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1.1 Introduction 

 

 

     Along with the explosive progress in the modern information industry, world’s total data 

is expected to exceed 40 zettabytes in 2020 [1]. Due to this exponential increase in data volumes, 

hard disk drive (HDD), which plays a major role in the magnetic recording media, currently 

required an areal recording density of more than 1.0 Tbit/in
2
; the Advanced Storage Technology 

Consortium (ASTC) released the technology roadmap for the research and development of 

HDD towards ultra-high density magnetic recording (Fig. 1.1.1) [2]. Conventional HDD 

employs continuous granular film media, in which the magnetic particles are separated by the 

non-magnetic grain boundaries [3,4]. In this film media data is stored in ensembles of several 

magnetic grains, thus to achieve higher areal density the grain size has to be reduced in several 

nanometer size. Because the smaller volume of magnetic particle would result in loss of thermal 

stability due to the superparamagnetic characteristics of the particle, use of ferromagnetic 

materials with high uniaxial magnetocrystalline anisotropy, Ku, is required. However, high Ku 

materials require high switching magnetic field, which makes difficult to write a data. To 

overcome these trilemma among high areal density, thermal stability, and writeability, several 

technologies were proposed as promising candidates for the ultra-high density magnetic 

recording media as described in Fig. 1.1.2 [5]. 

 

     Bit patterned magnetic recording (BPMR) [6] is expected to achieve areal densities more 

than 1.0 Tbit/in
2
 by physically separating the magnetic grains to form isloated nanodot arrays, 

which is explained in detail in next section. Shingled write recording (SWR) combining two 

demensional mangetic recording (TDMR) [7] utilizes wide write-pole to write a series of 

overlapping tracks, enabling to achieve high track density. In energy assisted magnetic 

recording, such as heat assisted magnetic recording (HAMR) [8, 9] and microwave-assisted 

magnetic recording (MAMR) [10, 11], high areal density can be achied by temporary reducing 

the coercivity with heating or microwave filed at nanometer sized region, allowing the use of 

high Ku materials to maintain high thermal stability at ultra-high areal densities. In future 

technologies, employment of HAMR in BPM would allow further increase in areal density, 

which is expected to exceeds 10 Tbit/in
2
 as described in Fig. 1.1.1.  
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Fig. 1.1.1 Technology roadmap of magnetic recording in hard disl drive [2] 

 

 

Fig. 1.1.2 Future technology options for HDD storage. (a) Bit patterned magneticc recording 

(BPMR), (b) heat-assisted mangetic recording (HAMR), (c) microwave-asisted magnetic 

recording (HAMR), and (d) shingled write recording with two dimensional magnetic recording 

(SMR/TDMR) [5] 
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1.2 Ferromagnetic Materials with High Ku 

 

 

In order to achieve Tbit-level recording density in BPM, energy barrier of ferromagnetic 

nanodots is required as following Eq. (1.3.1) to stabilize stored data without an effect of 

superparamagnetic limit; where Ku is uniaxial magnetocrystalline anisotropy constant, V is 

volume of ferromagnetic, kB is Boltzmann constant and T is temperature. 

 

KuV > 60 kBT 

 

Superparamagnetic limit is caused when magnetic anisotropy energy KuV is below the right 

hand side, where kBT is a thermal energy, thus in order to achieve both small volume and 

thermal stability high Ku materials are required in ultra-high density magnetic recording. Table 

1.3.1 summarized the high Ku materials, which was referred to Ref. [9]. CoPt is one of the high 

Ku materials that their magnetic properties change with alloy composition, for example, 

hcp-CoPt, Co3Pt [9, 12] which are consist of cobalt rich composition and L10 ordered structure 

CoPt [9, 13] at equiatomic composition. Although, this ordered alloy has been studied to apply 

in magnetic recording media due to its high magnetic anisotropy, post annealing at high 

temperature is required for the phase transformation. Hcp-CoPt shows relatively high magnetic 

anisotropy without any annealing treatment at the as-deposited state, which simplifies the 

fabrication process of magnetic recording media. On the other hand, among high Ku materials, 

L10-FePt [13, 14] is expected as a leading candidate since it shows 10 times higher Ku than 

CoPtCr alloys [9, 15], as used in conventional HDD. The ordered Fe14Nd2B [16, 17] and SmCo5 

[18, 19] also exhibit high Ku values, although these materials are considered to be difficult for 

the BPM application due to the corrosion issue.The minimal stable grain size, Dp, in table 1.3.1 

was calculated from Eq. (1.3.1), assuming that the magnetic grain is 10 nm-thick columnar 

shape. The calculated values showed that the FePt can be minimized to the diameter of 2.3 nm, 

which enables to achieve thermal stability at areal density of more than 50 Tbit/in
2
.  

 

     As described above, the use of high Ku materials in BPM system is significant to achieve 

high thermal stability at Tbit/in
2
 areal density. In this thesis, hcp-CoPt alloy (chapter 2, 3) and 

L10-FePt (chapter 4, 5) alloy were applied for the fabrication process of nanodot arrays due to 

their excellent features described above.  

  

(1.3.1) 
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1.3 Bit Patterned Recording Media 

 

 

     Bit patterned recording media (BPMR) [6, 20-23] consists of physically isolated arrays of 

ordered ferromagnetic nanodot with diameter of about 10 nm, and each dot is magnetized to 

store a data, that is, one dot functions as one bit. For the conventional granular film media, 

because bit is recorded in assembled magnetic grains, high signal to noise ratio (SNR) caused 

by the demagnetization between each magnetic grain and thermal instability are considered as 

significant issues for achieving high areal density. Figure 1.4.1 shows the comparison between 

continuous granular film media and bit patterned media (BPM) [23]; 1 and 0 are attributed to 

the magnetization directions in up and down directions. In BPM, unfavorable magnetic coupling 

of each dot is eliminated due to the structural feature of physically isolated nanodots, thus low 

SNR can be achieved. In addition, since the grain size is allowed to be as large as the bit size in 

BPM, high value of Ku is not necessary to maintain high thermal stability, which avoids the 

insufficient writeability. Due to these features, areal density beyond 1.0 Tb/in
2
 is expected to 

achieve in BPM.  

 

     For the practical use of BPM, several studies on the development of writing and reading 

of nanodot arrays were reported [24, 25]. In order to achieve high writeability in BPM, low 

switching field distribution for nanodots is significant. Grobis et al. demonstrated the recording 

performance of BPM by employing exchange coupled composited (ECC) structure to reduce the 

switching filed distribution [25]. ECC structure consisted of Co/Pd and Co/Ni multilayer 

structure, in which Co/Pd was hard layer and Co/Ni was soft layer. By optimizing the aspect 

K u M s H k D p

/ 10
7
erg cm

-3
/ emu cm

-3
/ kOe / nm

CoCr8Pt22 0.7 500 28.0 7.3

Co3Pt 2.0 1100 36.4 4.3

CoPt 4.9 800 122.5 2.7

FePt 7.0 1140 122.8 2.3

Fe14NdB 4.6 1270 72.4 2.8

SmCo5 20 910 439.6 1.4

Materials

Table 1.3.1 Magnetic properties of high K u  materials
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ratio of magnetic island and write synchronization between the magnetic islands and the 

switching of the write head field, single track recording was successfully performed in 60 

Gbit/in
2
 BPM with commercially available recording head (Fig. 1.4.2) [25].  

 

 

Fig. 1.3.1 Schematic illustrations of (a) conventional granular film media and (b) bit patterned 

media. The magnetizations in upper and downward directions are described as 1 and 0 in the 

images [23]. 

 

 

Fig. 1.3.2 Demonstration of recording performance of 60 Gbit/in
2
 BPM with (a) good and (b) 

poor write synchronization. The scale bar is 1 m [25]. 

 

  

0 1 0 101011 0 1 0 1 0 1 0 1

(a) (b)

(a) (b)
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1.4 Fabrication Process of Bit Patterned Media 

 

 

     Since the concept of BPM was proposed, several approaches on the fabrication of ordered 

ferromagnetic nanodo arrays for the use in BPM were proposed. In many case, the fabrication of 

nanodot arrays were performed by top-down approach, such as patterning the physically 

deposited ferromagnetic continuous films by lithography techniques. By contrast, 

electrochemical processes, so-called bottom-up approach, were also proposed as an alternative 

approach due to its excellent features of high areal selectivity and high deposition uniformity for 

fabricating micro/nano structure. In these methods, ferromagnetic materials are deposited inside 

the patterned substrate to fabricate nanodot arrays. Here, several examples for fabrication of 

nanodot arrays were introduced. 

 

 

1.4.1 Physical Fabrication Process 

 

 

     Initially, the fabrication of BPM was attempted by depositing magnetic layer with 

perpendicular anisotropy onto pre-patterned pillar substrate [25-27]. In this method, Si substrate 

was etched by combining lithography technique and reactive ion etching (RIE). Because the 

deposition of magnetic layer is independent from the patterning process, magnetic properties is 

not affected by the etching process. Co/Pd and Co/Pt multilayer structure were suitable for this 

fabrication approach, since perpendicular anisotropy was originated from the interface of each 

layer these systems do not need to apply seed layer to induce magnetic anisotropy. Yang et al. 

reported fabrication process of Co/Pd multilayer magnetic nanodots with 3.3 Tbit/in
2
 (15 nm in 

pitch) by fabricating pillar substrate via electron beam lithography (EBL) with hydrogen 

silsesquioxane (HSQ) resist as shown in Fig. 1.4.1 [27]. However, as the areal density increases, 

the side magnetic materials deposited at trench or wall of the pillar causes undesired magnetic 

decoupling, which is considered as critical issues for achieving Tbit/in
2
 density. In addition, this 

system is suitable for the multilayer structure, but other materials with high perpendicular 

magnetic anisotropy, such as FePt and CoPtCr, were difficult to apply. 
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Fig. 1.4.1 Schematic of fabrication process of nanodot arrays. (b)-(d) SEM images  

of patterned HSQ resist fabricated by EBL. (e), (f) SEM images of Co/Pd nanodots with  

1.9 Tbit/in
2
 (e) and 3.3 Tbit/in

2
 (f) [27]. Copyright 2011 by Nanotechnology. Reproduced  

with permission of Nanotechnology via Copyright Clearance Center. 

 

 

     Along with the development of patterning process or lithography technique, 

ferromagnetic nanodots were fabricated by patterning a continuous magnetic layer as alternative 

approach to depositing magnetic layer on pre-patterned substrate. In this method, magnetic layer 

with high perpendicular magnetic layer was etched by focused ion beam [28, 29] or RIE [30, 

31]. Figure 1.4.2 illustrates the fabrication process of magnetic nano dot arrays fabricated by 

using electron beam lithography and RIE demonstrated by Albrecht et al [31].  
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 Fig. 1.4.2 SEM images of (a) developed block copolymer pattern on Si master  

template, (b) Si master template, (c) quartz replica working template, (d) imprinted  

resist on disk, and (e) finished magnetic nanodots (inset: cross-section TEM image) [31]. 
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In order to further achieve higher areal density, fabrication process of nanopore patterned 

substrate was studied by the application of UV-cure nanoimprint lithography (UV-NIL) [32-34] 

and electron beam lithography (EBL) [34-37], which are powerful technique for the fabrication 

of nanopore patterned substrate with Tbit/in
2
. In UV-NIL process, UV-transparent mold is 

pressed into UV-curable resist coated on the substrate and yields a negative copy of the mold by 

UV exposure. Since this process utilize mold, it has advantages of high resolution and high 

throughput. On the other hand, EBL is a maskless lithography technique, which electron beam 

directly draws desired patterns in several nanometers with high resolution. Although it shows 

low throughput, these features of EBL make it suitable for fundamental study of fabricating 

nanodot arrays with ultra-high recording density. In addition, nanopore patterns fabricated by 

EBL can be used to prepare the imprint template for application to UV-NIL. Based on the detail 

optimization of development process, Yang et al. demonstrated the high-resolution patterning of 

2.0 Tbit/in
2
 (18 nm in pitch) and 4.5 Tb/in

2
 (12 nm in pitch) by using negative-type resist (Fig. 

1.4.3) [36]. Utilizing the patterned substrate, fabrication of an imprint template has been also 

successfully demonstrated by the formation of Cr dot with 1.5 Tbit/in
2
 (21 nm in pitch) [37]. In 

this thesis, nanopore patterned substrate was fabricated by EBL, and to achieve high areal 

density fabrication process of nanopore patterned substrate was investigated in detail in chapter 

2. 

 

Another approach to fabricate nanopore patterned substrate is the directed polymer 

self-assembly, which combines top-down advanced lithography with bottom-up self-assembling 

block copolymer (BCP) materials [38-40]. BCP materials can form periodic patterns with 

desirable shape in a self-assembled manner, which overcomes the low throughput of EBL 

process. For the patterning, low density patter is fabricated by EBL to guide the BCP into 

self-assembled domains. Yang et al. have successfully demonstrated the fabrication of nanopore 

patterns with 1.0 Tbit/in
2
 on 6 inch fused silica template by using cylinder-forming poly 

(styrene-b-methyl methacrylate) (PS-b-PMMA) with chemical pre-pattern performed via EBL 

(Fig.1.4.4) [40]. Furthermore, they succeeded to fabricate imprint template for the UV-NIL 

process on 2.5 inch disk size media by using the patterned substrate, and succeeded to transfer 

into CoCrPt magnetic layer with 1.5 Tbit/in
2
 by ion beam etching.  
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Fig. 1.4.3 SEM images of dot patterning with HSQ resist fabricated by EBL. 

(a) 2.0 Tbit/in
2
, (b) 2.9 Tbit/in

2
, and (c) 4.5 Tbit/in

2
 [36]. 

 

 

Fig. 1.4.4 (a) Schematic illustration of nanopore fabrication on fused silica substrate using 

PS-b-PMMA. (b) Large-scale SEM image of a 1.0 Tbit/in2 nanopore patterned substrate with 

27.0 nm in pitch. (c) A fabricated 6 inch fused silica template. (d) Magnified SEM image of 

nanopore patterned substrate and (e) cross-sectional SEM image of the substrate [40]. 
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     As described above, the physical fabrication process demonstrated the fabrication process 

of nanodot arrays with Tbit/in
2
 areal density. However, because magnetic layer is patterned by 

etching process, the magnetic properties of etched area is deteriorated by the damage during the 

process, also nanodots should contain random grain boundaries originated from the initial 

magnetic layer. In order to achieve high SNR and magnetic properties in BPM system, 

fabrication of highly uniform nanodot arrays is essential, because defects [41], grain boundaries 

[42], cause the variation in the switching field of each dot, resulting in the noise to degrade the 

recording performance. 

 

 

1.4.2 Self-Assembly of Nanoparticles 

 

 

     Self-assembly of nanoparticles with high magnetic anisotropy was expected as an 

alternative approach to potential use in BPM system [43-45]. Sun et al. first demonstrated the 

formation of assembled arrays of FePt nanoparticles having diameter of 4.0 nm with narrow size 

distribution of 5.0 % [44]. As mentioned in section 1.3, FePt exhibit high Ku value, thus it can 

maintain magnetic anisotropy with small volume, which makes it suitable for the application in 

nanoparticles with a size of few nano-meters. FePt nanoparticles were prepared by using 

combination of oleic acied and oleyl amine to stabilize the monodisperse FePt nanoparticles. 

Synthesis of nanoparticles was carried out by reduction of Pt(acac)2 and by decomposition of 

Fe(CO)5 in high temperature solutions. The spacing of nanoparticles can be controlled by 

changing the ligand of FePt colloids; 6.0 nm FePt nanoparticles with a spacing of 4.0 nm and 

1.0 nm with different ligands were fabricated. In addition, arrays of 4.0 nm FePt nanoparticles 

without agglomeration were observed upon annealing at 560 
o
C for 30 min; the particles were 

single crystal with L10-ordered structure. In addition, Hachisu et al. successfully demonstrated 

the uniform arrangement of 5.6 nm FePt nanoparticles by using (3-mercaptopropyl) 

trimethoxysilane, MPTMS as an interlayer between nanoparticles and substrate with a 

geometrical structure prepared by UV-NIL as shown in Fig. 1.4.5 [45]. 

 

     Although, high areal density was achieved in the arrays of self-assembled nanoparticles, 

orienting the magnetic easy axis of particles in the perpendicular direction is considered as 

critical issue for the application in BPM system. Using magnetic field during the post annealing 
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process was attempted to guide the magnetic easy axis of nanoparticles [43], however, there 

were no successful reports. 

 

 

Fig. 1.4.5 Scheme of uniform arrangement of FePt nanoparticle by hole-patterns and 

chemical bonding. Process 1–4: the preparation of hole-patterns on Si (100) substrate, 

and process 5–7: the immobilization and arrangement of FePt nanoparticles on the 

hole-patterns with modified MPTMS [45]. Copyright 2012 by J. Magn. Magn. Mater.  

Reproduced with permission of J. Magn. Magn. Mater. via Copyright Clearance Center. 
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1.4.3 Electrocheimcal Fabrication Process 

 

 

     Electrochemical fabrication processes have been widely used as a fabrication method of 

metal films to functionalize material surface, such as corrosion resistance and abrasion 

resistance. Due to its precise deposition control at nanoscale as well as highly uniform 

formation on complex structure, it has been applied in, for example, fabrication process of high 

density mounting board and ultra-fine wiring in ultra large scale integration (ULSI) [46], and 

thin film magnetic head for hard disk drive (HDD) [47]. In this process it is possible to deposit 

metal at electrochemically active site, in principal it can be assumed as feasible fabrication 

process of nanostructured devices.  

 

     In this section, the outlines and features on electrodeposition process, which is used in 

this thesis for the fabrication of nanodot arrays, are overviewed.  

 

     Electrodeposition process of ferromagnetic nanostructures has attracted attention for the 

applications in fields of magnetics [48, 49] and biomedical device [50]. Especially, fabrication 

of ferromagnetic nanowires was extensively studied, where ordered anodic alumina oxide 

(AAO) templates with high aspect ratio were commonly used. Several groups reported the 

fabrication of ferromagnetic nanowires such as Ni, Co, and Fe with AAO templates, in which 

coercivity was tuned by changing the pore diameter and aspect ratio [51-53]. Fabrication of 

nanowires with high Ku value, such as CoPt and FePt, was also attempted by utilizing AAO 

template [54-56]. Haung et al. have first demonstrated the fabrication of CoPt and FePt 

nanowires with a near stoichiometric composition by using a simple solution of cobalt/iron 

chloride and platinum chloride. And nanowires with 100 nm diameter showed coercivity of 3.0 

to 6.0 kOe after annealing at 700 
o
C [54]. Dahmane et al. also reported the fabrication of 

equiatomic CoPt and FePt nanowires embedded into AAO template with diameter of 60 nm and 

interpore distance of 100 nm and thickness of 40 m [56]. Upon annealing at 700 
o
C, coercivity 

up to 11 kOe was obtained in both CoPt and FePt with L10 structure. Yasui et al. successfully 

demonstrated the improvement of coercivity of L10-CoPt nanowires with diameter of 100 nm 

and interpore distance of 100 nm and thickness of 500 nm by controlling the crystal orientation 
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of CoPt with different types of underlayers [57]. In the case of W underlayer, CoPt showed 

random c-axis crystal orientation, whereas (001) orientation of L10-CoPt was obtained when 

(001) oriented Pt underlayer was applied. This improvement in the c-axis crystal orientation 

induced perpendicular mangetic anisotropy to increase coercivity up to 7.4 kOe with squareness 

of 0.96 after annealing at 700 
o
C.  

 

     For the practical use of electrochemical fabrication process in BPM system, several 

reports utilized lithography technique in fabrication of nanodot arrays [58-62]. Figure 1.4.6 

shows the typical flowchart of the fabrication processes of nanodot arrays utilizing nanoimprint 

lithographic technique [62]. Oshima et al. demonstrated the fabrication of Co nanodot arrays 

with 30 nm diameter, 100 nm pitch, and 350 nm height with coercivity of 1.9 kOe, and dynamic 

write/read measurement of the nanodot arrays was successfully demonstrated that the nanodots 

showed single-domain behavior in a perpendicular direction [63]. Sohn et al. fabricated 

hcp-CoPt nanodot arrays with 25 nm in diameter and 50 nm in pitch by combining UV-NIL and 

electrodeposition [64]. In this work, Ru underlayer, which has small lattice mismatch between 

CoPt, was applied to induce the perpendicular magnetic anisotropy of deposited CoPt, and 

coercivity of 2.5 kOe was achieved.  

 

 

Fig. 1.4.6 Schematic illustration of fabrication process of nanodot arrays 

with (a) EBL and (b) UV-NIL [62]. 
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Ouchi et al. also utilized UV-NIL for the fabrication of hcp-CoPt nanodot arrays [62, 65, 

66]. The fabrication of CoPt nanodot arrays were performed on glass disk substrate with a 

practical construction in perpendicular magnetic recording media consist of softmagnetic 

underlayer (SUL) and intermediate layer; 100 nm-thick CoZrNb layer was used as SUL and 

1.0-2.0 nm-thick (111) oriented Cu layer was used as an intermediate layer, which have close 

lattice constant with hcp-CoPt. CoPt nanodot arrays were uniformly fabricated with clear 

stacking of hcp lattice in perpendicular direction (Fig. 1.4.7) [66]. This uniform crystal 

orientation induced by Cu intermediate layer increased cercivity and M/Ms of nanodot arrays up 

to 5.4 kOe and 0.84. In addition, Ouchi et al. have demonstrated fabrication of CoPt nanodot 

arrays by combining EBL and electrodeposition to fabricate nanodot arrays with Tbit/in
2
 areal 

density. Based on the detail optimization of EBL conditions, such as conditions and process of 

development, nanopore patterned substrate with 10 nm diameter and 25 nm pitch, which 

corresponds to 1.0 Tbit/in
2
 areal density was successfully fabricated on Si substrate with (111) 

oriented Cu intermediate layer. The nanopore patterned substrate was further utilized for the 

electrodeposition of CoPt, and CoPt nanodot arrays with 1.0 Tbit/in
2
 was successfully 

demonstrated. This was the first and the only study that achieved the fabrication of nanodot 

arrays with Tbit-level areal recording density by electrochemical fabrication process.  
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Fig. 1.4.7 Cross-sectional TEM images of CoPt nanodot arrays with 120 nm height, 

150 nm diameter ans 300 nm pitches: (a, b) low magnification image and 

(c, d) high magnification image at the 20 nm height from the substrate [66]. 
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1.5 Strategy of This Study 

 

 

     As described, bit patterned media (BPM) is a promising candidate for the application in 

ultra-high density magnetic recording media. For the fabrication of BPM, physical fabrication 

process and self-assembly of magnetic nanoparticles have been extensively studied. However, 

the above mentioned approaches face difficulties in controlling the grain boundaries, the 

damage due to etching of the magnetic layer, or the crystal orientation of the nanoparticles, 

which cause media noise to degrade the recording performance. On the other hand, 

electrochemical fabrication process of ferromagnetic nanodot arrays has been proposed as an 

alternative approach due to its high areal selectivity and deposition uniformity at the nanoscale. 

Despite many studies on the electrodeposition of ferromagnetic nanostructures, such as 

nanowires, have been reported, there is no report of fabrication of nanodot arrays with Tbit-level 

areal density that exhibit sufficient coercivity for the application in BPM. Along with the 

increase in areal density, nanodots are miniaturized to 10 nm in diameter, therefore, to control 

the magnetic properties and deposition uniformity, it is significant to understand the mechanism 

of initial deposition stages of ferromagnetic metals inside the nanopore. However, little attention 

has been paid to the formation mechanisms inside the nanopore. 

 

     Against these backgrounds, this study aims to fabricate Tbit/in
2
 nanodot arrays with high 

coercivity by electrochemical process based on the detailed analyses of initial deposition stage 

and crystal structure of ferromagnetic nanodots. Especially, nucleation and growth process was 

analyzed to achieve nanodot arrays consist of single crystal structure, which is highly desirable 

for the application in BPM owing to its high coercivity and high crystallinity. Because hcp-CoPt 

exhibit high coercivity without annealing process, hcp-CoPt was utilized in fundamental studies 

of analyses of initial deposition stage and fabrication of nanodot arrays. In addition, to further 

demonstrate the applicability of electrochemical fabrication process, L10-FePt was focused on as 

a promising candidate for high Ku materials. 
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2.1 Introduction 

 

 

In BPM with Tbit-level areal recording density, high and uniform coercivity for each 

ferromagnetic nanodot is of extreme importance to achieve thermal stability and low media 

noise. When the morphology or crystal orientation is different for each nanodot, coercivity 

becomes non-uniform, thus resulting in the degradation of the magnetic properties of entire 

nanodot arrays. Thus, it is significant to fabricate nanodot arrays with highly uniform crystal 

orientations from the initial deposition stages. In the previous study, Ouchi et al. demonstrated 

the fabrication of CoPt nanodot arrays with 25 nm in pitch, which corresponds to 1.0 Tbit/in
2
 

areal density by electrodeposition combining electron beam lithography. However, there has 

been no report of fabrication of nanodot arrays with Tbit-level recording density with sufficient 

coercivity and deposition uniformity, which is applicable to BPM. 

 

In electrodeposition, diffusion of metal ions is strongly influencing the surface 

morphology and the thickness of the deposited film, especially when the deposition reaction 

proceeds under diffusion limited conditions, films having rough surface with a dendritic texture 

are formed. Also, in the case of alloy electrodeposition, such as CoPt electrodeposition, the 

difference of diffusion in each metal ion causes the variation in composition of the deposited 

films. Thus, to deposit films with uniform surface morphology and composition it is extremely 

important to control the diffusion of reactive metal ions to the electrode surface. Pulse 

electrodeposition and electrodeposition under forced convection conditions are known as a 

means of fabricating uniform deposits by controlling the diffusion layer of deposited metal ions. 

 

In this chapter, in order to achieve high coercivity of CoPt nanodot arrays with Tbit-level 

recording density, crystal structure was controlled by controlling the diffusion of metal ions with 

the application of rotating electrode. In addition, the crystal growth of ultra-fine nanodot arrays 

with 35 nm in pitch was analyzed in detail to achieve high crystallinity of nanodot arrays with 

high coercivity. 
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2.2 Experimental 

 

2.2.1 Fabrication Process of Nanopore Patterned Substrate by Electron 

Beam Lithography 

 

 

     A 60 nm-thick and (002) oriented Ru layer was sputter-deposited onto a Ti adhesion layer 

on top of an n-type Si (100) wafer, which was provided from the laboratory of Prof. Zngari in 

University of Virginia. Since the a-axis lattice spacing of (002) oriented Ru (0.269 nm) is close 

to that of hcp-CoPt (0.257 nm), Ru is the most commonly used element as an underlayer to 

induce the perpendicular magnetic anisotropy of the CoPt alloy [1-3]. Prior to the deposition of 

the nanodot arrays, nanopore patterns were fabricated onto the Ru substrate using an electron 

beam apparatus (ELS-7500, ELIONIX). First, the surface of the Ru layer was rinsed with 

acetone, ethanol, and ultra-pure water (UPW) for 5 min, respectively, using an ultrasonic bath 

(sonicator). An electron beam resist was then spin-coated onto the substrate at 5000 rpm to set 

the thickness of the resist to 30 nm. A mixture of the positive-type electron beam resist 

(ZEP520A-7, Nippon Zeon) and diluent (ZEP-A, Nippon Zeon) with a ratio of 1 to 2, and 

negative-type electron beam resist (TEBN-1, Tokuyama), which has a higher resolution than 

positive type resist, were utilized. The nanopore patterns with 15 and 35 nm in diameter and 

pitch were fabricated over patterned area of 105m
2
 by exposing to electron beam. After the 

exposure, development was performed using isopropanol as a developer, and the surface of the 

substrate was rinsed with UPW. To remove the residue inside the nanopore remaining after the 

development, the patterned substrate was exposed to excimer UV irradiation for 30 s prior to 

electrodeposition. The process conditions of EBL are summarized in Table 2.1. 
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2.2.2 Fabrication Process of CoPt Nanodot Arrays 

 

 

In order to deposit hcp-CoPt, CoPt alloy continuous films and nanodot arrays were 

electrodeposited at constant potential. The reduction of Co and Pt metal ions take place at 

negative potential where hydrogen evolution reaction occurs, thus alloy composition was tuned 

by selectively adjusting the potential to minimize the effect of hydrogen evolution. Also, the 

overpotential is a strong function of nucleation and growth of deposited metals, which allows to 

control the grain size or crystal structure of the deposited films. Thus, in order to control the 

alloy composition and crystal structure of the deposited films, we employed potentiostatic 

method. The electrolyte shown in Table 2.2 was used for the CoPt electrodeposition. The bath 

temperature was 303 K, and the pH was adjusted to 5.2 by adding diluted NaOH. All 

electrochemical measurements were performed in a three-electrode cell using a potentiostat 

(HZ-5000, Hokuto Denko); consisting of a Co wire, an Ag/AgCl electrode, and a sputter 

deposited Ru substrate as the counter electrode, reference electrode, and working electrode, 

respectively. To deposit uniform alloy films and nanodot arrays, CoPt was electrodeposited 

using a rotating electrode (HR-300, Hokuto Denko); the surface area was 0.503 cm
2
 ( 8.0 mm) 

and the rotating speed was optimized to minimize the deterioration of the nanopore patterned 

substrate while also controlling the mass transfer of the metal ions to the electrode surface. 

Ga-In paste was applied between the backside of the substrate and the rotating electrode to 

ZEP520A-7 : ZEP-A = 1:2 TEBN-1

(positive-type EB resist) (negative-type EB resist)

Spin coat rate 5000 rpm, 60 s 5000 rpm, 60 s

Prebake 180 
o
C, 3 min 110 

o
C, 3 min

Thickness of resist 30 nm 25 nm

Accelerating voltage 50 kV 50 kV

Beam current 20 pA 20 pA

Dose value 3.0-10 fC / dot 0.022-0.040 fC / dot

Developer IPA IPA

Developing time 5 s 30 s

Developing temperature 5 
o
C RT

Rinse UPW UPW

Table 2.2.1 Operating conditions of electron beam lithography 

Resist
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obtain sufficient conductivity. 

The crystal structure of the deposited films was investigated by an X-ray diffractometer 

(XRD, Rint-UltimaIII, Rigaku) with Cu K radiation, and the structure of the deposited nanodot 

arrays was observed by a transmission electron microscope (TEM, JEM-2010, JEOL). The 

morphology of the deposited CoPt films and nanodot arrays was observed by a high-resolution 

scanning electron microscope (HRSEM, S5500, Hitachi High-Tech.); all the nanodot arrays 

were observed after removing all the resists by exposing the samples to excimer UV irradiation 

for 2.0 min and rinsing with ethanol and UPW to avoid sample charge up. The alloy 

composition was determined by inductively-coupled plasma mass spectrometry (ICP-MS, 

7700x, Agilent). The thickness of the deposited films was measured using surface profiler (P-15, 

KLA-Tencor). The coercivity of the deposited films and nanodot arrays was measured using 

polar magneto-optical Kerr effect equipment (BH-810CPC-WU, NEOARK and BH-618PL-AU, 

NEOARK); the diameter of the laser spot area was 1.0 mm and 100 m for BH-810CPC-WU 

and BH-618PL-AU, respectively. Schematic image of fabrication process of nanodot arrays was 

shown in Fig. 2.1. 

 

 

 

Chemicals Concentration / mM

Pt(NO2)2(NH3)2 1.2-3.0

CoSO4･7H2O 100

(NH4)2C6H6O7 100

NH2CH2COOH 100

Bath temperature 30 oC

pH 5.2 (adjusted by NaOH)

Reference electrode Ag / AgCl

Counter electrode Co 

Table 2.2.2 Bath compositions and electrodeposition conditions of Co-Pt
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Fig. 2.2.1 Schematic image of fabrication process of nanodot arrays 

 

resist magnetic layer under layer Si substrate

Ru substrate Coating of EB resist

EB

EB exposure Development （IPA）

Excimer UV irradiation
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2.3 Fabrication of Nanopore Patterned Substrate with Tbit/in
2
 Areal 

Density 

 

2.3.1 Formation of Nanopore patterned substrate on Ru underlayer 

 

 

     In the previous study, Ouchi et al. developed the fabrication process of nanopore 

patterned substrate with electron beam lithography on the Cu underlayer by the detailed 

analyses of effects of the dose values and developing processes on the formation of nanopore 

patterns. In this study, Ru was applied as an underlayer of CoPt to induce the perpendicular 

magnetic anisotropy [1-3]. Therefore, fabrication process, such as prebake temperature, was 

optimized for the fabrication of nanopores on Ru substrate. Prebake process is an important 

process to evaporate the excess solvent and to harden the resist, which affects the resolution of 

exposure. When the solvent remains in the coated resist, sensitizer will be prevented from the 

light, which significantly decreases the photosensitivity of the resist. Thus, it is significant to 

bake the resist in adequate temperature to prevent under-bake the resist; the optimum prebake 

temperature of ZEP520A-7 is reported as 170~200 
o
C for 2.0~5.0 min [4]. Considering this 

point, coated resist was prebaked at 180 
o
C for 3.0 min.  

 

     Figure 2.3.1 compares the SEM images of nanopores with 25 nm in pitch fabricated with 

prebake temperature of 90 
o
C for 3 min and 180 

o
C for 3.0 min, respectively. The dose values 

were set to 5.0 fC/dot, 4.0 fC/dot, and 3.0 fC/dot, which were optimized in previous studies. The 

diameters of the nanopores were 10 nm, 8.0 nm, and 7.0 nm, respectively. The nanopores were 

partially overlapped to the neighbor nanopores with the lower prebake temperature, whereas the 

nanopore patterns were uniformly fabricated over the patterned area in all dose values with 

higher prebake temperature, indicating the improvement in the photosensitivity of the resist. 

Thus, in this study, prebake was conducted with 180 
o
C for 3.0 min in the case of positive-type 

resist. 

 

     Figure 2.3.2 shows the SEM images of nanopores with 100 nm and 35 nm in pitch 

fabricated with various dose values. From Figs. 2.3.1 and 2.3.2, the diameter of the nanopore 

was increased with narrower pitch due to the increase in backscattering of the electron beam; 

the diameters of the nanopore were 8.0 nm and 10 nm, for the nanopores with 100 nm and 35 

nm in pitch, respectively at dose values of 5.0 fC/dot. By controlling the dose values the 

diameter of the nanopores was controlled in each nanopores with different pitches. 
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Fig. 2.3.1 SEM images of nanopores with 25 nm in pitch fabricated with prebake temperature of 

(a-c) 90 
o
C and (d-f) 180 

o
C for 3 min. The dose values were (a, d) 5.0 fC/dot, (b, e) 4.0 fC/dot, 

and (c, f) 3.0 fC/dot. 

 

 

Fig. 2.3.2 SEM images of nanopores with (a-c) 100 nm and (d-f) 35 nm in pitch. The dose 

values were (a) 10 fC/dot, (b) 7.0 fC/dot, and (c) 5.0 fC/dot for 100 nm in pitch, and (d) 5.0 

fC/dot, (e) 4.0 fC/dot , and (f) 3.0 fC/dot for 35 nm in pitch.  

100 nm100 nm100 nm

100 nm100 nm100 nm

(a) (b) (c)

(d) (e) (f)

100 nm100 nm100 nm

100 nm100 nm100 nm

(a) (b) (c)

(d) (e) (f)
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     Based on the above results, CoPt was deposited with -0.9 V (vs. Ag/AgCl) for 10 s inside 

the nanopores fabricated with various dose values to fabricate nanodot arrays with 35 nm and 25 

nm in pitch; corresponding SEM images are shown in Fig 2.3.3. Prior to the electrodeposition, 

the nanopore patterned substrate was exposed to excimer UV irradiation for 30 s. At smaller 

dose amount CoPt was partially deposited to form nano-uniform nandots in both pitches, 

suggesting that the dose values were insufficient to fabricate nanopores. At higher dose values, 

CoPt was uniformly deposited inside the nanopore with 35 nm in pitch, whereas the diameter of 

each nanodot was non-uniform in the case of 25 nm in pitch due to the overlap of the 

neighboring nanopores caused by the backscattering of the electron beam. From these results, it 

was suggested that the fabrication of nanopore with Tbit/in
2
 is difficult to achieve by the 

application of positive-type resist (ZEP520A-7) owing to the difficulties in controlling the 

backscattering of the electron beam. 

 

 

Fig. 2.3.3 SEM images of CoPt nanodot arrays with (a-d) 35 nm and (e-h) 25 nm in pitch. The 

dose values were (a) 10 fC/dot, (b) 7.0 fC/dot, (c) 5.0 fC/dot, and (d) 4.0 fC/dot for 35 nm in 

pitch, and (e) 6.0 fC/dot, (f) 5.0 fC/dot, (g) 4.0 fC/dot, and (h) 3.5 fC/dot for 25 nm in pitch. 

  

100 nm100 nm100 nm100 nm

100 nm100 nm100 nm100 nm

(a) (b) (c) (d)

(e) (f) (g) (h)
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In order to fabricate nanodot arrays with Tbit/in2 areal density, negative-type resist 

(TEBN-1) was applied. Bilenberg et al. reported that the TEBN-1 exhibits high resolution in 

fabricating nanopattern with linewidth of 10 nm [5]. In addition, in the case of patterning with 

negative-type resist, nanopore patterns are formed by drawing the resist in line shape compared 

to the dot shape in positive-type resist, which enables to reduce the backscattering of the 

electron beam by applying smaller dose values. Figure 2.3.4 shows the SEM images of 

nanopore patterned substrate with 25 nm in pitch fabricated with the condition summarized in 

table 2.2.1: the dose value was set to 0.040 fC. The nanopores with 25 nm in pitch and 15 nm in 

diameter were fabricated over the patterned area. However, the bonding between neighboring 

nanopore was observed especially at the center of the patterned area [Fig. 2.3.4 (c)], which 

could be due to the larger scattering of the electron beam at the center part compared to the edge 

part of the patterns.  

 

 

Fig. 2.3.4 SEM images of nanopore patterned substrate with 25 nm in pitch and 15 nm in 

diameter fabricated by applying negative-type resist (TEBN-1). The dose value was 0.040 fC. 

 

(C) (A)

(B)

(d)

(b)

(c)

40 m

(a)

(c) (d)

(b)

200 nm200 nm

200 nm
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     In order to suppress the scattering of the electron beam at the center of the patterned area, 

dose values were optimized to gradually reduce the dose values towards the center part; the 

schematic image of this method and a typical SEM image of patterned substrate fabricated by 

this method are shown in Fig. 2.3.5. In this method, the dose values were reduced towards the 

center part at 8.0 m intervals as described as (i-iii) in the schematic image of Fig. 2.3.5. Table 

2.3.1 shows the lithography conditions with various dose values at (i-iii) position. The nanopore 

patterned substrates with 25 nm in pitch were fabricated with conditions summarized in table 

2.3.1. 

 

In order to investigate the uniformity of nanopores, patterned areas of (a), (b), and (c) 

described in the SEM image of Fig. 2.3.5 were observed by SEM; corresponding SEM images 

were shown in Fig. 2.3.6. In the case of condition A, the linewidth was broaden to reduce the 

diameter of the nanopore compared to the other lithography conditions, indicating the large 

scattering of the electron beam due to the higher dose values. By contrast, in condition C, 

linewidth was narrowed to form a bonding of neighbor nanopores due to the lower dose values. 

In the case of condition B and D, nanopores were uniformly fabricated with only a small part of 

the bonded nanopores. From these collective data, by optimizing the lithography processes, such 

as prebake conditions and dose values, fabrication of nanopore patterned substrate with Tbit/in2 

areal density was successfully demonstrated. 

 

 

Fig. 2.3.5 Schematic image of nanopore fabrication and a typical 

SEM image of total patterned area. 
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Fig. 2.3.6 SEM images of nanopore patterned substrate with 25 nm in pitch. Capital letters and 

small letters correspond to the lithography condition summarized in table 2.3.1 and patterned 

area described in Fig. 2.3.5, respectively.  

100 nm100 nm100 nm

(A-a) (A-b) (A-c)

100 nm100 nm100 nm

(B-a) (B-b) (B-c)

100 nm100 nm100 nm

(C-a) (C-b) (C-c)

100 nm100 nm100 nm

(D-a) (D-b) (D-c)

(i) (ii) (iii)

A 0.032 0.028 0.024

B 0.030 0.028 0.026

C 0.030 0.026 0.022

D 0.028 0.026 0.024

Condition
Dose value at each position / fC

Table 2.3.1 Dose values in each lithography condition
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2.4 Structural Control of Electrodeposited CoPt Nanodot Arrays with 

Tbit/in
2
 Areal Density 

 

2.4.1 Electrodeposition of CoPt Continuous Films with High Coercivity 

 

 

Prior to the deposition of nanodot arrays, the surface morphology, crystal structure, and 

magnetic properties of the CoPt continuous films deposited with and without bath agitation 

were analyzed to optimize the deposition conditions of the nanodot arrays. Figure 2.4.1 shows 

the linear sweep voltammograms of CoPt electrolyte under different rotating speeds of 0, 50, 

and 200 rpm. In order to eliminate the effect of electrolyte composition, the concentration of the 

Pt electrolyte was fixed to 2.4 mM. From the voltammogram, the deposition of Pt and Co starts 

at a potential of about -0.45 V and -0.70 V (vs. Ag/AgCl), respectively, whereas hydrogen 

evolution reaction starts below -1.0 V vs. Ag/AgCl. As the rotating speed increased the current 

density increased for Pt and Co deposition, which is attributed to the enhancement of mass 

transfer of Pt and Co to the electrode surface to increase the current density. Based on this 

voltammogram, CoPt alloy was deposited at applied potential of -0.9 V (vs. Ag/AgCl), in which 

the composition of the CoPt alloy was easily controlled by varying the Pt electrolyte 

concentration. 

 

Figure 2.4.2 shows the current-time transients during the CoPt electrodeposition with and 

without bath agitation under the same bath composition as Fig.2.4.1. After the current drop 

associated with the nucleation of the CoPt, the current density continuously decreased with 

deposition duration due to the slow diffusion of the metal ions to the electrode surface without 

agitation, indicating the diffusion limited growth of CoPt. On the other hand, the current density 

increased and plateaued in the case of bath agitation due to the enhancement of mass transport 

of the metal ions under forced convection caused by the rotating electrode, leading to the 

mitigation of diffusion limited growth of CoPt. These are typical effects of bath agitation during 

the deposition process, leading to an increase in the current density, which was also observed in 

Fig.2.4.1. 
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Fig. 2.4.1 Linear sweep voltammogram of CoPt electrolyte 

 

 

Fig. 2.4.2 Current-time transient during CoPt electrodeposition 

under agitation with different rotating speeds. 
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Figures 2.4.3 compares the surface morphology, observed by SEM, of the CoPt 

continuous films grown with a Pt electrolyte concentration of 2.4 mM, without and with bath 

agitation; the thicknesses of the films were ca. 30 nm for all deposition conditions. The surface 

morphology of the CoPt film without agitation showed that at the initial deposition stage, CoPt 

grew along with Ru to form a grain structure, followed by the growth of a net-like structure, 

which could be caused by the diffusion-limited condition at this potential similar to dendritic 

growth. On the other hand, net-like structure was vanished to form uniform and smooth grain 

structure under bath agitation, and the apparent grain size became much smaller and surface 

morphology became uniform, thus resulting in an isolated grain structure. As described in 

current-time transient, current density increased under bath agitation, indicating a higher 

number of CoPt nuclei, and therefore a smaller grain size and uniform surface morphology was 

achieved. It should be noted that the higher rotating speed could deteriorate the nanopore 

patterned substrate during the electrodeposition; indeed, a major deterioration of the substrate 

was confirmed by SEM observation over 100 rpm. Thus, the following analyses of the CoPt 

continuous films and the nanodot arrays were conducted under the rotating speed of 50 rpm, 

which was confirmed to be effective in controlling the diffusion of metal ions for the deposition 

of uniform films (Figs. 2.4.2 and 2.4.3). 
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Fig. 2.4.3 SEM images of surface morphology of ca. 30 nm thick CoPt continuous films 

deposited without (a) and with bath agitation at (b) 50 rpm, (c) 100 rpm, and (d) 200 rpm. Pt 

electrolyte concentration was 2.4 mM. 

 

 

To deposit CoPt continuous films with a composition of CoPt = 80:20, which should 

show high perpendicular coercivity, composition of CoPt was controlled with Pt electrolyte by 

changing the concentration from 1.2 mM to 3.0 mM. The composition of the as-deposited films 

were determined by ICP-MS analysis; the thickness of the films was ca. 40 nm. The alloy 

compositions of the deposited CoPt films with different Pt concentrations are plotted in Fig. 

2.4.4. Because the concentration of the Pt electrolyte is two orders of magnitude lower than that 

of the Co electrolyte as shown in Table 2.2.2, the electrolyte agitation should strongly enhance 

the mass transport of the Pt ions to suppress the diffusion-limited condition, whereas diffusion 

of the Co ions is less influenced under agitation due to its high concentration. Therefore, the 

composition of Pt in the deposited film with agitation increased under the same concentration of 

Pt electrolyte. Nevertheless, 40 nm-thick CoPt films with a near-ideal composition of CoPt = 

83:17 were achieved with Pt electrolyte concentrations of 1.6 and 3.0 mM for with and without 

bath agitation, respectively.  

(a) (b)

200 nm

(c) (d)

200 nm200 nm

200 nm
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Fig. 2.4.4 Alloy composition of CoPt continuous films deposited 

with different concentration of Pt electrolyte 

 

 

Table 2.4.1 shows the thickness-dependence of the alloy composition of CoPt films with 

different thicknesses measured by ICP-MS. Considering that Co and Pt are deposited from 

around -0.7 and -0.3 V (vs. Ag/AgCl), respectively, in the electrolyte used in this work, the 

diffusion layer is not stably formed at the initial deposition stage; thus the noble metal, Pt, is 

preferentially deposited compared to Co resulting in a slight increase in the Pt composition in 

both deposition conditions. In addition, when the electrolyte was not agitated, the Pt 

composition was higher than that of the film deposited with electrolyte agitation at its initial 

deposition stage (thickness of 1 and 2 nm, respectively), thus confirming the large composition 

gradient with thickness. When the composition gradient of the film is large, the film should 

contain several crystal structures, especially the near-equiatomic composition of CoPt as 

observed at the initial deposition stage should exhibit fcc structure phase. On the other hand, the 

composition rarely differed from each deposition stage and the alloy composition was closer to 

the ideal composition of Co:Pt = 80:20 from its initial deposition stage under agitation, 

indicating that CoPt is likely to grow as an hcp structure from its initial deposition stage. This 

uniform composition is attributed to the formation of the diffusion layer with constant thickness 
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under forced convection.  

 

 

 

 

To investigate the crystal structure of the deposited CoPt films, XRD patterns of the Ru 

substrate and ca. 40 nm-thick CoPt films deposited with and without bath agitation were 

measured; corresponding data are shown in Fig. 2.6. The Ru substrate showed two peaks 

corresponding to hcp (002) and hcp (101) at 42.3º and 44.2º, respectively, which were also 

observed in the diffraction patterns of the deposited CoPt films. All of the deposited films 

showed a diffraction peak of hcp (002) at 43-44º, indicating that CoPt grew in a perpendicular 

direction from the Ru substrate due to the small lattice mismatch between hcp Ru and hcp CoPt, 

which induces epitaxial-like growth. In addition, peak of hcp (002) shifted to negative value as 

the composition of Pt increased, which has large atomic radius compared to Co, increased, 

leading to the broadening of the lattice spacing of CoPt. 

  

Rotating speed Pt electrolyte Thickness

 / rpm / mM / nm Co/ at% Pt/ at%

0 3.0 1 59 41

0 3.0 8 75 25

0 3.0 21 78 22

50 1.6 2 64 36

50 1.6 8 71 29

50 1.6 20 72 28

Table 2.4.1 Thickness-dependence of alloy composition of CoPt continuous films

Alloy composition
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Fig. 2.4.5 XRD patterns of CoPt continuous films deposited  

(a) without and (b) with bath agitation 

 

 

Figure 2.4.6 compares the XRD patterns of CoPt films with a near-ideal composition of 

CoPt = 83:17 deposited with and without agitation. From the XRD patterns, the shape of the 

(002) peaks were different with and without bath agitation; the deposited film without agitation 

showed a broad (002) peak at 43.8º, whereas sharp (002) peak was observed at 43.2º with 

agitation. Table 2.5 summarizes the 2 and logarithmic intensity of the hcp (002) diffraction 

peak of CoPt. When the electrolyte was agitated, the logarithmic intensity increased from 2.9 to 

4.0, indicating that a highly oriented CoPt in the (002) direction was formed with electrolyte 

agitation. This increase in the crystallinity is due to the formation of a film with a uniform 

composition as observed in the composition analysis (Table 2.4) to have hcp structure from the 

initial deposition stages, whereas large composition gradient leads to the formation of partial fcc 

phases in the deposited films that decrease the crystallinity of hcp (002) structure without bath 

agitation.  
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Fig. 2.4.6 XRD patterns of Ru substrate and CoPt contrinuous films 

deposited with and without agitation. 

 

 

 

 

In addition, lattice mismatch between Ru underlayer and CoPt was investigated by 

calculating the a-axis of deposited CoPt films from hcp (002) peak. The lattice spacing d, which 

corresponds to the c-axis lattice parameter for (002) peak, was calculated from Bragg equation, 

where n is an integer and is the wavelength of the incident wave (1.5418 Ȧ for CuK). By 

using the calculated values of c-axis parameter, a-axis parameter was calculated based on the 

ratio of a- and c-axis of CoPt (c = 1.63a). 

 

Rotating speed

 / rpm Co/ at% Pt/ at% 2/ 
o

log(intensity) / -

0 83 17 43.8 2.9

50 83 17 43.2 4.0

Alloy composition CoPt-hcp(002)

Table 2.4.2 2 and peak intensity of hcp (002) of CoPt continuous films
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d =  
𝑛𝜆

2 sin 𝜃
 

 

The calculated values of c- and a-axis lattice parameters of the deposited films and theoretical 

values of these parameters of Ru and Co80Pt20 are summarized in Table 2.5. The calculated c- 

and a-axis parameters of the film deposited with bath agitation were in good agreement with the 

theoretical values of Co80Pt20, whereas the calculated values of the film deposited without 

agitation were not. This equivalence in the calculated values and theoretical values also provide 

evidence for the improvement of the crystallinity of the hcp structure under agitation compared 

to without agitation. In addition, lattice mismatch of a-axis parameter between Ru and deposited 

CoPt films were calculated to be 5.73 and 4.48 % for without and with agitation, which 

indicates that CoPt is more likely to grow along with Ru crystal under agitation.  

 

 

 

 

These features of high crystallinity of hcp structure and epitaxial-like growth observed in 

the structure analyses of the CoPt film deposited under agitation should improve the 

perpendicular magnetic anisotropy of CoPt. Figure 2.7 shows the out-of-plane magnetic 

hysteresis loops for the same samples as shown in Fig. 2.6, which were measured by polar 

magneto-optical Kerr effect equipment. The measured coercivity and squareness are 

summarized in Table 2.6. The film deposited without agitation exhibited a perpendicular 

coercivity of 1.0 kOe and squareness of 0.35. By contrast, the film deposited with agitation 

increased its coercivity and squareness up to 4.3 kOe and 0.65, respectively. This increase in 

coercivity and squareness is attributed to the increase in crystallinity of the hcp (002) plane as 

observed in the XRD pattern (Fig. 2.5), which induces the perpendicular magnetic anisotropy of 

(2.3.1) 

c-axis a-axis

Ru 0.427 0.269

Co80Pt20 0.419 0.257

0 rpm 0.413 0.254

50 rpm 0.419 0.257

Table 2.4.3 Lattice parameters of electrodeposited film

Material
lattice parameters / nm

Theoretical values

Electrodeposited films



Chapter 2 

45 

 

CoPt from the initial deposition stage. Furthermore, the isolated grain structure [Fig. 2.3 (c)] 

could cause the decoupling of the magnetic grains at grain boundaries to increase the coercivity. 

 

 

Fig. 2.4.7 Out-of-plane hysteresis loops of CoPt continuous films deposited 

without (a) and with (b) agitation. 

 

 

 

 

These results successfully demonstrated the improvement of coercivity of CoPt by 

controlling the diffusion state of metal ions from the initial deposition stage with bath agitation, 

which should reflect in the formation of CoPt nanodot arrays with Tbit/in
2
 areal density. 
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Rotating speed Coercivity

 / rpm Co/ at% Pt/ at% / kOe

0 83 17 1.0 0.35

50 83 17 4.3 0.65

Table 2.4.4 Coercivity and squareness of CoPt continuous films

Alloy composition
Squareness
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2.4.2 Characterization of CoPt Nanodot Arrays with Tbit/in
2
 Areal 

Density 

 

 

From the characterization of the CoPt continuous films, significant improvement in the 

crystallinity of CoPt was found by controlling the diffusion state of metal ions from the initial 

deposition stage. Thus in order to achieve high coercivity of CoPt nanodot arrays with Tbit/in
2
 

areal density, fabrication of nanodot arrays was attempted under forced convection conditions 

based on the results of chapter 2.4.1.  

 

     Figure 2.4.8 shows representative SEM images of CoPt nanodot arrays deposited inside 

the nanopore patterned substrate with 100 nm in pitch and 10 nm in diameter with and without 

the treatment by excimert-UV irradiation. As these images were taken after removal of the 

entire EB resist, the Ru surface appeared as dark contrast and the CoPt nuclei appeared as bright 

contrast. As seen in Fig. 2.4.8, the effects of excimer-UV irradiation were clear; without 

excimer-UV treatment, CoPt nucleated at only a fraction of patterned area, resulting in the 

formation of nanodot arrays with insufficient uniformity over the patterned area. In contrast, 

when the nanopore patterned substrates were treated with excimer-UV before the 

electrodeposition, CoPt nucleated uniformly on the entire patterned area. It was hypothesized 

that, after the development process, small amount of residue remained inside the nanopore, 

hindering the nucleation of CoPt to form non-uniform nanodot arrays. This residue is a critical 

problem, especially for the smaller nanopore of less than 10 nm diameter, thus, excimer-UV 

treatment should be considered as an essential process for the fabrication of ultra-high density 

nanodot arrays. 
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Fig. 2.4.8 SEM images of CoPt nanodot arrays treated (a) without and (b) with excimer-UV 

irradiation before the electrodeposition. 

 

 

Figures 2.4.9 (a) and (b) show SEM images of CoPt nanodot arrays with 35 nm in pitch 

deposited with and without bath agitation, respectively; both nanodot arrays showed near-ideal 

composition of Co :Pt = 80 :20, which were measured by ICP-MS. From the top images, 

although the diameter of CoPt around 15–20 nm was larger than the nanopore diameter due to 

the overfilling of CoPt from the nanopore patterns, nanodot arrays were uniformly fabricated 

over the patterned area in both deposition conditions. Fabrication of the CoPt nanodot arrays 

with 25 nm in pitch, which corresponds to a recording density of 1 Tbit/in
2
, was also 

successfully demonstrated under agitation as shown in Fig. 2.4.9 (c). However, in such 

ultra-high recording density, it is difficult to obtain uniform nanopores over the patterned area 

owing to the difficulties in controlling the electron beam dispersion. Therefore, in this chapter, 

analyses were conducted for nanodot arrays having 35 nm in pitch. The characterization of 

continuous films showed that the crystallinity of CoPt was improved from the initial deposition 

stage when agitation was applied, thus to investigate the difference in crystal growth behavior of 

CoPt inside nanopore patterns, the lattice structure of the CoPt nanodot arrays with 35 nm in 

pitch were observed using TEM.  

  

(a) (b)

500 nm500 nm
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Fig. 2.4.9 High and low magnification SEM images of CoPt nanoto arrays with 35 nm in pitch 

deposited (a, b) without and (c, d) with agitation, and (e, f) nanodot arrays with 25 nm in pitch 

deposited with agitation. 

 

Figure 2.4.10 shows the cross-sectional TEM images of the CoPt nanodot arrays 

deposited with and without bath agitation, which are the same samples as shown in the Fig. 

50 nm
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2.4.9 SEM images. Figures 2.4.10 (a) and (b) show the cross-sectional images of a single 

nanodot, and insets show the selected area electron diffraction (SAED) patterns of each nanodot. 

Lower magnification TEM images confirmed the formation of a uniform columnar nanodot 

without any voids. In addition, the overfilling of CoPt from the nanopore was observed as 

described above. In both deposition conditions, the SAED showed ring-like patterns indicating 

that the deposited nanodots are polycrystalline owing to the multi-nucleation inside the 

nanopore at this applied potential. Figures 2.4.10 (c) and (e) show higher magnification TEM 

images of the interface between CoPt and the Ru underlayer. The lattice spacing measured in the 

TEM image was 0.2 nm, which agrees with the d002 plane spacing of the hcp CoPt (0.209 nm) 

[26]. At the initial deposition stage, the lattice fringes of CoPt were aligned along with the Ru 

crystal in a direction perpendicular to the interface in both deposition conditions, indicating the 

epitaxy relationship between CoPt and Ru, which is significant to induce the perpendicular 

magnetic anisotropy of the nanodot arrays. Figures 2.4.10 (d) and (f) show high magnification 

TEM images of the upper part of the nanodot. As the growth of CoPt proceeds, the crystal 

lattice of CoPt is oriented in several directions when agitation was not applied, whereas the 

crystal lattice of hcp (002) remained in a perpendicular direction and was uniformly oriented 

from the initial deposition stage under bath agitation. This uniform orientation could be due to 

the homogenization of the CoPt alloy composition from the initial deposition stage, which 

corresponds to the results analyzed in the continuous CoPt films. In addition, diffusion-limited 

growth of CoPt was considered to be mitigated based on the analyses of continuous films under 

electrolyte agitation, which could reduce the formation of randomly oriented nuclei to improve 

the crystal orientation of the nanodots. 
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Fig. 2.4.10 Cross-sectional TEM images of CoPt nanodot arrays with 35 nm in pitch deposited 

(a) without and (b) with agitation. High magnification images (c, e) at interface of CoPt and Ru 

substrate and (d, f) upper part of CoPt nanodot arrays. The insets show the SAED images. 
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Based on these observations of the TEM images, it was found that nanodot arrays with 

uniform crystal orientations in the perpendicular direction formed under electrolyte agitation, 

which should improve the perpendicular magnetic anisotropy of CoPt. Hence, magnetic 

characterization of the nanodot arrays with 35 and 25 nm in pitch was attempted using polar 

magneto-optical Kerr effect equipment; corresponding hysteresis loops, measured coercivity, 

and squareness are shown in Fig. 2.4.11 and Table 2.4.5, respectively. The coercivity and 

squareness of the nanodot arrays deposited without electrolyte agitation were 2.0 kOe and 0.64, 

whereas the nanodot arrays deposited with agitation exhibit higher coercivity and squareness 

values of 4.0 kOe and 0.87. This increase in coercivity and squareness corresponds with the 

improvement in the crystal orientation as confirmed by the TEM analysis, which induces the 

perpendicular magnetic anisotropy of CoPt. In addition, the columnar shape of the nanodot 

arrays induces shape magnetic anisotropy along the growth direction to enhance the 

perpendicular coercivity and squareness, also physical isolation of nanodots enhances the 

exchange decoupling of each nanodot, thus resulting in higher magnetic properties compared to 

continuous films. In the case of nanodot arrays with 25 nm in pitch, the low coercivity is due to 

the small patterned area of 40 m
2
, because the laser spot of magneto-optical Kerr effect device 

is 100 m in diameter, it was difficult to detect the magnetic properties of nanodot arrays. 

Although the coercivity of nanodot arrays with 25 nm in pitch was lowered we have succeeded 

to fabricate CoPt nanodot arrays with 1 Tbit/in
2

, exhibiting ferromagnetic properties. For the 

BPM application, it is significant to estimate not only the coercivity but also the magnetic 

anisotropy, Ku, of nanodot arrays. Since the diameter of the CoPt nanodot arrays is less than 20 

nm, they should exhibit single magnetic domain structure [6]. Thus, the coercivity, Hc, can be 

calculated from the equation of Hc=HA=2Ku/Ms, where HA and Ms are anisotropy field and 

saturation magnetization, respectively, based on the Stoner-Wohlfarth model. In this model, the 

maximum value of coercivity is equal to HA of CoPt (28 kOe) [7], however, measured coerivity 

showed smaller coercivity (4.0 kOe). The decrease in the coercivity is attributed to the small 

size of CoPt nanodot arrays, because the critical single domain size of CoPt is 0.89 m, 

coercivity decreases below this critical size. In addition, in the case of CoPt nanodot arrays, 

magnetostatic interaction between adjasent nanodots decreases the coercivity. Sun et al. 

reported that the magnetostatic interaction affects the coercivity and remanence of Fe3Pt 

nanowire arrays with diameter of 10 nm and interwire distance of 40 nm [8]. Upon decreasing 
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the interwire distance, coercivity and remanence were decreased, indicating the magnetostatic 

interaction between each nanowire. Considering this point, in the case of CoPt nanodot arrays, 

magnetostatic interaction should occur since the pitch between each nanodot is 35 nm. In order 

to further investigate the magnetic anisotropy of nanodot arrays, Ms should be precisely 

measured with superconducting quantum interference devices or vibrating sample 

magnetometer by expanding the fabricated area of CoPt nanodot arrays with the application of 

patterned substrate fabricated by such as nanoimprint lithography technique in the next step. 

 

From the above collective results, by controlling the composition and crystal orientation 

of CoPt with bath agitation, deposition uniformity and magnetic properties, such as coercivity 

and squareness, of the ultra-fine CoPt nanodot arrays with Tbit-level areal density was 

successfully controlled. Considering the formation of the overfilling parts of the nanodot arrays, 

which have polycrystalline structures with random crystal orientations owing to the rapid 

nucleation that may be due to the formation of hemispherical diffusion of metal ions to expand 

the nucleation sites, future study may achieve higher coercivity and squareness by suppressing 

the overfilling of CoPt.  
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Fig. 2.4.11 Out-of-plane hysteresis loops of CoPt nanodot arrays with 35 nm in pitch deposited 

without (a) and with (b) agitation. (c) CoPt nanodot arrays with 25 nm in pitch deposited with 

agitation 
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Pitch Rotating speed Coercivity

/ nm  / rpm / kOe

35 0 2.0 0.64

35 50 4.0 0.87

25 50 1.8 -

Table 2.4.5  Coercivity and squareness of CoPt nanodot arrays

Squareness
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Conclusion 

 

 

In chapter 2, the composition and crystal orientation of CoPt was controlled by 

controlling the diffusion of metal ions under bath agitation to achieve precise fabrication of 

CoPt nanodot arrays with high and uniform coercivity. Prior to the fabrication of nanodot arrays, 

uniform nanopore patterned substrate with 25 nm in pitch were successfully demonstrated by 

detailed optimization of electron beam lithography conditions, such as prebake temperature and 

dose values. For the fabrication of nanodot arrays, composition of CoPt was controlled from its 

initial deposition stage to improve the crystallinity of the hcp (002) structure of CoPt by 

applying bath agitation with rotating electrode. Cross-sectional TEM images of the CoPt 

nanodot arrays deposited with bath agitation confirmed that stacking of the hcp (002) lattice was 

uniformly oriented in a perpendicular direction from the Ru interface to the upper part of the 

nanodot, thus enhancing the coercivity and squareness from 2.0 kOe and 0.64 to 4.0 kOe and 

0.87, respectively. The collective results have successfully demonstrated the facrication of 

Tbit-level ferromagnetic nanodot arrays with high coercivity by controlling the crystal structure 

at nanoscale. To the best of my knowledge, this is the first research that demonstrate the 

fabrication of nanodot arrays that exhibit sufficient high coercivity by electrochemical process, 

which is applicable to BPM. 
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3.1 Introduction 

 

 

In order to achieve high SNR and high coercivity of BPM with Tbit-level recording 

density, fabrication of highly uniform nanodot arrays is essential, because defects, grain 

boundaries, and random crystal orientation cause the non-uniformity in coercivity in each 

nanodot, leading to the media noise to degrade the recording performance [1, 2]. Therefore, a 

single magnetic domain structure is highly desirable for BPM application owing to its low 

media noise and high coercivity, and thus it is essential to miniaturize the size of nanodot arrays 

while avoiding the superparamagnetic limit. When each nanodot consists of single crystal 

structure, it can be considered as an ideal structure to exhibit high and uniform coercivity 

because it has high crystal orientation without the formation of grain boundaries, which is 

highly desirable for the application in BPM. In chapter 2, although the crystal structure was 

successfully controlled by controlling the diffusion of metal ions, fabricated nanodot arrays 

showed polysrystalline structure with random grain bounraeis. 

 

At ultra-high recording densities, the nanodots are miniaturized to 10 nm in diameter. 

Therefore, to control the magnetic properties and deposition uniformity, especially to achieve 

fabrication of nanodot arrays consists of single crystal structure, it is essential to understand the 

mechanism of the initial deposition stages of ferromagnetic metal inside the nanopore. 

Electrochemical nucleation and growth process have been studied for several decades by 

theoretical and experimental methods, and several theoretical models of formation mechanisms 

have been proposed [3-6]. Recently, with the development of technologies for in situ 

characterization, such as transmission electron microscope (TEM) [7-9] and atomic force 

microscope (AFM) [10-12], reports on the quantitative analyses of nucleation mechanisms 

based on the in situ imaging have been increasing. In addition, in the fields of electrochemical 

microfabrication, such as through-silicon via process, formation mechanisms of metals inside 

the micro-ordered pattern have been extensively studied [13-15]. However, above mentioned 

reports analyzed the nucleation mechanisms on the planer substrate or inside the micro-ordered 

patterns, there has been no reports of analyses on the nucleation and growth process inside the 

ultra-fine nanopores with 10 nm diameter, which is required in BPM application.  
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Thus, in this chapter, the initial nucleation and growth processes of CoPt inside the 

nanopores were analyzed under various conditions, such as different applied potentials and sizes 

of nanopores, to achieve precise control of the deposition for the fabrication of nanodot arrays 

consists of single crystal structure.  
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3.2 Experimental 

 

3.2.1 Characterization of Initial Deposition Stages of CoPt 

 

 

(002) oriented Ru (60 nm) and Ti (5 nm) as an adhesion layer were sputter deposited onto 

an n-type Si (100) substrate. Electron beam lithography was carried out to fabricate nanopore 

patterned substrate by using an EBL apparatus (ELS-7500, ELIONIX). The EBL conditions are 

summarized in Table 3.2.1. Prior to the CoPt electrodeposition, the substrate was exposed to 

excimer UV irradiation for 30 s to remove the residue at the bottom of the nanopores.  

 

An electrolyte containing Pt(NH3)2(NO2)2 and 100 mmol L
-1

 of CoSO4, (NH4)2C6H6O7, 

and NH2CH2COOH was used. The concentration of Pt(NH3)2(NO2)2 was adjusted for each 

deposition condition to maintain the film composition (Co:Pt = 80:20). The bath temperature 

was 303 K, and the bath pH was adjusted to 5.2 by adding NaOH. Electrodeposition of CoPt 

was performed under a constant applied potential using a potentiostat (HZ-0.50, Hokuto Denko) 

with a three-electrode system consisting of Co wire as the counter electrode and a Ag/AgCl 

electrode as the reference electrode.  

 

Magnetic characterization of the deposited films was carried out with polar 

magneto-optical Kerr effect equipment (BH-810CPC-WU, NEOARK). X-ray diffraction (XRD) 

patterns of the deposited films were collected using an X-ray diffractometer (Rint-TTR, Rigaku) 

using Cu-K  radiation (λ = 1.54184 Å). Morphological and structural characterizations of the 

electrodeposited CoPt nanodot arrays were performed using a high resolution scanning electron 

microscopy (HR-SEM, S5500, Hitachi High-Tech.) and transmission electron microscope (TEM, 

JEM-2010, JEOL) after removing the entire EB resist by exposure to excimer UV irradiation for 

2.0 min and rinsing with ethanol and UPW. 
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3.2.2 Analysis of Distribution of CoPt Nuclei inside Nanopores 

 

 

     Nanopore patterned substrate was fabricated on (002) oriented Ru substrate with the 

conditions summarized in Table 3.2.1. In order to achieve uniform distribution of CoPt nuclei on 

the Ru substrate, Ru surface was planarized by chemical mechanical polishing (CMP). In the 

case of 60 nm-thick Ru substrate because the grain size of Ru is around 20 nm, grain boundaries 

are formed at the surface. Thus, in order to distinguish the nucleation of CoPt from the surface 

conditions, such as grain boundary, 1.5 m-thick Ru was sputtered to increase the grain size so 

as to reduce grain boundaries on the surface. Table 3.2.2 shows the CMP conditions. CoPt was 

electrodeposited potentiostatically on nanopore patterned Ru substrate in the same electrolyte 

and electrochemical system as described in chapter 3.2.1. In order to eliminate the effect of 

concentration of metal ions, Pt(NH3)2(NO2)2 was set to 2.1 mmol L
-1

. The CoPt nuclei deposited 

inside the nanopores were recorded using HR-SEM (S5500, Hitachi High-Tech.). The 

distribution of CoPt nuclei were quantitatively measured by analyzing the recorded SEM 

images using the computer software, ImageJ. 

  

Resist ZEP520A-7 : ZEP-A = 1:2

Spin coat rate 5000 rpm, 60 s

Prebake 180 
o
C, 3 min

Thickness of resist 30 nm

Accelerating voltage 50 kV

Beam current 20, 100 pA

Dose value 3.0-10 fC / dot

Developer IPA

Developing time 5 s

Developing temperature 5 
o
C

Rinse UPW

Table 3.2.1 Operating conditions of electron beam lithography 

Abrasive Glanzox 3900 : H2O = 1 : 5

Drop volume of slurry 3 mL/min

Pressure 1810 Pa

Rotational rate of pat 80 rpm

Rotational rate of head 45 rpm

Planarlize time 10 min

Table 3.2.2 CMP conditions
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3.3 Analysis and Control of the Initial Electrodeposition Stages of CoPt 

Nanodot Arrays 

 

3.3.1 Characterization of Inidial Deposition Stages of CoPt 

 

 

In order to analyze the initial deposition stages of CoPt inside the ultra-fine nanopores, 

the CoPt nucleation and growth processes were observed by SEM. The concentration of Pt 

electrolyte was set to 0.6 mM in all deposition conditions to eliminate the effect of electrolyte 

concentration on the initial deposition stages. Prior to CoPt electrodeposition, nanopore 

patterned substrates with 65, 50, 35, 25, 15, and 10 nm in diameter and 100 nm in pitch were 

fabricated by EBL. CoPt was then deposited on the nanopore patterned substrate with an applied 

potential of -0.9 V (vs. Ag/AgCl), which is the same condition as used in chapter 2. Figure 3.3.1 

shows SEM images of deposited CoPt nuclei inside the nanopores with different diameters. The 

deposition duration was set to 3.0 s, which is appropriate for depositing CoPt as nuclei to obtain 

clear images by SEM. At this deposition stage, CoPt nucleated as fine grains of 2.0–3.0 nm in 

diameter and randomly distributed on the Ru surface at the bottom of the nanopores. It should 

be noted that CoPt nucleated from the outer side of the nanopore due to the current crowding 

effect at the edge of photoresist patterns [16, 17]. The current crowding occurs at the edge of the 

patterns because of the higher degree of mass flux and local current density due to the higher 

supply of metal ions from the three dimensional directions, thus current density is expected to 

be higher at the outer side compared to inner side [16, 17]. In larger nanopores, a distinct 

difference in the current density led to CoPt nucleation from the outer side of the nanopore. On 

the other hand, in the smaller nanopore with a 10 nm diameter, nucleation of CoPt is much less 

likely to be affected by the difference in current density. Although the number of nuclei 

decreased in the smaller nanopores multiple nucleation occurred even with the smallest 

nanopore of 10 nm [Fig.3.3.1 (a)].  

 

Figure 3.3.2 shows SEM images of the growth ptocess of CoPt into 10 nm nanopore 

deposited at -0.9 V (vs. Ag/AgCl). The duration times were 2.0, 3.0, and 5.0 s. As several nuclei 

of 2.0–3.0 nm in size were distributed on the bottom surface at an early stage, they grew as a 

cluster with several grain boundaries. This random and multinucleation could result in a lack of 

uniformity in the coercivity of each CoPt dot.  
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Fig. 3.3.1 SEM images of CoPt deposited with -0.9 V (vs. Ag/AgCl) for 3.0 s in nanopores with 

different diameters: (a) 10 nm, (b) 15 nm, (c) 25 nm, (d) 35 nm, (e) 50 nm, and (f) 65 nm. 

 

 

Fig. 3.3.2 SEM images of CoPt deposited with -0.9 V (vs. Ag/AgCl) for 

(a) 2.0 s, (b) 3.0 s, and (c) 5.0 s inside nanopore with 10 nm diameter 

 

 

Moreover, the superparamagnetic properties of CoPt particles should be considered, as 

this is a critical issue for BPM with Tbit-level densities. For application in the recording layer of 

a hard disk drive, the energy barrier of magnetic materials is required to obey the following 

equation for permanent recording, where Ku is the magnetic anisotropy constant, V is the 

20 nm 20 nm 20 nm

20 nm20 nm20 nm

(a) (b) (c)

(d) (e) (f)

10 nm 10 nm 10 nm

(a) (b) (c)
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volume of the particles, kB is Boltzmann constant, and T is temperature. 

 

𝐾𝑢𝑉 > 60𝑘𝐵𝑇 

 

In Eq. (3.3.1), the superparamagnetic limit occurs when the product of Ku and V is less 

than the right-hand side; thus, it is possible to determine the critical size Dp from the volume 

when KuV equals 60kBT. If the CoPt nucleus is assumed to be a sphere, the critical particle 

diameter Dp is expressed by Eq. (3.3.2). 

 

𝐷𝑝 =  (60 × 3 4𝜋⁄ × 𝑘𝐵𝑇 𝐾𝑢⁄ )1 3⁄ × 2 

 

The Ku value of hcp CoPt was 2.0×10
7
 erg/cm

3 
[18] and T was 298 K. According to Eq. 

3.3.2, the critical size Dp was calculated as 6.2 nm. Based on this result, CoPt particles with a 

size of 2.0–3.0 nm are expected to be superparamagnetic. Therefore, to form CoPt nanodots 

consist of single grains, it is important to enhance the growth of CoPt by applying a less 

negative potential at which growth of the nucleus preferentially occurs to form larger size 

particles. 

 

Hence, CoPt electrodeposition was carried out with less negative potential of -0.5 V, - 

-0.6 V, -0.7 V (vs. Ag/AgCl), and difference in grain size with applied potential and deposition 

duration was compared with the results of -0.9 V (vs. Ag/AgCl). CoPt was deposited inside 

nanopores with 65 nm diameter with different applied potentials; corresponding SEM images 

are shown in Fig. 3.3.3. Figs. 3.3.3 (a, b), (c, d), (e, f), and (g, h) correspond to the images of 

CoPt nuclei deposited at -0.5 V, -0.6 V, -0.7 V, and -0.9 V (vs. Ag/AgCl) with different 

deposition durations. As seen in the images, current crowding effect was clearly observed in all 

deposition conditions owing to the wide diameter of the nanopore, CoPt preferentially nucleated 

from the edge of the nanopore as observed in Fig. 3.3.1. It can also be seen that the size of the 

nuclei increased and the number of nuclei decreased as the applied potential became less 

negative; for example, at the early deposition stage, the size of the nuclei was 4.0–5.0 nm at -0.5 

V and -0.6 V (vs. Ag/AgCl) [Figs. 3.3.3 (a) and (c)], whereas fine nuclei of 2.0–3.0 nm were 

observed at -0.9 V (vs. Ag/AgCl) [Fig.3.3.3 (g)]. At the later deposition stage, the number of 

(3.3.1) 

(3.3.2) 
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nuclei rarely differed from that at the early stage and the nuclei size increased in less negative 

potential; CoPt grew to a diameter of 8.0–10 nm, 5.0–7.0 nm, and 4.0–5.0 nm at -0.5 V, -0.6 V, 

and -0.7 V (vs. Ag/AgCl), respectively [Figs.3.3.3 (b), (d), and (f)], whereas dense cluster of 

fine nuclei of 2.0–3.0 nm were observed at -0.9 V (vs. Ag/AgCl) [Figs.3.3.3 (h)] owing to the 

continuous nucleation at the Ru surface or on the nucleated CoPt grains. These results observed 

at less negative potentials indicated that the growth of CoPt nuclei preferentially occurs over 

formation of a new nucleus, and thus a single nucleus should be grown in 10 nm nanopores 

using this potential range.  

 

 

Fig. 3.3.3 SEM images of CoPt deposited inside nanopore with 65 nm diameter at - -0.5 V for 

(a) 60 min and (b) 960 min (16 h), at -0.6 V for (c) 30 min and (d) 60 min, at -0.7 V for (e) 250 s 

and (f) 290 s, and at -0.9 V for (g) 2.0 s and (h) 5.0 s. 

 

 

Figure 3.3.4 shows the SEM images of CoPt deposited with different applied potentials 

inside 10 nm nanopores. At less negative potentials, deposition of a single nucleus was observed 

inside the nanopore that grew to a diameter of 10 nm, whereas the grain boundaries were 

observed for the CoPt nanodot deposited at -0.9 V (vs. Ag/AgCl). These results suggested the 

successful deposition of a single grains inside the nanopore that grow to form nanodot arrays 

with single crystal structure by adjusting the applied potential to control the number and size of 

20 nm

(a) (b) (c)

(h)(g)(f)(e)

(d)

20 nm 20 nm 20 nm

20 nm20 nm20 nm 20 nm
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CoPt nuclei.  

 

 

Fig. 3.3.4 SEM images of CoPt deposited at (a) - -0.5 V for 960 min (16 h), at 

(b) -0.6 V for 30 min, at (c) -0.7 V for 200 s, and at (d) -0.9 V for 5.0 s 

inside nanopore with 10 nm diameter. 

 

 

  

20 nm 20 nm 20 nm 20 nm

(a) (b) (c) (d)
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3.3.2 Analysis of Distribution of CoPt Nuclei inside Nanopores 

 

 

     As described in chapter 3.3.1, single nucleus was successfully deposited inside the 

nanopore by applying less negative potential to suppress the nucleation density. The reason for 

the deposition of a single nucleus inside 10 nm nanopores is not only the difference of 

nucleation density but also the difference in the size of the nucleation exclusion zone with 

applied potential. When a nucleus is formed on the surface, a region with reduced 

supersaturation is created around the nucleus that inhibits further nucleation. Milchev et al. [19] 

and Scharifker et al. [20-21] reported that the nucleation and growth rates and spatial 

distribution of nuclei were affected by the inhibited region with reduced supersaturation. Thus it 

is significant to consider the size of the inhibited region to analyze the initial deposition stage, 

especially when the nucleation takes place inside the ultra-fine nanopore. In the case of the 

smaller nanopores, the bottom surface could be covered by the nucleation exclusion zone, thus 

single nucleus subsequently grow as a single crystal without formation of a new nucleus with 

less negative potentials. In order to confirm this hypothesis, the size of exclusion zone should be 

estimated, thus the distribution of CoPt nuclei with different applied potential was investigated 

by analyzing the nucleation density and nearest neighbor distance of nuclei. 

 

     Figure 3.3.5 shows SEM images of CoPt nuclei deposited at -0.7 and -0.9 V (vs. 

Ag/AgCl) inside nanopores with 20 nm in diameter and 50 nm in pitch. The duration times were 

set to 15 min and 3 s for -0.7 and -0.9 V (vs. Ag/AgCl), respectively, as an initial nucleation 

stage so that dispersed CoPt nuclei can be observed. Although, several cracks, which could be 

caused by the CMP process, smooth Ru surface with small amount of grain boundary was 

observed. Because the diameter of the nanopore is 20 nm, multiple-nucleation was observed in 

both potentials, and CoPt nucleated from the outer side of the nanopore due to the current 

crowding. By using the SEM images in Fig. 3.3.5, the image analysis was applied to measure 

the nucleation density inside the nanopores. The eight positions were randomly selected while 

avoiding the cracks on the Ru surface. The positions were numbered at the bottom of the 

nanopores in Figs. 3.3.5 (a) and (b), respectively. The measured number of nuclei and 

nucleation density, No, in each position are summarized in Tables 3.3.1 and 3.3.2. In the image 

analysis, the partilces with less than 2.0 nm
2
 were excluded because the diameter of the nuclei is 

assumed to be 2.0 nm at the initial stages in Figs. 3.3.1-3.3.3. The area of the nanopores is 

assumed as circle with 20 nm in diameter. As seen in the tables, the nucleation density 

decreased at less negative potential in every selected positions as expected, which correponds to 

the results as observed in Figs. 3.3.3 and 3.3.4; the average nucleation density, N0 was 0.018 
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nm
-2

 and 0.031 nm
-2

 for -0.7 V and -0.9 V (vs. Ag/AgCl), respectively.  

 

 

Fig. 3.3.5 SEM images of CoPt deposited at (a) -0.7 V and (b) -0.9 V (vs. Ag/AgCl) 

inside nanopores with 20 nm in diameter and 50 nm in pitch. 

 

 

 

 

 

 

(a)

100 nm

(b)

100 nm

123

4567

8

1234

56

78

Position Number of nuclei N o  / nm
-2

Average N o  / nm
-2

1 4 0.013

2 5 0.016

3 8 0.025

4 6 0.019

5 4 0.013

6 4 0.013

7 7 0.022

8 6 0.019

0.018

Table 3.3.1 Number of nuclei and nucleaetion density of CoPt deposited at -0.7 V

Position Number of nuclei N o  / nm
-2

Average N o  / nm
-2

1 9 0.029

2 8 0.025

3 9 0.029

4 11 0.035

5 10 0.032

6 10 0.032

7 10 0.032

8 12 0.038

Table 3.3.2 Number of nuclei and nucleaetion density of CoPt deposited at -0.9 V

0.031
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     In order to further investigate the nuclei distribution, inter-nucleus distances in the SEM 

images were measured by image analysis. The probability distribution of measured distances 

between first r1, second r2, and third r3 nearest neighbor nuclei were shown in Fig. 3.3.6 for -0.7 

V and -0.9 V (vs. Ag/AgCl), respectively. In addition, neareset neighbor distances were also 

estimated based on the poisson probability distribution. The distance of jth-neighbors nucleus 

for the poassion probability distribution can be expressed by  
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where N0 is the nucleation density and rj is the distance between the jth-neighbor nucleus. From 
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The nearest neighbor distanes were calculated by Eqs. (3.3.4-3.3.6) using experimentaly 

measured nucleation density, N0, of 0.018 and 0.031 nm
-2

 as listed in Tables 3.3.1 and 3.3.2. The 

average of experimental nearest neighbor distance data and calculated data are summarized in 

Table 3.3.3.  

 

From the histograms in Fig. 3.3.6 and Table 3.3.3, the measured first neighbor distance r
1
 

was larger than the value calculated from poisson probability distribution in both applied 

potentials. Because the exclusion zone corresponds to the hemispherical diffusion zone of metal 

ions, the radius of the zone, , grows along with deposition duration, t, as described as  = 

(kDt)
1/2

, where k is a numerical constant, D is diffusion coefficient of metal ions. Thus, it can be 

said that the difference in the experimental and theoretical values is attributed to the growth of 

nucleation exclusion zone around each growing nucleus. 

  

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 
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Fig. 3.3.6 Probability distribution of measured distances between first r1, second r2, and third r3 

nearest neighbor nuclei deposited at (a) -0.7 V and (b) -0.9 V (vs. Ag/AgCl). 

 

 

 

 

In addition, nearest neighbor distance increased with -0.7 V (vs. Ag/AgCl) compared to 

-0.9 V (vs. Ag/AgCl). Chen et al. described the size dependence of exclusion zone on 

overpotential with theoretical model [22]. In this model, the distance from a growing nucleus, 

which nucleation rate decreases by the ratio of the nucleation rate at  to that on the surface 

without nucleus, Jrel, was described as Eq. (3.3.7).  
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Potential

/ V first, r 1 second, r 2 third, r 3

Experimental -0.7 5.3 7.3 9.3

data -0.9 4.5 5.8 7.3

Analytical -0.7 3.8 5.7 7.1

data -0.9 2.8 4.2 5.3

Nearest neighbor distance / nm

Table 3.3.3 Experimental and analytical data of nearest neighbor distance



Chapter 3 

71 

 

 






















kn

relM

M

JtCVDc

AtABVA
t

1

1

3

3
2

116

8
)(  

 

DFncA *  

 

 















 








 


RT

EnFa

RT

EanF

Fn

J
B o 12

exp
2

exp
2

 

 








 


RT

EanF
jC o exp  

 

Where c* is a bulk concentration of metal ions, D is a diffusion coefficient of metal ions, F is 

the Faraday constant, n is a transferred electron number, Jo is an exchange currend density, a is a 

transfer coefficient (a=0.5), E is an applied potential, R is the gas constant, T is a temperature, 

VM is a molar volume, t is a deposition duration, nk is a number of atoms for a stable nucleus, 

30-40 atoms. Chen et al. considered the exclusion zone as an area where nucleation rate is 

reduced by one order of magnitude, thus, exclusion zone was estimated by calculating the 

distance, , from a growing nucleus from Eq. (3.3.7) with Jrel of 0.1. From this equation, the 

distance decreases with lower overpotential, which indicates that more negative potential 

results in the long radius of exclusion zone. However, as described in Table 3.3.3, the nearest 

neighbor distance decreased at more negative potential, which is contradictory to Eq. (3.3.7). 

The short distance of nearest neighbor of CoPt nuclei could be due to the multiple-nucleation 

inside the nanopores. In the theoretical model, a single nucleus was taken into account for the 

calculation of distance , however, in the case of multiple-nucleation, CoPt simultaneously 

nucleated inside the nanopore before the growth of exclusion zone. Especially, in the case of 

high overpotential, such as -0.9 V (vs. Ag/AgCl) for the deposition of CoPt, high nucleation 

density leads to the short distance of nearest neighbor. On the other hand, in the case of lower 

overpotential of -0.7 V (vs. Ag/AgCl), the nucleation density is lower than that of -0.9 V (vs. 

Ag/AgCl), which led exclusion zone to grow inside the nanopores resulting in the longer nearest 

neighbor distance.  

 

     In addition, the nearest neighbor distance corresponds to radius of exclusion zone. Thus, 

in the case of -0.7 V (vs. Ag/AgCl), exclusion zone with radius of 5.3 nm grows around the 

nucleus and covers the Ru surface inside 10 nm nanopores to hinder the formation of a new 

(3.3.7) 
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nucleus, resulting in the formation of a single nucleus inside the nanopores. On the other hand, 

in the case of -0.9 V (vs. Ag/AgCl), the radius of exclusion zone is 4.5 nm, which results in the 

multiple-nucleation of CoPt inside the 10 nm nanopores.  

 

     Based on the detail analysis of distribution of CoPt nuckei inside the nanpores, it was 

indicated that the deposition of single nucleus inside 10 nm nanopores at less negative potential 

is attributed to the difference in nucleation density and size of the nucleation exclusion zone. In 

order to further discuss the difference in the exclusion zone with applied potential, relation 

between both the propagation rate of exclusion zone and nucleation rate of metal with applied 

potential should be analyzed in the next step.  
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3.4 Fbrication of CoPt Nanodot Arrays with Single Crystal Structure 

 

 

Considering the growth conditions of CoPt deposited at less negative potentials (> -0.7 V) 

as observed in chapter 3.3.1 and 3.3.2, nanodot arrays should exhibit single crystal structure 

with high crystal orientation from Ru underlayer. Figure 3.3.7 shows cross-sectional TEM 

images of CoPt deposited with -0.9, -0.7, and -0.6 V (vs. Ag/AgCl) inside 10 nm nanopores. To 

confirm the above assumption, we observed the growth conditions of CoPt inside nanopores 

using TEM. In Figs. 3.3.7 (a) and (b), the thickness of the EB resist was reduced from 30 to 20 

nm by the excimer-UV pretreatment, and mushroom-shaped nanodot arrays were observed 

owing to overfilling of CoPt. In this overfilled region, a polycrystalline structure with fine grain 

structure was confirmed, which may be due to hemispherical diffusion of metal ions to expand 

the CoPt nucleation site. Nevertheless, columnar structures of nanodot arrays without voids 

were observed inside the nanopore. Figures 3.3.7 (d), (f), and (h) show high magnification TEM 

images of the interface between CoPt and Ru, and the insets show the electron beam diffraction 

of each nanodot. In these images, lattice fringes in the direction perpendicular to the Ru 

interface were observed. Furthermore, the diffraction images showed rings and spots 

corresponding to hcp (002), indicating that CoPt grew along the Ru crystal orientation with high 

crystallinity in the initial deposition stage, which is expected to induce perpendicular magnetic 

anisotropy in the nanodot arrays. In addition, from the diffraction images, diffraction rings and 

diffraction spots that correspond to polycrystalline and single crystalline structures were 

observed for -0.9 V (vs. Ag/AgCl) and the less negative potentials of -0.7 V and -0.6 V (vs. 

Ag/AgCl), respectively, indicating different CoPt growth conditions for -0.9 V (vs. Ag/AgCl) 

and the less negative potentials. Figures 3.3.7 (g) and (h) show higher magnification TEM 

images of the upper part of the CoPt nanodot. In Fig. 3.3.7 (g), the CoPt lattice is randomly 

oriented, suggesting that multinucleation, including secondary nucleation, occurs to form grain 

boundaries at -0.9 V (vs. Ag/AgCl), which resulted in a nanodot with a polycrystalline structure. 

On the other hand, in Figs. 3.3.7 (f) and (h), clear stacking of hcp lattices without any grain 

boundaries was observed, even in the upper section of the nanodot. These results indicated that, 

with a less negative potential, a single nucleus of CoPt was formed inside the nanopore that 

subsequently grew from the interface of Ru in a perpendicular orientation to form a single 

crystalline structure.   
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Fig. 3.3.7 Cross sectional TEM images of CoPt nanodot arrays with 10 nm diameter and 35 nm 

pitch deposited with (a) -0.9 V, (b) -0.7 V and (c) -0.6 V (vs. Ag/AgCl). High magnification 

images at (d, f, h) interface of CoPt and Ru substrate and (e, g) upper part of CoPt nanodot 

arrays. The insets show the electron beam diffraction of nanodot arrays deposited with each 

potential. 
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Because the magnetic anisotropy and magnetic domain structure are sensitive to slight 

changes in crystal structure, the coercivity of nanodot arrays should be strongly influenced by 

the applied potential, as a difference in crystal structure with potential was suggested in Fig. 

3.3.7. To investigate the effect of the applied potential on the coercivity of CoPt, we analyzed 

the magnetic properties and crystal structure of CoPt continuous films. Because the deposition 

rate is extremely slow at -0.6 V (vs. Ag/AgCl), CoPt was deposited at -0.7 V and -0.9 V (vs. 

Ag/AgCl) to compare the difference in coercivity and crystal structure. The concentration of 

Pt(NH3)2(NO2)2 was optimized to 2.1 and 3.0 mmol L
-1

 for -0.7 and -0.9 V (vs. Ag/AgCl), 

respectively to set the alloy composition close to Co:Pt = 80:20; the composition of Pt is tend to 

increase at less negative potential, thus the concentration of Pt electrolyte was lowered at less 

negative potential. 

 

Figure 3.3.8 shows the out-of-plane hysteresis loops of CoPt continuous films deposited 

with -0.7 and -0.9 V (vs. Ag/AgCl) with thicknesses of 16 and 17 nm, respectively; composition, 

coercivity, and squareness of the CoPt continuous films are summarized in Table 3.3.4. From 

the hysteresis loops, the coercivity of the CoPt continuous film deposited at -0.7 V (vs. 

Ag/AgCl) was higher than that of the film deposited at -0.9 V (vs. Ag/AgCl), even though this 

film had a larger deviation from the ideal composition of CoPt = 80:20; the composition of the 

films were CoPt = 70:30 and 79:21 with -0.7 and -0.9 V (vs. Ag/AgCl), respectively.  

 

 

Fig. 3.3.8 Out-of-plane hysteresis loops of CoPt continuous films 

deposited at (a) -0.7 V and (b) -0.9 V (vs. Ag/AgCl). 
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To evaluate the change in coercivity with potential, crystal structure of the CoPt films 

was analyzed by XRD measurements; corresponding XRD patterns are shown in Fig. 3.3.9. The 

XRD patterns of the CoPt films showed peak around at 43° corresponding to hcp (002), 

indicating that CoPt grew in a perpendicular direction along with Ru (002) plane. In the case of 

-0.7 V (vs. Ag/AgCl), the hcp (002) peak appeared at around 42.7° to overlap the peak of Ru 

hcp (002), whereas peak was appeared at 43.5° for -0.9 V (vs. Ag/AgCl). The main reason for 

this shift is the change in the composition of the film. In substitutional solid solutions, it is 

known that the lattice constant changes with respect to the composition of the alloy in 

accordance with Vegard’s law. Thus, when the composition of Pt, which has a larger atomic 

radius than Co, increases, the lattice spacing of CoPt increases, resulting in a lower 2value In 

order to investigate the peak shift, the 2 value for each composition was calculated according 

to Vegard’s law. The lattice constant a is expressed by Eq. (3.3.7).  

 

𝑎 =  
2𝑟𝐶𝑜𝑥 + 2𝑟𝑃𝑡 (100 − 𝑥)

100
 

 

where rCo is the atomic radius of Co (125 pm), rPt is the atomic radius of Pt (139 pm), and x is 

the composition of Co (%). The relation between the lattice constant and lattice spacing is 

expressed by Eq. (3.3.8). 

 

1

𝑑2
=  

4

3
(

ℎ2 + ℎ𝑘 + 𝑘2

𝑎2 ) +
𝑙2

𝑐2
 

 

In the case of hcp (002), the (h,k,l) value is (002), and thus the lattice spacing c is 

described as c = 2d. As the ratio of the lattice constants a and c for CoPt is known to be c = 

1.63a. Based on these equations, the lattice spacing d was calculated, and 2 was obtained from 

(3.3.7) 

(3.3.8) 

Potential Thickness Composition Coercivity Squareness

 / V / nm  / at%  / kOe

-0.9 17 Co79Pt21 1.3 0.28

-0.7 16 Co70Pt30 1.7 0.30

Table 3.3.4 Measured coercivity and squareness of CoPt continuous films
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the Bragg equation [Eq. (3.3.9)], where n is an integer and  is the wavelength of the incident 

wave (1.54178 Å for CuK). 

 

𝑑 =  
𝑛𝜆

2 sin 𝜃
 

 

The 2 values calculated from the composition of each film were 43.5° (CoPt = 79:21) for 

-0.9 V (vs. Ag/AgCl) and 43.0°
 
(CoPt = 70:30) for -0.7 V (vs. Ag/AgCl). In the case of -0.9 V 

(vs. Ag/AgCl), the calculated angle was the same as that observed in the XRD pattern. On the 

other hand, in the case of -0.7 V (vs. Ag/AgCl), because the peak in the pattern is shifted to a 

lower angle than that calculated using Vegard’s law, a further increase in the lattice spacing was 

suggested. This indicates that CoPt has grown along the Ru crystal orientation, which has 

slightly larger lattice spacing than CoPt, to broaden its lattice spacing. This epitaxial-like growth 

could enhance the perpendicular magnetic anisotropy and increase the coercivity of the film 

deposited with -0.7 V (vs. Ag/AgCl). In addition, the peak intensity was higher at -0.7 V 

compared to that of -0.9 V, indicating higher crystallinity of hcp (002) structure at less negative 

potential. This increase in crystallinity could be attributed to the homogenization of alloy 

composition from the initial deposition stage. Table 3.3.5 shows the alloy composition of CoPt 

continuous films with different thickness deposited at -0.6 V (vs. Ag/AgCl). In the case of -0.6 

V (vs. Ag/AgCl), because the overpotential is significantly small it is difficult control the alloy 

composition, thus the composition deviated from the ideal alloy composition. However, the 

composition rarely changed along with the film thickness. Because the diffusion limited growth 

is mitigated at less negative potential due to the slow deposition rate, composition gradient with 

film thickness was reduced, which could form hcp structure from the initial deposition stage. 

This improvement in the crystallinity may correspond to the results observed under forced 

convection conditions in chapter 2. 

 

 

(3.3.9) 



Chapter 3 

78 

 

Fig. 3.3.9 XRD patterns of Ru substrate and CoPt continuous films 

deposited at -0.7 V and -0.9 V (vs. Ag/AgCl). 

 

 

 

 

By controlling the nucleation and growth behavior of CoPt, the attempt to fabricate 

single crystal CoPt nanodot arrays was successful. Based on the above results, nanodot arrays 

consist of single crystal should exhibit high coercivity due to the high crystallinity with high 

orientation in the perpendicular diection. In order to further investigate the difference of 

coerivity of CoPt nanodot arrays with crystal structure, nanodot arrays should be analyzed with 

polar magneto-optical -Kerr effect device. 
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Conclusion 

 

 

In the present work, the initial electrodeposition stages of CoPt inside ultra-fine 

nanopores were analyzed to fabricate CoPt nanodot arrays with a single crystalline structure. At 

-0.9 V (vs. Ag/AgCl), the number of nuclei decreased in smaller nanopores, but multinucleation 

was observed, even in 10 nm nanopores. On the other hand, at less negative potentials (> -0.7 

V), growth of the nucleus is preferential, and a single nucleus was formed inside the 10 nm 

nanopore that grew to form a columnar-structured grain with a size of 7.0–10 nm. It was 

suggested from the analysis of distribution of CoPt nuclei inside the nanopore that the growth of 

single nucleus was attributed to the difference of the nucleation density and the size of the 

nucleation exclusion zone; excusion zone was larger at less negative potential, which covered 

the surface of Ru inside the 10 nm nanpores to hinder a formation of a new nucleus. 

Cross-sectional TEM images confirmed that, at less negative potentials, CoPt grew as a single 

crystal with clear stacking of hcp lattices in the direction perpendicular to the interface of Ru. In 

addition, at less negative potentials, CoPt grew along the Ru crystal orientation during the initial 

deposition stage to increase the coercivity of the CoPt films.  

 

Based on the detailed analyses of nucleation process inside the nanopore, precise control 

in the nucleation density and grain size of the CoPt was successfully demonstrated to form 

Tbit/in
2
 nanodot arrays exhibiting single crystal feature, which is highly desirable for the BPM 

application. In addition, the quantitative analyses of nucleation exclusion zone of nucleus with 

single nano-meter should be beneficial for the fabrication of nanostructures by electrochemical 

process, since there has been few reports regarding the analysis of exclusion zone at nanoscale 

region. 

  



Chapter 3 

80 

 

References 

 

 

[1] O. Hellwig, J. K. Bosworth, E. Dobisz, D. Kercher, T. Hauet, G. Zeltzer, J. D. 

Risner-Jamtgaard, D. Yaney, and R. Ruiz, Appl. Phys. Lett., 96 (2010) 052511. 

[2] Y. Kamata, A. Kikitsu, H. Hieda, M. Sakurai, K. Naito, J. Bai, and S. Ishio, Jpn. J. Appl. 

Phys., 46 (2007) 999. 

[3] B. R. Scharifker and G. Hills, Electrochim. Acta, 28 (1983) 879. 

[4] B. R. Scharifker and J. Mostany, J. Electroanal. Chem., 177 (1984) 13. 

[5] W.S. Kruijt, M. Sluyters-Rehbach and J.H. Sluyters, J. Electroanal. Chem., 371 (1994) 13. 

[6] R.M. Penner, J. Phys. Chem. B, 106 (2002) 3339 

[7] A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, and F.M. Ross, Nano Lett., 6 (2006) 

238 

[8] A. Radisic, F. M. Ross, and P. C. Searson, J. Phys. Chem. B, 110( 2006) 7862. 

[9] J. Ustarroz, X. Ke, A. Hubin, S. Bals, and H. Terryn, J. Phys. Chem. C, 116 (2012) 2322. 

[10] J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner, J. Phys. Chem. B, 102 (1998) 1166. 

[11] J.M. Sieben, M.M.E. Duarte, and C.E. Mayer, J. Solid State Electrochem., 14 (2010) 1555. 

[12] I. Lee, K-Y. Chan, and D.L. Phillips, Appl. Surf. Sci., 136 (1998) 321. 

[13] P. Dixit and J. Miao, J. Electrochem. Soci., 153 (2006) G522 

[14] R. Beica, C. Sharbono, T. Ritzdorf, Proc. 2008 Electronic Components and Technology 

Conference, Orlando, FL, May. 2008, 577 

[15] T-H. Tsai and J-H. Huang, Microele. Eng., 88 (2011) 195. 

[16] L. T. Romankiw, Electrochim. Acta, 12 (1997) 2985. 

[17] Y. Tian, C. Liu, D. Hutt, and B. Stevens, J. Electron. Mater., 43 (2014) 594 

[18] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele, 

and M. F. Doerner, IEEE Trans. Magn., 36 (2000) 10.  

[19] A. Milchev, W. S. Krujit, M. S-Rehbach, and J. H. Sluyters, J. Electroanal. Chem., 350 

(1993) 89. 

[20] B. Scharifker and G. Hills, Electrochim. Acta, 7 (1983) 879. 

[21] B. Scharifker and J. Mostany, J. Electroanal. Chem., 177 (1984) 13. 

[22] S. Chen and A. Kucernak, J. Phys. Chem. B, 197 (2003) 8392.



 

 

 

 

  



 

 

 

Chapter 4 

 

 

Development of Electrodeposition Process for Fabrication of 

FePt Nanodot Arrays with Tbit/in
2
 Areal Density 

 



Chapter 4 

83 

 

4.1 Introduction 

 

 

The equiatomic FePt ordered alloy with L10 phase has been considered as one of the most 

promising candidates for the use in ultra-high density perpendicular magnetic recording media 

due to its high magnetocrystalline anisotropy, Ku, which enables to minimize the grain size 

down to around 2.0 nm for sufficient thermal stability [1-3]. Utilizing this feature, L10-FePt 

alloy have been extensively studied for data storage applications to achieve Tbit-level areal 

recording density, for example, energy-assisted magnetic recording [4] and bit-patterned media 

(BPM) [5, 6]. BPM enables to reduce the coupling of each magnetic grain and to increase the 

grain size by storing the data in physically separated arrays of ferromagnetic nanodots, thus high 

signal-to-noise ratio (SNR) and thermal stability can be achieved [7, 8]. 

 

     In researches of electrodeposited FePt films, at the very negative potential required for Fe 

deposition, hydrogen gas evolution occurs, resulting in incorporation of hydroxides and oxides 

of Fe to increase oxygen composition of the film and, furthermore, Pt deposited under diffusion 

limited condition, leading to porous films with rough surface [9, 10]. These conditions were 

considered as critical issues to improve the coercivity of FePt films. G. Zangari et al. have 

developed a bath which overcomes these problems and they have succeeded to deposit FePt 

films with low oxygen content and smooth surface as well as with high coercivity of 13 kOe 

[11-13]. In this bath system, Pt complex was changed from Pt chlorides, as conventionally used, 

to amino-nitrite complex (Pt(NH3)2(NO2)2) to shift the onset of Pt reduction to more negative 

potential where co-deposition of Fe occurs, yielding a smooth surface and, furthermore, Fe is 

present as Fe(III)-citrate in the electrolyte, which is more stable than Fe(II)-citrate complex at 

alkaline pH to avoid precipitation of Fe as hydroxides or oxides, resulting in low oxygen 

content in deposited films.  

 

     As mentioned above, electrodeposition have been demonstrated as suitable process for 

fabricating films of high Ku materials, it is expected to apply in fabrication of nandot arrays by 

utilizing patterned nanopore substrate formed via lithography technique. Despite many studies 

on the electrodeposition of FePt have been reported, there is no report of fabrication of ultra-fine 
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FePt nanodot arrays by electrochemical methods for the application in BPM. Thus, in this study, 

in order to demonstrate the electrochemical fabrication process of Tbit-level nanodot arrays 

consisting of high Ku materials, FePt nanodot arrays were fabricated by combining lithography 

technique and electrodeposition. In addition fabrication process, such as deposition conditions 

of FePt with high coercivity and annealing process of nanodot arrays, were investigated in detail. 

Electrodeposition of FePt was carried out based on the bath system proposed by Zangari et al. 
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4.2 Experimental 

 

4.2.1 Deposition Conditions of FePt Nanodot Arrays 

 

 

FePt continuous films and nanodot arrays were electrodeposited from the electrolyte 

summarized in Table 4.2.1, which was based on the bath proposed by Zangari et al.. The bath 

temperature was 75 
o
C, and the pH was adjusted to 8 by diluted KOH. All electrochemical 

measurements were performed utilizing potentiostat (HZ-7000, Hokuto Denko); a Pt mesh and 

Ag/AgCl electrode were used as counter electrode and reference electrode, respectively. FePt 

alloy was deposited onto a 60 nm-thick Ru underlayer with 5 nm-thick Ti adhesion layer sputter 

deposited on n-Si (100) wafer. Post annealing to induce a phase transformation to the L10 

ordered structure was performed utilizing a rapid thermal annealing device under forming gas 

(90 % Ar + 10 % H2); samples were heated up to 500 or 650 
o
C with different holding times and 

ramp rates, and finally cooled down to room temperature. Details of the annealing conditions of 

FePt continuous films and nanodot arrays are listed in Table 4.2.2. 

 

For the fabrication of FePt nanodot arrays, nanopore patterned substrate was formed onto 

Ru substrate with electron beam lithography (ELS-7500, ELIONIX) by the same fabrication 

process as described in chapter 2. Morphology of FePt nanodot arrays were observed by 

high-resolution scanning electron microscope (HR-SEM, S5500, Hitachi High-Tech.). Crystal 

structure of continuous films was analyzed by X-ray diffractometer (XRD, Rint-Ultima III, 

Rigaku); films with less than 100 nm thickness were analyzed with the grazing incidence angle 

of 0.4 º. Structural analysis of nanodot arrays was performed by transmitting electron 

microscope (TEM, JEM-2010, JEOL). Alloy composition of FePt continuous films and nandot 

arrays was determined by inductively-coupled plasma mass spectrometry (ICP-MS, 7700x, 

Agilent); 10 ppb of Rh was used as an internal standard. Magnetic properties of deposited 

continuous films were characterized by magneto-optical Kerr effect equipment (BH-810PC-WU, 

NEOARK). Prior to the characterization of the nanodot arrays all the resist was removed by 

exposing the samples with excimer UV irradiation for 2.0 min and rising with ethanol and UPW. 
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Atmosphere Ar+H2 10 %

Annealing temperature 450-650 
o
C

Ramp rate 130-1950 
o
C/min

Holding time 0 min

Cooling Water

Table 4.2.2. Annealing conditions

Chemicals Concentration / mM

(NH4)2C6H6O7 150

Fe2(SO4)3 50

NH2CH2COOH 150

NaNO2 100

(NH4)2SO4 100

Pt(NO2)2(NH3)2 15

Bath temperature 75 
o
C

pH 8 (adjusted by KOH)

Reference electrode Ag / AgCl

Counter electrode Pt Mesh

Table 4.2.1. Bath compositions and electrodeposition conditions of FePt

Resist ZEP520A-7 : ZEP-A = 1:2

Spin Coat 5000 rpm, 60 s

Prebake 180 
o
C, 3 min

Thickness of resist 30 nm

Accelerating voltage 50 kV

Beam current 20 pA

Dose value 10 fC / dot

Developer IPA

Developing time 5 s

Developing temperature 5 
o
C

Rinse UPW

Table 4.2.3 Operating conditions of electron beam lithography 
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4.3 Development of Fabrication Process of FePt Nanodot Arrays with 

Tbit/in2 Areal Density 

 

4.3.1 Deposition of L10-FePt Films with High Coercivity 

 

 

     To investigate the general characteristics of FePt electrodeposition, linear sweep 

voltammogram of FePt electrolyte was obtained at the scan rate of 50 mV s-1 (Fig. 4.3.1). The 

electrolyte showed a current onset at -0.2 V (vs. Ag/AgCl), and further voltammetric features 

were observed at -0.52 V and -0.85 V (vs. Ag/AgCl), which were corresponded to reduction of 

Pt and Fe. The current onset is attributed to the reduction of Fe(III) to Fe(II), followed by the 

onset of Fe reduction at -0.85 V (vs. Ag/AgCl). It should be noted that in the existence of Pt 

electrolyte, Zangari et al. [13] confirmed the codeposition of Fe at a potential 0.48 V more 

positive than the single Fe deposition due to the under potential codeposition of Fe by means of 

electrochemical quartz crystal microbalance. The significant increase in the current at more 

negative potential than -1.0 V was corresponded to hydrogen evolution reaction. 

 

 

Fig. 4.3.1 Linear sweep voltammogram of FePt electrolyte. Scan rate was 50 mV s-1. 
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     Based on the electrochemical characteristics of FePt electrodeposition as described in Fig. 

4.3.1, alloy composition of FePt films deposited on Ru substrate was optimized by adjusting the 

applied potential in order to deposit equiatomic FePt films, which is required to achieve L10 

ordered structure. Figure 4.3.2 (a) shows the deviation of atomic fraction of Fe in 200 nm-thick 

alloy films with different applied potentials. As the potential increased in negative value, atomic 

fraction of Fe in the film increased, and near-equiatomic composition was obtained in the range 

of -1.0 V to -1.2 V (vs. Ag/AgCl). Figure 4.3.2 (b) shows the depth profile of alloy composition 

in 250 nm-thick FePt film deposited at -1.1 V (vs. Ag/AgCl). The deposited film showed a 

uniform composition ratio of Fe and Pt with thickness, and the oxygen content was less than 10 

at%, indicating the low content of oxides or hydroxides of Fe formed by the hydrogen evolution 

reaction at this potential range. 

 

 

Fig. 4.3.2 Compositional analyses of deposited FePt continuous films. (a) Variation of atomic 

contents of Fe with different applied potentials. (b) Compositional depth profile of 250 nm thick 

FePt continuous films deposited at -1.1 V (vs. Ag/AgCl). 

 

 

     In order to investigate the phase transformation of FePt, 200 nm-thick continuous films 

deposited at -1.15 V were annealed for 60 min at 500 and 650 
o
C. XRD patterns of FePt 

continuous films are shown in Fig. 4.3.3. The sharp peak at 42.3 
o
 corresponds to hcp (002) of 

Ru underlayer. The as-deposited film showed a shoulder to Ru peak around 40.5 
o
, which 

corresponded to the peak of fcc disordered phase in (111) direction. Upon annealing, the (111) 

peak with higher intensity was clearly observed, and the peak shifted to higher 2 value at 41.4 
o
. 

Due to the large lattice mismatch between FePt and Ru underlayer epitaxial-like growth of FePt 
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is hardly occurs, resulting in the formation of the films with (111) preferred orientation. 

Although the (111) peak was observed, other characteristic peaks of L10 structure was not 

observed at 500 
o
C. On the other hand, peaks of (200), (110), and (001) of L10 ordered structure 

appeared at 650 
o
C, indicating the higher degree of phase transformation from fcc disordered 

structure to L10 ordered structure. 

 

 

Fig. 4.3.3 XRD patterns of 200 nm-thick FePt continuous films deposited 

at -1.15 V (vs. Ag/AgCl). Thickness of the films was 200 nm. 

 

 

     To further investigate the phase transformation of L10 ordering, magnetic properties of the 

same samples as shown in Fig. 4.3.3 were measured by polar magneto-optical Kerr effect 

equipment; corresponding out-of-plane magnetic hysteresis loops are shown in Fig. 4.3.4 and 

measured coercivity and squareness were summarized in Table 4.3.1. The as-deposited films 

showed superparamagnetic feature due to the fcc structure of the deposited films. Upon 

annealing, significant magnetic hardening was observed; coercivity of 6.0 and 13.3 kOe and 

squareness of 0.65 and 0.93 were obtained for 500 
o
C and 650 

o
C, respectively. Higher values of 

coercivity and squareness at 650 
o
C are attributed to the higher degree of phase transformation 

to L10 structure as confirmed by XRD measurements in Fig. 4.3.3.  
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Fig. 4.3.4 Out-of-plane hysteresis loops of FePt continuous films (a) as-deposition, (b) annealed 

at 500 
o
C and (c) at 650 

o
C for 60 min. The thickness was 200 nm. 

 

 

 

 

     From the above characterizations of continuous films, phase transformation and magnetic 

hardening were successfully demonstrated. In BPM, magnetic layer with thickness less than 20 

nm is required for the application, thus FePt continuous films with small thickness (< 40 nm) 

were deposited by reducing the deposition durations and were analyzed. Figure 4.3.5 shows the 

XRD patterns of annealed FePt continuous films with different thickness at 650 
o
C for 60 min. 

Because the peak intensity was insufficient to obtain by the out-of-plane method due to the 

small thickness, the films were measured with the grazing incidence angle of 0.4 º. The (111) 

peak of fcc disordered structure was observed in 30 nm-thick as-deposited film; upon annealing, 

phase transformation was confirmed from the appearance of the peaks corresponding to L10 

ordered structure in both 10 nm and 30 nm-thick films. The hcp (002) of Ru substrate only 

appeared in 10 nm-thick FePt film owing to its small thickness. Fig.4.3.6 shows the out-of-plane 

hysteresis loops of FePt continuous films with different thickness after annealing at 650 
o
C for 

60 min; measured coercivity and squarenss were summarized in table 4.3.2.  
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As-deposition - -

500 
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C 6.0 0.65

650 
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C 13.3 0.93

Table 4.3.1 Coercivity and squareness of 200 nm-thick FePt continuous films

SquarenessSamples
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Fig. 4.3.5 XRD patterns of annealed FePt continuous films with different thickness. 

The grazing incidence angle was 0.4 º. 

 

 

Fig. 4.3.6 Out-of-plane hysteresis loops of FePt continuous films with (a) 10 nm, (b) 20 nm, (c) 

30 nm, and (d) 40 nm thickness after annealing at 650 
o
C for 60 min. 
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Magnetic hardening was clearly observed in each film due to the phase transformation of 

the films. The coercivity and squareness of the deposited films increased with increasing the 

thickness of the films, which is attributed to the increase in the magnetic domain size 

associating with the growth of the grain size of the film. The higher values of coercivity were 

obtained compared to that of the CoPt continuous films as confirmed in the chapter 2; 9.0 kOe 

was obtained even with the thickness of 10 nm. These features of crystal structures and 

magnetic properties of the continuous films should also be reflected in the nanodot arrays to 

exhibit high coercivity with L10 ordered structure.  

 

 

  

Thickness Coercivity

/ nm / kOe

10 9.0 0.57

20 9.6 0.82

30 9.8 0.71

40 11.3 0.95

Table 4.3.2 Coercivity and squareness of FePt continuous films with different thickness

Squareness
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4.3.2 Fabrication of L10-FePt Nanodot Arrays with Tbit/in
2 Areal Density 

 

 

     In order to apply FePt alloy for the fabrication of nanodot arrays with Tbit/in2 recording 

density, FePt was deposited into the nanopore patterned substrate with 35 nm in pitch fabricated 

by electron beam lithography in the same bath summarized in table 4.2.1. The fabrication of 

FePt nanodot arrays was conducted in the same procedures as fabrication of CoPt nanodot 

arrays (see Fig.2.2.1). However, as shown in Fig. 4.3.7 (a), geometry of ordered nanodot arrays 

was degraded after electrodeposition. Although the exact reason for this degradation is not 

understood, one possibility is the high bath temperature for the FePt deposition. Because the 

glass transition temperature of the electron beam resist (ZEP520A-7) is 105 oC, the high bath 

temperature of 75 oC may deteriorate the nanopores to inhibit the nucleation of FePt inside the 

nanopores. Baumgartner et al. reported that the current efficiency decreases below 60 oC; 

considering this point, the bath temperature was lowered to 60 oC to mitigate the deterioration of 

nanopores. Figure 4.3.7 (b) shows the linear sweep voltammograms of FePt electrolyte with 75 

oC and 60 oC; scan rate was 50 mV s-1. At lower bath temperature, the current onset and the 

reduction of each metal shifted to 0.11 V more negative potential, which was in accordance with 

the Nernst equation. Although the shift in the reduction of each metal changes the alloy 

composition, near-equiatomic composition of FePt was obtained at 60 oC with -1.15 V (vs. 

Ag/AgCl).  

 

Fig. 4.3.7 (a) SEM images of FePt nanodot arrays deposited in bath temperature of 75 oC. (b) 

Linear sweep voltammograms of FePt electrolyte with 75 oC and 60 oC.
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     FePt was deposited with -1.15 V (vs. Ag/AgCl) for 15 s at 60 
o
C inside the nanopore 

patterned substrate with 35 nm in pitch and 15 nm in diameter to fabricate nanodot arrays; SEM 

image of nanodot arrays is shown in Fig. 4.3.8 (a). From the SEM image, the deposition of FePt 

was confirmed over the patterned area, however, FePt grew to form nanodots in non-uniform 

shapes consisting of several fine grains. This inhomogeneous growth of FePt could attribute to 

multiple nucleation along with the hydrogen evolution, which took place at the potential where 

Fe reduction occurs. As the growth of FePt proceeded, hydrogen evolution could also be 

enhanced due to the catalytic activity of the Pt on the surface to inhibit the nucleation of FePt, 

resulting in the non-uniform morphology in each nanodot. The inhomogeneous morphology of 

nanodots results in lack of uniformity in coercivity of each nanodot. In addition, nanodot arrays 

consisting of fine FePt grains could exhibit not only multiple magnetic domain structure but 

also superparamagnetic feature. Thus, in order to suppress the hydrogen evolution and to 

enhance the growth of FePt, FePt was deposited inside the nanopore with less negative potential 

of -1.0 V (vs. Ag/AgCl). Figures 4.3.8 (b) and (c) shows the SEM image of FePt nanodot arrays 

with 35 nm and 25 nm in pitch deposited with -1.0 V (vs. Ag/AgCl) at 60 
o
C for 20.5 s and 6.0 s, 

respectively. From the top images of nanodot arrays, FePt was uniformly nucleated inside the 

nanopore over the patterned area to form FePt nanodot arrays at less negative potentials; the 

inhomogeneous morphology was prevented by applying less negative potential to mitigate the 

hydrogen evolution and multiple nucleation. At higher recording density of 25 nm in pitch, 

corresponding to 1 Tbit/in
2
, although some defects were observed due to the non-uniform 

patterning at this ultra-high density, fabrication of FePt nanodot arrays with Tbit/in
2
 were 

successfully demonstrated.  
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Fig. 4.3.8 SEM images of FePt nanodot arrays with 35 nm in pitch deposited with (a) -1.15 V 

for 15 s and with (b) -1.0 V for 20.5 s, and (c) nanodot arrays with 25 nm in pitch deposited 

with -1.0 V for 6.0 s. 

 

 

Prior to the detailed analyses of FePt nanodot arrays, annealing conditions of ramp rate 

and holding time were optimized to fabricate uniform nanodot arrays with high areal recording 

density. Figure 4.3.9 shows SEM images of FePt nanodot arrays with 35 and 15 nm in pitch and 

diameter, respectively. Figures 4.3.9 (a) and (b) compares the top view of FePt nanodot arrays 

before and after annealing at 650 
o
C for 60 min with the ramp rate of 130 

o
C/min. In the 

as-deposited conditions, nanodot arrays were uniform over the patterned area [Fig. 4.3.9 (a)]; 

however, after annealing for 60 min at 650 
o
C major deterioration of nanodot arrays was 

observed [Fig. 4.3.9 (b)]. Because the longer holding time may accelerate the diffusion of Fe 

and Pt atoms on the surface and into Ru substrate and possibly the aggregation of nanodots, the 

nanodot array geometry suffered degradation after the annealing. In order to achieve uniform 

nanodot arrays, a reduction in the total time of the annealing process was attempted by 

200 nm

200 nm

200 nm

(a) (b)

(c)
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increasing the ramp rate and reducing the holding time. Figures 4.3.9 (c) and (d) show SEM 

images of FePt nanodot arrays annealed at 650 
o
C for 0 min with 1300

 o
C/min and 1950 

o
C/min, 

respectively. As the ramp rate increased the deterioration of nanodot arrays was mitigated after 

annealing, and at 1950 
o
C/min uniformity of as-deposited nanodot arrays was successfully 

maintained after the annealing. Thus, in the present work, fabrication of FePt nanodot arrays 

was carried out by annealing at 650 
o
C for 0 min with 1950 

o
C /min. 

 

 

Fig. 4.3.9 SEM images of FePt nanodot arrays with 35 nm in pitch (a) as-deposited stage and 

annealed at 650 
o
C for (b) 60 min with 130 

o
C /min, (c) for 0 min with 1300 

o
C/min, and (d) for 

0 min with 1950 
o
C/min. 

 

 

     In order to investigate the phase transformation of FePt nanodot arrays, lattice structure of 

nanodots with 35 nm in pitch were observed using TEM. Figure 4.3.10 shows the 

(a) (b)

(c) (d)
200 nm200 nm

200 nm 200 nm
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cross-sectional TEM images of the as-deposited FePt nanodot arrays deposited at -1.0 V (vs. 

Ag/AgCl) for 20.5 s. The insets show the selected area electron diffraction (SAED) patterns of 

nanodot. From the lower magnification TEM image [Fig. 4.3.10 (a)], uniform fabrication of 

nanodot arrays with a columnar shape without voids was confirmed. In addition, SAED patterns 

of as-deposited nanodots showed ring-like patterns, which indicates that the deposited nanodot 

arrays exhibit polycrystalline structure due to the multiple nucleation inside the nanopore under 

this deposition condition. Higher magnification image [Fig. 4.3.10 (b)] showed grain boundaries 

of FePt particles and random crystal orientations due to the multiple nucleation of FePt, 

resulting in the polycrystalline structure as observed in the SAED patterns.  

 

 

Fig. 4.3.10 Cross-sectional TEM images of FePt nanodot arrays deposited at -1.0 V for 20.5 s. 

(a) Low magnification and (b) high magnification image of nanodots. The inset shows the 

selected area electron diffraction (SAED) patterns of nanodots. 

 

 

     Figure 4.3.11 shows the cross-sectional TEM images of annealed FePt nanodot arrays at 

650 
o
C for 0 min with ramp rate of 1950 

o
C/min. Lower magnification image confirmed that 

columnar shape was maintained after annealing. The slight difference in the shape of the 

nanodots compared to that of the as-deposited ones should be mainly attributed to the 

rearrangement of Fe and Pt atoms in the ordered structure, and the decrease in height of the 

Ru

FePt

Carbon(a)

5 nm 1 nm
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nanodot could be due to the interdiffusion of Fe and Pt atoms into the Ru substrate. From the 

higher magnification TEM images of the nanodot, it was found that grain boundaries and 

random crystal orientation, which were observed in the as-deposited nanodot, vanished to form 

a clear stacking of crystal facets oriented in the perpendicular direction from the initial 

deposition stage. The SAED patterns of the nanodot showed diffraction spots and a small 

amount of diffraction rings in the patterns, indicating that the nanodot arrays were 

polycrystalline structure. In addition, the measured d-spacing was 0.231 nm, which was slightly 

larger than the d111 plane spacing of L10 ordered structure (0.219 nm). Although the morphology 

of nanodots was maintained after the annealing, it was suggested that the phase transformation 

from fcc disordered structure to L10 ordered structure was incomplete under this annealing 

conditions. Thus, in order to achieve fabrication of Tbit/in
2
 nanodot arrays with L10 structure 

L10 ordering should be enhanced. 

 

 

Fig. 4.3.11 Cross-sectional TEM images of annealed FePt nanodot arrays deposited at -1.0 V for 

20.5 s. The nanodots were annealed at 650 
o
C for 0 min with ramp rate of 1950 

o
C/min. (a) Low 

and (b) high magnification image of nanodots. The inset shows the selected area electron 

diffraction (SAED) patterns of nanodots. 

 

  

Ru

FePt

Carbon(a) (b)

5 nm 1 nm

(b)



Chapter 4 

99 

 

Conclusion 

 

 

     Feasibility of the electrodeposition process as a fabrication process of FePt nanodot arrays 

was evaluated. Electrodeposited FePt films showed higher coercivity of 9.0 and 13.3 kOe for 10 

and 200 nm-thick films, respectively, which were two times higher than electrodeposited CoPt 

films. FePt deposition demonstrated fabrication of nanodot arrays with 25 nm in pitch, which 

corresponds to 1.0 Tbit/in
2
 areal density, and the optimization of the annealing conditions, such 

as ramp rate and holding time, led to successful formation of FePt nanodot arrays after 

annealing at high temperature of 650 
o
C. By developing the deposition conditions to satisfy the 

requirement of the enhancement of L10-ordering of FePt, electrodeposition process should be a 

promising candidate for the fabrication of nanodot arrays consist of high Ku materials. 
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Fabrication of Multilayered FePt and FePtCu Nanodot Arrays 

towards L10 Ordering
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5.1 Introduction 

 

 

     Several approaches have been proposed to accelerate the L10 ordering process of FePt in 

the physical deposition methods, for example, fabrication of multilayered Fe/Pt film [1-3] or 

addition of Cu as a third element to form ternary FePtCu alloy [4, 5]. Previous studies of 

fabrication of multilayered Fe/Pt films have shown that multilayered structure was effective in 

reducing the ordering temperature due to its rapid diffusion at the Fe/Pt interface to form L10 

FePt phase directly [3]. On the other hand, Maeda et al. reported that the addition of Cu into 

FePt alloy increases the free energies between the disordered and ordered FePtCu ternary alloy 

compared to that of the FePt binary alloy, which increases the driving force of phase 

transformation at lower annealing temperature [4]. 

 

     Fe/Pt multilayer films consisting of Fe- and Pt-rich layer were first studied to reduce the 

oxygen contents in the electrodeposited films. Leistner et al. reduced the oxygen content in the 

as-deposited films by depositing Fe/Pt multilayer by pulse electrodeposition [6]; bilayer 

thickness down to 40 nm thick with Fe/Pt ratio of 1.0 was reported. Post annealing of this films 

in hydrogen atmosphere at 600 
o
C and 400 

o
C led to the formation of the L10 FePt phase and 

films with coercivity of 10 kOe and 6.2 kOe were achieved, respectively. However, the total 

thickness of the film was more than 1.0 m, which was too thick for the application in magnetic 

recording media; thickness of less than 20 nm is required in the magnetic recording media. 

Zangari et al. fabricated 25 nm-thick FePt films by coupling Fe-rich layers with Pt 25 at% to 

accelerate the ordering of FePt [7]. The coercivity of FePt/Fe-rich bilayers (FePt 15 nm/ Fe-rich 

10 nm) after annealing at 550 
o
C showed 45 % higher coercivity of 6.0 kOe compared with a 

single layer of 15 nm equiatomic FePt; the increase in the coercivity was also observed in the 

trilayer and five-layer structures. 

 

     For the electrodeposition of FePtCu ternary alloy, Thongmee et al. deposited 2 at.% Cu 

doped FePt films with a thickness of 800 nm on the Cu underlayer. Upon annealing at 350 
o
C, 

L10 ordered FePt was formed and the annealed film showed coercivity of 12 kOe [8]. In this 

film, diffusion of doped Cu may form channels in FePt films, which act not only as a formation 

of columnar structures in FePt films but also as a channels to facilitate further Cu diffusion from 
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the underlayer. The columnar shape of the film induces the perpendicular magnetic anisotropy 

and diffusion of Cu into the film enhances the mobility of Fe and Pt, resulting in the increase in 

coercivity with lower annealing temperature. Svedberg et al. also utilized (001) oriented Cu 

underlayer to accelerate the phase transformation of FePt with (001) orientation [9]. By 

annealing the FePt films deposited on the Cu (001) underlayer, recrystallization of FePt stars at 

the FePt/Cu interface due to the interdiffuion of Cu into FePt, thus keeping the initial crystal 

orientation of Cu (001) underlayer through the deposited films; the L10 ordering of 360 

nm-thick film was achieved at 450 
o
C and further annealing at 650 

o
C high perpendicular 

coercivity, of up to 10 kOe, was obtained.  

 

Despite many studies on physically prepared FePt multilayers or FePtCu ternary alloy in 

the BPM system, there is no report of electrodeposited FePt multilayer or FePtCu ternary alloy 

for the application in ultra-fine nanostructures, which are suitable for the BPM application. 

From the previous studies of electrodeposited multilayer structure or the ternary alloy structure 

demonstrated the facilitation of FePt to L10 structure. Therefore, in this chapter, L10-FePt 

nanodot arrays with Tbit-level recording density were fabricated by applying multilayer 

structure or Cu addition to accelerate the ordering process of FePt under lower annealing 

temperature or heating time requirements. The acceleration of ordering process in nanodot 

arrays with multilayer and Cu addition was investigated by detailed crystal structure 

characterization. 
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5.2 Experimental 

 

5.2.1 Fabrication of FePt Multilayers 

 

 

FePt continuous films and nanodot arrays were electrodeposited from an electrolyte 

summarized in Table 5.2.1, which is the same bath composition as described in chapter 4. 

Multilayer structure was consisted of Fe- and Pt-rich layer with various thickness, which were 

deposited by changing the applied potential and deposition duration for each layer. Potentiostat 

(HZ-7000, Hokuto Denko) was utilized for all the electrochemical measurements; a Pt mesh and 

Ag/AgCl electrode were used as counter electrode and reference electrode, respectively. FePt 

alloy was deposited onto a 60 nm-thick Ru underlayer with 5 nm-thick Ti adhesion layer sputter 

deposited on n-Si (100) wafer. Post annealing for the phase transformation to L10 ordered 

structure was performed utilizing rapid thermal annealing device under forming gas (90 % Ar + 

10 % H2); samples were heated up to 450 and 650 
o
C with different holding times and ramp 

rates, and cooled down to room temperature. The annealing conditions are summarized in table 

5.2.2. 

 

     The nanopore patterned substrate was formed onto Ru substrate by utilizing electron 

beam lithography (ELS-7500, ELIONIX) in the same process as described in the previous 

chapters; conditions of the electron beam lithography is shown in table 5.2.3. Morphology of 

FePt nanodot arrays were observed by high-resolution scanning electron microscope (HR-SEM, 

S5500, Hitachi High-Tech.). Crystal structure of continuous films was analyzed by X-ray 

diffractometer (XRD, Rint-Ultima III, Rigaku) with grazing incidence angle of 0.4 º, and 

structural analysis of nanodot arrays was performed by transmission electron microscope (TEM, 

JEM-2010, JEOL). Alloy composition of FePt continuous films and nandot arrays was 

determined by inductively-coupled plasma mass spectrometry (ICP-MS, 7700x, Agilent); 10 

ppb of Rh was used as an internal standard. Magnetic properties of deposited continuous films 

were characterized by magneto-optical Kerr effect equipment (BH-810PC-WU, NEOARK); the 

diameter of the laser spot area was 1.0 mm. Prior to the characterization of the nanodot arrays 

all the resist was removed by exposing the samples with excimer UV irradiation for 2.0 min and 
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rising with ethanol and UPW. 

 

 

 

 

 

 

  

Atmosphere Ar+H2 10 %

Annealing temperature 450, 650 
o
C

Ramp rate 130, 1950 
o
C/min

Holding time 0 min

Cooling Water

Table 5.2.2 Annealing conditions

Chemicals Concentration / mM

(NH4)2C6H6O7 150

Fe2(SO4)3 50

NH2CH2COOH 150

NaNO2 100

(NH4)2SO4 100

Pt(NO2)2(NH3)2 15

Bath temperature 75 
o
C

pH 8 (adjusted by KOH)

Reference electrode Ag / AgCl

Counter electrode Pt mesh

Table 5.2.1 Bath compositions and electrodeposition conditions of FePt

Resist ZEP520A-7 : ZEP-A = 1:2

Spin Coat 5000 rpm, 60 s

Prebake 180 
o
C, 3 min

Thickness of resist 30 nm

Accelerating voltage 50 kV

Beam current 20 pA

Dose value 10 fC / dot

Developer IPA

Developing time 5 s

Developing temperature 5 
o
C

Rinse UPW

Table 5.2.3 Operating conditions of electron beam lithography 
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5.2.2 Electrodeposition of FePtCu Ternary Alloy 

 

 

     For the electrodeposition of FePtCu ternary alloy, CuSO4 was added as a precursor of Cu 

into the FePt electrolyte; the bath conditions are summarized in table 5.2.3. FePtCu was 

deposited onto (002) oriented 60 nm-thick Ru and 5 nm-thick Ti adhesion layer sputter 

deposited on the n-Si (100) substrate. All the electrochemical measurements were performed by 

using potentiostat (HZ-7000, Hokuto Denko). FePtCu nanodot arryas were fabricated in the 

same procedure as described in the previous chapters; the lithography conditions are 

summarized in table 5.2.3. For the phase transformation of the FePtCu rapid thermal annealing 

device was utilized; samples were heated under forming gas (90 % Ar + 10 % H2) at 450 and 

650 
o
C with the conditions summarized in table 5.2.2. Alloy compositions of each metal element 

in deposited continuous films were analyzed by energy dispersive X-ray spectroscopy. X-ray 

diffractometer (XRD, Rint-Ultima III, Rigaku) was used to investigate the crystal structure of 

deposited continuous films with grazing incidence angle of 0.4 º. The morphology of the 

deposited continuous films and nanodot arrays were observed by HR-SEM (S5500, Hitachi 

High-Tech.). The coercivity of the deposited continuous films was measured by polar 

magneto-optical Kerr effect equipment (BH-810PC-WU, NEOARK).  

 

 

  

Chemicals Concentration / mM

(NH4)2C6H6O7 150

Fe2(SO4)3 50

NH2CH2COOH 150

NaNO2 100

(NH4)2SO4 100

Pt(NO2)2(NH3)2 15

CuSO4 0.020-5.0

Bath temperature 75 
o
C

pH 8 (adjusted by KOH)

Reference electrode Ag / AgCl

Counter electrode Pt mesh

Table 5.2.4 Bath compositions and electrodeposition conditions of FePt
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5.3 L10 Ordering of FePt Nanodot Arrays with Multilayer Structure 

 

5.3.1 Facilitation of L10 Ordering of FePt by Multilayer Strcuture 

 

 

In order to fabricate FePt films with equiatomic or Fe- and Pt- rich composition, the 

composition of FePt films deposited on Ru substrate was optimized by adjusting the applied 

potential. At the applied potential of -1.0 V vs. Ag/AgCl, near-equiatomic FePt films were 

obtained; for the deposition of Fe-rich and Pt-rich layers instead -1.4 and -0.8 V vs. Ag/AgCl 

were selected, such that the Fe fraction in the films was 80 at.% and 20 at.%, respectively. The 

multilayer structure of twenty-, eight-, and four-layers, where the thickness of each layer was set 

to around 1.0, 2.5, and 5.0 nm, was deposited by changing the deposition duration: 120, 360, 

and 660 s for the Pt-rich layer and 0.50, 1.5, and 2.75 s for the Fe-rich layer, respectively. The 

number of layers was set by changing the number of potential cycles. In this chapter, the phase 

transformation and magnetic properties of 20 nm-thick blanket multilayer films is discussed in 

detail; subsequently, the fabrication of L10 nanodot arrays was attempted. 

 

     Table 5.3.1 shows the alloy composition of 20 nm-thick multilayer FePt films deposited 

with different number of Fe- and Pt-rich layers. All samples showed a composition near to 

equiatomic in each deposition condition suggesting the uniform formation of Fe-rich and Pt-rich 

layers at different thickness. At the composition ratio summarized in Table 5.3.1, phase 

transformation of FePt alloy from fcc disordered structure to L10 ordered structure is expected. 

 

 

 

 

Fe / at% Pt / at%

20 57 43

8 59 41

4 58 42

1 55 45

Numbers of layers
Alloy composition

Table 5.3.1 The alloy compositions of FePt continuous films
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     Figure 5.3.1 compares the XRD patterns of the as-deposited 20 nm-thick FePt films made 

up of multi-layers and a single layer. The as-deposited FePt films deposited with both pulse and 

constant potential showed a peak at 40-41 º indicating that FePt grew in a fcc structure with a 

(111) orientation; peak appeared at slightly lower angle in multilayer films.  

Because multilayer consists of both Fe- and Pt-rich layers, the multilayer films showed broad 

peak with lower intensity of (111) peak compared to that of single layer. The Pt- and Fe-rich 

layer should exhibit fcc structure and bcc structure, respectively; the individual peaks for the 

Fe-rich of bcc (110) and Pt-rich of fcc (111) at 44 and 40 
o
 were observed in the multilayer 

structures [6].  

 

 

Fig. 5.3.1 XRD patterns of as-deposited 20 nm-thick FePt continuous films 

with single layer and multilayer structures. 

 

 

To investigate the phase transformation of the deposited multilayer films and single layer 

of FePt film, which are the same samples described in Fig. 5.3.1, both sets were annealed at 450 

o
C for 60 min; corresponding XRD patterns are shown in Fig. 5.3.2. After the annealing process, 
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all samples showed a sharp peak at 41.3º corresponding to the (111) reflection, which was 

shifted to a higher angle compared to the peak observed in the as-deposited films. In addition, 

additional peaks near 24º and 47º, which correspond to the (001) and (200) reflections of the L10 

structure, were observed only in the multilayer with eight-layers, whereas other films did not 

show characteristic peaks of L10 structure, indicating that the phase transformation was 

incomplete for the single layer and other multilayer structures at the annealing temperature of 

450 
o
C. With regard to the FePt films with twenty-layers, the thickness of each layer is 1.0 nm. 

Considering the short deposition duration at this condition, the Fe- and Pt-rich layers may be 

partially discontinuous and the separation of each layer was probably insufficient to form a 

uniform multilayer structure, which suggests that the interdiffusion of Fe and Pt atoms during 

the thermal annealing may not have been sufficient to facilitate the phase transformation. 

Considering the interdiffusion process, as the thickness of each layer increases Fe- and Pt- rich 

layer should be uniformly separated to facilitate formation of the L10 structure at the interface. 

However, L10 ordering was not observed in the case of FePt films with four-layers, which could 

be due to the larger diffusion length of Fe and Pt atoms because the thickness of each layer is 

assumed to be 5.0 nm.  

 

Figure 5.3.3 displays the XRD patterns of FePt films with eight-layers and a single layer 

after annealing at 650 
o
C for 0 min. Under this annealing condition, temperature was cooled 

down as it reached to 650 
o
C, thus the holding time for the samples is considered as 0 min. Both 

films showed a sharp peak of (111) and peaks of (001) and (200) as observed in the patterns of 

other samples (Fig. 5.3.2), which suggests the phase transformation of the films. 
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Fig. 5.3.2 XRD patterns of 20 nm-thick FePt continuous films with 

single layer and multilayer structure annealed at 450 
o
C for 60 min. 

 

 

Fig. 5.3.4 XRD patterns of 20 nm-thick FePt continuous films with 

single layer and eight layer structure annealed at 650 
o
C for 0 min.  
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To further investigate the details of the phase transformation in these films, the ordering 

parameters, S, of the annealed films with single layer and wight-layers were calculated. S can be 

calculated from Eq. (5.3.1) by using the axial ratio of c and a axis of deposited films [4]; 

 

𝑆2 =
1 − (𝑐/𝑎)

1 − (𝑐/𝑎)𝑆𝑓

 

 

where (𝑐/𝑎)𝑆𝑓
 is the axial ratio for the fully ordered phase and (c/a) is the axial ratio 

of the annealed films. The values of a- and c- axis for the bulk L10 FePt are given by 3.852 and 

3.713 Ȧ [10], respectively, thus (𝑐/𝑎)𝑆𝑓
 was estimated as 0.964. The axial ratios of the 

deposited films were determined by calculating the values of the a- and c- axis from the (200) 

and (001) XRD peaks, respectively. The lattice parameters and the ordering parameters of each 

film with different number of the layers are plotted in Fig. 5.3.4. Upon annealing at 450 
o
C, the 

eight-layer film showed ordering parameter of 0.82. In addition, at higher annealing temperature, 

eight-layer film showed decrease in c-lattice parameter compared to that of single layer, and the 

ordering parameters were enhanced up to 0.86 and 0.94 for the single and eight-layer films, 

respectively. These features observed in the diffraction patterns of the FePt multilayer films 

should reflect on the coercivity of FePt. To investigate this point, the coercivity of multilayer 

and single layer of FePt films was measured after the annealing. 

 

  

(5.3.1) 
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Fig. 5.3.4 The lattice parameters and the ordering parameters of 20 nm thick FePt continuous 

films with single layer and multilayer structures. The blue diamond, square, and triangle are c-, 

a-axis, and ordering parameters at 450 
o
C, and those in red color are at 650 

o
C. 

 

 

Figures 5.3.5 (a) and (b) show the out-of-plane magnetic hysteresis loops for the same 

samples as shown in Figs. 5.3.2 and 5.3.3, which were measured by polar magneto-optical Kerr 

effect equipment. At 450 
o
C magnetic hardening was not observed for the single layer FePt film; 

this sample showed a perpendicular coercivity of 1.0 kOe and squareness of 0.11. On the other 

hand, although the coercivity and squareness increased slightly in the multilayer films with 

twenty- and four-layers, the FePt film with eight-layers showed significant magnetic hardening, 

leading to an increase in coercivity and squareness up to 6.6 kOe and 0.57, respectively. At 650 

o
C the magnetic hardening was clearly observed and the coercivity of single layer and 

eight-layers increased up to 4.8 and 7.5 kOe due to the higher degree of phase transformation to 

L10 structure. Higher coercivity can be obtained by increasing the holding time for 60 min at 

650 
o
C, resulting in values such as 9.0 kOe and 12.3 kOe for a single layer and multilayer FePt 

films, respectively (data not shown). The measured coercivity and squareness are summarized in 

Fig. 5.3.6. These values are in good agreement with those of the ordering parameters as 

summarized in Fig. 5.3.4; in particular, the increase in coercivity and squareness of the 

eight-layers FePt film was attributed to the higher value of ordering parameter.  
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Fig. 5.3.5 Out-of-plane hysteresis loops of 20 nm-thick FePt continuous films with (a) single 

layer and multilayer structure annealed at 450 
o
C for 60 min and (b) single layer and eight-layer 

structure annealed at 650 
o
C for 0 min. 

 

 

Fig. 5.3.6 The coercivity and squareness of 20 nm-thick FePt continuous films with single layer 

and multilayer structure. The blue square and triangle are coercivity and squareness at 450 
o
C, 

and those in red color are at 650 
o
C.  
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5.3.2 Fabrication of FePt Nanodot Arrays with Multilayer Structure 

 

 

     As described in chapter 4, annealing conditions of ramp rate and holding time 

significantly affect the nanodot arrays geometry; lower ramp rate and longer holding time 

accelerate the diffusion of Fe and Pt atoms on the surface and into the Ru underlayer, and the 

aggregation of nanodots. Therefore, nanodot arrays were annealed at 650 
o
C for 0 min with 

ramp rate of 1950 
o
C/min.  

 

Figure 5.3.7 shows SEM images of eight-layer FePt nanodot arrays with 35 nm in pitch 

before and after annealing at 650 
o
C for 0 min with 1950 

o
C /min. Based on the characterization 

of the continuous films, the effects of multilayer structure should also be reflected in the 

formation of the FePt nanodot arrays. The eight-layer structure was chosen based on the strong 

improvement of magnetic properties and ordering behavior observed for continuous films. In 

the as-deposited state nanodot arrays with multilayer structure were uniformly fabricated over 

the patterned area, and although the diameter of the nanodot slightly decreased due to the 

diffusion of a small amount of Fe and Pt atoms into the Ru substrate caused by the thermal 

annealing, the nanodot geometry was uniformly maintained after the annealing process. From 

the analysis on the crystal structure of continuous films, significant enhancement of the phase 

transformation was confirmed with multilayer structure; thus, to investigate the difference in 

crystal structure of nanodot arrays obtained by single- and multi-layer deposits, the lattice 

structure of the FePt nanodot arrays with 35 nm in pitch were observed using TEM.  

 

Figure 5.3.8 shows the cross-sectional TEM images of the as-deposited FePt nanodot 

arrays with eight-layer structure. The inset shows the selected area electron diffraction (SAED) 

patterns of nanodot. In the as-deposited condition, nanodot showed several grain boundaries 

with random crystal orientation; SAED patterns showed ring-like patterns indicating the 

polycrystalline structure of the nanodots due to the multiple-nucleation inside the nanopore as 

observed in the nanodot arrays with single layer structure in Fig. 4.3.10. In the eight-layer 

nanodot arrays a layered structure was expected from the cross-sectional image, however, it was 

hardly observed since the thickness of each layer is very thin and both layers should show the 
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composition gradient at the initial deposition stage, which makes it difficult to observe the 

interfaces between each layer. 

 

 

Fig. 5.3.7 SEM images of eight-layer FePt nanodot arrays with 35 nm in pitch (a) as-deposited 

stage and (b) annealed at 650 
o
C for 0 min with 1950 

o
C/min. 

 

 

Fig. 5.3.8 Cross-sectional TEM images of as-deposited FePt nanodot arrays 35 nm in pitch 

consists of eight-layers structure. (a) Low and (b) high magnification. The insets show the 

SAED patternd of nanodot. 
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Figure 5.3.9 shows the cross-sectional TEM images of FePt nanodot arrays with the same 

geometry as shown in Fig. 5.3.8 after annealing at 650 
o
C for 0 min with 1950 

o
C /min. Lower 

magnification TEM images confirmed that geometry of nanodot arrays was maintained after the 

annealing process [Fig. 5.3.9 (a)]. The height of the nanodots was reduced after the annealing 

due to the diffusion of Fe and Pt atoms on the surface and inside the Ru underlayer, which was 

observed in the decrease in the diameter of nanodots in Fig. 5.3.7. Higher magnification image 

showed clear crystal fringes of lattice in the perpendicular direction from the interface of Ru to 

the upper part of the nanodots. The lattice spacing measured in the TEM image of multilayer 

nanodots was 0.220 nm, which agrees with the d111 plane spacing of the L10 FePt (0.219 nm) 

[24] indicating the phase transformation of nanodot arrays in the L10 ordered structure. In 

addition, the SAED patterns (insets) showed clear diffraction spots in the SAED patterns along 

the growth direction, without any diffraction rings, indicating that the crystallinity of L10 

structure was improved with multilayer structure to have a single crystal nature. Furthermore, its 

crystal lattice is uniformly oriented in the perpendicular direction, which is necessary to induce 

the perpendicular magnetic anisotropy of the nanodot arrays. Since the nanodots exhibit a (111) 

crystal orientation along the growth direction, probably due to the lattice matching between 

FePt and Ru underlayer, they should exhibit both in-plane and perpendicular magnetization 

components. This is not ideal for maximizing remanence, therefore in order to control the 

crystal orientation along the (001) direction, a substrate with lattice matching to the FePt (100) 

plane, such as TiN [11], can be employed to induce perpendicular magnetic anisotropy. 
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Fig. 5.3.9 Cross-sectional TEM images of annealed FePt nanodot arrays of eight-layer  

structure with 35 nm in pitch. The nanodots were annealed at 650 
o
C for 0 min with 

 ramp rate of 1950 
o
C/min. (a) low and (b) high magnification images of nanodot;  

the inset shows the SAED patterns of nanodot. 

 

 

Based on the above results, by controlling the crystal structure of FePt with the 

application of multilayer structure, we succeeded in controlling the phase transformation of FePt 

and in achieving the fabrication of ultra-fine FePt nanodot arrays with L10 ordered structure. 

Considering the improvement of the magnetic hardening in the continuous FePt films with 

multilayer structure, nanodot arrays with L10 structure are expected to exhibit higher coercivity, 

which will be analyzed in detail in future studies. 
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5.4 Addition of Cu into FePt Alloy towards Facilitation of L10 Ordering 

 

 

     Characteristics of FePtCu electrodeposition was investigated by linear sweep 

voltammetry at the scan rate of 20 mV s-1. Fig. 5.4.1 shows the voltammograms of electrolytes 

containing Cu, FeCu, and FePtCu precursors; the concentration of Cu precursor was 5 mM in 

each electrolyte and the concentration of other metal precursors were listed in table 5.2.4. Onset 

of Cu reduction in the Cu electrolyte occurs at about -0.55 V (vs. Ag/AgCl), which 

corresponded well with the Cu reduction in glycine baths, indicating that the Cu precursor exists 

as glycine complex in this electrolyte [12]. Current onset at around -0.2 V (vs. Ag/AgCl) could 

be attributed to the proton reduction and hydrogen evolution reaction was clearly observed at 

more negative potential than -1.0 V (vs. Ag/AgCl). FeCu electrolyte showed increase in current 

density from -0.2 V (vs. Ag/AgCl) owing to the reduction of Fe(III) to Fe(II), followed by the 

reduction of Cu at -0.55 V (vs. Ag/AgCl) and reduction of Fe at around -0.85 V (vs. Ag/AgCl). 

In the FePtCu electrolyte, the reduction of Pt, which should be appeared at around -0.5 V (vs. 

Ag/AgCl), was hardly observed due to the overlap with the reduction of Cu. The reduction of Fe 

was observed at the same potential [-0.85 V (vs. Ag/AgCl)] with FeCu electrolyte; the onset of 

hydrogen evolution reaction shifted to more positive potential owing to the high catalytic 

activity of Pt. 

 

 

Fig. 5.4.1 Linear sweep voltammograms of electrolytes with different metal precursors. The 

concentrations of Cu, Fe, and Pt were 5.0 mM, 50 mM, and 15 mM, respectively. 
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     In the previous studies, Cu additions up to ~25 at.% were considered effective in 

enhancement of phase transformation [4, 5]. Thus, based on the characteristics of FePtCu 

electrodeposition in Fig. 5.4.1, composition of 20 nm-thick FePtCu ternary alloy was optimized 

by adjusting the applied potential and concentration of CuSO4. Because the reduction of Fe 

starts from -0.85 V (vs. Ag/AgCl) the applied potential was set as -1.0 V (vs. Ag/AgCl). The 

alloy composition pf the films deposited with various CuSO4 concentrations were plotted in Fig. 

5.4.2; the concentrations of CuSO4 were 5.0, 0.50, 0.050, 0.040, 0.030, 0.025 mM, which were 

described as natural logarithm in Fig. 5.4.2. The atomic content of Cu increased with the 

increase in concentrations of CuSO4 and films with 20~25 at.% Cu were obtained with the 

concentration from 0.025 to 0.05 mM. Because Pt is more noble metal than Fe, Pt preferentially 

deposited at this potential, resulting in the slight increase in Pt atomic content. At lower CuSO4 

concentrations (< 0.05 mM) the atomic contents of Fe and Pt rarely changed, thus composition 

was further optimized by adjusting applied potentials. 

 

 

Fig. 5.4.2 Composition variation of 20 nm-thick FePtCu ternary alloy films with CuSO4 

concentration at applied potential of -1.0 V (vs. Ag/AgCl). 

 

 

     Figure 5.4.3 shows the alloy composition of 20 nm-thick FePtCu films deposited with 

-0.95, -1.0, -1.05 V (vs. Ag/AgCl) in different CuSO4 concentrations. The composition of each 

metal showed a linear relation with applied potential that corresponded to the reduction 

potential of each metal; 
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decreased with less negative potential. Table 5.4.1 summarizes the composition of FePtCu 

ternary films deposited with different applied potentials and CuSO4 concentrations. Based on 

these compositional analyses, the composition of FePtCu was tuned with applied potential and 

CuSO4 concentrations to facilitate the L10 ordering.  

 

 

Fig. 5.4.3 Alloy composition of 20 nm-thick FePtCu continuous films deposited  

with CuSO4 concentrations of (a) 0.050 mM, (b) 0.040 mM, (c) 0.030 mM, and 

(d) 0.025 mM at different applied potentials. 
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     In order to investigate the phase transformation of electrodeposited FePtCu continuous 

films, crystal structure was analyzed after annealing at 450 
o
C for 60 min. Figure 5.4.4 shows 

the XRD patterns of 20 nm-thick FePtCu continuous films deposited with CuSO4 concentrations 

of 0.50, 0.050, 0.040, 0.030, and 0.025 mM deposited with different applied potentials. With 

0.50 mM [Fig. 5.4.4 (a)], deposited film showed peaks at 24.8 
o
, 43.0 

o
, and 44.0 

o
, which 

corresponded with the (001), (111), and (200) peaks. These measured peaks shifted more than 

1.0 
o
 compared to L10-ordered FePt; (001) and (111) shifted to higher angle, whereas (200) 

shifted to lower angle. The shifts in these peaks are attributed to the replacement of Fe with Cu 

atoms in the ordered structure, which shrinks and broadens in c- and a-axis lattice, respectively. 

Especially the high atomic content of Cu 50 at.% could lead to the large shift in these films 

compared to equiatomic FePt. With the concentration less than 0.050 mM, XRD patterns 

showed peaks of (001), (111), and (200) plane, and peak of (110) plane was also observed in 

several patterns. In these patterns, peak of elemental Cu was not observed and (001) peak and 

(200) shifted to higher and lower 2 values, respectively, compared to the L10-ordered FePt, 

providing evidence that Cu was alloyed with FePt to form FePtCu ternary alloy. In addition, the 

peaks of (001) and (200) shifted to higher and lower 2 values, respectively, with the increase in 

Cu composition of the films. In order to further investigate the degree of phase transformation 

of the deposited films, lattice parameters of c- and a-axis were calculated from the (001) and 

(200) peaks in Fig. 5.4.4 and the ratio of c- and a-axis was also calculated; the calculated lattice 

parameters and axial ratio were plotted versus CuSO4 concentrations with different applied 

potentials in Fig. 5.4.5 and were summarized with alloy composition in table 5.4.2.  

  

CuSO4 Potential

/ mM / V Fe Pt Cu

5.0 -1.0 1 10 89

0.50 -1.0 20 27 53

-1.05 25 25 50

0.050 -0.95 30 32 38

-1.0 36 36 28

-1.05 40 34 26

0.040 -0.95 28 44 28

-1.0 39 40 21

-1.05 43 38 19

0.030 -0.95 30 44 26

-1.0 34 44 22

-1.05 39 41 20

0.025 -0.95 30 46 24

-1.0 35 43 22

-1.05 42 39 19

Composition / at.%

Table 5.4.1 The alloy composition of FePtCu continuous films
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Fig. 5.4.4 XRD patterns of annealed FePtCu continuous films at 450 
o
C for 60 min. 

The films were deposited with (a) 0.50, (b) 0.050, (c) 0.040, (d) 0.030, 

and (e) 0.025 mM at different applied potentials. 
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Fig. 5.4.5 Lattice parameters and axial ratio of FePtCu continuous films deposited at (a) -0.95, 

(b) -1.0, and (c) -1.05 V (vs. Ag/AgCl) with different CuSO4 concentrations. The blue square, 

diamond, and red triangle corresponds to a-, c-lattice parameters and c/a axial ratio. 

 

 

 

  

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

3.55

3.60

3.65

3.70

3.75

3.80

3.85

0.02 0.03 0.04 0.05

CuSO4 concentration / mM

L
at

ti
ce

 p
ar

am
et

er
s 

/
Ȧ

c/
a 

/
-

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

3.55

3.60

3.65

3.70

3.75

3.80

3.85

0.02 0.03 0.04 0.05

CuSO4 concentration / mM

L
at

ti
ce

 p
ar

am
et

er
s 

/
Ȧ

c/
a 

/
-

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

3.55

3.60

3.65

3.70

3.75

3.80

3.85

0.02 0.03 0.04

CuSO4 concentration / mM

L
at

ti
ce

 p
ar

am
et

er
s 

/
Ȧ

c/
a 

/
-

(a) (b)

(c)

Potential CuSO4

/ V / mM Fe Pt Cu a-axic c-axis

-0.95 0.050 30 32 38 3.824 3.576 0.935

0.040 28 44 28 3.834 3.596 0.938

0.030 30 44 26 3.809 3.622 0.951

0.025 30 46 24 3.837 3.573 0.931

-1.0 0.050 36 36 28 3.801 3.602 0.947

0.040 39 40 21 3.830 3.648 0.953

0.030 34 44 22 3.804 3.628 0.954

0.025 35 43 22 3.840 3.623 0.943

-1.05 0.50 25 25 50 4.086 3.609 0.883

0.050 40 34 26 - - -

0.040 43 38 19 3.809 3.651 0.959

0.030 39 41 20 3.774 3.610 0.956

0.025 42 39 19 3.777 3.638 0.963

Table 5.4.2 The lattice parameters of FePtCu continuous films

Composition / at.% Lattice parameters
c/a
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     Bulk L10 FePt value of the axial ratio is 0.964, estimated by the values of a- and c- axis of 

3.852 and 3.713 Ȧ [4], respectively. All the FePtCu films showed decrease in c-lattice parameter 

compared to FePt binary alloy, which suggested that the phase transformation of FePt was 

facilitated at lower annealing temperature of 450 
o
C by the addition of Cu. In addition, 

increasing in Cu composition led to the increase in a-lattice and decrease in c-lattice, resulting in 

the reduction in c/a axial ratio; lower c/a axial ratio was obtained at less negative potential 

compared to more negative potential owing to the high composition of Cu and Pt in the films. 

Figure 5.4.6 shows the FePtCu ternary phase diagram [13, 14]. From this phase diagram, 

because FePtCu films deposited at more negative potentials exhibited Cu composition close to 

20 at.% single phase of L10-ordered structure was expected, whereas FePtCu films deposited at 

less negative potential could contain ordered fcc structure of both Cu- and Pt-rich phase due to 

its high composition of Cu and Pt.  

 

 

Fig. 5.4.6 Phase diagram of FePtCu ternary alloy films [13] 

 

 

     In order to investigate the magnetic hardening of deposited FePtCu continuous films, 

coercivity was measured in each film by utilizing polar magneto-optical Kerr effect equipment. 

The coercivity of FePtCu deposited with different applied potentials was plotted versus CuSO4 

concentrations in Fig. 5.4.7 (a). As a result, an increase in coercitiy was confirmed with FePtCu 

ternary alloy films compared to the FePt binary films; at 450 
o
C, magnetic hardening was not 

observed for the binary alloy films, whereas FePtCu ternary alloy film showed significant 

magnetic hardening with the coercivity up to 6.0 kOe. The higher values of coercivity were 

obtained with FePtCu films deposited at less negative potentials even though these films deviate 

βO: L10

γD: Disordered fcc (Fe-rich)

γ'D: Disordered fcc (Cu-rich)

γ''D: Disordered fcc (Pt-rich)

γO: Ordered fcc (Fe-rich)

γ'O: Ordered fcc (Cu-rich)

γ''O: Ordered fcc (Pt-rich)

αD: Disordered fcc (Fe-rich)
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from the single phase of L10-ordered structure in the phase diagram (Fig. 5.4.6) due to its high 

atomic content of Cu. By contrast, although the FePtCu films deposited with negative potential 

are included in the composition range of single phase of L10-ordered structure, lower values of 

coercivity were obtained. One of the reasons for the reduction in coercivity with more negative 

potential is due to the higher values of c/a axial ratio. Figure 5.4.7 (b) shows the relation 

between coercivity and c/a axial ratio of FePtCu films deposited with different applied 

potentials; the measured values of coercivity were summarized in table 5.4.3 with composition 

and c/a axial ratio. As seen in Fig. 5.4.7 (b), the increase in perpendicular coercivity was 

consistent with the decreasing in the values of c/a axial ratio, indicating that FePtCu films 

deposited with less negative potential exhibit better perpendicular orientation even these films 

contain Cu-rich phase. Another reason for the lower values of coercivity at negative potentials 

could be due to the hydrogen evolution reaction during the electrodeposition of FePtCu. As seen 

in Fig. 5.4.1, a rapid current increase due to the hydrogen evolution reaction was observed 

below -1.0 V (vs. Ag/AgCl). This reaction can shift the local pH to higher value at the interface 

to cause the formation of Fe hydroxides or oxides, which incorporate as impurities in the 

deposited films. Thus, increase in the perpendicular coercivity with less negative potential was 

attributed to the reduction in the c/a axial ratio and reduced amount of hydrogen evolution 

reaction. 

 

 

Fig. 5.4.7 Perpendicular coercivity of FePtCu films deposited with different applied potentials 

and CuSO4 concentrations. The values of perpendicular coercivity were plotted versus  

(a) CuSO4 concentrations and (b) c/a axial ratio. 
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     In order to fabricate Tbit/in
2
 nanodot arrays with L10 structure, FePtCu ternary alloy was 

employed in fabrication of nanodot arrays. FePtCu nanodot arrays were fabricated with CuSO4 

concentration of 0.025 mM at -0.95 V (vs. Ag/AgCl) for 24 s, which was based on the strong 

improvement of magnetic properties and ordering behavior observed for continuous films. 

Figure 5.4.8 shows SEM images of as-deposited FePtCu nanodot arrays with 35 nm in pitch and 

20 nm in diameter. From the top images, FePtCu was uniformly nucleated inside the nanopore 

over the patterned area to form FePtCu nanodot arrays.  

 

     Figure 5.4.9 and 5.4.10 shows cross sentional TEM images of FePtCu nanodot arrays 

with 35 nm in pitch before and after annealing at 650 
o
C for 0 min with 1950 oC/min. 

As-deposited nanodot arrays showed similar characteristic of crystal structure as observed in 

Fig. 5.3.9 with multilayer structure. The SAED pattern showed diffraction ring, which 

corresponds to polycrystalline structure. After the annealing, nanodot showed clear stacking of 

crystal facets orienting in a perpendicular direction without grain boundaries. The SAED pattern 

showed clear diffraction spots indicating that nanodot arrays recrystallize from polycrystalline 

structure to single crystal structure. In addition, measured lattice distance was 0.210 nm, which 

is slightly shorter than that of (111) plane of ordered binary alloy (0.219 nm). The reduction of 

the lattice distance indicated the substitution of Cu atom for Fe atom sites in the L10 structure to 

shrink the lattice structure in the c-axis direction as confirmed with the FePtCu continuous films, 

which suggests the formation of FePtCu nanodot arrays with single crystal of L10 structure. 

Potential CuSO4 Coercivity

/ V / mM Fe Pt Cu / kOe

-0.95 0.050 30 32 38 0.935 4.8

0.040 28 44 28 0.938 4.8

0.030 30 44 26 0.951 4.5

0.025 30 46 24 0.931 6.0

-1.0 0.050 36 36 28 0.947 4.1

0.040 39 40 21 0.953 2.9

0.030 34 44 22 0.954 5.0

0.025 35 43 22 0.943 3.4

-1.05 0.50 25 25 50 0.883 3.7

0.050 40 34 26 - 1.9

0.040 43 38 19 0.959 1.2

0.030 39 41 20 0.956 2.5

0.025 42 39 19 0.963 2.0

Composition / at.%
c/a

Table 5.4.3 The perpendicular coercivity of FePtCu continuous films
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Fig. 5.4.8 (a) Low and (b) high magnification SEM images of FePtCu nanodot arrays deposited 

at -0.95 V (vs. Ag/AgCl) for 24 s with CuSO4 concentrations of 0.025 mM. 

 

 

Fig. 5.4.9 Cross-sectional TEM images of as-deposited FePtCu nanodot 

arrays with 35 nm in pitch. (a) Low and (b) high magnification image. 

The insets show the SAED patternd of nanodot. 

  

(a) (b)

200 nm500 nm

5 nm

(a)

Ru

FePt

Carbon

1 nm

(b)

(b)



Chapter 5 

129 

 

Fig. 5.4.10 Corss-sectional TEM images of annealed FePtCu nanodot arrays  

with 35 nm in pitch. The nanodots were annealed at 650 
o
C for 0 min with 

ramp rate of 1950 
o
C/min. (a) Low and (b) high magnification image. 

The insets show the SAED patternd of nanodot. 

 

 

Based on the characterization of the continuous films and nanodot arrays, the facilitation 

of L10 ordering was successfully demonstrated by the fabrication of FePtCu ternary alloy. The 

annealed nanodot arrays showed single crystal characteristics of L10 structure with shrunken 

lattice structure in c-axis direction due to the alloying of Cu with FePt, which should exhibit 

high and uniform coercivity required for the BPM application.  
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Conclusion 

 

20 nm-thick FePt multilayers consisting of Fe- and Pt-rich layer with various layer 

thickness were fabricated in order to achieve precise fabrication of FePt nanodot arrays with 

high deposition uniformity and high coercivity. It was found that the phase transformation was 

facilitated in the multilayer structures after annealing due to the reduction in the diffusion length 

of Fe and Pt atoms. The eight-layer FePt film showed a significant increase in coercivity up to 

6.6 and 7.5 kOe at 450 and 650 
o
C, whereas single layer FePt film showed 1.0 and 4.8 kOe, 

respectively, suggesting that the enhancement of phase transformation did induce significant 

magnetic hardening with multilayer structures. In addition, the eight-layer FePt nanodot arrays 

showed a single crystal of L10 structure having stacking of L10 (111) lattice in a perpendicular 

direction from the Ru interface after annealing at 650 
o
C.  

 

     FePtCu ternary alloy films (20 nm thick) were fabricated by adjusting concentration of 

CuSO4 and applied potential. Upon annealing at 450 
o
C, FePtCu films showed peaks of L10 

order structure without elemental Cu peaks, providing evidence that the Cu was alloyed with 

FePt. The magnetic hardening was observed with FePtCu ternary alloy films to increase its 

coercivity up to 6.0 kOe. The coercivity values increased with FePtCu films deposited with less 

negative potentials even though these films have not only L10 phase but also Cu-rich phase. It 

was suggested that the increase in coercivity was attributed to the decrease in c/a axial ratio in 

the films deposited with less negative potential due to the higher amount of Cu content in the 

films, resulting in the enhancement of L10-ordering to shrink the lattice structure in c-axis 

direction. In addition, fabrication of FePtCu nanodot arrays with single crystal of L10 structure 

was successfully demonstrated due to the facilitation of L10 ordering by addition of Cu. 

 

The collective results have successfully demonstrated enhancement of L10-ordering of 

FePt under lower annealing temperature or heating time requirements. Especially, 

electrochemical fabrication of ultra-fine FePt nanodot arrays with single crystal characteristic of 

L10 structure by applying multilayer structures or addition of Cu to facilitate the phase 

transformation was successfully demonstrated. 
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The fabrication of ferromagnetic nanodot arrays with high areal density and high 

coercivity is of extreme importance for the application in bit patterned media (BPM). The 

objective of this study is to propose electrochemical fabrication process of ultra-fine 

ferromagnetic nanodot arrays with high crystallinity and high crystal orientation, which is the 

origin of high coercivity, for the BPM application.  

 

In order to achieve this objective, growth behavior of nanodot arrays was investigated in 

detail based on the analyses of crystal growth and initial nucleation processes of ferromagnetic 

materials. As ferromagnetic materials, hcp-CoPt and L10-FePt were studied as promising 

candidates for BPM application owing to their high perpendicular magnetic anisotropy. Because 

annealing process is not required for the fabrication of hcp-CoPt, its growth behavior inside the 

nanopores was focused to be analyzed as a fundamental study. On the other hand, annealing 

process is necessary to fabricate FePt with L10-ordered structure, whose crystal structure 

strongly affects the coercivity, thus effect of annealing process on the crystal structure of FePt 

was analyzed. In addition, acceleration of L10 ordering was investigated to achieve fabrication 

of FePt nanodot arrays with Tbit/in
2
 areal density. 

 

     In this chapter, the collective results of this study are summarized, and the possibility of 

electrochemical fabrication process for the BPM application is discussed. 

 

     From the discussion in chapter 2, the fabrication of nanopore patterned substrate with 

Tbit/in
2
 density and fabrication of CoPt nanodot arrays with high crystal orientation are 

proposed as follows. 

 

     In order to fabricate nanopore patterned substrate with Tbit/in
2
 areal density, electron 

beam lithography (EBL) was utilized and its fabrication conditions, such as prebake temperature 

and dose values, were optimized. By increasing the prebake temperature, photosensitivity was 

improved to form uniform nanopore patterned substrate with above 35 nm in pitch with 

positive-type resist (ZEP520A-7). Further uniformity in nanopore patterned substrate was 

achieved with the utilization of negative-type resist (TEBN-1), which has higher resolution, by 

optimizing the dose values, and fabrication of nanopore patterned substrate with 15 nm diameter 

and 25 nm pitch, corresponding to 2.0 Tbit/in
2
 was successfully demonstrated. 

 

     To achieve high coercivity of the nanodot arrays, crystal structure was controlled by 

controlling the diffusion state of metal ions from the initial deposition stages. Electrolyte 

agitation mitigated the diffusion limited growth of CoPt to homogenize the alloy composition 
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from the initial deposition stage, whereas large composition gradient with growing thickness 

was observed without agitation. This uniform composition of CoPt resulted in increase in 

crystallinity of hcp structure in (002) direction, which led to increase in the coercivity of CoPt 

continuous films. By utilizing the above mentioned nanopore patterned substrate, fabrication of 

CoPt nanodot arrays with 25 nm in pitch, corresponding to 1.0 Tbit/in
2
 was successfully 

fabricated under electrolyte condition. Furthermore, CoPt nanodot arrays with 35 nm in pitch 

showed clear stacking of hcp (002) lattice in perpendicular direction, which induces high 

perpendicular magnetic anisotropy to increase coercivity and squareness from 2.0 kOe and 0.64 

to 4.0 kOe and 0.87 by applying electrolyte agitation.  

 

From the discussion in chapter 3, fabrication of CoPt nanodot arrays consist of single 

grains (single crystal structure) was demonstrated based on the detail analyses of nucleation and 

growth process of CoPt inside the nanopores as follows. 

 

Single grain structure/single crystal structure is highly desirable for the BPM application 

owing to its high coercivity and high crystallinity. To achieve deposition of CoPt single grains 

inside nanopore patterned substrate, nucleation and growth behavior of CoPt was focused to be 

analyzed. It was found that at negative potential of --0.9 V (vs. Ag/AgCl), which was used 

conditions in chapter 2, CoPt nucleated as 2.0-3.0 nm grains at the initial stage, they grew as a 

cluster with several grain boundaries in side nanopore with 10 nm diameter. To realize 

deposition of single grains, CoPt was deposited with less negative potential [> -0.7 V (vs. 

Ag/AgCl)] to induce growth of nucleus to form larger size grain. As a result, deposition of 

single nucleus with 5.0 nm was successfully demonstrated with less negative potentials. The 

detail analysis of the distribution of CoPt nuclei demonsteated the existence of nucleation 

exclusion zone, which suggested that the exlusion zone may conver the Ru surface inside 10 nm 

nanopore to inhibit the formation of new neculeus, resulting in the formation of a single nucleus. 

From the detail characterization of lattice structure of nanodot arrays, it was found that at less 

negative potential, a single nucleus of CoPt was formed inside the nanopore that subsequently 

grew from the interface of Ru underlayer in perpendicular direction to form a single crystal 

structure.  

 

From the discussion in chapter 4, fabrication process of FePt nanodot arrays with Tbit/in
2
 

areal density was developed by optimizing the deposition conditions of FePt and post annealing 

process as follows. 

 

In order to further achieve high coercivity of Tbit/in
2
 nanodot arrays, fabrication process 
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of L10-FePt nanodot arrays were proposed as a promising candidate for BPM application. The 

composition of FePt was optimized to deposit equiatomic FePt, which is required for the phase 

transformation to L10-ordered structure. The equiatomic FePt continuous film showed 

L10-ordering upon annealing at 650 
o
C for 60 min, which induced magnetic hardening of the 

films to increase its coercivity up to 9.0 kOe with 10 nm-thick film (the maximum value 13.3 

kOe was obtained for 200 nm-thick film), which is two times higher than the value of CoPt. By 

utilizing the nanopore patterned substrate as described in chapter 2, fabrication of FePt nanodot 

arrays with 1.0 Tbit/in
2
 areal density (25 nm pitch)

 
was successfully demonstrated. However, 

when the same annealing condition as continuous films was applied to the fabrication of 

nanodot arrays, major deterioration of nanodot arrays was observed due to the diffusion of Fe 

and Pt atoms or the aggregation of nanodots. In order to achieve uniform nanodot arrays, higher 

ramp rate and lower holding time were applied. The fabrication of FePt nanodot arrays with 35 

nm in pitch was successfully demonstrated upon annealing at 650 
o
C with ramp rate of 1950 

o
C/min and holding time of 0 min. However, it was suggested that the enhancement of phase 

transformation was required due to the insufficient L10-ordering of nanodot arrays. 

 

     From the discussion in chapter 5, enhancement of L10-ordering of FePt nanodot arrays 

was proposed by the application of multilayer Fe/Pt structure and by the addition of Cu into 

FePt alloy. 

 

     Based on the results of chapter 4, Fe/Pt multilayer structure and FePtCu ternary alloy 

were fabricated to promote the phase transformation of FePt. Fe/Pt multilayer structure consists 

of Fe- and Pt-rich layers, which were deposited by changing the applied potential and deposition 

duration for each layer. Effects of thickness of each layer on the L10-ordering and magnetic 

properties of 20 nm-thick Fe/Pt multilayer films were studied. The Fe/Pt films consist of thicker 

(5.0 nm) and thinner (1.0 nm) layer decreased the ordering parameters, which led to decrease in 

coercivity of the films. The thicker layer could result in a larger diffusion length of Fe and Pt 

atoms, whereas thin layer could be partially discontinuous and the separation of each layer was 

nonuniform, resulting in the insufficient interdiffusion of Fe and Pt during the annealing process 

in both multilayer structures. On the other hand, Fe/Pt films with layer thickness of 2.5 nm 

showed ordering parameter of 0.82 after annealing at 450 
o
C, which was further enhanced to 

0.94 after annealing at 650 
o
C. The coercivity of this film after annealing at 450 and 650 

o
C was 

6.6 and 7.5 kOe, whereas single layer FePt film showed 1.0 and 4.8 kOe, respectively, 

suggesting that the phase transformation and magnetic hardening was strongly facilitated in the 

multilayer structures. By applying multilayer structure in nanodot arrays, phase transformation 

of nanodot arrays was successfully achieved to form FePt nanodots single crystals with the L10 
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structure having uniform lattice fringes on the L10 (111) plane in the perpendicular direction 

from the Ru substrate. 

 

     FePtCu ternary alloy films were deposited by adding CuSO4 into the FePt electrolyte and 

their alloy composition was optimized by changing the concentration of CuSO4 and applied 

potential. Upon annealing at 450 
o
C, Cu was alloyed with FePt to form FePtCu ternary alloy 

with L10 structure, and magnetic hardening with the coercivity up to 6.0 kOe was successfully 

demonstrated with ternary alloy, whereas binary alloy did not show magnetic hardening. The 

higher values of coercivity were obtained with FePtCu films deposited with -0.95 V (vs. 

Ag/AgCl) compared to films deposited with -1.05 V (vs. Ag/AgCl) even though these films 

have Cu-rich phase. Less negative potential was effective to decrease the c/a lattice ratio due to 

its higher amount of Cu composition, which enhances the L10-ordering by shrinking the lattice 

in c-axis. Also, hydrogen evolution reaction is mitigated at less negative potential to prevent the 

formation of Fe hydroxide or oxide, which could incorporate as impurities in the deposited films. 

In addition, fabrication of FePtCu nanodot arrays with 35 nm in pitch was also successfully 

demonstrated. 

 

     In this thesis, the objective to fabricate Tbit/in
2
 nanodot arrays with high crystallinity to 

induce high coercivity was successfully demonstrated in both CoPt and FePt systems by 

controlling the crystal structure from the initial deposition stages based on the detailed analyses 

of crystal structure and nucleation process of nanodots. Especially, the objective to achieve 

fabrication of nanodot arrays consisting of single grains, which is highly desirable for the 

application in BPM, was successful. To the best of my knowledge, this is the first work that 

demonstrates the electrochemical fabrication of nanodot arrays with Tbit/in
2
 areal density that 

exhibit relatively high coercivity (>4.0 kOe). The collective results suggested the feasibility of 

electrochemical fabrication process as a promising candidate for the application in BPM. 

Moreover, since little is known concerning the electrochemical growth behavior inside the 

nanostructure, results obtained from the analyses of initial deposition stages inside the nanopore 

could be applicable for the electrochemical fabrication of micro/nano-structures. 
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