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Chapter.1

Introduction

This thesis presents a study on Bayesian optimal estimation with probabilistic mod-

els having a hidden structure. Using Bayesian optimal estimation with probabilistic

hidden structure modeling, we tackle the problems of traffic flow estimation, image

super resolution, and input selective regression. For each problem setting, we derive

an efficient computational algorithm.

1.1 Probabilistic Information Processing for Data Analytics

The importance of data and information processing for analyzing data is growing.

As the amount of data increases, the demand for information processing is becoming

ubiquitous [1,2]. A large amount of data is generated from devices with sensors that

are connected to us and each other through the Internet [3, 4]. People can also be

regarded as sensors generating information [5, 6]. We create a large amount of data

through social networks and mobile devices. Through information processing, we can

use these data for solving various real-world problems.

Most forms of information processing transform the observed data into a form

that people can interpret as useful [7]. For example, there have been many studies

on transforming sentences into meanings and topics [8, 9] and transforming images

into what objects there are in the images [10, 11]. Transformation processes can be

formulated mathematically and are defined along with what we want to do.

The transformation process can be explicitly expressed in the form of an estimation

function. The input and output for this function are the observed data and the

transformed information, respectively. When we design an estimation function based

on the probabilistic distribution for representing the data, we call such information

processing probabilistic information processing.
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1.2 Information Processing as Estimation Function Based on

Model and Evaluation Criterion

The estimation function is the result of optimization of an objective function consist-

ing of a model and evaluation criterion [7,12,13]. In a situation in which unobservable

values are to be estimated from observed data with an estimation function, the model

represents the characteristics of the observed data, the values, and the relationship

between them. The evaluation criterion shows what the estimates made by the esti-

mation function should be; e.g., the estimate is better if the difference from the true

value that follows the model is smaller.

The model is an assumption representing simplified and generalized characteristics

of the data for helping people to understand it, and it is usually written in a mathe-

matical form [14,15]. In probabilistic information processing, the model is defined as a

probabilistic distribution, which can properly describe the stochastic variation of the

data. The modeling is the process by which the model is constructed on the basis of

prior knowledge about the data. Well-known examples of modeling are representing

sentences consisting of a set of characters on the basis of a sequence of words [16–19]

and representing an image consisting of a set of pixels on the basis of a set of local

patterns [20, 21]. Such modeling makes it possible to interpret the data. In these

examples of natural language processing and image processing, we can discriminate

each of the extracted sequences of words and sets of local patterns through differences

of frequencies of them.

The evaluation criterion is generally either a minimization or maximization of a

function. The most successful examples are based on the squared error. The method

of minimizing the sample mean of the squared differences between values estimated

by the estimation function and the true values is called least squares; it has been

applied to various problems [22,23]. In studies in which prediction is the main focus,

such as on machine learning, the minimization of the generalization error is mostly

used as the evaluation criterion [24]. The generalization error is the population mean

of an error function, such as the squared difference. Since the evaluation criterion

generally involves the model, it can be regarded as a functional of the model. We

call the evaluation criterion involving the specific model the objective function to be

optimized.

Since the model and evaluation criterion in the objective function are closely related,

we need to construct and constrain the model in consideration of the balance between

its complexity for sufficiently representing the data and the computational feasibility
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and stability of the optimization of the objective function with the evaluation crite-

rion [25–27]. For example, if we use a model that has extremely high flexibility, since

the flexibility of the model almost corresponds to the number of model parameters,

the number of parameters to be optimized is quite large in such a model. Since the

computational cost increases as the number of parameters to be optimized increases,

an optimization based on such a model is generally difficult. On the other hand, a

model with less flexibility is not always better. Since such a model cannot represent

data sufficiently, the estimation function as the result of the optimization based on

the model will not have the desired performance.

1.3 Bayesian Optimal Estimation for Dealing with Data

Insufficiency

Despite that the total amount of data has been rapidly increasing in recent years,

the available data always seems relatively insufficient because the complexity of the

purpose of information processing and the model used therein increase even faster.

The purpose hence becomes ever more localized and personalized, and there is always

a requirement for new data specialized for the task at hand. Even though we could

use general-purpose datasets for the task, it would be biased against the task. The

models used in recent studies, such as on deep learning [28–33], have huge numbers

of parameters and require more training data than conventional common sense would

suggest. In addition, data usually have many uncertainties associated with them and

are unstructured. They may be noisy because of poor sensor quality or limited network

bandwidth and may contain ambiguous expressions, such as colloquial expressions,

and have poor photographic quality [3–6]. The amount of essential information that

can be extracted from such data is not so large. All of these deficiencies as to quantity

and quality mean that data often lack information essential for information processing.

For solving the data insufficiency problem, we study an estimation function derived

from the optimization of the objective function using the Bayesian evaluation criteria.

We call this estimation Bayesian optimal estimation. It is generally known that the

Bayesian optimal estimation reaches a stable solution [13, 34] even in the case of

insufficient data. This is because it considers the stochastic variation of the assumed

model for optimization in the criteria. Since the model is a hypothesis based on

data observed at random, when there is a limited amount of essential information

in the data, to consider a only single model, like the maximum likelihood method,

may cause unstable estimation. On the other hand, since Bayesian evaluation criteria

consider multiple models that may fit the observed data and average over the different
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models, Bayesian optimal estimation is more stable than other methods like maximum

likelihood estimation.

1.4 Bayesian Optimal Estimation with Hidden Structure

Modeling

In this thesis, we use Bayesian optimal estimation to solve problems in unsupervised

estimation and hidden variables estimation in which the amount of data tends to be

small for making an estimation and the solution tends to be unstable. In spite of the

stability of its solution, Bayesian optimal estimation entails a large computational

cost, and we can use only a limited class of models along with the criteria. Here, we

propose a model that maintains the computational feasibility of the estimation and

has appropriate complexity for representing the data in each problem setting.

We address the problems of traffic flow estimation, image super resolution, and

input selective regression. The models used in each problem setting have similar

hidden structures representing the data generating process. By averaging over the

different possible models in Bayesian optimal estimation, we solve the inverse problem

for estimating informative hidden variables and parameters in the model.

In the traffic flow estimation task, we estimate the traffic flow from features in traffic

image sequences. We consider models that may be able to generate the observed

features from the traffic flows, and then, by averaging over these possible models, we

derive the Bayesian optimal estimation function for estimating the traffic flow from

the features (i.e., solving the inverse problem). In the image super resolution task, we

estimate a high-resolution image from a set of low-resolution images. Similar to the

traffic flow task, we consider models that may be able to generate the observed low-

resolution images, and then, by averaging over these possible models, we derive the

Bayesian optimal estimation function for estimating the high-resolution image from

the low-resolution images (i.e., solving the inverse problem). In the input selective

regression task, we estimate the label for the new input data from sets of training

samples that consists of pairs of data and labels. Again, we consider models may be

able to generate the observed training samples from hidden variables selecting the

effective part of the input data, and then, by averaging over the possible models, we

derive the Bayesian optimal estimation function for estimating the label for the new

input data from sets of training samples (i.e., solving the inverse problem).

1.5 Structure of Thesis

This thesis is organized as follows.
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In Chapter 2, we explain the general framework of this study, which is Bayesian

optimal estimation with probabilistic hidden structure modeling. We also derive sev-

eral Bayesian optimal estimation functions from the specific evaluation criteria used

throughout this thesis and derive computational algorithms for efficiently computing

them as tools for accomplishing the tasks addressed in this thesis.

In Chapter 3, we address the traffic-flow-estimation problem for a novel lightweight

approach to traffic monitoring using web-cameras as data sources [35–37]. We for-

mulate the task as an unsupervised learning problem without the expensive steps of

recognizing and tracking vehicles.

We tackle the super-resolution problem in Chapter 4 [38, 39]. We propose a novel

model for super-resolution and derive an efficient estimation algorithm with a fully

Bayesian treatment using image priors implementing both of smoothness and edges

in images.

In Chapter 5, we describe a regression method for selecting the valuable parts of

each training data instance with latent variable modeling [40].

We conclude the thesis in Chapter 6.

Every parameter or variable is independently defined in each chapter; i.e., the

parameters and variables in a certain chapter have nothing to do with those in other

chapters.
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Chapter.2

General Framework of Bayesian

Optimal Estimation with Hidden

Structure Modeling

Here, we explain the general framework of Bayesian optimal estimation with hidden

structure modeling.

We address a particular class of estimation problems in which we estimate the

unobservable variables, either y ∈ R
K or y ∈ N

K , from the observed variables,

x ∈ R
D, through the use of an estimation function y∗(x), where R is the real number

field, N is the set of natural numbers including zero, and K and D are the dimensions

of y and x, respectively. We cannot directly obtain the unobservable variables from

the observed data, but we can directly obtain the observed variables from the observed

data.

Based on the Bayesian perspective, we formalize the problem as a minimization of

the population mean of the error function, Error(y,y∗(x)), that represents the differ-

ence between true unobservable variables y that follow the model and the estimates

of y by the estimation function y∗(x) to which the observed variables x have been

input:

ŷ∗(x) ≡ argmin
y∗(x)

〈Error(y,y∗(x))〉p(y,x,θ) , (2.1)

where p(y,x,θ) is the model which is represented as the probabilistic distribution

for y, x, and the model parameters θ. It requires good estimation performance on

average over various observations, x, and the corresponding y and θ and produces

a stable estimation. In this thesis, we assume that the occurrence rate of y, x,

and θ exactly coincides with the distribution p(y,x,θ). The specific form of the

distribution is explained in the following chapters. The right-hand side of Eq. (2.1) is

the Bayesian evaluation criterion which is characterized by Error(y,y∗(x)). For each
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task addressed in the following chapters, we derive a Bayesian optimal estimation

algorithm in the following steps:

1. Define the evaluation criterion for each problem setting and derive anBayesian

optimal estimation function for the criterion. From Eq. (2.1), we specifically

define the error function for each problem. Since the evaluation criterion is a

functional of the model, the Bayesian optimal estimation function is also derived

as a functional of the model.

2. Design the probabilistic model p(y,x,θ) by maintaining the computational

feasibility of the derived estimation function involving the model and appropri-

ate complexity for representing each problem.

3. Derive an efficient computational algorithm for the derived estimation func-

tion and designed model.

In the following sections in this chapter, we introduce several Bayesian evaluation

criteria and derive ŷ∗(x) by optimizing each of them. After that, we explain the

Markov chain Monte Carlo (MCMC) method and variational Bayes (VB) method,

which are efficient computational algorithms for the estimation functions. We also

propose an approximation method for the VB method based on a Taylor approxima-

tion. These are the tools for the tasks addressed in this thesis.
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2.1 Probabilistic Models and Notations

Here, we give the definitions of the gamma, inverse gamma, beta, categorical,

Bernoulli, uniform, Poisson, and Gaussian distributions used in this thesis:

Gamma(x|a, b) ≡ ba

Γ(a)
xa−1e−bx (x > 0, a > 0, b > 0), (2.2)

InverseGamma(x|a, b) ≡ ba

Γ(a)

(
1

x

)a+1

e−
b
x (x > 0, a > 0, b > 0), (2.3)

Beta(x|a, b) ≡ 1

B(a, b)
xa−1(1− x)b−1 (0 ≤ x ≤ 1, a > 0, b > 0), (2.4)

Categorical(x|μ) ≡
D∏

d=1

μxd

d (2.5)

(xd ∈ {0, 1},
D∑

d=1

xd ≡ 1, 0 ≤ μd ≤ 1,

D∑
d=1

μd ≡ 1),

Bernoulli(x|μ) ≡ μx(1− μ)1−x (x ∈ {0, 1}, 0 ≤ μ ≤ 1), (2.6)

U(x|a, b) ≡
{

1
b−a , a ≤ x ≤ b,

0, otherwise,
(x ∈ R), (2.7)

Poisson(x|μ) ≡ μxe−μ

x!
(x ∈ N, μ > 0), (2.8)

N (x|μ,Σ) ≡ |2πΣ|− 1
2 e−

1
2 (x−μ)�Σ−1(x−μ) (x ∈ R

D, μ ∈ R
D, Σ ∈ R

D×D),
(2.9)

where Γ is the gamma function, B is the beta function, | • | denotes the determinant

of a given matrix, superscript � denotes the transpose, and D is the dimensionality

of x. The sigmoid function and Kullback-Leibler (KL) divergence from distributions

p(x) to q(x) are respectively defined as

Sigmoid(x) ≡ 1

1 + e−x
, (2.10)

DKL(p(x)‖q(x)) ≡
〈
ln

p(x)

q(x)

〉
p(x)

, (2.11)

where the angle brackets 〈•〉◦ denote the expectation of • with respect to a distribution

◦. Additionally, tr denotes the trace of a given matrix, diag denotes a diagonal matrix,

I is an identity matrix of appropriate size, i represents a vector of all ones, and 0 is

a zero vector or a zero matrix of appropriate size. All the vectors in this thesis are

column vectors.
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2.2 Bayesian Optimal Estimation Function

We introduce evaluation criteria based on the Bayesian perspective and derive the

optimal estimation functions for them. All of the estimation functions that are derived

in this section are related to the posterior distribution, in which all of the hidden

variables and model parameters other than the target variables y and the observed

variables x are marginalized out. This is the key ingredient in Bayesian evaluation

criteria; that is, to marginalize out the hidden variables and model parameters, rather

than to optimize. This marginalization corresponds to “averaging over the different

models”.

2.2.1 Posterior Mean as Bayesian Optimal Estimation Function for Mean

Square Error

First, we consider the squared difference between y and y∗(x) as the error function

Error(y,y∗(x)):

Error(y,y∗(x)) ≡ ‖y − y∗(x)‖22, (2.12)

where ‖ • ‖2 denotes the L2-norm of a given vector •.
The evaluation criterion is to minimize the population mean of the error function

in Eq. (2.12), as

argmin
y∗(x)

〈‖y − y∗(x)‖22
〉
p(y,x,θ)

. (2.13)

We can then explicitly compute the optimal estimation function ŷ∗(x) as the pos-

terior mean (PM):

ŷ∗(x) = argmin
y∗(x)

〈‖y − y∗(x)‖22
〉
p(y,x,θ)

〈ŷ∗(x)− y〉p(y|x) = 0

ŷ∗(x) = 〈y〉p(y|x), (2.14)

where the model parameters θ are marginalized out and x are the observed variables.

This is a well-known result in the Bayesian framework; that is, the PM coincides with

the minimum mean square error estimator.
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2.2.2 Maximum a Posteriori as Bayesian Optimal Estimation Function for

Delta function Error

Next, we consider Error(y,y∗(x)) based on the Kronecker delta function for y and

y∗(x), δy,y∗(x), which takes 1 when y = y∗(x) and 0 when y 
= y∗(x):

Error(y,y∗(x)) ≡ 1− δy,y∗(x). (2.15)

The evaluation criterion is to minimize the population mean of the error function

in Eq. (2.15), as

argmin
y∗(x)

〈
1− δy,y∗(x)

〉
p(y,x,θ)

. (2.16)

We can then explicitly compute the optimal estimation function ŷ∗(x) as the max-

imum a posteriori (MAP):

ŷ∗(x) = argmin
y∗(x)

〈
1− δy,y∗(x)

〉
p(y,x,θ)

= argmin
y∗(x)

〈
1− δy,y∗(x)

〉
p(y|x)

= argmax
y∗(x)

〈
δy,y∗(x)

〉
p(y|x)

= argmax
y∗(x)

p(y∗(x)|x)

= argmax
y

p(y|x), (2.17)

where the model parameters θ are marginalized out and x are the observed variables.

2.3 Computational Algorithms for Bayesian Optimal

Estimation

The posterior distribution p(y|x) appearing in the optimal estimation functions

derived in the above section is computationally feasible only when there are conjugate

priors, that is, the prior is in the same distribution family as the posterior distribution,

for all of the hidden variables and parameters other than observation variables in

our designed model [13, 41]. This requirement is almost impossible to meet in most

practical cases, wherein the models include multiple unknown parameters. Thus,

below we introduce efficient approximate computational algorithms for p(y|x), i.e.,
the MCMC method and VB method.
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2.3.1 Markov Chain Monte Carlo Method

The MCMC method [42–49] is a sampling-based approximation for the distribution.

Given the joint distribution p(y,x,θ) and observations x, we can take T samples for y,

{y(τ)}Tτ=1, from the posterior p(y|x) with the MCMC method, but without explicitly

computing the posterior p(y|x). Using the samples {y(τ)}Tτ=1, we can approximately

compute the estimation function based on the posterior distribution p(y|x), e.g., by
approximating the PM as the empirical mean of {y(τ)}Tτ=1:∫

y p(y|x)dy ≈ 1

T

T∑
τ=1

y(τ). (2.18)

In this thesis, we use slice sampling [50] as the implementation of the MCMC

method. Slice sampling is applicable to a wide variety of problems because it does not

require an analytical computation of the conditional distributions like Gibbs sampling

does or sensitive setting of the proposal distributions, as the Metropolis algorithm

needs [50, 51].

Slice sampling takes samples from a distribution for some variable η ∈ R. The

distribution is proportional to some function f(η) maintaining the computational

feasibility. The key idea is to introduce an auxiliary variable ξ ∈ R and define a joint

distribution over η and ξ. The joint distribution is designed such that the marginal

density for η becomes the desired form that is proportional to f(η):

p(η) =

∫
p(η, ξ)dξ =

f(η)∫
f(η)dη

, (2.19)

where the joint distribution p(η, ξ) is uniform over the region U = {(η, ξ) | 0 < ξ <

f(η)} below the curve defined by f(η), as

p(η, ξ) ≡
{

1∫
f(η)dη

, 0 < ξ < f(η),

0, otherwise,
(2.20)

The slice sampling is executed as follows: First, we sample ξ uniformly from

(0, f(η(τ))); thereby defining a horizontal slice S = {η(τ+1) | ξ < f(η(τ+1))}. Second,
we sample a new point η(τ+1) from part of the slice S. We repeat the first and second

steps until a sufficient number of samples is obtained. Finally, to obtain samples

only for η from p(η), we ignore the samples for ξ.

The sampling scheme for η with the auxiliary variable ξ seems redundant compared

with sampling only for η, but it is easier than Gibbs sampling and more efficient than

the Metropolis algorithm.

When we sample multiple variables, such as y, we alternately sample each variable

by using slice sampling in the same manner as Gibbs sampling [13,50,51]. In our case,
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we exploit the fact that the joint distribution p(y,x,θ) is proportional to the posterior

p(y,θ|x) for y and θ. This means that we can use the joint distribution p(y,x,θ)

as the objective f(y,θ) of slice sampling for y and θ. We alternately sample each

variable by using slice sampling. Then we use samples for y as the desired samples

from the posterior p(y|x) of y given x simply by ignoring the samples for θ.

2.3.2 Variational Bayes

The VB method [52, 53] is a deterministic computational algorithm for finding a

tractable distribution which approximates a intractable posterior distribution. If, for

all of the hidden variables and parameters in the model, there are conjugate priors

for some of the variables and parameters when the other variables and parameters

are set to constant values, we can derive an efficient approximate computational algo-

rithm for the posterior distribution using the VB method and its good performance

is experimentally shown. In particular, for models such as the mixture model, hidden

Markov model, Bayesian network, and fully-observed matrix factorization model, it

has been reported that the VB method’s approximation is sufficiently close to the

true Bayesian optimal estimation in the KL-divergence sense [54–59]. The analysis of

general cases, however, remains an open problem.

The starting point of the VB method is to introduce a trial distribution q(z), where

z = {y,θ}, that approximates the true posterior in a factorized form:

q(z) ≡
∏
i

q(zi), (2.21)

where zi is the i-th subset of z. Note that the distribution family of each factor-

ized distribution is not limited. We then identify the optimal trial distribution that

minimizes the KL divergence from the trial distribution q(z) to the true posterior
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distribution p(z|x), which becomes zero in the case of q(z) = p(z|x), as
q̂(z) ≡ argmin

q(z)

DKL(q(z)‖p(z|x)) (2.22)

= argmin
q(z)

⎡
⎣−

〈
ln p(z|x)−

∑
i

ln q(zi)

〉
q(z)

⎤
⎦

= argmin
q(z)

⎡
⎣−〈

〈ln p(z|x)〉∏
j �=i q(zj)

〉
q(zi)

+ 〈ln q(zi)〉q(zi)
+

∑
j �=i

〈ln q(zj)〉q(zj)

⎤
⎦

= argmin
q(z)

⎡
⎣−〈ln p̃i(zi)− ln q(zi)〉q(zi)

+
∑
j �=i

〈ln q(zj)〉q(zj)

⎤
⎦

= argmin
q(z)

⎡
⎣DKL(q(zi)‖p̃i(zi)) +

∑
j �=i

〈ln q(zj)〉q(zj)

⎤
⎦ ,

(2.23)

where p̃i(zi) is defined as

ln p̃i(zi) ≡ 〈ln p(z|x)〉∏
j �=i q(zj)

. (2.24)

Since the above equations for i = 1, 2, . . . are a set of consistency conditions subject

to the factorization of Eq. (2.21), the optimal trial distribution is

q̂(z) ∝
∏
i

p̃i(zi). (2.25)

From the above result, they do not provide an explicit solution since i-th factor p̃i(zi)

depends on the other factors {p̃j(zj) | j 
= i}. Therefore, in a popular approach of

VB [60], we solve the iterative updating equations as follows:

q(0)(zi) ≡ p(zi), (2.26)

q(t+1)(zi) ∝ exp〈ln p(z|x)〉∏
j �=i q

(t)(zj), (2.27)

where some q(t+1)(zj)s are used instead of q(t)(zj)s for the distribution on the right-

hand side of (2.27). This depends on the hierarchical structure of the model. Similarly,

some of the q(0)(zi)s may not be necessary. We stop the VB iterations when a certain

stopping condition is satisfied and take
∏

i q
(t+1)(zi) at that time as the approximation

of p(z|x). From Eq. (2.21), since q(z) has been already factorized, we can simply use

q(zi) as the approximation of p(zi|x), such as we can use q(y) as the approximation

of p(y|x).

2.3.3 Taylor Approximation for Variational Bayes

Although the VB method is a widely used general framework, its application is

difficult in practice because it requires the conjugate modeling, that is, the modeling
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of the distribution family of the prior distribution has to be the same as that of the

posterior distribution, to reach an exact analytical solution in each step in Eq. (2.27).

If we cannot obtain an exact analytical solution, the updating equations are compu-

tationally infeasible. This makes the framework of limited utility in many real-world

situations, because it is difficult to appropriately design a model for complex real-

world problems under such a modeling constraint.

We have found that simple Taylor approximations make the model conjugate and

enable analytically exact expectations in each step of Eq. (2.27). To simplify the

notation, we define the mean values of zi over the trial distributions for the i-th

subset of variables at step number t of the updates of VB as μ
(t)
zi . Specifically, when

there are non-linear terms, g(z), in the expectations in Eq. (2.27), whose specific form

is revealed in the following chapters, we use a first-order Taylor approximation for

g(z). The non-linear term g(z) is approximated around zi = μ
(t)
zi as

g(z) ≈ g({z\i,μ(t)
zi
}) + (zi − μ(t)

zi
)�

∂g(z)

∂zi

∣∣∣∣
zi=μ

(t)
zi

. (2.28)

Also, the non-linear term g(z) can be approximated around ln zi = lnμ
(t)
zi as

g(z) ≈ g({z\i, μ(t)
zi}) + (ln zi − lnμ(t)

zi)
∂g(z)

∂ ln zi

∣∣∣∣
zi=μ

(t)
zi

, (2.29)

or approximated around ln(1− zi) = ln(1− μ
(t)
zi) as

g(z) ≈ g({z\i, μ(t)
zi}) + (ln(1− zi)− ln(1− μ(t)

zi))
∂g(z)

∂ ln(1− zi)

∣∣∣∣
zi=μ

(t)
zi

. (2.30)

Using these approximations, we can make the non-linear terms in the expectations

in Eq. (2.27) linear or log-linear in the i-th subset of variables. This makes it so that

many classes of model can be approximated as conjugate models in the VB method.

For example, Eq. (2.28) is useful when we approximate models to be conjugate to

Gaussian or Gamma prior and Eqs. (2.29) and (2.30) are useful when we approximate

models to be conjugate to Gamma or Beta prior. The following chapters describe the

specific derivations for each model of the tasks addressed in this thesis.

Note that Eq. (2.28) approximates g(z) around the mean values of zi over the

trial distributions in each step of the updates of the VB method, μ
(t)
zi , as the expan-

sion points. This results in a better approximation than by expanding around fixed

points, such as prior mean μ
(0)
zi , because the Taylor approximation requires that the

approximation point be close to the expansion point and μ
(t)
zi is closer to μ

(t+1)
zi than

μ
(0)
zi on average.
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Chapter.3

Bayesian Traffic Flow Estimation

3.1 Introduction

Efficient control of traffic and city planning for better traffic flow are keys to eco-

nomic growth and improving our lives. Intelligent Transportation Systems (ITS) offer

such solutions by using the technologies based on machine learning, artificial intel-

ligence, and data mining [61, 62]. The autonomous self-driving car [63] is a recent

well-known example. Traffic volume and speed modeling is also a traditional and

challenging research topic [62,64–68]. There have been several studies on travel-time

prediction [69,70] and modeling of incidents and anomalies in traffic [71–73].

Systems for traffic monitoring, which is a fundamental part of ITS, sense the prin-

ciple variables representing traffic, that is, flow, volume, and velocity, and if we can

obtain two of them, the remaining one is uniquely determined, by using specialized

hardware such as a Global Positioning System (GPS) and inductive loop sensors em-

bedded in roads. They are the most trustworthy means to acquire the data.

Hardware sensors, however, are often bottlenecks blocking the introduction of ITS

because they are immovable and expensive. Therefore, increasing attention is being

paid to approaches using “non-intrusive” sensors because of their higher flexibility.

Video surveillance is a natural approach to non-intrusive traffic monitoring. A number

of cities (in advanced countries) have started using video cameras as non-intrusive

traffic monitoring tools with high flexibility. For example, automatic license plate

recognition is a recent successful application [74]. Special-purpose cameras producing

high-quality images are used in most scenarios

In most of cities in developing countries, attention is increasingly being paid to the

use of less expensive and more scalable Internet-linked cameras for city-wide traffic

monitoring since special-purpose cameras are as costly as the roadside sensors [35–

37, 76–79]. However, unlike the mature technologies of inductive loop sensors and

special-purpose cameras, the use of such web-cameras is still challenging. Figure 3.1
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 3.1 Vehicles in web-camera images [75].

shows vehicles in typical web-camera images [75]. The viewing angles tend to be quite

poor and varied, image resolution is limited, and there are many occlusions. Even

worse, the geometric configuration of these cameras differs significantly from camera

to camera, requiring customized analysis for each camera. In addition, their poor

frame-rates, due to limited network bandwidth, does not allow analyzing the time

dependency of successive images for mitigating such inconveniences.

In this chapter, we tackle fundamental tasks of traffic monitoring, that are, ex-

tracting the traffic volume and velocity, by using the low-quality web-camera images.

Traffic flow can be computed from them. For video-based traffic monitoring, two

types of approaches have been proposed: (1) individual vehicle recognition, and (2)

qualitative analysis. The first approach attempts to recognize individual vehicles in

the images. Examples of current approaches include vehicle and non-vehicle clas-

sification [80, 81], and template matching [82–85]. Once all vehicles are identified

in an image, counting and tracking vehicles for sensing traffic volume and velocity,

respectively, are trivial tasks. However, this approach (vehicle recognition) is of lim-

ited utility in most real-world situations because the classifiers are quite sensitive to

the training data sets. Also, the quality and frame-rates of web-camera images are

generally lower than the assumptions made with current technologies. To address

these shortcomings, the second approach (qualitative analysis) attempts to directly

extract traffic-relevant metrics from images by skipping the expensive step of vehicle

recognition, such as the local variance of pixels [76] and the total area that may cor-

respond to moving objects [35–37, 77, 78, 86, 87]. However, most current approaches

provide only qualitative metrics, such as a relative level of congestion, and are not

capable of estimating absolute values for traffic volume, velocity, and flow [76,86,87].

When absolute values are required, we need to translate the obtained qualitative met-

rics into absolute values with a regression model and labeled training dataset. The

dataset involves labeling a large amount of training data, which is time-consuming

and costly. For the city-wide traffic monitoring services, we need to handle many web-

cameras [35, 36, 77, 78]. The geometric configurations of these cameras differ; thus,

customized labeled training data for every camera is required. This scenario moti-
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vates us to use the unsupervised formulation, rather than conventional supervised

approaches, due to the costs of preparing of the labeled training data.

We proposes an novel unsupervised approach for inexpensive traffic monitoring

systems using only low-quality web-cameras. This approach estimates traffic volume

and velocity only from the web-camera images without any labeled training data or

the expensive steps of recognizing and tracking vehicles for the task. Thanks to the

framework of Bayesian optimal estimation framework, our approach is quite robust

against low-quality observations. We will show the sufficient accuracy and robustness

of our approach in our experiments.

In Section 3.2, we discuss related work. We respectively derive the traffic-volume-

estimation method and the traffic-velocity-estimation method in Sections 3.3 and 3.4.

In Section 3.5, we evaluate these methods using artificial and real-world datasets. We

discuss these methods in Section 3.6 and summarize our approach in Section 3.7.

3.2 Related Work

As mentioned in the Introduction to this chapter, current video-based-traffic mon-

itoring systems proposed to date are categorized into two approaches, depending on

whether or not they use individual vehicle recognition.

In the first approach (vehicle recognition) for traffic-volume estimation, once all

of the vehicles are identified in an image, vehicle-counting is a trivial task. For this

approach, previous studies used either image patch classification based on vehicle/non-

vehicle classification [80,81] or template matching. For template matching, examples

include feature tracking for edges and lines characteristic of vehicles [82, 83], as well

as targeted recognition of windshields [84] or headlights [84, 85]. These approaches

clearly differ from our unsupervised approach in that they require a training dataset

based on costly manual vehicle-counting and generally require high image quality and

high frame rates.

For the traffic velocity estimation, the first approach, which is based on explicit

vehicle recognition, attempts to directly sense velocity. Most previous studies on this

approach tracked vehicles or track feature points in time-series of observations that

correspond to the vehicle movements by using techniques for determining identical

vehicles; not only video-based vehicle classification [80,81], video-based feature track-

ing including tracking of edges and lines characteristic of vehicles [82,83] and optical

flow [88–90], and targeted recognition of windshields [84] and headlights [84, 85], but

also the GPS [91,92]. Once the vehicles have been tracked in the temporal sequences,

we can obtain their moving distances and compute the traffic velocity by dividing the

distance by the elapsed time. Moreover, there are variants of this approach based on
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current observation                                        next observation

a few seconds

Fig. 3.2 At low sampling rates, only few vehicles appear in consecutive observations [75].

matching between consecutive frames, e.g., tracking pixels in consecutive observed im-

ages using cross-correlation of an image feature [93,94] or using matching of intensity

profiles [95]. These variants are robust against variations in the expected conditions

of a roadway scene and are computationally relatively inexpensive. In most cases,

such video-based techniques require camera calibrations, as they are required to find

the correct coordinate transform for obtaining traffic velocity. An algorithm to de-

tect scene changes has been proposed [96], which can determine whether a camera

has to be re-calibrated for video-based velocity estimation. On the other hand, some

algorithms can use un-calibrated cameras for velocity estimation. They use parame-

ters derived from distributions of known vehicle lengths [97,98], an estimation of the

camera’s position relative to the roadway [99], or a spatio-temporal map [100].

The second approach (qualitative analysis) for traffic monitoring, which does not

rely on vehicle recognition in its first step, leads to a robust framework for traffic anal-

ysis. These approaches abandon deriving the exact number and velocity of vehicles to

tackle the problem of image quality and to skip the preparation of the training images.

They use image features such as the local variance of pixels [76] and the total area

that may correspond to moving objects [35–37,77,78,86,87]. We then simply compute

a relative level of congestion by dividing by the maximum available values of these

features. Extraction of image features is easier than vehicle recognition and tracking,

and it can work on images whose quality is lower than what would be required with

the vehicle-recognition approach. However, when we need an absolute value for the

number of vehicles as the input of possible applications, such as traffic simulators, we

need to translate the features into the number and velocity of vehicles with a regres-

sion model and a labeled training dataset. Many traffic-velocity regression models

have been proposed, such as linear model [101,102], log-linear model [103], exponen-

tial model [104–106], bell-shaped curve model [107], and stochastic model [108, 109].

The task of velocity regression from the relative traffic density is a one-shot estima-

tion for a single observation and does not use sequences of consecutive observations.

Accordingly, this approach works for any sampling rate.

The requirements of these two types of approaches are often costly. This is partic-

ularly the case in cities in developing countries [77–79, 110, 111]. The first approach

(vehicle recognition) requires that many vehicles be identified in consecutive observa-
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tions. Their feasibilities are sensitive to the quality and sampling rate of the sensor.

When using sensors with low sampling rates, such as web cameras, instead of expen-

sive infrastructures, such as the special-purpose close-view cameras used for vehicle

recognition, the number of vehicles that appear in consecutive observations is small,

as shown in Fig. 3.2 [75]. Also, in a web-camera-based city-wide traffic monitoring

scenario, it is unrealistic to assume a reasonable amount of training images for vehicle

recognition since the configurations of web-cameras, which are typically represented

by angles to and distance from the area of interest, relative directions to light sources,

etc., differ from camera to camera. The second approach (qualitative analysis) enables

us to use a variety of sensors whose sensor qualities are far too low for direct sensing

of traffic, including inexpensive and non-intrusive ones such as web-cameras or mobile

phones equipped with video and audio sensors [77–79], but we need to translate the

obtained traffic density into traffic volume and velocity with a regression model and

labeled training dataset. The dataset involves labeling a large amount of training

data, which is time-consuming and costly. Therefore, we need a lightweight approach

for traffic monitoring.

3.3 Bayesian Traffic Volume Estimation

In this section, we tackle the task that is extracting the current volume of traf-

fic with inexpensive web-cameras [35, 36]. We proposes a probabilistic formulation

on this problem by interpreting the problem as an unsupervised density estimation

problem [35,36].

Our concept is simple. We assume that the input observation is represented by a

scalar feature, x. For the feature x, we learn a Gaussian mixture whose mixture index

is equated with the count of the vehicles, d, in the observation (see Figure 3.3). To

find the count, we pick the cluster of the highest likelihood given x. One technical

challenge is how to associate the clusters with the count without any label information

as to the count d. This is indeed not a trivial task because the cluster indexes are

interchangeable in nature in the original Gaussian mixture. Our key contribution is

to show that the stick-breaking process (SBP) [112] elegantly solves this challenge.

Thanks to a VB formulation [52], the learning procedure is reduced to a simple iter-

ative formula. Our formulation naturally can be applied to general object counting

problem.

We will demonstrate that the accuracy and robustness of our approach without any

labeled training data are comparable to those of supervised alternatives in experi-

ments.
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Fig. 3.3 Illustration of the key idea of mixture-based vehicle counting. The

probability density for a feature x is represented as a Gaussian mixture which

has the sequence of the mean of the feature restricted by the linear function of

the count d.

3.3.1 Problem Setting

Suppose we are given N image features x ≡ {x1, x2, . . . , xN}, which is the set of a

scalar feature xn ∈ R extracted from a observed image. Our task is to estimate the

numbers of vehicles for the N images, given x without any labeled training data.

To represent the count of vehicles, we define an indicator vector h based on the

1-of-K notation. For example, if h = [1, 0, 0, 0, ...]� and [0, 0, 1, 0, ...]�, the num-

ber of vehicles are zero and two, respectively. Since we do not know the maximum

number of vehicles in advance, in spite of the general term of “1-of-K”, we assume

that the dimension of h is infinity, h ∈ {0, 1}∞,
∑∞

d=0 hd = 1. Let us denote the

number of vehicles in the n-th image as hn ∈ {0, 1}∞, which is not directly ob-

served. Then the set of the number of vehicles for the N images is represented as

H ≡ {h1,h2, . . . ,hN} ∈ {0, 1}∞×N . Now our goal is to estimate H from x.

3.3.2 Maximum a Posteriori Estimation for Traffic Volume

We formalize this estimation problem as the estimates of hn by the estimation

function, h∗
n(x), to which the observed variables x have been input.

We first consider the evaluation criterion based on the Bayesian perspective for this

task. Since the number of vehicles is a natural number, we define the error function

Error(hn,h
∗
n(x)) for the task as the Kronecker delta function between hn and the

estimates by the estimation function h∗
n(x):

Error(hn,h
∗
n(x)) ≡ 1− δhn,h∗

n(x)
, (3.1)

Using the model parameters φx and φH which are explicitly defined later, we define

the evaluation criterion for this task as the minimization of the population mean of

the error function Eq. (3.1):

argmin
h∗

n(x)

〈
1− δhn,h∗

n(x)

〉
p(H,x,φH ,φx)

(3.2)
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Fig. 3.4 The observation process.

Then, we can derive the optimal estimation function using the result in Eq. (2.17)

as the MAP

ĥ∗
n(x) = argmin

h∗
n(x)

〈
1− δhn,h∗

n(x)

〉
p(H,x,φH ,φx)

(3.3)

= argmax
hn

p(hn|x)

= argmax
hn

∫
p(x|H,φx)p(H|φH)p(φx,φH)dφxdφH

∏
m �=n

dhm,

where the posterior distribution p(hn|x) represents the probability distribution of the

number of vehicles hn given x. As shown in Eq. (3.3), the posterior distribution con-

sists of the observation model p(x|H,φx) and the prior models p(H|φH)p(φx,φH).

In the following subsection, we propose them.

Notice that this formulation requires no training data. This is extremely useful

in practice, since we can avoid the quite time-consuming and costly step of manual

vehicle-counting and labeling.

3.3.3 Probabilistic Hidden Structure Modeling for Traffic Volume

We assume that each image is represented by a scalar feature called Vehicle Pixel

Area (VPA). In this case, x ∈ R
N . The VPA feature of an image is computed using the

following steps: First, as a pre-process, we use a median filter for noise reduction and

also subtract from the pixel values of each image the median of its pixels to handle

the variation in luminance, such as the considerable luminance difference between

rainy and clear days or between day and night. Then we binarize the image using a

discriminant analysis technique [113], which is a traditional method but still used as a

state-of-the-art of image-binarization [114,115], and count the number of white pixels

which may correspond to vehicles. This is a raw score for the image feature. Finally,

the raw score is normalized to be in [−1, 1] by dividing by half of the maximum

raw score in the N images and subtracting 1. This feature extraction algorithm will

work for any frame-rate, even for still images, and is quite robust against poor image

quality.

Figure 3.4 illustrates the proposed observation process for the VPA. As shown in

Figure 3.4, apart from the additive Gaussian noise represented by εx, we assume that

the VPA feature x is a linear function of the number of vehicles d as θ1d + θ0. The
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Fig. 3.5 The validity of the linear model for VPA.

precision parameter of the Gaussian noise, β > 0, and two parameters, θ0 ∈ R and

θ1 ∈ R, are to be learned from the data. From these assumption, the observation

model p(x|h,θ) is defined as a Gaussian mixture model (GMM), whose d-th mixture

component is responsible for x having d number of objects through a restriction on

its mean parameter as shown in Figure 3.3:

p(x|hd = 1,θ, β) ≡ N
(
x
∣∣θ1d+ θ0, β

−1
)
. (3.4)

Since the count for the observation can take on any arbitrary natural number, the

proposed GMM has an infinite number of mixture components as

p(x|h,θ, β) ≡
∞∏
d=0

N
(
x
∣∣θ1d+ θ0, β

−1
)hd (3.5)

=
exp

(− β
2

∑∞
d=0 hd(x− θ1d− θ0)

2
)

(2πβ−1)
1
2

.

This is an infinite GMM with the specific restriction on its mean value given by the

linear function of the count d.

The joint observation model over all of the N images is

p(x|H, θ0, θ1, β) ≡
N∏

n=1

∞∏
d=0

N (xn|θ1d+ θ0, β
−1)hn,d

=
exp(−β

2

∑N
n=1

∑∞
d=0 hn,d(xn − θ1d− θ0)

2)

(2πβ−1)
N
2

. (3.6)

The linear assumption we made is based on the observation shown in Figure 3.5.

This obviously shows that a nonlinear function does not give any significant improve-

ment. This comes from the fact that we focused on images taken with cameras located

far away from the roads to allow city-wide traffic monitoring. In this scenario, we do
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not have to explicitly take account of the effect of the nonlinear relationship between

x and d, such as the effect of perspective projection.

In the observation model defined above, we have four parameters, H, θ0, θ1, and

β. We now define prior distributions for these parameters according to Eq. (3.3).

First, we introduce an SBP prior [112] for H using an additional parameter v

(0 ≤ vd ≤ 1) as

p(H|v) ≡
N∏

n=1

∞∏
d=0

(
vd

d−1∏
k=0

(1− vk)

)hn,d

. (3.7)

In general, SBPs have the property of automatic determination of model complexity.

In our context, the SBP is useful to remove the redundant clusters, so that we can

obtain the simplest model that fits the data best.

From Eq. (3.7), we see that, for each component with hn,d = 1, the probability is

given by successively breaking a unit length stick into an infinite number of pieces.

The size of each piece is the product of the rest of the stick and an independent

generating value vd.

Regarding the SBP parameter v, we use the hyperprior distribution [116,117]

p(v|α) ≡
∞∏
d=0

Beta(vd|1, α), (3.8)

where α (> 0) is a hyperparameter controlling the degree of sparseness of SBP and

also to be learned. Note that in the SBP formulation with the VB method the infinite

dimension of the model is replaced with a finite (large) dimension when implementing

the algorithm (see Section 3.3.4).

Regarding prior distributions for θ0, θ1, and β, we simply use the conjugate priors:

p(θ0|ρ0) ≡ N (θ0|μ(0)
θ0

, ρ0), p(θ1|ρ1) ≡ N (θ1|μ(0)
θ1

, ρ1), and

p(β) ≡ Gamma(β|a(0)β , b
(0)
β ), (3.9)

where the parameters μ
(0)
θ0

, μ
(0)
θ1

, a
(0)
β , and b

(0)
β are treated as input parameters given as

a part of the model (see the section on the experimental results). Here the superscript

(0) indicates that these parameters are used for the initial values of the VB procedure.

Finally, we define the hyperprior distributions for α, ρ0, and ρ1 using the conjugate

priors:

p(ρ0, ρ1, α) ≡ Gamma(ρ0|a(0)ρ0
, b(0)ρ0

) (3.10)

×Gamma(ρ1|a(0)ρ1
, b(0)ρ1

)Gamma(α|a(0)α , b(0)α ),

where a
(0)
ρ0 , b

(0)
ρ0 ,a

(0)
ρ1 , b

(0)
ρ1 ,a

(0)
α , and b

(0)
α are input parameters. For the input parameters

we actually used, see the section on the experimental results.
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Fig. 3.6 The generative model.

The joint distribution for all of the random variables z ≡ {H, θ0, θ1, β, ρ0, ρ1,v, α}
as well as x can now be explicitly given as

p(x, z) = p(x|H, θ0, θ1, β)p(H|v) (3.11)

× p(θ0|ρ0)p(θ1|ρ1)p(β)p(v|α)p(ρ0, ρ1, α).

We can derive the relevant marginal and conditional distributions such as the posterior

distribution p(z|x) in terms of this joint distribution.

Figure 3.6 summarizes the proposed generative model including all of the param-

eters. First, α, ρ0, ρ1, and β are generated, after which v, θ0, and θ1 are generated

using α, ρ0, and ρ1, and then the number of vehicles hn is generated using v. Fi-

nally, the observation variable xn is generated according to the observation process

using hn, β, θ0, and θ1. The dimension of the parameters of the proposed infinite

GMM is not infinity, which is in contrast to previous nonparametric Bayesian formu-

lations [112, 116, 118, 119]. This makes it possible to give a special meaning to the

value of the individual cluster centers.

3.3.4 Variational Bayes Algorithm for Maximum a Posteriori Estimation

As mentioned earlier, our goal is to obtain ĥ∗
n(x) in Eq. (3.3). While it is not

possible to obtain an exact analytical solution for p(hn|x) in ĥ∗
n(x), an approximated

analytic solution can be found through a VB algorithm [52].

According to the formulation in Chapter 2, we assume a trial distribution q(z) that

approximates the true posterior in a factorized form:

q(z) ≡ q(H)q(θ0, θ1)q(β, ρ0, ρ1,v)q(α). (3.12)

Then we identify the optimal trial distribution that minimizes the KL divergence from

the trial distribution to the true posterior distribution DKL(q(z)‖p(z|x)). Here, for

efficient implementation of the VB algorithm with SBP, we replace the infinite dimen-

sion of the model with the training data size N , which is the maximum resolution of

the observations [116].
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From Eqs. (2.26), (2.27), and (3.6) - (3.11), the trial distribution of H is given as

q(t+1)(H) =

N∏
n=1

q(t+1)(hn) =

N∏
n=1

Categorical(hn|μ(t+1)
hn

), (3.13)

where μ
(t+1)
hn

≡ [μ
(t+1)
hn,1

, μ
(t+1)
hn,2

, ...μ
(t+1)
hn,∞ ]. (3.14)

The trial distributions of θ0, θ1, β, ρ0. ρ1, v, and α are given as:

q(t+1)(θ) = N (θ|μ(t+1)
θ ,Σ

(t+1)
θ ), where θ ≡ [θ0, θ1], (3.15)

q(t+1)(β, ρ0, ρ1,v) = (3.16)

Gamma(β|a(t+1)β , b
(t+1)
β )Gamma(ρ0|a(t+1)ρ0

, b(t+1)ρ0
)

×Gamma(ρ1|a(t+1)ρ1
, b(t+1)ρ1

)

[ ∞∏
d=0

Beta(vd|a(t+1)vd
, b(t+1)vd

)

]
, and

q(t+1)(α) = Gamma(α|a(t+1)α , b(t+1)α ). (3.17)

Using the mean values of the hyperparameters β, ρ0, ρ1, and α over the trial

distributions q(t)(β, ρ0, ρ1, α), μ
(t)
β =

a
(t)
β

b
(t)
β

, μ
(t)
ρ0 =

a(t)
ρ0

b
(t)
ρ0

, μ
(t)
ρ1 =

a(t)
ρ1

b
(t)
ρ1

, μ
(t)
α =

a(t)
α

b
(t)
α

, we can

analytically compute the parameters at step t+ 1 in Eqs. (3.13) - (3.17):

μ
(t+1)
hn,d

=
exp

[
[cv]d − 1

2μ
(t)
β cn,d

]
∑N−1

m=0 exp
[
[cv]m − 1

2μ
(t)
β cn,m

] , (3.18)

cn,d ≡
(
xn − d[μ

(t)
θ ]1 − [μ

(t)
θ ]0

)2

+ d2[Σ
(t)
θ ]1,1 + [Σ

(t)
θ ]0,0 (3.19)

+ d[Σ
(t)
θ ]0,1 + d[Σ

(t)
θ ]1,0,

[cv]d ≡ ψ(a(t)vd)− ψ(a(t)vd + b(t)vd
) (3.20)

+

[
d−1∑
k=0

ψ(b(t)vk
)− ψ(a(t)vk

+ b(t)vk)

]
,

where ψ is the digamma function.

μ
(t+1)
θ = Σ

(t+1)
θ

[
μ
(t)
β cx + cμθ

]
, (3.21)

Σ
(t+1)
θ =

[
μ
(t)
β Ch +Cρ

]−1

,

[cx]0 ≡
N−1∑
d=0

N∑
n=1

μ
(t)
hn,d

xn, [cx]1 ≡
N−1∑
d=0

N∑
n=1

dμ
(t)
hn,d

xn, (3.22)



28 Chapter.3 Bayesian Traffic Flow Estimation

[cμθ
]0 ≡ μ(t)

ρ0
μ
(0)
θ0
, [cμθ

]1 ≡ μ(t)
ρ1
μ
(0)
θ1
, (3.23)

[Ch]0,0 ≡
N−1∑
d=0

N∑
n=1

μ
(t)
hn,d

, [Ch]1,1 ≡
N−1∑
d=0

N∑
n=1

d2μ
(t)
hn,d

, (3.24)

[Ch]0,1 ≡
N−1∑
d=0

N∑
n=1

dμ
(t)
hn,d

, [Ch]1,0 ≡
N−1∑
d=0

N∑
n=1

dμ
(t)
hn,d

, (3.25)

[Cρ]0,0 ≡ μ(t)
ρ0
, [Cρ]1,1 ≡ μ(t)

ρ1
, [Cρ]0,1, [Cρ]0,1 ≡ 0, (3.26)

a
(t+1)
β = a

(0)
β +

1

2
N, b

(t+1)
β = b

(0)
β +

1

2

N−1∑
d=0

N∑
n=1

μ
(t)
hn,d

cn,d, (3.27)

a(t+1)ρ0
= a(0)ρ0

+
1

2
, (3.28)

b(t+1)ρ0
= b(0)ρ0

+
1

2

((
[μ

(t)
θ ]0 − μ

(0)
θ0

)2

+ [Σ
(t)
θ ]0,0

)
,

a(t+1)ρ1
= a(0)ρ1

+
1

2
, (3.29)

b(t+1)ρ1
= b(0)ρ1

+
1

2

((
[μ

(t)
θ ]1 − μ

(0)
θ1

)2

+ [Σ
(t)
θ ]1,1

)
,

a(t+1)vd
= 1 +

N∑
n=1

μ
(t)
hn,d

, b(t+1)vd
= μ(t)

α +

N∑
n=1

N−1∑
k=d+1

μ
(t)
hn,k

, (3.30)

a(t+1)α = a(0)α +N, (3.31)

b(t+1)α = b(0)α −
N−1∑
d=0

ψ(b(t)vd)− ψ(a(t)vd
+ b(t)vd).

To solve the updating equations, (3.13) - (3.17), we first compute q(t+1)(H, θ0, θ1, β)

using q(t)(ρ0, ρ1,v, α). Then we compute q(t+1)(ρ0, ρ1,v) using q(t)(H, θ0, θ1, β)q
(t)(α).

Finally we compute q(t+1)(α) using q(t+1)(H, θ0, θ1, β, ρ0, ρ1,v). Here, we simply com-

pute only the parameters of these distributions, thanks to conjugate modeling. For

the initial parameters for θ0, θ1, β, ρ0, ρ1, v, and α, we use the same values as those of

the corresponding priors. In practice, we stop the VB iterations when this condition

is satisfied:

(DKL(p(z)‖q(t+1)(z))−DKL(p(z)‖q(t)(z)))2
DKL(p(z)‖q(t)(z))2 < 10−10. (3.32)
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After the above stopping condition is satisfied, we obtain the final outcome q(hn)

directly, which corresponds to an approximation of the learned posterior p(hn|x) since
the trial distribution q has been factorized as shown in Eq. (3.12). From Eq.(3.3),

using the learned q(hn), we can estimate the numbers of vehicles as

ĥ∗
n ≈ argmax

hn

q(hn). (3.33)

Although the proposed method is formulated as the batch algorithm for N observed

images, we can extend it to an online estimation model of h for a new observation x

approximately as

ĥ = argmax
h

exp〈ln p(x|h, θ0, θ1, β)p(h|v) (3.34)

× p(θ0|ρ0)p(θ1|ρ1)p(β)p(v|α)p(ρ0, ρ1, α)〉q(∞)(θ0,θ1,β,v,ρ0,ρ1,α).

3.4 Bayesian Traffic Velocity Estimation

In this section, we propose a new approach in which the traffic velocity is estimated

only from observed temporal-sequences of the numbers of vehicles, which can be

obtained from web-camera images by using the method in the above section [37]. The

proposed method does not require tracking any vehicles or using any labeled training

data.

We use the fact that the some proportion of vehicles in two or more consecutive

observations will be the same vehicles. The proportion will increase as the traffic

velocity v decreases, and it directly represents the correlation between the numbers

of vehicles in the consecutive observations. On the basis of the above fact, we first

propose an observation model for observations conditioned on the traffic velocity v.

Then, we estimate the traffic velocity through the density estimation of the model

given the observations. This estimation task is an unsupervised one without using

any labeled training data. Since our method does not need to track any vehicles,

it can work with low quality and inexpensive sensors with low sampling rates, such

as one observation every several seconds. Our approach naturally can be applied to

general traffic velocity estimation problem using any data sources, such as inductive

loop and GPS.

We will demonstrate that the accuracy and robustness of our approach without

tracking any vehicles or using any labeled training data are good enough for our

traffic monitoring application using real-world data in experiments.
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Fig. 3.7 Outline of the traffic velocity estimation problem.

3.4.1 Problem Setting

Let us define the task. We repeatedly observe the numbers of vehicles

x ≡ [x1, x2, ..., xN ]� ∈ N
N on a certain road area at time t ≡ [t1, t2, ..., tN ]� ∈ R

N

(t1 < t2 < ... < tN ), as shown in Fig. 3.7. Note that the time intervals of t generally

differ. For the length of the road area in which x is observed, L > 0 is known, and

the road area has no intersections or branches. We refer to the road area as the

observation area.

Our goal is to estimate the average traffic velocity v ≥ 0 throughout the observations

only from the available data x without tracking vehicles or using any labeled training

data.

3.4.2 Posterior Mean Estimation for Traffic Velocity

We formalize this estimation problem as the estimates of v by the estimation func-

tion, v∗(x), to which the observed variables x have been input.

We first consider the evaluation criterion based on the Bayesian perspective for

this task. Since the velocity is a positive real number, the use of an all-or-none type

error, such as the Dirac delta or Kronecker delta function, is nonsensical, whereas the

squared L2-norm error (mean square error) is a conventional way of doing so. We

define the error function Error(v, v∗(x)) for the task as the squared difference between

v and the estimate by the estimation function v∗(x):

Error(v, v∗(x)) ≡ ‖v − v∗(x)‖22, (3.35)

Using the model parameters φx and φv which are explicitly defined later, we define the

evaluation criterion as the minimization of the population mean of the error function

Eq. (3.35):

argmin
v∗(x)

〈‖v − v∗(x)‖22
〉
p(v,x,φx,φv)

. (3.36)



3.4 Bayesian Traffic Velocity Estimation 31
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Fig. 3.8 Positions of observed vehicles at time zero and tn.

Then, we can derive the optimal estimation function using the result in Eq. (2.14)

as the PM,

v̂∗(x) = argmin
v∗(x)

〈‖v − v∗(x)‖22
〉
p(v,x,φx,φv)

(3.37)

=

∫
v p(v|x)dv,

where the posterior distribution p(v|x) represents the probability distribution of the

traffic velocity v given the numbers of vehicles x.

3.4.3 Probabilistic Hidden Structure Modeling for Traffic Velocity

The estimation function of the velocity v is found through the posterior distribution

p(v|x) from Eq. (3.37). The posterior p(v|x) for v can be decomposed into an ob-

servation model for the number of vehicles p(x|v) that is conditioned on the average

traffic velocity v and the prior model for the velocity p(v):

p(v|x) = p(x|v)p(v)∫
p(x|v)p(v)dv . (3.38)

In this subsection, we define the observation model p(x|v) conditioned on v and the

prior model p(v).

We derive the observation model p(x|v) for x conditioned on the average traffic

velocity v by considering the proportion of the number of vehicles that are in con-

secutive observations. If the time interval between tn and tn+1 is not too large and

the length of the observation area L is not too small, some of the vehicles will be the

same in consecutive observations. In particular, the proportion of identical vehicles

is supposed to become large when the average traffic velocity v is small. Conversely,

it becomes small when the velocity is large. Also, the strength of the correlation

between the consecutive observations in x will increase with this proportion. We use

these relationships between the proportion of identical vehicles, the average traffic

velocity v, and the correlation in x to derive the observation model.
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Fig. 3.9 Positions of observed vehicles at time zero, tn and tn+1. In this case,

there are overlapping area between the consecutive n-th and n+1-st observations

in [−vtn − L,−vtn+1).

First, we place two assumptions on the observed traffic during the period of N

observations, tN − t1: (i) all the vehicles have a common constant velocity, v, toward

the observation area, and (ii) the positions of the vehicles at time zero are independent

and identically distributed. These assumptions might be strong but can be applicable

for many cases when the period tN − t1 is not so long. We will examine and discuss

these assumptions in experiments and discussions.

Here, we define the positions of the vehicles as the distance from the front of the

observation area, which is regarded as the zero position (see Fig. 3.8). The observation

area is defined as [−L, 0), as shown in the hatched area in Fig. 3.8, where [•] denotes a
closed interval and (•) denotes an open interval. If a vehicle is located at the position

−y at time zero, the assumption (i) indicates that the vehicle is observed during time

[(y−L)/v, y/v). Accordingly, the vehicles that will be observed at time tn in the n-th

observation should be located in the area [−vtn − L,−vtn) at time zero, as shown in

the check-pattern area in Fig. 3.8.

Since the area in which the vehicles in the n+1-st observation can exist at time

zero is [−vtn+1−L,−vtn+1), when −vtn−L < −vtn+1, the areas for the consecutive

n-th and n+1-st observations partially overlap each other. This overlapping area can

be defined as

[max(−vtn+1,−vtn − L),min(−vtn+1,−vtn − L)), (3.39)

where vehicles that are in this area at time zero are observed at both times in the

n-th and n+1-st observations and are not observed individually in each of the n-

th and n+1-st observations. Note that if there is no overlapping area between the

consecutive n-th and n+1-st observations, Eq. (3.39) becomes an empty set. We

denote the overlapping area as [−vtn − L,−vtn+1) in Fig. 3.9. From Eq. (3.39), the
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Fig. 3.10 Example of Rj,ks and Lj,k(v)s in the case of N = 5. For example,

L3,5(v) = −vt2 − L − (−vt3 − L). The check-pattern areas represent the areas

at which the vehicles that will be observed at time tn in n-th observation should

be located at time zero.

length of the overlapping area can be written by v as

|[max(−vtn+1,−vtn − L),min(−vtn+1,−vtn − L))|
= max

(
0,min(−vtn+1,−vtn − L)−max(−vtn+1,−vtn − L)

)
, (3.40)

where we make the length to be zero for when Eq. (3.39) is the empty set.

While the above overlapping area and its length is defined between the consecutive

n-th and n+1-st observations, it can be naturally generalized to the overlapping area

between the j-th to k-th consecutive observations in x, Rj,k (j, k ∈ 1, 2, ..., N, and j ≤
k). The vehicles, which are in this area at time zero, are in all of the j-th to k-th

observations and are not observed in the other observations in x. This area Rj,k can
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be defined as

Rj,k ≡
N⋂

n=1

⎧⎨
⎩
[−vtn − L,−vtn) (if j ≤ n ≤ k)

[−vtn − L,−vtn) (elsewhere)

, (3.41)

where
⋂N

n=1 denotes intersection over n = 1 to n = N and • denotes exclusion of

•. Figure 3.10 shows an example of Rj,ks in the case of N = 5. In Eq. (3.41), since

[−vtn−L,−vtn) represents the check-pattern area in Fig. 3.10 at each time, Rj,k can

be computed as the intersection over the corresponding check-pattern areas:

Rj,k = [max(−vtk+1,−vtj − L),min(−vtk,−vtj−1 − L)). (3.42)

where t0 ≡ −∞, tN+1 ≡ ∞. Note that, from the definition in Eqs. (3.41) and (3.42),

some of the intervals Rj,k may also be the empty set, such as R1,5, R2,2, R2,3, R3,3,

R3,4, and R4,4 in Fig. 3.10. The area Rn,n represents the area in which the vehicles

observed only in the n-th observation exist at time zero. When N = 2, Eq. (3.39)

and Eq. (3.42) are identical. Additionally, all the ranges Rj,k are mutually exclusive.

The length of the overlapping area can be written by v as

Lj,k(v) ≡ |Rj,k| (3.43)

= max
(
0,min(−vtk,−vtj−1 − L)−max(−vtk+1,−vtj − L)

)
,

where we also make the length Lj,k(v) to be zero for when Eq. (3.42) is the empty

set.

Then, we introduce a random variable cj,k (j, k ∈ 1, 2, ..., N, and j ≤ k), which

denotes the number of vehicles in the mutually exclusive area Rj,k at time zero and

is a decomposition of x. Figure 3.11 shows an example where c2,4 = 1 and the other

components in c are 0 in the case of N = 5. The observation variables x can be

determined uniquely in terms of c ≡ [c1,1, ..., c1,N , c2,2, ..., c2,N , ..., cN,N ]�:

xn =
∑

1≤j≤n≤k≤N

cj,k. (3.44)

For simplicity, we introduce an N × 1
2N(N + 1) matrix D that corresponds to the

above summation and satisfies

x = Dc. (3.45)

Since the position of a vehicle at time zero is random from assumption (ii), the prob-

ability, which is that the vehicle appears in the areaRj,k at time zero when the velocity

is v, is given by the length of the area Lj,k(v) divided by the total length of the roads
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Fig. 3.11 Example in which c2,4 = 1 and the other components in c are 0 in

the case of N = 5.

Ltotal in the possible road area, i.e., Lj,k(v)/Ltotal. Because all the areas Rj,k are mu-

tually exclusive, the event that this vehicle does not appear among N observations is

a complementary event, and its probability is given by 1−∑
1≤j≤k≤N Lj,k(v)/Ltotal.

Thus, the random vector c obeys a multinomial distribution using these probabilities

and the total number of vehicles Mtotal in the possible road area:

p(c|v,Mtotal) (3.46)

=
Mtotal(

Mtotal −
∑

1≤j≤k≤N cj,k

)∏
1≤j≤k≤N cj,k

×
⎛
⎝1−

∑
1≤j≤k≤N

Lj,k(v)

Ltotal

⎞
⎠

Mtotal−
∑

1≤j≤k≤N cj,k ∏
1≤j≤k≤N

(
Lj,k(v)

Ltotal

)cj,k

.

Figure 3.12 shows examples of p(c|v,Mtotal), which illustrate typical cases of v. The

cj,ks depicted as the gray regions have a non-zero probability for each of the high,

medium, and low velocity cases. We can see that this distribution p(c|v,Mtotal) for c

dramatically changes with the velocity.

Since Ltotal and Mtotal are usually huge, we consider the large limit of them while

keeping their ratio constant, i.e., Mtotal/Ltotal = M/L, whereM is a newly introduced
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(a) High velocity
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c1,2c2,3c3,4c4,5

c1,3c2,4c3,5

c1,4c2,5

c1,5

(b) Medium velocity

c5,5 c4,4 c3,3 c2,2 c1,1
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Fig. 3.12 Examples of p(c|v,Mtotal) where v is low, medium, and high. The

gray regions have non-zero probability.

parameter. Both Mtotal/Ltotal and M/L mean the vehicle density per unit road

length. After taking this limit, p(c) becomes

p(c|v,M) =
∏

1≤j≤k≤N

Poisson (cj,k|qj,k) , (3.47)

where qj,k ≡ Lj,k(v)

L
M. (3.48)

Note that by taking the limit, the cj,ks become independent from one another. The

v and M are unknown parameters to be estimated. Within our Bayesian framework,

we introduce their prior distributions later.

Finally, through marginalization over c using Eqs. (3.45) and (3.47), the observation

model for x can be written as

p(x|v,M) ≡
∑
c

δx,Dc p(c|v,M), (3.49)

where δ denotes the Kronecker delta function. However, in this complicated case, the

discrete marginalization in Eq. (3.49) is computationally infeasible. As an alternative,

p(x|v,M) is approximated as a Gaussian distribution in the following subsection.

We introduce prior distributions for v and M :

p(v,M) ≡ InverseGamma(v|av, bv)InverseGamma(M |aM , bM ), (3.50)

where the parameters av, bv, aM , and bM are treated as input parameters given as

part of the model. See the Experimental Results section for these parameters we

actually used. The reason we chose inverse gamma distributions for v and M is that

they are defined as positive variables and play a role similar to that of the variance

parameter in a Gaussian distribution, where the inverse gamma distribution is widely

used as the conjugate prior distribution for the variance parameter.

From Eqs. (3.49) and (3.50), we explicitly construct the joint distribution of all

random variables:

p(x, v,M) ≡ p(x|v,M)p(v,M). (3.51)
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Algorithm 1 Sampling Procedure for Velocity Estimation

1: Initialize the values of v and M with their prior distributions

2: repeat

3: ξv ← U(ξv|0, p(x, v(τ−1),M (τ−1)))

4: Sample v(τ) uniformly from part of the slice Sv = {v(τ)|ξv <

p(x, v(τ),M (τ−1)))}
5: ξM ← U(ξM |0, p(x, v(τ),M (τ−1)))

6: Sample M (τ) uniformly from part of the slice SM = {M (τ)|ξM <

p(x, v(τ),M (τ)))}
7: until a stopping condition is met.

8: return v(1), v(2), ..., v(T )

All marginal and conditional distributions including the posterior p(v|x) can be de-

rived in terms of this joint distribution.

3.4.4 Slice Sampling Algorithm for Posterior Mean Estimation

Although the estimation function, the PM v∗(x), in Eq. (3.37) is derived from

the joint distribution in Eq. (3.51), an exact analytical solution is computationally

infeasible. We will thus use an approximate inference method to compute the PM.

Since the discrete marginalization in Eq. (3.49) is computationally infeasible, as

stated in the above subsection, and we cannot compute even the joint distribution in

Eq. (3.51), p(x|v,M) is approximated as a Gaussian distribution with the same mean

and covariance ignoring cumulants higher than second-order:

p(x|v,M) ≈ N (x|μ,Σ), where (3.52)

μ ≡ Ep(x|v,M)[x] and Σ ≡ Varp(x|v,M)[x]. (3.53)

μ and Σ can be exactly calculated as

μ = Ep(c|v,M)[Dc] = DEp(c|v,M)[c] = Mi, (3.54)

Σ = Varp(c|v,M)[Dc] = DVarp(c|v,M)[c]D
� = D(diag q)D�, (3.55)

where q ≡ [q1,1, ..., q1,N , q2,2, ..., q2,N , ..., qN,N ]� and (diag q) denotes a diagonal ma-

trix whose diagonal elements are q. We will examine this approximation in the Discus-

sion section. Note thatD is defined as the operation
∑

1≤j≤n≤k≤N for each element of

an 1
2N(N+1)-dimensional vector, as shown in Eq. (3.45). In Eq. (3.54), each element

of the vector DEp(c|v,M)[c] represents the sum of all expectations of the corresponding

cj,k, which means
∑

1≤j≤n≤k≤N Ep(cj,k|v,M)[cj,k] and is always M . Thus, the mean

value of the model has no information on the velocity, but the covariance matrix does.
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We can hence obtain the likelihood of the traffic velocity from the covariance matrix,

which represents the correlation between elements of x.

Our goal is to obtain the PM v̂∗(x) from the above joint distribution in Eq. (3.51)

with the model of Eqs. (3.52) and (3.50) given the observations x. However, although

we can compute the joint distribution p(x, v,M) thanks to the approximation in

Eq. (3.52), we cannot analytically compute the posterior p(v|x).
Instead, we derive a sampling-based approximation of the PM v̂∗(x) by using the

MCMC method. Given the joint distribution p(x, v,M) and observations x, we can

take T samples for v, {v(τ)}Tτ=1, from the posterior p(v|x) with the MCMC method,

but without explicitly computing the posterior p(v|x). Then, we use the empirical

mean of {v(τ)}Tτ=1 as an approximation of v̂∗(x):

v̂∗(x) =
∫

v p(v|x)dv ≈ 1

T

T∑
τ=1

v(τ). (3.56)

For sampling {v(τ)}Tτ=1 in Eq. (3.56), we use slice sampling [50] introduced in Chap-

ter 2. Since we have two different random variables v and M , we repeatedly sample v

and M in turn in the same manner as Gibbs sampling [13,50,51] and obtain samples

only for v from p(v|x) by ignoring samples for M . For the stopping condition, we

simply use the number of iterations. See the Experimental Results section for the

iteration number we actually used.

Algorithm 1 shows the sampling procedure for the velocity estimation task. Here,

ξv and ξM are auxiliary variables for v and M , respectively, which are required in

the sampling scheme of slice sampling, and • ← ◦ denotes that a sample from a

distribution ◦ is substituted into •. For efficiency, we use the “stepping out procedure”

in Steps 3 and 5 and use the “shrinkage procedure” in Steps 4 and 6, as described

in [50].

3.5 Experimental Results

3.5.1 Experimental Results for Traffic Volume Estimation using Real-world

Web-camera Images

We tested our proposed method for traffic volume estimation using real-world web-

camera images captured in Nairobi, Kenya [35,36,75,77,78], as shown in Figure 3.13.

These images were captured from roads at five different locations with the same size

of 640× 480 pixels. As shown in Figure 3.1, on average only several hundred of these

pixels are occupied by individual vehicles. Also, the frame-rate is one image per six

seconds. These are far too poor for the assumptions of the existing vehivle recognition

approaches [120–122]. The number of images was N = 100 for each location.
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(a) Nationkimathi (b) Westistg (c) Ukulima

(d) Haileselasie (e) Harambeetaifa

Fig. 3.13 Traffic monitoring web-camera images [75].

Also, we used the hyperparameter values of a
(0)
β = a

(0)
ρ0 = a

(0)
ρ1 = a

(0)
α = 1, b

(0)
β =

b
(0)
ρ0 = b

(0)
ρ1 = b

(0)
α = 10−10, and μ

(0)
θ0

= −1 and μ
(0)
θ1

= 0.3. We chose them to be as

non-informative as possible in a fully Bayesian framework and to have a quite flat

distribution. Also, preliminary experiments showed the accuracy of the algorithm is

insensitive to changes in the values of the hyperparameters.

Figure 3.14 compares our unsupervised approach with several supervised alterna-

tives. To train those, we used the true count labels in addition to the VPA, and hence

the comparison is extremely preferable to the alternatives. We used least squares lin-

ear regression (LS), least absolute values (LAV), and MM estimator (MM). See [123]

for details of the algorithms. We also compared our unsupervised approach with a

widely used vehicle recognition approach by Viola and Jones (VJ) [121] as another

baseline method using features other than from VPA.

Notice that these supervised alternatives, LS, LAV, and MM, require labeled training

data customized for each camera location, which is in fact impractical in city-wide

traffic monitoring scenarios. We gave these methods 100 labeled data for each location.

In the VJ training, we prepared 2000 labeled images for positive and negative examples.

They consisted of popular image databases that include vehicles [122, 124–126] and

several hundred manually labeled images that came from our training data set. For

the training of the supervised alternatives, manual vehicle-counting and labeling were

used to create the labeled data, and they took several days to complete. In contrast,

the computational time for our VB inference took only a few seconds on a moderately

capable laptop computer and the time complexity is O(N).

The goal of this experiment was to see if our unsupervised method is comparable

in performance to these supervised alternatives. For each location, we evaluated the

results with regard to the relative mean absolute error (RMAE) and the relative
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(a) RMAEs for all of the camera locations (smaller

is better). Error bars represent the standard error.

Nationkimathi Westistg Ukulima Haileselasie Harambeetaifa

Proposed
LS
LAV
MM
VJ

0
1

2
3

4
5

(b) RelativeMSEs for all of the camera loca-

tions (smaller is better). Error bars represent

the standard error.

(c) Number of labeled training data (smaller

is better). Note that the proposed method re-

quires no labeled training data.

Fig. 3.14 Comparison of the proposed unsupervised method and supervised

alternatives for all of the camera locations

(a) Observed histogram of x (b) Estimated predictive posterior of x

Fig. 3.15 Observed histogram and estimated predictive posterior of x.

mean square error (RelativeMSE) over M = 100 images. RMAE and RelativeMAE

are defined as

RMAE =
1

M

M∑
m=1

∣∣∣d(m)
true − d

(m)
estimate

∣∣∣
d
(m)
true + 1

and (3.57)

RelativeMSE =
1

M

M∑
m=1

∣∣∣d(m)
true − d

(m)
estimate

∣∣∣2
(d

(m)
true)

2 + 1
, (3.58)
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Fig. 3.16 True velocity and velocity estimated using the proposed method for

the time interval Δt = 1 (second) in the artificial instance. Note that we have

used the Tukey boxplot [127].

where d
(m)
true is the true number of vehicles in the m-th image, and d

(m)
estimate is the

estimated number of vehicles for the m-th image. We computed the standard error

of the relative absolute error and relative square error (the error bars in Fig. 3.14).

From Fig. 3.14, we can see that the overall performance of our method is comparable

to or even better than those of the supervised alternatives. This is rather surpris-

ing, because our method does not use any labeled training data. Our method gives

quite stable RMAE scores for the various camera locations in contrast to most of the

supervised alternatives, which have significantly worse scores at the Nationkimathi

location due to outliers and occlusions. These results demonstrate the robustness of

our approach against the image conditions.

Finally, for a reality check of the VB inference, Fig. 3.15 compares the predictive

posterior distribution of x, p(x|x), with the histogram created from the data. To

get p(x|x), we marginalized all of the parameters except for x using the variational

posterior q. The result confirms that the estimated predictive posterior is consistent

with the true observed histogram. The predictive posterior p(x|x) resembles the

distribution in Figure 3.3. It has equally-spaced clusters having variances depending

on the values of d.

3.5.2 Experimental Results for Traffic Velocity Estimation on Artificial Traf-

fic

We examined the proposed approach for traffic velocity estimation in numerical

experiments. First, we generated artificial datasets to study the performance of the

approximate inference method in this subsection and to see if it could deal with actual

traffic, we applied it to the temporal-sequences of the numbers of vehicles extracted

from real-world web-camera images and to publicly available traffic datasets in the
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Fig. 3.17 True velocity and estimated velocity using the proposed method for

the time interval Δt = 4 (second) in the artificial instance. Note that we have

used the Tukey boxplot [127].

Fig. 3.18 Traffic simulation for validation.

next subsection.

For the Bayesian inference, we set the hyperparameter values in Eq. (3.50) to be as

non-informative as possible and to have a quite flat distribution:

av = aM = 10−4, bv = vlegal × 10−4, bM = μx × 10−4, (3.59)

where μx ≡ 1

N

N∑
n=1

xn. (3.60)

For the prior means of v and M , we respectively used the legal speed limit vlegal on

each road and the naively computed a sample mean of x. The number of effective

prior observations of the inverse gamma distribution within the Bayesian framework

is equal to twice the value of parameter a. These settings were considered sufficiently

non-informative. For fairness, we used this hyperparameter setting for all of the

following instances. Also, the number of iterations of the slice sampling was 1000.
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Fig. 3.19 True average velocity and velocity estimated using the proposed

method in the simulation instance. Note that we have used the Tukey box-

plot [127].

A preliminary analysis indicated that using more iterations, such as 100000, did not

improve the accuracy much.

In preparing the artificial validation dataset, we randomly generated c at constant

time intervals from the model in Eq. (3.47) and computed the observations x as the

sum of the corresponding c. Using the model in Eq. (3.47) for generating the dataset

and using the approximate model in Eq. (3.52) for estimating the velocity, we studied

the validity of the Gaussian approximation for the approximate model in Eq. (3.52)

and the performance of the approximate PM inference.

Using Eq. (3.47), we generated x with the following settings: time intervals of t,

Δt ∈ {1, 4} (second), length of the observation area L = 100 (m), average number

of vehicles on the road Mart ∈ {1, 10, 100}, traffic velocity v ∈ {10, 20, 30, 40, 50, 60}
(km/h), and number of input observations N = 50. We set the legal speed limit to the

one in Japan, vlegal = 60 (km/h). For each of these settings, we repeatedly evaluated

the proposed method in 100 experiments, where we used a different random seed in

each experiment. Thus, the total number of experiments was 2× 3× 6× 100 = 3600.

Figures 3.16 and 3.17 compare the true velocity with the estimated velocity using

the proposed method. We can see that the overall performance of our method is good.

Our method performed consistently for different values of M , even M = 1, which is a

difficult setting for this kind of Gaussian approximation (Eq. (3.52)). The results show

that the Gaussian approximation and approximate MCMC inference method worked

well. They are also non-trivial because the density-velocity regression approach can-

not work in a scenario where the average number of vehicles is independent from the

traffic velocity.

Next, we evaluated the proposed method on simulated traffic data, where the ob-

servations x were obtained from our simple traffic simulation. We examined its ro-
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Fig. 3.20 Real-world web-camera image used in our experiment.

bustness in a situation where each vehicle had a different velocity.

We simulated the traffic as follows (see Fig. 3.18). First, we distributed Msim

vehicles at random positions on a virtual circuit whose total length was Lsim. The

parameters Msim and Lsim were respectively equal to one-thousandth of the total

number of vehicles in Japan and the total road length in Japan. The vehicles moved at

different velocities that were generated from a uniform distribution U(x|ṽ−10, ṽ+10),

where the average of the true velocities was set as ṽ ∈ {10, 20, 30, 40, 50, 60} (km/h).

This means the vehicles had their own velocities. We repeatedly obtained the numbers

of vehicles x from a certain road in the virtual circuit at constant time intervals.

We experimented with time intervals of t Δt ∈ {1, 2, 4} (second), a length of the

observation area L = 100 (m), and N = 50 input observations. We set the legal speed

limit in this experiment to the legal speed limit in Japan, i.e., vlegal = 60 (km/h).

For each of these settings, we evaluated the proposed method in 100 experiments,

where we used a different random seed in each experiment. Thus, the total number

of experiments was 3× 6× 100 = 1800.

Figure 3.19 compares the true average velocity with the estimated velocity using

the proposed method. Even when each vehicle had a different velocity, we can see

that the proposed method could estimate the average traffic velocity.

3.5.3 Experimental Results for Traffic Velocity Estimation using Real-world

Dataset

We demonstrated the utility of our approach by using it to estimate the traffic

velocity from web-camera images captured in Tokyo, Japan for the city traffic mon-

itoring scenario [36, 77, 78] (see Fig. 3.20). The specific location is at 35.651054N,

139.799986E. The image size was 640× 480 pixels. The legal speed limit on this road

was vlegal = 60 (km/h). The frame rate of the web camera was about one image
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Fig. 3.21 Manually measured velocity and velocity estimated using the pro-

posed method with different prior means. In this figure, proposed (1) means the

proposed method with the prior mean 1 (km/h) for the traffic velocity. Note that

we have used the Tukey boxplot [127].

per second. Since the sampling rate of the web camera was low, this was a good

application for our approach. The dataset contained images captured for 17 minutes,

and the images in the set totaled about 1000.

For x, we simply used the temporal-sequences of the numbers of vehicles in the

images, which were extracted from the images by using the method described in [35,

36,77,78]. This method works for any frame rate, even for still images, is robust even

when image quality is poor and is almost calibration-free because it does not recognize

individual vehicles, but rather estimates their number from the image features. The

road length L can easily be obtained because we can estimate the size of the vehicles

and the length of the road in the images by using the methods described in [35,36,77,

78]. In particular, L was computed by referring to the typical sizes of vehicles in the

real world. We used the timestamps attached to the images as t and input N = 60

consecutive images (corresponding to about one minute) for each estimation. We

estimated the traffic velocities about 17 times. To create the validation test dataset,

we manually measured traffic velocities each minute by using a radar speed gun at

the roadside. The average traffic velocity was 41 (km/h).

Since we have only one traffic situation in this real-world traffic scenario, in which

the average traffic velocity was 41 (km/h), we checked to ensure that the hyperpa-

rameter setting for the traffic velocity does not accidentally become the best for

estimating this velocity. We tested the following hyperparameter settings: bv ∈
{1, 10, 20, 30, 40, 50, 60, 70} × 10−4 and av = 10−4 for the traffic velocity v. This

means that the prior mean bv/av for v takes over {1, 10, 20, 30, 40, 50, 60, 70} (km/h).

In our Bayesian framework, the traffic velocity estimation is generally difficult when

this prior mean is significantly different from the true velocity.
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Fig. 3.22 Relationship between true NGSIM velocity and velocity estimated by

the proposed method. The estimate is good if the dot is close to the identity line

(red line).

Figure 3.21 compares our estimation results of each prior mean with the manually

measured velocities in the 17 minutes of observations. We can see that our method

can estimate a reasonable velocity over the different prior mean settings of v, except

for the settings in which the prior means are 1 and 10 (km/h). In these cases (in which

the prior means are 1 and 10 (km/h)), the true velocity is more than four times larger

than the prior mean. Since it is not difficult to set the prior mean in a range that is

the true velocity plus or minus 30 (km/h), this result shows that the dependence of

the hyperparameters is small enough.

Finally, we evaluated the proposed method using the publicly available Next Gen-

eration Simulation (NGSIM) datasets collected by the United States Department of

Transportation Federal Highway Administration [128]. The NGSIM datasets consist

of real-world vehicle trajectory data collected using digital video cameras at several

locations in the United States. The proposed method only used the number of vehicles

every second in the NGSIM datasets; it did not use the original speed information.

The original speed information was used only for evaluating the estimation accuracy

of the proposed method.

We used four vehicle trajectory datasets: Peachtree, Lankershim, US-101, and I-80.

Each of them was collected at different locations. The Peachtree and Lankershim
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Fig. 3.23 Time-series of velocities estimated by the proposed method and the

corresponding true velocities. The average number of vehicles for the correspond-

ing timestamp is indicated by the bar chart.
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Fig. 3.24 Relationship between the estimation error and standard deviation of

velocity. The estimate is good if the dot is close to the line, which means the

difference is zero (red line).

datasets were collected on local roads, which means that vehicles had relatively lower

velocities and the legal speed limit was vlegal = 56.3269 (km/h). The US-101 and I-80

datasets were collected on freeways, which means that vehicles had relatively higher

velocities and the legal speed limit was vlegal = 88.5137 (km/h).

We used the initial 100 (m) areas without intersections or branches at each location

as the observation area, which means the length of the observation area was L = 100

(m). We used the numbers of vehicles in the trajectories on the observation area at

each time and thinned them to one observation per second for making the observations

x in our problem setting. We input N = 60 (corresponding to about one minute)

consecutive observations for each estimation. Since the Peachtree and Lankershim

datasets contain vehicle trajectories for about 30 minutes, the number of estimations

for each of them was about 30. Similarly, since the US-101 and I-80 datasets contain

vehicle trajectories for 45 minutes, the number of estimations for each of them was

about 45. Thus, the total number of estimations for these datasets was about 150.

We used the timestamps attached to the trajectories as t.
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We compared the estimated velocities with the true ones for each location, as shown

in Fig. 3.22. We can see that the proposed method can estimate a reasonable velocity

at every location with the different true velocity. For the US-101 dataset, the esti-

mation results seem to have bias. We will discuss the bias in the Discussion section.

Additionally, Fig. 3.23 shows typical time-series of the true and estimated velocities,

together with average number of vehicles. We can see that the proposed method

can estimate a reasonable velocity regardless of the average number of vehicles. In

addition, Fig. 3.24 shows the relationship between the estimation error and standard

deviation of vehicle velocity. Although we assume that all vehicles have a common

velocity, the standard deviation of the velocity, which reflects variation of the veloci-

ties over vehicles and time, including situations such as overtaking and the existence

of multiple lanes, did not affect the quality of the estimation of the real-world NGSIM

data, as well as, the simulated traffic.

3.6 Discussion

We discuss the proposed unsupervised approach in this section. First, we discuss

the robustness in choosing features in our traffic-volume-estimation method. Second,

we give the details of image-binarization method for extracting the image feature

VPA. Third, we discuss the traffic-volume-estimation model with Gaussian mixture

and SBP. We then discuss the validity of our velocity-estimation approach. Next, we

discuss the validation of the limitations of this approach. Finally, we discuss other

applications of the approach.

3.6.1 Robustness against Choice of Features for Traffic Volume Estimation

One of the advantage of our approach is the robustness against the choice of features.

In the traffic-volume estimation, we may use other scalar features, such as the number

of edges or corners in the image, as long as those are believed to be linearly correlated

with the vehicle count.

Figure 3.25 shows the relationship between two features, where V1 is the number

of vehicles, V2 is the VPA, V3 is the number of edges by first-order Sobel filter, V4

is the number of edges by second-order Sobel filter, V5 is the number of edges by

Laplacian filter, and V6 is the number of corners by Harris corner detector. These

methods are explained in [129]. From the figure, all of these features are believed to

be linearly correlated with the vehicle count, and we can use them as the input of our

method. However, we also confirmed that the other features do not provide significant

improvements as compared to the VPA. Also, we use the VPA for its simplicity and
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Fig. 3.25 Pairwise scatterplots for pairs of the features

Fig. 3.26 Otsu’s binarization method

clarity. Unlike other image-based features, such as the number of edges, VPA has no

ambiguity in the definition.

3.6.2 Details of Image Binarization Method

We show the concrete procedure of Otsu’s binarization method [113] used for ex-

tracting the VPA from images.

We partition the pixels of the focus area into two classes based on Otsu’s bina-

rization method. Each of the pixels in the focus area is represented 256 gray-levels

[0, 1, ..., 255], and Otsu’s method binarizes this image with a single threshold k,

which takes a natural number within the range of 256 gray-levels [1, 254]. We define
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the darker pixels by the class label 0, and the brighter ones by 1. Our goal is to find

an optimal threshold k̂ so that the brighter class (class 1) correspond to vehicles. Let

ω0(k) and ω1(k) be relative weights for the class 0 and 1, respectively:

ω0(k) ≡
∑k

l=0 ml∑255
l=0 ml

, and ω1(k) ≡
∑255

l=k+1 ml∑255
l=0 ml

, (3.61)

where ω0(k) + ω1(k) = 1, and ml denotes the number of pixels at level l. Also, we

define that μ0(k) and μ1(k) as the mean values of pixel values for the class 0 and 1,

respectively:

μ0(k) ≡
∑k

l=0 mll∑k
l=0 ml

, and μ1(k) ≡
∑255

l=k+1 mll∑255
l=k+1 ml

, (3.62)

Then, in the spirit of the discriminant analysis [130], the optimal threshold k̂ is chosen

so that a between-class variance σ2
B(k) is maximized as

k̂ ≡ argmax
k

σ2
B(k), where (3.63)

σ2
B(k) ≡ ω0(k)

(
μ0(k)− μT

)2
+ ω1(k)

(
μ1(k)− μT

)2
, (3.64)

and μT represents the grand mean of the pixel value defined as

μT ≡
∑255

l=0 mll∑255
l=0 ml

. (3.65)

The number of pixels assigned to class 1 is a raw score for the image feature. This

maximization of σ2
B(k) is equivalent to a minimization of a intra-class variance, which

is a weighted sum of variances of the pixels in the class 0 and 1 [113]. The optimal

threshold k̂ is determined in a reasonable manner, which is the mean values μ0(k) and

μ1(k) for the class 0 and 1 differ from the grand mean μT as much as possible, or the

variances of the pixels in the class 0 and 1 are as low as possible. Figure 3.26 shows

the example of thresholding by the method for 256 gray-level histogram. This method

was developed many years ago, but still used as a state-of-the-art image-binarization

technique [114,115].

3.6.3 Gaussian Mixture as a Counting Model and Bayesian Nonparametrics

From Eq. (3.4), the GMM formulation without any labeled training data does not

give a unique solution. The likelihood of the count h in Eq. (3.4) is invariant with

respect to the simultaneous translation of x and θ0, as well as the simultaneous scaling

between d and θ1. This means that the counting results of the proposed GMM without

any additional constraint will become linearly proportional to the true count.
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To remove this indistinguishability, we essentially used a minimum assumption for

the count; that is, the assigned count values for the observations are consecutive nat-

ural numbers from zero, which is realistic for most counting problems. This means

that we choose the smallest (simplest) one from possible count sets in the training

data set X. For example, when we have hundreds of observations and the possibil-

ities for the corresponding count sets {0, 1, 2, . . . , 99}, {100, 101, 102, . . . , 199}, and
{0, 10, 20, . . . , 990} are equivalent, we choose the smallest one {0, 1, 2, . . . , 99}. This

rather ad hoc introduced constraint for the count h was mathematically represented

using the SBP prior [112] commonly used in nonparametric Bayes models [112] as the

prior for the count h in our generative model. From Eq. (3.7), the probability of the

counts decreases in ascending order of the count on average, and this can solve the

above issues of the proposed GMM.

In traditional Bayesian nonparametric literature, this nature is known not only as

a useful tool to automatically determine the number of mixture components, but also

as a drawback; that is, it can cause the solution to get stuck at a local minimum

in practical use [131, 132]. This is because the biased ordering of the expected com-

ponents’ probabilities means that a permutation of the component indexes changes

the probability distribution, and each component is always associated with the same

index. Interestingly, this drawback becomes a natural constraint for the count in the

proposed model.

3.6.4 Validity of Velocity Estimation Method from Temporal-sequences of

Vehicle Counts

From our experiments for the traffic velocity estimation, without tracking any ve-

hicles or using any labeled training data, we confirmed that the proposed observation

model for the temporal-sequences of the numbers of vehicles x can properly represent

the likelihood of v given x. Also, we showed that our approximate estimation method

performs consistently and stably well on the simulation and real-world datasets.

We used slice sampling in the implementation of our method. Gibbs sampling,

which is one of the most common MCMC methods, is not applicable to our model

because we cannot analytically compute the conditional distributions required in its

sampling procedure. Also, an efficient implementation of the Metropolis algorithm,

which is also a common MCMC methods, is difficult because it is almost impossible

to prepare appropriate proposal distributions for both of the random variables v and

M . We prefer slice sampling because it does not require such analytical modeling or

sensitive setting of the proposal distributions [50, 51].

With regard to the initial sample value for the traffic velocity in our slice sampling
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procedure, we used the prior mean of the traffic velocity. Here, we recommend that

the initial sample value for the traffic velocity be set sufficiently high regardless of the

prior mean value. The legal speed limit is good enough for the recommended setting.

To make sure, by using the real-world dataset in Section 3.5.3, we examined whether

the proposed method worked well when we set the initial sample value to the legal

speed limit regardless of the prior mean value. We tested it in settings in which the

prior means were 1 and 10 (km/h) and the initial sample value was always the legal

speed limit, 60 (km/h). Although we failed to estimate the correct traffic velocity by

using the prior mean as the initial sample value in these settings for the prior mean

in the experiment in Section 3.5.3, by using the legal speed limit as the initial sample

value, we could estimate the correct traffic velocity 41 (km/h), as shown in Fig. 3.27.

With regard to the number of observations N for x, we used N = 50 for the

artificial and simulation instances and N = 60 for the real-world instance. Roughly

speaking, the proposed method required more than N = 10 observations to get a

good estimation. A preliminary analysis indicated that the accuracy did not improve

much when more observations N , such as N = 100, were used. On the other hand,

when we used fewer observations, such as N = 5, the proposed method could not

estimate an appropriate traffic velocity.

With regard to the calculation cost, the proposed algorithm requires O(N3). This

cost is determined by the matrix inversion: Σ in Eq. (3.52). Also, since we use

the MCMC-based approach, slice sampling, the proposed algorithm requires a large

number of iterations for the inference. The use of deterministic algorithms, such as

VB [52], seems to be a promising way of making a more efficient inference.

3.6.5 Validation of Limitations of Traffic Velocity Estimation

Here, we discuss the limitations of the proposed model, which is caused by our

assumptions on the time interval (sampling rate) between observations, the quality

of the observation, and the positions of the vehicles at time zero.

When the time interval between observations is quite large, since all of the Lj,ks

for j, k ∈ j < k are zero in Eq. (3.43), the likelihood of v given x (Eq. (3.52)) always

takes same value for any v. In this situation, because the posterior distribution

becomes equivalent to the prior distribution, the estimated traffic velocity converges

to the prior mean and we cannot estimate the reasonable traffic velocity. From the

definition shown in Eq. (3.43), the condition under which we can estimate the traffic

velocity is

max
j,k∈j<k

Lj,k(v) > 0. (3.66)
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Fig. 3.27 Manually measured velocity and velocity estimated using the proposed

method with different prior means. The initial sample value was always the legal

speed limit, 60 (km/h). In this figure, proposed (1, 60) means the proposed

method with the prior mean 1 (km/h) and the initial sample value 60 (km/h)

for the traffic velocity. Note that we have used the Tukey boxplot [127].

From Eq.(3.66), we can also derive an upper bound of the traffic velocity that the

proposed method can deal with:

v <
L

minj∈{1,2,...,N−1}(tj+1 − tj)
. (3.67)

The upper bound is determined by the time interval of t and the road length L. We

have seen that the proposed model can estimate a reasonable traffic velocity in most

practical settings, including the real-world case study in Section 3.5.3, where one can

obtain, e.g., one image per second and the length of the observed area is L = 24

(m). In this subsection, we examine the limitation of the proposed model in terms

of the time interval by using the artificial validation dataset in Section 3.5.2 with an

extreme setting, that is, the time interval Δt = 10 (second) and road length L = 100

(m). Figure 3.28 compares the true velocity with the estimated velocity. We can see

that the estimated velocity converges to the prior mean, 60 (km/h), from around the

upper bound velocity, 36 (km/h), in this extreme setting.

With regard to the quality of the observation variable, that is, the vehicle count x,

we modeled it probabilistically by taking into consideration statistical noise, as shown

in Eqs. (3.46) - (3.49). Here, let us examine the influence of the counting error. Using

the NGSIM data in Section 3.5.3, we tested the proposed method when some vehicles

were constantly missing or double-counted through all the observations; this situation

corresponds to one in which we cannot find some vehicles because they blend in with

the background or one in which some vehicles, such as busses or trucks, are double-

counted because they are larger than ordinary vehicles. Figure 3.29 shows the mean

absolute error for the settings in which vehicles are (a) missing (negative noise) in a

particular proportion, (b) double-counted (positive noise) in a particular proportion,

and (c) missing or double-counted (mixed noise) in a particular proportion. They
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Fig. 3.28 An extreme setting: true velocity and velocity estimated by the pro-

posed method for a time interval Δt = 10 (second) in an artificial instance.

The average number of vehicles Mart = 10. Note that we have used the Tukey

boxplot [127]

show that our method is robust against the counting error even when 40 percent

of the vehicles are missing or double-counted. The counting error for the double-

count has a greater effect on the accuracy since the double-counted vehicles do not

become independent. We also tried a more extreme (but unrealistic) setting, where

vehicles are miscounted independently in every second during the one minute of the

N observations. As shown in Figure 3.29 (d), the proposed method cannot achieve

good accuracy when the noise proportion is more than 5 percent. This is because

this type of noise makes the correlation between the observation sequences quite low.

Since the velocity estimated by the proposed model is high when the correlation is

low, it overestimates the velocity when it is given such fluctuating observations.

To derive the observation model, we assume that the positions of the vehicles at

time zero are random and independent from each other. In real world traffic data,

the positions of the vehicles are not exactly random and the number of vehicles in

the current observation depends on and is correlated to the one of the former ob-

servations even if the observations do not have an overlapping area between them.

This correlation may cause that our estimation results have an underestimation bias

since the strong correlation means larger overlapping area and slower velocity in the

proposed model. The experiments using the real-world datasets indicated that such a

bias occurred. While the proposed method can estimate velocities with considerable

accuracy, the estimated mean values of the velocities are slightly lower than the means

of the true velocities in four of the five real-world datasets described in Section 3.5.3.

However, since this bias is only −2.7 (km/h) on average and is statistically signifi-
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Fig. 3.29 Relationship between probability of artificially added noise to the

count and mean absolute error.

cant (paired t-test, p ≤ 0.05) in only one of the five datasets (US-101 dataset in the

NGSIM datasets), we conclude that the bias is not so large. Solving this problem will

be part of our future work.

3.6.6 Other Applications of Velocity Estimation

While we assume for the proposed model that v is the same for all of the vehi-

cles during the timestamps, our experiment showed that the model is robust enough

for situations where each vehicle has a different velocity. Additionally, because the

definition in Eqs. (3.41) and (3.43) is invariant with respect to the movement direc-

tion of the vehicles, we can use it in situations where the observations x include

vehicles moving inbound as well as outbound without any changes to the model or

algorithm. It estimates a common absolute value of the velocity for both lane direc-

tions. The directional invariance is preserved even in other multi-directional cases,

such as at intersections, as shown in Fig. 3.30, which shows an image captured in
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Fig. 3.30 Traffic at intersection captured by web camera in Nairobi [75].

Nairobi, Kenya [75]. The above capabilities also mean that we can use the proposed

method for estimating the velocities of crowds, molecules, etc. It can also be used to

estimate the velocity separately for each of the three legs of that intersection if we

can separately obtain the number of vehicles in each leg.

The Gaussian approximation has another advantage in that we can straightfor-

wardly extend the model so that it can use low-level features by taking x to be

real numbers, where the features need to be such that larger values correspond

to larger vehicle counts. For example, in the case of analyzing web-camera im-

ages, we can use the total area that may correspond to moving objects in an image

(TAM) [35,36,77,78,86,87] as x. Since we can usually obtain such low-level features

more easily than the number of vehicles, this ability is quite useful when we do not

have any way to determine the explicit number of vehicles from the raw input data.

Here, we examined this extension by using the web-camera dataset in Section 3.5.3.

We tested the proposed method by inputting TAM as x. Figure 3.31 compares man-

ually measured velocity, velocity estimated using the proposed method with TAM as

input, and velocity estimated using the proposed method with the vehicle count as

input. We can see that the degradation in the estimation accuracy is small when we

use the TAM as input of the proposed method.

3.7 Summary

This study tackled the novel task of traffic-flow estimation from images without

recognizing any vehicles or using any labeled training data for non-intrusive lightweight

traffic monitoring systems. We formulated the task as a Bayesian density estimation

problem by deriving a new model for traffic-volume estimation and one for traffic-

velocity estimation.

For the traffic volume estimation, we use a new variant of an infinite GMM, where

each of the components has a particular interpretation of the vehicle count. We

showed that the SBP prior works well to regularize the solution. Surprisingly, our

completely unsupervised approach without any training data was comparable to or
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Fig. 3.31 Manually measured velocity, velocity estimated using the proposed

method with the low-level image feature, TAM, as input, and velocity estimated

using the proposed method with the vehicle count as input. Note that we have

used the Tukey boxplot [127].

even better than the supervised alternatives. The proposed method does not rely on

any knowledge or labeled training data tailored to the objects being counted, which

constitutes a clear advantage in practice. Thus, it would be interesting to use our

approach in other applications, such as on crowd or microscopic images. Moreover, our

traffic-volume-estimation method can be applied to other tasks of object counting in a

variety of literature, such as counting the number of a specific word in a text [133–136]

and the number of times a specific pattern appears in time-series data [137–139].

For the traffic velocity estimation, we derive a new model that represents the like-

lihood of the traffic velocity given the traffic volumes. For this model, we propose an

efficient approximation method of estimating the PM of the traffic velocity by using

slice sampling. In the experiments, the proposed approach was good enough for our

applications. Our approach can naturally be applied to the traffic-velocity-estimation

problem using other data sources, such as inductive loop and GPS.
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Chapter.4

Bayesian Image Super Resolution

4.1 Introduction

Super-resolution (SR) is a promising technology that is expected to be applied to

microscope time series images, satellite photographs, and sequential video frames. It

is an image-processing technique that makes it possible to estimate a spatially high-

resolution (HR) image of a scene from corresponding multiple low-resolution (LR)

images. In SR, we assume that the LR images are affected by warping, blurring,

and noise, and we solve the registration problem of LR images in addition to the

image-restoration problem of the registered LR images. Since the earliest work by

Tsai and Huang [140], SR has been achieved using various methods [141–149] and

good overviews of these methods are given in [150–155].

Generally, SR is an ill-posed inverse problem because inverting the blur process

without amplifying the effect of the noise is difficult [151]. In other words, the degrees

of freedom of the HR image and pixel-wise observation noise are always higher than

the dimensionality of the observed LR images, so complete determination of an HR

image is impossible.

In this chapter, we tackle the SR problem within the framework of Bayesian optimal

estimation. We solve the ill-posed inverse problem by using image prior appropriately

regularizing the degrees of freedom of the HR image and the stable nature of Bayesian

optimal estimation. For the image prior in SR with Bayesian formulation [141, 146],

various Markov random field (MRF) priors [38, 39, 143, 144, 148, 156–158], the total

variation (TV) prior [142, 147], Huber prior [145], and patch-based priors [159] have

been used in image processing. These can well represent image properties and have

good performance in SR, image restoration, and other applications. As the estima-

tion function for SR, we believe the PM is suitable because we usually evaluate the

accuracy of SR methods by mean square error, and PM is the optimal estimation

function when using that as the evaluation criterion. To determine the exact PM of
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the HR image, all parameters other than the HR image should be marginalized out

over the joint posterior distribution without using any point estimation. According

to this meaning, the previous methods [141–144,146,147] are not optimal.

We propose an SR methods that use a novel unified warping, blurring, and down-

sampling model for SR and “causal” and “compound” Gaussian MRF priors with

VB to calculate the Bayesian optimal estimation function, PM [38, 39]. This is a

straightforward approach, but it was not proposed earlier possibly because an im-

portant limitation of VB is that a conjugate prior is needed. We solve this problem

through simple Taylor approximations introduced in Chapter 2. In experiments, we

evaluate the proposed method by comparing it with existing methods.

4.2 Related Work

In the SR problem, to deal with warping, blurring, and downsampling, a linear

transformation model is frequently used [141–144]. Warping is usually limited with

planar rotation and parallel translation. Blurring is defined by using a point spread

function (PSF); a square or Gaussian type PSF is common. Downsampling denotes

sampling from an HR image to construct an LR image. Downsampling sometimes

includes anti-aliasing. Since these three transformations are linear, they can be com-

bined into a single transformation matrix. As for the noise model, pixel-independent

additive white Gaussian noise (AWGN) is usually used.

The Bayesian framework, especially the HR image prior, is quite useful for SR. The

HR image prior provides appropriate smoothness between neighboring pixel lumi-

nances. A common type of HR image prior imposes an L2-norm penalty on differences

between horizontally and vertically adjacent pixel luminances (the first derivative).

The L1-norm of the first derivative is sometimes used, and it has the advantage of

robust inference against outliers. The TV prior [142] uses the L1-norm of the gra-

dient vector. The Huber prior [145] is a mixture prior of L1- and L2-norms. The

SAR model [146,147,160] uses the response of a two-dimensional Laplacian filter (the

second derivative). The Gaussian process prior [141] has neighboring pixels spread

according to a Gaussian distribution. Besides the degree of smoothness between

neighboring pixels, information regarding the discontinuity, or equivalently, the edges

or line process, is also useful for inference. A common type of prior implementing

edges is the “compound” Gaussian MRF prior that was introduced by Geman & Ge-

man [156] and is widely used [39, 148, 157, 158]. With respect to the “compound”

Gaussian MRF prior, the normalizing constant, or equivalently, the partition func-

tion, is usually computationally infeasible because it has an exponential calculation

cost with respect to the dimensionality of the line process. Recently, Kanemura et
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al. [143,144] introduced a “causal” type of Gaussian MRF prior [38] as an approxima-

tion of the “compound” Gaussian MRF prior whose calculation cost is polynomial.

We try to improve the prior and approximation in this study.

The estimation function should be derived from an objective function. As the ob-

jective function, a posterior distribution has been widely used. Since the posterior

distribution usually includes both the HR image and registration parameters, the

joint MAP solution [146] is a suitable estimation function for this objective func-

tion. Other than the joint MAP, the use of the marginalized maximum likelihood

(ML) [141, 143] or marginalized MAP [145] has been proposed. Tipping et al. [141]

and Kanemura et al. [143, 144] determine the registration parameters by using ML

inference, where the HR image is marginalized out, and determine the HR image

by using the MAP inference. Pickup et al. [145] determines the HR image by us-

ing the MAP inference, wherein the registration uncertainties are marginalized out,

and it is assumed that the registration parameters are pre-registered by using stan-

dard registration techniques. Marginalized ML is also called type-II ML, evidence

approximation, or empirical Bayes. Marginalized ML has no registration prior, unlike

marginalized MAP. Pickup et al. [145] reported that marginalized MAP is superior

to both joint MAP and marginalized ML. We evaluate the accuracy of SR methods

in terms of mean square error. Therefore, we believe it is natural to use it as the

evaluation criterion. For the objective function based on mean square error, PM is

an optimal estimation function. The VB approach [142] seems to approximately de-

termine the PM of the HR image, although these authors assume some registration

parameters are known and use point-estimate model parameters obtained by ML in-

ference. To determine the exact PM of the HR image, all parameters other than the

HR image should be marginalized out over the joint posterior distribution.

The type of computational algorithm to use is not as substantial a problem as the

choice of model and evaluation criterion, but it is still important. Since almost all

good estimation functions cannot be exactly determined because of difficult analyti-

cal integration or an exponential calculation cost, some approximation methods need

to be introduced. Also, parameter tuning is necessary with many numerical opti-

mization methods; e.g., of the initial value and the step-width settings in gradient

methods. Specifically, in early work done on image restoration, an annealing method

was used for the joint MAP solution [156, 161]. For marginalized ML and marginal-

ized MAP solutions, the scaled conjugate gradients algorithm was used [141,145]. In

recent studies, the variational expectation-maximization (EM) algorithm has been

applied, which includes the gradient method in the M step [143, 144]. The VB ap-

proach has also been applied [142]. This method includes nested optimization of the

majorization-minimization approach. This approach seems to affect both the HR im-
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age prior and estimation function. Specifically, it modifies the TV prior to include a

discontinuity parameter (called local spatial activity). In addition, this parameter is

point-estimated when the HR image is inferred.

4.3 Problem Setting

Our task is to estimate an HR grayscale image, x ∈ R
Nx , from the observed multiple

LR grayscale images, Y ≡ {yl}Ll=1, yl ∈ R
Ny . Images yl and x are regarded as

lexicographically stacked vectors. The number of pixels for each LR image, Ny, is

assumed to be less than that of the HR image, Nx; i.e., Ny < Nx. We conduct

this estimation using an SR technique whose resolution enhancement factor is α ≡√
Nx/Ny (> 1). Although we define the range of a pixel luminance value as infinite,

we use −1 for black, +1 for white, and values between −1 and +1 for gradual gray.

4.4 Posterior Mean Estimation for Super Resolution

We formalize this estimation problem as the estimates of x by the estimation func-

tion, x∗(Y ), to which the observed variables Y have been input.

One of the most commonly used error functions Error(x,x∗(Y )) for evaluating the

estimated image quality is the L2-norm (mean square error). We define the error

function Error(x,x∗(Y )) for the task as the squared difference between x and the

estimates by the estimation function x∗(Y ):

Error(x,x∗(Y )) ≡ ‖x− x∗(Y )‖22, (4.1)

Using the model parameters θ, which are explicitly defined later, we define the eval-

uation criterion as the minimization of the population mean of the error function

Eq. (4.1):

argmin
x∗(Y )

〈‖x− x∗(Y )‖22
〉
p(Y ,x,θ)

. (4.2)

Then, we can derive the optimal estimation function using the result in Eq. (2.14)

as the PM,

x̂∗(Y ) = argmin
x∗(Y )

〈‖x− x∗(Y )‖22
〉
p(Y ,x,θ)

=

∫
x p(x|Y )dx, (4.3)

where the posterior distribution p(x|Y ) represents the probability distribution of the

HR image x given the observed multiple LR images Y . Note that p(x|Y ) requires

marginalization of all parameters other than x over p(θ|Y ).
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Fig. 4.1 An illustration of the image observation process

4.5 Probabilistic Hidden Structure Modeling for Super

Resolution

The estimation function of the HR image x̂∗(Y ) is found through the posterior

distribution p(x|Y ) from Eq. (4.3). The posterior p(x|Y ) for x can be decomposed

into an observation model for the LR images p(Y |x) that is conditioned on the HR

image x and the HR image prior p(x):

p(x|Y ) =
p(Y |x)p(x)∫
p(Y |x)p(x)dx . (4.4)

We define the observation model p(Y |x) conditioned on x and the prior model p(x)

in the following subsections. In this chapter, we introduce two kind of HR image

prior, that is “causal” Gaussian MRF prior and “compound” Gaussian MRF prior.

We derive two algorithms based on these priors as Algorithm 1 and Algorithm 2,

respectively, and compare their performance through experiments.

4.5.1 Observation Model

The image observation process is modeled as shown in Fig. 4.1; the HR image x is

geometrically warped, blurred, downsampled, and corrupted by noise εl to form the

observed LR image yl:

yl ≡ W (φl)x+ εl, (4.5)

or, more strictly,

p(Y |x, β,Φ) ≡
L∏

l=1

N (yl|W (φl)x, β
−1I). (4.6)

The εl ∈ R
Ny is AWGN with precision (inverse variance) β (> 0). Here, W (φl) is

the Ny×Nx transformation matrix that is simultaneously used for warping, blurring,
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and downsampling. It is defined as

W (φl)j,i ≡
N

(
�χ
(
θl, �ol, �ζj , �ξi

)|0, γ−1
l I

)
∑

i′∈I N
(
�χ
(
θl, �ol, �ζj , �ξi′

)|0, γ−1
l I

) , where (4.7)

�χ
(
θ, �o, �ζ, �ξ

) ≡ [
cos θ sin θ
− sin θ cos θ

](
α�ζ − �o

)
− �ξ, (4.8)

where I represents the extent of the summation (explained in the next paragraph),

and the vectors �ξi and �ζj respectively denote the two-dimensional positions of the

i-th pixel of the original HR image and the j-th pixel of the observed LR image.

We define the center of each image as the origin and the size of each pixel is 1

by 1. For example, regarding an HR image with 40 × 40 pixels, each �ξ represents

[−19.5,−19.5]�, [−18.5,−19.5]�, ..., [19.5, 19.5]�. θl and �ol represent the warping pa-

rameters of the l-th LR image: the rotational motion parameter and translational

motion parameter. The Gaussian distribution in (4.7) represents a Gaussian PSF

that defines the blur, and γl (> 0) represents its precision parameter. In this study,

we assume γl also differs for each observed image. These transformation parameters

are packed into φl, which is defined as

Φ ≡ {φl}Ll=1, φl ≡ [φl,k]
4
k=1 ≡ [θl, [�ol]h, [�ol]v, γl]

�, (4.9)

where subscripts h and v, respectively, denote horizontal and vertical positions on the

image.

In previous works [141, 143, 144], the extent of I was defined as the extent of the

HR image. According to this definition, however, the shape of the PSF is no longer

Gaussian. For example, at the corner of the HR image, the shape is not omnidirec-

tional but limited in a way such as that of a quadrant. In this study, the extent of I
is defined as infinite, and the luminance values outside the HR image are defined as 0

(middle gray). This normalization term faithfully represents the Gaussian PSF. We

also found that this normalization term is exactly given by using the elliptic theta

function ϑ3, and we can rewrite W (φl) as

W (φl)j,i =
N

(
�χ
(
θl, �ol, �ζj , �ξi

)|0, γ−1
l I

)
ϑ3

([
�χ
(
θl, �ol, �ζj, �ξi

)]
h
,e

− 2π2

γl

)
ϑ3

([
�χ
(
θl, �ol, �ζj, �ξi

)]
v
,e

− 2π2

γl

) , where

(4.10)

ϑ3(u, q) ≡ 1 + 2
∞∑

n=1

qn
2

cos 2nπu. (4.11)

The elliptic theta function includes an infinite series, but it is easily determined nu-

merically because the convergence is quite fast. In (4.10), the normalization term
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(the denominator of the right-hand side) seems to depend on i because �χ
(
θl, �ol, �ζj , �ξi

)
includes �ξi, but this is not true. Because the elliptic theta function is a periodic

function with respect to the argument u with period 1, and �χ
(
θl, �ol, �ζj , �ξi

)
can only

take discrete values with step size 1 for the horizontal and vertical directions, the

normalization term has the same value with respect to i.

4.5.2 Causal Gaussian MRF prior

For Algorithm 1, we introduce a “causal” Gaussian MRF prior [38, 143, 144] for

the HR image and additional latent variables. These latent variables are called

the line process that controls the local correlation among pixel luminances. The

introduction of the latent variables enables explicit expression of the possible

discontinuity in the HR image. The line process, η, consists of binary variables

ηi,j ∈ {0, 1} for all adjacent pixel pairs i and j. Its size equals Nη ≡ 2Nx −
[number of HR image’s horizontal pixels] − [number of HR image’s vertical pixels].

We define the prior as

p(x,η|λ, ρ, κ) ≡ p(x|η, ρ, κ)p(η|λ) (4.12)

= exp

[
− λ

∑
i∼j

(1−ηi,j)− ρ

2

∑
i∼j

ηi,j(xi−xj)
2 − κ

2
‖x‖22

+
1

2
ln

∣∣∣∣A(η, ρ, κ)

2π

∣∣∣∣+Nη ln Sigmoid(λ)

]
,

where

p(η|λ) ≡
∏
i∼j

Bernoulli (ηi,j |Sigmoid(λ)) , (4.13)

p(x|η, ρ, κ) ≡ N (x|0,A(η, ρ, κ)−1), (4.14)

A(η, ρ, κ)i,j ≡

⎧⎪⎨
⎪⎩
ρ
∑

k∼i ηi,k + κ, i = j,

−ρηi,j , i ∼ j,

0, otherwise,

(4.15)

where the summation
∑

i∼j is taken over all pairs of adjacent pixels. The notation

i ∼ j means that the i-th and j-th pixels are adjacent in the upward, downward, left-

ward, and rightward directions. The line process η switches the local characteristics

of the prior. It indicates whether two adjacent pixels take similar values or inde-

pendent values. When ηi,j = 1, the i-th and the j-th pixels are strongly smoothed

according to the quadratic penalty, whereas there is no smoothing when ηi,j = 0. The

hyperparameter λ (> 0) is an edge penalty parameter that prevents ηi,j from exces-

sively taking edges. Note that λ is restricted to positive values because a negative λ

leads to a reward rather than a penalty for taking edges. ρ (> 0) is a smoothness
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parameter that prevents the differences in adjacent pixel luminances from becoming

large, and κ (> 0) is a contrast parameter that prevents x from taking an improperly

large absolute value. On the other hand, in previous works [143,144], κ is assumed to

be 0, which results in an improper normalizing constant (see Discussion). A(η, ρ, κ)

is the Nx ×Nx precision matrix of x.

We have defined the introduced causal Gaussian MRF prior in the joint distribution

form of x and η, i.e., p(η)p(x|η). We call such a model “causal” because η seems to

cause x. The MRF model is defined as having the property

p(xi|x\xi,η) = p(xi|xL(i),ηi,L(i)) (4.16)

in this case; i.e., the conditional distribution of a random variable, xi, given all other

variables, x\xi and η, equals the conditional distribution of the random variable, xi,

given its “neighboring” variables, xL(i) and ηi,L(i). If this conditional distribution is

a Gaussian distribution, such an MRF is called a Gaussian MRF.

4.5.3 Compound Gaussian MRF prior

For Algorithm 2, we use a “compound” Gaussian MRF prior for the HR image

and the latent variables η representing the edges, called a line process, which is same

to “causal” one. It is a compounded distribution of the Gaussian MRF model and

the line process proposed by [156], which is widely used [39, 148, 157, 158] and can

simultaneously represent smoothness and discontinuity of the image. It is defined as

p(x,η|λ, ρ, κ)

≡
exp

[
−λ

∑
i∼j(1−ηi,j)− ρ

2

∑
i∼jηi,j(xi−xj)

2− κ
2‖x‖22

]
∑

η

∫
exp

[
−λ

∑
i∼j(1−ηi,j)− ρ

2

∑
i∼jηi,j(xi−xj)2− κ

2‖x‖22
]
dx

= exp

[
− λ

∑
i∼j

(1−ηi,j)− 1

2
x�A(η, ρ, κ)x

−ln
∑
η

exp

{
−λ

∑
i∼j

(1−ηi,j)− 1

2
ln

∣∣∣∣ 1

2π
A(η, ρ, κ)

∣∣∣∣
}]

, (4.17)

where the definitions for η, λ, ρ, κ, and A are same to “causal” one.

As shown in the previous subsection, the “causal” Gaussian MRF prior is defined

as the joint distribution of x and η in the form of p(η)p(x|η), and it differs from

the “compound” one in that it is not simultaneously normalized about both x and

η like Eq. (4.17). A “causal” one is an approximation of the “compound” one,

and it is easier to use than the “compound” one because simultaneous normalization

of a “compound” one has an exponential-order calculation cost with respect to the
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dimensionality of the line process; the calculation cost of a “causal” one is polynomial.

Additionally, though both x and η of a “compound” one has a Markov property, in

the “causal” one only x has a Markov property. However, in Eq. (4.17), ignoring

ln |A| as in [143, 144] makes them take the same form and breaks either property.

Therefore, in Section 4.6.2, we propose a new approximation that does not ignore

ln |A|.

4.5.4 Hyperparameter Priors and Registration Parameter Priors

We define the prior distributions for the hyperparameters of two of the HR image

priors:

p(λ, ρ, κ, β) ≡ Gamma(λ|a(0)λ , b
(0)
λ )Gamma(ρ|a(0)ρ , b(0)ρ )

×Gamma(κ|a(0)κ , b(0)κ )Gamma(β|a(0)β , b
(0)
β ), (4.18)

where the form of prior distributions of “causal” Gaussian MRF prior for Algorithm

1 is same to one of “compound” Gaussian MRF prior for Algorithm 2, whereas their

parameters are different from each other and we define them as non-informative as

possible in the following subsection for each algorithm. Superscript (0) is added be-

cause we use these parameters as the initial values of VB later.

For the registration parameters including the blurring parameter, we also define the

corresponding prior as

p(Φ) ≡
L∏

l=1

N (φl|μ(0)
φl
,Σ

(0)
φl
), where (4.19)

μ
(0)
φl

≡ [0, 0, 0, 12/α2], Σ
(0)
φl

≡ diag[10−3, 100, 100, 10−3]. (4.20)

For the rotational motion parameter θl, the prior assumes 0±1.81 degree ( 180π
√
10−3 ≈

1.81). This assumption is considered suitable for this SR task. Similarly, an assump-

tion of 0 ± 1 pixels for translational motion parameters [�ol]h and [�ol]v is considered

suitable. For blurring parameter γl, μ
(0)
γl is taken to be the value equivalent to the

anti-aliasing of the scale factor α.

4.5.5 Joint Distribution

The joint distribution for all of the random variables z ≡ [x,η, λ, ρ, κ, β,Φ], as well

as Y can now be explicitly given as

p(Y , z) = p(Y |x, β,Φ)p(x,η|λ, ρ, κ)p(λ, ρ, κ, β)p(Φ), (4.21)

Once the joint distribution is obtained, we can derive all the marginal and conditional

distributions; e.g., the posterior distribution p(z|Y ) and joint distribution of the HR
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and LR images p(Y ,x).

4.6 Variational Bayes Algorithm for Posterior Mean

Estimation

Though we could derive the optimal estimation function and proposed the prob-

abilistic models according to that, we cannot obtain the analytical solutions of the

posterior distribution p(z|Y ) and marginalized posterior distribution p(x|Y ). Con-

sequently, we have to rely on approximations, that is VB and Taylor approximations.

Here, we derive two algorithms: Algorithm 1 based on “causal” Gaussian MRF prior

and Algorithm 2 based on “compound” Gaussian MRF prior.

4.6.1 Variational Bayes

VB [52] provides a trial distribution q(z) that approximates the true posterior.

According to the formulation in Chapter 2, we assume a trial distribution q(z) that

approximates the true posterior in a factorized form:

q(z) ≡ q(x)q(η)q(λ, ρ, κ, β)q(Φ). (4.22)

We identify the optimal trial distribution that minimizes the KL divergence from the

trial distribution to the true posterior distribution, DKL(q(z)‖p(z|Y )), as the best

approximation of the true distribution.

Under the factorization assumption of the trial distribution and the extremal con-

dition of the KL divergence, each optimal trial distribution should satisfy the self-

consistent equations,

q(0)(zi) ≡ p(zi), (4.23)

q(t+1)(zi) ∝ exp〈ln p(z|Y )〉∏
j �=i q

(t)(zj), (4.24)

4.6.2 Taylor Approximations

Although VB is a widely used general framework, its application is difficult in prac-

tice because it requires a conjugate prior. The prior distributions we have introduced

are not conjugate priors. However, we have found that simple Taylor approximations

make them conjugate and enable the analytical exact expectations in (4.24).

Here, to simplify the notation, we define the mean values of the latent variables

η, the hyper parameters λ, ρ, κ, β, and the registration parameters φl over the trial

distributions in the step number t of the updates of VB as μ
(t)
η , μ

(t)
λ , μ

(t)
ρ , μ

(t)
κ , μ

(t)
β , μ

(t)
φl
.
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Specifically, we use first-order Taylor approximations for non-linear terms, which

are introduced in Chapter 2.

For the observation model in Eq. (4.6), W (φl) is approximated around φl = μ
(t)
φl
,

W (φl) ≈ W
(t)
l +

4∑
k=1

[φl − μ
(t)
φl
]kW

′(t)
l,k , (4.25)

where

W
(t)
l ≡ W (μ

(t)
φl
), (4.26)

W
′(t)
l,k ≡ ∂W (φl)

∂φl,k

∣∣∣∣
φl=μ

(t)
φl

. (4.27)

For the “causal” Gaussian MRF prior in Eq. (4.12), ln |A(η, ρ, κ)| is approximated

around [η, ln ρ, lnκ] = [μ
(t)
η , lnμ

(t)
ρ , lnμ

(t)
κ ],

ln |A(η, ρ, κ)| ≈ ln
∣∣∣A(μ(t)

η , μ
(t)
ρ , μ

(t)
κ )

∣∣∣
+ tr

(
A(μ(t)

η , μ
(t)
ρ , μ

(t)
κ )

−1
[
μ(t)
ρ A(η − μ(t)

η , 1, 0)

+ (ln ρ− lnμ(t)
ρ )μ

(t)
ρ A(μ(t)

η , 1, 0) + (lnκ− lnμ(t)
κ )μ

(t)
κ I

])
. (4.28)

We also use a similar approximation around [η, ln ρ, lnκ] = [μ
(t+1)
η , lnμ

(t)
ρ , lnμ

(t)
κ ]. In

addition, ln Sigmoid(λ) in Eq. (4.12) is approximated around lnλ = lnμ
(t)
λ ,

ln Sigmoid(λ) ≈ ln Sigmoid(μ
(t)
λ )

+ (lnλ− lnμ
(t)
λ )μ

(t)
λ Sigmoid(−μ

(t)
λ ). (4.29)

For the “compound” Gaussian MRF prior in Eq. (4.17), ln
∑

η exp

{
− λ

∑
i∼j(1−

ηi,j)− 1
2 ln

∣∣∣∣ 1
2πA(η, ρ, κ)

∣∣∣∣
}

is approximated around lnλ = lnμ
(t)
λ ,

ln
∑
η

exp

{
− λ

∑
i∼j

(1− ηi,j)− 1

2
ln

∣∣∣∣ 1

2π
A(η, ρ, κ)

∣∣∣∣
}

≈ ln
∑
η

exp

{
− μ

(t)
λ

∑
i∼j

(1− ηi,j)− 1

2
ln

∣∣∣∣ 1

2π
A(η, ρ, κ)

∣∣∣∣
}

− (lnλ− lnμ
(t)
λ )μ

(t)
λ

∑
η

{∑
i∼j(1− ηi,j)

}
exp

{
− μ

(t)
λ

∑
i∼j(1− ηi,j)− 1

2 ln

∣∣∣∣ 1
2πA(η, ρ, κ)

∣∣∣∣
}

∑
η exp

{
− μ

(t)
λ

∑
i∼j(1− ηi,j)− 1

2 ln

∣∣∣∣ 1
2πA(η, ρ, κ)

∣∣∣∣
} .

(4.30)



70 Chapter.4 Bayesian Image Super Resolution

Also, ln |A(η, ρ, κ)| in Eq. (4.17) is approximated around [η, ln ρ, lnκ] =

[μ
(t)
η , lnμ

(t)
ρ , lnμ

(t)
κ ]

ln |A(η, ρ, κ)| (4.31)

≈ ln
∣∣∣A(μ(t)

η , μ
(t)
ρ , μ

(t)
κ )

∣∣∣+ tr

(
A(μ(t)

η , μ
(t)
ρ , μ

(t)
κ )

−1
[
μ(t)
ρ A(η − μ(t)

η , 1, 0)

+ (ln ρ− lnμ(t)
ρ )μ

(t)
ρ A(μ(t)

η , 1, 0) + (lnκ− lnμ(t)
κ )μ

(t)
κ I

])
.

This approximation enables us to solve the exponential-order calculation cost prob-

lem of the HR image priors. It makes it possible to calculate the normalization term

of them.

4.6.3 Update Equations for Algorithm 1

We derive Algorithm 1 as the iterative updating equations based on VB using

“causal” Gaussian MRF prior.

First, we define the parameters for the prior distributions of the hyperparameters

to be as non-informative as possible since generally, prior distributions should be

non-informative unless we have explicit reasons because an informative prior leads to

heuristics:

a
(0)
λ ≡ 10−2, b

(0)
λ ≡ 10−2, a(0)ρ ≡ 10−2, b(0)ρ ≡ 10−2,

a(0)κ ≡ 10−2, b(0)κ ≡ 10−2, a
(0)
β ≡ 10−2, b

(0)
β ≡ 10−2. (4.32)

For a gamma distribution, the number of effective prior observations in the Bayesian

framework is equal to two times parameter a. The number of observations for the

hyperparameter λ is Nη in this SR. Also, that for ρ and κ is Nx, and that for β is

LNy. Therefore, the above settings – e.g., 2a
(0)
λ � Nη – are considered sufficiently

non-informative.

The trial distributions are obtained from Eqs. (4.6), (4.12), (4.18), (4.19),

and (4.23)-(4.29) as follows:

q(t)(η) =
∏
i∼j

Bernoulli(ηi,j |μ(t)
ηi,j

), (4.33)

q(t)(x) = N (x|μ(t)
x ,Σ

(t)
x ), (4.34)

q(t)(λ, ρ, κ, β) = Gamma(λ|a(t)λ , b(t)λ )Gamma(ρ|a(t)ρ , b(t)ρ )
×Gamma(κ|a(t)κ , b(t)κ )Gamma(β|a(t)β , b(t)β ), (4.35)

q(t)(Φ) =
L∏

l=1

N (φl|μ(t)
φl
,Σ

(t)
φl
). (4.36)
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Using the mean values of the hyperparameters λ, ρ, κ, β over the trial distributions

q(t)(λ, ρ, κ, β), μ
(t)
λ =

a
(t)
λ

b
(t)
λ

, μ
(t)
ρ =

a(t)
ρ

b
(t)
ρ

, μ
(t)
κ =

a(t)
κ

b
(t)
κ

, μ
(t)
β =

a
(t)
β

b
(t)
β

, we can analytically compute

the parameters at step t+ 1 in Eqs. (4.33) - (4.36):

μ(t+1)
ηi,j

= Sigmoid

(
μ
(t)
λ +

1

2
μ(t)
ρ C

(t)
ηi,j

)
, (4.37)

where

C(t)
ηi,j

≡ tr
((

A(μ(t)
η , μ

(t)
ρ , μ

(t)
κ )

−1 −C(t)
x

)
Mi,j

)
, (4.38)

C(t)
x ≡ μ(t)

x [μ
(t)
x ]

� +Σ(t)
x , (4.39)

[Mi,j ]k,l ≡

⎧⎪⎨
⎪⎩
+1, (k, l) = (i, i) or (j, j),

−1, (k, l) = (i, j) or (j, i),

0, otherwise.

(4.40)

μ(t+1)
x = Σ(t+1)

x

[
μ
(t)
β

L∑
l=1

y�
l W

(t)
l

]�

, (4.41)

Σ(t+1)
x =

[
A(μ(t+1)

η , μ(t)
ρ , μ

(t)
κ ) + μ

(t)
β

L∑
l=1

C
′(t)
Wl

]−1

, (4.42)

where

C
′(t)
Wl

≡ [W
(t)
l ]�W (t)

l +
∑
k,k′

[Σ
(t)
φl
]k,k′ [W

′(t)
l,k ]

�W ′(t)
l,k′ . (4.43)

a
(t+1)
λ = a

(0)
λ +Nημ

(t)
λ Sigmoid(−μ

(t)
λ ), (4.44)

b
(t+1)
λ = b

(0)
λ +

∑
i∼j

(1− μ(t+1)
ηi,j

), (4.45)

a(t+1)ρ = a(0)ρ +
μ
(t)
ρ

2
tr

(
A(μ(t+1)

η , μ(t)
ρ , μ

(t)
κ )

−1A(μ(t+1)
η , 1, 0)

)
(4.46)

b(t+1)ρ = b(0)ρ +
1

2
tr

(
C(t+1)

x A(μ(t+1)
η , 1, 0)

)
, (4.47)

a(t+1)κ = a(0)κ +
μ
(t)
κ

2
tr

(
A(μ(t+1)

η , μ(t)
ρ , μ

(t)
κ )

−1
)

(4.48)

b(t+1)κ = b(0)κ +
1

2
tr

(
C(t+1)

x

)
, (4.49)

a
(t+1)
β = a

(0)
β +

1

2
LNy, (4.50)

b
(t+1)
β = b

(0)
β +

1

2

L∑
l=1

(
tr

(
C(t+1)

x C
′(t)
Wl

)
− 2y�

l W
(t)
l μ(t+1)

x + y�
l yl

)
. (4.51)

μ
(t+1)
φl

= Σ
(t+1)
φl

[
[Σ

(0)
φl
]−1μ

(0)
φl

+ μ
(t)
β [C

′′(t+1)
φl

μ
(t)
φl

−C
′(t+1)
φl

]
]
, (4.52)

Σ
(t+1)
φl

=
[
[Σ

(0)
φl
]−1 + μ

(t)
β C

′′(t+1)
φl

]−1

, (4.53)



72 Chapter.4 Bayesian Image Super Resolution

where

[C
′(t+1)
φl

]k ≡ 1

2
tr

(
C(t+1)

x

[
[W

(t)
l ]�W ′(t)

l,k + [W
′(t)
l,k ]

�W (t)
l

])
− y�

l W
′(t)
l,kμ

(t+1)
x ,

(4.54)

[C
′′(t+1)
φl

]k,k′ ≡ tr
(
C(t+1)

x [W
′(t)
l,k ]

�W ′(t)
l,k′

)
. (4.55)

For (4.23) and (4.24), we update those distributions as follows. First, we

compute q(t+1)(η) using q(t)(x, λ, ρ, κ, β,Φ). Second, we compute q(t+1)(x) using

q(t+1)(η)q(t)(λ, ρ, κ, β,Φ). Finally, we compute q(t+1)(λ, ρ, κ, β) using q(t+1)(x,η)q(t)(Φ)

and q(t+1)(Φ) using q(t+1)(x,η)q(t)(λ, ρ, κ, β). Here, we simply compute only the

parameters of those distributions because we can compute the expectations in

Eq. (4.24) analytically by using Taylor approximations in Eqs. (4.25) - (4.29).

For the initial parameters of the trial distributions of η and x, we use non-

informative values,

μ(0)
η ≡ 0, μ(0)

x ≡ 0, Σ(0)
x ≡ 0. (4.56)

For the initial parameters for λ, ρ, κ, β and Φ, we use the same values as their prior’s

values.

We obtain the well-approximated PM of x̂∗ as μ
(∞)
x . Realistically, instead of μ

(∞)
x ,

we use μ
(t+1)
x when the following convergence conditions hold for μ

(t+1)
x and each μ

(t+1)
φl,k

,

1

Nx
‖μ(t+1)

x − μ(t)
x ‖22 < 10−4,

1

L

L∑
l=1

(μ
(t+1)
φl,k

− μ
(t)
φl,k

)2

[σ2
φ]k

< 10−4 (k = 1, 2, 3, 4), (4.57)

where we defined σ2
φ ≡ [10−3, 100, 100, 10−3] as the scaling constant.

4.6.4 Update Equations for Algorithm 2

We derive Algorithm 2 as the iterative updating equations based on VB using

“compound” Gaussian MRF prior.

First, we define the parameters for the prior distributions of the hyperparameters

to be as non-informative as possible:

a
(0)
λ ≡ 3× 10−2, (4.58)

b
(0)
λ , a(0)ρ , b(0)ρ , a(0)κ , b(0)κ , a

(0)
β , b

(0)
β ≡ 10−2 (4.59)

From Eqs. (4.6), (4.17), (4.18), (4.19), (4.23)-(4.25), (4.30) and (4.31), the trial
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distributions are obtained as the following distributions:

q(t)(η)=
∏
i∼j

Bernoulli(ηi,j |μ(t)
ηi,j

), (4.60)

q(t)(x)=N(x|μ(t)
x ,Σ

(t)
x), (4.61)

q(t)(λ, ρ, κ, β) = Gamma(λ|a(t)λ , b(t)λ )Gamma(ρ|a(t)ρ , b(t)ρ )
×Gamma(κ|a(t)κ , b(t)κ )Gamma(β|a(t)β , b(t)β ), (4.62)

q(t)(Φ) =
L∏

l=1

N (φl|μ(t)
φl
,Σ

(t)
φl
). (4.63)

Using the mean values of the hyperparameters λ, ρ, κ, β over the trial distributions

q(t)(λ, ρ, κ, β), μ
(t)
λ =

a
(t)
λ

b
(t)
λ

, μ
(t)
ρ =

a(t)
ρ

b
(t)
ρ

, μ
(t)
κ =

a(t)
κ

b
(t)
κ

, μ
(t)
β =

a
(t)
β

b
(t)
β

, we can analytically compute

the parameters at step t+ 1 in Eqs. (4.60) - (4.63)

μ(t+1)
ηi,j

= Sigmoid

(
μ
(t)
λ − 1

2
μ(t)
ρ tr

(
C(t)

x Mi,j

))
, (4.64)

where

C(t)
x ≡ μ(t)

x [μ
(t)
x ]

� +Σ(t)
x , (4.65)

[Mi,j ]k,l ≡

⎧⎪⎨
⎪⎩
+1, (k, l) = (i, i) or (j, j),

−1, (k, l) = (i, j) or (j, i),

0, otherwise.

(4.66)

μ(t+1)
x = Σ(t+1)

x

[
μ
(t)
β

L∑
l=1

y�
l W

(t)
l

]�

, (4.67)

Σ(t+1)
x =

[
A(μ(t+1)

η , μ(t)
ρ , μ

(t)
κ ) + μ

(t)
β

L∑
l=1

C
′(t)
Wl

]−1

, (4.68)

where

C
′(t)
Wl

≡ [W
(t)
l ]�W (t)

l +
∑
k,k′

[Σ
(t)
φl
]k,k′ [W

′(t)
l,k ]

�W ′(t)
l,k′ . (4.69)
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a
(t+1)
λ = a

(0)
λ + μ

(t)
λ

∑
i∼j

(1− η̂
(t+1)
i,j ), (4.70)

b
(t+1)
λ = b

(0)
λ +

∑
i∼j

(1− μ(t+1)
ηi,j

), (4.71)

a(t+1)ρ = a(0)ρ +
μ
(t)
ρ

2
tr

(
A(μ(t+1)

η , μ(t)
ρ , μ

(t)
κ )

−1A(μ(t+1)
η , 1, 0)

)
(4.72)

b(t+1)ρ = b(0)ρ +
1

2
tr

(
C(t+1)

x A(μ(t+1)
η , 1, 0)

)
, (4.73)

a(t+1)κ = a(0)κ +
μ
(t)
κ

2
tr

(
A(μ(t+1)

η , μ(t)
ρ , μ

(t)
κ )

−1
)

(4.74)

b(t+1)κ = b(0)κ +
1

2
tr

(
C(t+1)

x

)
, (4.75)

a
(t+1)
β = a

(0)
β +

1

2
LNy, (4.76)

b
(t+1)
β = b

(0)
β +

1

2

L∑
l=1

(
tr

(
C(t+1)

x C
′(t)
Wl

)
− 2y�

l W
(t)
l μ(t+1)

x + y�
l yl

)
, (4.77)

where

η̂
(t+1)
i,j ≡ Sigmoid

(
μ
(t)
λ −

([
A(μ(t)

η , μ
(t)
ρ , μ

(t)
κ )

−1
]
i,j

−
[
A(μ(t)

η , μ
(t)
ρ , μ

(t)
κ )

−1
]
i,i

))
,

(4.78)

μ
(t+1)
φl

= Σ
(t+1)
φl

[
[Σ

(0)
φl
]−1μ

(0)
φl

+ μ
(t)
β [C

′′(t+1)
φl

μ
(t)
φl

−C
′(t+1)
φl

]
]
, (4.79)

Σ
(t+1)
φl

=
[
[Σ

(0)
φl
]−1 + μ

(t)
β C

′′(t+1)
φl

]−1

, (4.80)

where

[C
′(t+1)
φl

]k ≡ 1

2
tr

(
C(t+1)

x

[
[W

(t)
l ]�W ′(t)

l,k + [W
′(t)
l,k ]

�W (t)
l

] )
− y�

l W
′(t)
l,kμ

(t+1)
x ,

(4.81)

[C
′′(t+1)
φl

]k,k′ ≡ tr
(
C(t+1)

x [W
′(t)
l,k ]

�W ′(t)
l,k′

)
. (4.82)

For (4.23) and (4.24), we update those distributions as follows. First, we

compute q(t+1)(η) using q(t)(x, λ, ρ, κ, β,Φ). Second, we compute q(t+1)(x) using

q(t+1)(η)q(t)(λ, ρ, κ, β,Φ). Finally, we compute q(t+1)(λ, ρ, κ, β) using q(t+1)(x,η)q(t)(Φ)

and q(t+1)(Φ) using q(t+1)(x,η)q(t)(λ, ρ, κ, β). For the initial parameters of the trial

distributions of η and x, we use non-informative values, μ
(0)
η ≡ 0, μ

(0)
x ≡ 0, Σ

(0)
x ≡ 0.

As the initial parameters for λ, ρ, β, κ, and Φ we use the same values as their prior’s

values in Eq. (4.18), (4.19). Here, we simply compute only the parameters of those

distributions because we can compute the expectations in Eq. (4.24) analytically by

using Taylor approximations in Eqs. (4.25), (4.30) and (4.31).
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Table 4.1 PSNR of the proposed method (a higher value is better) and ISNRs

against three previous methods (a higher value is better) for different images and

SNR levels

Image SNR PSNR ISNR

[dB] (Algorithm 2) (vs Bilinear) (vs Kanemura) (vs Babacan) (vs Algorithm 1)

Lena 20 29.31± 0.30 5.45± 0.33 0.67± 0.34 0.02± 0.11 0.05± 0.01

30 32.15± 0.36 8.20± 0.37 1.74± 0.34 0.52± 0.18 0.10± 0.20

40 34.19± 0.60 10.24± 0.60 3.21± 0.53 0.95± 0.60 1.49± 0.77

Cameraman 20 21.76± 0.20 4.13± 0.21 0.95± 0.32 −0.04± 0.08 −0.01± 0.01

30 23.59± 0.28 5.92± 0.28 1.56± 0.32 −0.01± 0.11 −0.06± 0.02

40 25.04± 0.41 7.37± 0.42 2.70± 0.30 0.32± 0.27 −0.01± 0.14

Pepper 20 29.73± 0.24 3.68± 0.26 0.09± 0.41 0.23± 0.10 0.11± 0.87

30 31.65± 0.33 5.51± 0.33 0.76± 0.48 0.11± 0.22 0.35± 0.33

40 32.23± 0.51 6.09± 0.51 1.11± 0.45 −0.17± 0.48 0.93± 0.56

Clock 20 23.29± 0.28 5.38± 0.29 1.40± 0.23 0.10± 0.09 0.01± 0.01

30 25.42± 0.29 7.46± 0.29 2.59± 0.30 0.29± 0.13 −0.03± 0.01

40 27.08± 0.38 9.13± 0.38 4.00± 0.31 0.74± 0.32 −0.07± 0.12

Text 20 24.68± 0.32 5.83± 0.33 1.65± 0.29 −0.06± 0.09 0.02± 0.02

30 27.27± 0.43 8.38± 0.44 3.09± 0.41 0.19± 0.18 −0.03± 0.04

40 29.28± 0.62 10.39± 0.62 4.85± 0.51 0.78± 0.51 1.98± 0.69

We obtain the well approximated PM of x as μ
(t+1)
x , for which the following conver-

gence conditions hold for μ
(t+1)
x and each μ

(t+1)
φl,k

,

1

Nx
‖μ(t+1)

x − μ(t)
x ‖22 < 10−5,

1

L

L∑
l=1

(μ
(t+1)
φl,k

− μ
(t)
φl,k

)2

[σ2
φ]k

< 10−5 (k = 1, 2, 3, 4), (4.83)

where we defined σ2
φ ≡ [10−3, 100, 100, 10−3] as the scaling constant.

4.7 Experimental Results

The proposed method was evaluated using five gray-scale images with a size of

40 × 40 pixels, as shown in Fig. 4.2. From each image, L = 10 images with a size of

10 × 10 pixels were created by using (4.5), (4.6) with the settings of the parameters

α, Φ, and β as the following. The resolution enhancement factor α was 4. The

transformation parameter Φ was randomly created according to the prior distribution

in (4.19), where it is similar to that in previous work [141–145, 147]. The noise level

parameter β was set for signal-to-noise ratios (SNR) of 20, 30, and 40 dB for each

image. Samples of the created images are shown in Fig. 4.3.

Figure 4.4 shows the images estimated under SNR= 30dB by the proposed method.

The resolution of each image appeared to be better than the corresponding observed

image in Fig. 4.3.
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Table 4.1 lists the quantitative results compared to those from the methods of bi-

linear interpolation, Kanemura et al. [143] which is the variational EM approach with

a causal Gaussian MRF prior using the MAP estimation function, and Babacan et

al. [142] which is the VB approach with a TV prior using the MAP estimation func-

tion. Note that we added a slight modification to these methods because they employ

slightly different models. For example, the original method [142] assumes the blurring

parameter γ is known, so we set γ as the mean value of the true distribution for this

method. Also, we introduced a strong prior for λ in the Kanemura method [143] in

contrast to the original method, because this parameter sometimes becomes negative.

We evaluated the results with regard to the expectation and the standard deviation

of the improvement in signal-to-noise ratio (ISNR) over 10 experiments on each image

and for each SNR. ISNR is the relative PSNR defined as

ISNR ≡ PSNR(x̂∗(Y )‖x)− PSNR(x̃‖x), where (4.84)

PSNR(x̂∗(Y )‖x) ≡ 10 log10
22

1
Nx

‖x̂∗(Y )− x‖22
, (4.85)

where x is the true HR image, x̂∗(Y ) is the image estimated by the proposed method,

and x̃ is the image estimated by the compared method. A higher ISNR value means

better improvement of the estimate against the estimate of the compared method. We

see that the ISNRs of the images estimated by the proposed method were mostly bet-

ter than those by the other methods. In the subjective visual comparison in Fig. 4.5,

we also see that the edges are not overemphasized in the images estimated by the

proposed method compared to those in the images estimated by the other methods.

Regarding the estimation function, we used the optimal estimation function, the PM.

From the experimental results, we see that the SR methods with the PM estimation

function (i.e., the proposed methods) were more accurate than the SR methods with

other estimation functions (i.e., MAP by Kanemura et al. and Babacan et al.). This

indicates that PM is an optimal estimation function for PSNR based on mean square

error.

Table 4.2 lists the root mean square errors (RMSE) of registration parameters esti-

mated by our method and the other methods. To evaluate the estimated registration

parameters, we took the RMSEs over 50 experiments (10 experiments × 5 images)

for each noise level. Of course, a lower RMSE value means a better estimate. We see

that the RMSEs of the proposed method were mostly higher than those of the other

methods.

The calculation times with the proposed method and with the other methods for

each estimate, using an Intel Core i7 2600 processor, were almost the same, about 10

minutes.
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(a) Lena (b) Cameraman (c) Pepper (d) Clock (e) Text

Fig. 4.2 Five original images used in the experiments

(a) Lena (b) Cameraman (c) Pepper (d) Clock (e) Text

Fig. 4.3 Observed images when warped, blurred, downsampled by an enhance-

ment factor of 4, and noised with SNR= 30dB AWGN

(a) Lena (b) Cameraman (c) Pepper (d) Clock (e) Text

Fig. 4.4 Images estimated from observed images in Fig. 4.3 under SNR= 30dB

with Algorithm 2

(a) Algorithm 2 (b) Bilinear (c) Kanemura (d) Babacan (e) Algorithm 1

Fig. 4.5 Comparison of estimated images with Algorithm 2 and methods by

Bilinear interpolation, Kanemura et al., Babacan et al., and Algorithm 1 under

SNR= 30dB

4.8 Discussion

4.8.1 Super-resolution Model

With regard to the observation model, we used a linear transformation and AWGN.

The use of the linear transformation model is advantageous since an arbitrary trans-

formation matrix W (φl) can be employed because of the Taylor approximation. The

transformation matrix can be constructed by multiplying three matrices: the warping,
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Table 4.2 RMSEs of registration parameters (a lower value is better) for different

SNR levels

parameter SNR RMSE

[dB] (Algorithm 1) (Kanemura) (Babacan)

θ 20 0.006 0.006 0.006

25 0.004 0.004 0.004

30 0.002 0.003 0.003

[�o]h 20 0.094 0.095 0.094

25 0.054 0.059 0.056

30 0.041 0.060 0.046

[�o]v 20 0.074 0.073 0.076

25 0.044 0.052 0.047

30 0.037 0.044 0.036

γ 20 0.031 0.033 —

25 0.025 0.030 —

30 0.028 0.028 —

blurring, and downsampling matrices [142]. A disadvantage of this is that sub-pixel er-

rors might accumulate. We prefer matrix construction via a continuous function [141].

We improved the construction by introducing an elliptic theta function for the nor-

malizing constant in (4.10). This normalizing constant provides fair pixel weights

for both marginal and central areas of the HR image and faithfully represents the

Gaussian PSF.

With regard to the HR image prior, we used a two types of prior, that is “causal”

Gaussian MRF prior and “compound” Gaussian MRF prior. They usually have an

exponential calculation cost, O(2Nη ), for the normalizing constant or, equivalently,

the partition function, and this is an obstacle to direct calculation of the PM solution.

The MAP solution has been used in work elsewhere because it is not affected by the

normalizing constant. We have shown how we can adopt these priors for PM SR

and that our algorithms have only a polynomial calculation cost O(N3
x). From our

experiments, we think “compound” Gaussian MRF prior is considered preferable to

a “causal” Gaussian MRF prior as a natural image prior.

With regard to the hyperparameter priors, we also improved the existing method.

As the edge penalty parameter λ, Kanemura et al. [143] implicitly assumed λ ∈ R,

which leads to a negative λ and consequently results in an edge-strewn image. We

assumed λ > 0 by setting its prior according to a gamma distribution, resulting in

an appropriate inference. As the smoothness parameter ρ, they practically fixed the
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Fig. 4.6 Box and whisker plot of the PM for each hyperparameter, λ, ρ, κ, and

β, and image under SNR= 30dB noise

value of ρ with a strongly informative prior. We chose a non-informative prior for

ρ. We show the box and whisker plot of the PM for each hyperparameter over 10

experiments on each image under SNR= 30dB noise in Fig. 4.6. As can be seen, the

inferred value of the PM of ρ showed wide variation, with an approximately 10-fold

maximum-to-minimum ratio, depending on the original image. This result can be

interpreted as meaning it is worth inferring ρ in each HR image. Furthermore, λ and

κ respectively showed approximately 2-fold and 4-fold ranges of variation. Regarding

the contrast parameter κ, they assumed κ ≡ 0, which leads to |A| = 0, and this

results in an improper normalizing constant. While we assume κ > 0, which leads

to a proper normalizing constant, we can consequently take the term of ln |A| into
account in the update equations of the VB.
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With regard to the prior distribution for the blurring parameter γ, we used a

Gaussian distribution even though γ is a positive real number. This is because we

selected a simpler expression. We tried using the prior of the gamma distribution as

γ, but the improvement was small. One disadvantage of this model is that a non-

informative setting for this prior may lead to a nonsense result where the inferred

γ is negative. Moreover, we employed a somewhat informative prior for γ. This is

because the blurring parameter γ and smoothness hyperparameter ρ are somewhat

complementary. This means that simultaneous estimation of γ and ρ is difficult.

Tipping et al. [141] and Kanemura et al. [143] fixed ρ, and Babacan et al. [147] fixed

γ.

4.8.2 Computational Algorithm based on Variational Bayes and Taylor Ap-

proximations

With regard to the Taylor approximation for the transformation matrix W (φl),

we used the first-order approximation in (4.25) because it is more stable than the

second-order approximation. This first-order approximation was proposed by Villena

et al. [147]. The second-order approximation was proposed by Pickup et al. [145],

and they obtained good results. We also tried the second-order approximation, but

it sometimes made the algorithm unstable because it sometimes failed to produce a

positive definite matrix for the covariance matrix Σx.

With regard to the Taylor approximation for ln |A(η, ρ, κ)|, ln Sigmoid(λ), and

ln
∑

η exp

{
− λ

∑
i∼j(1 − ηi,j) − 1

2 ln

∣∣∣∣ 1
2πA(η, ρ, κ)

∣∣∣∣
}
, we introduced the first-order

approximation in (4.28) - (4.30). Note that the Taylor expansion not with respect

to ρ, κ, λ, but with respect to ln ρ, lnκ, lnλ is our key idea to solve the conjugate

prior problem. Indeed, we could successfully derive the terms originating from ln |A|
in update equations ((4.38), (4.65), (4.46), (4.72), (4.48), and (4.74)). Kanemura et

al. [143,144] ignored the term of ln |A| because of the high calculation cost, and this

would result in less accurate inference. As for η, we implicitly assumed that η is not

a binary vector but a continuous vector and did the differentiation. This assumption

is based on (4.15). If we make another assumption – i.e., replacement of ηi,j with

η2i,j in Eq. (4.15) – Eq. (4.15) has the same meaning, but the result of the Taylor

approximation will differ from the current form.

4.8.3 Discussion on Experimental Results

With regard to the experimental results, the proposed method outperforms the

other methods in terms of the ISNR for most images and noise levels. Moreover, its
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estimation of the registration parameters was more accurate than ones of the other

methods for most conditions. Therefore, we conclude the proposed method is on

the whole superior to the other methods. Compared with bilinear interpolation and

Kanemura’s method, the superiority of the proposed method was clear. Compared

with the Babacan’s method, the superiority of the proposed method was relatively

slight. We think that the reason is our numerical optimization method falls slightly

short of optimization because the proposed method uses more approximations than

other methods. Especially, in the case of the Pepper image in 40 dB noise, the

porposed method was worse than the Babacan’s method. This inferiority is considered

to be caused by unstable estimation of γ and ρ, where Babacan’s method fixed the

value of γ to the true expected value in our implementation. Intuitively, the Pepper

image is smoother than the other images and has fewer edges. Therefore, this feature

is considered to be less preferable for complementary parameters of γ and ρ.

With regard to the calculation cost, the proposed algorithm requires O(N3
x). This

calculation cost order is given by two matrix inversions: Σ
(t+1)
x in (4.42) and A in

(4.38), (4.65), (4.48), and (4.74). We found that a simple approximation such as

considering all the off-diagonal elements to be zero reduces the calculation time but

obviously degrades accuracy. We hope to solve this problem in our future work.

4.9 Summary

In this chapter, we proposed a Bayesian image super-resolution (SR) method with

“causal” and “compound” Gaussian MRF priors. We improved current models with

respect to three points: 1) the combined transformation model through a preferable

normalization term using the elliptic theta function, 2) the “causal” and “compound”

Gaussian MRF models through introduction of a contrast parameter κ, which pro-

vides an effective normalizing constant including ln |A|, and 3) the hyperparameter

prior model through application of a gamma distribution for the edge penalty param-

eter λ, which prevents an unfavorable edge-strewn image. We then logically derived

the optimal estimation function, that is, not the joint MAP or marginalized ML but

the PM. The estimation function is computed by using VB. We solved the conjugate

prior problem in VB by introducing Taylor approximations. Other than these ap-

proximations, we did not use any approximations such as ignoring the term ln |A|.
Experimental results showed that the proposed method is mostly superior to current

methods in accuracy.
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Chapter.5

Bayesian Input Selective Regression

5.1 Introduction

Supervised learning is a fundamental task in machine learning and artificial in-

telligence [13, 162]. A focus of such a task is in learning a model representing the

relationship between observed data and a corresponding label, wherein the learned

model can be used for assigning label to new observed data without label. The task

is performed using labeled training data that consists of pairs of data and labels.

The quantity and quality of labeled training data has a huge influence on the

quality of the learned model. Recently, the cost of preparing a huge amount of

labeled training data has decreased thanks to growth in crowdsourcing services, social

networking services, and sensor networks [163]. We can learn a model by using the

huge amount of the data labeled in these ways. However, the training data acquired

by these means may often contain wrong labels and be likely a mixed bag. When

the quality of the training data is expected to be low, we would traditionally use a

robust method such as one based on a heavy-tailed distribution [123,164–166]. Also,

when we use crowdsourcing for labeling, we should use one of many approaches that

can handle the label quality in such situations [167–169]. Most current methods

comprising these approaches explicitly or implicitly rely on the assumption that the

proportion of correct labels in the training data is higher than that of wrong labels.

Using weighting techniques for assessing the noise strength, ability of crowd workers,

and instance difficulty, they learn a model by majority rule of the labels.

In particular, in the case of supervised learning on time-sequential data, it is possible

that the proportion of the correct labels is lower than that of the wrong labels. A label

is not attached to a point of the sequence but rather attached to a time window of

the sequence. In this case, only a small part of the data in this window likely reflects

the label, and the remaining part does not reflect it, as shown in Figure 5.1. In this

case, since the proportion of correct labels may be lower than that of the wrong ones,
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data 1

Parts of time window
which reflect labels
Parts of time window
which reflect labels:

time

data 2

data 3

data 4

irregularity is 0.96 (high)

irregularity is 0.95 (high)

irregularity is 0.94 (high)

irregularity is 0.07  (low)

Fig. 5.1 Data 1, 2, and 3 are quite different time sequences but are attached

similar high irregularity label because of the existence of parts having high irreg-

ularity. On the other hand, data 4 is similar to data 2 and 3 in most parts of the

window, but is attached with low irregularity label. Note that the irregularity is

defined in the interval [0, 1].

we cannot use the majority rule in the robust methods. Also, since the feature vector

from the whole window may not reflect the label, other methods cannot use such data

to learn the model. They require the part of the sequence reflecting the label to be

selected from the sequence.

In this chapter, we focus on a regression problem using such mixed bag data [40]. We

formulate a problem in which we learn the regression model from sets of training data.

Each of the sets has an only single label and only one of the training data sample in the

set reflects the label. We propose a model to select valuable data from each of the sets

for learning the desired regression model. Our model has hidden variables representing

which of the training data sample in the set corresponds to the label. Based on the

framework of Bayesian optimal estimation, we can simultaneously estimate the hidden

variables and parameters of the regression model stably. We experimentally evaluated

our method using artificial and real-world datasets in experiments.

5.2 Related Work

There have been studies on handling the uncertainty of labels. The majority of

these studies has been on robust estimations, such as an estimation based on heavy-

tailed distributions [123, 164–166]. The t-regression, which is based on the student’s

t-distribution, is one of the most common robust regression methods [165, 170–173].

The L1-based estimation, which is related to median-based methods, is also commonly

used [123,174]. Most of these methods weight each of the training data sample based

on its noise level and prune the data to which a large amount of noise was added during

the learning of the regression model. The literature on crowdsourcing has studied on

explicitly handling the uncertainty of manual labeling [167–169]. These approaches
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learn the regression and classification models robustly by improving the quality of

labels, where they obtain multiple labels for each training data from multiple labelers

and weight them based on the ability of labelers and difficulties of labeling examples.

A Multiple Instance Learning (MIL) problem [175–178] has handled such a mixed

bag or the multiple instance in machine learning. However, our problem setting is

different from the problem setting of the MIL, which requires to handle the mixed bag

even in prediction. It would be interesting future work to apply our fully Bayesian

approach to a MIL problem by modifying our formulation.

5.3 Problem Setting

Suppose we are given N sets of training samples, {X(n)}Nn=1, and the n-th set X(n)

has K training samples as X(n) ≡ {x(n)
1 ,x

(n)
2 , . . . ,x

(n)
K }, where x

(n)
k ∈ R

D is a D-

dimensional feature vector for the k-th sample in the n-th set. A single label y(n) ∈ R

is attached to the n-th set. Then the N sets of the labels can be represented as

y ≡ {y(1), y(2), . . . , y(N)}. One of the K training samples in the n-th set corresponds

to the label y(n), but we do not know which of them it is.

Our goal is to learn the relationship between the feature vector x and the label y

by using the given data {X(n)}Nn=1 and y, and we use the relationship for making the

prediction.

5.4 Posterior Mean Estimation for Input Selective Regression

We formalize this prediction problem as the estimates of y by the estimation func-

tion, y∗(x, {X(n)}Nn=1,y), to which the observed variables x, {X(n)}Nn=1 and y have

been input.

We first consider the evaluation criterion based on the Bayesian perspective for this

task. Since the label y is a real number, we use the L2-norm error (mean square error)

as the evaluation criterion. We define the error function for the task as the squared

difference between y and the estimate by the estimation function y∗(x, {X(n)}Nn=1,y):

Error(y, y∗(x, {X(n)}Nn=1,y)) (5.1)

≡ ‖y − y∗(x, {X(n)}Nn=1,y)‖22,

Using the model parameters θ which are explicitly defined later, we define the eval-

uation criterion as the minimization of the population mean of the error function

Eq. (5.1):

argmin
y∗(x,{X(n)}N

n=1,y)

〈
‖y − y∗(x, {X(n)}Nn=1,y)‖22

〉
p(y,x,{X(n)}N

n=1,y,θ)
(5.2)
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Then, we can derive the optimal estimation function using the result in Eq. (2.14)

as the PM,

ŷ∗(x, {X(n)}Nn=1,y) (5.3)

= argmin
y∗(x,{X(n)}N

n=1,y)

〈
‖y − y∗(x, {X(n)}Nn=1,y)‖22

〉
p(y,x,{X(n)}N

n=1,y,θ)

=

∫
y

∫
p(y|x,θ)

(
N∏

n=1

p(y(n)|X(n),θ)

)
p(θ)dθdy,

=

∫
y p(y|x, {X(n)}Nn=1,y)dy,

where the posterior distribution p(y|x, {X(n)}Nn=1,y) represents the probability distri-

bution of the label y given x, {X(n)}Nn=1, and y. As shown in Eq. (5.3), the posterior

distribution consists of the regression model and the prior model for the model pa-

rameters. In the following section, we propose them.

5.5 Probabilistic Hidden Structure Modeling for Input

Selective Regression

5.5.1 Bayesian Regression Model for Selecting a Valuable Subset

We design a regression model by introducing hidden variables h(n) ∈ {0, 1}K ,
∑K

k=1 h
(n)
k =

1 that represent which of the K training samples in the n-th set corresponds to

the n-th label y(n) in the 1-of-K notation, as shown in Figure 5.2. For example,

if h(n) = [1, 0, 0, 0, ...], the 1-st training sample x
(n)
1 in the n-th set corresponds to

the n-th label y(n). If h(n+1) = [0, 0, 1, 0, ...], the 3-rd training sample x
(n+1)
3 in the

n+1-st set corresponds to the n+1-st label y(n+1). The N set of hidden variables

is represented as H ≡ {h(n)}Nn=1. Although we use the 1-of-K notation for h(n),

our learning procedure estimates h(n) probabilistically. Thus, we can represent a

situation in which multiple samples in the n-th set correspond to the n-th label y(n)

with specific weights, such as [0.3, 0.1, 0.6, 0, ...].

Next, we define the regression model for X(n) and y(n) when hk = 1 as

p(y(n)|X(n), h
(n)
k = 1,w, β) ≡ N (y(n)|w�x(n)

k , β−1), (5.4)

where the parameters w ≡ [w1, w2, . . . , wD]� ∈ R
D and β > 0 are model parameters

to be learned. In particular, w represents the regression coefficients, and the d-th

element in w is that for the d-th feature in x
(n)
k .

Since we do not know which of the K training samples in X(n) corresponds to the

label y(n), an arbitrary element in h can become one. Thus, our model has K mixture
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Fig. 5.2 Our model selects useful parts for learning the model.

components such that

p(y(n)|X(n),h(n),w, β) ≡
K∏

k=1

N
(
y(n)

∣∣w�x(n)
k , β−1

)h(n)
k (5.5)

=
exp

(− β
2

∑K
k=1 h

(n)
k (y(n) −w�x(n)

k )2
)

(2πβ−1)
1
2

.

Through the estimation of h(n) in this model for the n-th set, we can select valuable

training samples from the n-th set for learning the regression model.

We define the regression model for the prediction as

p(y|x,w, β) ≡ N (y|w�x, β−1), (5.6)

where the parameters w and β are same as them in Eq. (5.5).

5.5.2 Conjugate Priors for Model Parameters

For the prior distributions of H and β, we simply use the conjugate priors:

p(H) ≡
N∏

n=1

Categorical
(
h(n)

∣∣ξ(0)h

)
, (5.7)

p(β) ≡ Gamma
(
β
∣∣a(0)β , b

(0)
β

)
, (5.8)

where the parameters ξ
(0)
h , a

(0)
β , and b

(0)
β are treated as input parameters given as

part of the model. We chose the hyperparameter values in Eqs. (5.7) - (5.8) to be as

non-informative as possible and to have a quite flat distribution: ξ
(0)
h = 10−10 × i,

a
(0)
β /N = b

(0)
β /N = 10−10 and Σ

(0)
w = 1010 × I.

For pruning irrelevant features in the feature vector x, we use the automatic rele-

vance determination (ARD) prior [179–181] as the prior of the coefficients w:

p(w|α) ≡
D∏

d=1

N (wd|0, αd). (5.9)
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Similarly to [182], this is the conjugate prior distribution for w. The parameter α

can be also estimated in Bayesian framework. Using the ARD prior, we can get a

sparse solution for w: many of their estimated coefficients are zero.

We define hyperprior distributions for α using the conjugate priors:

p(α) ≡
D∏

d=1

Gamma
(
αd

∣∣∣a(0)α , b(0)α

)
, (5.10)

where the hyperparameter values in Eq. (5.10) are also non-informative: a
(0)
α = b

(0)
α =

10−10.

5.5.3 Joint Distribution

We can now write down the joint distribution for the random variables y, H, w,

β, α as,

p(y,H,w, β,α|{X(n)}Nn=1) (5.11)

≡
(

N∏
n=1

p(y(n)|X(n),h(n),w, β)p(h(n))

)
p(w|α)p(β)p(α).

All marginal and conditional distributions including the posteriors p(H|{X(n)}Nn=1,y),

p(w|{X(n)}Nn=1,y), p(β|{X(n)}Nn=1,y), and p(α|{X(n)}Nn=1,y) can be derived in terms

of this joint distribution.

5.6 Variational Bayes Algorithm for Posterior Mean

Estimation

Here, we design a learning algorithm for simultaneously estimating the hidden vari-

ables H for the N sets and the parameters w and β of the proposed model from the

training data, {X(n)}Nn=1 and y. In the probabilistic formulation, the goal is to find

the posterior distributions p(H|{X(n)}Nn=1,y), p(w|{X(n)}Nn=1,y), p(β|{X(n)}Nn=1,y),

and p(α|{X(n)}Nn=1,y) which represent the probability distributions for H, w, β and

α given the training data.

Here, it is not possible to obtain an exact analytical solution for the posteriors.

Instead, we will derive an approximate solution by using the VB method [52].

According to the formulation in Chapter 2, the VB approach approxi-

mately finds the posterior distribution over the set of unobserved variables,

p(H,w, β,α|{X(n)}Nn=1,y), in a factorized form:

p(H,w, β,α|{X(n)}Nn=1,y) ≈ q(H,w, β,α) (5.12)

≡ q(H)q(w)q(β,α).
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Table 5.1 Estimated parameters for each case of K ∈ {2, 5, 10} with normal

noise (noise precision β = 10).

value of each element in w β

true 1.5 −2 0.5 0 0 0 10

estimated (K = 2) 1.5 −2.0 0.50 0.0 0.0 0.0 10

estimated (K = 5) 1.5 −2.0 0.50 0.0 0.0 0.0 10

estimated (K = 10) 1.5 −2.0 0.51 0.0 0.0 0.0 10

We identify the optimal approximate distribution that minimizes the KL diver-

gence [183] from the approximate distribution q(H,w, β,α) to the true posterior

distribution p(H,w, β,α|{X(n)}Nn=1,y) as the best approximation of the true

distribution.

From Eqs. (2.26), (2.27), (5.5) and (5.7) - (5.10), we solve the following iterative

updating equations:

q(H) =
N∏

n=1

Categorical
(
h(n)

∣∣ξh(n)

)
, (5.13)

q(w) = N
(
w
∣∣μw,Σw

)
, and (5.14)

q(β,α) = Gamma
(
β
∣∣aβ , bβ) D∏

d=1

Gamma
(
αd

∣∣aαd
, bαd

)
, (5.15)

where the mean values of the hyperparameters β and αd over the trial distributions

q(t)(β,α) at step t on VB algorithm are given by

μ
(t)
β =

a
(t)
β

b
(t)
β

, μ(t)
αd

=
a
(t)
αd

b
(t)
αd

. (5.16)

Here are the specific update equations at step t+1:

ξ
(t+1)

h
(n)
k

=

exp

[
ξ
(0)
hk

− 1
2μ

(t)
β cn,k

]
∑K

j=1 exp

[
ξ
(0)
hj

− 1
2μ

(t)
β cn,j

] , where (5.17)

cn,k ≡
(
y(n) − [μ(t)

w]�x(n)
k

)2

+ tr

(
x
(n)
k

[
x
(n)
k

]�
Σ(t)

w

)
. (5.18)
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μ(t+1)
w = Σ(t+1)

w

[
μ
(t)
β

N∑
n=1

K∑
k=1

ξ
(t)

h
(n)
k

y(n)x
(n)
k

]
, (5.19)

Σ(t+1)
w =

[
μ
(t)
β

N∑
n=1

K∑
k=1

ξ
(t)

h
(n)
k

x
(n)
k

[
x
(n)
k

]�
+ μ(t)

αI

]−1

,

a
(t+1)
β = a

(0)
β +

1

2
N, (5.20)

b
(t+1)
β = b

(0)
β +

1

2

N∑
n=1

K∑
k=1

ξ
(t)

h
(n)
k

cn,k, (5.21)

a(t+1)αd
= a(0)α +

1

2
, and (5.22)

b(t+1)αd
= b(0)α +

1

2

(
[μ(t)

wd
]2 + [Σ(t)

w]d,d

)
. (5.23)

We can iteratively update q by simply computing only the parameters of these

distributions in Eqs. (5.13) - (5.15). For the initial values of the parameters, we can

use the same values as those of the corresponding priors. In practice, we stop the VB

iterations when the relative differences between the current values of the variables,

zc, and the previous values of the variables, zp, are sufficiently low:

‖zc − zp‖22
‖zp‖22

< 10−5. (5.24)

After the above stopping condition is satisfied, we obtain the final outcome q(H),

q(w), q(β), and q(α) directly, which corresponds to an approximation of the

learned posteriors, p(H|{X(n)}Nn=1,y), p(w|{X(n)}Nn=1,y), p(β|{X(n)}Nn=1,y), and

p(α|{X(n)}Nn=1,y) since the distribution of H, w, β, and α has been factorized as

shown in Eq. (5.12).

Using the learned μw, we can predict the label for the new data as follows:

y ≡ μ�
wx. (5.25)

Note that we can directly estimate the our objective, that is the predictive poste-

rior distribution p(y|X, {X(n)}Nn=1,y), by using the VB method. However, since the

predictive posterior distribution requires VB iterations for each new data, it is quite

costly to compute. Instead, we use Eq. (5.25) as an approximation of the predictive

PM of ŷ∗ in Eq. (5.3) that can be computed with a much lower computational cost.

We will discuss this approximation in the Discussion section.

5.7 Experimental Results

We assessed the effectiveness of our approach in numerical experiments. First,

we artificially generated datasets to study the performance of our algorithm (Sec-



5.7 Experimental Results 91

Table 5.2 Estimated parameters for each case of K ∈ {2, 5, 10} with high noise

(noise precision β = 1).

value of each element in w β

true 1.5 −2 0.5 0 0 0 1

estimated (K = 2) 1.6 −2.1 0.53 0.0 0.0 0.0 1.0

estimated (K = 5) 1.7 −2.3 0.60 0.0 0.0 0.0 0.94

estimated (K = 10) 2.7 −3.6 1.2 0.0 0.0 0.0 0.33

tion 5.7.1). We then applied it to real-world time-sequential data from the UCI

machine learning repository [184] (Section 5.7.2).

5.7.1 Experiment on Artificial Dataset

We studied the validity of our algorithm by simultaneously estimating H, w, and β

from the artificial validation dataset. In preparing the artificial validation dataset, we

randomly generated N×K training samples, {X(n)}Nn=1, from the standard Gaussian

distribution N (x|0, I), where the number of dimensions of x was 6. Then, using

{X(n)}Nn=1, we generated the corresponding N sets of labels y from the distribution

in Eq. (5.6), where we randomly selected one of the K training samples in each

n-th set from a uniform distribution, and a limited number of the coefficients, w,

had non-zero values, i.e., w = {1.5,−2.0, 0.5, 0, 0, 0}. We repeatedly evaluated the

proposed method for each of the following settings: the noise precision β ∈ {10, 1},
which correspond normal and high noise settings, and number of training samples in

each training set K ∈ {2, 5, 10}. In the case of K = 10, only 10 percent of the data

correctly corresponds to labels. In general, it is quite hard to learn regression models

using such data. In this experiment, the number of training sets was N = 10000.

Tables 5.1 and 5.2 compares the estimated w and β with the true ones. Also,

Table 5.3 shows the estimation accuracy of h, which is defined as the proportion of

indexes in which the maximum value in the estimated h is exactly the same as the

true one selected in generating the data, where 1 is the best and 0 is the worst. The

result confirms that our method can simultaneously estimate all of the parameters

and hidden variables well except for the most difficult setting in which K = 10 and

β = 1. Note that we can get a sparse solution for the coefficient thanks to the ARD

prior.

Finally, Figure 5.3 compares our approach with common regression methods, which

are t-regression [165, 170–173] with L1-regularization [185], relevance vector machine

(RVM) with a linear kernel [181, 182], and random forest [186]. Since these baseline
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Table 5.3 Estimation accuracy of hidden variables in each case of K ∈ {2, 5, 10}
and noise precision β ∈ {10, 1}. Chance level is the accuracy that would be

expected by random choices.

K = 2 K = 5 K = 10

chance level 0.5 0.2 0.1

proposed (noise precision β = 10) 0.95 0.81 0.65

peoposed (noise precision β = 1) 0.84 0.55 0.22

methods are not able to select valuable samples, in the training of these models, they

select one of theK training samples in the n-th set from the same uniform distribution

used to generate the data. We evaluated the results with regard to the mean absolute

error (MAE) over M test samples, which were generated from the same distribution

as the training samples, and the number of test samples M was M = 10000. MAE is

defined as

MAE ≡ 1

M

M∑
m=1

∣∣∣y(m)
true − y

(m)
estimate

∣∣∣, (5.26)

where y
(m)
true is the true y in the m-th test sample, and y

(m)
estimate is the estimated y for

the m-th test sample. We computed the standard error of the absolute error (the

error bars in Fig. 5.3). From Fig. 5.3, we can see that the overall performance of our

method is significantly better than those of the alternatives. The t-regression with

L1-regularization, which is the well-known robust regression method, achieved a good

result in the case of K = 2, but it did not work in the case of K = 5 or K = 10. Our

method can select the valuable samples from each n-th set in {X(n)}Nn=1 and achieved

the best performance in all of the settings. We chose MAE for evaluating the results

since it is widely used for evaluating the accuracy in such uncertain and high noise

settings having many outliers. MAE is more robust to outliers than the mean square

error since it does not square the error. The mean square error penalizes large error

more. If we square a big number, it becomes much larger relative to the others. The

evaluation results with regard to the mean square error were almost same to the ones

with regard to MAE, although the vertical scale of the graph with the mean square

error became too large.

5.7.2 Experiment using UCI Dataset

We evaluated the proposed method in the prediction task for indoor temperatures

from temporal sequences of sensor outputs in a house [187]. The dataset for this task
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Fig. 5.3 Comparison of the proposed method and several regression methods in

terms of MAE (smaller is better) on an artificial dataset. Error bars represent

the standard error.

was a real-world dataset collected from the publicly available UCI machine learning

repository [184].

The dataset consisted of 4137 samples and each sample had 24 number of attributes.

Regarding the feature vector, we used all the attributes except for non numeric at-

tributes and attributes always taking 0. In this problem setting, y is the indoor

temperature at a future timestamp, which is standardized by subtracting its mean

and dividing by its standard deviation, and X is the set of K = 4 number of training

samples x which are computed from four different time windows in an hour before

the timestamp; in particular, we use the features in the first fifteen minutes as x1, the

features in the second fifteen minutes as x2, the features in the third fifteen minutes

as x3, and the features in the last fifteen minutes as x4. Our model prunes ones

corrupted by noise and outliers and selects valuable ones in the time windows for

training the prediction model.

Table 5.4 compares our approach with RVM [181,182] with a linear kernel. Since the

baseline method does not have the ability to select valuable samples, in the training

of the model, it selects one of the K training samples in the n-th set from the uniform

distribution. In prediction, we always use the features in the last fifteen minutes,

x4, for both of our method and the baseline method. We evaluated the results with

regard to the mean absolute error (MAE) in 5-fold cross validation using the dataset

and also computed the standard error of the absolute error. From Table 5.4, we can

see that the MAE of our method is 10% better than that of the baseline method.

Finally, Table 5.5 shows a typical examples of the estimation results of h that

represent which of the K training samples in the n-th set corresponds to the n-th

label. We can see that the estimation results of h are significantly different from each

other. It suggests that the ability to select valuable training samples in each n-th set
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Table 5.4 Comparison of the proposed method and baseline method in terms of

MAE (smaller is better) on the UCI dataset.

method MAE (smaller is better)

RVM 0.36± 0.0058

peoposed 0.32± 0.0055

Table 5.5 Examples of estimation results of hidden variables h.

data index h
(n)
1 h

(n)
2 h

(n)
3 h

(n)
4

n = 118 0.0025 0.12 0.51 0.37

n = 119 0.65 0.26 0.07 0.02

n = 120 0.25 0.28 0.23 0.24

n = 121 0.12 0.25 0.22 0.41

is important for the prediction accuracy even in real-world case.

5.8 Discussion

5.8.1 Stability of Bayesian Inference

In the VB updates, we use the nature of Bayesian inference that we can evaluate

the posterior of the estimation result [13, 188, 189]. By evaluating the confidence of

the estimation result, which is computed using the posterior, of each of the variables

at each step of VB, we can tune the update width properly on the estimations of the

variables at each step and can obtain a stable final estimation result in a situation

in which there are many variables to be learned. This property is quite useful in the

case of that the confidence of the estimation result is important, such as in Bayesian

optimization [190,191], Bayesian active learning [192,193], and Bayesian reinforcement

learning [194–197].

5.8.2 Approximation of Predictive Posterior Mean

The approximation for the predictive posterior mean, as shown in Eq. (5.25), cor-

responds to the predictive posterior mean of y when we assume that q(w) is the true
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posterior of w and β is fixed by its mean value over the learned q(β),
aβ

bβ
:

ŷ∗(x, {X(n)}Nn=1,y) =

∫
y p(y|x, {X(n)}Nn=1,y)dy (5.27)

≈
∫

y p

(
y

∣∣∣∣x,w, β =
aβ
bβ

)
q(w)dwdy

= μ�
wx.

While we can skip the VB iterations for each new data thanks to this approximation,

this type of the approximation sometimes underestimates the uncertainty of the data

and causes an overfitting problem because β is not marginalized out from p(y|x,w, β)

and
aβ

bβ
is just inputted into p(y|x,w, β) as the point estimate of β. We can see this

drawback in the experimental results using the artificial dataset with K = 10 and

β = 1 in Table 5.2. The absolute values of the estimated w were higher than the true

one. This indicates the overfitting of w to the “noisy” training data.

5.8.3 Other Applications of Input Selective Regression

We can straightforwardly extend the model in Eq. (5.5) so that it can handle a

non-linear relationship between x and y by using the basis function or kernel function

φ(xk) as follows:

p(y|X,h,w, β) ≡
K∏

k=1

N
(
y
∣∣w�φ(xk), β

−1
)hk . (5.28)

We can also extend our model so that it can be applied to classification tasks with

a specific link function and distribution. Similarly, we may use other noise models,

such as the t-distribution. Such investigations will be for future work.

As stated in the Related Work section, it would be interesting to apply our fully

Bayesian approach to an MIL problem [175–178] in future work. Since our problem

setting is different from the problem setting of the MIL, which requires to handle

the mixed bag or multiple instance even in prediction, we need to modify Eq. (5.25)

for the MIL problem setting so that Eq. (5.25) can select the valuable sample in the

newly observed bag.

Although we use the 1-of-K notation for h(n), we can explicitly represent a situation

in which multiple samples in the n-th set correspond to the n-th label y(n) by defining

the hidden variables h(n) as h(n) ∈ {0, 1}K ,
∑K

k=1 h
(n)
k ≥ 1. For example, if h(n) =

[1, 0, 1, 0, 0, ..., 0, ...], both of the 1-st and 3-rd training samples in the n-th set, x
(n)
1

and x
(n)
3 , correspond to the n-th label, y(n). In this case, we can use the Bernoulli

distribution as the prior for each h
(n)
k . Since such modeling has excessive flexibility
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and is easily trapped into local optima, we need to constrain the value of
∑K

k=1 h
(n)
k

in practical use by, for example, more hierarchical modeling.

5.9 Summary

We formulated a regression problem selecting a valuable subset from each set of

the mixed bag training data using Bayesian modeling with hidden variables. For

the proposed model, we designed an efficient learning algorithm by using VB. Our

method does not have any parameters that require careful tuning, thanks to its fully

Bayesian modeling. Experimental results show that our approach performed better

than baseline methods on an artificial dataset and on a real-world dataset. Our

method can achieve robust regression even in the case in which only 10% of the data

correctly corresponds to labels.



97

Chapter.6

Concluding Remarks

We investigated Bayesian optimal estimation with probabilistic hidden structure

modeling, which allows us to obtain a stable solution for each problem in situations

with limited amounts of and/or poor-quality data. For each problem setting, while

maintaining the computational feasibility of the Bayesian optimal estimation, we de-

sign models having enough complexity for sufficiently representing data variations

and appropriate constraints for regularizing the limitations of the data. In addition,

thanks to the fully Bayesian treatment, all the methods proposed in this thesis do

not require any parameter tuning, which is a favorable property in practice.

In Chapter 2, we derived Bayesian optimal estimation functions for some evaluation

criteria. These functions are based on the posterior distribution of the unobservable

target variables given the observed variables. We also derived efficient computational

algorithms for them as analytic tools that were used throughout this thesis.

In Chapter 3, we tackled the novel problem of estimating traffic flows from poor-

quality web-camera images without any labeled training data. We devised algorithms

for estimating the traffic volume and traffic velocity in this problem setting. In the

traffic-volume-estimation problem, we proposed a Gaussian mixture model (GMM)

whose mixture index is equated with the number of vehicles in the observation and

showed that the stick-breaking process (SBP) elegantly resolves the technical chal-

lenge, that is, how to associate the mixture index with the count without any label

information as to the count unlike current approaches in image analysis, which typ-

ically involve explicit object detection using labeled training images. For the traffic

velocity estimation problem, we proposed a method in which the traffic velocity is es-

timated from observed temporal sequences of the numbers of vehicles. The proposed

method does not require tracking of vehicles or any labeled data. It is based on the

fact that the some proportion of vehicles in two or more consecutive observations will

be the same vehicles. The proportion will increase as the traffic velocity decreases,

and it directly represents the correlation between the numbers of vehicles in consecu-
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tive observations. The proposed method is useful for measuring traffic velocities with

low-quality, inexpensive sensors such as webcams. The experiments confirmed that

our methods work with inexpensive sensors having low sampling rates, such as one

observation every several seconds. Improving the feature extraction step would be

worthwhile for applying our approach to other applications, such as counting crowds

and cells in images, counting words in text, and counting patterns in time-series data.

This is because that the features required in each application are not often trivial, and

we need to use multiple features which may be effective to the estimation. Although

we used a single feature in the traffic volume estimation, we can include many other

features in the variational Bayes (VB) formulation and feature selection may be also

possible in this case. Introducing a more hierarchical model for the hyperparameters

may also improve accuracy and robustness within the Bayesian framework.

In Chapter 4, we proposed a novel super-resolution (SR) model and derived a

Bayesian optimal estimation algorithm with causal and compound Gaussian Markov

random field (MRF) priors for images and the VB method. We showed that we

can solve the conjugate prior problem on the VB method and the exponential-order

calculation cost problem of the causal and compound Gaussian MRF prior with simple

Taylor approximations. Our experimental results show that our method was more

accurate than other current methods. The proposed method is an SR method with a

favorable model and an optimal estimation function. We believe our approach to the

problem regarding the conjugate prior and the exponential-order calculation cost can

be applied to many other problems, and we will attempt to do so in the future.

In Chapter 5, we addressed the problem in which a regression model is learned from

sets of training data. Each set only has a single label, and only one of the training

data samples in the set reflects the label. We designed an algorithm for estimating

which of the training data sample in each of the sets corresponds to the label, as

well as for training the regression model on the basis of hidden variable modeling

and posterior inference with the VB method. Experimental results show that our

approach performs better than baseline methods on an artificial dataset and on a

real-world dataset. In the future, we plan to apply our approach to other learning

tasks, such as classification and multiple instance learning (MIL) problems.
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