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Chapter 1

Introduction

1.1 Background

The Internet has become an indispensable part of the infrastructure of our

social lives, but important information on the Internet is constantly under

threat from ever-evolving cyberattacks. Most cyberattacks arise from the

infection of users’ devices by malicious software (malware). Once the user

devices are infected by malware, they can be coerced by attackers into con-

ducting new cyberattacks. Thus, to break the vicious cycle of cyberattacks,

we must implement countermeasures against malware infections.

Countermeasures against malware infections can be divided into two

main types: host-based countermeasures and network-based countermea-

sures. Host-based countermeasures include antivirus software that mainly

focuses on the information contained in malware files. Antivirus software

uses predefined signatures generated from known malware files to scan the

files on end hosts to detect malware infections. However, these host-based

countermeasures have reached the limits of their detection capabilities, as

they have lately been unable to catch up with the increasing number of mal-

ware files that bypass their predefined signatures [1, 2, 3]. For example,

attackers can easily change their malware files using different packing tech-

niques, encryption, and polymorphism to bypass the detection capabilities

of antivirus software.

1



CHAPTER1 INTRODUCTION

Network-based countermeasures include blacklists based on information

regarding malicious network communication [4, 5, 6]. Generally, such black-

lists are composed of malicious domain names, uniform resource locators

(URLs), and communication patterns. These blacklists can be used not only

to prevent end hosts from being infected by new malware but also to de-

tect malicious end hosts already infected with malware. In most malware

infections, network communication is needed to for attackers to carry out

malicious activities such as downloading malware from external servers or

sending control commands. Owing to this underlying feature of malware

infections, network-based countermeasures are more promising and effective

than host-based countermeasures.

The lists of malicious domain names, URLs, and communication patterns

used in network-based countermeasures are generated by a three-step pro-

cess [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. First, decoy systems called honeypots

are used to monitor cyberattacks and to store malicious network commu-

nications and samples of the malware associated with the attacks. Second,

malware analysis systems run the malware samples collected by the honey-

pots and monitor malicious behavior while simulating malware infections.

Finally, the data collected in the previous steps are analyzed to detect ma-

licious domain names, URLs, and communication patterns for the counter-

measures. When analyzing the data, it is extremely important to detect

previously unknown malicious communications that cannot be directly ob-

served by honeypots or malware analysis systems so that we can deploy effec-

tive countermeasures against future malware threats. However, conventional

data analysis methods have been unable to catch up with current malicious

communications due to the evasion techniques employed by attackers. This

thesis determines that such malicious communications cannot be discovered

by conventional methods owing to the following four fundamental problems.

Malicious web content is dispersed by attackers Attackers use sev-

eral types of malicious web content to distribute malware and maximize the

success rate of their malware infection. For example, in a typical drive-by

2
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download attack, they deploy multiple versatile redirection websites ahead

of the actual malware distribution website to evade detection. Conventional

analysis methods fail to detect such dispersed malicious websites since they

deal with the domain name or URL of each malicious website individually.

Malicious domain names change over time Attackers abuse domain

names and the Domain Name System (DNS) to obfuscate their attack ecosys-

tems. Specifically, they systematically generate a huge number of distinct

domain names to make it infeasible to keep up with all the newly-generated

malicious domain names. Conventional analysis methods cannot catch up

with such ever-changing malicious domain names since they only use infor-

mation from a particular point in time.

Attackers generate differently-structured malicious domain names

Attackers create their cyberattacks using malicious domain names with dif-

ferent structures to prevent their attacks from being detected by fixed defense

solutions. For example, some malicious domain names are created by abusing

legitimate services, such as online advertising and web hosting. If we filter

out the domain names used by such legitimate services, we may prevent users

from accessing legitimate services and disrupt legitimate businesses. Other

malicious domain names are created by an algorithm known as a domain gen-

eration algorithm (DGA) with the intention of deceiving users. If we hesitate

to filter these domain names, we cannot decrease the threat of cyberattacks.

Conventional analysis methods that only focus on a single countermeasure

will not always use the right countermeasure for each malicious domain name.

Malicious HTTP communications blend in to evade detection At-

tackers design their malicious communications to blend in with legitimate

ones so that their attacks can bypass detection methods. Specifically, at-

tackers make their malicious communications (associated with malware in-

fections) look as much like legitimate communications generated by real users

in a network as possible to evade detection. Because of this, conventional

analysis methods may falsely regard some legitimate communications as ma-

licious, resulting in false positives.

3
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1.2 Thesis Contributions

This thesis focuses on data analysis methods for network-based countermea-

sures against cyberattacks and malware. In particular, this thesis sheds light

on the aforementioned four fundamental problems that hamper conventional

countermeasures against cyberattacks and explores possible solutions to these

problems. The goal of this thesis is to improve countermeasures against cy-

berattacks significantly by implementing new and practical data analysis

methods. To this end, this thesis proposes the following four new analysis

methods and evaluates the effectiveness of them from several perspectives

using large, real datasets.

Detecting unseen malicious web content To tackle the problem of dis-

persed malicious web content, this thesis proposes a new scheme for detecting

websites with malicious web content by profiling the characteristics of their

IP addresses. The scheme leverages the empirical observation that IP ad-

dresses are more stable than other metrics, such as URLs and DNS records.

While the strings that form URLs or DNS records are highly variable, IP ad-

dresses are much less variable, for example the IPv4 address space is mapped

onto four-byte strings. This thesis develops a lightweight and scalable detec-

tion scheme based on the characteristics of IP addresses, utilizing machine

learning techniques. The effectiveness of the scheme is validated by using real

IP address data from existing blacklists and real traffic data on a network.

The results demonstrate that the proposed scheme can expand the coverage

and accuracy of existing blacklists and also detect unseen malicious websites

that cannot be found by conventional methods.

Finding domain names that may be abused in future To provide a

solution to the problem of malicious domain names changing over time, this

thesis proposes a new system to predict which domain names could poten-

tially be put to malicious use in future. The key idea behind the system is to

profile the temporal variation patterns (TVPs) of malicious domain names.

The TVP of a domain name includes information about how and when the

domain name has been listed in legitimate/popular and/or malicious domain

4
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name lists. The system actively collects DNS logs, identifies their TVPs, and

predicts whether a given domain name will be used for a malicious purpose.

Tests using large-scale data reveal that the system can predict which domain

names will be used maliciously 220 days beforehand with an extremely high

true positive rate (TPR) of 0.985.

Determining optimal countermeasures against malicious domain

names To address the problem of malicious domain names with different

generated structures, this thesis proposes a new analysis pipeline to deter-

mine the most effective countermeasure for each malicious domain name.

The pipeline is designed to identify abused domain names and offer defense

information by profiling the characteristics of malicious domain names as

well as the possible defense solutions and points of defense. Specifically, the

pipeline reveals what, where, and how countermeasures need to be taken

against such malicious domain names. Testing using a large, real dataset

revealed that the proposed analysis pipeline is both effective and valid. In

particular, the defense information output by the pipeline was confirmed to

cause no collateral damage to legitimate accesses.

Identifying malicious HTTP communications To tackle the problem

of malicious HTTP communications evading detection, this thesis proposes a

new system to achieve more accurate detection of malicious communications

caused by malware-infected hosts. The system focuses on the key idea that

malicious infrastructures, such as malware samples or command and control

servers, tend to be reused instead of created from scratch. Specifically, the

system profiles the variability of substrings in HTTP requests, making it

possible to identify fixed keywords that can be tied to particular malicious

infrastructures and to generate patterns for network-based countermeasures

automatically. The results of implementing the system and validating it using

real traffic data indicate that it reduces false positives by up to two-thirds

compared to the conventional system and even increases the detection rate

for infected hosts.

5
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1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces a new

scheme for detecting unseen malicious websites by profiling the characteristics

of the IP addresses of websites. The scheme focuses particularly on malicious

websites used in recent drive-by download attacks, designs new methods for

extracting features from IP addresses, and detects new malicious websites

using machine learning classifiers. Chapter 3 presents a new system for de-

tecting domain names with the potential to be malicious in the future. The

system profiles the variation of domain names related to cyberattacks over

time and is effective at finding potential malicious domain names using large-

scale DNS logs and machine learning techniques. Chapter 4 presents a new

analysis pipeline that provides the optimal countermeasure for each malicious

domain name. The pipeline profiles both the operational characteristics of

malicious domain names and possible defense solutions to determine how

best to utilize malicious domain name information for taking countermea-

sures. Chapter 5 proposes a new system for detecting malicious communi-

cations precisely. The system profiles the characteristics of reused malicious

infrastructure to identify fixed keywords in malicious HTTP requests and

generate detection patterns automatically. Finally, Chapter 6 presents the

conclusions of this thesis.

6



Chapter 2

Profiling Spatial Structures of
IP Addresses

2.1 Introduction

Web-based malware attacks have become one of the most serious threats that

need to be addressed urgently. Some malicious websites steal users’ confi-

dential information, which may include login IDs, passwords, and personal

information. Other malicious websites enforce users to download malicious

software (malware).

Web-based malware attacks target vulnerabilities that exist in web browsers

and several plugins such as Flash players, Java VMs, and PDF plugins [17].

These vulnerabilities are exploited by compromising the browser so that mal-

ware is downloaded and run on the targeted system. Such attacks are often

called drive-by download attacks [18].

Computers are subjected to conventional attacks when they are connected

to the Internet or external devices such as a USB memory that is infected

with malware. In contrast, drive-by download attacks are triggered by users’

access to certain websites. Figure 2.1 illustrates the procedure of a typical

drive-by download attack. When a browser accesses a compromised landing

site, the HTTP connection is redirected to a hopping site. A hopping site is

a website that contains a redirect instruction code that redirects an HTTP

connection to the next hopping site or an exploit site. After a connection has

7
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Users with vulnerable 
browsers and plugins 

Landing site 

Hopping site 
…

 

Exploit site 

 Malware 
 distribution site 

Access the landing site 

Redirect to hopping site 

Redirected to hopping/exploit site 

…
 

Exploit vulnerability 

Download malware 

Figure 2.1: Procedure of a drive-by download attack

been redirected to an exploit site, the browser is forced to download malware

from a malware distribution site. An exploit site is a website that actually

exploits vulnerabilities of users’ web browsers.

Owing to the complexity of the infection procedure shown above, the

detection of infection by web-based malware is often complex. Authors of

malware use several techniques that redirect users to actual malware distri-

bution sites by masquerading them as exciting and fun themes on social net-

working websites or e-mails [19]. The redirection sites can be easily updated.

Several intermediate redirection URLs are effective for one-time access only.

Moreover, they employ various obfuscation techniques such as encryption,

polymorphism, and tunneling to evade detection. Therefore, conventional

approaches often fail to detect new attacks owing to the versatility of mali-

cious website deployment, which is discussed in Section 2.2. To resolve this

problem, this chapter presents a new scheme for detecting malicious websites

using the characteristics of IP addresses.

This chapter proposes a scheme for detecting communication associated

with web-based malware using the features extracted from structures of IP

addresses in order to prevent users from accessing even unknown malicious

websites. Our approach leverages the empirical observation that IP addresses

are more stable than other metrics such as URLs and DNS records. While

8



CHAPTER2 PROFILING SPATIAL STRUCTURES OF IP ADDRESSES

the strings that form URLs or DNS records are highly variable, IP addresses

are less variable, i.e., IPv4 address space is mapped onto 4-byte strings. In

this chapter, a lightweight and scalable detection scheme that is based on

machine learning techniques is developed and evaluated. Note that the goal

of this chapter is not to provide a single solution that effectively detects

web-based malware but to develop a technique that compensates for the lim-

itations of existing approaches. The effectiveness of our approach is validated

by using real IP address data from existing blacklists and real traffic data on

a campus network. The results demonstrate that our scheme accurately dif-

ferentiates between the IP addresses used for benign websites and malicious

websites. In addition, this chapter illustrates that our scheme expands the

coverage/accuracy of existing blacklists and detects even unknown malicious

websites that are not covered by conventional approaches.

The rest of this chapter is organized as follows. First, Section 2.2 reviews

related work and discusses their limitations. Next, our detection scheme is

presented in Section 2.3. Then, Section 2.4 illustrates the experimental re-

sults using actual web traffic data collected on a large-scale campus network.

Finally, Section 2.5 concludes this chapter.

2.2 Related Work

This section reviews related work and discusses their limitations. The sys-

tems proposed in related work are divided into three categories: blacklists

and reputation systems, intrusion detection systems (IDS), and client hon-

eypots.

2.2.1 Blacklists and Reputation Systems

So far, blacklists and reputation systems have been the most popular solu-

tions that prevent users from accessing malicious websites. Blacklists can be

applied to both network-side and client-side filtering. Network-side filtering

can be used with DNS blacklist or blocklist (DNSBL) [20, 21, 22] and com-

9
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mercial security appliances. Client-side filtering can be included in current

web browsers [23, 24].

In reputation systems, reputation is based on various types of information

present in each IP address or domain name and is applied to prevent users

from accessing malicious websites. Criteria for reputation include features

retrieved from domain names, WHOIS information, and link structures. An-

tonakakis et al. [4] developed a dynamic reputation system called Notos. The

system collects information from multiple sources such as DNS zones, bor-

der gateway protocol prefixes, and Autonomous System (AS) information to

model network and zone behaviors of benign and malicious domain names.

Then, it applies these models to calculate a reputation score for each domain

name. Felegyhazi et al. [25] proposed domain-based proactive blacklisting.

It utilizes a small set of known malicious domain names to predict other ma-

licious domain names using registration and name server information. Ma

et al. [26] proposed a supervised learning approach for classifying URLs as

benign or malicious using both lexical structure of URLs and host-based

features such as WHOIS records and geographical information. Yadav et

al. [27] focused on algorithmically generated malicious domain names and

found that such domain names were quite different from legitimate ones.

They utilized this characteristic to develop their detection method based on

statistical learning.

Although these approaches are widely employed, they often fail to keep

up with the transient nature of malicious activities. For instance, it was

demonstrated that maintaining up-to-date blacklists is not easily accom-

plished because new malicious domain names can be easily and continuously

generated [28, 29, 8]. Furthermore, it has been reported that attackers fre-

quently change domain names to evade detection by reputation systems [17].

In addition, Shin et al. [30] showed that only 17% of worm/bot victims are

covered by several blacklists and they pointed out that better ways to detect

future emerging malware are needed.

In summary, existing blacklist-based approaches are prone to failure with

10
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respect to detecting versatile web-based malware.

2.2.2 Intrusion Detection Systems

IDS can be used to block users from accessing malicious websites. It can

be classified into two types: signature-based IDS and anomaly-based IDS.

Signature-based IDS such as Bro [31] and Snort [32] monitor network traf-

fic and search packets that correspond to predefined attack signatures. Be-

cause attack signatures are generated by known attacks, signature-based IDS

cannot detect unknown attacks. Anomaly-based IDS learns normal network

behavior and uses this information to detect attacks. Therefore, it has the po-

tential for detecting unknown attacks [33]. However, there is a high probabil-

ity of anomaly-based IDS falsely regarding normal traffic as attacks, namely

false positives. Moreover, malicious websites often contain obfuscated scripts

to evade such IDS. As shown later in Section 2.4.5, detecting malicious web-

sites with IDS is not readily performed in real environments. Therefore, it

is recognized that IDS has limitations with respect to blocking all kinds of

malicious websites.

In summary, existing IDS-based approaches may fail to detect obfuscated

malware.

2.2.3 Client Honeypots

Recent studies have proposed client honeypot systems that aim to detect

and analyze drive-by download attacks [34, 35, 36, 18, 37]. A client honey-

pot is a system that crawls websites and detects malicious websites. Client

honeypots can be classified into two types: low-interaction honeypots and

high-interaction honeypots. Low-interaction honeypots such as HoneyC [34]

include an emulator of a browser to crawl websites. Therefore, there is no risk

that honeypots themselves will be infected with malware. High-interaction

honeypots such as Capture-HPC [35] and BLADE [36] include a real web

browser and system; therefore, they can collect more information such as

malware behavior after exploitation. One clear drawback of high-interaction

11
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honeypots is the risk of malware infection because they actually run exploit

codes. Akiyama et al. proposed a state-of-the-art high-interaction honey-

pot called Marionette [18, 37] that overcomes the risk of malware infection.

Marionette has a real vulnerable web browser and plugins that can detect

attacks without being infected with malware.

However, client honeypots still have three major problems that affect

their detection of all malicious websites. One problem is the lack of scal-

ability. At present, attackers generally deploy a large number of malicious

websites [8], whose URLs change within a short time period [29]. Thus, it is

not feasible to study the entire set of malicious URLs with client honeypot

systems. Another problem is that even if websites are benign while being in-

vestigated, they may be attacked afterwards and vice versa. Therefore, it is

necessary to shorten the intervals between investigations. However, because

of time and cost limitations, it is not feasible to investigate all URLs sev-

eral times. In addition, malicious websites utilize cloaking techniques to hide

their malicious contents from particular IP addresses used by honeypots [38].

This cloaking makes it more difficult for client honeypots to crawl and detect

malicious websites [17].

In summary, existing client honeypot-based approaches have some prob-

lems: lack of scalability and versatility, and failure to detect cloaking tech-

niques.

2.3 Detection Scheme

In this section, a high-level overview of our detection scheme is presented

first in Section 2.3.1. Next, the effectiveness of our approach is shown in

Section 2.3.2. Then, Section 2.3.3 illustrates several feature extraction tech-

niques. Finally, Section 2.3.4 shows how a machine learning approach can be

applied to our detection scheme.

12
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Figure 2.2: Overview of our detection scheme

2.3.1 High-level Overview

Our detection scheme is based on two intrinsic characteristics of IP addresses:

(1) stability with time [39] and (2) address space skewness [40, 41]. First,

although attackers can change URLs and DNS records at a low cost, it is

much more difficult to change IP addresses, which are essentially associated

with malicious activities. Thus, the characteristics of an IP address should be

more stable compared with other metrics. Second, IP addresses associated

with malicious activities are likely to be concentrated in certain network

address spaces, as reported by previous measurement studies [40, 41]. In the

following Section 2.3.2, our preliminary experiments show that IP addresses

of web-based malware also have these characteristics. To the best of our

knowledge, the approach presented here is the first IP address-based approach

against malicious websites that employ drive-by download attacks. On the

other hand, approaches against botnets, phishing, and spam mails have been

widely studied, as in [39, 40, 41].

Basically, our approach blocks users’ access to malicious websites by ex-

tending existing blacklists. The unique feature of our scheme is that it can

evaluate IP addresses that are not listed in existing blacklists. To compli-

cate analysis and detection attempts, drive-by download attacks lead users

13



CHAPTER2 PROFILING SPATIAL STRUCTURES OF IP ADDRESSES

Table 2.1: Training dataset
Data Period # URLs # IP addresses

TRN B Apr 30, 2011 10,000 10,372
TRN M Jan 1, 2009–Apr 30, 2011 63,694 14,171

to an actual attacking website via multiple stepladder sites by redirecting

users’ browsers many times. Therefore, blocking access to the IP address of

a destination malicious website can protect users from malware infection.

Our detection scheme involves the following four steps: 1) collecting IP

addresses, 2) extracting feature vectors, 3) building a trained model, and 4)

detecting malicious IP addresses. Our key technical contribution is building a

novel feature extraction methods (step 2), which is described in Section 2.3.3.

Section 2.3.4 shows our supervised machine learning technique that is em-

ployed for step 3 and step 4. Figure 2.2 outlines our detection scheme.

2.3.2 Effectiveness of IP Address-based Approach

This section illustrates the effectiveness of our IP address-based approach

to detect malicious websites. Two preliminary experiments using real IP

address data are conducted to show stability with time in malicious networks

and address space skewness.

Training Dataset

To evaluate the effectiveness of IP address-based approaches, IP addresses

of both benign and malicious websites are collected. Table 2.1 shows the

collected training dataset. Note that this training dataset is also used for

building a trained model in step 3, which is described later in Section 2.3.4.

Our benign training dataset TRN B comprises URLs of the top 10,000

websites on the Alexa traffic ranking list [42] on April 30, 2011. From these

URLs, 10,372 IP addresses are resolved. Domain names in the ranking list

include those to which multiple IP addresses are assigned for load balancing,

using DNS round robin and content delivery networks (CDNs). Therefore,
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Table 2.2: Top 5 malicious AS in TRN M
AS # URLs # IP addresses

AS #1 1,389 482
AS #2 2,422 400
AS #3 1,061 355
AS #4 761 280
AS #5 1,047 275

the number of IP addresses in the ranking list exceeds the number of URLs,

which correlate with domain names. The Alexa ranking is calculated from a

combination of the average number of daily visitors and page views during

the month [42]. Therefore, it contains both benign sites and less benign sites

such as pornographic and file-sharing sites.

Our malicious training dataset TRN M consists of IP addresses selected

from the malware domain list (MDL) [43]. Note that MDL contains some

malicious websites on web hosting servers, which utilize the same IP address

for multiple domain names. Therefore, the number of URLs is greater than

that of IP addresses. TRN M contains 14,171 unique malicious IP addresses

collected over a period of more than two years from January 1, 2009 to April

30, 2011.

Stability with Time in Malicious Networks

To evaluate stability with time in malicious networks, malicious IP addresses

of TRN M as shown in Table 2.1 are analyzed. In this preliminary experi-

ment, IP addresses are treated per AS. Table 2.2 shows analyzed AS, whose

AS numbers are masked for security. From the day when IP addresses are

observed in TRN M, the elapsed days since Jan 1, 2009 are calculated. Fig-

ure 2.3 represents the cumulative distribution function (CDF) of IP addresses

observed in each AS. This result illustrates that malicious IP addresses tend

to be contained in certain AS. Moreover, such AS is continuously used for

malicious activities for over two years.

Unlike IP addresses, malicious URLs change within a short time pe-
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Figure 2.3: Lifetime of malicious AS in TRN M

riod [29]. For example, more than 60% of URLs contained in TRN M or

the malware domain list (MDL) were active for less than one month [8].

Furthermore, attackers create a lot of new malicious URLs one right after

the other to avoid being blacklisted [17, 8]. Our analysis indicates that IP

addresses are more stable than URLs in terms of time, i.e. IP addresses have

less variability over time.

Address Space Skewness

In this preliminary experiment, IP addresses are projected on a Hilbert

curve [44] to visually confirm the locality of malicious IP addresses. Hilbert

curve is a recursively defined space-filling curve. A space-filling curve maps

points on to a d-dimensional space so that the closeness among the points

is preserved. In this study, any consecutive IP addresses will be projected

onto a single contiguous part on the curve [40, 45]. Figure 2.4 shows an
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Figure 2.4: Example of IP address mapping on a Hilbert curve

example of IP address mapping on a Hilbert curve. In Fig. 2.4, the squares

are ordered according to the Hilbert curve where a single square represents

a /24 network block. This technique has also been applied in some existing

research to visualize IP address positions of the entire IPv4 address space.

For example, Hao et al. [40] utilized the Hilbert curve to display the IP ad-

dresses of spam mail senders and Cai et al. [45] showed block-level IP address

usage patterns using the Hilbert curve. Figure 2.5 visualizes the IP addresses

of A.B.0.0/16, the first and the second octets of which are masked with A

and B for security and projected into the Hilbert space using the training

dataset in Table 2.1. The gray square represents a benign /24 network block,

and the black square represents a malicious /24 network block. Figure 2.5

demonstrates that the IP addresses of malicious websites are concentrated in

certain network blocks.

2.3.3 Feature Extraction Methods

As described in Fig. 2.2, step 2 projects an IP address space onto a feature

space that reflects the relationship between IP addresses and the network

structure for interpretation by machine learning algorithms. This chapter

proposes three methods to extract a feature vector from an IP address: octet-

based extraction (Octet), extended octet-based extraction (ExOctet), and bit

string-based extraction (Bit).
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Figure 2.5: Visualization of IP addresses on A.B.0.0/16

Octet-based Extraction (Octet): Octet constructs an M = 28 × N -

dimensional feature vector represented as a sparse bit sequence {b0, · · · , bM−1}
from the most significant N octets of an IPv4 address, where N is a natural

number, ranging between one and four that is used as a parameter. The ini-

tial value for each bit {b0, · · · , bM−1} is zero. A feature vector is represented

by the following equation:
⎧
⎪⎨

⎪⎩

bk = 1 (k in
N⋃

n=1
{28 · (n− 1) +Xn})

bk = 0 (otherwise),

where k is an index set of feature vectors.

Let b28(n−1)+Xn = 1 when the n-th (1 ≤ n ≤ N) octet of an IPv4 address is

represented asXn (0 ≤ Xn ≤ 28−1) in decimal notation. Figure 2.6 shows an

example of feature vectors corresponding to the IPv4 address 198.51.100.88
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N n-th octet Feature vector M 

1 1  
 

256 

2 1, 2  
 

512 

3 1, 2, 3  
 

768 

4 1, 2, 3, 4  
 

1024 

N=1 

N=4 

N=2 
N=3 

IPv4 address: 198.51.100.88 

bk =1 k =198( )     
bk = 0 otherwise( )






(0 ≤ k ≤ 255)

X1,  X2,  X3,  X4( ) = 198,  51,  100,  88( )

bk =1 k =198,  307( )
bk = 0 otherwise( )    






(0 ≤ k ≤ 511)

bk =1 k =198,  307, 612( )
bk = 0 otherwise( )            






(0 ≤ k ≤ 767)

bk =1 k =198,  307, 612, 856( )
bk = 0 otherwise( )                    






(0 ≤ k ≤1023)

Figure 2.6: Example of Octet-based Extraction (Octet)

with Octet. The upper half of Fig. 2.6 illustrates the correspondence between

the parameter N and feature extraction coverage. A feature vector uses the

first octet of an IP address when N = 1; the first and second octets when

N = 2; the first, second, and third octets when N = 3; and the first, second,

third, and fourth octets when N = 4. The lower half of Fig. 2.6 lists the

feature vectors extracted by parameter N . For example, when N = 3, k

consists of 198, 307 (= 256 +X2), and 612 (= 512 +X3).

Extended Octet-based Extraction (ExOctet): ExOctet extends Octet’s

feature vector to construct an M = 28 × (N +2)-dimensional feature vector

represented as a sparse bit sequence {b0, · · · , bM−1} from the most significant

N octets of an IPv4 address, where N is a natural number greater than or

equal to three. The initial value for each bit {b0, · · · , bM−1} is zero. A feature
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N n-th octet Feature vector M 

3 1, 2, 3  
 

1280 bk =1 k =198,  307,  612( )                         

bk =1 k = 28 ⋅3+ (198+ 51)mod28( )          
bk =1 k = 28 ⋅ 4+ (198+ 51+100)mod28( )
bk = 0 otherwise( )                                     















(0 ≤ k ≤1279)

(X1 + X2 )mod2
8 (X1 + X2 + X3)mod2

8

IPv4 address: 198.51.100.88 
X1,  X2,  X3,  X4( ) = 198,  51,  100,  88( )

Figure 2.7: Example of Extended Octet-based Extraction (ExOctet)

vector is represented according to the following equation:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bk = 1 (k in
N⋃

n=1
{28 · (n− 1) +Xn})

bk = 1 (k in
N+1⋃

m=N≥3
{28 ·m+ (

m−1∑

i=1

Xi) mod 28})

bk = 0 (otherwise).

Let b28(n−1)+Xn = 1 when the n-th (1 ≤ n ≤ N) octet of an IPv4 address

is represented as Xn (0 ≤ Xn ≤ 28 − 1) in decimal notation. ExOctet

adds b28·3+(X1+X2) mod 28 = 1 and b28·4+(X1+X2+X3) mod 28 = 1 when N = 3.

Figure 2.7 shows an example of feature vectors corresponding to the IPv4

address 198.51.100.88 with ExOctet. The upper half of Fig. 2.7 illustrates

the correspondence of the extended coverage that is different from that of

Octet. The lower half of Fig. 2.7 lists feature vectors extracted when N = 3.

A feature vector uses the first, second, and third octets of an IP address when

N = 3, which is the same as Octet. Moreover, a feature vector is extended

with a combination of the first and second octets, and the first, second, and

third octets.

Bit String-based Extraction (Bit): Bit constructs a k-dimensional fea-

ture vector represented as a bit sequence {b1, · · · , bk} from a 32-bit binary
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k Feature vector 

8  
 

16  
 

24  
 

32  
 

k=8 

k=32 

k=16 
k=24 

bk =1 k =1, 2, 6, 7( )
bk = 0 otherwise( )






(1≤ k ≤ 8)

{b1,  … , b32} = {1,1,0,0,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0,0,1,0,1,1,0,0,0}

bk =1 k =1, 2, 6, 7,11,12,15,16( )
bk = 0 otherwise( )                    






(1≤ k ≤16)

bk =1 k =1, 2, 6, 7,11,12,15,16,18,19, 22( )
bk = 0 otherwise( )                                   






(1≤ k ≤ 24)

bk =1 k =1, 2, 6, 7,11,12,15,16,18,19, 22, 26, 28, 29( )
bk = 0 otherwise( )                                                   






(1≤ k ≤ 32)

IPv4 address: 198.51.100.88 

Figure 2.8: Example of Bit String-based Extraction (Bit)

form of the IPv4 address, where k is a natural number used as a parame-

ter. The value for each bit {b1, · · · , bk} is equivalent to the first k bits of a

binary-formatted IPv4 address. A feature vector is represented according to

the following equation:
⎧
⎨

⎩
bk = 1 (when the k-th bit value of IPv4 address is 1)

bk = 0 (otherwise).

Let bk = 1 when the k-th bit value of binary-formatted IPv4 address is 1.

Figure 2.8 shows an example of feature vectors corresponding to the IPv4

address 198.51.100.88 with Bit. The upper half of Fig. 2.8 illustrates the

correspondence between parameter k and feature extraction coverage, and

the lower half lists the feature vectors extracted by parameter k.

21



CHAPTER2 PROFILING SPATIAL STRUCTURES OF IP ADDRESSES

Table 2.3: Example of a training dataset
Label tn IP address Feature vector xn

+1 198.51.100.88 {1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1}
−1 192.0.2.1 {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
−1 203.0.113.24 {1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}
· · · · · · · · ·

2.3.4 Application of Machine Learning

As shown in Fig. 2.2, step 3 applies machine learning to the feature vectors

extracted in step 2. Several options exist for machine learning classifiers such

as k-nearest neighbors (k-NN), neural networks, and support vector machines

(SVMs) [46]. K-NN are methods for classifying test data based on proxim-

ity between test data and training data in the feature space. Due to their

high calculation complexity, k-NN are not suitable for high-speed classifi-

cation [46]. Also, typical k-NN cannot accurately handle high-dimensional

data such as our IP address-based feature spaces. Neural networks, especially

feedforward multi-layer neural networks, are computational models that can

be used for data classification. Neural networks need a lot of parameters

to perform and they cannot find global optimum solutions [46]. SVM is a

popular machine learning method for classification. Unlike k-NN, SVM can

appropriately handle high-dimensional feature spaces. Moreover, the num-

ber of parameters in SVM is small and SVM can find a global optimum

solution [46, 47]. In addition, it has been reported that SVM works very

well for various problems in a lot of areas [47]. Our scheme is intended to be

an accurate and lightweight detection method. Therefore, SVM is selected

to demonstrate the effectiveness of our approach. As shown in Section 2.4,

our detection scheme with SVM works successfully for real datasets. Note

that our scheme is generic and can leverage any type of classifier that fits

our problem formulation. A key contribution of this chapter is the building

of effective feature vectors that can be input into supervised classifiers.

Table 2.3 shows an example of a training dataset used in this study. The

feature vectors in this example are extracted using Bit when k = 16. The
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Figure 2.9: Conceptual image of SVM’s feature space

training dataset comprises N input vectors x1, · · · ,xN with corresponding

target label values t1, · · · , tN , where tn ∈ {−1(benign),+1(malicious)}.
Now the way to train SVM classifiers using the training dataset is de-

scribed below. SVM uses the concept of a margin, which is defined to be

the smallest distance between the decision boundary and any of the samples.

The decision boundary is chosen to be the one whose margin is maximized.

Figure 2.9 illustrates a conceptual image of SVM’s feature space. The dis-

crimination function of SVM is defined as follows:

y(x) = wTφ(x) + β,

where w denotes the parameter to move the decision boundary, wT is the

transposed matrix of w, φ(x) denotes the feature space transformation func-

tion, and β is a bias parameter. Using the discrimination function above,
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the label C of a sample with feature vector x can be inferred as

Ĉ =

⎧
⎨

⎩
1 (y > 0)

−1 (y < 0).

In SVM, parameters w and β are trained so that margins are maximized.

The optimization problem is formulated as follows:

argmaxw,β

{
1

|w| min
n

[
tn(w

Tφ(xn) + β)
]}

.

To numerically derive the solutions, sequential minimal optimization [48] is

applied. For the kernel function, our scheme selects the Gaussian kernel:

k(x,y) = φ(x)Tφ(y) = e−γ||x−y||. To obtain the best parameters, γ and β,

our scheme performs grid search with cross-validation tests. To estimate the

probability of SVM’s binary output, the technique proposed by Platt in [49]

is applied. The key idea is to apply the logistic sigmoid function to the

discrimination function of SVM, y(x). The score is calculated as follows:

score = P (t = 1|x) = σ(Ay(x) +B), (2.1)

where σ(a) is the logistic sigmoid function defined by σ(a) = 1/(1+exp(−a)).

The values for parameters A and B are found by minimizing the cross-entropy

error function defined by a training dataset consisting of pairs of values y(xn)

and tn. The scores assigned to each IP address are used for controlling the

risk of various errors, which are discussed in Section 2.4.4.

2.4 Experiments

This section illustrates the experimental results using real IP addresses data

obtained from existing blacklists and actual web traffic data collected on a

large-scale campus network.

2.4.1 Test Dataset

Test dataset is created from both benign and malicious websites, which in-

clude web traffic data captured on a campus network. Table 2.4 shows the

test dataset used to evaluate our scheme.
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Table 2.4: Test dataset
Data Period # URLs # IP addresses

TST B May 1, 2011–May 14, 2011 96,597 57,190
TST M ACTIVE May 1, 2011–May 14, 2011 11,223 2,450
TST M NEW May 1, 2011–May 14, 2011 455 161

Our benign test dataset TST B consists of HTTP traffic data captured

on a campus network for two weeks in May 2011. The campus network

is a production network with /16 prefix lengths and is used by more than

50,000 students and faculty members. The average throughput of the campus

traffic is approximately 300-400 Mbps, and that of HTTP traffic is up to

about 25 Mbps. To minimize the probability that malicious websites are

contained in TST B, all URLs in the captured data are checked with the

Google Safe Browsing API [24]. Google Safe Browsing is constantly updated

with blacklists of suspected phishing and malware related websites. As a

result, 2,515 URLs that are suspected of being malicious sites are excluded.

Our malicious test dataset consists of IP addresses selected from the mal-

ware domain list (MDL) [43], which is the same data collection source as our

malicious training dataset TRN M. Note that the collection period of our

malicious test dataset is different from that of TRN M. The malicious test

dataset are divided into two subsets: TST M ACTIVE and TST M NEW.

TST M ACTIVE contains 2,450 unique active malicious IP addresses ob-

served for two weeks from May 1 to May 14, 2011. TST M NEW consists of

161 malicious IP addresses that are unknown to the trained model. To eval-

uate the generalization ability of the trained model, any IP addresses that

are also contained in TRN M are eliminated from TST M NEW. Moreover,

from TST M NEW, any IP addresses for which the top three octets are equal

to those of an IP address contained in TRN M are eliminated. Therefore,

TST M NEW contains IP addresses that have never been observed. They

can be seen as the IP addresses that are not covered by blacklists, yet.
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Table 2.5: Relationships among terms
Actual value

Malicious Benign

Prediction Malicious True Positive (TP) False Positive (FP)
outcome Benign False Negative (FN) True Negative (TN)

2.4.2 Evaluation Method

In the following experiments, the training dataset shown in Table 2.1 is used

for the SVM’s trained model as explained in Section 2.3.4. Then, our scheme

is evaluated with the test dataset of Table 2.4.

This chapter defines the correct classification of an actually malicious

IP address into a malicious category as a true positive (TP), the incorrect

classification of an actually benign IP address into a malicious category as

a false positive (FP), the incorrect classification of an actually malicious IP

address into a benign category as a false negative (FN), and the correct

classification of an actually benign IP address into a benign category as a

true negative (TN). Table 2.5 shows the relationships among these terms.

Our scheme is evaluated using the following criteria: accuracy, false pos-

itive rate (FPR), false negative rate (FNR), receiver operator characteristic

(ROC) curve, and area under the curve (AUC). Accuracy, FPR, and FNR

are calculated as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN)

FPR = FP/(FP + TN)

FNR = FN/(FN + TP ).

The ROC curve is a graphical plot of the true positive rate (TPR = TP/(TP+

FN)) vs. FPR for every possible cut-off point. The cut-off point relates to

score, as described in Section 2.3.4. Each point on the ROC curve repre-

sents a (FPR, TPR) pair corresponding to a particular decision cut-off point.

Therefore, if the curve rises rapidly towards the upper left corner, it means

that the overall test result is good. AUC is the area under the ROC curve
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Table 2.6: Detection performance with the test dataset combination TST B
and TST M ACTIVE

Method Accuracy AUC FPR FNR

Octet (N = 1) 0.751 0.788 0.253 0.151
Octet (N = 2) 0.862 0.878 0.138 0.140
Octet (N = 3) 0.885 0.989 0.119 0.024
Octet (N = 4) 0.860 0.988 0.145 0.016
ExOctet (N = 3) 0.905 0.994 0.098 0.020
Bit (k = 8) 0.751 0.790 0.253 0.151
Bit (k = 16) 0.847 0.874 0.154 0.136
Bit (k = 24) 0.857 0.979 0.148 0.026
Bit (k = 32) 0.835 0.991 0.172 0.017

that is used to score a binary classifier. AUC is calculated as follows:

AUC =
∑

i∈Ω
δiFNR(i),

where δi is FPR(i + 1) − FPR(i), and FPR(i) and FNR(i) are the false

positive rate and false negative rate for the i th parameter setting, respec-

tively. Ω is the parameter space to be explored. Note that FPR(i) is sorted

in ascending order. AUC ranges from 0.0 (worst) to 1.0 (best).

2.4.3 Experiment 1: Comparing the Detection Perfor-
mance of Feature Extraction Methods

This experiment evaluates the detection performance of our feature extrac-

tion methods. As an implementation of SVM, our scheme uses LIBSVM [47],

which is currently one of the most widely used SVM software tool for many

disciplines. In this experiment, 0.0 ≤ score < 0.5 is considered as benign

and 0.5 ≤ score ≤ 1.0 as malicious, which is equivalent to the cut-off point

0.5. This is the default configuration of binary classification using SVM. Our

scheme is evaluated with two kinds of test dataset combinations.

The first set of tests was conducted with the test dataset combination

TST B and TST M ACTIVE. Table 2.6 shows the evaluation results and
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Figure 2.10: ROC curves of detection performance with the test dataset
combination TST B and TST M ACTIVE.

Fig. 2.10 shows the ROC curves. In the Octet method, the accuracy increases

to 0.885, AUC increases to 0.989, and FPR decreases to 0.119, as N increases

to 3, where N is the parameter for the Octet method. However, when N = 4,

the accuracy and AUC decrease and FPR increases. FNR decreases linearly

with increasing N . ROC curves improve as N increases to 3. In particular,

the ROC curves for both N = 3, 4 are closer to the upper left corner and have

the potential to be ideal for binary classification. In the ExOctet method,

which prioritizes the upper octets of IP addresses, the best results obtained

are as follows: accuracy of 0.905, AUC of 0.994, and FPR of 0.098. The

obtained ROC curve is also better than those of all other methods. In the

Bit method, the accuracy increases to 0.857 and FPR decreases to 0.148 as

k increases to 24, where k is the parameter for the Bit method. However,

when k = 32, the accuracy decreases and FPR increases. AUC increases

linearly with increasing k, whereas FNR decreases linearly with increasing

k. The ROC curves improve as k increases and the curves obtained when

k = 24, 32 are excellent. These test results indicate that the top three octets

of IP addresses prove to be effective in discriminating between benign and

malicious websites. We believe that the reasons are (1) IP address allocation
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Table 2.7: Detection performance with the test dataset combination TST B
and TST M NEW

Method Accuracy AUC FPR FNR

Octet (N = 1) 0.747 0.768 0.253 0.180
Octet (N = 2) 0.861 0.834 0.138 0.304
Octet (N = 3) 0.880 0.897 0.119 0.335
Octet (N = 4) 0.855 0.885 0.145 0.217
ExOctet (N = 3) 0.902 0.914 0.098 0.292
Bit (k = 8) 0.747 0.762 0.253 0.180
Bit (k = 16) 0.846 0.804 0.154 0.304
Bit (k = 24) 0.851 0.893 0.148 0.205
Bit (k = 32) 0.828 0.878 0.172 0.261

policies [50] provide locality to IP addresses and (2) most of the networks

are based on the /24 subnet.

The second set of tests was conducted with the test dataset combination

of TST B and TST M NEW. Table 2.7 shows the evaluation results and

Fig. 2.11 shows the ROC curves. Note that the TST M NEW dataset does

not contain any IP addresses that are used in the training stage as known

IP addresses. This chapter first notices that our scheme successfully detects

unknown malicious IP addresses that could be missed by existing blacklists.

Now this test evaluates the performance in detecting unknown malicious

data. In the Octet method, the accuracy increases to 0.880, AUC increases

to 0.897, FPR decreases to 0.119, and FNR increases to 0.335 as parameter

N increases to 3. However, when N = 4, the accuracy, AUC, and FNR

decrease and FPR increases. The ROC curves improve as N increases to

3. However, when N = 4, the ROC curve worsens slightly. In the ExOctet

method, an accuracy of 0.902, AUC of 0.914, and FPR of 0.098 are the best

results. The ROC curve is also the best result among all the methods. In

the Bit method, the accuracy increases to 0.851, AUC increases to 0.893,

and FPR decreases to 0.148 as parameter k increases to 24. However, when

k = 32, the accuracy and AUC decrease and FPR increases. FNR is the
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Figure 2.11: ROC curves of detection performance with the test dataset
combination TST B and TST M NEW.

lowest when k = 24, whereas the ROC curve is the best when k = 24. The

reason for the best results when N = 3 or k = 24 is considered to be the

same as that of the first set of tests, i.e., most of the networks are based on

the /24 subnet.

For comparing the evaluation results of the two kinds of test dataset

combinations, FNR with tests using TST M NEW dataset is higher than

that using TST M ACTIVE. Furthermore, the ROC curves for the test using

TST M NEW is worse than that obtained using TST M ACTIVE. This is

because TST M NEW contains only IP addresses that are sufficiently valid

for the evaluation of our scheme, as described in Section 2.4.1. It should be

noted that our scheme can classify unknown malicious IP addresses with high

accuracy and low FPR. These results prove that IP addresses are effective

indicators for determining whether a website is malicious.
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Figure 2.13: Example of the relationship between score and two kinds of
thresholds.

2.4.4 Experiment 2: Evaluating the Distribution of the
Score

This experiment evaluates the distribution of the scores assigned to IP ad-

dresses by our scheme. Figure 2.12 shows histograms with cumulative fre-

quency curves illustrating the distribution of scores for each test dataset:

TST B, TST M ACTIVE, and TST M NEW, with the ExOctet (N = 3)

model showing the best results in Section 2.4.3.

Figure 2.12 shows that for TST B, our scheme assigns low scores to benign

IP addresses. Moreover, for TST M ACTIVE in Fig. 2.12, our scheme gives

significantly high scores to malicious IP addresses that were active during

the observation term. This means that our scheme can accurately determine

whether an IP address is malicious. TST M NEW in Fig. 2.12 shows that our

scheme can assign high scores to even unknown malicious IP addresses. As

described in Section 2.4.1, the first, second, and third octets of IP addresses in

TST M NEW do not match any IP addresses in the training dataset TRN M.

This indicates that the IP addresses in TST M NEW first appeared during

the observation period.

Now, our scheme introduces multiple thresholds to control the risk of in-

correct classification. In a real environment, the risk should be configurable

under various security policies such as minimizing the number of false posi-

tives and false negatives. This chapter discusses a way to follow these security

policies. For example, it is possible to decrease the number of false positives

and false negatives by setting two kinds of thresholds: th b and th m. th b

determines whether an IP address is benign and th m determines whether
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Table 2.8: Setting two kinds of thresholds with the test dataset combination
TST B and TST M ACTIVE

th b th m # IP addresses # IP addresses of # IP addresses of
in gray area false positives false negatives

0.5 0.5 0 5,476 50
0.4 0.6 5,824 3,282 33
0.3 0.7 12,696 1,847 24
0.2 0.8 20,840 842 9
0.1 0.9 30,965 233 3

Table 2.9: Setting two kinds of thresholds with the test dataset combination
TST B and TST M NEW

th b th m # IP addresses # IP addresses of # IP addresses of
in gray area false positives false negatives

0.5 0.5 0 5,476 48
0.4 0.6 5,829 3,282 26
0.3 0.7 12,701 1,847 19
0.2 0.8 20,839 842 9
0.1 0.9 30,964 233 3

an IP address is malicious. An IP address whose score is lower than or equal

to th b is considered benign, whereas an IP address whose score is greater

than or equal to th m is considered malicious. An IP address whose score

is between th b and th m is classified as being in a gray area. Figure 2.13

shows an example of the relationship between the score and the two thresh-

olds when th b = 0.2 and th m = 0.8, i.e., 0.2 < score < 0.8 is the gray

area.

Table 2.8 shows the result when setting the two kinds of thresholds for

the test dataset combination TST B and TST M ACTIVE. Table 2.9 shows

the result with the two kinds of thresholds for the test dataset combination

TST B and TST M NEW. Table 2.8 and Table 2.9 show that there were

5,476 false positives when th b = th m = 0.5. In this case, th b = th m is

equivalent to setting a single threshold without any gray areas. Extending the

gray area decreases the number of IP addresses that result in false positives or

false negatives. As an example, compare the cases between multiple thresh-
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Table 2.10: Snort alerts in benign dataset TST B
Snort signature # Alerts

SHELLCODE x86 inc ecx NOOP 272,180
SHELLCODE x86 NOOP 811
SHELLCODE base64 x86 NOOP 585
SHELLCODE x86 inc ebx NOOP 425
SHELLCODE x86 setuid 0 18
SHELLCODE x86 setgid 0 11

# total Snort alerts 274,030
# flows inspected by Snort 145,985,724

olds (th b = 0.2 and th m = 0.8) and a single threshold (th b = th m = 0.5).

When using multiple thresholds, our scheme does not determine whether the

IP address for which the score is 0.2 < score < 0.8 is benign or malicious

but classifies it as being in the gray area. This decreases the likelihood of

false positives and false negatives compared to the case of a single threshold;

however, there are a number of gray IP addresses that cannot be determined

as being benign or malicious. These results indicate that our scheme can con-

trol these two kinds of thresholds to decrease the number of false positives

and false negatives.

2.4.5 Experiment 3: Applying Conventional IDS to
Our Data

In this experiment, conventional IDS is applied to two kinds of data. The

purpose of this experiment is to compare the detection performance of our

scheme with that of conventional IDS to demonstrate the superiority of the

proposed scheme. As a conventional IDS, the latest Snort [32] and its rule

sets are selected. Snort is one of the most famous open source signature-

based IDS. The Snort signatures applied in this experiment consisted of only

eight Priority 1 signatures as shown in Table 2.10 and Table 2.11.

The first test was conducted with our benign dataset TST B. As men-

tioned in Section 2.4.1, TST B contains benign HTTP traffic data. However,

as shown in Table 2.10, a number of false positive alerts were output from
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Table 2.11: Snort alerts in malicious dataset D3M
Snort signature # Alerts

SHELLCODE x86 NOOP 40
SHELLCODE x86 inc ebx NOOP 1
SHELLCODE x86 inc ecx NOOP 1
POLICY Suspicious .cn DNS query 2

# total Snort alerts 44
# URLs in D3M data 840
# flows inspected by Snort 11,393

Snort. In this case, false positive means the incorrect classification of ac-

tually benign traffic into the malicious category by Snort. Table 2.10 lists

many shellcode-related alerts. The reasons for these alerts are broadly clas-

sified into two categories: upload of executable files and HTTP compression.

Upload of executable files to online file storage services or web-based e-mail

services is considered a shellcode-related alert by Snort. HTTP compres-

sion, which reduces the file size of HTTP data by using gzip and deflate

algorithms [51], also outputs shellcode-related alerts.

The second test was conducted with the D3M 2010 dataset from MWS

2010 [52] and the D3M 2011 dataset from MWS 2011 [53]. These datasets

were provided by the anti Malware engineering WorkShop (MWS) [54] project

in Japan to facilitate data analysis in the security research area. The D3M

datasets (D3M 2010 and D3M 2011) contained malicious communication

data when the client honeypot Marionette [18] accessed URLs in MDL [43].

Marionette inspected websites corresponding to the URLs in MDL to deter-

mine whether they were malicious or not at the time of inspecting [8]. From

inspected URLs, 840 URLs are selected for the D3M datasets by the MWS

project [54]. Both the D3M datasets and our malicious training dataset

TRN M use the same MDL [43]. Therefore, the 840 URLs are a subset of

the 63,694 URLs in TRN M. Table 2.11 lists three types of shellcode-related

alerts and suspicious DNS query alert output from Snort, but the number of

correct detection by Snort is small.

These two kinds of test results indicate that Snort IDS is practically
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Table 2.12: Processing time with the test dataset D3M

Method Training [sec] Test [sec] Test speed [addresses/sec]

Octet (N = 1) 15.6 0.57 1486
Octet (N = 2) 18.1 0.59 1415
Octet (N = 3) 31.5 0.67 1249
Octet (N = 4) 44.2 1.12 752
ExOctet (N = 3) 24.8 0.78 1074
Bit (k = 8) 18.1 0.70 1194
Bit (k = 16) 24.7 0.73 1146
Bit (k = 24) 45.1 1.20 698
Bit (k = 32) 65.8 2.04 412

Rblcheck − 23.60 36
Snort − 3.98 211

incapable of detecting malicious websites because there were too many false

positive alerts. Comparison of Table 2.10 with Table 2.11 reveals that the

same types of alerts are output for both benign and malicious data. In

real environments, there is access to both benign and malicious websites.

Therefore, the detection of malicious websites with Snort IDS is not readily

performed, as demonstrated in this experiment.

For reference, the 840 malicious URLs in the D3M datasets are tested

by our scheme. Our scheme detects 805 URLs correctly, so the detection

accuracy is 0.958 (=805/840), and FNR is 0.042 (=35/840). This result

shows that our scheme can compensate for the limitations of conventional

IDS.

2.4.6 Experiment 4: Comparing the Processing Time

This experiment compares the processing time between our scheme and ex-

isting approaches. The processing time is measured under the same Linux

machine with an Intel Xeon 2.40 GHz CPU and 4 GB RAM. Table 2.12

shows the results of this experiment.

In our scheme, the processing time is divided into training time and test
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time. Training time is the time for building a trained model using the train-

ing dataset shown in Table 2.1. Test time is the total time for checking all IP

addresses in the D3M 2010 and D3M 2011 datasets shown in Section 2.4.5.

Test speed is the number of processable addresses per second, which is calcu-

lated from test time. Note that our scheme does not need to build a trained

model every time and the same trained model can be used repeatedly. In

the Octet method, the training time and the test time increase linearly with

increasing N . In the ExOctet method, the training time is shorter than that

of the Octet (N = 3) method, but the test time is longer than that of the

Octet (N = 3) method. In the Bit method, the training time and the test

time increase linearly with increasing k.

Existing approaches include network-side blacklists and signature-based

IDS. As a network-side blacklist, rblcheck [55] is used for measuring the test

time for checking IP addresses in the D3M datasets. Rblcheck is a tool for

performing lookups in multiple DNSBL services. Using more DNSBL services

takes a longer time. Therefore, only one of the DNSBL services is selected for

comparing the processing time fairly. As shown in Table 2.12, the test time

of rblcheck is up to 41 times longer than that of our scheme. The reason is

that rblcheck contacts external DNSBL servers to check IP addresses using

the DNS protocol. As a signature-based IDS, Snort (see Section 2.2.2) was

selected. The test time of Snort with the D3M datasets is longer than any of

our schemes. It is because Snort is checking not only IP addresses but also

the entire packet payload.

For comparing the processing time, the test speed of our scheme is faster

than that of existing approaches. Our scheme is based on only the IP address

structure, so it is more lightweight than other approaches. Therefore, our

scheme can be combined with existing approaches to compensate for their

drawbacks.
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2.4.7 Analysis of False Positives in Our Scheme

This section analyzes why our scheme incorrectly determines some of the

actually benign IP addresses as malicious, namely false positives. The targets

of the analysis are the IP addresses in TST B, whose score is in the top

100. The analysis shows that 83 IP addresses were used for websites on

hosting services, 2 IP addresses were used for CDN, and the other 18 IP

addresses were not used at that time and could not be investigated. This

result indicates that because it uses only IP addresses, our scheme is likely

to falsely regard benign IP addresses used on hosting services as malicious.

When at least one of the websites deployed on a hosting service is malicious,

the other benign websites are falsely considered as malicious, namely as FPs,

although they are benign.

2.5 Conclusion

In this study, a new scheme to detect malicious websites by learning the

IP address features has been developed and evaluated. Our experimental

results have indicated that features extracted only from IP addresses are

distinct indicators that enables us to compensate for the limitation of exist-

ing approaches; i.e., our scheme can detect even unknown malicious websites

with low errors. However, our scheme incorrectly considers some benign web-

sites as malicious mainly because they are on the same web hosting services

that are utilized by malicious websites. This warrants a more thorough in-

vestigation of our scheme for hosting services as part of our future work.

Moreover, this chapter considers only IPv4 addresses structure because the

number of malicious websites using IPv6 addresses is much less than that of

using IPv4 addresses at the present time of writing. Thus, applying our IPv4

address-based approach to IPv6 address environment will be our future work

in the near future. Nonetheless, the newly developed scheme will allow us

to significantly enhance the detection performance when applied to existing

network security systems.
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Chapter 3

Profiling Time-series Variations
of Domain Names

3.1 Introduction

Domain names are used by all Internet users and service providers for their

online activities and businesses. Domain names and their protocol (domain

name system (DNS)) are one of the most successful examples in distributed

systems that can satisfy users’ needs regarding easy use of the Internet.

Attackers are also Internet users and they abuse easy-to-use domain names as

a reliable cyberattack infrastructure. For example, in today’s cyberattacks,

domain names are used in serving malicious content or malware, controlling

malware-infected hosts, and stealing personal or important information.

As countermeasures against domain name abuses, detecting and blacklist-

ing known malicious domain names are basic strategies and widely applied

to protect users from cyberattacks. Attackers understand these countermea-

sures and abuse DNS to mystify their attack ecosystems; DNS fast-flux and

domain generation algorithms (DGAs) are used to evade blacklisting. The

key feature of these techniques is that they systematically generate a huge

volume of distinct domain names. These techniques have made it infeasi-

ble for blacklisting approaches to keep up with newly generated malicious

domain names.

Ideally, to fully address the underlying issue with domain name black-

39



CHAPTER3 PROFILING TIME-SERIES VARIATIONS OF DOMAIN
NAMES

lists, we need to observe and track every newly registered and updated do-

main name in real time and judge whether the domain name is involved

in any attackers’ infrastructure. However, in reality, it is virtually impos-

sible to obtain a solution because of the following three reasons. One is

that attackers use techniques, such as DNS fast-flux and DGAs, to system-

atically generate a huge volume of distinct domain names. The second is

that the number of existing domain names is too large to track in real time.

The number of second-level domain (2LD) names (e.g., example.com) is now

over 296 million [56]. Multiple fully qualified domain names (FQDNs) (e.g.,

www.example.com) may exist under the same 2LD names; therefore, the

number of all existing FQDNs could be in the billions. The third reason is

that no one can fully understand all and real-time changes in the mappings

between domain names and IP addresses. Since DNS is a distributed system

and the mappings are configured in each authoritative name server, real-time

observation of the mappings of all domain names is infeasible.

Given these reasons, blacklisting approaches based on DNS observations

have failed to keep up with newly generated malicious domain names. Thus,

we adopt an approach of prediction instead of observation, i.e., we aim to dis-

cover malicious domain names that are likely to be abused in future. The key

idea of this approach is to exploit temporal variation patterns (TVPs) of ma-

licious domain names. The TVPs of domain names include the information

about how and when a domain name has been listed in legitimate/popular

and/or malicious domain name lists. We use TVPs to apprehend the varia-

tions in domain names, e.g., a domain name is newly registered or updated,

IP addresses corresponding to the domain name are changed, and the traffic

directed to the domain name is changed.

On the basis of the aforementioned idea, we developed a system that

actively collects DNS logs, analyzes their TVPs, and predicts whether a given

domain name will be used for a malicious purpose. Our main contributions

are summarized as follows.

• We propose a system called DomainProfiler that identifies TVPs
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of domain names to precisely profile various types of malicious domain

names.

• Our evaluation with real and large ground truth data reveals that we

can predict malicious domain names 220 days beforehand with a true

positive rate (TPR) of 0.985 in the best-case scenario.

The rest of this chapter is organized as follows. We give the motivation of

our key idea in Section 3.2. In Section 3.3, we discuss our proposed system

DomainProfiler. We describe the datasets we used and the results of

our evaluation in Section 3.4. We discuss the limitations of our system in

Section 3.5 and related work in Section 3.6. Finally, we conclude this chapter

in Section 3.7.

3.2 Motivation: Temporal Variation Pattern

We define a temporal variation pattern (TVP) as the time-series behavior

of each domain name in various types of domain name lists. Specifically, we

identify how and when a domain name has been listed in legitimate/popular

and/or malicious domain name lists. Our motivation for considering TVPs is

based on the observation that both legitimate and malicious domain names

vary dramatically in domain name lists over time. The following are three

reasons for using different and multiple domain name lists. One is that the

data are realistically observable; that is, we can easily access the data from

domain name list maintainers. The second is that domain name lists are

created based on objective facts confirmed by the maintainer of those lists.

The third is that multiple domain name lists and the time-series changes of

those lists can boost the reliability of listed domain names.

As shown in Fig. 3.1, our proposed system defines and identifies four

TVPs (null, stable, fall, and rise) for each domain name in a domain name

list. Null means the domain name has not been listed in the specified time

window. Stable means the domain name has been continuously listed in the

time window. Fall is a state in which the domain name was first listed then
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Figure 3.1: Simplified Temporal Variation Patterns (TVPs)

delisted during the time window. Rise means that the domain name was

first unlisted then listed during the time window.

Definition: A set Td = {t1, ..., tNd
} is an ordered Nd of timestamps when

a domain name d has been listed/contained in a domain name list. The

domain name list is collected from ts to te. Given a set of timestamps Td and

a time window between a starting point ws and ending point we, the TVP

of a domain name is defined as follows.

TV P =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Null (min(Td ∪ {te}) > we ∨max(Td ∪ {ts}) < ws)

Stable (min(Td ∪ {te}) < ws ∧max(Td ∪ {ts}) > we)

Fall (min(Td ∪ {te}) < ws ∧ ws < max(Td ∪ {ts}) < we)

Rise (ws < min(Td ∪ {te}) < we ∧max(Td ∪ {ts}) > we)

These TVPs are common and generic features that can contribute to

accurately discriminating malicious domain names controlled by attackers

from legitimate domain names. Thus, the focus of these patterns covers a

wide range of malicious domain names used in a series of cyberattacks such
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Figure 3.2: Example of TVPs in Legitimate/Popular Domain Name List
(Alexa Top Sites)

as drive-by download attacks, malware downloads, command and control

(C&C), and phishing attacks.

In this chapter, we use the domain names ranked in the Alexa Top

Sites [42] as the legitimate/popular domain name list. Alexa provides the

top one million popular sites based on the global one-month average traffic

rank. We divide the Alexa list on the basis of the rank to create four do-

main name lists, Alexa top 1,000 (Alexa1k), Alexa top 10,000 (Alexa10k),

Alexa top 100,000 (Alexa100k), and Alexa top 1,000,000 (Alexa1M ). The

TVPs for the Alexa Top Sites are identified based on these four lists. Fig-

ure 3.2 shows examples of typical domain names that fit the four patterns

in Alexa1M. The graph indicates the relationships between domain names

and their Alexa rank variations over time (note the logarithmic y-axis). In

the null pattern of Alexa1M (Alexa1M-Null), the rank of a domain name

has always been outside 1M and has never been listed in Alexa1M. The

Alexa1M-Null pattern is intended to be one of the features or hints to boost
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true positive rates (TPRs), which is the ratio of correctly predicted malicious

domain names to actual malicious domain names. This is because the rank

for legitimate domain names is more likely to be within 1M, and new domain

names by attackers cannot be in Alexa1M right after they have registered. In

the stable pattern of Alexa1M (Alexa1M-Stable), the rank of a domain name

has always been within 1M and listed in Alexa1M. Alexa1M-Stable includes

stable popular domain names; thus, this pattern can be used for improving

true negative rates (TNRs), which is the ratio of correctly predicted legiti-

mate domain names to actual legitimate domain names. In the fall pattern

of Alexa1M (Alexa1M-Fall), the rank of a domain name was first within 1M,

fell, and finally delisted from Alexa1M. The Alexa1M-Fall pattern is intended

to detect maliciously re-registered, parked, and hijacked domain names that

changed from originally legitimate domain names to improve TPRs. In the

rise pattern of Alexa1M (Alexa1M-Rise), the rank of a domain name was first

outside 1M then increased to be within 1M. This Alexa1M-Rise pattern in-

cludes legitimate start-up websites’ domain names during the specified time

window to improve TNRs.

We use the domain names listed in the public blacklist hpHosts [57] as

the malicious domain name list. The hpHosts provides malicious domain

names of malicious websites engaged in exploits, malware distribution, and

phishing. The TVPs for hpHosts are defined in a similar way for Alexa.

Note that hpHosts does not have any continuous value, such as ranking, and

only has information of whether domain names are listed. Figure 3.3 shows

examples of typical domain names that fit the four patterns in hpHosts.

In the null pattern of hpHosts (hpHosts-Null), a domain name has never

been listed in hpHosts. This hpHosts-Null pattern can be used for improv-

ing TNRs because legitimate domain names are less likely to be listed in

hpHosts. In the stable pattern of hpHosts (hpHosts-Stable), a domain name

has always been listed in hpHosts. The hpHosts-Stable pattern includes do-

main names related to bullet-proof hosting providers, which provide network

resources even to attackers, to improve TPRs. In the fall pattern of hpHosts
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Figure 3.3: Example of TVPs in Malicious Domain Name List (hpHosts)

Table 3.1: Relationships between TVPs and Objectives
Objectives TVPs

Improving True Positive Rates (TPRs) Alexa-Null, Alexa-Fall,
hpHosts-Stable, hpHosts-Rise

Improving True Negative Rates (TNRs) Alexa-Stable, Alexa-Rise,
hpHosts-Null, hpHosts-Fall

(hpHosts-Fall), a domain name was once listed then unlisted. For example,

this pattern includes domain names that were once abused then sanitized

to improve TNRs. In the rise pattern of hpHosts (hpHosts-Rise), a domain

name was listed from the middle of the specified time window. This hpHosts-

Rise pattern is intended to detect newly registered malicious domain names

that attackers will use for a while. Specifically, many subdomain names can

be created under the same domain name to bypass fully qualified domain

names (FQDN)-level blacklists. Thus, the hpHosts-Rise pattern contributes

to understanding the situation to increase TPRs.

As described above, these TVPs in both legitimate/popular and malicious
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Figure 3.4: Overview of Our System

domain name lists contribute to boosting both TPR and TNR. Table 3.1

summarizes the relationships between the TVPs and their objectives. The

effectiveness of using these patterns in real datasets is described later in

Section 3.4.

3.3 Our System: DomainProfiler

DomainProfiler identifies the temporal variation patterns (TVPs) of do-

main names and detects/predicts malicious domain names. Figure 3.4 gives

an overview of our system architecture. DomainProfiler is composed

of two major modules: monitoring and profiling. The monitoring module

collects various types of essential data to evaluate the maliciousness of un-

known domain names. The profiling module detects/predicts malicious do-

main names from inputted target domain names by using the data collected

with the monitoring module. The details of each module are explained step

by step in the following sections.
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3.3.1 Monitoring Module

The monitoring module collects three types of information that will be used

later in the profiling module. The first type of information is domain name

lists. As discussed in Section 3.2, we need to collect the legitimate/popular

domain name list (Alexa) and malicious domain name list (hpHosts) on a

daily basis to create a database of listed domain names and their time-series

variations.

The second type of information is historical DNS logs, which means time-

series collections of the mappings between domain names and IP addresses.

A passive DNS [58] is one typical way to collect such mappings by storing

resolved DNS answers at large caching name servers. Due to the privacy pol-

icy of our organization, we do not use the passive DNS approach. Instead,

we actively send DNS queries to domain names to monitor and build a pas-

sive DNS-like database. On the plus side, this active monitoring contains no

personally identifiable information of the senders. Moreover, we can control

DNS queries so as not to contain disposable domain names [59], which are

non-informative and negatively affect the database. For example, disposable

domain names are automatically generated one-time domain names to ob-

tain a user’s environmental information by using certain anti-virus products

and web services. Since these domain names are distinct, their mappings

between domain names and IP addresses significantly increase the database

size with non-informative information for evaluating the maliciousness of do-

main names. On the minus side of active monitoring, we can only query

known domain names and cannot gather the mappings of unknown domain

names. Thus, we have expanded known existing domain names as much

as possible to partially address this issue. For example, we have extracted

all domain names in domain name lists such as Alexa and hpHosts. More-

over, we crawl approximately 200,000 web pages every day to gather web

content and extract domain names. Furthermore, we query a search engine

API (2.5M queries/month) to expand the domain names based on the above

results.
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Figure 3.5: Definition of Domain Name Terms

The third type of information is the ground truth, which will be used

to label the training dataset and evaluate the effectiveness of our system.

Our ground truth includes the results of web client-based honeypots (hon-

eyclients) and sandbox systems and some subscription-based data such as

VirusTotal [60] and professional services by a security vendor. The details of

the ground truth we used are given later in Section 3.4.1.

3.3.2 Profiling Module

The profiling module consists of three steps. Each step uses the information

collected from the monitoring module to finally output malicious domain

names from inputted target domain names.

Step 1: Identifying TVPs

Step 1 identifies the TVPs for each input target domain name. The definition

was already introduced in Section 3.2. First, we query the input domain name

to the domain name lists database to obtain the time-series data of listed

domain names that match the second-level domain (2LD) part of the input

domain name. The database consists of five domain name lists: Alexa1k,

Alexa10k, Alexa100k, Alexa1M, and hpHosts.

To precisely define the TVP of every domain name, we define that the

top-level domain (TLD) includes an effective TLD or public suffix [61] such
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as .com.au, .co.jp, and .co.uk, as shown in Fig. 3.5. In general, TLDs

are divided into generic top-level domains (gTLDs), such as .com, .net,

and .org, and country code top-level domains (ccTLDs) such as .au, .jp,

and .uk. If we do not use effective TLDs, there is a significant difference

in the 2LD parts between gTLDs and ccTLDs. For example, in the gTLD

case of foo.bar.example.com, the 2LD part is example.com; however, in

the ccTLD case of baz.qux.example.co.jp, the 2LD part is co.jp. Our

definition of including effective TLDs is intended to treat both gTLD and

ccTLD identically, that is, the 2LD part in the above ccTLD example is

example.co.jp in this chapter.

Second, the TVPs of the matched 2LD parts within a specified time

window are identified using the predefined patterns (null, stable, fall, and

rise), as shown in Section 3.2.

Third, the numbers of matched 2LD parts for the four patterns are

counted and used as feature vectors in a machine learning algorithm. Specif-

ically, the feature vectors created in step 1 correspond to Nos. 1–20 of the

features listed in Table 3.2, that is, Nos. 1–4 are for Alexa1k, Nos. 4–8 are

for Alexa10k, Nos. 9–12 are for Alexa100k, Nos. 13–16 are for Alexa1M, and

Nos. 17–20 are for hpHosts.

Step 2: Appending DNS-based Features

Step 2 appends DNS-based features to the output of step 1, which are in-

put target domain names with identified TVPs. This step is intended to

detect malicious domain names that share common features in terms of IP

addresses and domain names. We reviewed and analyzed the typical features

proposed for known approaches to select the DNS-based features. The known

approaches that are related to ours are summarized later in Section 3.6. As

a result of verifying the availability and effectiveness of the features, we de-

cided to follow the features proposed for Notos [4]. The DNS-based features

are mainly divided into two types: related IP addresses (rIPs) and related

domain names (rDomains).
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Figure 3.6: Graph for Related IP Addresses (rIPs)

To acquire features of rIPs, we need to first construct a graph of rIPs

for each target domain name. Figure 3.6 shows an example of rIPs for

foo.example.com. The graph is a union of every resolved IP address cor-

responding to each domain name at the FQDN level and its parent do-

main name levels, such as 3LD and 2LD, from historical DNS logs col-

lected in the former monitoring module. In Fig. 3.6, the FQDN and 3LD

(foo.example.com) correspond to the IP address 192.0.2.2 at time t − 1

and 198.51.100.2 at t, and the 2LD (example.com) corresponds to the IP

address 192.0.2.1 at t − 1 and 198.51.100.1 at t. Thus, these four IP

addresses are defined as rIPs for foo.example.com. Then, we extract the

features from rIPs. These features consist of three subsets: border gateway

protocol (BGP), autonomous system number (ASN), and registration.

The BGP features, Nos. 21–29 in Table 3.2, are created from the infor-

mation of BGP prefixes corresponding to the related IP addresses (rIPs) of

each target domain name. To obtain the required BGP information, we refer

to the CAIDA dataset [62]. Specifically, we extract the number of rIPs’ BGP

prefixes of the target FQDN (No. 21), that of the 3LD part of the target

(No. 22), and that of the 2LD part of the target (No. 23); the number of

countries for the BGP prefixes of the target FQDN (No. 24), that of the 3LD

part of the target (No. 25), and that of the 2LD part of the target (No. 26);

the number of rIPs for the 3LD part of the target (No. 27) and that for the
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Figure 3.7: Graph for Related Domain Names (rDomains)

2LD part of the target (No. 28); and the number of organizations for the

BGP prefixes of the target FQDN (No. 29).

The ASN features, Nos. 30–32 in Table 3.2, are created from the ASN

information corresponding to the rIPs of each target domain name. To ob-

tain the ASN information, we refer to the MaxMind GeoIP2 databases [63].

Specifically, we extract rIPs’ ASNs of the target FQDN (No. 30), that of

the 3LD part of the target (No. 31), and that of the 2LD part of the target

(No. 32).

The registration features, Nos. 33–38 in Table 3.2, are created from the IP

address registration information corresponding to the rIPs of each target do-

main name. To obtain the registration information, we refer to the informa-

tion of delegated IP addresses [64] from all regional Internet registries (RIRs),

namely AFRINIC, APNIC, ARIN, LACNIC, and RIPE NCC. Specifically,

we extract the number of RIRs of the rIPs for the target FQDN (No. 33),

that of the 3LD part of the target (No. 34), and that of the 2LD part of

the target (No. 35); as well as the diversity or number of allocated dates of

the rIPs for the target FQDN (No. 36), that of the 3LD part of the target

(No. 37), and that of the 2LD part of the target (No. 38).

On the other hand, to acquire the features of related domain names (rDo-

mains), we need to construct a graph of rDomains for each target domain

51



CHAPTER3 PROFILING TIME-SERIES VARIATIONS OF DOMAIN
NAMES

name using the historical DNS logs collected in the monitoring module. Fig-

ure 3.7 shows an example of rDomains for foo.example.com. The graph is

a union of domain names pointing to IP addresses in the same autonomous

system number (ASN) of the historical IP addresses of each target domain

name. In Fig. 3.7, the ASN for the target foo.example.com is AS64501 and

another IP address 192.0.2.3 in AS64501 is connected to the domain names

bar.example.net and baz.example.org. Thus, these three domain names

are defined as rDomains for foo.example.com, and we extract their features.

These features consist of three subsets: FQDN string, n-grams, and top-level

domain (TLD).

The FQDN string features, Nos. 39–41 in Table 3.2, are created from the

set of rDomains for each target domain name. Specifically, we extract the

number of FQDNs (No. 39) in the rDomains, mean length of the FQDNs

(No. 40), and standard deviation (SD) of the length of the FQDNs (No. 41).

The n-gram features, Nos. 42–50 in Table 3.2, are created from the oc-

currence frequency of n-grams (n = 1, 2, 3) in the set of rDomains for each

target domain name. Note that the units of n-grams in this chapter are

denoted with characters; thus, 2-grams for example.com consists of pairs of

characters such as ex, xa, and am. Specifically, we extract the mean, median,

and SD of 1-gram (Nos. 42–44) in rDomains, those of 2-grams (Nos. 45–47),

and those of 3-grams (Nos. 48–50).

The TLD features, Nos. 51–55 in Table 3.2, are created from TLDs in

the set of rDomains for each target domain name. Specifically, we extract

the distinct number of TLDs in the set of rDomains (No. 51), ratio of the

.com TLD in the set (No. 52), and mean, median, and SD of the occurrence

frequency of the TLDs in the set (Nos. 53–55).
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Figure 3.8: Concept Image of Random Forest

Step 3: Applying Machine Learning

Step 3 involves applying a machine learning algorithm to the outputs of step

2, which consist of input target domain names with all the features listed in

Table 3.2. This step is designed to achieve our goal of detecting/predicting

possible malicious domain names in future. To this end, we use supervised

machine learning to effectively find possible malicious domain names from

unvalued input domain names. Supervised machine learning basically con-

sists of two phases: training and test. The training phase generates a learning

model based on the labeled malicious and legitimate training data with ex-

tracted features. The test phase calculates the maliciousness of each input

domain name with extracted features using the learning model generated in

the training phase to detect/predict malicious domain names.

Among many supervised machine learning algorithms, we selected a ran-

dom forest [65] because of its high accuracy, as identified in our preliminary
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Table 3.3: Dataset
Type Dataset Period # FQDNs

Target Domain Names Legitimate-Alexa 2013-05-22–2015-02-28 89,739
(training set) Malicious-hpHosts 2013-01-17–2015-02-28 83,670
Target Domain Names Honeyclient-Exploit 2015-03-01–2015-10-07 537
(test set) Honeyclient-Malware 2015-03-01–2015-10-07 68

Sandbox-Malware 2015-03-01–2015-10-07 775
Sandbox-C&C 2015-03-01–2015-10-07 8,473
Pro-C&C 2015-03-01–2015-03-29 97
Pro-Phishing 2015-03-01–2015-03-29 78,221

Domain Name Lists DB AlexaDB 2013-05-22–2015-02-28 5,596,219
hpHostsDB 2013-01-17–2015-02-28 1,709,836

Historical DNS Logs DNSDB 2014-10-01–2015-02-28 47,538,966

experiments, and high scalability, which we can easily parallelize. The con-

cept image of a random forest is shown in Fig. 3.8. A random forest consists

of many decision trees, which are constructed from input data with randomly

sampled features. The final prediction is output by the majority vote of the

decision trees.

3.4 Evaluation

DomainProfiler was evaluated using real datasets including an extensive

number of domain names. This section explains how we evaluated it in

terms of the effectiveness of our approach of using temporal variation pat-

terns (TVPs) and the detection/prediction performance of malicious domain

names used in real cyberattacks.

3.4.1 Dataset

Our evaluations required three types of datasets, as shown in Table 3.3:

target domain names, domain name list databases, and historical DNS logs.

The first dataset was target domain names, which were composed of train-

ing and test sets. The training set was labeled data for creating a learning

model in a random forest. To create the Legitimate-Alexa, we extracted
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fully qualified domain names (FQDNs) based on the domain names listed

in Alexa100k. Since most of the domain names in Alexa are second-level

domain (2LD) and do not have IP addresses, we used a search engine API to

randomly extract existing FQDNs in the wild from each 2LD name. More-

over, as shown in Section 3.3.1, we used our ground truth, such as the results

of honeyclients and subscription-based professional data, to eliminate the

possibility that malicious domain names are in Legitimate-Alexa. As for

Malicious-hpHosts, we used a similar process to Legitimate-Alexa; that is,

we extracted FQDNs from 2LD names listed in hpHosts using a search engine

and verified the maliciousness using our ground truth.

The test set was used for evaluating the predictive detection performance

of our system. Note that there were no overlaps between the training and test

sets and the collected period of the test set was after that of the training set.

Thus, we are able to simulate the predictive performance of abused domain

names in future by using the test set. For web client-based honeypot (honey-

client) datasets, we used our honeyclients to collect newly malicious FQDNs,

particularly related to drive-by download attacks, from March 2015 to Octo-

ber 2015. Honeyclient-Exploit contained FQDNs of websites engaged in dis-

tributing exploits that target users’ browsers and their plugins. Honeyclient-

Malware was the collection of FQDNs used for malware distribution web-

sites in drive-by download attacks. To create sandbox datasets, we used

our sandbox systems to run 13,992 malware samples randomly downloaded

from VirusTotal [60]. The Sandbox-Malware dataset contained FQDNs con-

nected by malware samples (e.g., downloader) to download other malware

samples. The Sandbox-C&C dataset was a collection of FQDNs of command

and control (C&C) servers detected with our sandbox. The Pro-C&C and

Pro-Phishing datasets were FQDNs used for C&C servers and phishing web-

sites, respectively. Note that the Pro datasets were obtained from commercial

and professional services provided by a security vendor, and the FQDNs we

selected were only those with high confidence of being abused by attackers.

The second dataset was a domain name list database used for identifying
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TVPs. As explained in Section 3.2, we selected Alexa top sites as a legiti-

mate/popular list, and hpHosts as a malicious list since they are continuously

obtainable daily.

The third dataset was historical DNS logs, which involved time-series

collections of the domain name and IP address mappings. As discussed in

Section 3.3.1, we actively sent DNS queries to the domain names we found

by using domain name lists, our web crawler, and search engine API. That

is, we extracted all domain names in domain name lists such as Alexa and

hpHosts. Moreover, we crawled approximately 200,000 web pages every day

to gather web content and extracted domain names from the content and

their static and dynamic hyperlinks. Furthermore, we expanded the number

of domain names using an external search engine API (2.5M queries/month)

based on the above domain names. In our evaluations, we used over 47M

distinct FQDNs and their time-series changes from October 2014 to February

2015, as shown in Table 3.3.

3.4.2 Parameter Tuning

Before we evaluated our DomainProfiler, we needed to tune two types of

parameters: the size of the time window in TVPs (step 1) and the required

parameters to run the random forest (step 3).

Here is the summary of evaluation criteria discussed in the following sec-

tions. A true positive (TP) is the number of correctly predicted malicious

domain names, a false positive (FP) is the number of incorrectly predicted

legitimate ones, a false negative (FN) is the number of incorrectly predicted

malicious ones, and a true negative (TN) is the number of correctly predicted

legitimate ones. The true positive rate (TPR), otherwise known as recall, is

the ratio of correctly detected malicious domain names to actual malicious

domain names. The precision is the ratio of actual malicious domain names

to domain names detected as malicious with the system. The true negative

rate (TNR) is the ratio of correctly determined legitimate domain names

among actual legitimate domain names. The F-measure is the ratio that
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Figure 3.9: Tuning Time Window Size

combines recall and precision, namely, it is calculated as the harmonic mean

of precision and recall.

Time Window Size

We conducted 10-fold cross-validations (CVs) using the training set with

variable time window sizes (from 1 to 365 days) to select the time window

size based on the evaluation criteria. Figure 3.9 shows two graphs: the left

one corresponds to the time window sizes from 1 to 365 days and the right one

corresponds to those from 1 to 7 days. These two graphs reveal that the best

time window size for TVPs is only two days. This is not a surprising result

for us in terms of the nature of domain names or TVPs. Since attackers

abuse the DNS to generate a huge volume of distinct domain names from

one day to the next, keeping old information over a long period decreases the

F-measure of our system.
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Figure 3.10: Tuning Random Forest Parameters

Random Forest

A random forest [65] requires two parameters to run. One parameter is the

number of decision trees. As explained in Section 3.3.2, a random forest

consists of multiple decision trees; thus, we needed to decide how many trees

to make beforehand. As is the case with the aforementioned time window

size, we conducted 10-fold CVs by changing the number of trees to determine

the optimum number of decision trees. The left graph in Fig. 3.10 shows the

relationships between the number of trees and F-measure. The graph shows

that F-measures are stable over 100 trees. Thus, we decided to use 100

decision trees in the following evaluations.

The other parameter is the number of sampled features in each individual

decision tree. A random forest constructs decision trees from input data with

randomly sampled features to improve overall accuracy. We conducted 10-

fold CVs again to search for the optimum number of sampled features. The

right graph in Fig. 3.10 shows that the best F-measure is obtained when the

number of sampled features is 7.
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3.4.3 Feature Set Selection

Now that we selected the optimal parameters (the time window size, number

of trees, and number of sampled features in each tree), this section compares

the detection performance with different feature sets. The feature sets in-

clude the temporal variation pattern (TVP), related IP address (rIP), related

domain name (rDomain), combination of rIP and rDomain (rIP+rDomain),

and combination of TVP, rIP, and rDomain (TVP+rIP+rDomain). We con-

ducted 10-fold CVs using the training set and the optimal parameters by

changing the feature sets to estimate how accurately each feature set will

perform in theory. Table 3.4 illustrates the detection performance using the

above evaluation criteria. Note that the number of FQDNs varies with fea-

ture sets due to the availability of each feature. For example, some domain

names have no rIPs and/or rDomains. Also, Fig. 3.11 shows the receiver

operator characteristic (ROC) curves. An ROC curve shows a pair of FPR

and TPR corresponding to a particular decision cut-off point. Thus, if the

ROC curve of a feature set rises more rapidly, it means that the performance

of the feature set is better. An area under curve (AUC) is the area under

the ROC curve and is generally used to evaluate a binary classifier. We

calculated the AUC for each ROC curve, and the results are also listed in

Table 3.4. Table 3.4 and Fig. 3.11 illustrate that using our TVP features sig-

nificantly contributes to achieving better detection performance than using

only DNS-based features. Using only DNS-based features (rIP, rDomain, and

rIP+rDomain) does not go beyond 0.90 in any evaluation criteria. These re-

sults show that only using common/typical DNS-based features proposed for

known approaches proves to be insufficient for detecting malicious domain

names in current attack ecosystems. However, combining the DNS-based

features with our TVP features (TVP+rIP+rDomain) achieves the best re-

sult, namely, a TPR/recall of 0.975, TNR of 0.991, precision of 0.990, and

F-measure of 0.983. These results indicate that our key idea based on using

TVPs is effective for improving both TPR and TNR exactly as intended.
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3.4.4 System Performance

We evaluated the system performance of a prototype version ofDomainPro-

filer. Specifically, we calculated the execution time and data size in each

step when we conducted a 10-fold CV using the training set with the optimal

parameters and best feature set (TVP+rIP+rDomain). Step 1 (identifying

TVPs) was executed on a single server with a 10-core 2.2-GHz CPU and

128-GB RAM. The execution time for extracting TVP features from 173,409

FQDNs was 61 seconds, which was equivalent to 0.0004 seconds/FQDN. The

file sizes of the domain name list database (SQL) were 1.4 GB in Alexa

and 300 MB in hpHosts, respectively. Step 2 (appending DNS-based fea-

tures) was executed as a MapReduce job on a Hadoop cluster, which had 2

master servers (16-core 2.4-GHz CPU, 128-GB RAM) and 16 slave servers

(16-core 2.4-GHz CPU, 64-GB RAM). The execution time for extracting rIP

features from 173,409 FQDNs was 20 hours (0.42 seconds/FQDN) and that

for rDomain features was 96 hours (1.99 seconds/FQDN). The file size of the

historical DNS logs used for extracting these DNS-based features was 212

GB. Step 3 (applying machine learning) was executed on the same server as

step 1. The execution time for one-time training from 156,068 FQDNs was

28 seconds (0.0001 seconds/FQDN) and that for test from 17,341 FQDNs

was 8 seconds (0.0005 seconds/FQDN). These evaluations prove the basic

feasibility of our proposed system and reveal that step 2 requires far more

resources and time to execute than steps 1 and 3. The reason for step 2’s high

cost is the size of the graphs for rIPs and rDomains. Today, some domain

names used by hypergiants, such as Google, Amazon, and Akamai, have a

huge number (over ten thousand) of rIPs and rDomains. This fact raises

the problem of high cost for extracting common/typical DNS-based features.

However, from the results explained in Section 3.4.3, this problem will be

solved if our system makes a sacrifice of a TPR of 0.002 to use the feature

set TVP instead of TVP+rIP+rDP. This is a trade-off between system per-

formance and detection performance. Thus, we should configure our system

based on this situation.
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3.4.5 Predictive Detection Performance

We evaluated the predictive detection performance of DomainProfiler;

that is, whether we can discover domain names that may be abused in fu-

ture. The aforementioned evaluations were based on cross-validations (CVs);

however, this section focuses on the evaluation of the detection performance

of new malicious domain names that first appeared after March 1, 2015 by

using only the information as of February 28, 2015. Specifically, we used

the training set shown in Table 3.3 to create a learning model first then

input the test set in Table 3.3 to evaluate the predictive detection per-

formance. In this evaluation, we set the optimal parameters discussed in

Section 3.4.2. The best feature set (TVP+rIP+rDomain) discussed in Sec-

tion 3.4.3 was compared with the feature set (rIP+rDomain) that had only

common/typical DNS-based features. Table 3.5 lists the evaluation results of

using TVP+rIP+rDomain and Table 3.6 lists those of rIP+rDomain. Note

that the test set only consists of malicious domain names; thus, there are no

false positives (FPs) and true negatives (TNs) and their related evaluation

criteria in the tables.

In terms of the true positive rate (TPR/recall), DomainProfiler and

feature set (TVP+rIP+rDomain) achieved extremely high TPRs in all test

sets; our system achieved TPRs of 0.985 in both Honeyclient-Exploit and

Honeyclient-Malware. Moreover, our system accurately detected/predicted

command and control (C&C) domain names in Sandbox-C&C and Pro-C&C,

while our training set did not include labeled C&C domain names. This is

not a surprising result because our TVP is designed to exploit the common

characteristics of attackers’ domain names. On the other hand, using only

the typical features (rIP+rDomain) achieved a TPR of 0.402 at best. Com-

paring these results illustrates that our TVP features successfully contribute

to predicting malicious domain names that will be used in future.

In terms of early detection of future malicious domain names, we inves-

tigated when the system can detect such domain names. Specifically, we

analyzed the number of days that elapsed from February 28, 2015, when
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the learning model was created, for malicious domain names to be detected

with the system. For example, if the system correctly detected and iden-

tified a new malicious domain name on March 7, 2015, the elapsed num-

ber of days for the domain name is 7. Tables 3.5 and 3.6 also show the

descriptive statistics of the elapsed days for malicious domain names for

each feature set. Note that we only count domain names in the TP of each

dataset. The descriptive statistics include the minimum (days Min), first

quartile (days 1stQu), which means the value cut off the first 25% of the

data, second quartile (days 2stQu), which is also called the median and is

the value cut off the first 50% of the data, the mean (days Mean), the third

quartile (days 3rdQu), which is the value cut off the first 75% of the data,

and the maximum (days Max). Table 3.5 shows that our proposed system

(TVP+rIP+rDomain) can precisely predict future malicious domain names

220 days before the ground truth, such as honeyclients and sandbox systems,

and identify them as malicious in the best case. Comparing the above results

with Table 3.6 reveals that the common/typical feature set (rIP+rDomain)

also detects malicious domain names early; however, the number of detected

domain names (TP) is quite small. We conclude that our proposed system

using TVPs outperforms the system using only the common/typical feature

set from the perspective of both accuracy and earliness.
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3.4.6 Effectiveness of Our Temporal Variation Patterns

We analyzed how our temporal variation pattern (TVP) features contribute

to increasing the true positive rate (TPR) and true negative rate (TNR)

simultaneously. We present some noteworthy case studies in our TVPs de-

fined in Section 3.2. In this analysis, we used the TVP+rIP+rDomain feature

set, and the setting and dataset were the same as the previous evaluation

discussed in Section 3.4.5.

Alexa1M-Null : This TVP is intended to boost the TPR, as described in

Section 3.2. Our analysis revealed that this TVP was especially effective for

malicious domain names using a domain generation algorithm (DGA) and

abusing new generic top-level domains (gTLDs) such as .xyz and .solutions.

This is because these domain names are less likely to be within Alexa1M.

Alexa1M-Stable: This TVP successfully determined the characteristics of

somewhat popular domain names to improve the TNR.

Alexa1M-Fall : This TVP is designed to detect the changing of malicious

domain names to improve the TPR. We observed two major types of mali-

cious domain names that fit this TVP. One type is expired domain names due

to the termination of services or the merger and acquisition of companies.

Some of these expired domain names were re-registered by third-party attack-

ers to execute domain parking or cyberattacks. The other type is domain

names that were changed from legitimate to malicious because the website

of the domain name was not well-managed and in a poor state of security.

Alexa1M-Rise: This TVP attempts to grab the features of legitimate

domain names of start-up websites to improve the TNR. We observed many

domain names corresponding to this TVP such as those of new companies,

services, movies, and products.

hpHosts-Null : This TVP successfully improved the TNR because the

second-level domain (2LD) parts of popular/legitimate domain names were

less likely to be listed in hpHosts.

hpHosts-Stable: This TVP is designed to determine the characteristics

of malicious domain names abusing easy-to-use services, such as bullet-proof

67



CHAPTER3 PROFILING TIME-SERIES VARIATIONS OF DOMAIN
NAMES

hosting, to improve the TPR. For example, we observed many subdomains

using a domain generation algorithm (DGA) under the same 2LD part such

as 84c7zq.example.com.

hpHosts-Fall : This TVP is intended to boost the TNR. We confirmed

that some domain names under well-managed networks fit this TVP because

the domain names were once abused and then quickly sanitized. In this case,

the TVP contributed to the accurate prediction of future legitimate domain

names.

hpHosts-Rise: This TVP is designed to help detect/predict malicious

domain names more accurately to improve the TPR. We mainly observed

two types of domain names that fit this TVP. One type is domain names that

heavily used the DGA in both 2LD and third-level domain (3LD) parts of

domain names, e.g., 14c2c5h8[masked].yr7w2[masked].com. We observed

that this type of 2LD will be continuously used for a while by attackers to

create many subdomain names. The other type is domain names under free

subdomain name services, which offer subdomain name creation under 2LD

parts, such as .flu.cc and .co.nr. These services are easily abused by attackers

in creating distinct domain names.

3.5 Discussion

This section discusses possible evasion techniques againstDomainProfiler

and issues when using the predicted malicious domain names generated from

our system as countermeasures to protect users from cyberattacks.

3.5.1 Evading DomainProfiler

DomainProfiler is designed to exploit the temporal variation patterns

(TVPs) of malicious domain names used by attackers. There are three pos-

sible evasion techniques of our system. One technique is to avoid using do-

main names as attack infrastructure. If attackers do not use domain names, it

would be easier for us to take countermeasures such as just blocking them us-
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ing IP addresses. The cost of changing IP addresses is much higher than that

of changing domain names due to the limited address space. For instance,

the address space of IPv4 is limited to 32 bits and that of IPv6 is to 128 bits.

However, domain names can consist of 255 or less octets/characters [66],

which means a maximum of a 2040-bit space.

Another evasion technique is to avoid all our features in a TVP, related

IP address (rIP), and related domain name (rDomain) to hide malicious

domain names from our system. For example, attackers can operate their

domain names as real legitimate/popular services for a long time to evade our

TVPs then use the domain names as their malicious infrastructure. How-

ever, this situation drives up the cost for implementing any attacks using

domain names. Another example is border gateway protocol (BGP) hijack-

ing, which potentially enables attackers to divert user traffic from real IP

addresses to their IP addresses. In such a case, attackers may bypass our rIP

or rDomain features; however, the BGP is basically used between Internet

service providers, and it is difficult for normal Internet users/attackers to

take effective control of it.

The other possible evasion technique is to use legitimate web services as

legitimate users. For example, attackers would create dedicated accounts

for some web services and use them as their command and control (C&C)

channels. In such a case, only legitimate domain names are observed and our

system cannot detect them. However, these accounts could be easily banned

by the administrator of the web services, and the content sent/received by

attackers could be easily analyzed to develop a new countermeasure.

3.5.2 DNS-based Blocking

DomainProfiler predicts and outputs malicious domain names. However,

these domain names cannot always be blocked with a domain-name level.

For example, malicious and legitimate websites can exist under the same do-

main name. Thus, blocking based on domain names instead of URLs may

excessively block legitimate websites. To examine an actual condition, we
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extracted and checked URLs under each predicted malicious domain name

using a search engine API and commercial ground truth. In this examina-

tion, we manually analyzed 250 domain names randomly selected from the

Honeyclient-Exploit dataset, as shown in Table 3.3, by using the following

simple heuristics. If multiple URLs are found under the domain name, we

consider that the domain name cannot be blocked with a domain-name level.

On the other hand, if at most one URL is under the domain name, we de-

termine that the domain name can be blocked with a domain name level.

The examination results suggest that 72% (=180/250) of domain names can

be effectively blocked using DNS-based blocking without excessive blocking

of legitimate websites. Therefore, we conclude that malicious domain names

output from our system can contribute to expanding DNS-based block lists

if we consider the situation of URLs under the domain names.

3.6 Related Work

We summarize known approaches related to ours in terms of evaluating at-

tack infrastructure or resources owned by attackers. Most of the studies are

broadly divided into three approaches: lexical/linguistic, user-centric, and

historic relationship. Note that these approaches were often combined in

most of the studies we reviewed; thus, we classify them based on the main

idea of each study.

3.6.1 Lexical/Linguistic Approach

The lexical/linguistic approach is focused on lexical or linguistic features

obtained from malicious attack resources such as URLs and domain names.

Ma et al. proposed a learning approach using features from the lexical

structure of malicious phishing URLs [26]. The focus with the approach for

our system is not URLs but domain names, and our system can detect not

only phishing but also other attacks.

Yadav et al. focused on linguistic features in command and control
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(C&C) domain names generated using a domain generation algorithm (DGA)

and developed an approach for detecting such malicious domain names [67].

While this approach detects C&C domain names containing random strings,

our approach targets broader malicious domain names.

Szurdi et al. analyzed the nature of typosquatting domain names [68].

Typosquatting is generally defined as a technique to register similar domain

names to popular domain names to profit from advertisements and perform

phishing attacks. We take a different or more general approach with our sys-

tem, and our temporal variation patterns (TVPs) can also take into account

the nature of typosquatting domain names.

Felegyazhi et al. proposed to use WHOIS information of domain names

such as registration and name servers to detect malicious domain names [25].

Our approach does not use WHOIS information due to the cost of retrieving

it; however, we achieve a high true positive rate (TPR) of malicious domain

names without WHOIS.

3.6.2 User-centric Approach

The user-centric approach focuses on user behavior of DNS traffic by observ-

ing passive DNS logs. Sato et al. used the co-occurrence characteristics of

DNS queries to C&C domain names from multiple malware-infected hosts

in a network to extend domain name blacklists [28]. Also, Rahbarinia et

al. proposed a system called Segugio to detect new C&C domain names

from DNS query behaviors in large ISP networks [6]. These systems require

malware-infected hosts in a network; however, our approach works without

malware-infected hosts.

Bilge et al. proposed a system called Exposure to detect malicious do-

main names based on the time-series changes of the number of DNS queries in

passive DNS data [69]. Perdisci et al. proposed a system, FluxBuster, which

detects previously unknown fast-flux domain names by using large-scale pas-

sive DNS data [70]. The cost of Exposure or FluxBuster for retrieving and

analyzing large-scale passive DNS logs is much larger than that of our TVPs
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in DomainProfiler.

Antonakakis et al. proposed the system Kopis, which uses user behavior

observed in passive DNS logs on authoritative DNS servers [71]. Today,

the number of new generic top-level domains (gTLDs) is rapidly increasing;

thus, it is more difficult to exhaustively gather such information on a TLD’s

authoritative DNS servers. DomainProfiler does not require such logs

and is designed to use publicly available information.

Antonakakis et al. also proposed a system called Pleiades that is focused

on DNS queries to non-existent domain names observed on recursive DNS

servers to detect DGA domain names used for C&C [72]. In addition, Thomas

et al. proposed a system similar to Pleiades to determine the characteristics

of non-existent domain names [73]. Our system does not require such DNS

logs and is focused on not only C&C domain names but also other malicious

domain names such as drive-by download and phishing.

3.6.3 Historic Relationship Approach

The historic relationship approach is focused on the historic or time-series

information of domain names, IP addresses, and web content.

Antonakakis et al. proposed a system called Notos to detect malicious

domain names that have similar patterns to past malicious domain names [4].

This was one of the most successful studies on domain-name evaluation or

reputation systems. Notos uses historic IP addresses and historic domain

names to extract effective features to discriminate malicious domain names

from legitimate ones. As stated in Section 3.3.2, we use these features as

some of our features in related IP addresses (rIPs) and related domain names

(rDomains). Moreover, our TVP features dramatically expand detection and

prediction performance, as discussed in Section 3.4.

Manadhata et al. proposed a method for detecting malicious domain

names from event logs in an enterprise network by using graph-based analy-

sis [74]. Boukhtouta et al. proposed an analyzing method for creating graphs

from sandbox results to understand the relationships among domain names,
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IP addresses, and malware family names [75]. Kührer et al. proposed a

method for identifying parked and sinkhole domain names from websites and

blacklist content information by using graph analysis [5]. DomainProfiler

strongly relies on the TVP or time-series information, which these studies did

not use, to precisely predict future malicious domain names.

Chiba et al. used the characteristics of past malicious IP addresses to

detect malicious websites [76]. Our system uses not only IP address features

(rIPs) but also TVPs to precisely detect malicious domain names.

Venkataraman et al. developed a method for inferring time-series shifting

of IP address prefixes to detect malicious IP addresses used for spam or bot-

net [77]. DomainProfiler is also focused on the idea of shifting malicious

resources; however, the target and method are completely different.

The closest concept to ours is that proposed by Soska et al. [78]. They

focused on the idea of variations in compromised websites using a popular

content management system and proposed a method for predicting vulnera-

ble websites before they turn malicious. The main features they rely on are

content-based features obtained from compromised websites. The concept of

DomainProfiler seems to be similar; however, our system has an advan-

tage in scalability because it does not need to access websites and extract

features from them. Moreover, the focus with our system is wider; that is,

our system can detect websites related to drive-by download and phishing

attacks.

Lever et al. pointed out a problem in re-registration of expired domain

names and developed an algorithm called Alembic to find potential domain-

name ownership changes using passive DNS data [79]. We have also focused

on the temporal changes of domain names including such re-registered do-

main names [80]. However, our system does not rely on passive DNS data

and the goal with our system is not only finding re-registered domain names

but also specifying truly malicious domain names abused by attackers.

Recently, Hao et al. proposed a system called Predator to predict fu-

ture malicious domain names when they are registered [81]. Their system
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uses domain registration information directly obtained from the .com TLD

registry (VeriSign, Inc). However, more and more new gTLDs (e.g., .xyz

and .top) have been started to use since October 2013. Now the number of

such new gTLDs is 1,184 as of September 2016 [82]. Attackers also leverage

new gTLDs for their cyberattacks. For example, Halvorson et al. showed

that domain names using new gTLDs are twice as likely to appear on black-

lists [83]; that means attackers actively make use of new gTLDs nowadays.

Obviously, to keep up with such situations, their system needs to obtain real-

time access privileges to highly confidential data inside the each new gTLD’s

registry. While the concept of Predator resembles DomainProfiler, the

mechanism is totally different because our system does not require any data

only owned by a registrar, registry, and authoritative name server.

3.7 Conclusion

We proposed a system called DomainProfiler to detect/predict potential

malicious domain names in future. Our key idea behind the system is to

exploit temporal variation patterns (TVPs) of malicious domain names. A

TVP of domain names includes information about how and when a domain

name has been listed in legitimate/popular and/or malicious domain name

lists. Our system actively collects DNS logs, identifies their TVPs, and pre-

dicts whether a given domain name will be used for a malicious purpose. Our

evaluation with large-scale data revealed that our system can predict mali-

cious domain names 220 days beforehand with a true positive rate (TPR)

of 0.985. DomainProfiler will be one of the ways to track the trend in

ever-changing cyber security threats.
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Chapter 4

Profiling Generated Structures
of Domain Names

4.1 Introduction

Domain names came into existence in the 1980s and have become an integral

part of today’s Internet. While the Internet cannot virtually function with-

out domain names, attackers also use domain names and the domain name

system (DNS) as reliable, instantaneous, and distributed infrastructure for

conducting attacks. For example, attackers register similar domain names

to legitimate services or popular brands to deceive users into downloading

malware or unwanted programs. Another common example is the so-called

command and control (C&C), wherein attackers use domain names as ren-

dezvous points of malware-infected hosts to control them and launch other

attacks such as denial-of-service (DoS) attacks and spam emails.

Countermeasures such as detection and filtering of malicious domain

names owned/used by attackers have been studied and implemented for many

years [4, 7, 80]. Nevertheless, abuse of new domain names has continued and

remains a significant threat even today. Moreover, there is no single common

defense solution against domain name abuses because each malicious domain

name has different characteristics. If we fail to choose the right counter-

measure for each malicious domain name, it will be basically ineffective in

practice. For example, some malicious domain names are created by abus-
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ing legitimate services including online advertising and web hosting. If we

filter domain names used in such legitimate services, we may prevent users

from accessing legitimate services and disrupt legitimate businesses. Other

malicious domain names are purposely set up by an algorithm called domain

generation algorithm (DGA) or an intention to deceive users. If we hesitate

to filter these domain names, we cannot decrease the threat of cyberattacks.

A key challenge is to determine the optimal defense solution for each

malicious domain name. This chapter is intended to reveal what, where,

and how countermeasures need to be taken against such malicious domain

names. We focus on the relationships between domain name categories and

practical defense solutions to determine how best to utilize detected mali-

cious domain name information. In reality, there is a significant distance

from simply detecting malicious domain names to utilizing them for making

the Internet safer. In particular, malicious domain names differ significantly

depending on their characteristics such as the hierarchical structure of the

domain names, the back-end services offering them, and the operational sit-

uations. Thus, we need to consider these characteristics for each malicious

domain name and determine the best defense solution to prevent filtering

any legitimate services or businesses. Therefore, we should first categorize or

classify malicious domain names according to their characteristics and then

determine the defense solution suitable for each domain name.

In this chapter, we design and implement a unified and objective analysis

pipeline combining existing defense solutions for realizing practical and opti-

mal defenses against malicious domain names. Our novel analytical approach

is referred to as malicious domain names’ chromatography that is used for the

separation of mixtures comprising various types of malicious domain names

for websites. On the basis of this concept, we do not create a hodgepodge

of existing solutions but design separation of malicious domain names and

offer defense information by considering the characteristics of the malicious

domain names as well as the possible defense solutions and points of defense.

Our main contributions are summarized as follows.
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• We develop a taxonomy of malicious domain names and provide system-

atized knowledge of the latest defense solutions with points of defense.

• We design and implement a new analytical method, which systemati-

cally determines the optimal defense solution for each malicious domain

name.

• We evaluate our analysis pipeline and output defense information using

a large and real dataset to show both the effectiveness and validity of

our proposed approach. In particular, we are the first to show that over

70% of malicious domain names need only DNS-level defense with no

collateral damage of legitimate accesses.

The rest of this chapter is organized as follows. In Section 4.2, we show

a taxonomy of malicious domain names and consider the possible defense

solutions and points of defense. We discuss our proposed analysis pipeline

DomainChroma in Section 4.3. Section 4.4 shows the detail explanation

of datasets and the evaluation results. Finally, we conclude this chapter in

Section 4.5.

4.2 Chromatography of Domain Names

We define a new concept of malicious domain names’ chromatography. Tra-

ditionally applied in chemistry, chromatography separates a mixture into

its components based on their different chemical characteristics. Our chro-

matography handles mixtures comprising various types of malicious domain

names for websites. We explore the separation of malicious domain names

and offer defense information by considering both the characteristics of the

malicious domain names and possible points of defense.

4.2.1 Characteristics of Malicious Domain Names

In most cyberattacks, domain names are used to deliver malicious con-

tent (e.g., exploit content and malware) and to command/control malware-
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infected hosts because domain names and DNS are easy to use, reliable, and

distributed systems. We investigated the characteristics of malicious domain

names to further classify them into two categories, i.e., compromised and

dedicated.

Compromised. This category contains malicious domain names abusing

legitimate services. We define this category because such malicious domain

names are originally intended to offer legitimate services to Internet users,

and we should not simply stop such domain names and filter accesses to

them. We explore this compromised category and show how to classify this

category later in Section 4.3.2.

Dedicated. This category contains malicious domain names prepared ex-

clusively for malicious purposes. We consider this category because malicious

domain names differ significantly in character relative to compromised do-

main names. Based on this idea, we should clearly distinguish dedicated

malicious domain names from compromised domain names in terms of pro-

viding mitigations or countermeasures. We show the details of this dedicated

category and illustrate how to classify this category later in Section 4.3.2.

4.2.2 Points of Defense

We summarize possible points of defense and corresponding defense meth-

ods against malicious domain names in terms of building a realistic remedy

strategy. Specifically, we divide these points into two levels: HTTP-level and

DNS-level.

HTTP-level Points of Defense. This level includes three components

that are involved in web communication using HTTP/HTTPS, i.e., security

appliances, web servers, and search engines. Although this chapter primarily

focuses on domain names and DNS, we also consider HTTP-level defenses

because there is a close connection between HTTP and DNS. For example,

most HTTP communication employs DNS name resolution; thus, we can

defend against malicious HTTP communication at both DNS and HTTP

levels. The following three components can only defend against attacks us-
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ing malicious domain names if attacks use HTTP, e.g., distributing exploit

content or malware using websites, hosting phishing websites, and operating

malware-infected hosts using C&C.

Security appliances include HTTP proxies, network intrusion detection or

prevention systems (NIDS/NIPS), and deep packet inspection (DPI). They

can filter HTTP communication pointing to malicious domain names.

Web servers on the Internet can be critical points of defense if they serve

malicious content. The defense on web servers is straightforward, i.e., delet-

ing corresponding malicious content on the web servers. To deploy this de-

fense, abuse reports can be sent to content owners, server administrators [84],

and national or regional computer emergency response team (CERT) orga-

nizations.

Search engines are one of the most frequently used web applications. Most

users access websites based on search results generated by a search engine.

If search engines display a link to malicious content, users are susceptible to

cyberattacks. Thus, search engines should filter links that point to malicious

content.

DNS-level Points of Defense. This level includes three major components

in DNS, i.e., caching name servers, authoritative name servers, and domain

registries/registrars.

Caching name servers are generally deployed in local area networks or In-

ternet service provider (ISP) networks. The defense in caching name servers

is primarily filtering user access to malicious domain names based on domain

name blacklists.

Authoritative name servers are deployed in each DNS zone, primarily at

the second level domain (2LD) level. The defenses in authoritative name

servers include filtering and updating zone data. Filtering can be used to

block DNS queries pointing to a blacklisted domain name to prevent users

from accessing a malicious domain name. Updating zone data involves delet-

ing a malicious domain name record such that the domain name cannot be

resolved.
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DomainChroma

Step 1:
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(Section Ⅲ-B)
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(Section Ⅲ-C)
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Systems

Malicious
Domain 
Names

Blacklists 
for Filtering

Input Output
(Section Ⅲ-A)

Step 3:
Purification

(Section Ⅲ-D)Blacklists

Figure 4.1: Overview of Our Analysis Pipeline DomainChroma

Domain registries/registrars manage domain name registrations. The reg-

istry manages the registration of domain names within large DNS zones, such

as top-level domains (TLDs). The registrar is a service provider that con-

nects the registries to manage domain databases. Malicious domain names

can be defended by anti-abuse actions on the master database of each reg-

istry, such as deleting a domain name. For example, VeriSign, Inc., which is

a .com and .net registrar, can take actions by complying with court orders

and law enforcement [85].

4.3 Analysis Pipeline: DomainChroma

We design a new analysis pipeline called DomainChroma that considers

both characteristics of malicious domain names shown in Section 4.2.1 and

each point of defense shown in Section 4.2.2. Our design aims to systematize

the knowledge of state-of-the-art defense techniques, enabling detection of

malicious domain names and optimal defense actions. Specifically, we at-

tempt to reveal what, where, and how countermeasures need to be taken

against malicious domain names, thus securing domain names and DNS for

legitimate Internet users. To this end, we implement the chromatography

concept shown in Section 4.2. Fig. 4.1 is an overview of our analysis pipeline

DomainChroma. The DomainChroma pipeline consists of three steps:

categorization, separation, and purification. The order of these steps is de-

signed to reflect the demand in defense operations against malicious domain

names. The step-by-step details of each step are presented in the following
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sections.

4.3.1 Input: Malicious Domain Names

The DomainChroma input is expected to contain malicious domain names

provided by domain reputation systems [4, 7, 80] or any kinds of domain

name blacklists, with a low probability of obvious legitimate domain names.

Such malicious domain names are engaged in various types of cyberattacks

(e.g., drive-by download, malware download and C&C, and phishing). At

this point, we know what domain names to be targeted for actions, but

where and how these actions should be implemented are unknown. Our

analysis pipeline proceeds through the following steps to decide the actions

for optimal defense against malicious domain names.

4.3.2 Step 1: Categorization

The first step of our analysis pipeline DomainChroma is categorization.

The input malicious domain names are categorized into compromised or ded-

icated since these two categories have different characteristics in terms of

deciding countermeasures as shown in Section 4.2.1.

Compromised

We define that compromised malicious domain names compose of the follow-

ing three sub-categories, i.e., advertising, content delivery network (CDN),

and web hosting. This section explains definitions of these sub-categories

and how to identify them.

Advertising. Online advertisements are commonly used in most websites

to generate revenue. Online Advertising is not intended to abuse domain

names nor engage in cyberattacks. However, attackers have used this ecosys-

tem as an attack vector to reach target users effectively. Thus, we categorize

advertising domain names not to filter legitimate advertisements excessively.

To identify domain names in advertising ecosystems, we use pre-defined in-

formation used in previous work [86].
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CDN. A CDN delivers web content to end users with a distributed and effi-

cient infrastructure. It is essentially used by legitimate users or companies;

however, attackers have used it as reliable infrastructure to distribute ma-

licious content. Thus, we should filter specific content or the URLs rather

than the CDN domain names to prevent users from accessing malicious con-

tent while maintaining legitimate services. To do this, we identify such CDN

domain names using the previously reported information [87].

Web Hosting. We define that web hosting involves domain names that

use shared hosting services, including cloud services and file sharing services.

Since web hosting is an economical option for users to host a website, the

number of web hosting services is increasing dramatically. Attackers use web

hosting services as an attack infrastructure, e.g., to host malicious websites

or malware. In this chapter, we define web hosting as domain names that

have multiple different owner’s URLs and identify such domain names based

on our heuristic rules about known web hosting providers.

Dedicated

We define that dedicated malicious domain names compose of the following

nine sub-categories, i.e., domain generation algorithm (DGA), re-registration,

sinkholing, parking, typosquatting, no-URLs, dynamic DNS, free, and do-

main hosting. We illustrate definitions of these sub-categories and how to

classify them.

DGA. A DGA dynamically produces domain names primarily used as ren-

dezvous points between attackers and victims or malware-infected hosts. A

domain name generated by the algorithm is called an automatically gener-

ated domain (AGD) [88]. DGAs generate a huge number of distinct AGDs

and then use only a small subset of generated domain names for their actual

malicious activities, such as C&C communication. Attackers use a DGA to

make blacklisting or taking down C&C infrastructure infeasible. DGAs are

only used for malicious purposes, and we should filter domain names gen-

erated by DGAs to specify malware-infected hosts and prevent users from
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cyberattacks. To identify DGAs, we follow the previous work that leveraged

the linguistic features of DGAs [89].

Re-registration. This sub-category contains maliciously re-registered do-

main names that were originally legitimate domain names. For a detailed

explanation of the re-registration process, the reader can refer to recent

work [81]. Expired domain names, particularly popular domain names,

tend to be targeted and immediately re-registered by attackers for mali-

cious purposes, such as phishing attacks. To detect such re-registered ma-

licious domain names, we use crawling/parsing WHOIS data and detecting

re-registration events based on our heuristic rules.

Sinkholing. Security researchers and organizations often use a counter-

measure called sinkholing to take control of malware C&C domain names.

In terms of defending users, we should identify sinkholed malicious domain

names because such domain names will not be used for legitimate services.

To identify such sinkholed domain names, we use sinkholing-specific features

proposed in precious work [5].

Parking. Parking is a service used to monetize currently unused domain

names that display advertisements. Attackers tend to use such parking ser-

vices to monetize malicious traffic resulting from malware infection or phish-

ing attacks. Parked domain names used for malicious purposes should be

filtered to hamper monetization related to cyberattacks. To identify such

parked domain names, we use recently published parking-specific informa-

tion [90].

Typosquatting. Typosquatting is generally defined as an attacking tech-

nique to register similar domain names to popular or legitimate services. Such

typosquatting domain names are almost always created for non-legitimate

purposes; thus, we should detect and filter such domain names and the traf-

fic directed to them. To detect such malicious domain names engaged in ty-

posquatting, we design a typosquatting classifier based on previous work [68].

No-URLs. We newly define no-URLs as domain names that are considered

only in the DNS protocol and have no URLs under the domain name. A ma-

83



CHAPTER4 PROFILING GENERATED STRUCTURES OF DOMAIN
NAMES

licious domain name that has no URLs can immediately be filtered because

there is no risk of excessively filtering legitimate websites. To identify this

sub-category, we use a search engine API to check whether the domain name

has any URLs.

Dynamic DNS. Dynamic DNS services allow Internet users to register sub-

domains under their specific domain names and resolve the names of subdo-

mains and IP addresses. Dynamic DNS is used by legitimate users and

abused by attackers. Thus, when considering defenses against malicious do-

main names that employ dynamic DNS, we should take care not to stop

dynamic DNS services. To this end, we refer to previous work [91] to detect

such dynamic DNS domain names based on pre-defined rules.

Free. This sub-category contains domain names created by free domain

registration services. For example, a freely available domain name can be

registered under some TLDs or some second level domains (2LDs). Such

services are easily abused by attackers to create malicious domain names. To

identify domain names created for free, we use prior knowledge offered by

previous work [91].

Domain Hosting. Domain hosting is very similar to the previously de-

scribed web hosting sub-category. In this chapter, the difference between web

hosting and domain hosting is the structure of domain names and URLs. In

a web hosting case, an individual directory can be created (e.g., /∼user1).

On the other hand, in a domain hosting case, subdomains or fully qualified

domain names (FQDNs) can be created under the hosting service’s domain

names (e.g., user1.example.org). We should recognize these two patterns

because we consider optimal countermeasures for each domain name in order

to avoid filtering legitimate accesses. To classify domain hosting, we use our

heuristic rules of known domain hosting patterns.

4.3.3 Step 2: Separation of Mixtures

The second step of our analysis pipeline DomainChroma is separation of

mixtures comprising malicious domain names. Once the input domain names

84



CHAPTER4 PROFILING GENERATED STRUCTURES OF DOMAIN
NAMES

are categorized in step 1, we can determine where the actions against each

input domain name should be performed. We use a conditional procedure

based on our pre-defined rules. These rules assign the points of defense to the

corresponding categories. Specifically, the input domain names are separated

into two groups: one requiring HTTP-level defenses, the other requiring DNS-

level defenses. These groups correspond to the points of defense summarized

in Section 4.2.2.

Domain names requiring HTTP-level defenses fall into the compromised

category, namely, advertising, CDN, and web hosting, as defined in Sec-

tion 4.3.2. These domain names are defined as compromised because they

originally referred to legitimate services. Thus, within this group, our actions

should not target domain names alone but should use additional information

such as URLs pointing to specific malicious content or files.

Conversely, domain names requiring DNS-level defenses fall into the ded-

icated category, namely, DGA, re-registration, sinkholing, parking, typosquat-

ting, no-URLs, dynamic DNS, free, and domain hosting, as defined in Sec-

tion 4.3.2. These domain names are defined as dedicated because they are

exclusively prepared for malicious purposes and can be directly targeted at

DNS-level points of defense.

From the category/sub-category identification result of each input domain

name and our rules, we can decide where to apply defense solutions for the

domain name. If a domain name falls into multiple sub-categories in both

HTTP and DNS levels (e.g., web hosting and typosquatting), we assign it to

the HTTP-level to reduce the risk of collateral damage caused by excessive

filtering of legitimate communication. In an organization, the assignment

will depend on the operational policy of the organization. Our conditional

procedure is easily tunable for this purpose.

4.3.4 Step 3: Purification

Step 3, purification, decides how each domain name should be used for the

optimal defense. Similarly to step 2, we match defense strategies to categories
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through our pre-defined rules. Specifically, we purify the domain names

requiring DNS-level defenses or further separate them into two subgroups:

those requiring FQDN-level defenses and those requiring 2LD-level defenses.

Here, we stipulate that domain names in the sub-categories dynamic DNS,

free and domain hosting require FQDN-level defenses, whereas those in the

sub-categories DGA, re-registration, sinkholing, parking, typesquatting and

no-URLs require 2LD-level defenses. Domain names in the former group are

defined as requiring FQDN-level defenses because their hierarchical structure

means that users can create subdomains or FQDNs under the 2LDs owned

by the providers of the three sub-categories in this group, as explained in

Section 4.3.2. Meanwhile, domain names in the latter group (which includes

all other categories requiring DNS-level defenses in Step 2), are defined as re-

quiring 2LD-level defenses because they are almost certainly registered with

malice. Within the subgroup requiring 2LD-level defenses, we extract and

process the 2LD parts of the input domain names, which can be more effec-

tively filtered than the FQDNs.

4.3.5 Output: Blacklists for Filtering

DomainChroma outputs blacklists for filtering for each point of defense

defined in Section 4.2.2. The defense information in blacklists filters the

user’s accesses to malicious domain names at both HTTP-level and DNS-

level points of defense.

HTTP-level points of defense include security appliances, web servers,

and search engines, as explained in Section 4.2.2. Security appliances, which

mainly monitor the HTTP protocol, can identify URLs requiring HTTP-

level defenses. As explained in Section 4.3.3, such URLs are created using

the additional information of specific malicious content or files. The URLs

referred by security appliances can also be referred by web servers and search

engines, which can then filter malicious contents.

DNS-level points of defense include caching name servers, authoritative

name servers, and the domain registry/registrar as explained in Section 4.2.2.
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At caching name servers in a local organization or an ISP, blacklists can pre-

vent users from accessing malicious domain names. The blacklists used in

caching name servers include both FQDN and 2LD lists respectively corre-

spond to the domain names requiring FQDN-level and 2LD-level defenses

output by Step 3 of DomainChroma. To minimize collateral damage of le-

gitimate accesses, DomainChroma selects only the malicious domain names

that are defendable at the DNS-level. Authoritative name servers can also

filter answers to DNS queries pointing to blacklisted domain names, prevent-

ing their accesses by users. However, because authoritative name servers

are deployed at each DNS zone, the efficiency of blacklisting is much lower

for authoritative name servers than for caching name servers. At the do-

main registry/registrar, filtering blacklists can also be referred to manage

the domain-name database directly.

4.4 Evaluation

We implemented and evaluated our analysis pipeline DomainChroma on

real datasets containing numerous malicious domain names.

4.4.1 Dataset

We prepared an input dataset of malicious domain names presented in Ta-

ble 4.1. As explained in Section 4.3.1, the expected input toDomainChroma

is a dataset of malicious domain names provided by domain reputation sys-

tems [4, 7, 80] or any domain name blacklists. We used the six types

of malicious domain names listed in Table 4.1. These malicious domain

names were composed of truly malicious domain names confirmed by a client-

based honeypot (honeyclient), a sandbox system, and commercial and pro-

fessional services provided by a security vendor. The Honeyclient-Exploit

and Honeyclient-Malware types contained malicious domain names related

to drive-by download attacks detected by our honeyclient which regularly

crawls public blacklists [57], some commercial blacklists from March 2015
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Table 4.1: Dataset of Malicious Domain Names
Type Period # FQDNs
Honeyclient-Exploit 2015-03-01–2015-10-07 537
Honeyclient-Malware 2015-03-01–2015-10-07 68
Sandbox-Malware 2015-03-01–2015-10-07 775
Sandbox-C&C 2015-03-01–2015-10-07 8,473
Pro-C&C 2015-03-01–2015-03-29 97
Pro-Phishing 2015-03-01–2015-03-29 78,221
Total 88,171

to October 2015. More precisely, the malicious domain names collected in

Honeyclient-Exploit were distributing exploit content during drive-by down-

load attacks. Honeyclient-Malware was composed of malicious domain names

responsible for distributing malware samples. The malicious domain names

in Sandbox-Malware and Sandbox-C&C were observed in a sandbox system

running malware samples. These samples were randomly downloaded from

VirusTotal [60] daily and consisted of newly submitted (within 24 hours) ma-

licious executable files used in Microsoft Windows. Specifically, the malicious

domain names in Sandbox-Malware were connected by malware downloader

samples, enabling the download of other malware samples. Sandbox-C&C

contained the C&C servers’ domain names detected in the sandbox. The

malicious domain names in Pro-C&C and Pro-Phishing were captured from

C&C and phishing websites in March 2015 by a commercial and professional

security service.

4.4.2 Output of DomainChroma

The six types of malicious domain names shown in Table 4.1 were input to

DomainChroma, and the outputs were evaluated. This evaluation reveals

the relationships between our defined domain-name categories/sub-categories

and the various attack types (e.g., drive-by download, malware download and

C&C, and phishing).

Table 4.2 summarizes the output of DomainChroma; namely, the iden-

tified points of defense and levels of defense information of the input do-
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Table 4.2: Summary of Output of DomainChroma
Dataset # FQDNs # FQDNs # FQDNs # Total

(HTTP-level) (DNS-level (DNS-level Input
/2LD-level) /FQDN-level) FQDNs

Honeyclient-Exploit 16 369 152 537
Honeyclient-Malware 2 59 7 68
Sandbox-Malware 106 549 120 775
Sandbox-C&C 1,939 5,015 1,519 8,473
Pro-C&C 30 52 15 97
Pro-Phishing 22,031 48,589 7,601 78,221
Total 24,124 54,633 9,414 88,171

main names. The points of defense are HTTP-level (security appliances,

web servers, and search engines) and DNS-level (caching name servers, au-

thoritative name servers, and domain registries/registrars), as explained in

Section 4.2.2. The level of defense information is the required granularity

level (2LD-level or FQDN-level). From the DomainChroma output, we

can provide blacklists to points of defense in real operations. As mentioned

in Section 4.3.3, if a domain name belongs to multiple sub-categories in both

HTTP and DNS levels, DomainChroma selects the HTTP-level to reduce

the risk of collateral damage of legitimate accesses. Among the FQDNs,

24,124 (27.4% of the input FQDNs) required HTTP-level defenses, 54,633

(62.0% of the input FQDNs) required DNS-level defenses with 2LD-level

domain information, and 9,414 (10.7% of the input FQDNs) required DNS-

level defenses with FQDN-level domain information. These results indicate

that when applying the output of DomainChroma, over 70% of the do-

main names engaged in various types of cyberattacks could be effectively

defended only at DNS-level points of defense. This result is surprising and

newly observed. In the Honeyclient-Exploit and Honeyclient-Malware cases,

which correspond to drive-by download attacks, only approximately 3% of

the input FQDNs require HTTP-level defenses, although both types are web-

based attacks targeting web browsers and their plugins. This finding is pos-

sibly explained by the activities of recent attackers, who tend to prepare new

89



CHAPTER4 PROFILING GENERATED STRUCTURES OF DOMAIN
NAMES

dedicated domain names for hosting their exploit kits and malware samples

in drive-by download attacks. In the malware activities Sandbox-Malware,

Sandbox-C&C, and Pro-C&C, up to 86% of the input FQDNs require DNS-

level defenses. In the Pro-Phishing case, which corresponds to web phishing

attacks, around 70% of the input FQDNs require DNS-level defenses, and

only 9.7% require FQDN-level defense information. The low percentage of

inputs requiring FQDN-level information is attributed to the self-registration

and self-use of dedicated 2LDs in most of the recent phishing sites.

We investigated the risk of collateral damage when applying the DNS-level

blacklist output from DomainChroma. Specifically, we checked the exis-

tence of legitimate domain names and URLs under each blacklisted domain

name by leveraging passive DNS database (DNSDB) [92] and search engine

APIs. We confirmed that the blacklists generated by DomainChroma in-

curred no collateral damage; that is, no legitimate domain names or URLs

were falsely filtered by DomainChroma. Recall that DomainChroma

was designed to prevent such situations by analyzing the characteristics of

the domain names and points of defense. These results indicated that, by

combining various techniques and considering both defense solutions and

points of defense, DomainChroma generates optimal blacklists that do not

inconvenience legitimate users.

4.5 Conclusion

In this chapter, we designed and implemented a unified and objective anal-

ysis pipeline called DomainChroma to reveal what, where, and how coun-

termeasures should be taken against malicious domain names for websites.

DomainChroma applied malicious domain names’ chromatography that is

newly defined here to mean the separation of mixtures comprising various

types of malicious domain names. Based on this idea and systematized

knowledge, we combined state-of-the-art research efforts and developed the

analysis pipeline to offer practical and optimal defenses against today’s ma-

licious domain names without collateral damage of legitimate services. We
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evaluated DomainChroma using a large and real dataset to show that over

70% of domain names need only DNS-level defense with no collateral damage

of legitimate accesses. We hope that the knowledge and results in this chap-

ter can be used to improve both the techniques and operations in DNS-level

and HTTP-level points of defense to defend attacks using domain names and

DNS in the future.
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Chapter 5

Profiling Invariable Keywords
in HTTP Communications

5.1 Introduction

Ever-evolving malware is a root cause of recent cyberattacks. Malware-

infected hosts are controlled by attackers in such a way that they become

accomplices in various cyberattacks. Communications and infrastructure be-

tween attackers and infected hosts are called command and control (C&C ).

An infected host controlled by C&C is called a bot, and a group of bots con-

nected via C&C is called a botnet. Attackers transmit attack instructions

to bots to carry out cyberattacks, and the results of attacks by bots are

transmitted to attackers via C&C. Botnets enable attackers to conduct cy-

berattacks while keeping their existence untraceable. Thus, botnets are one

of the most serious threats in the cyber security field.

C&C is an essential function of a botnet, i.e., C&C communications from

bots must occur in a network. C&C communications have involved vari-

ous protocols such as IRC, HTTP, P2P, and HTTP+P2P [93]. Recently,

attackers have tended to use more general protocols for their C&C commu-

nications to prevent them from being analyzed or detected. Thus, over 60%

of botnets use HTTP or HTTP+P2P as their C&C protocol [94]. In enter-

prise networks, in particular, filtering for outbound traffic is applied to limit

their protocol only to HTTP and HTTPS. Therefore, using HTTP as a C&C
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protocol is effective for attackers.

Countermeasures against botnet consist of defeating botnets themselves,

referred to as a takedown, or detecting bots or C&C communications in a

botnet. For example, takedowns of the Zeus botnet, the Citadel botnet, and

the GameOver Zeus botnet were conducted in 2012, 2013, and 2014, respec-

tively [95, 96, 97]. Takedowns can help prevent cyberattacks. However, they

are not easily implemented because it is necessary to keep precise track of

C&C infrastructure and to ensure cooperation among relevant organizations.

Therefore, detecting infected hosts on a particular network is necessary to

mitigate cyberattacks, and the importance of this has significantly increased

recently. This countermeasure can be divided into two categories: host-

based and network-based. When an infected host is under the control of an

attacker, any host-based countermeasure, such as antivirus software, has been

disabled. In this case, network-based countermeasures are more effective, and

many such countermeasures have been focused on C&C communications.

One countermeasure is to blacklist known C&C domain names or URLs.

Matching the communications with the blacklists makes it possible to detect

C&C communications and infected hosts in a network.

Matching communications with blacklists is not always successful because

attackers evade blacklists by changing all or part of their C&C domain names

and URLs, namely their hostnames, domain names, URL paths, and URL

queries. For example, some attackers use a domain generation algorithm

(DGA) to change domain names effectively. Polymorphic URLs, which at-

tackers generate to evade blacklists, tend to have similar patterns because

attackers reuse their web servers or use the same toolkit.

Research on generating network-based signatures or templates, which in-

volves the use of regular expressions to detect polymorphic patterns, has

been conducted to use these patterns in URLs. For example, Xie et al. pro-

posed a system AutoRE to generate signatures with regular expressions to

detect the polymorphic URLs in spam emails sent from botnets [98]. Perdisci

et al. proposed a method of generating signatures with regular expressions
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to detect the URLs used in C&C communications based on HTTP traffic

captured in a controlled environment, which is a sandbox system to dynam-

ically analyze malware samples [1]. Nelms et al. improved upon the above

research [1] and proposed a system called ExecScent, which introduced the

concept of templates that can cover not only URLs but also HTTP request

headers [13].

However, a potential problem with such signatures or templates is that

they may falsely regard benign communications as malicious, resulting in

false positives, due to an inherent aspect of regular expressions. Given that

the cost of dealing with malware infection is high, false positives should be

kept to a minimum. The cost can be enormous in organizations. A study

showed that an average of 395 hours a week is spent responding to false alerts

of malware infection, which costs about $1.27 million per year [99].

We therefore propose a system, called BotProfiler, to generate tem-

plates that cause fewer false positives than with the conventional system Ex-

ecScent [13] in order to achieve more accurate detection of malware-infected

hosts. We focused on the key idea that malicious infrastructures, such as

malware and C&C, are prone to be reused instead of created from scratch.

Our research verifies this idea and proposes here BotProfiler to profile

the variability of substrings in HTTP requests. BotProfiler identifies in-

variable keywords based on the same malicious infrastructures and makes it

possible to generate more accurate templates.

Our main contributions are as follows:

• We propose a system called BotProfiler that generates templates to

detect infected hosts after profiling invariable substrings of URL paths,

URL queries, and user agents in HTTP requests from infected hosts.

• Our research presents the first-ever analysis of the existence and its

reason of invariable substrings used by attackers and contributes to

automatically generating more accurate and valuable templates than

ExecScent.
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Figure 5.1: BotProfiler system overview

• The effectiveness of BotProfiler was validated with actual large

traffic datasets. The results indicated that it reduced the number of

false positives by up to two-thirds compared to ExecScent and even

increased the detection rate of infected hosts.

The rest of this chapter is organized as follows. The detection method-

ology of BotProfiler is introduced in Section 5.2. The datasets and the

results of our evaluation are described in Section 5.3. The limitation of our

system is discussed in Section 5.4. Section 5.5 reviews related work. Finally,

Section 5.6 concludes this chapter.

5.2 Detection Methodology

5.2.1 System Overview

BotProfiler generates templates to detect infected hosts in a network.

Figure 5.1 is an overview of the system. It involves four steps; step 1: vari-

ability profiling, step 2: template generation, step 3: rarity profiling, and

step 4: template matching. This matching concept was originally introduced

with the conventional system ExecScent; however, BotProfiler generates
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more precise and valuable templates than ExecScent. Steps 1 and 2 involve

generating templates from outbound traffic captured in our sandbox sys-

tem [100] running malware samples (malware traffic). Our malware samples

were obtained from our high-interaction honeyclient [18, 101]. Steps 3 and

4 involve matching traffic with templates based on two criteria: the similar-

ity to the templates and the rarity of each element in the templates. For

example, an element that has high rarity means that it appears very infre-

quently in a deployment network. BotProfiler determines the rarity to

use the characteristics of modern malware samples, which tend to affect a

limited percentage of all hosts in a network, and to reduce false positives.

Figure 5.1 also shows that the architecture of BotProfiler is divided into

a lab environment and deployment network. The lab environment requires

a honeyclient and a sandbox; however, the deployment network does not

require them and only uses templates from the lab environment. This archi-

tecture readily enables us to deploy BotProfiler in multiple deployment

networks. The details of BotProfiler are explained step by step in the

following sections.

5.2.2 Step 1: Variability Profiling

Step 1 enables us to generate templates with regular expressions that cause

fewer false positives than ExecScent. We focused on the key idea that mali-

cious infrastructures, such as malware and C&C, tend to be reused instead

of created from scratch. On the basis of this idea, in step 1, the variabil-

ity of substrings in malware-generated HTTP requests is profiled to identify

invariable keywords and variable substrings. Figure 5.2 shows the detailed

procedure of step 1. First, substrings composed of two or more characters

in URL paths, URL queries, and user agents in HTTP requests of malware

traffic are extracted as candidate keywords. From the candidate keywords,

invariable keywords are then detected based on the number of malware sam-

ples using the keywords. If there are more malware samples that use the

same candidate keyword, it is more likely that the keyword is invariable and
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Figure 5.2: Example of variability profiling

reused based on the same malicious infrastructure.

It is claimed that ExecScent [13] observed the existence of stable URL

paths in some malware-generated HTTP requests. However, it does not re-

veal how to detect and use them. On the other hand, we focused on invariable

keywords not only in URL paths but also in URL queries, and user agents.

Moreover, step 1 contributes to automatically detecting such invariable key-

words to generate more accurate and valuable templates without using any

particular ground truth data. The effectiveness ofBotProfiler is validated

later in Section 5.3.

5.2.3 Step 2: Template Generation

Replacing Substrings in HTTP Requests with Regular Expressions

Step 2 involves generating templates using invariable keywords produced in

step 1. These templates contain features of URL paths, URL queries, and

user agents, based on the result of clustering HTTP requests in malware

traffic. Our templates include not only URLs but also user agents in HTTP

request headers to reduce false positives with considering only URLs. To de-

tect polymorphic patterns used by attackers, HTTP requests are segmented
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Table 5.1: Example of patterns in regular expressions

Data type Regular expression
String <str; length>
Integer <int; length>
Hexadecimal <hex; length>
Base64 <base64; length>

into substrings with symbols (e.g., /, ?, =, -, .) and replaced with regu-

lar expressions (e.g., <str; length>) containing the data type (e.g., string

(str), integer (int), hexadecimal (hex), base64) and length indicated in

Table 5.1. Figure 5.3 shows examples of how substrings are replaced with

regular expressions using both ExecScent and BotProfiler. ExecScent

basically replaces all substrings with regular expressions to effectively ag-

gregate HTTP requests into templates. However, this system has a po-

tential problem of falsely matching benign HTTP requests with templates,

which results in false positives, due to an inherent aspect of regular ex-

pressions. For example, even if the structure of the URL path in a benign

HTTP request (e.g., /foobar/index.htm) and that in malware traffic (e.g.,

/images/logos.gif) are totally different, the regular expressions that cor-

respond to these structures are the same (e.g., /<str;6>/<str;5>.<str;3>).

BotProfiler avoids such false positives based on regular expressions. Thus,

it does not replace the substrings that match any invariable keywords pro-

duced in step 1 since these substrings tend to be reused by the same malicious

infrastructure. The efficiency for aggregating HTTP requests into templates

in ExecScent is higher than that of BotProfiler because more HTTP re-

quests are converted into the same regular expression patterns. However,

BotProfiler generates more specific templates since it uses the reused

nature of malicious infrastructures.
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Figure 5.3: Example of replacing substrings in HTTP requests with regular
expressions

Aggregating HTTP Requests

To reduce the number of templates and matching cost using the templates,

ExecScent aggregates similar HTTP requests into one template. BotPro-

filer also uses this concept to generate practical templates. Specifically, it

introduces two stages of clustering of HTTP requests with regular expres-

sions. An overview of this is given in Fig. 5.4.

The first stage consists of clustering using the criterion of destination

IP addresses. This clustering process groups HTTP requests that share the

same destination IP address range or prefix to generate IP range clusters.

The second stage consists of applying agglomerative hierarchical clustering

to HTTP requests within each IP range cluster. The agglomerative hierarchi-

cal clustering sequentially combines similar requests based on the predefined

similarity metric to output a dendrogram, which is a tree-like diagram rep-

resenting the distance between clusters [102]. Cutting the dendrogram at a

certain height, which is called the cut height and is determined empirically,

divides the IP range cluster into similar request clusters that include mul-
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Figure 5.4: Overview of process to generate templates using clustering

tiple similar HTTP requests. BotProfiler finally selects 0.5 as the cut

height based on the best result of preliminary experiments. In each similar

request cluster, BotProfiler extracts the centroid, which refers to one of

the HTTP requests that maximizes the sum of similarities between the re-

quest and all other requests. From the centroids, the templates that contain

URL paths, URL queries, and user agents are extracted.

The similarity metric Sim(ha, hb) between HTTP requests ha and hb is

defined by the following equation.

Sim(ha, hb) =
1

n
·

n∑

k=1

σk(ha, hb) (5.1)

Here, σk is the function to calculate similarities between elements in ha and

hb, and n is the number of considered elements; we set n = 4. Specifically, σ1

is the similarity between URL paths and is calculated using the normalized

edit distance, σ2 is the similarity between the combination of parameter

names in the URL queries and is calculated using the Jaccard similarity, σ3

is the similarity between the values in the URL queries and is calculated using

the ratio of having the same data type and length, and σ4 is the similarity

between user agents and is calculated using the normalized edit distance.

The above definitions result in σk ∈ [0, 1], ∀k and Sim(ha, hb) ∈ [0, 1].

Note that the host header of HTTP requests, such as a domain name

or an IP address, is not included as an element in the templates. Under
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the assumption that attackers reuse their malicious infrastructure, such as

web servers and toolkits, to conduct other attacks at a different domain

name or IP address, a host header might be changed. For example, using

a domain generation algorithm (DGA) enables attackers to change domain

names frequently. However, elements in our templates (URL paths, URL

queries, and user agents) are more stable than the host header. Thus, our

templates can be used to detect attacks caused by the reuse of malicious

infrastructure by attackers.

5.2.4 Step 3: Rarity Profiling

Step 3 contributes to reducing false positives when matching templates with

traffic in a deployed network. This step involves calculating the rarities of

elements in our templates generated in step 2. That is, this step involves

finding the rare elements that appear very infrequently in benign traffic.

Given that the number of infected hosts is far lower than that of non-infected

hosts in a deployment network, the infrequent elements might be presumed

to be sent from infected hosts in the network. Rarities of elements vary from

network to network; thus, rarities should be calculated on each deployment

network. We focused on the rarities of URL paths, URL queries, and user

agents. ExecScent also uses a set of other headers in HTTP requests in

addition to the above. However, we did not use it since such other headers are

not available in the traffic capture environment in the deployment network.

The rarity ρt,k of an element k in a template t is calculated using the following

equation.

ρt,k = 1− nt,k

maxi ni
(5.2)

Here, nt,k is the number of hosts that send HTTP requests containing k in

t, and maxi ni is the maximum number of hosts in all elements of the same

type (e.g., URL paths, URL queries, and user agents). The definition results

in ρt,k ∈ [0, 1], ∀t, ∀k.
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5.2.5 Step 4: Template Matching

Step 4 involves matching traffic to be evaluated with both the templates

generated in step 2 and the rarities in step 3 to detect malware-infected

hosts. Specifically, a matching score Score(h, t) between an HTTP request

h and a template t is calculated from the following equation.

Score(h, t) =

∑n
k=1 σk(h, t) · ω(σk(h, t), ρt,k)∑n

k=1 ω(σk(h, t), ρt,k)
· ρh,d (5.3)

Here, σk(h, t) is defined in the same way as explained in Section 5.2.3, ρt,k is

the rarity of k in t, ρh,d is the rarity of a destination fully qualified domain

name (FQDN) d in h and is calculated in the same way as step 3, and ω is

the weight function between σk(h, t) and ρt,k and is defined by the following

equation.

ω(σk(h, t), ρt,k) = 1 +
1

(2− σk(h, t) · ρt,k)m
(5.4)

The value m is a fixed parameter and determined empirically. The above

definitions result in Score(h, t) ∈ [0, 1]. A matching score Score(h, t) is de-

signed to be high when the similarity between an HTTP request h and a

template t is high, and the rarities of elements in t are high in a deploy-

ment network. If Score(h, t) exceeds a predefined threshold (matching score

threshold), which means an HTTP request closely matches a template and

the elements in the request have rarely appeared in the deployment network,

BotProfiler determines h to be generated by an infected host.

5.3 Evaluation

5.3.1 Evaluation Overview

BotProfiler was evaluated using extensive actual datasets. This section

explains how we evaluated it in terms of feasibility and detection performance

in comparison to the conventional system ExecScent. The feasibility is based

on the effectiveness of invariable keywords and the results of our variability

profiling and template generation. Detection performance was measured by
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Table 5.2: Malware traffic datasets

Dataset # Malware # Detected # Malware # HTTP
samples samples families requests

Current 2,507 431 (17%) 44 598,534
(Aug. 2011–Dec. 2012)
Future 1 (Jan. 2013) 426 366 (86%) 25 11,427
Future 2 (Feb. 2013) 444 396 (89%) 17 67,030
Future 3 (Mar. 2013) 451 282 (63%) 45 32,113
Future 4 (Apr. 2013) 511 301 (59%) 69 17,996
Future 5 (May. 2013) 616 376 (61%) 55 19,385
Future 6 (Jun. 2013) 438 344 (79%) 37 8,259
Future 7 (Jul. 2013) 695 465 (67%) 40 9,567
Future 8 (Aug. 2013) 1,477 932 (63%) 49 23,020

the detection rate of infected hosts and the false positive rate in the deployed

network. Note that ExecScent is closed-source software; thus, we reimple-

ment it based on the paper [13] to compare the detection performance in

both systems.

5.3.2 Datasets

Malware traffic captured in the sandbox and benign traffic in the deployment

network were used to evaluate the effectiveness of BotProfiler when de-

ployed in a real network. We simulated the situation in which infected hosts

exist in the deployment network. Our evaluation involved dividing both mal-

ware traffic and benign traffic based on the date of January 1, 2013. Specifi-

cally, malware and benign traffic before that date was used to generate tem-

plates or calculate rarities, whereas those kinds of traffic after that date were

used to evaluate the detection rate or false positive rate. This situation is

equivalent to evaluating the future detection performance of BotProfiler

because it uses only the information as of January 1, 2013. The details of

our datasets are described further below.

Malware traffic was captured from the sandbox system [100] running mal-
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Table 5.3: Malware families in malware traffic dataset (Current)

Malware family # Malware samples
Backdoor.Win32.ZAccess 157
Trojan-Ransom.Win32.PornoAsset 50
Backdoor.Win32.PMax 38
Trojan-PSW.Win32.Tepfer 31
Trojan-Downloader.Win32.Agent 25
Trojan.Win32.Bublik 16
Trojan-Downloader.Win32.Andromeda 12
Trojan-Spy.Win32.Zbot 12
Trojan.Win32.FakeAV 8
Trojan-FakeAV.Win32.SmartFortress 8

ware samples. The sandbox supports executable files only in Microsoft Win-

dows environments. These malware samples were collected using the honey-

client [18, 101] crawling public blacklists such as MalwareDomainList [43] and

hpHosts [57] and some commercial blacklists from August 2011 to August

2013. Table 5.2 lists the number of malware samples in each dataset, number

and ratio of samples detected by antivirus software, number of unique mal-

ware family names, and number of HTTP requests. The Current dataset was

used for generating templates and composed of HTTP requests generated by

2,507 unique malware samples. Datasets labeled Future were used to eval-

uate detection performance and consisted of datasets divided into months

Future 1–8. Note that there were no overlaps in malware samples between

the Current and Future 1–8 datasets.

All malware samples were checked with multiple antivirus software pro-

grams using the VirusTotal [60] as of January 6, 2015. Kaspersky was selected

to label samples with malware family names for the following two reasons.

One reason is that it achieved the best detection rate excepting the uninfor-

mative labels (e.g., generic, heuristic). The other reason is that the rule

for family names is openly available [103]. The latest malware definition file

of the software as of January 6, 2015 was used for the evaluation. Table 5.2
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Table 5.4: Malware families in malware traffic datasets (Future 1–8)

Malware family # Malware samples
AdWare.Win32.Agent 541
Trojan-PSW.Win32.Tepfer 272
Trojan-Ransom.Win32.Foreign 242
Backdoor.Win32.ZAccess 174
Trojan-Downloader.Win32.Agent 166
RiskTool.Win32.Agent 155
Downloader.Win32.LMN 132
Trojan-Ransom.Win32.PornoAsset 128
AdWare.NSIS.Indirect 127
AdWare.Win32.iBryte 100

indicates that the detection rate for antivirus software was not very good in

any of the datasets even if the latest definition file was used. The reason is

that most of the malware samples were not suitably collected or analyzed

by the antivirus vendors. Tables 5.3 and 5.4 list the top 10 malware family

names detected by the antivirus in both the Current and Future 1–8 datasets.

This result indicates that the malware samples in our datasets were unbiased

in terms of malware families. Moreover, the result shows the difference in

distribution of families between Current and Future 1–8. Note that malware

family information was used as reference in our evaluation and was not used

in BotProfiler.

Benign traffic was captured in a large, real enterprise network from De-

cember 2012 to August 2013. The traffic was inspected by security engineers

using commercial ground truth data to filter out the possibility of containing

malicious traffic in January 2015. Table 5.5 shows the number of source IP

addresses and number of outbound HTTP requests. The Training dataset

was used to calculate rarities, and the Testing dataset was used to evaluate

the false positive rate.
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Table 5.5: Benign traffic datasets

Dataset # Src IP addresses # HTTP requests
Training (Dec. 2012) 5,261 95,438,564
Testing (Jan. 2013–Aug. 2013) 8,055 723,903,639

Table 5.6: Classification of URL path structure

URL path class # Malware Effectiveness of
families BotProfiler

Fixed path structure 30 (68%) Effective
Random path structure 14 (32%) Ineffective

5.3.3 Verifying the Effectiveness of Invariable Keywords

In this section, we validate the effectiveness of invariable keywords used with

BotProfiler. Specifically, URL paths, URL queries, and user agents in

HTTP requests of the Current dataset were analyzed to reveal effective and

ineffective cases when introducing invariable keywords to the templates. To

the best of our knowledge, this is the first analysis focusing on the structure

of malware-generated HTTP requests. The following results are the basis of

the superiority of BotProfiler.

Table 5.6 lists the results of analyzing the structure of the URL paths in

each malware family. The results indicate that 68% of malware families in

the Current dataset send HTTP requests that have a fixed URL path struc-

ture, meaning that it contains fixed and fixed-length substrings. Invariable

keywords in BotProfiler are effective for such fixed URL path structures.

Two reasons can be considered for the large portion of fixed URL path struc-

tures. One is the use of publicly available APIs by malware samples. Some

attackers use APIs (e.g., GeoIP) to obtain information on infected hosts such

as IP addresses and locations. Using such APIs forces attackers to comply

with the requirements of the APIs and to send HTTP requests that have a

fixed URL path. The other reason is the high cost for attackers to accept
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Table 5.7: Classification of URL query structure

URL query class HTTP # Malware Effectiveness of
Method families BotProfiler

Fixed field name GET 14 (32%) Effective
Random field name GET 5 (11%) Ineffective
No queries GET 11 (25%) -
No queries POST 14 (32%) -

random URL path structures. For example, attackers need to receive and

interpret HTTP requests with such random URL paths on their C&C servers.

Table 5.7 lists the result of analyzing the structure of the URL queries in

each malware family. The results indicate that 32% of malware families in

the Current dataset send HTTP GET requests that have fixed URL query

field names. Invariable keywords in BotProfiler are effective for such fixed

URL query field names. The reasons for the fixed URL query field name are

the same as those for having a fixed URL path, namely, the utilization of

publicly available APIs and the high cost for attackers to accept a random

URL query field name. In Table 5.7, the item listed as no queries in the

HTTP GET method includes instances of checking the Internet connection

using malware samples, and no queries in the HTTP POST method includes

instances of sending information using the body of the request.

The results of analyzing the structure of user agents in each malware

family are listed in Table 5.8. The results indicate that 77% of malware

families in the Current dataset send HTTP requests that have the same user

agent as general web browsers such as Internet Explorer and Firefox. User

agents of general web browsers consist of fixed substrings, which represent

the name of the browser or OS, and the version number (e.g., Mozilla/4.0

(compatible; MSIE 8.0; Windows NT 6.1)). Therefore, using such fixed

substrings as invariable keywords in BotProfiler is effective in generating

accurate templates. The reason that most attackers use general web browsers

as user agents is that they try to hide their C&C communications in legit-
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Table 5.8: Classification of user agent structure

User agent class # Malware Effectiveness of
families BotProfiler

Common web browsers 34 (77%) Effective
Unusual user agents 5 (11%) Effective
No user agents 5 (11%) -

Table 5.9: Summary of variability profiling

URL path URL query User agent
# Candidate keywords 6,521 1,365 601
# Invariable keywords 483 259 142

imate HTTP communications. On the other hand, 11% of malware fami-

lies send HTTP requests with unusual user agents (e.g., Converter agent,

VBTagEdit). However, most of these user agents include fixed substrings.

Thus, using such fixed substrings as invariable keywords is also considered

to be effective.

5.3.4 Results of Variability Profiling

This section explains the results of conducting variability profiling (step 1)

with the Current dataset listed in Table 5.2. Specifically, we analyzed the re-

lationship between candidate keywords in URL paths, URL queries, and user

agents, and the number of malware samples that use each candidate keyword.

The more malware samples that use a candidate keyword, the more likely it

is that the candidate keyword is the invariable keyword that is based on the

same malicious infrastructure. Figure 5.5 is the complementary cumulative

distribution function (CCDF) showing the relationship between candidate

keywords and the number of malware samples that use the keywords. In this

case, CCDF corresponds to the probability of the candidate keywords being

greater than or equal to the specified number of malware samples.
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Figure 5.5: CCDF of number of malware samples for each keyword

Figure 5.5 reveals the existence of invariable keywords that are reused

across multiple malware samples in the URL paths, URL queries, and user

agents of HTTP requests generated by infected hosts. BotProfiler sets

a threshold for the number of malware samples, and any candidate keyword

that exceeds the threshold is identified as an invariable keyword. In our

further evaluation, the threshold was set to five malware samples based on

the best result in our preliminary verification. Table 5.9 lists the number of

candidate keywords and that of invariable keywords in each URL path, URL

query, and user agent. Moreover, Table 5.10 gives examples of invariable

keywords identified with BotProfiler.

5.3.5 Results of Generating Templates

This section describes the results of generating templates (step 2) with the

Current dataset and invariable keywords output from step 1. Table 5.11

lists the number of templates output from ExecScent, which does not use

invariable keywords in templates, and that from BotProfiler, which uses

invariable keywords. As explained in Section 5.2.3, the number of templates

in BotProfiler exceeds that in ExecScent because the efficiency of aggre-
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Table 5.10: Example of detected invariable keywords

Element Examples of invariable keywords
URL path php, js, exe, txt, app, geo, geoid, images,

up, stat, city, jpg, html, img, png, gif,
install, htm, css, track

URL query id, type, affid, ver, name, ts, event, short,
currency, group, fail, ini, cmd, version, file,
page, source, os, subid, step

User agent Windows, Mozilla, NT, compatible, MSIE, SV,
Opera, Agent, User, Presto, Gecko, Lang, ID,
rv, Firefox, NET, CLR, JP, en, US

Table 5.11: Summary of template generation

# Input HTTP requests # Output templates
ExecScent 598,534 1,749
BotProfiler 598,534 2,098

gating requests in BotProfiler is lower than that in ExecScent.

Examples of templates generated withBotProfiler are shown in Fig. 5.6.

For example, Template #1 was created by keep-alive C&C communications

used by the Sality botnet. Template #2 was produced by C&C communica-

tions that involved counting the number of infected hosts by the ZeroAccess

botnet, which mainly uses P2P as a C&C protocol. However, BotPro-

filer succeeded in generating templates from a limited percentage of HTTP

requests in ZeroAccess. Template #3 was generated by communications in

which infected hosts are forced to download and install fake antivirus soft-

ware. Note that these templates are automatically generated with Bot-

Profiler only from HTTP requests in the Current dataset without using

any other information such as malware family names obtained by antivirus

software. With BotProfiler, generated templates are delivered to the de-

ployment network and matched with traffic using pre-calculated rarities in
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Template #1 (Generated from Trojan-Dropper.Win32.Agent) 
[URL path]     !"#$#%&'%()*+,-$./0
[URL query]  '123*4,5'.6(*7,0
[User agent]   892):!'.6(*+,-'.6(*;,0<=.6>#?%0@A00
00000000000'.6(*+,-'.6(*+,*0'%()*+,*026B0

Template #2 (Generated from Backdoor.Win32.ZAccess) 
[URL path]     !C#D6(-919 
[URL query]  .>5'.6(*E,F'%()*+,5'.6(*+,F'%()*+,50
00000000000'.6(*+,F'%()*+,5'.6(*+,0
[User agent]   892):!'.6(*+,-'.6(*;,0<=.6>#?%0@A00
00000000000'.6(*+,-'.6(*+,*0GH*0'I:%24J*E,B0

Template #3 (Generated from Trojan:Win32:FakeAV) 
[URL path]    !:9.!%(:(%!.6%(:""!0
[URL query]  (%5'123*K,F://.>5'.6(*L,FM2)5'.6(*7,F0
00000000000$)#D95'%()*E,0
[User agent]   N#O."":!'.6(*+,-'.6(*+,0<C#P9:(.I"2*0
00000000000NQRS0'.6(*+,-'.6(*+,*0=.6>#?%0@AB0

Figure 5.6: Examples of generated templates

the deployment network to reduce false positives.

The relationship between created templates and malware family names

was analyzed, revealing that templates were generated from 39 out of 44

malware families in the Current dataset. There are two reasons that tem-

plates were not generated for five malware families. One reason is that some

malware families do not use HTTP as their C&C protocol. BotProfiler

is only focused on HTTP requests; therefore, such families were out of the

scope of this study. However, this is not a major problem for us because

our deployment network does not allow protocols other than web protocols

(HTTP, HTTPS) using outbound traffic filtering. The other reason is the

limitation of dynamic analysis in the sandbox. That is, malware samples

that do not run or do not generate any HTTP requests in the sandbox are

out of the scope of this study.
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Table 5.12: Malware families in generated templates

Malware family name # Templates
Trojan-Downloader.Win32.Agent 310
Trojan-PSW.Win32.Tepfer 193
Trojan-Downloader.Win32.Andromeda 64
Trojan-Spy.Win32.Zbot 30
Backdoor.Win32.Hlux 22
Backdoor.Win32.Simda 18
Trojan.Win32.Jorik 17
Trojan.Win32.FakeAV 9
Trojan-FakeAV.Win32.FakeSysDef 7
Trojan.Win32.Genome 7

Table 5.12 lists the top 10 malware family names detected by the an-

tivirus software in the generated templates. A comparison between Table 5.3

and Table 5.12 reveals that the composition of malware families in the Cur-

rent dataset and that in templates generated from the Current dataset differ

widely. This is due to the characteristics of C&C communications. For exam-

ple, the number of inputted ZeroAccess (Backdoor.Win32.ZAccess) malware

samples was large; however, it mainly uses P2P as the C&C protocol and

sends a few variations of HTTP requests. Thus, the number of generated

templates is small.

5.3.6 Detection Rate

This section compares the detection rate in both ExecScent and BotPro-

filer. The detection rate is defined by the ratio of correctly detected infected

hosts. For simplicity, an infected host is only infected with one malware sam-

ple at a time. That is, a malware sample in a dataset was considered to be

detected if at least one of the HTTP requests in each malware sample was de-

tected with BotProfiler. In our evaluation, we determined the detection

rate of BotProfiler, which generates templates with invariable keywords

output from step 1, and that of ExecScent, which does not use invariable
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Table 5.13: Detection rate on malware traffic datasets

Matching score threshold 0.75 0.80 0.85 0.90 0.95
Future 1 ExecScent 91.08% 90.14% 88.97% 60.56% 60.33%

BotProfiler 91.55% 91.08% 89.91% 69.95% 62.91%
Future 2 ExecScent 88.96% 88.96% 84.01% 79.28% 79.28%

BotProfiler 89.64% 89.64% 84.68% 79.50% 79.28%
Future 3 ExecScent 68.74% 65.41% 52.55% 26.39% 26.39%

BotProfiler 67.85% 63.41% 54.55% 27.49% 26.83%
Future 4 ExecScent 37.18% 28.57% 15.07% 2.94% 2.74%

BotProfiler 35.81% 23.48% 14.68% 3.33% 3.13%
Future 5 ExecScent 32.31% 21.92% 11.53% 1.14% 0.81%

BotProfiler 28.90% 18.34% 10.88% 1.14% 0.81%
Future 6 ExecScent 26.03% 14.38% 4.57% 0.23% 0.23%

BotProfiler 22.37% 11.64% 6.39% 0.23% 0.23%
Future 7 ExecScent 23.31% 16.83% 4.46% 0.43% 0.43%

BotProfiler 17.41% 9.78% 7.19% 0.43% 0.43%
Future 8 ExecScent 19.96% 14.83% 3.10% 0.27% 0.27%

BotProfiler 14.16% 9.37% 7.35% 0.27% 0.27%

keywords.

Table 5.13 lists the results of detecting malware samples in Future datasets

using templates generated by the Current dataset. This table shows detec-

tion rates with a variable matching score threshold. If Score(h, t) exceeds

the matching score threshold, BotProfiler determines the HTTP request

h as being generated by an infected host, as described in Section 5.2.5. The

Future datasets consisted of datasets divided by month Future 1–8. Each

Future dataset contains malware samples collected after the Current dataset

was compiled. Our evaluation using the Future datasets enabled us to track

changes in the detection rate of templates from the Current dataset over

time.

The results reveal three facts concerning detection rates in both systems.

First, the detection rates of both systems decreased linearly over time (from

Future 1 to Future 8) in each matching score threshold. This is due to match-

ing Future datasets with the same templates generated from the Current
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Figure 5.7: CDF of URL path rarities in malware traffic datasets

dataset, even if the malware samples in the Future datasets vary over time.

This fact led us to conclude that templates should be updated using the lat-

est malware samples on a regular basis. In this case, the templates should be

updated after two months (Future 2) to obtain a detection rate of at least

80% at a matching score threshold of 0.85.

Second, the detection rates of BotProfiler tended to be lower than

those of ExecScent as time advanced. For example, at a matching score

threshold of 0.75, the detection rates in Future 1 and Future 2 were more

than those of ExecScent. On the other hand, the detection rates between

Future 3 and Future 8 were lower than those of ExecScent. These results

indicate that the effective period of templates in ExecScent is longer than that

of BotProfiler since the matching area covered by the regular expressions

of ExecScent is wider than that of BotProfiler. However, the actual

operation of BotProfiler in the deployment network includes downloading

templates from the lab environment at least once every month. In such a

case, the detection rate of BotProfiler is superior to that of ExecScent.

Finally, BotProfiler improved the detection rates with all thresholds

between 0.75 and 0.95 in Future 1 and Future 2, even when it introduced

invariable keywords to generate more specific templates. This is not a sur-
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Table 5.14: False positive rate on benign traffic datasets

Matching score threshold 0.75 0.80 0.85 0.90 0.95
ExecScent 3.89% 0.46% 0.08% 0.04% 0.01%
BotProfiler 1.18% 0.20% 0.06% 0.03% 0.01%

prising result and is reasonable. The only reason is that BotProfiler

determines not only the similarity to the templates but also the rarity of

each element in the templates. For example, the rarity of the URL path in

BotProfiler (e.g., /images/<str;5>.gif) is higher than that of ExecS-

cent (e.g., /<str;6>/<str;5>.<str;3>) because the latter matches various

types of HTTP requests in the deployment network. Figure 5.7 shows the

CDF of URL path rarities in the deployment network when calculating a

matching score of Future datasets. This graph illustrates that URL path

rarities in BotProfiler are higher than those of ExecScent. This differ-

ence contributes to raising the matching scores of HTTP requests to improve

the detection rates in BotProfiler.

5.3.7 False Positive Rate

This section compares the false positive rates for both ExecScent and Bot-

Profiler. The false positive rate is defined by the ratio of falsely detected

benign HTTP requests. Table 5.14 presents the false positive rates with

variable matching score thresholds. The results indicate that the false pos-

itive rates of BotProfiler are always lower than those of ExecScent for

all matching score thresholds between 0.75 and 0.95. In particular, at the

threshold of 0.75, the false positive rate of BotProfiler (1.18%) was less

than one-third that of ExecScent (3.89%). This is due to the effect of us-

ing invariable keywords in BotProfiler. Our invariable keywords enable

BotProfiler to generate more accurate templates, which causes fewer false

positives. We conclude that BotProfiler achieves a higher detection rate

and lower false positive rate simultaneously under the condition in which
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templates are regularly updated. In operating BotProfiler in the de-

ployment network, a matching score threshold is set based on an acceptable

false positive rate in the network. For example, setting the threshold at 0.85

enables BotProfiler to reduce the false positive rate to 0.06%.

5.4 Limitation

5.4.1 Detecting Invariable Keywords

Our variability profiling (step 1) heuristically set the threshold of the number

of malware samples to five, based on the result of the preliminary verifica-

tion. That threshold is used to identify invariable keywords; that is, any

candidate keywords that exceed the threshold are identified as invariable

keywords. Specifically, increasing the threshold reduces the number of in-

variable keywords and vise versa, as shown in Fig. 5.5. Reducing the number

of invariable keywords causes an expansion of the matching area of regular

expressions in our templates. This leads to an increase in both the detection

rate and the false positive rate. Our future task is to automatically set the

optimal threshold to meet the requirement for detection rate or false positive

rate in each deployment network.

BotProfiler needs to update not only templates but also invariable

keywords to catch up the latest trend of malware samples. The cost for

updating invariable keywords is not so large and is small enough to update

monthly at the same timing as updating templates. For example, in our

preliminary experiment, it took only 18 seconds to create invariable keywords

for Current dataset that contains 598,534 HTTP requests. Therefore, if we

set the threshold preliminary, our system can update invariable keywords on

a regular basis to support the latest attacks.

Dynamic analysis with code tainting can be used as another implementa-

tion of the concept of our variability profiling. Code tainting is an approach

to track data propagation on a running system and is combined with dy-

namic analysis or a sandbox system [104]. Under the assumption that the
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data propagation reveals the existence of fixed substrings in HTTP requests

generated by malware samples, such fixed substrings can be utilized as in-

variable keywords. However, code tainting is a resource-hungry technique to

run. Therefore, our lightweight approach, which is based on counting the

number of malware samples, has a competitive advantage over code tainting.

5.4.2 Generating Templates from Malware Traffic

As shown in Fig. 5.1, BotProfiler generates templates from malware traf-

fic. That is, to generate ideal templates, our lab environment needs to col-

lect malware samples exhaustively and to analyze the collected samples ad-

equately. These tasks may be problematic regarding cyber security for two

reasons. One reason is that it is virtually impossible to collect all mal-

ware samples because attackers mass-produce their malware samples using a

toolkit, and they have recently been targeting particular environments or or-

ganizations using drive-by downloads or advanced persistent threats (APTs).

The other reason is that some malware samples can evade detection by identi-

fying the sandbox environment. If malware samples include such a function,

they cannot be dynamically analyzed using the sandbox. Kirat et al. recently

proposed a malware analysis system using a real environment that does not

include a monitoring component inside the system [105]. Such an analysis

method may be a solution to analyze sophisticated malware samples.

5.4.3 Update of Rarities on Deployment Network

BotProfiler generates rarities based on one month of traffic in the de-

ployment network to reduce false positives. However, the rarities should be

updated with the appropriate timing. For example, the rarities of URL paths

or URL queries might be dynamically changed when websites or web applica-

tions, which members in the deployment network usually use, are updated.

Moreover, user agents might be changed if new software is introduced in

the deployment network or if regularly used browsers are updated by their

vendors. As stated above, the appropriate timing for updating the rarities
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depends on the situation in the deployment network. Thus, our future task

might include developing a method for calculating rarities in diverse or mul-

tiple deployment networks.

5.5 Related Work

5.5.1 Generating Network-based Templates

Much research has been done on generating network-based signatures or tem-

plates as a network-based countermeasure against infected hosts. Xie et al.

proposed a system called AutoRE for generating signatures with regular ex-

pressions to detect polymorphic URLs in spam emails sent from botnets based

on the nature of similar substrings in malicious URLs [98]. BotProfiler

differs from AutoRE in that the focus is not spam emails but infected hosts,

and the suffix-array algorithm proposed for AutoRE cannot appropriately be

applied to substrings in HTTP requests. Perdisci et al. proposed a method

of generating signatures with regular expressions to detect the URLs used in

C&C communications based on HTTP traffic captured in a controlled envi-

ronment [1]. BotProfiler targets not only URLs but also HTTP requests

and determines not only similarities but also rarities to reduce false positives.

Nelms et al. improved Perdisci et al.’s method [1] in their system called Ex-

ecScent, which covers HTTP requests [13]. ExecScent is one of the most

advanced systems for generating templates for infected hosts using regular

expressions and was a significant influence in developing BotProfiler. We

expanded ExecScent to introduce the concept of invariability in substrings

in HTTP requests. Zarras et al. proposed the BotHound system to focus on

the sequence of components in HTTP headers to generate templates [106].

BotProfiler does not use the sequence of HTTP headers, that is, it is a

more lightweight system than BotHound. Zand et al. proposed a method of

generating signatures to detect C&C communications by focusing on frequent

words in C&C communications [107]. The idea is similar to our invariable

keywords, although this method cannot generate accurate templates com-
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posed of URL paths, URL queries, and user agents and cannot determine

both invariable and variable features in templates.

5.5.2 Modeling and Detecting Botnets

Another countermeasure against infected hosts includes modeling and de-

tecting multiple infected hosts by using characteristics of botnets. Gu et

al. proposed BotSniffer [108] and BotMiner [109] to detect simultaneous and

similar network behaviors between multiple hosts in order to identify the

activities of infected hosts based on the key idea that infected hosts of the

same botnet have similar characteristics. Unlike with BotProfiler, con-

trolling the false positive rate is generally difficult with these anomaly-based

systems, and they are also difficult to deploy in a large and real network.

Rossow et al. proposed a method to observe and model P2P botnets such as

Zeus, ZeroAccess, and Kelihos [110]. Also, Zhang et al. proposed a method

to detect such P2P botnet activities in a network [111]. BotProfiler does

not focus on P2P botnets because our deployment networks basically only

accept web protocols and do not accept P2P protocol. Caballero et al. pro-

posed a method called protocol reverse engineering to analyze messages in

unknown or undocumented protocols used in C&C communications [112].

BotProfiler only focuses on HTTP request headers, as HTTP is a known

and documented protocol. Thus, our system does not need to use such tech-

niques.

5.5.3 Detecting C&C Domain Names

The other approaches focus on the characteristics of domain names used in

C&C communications to detect accesses to such domain names as infected

hosts’ activities. Holz et al. and Passerini et al. proposed methods to utilize

features of Fast-Flux, which is a technique used by attackers to frequently

change the mappings of their C&C domain names and a lot of IP addresses,

and to identify C&C domain names [113, 114]. Also, Schiavoni et al. pro-

posed a method focusing on the characteristics of DGAs, which are frequently

119



CHAPTER5 PROFILING INVARIABLE KEYWORDS IN HTTP
COMMUNICATIONS

used in C&C to generate multiple domain names, and to detect such DGA

domain names [89]. These methods focus exclusively on the relationship of

domain names and differ from BotProfiler in the way that our templates

only focus on URL paths, URL queries, and user agents. Therefore, these

methods could be combined with our templates to detect infected hosts more

accurately.

5.6 Conclusion

We proposed a system called BotProfiler to generate templates to detect

infected hosts in a network. The key idea of our proposal is that malicious

infrastructures such as malware and C&C tend to be reused instead of created

from scratch. On the basis of this key idea, BotProfiler profiles invariable

substrings in HTTP requests and generates more accurate templates than a

conventional system. Our evaluation with large actual datasets revealed that

BotProfiler reduced false positives by up to two thirds compared with

the conventional system, and it even increased the detection rate of infected

hosts. We also described a limitation of BotProfiler and the problems

that remain to be solved regarding cyber security.
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Conclusion

This thesis focused on data analysis methods for network-based countermea-

sures against various types of cyberattacks. The goal of this thesis was to

solve the four fundamental problems that hamper conventional countermea-

sures: malicious web content is dispersed by attackers, malicious domain

names change over time, attackers generate differently-structured malicious

domain names, and malicious HTTP communications blend in to evade de-

tection. To achieve this goal, this thesis proposed four new analysis methods

in the following chapters.

In Chapter 2, a new scheme to detect malicious websites by profiling their

IP address features was developed and evaluated. The experimental results

show that features extracted only from IP addresses are distinct indicators

that enable us to compensate for the limitations of existing approaches; i.e.,

the scheme can detect even unknown malicious websites with a low error

rate.

In Chapter 3, this thesis proposed a system called DomainProfiler to

predict which domain names have the potential to be malicious in future.

The key idea behind the system is to profile the temporal variation patterns

(TVPs) of malicious domain names. The TVP of a domain name includes

information about how and when the domain name has been listed in le-

gitimate/popular and/or malicious domain name lists. The system actively

collects DNS logs, identifies their TVPs, and predicts whether a given do-
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main name will be used for a malicious purpose. Testing with large-scale data

revealed that the system can predict which domain names will be malicious

220 days beforehand with a true positive rate (TPR) of 0.985.

In Chapter 4, this thesis designed and implemented a unified and objec-

tive analysis pipeline calledDomainChroma to reveal what, where, and how

countermeasures should be taken against malicious domain names for web-

sites. DomainChroma applies malicious domain name chromatography, a

new term we have defined to mean the separation of mixtures comprising var-

ious types of malicious domain names. Based on this idea and systematized

knowledge, combined with state-of-the-art research, this thesis developed an

analysis pipeline to offer practical and optimal defenses against today’s ma-

licious domain names without collateral damage to legitimate services. This

thesis evaluated DomainChroma using a large, real dataset and showed

that over 70% of domain names need only DNS-level defense and that there

was no collateral damage to legitimate accesses.

In Chapter 5, this thesis proposed a system called BotProfiler, which

generates templates for detecting infected hosts in a network. The key idea

is that malicious infrastructure, such as malware samples and command and

control (C&C) servers, tends to be reused instead of created from scratch. On

the basis of this key idea, BotProfiler profiles fixed substrings in HTTP

requests and generates more accurate templates than a conventional system

would. The evaluation with large actual datasets revealed that BotPro-

filer reduced false positives by up to two-thirds compared to the conven-

tional system, and it even increased the rate of detection of infected hosts.

As described above, this thesis proposed four new analysis methods to

solve the four problems with conventional countermeasures. Test results

from several different perspectives prove the effectiveness of the proposals in

real-world settings. The knowledge and results presented in this thesis will

help us to keep up with the trend of ever-changing cyberattacks and enhance

the capabilities of cybersecurity systems on the Internet.
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