 + μ2

0) , rf = (1 + μ0)r , (6.2.43)

where we have used the previous solutions for the adiabatic mode.
While (Φg,Ψg,Φf ,Ψf ) are the adiabatic modes, (φg, ψg, φf , ψf , δη, δr) are the oscillation modes

of perturbations. We assume that all oscillation-mode variables have small amplitudes, i.e., |χosc| �
1, and the rate of their change in time is roughly |∂ηχosc| ∼ |∂rχosc|.

We find that the perturbed metric variables are not dynamical and they vanish in the limit of
meff/H → 0. This is easy to see from the equation of motion as follows: The Einstein curvature
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tensors contain the terms proportional to H2, while the energy-momentum tensors of the interac-
tion term are proportional to m2

eff . For instance, the (ηg, ηg)-component of the Einstein equations
in the coordinates (η, r) gives

6H2φg −
2

a2r2
∂(rψg)

∂r
− 2H

a

∂ψg

∂η

= m2
eff

κ2
g

κ2−

[
(1 + 2β2μ0 + β3μ

2
0)

r2
∂(r2δr)

∂r
+ · · ·

]
. (6.2.44)

Taking into account other components of the Einstein equations, we see that the energy-momentum
tensors of the interaction term are negligible compared to the Einstein tensors when

|φg|, |ψg| 	
κ2
g

κ2−

m2
eff

H2
|∂aδr|,

κ2
g

κ2−

m2
eff

H2
|∂aδη| , (6.2.45)

where ∂a = (∂η, ∂r). When the conditions (6.2.45) hold, i.e., for the early stage of the Universe
with meff � H, it is justified that the Einstein equations in bigravity is restored to the GR form.
In such a stage, the Einstein equations for gμν give the solution:

φg ≈ 0, ψg ≈ 0 . (6.2.46)

This result is convincing because there is no dynamical degree of freedom in a spherically symmetric
system without matter perturbations in GR. By the same argument as above, we also find

φf ≈ 0, ψf ≈ 0 , (6.2.47)

from the Einstein equations for fμν . This is, of course, the consequence that our limit meff/H → 0
is essentially same as the Λ2 decoupling limit and the dynamics of the spacetimes are restored into
those in GR in the Λ2 decoupling limit.

In the limit of meff/H → 0, we find that two metrics without matter perturbations are given
by

ds2g = a2(ηg)
[
−dη2g + dr2g + r2gdΩ

2
]
, (6.2.48)

ds2f = K2a2(ηf )
[
−dη2f + dr2f + r2fdΩ

2
]
. (6.2.49)

We then expand the action in terms of (δη, δr) up to the second order of ε. The variations with
respect to δη and δr give the constraint equations, which are solved such that the Stückelberg
variables δη and δr are given by

δη = −∂ηπ

a2
+

arHμ0

1 + μ0

∂rπ

a2
+O(ε2) , (6.2.50)

δr =
∂rπ

a2(1 + μ0)
+

arHμ0

1 + μ0

∂ηπ

a2
+O(ε2) , (6.2.51)

in terms of a Stückelberg scalar π. For the analysis of stability, it is sufficient to determine δη and
δr up to the first order of ε.

Substituting (6.2.50) and (6.2.51) into the action, we obtain the quadratic action of π as

S2 =
m2

eff

κ2−

∫
dΩ

∫
dηdr(arH)2KS

[
(∂ηπ)

2 − c2S (∂rπ)
2
]
, (6.2.52)

where Ω is the solid angle. The signs of these coefficients KS and c2S determine the stability of the
Stückelberg scalar π, which corresponds to the scalar graviton.

For the μ0 = 0 - branch, the coefficients are given by

KS |μ0=0 =
3

4
(1 + 3w) , (6.2.53)

c2S |μ0=0 =
w − 1

1 + 3w
, (6.2.54)
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which is consistent with the result (2.4.15). On the other hand, for the μ0 = μ± - branches, after
simplifying the expressions by using (6.2.35), we find

KS |μ0=μ± =
3

4
(3w − 1)(2 + μ±)(1 + 2β2μ± + β3μ

2
±) , (6.2.55)

c2S |μ0=μ± =
2 (3(1− w) + (1− (3w − 1)β2)μ±)

3(3w − 1)(2 + μ±)(1 + 2β2μ± + β3μ2±)
. (6.2.56)

The no-ghost condition is given by KS > 0 while the no-gradient instability condition is given by
c2S > 0. Hence, the stability condition of the scalar graviton is to have

KS > 0, c2S > 0 . (6.2.57)

Figure 6.1: The stable regions of the coupling constants for flat FLRW backgrounds for the cases
of w = −1, w = 0, w = 1/3 ± 10−5, w = 2/3 and w = 1 − 10−5. The μ0 = μ+ - branch is stable
in the regions denoted by μ+ (red regions), the μ0 = μ− - branch is stable in the regions denoted
by μ− (blue regions), and both μ0 = μ± are stable in the regions denoted by μ± (purple regions).
The black solid curves correspond to β3 = β2

2 and the black dotted lines correspond to β2 = β3.

In the μ0 = 0 - branch, either the ghost instability or the gradient instability appears for w < 1.
So the instability is inevitable when the Universe consists of the standard matter, as shown in
Section 2.4. Since the instability appears only in the relation between the two coordinate systems,
(ηg, rg) and (ηf , rf ), two spacetimes still keep homogeneous approximately as long as the condition
(6.2.45) holds. However, since π grows in time due to the instability in this branch, the condition
(6.2.45) eventually breaks down.

On the other hand, the μ0 = μ± - branches can avoid the ghost instability as well as the gradient
instability depending on the background dynamics and the coupling constants. In Fig. 6.1, we show
the parameter regions where the solution is stable for the cases of w = −1, w = 0, w = 1/3±10−5,
w = 2/3 and w = 1−10−5. Note that in the radiation dominant universe with w = 1/3, the action
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is given by

S2

∣∣
w=1/3

= −m2
eff(2 + μ±)

2κ2−

∫
dΩ

∫
dηdr(arH)2 (∂rπ)

2
, (6.2.58)

which does not describe the dynamics of π 1. Thus the expansions we have adopted in our
calculation is invalidated in this limit, and in order to correctly study the dynamics of the scalar
graviton, we must calculate either the higher-order terms of π or the higher-order corrections of ε.

For w � 1/3, the existence of the stable solution is guaranteed for the parameter region such
that

β2
2 > β3 > β2 , for w =

1

3
− |δw| , (6.2.59)

β3 > β2 , for w =
1

3
+ |δw| , (6.2.60)

with |δw| � 1. In such a parameter region, at least one of μ± satisfies the stability condition
(6.2.57) as well as our ansatz μ± > −1.

For w = 1, μ± are given by

μ± =
1− 2β2 ± |1− 2β2|

2(2β3 − β2)
. (6.2.61)

Hence, one of μ± becomes zero, which gives the homothetic solution.
Since reducing the stability condition (6.2.57) to the allowed parameter region for arbitrary

values of w is a nontrivial task due to the complicated dependence (6.2.35) of μ± on the model
parameters, we analyze the stable region numerically. We conclude that the parameter region of

β2
2 > β3 > β2 , (6.2.62)

guarantees the existence of a stable branch for any values of w except for w = 1/3. Even outside
the region (6.2.62), we obtain stable branches for some values of w, but the instability always
appears for near radiation dominant stage such that w = 1/3− |δw|.

In the stable region (6.2.62), only one stable branch exists for any w. When the Universe
consists of the usual matter field with w < 1, either μ0 = μ+ or μ− gives a stable solution in the
parameter region (6.2.62). While if the Universe is composed effectively of a “strange” matter field
with w > 1, we find μ0 = μ± - branches are stable only in the region of β3 > β2

2 (see Fig. 6.2),
and the stable region disappears in the limit of w = ∞ as shown in Fig. 6.2. As a result, only the
μ0 = 0 - branch becomes stable.

Although the condition (6.2.62) depends on the proportional factor K, we can derive the
stability condition for the original coupling constants {bi}. Since we assume m2

eff > 0 (i.e. Kb1 +
2K2b2 +K3b3 > 0), the condition reduces to

b22 − b1b3 > 0 , b2 < 0 . (6.2.63)

Therefore, if we choose the coupling constants in the above parameter regions (6.2.63), both ghost
instability and gradient instability are avoided because of the nonlinear interactions, and then the
early stage of the Universe described approximately by the solution in GR. That is, the big bang
cosmology is stable.

6.3 Perturbations with matter effects

In this section, we consider the adiabatic modes retrieving matter perturbations and discuss
the evolution history with the nonlinear effects of the Stückelberg fields. For the stable branch
discussed in the previous section, the evolutions of the matter perturbations are approximated by
the adiabatic modes. The oscillation modes of matter fluctuations decay in time [53]. Hence we
can decouple the adiabatic and oscillation modes in this case as well.

1 If we take into account the trace anomaly of quantum corrections, we find small deviation from w = 1/3. For

example, w = 1
3
− 5

18π2
g4

(4π)2
(Nc+

5
4
Nf )( 11

3
Nc− 2

3
Nf )

2+ 7
2
[NcNf/(N2

c−1)]
for a plasma of the SU(Nc) gauge theory with coupling g and

Nf flavors [153].
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Figure 6.2: The same figures as Fig. 6.1 for the cases of w = 1 + 10−5 and w = 2.

6.3.1 Adiabatic mode with matter perturbations

Now we discuss the time evolution of the adiabatic modes with matter perturbations. The
matter energy densities are perturbed as

ρg = ρ̄g(1 + δg) , ρf = ρ̄f (1 + δf ) . (6.3.1)

We ignore pressure perturbations and spatial velocities compared to the density perturbations,
just for simplicity.

All equations are expanded up to the second order in ε. The Einstein equations for gμν and
fμν give

2Ψg(η, r) = a2(η)r2
[
m2

g

(
μ+ β2μ

2 +
β3

3
μ3

)
+

1

3
κ2
gρ̄g δ̃g

]
, (6.3.2)

2r
∂Φg

∂r
(η, r) = a2(η)r2

[
−m2

g

(
μ− β3

3
μ3

)
+

1

3
κ2
gρ̄g δ̃g

]
, (6.3.3)

and

2Ψf (ηf , rf ) = a2(ηf )r
2
f

[
−

m2
f

(1 + μ)3

(
μ+ (1 + β2)μ

2 +
1 + β2 + β3

3
μ3

)
+

1

3
K2κ2

f ρ̄f δ̃f

]
,

(6.3.4)

2rf
∂Φf

∂rf
(ηf , rf ) = a2(ηf )r

2
f

[
m2

f

(1 + μ)3

(
μ+ 2μ2 +

2 + 2β2 − β3

3
μ3

)
+

1

3
K2κ2

f ρ̄f δ̃f

]
, (6.3.5)

respectively, where

δ̃g(η, r) :=

∫ r

0
4πr̃2δgdr̃∫ r

0
4πr̃2dr̃

, δ̃f (ηf , rf ) :=

∫ rf
0

4πr̃2δfdr̃∫ rf
0

4πr̃2dr̃
, (6.3.6)

are spatial averages of the density perturbations in the spheres with the radii r and rf , respectively.
The mass parameters are defined by (3.3.28)-(3.3.30).

Although the f -variables are given as the functions of (ηf , rf ), it is easy to find them as the
functions of (η, r) by use of the Stückelberg fields ν and μ. The variable ν is determined by (6.2.31)
even when the matter perturbations are included.

Substituting Eqs. (6.3.2)-(6.3.5) and (6.2.31) into the r component of ∇αT
[γ]α

β = 0, we obtain
an algebraic equation for μ:

Cm2(μ) + CH2(μ) + Cmatter(μ) = 0 , (6.3.7)
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where we define each function as

Cm2(μ) := μ
{
m2

g(1 + μ)2
[
9 + 18β2μ+ (6β2

2 + 4β3)μ
2 − β2

3μ
4
]

+m2
f

[
9 + 18(1 + β2)μ+ (10 + 34β2 + 4β3 + 6β2

2)μ
2

+ (2 + 14β2 + 8β3 + 12β2
2)μ

3 + (2β2 + 2β3 + 2β2
2 − β2

3 + 4β2β3)μ
4
]}

,

(6.3.8)

CH2(μ) := −3H2μ(1 + μ)2
{
3(1− w) + 2 [1 + (1− 3w)β2]μ+ [2β2 − (1 + 3w)β3]μ

2
}
, (6.3.9)

Cmatter(μ) := (1 + μ)2
{
κ2
gρg δ̃g(1− β3μ

2)−K2κ2
fρf δ̃f (1 + μ)

[
1 + 2μ+ (2β2 − β3)μ

2
]}

.

(6.3.10)

Eq. (6.3.7) reproduces the static result (8.2.12) in the limit of H → 0.
An important difference from the case without matter perturbations is that the variable μ

depends also on the matter perturbations. When the matter perturbations are not negligible,
Eq. (6.2.32) should be replaced with Eq. (6.3.7), in which the typical value of the additional third
term is evaluated by

Cmatter ∼ κ2
gρg δ̃g −K2κ2

fρf δ̃f .

The metric perturbations are given by the GR results with the corrections coming from the
interaction term, e.g., one of the perturbations of gμν is given by

Ψg = ΨGR + a2r2m2
eff ×

κ2
g

κ2−
×O(μ) . (6.3.11)

When the second term is negligible compared to the first one, the metric perturbations are restored
to the GR results. Since the equations of motion of twin matters are not modified from usual ones
(e.g., see Eq. (3.3.10)), the restoration of the metric perturbations guarantees the dynamics of the
matter is also restored to the GR result. Therefore we will discuss only the metric perturbations
which are determined by μ as in Eqs. (6.3.2)-(6.3.5).

6.3.2 GR phase

We discuss a stage when the Hubble parameter is larger than the effective graviton mass (i.e.,
H2 	 m2

eff). Because CH2 	 Cm2 , Eq. (6.3.7) becomes

CH2 + Cmatter ≈ 0 . (6.3.12)

Since the second term is much smaller than the first term, Eq. (6.3.12) is schematically solved as

μ = μ0 +O(δ̃g, δ̃f ) , (6.3.13)

where |δ̃g|, |δ̃f | � 1. As discussed in the previous section, the stable branch is found with μ0 = μ±
for w < 1, or with μ0 = 0 for w > 1.

First, we consider the case of w < 1. The stable branch is given by one of μ±, and thus (6.3.12)
is also solved as μ ≈ μ±. The gravitational sector is restored to the one in GR, when

κ2
g

κ2−
× m2

eff

H2
� δ̃g , (6.3.14)

i.e., if the correction terms from the graviton mass are negligible compared to the GR terms in
Eqs. (6.3.2)-(6.3.5). As a result, in the early stage of the Universe, the metric perturbations are
restored to the GR results.

Next, we consider the case of w > 1, in which the stable branch is given by μ0 = 0. In this
case, the solution is given by, assuming |μ| � 1,

μ ≈ δ̃g − δ̃f
3(1− w)

, (6.3.15)
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where we have used the background equations. One of the metric perturbations is described as

2Ψg = a2r2H2δ̃g + a2r2m2
eff

κ2
g

κ2−

δ̃g − δ̃f
3(1− w)

. (6.3.16)

Since the second term is negligible compared to the first term in the case of H 	 meff , the metric
perturbations are again restored to the GR results for w > 1.

Hence both cases show the GR limit in the early stage of the Universe (H 	 meff). We shall
call this stage the GR phase.

6.3.3 Bigravity phase

Secondly, we discuss the stage when the Hubble parameter is smaller than the effective graviton
mass (i.e., H2 � m2

eff). In this stage, we find Cm2 	 CH2 . Hence, for the matter of our interest,
Eq. (6.3.7) reduces to

Cm2 + Cmatter ≈ 0 . (6.3.17)

We denote the roots of Cm2(μ) = 0 by μ∞, which are found to be zero and some constants of order
unity. Similarly to the previous subsection, Eq. (6.3.17) is solved as

μ = μ∞ +
H2

m2
eff

×O(δ̃g, δ̃f ) . (6.3.18)

Since Eq. (6.3.17) is a polynomial equation of degree seven for μ, there are seven solutions for
μ∞. We classify the solutions of Eq. (6.3.17) into two types: the linear branch and non-linear
branches. Note that a branch here denotes one with μ = μ∞ in the limit of H/meff → 0.

The linear branch is realized by choosing μ∞ = 0. Eq. (6.3.17) gives the value of μ as, assuming
|μ| � 1,

μ ≈ −
κ2
gρ̄g δ̃g −K2κ2

f ρ̄f δ̃f

9m2
eff

. (6.3.19)

Substituting this solution into the expression of the gravitational force (6.3.3), we find

Φ′
g ≈ a2r

6

[(
1 +

m2
g

3m2
eff

)
κ2
gρ̃g −

m2
g

3m2
eff

K2κ2
f ρ̃f

]
. (6.3.20)

Hence the gravitational force in the g-sector is produced by the f -matter as well as the g-matter.
We will detail why the f -matter affects the gravitational force in the g-spacetime in Section 7.1.

The nonlinear branches are obtained by choosing μ∞ ∼ O(1). In this case, since |μ∞| 	
|δ̃g|, |δ̃f |, the solutions are found to be

μ ≈ μ∞ , (6.3.21)

giving the same as those without matter perturbations. For these nonlinear branches, the metric
perturbations include the correction terms of the graviton masses as given in Eqs. (6.3.2)-(6.3.5).
Hence, for these branches, there is a non-negligible inhomogeneity at large scale and the gravi-
tational behavior deviate largely from GR’s one beyond the Vainshtein radius. A question is the
asymptotic structure of the nonlinear branch. In the bigravity phase, the limit H → 0 might be
sufficient as a lowest-order approximation. In this limit, the adiabatic solutions turn to be the
static ones. In the static case, as shown in [85], the nonlinear branches approaches a shell singular-
ity or AdS spacetime when we introduce a negative cosmological constant. Hence, the nonlinear
branch may not describe our Universe.

Since the gravitational behaviors are modified from the ones in GR due to the existence of
the fifth force, mediated by the scalar mode of graviton, for both branches, we call this stage the
bigravity phase.
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6.4 Transition from GR to bigravity

As we have shown in the previous section, the universe in the bigravity theory has some stable
branches in the both limits of H 	 meff and of H � meff , which correspond to the early and late
stages of the universe, respectively. More precisely, in the early stage of the universe (H 	 meff),
the μ0 = 0 - branch is unstable, while μ0 = μ± - branches can give the stable GR phase depending
on the coupling constants. On the other hand, in the late stage of the universe (H � meff), the
branch with |μ| � 1, which provide us the bigravity phase, is stable.

The question is whether any two stable branches with different limits can connect under our
adiabatic approximation or not. We shall discuss this possibility in this section. Our Universe
must start from the GR phase and transit to the bigravity phase. Then the Universe must pass
through the period of H ∼ meff , where the behavior of μ becomes unclear.

One unknown in this period is the transition time scale, if the transition occurs. If the transi-
tion time scale is given by the Hubble time scale and the adiabatic mode is an attractor even in the
period of H ∼ meff , we can discuss the transition by considering only the adiabatic modes. How-
ever, if the transition time scale is faster than the Hubble time scale, the adiabatic approximation
(6.2.24) is no longer valid, and a full analysis without approximation will be required.

Here, we only speculate some possible transitions based on the adiabatic approximation with the
assumption (6.2.24). When the amplitudes of the density perturbations are given, one can obtain
the Stückelberg modulation μ in terms of H and δ̃g/f by solving the algebraic equation (6.3.7)
together with the use of (6.2.3) and (6.2.6). Since H decreases in time, we find the evolution of
μ without solving the equations of motion, under the assumption that the solutions to (6.3.7) at
different moments are continuously connected. Here we also assume that the density perturbations
are constant in time; although they may evolve in time, the qualitative behavior does not change
much.

We show several examples in Figs. 6.3 and 6.4. We have explored a wide range of the parameters
with the stability condition (6.2.62).

As shown in Figs. 6.3 and 6.4, two stable branches in the limits of meff/H � 1 and of meff/H 	
1 can be continuous or discontinuous depending on the equation-of-state parameter w and the
density perturbations. For example, as shown in Fig. 6.3 (II), for w = 2/3, we find one continuous
curve from the early stage to the late stage of the Universe, exhibiting the branch that is stable
in both limits of meff/H � 1 and of meff/H 	 1, if δ̃g(= 10−2) > δ̃f (= 10−3). On the other

hand, if δ̃g(= 10−3) < δ̃f (= 10−2), two (one stable and another unstable) continuous curves are
splitted into two discontinuous curves as found in Fig. 6.3 (II). There are points at which two real
roots of Eq. (6.3.7) degenerate and beyond which they become imaginary. At such points, the time
derivative of μ (dμ/dH−1) diverges, but μ itself is finite. At such a singular point, we argue that
the scalar graviton is singular. This is because the variable μ is basically related to the adiabatic
mode of the scalar graviton π0 as μ = a−2π′

0/r. So when ∂μ → ±∞ (or ∂∂π → ∞), a singular
behavior of the scalar graviton may appear.

However, near such a singular point, our assumption (6.2.24) is no longer valid. This singular
behavior may simply be an artifact of our adiabatic assumption, and if we analyze the full nonlinear
dynamics without the adiabatic approximation, this singularity may not appear. Hence, when we
find a discontinuity in the solution μ(H), what happens in the transition period is still an open
problem. In what follows, we just discuss the adiabatic solutions given by the continuous curves.

We classify our results into two cases: Case A and Case B. Some examples of Case A are given
in Fig. 6.3, while those of Case B are in Fig. 6.4. In both cases, there is a continuous curve from GR
phase to bigravity phase when δ̃g > δ̃f with w > 1/3 which may give a viable phase transition with

the adiabatic approximation. However, either w < 1/3 or δ̃g < δ̃f cannot give such a transition.
In particular, when w < 1/3, the GR phase may transit to the nonlinear branch in the bigravity
phase in Case A; while the GR phase approaches to the singularity in Case B.

From the above analysis, we conclude that for w > 1/3, there exists a stable adiabatic solution,
which describes that the Universe evolves from a GR phase in the early stage to a linear bigravity
phase in the late stage. For more realistic equation-of-state parameter w < 1/3, however, if the
transition from the GR phase to the linear bigravity phase occurs, the transition time scale is
likely to be faster than H−1 and then the adiabatic condition must no longer be valid 2. In

2One may argue the possibility that the transition might occur with a Hubble time scale by taking into account
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Figure 6.3: Case A: There exists a continuous curve from μ0 to the branch with non-linear μ∞(∼
O(1)). We plot the roots of Eq. (6.3.7) for δ̃g = 10−2, δ̃f = 10−3 (red curves) and for δ̃g =

10−3, δ̃f = 10−2 (blue dashed curves). We set β2 = −3, β3 = 3,m2
g = m2

f . The branch with
μ0 � 0.40 for w = 0 and μ0 � −0.10 for w = 2/3 are stable in the early stage of the Universe
(meff/H � 1). The Universe may evolve from the stable μ0 - branch to the μ∞ - branch. For
example, for w = 0, μ changes from μ0 = 0.4 (GR phase) to μ∞ = 0.7 (nonlinear bigravity phase),
while for w = 2/3, it does from μ0 = −0.1 (GR phase) to μ∞ = 0 (linear bigravity phase).
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Figure 6.4: Case B: There exists no continuous curve from μ0 to the branch with non-linear
μ∞(∼ O(1)). We plot the roots of Eq. (6.3.7) for δ̃g = 10−2, δ̃f = 10−3 (red curves) and δ̃g =

10−3, δ̃f = 10−2 (blue dashed curves). We set β2 = −1, β3 = 1/2,m2
g = m2

f . The stable branches
for meff/H � 1 are given by μ0 � 1.1 for w = 0, and μ0 � −0.21 for w = 2/3. The Universe
with w = 2/3 may evolve from μ0 = −0.21 (GR phase) to μ∞ = 0 (linear bigravity phase), but for
w = 0, there is no stable adiabatic solution.
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order to conclusively analyze the full evolution history of the Universe for natural equation-of-
state parameter w, the analysis beyond the adiabatic approximation is required, and a numerical
treatment should be expected.

the evolutions of the density perturbations. However this is unlikely because the qualitative behaviors of Figs. 6.3
and 6.4 do not depend on the amplitudes of δ̃g and δ̃f but rather on their ratio δ̃g/δ̃f .





Chapter 7

On dark matter

The big mysteries in the modern cosmology are not only the origin of the accelerating expansion
of the Universe but also the origin of dark matter. The existence of dark matter is confirmed in
many situations, e.g., the abundance of non-relativistic particles in the Universe, the cosmologi-
cal structure formation, and dark matter halos existing around galaxies. In order to realize the
bottom-up scenario of the structure formation, dark matter must be cold (or warm). The standard
candidates of cold dark matter are massive particles which are weakly coupled to standard model
particles and dark matter particles are produced via a thermal process called weakly interacting
massive particles (WIMPs). Since WIMPs are coupled to known particles, dark matter could be
observed in the direct ways through particle productions in colliders or dark matter scattering off
a nucleus, or in the indirect ways through dark matter annihilation to cosmic rays [32–37]. How-
ever, these experiments have not discovered dark matter particles so far; thus we have confirmed
the existence of dark matter only by the gravitational interactions. The experimental null results
would suggest that a paradigm shift is required.

In this chapter, we shall discuss two possibilities to explain the origin of dark matter in the
context of bigravity: dark matter from f -sector matter [51, 53] and dark matter composed of
massive graviton [54]. In the first case, the dark matter candidate is the matter field coupling to
f -metric. By definition, the f -matter is not directly coupled to the g-matter field. Only possible
interactions between the g-matter and the f -matter are through the gravitational interaction.
Hence the g-matter observes the f -matter as a dark matter component. On the other hand, in the
second possibility, the dark matter candidate is the massive graviton itself. In this case, we do not
need to introduce any additional matter fields other than the g-matter fields.

In Section 7.1, we discuss the first possibility so we consider the effects of the f -matter field
on three situations: the background dynamics of the Universe, the rotation curves of galaxies, and
the structure formation.

The linear perturbations around a homothetic solution are decomposed into two eigenstates:
the massless and massive graviton modes. Note that these are the mass eigenstates, whereas they
are mixed up in the physical frame described by two metrics. That is, the massless and massive
modes couple to both g- and f -matter fluids. As a result, the perturbations of our spacetime
are described by the linear combinations of the massless and massive modes. Our g-spacetime is
affected by f -matter fluids via the massless and massive graviton modes. The effects though the
massless graviton mode should be the same as that in GR because the carrier of the gravitational
interaction is the massless graviton in GR. The non-trivial effect would be obtained from the
massive graviton mode. Indeed, we will show that the massive graviton mode gives a repulsive
force rather than an attractive force in the g-spacetime while the massless graviton mode gives a
standard attractive force. As a result, the gravitational force becomes weaker than the prediction
of GR in some scale in bigravity.

In Section 7.2, on the other hand, we shall consider the scenario in which dark matter is
explained by the massive gravitons. As shown in Section 3.4, the massive gravitons act as a
gravitational source for the massless graviton. In the scales larger than the Compton wavelength
the massive graviton is not relevant to the carrier of the gravitational force due to the Yukawa
suppression. Since the massive graviton should be confined in galaxies, the de Broglie wavelength
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of the massive graviton should be smaller than kpc scale in order to be a candidate for dark matter.
Then the massive graviton behaves as just a massive particle (not as a carrier of gravitational force)
in significant scales of dark matter.

In a scenario of massive graviton dark matter, the gravitational wave is an observational tool
to explore our scenario. Since the g-metric to which ordinary matter fields couple is a linear
combination of the two mass eigenstates, production of massive gravitons, i.e. the dark matter
particles, is inevitably accompanied by generation of massless gravitons, i.e. the gravitational
waves. Therefore, in this scenario, some information about dark matter in our Universe is encoded
in gravitational waves. We can indirectly estimate some parameters of massive graviton by using
the gravitational waves when observed.

7.1 Dark matter from f-sector

In this section, we will analyze whether the f -matter field can be dark matter in our g-world.
Let us consider the linear perturbation around the homothetic background. The unperturbed

solution is assumed to be homothetic, i.e.,

(0)

g μν and
(0)

f μν = K2(0)

g μν , (7.1.1)

which is the solution of two Einstein equations:

(0)

Gμ
ν(

(0)

g ) = −Λg(K)δμν + κ2
g

(0)

T [m]μ
ν , (7.1.2)

(0)

G μ
ν(

(0)

f ) = −Λf (K)δμν + κ2
f

(0)

T [m]μ
ν , (7.1.3)

A constant K is determined by the quartic equation (3.3.16), and the matter energy-momenta
satisfy the following condition:

κ2
f

(0)

T [m]μ
ν =

1

K2
κ2
g

(0)

T [m]μ
ν . (7.1.4)

We then consider the following perturbations:

gμν =
(0)

g μν + δgμν , (7.1.5)

fμν =
(0)

f μν +K2δfμν = K2
(

(0)

g μν + δfμν

)
(7.1.6)

where |δgμν |, |δfμν | � |(0)g μν |. The suffixes of δgμν as well as δfμν are raised and lowered by the

background metric
(0)

g μν .
The energy-momentum tensors of twin matter fluid and γ-“energy-momentum” ones from the

interaction terms can be expanded as

κ2
gT

[m]μ
ν = κ2

g

[
(0)

T [m]μ
ν + δ

(1)

T [m]μ
ν

]
, (7.1.7)

K2κ2
fT [m]μ

ν = K2κ2
f

[
(0)

T [m]μ
ν + δ

(1)

T [m]μ
ν

]
(7.1.8)

and

κ2
gT

[γ]μ
ν = −Λgδ

μ
ν +

m2
g

2
(ϕ̂μ

ν − ϕ̂δμν), (7.1.9)

K2κ2
fT

[γ]μ
ν = −K2Λfδ

μ
ν −

m2
f

2
(ϕ̂μ

ν − ϕ̂δμν) , (7.1.10)

respectively. Here we have introduced new variables ϕ̂μν and ĥμν from two metric perturbations
as

ϕ̂μν = δgμν − δfμν ,

ĥμν =
m2

f

m2
eff

δgμν +
m2

g

m2
eff

δfμν (7.1.11)
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with (3.3.30). Note that, in this section, we use the dimensionless variables ϕ̂μν and ĥμν for
convenience.

The linearized Einstein equations are given by

δ
(1)

Gμν(ĥ) =
m2

f

m2
eff

κ2
gδ

(1)

T μν +
m2

g

m2
eff

K2κ2
fδ

(1)

T μν , (7.1.12)

δ
(1)

Gμν(ϕ̂)−
m2

eff

2
(ϕ̂μν − ϕ̂

(0)

g μν) = κ2
gδ

(1)

T μν −K2κ2
fδ

(1)

T μν . (7.1.13)

Note that, for the massive mode, we can derive following constraint equations from the linearized
Einstein equation:

(0)

∇μϕ̂
μ
ν =

(0)

∇νϕ̂ , (7.1.14)

(3m2
eff − 2Λg)ϕ̂ = κ2

g(2
(0)

T
[m]
αβ ϕ̂

αβ −
(0)

T [m]ϕ̂)− 2κ2
gδ

(1)

T μ
μ + 2K2κ2

fδ
(1)

T μ
μ . (7.1.15)

When we discuss the scales larger than the Compton wavelength of the massive graviton, we can
ignore the equation (7.1.13) since the massive graviton does not give any effects on the gravitational
force. The equation (7.1.12) suggests that the gravitational source for the massless graviton is given
by the sum of both twin matters. The metric perturbations are represented as

δgμν = ĥμν +
m2

g

m2
eff

ϕ̂μν ,

δfμν = ĥμν −
m2

f

m2
eff

ϕ̂μν , (7.1.16)

and then, in large scales, the g-spacetime perturbation is approximated by

δgμν � ĥμν . (7.1.17)

The expression clearly shows that the f -matter field acts as a dark matter component in the g-
spacetime in the scales larger than the Compton wavelength. It is worth noting that the linear
perturbations around the homothetic background should be valid in the scales larger than the
Compton wavelength since the Vainshtein radius is much shorter than the Compton wavelength in
general.

The non-trivial effects may exist in the scales shorter than the Compton wavelength. We will
discuss the effect of the f -matter in several scales. We believe from observation that the evidence
of dark matter appears in three situations; (A) dark matter in the Friedmann equation, (B) a dark
halo at a galaxy scale, and (C) CDM in cosmic structure formation. So we discuss them in order.

7.1.1 Cosmic pie

First, we discuss the pie chart of the content of the Universe. The amount of dark matter is
about 5 times as large as the baryonic matter.

In order to explain the cosmic pie, we consider the homogeneous and isotropic spacetime, which
metrics are given by

ds2g = −N2
g dt

2 + a2g

(
dr2

1− kr2
+ r2dΩ2

)
, (7.1.18)

ds2f = −N2
f dt

2 + a2f

(
dr2

1− kr2
+ r2dΩ2

)
, (7.1.19)

where Ng and Nf are lapse function, while ag and af are scale factors for gμν and fμν , respectively.
Using the gauge freedom, we can set Ng = 1 without loss of generality. See Chapter 5 for details
of dynamics of FLRW spacetime and notations.

For generic initial data, the ratios Nf/Ng and af/ag can approach to the same constant K given
by (3.3.16), as the universe expands, i.e., the homothetic solution is an attractor in the present
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system. The dynamical time scale is about m−1
eff . We can approximate the cosmological solution

by small deviation of metrics from a homothetic background when

3m2
eff − 2Λg 	 |κ2

gρg −K2κ2
fρf | . (7.1.20)

As a result, near the attractor, i.e., near the present stage of the universe, the evolution of the
universe is described by the effective Friedmann equation

H2
g +

k

a2g
=

Λg

3
+

κ2
eff

3
[ρg + ρD] , (7.1.21)

where

κ2
eff = κ2

g

[
1−

3m2
g

3m2
eff − 2Λg

]
, (7.1.22)

ρD =
3m2

f

3m2
f − 2Λg

K4ρf , (7.1.23)

and ρg and ρf are energy densities of g- and f -matter, respectively. Hg = ȧg/ag is the Hubble
parameter where a dot denotes the derivative with respect to t. κ2

eff is the effective gravitational
constant, and ρD is regarded as the energy density of a dark component in the g-world, i.e., another
one of twin matter fluids works as dark matter through the interaction term between two metrics.
Note that the matter densities can deviate largely from those of the homothetic solution such that
ρD ≥ ρg, although the metric deviation is still small enough as long as m2

eff ≥ κ2
effρD.

If both matter components are dominated by non-relativistic matter;

ρg =
ρg,0
a3g

, ρf =
ρf,0
a3f

, (7.1.24)

the density of dark component is approximated by

ρD =
3m2

f

3m2
f − 2Λg

K4ρf,0
a3f

≈
3m2

f

3m2
f − 2Λg

Kρf,0
a3g

+O(a−6
g ) . (7.1.25)

Hence if 3m2
f > 2Λg, ρD behaves as a dark matter component in the g-world. If ρg consists just of

baryonic matter, in order to explain the observed amount of dark matter, we have to require

ρD
ρg

=
3m2

f

3m2
f − 2Λg

Kρf,0
ρg,0

∼ 5 . (7.1.26)

With an appropriate choice of the coupling parameters, we find the above value, which may explain
dark matter by the f -matter fluid.

To show a full dynamics of the density parameters beyond the approximation, we choose one
model with the appropriate values of κ2

f/κ
2
g and rm = ρf,0/ρg,0. In Fig. 7.1, we show the results

for those two models. The present time, which is shown by the dashed lines in the figures, is fixed
by the observed value of the deceleration parameter q = −ägag/ȧ

2
g = −0.527±0.026. We find that

the present total matter density (ΩD +Ωm)|0 is about 0.3 and the dark energy ΩΛ|0 is about 0.7,
respectively, as shown in Fig. 7.1. This result does not depend on the choice of the initial value of
B̃.

Since the ratio ρD/ρg ∼ 5 for both models, we find ΩD|0 ∼ 0.25 and Ωm|0 ∼ 0.05, which must
consist of baryonic matter because Ωb|0 ∼ 0.05. We need not introduce non-baryonic dark matter
in g-spacetime. Another one of twin matter fluids plays a role of dark matter in the effective
Friedmann equation.
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(a)

(b)

Figure 7.1: The time evolution of density parameters for Model κ2
f/κ

2
g = 60 and rm = 180 with

c3 = −4, c4 = −10, and for Model κ2
f/κ

2
g = 1000 and rm = 3000 with c3 = −4, c4 = −10. ag = 1

is the present time.

7.1.2 Dark matter halo

Next, we discuss how to explain a dark matter halo around a galaxy by another one of twin
matter fluids. The existence of dark matter halo is confirmed by observations such as a flat rotation
curve of a galaxy [154].

To analyze the gravitational fields of a galaxy, we consider static Newtonian potentials Φg and
Φf formed by non-relativistic mass densities ρg and ρf . We obtain the Poisson equation for the
massive mode as

(Δ−m2
eff)Φ− =

4

3
(4πGρg − 4πGK2ρf ) , (7.1.27)

where Δ = ∂i∂i is the usual three-dimensional Laplacian operator and Φ− = −ϕ00/2 is the
gravitational potential of the massive mode. The factor 4/3 comes from the vDVZ discontinuity.
Note that the source term is described by the subtraction of two mass densities, and then it can
be negative.

For the massless mode, we obtain the ordinary form of the Poisson equation:

ΔΦ+ = 4πG
m2

f

m2
eff

ρg + 4πGK2
m2

g

m2
eff

ρf , (7.1.28)

where Φ+ = −h00/2 is the gravitational potential of the massless mode. This source term is
positive definite.

We find that both gravitational potentials are affected by both g- and f - matter fluids. This
is main difference from the Newtonian gravity theory. It may make a possibility such that the
f -matter can behave as dark matter in the g-worlds.

In a small scale such as the solar system, however, GR must be restored because GR has
been well confirmed by the experiments and observations. The restoration could be realized via
the Vainshtein mechanism. In this range (below the Vainshtein radius), the linear perturbation
approach is broken down, and then non-linear effects must be taken into account. However, when
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GR is restored from the bigravity theory, the effect on the g-world from the f -matter fluid must be
screened. It indicates that the f -matter cannot be dark matter below the Vainshtein radius. Since
we are interested in whether the f -matter plays a role of dark matter in the g-world, we shall only
analyze the linear perturbations. The evaluation of the Vainshtein radius will be given in the last
part of this subsection.

For a simplest case in which matter fluids are localized spherically, the Newtonian potentials
outside matter distributions are solved as

Φ− =
4

3

(
GMg

r
e−meffr − K2GMf

r
e−meffr

)
, (7.1.29)

Φ+ =
m2

f

m2
eff

GMg

r
+

m2
g

m2
eff

K2GMf

r
, (7.1.30)

where the gravitational masses are defined by

Mg =

∫
4πρgr

2dr, Mf =

∫
4πρfr

2dr . (7.1.31)

The Newtonian potentials in the g- and f -worlds are described as

Φg = Φ+ +
m2

g

m2
eff

Φ−

= −GMg

r

(
m2

f

m2
eff

+
4m2

g

3m2
eff

e−meffr

)

−
m2

g

m2
eff

K2GMf

r

(
1− 4

3
e−meffr

)
, (7.1.32)

Φf = Φ+ −
m2

f

m2
eff

Φ−

= −K2GMf

r

(
m2

g

m2
eff

+
4m2

f

3m2
eff

e−meffr

)

−
m2

f

m2
eff

GMg

r

(
1− 4

3
e−meffr

)
. (7.1.33)

where Φg = −δg00/2,Φf = −δf00/2.
Let us consider the Newtonian potential in the g-world. Below the Compton wavelength of the

massive graviton (r < m−1
eff ), the potential becomes

Φg = −GMg

r

(
1 +

m2
g

3m2
eff

)
+

m2
g

3m2
eff

K2GMf

r
. (7.1.34)

Note that the second term is positive definite. It means that the f -matter acts as a repulsive
force in the g-world. It comes from the factor 4/3 in (7.1.32). To explain dark matter, of course,
the gravitational force must be attractive. Therefore, the f -matter cannot behave as dark matter
when the size of the localized system is smaller than the Compton wavelength.

The origin of this repulsive force is the massive mode, which cannot propagate in the large
system such that meffr 	 1. In fact, beyond the Compton wavelength (r > m−1

eff ), the potential is
approximated by

Φg = −Geff

r
(Mg +K4Mf ) (7.1.35)

where

Geff =
m2

f

m2
eff

G (7.1.36)
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is the local effective gravitational constant. This potential is formed by the f -matter as well as
the g-matter. Hence, it is possible to explain dark matter by another one of twin matter fluids.

Inside the Vainshtein radius, the gravitational constant is restored to the Newtonian gravita-
tional constant. The effective gravitational constants at a galactic scale is same as the effective
one in the Friedmann equation with m2

eff 	 Λg , which we assume to explain dark matter as well
as dark energy. Since the difference between the effective gravitational constant in the Friedmann
equation and the Newtonian one should not be so large from the CMB observation [155–157], we
find a constraint such that

m2
g

m2
f

=
K2κ2

g

κ2
f

� 1 . (7.1.37)

Now we return to the Poisson equations. (7.1.27) and (7.1.28), and study numerically whether
f -matter can provide a flat rotation curve of a galaxy in g-world or not. We assume the dark
matter halo is composed of only f -matter, and the distribution of ρf is assumed to be proportional
to r−2 around the galactic disk. Although the rotation curve is sensitive to the matter distributions
of ρf as well as ρg, for simplicity, we assume a spherically symmetric matter distribution as

ρg(r) = ρg(0) exp[−r/rgal],

ρf (r) =
ρf (0)

1 + (r/rhalo)2
. (7.1.38)

We show the resulting rotation curves for several values of meff in Fig. 7.2. The rotation velocity
V is evaluated as V 2 = rdΦg/dr. We find a flat rotation curve if m−1

eff ∼ kpc.
We then conclude that the f -matter behaves as dark matter in the g-world if the Compton

wavelength of the massive graviton is less than a galaxy scale such as m−1
eff ∼ 1 kpc. When the

mass becomes lighter, then the rotation velocity decreases. It is due to a “repulsive force” induced
by the massive mode because the Compton wavelength becomes larger. Note that in the shorter
range than r ∼ 10 kpc, the rotational velocity with the f -matter (the green curve) is smaller than
that without the f -matter (the black dotted curve), which is the evidence that the f -matter acts
as a repulsive force.

Figure 7.2: The rotation curve in the g-worlds. We plot three cases of m−1
eff = 5 (the red dashed-

dotted curve), 10 (the blue dashed curve) and 15 kpc (the green solid curve). Matter distributions
are given by ρg(r) = ρg(0) exp[−r/rgal], ρf (r) = ρf (0)(1+(r/rhalo)

2)−1, where we set rgal = rhalo =
3 kpc and ρg(0) = ρf (0). The effective gravitational constant is Geff/G = 0.961538 (mg/mf = 0.2).
The black dotted curve is the rotation curve without f -matter.

In order to justify the above analysis, we have to evaluate the Vainshtein radius below which
the linear approximation is broken. We find the linear perturbation analysis for a spherically
symmetric system is valid only when

m2
eff 	 GM−(r)

r3
, (7.1.39)

where

GM−(r) :=
∣∣∣∣G

∫ r

0

4πr̃2ρg(r̃)dr̃ −K2G
∫ r

0

4πr̃2ρf (r̃)dr̃

∣∣∣∣ . (7.1.40)
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Here we have ignored a cosmological constant. The mass of galaxy is dominated by the dark matter
component, and we have the constraint (7.1.37), we find K2GMf 	 GMg, where Mg and Mf are
total masses of the g- and f -matter fluids, respectively. Hence the right hand side is bounded from
the above as

GM−(r) ≤ K2GMf .

As a result, we conclude that the linear perturbation analysis is valid for

r 	 rV :=

(
K2GMf

m2
eff

)1/3

. (7.1.41)

From Eq. (7.1.35), we find the effective mass of a galaxy in the g-world is

Mgal ≈
m2

f

m2
eff

K4Mf . (7.1.42)

For Mgal ∼ 1012M�, we can evaluate the Vainshtein radius as

rV ∼ 0.04 kpc

(
m−1

eff

1 kpc

)2/3 (
1

1−Geff/G

)1/3

. (7.1.43)

It guarantees that the linear perturbation approximation is valid in a galactic scale if m−1
eff � kpc.

Note that, although the effective cosmological constant in bigravity typically given by the
graviton mass squared, this value can be much smaller than the graviton mass squared [53]. Thus,
when we fine-tune the coupling constant {bi}, the models with meff ∼ (kpc)−1 and Λg ∼ (Gpc)−2

can be realized. In this case, the bigravity theory could explain both dark matter and dark energy,
simultaneously. However, the bigravity explains either dark matter or dark energy in the case
without the fine-tuning.

7.1.3 Cosmic structure formation

Finally, we discuss the evolution of cosmological density perturbations based on the linear
perturbation theory. The basic equations for scalar-mode perturbations are summarized in the
end of this subsection. For simplicity, we assume that the background flat FLRW spacetimes are
given by the homothetic solution. In this subsection, we calculate the evolution of the density
perturbations δg and δf in the g- and f -worlds, respectively. Those perturbations are given by
the linear combinations of δ+ and δ−, which are the density perturbations in the equations for the
massless and the massive graviton modes, respectively. Since two modes are decoupled, we first
solve numerically the perturbation equations for the massive graviton mode.

Numerical solutions

Since we are interested in formation of galaxies, we discuss only sub-horizon scale perturbations,
a/k � H−1. In this subsection, we first analyze the linear perturbation equations numerically.
We assume that the matter component is dominated by non-relativistic matter (w = 0). Since
there is another scale of length, i.e., the Compton wave length of the massive graviton m−1

eff , we
can classify those three scales into three possibilities:

Case (a) a/k � H−1 � m−1
eff ,

Case (b) a/k � m−1
eff � H−1,

Case (c) m−1
eff � a/k � H−1.

Assuming the initial data at the decoupling time is given in each case, we solve numerically the
perturbation equations (7.1.83)-(7.1.88) for the massive graviton mode.

We show the results for one metric component β
(L)
− and the density perturbation δ− in Fig.

7.3, where we have chosen the initial data as (a) ain/k = 10−4 × m−1
eff , H−1

in = 10−2 × m−1
eff , (b)
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Figure 7.3: The time evolution of β
(L)
− and δ−. The background spacetime is the dust dominant

universe (a ∝ t2/3). We choose the initial data (a) ain/k = 10−4 ×m−1
eff , H−1

in = 10−2 ×m−1
eff , (b)

ain/k = 10−2 × m−1
eff , H−1

in = 102 × m−1
eff , and (c) ain/k = 102 × m−1

eff , H−1
in = 104 × m−1

eff . The

perturbations grow exponentially for (a). For (b) and (c), the metric perturbation β
(L)
− decays

with oscillations, while the density perturbation δ− increases slowly without oscillation.
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ain/k = 10−2 × m−1
eff , H−1

in = 102 × m−1
eff , and (c) ain/k = 102 × m−1

eff , H−1
in = 104 × m−1

eff . In the
calculation, we have ignored the terms with the sound speed because we consider the perturbations
larger than the Jeans length, i.e. k � kJ = a

√
4πGρ̄/cs.

For the case (a), both perturbation variables (β
(L)
− , δ−) grow exponentially due to the Higuchi

type instability. Hence the linear perturbation is unstable. On the other hand, for the cases (b) and

(c), the metric perturbation β
(L)
− decays with oscillations, which frequency is about

√
(k/a)2 +m2

eff ,
while the density perturbation δ− increases monotonically without oscillations. The increase rates
are evaluated numerically by power-law functions of the scale factor a as δ− ∝ a1.176 and a0.1077

for (b) and (c), respectively.
The Compton wavelength m−1

eff is larger than the horizon scale H−1 for (a), while the relation
is opposite for (b) and (c). The above result concludes that if m−1

eff > H−1 (the case (a)), the
perturbative approach is no longer valid. The non-linear effect must be taken into account as
discussed in Section 6.

Whenm−1
eff < H−1 (the case (b) and (c)), there are two important time scales: One is the Hubble

expansion time H−1, and the other is the oscillation time scale of the massive graviton m−1
eff . We

find that the metric variables {α−, β
(L)
− , h

(L)
− , h

(T )
− } are divided into two parts; the monotonically

growing part and the oscillating part. The former part changes in the Hubble expansion time
H−1, while the latter part with the high frequency

√
(k/a)2 +m2

eff is always decaying. The metric

component β
(L)
− has no former part, and then eventually vanishes as shown in In Fig. 7.3. On the

other hand, the matter perturbations {δ−, v(L)
− } grow slowly in the Hubble time scale H−1 without

oscillation.
As a result, all variables asymptotically approach monotonic functions increasing in the Hubble

time scale H−1. There seems to exist an asymptotic solution which changes monotonically in the
Hubble time scale H−1. We then assume that the perturbation variables change in the Hubble
time scale H−1, i.e., |Ẋ−| ∼ |HX−|, which provides the above asymptotic solution. We call such
an approach an adiabatic potential approximation, since we ignore the oscillation parts of metric
which correspond to the scalar gravitational waves.

Adiabatic potential approximation

Under the adiabatic potential approximation, we look for a solution for sub-horizon scale per-
turbations. From the perturbation equations for the massive mode, (7.1.83), (7.1.87) and (7.1.88),
we find

−
(
2
k2

a2
+ 3m2

eff

)
α− = κ2

gρ̄gδ− + 3m2
effh

(L)
− , (7.1.44)

β
(L)
− = 0 , h

(T )
− = −3

(α−
2

+ h
(L)
−

)
. (7.1.45)

Substituting (7.1.89) into (7.1.44), we obtain

−
(
k2

a2
+m2

eff

)
α− =

4

3
×

κ2
gρ̄g

2
δ− , (7.1.46)

where we have ignored a cosmological constant compared with the graviton mass term, because
we are interested in the case with a rather large value of meff . This equation is interpreted as the
massive Poisson equation. The factor 4/3 comes from the vDVZ discontinuity. Using Eq. (7.1.46)
and ignoring the sound velocity term, the equation for the density perturbation δ− is described as

δ̈− + 2Hδ̇− − 4k2/a2

3(k2/a2 +m2
eff)

κ2
gρ̄g

2
δ− = 0 . (7.1.47)

As we showed numerically, the solution of this equation is found as an attractor for generic
initial data if m−1

eff < H−1 is satisfied initially. However, the condition m−1
eff < H−1 is not always

true. In fact, when we go back to the past, since H−1 ∼ t, then the condition is broken in the past
epoch.
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When we start from the epoch of m−1
eff > H−1, which corresponds to the case (a), the linear

perturbation is unstable, and then nonlinear effect must be taken into account. As discussed in
Section 6, we may find the stable universe by considering the condensation of the Stückelberg fields
in that epoch. Since the results shown in Section 6 are obtained by the spherically symmetric sys-
tem, the realization of the condensed state for a generic system is an open question. Furthermore,
the transition from the condensed state is also unknown.

Figure 7.4: The schematic diagram of the growth history. In the early stage of the Universe
(H−1 < m−1

eff ), because of the Vainshtein mechanism, the standard big bang universe is recovered.
However the Universe eventually evolves into the bigravity phase, in which there are two cases (b)
and (c) depending on the perturbation scale compared with m−1

eff .

We may assume the following scenario. In the early stage of the universe, because of the
cosmological Vainshtein mechanism, gravity is described by GR and then the standard big bang
scenario is found. However, the Universe eventually evolves into the bigravity phase at H−1 ∼ m−1

eff

as shown in Fig. 7.4. When the universe reaches the decoupling time, we find the case (b) or (c) for
the perturbations, in which the adiabatic potential approximation becomes valid as an attractor.
For discussions about the structure formation, it is sufficient to discuss the case (b) and (c) only.
We analyze whether the f -matter can be dark matter in the cosmic structure formation, using the
above adiabatic potential approximation.

Growth history of density perturbation

The evolution equation of density perturbation for the massless mode in a sub-horizon scale is
given from Eq. (7.1.82) as

δ̈+ + 2Hδ̇+ −
κ2
gρ̄g

2
δ+ = 0 (7.1.48)

where we have ignored a cosmological constant and the term with a sound velocity as before. This
equation for δ+ is the same as that in GR. On the other hand, as found in Eq. (7.1.47), the
evolution of the massive mode variable δ− depends on the Compton wavelength of the massive
graviton as well as the scale of the perturbations.

From Eqs. (7.1.47) and (7.1.48) for δ+ and δ−, we obtain the equations for the physical density
perturbations (δg and δf ) as

δ̈g + 2Hδ̇g − 4πGeff(ρ̄gδg + ρ̄DδD) = 0 ,

δ̈f + 2Hδ̇f − 4πGeff(ρ̄fδf + ρ̄GδG) = 0 , (7.1.49)

where

Geff = G
m2

f

m2
eff

(
1 +

m2
g

m2
f

F

)
, (7.1.50)

ρ̄D = K4ρ̄f , (7.1.51)

δD =
1− F

1 +
m2

g

m2
f
F
δf , (7.1.52)



94 CHAPTER 7. ON DARK MATTER

and

Geff = G
K2m2

g

m2
eff

(
1 +

m2
f

m2
g

F

)
, (7.1.53)

ρ̄G = K−4ρ̄g , (7.1.54)

δG =
1− F

1 +
m2

f

m2
g
F
δg , (7.1.55)

with

F :=
4m−2

eff

3(m−2
eff + a2/k2)

. (7.1.56)

Beyond the Compton wavelength of the massive graviton, the effective gravitational constant
becomes Geff/G ≈ m2

f/m
2
eff . It is the same not only as the cosmological value but also as the

local one if the graviton mass is large (m2
eff 	 Λg). The perturbation of dark matter component

coincides with that of the f -matter, i.e.,

δD ≈ δf , (7.1.57)

for a/k 	 m−1
eff . Therefore, the f -matter perturbation behaves as the dark matter component in

the g-world as §. 7.1.1 and §. 7.1.2.
Inside the Compton wavelength, the f -matter acts as a repulsive force as shown in §. 7.1.2. In

the present case, it can be seen explicitly from the relation

δD ∼ − 1

3 + 4
m2

g

m2
f

δf (7.1.58)

for a/k � m−1
eff . It indicates that the g-matter accumulates in a low-density region of the f -matter.

We show the numerical result of the evolution of density perturbations for two different scales
[k−1 = 10Mpc and 100kpc at the present (a = 1)] in Fig. 7.5. We assume δg = 10−5 and δf = 10−1

at the decoupling time (a = 10−3). For the large scale perturbation, its scale is always larger than
the Compton wavelength after the decoupling time. Hence the f -matter plays the role of dark
matter in the g-world and helps small baryon perturbation δg to grow rapidly as shown in Fig. 7.5
(a). The evolution of δg is similar to the growth of density perturbations with CDM in GR.

On the other hand, for the small scale perturbation, its scale is shorter than the Compton
wavelength at the decoupling time. During the period of a/k < m−1

eff , the f -matter acts as a
repulsive source in the g-world. Then the evolution of δg is quite different due to the appearance
of a repulsive force by the f -matter perturbations as shown in Fig. 7.5 (b). δg changes its sign
and then decreases to a negative value in the early stage. But the perturbation scale eventually
exceeds m−1

eff as the scale factor increases. In fact the perturbation scale becomes larger than the

Compton wavelength after a = k/
√
3 ×m−1

eff , when δD changes its sign. After then, the f -matter
begins to act as dark matter. As shown in Fig. 7.5 (b), δg changes its sign again to be positive.
δg then grow into a nonlinear regime via large density perturbations of the f -matter fluid.

We set mg/mf = 0.2, which satisfies the constraint (7.1.37). From Eq. (7.1.77), we find that
the perturbations of the g-variables are dominated by the massless mode, while those of the f -
variables have a significant influence by the massive mode. Since the massive mode can grow only
when a/k � m−1

eff , δf grows first and then δg follows as shown in Fig. 7.5 (b). On the other
hand, as shown in Fig. 7.5 (a), δf cannot grow at first because the massive mode cannot grow for
a/k 	 m−1

eff . δf starts to grow after the perturbation of the massless mode catches up to that of
the massive mode. δg grows rapidly by the increase of the massless mode even when δf does not
grow.

We conclude that the cosmic structure formation can also be explained by another one of twin
matter fluids.
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Figure 7.5: The evolution of density perturbations for two scales [(a) 10Mpc and (b) 100kpc at
the present (a = 1)]. We assume δg = 10−5 and δf = 10−1 at the decoupling time (a = 10−3).
The blue dashed curve indicates the evolution of δf , while the red solid curve indicates that of
δg. The δ+ and δ− are the source terms for the massless graviton mode and the massive graviton
mode, respectively. We set m−1

eff = 1kpc and mg/mf = 0.2. The background spacetime is the dust
dominant universe (a ∝ t2/3).
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Cosmological linear perturbations

Here, we shortly summarize the linear perturbations of a flat FLRW universe in the bigravity
theory. Just for simplicity, we assume that the background metrics are given by the homothetic
flat FLRW spacetimes. The detail analysis for more generic background spacetime including vector
and tensor modes was discussed in e.g., [59].

The background homothetic flat FLRW spacetimes are given by

(0)

g μνdx
μdxν = −dt2 + a2(t)δijdx

idxj , (7.1.59)

(0)

f μν = K2(0)

g μν . (7.1.60)

This background solution is determined by the standard Friedmann equation with a cosmological
constant and the following constraints must be satisfied:

κ2
g

(0)

T [m]μ
ν = K2κ2

f

(0)

T [m]μ
ν , (7.1.61)

Λg = K2Λf . (7.1.62)

We then consider the adiabatic scalar perturbations and ignore an anisotropic stress. The
perturbed metrics are expressed as

g00 = −(1 + 2αgY ) ,

g0i = −aβ(L)
g Yi,

gij = a2(δij + 2h(L)
g δijY + 2h(T )

g Yij) , (7.1.63)

f00 = −K2(1 + 2αfY ) ,

f0i = −K2aβ
(L)
f Yi ,

fij = K2a2(δij + 2h
(L)
f δijY + 2h

(T )
f Yij) , (7.1.64)

while the perturbed energy-momentum tensors are given by

T 0
0 = −ρ̄g(1 + δg) ,

T 0
i = a(ρ̄g + P̄g)(v

(L)
g − β(L)

g )Yi ,

T i
0 = −a−1(ρ̄g + P̄g)v

(L)
g Y i ,

T i
j = Pg(δ

i
j + π(L)

g δij) , (7.1.65)

T 0
0 = −ρ̄f (1 + δf ) ,

T 0
i = a(ρ̄f + P̄f )(v

(L)
f − β

(L)
f )Yi ,

T i
0 = −a−1(ρ̄f + P̄f )v

(L)
f Y i ,

T i
j = Pf (δ

i
j + π

(L)
f δij) , (7.1.66)

where the scalar harmonic function Y is defined by

(Δ + k2)Y = 0 , (7.1.67)

with −k2 being an eigenvalue of the usual three-dimensional Laplacian operator Δ, and its vector
and tensor harmonic functions are defined by:

Yi = −k−1∂iY ,

Yij = k−2

(
∂i∂j −

1

3
δij∂

a∂a

)
Y , (7.1.68)

respectively. The perturbation variables {αg/f , β
(L)
g/f , h

(L)
g/f , h

(T )
g/f} and {δg/f , v(L)

g/f , π
(L)
g/f} depend only

on time. The unperturbed energy densities and pressures, {ρ̄g/f , P̄g/f}, must satisfy

κ2
gρ̄g = K2κ2

f ρ̄f , κ2
gP̄g = K2κ2

f P̄f . (7.1.69)



7.1. DARK MATTER FROM F -SECTOR 97

For the perturbation variables in the g-world, we can define the gauge invariant variables as in
GR:

Φg = αg − σ̇(L)
g ,

Ψg = Rg −Hσ(L)
g ,

Δg = δg + 3(1 + w)
a

k
H(β(L)

g − v(L)
g )g,

Vg = v(L)
g +

a

k
ḣ(T )
g , (7.1.70)

where

w = P̄g/ρ̄g, c2s = ˙̄Pg/ ˙̄ρg . (7.1.71)

Rg and σg are the curvature and the shear perturbations, respectively, which are defined by

Rg = h(L)
g +

1

3
h(T )
g , (7.1.72)

σ(L)
g =

a2

k2
ḣ(T )
g − a

k
β(L)
g . (7.1.73)

Similarly, we introduce the gauge invariant variables in the f -world, which are defined by those
with the subscript f . We note w and c2s coincide in the g- and f -worlds because of (7.1.69).

The massless and massive mode perturbations, X+ and X−, are described by the linear com-
bination of the perturbed variables in the g- and f -worlds, Xg and Xf , as

X+ =
m2

f

m2
eff

Xg +
m2

g

m2
eff

Xf , (7.1.74)

X− = Xg −Xf , (7.1.75)

or inversely

Xg = X+ +
m2

g

m2
eff

X− , (7.1.76)

Xf = X+ −
m2

f

m2
eff

X− . (7.1.77)

For the massless mode, there are four independent equations

−k2

a2
Φ+ =

κ2
gρ̄g

2
Δ+ (7.1.78)

Φ+ +Ψ+ = 0 , (7.1.79)

Δ̇+ − 3wHΔ+ + (1 + w)
k

a
V+ = 0, (7.1.80)

and

V̇+ +HV+ − k

a

[
c2sΔ+

1 + w
+Φ+

]
= 0 , (7.1.81)

for four perturbation variables {Φ+,Ψ+,Δ+, V+}.
If both background matter densities (ρ̄g and ρ̄f ) are dominated by non-relativistic matter

(w = 0), the equation for the density perturbation Δ+ is given by

Δ̈+ + 2HΔ̇+ +

(
k2c2s
a2

−
κ2
gρg

2

)
Δ+ = 0 , (7.1.82)

which is the same as that in GR. Then we will not discuss it furthermore.
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Unlike the massless mode, there are six independent equations of motion for the massive mode

variables {α−, β
(L)
− , h

(L)
− , h

(T )
− , δ−, v

(L)
− }. By use of Φ−,Ψ−, which are given by the above six

variable, we find the similar four equations to those of the massless mode as

−k2

a2
Φ− +m2

eff

(
3

2
h
(L)
− +

3

4

a

k
Hβ

(L)
− + h

(T )
−

)
=

κ2
gρ̄g

2
Δ−, (7.1.83)

Φ− +Ψ− = m2
eff

a2

k2
h
(T )
− , (7.1.84)

Δ̇− − 3wHΔ− + (1 + w)
k

a
V−

+
3

4
(1 + w)m2

eff

a

k
β
(L)
− = 0, (7.1.85)

V̇− +HV− − k

a

[
c2sΔ−
1 + w

+Φ−

]
= 0, (7.1.86)

in which the extra terms come from the interactions between two metrics. In addition, we have
two more independent equations from (7.1.14) as

6ḣ
(L)
− + 6Hh

(L)
− − 6Hα− +

k

a
β
(L)
− = 0 , (7.1.87)

a

k

(
3

2
β̇
(L)
− + 6Hβ

(L)
−

)
+ 3α− + 6h

(L)
− + 2h

(T )
− = 0 . (7.1.88)

Note that although the massive mode variables are gauge invariant in themselves, we also use
Φ−,Ψ−,Δ− and V− just for the similar description to those of the massless mode.

Once the equation of state are given, since the above six dynamical equations are independent,

we can solve the six variables {α−, β
(L)
− , h

(L)
− , h

(T )
− , δ−, v

(L)
− } for given appropriate initial data.

In order to set up initial data, we have the additional constraint equations:

(3m2
eff − 2Λg)

(
α− + 3h

(L)
−

)
= κ2

gρ̄g

(
δ− − 3wπ

(L)
− − (1 + 3w)α− + 3(1− w)h

(L)
−

)
, (7.1.89)

−HΦ− + Ψ̇− =
a

k
ḢV− +

1

4
m2

eff

a

k
β
(L)
− , (7.1.90)

which are obtained from (7.1.15) and 0-i component of the Einstein equations.

From the above basic equations, we find that the variables consist of two parts: One is an
oscillating wave part and the other is a monotonically changing part in time. As an example, we

show the equation for h
(T )
− :

ḧ
(T )
− + 3Hḣ

(T )
− +

(
k2

a2
+m2

eff

)
h
(T )
−

= −k2

a2

(
α− + 3h

(L)
−

)
+ 12H

(
ḣ
(L)
− +Hh

(L)
− −Hα−

)
≈ −k2

a2

(
α− + 3h

(L)
−

) (
for

a

k
� H−1

)
. (7.1.91)

Furthermore, when we focus on the epoch such as m2
eff 	 H2, Eq. (7.1.89) reads α− + 3h

(L)
− ≈ 0.

Then we obtain

ḧ
(T )
− + 3Hḣ

(T )
− +

(
k2

a2
+m2

eff

)
h
(T )
− ≈ 0 . (7.1.92)

This equation naively shows that h
(T )
− oscillates with the frequency ω ∼

√
k2/a2 +m2

eff with the
damping amplitude due to the expansion of the universe. As a result, the metric variable will
approach a monotonically changing part with damping oscillations.
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7.2 Massive graviton as dark matter

In this section, we shall consider the massive graviton as a candidate of dark matter. We assume
that the Compton wavelength is sufficiently smaller than the galactic scale and that the matter
field is minimally coupled to only the g-metric. In this situation, gravity is basically mediated by
the massless graviton: while matter fields propagate on the metric gμν and its perturbation is a
linear combination of the massless and massive graviton modes, the latter mode is exponentially
suppressed at the length scale of the background. Hence, only the Einstein equation of the massless
graviton is relevant. Including the energy-momentum tensors of massless and massive gravitons,
the equation of motion for the massless graviton, after averaging over a spacetime region with the
size larger than the scales of the perturbation but smaller than the scales of the background, is
given by

Eμν,αβhαβ =
1

Mpl
(Tμν

m + Tμν
gw + Tμν

G ) , (7.2.1)

where Tμν
gw is the usual energy-momentum tensor of the massless graviton, while Tμν

G is the energy-
momentum tensor of the massive graviton. As shown in Section 3.4, they are given by

Tμν
gw =

1

4
〈hαβ,μhαβ

,ν〉 , (7.2.2)

Tμν
G =

1

4
〈ϕαβ,μϕαβ

,ν〉 , (7.2.3)

where ,μ denotes a partial derivative and hμν is fixed in the transverse-traceless gauge. We notice
that the Planck mass used here is defined by (3.4.2) which does not coincide with the mass scale
defined by κg. Note also that, in this section, we use the dimensionful perturbations hμν and ϕμν

defined by (3.3.26) and (3.3.27), respectively.
When the massive graviton is non-relativistic, the massive graviton indeed behaves like a dust as

a source of the massless graviton. At the rest frame of the massive graviton, the energy-momentum
tensor is indeed given by

Tμν
G =

m2

4
diag[〈ϕαβϕαβ〉, 0, 0, 0] . (7.2.4)

If the massive graviton is the dark matter, the massive gravitons have to survive until today.
However, since the graviton couples universally to matter fields, the massive graviton can decay to
light particles. The total decay rate of massive graviton [158–160] is given by

ΓG ∼ 0.1
m3

M2
G

. (7.2.5)

If the decay rate of massive graviton is larger than the present Hubble parameter, the massive
graviton cannot be relict at present. By demanding that the decay rate be lower than the present
Hubble parameter, an upper bound on the graviton mass is thus given by

m � 0.01

(
MG

Mpl

)2/3

GeV . (7.2.6)

On the other hand, the existence of dark matter in galaxies gives a lower bound on the graviton
mass. Since the massive graviton should be confined in galaxies, the de Broglie wavelength of the
massive graviton 2π/(mv) should be smaller than kpc scale. Using a typical velocity v ∼ 10−3 in
the halo, a lower bound of the graviton mass is given by

m � 10−23 eV . (7.2.7)

In summary, when the mass is in the range

10−23 eV � m � 0.01

(
MG

Mpl

)2/3

GeV , (7.2.8)

the massive graviton can be a candidate of dark matter.
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7.2.1 Production of massive gravitons

One of the simplest scenarios of the generation of the massive graviton in the early universe
would be through inflation as discussed in [161,162]. In this case, however, the Hubble expansion
rate during inflation must be larger than the graviton mass to produce sufficient amount of massive
gravitons for dark matter. In this case, our perturbative approach is no longer used (see Section
6) and thus we shall not consider the generation of massive graviton during inflation.

Instead of the production by inflation, we thus consider the generation of the massive graviton
through the preheating after inflation. During preheating, the inflaton decays to inhomogeneous
modes of itself and/or some other fields and then large inhomogeneities can be created. This
kind of field bubble is a classical source of gravitational waves. The gravitational waves from
the preheating have been discussed in [163–171]. The peak momentum k∗ = |k∗| and the energy
density ρ∗gw of the generated massless gravitational wave are roughly estimated as

k∗ ∼ 1/R∗ , ρ∗gw ∼ α (R∗H∗)2ρ∗ (7.2.9)

where R∗, H∗ and ρ∗ are the typical size of the field bubble, the Hubble expansion rate, and the
energy density at the time of production, respectively, and we have included a numerical factor α
that varies from one model to another (α � 0.1 for chaotic inflation, for example) [166, 167, 170].
The typical size R∗ and the numerical factor α can be evaluated when we assume a concrete
preheating model. However, we take a phenomenological attitude and treat R∗ and α as a free
parameter to discuss a model independent prediction. The present frequency and the density
parameter of the gravitational wave background are then given by

f ∼ 4× 1010

R∗ρ
1/4
∗

Hz , h2Ωgw ∼ 10−5 α (R∗H∗)2 . (7.2.10)

Note that in this model, the gravitational waves are created at the sub-horizon scale which
remain the sub-Horizon scale until today. We can assume the graviton mass is larger than the
Hubble expansion rate at the time of production of gravitational waves so that the Higuchi in-
stability is avoided. Therefore, the cosmic history of the amplitude of gravitational waves can be
discussed by using the linear theory until today.

In the sub-horizon scale, we can ignore the effect of the expansion of the Universe to discuss
the generations of the massless and the massive gravitons. Hence we can use the equations on
the Minkowski background. For the massless graviton, the equation of motion with a source is
expressed by

∂2hμν = − 2

Mpl
Sμν , (7.2.11)

where Sμν will be specified in (7.2.15) below and we have chosen the harmonic gauge

∂μh
μ
ν =

1

2
∂νh . (7.2.12)

On the other hand, the equation of motion for the massive graviton is given by

(∂2 −m2)ϕμν = − 2

MG
Jμν , (7.2.13)

where the massive graviton must satisfy the constraint equations

∂μϕ
μν = ∂νϕ ,

m2

2
ϕ = − 1

3MG
Tm . (7.2.14)

The source terms for massless and massive gravitons are given by

Sμν := Tμν
m − 1

2
ημνTm , (7.2.15)

Jμν := Tμν
m − 1

3

(
ημν − ∂μ∂ν

m2

)
Tm . (7.2.16)
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Using the retarded Green’s function

GR(x− y; p)

= θ(x0 − y0)

∫
d3p

(2π)3
−i

2p0

(
eip(x−y) − e−ip(x−y)

)
, (7.2.17)

the solutions of Eqs. (7.2.11) and (7.2.13) can be constructed. We denote kμ as the four-momentum
of the massless graviton and pμ as the four-momentum of the massive graviton with pμpμ =
−m2. We evaluate the solutions after the source vanishes, i.e., after the preheating. Choosing the
coordinate uμ = δμ0 in the transverse-traceless gauge, the solutions are given by

h0μ(x) = 0 ,

hij(x) =
2

Mpl

∫
d3k

(2π)3
i

2k0
Oijlm(k)T lm

m (k)eikx

+ c.c. , (7.2.18)

ϕμν(x) =
2

MG

∫
d3p

(2π)3
i

2p0
Jμν(p)e

ipx + c.c. , (7.2.19)

where

Oijlm = Pl(iPj)m − 1

2
PijPlm, Pij = δij − kikj/k

2, (7.2.20)

is the transverse-traceless projection operator which is introduced to satisfy the transverse-traceless
gauge. Note that the source terms

T ij
m (k) =

∫
d4ye−ikyT ij

m (y) , (7.2.21)

J αβ(p) =

∫
d4ye−ipyJαβ(y)

= T αβ
m (p)− 1

3

(
ηαβ +

pαpβ

m2

)
Tm(p) , (7.2.22)

are evaluated at only k2 = 0 and p2 = −m2, respectively. The on-shell condition for the mas-
sive graviton leads pμJμν = 0,J μ

μ = 0, thus the massive graviton automatically satisfies the
transverse-traceless condition after the source vanishes. As a result, we find

〈hαβ
,μhαβ,ν〉 = 4

M2
pl

〈∫
d3k

(2π)3

∫
d3k′

(2π)3
kμk′ν

2k0k′0
T kl
m (k)Oij

kl(k)Oijnm(k′)T ∗nm
m (k′)ei(k−k′)x

〉
,

(7.2.23)

〈ϕαβ
,μϕαβ,ν〉 = 4

M2
G

〈∫
d3p

(2π)3

∫
d3p′

(2π)3
pμp′ν

2p0p′0
J αβ(p)J ∗

αβ(p
′)ei(p−p′)x

〉

≈ 4

M2
G

〈∫
d3p

(2π)3

∫
d3p′

(2π)3
pμp′ν

2p0p′0

(
T αβ
m (p)T ∗

mαβ(p
′)− 1

3
Tm(p)T ∗

m(p′)
)
ei(p−p′)x

〉
,

(7.2.24)

where ∗ denotes the complex conjugate and we have used the on-shell condition p2 = −m2. While
the last term in (7.2.16) would diverge in the limit m2 → 0, (7.2.24) is finite in the same limit.

The result indicates that, if most of the produced massive gravitons are relativistic, i.e., k∗ > m,
the amount of the gravitons are simply evaluated by

〈ϕαβ
,μϕαβ,ν〉 ∼

M2
pl

M2
G

〈hαβ
,μhαβ,ν〉 . (7.2.25)

In this case, the massive gravitons behave like a cold, warm, or hot dark matter depending on the
free-streaming scale as far as the structure formation is concerned.
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We then discuss the case where the peak momentum k∗ is smaller than the graviton mass, i.e.,
m > k∗ ∼ 1/R∗, where R∗ is the scale of the field bubble. In this case, the massive graviton is
produced with non-relativistic velocity and continues to be non-relativistic afterward. Therefore,
the massive graviton behaves like a cold dark matter.

In order to relate the abundance of massive gravitons as dark matter to the amount of gravita-
tional waves, we are interested in the ratio of the stress-energy tensors for the massive and massless
gravitons. In the case under consideration, i.e. for m > k∗ ∼ 1/R∗, the ratio strongly depends
on the value of mR∗. Since the bubbly stage of the preheating is significantly non-Gaussian, the
estimate of the abundance of massive gravitons requires detailed numerical simulations, in general.

Nevertheless, we could roughly estimate the produced abundance of the massive gravitons when
we know the spectrum of gravitational waves. We focus on only the tensor mode of the massive
graviton, for simplicity. Since we focus on only the produced amount, we will omit the index ∗ to
represent the production time until the end of this subsection. The equations of motion for the
transverse-traceless components are given by

ḧTT
ij + k2hTT

ij =
2

Mpl
Πij , (7.2.26)

ϕ̈TT
ij + (p2 +m2)ϕTT

ij =
2

MG
Πij , (7.2.27)

where hTT
ij and ϕTT

ij are the transverse-traceless components of the massless graviton and the

massive graviton, respectively, and Πij = OijlmT lm
m . We assume the source exists only tstart <

t < tend and there were no gravitons before tstart. The source are assumed to be statistically
homogeneous and isotropic. The energy densities are expressed by

ρgw =
1

4
〈ḣij

TTḣ
TT
ij 〉ens

=
1

4

1

(2π)3

∫
d3kPḣ(t, k) , (7.2.28)

ρTT
G =

1

4
〈ϕ̇ij

TTϕ̇
TT
ij 〉ens

=
1

4

1

(2π)3

∫
d3pPϕ̇(t, p) , (7.2.29)

where ρTT
G is the energy density of the massive gravitons contributed from only the tensor mode

and k = |k| and p = |p|. We have replaced the spacetime average 〈· · · 〉 with the ensemble average
〈· · · 〉ens to define the energy densities of gravitons. This replacement can be taken when the ergodic
assumption is valid. The power spectra are defined by

〈ḣij
TT(t,k)ḣ

TT
ij

∗(t,k′)〉ens = (2π)3δ(3)(k− k′)Pḣ(t, k) , (7.2.30)

〈ϕ̇ij
TT(t,p)ϕ̇

TT
ij

∗(t,p′)〉ens = (2π)3δ(3)(p− p′)Pϕ̇(t, p) , (7.2.31)

where ∗ represents the complex conjugate. Substituting the solutions of (7.2.26) and (7.2.27) into
the expressions of power spectra, they are expressed by

Pḣ =
2

M2
pl

∫ tend

tstart

dtx

∫ tend

tstart

dty cos[k(tx − ty)]Π(tx, ty, k) , (7.2.32)

Pϕ̇ =
2

M2
G

∫ tend

tstart

dtx

∫ tend

tstart

dty cos[ω(tx − ty)]Π(tx, ty, p) (7.2.33)

where ω =
√
p2 +m2 and Π is defined by

〈Πij(tx,k)Π
∗
ij(ty,k

′)〉 = (2π)3δ(3)(k− k′)Π(tx, ty, k) . (7.2.34)

It is worth noting that the two point collators are proportional to the delta function due to the
statistical homogeneity and the quantities Pḣ, Pϕ̇ and Π depend on k (or p) due to the statistical
isotropy.
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Conventionally, spectra of energy densities are expressed by using the densities per logarithmic
frequency. For the massive graviton, it is more convenient to use the density per logarithmic
momentum p instead of the frequency ω. The densities per logarithmic interval are calculated as

dρgw
d ln k

=
k3

4π2M2
pl

∫ tend

tstart

dtx

∫ tend

tstart

dty cos[k(tx − ty)]Π(tx, ty, k) , (7.2.35)

dρTT
G

d ln p
=

p3

4π2M2
G

∫ tend

tstart

dtx

∫ tend

tstart

dty cos[ω(tx − ty)]Π(tx, ty, p) . (7.2.36)

Note that, when the source is uncollated, namely white noise, the integrations of these expressions
are constant and then the momentum dependence of the spectrum is give by k3 (or p3). Since
our source is generated by a causal process, the source is uncollated in scales beyond the causal
connected region. For the massive gravitons, the gravitational interaction exists only within the
Compton wavelength. Hence, the integration of Eq. (7.2.36) will read constant for p−1 > m−1

because the source is effectively uncollated for massive gravitons in that scale.

Figure 7.6: The energy spectra of gravitons from bubble collision. We use the formula [172] to
model the two-point collator of the source where β−1 is the duration of the production process.
The amplitude is scale free since we do not specify the background energy density. All IR tails of
spectra are given by p3.

We show the energy spectra generated by bubble collisions in Fig. 7.6. Gravitational waves
from bubble collision have been discussed in the context of cosmic phase transitions because the
vacuum bubbles are produced during first-order phase transitions (see e.g., [173,174] for reviews).
Although the electroweak phase transition or QCD phase transition may not be first-order, models
beyond the standard model can lead to the first-order phase transition. The gravitational waves
from those are good tools to explore a signature of beyond standard models. An analytic formula to
express the two-point collator of the bubble collisions is discussed in [172]. The spectrum depends
on the wall velocity and the duration of the phase transition, however, we only consider the case
when the wall velocity is the speed of light, for simplicity.

The spectra shown in Fig. 7.6 are calculated by the formula given by [172] where β−1 is the
duration of the phase transition. Since the source does not exist beyond the time scale β−1, the
source is uncollated beyond the length scale β−1. Hence, the IR tail of the spectrum is given by
p3 for p/β < 1. For the massive gravitons, additionally, the tail of spectrum is given by p3 for
p/m < 1. This dependence is, indeed, the consequence of that the gravitational interaction exists
only within the Compton wavelength and then the source is effectively uncollated in large scales
for massive gravitons.

The above results are obtained from a simple source; thus, it may not be directly applied to
gravitons produced by other sources, e.g., preheating interested in here. However, the p3 depen-
dence at large scales must be a generic feature of the energy spectrum of massive gravitons. If the
peak momentum of the massless gravitons is smaller than the graviton mass, the peak momentum
of the massive graviton is ppeak = m as shown in Fig. 7.6. Since the spectrum of the massive
graviton for p > m should be the same as that of the massless graviton, the generated energy
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density of massive graviton is evaluated by

dρTT
G

d ln p

∣∣∣∣
peak

�
M2

pl

M2
G

dρgw
d ln k

∣∣∣∣
k=m

, (7.2.37)

for kpeak < m when the spectrum of dρgw/d ln k decreases for k > m. When we know the details
of the spectrum of massless gravitons, we can estimate the spectrum of massive gravitons.

Since we have concentrated on the tensor mode in the above arguments, the produced energies
of vector and scalar modes are not clear yet. When the source is a complicated random field, all
polarization modes of the massive graviton may be equally produced. Hence, we do not consider
the difference depending on the polarizations furthermore.

7.2.2 Present abundance and gravitational waves

The UV behavior of spectrum should strongly depend on the production mechanism (see Fig.
7.7); thus we will restrict our analysis to the case where the peak momentum of the gravitational
wave is higher than the graviton mass, i.e. m < k∗ ∼ 1/R∗, where R∗ is the scale of the field
bubble and the index ∗ represent the quantities at the production. In this case, the massive
graviton is produced with relativistic velocities. In order to realize the bottom-up scenario of the
structure formation, we thus need to make it sure that the free streaming scale due to the massive
graviton is less than about 0.1 Mpc [175]. The free streaming due to the relativistic motion of
massive gravitons continues until the peak momentum is redshifted down to m. Therefore, The
free streaming scale is estimated as

Lfs ∼ a0
anrHnr

∼ anr
a∗

a0
a∗H∗

∼ 1

mR∗
a0

a∗H∗

∼ 2πf

m
107 Mpc , (7.2.38)

where anr and Hnr are the scale factor and the Hubble expansion rate, respectively, at the time
when the massive graviton becomes non-relativistic and a0 is the scale factor today. By requiring
that Lfs be less than 0.1 Mpc, we thus obtain the constraint

m

2πf
> 108 . (7.2.39)

Therefore, in the case of the relativistic production, if the characteristic frequency of the gravi-
tational wave from preheating is determined by observation, we can obtain a lower bound on the
graviton mass.

In this case, most of the generated massive gravitons are relativistic with the momentum
∼ k∗ > m, thus both massive and massless gravitons are created by the sources with almost the
same four-momenta. As shown in (7.2.25), the energy densities are thus evaluated as

ρ∗G
ρ∗gw

∼
M2

pl

M2
G

, (7.2.40)

where ρ∗G and ρ∗gw are the energy densities of the massive graviton and the massless graviton at the
production time. When the massive graviton is relativistic, the energy densities of both gravitons
decrease as a−4, where a is the scale factor of the Universe. As the Universe expands, the massive
graviton becomes non-relativistic, and then the energy density of the massive graviton decreases
as a−3. Hence the energy density of the massive graviton at the present is

ΩG ∼
M2

pl

M2
G

m

2πf
Ωgw , (7.2.41)

where ΩG is the density parameter of the massive graviton. Hence if the massive graviton is the
dominant component of dark matter, the combination (Mpl/MG)

2 × m can be estimated by the
gravitational wave background as shown in Fig. 7.7.
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Figure 7.7: The sensitivities of gravitational wave detectors and the expected gravitational wave
spectra from the preheating (red, blue, green and gray curves at the right), adopted from [170].
The orange lines then represent expected frequency and amplitude of the gravitational wave back-
ground corresponding to the massive graviton dark matter model for (Mpl/MG)

2×m = 10−14GeV,
10−8GeV and 10−2GeV. The gravitational wave background thus determines the combination
(Mpl/MG)

2 × m. In particular, some of gravitational wave spectra are detectable by LIGO, for
which the massive graviton can be the dominant component of dark matter when (Mpl/MG)

2×m ∼
10−14 GeV.
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Since the present abundance and the frequency of the gravitational wave background can be
evaluated by (7.2.10), the present abundance and the free streaming scale of the massive graviton
can be estimated by using ρ∗ and R∗. We now focus on gravitational waves to be sensitive in the
LIGO range. For instance, the preheating of

ρ
1/4
∗ ∼ 108 GeV , R−1

∗ ∼ 0.1GeV , (7.2.42)

predicts the gravitational wave background with

f ∼ 40Hz , h2Ωgw ∼ α 10−8 . (7.2.43)

Note that the graviton mass has been assumed to be consistent with the Higuchi bound, i.e.
m >

√
2H∗, to avoid the Higuchi instability, while the relativistic production is realized only when

m < R−1
∗ . Hence, the consistency of our assumptions reads R−1

∗ > m >
√
2H∗. A set of consistent

parameters is

m ∼ 0.01 GeV , MG ∼ 106Mpl , (7.2.44)

in which the massive graviton can explain the observed amount of the dark matter. Since
√
2H∗ ∼

0.005GeV, the Higuchi bound is barely satisfied. The corresponding free streaming scale is about
10−7 pc, so the massive graviton behaves like a cold dark matter. Therefore if the gravitational
detectors observe the stochastic gravitational wave background with (7.2.43), the massive graviton
with (7.2.44) is a viable candidate of dark matter.



Chapter 8

Astrophysical objects and
Vainshtein screening

In the previous chapters, we discussed the cosmological solutions in bigravity and found the
bigravity theory admits a viable cosmological solution and yield various phenomenological features.
Therefore, the bigravity theory is phenomenologically a good candidate for an alternative theory of
gravity. However the modification of the gravity is strongly constrained by Solar System tests of the
gravity which agree with the predictions of GR (see e.g., [1]). Hence the effect of the modification
of gravity must be screened at Solar System and must admit viable solutions for astrophysical
objects.

In bigravity, there are a massive graviton as well as a massless graviton. If the graviton mass is
heavy enough, the massive graviton does not give any effect on the gravitational field because of the
Yukawa suppression. Therefore, we will not discuss such a heavy massive graviton in this chapter.
On the other hand, in the present chapter, we shall focus on the sufficiently light massive graviton
such that the graviton mass is m < 10−23 eV. The gravitational field and the structure of the
astrophysical objects would be changed by the existence of the massive graviton. Intuitively, the
massive graviton is restored into the massless graviton by taking the massless limit. However, the
linear massive gravity, namely Fierz-Pauli theory [6], cannot be restored to the linearized GR even
in the massless limit (vDVZ discontinuity) [7,8]. Vainshtein proposed that the vDVZ discontinuity
can be evaded by taking into account nonlinear mass terms [9]. Therefore, the non-linear bigravity
theory may have no discontinuity in the massless limit.

To discuss the restoration to GR, one of the simplest system is the static and spherically
symmetric spacetime. Indeed, stars and black holes could be well-approximated by static and
spherical objects except for rapidly rotating cases. In bigravity, the static and spherically symmetric
solutions are classified into non-diagonal ansatz [67–69], and bi-diagonal ansatz. In the former
type ansatz, there are only trivial solutions, which are the same as those in GR. Additionally,
the perturbation around the non-diagonal solution is also identical to GR [176–178]. Hence, the
massive graviton does not appear in the non-diagonal ansatz. To find a non-trivial solution, if it
exists, we should assume both metrics can be simultaneously diagonal in a same coordinate system.
Based on the bi-diagonal ansatz, the solutions with Vainshtein screening for stars were found in the
weak gravity region [76,79,82] and also in the strong gravity region [85], in which the behavior in
GR is recovered inside the Vainshtein radius but the modification appears outside the Vainshtein
radius.

The black hole geometry in bigravity is a open question. There exists some special case of
the bi-diagonal ansatz such that two metrics are proportional, which we have called a homothetic
spacetime. The solutions are also given by those in GR. However, in this case, the massive graviton
appears in the perturbation around the solutions. As a result, the homothetic Schwarzschild
black hole becomes unstable against the radial perturbations if the graviton mass is sufficiently
small [179–181]. The instability of this black hole implies that there would be a hairy black hole
solution as well, and that the homothetic Schwarzschild black hole may transit to the hairy black
hole. However, the paper [182] showed numerically that such a hairy black hole does not exist
unless the coupling constants satisfy a special condition. One may wonder what we will find in the

107
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final stage of gravitational collapse of a compact relativistic star.

In the paper [85] we show the coupling constants are classified into two classes: Class [I] and
Class [II]. In Class [I], a curvature singularity appears when a mass of a neutron star exceeds
a critical value. On the other hand, the Vainshtein screening holds even for a neutron star in
Class [II]; however, the stability condition in the early universe discussed in Chapter 6 exclude
this possibility. Hence, the problem arises in the astrophysical scale in Class [I], while the problem
arises in the cosmological scale in Class [II].

The existence of the singularity and the non-existence of the hairy black hole may imply that
the static and spherically symmetry is not sufficient to describe an astrophysical objects. It seems
that the problems exist only in the strong gravitational field. However, we also show the static and
spherically symmetric solutions obtained in the weak gravitational field are unstable against small
perturbations [86]. Therefore, the static and spherically symmetry should not be sufficient even
in the weak gravitational field regime. Indeed, as already discussed in §. 4.5.3, the scalar graviton
generally suffers from an instability in Ricci flat spacetime when the vector graviton is not excited.
If we assume the spherically symmetry, there is no vector type freedom; thus the spherically
symmetric solutions would be unstable outside astrophysical objects. To discuss any astrophysical
objects, we should relax the spherical symmetry in bigravity but non-spherical solutions have not
been found so far. The existence of a viable astrophysical solution (not only black holes but also
stars) is a open question in bigravity.

This chapter is organized as follows. We summarize the basic equations for the bi-diagonal
static and spherically symmetric solution in Section 8.1. We review the weak field results obtained
by [79, 82] in Section 8.2. In Section 8.3 we then summarize our result [85] in which we have
focused on the strong gravitational field such as a neutron star. In this section, we also verify
the Λ2 decoupling limit indeed gives an approximated solution deep inside the Vainshtein radius.
Finally, we discuss the stability of the static and spherically symmetric solution [86] in Section 8.4.

8.1 Static and spherically symmetric spacetime

To find a non-trivial static and spherically symmetric regular solution, we assume two metrics
are bi-diagonal in a same coordinate system. Thus, we consider the following metric forms:

ds2g = −N2
g dt

2 +
r′2g
F 2
g

dr2 + r2gdΩ
2 , (8.1.1)

ds2f = K2

[
−N2

f dt
2 +

r′2f
F 2
f

dr2 + r2fdΩ
2

]
, (8.1.2)

where the variables {Ng, Fg, rg, Nf , Ff , rf} are functions of a radial coordinate r, and a prime
denotes the derivative with respect to r. The ansatz has two residual gauge freedoms: One is a
rescaling of time coordinate (t → t̃ = ct with c being a constant), and the other is redefinition
of the radial coordinate (r → r̃(r)). The proportional constant factor K is introduced just for
convenience. When Ng/Nf = Fg/Ff = rg/rf = 1, g- and f -spacetimes are homothetic and
the γ energy-momentum tensors turn to be just “effective” cosmological terms, where the g- and
f -cosmological constants are given by

Λg(K) = m2
κ2
g

κ2

(
b0 + 3b1K + 3b2K

2 + b3K
3
)
,

Λf (K) = m2
κ2
f

κ2

(
b4 + 3b3K

−1 + 3b2K
−2 + b1K

−3
)
. (8.1.3)

Since two metrics are proportional, the Einstein equations reads

Λg(K) = K2Λf (K) , (8.1.4)
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which determines K as one of the real roots of this quartic equation. We focus on asymptotically
homothetic Minkowski solutions1, i.e., we assume the boundary condition

Ng/Nf , Fg/Fg, rg/rf → 1 , (8.1.5)

with Λg(1) = Λf (1) = 0.

We introduce new variable μ defined by

μ :=
rf
rg

− 1 (8.1.6)

with μ > −1, which determines the relation between two radial coordinates rg and rf . From the
boundary condition, μ should approach zero at infinity.

Introducing new parameters as

m2
g :=

m2κ2
g

κ2
(b1K + 2b2K

2 + b3K
3) , (8.1.7)

m2
f :=

m2κ2
f

K2κ2
(b1K + 2b2K

2 + b3K
3) , (8.1.8)

β2 :=
b2K

2 + b3K
3

b1K + 2b2K2 + b3K3
, (8.1.9)

β3 :=
b3K

3

b1K + 2b2K2 + b3K3
, (8.1.10)

the Einstein equations are reduced to

2FgF
′
g

rgr′g
+

F 2
g − 1

r2g
= −κ2

gρg − Λg +m2
g

(
1 + 2(β2 − 1)μ+ (β3 − β2)μ

2 − (1 + 2β2μ+ β3μ
2)
r′fFg

r′gFf

)
,

(8.1.11)

2F 2
gN

′
g

rgr′gNg
+

F 2
g − 1

r2g
= κ2

gPg − Λg +m2
g

(
1 + 2(β2 − 1)μ+ (β3 − β2)μ

2 − (1 + 2β2μ+ β3μ
2)
Nf

Ng

)
,

(8.1.12)

2FfF
′
f

rfr′f
+

F 2
f − 1

r2f
= −K2κ2

fρf − Λg

+
m2

f

(1 + μ)2

(
1 + 2(1 + β2)μ+ (1 + β2 + β3)μ

2 − (1 + 2β2μ+ β3μ
2)
r′gFf

r′fFg

)
,

(8.1.13)

2F 2
fN

′
f

rfr′fNf
+

F 2
f − 1

r2f
= K2κ2

fPf − Λg

+
m2

f

(1 + μ)2

(
1 + 2(1 + β2)μ+ (1 + β2 + β3)μ

2 − (1 + 2β2μ+ β3μ
2)
Ng

Nf

)
,

(8.1.14)

We have two more Einstein equations, which are automatically satisfied since we have two Bianchi
identities for gμν and fμν .

In the original Lagrangian, we have six unfixed coupling constants {κf , bi}, where m is not
independent because it is just a normalization factor of bi. We use six different combinations of
those constants; {mg,mf ,Λg,K, β2, β3}, in stead of {κf , bi}, because the behaviors of the solutions
within the Vainshtein radius are characterized by β2 and β3 as we will see later. The original
coupling constants {κf , bi} are found from {mg,mf ,Λg,K, β2, β3}.

1Non-asymptotically homothetic solutions and non-asymptotically flat solutions can be found which are shown
in Appendix of [85]. However, these are not relevant for our discussion so we shall not discuss them furthermore.
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The energy-momentum conservation laws of twin matters give

P ′
g +

N ′
g

Ng
(ρg + Pg) = 0 , (8.1.15)

P ′
f +

N ′
f

Nf
(ρf + Pf ) = 0 , (8.1.16)

where we assume that twin matters are perfect fluids. The energy-momentum conservation laws
of the interaction terms, which are equivalent to the Bianchi identities, reduce to one constraint
equation;

2 (Fg − Ff )
(
Ng(1− β2 + (β2 − β3)μ) +Nf (β2 + β3μ)

)
+ rg(1 + 2β2μ+ β3μ

2)

(
FgN

′
g

r′g
−

FfN
′
f

r′f

)
= 0 . (8.1.17)

Substituting the Einstein equations (8.1.12) and (8.1.14) into Eq. (8.1.17), we obtain one
algebraic equation:

C[Ng, Nf , Fg, Ff , μ, Pg, Pf ] = 0 . (8.1.18)

Note that the proportional factor K is not necessary to be unity. Since K appears only in the
form of K2ρf and K2Pf , however, unless f matter exists, the basic equations are free from the
value of K. In what follows, we assume that there is no f -matter just for simplicity; thus we can
set K = 1 without loss of generality. Some discussions on the effects from f -matter are done in
Appendixes of [63, 85].

8.2 Weak field approximation

First, we consider the weak gravitational field such that the variables {Ng, Nf , Fg, Ff} are
approximated by

Ng = eΦg � 1 + Φg , F−1
g = eΨg � 1 + Ψg , (8.2.1)

Nf = eΦf � 1 + Φf , F−1
f = eΨf � 1 + Ψf , (8.2.2)

where {Φg,Φf ,Ψg,Ψf} and their first derivatives are assumed to be small quantities:

|Φg|, |Ψg|, |Φf |, |Ψf | � 1 , (8.2.3)

|rΦ′
g|, |rΨ′

g|, |rΦ′
f |, |rΨ′

f | � 1 , (8.2.4)

We shall fix the radial coordinate as r = rg in which the areal radial coordinate in f -spacetime is
given by

rf = (1 + μ)r . (8.2.5)

Note that the weak gravity approximation does not guarantee the smallness of the variable μ.
The variable μ can be large and then the nonlinearity of μ must be retained. We have assumed
the spacetime is asymptotically homothetic which implies the linear approximation even for μ can
be taken in the space regions sufficiently far from the source. Then the space regions could be
separated into two regions: linear regime and nonlinear regime. The variable μ is assumed to be
small in the linear regime, while we retain all nonlinear terms of μ in the nonlinear regime. The
boundary between these regions must be given by the Vainshtein radius. The variable μ determines
the deviation between two areal radial coordinates; thus it is related to the scalar Stüeckelberg
field π in the way

μ =
π′(r)
r

. (8.2.6)
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Hence, the nonlinear regime must correspond to the space region in which the scalar graviton is
nonlinearly excited, i.e., the space region inside the Vainshtein radius.

In the linear regime, the spacetime is approximated by linear perturbations around the homo-
thetic spacetime. These perturbations are decomposed into two independent modes: the massless
graviton mode and the massive graviton mode. The massless graviton mode obeys the linearized
Einstein equation while the massive graviton mode obeys the Fierz-Pauli theory. Since the point
source solutions for these modes have been already discussed in Section 2.2, we do not discuss the
details about the solutions in the linear regime.

The purpose in this section is to discuss the space regions around the Vainshtein radius. In
general cases, the Vainshtein radius is much smaller than the Compton wavelength of the massive
graviton. Therefore, we shall focus on only the space regions deep inside the Compton wavelength.
Then the Einstein equations read

Ψg

r2
=

1

6
κ2
gρ̃g +

m2
g

2

(
μ+ β2μ

2 +
β3

3
μ3

)
, (8.2.7)

Ψf

r2f
= −

m2
f

2(1 + μ)3

[
μ+ (1 + β2)μ

2 +
1 + β2 + β3

3
μ3

]
, (8.2.8)

1

r

dΦg

dr
=

1

6
κ2
gρ̃g −

m2
g

2

(
μ− β3

3
μ3

)
, (8.2.9)

1

rf

dΦf

drf
=

m2
f

2(1 + μ)3

(
μ+ 2μ2 +

2 + 2β2 − β3

3
μ3

)
, (8.2.10)

where we introduce the mean density in the sphere with the radius r by

ρ̃g(r) =

∫ r

0

4πr̃2ρg(r̃)dr̃∫ r

0

4πr̃2dr̃

, (8.2.11)

with ρg = −T
[m] 0
g 0. We ignore the pressures of the matter here because we have considered

Newtonian stars.

Substituting them into
(g)

∇μT
[γ]μ

ν = 0, in the weak field limit, we find an algebraic equation for
μ as

Cm2(μ) + Cmatter(μ) = 0 (8.2.12)

where Cm2 and Cmatter are given by Eqs. (6.3.8) and (6.3.10) without f -matter. The exterior region
of the source, the function Cmatter is given by

Cmatter =
6GM�

r3
(1 + μ)2(1− β3μ

2) , (8.2.13)

where M� is the gravitational mass of the g-matter. We show a root of this algebraic equation and
the behaviors of Φ′

g,Ψg in Fig. 8.1
The Figure 8.1 explicitly shows the existence of the Vainshtein screening inside the Vainshtein

radius RV defined by

RV :=

(
GM�

m2
eff

)1/3

, (8.2.14)

where m2
eff = m2

g + m2
f . The μ approaches the constant −1/

√
β3 deep inside the Vainshtein

radius in which Φ′
g and Ψg recover the behavior in GR. On the other hand, in r 	 RV , the μ

approaches zero which suggests that the linear approximation is indeed valid in the regions beyond
the Vainshtein radius.

There is a root of Eq. (8.2.12) with μ → 0 as r → ∞, which is the asymptotically homothetic
branch. Such a branch should be extended inward without any singularity. As shown in Fig. 8.1,
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Figure 8.1: The left figure shows asymptotically homothetic branches (μ → 0) of Eq. (8.2.12). We
set β2 = −3, β3 = 3,m2

g = m2
f ,Λg = 0. The right figure shows the existence of the Vainshtein

screening, i.e., GR is recovered for r < rV , where we define Φ′
GR = Φ′

g|mg=0 and ΨGR = Ψg|mg=0.

the branch with μ = 0 at r = ∞ reaches to μ → −1/
√
β3 in the range of r � RV , where we find a

successful Vainshtein screening.
Although we cannot find analytic roots μ(r) of the septic equation (8.2.12), we can easily find

an inverse function r(μ) because r appears only in Cmatter as the form (8.2.13). The result indicates
that the function r(μ) is a single-valued function. However, the function μ(r) is not a single-valued
function, if there is an extremal value of the function r(μ), i.e., dr/dμ = 0. The point of dr/dμ = 0
corresponds to a curvature singularity. Hence a regular solution must be given by a monotonic
function μ(r) in the domain 0 < r < ∞.

As discussed in [82], one can find the parameter constraint as follows: Since the function μ(r)
should be monotonic, the function is approximated by

μ = −1/
√
β3 + δμ(r) , (8.2.15)

with 1 	 δμ > 0 in r � RV . Substituting this expression into (8.2.12), we find

Cm2 |μ=−1/
√
β3

+ CΛ|μ=−1/
√
β3

≈ −12GM�

r3
(1− 1/

√
β3)

2
√
β3δμ . (8.2.16)

Since the right hand side is negative, the necessary condition is given by

−
(
Cm2 |μ=−1/

√
β3

+ CΛ|μ=−1/
√
β3

)
=

2

β
5/2
3

(β2 −
√
β3)(d1 + β2d2) > 0 , (8.2.17)

where

d1 := −6m2
g

√
β3(1−

√
β3)

2 +m2
f (1− 6

√
β3 + 13β3 − 6β

3/2
3 ) (8.2.18)

d2 := 3m2
g(1−

√
β3)

2 +m2
f (1− 6

√
β3 + 3β3) . (8.2.19)

However the constraint (8.2.17) is not sufficient, because it does not guarantee that the function
μ(r) is a single-valued function in the domain 0 < r < ∞, which is guaranteed by r(μ) has no
extremal value in −1/

√
β3 < μ < 0. We must impose dr(μ)/dμ > 0 for any μ with −1/

√
β3 < μ < 0

which gives further constraint on the coupling constants.
Three examples of the solution μ(r) are shown in Fig. 8.2: (a) β2 = −3, β3 = 3, (b) β2 =

1.73, β3 = 3, and (c) β2 = 7, β3 = 3. The case (a) and (b) satisfy

β2 −
√
β3 < 0 , d1 + β2d2 < 0 , (8.2.20)
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Figure 8.2: Examples of the root of (8.2.12). We set mg = mf and (a) β2 = −3, β3 = 3 (red solid
curve), (b) β2 = 1.73, β3 = 3 (blue dashed curve), and (c) β2 = 7, β3 = 3 (green dotted curves).
Only the case (a) gives a regular asymptotically flat solution.

Figure 8.3: The parameter space for a successful Vainshtein screening. We set mg = mf . The
colored (the light-blue and red) regions satisfy β2 −

√
β3 < 0, d1 + β2d2 < 0. However, only the

hatched light-blue region satisfies the condition such that μ(r) is a single-valued function.
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while the case (c) satisfies

β2 −
√
β3 > 0 , d1 + β2d2 > 0 . (8.2.21)

For both (a) and (b), the branch of μ � −1/
√
β3 in r � RV connects the branch of μ = 0 at r = ∞.

However, the case (a) gives the single-valued function μ(r), while the case (b) is not. It indicates
that the ratio of two radial coordinates are not single-valued function. For the case (c), there are
two curves (c-1) and (c-2) and these are disconnected. Note that, the branch (c-2) can be extended
to infinity. This branch is not an asymptotically Minkowski solution, but an asymptotically AdS
solution [85].

As a result, the parameter constraint is approximately given by

β2 −
√
β3 � 0 , d1 + β2d2 < 0 , (8.2.22)

as shown in Fig. 8.3. The hatched light-blue region gives a successful Vainshtein screening solution.
We can show numerically that there is no regular asymptotically homothetic solution in the narrow
region along β2 =

√
β3 (the red region), in which μ(r) is not a single-valued function such as (b)

in Fig. 8.2, and should then be excluded.

8.3 Relativistic stars

For Newtonian stars, the static and spherically symmetric solution admits a successful Vain-
shtein screening at the background level when the coupling constants satisfy (8.2.22). On the other
hand, as pointed out in [85], the parameter space is classified into two spaces: Class [I] and Class
[II]. In Class [I], the curvature singularity appears when the gravitational field becomes strong, i.e.,
the mass of the neutron star exceeds a critical value.

To discuss a neutron star, we may not find an analytic solution. We will perform a numerical
calculation to find a solution describing a compact object. However, deep inside the Vainshtein
radius, we can use an approximation, Λ2 decoupling limit. As discussed in Section 4.5, the Λ2

decoupling limit gives an effective theory to describe dynamics of the Stückelberg fields deep inside
the Vainshtein radius. In the spherically symmetric spacetime, the variable μ is the Stückelberg
field. Therefore, the behavior of μ can be discussed by the effective action deep inside the Vainshtein
radius. Indeed, we shall verify this approximation is valid in this section.

8.3.1 Regular compact objects in Λ2 decoupling limit

Before we present our numerical solutions, we shall discuss some analytic features of a compact
object. The radius of neutron star is about 106cm, while the Vainshtein radius is given typically
by 1020cm when the Compton wave length of the graviton mass is the cosmological scale (m−1

eff ∼
1028cm). The magnitude of the interaction term, which is proportional to the graviton mass
squared, is much smaller than the density of a neutron star. Hence, the interaction term seems
not to affect the structure of a neutron star. If we ignore the interaction terms in the Einstein
equations (3.3.4) and (3.3.5) (or Eqs. (8.1.11)-(8.1.14)), we just find two independent Einstein
equations in GR. Then both spacetimes are given approximately by GR solutions, which we can
solve easily. In bigravity theory, however, we have one additional non-trivial constraint equation
(3.3.11) (or (8.1.18) for a static and spherically symmetric case) even in the massless limit. This
constraint will restrict the existence of the solutions.

In the Λ2 decoupling limit, the effective action to determine the Stückelberg variable μ is given
by

Seff = −Λ4
2

∫
d4x

√−gU (μ; gGR, fGR) , (8.3.1)

where Λ2 =
√
m/κ, and gGR and fGR are solutions in GR which act as like external forces to the

Stückelberg field 2. The variation of the effective action with respect to μ yields the same equation

2 If both metrics are Minkowski ones, this action becomes a total divergence term. Hence it is necessary that
one of them is at least a curved metric.
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as (8.1.18). As we will see, the Λ2 decoupling limit is valid deep inside the Vainshtein radius. It
implies that, inside the Vainshtein radius, the non-compact nonlinear sigma model with a curved
metric is indeed obtained as the effective theory for the Stückelberg field.

We analyze two models: one is a simple toy model of a relativistic star, i.e., a uniform-density
star, and the other is a more realistic polytropic star with an appropriate equation of state for a
neutron star.

The boundary condition at “infinity” in the massless limit

The boundary condition at spatial infinity, which is outside of the Vainshtein radius, is given
by Eq. (8.1.5). Since the radius of a neutron star is much smaller than the Vainshtein radius,
there exists the weak gravity region even inside of the Vainshtein radius. We then introduce an
intermediate scale RI with R� � RI � RV, where R� and RV are the radius of a star and
the Vainshtein radius, respectively. The space inside the Vainshtein radius can be divided into
two regions: the region deep inside the Vainshtein radius (r < RI) and the weak gravity region
(RI < r < RV), where the gravitational force is described by a linear gravitational potential.

From the analysis for the Vainshtein screening in the weak gravity system, we find that GR (or
Newtonian) gravity is recovered in r < RV, while the homothetic solution is obtained outside the
Vainshtein radius r 	 RV. The function μ(r) changes from −1/

√
β3 at small distance (r � RV)

to 0 at large distance (r 	 RV). When gravity is weak, we find μ ≈ −1/
√
β3 deep inside of the

Vainshtein radius. Hence we expect that μ ≈ −1/
√
β3 at r ≈ RI for a relativistic star.

We then obtain the boundary condition for a relativistic star in the massless limit as

Ng

Nf
→ 1− GMg

RI
≈ 1 , μ → − 1√

β3

, (8.3.2)

as r → RI , which we can assume RI ≈ ∞ because RI 	 R�. Note that in the Λ2 decoupling
limit, the Vainshtein radius turns to be infinite since the effective theory is viable only in the local
region deep inside the Vainshtein radius.

Uniform-density star

First, we consider a uniform-density star. Since the basic equations in the massless limit are
just the Einstein equations, we can easily solve them. The g-metric of this g-star is given by the
interior and exterior Schwarzschild solutions, while the f -metric is just a Minkowski spacetime:
For the interior (r < R�),

Fg =

(
1− 2GM�

R3
�

r2
)1/2

, (8.3.3)

Ng = Ng(0)
3Fg(R�)− Fg(r)

3Fg(R�)− 1
, (8.3.4)

Pg(r)

ρg
=

Fg(r)− Fg(R�)

3Fg(R�)− Fg(r)
, (8.3.5)

Ff = 1 , Nf = Nf (0) , (8.3.6)

while for the exterior (r > R�),

Fg =

(
1− 2GM�

r

)1/2

, (8.3.7)

Ng =
2Ng(0)

3Fg(R�)− 1
Fg(r) , (8.3.8)

Ff = 1 , Nf = Nf (0) , (8.3.9)

where R� and

M� :=
4π

3
ρgR

3
� (8.3.10)
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are the g-star radius and the gravitational mass, respectively.
Although we can choose Ng(0) (or Nf (0)) any value by the rescaling of time coordinate, from

the boundary condition Ng/Nf = 1 at infinity (RI), we find the ratio as

Nf (0)

Ng(0)
=

2

3Fg(R�)− 1
. (8.3.11)

Only one variable μ has not been solved. When we find a regular solution of μ(r) for the constraint
(8.1.18) in the whole coordinate region (0 ≤ r < ∞) with the boundary condition μ → −1/

√
β3 as

r → ∞, we can construct a relativistic star in the bigravity theory.
First we analyze the constraint (8.1.18) at the center r = 0 (rf = 0), which gives

β3(3Pg(0) + ρg)μ
2
0 + 6Pg(0)(β2 − β3)μ0 + 3Pg(0)(1− 2β2)− ρg = 0 , (8.3.12)

where μ0 := μ(0). This is the quadratic equation of μ0, which does not guarantee the existence of
a real root of μ0. In order to have a real root μ0, we have one additional constraint as

9(β2
2 + β2

3 − β3)

(
Pg(0)

ρg

)2

+ 6β2β3

(
Pg(0)

ρg

)
+ β3 ≥ 0 .

We then classify the coupling constants β2 and β3 into three cases: (1) β2 < −√
β3, (2)

β2 >
√
β3, and (3) −√

β3 < β2 <
√
β3.

In the case (1), the real root μ0 exists only for the restricted range of Pg(0)/ρg, In fact, there
are two critical values; w− and w+ (w+ > w−), which are defined by

w± =
−β2β3 ±

√
(β2

2 − β3)(−1 + β3)β3

3[β2
2 + (−1 + β3)β3]

, (8.3.13)

and the real root exists either if Pg(0)/ρg < w− or if Pg(0)/ρg > w+.
On the other hand, for the case (2) and (3), the real root μ0 always exists for any value of

Pg(0)/ρg.
Furthermore, when we take into account the finiteness of the graviton mass, even if it is very

small, we find an additional constraint on the coupling constants {β2, β3} from the existence of
non-relativistic star with asymptotically homothetic spacetime (see Section 8.2).

Since the case (2) is completely excluded, we find two classes of the coupling parameters, which
provide a relativistic star with asymptotically homothetic spacetime, as follows:

Class [I]: β2 < −√
β3 and d1 + d2β2 < 0

Class [II]: −√
β3 ≤ β2 �

√
β3 and d1 + d2β2 < 0,

where d1 and d2 are some complicated functions of β3, which are defined by (8.2.18) and (8.2.19),
respectively.

Assuming β3 > 1, which is necessary for the existence of asymptotically homothetic solution,
we show the ranges of Class [I] and Class [II] with this constraint by the shaded light-red region
and the hatched light-blue region in Fig. 8.4, respectively. For its outside (the white region), there
exists neither non-relativistic star nor relativistic one.

Even if a real μ0 exists, we may not find a regular solution of μ(r) in the whole coordinate
range (0 ≤ r < ∞) because the real root of (8.1.18) may disappear at some finite radius. In Figs.
8.5 and 8.6, we present some examples of Class [I] and Class [II], respectively. As the example of
Class [I], we choose

mg = mf , β2 = −3 , β3 = 3 , (8.3.14)

while for Class [II], the parameters are chosen as

mg = mf , β2 = 1 , β3 = 3 , (8.3.15)
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Figure 8.4: The constraint on the coupling constants from the existence of the static spherically
symmetric solution in bigravity where we assume mg = mf and Λg = 0. The parameters are
classified into two classes: Class [I] (the light-red region) and Class [II] (the hatched light-blue
region). Although there is a regular solution with Vainshtein screening mechanism in the weak
gravitational approximation for both classes, the difference appears in the case of relativistic star.
For Class [I], the maximum mass of a neutron star is constrained stronger than the case of GR,
while the star exists as in the case of GR for Class [II]. The contour lines of maximum mass are
presented in the figure, where the maximum mass increases as {β2, β3} are close to β2 = −√

β3.

and

mg = mf , β2 = −2 , β3 = 4 . (8.3.16)

Note that there are two real roots for μ0. Then we find two branches of μ(r), which we call the
branch A and the branch B. The branch A approaches a homothetic solution (μ → −1/

√
β3) as

r → ∞ in the massless limit, while the branch B (μ → 1/
√
β3) does not become homothetic at

infinity. A few discussions about the asymptotically non-homothetic branch are presented in [85].

For the Class [I] example (8.3.14), μ0 exists only if Pg(0)/ρg < w− = 1/15 (the top figure
of Fig. 8.5) or Pg(0)/ρg > w+ = 1/3 (the bottom figure). We find a regular solution for both
branches if Pg(0)/ρg < 1/15. The branch A solutions provide relativistic stars with asymptotically
homothetic spacetime, while the branch B solutions are not asymptotically flat.

For 1/15 < Pg(0)/ρg < 1/3, μ0 does not exist. We find the solution μ(r) only for the region
larger than some finite radius, and two branches A and B are connected. The topology of this
spacetime is similar to a wormhole, but it has a curvature singularity at the throat (the turning
point of μ(r)). For the large value of Pg(0)/ρg, the turning point appears outside of the “star”,
which means the “wormhole” structure exists even for the vacuum case [85]. Therefore, the exis-
tence of such a wormhole type solution may be caused by the strong gravity effect rather than the
effect of the pressure.

The wormhole throat corresponds to the point dμ/drg = ∞ (i.e., drf/drg = ∞). When we
have drf/drg = ∞, the interaction terms diverges at the point. As a result, the contribution from
the interaction term should not be ignored even for the case with a very small graviton mass, and
then our assumption is no longer valid at a wormhole throat. Hence, we have to re-investigate
whether a relativistic star does not exist for the coupling constants of Class [I]. We shall analyze
it in next subsection.

When Pg(0)/ρg becomes larger, i.e., if Pg(0)/ρg > 1/3, we again find a real μ0, but there exists
no regular μ(r) for the whole range of r. μ(r) exists in two separated regions; one is smaller than
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Figure 8.5: We set mg = mf , β2 = −3, β3 = 3. The top and the bottom figures denote the cases
of Pg(0)/ρg < 1/15 and of Pg(0)/ρg > 1/3, respectively. When 1/3 > Pg(0)/ρg > 1/15, there
is no real root of μ0. Although there exists a real root of μ0 for Pg(0)/ρg > 1/3, the solutions
are disconnected between the region of r � R� and that of r 	 R�. As a result, there exist a
relativistic star for Pg(0)/ρg < 1/15 ≈ 0.06667.
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Figure 8.6: We set mg = mf , and (a) β2 = 1, β3 = 3, and (b) β2 = −2, β3 = 4. We choose
the central pressure as Pg(0)/ρg = 0.01, 0.1, 1, 10. In the figure (a) (β2

2 − β3 < 0), there are two
branches, and these do not connect for a large pressure of the star. For the figure (b) (β2

2−β3 = 0),
there are a non-trivial root (the branch A) as well as a trivial root μ = 1/

√
β3 (the branch B).

Although these two roots intersect beyond a critical pressure, there is a regular star beyond it in
the branch A.
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some finite radius (< R�) and the other is larger than another finite radius (> R�) , In both
regions, two branches A and B are connected. We find a kind of closed universe for the smaller-
radius inner region, and a kind of wormhole structure for the larger radius outer region. Both
spacetime structures contain a curvature singularity at the throats (the turning points of μ(r)).

On the other hand, for the Class [II] example, both branch A and B solutions exist for any value
of Pg(0) (Fig. 8.6), and they are not connected each other. Hence we always find a relativistic star
with asymptotically homothetic spacetime structure (the branch A solution).

We note that at the boundary of Class [I] and Class [II] (i.e., β2 = −√
β3). The trivial solution

μ = 1/
√
β3 gives the branch B. While the branch A has a non-trivial solution shown in Fig. 8.6

(b), which gives a relativistic star for any value of Pg(0).
Hence we may conclude that a relativistic star always exists a regular solution for the coupling

constants of Class [II]. On the other hand, there does not exist a relativistic star beyond a critical
value of the pressure for the coupling constants of Class [I], i.e., for Pg(0)/ρg > w−. Instead,
the spacetime may turn to a wormhole geometry with a singularity (or a closed universe with a
singularity).

The existence condition of Pg(0)/ρg < w− can be rewritten by the compactness of a star,
GM�/R�. Using the internal solution (8.3.3) and (8.3.5), we find

GM�

R�
=

2
Pg(0)
ρg

(
1 + 2

Pg(0)
ρg

)
(
1 + 3

Pg(0)
ρg

)2 . (8.3.17)

Then we obtain the existence condition for Class [I] as

GM�

R�
<

GM�

R�

∣∣∣
max

:=
2w− (1 + 2w−)

(1 + 3w−)
2 . (8.3.18)

This gives the maximum value of the compactness of a relativistic star for given coupling constants
β2 and β3. Since β2 and β3, are restricted as shown in Fig. 8.4, we can evaluate the upper bound
of the compactness for Class [I] as

GM�

R�

∣∣∣
ub

:= sup
Class[I]

{GM�

R�

∣∣∣
max

}
≈ 0.23 , (8.3.19)

which is realized for β2 � −1.48, β3 � 2.19.
While in Class [II], any coupling constants give the same maximum value of the compactness,

that is,

GM�

R�

∣∣∣
max

=
4

9
, (8.3.20)

which is obtained from the existence condition for a regular interior solution in GR because there
is no additional constraint in this class.

The upper bound of the compactness in Class [I] is almost the same as the observed value (e.g.,
the compactness is about 0.3 when a radius of a two solar mass neutron star is 10 km, while it is
about 0.21 for a two solar mass star with a radius of 14 km [183–185].). In order to give a stringent
constraint on the theory by observations, we have to analyze more realistic star, which will be
discussed below.

Polytropic star

Giving a more realistic equation of state, we present a neutron star solution in the bigravity
theory. We then discuss its mass and radius in order to give a constraint on the theory or the
coupling constants by comparing them with observed values.

We assume a simple polytropic-type equation of state

P = Kρ2 , (8.3.21)
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where we set K = 1.5 × 105 [cgs]. In the massless limit of the graviton, we have two decoupled
Einstein equations. Then the f -metric is given by the Minkowski spacetime because there is no
f -matter, For g-spacetime, we have the same neutron star solution as that in GR. We present
ρc-M� and R�-M� relations in Fig. 8.7, where ρc = ρg(0) is the central density. We find that
the maximum mass of a neutron star is about 2M�, where M� is the solar mass, for the above
equation of state. This result is obtained in GR but also it is the case for Class [II] in bigravity
because we always find the regular solution for μ(r) in the whole coordinate range (0 ≤ r < ∞).
We show some examples for the same coupling constants (8.3.15) with several values of the central
density ρc in Fig. 8.8.

Figure 8.7: ρc-M� and R�-M� relations for neutron stars with the polytropic equation of state
(8.3.21). The black solid lines are obtained in GR or in Class [II]. The maximum mass in Class [I],
which is shown by the red dots with β2 = −3, β3 = 3 and β2 = −1.48, β3 = 2.19, depends on the
coupling constants,

However, for Class [I], we find the additional constraint to find the regular μ(r) as we expect
from the result in the previous discussion. We also present some examples of μ(r) for the same
coupling constants (8.3.14) with several values of ρc in Fig. 8.8. This figure shows there is no
regular solution of μ(r) in the whole region if the density ρc is larger than 2.8× 1014 g/cm3. This
upper limit of the density does not reach the central density with the maximum mass of neutron
star in GR (see Fig. 8.7). Hence this limit of ρc provides the maximum mass of a neutron star
in Class [I], which is much smaller than that in GR (or in Class [II]). In Fig. 8.4, the maximum
masses in Class [I] are shown by the contour lines. The maximum mass is larger as the parameters
{β2, β3} come close to β2 = −√

β3. The upper bound of the maximum mass in Class [I] is at most
1.72M�, which is realized at β2 � −1.48 and β3 � 2.19. Hence the maximum mass in Class [I] does
not reach 2M�, which may be inconsistent with the existence of the 2M� neutron star [186–189].
One might find a 2M� neutron star in Class [I] if we modify the equation of state, but it will give
a strong constraint on the coupling constants in the theory.

As for the compactness, we find

GM�

R�

∣∣∣
ub

= 0.18 for Class[I] ,

GM�

R�

∣∣∣
max

= 0.31 for Class[II] .

(8.3.22)
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Figure 8.8: We set mg = mf , and (a) β2 = −3, β3 = 3 (Class [I]) and (b) β2 = −1, β3 = 3 (Class
[II]). We choose ρc = 1.71× 1014 g/cm3 (red solid curves), 3.35× 1014 g/cm3 (blue dashed curves)
and 18.9 × 1014 g/cm3 (green dotted curves), whose star masses are 0.6M�, 1.0M� and 2.0M�,
respectively.
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Although both values are so far consistent with observations, the coupling constants in Class [I]
may be restricted again because the above value is just the upper bound.

8.3.2 Regular compact objects: numerical results

In this subsection, we numerically solve the basic equations under the metric ansatz (8.1.1) and
(8.1.2) with a g-matter field. We find a relativistic star solution and confirm the previous results
obtained in the Λ2 decoupling limit when the graviton mass is sufficiently small.

In general, we have nine variables Ng, Nf , Fg, Ff , μ, ρg, and Pg, and six ordinary differential
equations (8.1.11)-(8.1.14), (8.1.15), and one algebraic equation (8.1.18) with an equation of state
Pg = Pg(ρg). In order to solve those equations numerically, we first take the derivative of (8.1.18),
and then find seven first-order ordinary differential equations:

dX

dr
= FX [Ng, Nf , Fg, Ff , μ, ρg, Pg, r] , (8.3.23)

drf
dr

= r
dμ

dr
+ μ+ 1

= J [Ng, Nf , Fg, Ff , μ, ρg, Pg, r] . (8.3.24)

where X = {Ng, Nf , Fg, Ff , Pg}, and FX and J do not contain any derivatives. Here we have fixed
the radial coordinate as rg = r by use of the gauge freedom. We solve these differential equations
from the center of a star (r = 0). In order to guarantee that the above set up gives a correct
solution of our system, we have to impose the constraint (8.1.18) on the variables at the center.

We numerically integrate Eqs. (8.3.23) and (8.3.24) outwards from the center r = 0. The
constraint equation (8.1.18) is used to evaluate the boundary values at the center. Since it must be
satisfied in the region of r > 0 too, we use this constraint to check the accuracy of our numerical
solutions in r > 0.

Since the equations are seemingly singular at r = 0, we start our calculations from r = 0 + δr
with δr � 1. All variables are expanded around r = 0 as

X =
∑
n=0

1

n!
X(n)(0)rn , (8.3.25)

where X(n)(0) is the n-th derivative of the variable X at r = 0.
Here, by use of the freedom of time coordinate rescaling, we choose Ng(0) = 1 without loss of

generality3. We determine the values of variables at r = δr by using up to second order of (8.3.25).
As mentioned, we focus only on the asymptotically flat solution with only g-matter, i.e., the

branch A solution.

A uniform density star

We first discuss a uniform density star, i.e., ρg = constant. The dimensionless parameters
characterizing the star are

κ2
gρg/m

2
eff , P (0)

g (0)/ρg , (8.3.28)

where we have defined

m2
eff = m2

g +m2
f , (8.3.29)

3 Although it gives Ng(∞) �= 1, if we wish to find the boundary condition Ng(∞) = 1, we redefine new lapse
functions as

Ñg(r) =
Ng(r)

Ng(∞)
, Ñf (r) =

Nf (r)

Ng(∞)
(8.3.26)

and new time coordinate as

t̃ = Ng(∞)t (8.3.27)

New metrics defined by Ñg , Ñf and t̃ satisfy the boundary condition Ñg(∞) = 1 at infinity. In this case, the time
coordinate t corresponds to the proper time for the observer at the spatial infinity.



124 CHAPTER 8. ASTROPHYSICAL OBJECTS AND VAINSHTEIN SCREENING

which gives the effective graviton mass on the homothetic spacetime. The first parameter in (8.3.28)
is evaluated as

κ2
gρg

m2
eff

=
6GM�

R�

(
m−1

eff

R�

)2

, (8.3.30)

which is much larger than unity because m−1
eff is the Compton wavelength of the graviton and then

it must be a cosmological scale.
Once the parameters (8.3.28) are given, the proper value of μ(0) is determined by a shooting

method to adjust the correct boundary condition (8.1.5) at infinity as well as the asymptotic
flatness. Then all coefficients in Eq. (8.3.25) are fixed by this μ(0) from the expanded basic
equations order by order,

We use μ0 as the center value of μ(0) in the case of Λ2 decoupling limit. When the value of
the graviton mass is sufficiently small, the proper value of μ(0) is close to μ0. Hence, we start to
search for μ(0) near μ0 to find a regular solution with the correct boundary condition.

To check the boundary conditions at infinity, we evaluate the eigenvalues of γμ
ν , i.e.,

λ0 :=
Nf

Ng
, (8.3.31)

λ1 :=
r′f/Ff

1/Fg
, (8.3.32)

λ2 = λ3 :=
rf
r

= 1 + μ . (8.3.33)

If all eigenvalues approach unity as r → ∞, the solution is asymptotically homothetic. Then the γ
energy-momentum tensor will become a “cosmological” constant (Λg) term at infinity. We find our
solution with an asymptotic flatness, if Λg = 0, which we have assumed for our coupling constants.

Class [I]

As an example in Class [I], we choose the same coupling constants as before, i.e.,

Λg = 0 , mg = mf , β3 = −3 , β4 = 3 . (8.3.34)

The branch A solution approaches an asymptotically flat homothetic spacetime. In Fig. 8.9,
we show a numerical solution by setting κ2

gρg/m
2
eff = 2.5× 105, 4 for which the typical value of the

Vainshtein radius is given by

RV := (GM�/m
2
eff)

1/3 ∼ 30R� . (8.3.35)

GR is recovered within the Vainshtein radius.
We note λ1 is discontinuous at the star surface R�. It is because the discontinuity of the matter

distribution leads to the discontinuity of r′f as seen in Eq. (8.3.24). This discontinuity disappears
when we discuss a continuous matter distribution such as a polytropic star (8.3.21) as shown in
Fig. 8.11.

Changing the central value of the pressure Pg(0)/ρg, we find the solution disappears for
Pg(0)/ρg > 0.0665. It is consistent with the argument in the Λ2 decoupling limit, in which the
critical value is given by Pg(0)/ρg = 1/15 ≈ 0.06667. Hence even in the case with a finite graviton
mass, there exists a critical value of the pressure beyond which a regular star solution does not
exist.

If we choose the larger value of the parameter as κ2
gρg/m

2
eff = 2.5× 107, the solution exists for

Pg(0)/ρg > 0.0666, which is closer to the value in the Λ2 decoupling limit. Hence, we expect that
the Λ2 decoupling limit approximation is valid for the realistic value κ2

gρg/m
2
eff ∼ 1043.

4This value is too small for a realistic neutron star with a massive graviton responsible for the present accelerating
expansion of the Universe, for which we have κ2

gρg/m
2
eff ∼ 1043. However, because of the technical reason for

numerical calculation, we choose the above value. For the realistic value, we expect that the solution may be closer
to the case of the Λ2 decoupling limit.
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Figure 8.9: A typical solution for the branch A. We set Pg(0)/ρg = 5 × 10−2. The shooting
parameter is tuned to be μ(0) = 0.03093. The vertical bar represents the star surface (R�/m

−1
eff =

0.00141288).

Figure 8.10: |Pg − P
[m=0]
g |/P [m=0]

g where Pg is the numerical solution with a finite mass and

P
[m=0]
g is the solution in Λ2 decoupling limit. We set Pg(0)/ρg = 5 × 10−2 and (8.3.34) with

κ2
gρg/m

2
eff = 2.5 × 105 (the red solid curve), κ2

gρg/m
2
eff = 2.5 × 107 (the blue dashed curve) and

(8.3.36) with κ2
gρg/m

2
eff = 2.5×105 (the green dotted curve). We note Pg−P

[m=0]
g > 0 for (8.3.34),

while Pg − P
[m=0]
g < 0 for (8.3.36).
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If the solution exists, the inner structure of star as well as the gravitational field are restored to
the result of GR because of the Vainshtein mechanism. We find differences between our numerical
solution and the semi-analytic solution in the Λ2 decoupling limit are very small as shown one
example of the pressure Pg in Fig. 8.10. This fact also confirms the validity of the Λ2 decoupling
limit approximation if the graviton mass is sufficiently small. We conclude that the bigravity for
Class [I] cannot reproduce the result in GR beyond the critical value of Pg(0)/ρg.

Class [II]

As an example in Class [II], we choose one of the previous coupling constants, i.e.,

Λg = 0 , mg = mf , β3 = 1 , β3 = 3 (8.3.36)

and we set

κ2
gρg/m

2
eff = 2.5× 105 . (8.3.37)

In this case, we can find a regular star for any values of Pg(0). The solution is almost the same as
the Λ2 decoupling limit (or GR) as shown in Fig. 8.10. We conclude that in the bigravity theory
in Class [II] the results in GR are recovered and the Vainshtein mechanism holds even in a strong
gravity limit.

Polytropic star

Figure 8.11: We set ρc = 1.71 × 1014 g/cm
3
and m−1

eff = 104 km, for which the mass of the
neutron star is 0.601M�. The shooting parameter is tuned to be μ(0) = −0.13334. The vertical
bar represents the star surface (R� = 17.7 km).

For a neutron star with a realistic equation of state, we can also confirm the above results,
i.e. the Λ2 decoupling limit is valid to discuss an astrophysical object. Here we again assume the
polytropic equation of state (8.3.21).
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One typical example of the solutions in Class [I] is shown in Fig. 8.11, where we choose the
coupling constants as (8.3.34) and

ρc = 1.71× 1014 g/cm
3
, m−1

eff = 104 km , (8.3.38)

We find a neutron star solution with

M� = 0.601M� , R� = 17.7 km , (8.3.39)

which is the same as those in the Λ2 decoupling limit. Our numerical calculation shows that
increasing the central density ρc, the solution exists only for M� <∼ 0.882M� for the coupling con-
stants (8.3.34). We have obtained M� � 0.886M� in the Λ2 decoupling limit. If we choose the
larger value of the Compton wavelength of the graviton as m−1

eff = 105 km, the mass upper limit
increases as M� � 0.884M�, which is closer to the value in the Λ2 decoupling limit. Beyond the

critical value, the curvature singularity appears since the T
[γ]
μν diverges at the point μ′ → ∞.

For Class [II], we always find the same solution as that in GR. As a result, as the case of a
uniform-density star, we confirm that the Λ2 decoupling limit solution is a good approximation for
the sufficiently small graviton mass.

8.4 Perturbations around static and spherically symmetric
solution

In the previous sections we have considered the static and spherically symmetric solutions and
discussed whether there is a viable astrophysical solution or not. As a result, although there is a
constraint on the parameters of the theory, the bigravity theory seems to admit a viable solution
with the Vainshtein mechanism. However, the previous analysis is not sufficient since realistic
solutions must be stable over the age of the Universe.

In §. 4.5.3, we have shown that the Vainshtein screening solutions cannot be supported only
by the excitation of the scalar graviton. However since the massive gravity nonlinear sigma model
contains the degrees of freedom of the vector graviton as well, one cannot still conclude the solution
is indeed unstable. In this section, thus, we study the general perturbations around the static and
spherically symmetric solutions with Vainshtein screening given by the previous sections in which
there exists only the scalar graviton in the background solution.

Indeed, we will show the static and spherically symmetric solutions are unstable; thus these
solutions may not be realized in the Universe. The existence of a viable astrophysical object in
bigravity is an open problem.

For simplicity, we only focus on outside the source (r > R� > 2GM) thus the g-spacetime is
given by Schwarzschild spacetime. We choose the spherical coordinate

gGR
μν = diag[−F 2

g , F
−2
g , r2, r2 sin2 θ] , (8.4.1)

ημν = diag[−1, 1, r2, r2 sin2 θ] , (8.4.2)

with F 2
g = 1− 2GM

r where M and R� is a gravitational mass and a radius of the star, respectively.
First, we give the static and spherically symmetric solution. The solution can be found by

assuming the Stüeckelberg field as

πμ = π̄μ = (0, rμ(r), 0, 0) . (8.4.3)

The basic equation can be derived by varying the action with respect to μ. Then the solution is
given by

μ =
−(1− Fg)(β2 − 2β3) + ε

√
(β2 − 2β3)2(1− Fg)2 + β3(1 + Fg)(4β2 − 1 + (3− 4β2)Fg)

β3(1 + Fg)

=
ε√
β3

+O(GM/r) , (8.4.4)
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where ε = ±1. Note that although β2 and β3 are originally free parameters, it was shown that
this solution exists only for β3 > 1 with some other constraints (8.2.22). Here the minus branch
(ε = −1) is the asymptotically flat branch. On the other hand, the plus branch (ε = 1) is not
regular in general, however the plus branch can describe a regular asymptotically AdS solution
when we introduce a negative cosmological constant [85].

We shall study the stability of this solution. Since the background spacetime is spherically
symmetric, perturbations can be decomposed into odd parity perturbations and even parity per-
turbations, that is,

πμ = π̄μ + δπodd
μ + δπeven

μ . (8.4.5)

These perturbations are decoupled at the linear order equation of motion (or equivalently at the
quadratic order Lagrangian). Hence we separately discuss the odd and even parity perturbations,
in order.

8.4.1 Odd parity perturbations

First, we discuss the odd parity perturbations. Because of the spherical symmetry of the back-
ground solution, we can separate the variables and then xi = (θ, ϕ) dependence can be expanded
in terms of the vector spherical harmonics Yi, which is defined by

[D2 + �(�+ 1)− 1]Yi = 0 , (� = 1, 2, · · · ) , (8.4.6)

DiYi = 0 . (8.4.7)

Here, Di is the covariant derivative on the 2-sphere and D2 = DiD
i. The explicit form of Yi is

given by

Yi = εijD
jY , (8.4.8)

where εij is the Levi-Civita tensor and Y is the spherical harmonics satisfying

[D2 + �(�+ 1)]Y = 0 , (� = 0, 1, 2, · · · ) . (8.4.9)

By using the vector harmonics, the perturbation of the Stüeckelberg field is expressed by

δπodd
μ = (0, 0, rχΩYi) , (8.4.10)

where χΩ is a function of (t, r).
The quadratic order action is given by

Sodd =

∫
r2dtdrdΩ

Λ4
2

4
(
√

β3 + εβ2)

[
4

2
√
β3 + ε

χ̇2
Ω − 1√

β3 + ε

(
χ′
Ω
2 +

�(�+ 1)

r2
χ2
Ω

)]
YiY

i

+O(GM/r) , (8.4.11)

where a dot and a prime denote the time derivative and the radial derivative, respectively. Since
each eigenmode of the harmonics does not couple with the other eigenmodes, we drop the summa-
tion sign. The stability condition (no-ghost and no-gradient instability) is given by√

β3 + β2 > 0 . (8.4.12)

for the plus branch, while for the minus branch the condition is√
β3 − β2 > 0 . (8.4.13)

8.4.2 Even parity perturbations

Next we consider the even parity perturbations. By using the spherical harmonics, the pertur-
bation of the Stüeckelberg field is expressed by

δπeven
μ = (ξtY, ξrY, rξΩDiY ) , (8.4.14)

where ξt, ξr and ξΩ are functions of (t, r). Note that for the � = 0 mode, the variable ξΩ is
undefined because DiY = 0. Hence we should discuss � = 0 mode and � ≥ 1 modes, separately.
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Radial perturbation (� = 0)

For � = 0, the spherical harmonics is simply given by Y |�=0 = 1/
√
4π. The quadratic order

action can be schematically expressed by

S�=0 = S�=0(ξ̇r, ξ
′
t, ξ

′
r, ξt, ξr) , (8.4.15)

from which ξt is non-dynamical and it can be integrated out. The variation with respect to ξt
yields a constraint equation

∂t
[
2rF−1

g (Fg − 1)(β2 + β3μ)ξr
]
− ∂r

[
r2Fg(1 + 2β2μ+ β3μ

2)(F 2
g ξ

′
t − ξ̇r)

1 + F 2
g (r + rμ)′

]
= 0 , (8.4.16)

where the solution is given by

ξ′t = −2GM(β2 + ε
√
β3)

[
Ξ̇′

2rFg(Fg − 1)(β2 + β3μ)
+

1 + F 2
g (r + rμ)′

r2F 3
g (1 + 2β2μ+ β3μ2)

Ξ̇

]
, (8.4.17)

ξr = −2GM(β2 + ε
√
β3)

Fg

2r(Fg − 1)(β2 + β3μ)
Ξ′ , (8.4.18)

with some function Ξ(t, r). Here the factor is introduced so that ξt and ξr can be expressed by

ξt = Ξ̇ +O(GM/r) , (8.4.19)

ξr = Ξ′ +O(GM/r) , (8.4.20)

at the leading order of GM/r. Then the quadratic action is expressed by

S�=0 = Λ4
2

∫
r2dtdr

[
KtΞ̇

2 −KrΞ
′2
]
, (8.4.21)

where

Kt = −ε

(
GM

r

)2
3
√
β3(β2 + ε

√
β3)

r2

+O
((

GM

r

)3
)

(8.4.22)

Kr = −ε
GM

r

√
β3

r2
+O

((
GM

r

)2
)

. (8.4.23)

Note that, while the gradient term appears at the first order of GM/r (i.e., the first order of
the metric perturbation around the Minkowski spacetime), the kinetic term appears at the second
order of GM/r. Hence the scalar graviton is not infinitely strong coupled although the propagation
speed is superluminal.

From the second order action, we can see that the plus branch suffers from the gradient insta-
bility. Even for the minus branch, the stability condition is given by

β2 −
√
β3 > 0 , (8.4.24)

which has a sign opposite to the stability condition of the odd parity perturbations. As a result,
we conclude that the static spherically symmetric solution is unstable for any parameters of β2

and β3.

General modes (� ≥ 1)

Although we have shown the instability of the background solution, we discuss general modes
of the even parity perturbations for completeness. The quadratic action can be expressed by

Seven =

∫
Y 2dΩ

∫
dtdrLeven(ξ̇r, ξ̇Ω, ξ

′
A, ξA) , (8.4.25)
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where A = (t, r,Ω), thus ξt is a non-dynamical variable, same as the case of � = 0 mode. However,
contrary to the case of � = 0 mode, the constraint equation, which is derived by the variation with
respect to ξt, is not easily solved. We notice however that the constraint equation has a particular
solution

δπeven
μ = ∂μ(Ξ(t, r)Y (θ, ϕ)) +O(GM/r) , (8.4.26)

in which there is no degree of freedom of the vector graviton. Since the stability of the case of the
purely scalar graviton has already been discussed, we shall not discuss this case furthermore here.

To discuss the stability of the general perturbations, we use the Hamiltonian formulation and
calculate the on-shell Hamiltonian. The canonical momenta are defined by

πA =
δLeven

δξ̇A
, (8.4.27)

Since the Lagrangian does not contain ξ̇t, there is a primary constraint

Φ1 := πt ≈ 0 , (8.4.28)

where the symbol “≈” is the weak equality which holds on shell. ξ̇r and ξ̇Ω can be expressed in
terms of canonical variables. Then the total Hamiltonian is given by

Heven
T = πr ξ̇r + πΩξ̇Ω − Leven + λπt

= Heven[πr, πΩ, ξA] + λπt (8.4.29)

where λ is the Lagrangian multiplier. The preservation of the primary constraint yields

Φ2 := {Φ1, Heven
T } ≈ 0 , (8.4.30)

where

Heven
T =

∫
drHeven

T . (8.4.31)

Note that since Φ2 contains only ξt, πr, πr
′, πΩ, the secondary constraint Φ2 ≈ 0 is the constraint

equation on the canonical variables, from which we can easily express ξt in terms of πr, π
′
r, πΩ.

This system has only these two constraints. Indeed, the condition {Φ2, Heven
T } ≈ 0 contains

the Lagrangian multiplier λ and it does not generate a constraint equation, but an equation to
determine the Lagrangian multiplier. As a result, we have two constraint equations on the canonical
variables which are second class. Hence the degree of freedom of this system in the phase space is

d.o.f. = 6− 2 = 2× 2 ,

which indicates that the even parity perturbations contain one scalar graviton and one vector
graviton.

Substituting the solutions of constraint equations into the Hamiltonian, the on-shell Hamilto-
nian is given by

Heven
on−shell =

∫
drHeven

on−shell(πr, π
′
r, πΩ, ξr, ξΩ, ξ

′
Ω) ,

=

∫
drΛ4

2

[K1

r2
(πr +A1πΩ)

2 +
K2

r2
(rπ′

r +A2πΩ)
2 +

K3

r2
π2
Ω

+K4(ξΩ +A4ξr)
2 +K5(rξ

′
Ω +A5ξr)

2 +K6ξ
2
r

]
, (8.4.32)
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where the dimensionless coefficients are expanded as

K1 = ε
B1

48β
3/2
3 (β2 + ε

√
β3)

+O
(
GM

r

)
, (8.4.33)

K2 = −ε

(
GM

r

)−2
1

12
√
β3(β2 + ε

√
β3)

+O
((

GM

r

)−1
)

, (8.4.34)

K3 = −ε

(
GM

r

)−2 √
β3(1− 2ε

√
β3)

2

3B1(β2 + ε
√
β3)

+O
((

GM

r

)−1
)

, (8.4.35)

K4 = −ε�(�+ 1)
GM

r

B2

16
√
β3(ε+

√
β3)2

+O
((

GM

r

)2
)

, (8.4.36)

K5 = ε�(�+ 1)
β2 + ε

√
β3

4(ε+
√
β3)

+O
(
GM

r

)
, (8.4.37)

K6 = ε�(�+ 1)

(
GM

r

)−1 √
β3B−1

2 (β2 + ε
√
β3)

2 +O(1) , (8.4.38)

and

A1 =

(
GM

r

)−1

4β3B−1
1 (1− 2ε

√
β3) +O(1) , (8.4.39)

A2 = −1 +O
(
GM

r

)
, (8.4.40)

A4 =

(
GM

r

)−1

4
√

βgB−1
2 (ε+

√
β3)(β2 + ε

√
β3) +O(1) , (8.4.41)

A5 = −1 +O
(
GM

r

)
(8.4.42)

with

B1 := β2 + 8β3 − 4β2β3 + ε
√
β3(4β3 − 3) , (8.4.43)

B2 := β2
2(1− 4β3) + β3(5 + 4β3)− 4β2β4 + 2ε

√
β3(6β3 − β2(1 + 4β3)) (8.4.44)

One can find K1K3 < 0 and K4K6 < 0 for any parameters (β2, β3), thus the Hamiltonian is
unbounded from the below, which means that the perturbations suffer from the instability.





Chapter 9

Summary

The discoveries of the accelerating expansion of the Universe as well as dark matter may reveal
that a new physics beyond the standard one exists in nature. Phenomenologically, the ΛCDM
model provides a consistent scenario with cosmological observations. However, the origins of dark
components of the Universe have not been cleared and various scenarios have been proposed.
One possibility is that the dark components might be due to a modification of GR. Some of
modified theories of gravity indeed yield the accelerating expansion without dark matter or a
dark matter candidate from the gravitational origin. Among many modified gravity theories, one
natural modification of GR is to consider the possibility of a massive graviton. Especially, in this
thesis, we have focused the bigravity theory which contains both massless and massive gravitons
and discussed cosmological and astrophysical aspects of this theory. In this theory, the graviton
mass in the range 10−2 eV � m � 10−23 eV may be excluded from observations, in general.

In Chapter 5, we have studied the dynamics of the homogeneous and isotropic universe in the
bigravity theory. The vacuum solution of bigravity is not uniquely determined. The bigravity
theory can admit the de Sitter solution as a vacuum solution (and also anti-de Sitter solution)
even if we assume the existence of the Minkowski vacuum. We find two stable attractors for the
FLRW spacetime with twin dust matter fields: One is de Sitter accelerating universe (Λg > 0)
and the other is matter dominated universe (Λg = 0). The present accelerating expansion can be
naturally obtained by the tiny graviton mass such as m ∼ 10−33 eV.

We have also discussed the stability of the cosmological solution in Chapter 6. It has been
known that, when the graviton mass is smaller than the Hubble parameter, homogeneous and
isotropic spacetimes suffer from the Higuchi type instability against the linear perturbation in the
bigravity. However, we find a cosmological solution in which the instabilities can be resolved by
the cosmological Vainshtein mechanism for an appropriate parameter space of coupling constants.
The growth history of the perturbations can be restored into that in GR. However, it has not been
cleared whether or not this cosmological solution transits to the cosmological solution discussed in
Chapter 5. We show the transition may not occur at least adiabatically in the universe with the
standard matter components.

In Chapter 7, we have studied two possibilities to explain dark matter in the context of bigravity:
f -matter as dark matter, and massive graviton as dark matter. In the former case, the dark matter
candidate is matter fields which couple with fμν . The standard matter fields are assumed to couple
with gμν . Although there are no direct interactions between the g-matter and the f -matter, the f -
matter can affect the g-matter though the gravitational interactions because the bigravity theory
has the interaction between gμν and fμν . An observational signature is that the f -matter can
produce a repulsive force in the scales between the Vainshtein radius and the Compton wavelength.
In particular, if the graviton mass is ∼ 10−27 eV, the repulsive force may be observed as that the
gravity is effectively weak at galactic scales. On the other hand, the second possibility is that the
massive graviton itself is a dark matter candidate. We obtain a general bound on the graviton
mass to be dark matter which is typically given by 10−23 eV � m � 107 eV. We have constructed
a scenario in which the production of massive gravitons is accompanied by the production of the
gravitational waves. In this scenario, we can estimate a suitable value of the graviton mass from
the observations of the gravitational waves.
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In Chapter 8, we have shown that the Vainshtein mechanism would be unsuccessful around
an astrophysical object. First, we have studied static and spherically symmetric solutions and
discussed the solutions describing a neutron star. As a result, a curvature singularity is found
beyond a critical value of the mass of the neutron star in some parameter space. Hence, the
Vainshtein mechanism is broken in the strong gravitational field. In this study, there is still
a parameter space to yield the successful Vainshtein screening in the strong gravitational field.
However, we then find that the static and spherically symmetric solutions are unstable against
small perturbations within the Vainshtein radius. To evade the instability the excitation of the
vector graviton would be needed. In the spherically symmetric spacetimes, the vector graviton may
not be excited. Studies beyond the spherically symmetric would be required to obtain a successful
Vainshtein mechanism. Note that the instability is problematic only for the light massive graviton
(m � 10−23 eV) because the Vainshtein radius is much smaller than the astrophysical scales in the
case of the heavy massive graviton (m � 10−2 eV).

In conclusion, the bigravity theory yields some explanations of the acceleration of the Universe
or dark matter depending on the graviton mass. For instance, the massive graviton with m ∼
10−33 eV can explain the present accelerating expansion. However, if the graviton mass is small
(m � 10−23 eV), the consistency with the Solar System tests of gravity is an open question because
there is no stable solution describing an astrophysical object.

Future issues

Phenomenologically, we may classify the bigravity theory into two cases: the small mass (m �
10−23 eV) or the large mass (m � 10−2 eV). Regarding the former case, an important remaining
problem is to find a viable solution of an astrophysical object. In a local region of the spacetime,
the Λ2 decoupling limit can yield an effective theory which is originally obtained by considering
the nonlinear excitation of the vector graviton [83, 84]. The limit also gives the effective theory
even when the vector graviton is not excited but the spacetime is curved [86]. However, we show
that the effective theory only with the scalar graviton excitation leads to the instability in Ricci
flat spacetimes. As a result, the static and spherically symmetric ansatz does not give a viable
astrophysical solution which would be caused by that we have taken into account the excitation
of the scalar graviton only. When we relax the spherical symmetry, the vector graviton could be
excited and then it will dramatically change the behavior of the spacetime.

As for the large mass graviton, the bigravity may give a new paradigm for dark matter. Al-
though we have already discussed two ways to explain dark matter, other possibilities would remain.
For instance, the energy density of the anisotropy of the Bianchi type universe decreases as a dust
fluid in the bigravity theory although that in GR decreases as a stiff matter [48]. This fact could
be explained by that the anisotropy is a consequence of a condensation of massive gravitons with
some direction and the energy density of the non-relativistic massive gravitons decreases as a dust.
If the condensed massive graviton indeed behaves like dark matter, we will observe a deformation
of the spacetime as dark matter in bigravity.

Although the graviton mass is phenomenologically significant, theoretical predictions about the
origin of the mass are still insufficient. The massive graviton would be reduced from a fundamental
theory as a low-energy effective theory [112, 190–197]. We should know the precise mechanism
generating the graviton mass in order to discuss more fundamental problems of massive spin-
2 field. Furthermore, the number of gravitons is not clear. We have considered the case of two
gravitons; however, the multi-gravity extension is also possible in which the number of the gravitons
is larger than two [18]. For instance, if massive graviton gravitons are obtained as Kaluza-Klein
modes from a higher dimensional picture, it would be natural that there exist several massive
gravitons in four dimensions. At the linear level, since the gravitons propagate independently, the
qualitative behavior in multi-gravity would not be changed from that in bigravity. On the other
hand, nonlinear interactions of the multi-gravitons may lead to other features than bi-gravitons.

The massive graviton has been received much attention from both theoretical and phenomeno-
logical prospects. The success of the ghost-free nonlinear extension of the Fierz-Pauli theory gives
a new paradigm for theories of gravity and also the cosmological problems. Nevertheless, there are
still interesting open questions in the theories of massive spin-2 fields.
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Appendix A

Constrained systems

In this chapter, we briefly summarize Lagrangian and Hamiltonian formulations in constrained
systems. We mainly consider only mechanics with finite degrees of freedom, for simplicity.

A.1 Lagrangian formulation

Let us consider the action

S =

∫
L(qi, q̇i, t)dt , (A.1.1)

where qi are generalized coordinates for point particles (i = 1, 2, · · · , N). We assume the action
contains up to first order time derivatives of qi until Section B.4. The variation principle leads to
the Euler-Lagrange equation

Aij q̈
j +

∂2L

∂q̇i∂qj
q̇j − ∂L

∂qi
= 0 , (A.1.2)

where

ξi := q̇i , (A.1.3)

and

Aij :=
∂2L

∂ξi∂ξj
. (A.1.4)

The matrix Aij is called Hessian.
If the Hessian has no zero eigenvalues, that is

det(Aij) �= 0 , (A.1.5)

there exists an inverse matrix (A−1)ij and the equation of motion is then

ξ̇i + (A−1)ij
∂2L

∂ξj∂qk
ξk − (A−1)ij

∂L

∂qj
= 0 . (A.1.6)

This expression explicitly shows that there are N independent equations of motion. To determine
the dynamics of this system, one requires 2N independent initial data. The number of degrees of
freedom of the system is 2N in the phase space.

On the other hand, if the determinant of the Hessian is zero, Aij is not invertible and then all
N equations are no longer independent. Supposing

rank(Aij) = N −R , (A.1.7)
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there exist (N −R) independent eigenvectors such that

Aijτ
j
α = 0 , (A.1.8)

where α = 1, 2, · · · , R. The constraint equations are obtained by multiplying the equations by the
eigenvectors:

τ iα

(
∂2L

∂ξi∂qj
ξj − ∂L

∂qi

)
= 0 . (A.1.9)

In this system, one cannot set 2N initial data, independently, due to the constraint equations. The
number of physical degrees of freedom is less than 2N . To count the number of degrees of freedom,
the Hamiltonian formulation is more useful than the Lagrangian formulation.

A.2 Hamiltonian formulation

Let us define the conjugate momenta

pi(q, ξ) :=
∂L(q, ξ)

∂ξi
. (A.2.1)

The Hessian is the Jacobian for the conjugate momenta since

Aij =
∂2L

∂ξi∂ξj
=

∂pi
∂ξj

. (A.2.2)

If the Hessian is inverted (det(Aij) �= 0), one can solve all ξi in terms of canonical variables qi and
pi. However, some of ξi are not inverted in constrained systems since the transformation from ξi

to pi is singular. Some of ξi are not expressed in terms of the canonical variables.
First, we consider the case that Aij is invertible. In this case, all ξi are expressed in terms of

the canonical variables and then all canonical variables (qi, pi) are independent. The variation of
the action reads

δS =

∫ [
−

(
ṗi +

∂H

∂qi

)
δqi +

(
q̇i − ∂H

∂pi

)
δpi

]
dt = 0 , (A.2.3)

where we define the Hamiltonian

H(q, p) := piq̇
i(q, p)− L(q, p) . (A.2.4)

Supposing all canonical variables are independent, one obtains the Hamilton’s equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (A.2.5)

Time evolution of generic function f(qi, pi, t) is given by

df(p, q, t)

dt
= {f,H}+ ∂f

∂t
(A.2.6)

where

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(A.2.7)

is the Poisson bracket.
In constrained systems, contrarily to unconstrained systems, all canonical variables are not

independent. Due to the singularity of the Hessian, there exist primary constraints on the canonical
variables

Φ1
α(q, p) = 0 , (A.2.8)
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where α = 1, 2, · · · , R when rank(Aij) = N − R. For instance, when the Lagrangian does not
contain ξα, the conjugate momenta are

pα =
∂L

∂ξα
= 0 ,

which gives constraint equations on pα and then ξα are not solvable in terms of canonical variables.
The constraint equations restrict 2N dimensional phase space into lower dimensional space, which
space we call the constraint surface.

As a result, when the Hessian has R zero eigenvalues, there exists R primary constraint Φ1
α ≈ 0,

where we introduce the weak equality denoted by “≈” which holds on the constraint surface. In
uncontrained systems, we have used the independence of the canonical variables to derive the
Hamilotn’s equations of motion. In the constrained systems, however, the canonical variables
(qi, pi) are no longer independet. The variations of canonical variables have to satisfy

∂Φ1
α

∂qi
δqi +

∂Φ1
α

∂pi
δpi ≈ 0 . (A.2.9)

To hold the constraint equations, we introduce Lagrangian multipliers vα and rewrite the action
as

S =

∫ [
piξ

i −H − vαΦ1
α

]
dt . (A.2.10)

The variation reads

δS =

∫ [
−

(
ṗi +

∂H

∂qi
+ vα

∂Φ1
α

∂qi

)
δqi +

(
q̇i − ∂H

∂pi
− vα

∂Φ1
α

∂pi

)
δpi

]
dt . (A.2.11)

By choosing vα appropriately, each parenthesis in front of δqi or δpi is independently zero. Then
one obtains the 2N independent Hamilton’s equations of motion

q̇i =
∂H

∂pi
+ vα

∂Φ1
α

∂pi
= {qi, HT } , (A.2.12)

ṗi = −∂H

∂qi
− vα

∂Φ1
α

∂qi
= {pi, HT } , (A.2.13)

where we define the total Hamiltonian

HT := H + vαΦ1
α . (A.2.14)

It is worth noting that, in the constrained systems, time evolution of a variable is given by the total
Hamiltonian instead of the Hamiltonian. The time derivative of a function f(qi, pi, t) is calculated
as

ḟ = {f,HT }+
∂f

∂t
. (A.2.15)

The singularity of the Hessian leads to the primary constrains. The primary constraints does
not have any information about a time evolution of the system since we have not used the dy-
namical equations, namely the Hamilton’s equations. Even if we assume the primary constraints
initially hold, it is not guaranteed to satisfy the primary constraints after a time evolution. The
preservations of the primary constraints yield secondary constraints

Φ2
α = Φ̇1

α = {Φ1
α, HT } ≈ {Φ1

α, H}+ vβLαβ ≈ 0 , (A.2.16)

where

Lαβ := {Φ1
α,Φ

1
β} . (A.2.17)

If the matrix Lαβ is invertible even on the constrained surface, the secondary constraints are
no longer the constrains on the canonical variables. The equation (A.2.16) is just an equation
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to determine the Lagrangian multipliers. By using the inverse matrix (L−1)αβ , the Lagrangian
multipliers are determined by

vα ≈ −(L−1)αβ{Φ1
α, H} . (A.2.18)

The preservations of (A.2.16) do not also yield constrains on the canonical variables since they are
equations in terms of v̇α.

If the matrix Lαβ is not invertible, some of (A.2.16) indeed give constraints on the canonical
variables. A simple case is Lαβ ≈ 0 in which the secondary constraints are given by

Φ2
α = {Φ1

α, H} ≈ 0 .

In general, the number of the secondary constraint is less than or equal to that of the primary
constraints. We assume there exist R′ secondary constraints Φ2

μ where μ = 1, 2, · · ·R′ with R′ ≤ R.
Then, the preservations of those yield

Φ3
μ = {Φ2

μ, HT } ≈ {Φ2
μ, H}+ vβ{Φ2

μ,Φ
1
β} . (A.2.19)

If some of these equations are constraints on the canonical variables, we should calculate the
preservations of those which may yield further constraints. This procedure must continue till
either all vα are determined or the preservations trivially hold by using other constraints.

Note that it is not guaranteed that all vα are determined. For instance, let us consider following
case: the matrix {Φ1

α,Φ
1
β} is weakly zero and the preservations of the secondary constraints are

expressed in terms of the primary and secondary constraints, that is

Φ3
α = aαΦ1

α + bαΦ2
α , (A.2.20)

where aα and bα are some functions of the canonical variables. In this case, the equation Φ3
α ≈ 0

trivially hold and then the Lagrangian multipliers vα are undetermined. Even if we consider
Φ̇3

α ≈ 0, it is also trivially satisfied on the constraint surface.
The constraints on the canonical variables are classified into two classes: first class constraints

ψa and second class constraints θs. The first class constraints have a weakly vanishing Poisson
bracket with all constraints,

{ψa, θs} ≈ 0 , {ψa, ψb} ≈ 0 , (A.2.21)

and the second class constraints are others; that is, θs is a second class constraint if

∃t s.t. {θs, θt} �≈ 0 . (A.2.22)

The total number of constraints is fixed in a given system; however the number of the first
class constraints (or the second class constraints) is not unique. We denote all constraints Φα and
define the matrix

Mαβ := {Φα,Φβ} . (A.2.23)

If the matrix Mαβ has zero eigenvalues on the constraint surface, we denote the corresponding
eigenvectors uα

a . Even if each Φα is not a first class constraint, each linear combination uα
aΦα is a

first class constraint since

0 = uα
aMαβ = uα

a{Φα,Φβ} ≈ {uα
aΦα,Φβ} . (A.2.24)

This suggests that the maximum number of the first class constraints is given by the number of
the zero eigenvalues of the matrix Mαβ . One redefine the constraints such that new constraints
Φα′ satisfy

Mα′β′ = {Φα′ ,Φβ′} ≈
(
0 0
0 Cst

)
, (A.2.25)
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where

det(Cst) �≈ 0 . (A.2.26)

After this redefinition, the number of the first class constraints is maximized, or, equivalently, the
number of the second class constraints is minimized. Note that, while the number of the first class
constraints is odd or even, the number of the second class constraints is even. This fact is easily
shown by using that Cst is an antisymmetric matrix and (A.2.26).

If the system has first class constraints, some of vα are undetermined. In the constrained sys-
tem, the time evolution is determined by the total Hamiltonian which contains vα. Therefore, the
undetermined vα suggests that the dynamics is not uniquely determined. This kind of theory is
called gauge theory. The existence of the first class constraints is related to the gauge symmetry.
The number of the gauge symmetry is given by the number of the first class primary constraints
since the number of the first class primary constraints coincides with the number of the undeter-
mined vα. The linear combinations of the first class constraints give generating functions of the
gauge transformation.

Let us count the number of degrees of freedom of the system with A primary constraints ψa and
2S secondary constraints θs. The total number of the constraints is A+ 2S. We notice again that
the number of the secondary constraints is even. The second class constraints reduce the physical
degrees of freedom, directly. On the other hand, when the system has the first class constraints,
the degrees of freedom are reduced by not only the constraints themselves but also the gauge
freedom. The gauge fixing conditions χa are introduced in order that all first class constraints are
recast in second class constraints regarding the gauge fixing condition as additional constraints,
i.e., det{ψa, χb} �≈ 0. Then the degrees of freedom are reduced by ψa and χa. As a result, the
number of the total degrees of freedom of the system is given by

2N − 2S − 2A = 2(N − S −A) ,

in the phase space. The dynamics of the system is characterized by N−S−A independent positions
and N − S −A independent velocities.

A.3 Field theory

The generalization to field theories are straightforwardly done. For fields φa 1, the d + 1
dimensional action is given by

S =

∫
dtL , L :=

∫
ddxL(φa, φa

;μ) , (A.3.1)

where L is the Lagrangian density. The Hamiltonian density and the Hamiltonian are defined by

H := πaφ̇
a − L , (A.3.2)

H :=

∫
ddxH , (A.3.3)

where the conjugate momenta are defined by

πa(t,x) :=
∂L(t,x)
∂φ̇a(t,x)

. (A.3.4)

The time derivative of a functional f [φ, π; t] is given by

ḟ(t,x) = {f(t,x), H}+ ∂f(t,x)

∂t
, (A.3.5)

1The index a labels independent components of fields. For example, when we consider N scalar fields, the label
runs from 1 to N . For a vector field Aμ in four dimensions, the index a runs from one to four.
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where

{f(t,x), g(t,y)} =

∫
ddz

[
δf(t,x)

δπa(t, z)

δg(t,y)

δφa(t, z)
− δf(t,x)

δφa(t, z)

δg(t,y)

δπa(t, z)

]
, (A.3.6)

is the Poisson bracket between two functionals f and g. δ
δφa and δ

δπa
are the functional derivatives

with respect to the fields φa and πa, respectively. Then, the discussions in a field theory are done
in a similar way to mechanics.



Appendix B

Instabilities

B.1 Ghost instability

The ghost instability arises when the kinetic term has a wrong sign (see [198] for a review).
Let us consider the following Lagrangian with the ghost field φ:

L = +
1

2
(∂φ)2 − 1

2
(∂ψ)2 + Lint(φ, ψ) . (B.1.1)

The field ψ has the correct sign kinetic term. When the interaction between the ghost field and
other fields vanishes, the field φ does not exhibit any instability either classically or quantum
mechanically. However, the wrong sign kinetic term leads to that the kinetic energy of the field φ
is negative. The energy of the ghost field is rapidly transferred to the other field via the interaction
Lint and then the vacuum 〈φ〉 = 〈ψ〉 = 0 is unstable. Quantum mechanically, the ghost field leads
to a divergent decay rate [151].

The existence of a ghost field implies that the theory is ill-defined. However, as discussed in
Section 6.1, the ghost mode is controllable in the context of the ghost condensate. The vacuum
〈φ〉 = 0 is unstable, however, there may be a stable condensed state 〈φ〉 �= 0 when higher order
kinetic terms are introduced.

B.2 Gradient instability

Another instability originated from kinetic terms is the gradient instability. The gradient
instability arises from wrong spatial derivatives. A typical example of the Lagrangian with the
gradient instability is given by

L =
1

2
φ̇+

1

2
(∂iφ)

2 . (B.2.1)

In the Fourier space, the solutions are

φ(t) ∼ e±kt , (B.2.2)

where k = |k|. Hence, the solution has a exponentially growing mode. The time scale of the
growing mode is

tinst ∼ k−1 , (B.2.3)

thus the high energy mode leads to the rapid growth of the mode.
Clearly, the gradient instability can appear in the theory without the Lorentz invariance. Even

for Lorentz invariant theories, the Lorentz invariance for perturbations is effectively lost due to the
non-zero background configuration. For instance, the perturbations have no Lorentz invariance
around the FLRW background. To verify the stability of some background, we have to confirm
non-existence of not only the ghost instability but also the gradient instability.
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B.3 Tachyonic instability

Finally, we discuss an instability arising from a mass term instead of the kinetic term. A
tachyonic instability appears in a field with a wrong sign mass term. A typical Lagrangian is

L = −1

2
(∂φ)2 +

m2

2
φ2 . (B.3.1)

The long wavelength mode (k → 0) tends to

φ(t) ∼ e±mt , (B.3.2)

thus the solution exhibits an unstable mode. The time scale of the instability is given by

tinst ∼ m−1 . (B.3.3)

Differently from previous two instabilities, the time scale of tachyonic instability is bounded.
Furthermore, in the short wavelength mode, we may ignore the mass term compared with the
kinetic term. Hence, the tachyonic instability is not sensitive for high energy modes.

B.4 Ostrogradsky instability

It is known that, when the equations of motion contain a third derivative or higher than it, the
system is unstable. In other words, a Lagrangian with higher derivatives gives an unstable system.
The instability associated with higher derivatives are called Ostrogradsky instability (see [199,200]
for reviews). In this section, we show why such higher derivatives lead to the instability. For
simplicity, we shall only consider a point particle in one dimensional space whose Lagrangian is
assumed to be L = L(q, q̇, q̈).

In the Lagrangian formulation, the Euler-Lagrange equation is given by

∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
= 0 . (B.4.1)

This equation may contain fourth derivatives of q which reads that 4 independent initial data are
required to determine the dynamics of the system.

In the Hamiltonian formulation, we may need four independent canonical variables due to
higher derivatives. The Ostrogradsky’s choices are

Q1 = q , P1 =
∂L

∂q̇
− d

dt

∂L

∂q̈
,

Q2 = q̇ , P2 =
∂L

∂q̈
. (B.4.2)

An assumption of the Ostrogradsky’s theorem is the Lagrangian is non-degenerated: q̈ can be
expressed in terms of the canonical variables by solving the equations (B.4.2); that is, there exists
a function a(Q1, Q2, P2) such that

P2 =
∂L

∂q̈
(q, q̇, q̈)

∣∣∣∣
q=Q1,q̇=Q2,q̈=a

. (B.4.3)

Under the non-degeneracy of the Lagrangian, the Hamiltonian is expressed as

H(Q1, Q2, P1, P2) = P1q̇ + P2q̈ − L

= P1Q2 + P2a(Q1, Q2, P2)− L(Q1, Q2, a(Q1, Q2, P2)) . (B.4.4)

The Hamilton’s equations derived from the Hamiltonian indeed reproduce the result obtained from
the Euler-Lagrange equation.

The Ostrogradsky’s Hamiltonian is linear in the variable P2. Therefore, the Hamiltonian is
unbounded from below (and above), which leads to the system has no stable state. This is the
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consequence of higher derivative theories. The Lagrangian with higher derivatives describes a
system with unbounded energy; thus the system is unstable.

An example is a higher derivative generalization of the harmonic oscillator described by the
Lagrangian

L = − g

2ω2
q̈2 +

1

2
q̇2 − ω2

2
q2 , (B.4.5)

where g, ω are constant. The Euler-Lagrange equation admits a solution

q(t) = A+ cos(k+t) +B+ sin(k+t) +A− cos(k−t) +B− sin(k−t) , (B.4.6)

where

k± = ω

√
1±√

1− 4g

2g
. (B.4.7)

For this system, the Ostrogradsky’s canonical momenta are given by

P1 = q̇ +
g

ω2
q(3) , (B.4.8)

P2 = − g

ω2
q̈ . (B.4.9)

Then the Hamiltonian is

H = P1Q2 −
ω2

2g
P 2
2 − 1

2
Q2

2 +
ω2

2
Q2

1 . (B.4.10)

The energy of the system is evaluated by substituting the solution of the Euler-Lagrange equation
into the Hamiltonian. The on-shell Hamiltonian is

H =
1

2

√
1− 4gk2+(A

2
+ +B2

+)−
1

2

√
1− 4gk2−(A

2
− +B2

−) , (B.4.11)

which clearly shows that the − mode is the ghost state since it has a negative energy.
The Ostrogradky’s theorem is derived under the assumption that the Lagrangian is non-

degenerated. The non-degeneracy suggests that the system has no constraint. However, when
the Lagrangian is degenerated, i.e., the Hessian is degenerated, zero eigenvalues of the Hessian
leads to constraints and then the unstable mode can be eliminated by the constraints (see [201]
for an explicit example). The degenerated Lagrangian with higher derivatives can evade the Os-
trogradsky instability.
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