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Abstract

In recent years, the Internet of Things (IoT), by which various de-
vices are connected to the Internet to send and receive data, is
spreading for various information services. IoT services will likely
expand to require not only sensor data with small data demands,
but also multimedia such as images and video and it is expected
to spread to a wide range of applications in daily life from now
on. In fact, in speech applications, a speech communication sys-
tem such as Speech Interpretation and Recognition Interface (Siri)
has been put to practical use and is implemented in mobile termi-
nals. Siri sends the voice data caught by the microphone of the
terminal to the cloud server via the network. The server recog-
nizes the meaning of the speech dialogue. After that, it extracts
the appropriate information via the Internet, and presents it to
the terminal side. It is a computer interface that a wide range of
people can use regardless of age. Meanwhile, video information
also plays important roles in various scenes in everyday life, and
it is expected to be widely applied development. In recent years,
due to the advancement of image recognition technology, practical
technology for surveillance camera, in-vehicle camera, augmented

reality etc. are being established. From now on, in the field of



video recognition, it is expected that a system in which user termi-
nals connect to the cloud via the network and recognize acquired

data will spread.

The video information is much bigger in data capacity than
audio and other multimedia data and it is a big problem in realiz-
ing video recognition systems using the cloud. For this reason, it
is not realistic to send video information as it is to the server, and
it is essential for the terminal side to extract important features
that are keys of recognition from images acquired by the camera.
Furthermore, in the conventional feature extraction technique, it
is a problem to extract not only the object to be recognized but
also many unnecessary keypoints for image recognition in videos
having complicated background. This is because many keypoint
extraction algorithms extract keypoints only from large local spa-
tial features and it cannot obtain the whole recognition object re-
gionally. Therefore, it is expected to realize a keypoint extraction
algorithm that can obtain keypoints regionally from recognition
objects. On the other hand, in many video recognition applica-
tions, real-time processing is required. However, in order to obtain
descriptor robustly to image deformation and invariant descriptor
such as rotation under practical environments, the keypoint extrac-
tion algorithm calculates the second order derivative and gradient
histogram, and the amount of calculation is very large. For this
reason, high-speed operation is anticipated assuming hardware im-

plementation such as Field-Programmable Gate Array (FPGA).



Furthermore, since conventional keypoint extraction processing in-
cludes a lot of sequence dependency and sequential processing of
calculation, it is important to improve algorithms for hardware
implementation and to study hardware architecture with high par-

allelism.

This dissertation summarizes the results of research on key-
point extraction algorithms for cloud video recognition system and
its real-time FPGA implementation to solve the above problems.
In the keypoint extraction algorithm, this dissertation proposes a
keypoint extraction method considering local correlation in addi-
tion to conventional spatial information and temporal information.
Each keypoint is weighted by the spatio-temporal features. Only
the keypoints with larger weights are selected. After that, clus-
tering is performed using the inter-keypoint distance and it be-
comes possible to detect keypoints regionally. In real-time FPGA
implementation, this dissertation proposes algorithms suitable for
hardware implementation by keypoint extraction using gradient
histograms and lower computational complexity of local correla-
tion by density clustering. Furthermore, this dissertation proposes
a hardware architecture in which keypoint detection using gradient
histogram and descriptor generation are parallelized, and real-time

processing on FPGA evaluation board is realized.

Chapter 1 explains the present state of recognition system,

cloud video recognition, and its problem that the amount of data



which are transmitted is large. After that, this dissertation de-
scribes the problems of the conventional keypoint extraction method,
the background of the research, and the points of focus and the ob-

jectives of this paper.

Chapter 2 proposes a spatio-temporal keypoint extraction based
on local correlation. In the conventional keypoint extraction method,
since keypoints are detected from locations having large local in-
tensity gradient values, it is a problem that keypoints are detected
from other than the object in video recognition. In the proposed
method, keypoints are detected regionally from the recognition tar-
get by using correlation between the weights of the spatio-temporal
information and the distance between keypoints for locally obtained
keypoint candidates. First, keypoint candidates are detected using
spatio-temporal information. Thereafter, the graph cut algorithm
is applied to the keypoint candidates, and as the distance between
the keypoints is smaller with respect to the smooth term, a larger
weighting is performed. As a result, it is possible to detect key-
points only from regions with a high keypoint candidate density.
The evaluation results show that the F-measure showing compre-
hensive evaluation criteria for accuracy and coverage has improved
from 17 to 45% when comparing with the Harris detector (Optik,
2014) widely used in recent years, and assuming surveillance cam-
era, augmented reality and in-vehicle camera application in video
recognition. It also shows that the proposed algorithm is possible

to reduce the 93% keypoints on average.



Chapter 3 proposes a hardware-friendly algorithm and its FPGA
implementation method in order to realize real-time processing
at the user terminal in cloud video recognition. As a hardware-
friendly algorithm, this dissertation proposes keypoint detection
based on gradient histogram and density clustering. In conven-
tional keypoint extraction algorithms, computation using pixels
around keypoint is required to be performed separately in keypoint
detection and descriptor generation. Thus, the amount of computa-
tion is large. Regarding calculation of local correlation, the amount
of computation is also large because global optimization computa-
tion is necessary. In the proposed algorithm, threshold processing
is applied to the gradient histogram, and keypoints are detected for
portions having large gradient intensities for a plurality of direc-
tions. As a result, the second order differential calculation of the
luminance using the pixels around the keypoint in the keypoint
detection is reduced. For local correlation, by using density clus-
tering, all the keypoints in the grid are detected if the number of
keypoints in the grid-divided region is larger than the threshold.
If it is smaller than the threshold value, the keypoints in the grid
are deleted. This reduces global optimization operations. On the
other hand, in the FPGA implementation, parallel architecture of
keypoint detection and descriptor generation is proposed based on
a gradient histogram. In the conventional implementation method,
it is necessary to sequentially perform descriptor generation, and

the descriptor generation unit waits for the detection information



output from the keypoint detection unit and calculates in the en-
tire flow of keypoint extraction. It is an issue that needs to be
started. In the proposed method, the number of clocks is reduced
by using the features of creation of histogram dividing the descrip-
tor area during descriptor generation, parallel computation is per-
formed for every equally spaced pixel that do not enter the same
dimension of the histogram. Furthermore, by removing the order
dependency of the detection information and executing every clock
feature amount generation, parallelization of keypoint detection
and feature amount generation is realized. Compared with SIFT
(IJCV, 2004) which is a representative keypoint extraction method
by software simulation evaluation, repeatability showing the ro-
bustness of keypoint detection for image scale change and rotation
change is +21% to -13 %, which means that there is no significant
performance difference as the keypoint detection performance. In
addition, as a result of evaluation of the proposed method including
spatio-temporal information and local correlation on the FPGA, it
is 427 times faster than the software processing of SIFT using only
spatial information, and 18 times faster SIFT’s FPGA implemen-
tation (ICMCS 2014). Real-time processing at Full-HD 60 fps is
realized. Furthermore, it demonstrates that it can operate under
the real environment by constructing a demonstration system of

the whole video processing connecting the camera and the display

to the FPGA board.

In chapter 4, as a conclusion, this dissertation and future stud-



ies are summarized. This dissertation shows the spatio-temporal
keypoint extraction based on local correlation for cloud recogni-
tion system and FPGA implementation method. Through these
proposals and their evaluations, the algorithms that can reduce the
amount of data to be sent to the cloud and its real-time verification
have been achieved. These results contribute to the realization of
cloud video recognition systems as a key technology for processing
on the user terminal side. In the future, evaluation of recognition
accuracy when applying the proposed algorithm to each application
and real-time performance evaluation when considering the entire

network are performed.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) [1, 2] shown in Fig. 1.1, connects a wide variety
of devices to each other through the Internet, sends and receives data, and
provides numerous services. The [oT is expected to expand in capacity to work
not only with sensor data, but also with multimedia. Because many Internet-
connected devices will exchange information with each other, this expansion
will increase both downstream and upstream traffic.

Cloud-based services will create particularly large network demands. These
services use cloud servers to analyze user data and provide processing such as
search, storage, and recognition. Practical cloud services such as Siri have
been developed for voice recognition. These services send speech data from
user devices to a cloud server. The cloud server classifies the data and sends
recognition results to users.

No practical cloud-based video recognition service currently exists. Re-
search on video recognition has examined the use of this technology in ap-

plications such as surveillance cameras, in-vehicle cameras, and augmented
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Cloud service platform

Storage

Analysis

Search Recognition

Sensing data -’
Speech Image Video

User devices

Figure 1.1: IoT platform for various application.

reality (AR) [3, 4, 5, 6, 7, 8, 9, 10]. However, the use of the cloud for these
services is not yet practical because of the need to send large amounts of video
data. To reduce the amount of data transfer, keypoints can be extracted from
images or videos and sent to cloud servers, as shown in Fig. 1.2. Keypoints
are points obtained from robust correspondence parts even for transformed
images by using image features. The data can then be identified by the cloud
servers through machine learning from large databases, and the results can be

returned to the users.

Several existing keypoint extraction methods are based only on spatial fea-
tures and extract many unnecessary keypoints for video recognition. Thus,

large amounts of video keypoint data are transferred between user devices and
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cloud servers. Moreover, video recognition systems must calculate keypoints
from user devices in real time. In summary, current keypoint extraction algo-

rithms have two main problems:
e Detection of unnecessary keypoints for recognition

e Real-time processing

==
-]
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) ....
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e

. — — video data
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-

User devices

Recognition

results
Cloud servers

Figure 1.2: Cloud video recognition system

Many conventional keypoint extraction methods [11, 12, 13, 14, 15, 16, 17]
use only spatial features. These methods detect unnecessary keypoints for
video recognition. Several spatiotemporal feature-based keypoint extraction
methods [18, 19, 20] have been proposed. These methods eliminate unnec-
essary keypoints, including spatial features. Therefore, methods using local

correlation are required.
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For real-time processing, keypoint extraction is computationally complex.
Keypoint extraction consists of two parts: keypoint detection and descrip-
tor generation. Keypoint detection calculates convolution using a filter that
processes entire images. Descriptor generation calculates 128-dimension his-
tograms based on intensity gradients. High-speed software implementation is
difficult, even using a GPU [21, 22, 23] and a hardware implementation is nec-
essary for real-time processing. This approach requires a low-complexity and

hardware-friendly algorithm.

To realize hardware implementation, keypoint extraction must show data
dependency between keypoint detection and descriptor generation. The po-
sitions of keypoints and their surrounding pixel data must be sent from key-
point detection to descriptor generation. In histogram calculation, the pixel
data around keypoints are entered serially into bin calculation and histogram
addition modules before calculation. A parallel-architecture method is thus
necessary to achieve high-speed processing. The proposed effectiveness target

is shown in Fig. 1.3.

Therefore, this thesis proposes a spatiotemporal feature and local corre-
lation based algorithm that extracts only keypoints of interest (KOI). KOI
candidates are detected by the Kanade-Lucas-Tomasi (KLT) tracker. KOI are
selected by two kinds of features: intensity gradient and optical flow. How-
ever, target regions in video recognition applications do not necessarily include
large motion and gradient information. Thus, I propose noise reduction using
a Markov random field (MRF), which connects adjacent keypoints and deter-
mines the keypoint class. The proposed algorithm is also hardware-friendly due

to its use of gradient histograms and density clustering [24]. Filter computation
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Figure 1.3: Effectiveness targets of the present paper

of keypoint detection is replaced with a gradient histogram, which is reused
in descriptor generation. Local correlation is replaced with hardware-friendly
density clustering. Finally, I propose an architecture including parallelization
of detection and descriptor generation. Conventional methods include a buffer
between keypoint detection and descriptor generation. I remove this buffer and
parallelize the modules. The performance of the proposed keypoint extraction
method is then evaluated through comparison with the processing time and

hardware resources of conventional methods.

1.2 Cloud-based systems

This section describes the position of this research. IoT applications using the
cloud have been studied in various fields. Several methods have been proposed

to reduce the amount of data sent to the cloud. Examples of those related to
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speech recognition, sensing data analysis, and image recognition are shown in
Fig 1.4.

In speech recognition services such as Siri and Syabetteconcier are already
in practical use. They transmit speech data to the cloud, identify them, and
return additional information to the user.

In Sensing data analysis, when aggregating information such as air pollu-
tion data and system logs in the cloud, several methods [25, 26, 27, 28, 29]
for reducing the amount of transmission data by compression and extracting
necessary data have been proposed. These are proposals for the problem that
the amount of data flowing into the Internet increases comprehensively when
a large number of devices are connected to the Internet although the data
amount of each device is small. Most of the studies of IoT applications in
recent years focus on analysis of sensor data like these.

Regarding image recognition, there is only one related study [30]. This
method assumes application to surveillance cameras, detects the face area
from the image, and reduces the amount of data by sending only the face area
to the cloud. This method does not use time information, in particular, it is
a still image. In addition, since only the face area is sent to the cloud, the
application is limited to face authentication. These applications have lower
real-time requirements, and the amount of data sent to the cloud is not large.

This study is for video recognition systems. This study deals with a method
combining time information in addition to spatial information in order to study
algorithms for images, which is different from the method of still images. Un-
like still images, since images are continuously transmitted, the amount of

data sent to the cloud is also very large. Furthermore, this study assumes a
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Figure 1.4: Position of this study.

more future applications such as AR, surveillance camera, autonomous car. In

consideration of these applications, many studies have been made to improve

recognition accuracy. However, few studies aim to realize the entire system.

In short, techniques for cloud video recognition have not been studied yet, and

for the first time, this study proposes keypoint extraction for region of cloud

video recognition.

1.3 Problems of conventional methods

Conventional methods have three main problems for the realization of real-time

video recognition: the detection of unnecessary keypoints for video recognition,
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large computational demands, and serial processing due to data dependency.

The following section describes these problems in detail.

1.3.1 Detection of unnecessary keypoints for video recog-
nition

Conventional keypoint extraction methods based on spatial features detect un-
necessary keypoints for video recognition. These methods extract keypoints for
both the recognition targets and parts of the images that include large textures.
Several spatiotemporal feature based keypoint extraction methods eliminate
necessary keypoints that include spatial features. Figure 1.5 presents the key-
points detected by both types of evaluation. The blue points are obtained by
spatial keypoint detection, and the red points are obtained by spatiotemporal
keypoint extraction. A suitable method must detect keypoints from necessary
parts and eliminate keypoints from unnecessary parts.

Several keypoint extraction methods use spatiotemporal information. For
example, Laptev and Lindeberg proposed a method using space-time interest
points [18]. The methods of Chen et al. [19], Willems et al. [20] and Huang
[31] also employ spatiotemporal information for keypoint extraction. However,
these methods are geared toward event detection and extract keypoints only
where large gradients move widely, collide with each other, or collide with
edges. In addition, a background subtraction method [32] that extracts fore-
grounds has been proposed. However, much of the texture of still objects is
ignored by these methods. No current method continuously extracts keypoints
from both moving objects such as humans and objects with unusual texture.

One proposed method [33] uses queries to select the keypoints required for
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recognition. However, this method is not practical for general object recogni-

tion.

Figure 1.5: Keypoints detected by spatial keypoint detection and spatiotem-

poral keypoint extraction

1.3.2 Large computational demands

As shown in Fig. 1.6, keypoint extraction consists of two processes: keypoint
detection and descriptor generation. Keypoint detection employs filter calcu-
lation and threshold decision to determine keypoints by the calculated value
of the filter. Descriptor generation calculates multidimensional histograms
based on the direction and magnitude of gradients. These two calculations
are computationally complex, and their computational demands increase as
the square of filter size. A hardware implementation is necessary, and several
hardware implementations [34, 35, 36, 37, 38] have been proposed. However,
these methods are targeted for spatial keypoint extraction, and no implemen-

tation has been developed for spatiotemporal keypoint extraction. The target
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video consists of small VGA images at a low frame rate. For implementation,

a low-complexity and hardware-friendly algorithm is necessary.

Keypoint detection Descriptor generation
K

H —>e

Figure 1.6: Workflow of keypoint extraction.

1.3.3 Serial processing due to data dependency

Figure 1.7 shows the data dependency and serial processing of keypoint ex-
traction. Keypoint extraction exhibits data dependency between keypoint de-
tection and descriptor generation. The data consist of the pixels around the
detected keypoints; large amounts must be contained over a long clock time.
The histogram generation serially accesses pixel data around the keypoints.
Bins are calculated using gradient directions, and the magnitudes of the gra-
dients are added to histogram. For this reason, many existing methods store
pixels around the feature point in memory after extraction, read data sequen-
tially from the memory, and calculate the feature amount. This approach
decreases hardware implementation speed. A parallel architecture method is

thus necessary to achieve high-speed processing.

10
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Data dependency of large data
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Figure 1.7: Data dependency and serial processing of keypoint extraction.

1.4 Proposed concepts

Figure 1.8 shows overall of the proposed concepts.

First, this paper proposes an algorithm that combines local correlation
with spatiotemporal features to realize a keypoint detection method that de-
tects only the necessary keypoints for video recognition, referred to as KOI.
The method can detect keypoints from regions that include large motion and
gradient features. The proposed algorithm weighs each keypoint by luminance
and motion information. The method acquires the gradient based on lumi-
nance and acquires the optical flow based on motion using the KLT tracker.
Using the obtained weights, the method extracts the KOI candidate points.
Subsequently, using MRF and the graph cut algorithm, the method assigns

strong weights to nearby keypoints and performs clustering.

11



1. INTRODUCTION

Second, I propose a hardware-friendly algorithm to realize real-time hard-
ware implementation. The algorithm employs a gradient histogram, which is
normally calculated during descriptor generation for the calculation of keypoint
detection. The gradient histogram is efficiently reused for two processing steps.
Local correlation, which is difficult to implement on hardware, is replaced with
density clustering, which has lower complexity. Using the gradient histogram
for keypoint detection, the method obtains keypoints at positions equivalent
to those obtained by general corner detection [39] using two thresholds. For
density clustering, I propose an algorithm that divides the image into a plu-
rality of grids. Keypoints in each grid are determined to be KOI when they

exceed the threshold value.

Spatio-temporal keypoint extraction based on local correlation

Keypaoint detection

Algorithm
(Chapter 2) ‘ + /ﬁ? +

Spatio-temporal feature

Descriptor
generation

1

Local correlation

Keypaoint detection

Hardware-

frlenc.ily + Descriptor
algorithm e generation
(Chapter 3-2) Gradient histogram Density clustering

palial Teatures oral features  Local correlation

Parallelized gradient histogram

Keypoint
detection

Descriptor
generation

Hardware
implementation
(Chapter 3-3)

#
Gradient histogram

Figure 1.8: Proposed concept.

Finally, I propose a hardware implementation based on bufferless architec-

ture with parallelization of detection and descriptor generation. The proposed

12
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architecture calculates the gradient histogram at the beginning of the flow, then
sends it to the keypoint detection module and descriptor generation module
in parallel. Because pixel data is first converted into gradient histogram data,
the number of registers and computing units held in the pipeline can be re-
duced. For descriptor generation, pixels that do not depend on other data are
processed in parallel using the grid division characteristics of the descriptors.
This approach eliminates the data dependency of keypoint extraction to realize

a low-resource parallel architecture.

1.5 Organization of dissertation

This thesis is composed of each chapter below.

Chapter 1 provides background for the study, including the IoT, cloud video
recognition systems, the issues of existing keypoint extraction methods, and an
outline of the proposed method. In the cloud video recognition system, there
are two problems of large amount of video data to be sent from user terminal to
cloud server and real-time processing of keypoint extraction in user terminal.
Chapter 2 has solved the first problem of amount of data to be sent and chapter
3 has solved the second problem of real-time processing. This thesis consists of
three full papers. Capter 2 consists of one paper [40] and chapter 3 consists of
two papers [41, 42] whose contents are hardware implementation of keypoint

extraction and its expansion to the spatio-temporal keypoint extraction.

Chapter 2 describes the proposed spatio-temporal keypoint extraction al-
gorithm based on local correlation, which detects only the necessary keypoints

for video recognition. Keypoint extraction combining temporal and spatial

13
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features with local correlation is described in detail. The proposed method
is based on a low-computation algorithm. Therefore, after describing a low-
complexity algorithm using spatial features, I describe a method combining
spatio-temporal features and local correlation.

Chapter 3 presents a FPGA implementation including a hardware-friendly
algorithm and its parallelized architecture for real-time processing using gra-
dient histogram. This chapter first describes the hardware-friendly algorithm
and then explains the hardware architecture using a detailed block diagram.
The proposed method is characterized by a bufferless architecture that employs
parallelization of gradient histogram and low computational complexity.

Chapter 4 concludes this paper and describes future research directions.
The proposed method could reduce feature quantity in cloud video recognition
and realize real-time processing on the terminal side. I also introduce the

recognition process, which is a future subject of research.

14



Chapter 2

Spatio-temporal keypoint
extraction based on local

correlation

2.1 Overview of this chapter

Conventional keypoint extraction [11, 12, 13, 14, 15, 16, 17] utilize only local
spatial features. These methods detect unnecessary keypoints for video recog-
nition. Several spatio-temporal feature based keypoint extractions [18, 19, 20]
have been proposed. These methods eliminate necessary keypoints which in-
clude spatial feature. Thus, the proposed method detects many keypoints
from necessary parts for video recognition using local correlation in addition
to spatio-temporal features. Figure 2.1 presents the conceptual difference of
the proposal.

In this paper, we first introduce keypoint extraction. In introduction, we
explain about SIFT which is a representative keypoint extraction method and
describe its extension methods. Furthermore, before proposing the KOI ex-

traction method, we propose a low computational keypoint extraction method

15
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Figure 2.1: The conceptual difference of the proposed algorithm.

which is easy to give spatio-temporal information. In this study, we propose

KOI extraction method based on the algorithm.

This chapter mainly describes the proposed keypoint extraction algorithm
that detects only KOI based on spatio-temporal features and the Markov Ran-
dom Field (MRF). The KOI extraction is composed of three elements: spa-
tial information, temporal information and connectivity of adjacent keypoints.
This algorithm contains a keypoint selection part between the keypoint detec-
tion part and the descriptor generation part. The proposed method includes
an approximated KLT tracker to calculate positions of keypoints and optical
flows simultaneously. This algorithm calculates weights at each keypoint using

two kinds of features, namely, intensity gradient and optical flow. Then, these

16



2.1 Overview of this chapter

values are arranged and keypoint class is determined by a threshold. However,
the results include a large amount of noise because required parts do not neces-
sarily include motion and gradient. It reduces noise of extraction by comparing
states of the intended keypoint with states of surrounding keypoints. Camera
motion estimation is added to the algorithm and it calculates camera-motion
invariant optical flows.

The evaluation results using eight videos including pan, zoom and track
show that the proposed algorithm achieves 93% reduction of keypoints and
76% reduction of computational complexity in comparison with a conventional
keypoint extraction. KOI are extracted in the region whose motion and gra-
dient are large. The results also confirm that the proposed algorithm extracts

a number of keypoints from defined parts.
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2.2 Introduction of keypoint extraction

Keypoint extraction is utilized for recognition and finding corresponding point
between two images. Keypoints are points obtained from robust correspon-
dence parts even for transformed images by using image features. By matching
the keypoints between two images, we check the objects in the image. Nor-
mally, keypoints are detected at places where the gradient is large with respect
to two directions as in corner detection. As shown in Fig. 2.2, the algorithm

is divided into following two key parts.
e Keypoint detection
e Descriptor generation

The keypoint detection is a process which decides keypoint’s position near
characterized region. Keypoint detection employs filter calculation. The out-
put value of filter is binarized by threshold and decides keypoints. The SIFT
descriptor generation calculates histograms with information about neighbor-
ing region. It calculates multi-dimension histogram based on direction and
magnitude of gradient. SIFT [11] divides one region into 4 x 4 and calculates
8 dimension histogram. It generates total of 128 dimension vector. The eval-
uation of this paper utilizes the SIF'T descriptor as a conventional method.
SIFT is cited by large number of papers and used as a benchmark of keypoint
extraction.

This section shows the algorithms of SIFT, expanded methods of SIFT
and keypoint extraction based on Harris detector and SIFT descriptor. Before

proposing the spatio-temporal keypoint extraction based on local correlation,

18



2.2 Introduction of keypoint extraction

we proposed simplified keypoint extraction which is easy to extend for spatio-
temoral methods. The keypoint extraction based on Harris detector and SIF'T
descriptor is simple and it has low number of dependencies between keypoint
detection and descriptor generation. The algorithm has no dependency of scale
like SIF'T by dealing with scale transformation with database. In addition, the
Harris detector is easy to extend for time information acquisition which is used

by KOI extraction. Thus, our algorithm is based on it.

Keypoint detection Descriptor generation

[19]
ZDirection of
gradient

4 x4 x8 =128 dimension
Filter processing + Threshold Histogram calculation

Gradient histogran

Figure 2.2: The flow of keypoint extraction.

2.2.1 SIFT

2.2.1.1 Keypoint detection by the DoG

SIFT detects scale invariant keypoints by the DoG function. DoG function
computes difference of images convolved by Gaussian filters. Animage. I(z,y),

a variable-scale Gauss function, G(x,y, o), and a smoothed images, L(z,y,0),

19



2. SPATIO-TEMPORAL KEYPOINT EXTRACTION BASED
ON LOCAL CORRELATION

define the DoG image, D(x,y, 0):

D(x,y,0) = (G(x,y, ko) - G(x,y,0))* [(z,y)

= L<ly7 kO’) —L(.’]Qy,O'), (21)

where x is the convolution operation. D(z,y. o) is repeatedly computed by a
constant multiplicative factor k. Its computational complexity becomes higher
and higher when ¢ increases. Thus, this process is very complex. After this,
detections of extreme value and localizations of keypoints are performed. They
also require high computational complexity because localizations use matrix
calculation. Figure 2.3 is a schema of the DoG detector. The smoothed images
are on the top and DoG images are at the bottom. Figure 2.5 shows the rate of
the computational complexity of SIFT. We can see the DoG process which is
the detection part requires large amount processing time. The processing time
depends on the number of keypoints. However, this figure shows the average

rate. Thus, we proposed the algorithm based on this result in next chapter.

2.2.1.2 SIFT descriptor computation

In computation of SIFT descriptor, firstly, keypoint’s orientation is obtained.

The histogram is calculated by gradient magnitude m(z,y) and orientation

0(z,y):

m(z,y) = /La(w,y) + Ly(z,y), (2.2)
O(z,y) = tanI%. (2.3)

When its sum of magnitude is max, the orientation becomes the keypoint’s

one. After this, SIFT descriptor is computed. The region is rotated by the
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2.2 Introduction of keypoint extraction

Figure 2.3: The DoG detector.

keypoint’s orientation. The size of region depends on scale obtained by the
DoG detector. It is divided into 4x4 and histogram is computed by 8 directions
in each region. Total 128 dimension vector, SIF'T descriptor, is generated. This
process’s computational complexity changes depending on keypoint’s scale.
Figure 2.4 is schema of SIFT descriptor. The length and direction of arrows
shows the magnitude and quantized direction of the gradient.

The computational complexity of SIFT descriptor depends on the number
of keypoints. Thus, if the number of keypoint is large, the processing time also

becomes long.

2.2.2 Extension methods of SIFT

There are many method which expand the SIFT algorithm.

Speeded-Up Robust Features (SURF) [12] and approximated SIFT [13] are

proposed as the speed-up methods. Especially, the SURF is low complexity
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Figure 2.4: The SIFT descriptor.

L

keypoint extraction algorithm using the box filter and integral image. DoG
processing was performed in SIFT, DoH (Determinant of Hessian) is used in
the case of SURF. When calculating the Hessian matrix, filtering for calcu-
lating second-order differentials is approximated as a Box filter and filtering
of various sizes is performed by using an integral image. As a result, the fea-
ture extraction is much faster than SIFT. Calculate the brightness gradient by
calculating Haar-like as the feature quantity. Orientation is calculated while
rotating Haar-like and adopts the angle at which the value becomes the largest.
In the feature quantity description, a square region centered on a feature point
is divided into 4 x 4, a luminance gradient is calculated in each grid, and a
four-dimensional vector is calculated. Therefore, a total of 64 dimensional fea-
ture vectors are obtained. There is also a method called U-SURF that speeds

up at the expense of this rotation invariance of SURF. In software, it can per-
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B Detection
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Figure 2.5: Rate of the computational complexity of SIFT.

form faster than SIFT. However, integral image utilizes a lot of memory. Thus,
when it is difficult to implement it on low-cost FPGA. SIFT which includes
many filtering process is better to implement.

GLOH [14], PCA-SIFT [15], CSIFT [16] and ASIFT [17] are proposed as
the method considering accuracy. Especially, PCA-SIFT is used to reduce the
dimension of the descriptor. In this algorithm, SIFT descriptor is reduced into
36 dimension vector. PCA is also used for recognition process. Usually, the
number of dimension of histograms becomes large. In this case, the dimension
is reduced by PCA. In the application of recognition, this algorithm is often

used. In the chapter of evaluation results, the application using PCA is shown.

2.2.3 Keypoint matching

It is the keypoint matching that associates the obtained keypoints with each
other. The feature quantities described in each are 128 dimensions, but con-

sider this as a feature vector and calculate the distance d with all registered
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keypoints v. It is expressed by the following equation.

d= \/(vll — vrl)2 + (v - v%)z oot (028 - v}%)z, (2.4)

where v; is the descriptor of the keypoint obtained from the input image, and
vy is the descriptor of the keypoint obtained from the registered image. The
number on the right shoulder is the dimension number. It is a process with
a relatively small amount of computation on software. In the general nearest
neighbor search, the feature vector with the smallest d in this equation is taken

as the nearest neighbor.

2.2.4 Space-time interest point

There are several keypoint extraction methods utilizing spatio-temporal infor-
mation. Laptev and Lindeberg proposed space-time interest points [18]. The
methods of Chen et al. [19] and Willems et al. [20] also utilize the spatio-
temporal information for keypoint extraction.

The methods utilize 3D filter which expands the Harris corner detector to

temporal dimension. The detector is calculated by

L2 L,L, L.L
p=G o) | LoLy L2 Lyl | (2:5)

LyLy LyLy L2

H = det(p) — wtra®(p). (2.6)

It can extract keypoints in only parts which large gradient moves widely, large
gradients collide with each other and large gradients collide with edges. It is

applied to the recognition of human action, for example, walk, hand waving,
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etc. Thus, their target is event detection. It cannot detect the keypoints which
do not move. Much texture of still objects is ignored and there is no method
which extracts keypoints from the moving objects like humans continuously

and objects which have outstanding texture.

2.2.5 Keypoint extraction based on Harris detector and
SIFT descriptor

Keypoint extraction based on Harris detector and SIFT descriptor which is
simple method and easy to extend for time information acquisition is shown.
Our proposed keypoint extraction which is shown in next section is based on
this method. We shows the evaluation comparing with SIFT. The algorithm

utilizes two techniques below.
e Approximation of Hessian detector and using the integral image
e Utilization of multi-scale images in the database

The flowchart which summarizes the process of this algorithm is shown in Fig.
2.14. The DoG detector is the highest computational complexity part in SIFT
algorithm as shown in section 2. However, the keypoints obtained by DoG is
positioned near corners in an image. Therefore, we propose that the DoG is
replaced with corner detection. The computational complexity is drastically
reduced by this because corner detection is relatively low complexity. The
gaussian filter in Fig. 2.14 is used for the noise reduction. When SIFT de-
scriptor is computed, the size of described regions is a constant 15x15. This

also simplifies SIF'T, because the regions increase in size depending on scale in

the case of SIFT.

25



2. SPATIO-TEMPORAL KEYPOINT EXTRACTION BASED
ON LOCAL CORRELATION

iniut

Gaussian Orientation _>SIFTDescriptor

Filter Computation Computation

Corner Keypoint |_ Keypoint

Detection Database Matching
output

Figure 2.6: Flowchart of the proposed algorithm.

2.2.5.1 The approximation of Hessian detector and using the inte-
gral image

Hessian-based keypoint detector [43] is one of the corner detection methods.
Its positioning corner is very suitable. It uses filter which computes 2nd-order
difference of adjacent pixels. It needs to refer many adjacent pixels during
detection from general images with noise. According to the number of referred
pixels, the processing time becomes very long. Thus, an integral image and
box filter are utilized for speeding up.

First, we describe an integral image. The integral image, I1, is the sum of

pixels from top left corner of image to intended pixel (z,y):

i<z j<y

I (z,y) =Y 1, j). (2.7)

i=0 j=0

When the sum of the pixels of rectangular region S in Fig. 2.7 is calculated,
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Figure 2.7: Illustration of the integral image.

it is represented by

S = I[($1, yl) — I[(xg,yg) — ]I($3, yg) + I[($4, y4). (2.8)

This method accelerates the calculation of rectangular region’s sum. It can be
processed by only 4 accesses of the integral image. Moreover, there is a merit
that the process time does not depend on the size of region. It has many merits
during software processing. However, in the case of hardware, it is difficult to
reserve memory because integral image uses a lot of memory. Thus, it does
not use integral image.

Next, corner detection by box filter is shown. We use Hessian matrix, H,

which is composed of elements are the 2nd-order difference of adjacent pixels:

Ly, L
H=Go) | =~ 7]. (2.9)
Ly  Lyy
In general, their elements are weighed by Gaussian function, G(o). However,

it is not suitable for an integral image because weighing is detail. Thus, this
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Figure 2.8: Approximated Filter (L, Ly, Lyy).

filter is approximated and it becomes easy to compute by integral image. Ap-
proximated filter is shown in Fig. 2.8. Lgs, Lyy, Lyy are obtained by filter
process of integral image. After that, they are used to compute the function

which decides corners. When the position is a corner, it satisfies the equation,
det(H) — wtra(H) > T, (2.10)

where w is a parameter and 7T is a threshold. If the threshold becomes larger,
corners decreases and becomes better position as corners. It is adjusted to

keep the number of keypoints optimal.

2.2.5.2 Utilization of multi-scale images in the database

This proposed algorithm removed the DoG detector of SIFT. In other words,
it does not compute scale of each keypoint. It is impossible to deal with scale
changes as it is. Thus, next, we propose the solution that prepares various
sizes images in the database and decides the scale during keypoint matching.
SIFT descriptor can deal with some scale-changes because it is very robust for
various image changes or transformations. Experimental result shows SIFT
descriptor whose described region is fixed deals with 0.5-1.5 scale object. Con-

sidering this feature, we prepare three images of various size at regular inter-
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Figure 2.9: The relation of scale change and precision.

vals. For example, images of three sizes (1, 1.5, 0.5) are registered as objects
of matching. These values are selected by the experiments in Fig. 2.9 by one
template matching. It shows the precision is 50% when the scale is 0.5 or 1.5.
In these cases, near template image is selected and the compensates the preci-
sion. Keypoints are extracted from them and tag is added to keypoints. The
tag (=1, 1.5, 0.5) shows which size image the keypoint is obtained from. In
keypoint matching process, tag is checked and counted if registered keypoint
matches with input image’s kepoints. The tag with the most matches is con-
sidered as nearly input image’s scale. Finally, the input image matched with
the registered image of decided tag. Keypoint matching process is speed-up
by Approximated Nearest Neighbor (ANN) [44] in comparison with Nearest
Neighbor (NN). NN is a computation of distance between two feature vectors.
In the case of NN, it searches all keypoints, but the process can be avoided by

approximation of ANN. Software processing uses ANN, but hardware uses NN
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Figure 2.10: Proposed matching process.

to simplify its structure. Figure 2.10 is a schema of this process.

2.2.6 Threshold optimization

SIFT descriptor is computed for all keypoints in this process. Thus, process
time depends on the number of keypoints. The more keypoints we extract,
the higher computational complexity becomes. However, there is an appro-
priate number of keypoints to accomplish keypoints matching with sufficient
accuracy. It is not necessary to extract too many keypoints. Therefore, key-

points are localized by optimizing T of equation (2.13) in every frame. It is
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the current frame and ¢ — 1 is the last frame. T is optimized as the equation:

Tt—-1) if np<n<ny,
Tt)=9 Tt—-1)+AT if n>n, - (2.11)
Tt—1)—AT it n<mny
np, n; are upper bound and lower bound of number of keypoints. AT is

parameter which adjusts 7.

2.2.6.1 Performance evaluation

The keypoint extraction based on Harris detector and SIFT descriptor and
SIFT are examined in performance on the test sequences. For evaluation of
correct matches and repeatability in Fig. 2.11 (a) and (b), we use the frame-
work proposed by Mikolajczyk et al. [45]. The boat image shown in the paper
is used as a test sequence. It includes both scale changes and rotation. The
correct transformation matrix is obtained by RANdom SAmple Consensus
(RANSAC) [46]. When L2 distance between the correct value and experimen-
tal value is under 10, the pair is regarded as a successful match. Figure 2.11
(a) shows the correct matches. The stability of descriptor is measured from
this. The proposed algorithm is a little unstable but obtains more correct
correspondences on many scales compared with SIFT. Figure 2.11 (b) is the
repeatability. It means if keypoints are detected at the same positions be-
tween two images with a viewpoint change. It shows performance of detector.
We can observe that the proposed corner detection obtained a lot of corre-
spondences and better performance than the DoG detector of SIFT. Figure
2.12 is the software simulations of keypoint detection. The proposal is almost

same performance with SIFT, but it is the difference that the proposal detects
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more keypoints at corner. It has a problem that the proposal does not detect
many keypoints from images that do not include many texture. To measure
the 1-precision vs. recall, we use the framework proposed by Mikolajczyk and
Schmid [47]. Figure 2.11 (c) is an evaluation on wall images. This images in-
clude many gradients. In this case, SIF'T has the ideal curve and the proposed
algorithm also has the comparable curve. Figure 2.11 (d) is an evaluation in
bike images. This images are natural scenes. Both algorithms are not ideal
results. The curve of the proposed algorithm is the more gradual curve. SIFT

has better performance in these scene.
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Figure 2.11: The comparison between the proposed algorithm and SIFT. (a)

Number of correct nearest neighbour matches (Boat sequence). (b) Repeata-

bility score for scale change (Boat sequence). (c¢) precision-recall curve (Wall

sequence). (d) precision-recall curve (Bikes sequence).

33



2. SPATIO-TEMPORAL KEYPOINT EXTRACTION BASED
ON LOCAL CORRELATION

Figure 2.12: The software simulation of keypoint detection by proposal (top)
and SIFT (bottom).
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2.3 Spatio-temporal keypoint extraction based

on local correlation

In this section, we show the method that extracts KOI from input videos. KOI

extraction is composed of three elements below.
e Spatial information
e Temporal information
e Connectivity of adjacent keypoints

Spatial information is often used to extract image transformation invariant
keypoints. This paper adds other two elements. In videos, temporal infor-
mation is added to extract keypoints in the parts which include motions. In
addition, this paper utilizes the connectivity of adjacent keypoints because a
number of keypoints must be extracted from one object part.

The entire workflow containing these elements is shown in Fig. 2.13. We
choose the KLT tracker [48, 49] as a keypoint detection method because it
simultaneously calculates positions of keypoints and optical flow which is uti-
lized in keypoint selection part. This algorithm contains a keypoint selection
part between the keypoint detection part and the descriptor generation part.
In the keypoint selection part, first, this algorithm weights keypoint by two
elements and calculates values which describe likelihood of KOI at each key-
point. Then, these values are arranged and keypoint class is determined by
a threshold. However, the results include a large amount of noise because
required parts do not necessarily include motion and gradient. Thus, key-

points are connected by MRF and the graph cut algorithm is used to reduce
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noise from the output keypoints. In addition, to deal with moving cameras,

motion compensation is executed by camera motion estimation and camera-

motion invariant optical flows are extracted. The subtractions of influenced

optical flows by camera motions and obtained optical flow are minimized. As

results, the camera motion and the camera motion-invariant optical flows are

obtained. The SIFT descriptor is calculated at only selected keypoints. This

section shows each algorithm in more detail based on three elements.

input
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KLT Tracker

J,Optical flow

Motion
compensation
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Keypoint Binarized keypoint-class
position data
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l Selected keypoints
are generated.
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Figure 2.13: The workflow of entire processing
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2.3.1 Spatial information

As keypoint detection method, the KLT tracker is utilized. A KLT tracker is
one of the algorithms which detect keypoints and calculate optical flows. It
uses filters which compute second-order difference of adjacent pixels. It needs
to refer many adjacent pixels during detection from general images with noise.
According to the number of referred pixels, the processing time becomes long.
Thus, an integral image and a box filter are utilized for speeding up.

First, keypoint detection by a box filter is shown. We use Hessian matrix,
H, which is composed of elements are the second-order difference of adjacent

pixels:

Lz L
H=| & . (2.12)

Lmy Lyy

In general, their elements are weighted by Gaussian function. However, it is
not suitable for an integral image because weights have to be determined at
each pixel. Thus, this paper utilizes approximated BOX filters and it becomes
easy to compute by an integral image. This approximation is also used by
SURF. Ly, Lyy, Ly are obtained by filter process of integral image. After
that, they are used to compute the function which decides corners. When the

position is a corner, it satisfies the equation,
V =det(H) — w tra(H) > T, (2.13)

where w is a parameter and 7" is a threshold. If the threshold becomes larger,

corners decreases. It is adjusted to keep the number of keypoints optimal.
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2.3.2 Temporal information

After the keypoint detection, the KLT tracker calculates optical flows. Op-
tical flows are also calculated by second-order difference of adjacent pixels.
Thus, the Hessian matrix is reused. A optical flow, [u,v], is calculated by the

equation:

— . (2.14)

In addition to gradient information, it utilizes the frame difference. This cal-

culation also uses the integral image.

In this paper, we choose two elements for weighting keypoints. The el-
ements are an intensity gradient and an optical flow. With respect to the
intensity gradient, there is a high possibility that objects with many intensity
gradients is the recognition targets. For example, book covers, posters and
traffic signs are pointed out. With respect to the optical flow, there is a high
possibility that objects with large motion are the recognition targets. For ex-
ample, human, animals and vehicles are pointed out. Conventional keypoint
extraction algorithms generally utilize only gradient information. Thus, it is
expected to extract important keypoints including motion information if we
use the temporal information. The weights of two elements are calculated at
each keypoint which is obtained by the KLT tracker. The two different weights

are normalized and summed up. This flow is described in Fig. 2.14.
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Figure 2.14: The workflow of weighting on keypoints

2.3.3 Calculation of KOI utilizing spatio-temporal in-

formation

A way to obtain the weights of keypoints are shown next. The weight of inten-
sity gradients are calculated by the Hessian detector [43]. The value, V, has
already calculated in Eq. (2.12) and Eq. (2.13). V of Eq. (2.13) describes
the strength of intensity gradient. It is obtained by the corner detection part
of keypoint extraction. On the other hand, weights of optical flows are cal-
culated by norm of optical flow. The value is obtained by Eq. (2.14). This
calculation is a low complexity because the values have been already calcu-

lated. These two values are calculated at each keypoint and summed up after
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normalization. The weight is quantized data: X = {z1,x92,--- ,zx} where
x; € {0,1,---,255}. It is because that quantization does not influence the
accuracy of results and it also reduces the computational time. This weight
data is binarized by a threshold. The threshold is arranged by the number
of KOI which the applications require. This process generates keypoint class
Y = {y1,42, - - ,yn} at each keypoint where y; € {0,1}. If the value of y; is
1, the keypoint ¢ is KOI.

The important regions do not necessarily include motion and gradient. For
example, gradient of human body is not large. It depends on their clothes.
Several KOI can be extracted because the gradient of contour contains large
values by proposed method in this section. Next, MRF is applied to reduce
noise data and smoothing the keypoint class using the result of this section and

adjacent keypoint data. The keypoint class is integrated on the each region.

2.3.4 Connectivity of adjacent keypoints

To solve the problem that keypoints in important regions do not necessarily
include large motion and gradient values, this paper applies MRF [50, 51] to
keypoint class. MRF is usually used to reduce the noise of image in the region
of image processing. MRF is a graph structure which represents the depen-
dence between nodes. In this case, the nodes are keypoints and the dependency
is defined in this section. Keypoints are connected by the weight of the distance
from each other because the candidate keypoint whose adjacent keypoints are
KOI tends to be KOI. The example of connections is shown in Fig. 2.15.
In the circle, the keypoints are connected and they are easy to become same

class. We utilize the graph cut to reduce noise and determine keypoint classes.
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h(z,,z,)=
xkexp(—(dist(i, j)))

Connect adjacent keypoints

The connected keypoints are
easy to become same class

Figure 2.15: The connection of keypoints

The graph cut algorithm changes keypoint class z; and minimizes the energy

equation:
E(Z) = Zgi(zz') + Z hij (25, zi)- (2.15)
i i.J

In this case, global solution is calculated because the keypoint class is bi-
nary. To solve this minimization problem, Min-Cut/Max-flow algorithm is

used. Each function is defined by Eq. (2.16) and Eq. (2.17).

gz(zz) = )\|yi — ZZ| (2.16)

hij (25, %) = rexp(—(dist(i, 1))?) (2.17)

Eq. (2.16) is data term. The outputted z; is changed to approximate inputted
yi- Eq. (2.17) is smoothing term. The strength of connection depends on dis-

tance between keypoints. We assume it is gaussian distribution. The nearer the
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keypoint distance, the stronger connection this function generates. dist(i,j)
represents the distance between keypoint ¢ and keypoint j. A and « are pa-
rameters which are determined experimentally. They determine the strength
of data term and smoothing term. If A is larger than k, the result approxi-
mates to the inputted data. If x is larger than A, the result approximates to
the majority class of inputted keypoints. The calculated Z = {z1, 22, -+ , 2n}
where z; € {0, 1} is the output keypoint class. If the value of z; is 1, the key-
point ¢ is KOI. This calculation is faster than noise reduction of image which

each node is a pixel because there are fewer nodes of the proposed method.

2.3.5 Calculation of camera-motion invariant optical flow

by camera motion estimation

In the practical scenes, cameras move like motions of pan or zoom. There are
a large number of scenes of zoom and pan in surveillance or in-vehicle cameras.
To apply this algorithm to moving cameras, this paper proposes calculation
of camera-motion invariant optical flows by camera motion estimation not to
obtain large weight from the parts which do not move in fact. The overall
flow is shown in Fig. 3.10 including zoom scenes. Optical flows are obtained
by the KLT tracker at each keypoint. However, they include the influence of
camera motions. For example, a number of optical flows which contain radical
directions are generated like Fig. 3.10 from the parts which do not move in
fact. Thus, we calculate the camera motion from these optical flows and the
optical flows which are influenced by only camera motion is estimated. These
are subtracted and the optical flows without influence of camera motion are

obtained. Next, the method that estimates a camera motions is shown.
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2.3 Spatio-temporal keypoint extraction based on local correlation

A camera motion is estimated by all obtained optical flow by the KLT
tracker. The motion vector of camera is defined as T = [ty t,,t.]T. The
coordinate of the keypoint i is defined as x; = [z;,y;, zi]7. The optical flow,

vi = [u,v;]T, is calculated by

_it:  fta

i % % )
t. ft

v = Yitz St (2.18)
23 23

T is estimated by minimizing the function J:

N
J=> (i —wi)" (1 — ), (2.19)
1=1

where u; is the calculated optical flow by Eq. (2.18) and 4; is the calculated
optical flow by the KLT tracker. T is changed to minimize J. The result is
substituted for Eq. (2.18) again. Estimated optical flows and obtained optical
flows from inputted video are subtracted. The result is the camera-motion

invariant optical flows.
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Camera-motion invariant optical flow

Figure 2.16: Calculation of camera-motion invariant optical flow.
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2.4 Evaluation results

This section shows the evaluation results that compare the proposed method
with the general keypoint extraction which utilizes the corner detector and
SIFT descriptor [11, 41, 43, 52]. The method includes same algorithm except
for the keypoint selection part and KLT tracker. The development environ-
ment on software is Visual Studio C++ 2008. CPU is Intel Core i7-2600 CPU
3.40GHz. In this thesis, we evaluated eight test sequences to confirm effec-
tiveness of KOI extraction dealing with camera motion: fixed camera, zoom,
pan and track. The test sequences are shown in Fig. 2.17. The name of the
sequences indicates the kind of camera motion. In-vehicle is a video taken by
an in-vehicle camera. We utilize the surveillance scene in Fixed1-2, Zoom1-2
and Pan and they include scenes that people walk on paths. As application, it
is assumed that the motions of human are analyzed and recognition. In Fixed1
and Zooml1, three people walk. In Fixed2, Zoom2 and Pan, one person walks.
We also utilize the shields sequence which is generally used in the field of video
compression as a sequence of Track because everyone can get this sequence and
evaluate. In this video, one person walks. In Fixed3 and In-vehicle, not only
human but also objects are evaluated. As application, it is assumed that the
kind of books is identified in Fixed. In In-vehicle, it is assumed that motions
of human are analyzed and the traffic signs are identified. In Fixed3, one
book is taken. In In-vehicle, two people walk and there are three traffic sighs
and signboards of parking. The resolution of the videos we used is Full-HD
(1920x 1080 pixels) 60 fps. Only Track is HD (1280x720 pixels) 50 fps. The

applications of these scenes are shown in next section.
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14

Fixed3(object) In-vehicle{human+ object)

Figure 2.17: Test sequences
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Table 2.1: The number of keypoints and processing times by the conventional

method and the proposed method

Conventional | Proposed

Number of keypoints 1192 66

Fixedl . -
Processing time 754 190
Number of keypoints 1188 53

Fixed?2 . -
Processing time 821 179
Number of keypoints 1202 47

Zooml . ;
Processing time 759 183
7 5 Number of keypoints 1205 63
oot Processing time 851 204
p Number of keypoints 1143 108
a Processing time 771 198
Number of keypoints 1037 140

Track - ;
Processing time 723 175
) Number of keypoints 1125 136

Fixed3 . ;
Processing time 795 193
I hicl Number of keypoints 1212 55
Hrvetiee Processing time 876 188

First, the number of keypoints which are detected by both methods are
compared in Tab. 2.1. It shows the average among all frames of the movie.
The proposed algorithm achieves the 94%, 96%, 96%, 95%, 90%, 86%, 88% and
95% reduction of keypoints in each movie. Almost same results were obtained
among all videos. However, Pan, Track and Fixed3 are lower reduction com-
paring with others. It is considered that the movies include complex texture
that has large intensity gradients in background. In Fixedl, several keypoints
are extracted in poster or other display items whose gradient is large. In all

videos, the reduction of keypoints was confirmed.
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In addition, processing time is compared. The proposed algorithm reduces
about 75%, 78%, 76%, 76%, 74%, 76%, 76% and 79% computational complex-
ity than the conventional keypoint extraction in each movie. In all videos, the
reduction of computational complexity is confirmed.

Fig. 2.18 shows the output of results of the conventional method and the
proposed algorithm. The white circles are the keypoint obtained by each algo-
rithm. It shows the proposal detects keypoints from only human which moves
largely and outstanding texture whose gradient is large. In the other video,
the proposed algorithm extracts a large number of keypoints from human body
and the part including outstanding texture. By using only these keypoints, it
is expected to analyze human or other outstanding object behaviors in surveil-
lance and in-vehicle camera combining motion features.

Fig. 2.19 shows the recall-precision curves when the correct KOI are de-
fined. We define the correct KOI by considering applications that KOI ex-
traction can be applied. In Fixed1-2, Zoom1-2 and Track on Fig. 2.17, the
keypoints in human parts are defined as the correct KOI. In Fixed3, the key-
points in book part are defined as the correct KOI. In In-vehicle, the keypoints
in humans, traffic signs and the signboards of parking area are defined as the
correct KOI. The values of precision and recall are calculated by average of all
frames in each video.

Precision and recall are defined by Eq. (2.20) and (2.21).

TP
prescision = m—m (220)
TP
recall = W (221)

Each value means,
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8148088t - - b I
ittt R _ !“ma“i

(d) Proposed keypoint extraction (Pan)

Figure 2.18: The comparison between (a) conventional keypoint extraction
and (b) proposed algorithm in Zooml, (c) conventional keypoint extraction

and (d) proposed algorithm in Pan

e TP: Number of points which are detected correctly

e TN: Number of points which are not detected correctly
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Figure 2.19: The comparison between conventional keypoint extraction and
proposed algorithm of recall-precision curve in (a) Fixed1, (b) Track, (c) Fixed3
and (d) In-vehicle

e FP: Number of detected points which do not have to be detected
e FN: Number of not detected points which have to be detected.

The evaluation results show the proposed algorithm contains higher recall
when 1-precision is low comparing with conventional algorithm in all videos.
We can see that the proposed algorithm extract more keypoints from the in-
tended parts comparing with conventional algorithm. Especially, Fig. 2.19 (a)
and Fig. 2.19 (b) show the better results. In Fig. 2.19 (c), the curve of the
conventional algorithm is downward to the right. It is because more keypoints

in defined parts decrease than keypoints in undefined parts when keypoints

50



2.5 Applications based on the proposed algorithm

decrease by the conventional algorithm. In Fig. 2.19 (d), the curve of the
proposed algorithm is not better results comparing with other sequences. It
is considered that plural parts are defined as KOI and the proposed algorithm

extracts more keypoints from other parts.

2.5 Applications based on the proposed algo-

rithm

The proposed algorithm can be applied to a large number of applications by
utilizing the characteristics that it extracts keypoints from only objects. For

examples, we can consider following three applications.
e (Gait recognition in surveillance scenes
e Recognition of in-vehicle systems
e Marker-less identification

In the surveillances scenes, the evaluation results show the proposed algorithm
can extracts keypoints from the parts of human. Thus, by using their optical
flow, it is possible to analyze the motion in each part for gait recognition. In
regard to in-vehicle systems, it is possible to recognize humans, several traffic
signs and other signboards. Fig. 2.17 In-vehicle video is one of the scenes
which the proposed algorithm is applied. It is possible to recognize humans
and give warning of their rushing out, and tell traffic sign and its meaning,
and tell other information, for example, there are parking areas. In regard

to marker-less identification, for example, it is possible to hold books to the
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camera and recognize the cover like Fig. 2.17 Fixed3 video in library without

markers. This paper shows how to achieve gait recognition in more detail.

magnitude

» Combine all blocks
direction of motion 18 x 5 = 90 dimension
In each block

¢ (18 dimension)
calculate histogram
Calculated histograms

l Human A
“,L.L.L Calculate
. = the average I | I I
. of one period
" Human B
- i Lllu
Human C

Figure 2.20: Illustration of calculating the histograms and the result

One example of calculations of gait recognition and experiment which we
implemented is shown. KOI are extracted from human part in Fig. 2.17,
Fixed2 by the proposed algorithm. Thus, the region of humans is calculated
by combination of noise reduction and the average position of the keypoints.
After that, the region is divided into five blocks. It is to divide the parts
of head, right arm and leg, left arm and leg and analyze independently. In

each block, the direction of motion is binarized to 18 dimensions. 18x5=90



2.5 Applications based on the proposed algorithm

dimension histogram is generated. Finally, the average of the period of their
walks is calculated and average histogram of the period is obtained on one
person. Fig. 2.20 shows the method that calculates the histogram. The
evaluation result that histograms are calculated from three different persons
is shown in Fig. 2.21. The experiments of recognition using Support Vector
Machine (SVM) show the result that three persons can be identified perfectly.
We can consider that more persons can be identified and it can be applied to

other complex scenes by expanding this method.

Figure 2.21: Histogram for gait recognition.
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2.6 Conclusion

Reduction of keypoint data and the reduction of computational complexity
are required for cloud applications. Conventional keypoint extractions utilize
only spatial information and extract a large number of unnecessary keypoints.
To solve the problem, this chapter proposed the keypoint extraction algorithm

that detects only KOI based on spatio-temporal features and the MRF.

First, this chapter proposed the low complexity keypoint extraction algo-
rithm which is easy to expand into spato-temporal feature based method. We
detect keypoints by the low complexity corner detection and generated SIFT
descriptor. Multi-scale database images are used to deal with scale changes.
Second, this chapter describes the proposed keypoint selection algorithm from
a number of keypoints including unnecessary ones based on spatio-temporal
features and MRF considering camera motions. The KOI extraction is com-
posed of three elements: spatial information, temporal information and connec-
tivity of adjacent keypoints. The proposed method includes an approximated
KLT tracker to calculate positions of keypoints and optical flows. It calcu-
lates weights at each keypoint using an intensity gradient and an optical flow
reducing noise by comparing with states of surrounding keypoints. Camera
motion estimation is added to the algorithm and it calculates camera-motion

invariant optical flows.

The evaluation result have shown that the proposed algorithm achieved
about 93% reduction of keypoints and 76% reduction of computational com-
plexity on average. KOI are extracted from human bodies that move widely

and target objects whose gradient is large. This algorithm is expected to be
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2.6 Conclusion

applied to surveillance cameras and in-vehicle cameras when cloud systems
start to utilize it. As an example of applications, this chapter shows the gait
recognition. Three people can be recognized by the shown extraction algorithm
perfectly. It can been seen that the proposed keypoint extraction’s potential

is high.
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Chapter 3

Full-HD 60 fps FPGA
implementation using gradient

histogram

3.1 Overview of this chapter

The conventional works of FPGA implementation realize only up to spatial
keypoint extraction for small size video such as VGA. The reason is that most
methods buffer keypoint and its surrounding pixels after keypoint detection
and serially executes descriptor generation. This paper proposes the bufferless
architecture for high-speed implementation [42]. To realize bufferless architec-
ture, we need hardware-friendly algorithm and parallel architecture in order
to reduce amount of resource utilization.

This chapter describes the proposed hardware-friendly algorithm shown in
chapter 2 and its real-time FPGA implementation using gradient histogram.
The proposed hardware-friendly algorithm makes it possible to implement in a
realistic FPGA resource by commonly using modules and reducing computa-

tional complexity. Furthermore, in the FPGA implementation, parallelization
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of the proposed algorithms realizes resource reduction and enhancement of pro-
cessing time. Finally, FPGA implementation is evaluated from the viewpoint
of performance concerning feature point extraction and speed.

Regarding the proposed technique, the algorithm is based on dual thresh-
old keypoint detection by gradient histogram and parallelization of connec-
tivity of adjacent keypoint-utilizing register counters. The algorithm utilizes
histogram based detection and keypoint-matching based calculation of motion
information and dense-clustering based keypoint smoothing. The FPGA archi-
tecture is composed of a detection module utilizing descriptor, and grid-region-
parallelization based density clustering. The detection and the descriptor gen-
eration modules are placed in parallel. The descriptor generation module is
parallelized by considering grid placements. The processing time of descrip-
tor computation in this hardware is independent of the number of keypoints
because its descriptor generation is pipelining structure of pixel.

Finally, the evaluation results of FPGA implementation show that the im-
plemented hardware achieves Full-HD (1920x1080)-60 fps spatio-temporal key-
point extraction on field-programmable gate array (FPGA). Further, it is 47
times faster than low complexity keypoint extraction on software and 12 times
faster than spatio-temporal keypoint extraction on software, and the hardware
resources are almost the same as SIF'T implementation on FPGA, maintaining

accuracy.
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3.2 Hardware-friendly algorithm based on gra-

dient histogram and density clustering

To realize bufferless architecture, efficient utilization of hardware resource is
important. The problems of conventional works [40, 41, 53] and their solutions
in this paper are shown below.
1. High resources of keypoint detection module
= Gradient-histogram-based keypoint detection algorithm and imple-
mentation
2. Mecmory utilization of optical flow calculation by KLT tracker

= Keypoint matching based optical calculation and implementation

3. Complex iteration calculation of graph-cut algorithm

= Dense-clustering-based connectivity of adjacent keypoint

4. Large resources of temporal information calculation and keypoint con-

nectivity calculation

= Grid-region-based parallel implementation and memory utilization

method

The detection module of hardware requires significant resources. Thus, this
paper proposes a gradient-histogram based keypoint detection which utilizes a
descriptor computation module. The KLT tracker utilizes previous frame data
and it requires a large memory. Thus, this paper proposes a keypoint-matching

based optical calculation which utilized extracted keypoints. Only keypoints
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in the previous frame are memorized. The graph-cut algorithm includes a com-
plex iteration calculation which is hard to implement on hardware that has a
time constraint. Thus, this paper proposes a dense-clustering based connec-
tivity of an adjacent keypoint. Finally, significant resources of temporal infor-
mation calculation and keypoint connectivity calculation is a problem. Thus,
grid-region based parallel implementation and memory utilization method are

proposed.

This section shows an algorithm with low amount of computations for
FPGA implementation. Mainly, this paper proposes two methods for hardware-

friendly algorithms.

e Keypoint detection with descriptor calculation utilizing dual threshold

for a gradient histogram

e The KOI algorithm utilizing gradient histogram based detection and
weighting keypoints and dense-clustering based connectivity of an ad-

jacent keypoint

The flow of the proposed algorithm is shown in Fig. 3.1. First, descriptors
are calculated. Then, keypoints are detected based on the gradient histogram
which is obtained during descriptor calculation. Temporal information is ob-
tained by keypoint matching. Keypoints are weighted by the gradient his-
togram and inter-frame keypoint distance. Finally, the smoothing process is
performed and the algorithm outputs whether the pixel is a KOI. The details

of the algorithms are shown next.
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Figure 3.1: The flow of proposed algorithm.

3.2.1 Keypoint detection with descriptor calculation uti-

lizing dual threshold for a gradient histogram

This section shows a low complexity keypoint extraction utilizing a gradient
histogram. In general, there is no method which extracts keypoints utilizing
descriptor because amount of computations is reduced by calculating only
extracted keypoints on software. The proposed algorithm utilizes the high-
speed descriptor-computation engine effectively and achieves a low-resource

design.

The gradient histogram which is h is utilized in the descriptor computation
part. The histogram is calculated pixel by pixel. During FPGA implementa-
tion, the dimension of the gradient histogram is 32 (5 bit) data. This paper

utilized them effectively and also utilized dual thresholds 77 and T5. Keypoints
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which satisfy both of the two inequalities below are detected.
max(hl,h2,~~~ ,hgg) > 17 (3.1)
32
> H(hi) = N (3.2)
i=1
where max is the function which selects the maximum value. H is defined by

=] T (3.3)
0 (h; <Tb)

A pixel whose magnitude is larger than threshold is counted. The parameters,
T1,T5 and N, are utilized when the number of keypoints is optimized. When
the N increases, the keypoints which have gradients to more directions are
detected. When the T7 and T3 increase, the keypoints which have larger feature
represented by Eq. (3.3) are detected. The N = 2, 3 are suitable values in this
algorithm to detect keypoints in corners which has plural directional gradient
generally. We experimentally decided that N = 2 and 75 = 0.8 x 7. This
thesis utilized these values in implementation and experiments. The schematic
diagram of the process is shown in Fig. 3.2. The length of the arrows show

the scale of magnitude and the direction of the arrows show the direction of

the gradient.

3.2.2 The KOI algorithm utilizing gradient histogram-
based detection and weighting keypoints and dense-
clustering-based connectivity of an adjacent key-

point

First, a method which obtains motion information on each keypoint is shown.

A spatio-temporal keypoint method utilizes an optical flow by the KLT tracker.
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AMax
\

Figure 3.2: Keypoint extraction based on a gradient histogram.

This paper describes an algorithm for hardware along with three elements
which compose the spatio-temporal keypoint extraction. The spatial informa-
tion is calculated by the gradient histogram of the descriptor. The temporal
information is calculated by keypoint matching on the inter-frame difference.
The connectivity is obtained by density clustering on a grid division of an

image region.

3.2.2.1 Spatial information

This thesis proposes a descriptor-based temporal information calculation. The
conventional algorithms [40, 41] calculate gradient information by a Hessian
matrix. The calculation of the Hessian matrix has high computational com-
plexity because it includes matrix calculations and several multiplications. The

SIFT descriptor of keypoints also includes a number of gradient information
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points. Thus, this paper proposes a method by utilizing the descriptor. The
maximum value of the gradient histogram which weights the magnitude of the
gradient on each orientation is calculated on a keypoint. The value is utilized

as a weight of temporal information.

3.2.2.2 Temporal information

This thesis proposes a keypoint-matching based motion calculation. Keypoints
in different frames are matched by a distance calculation with the descriptor.
The distance is calculated between a keypoint on a current frame and all key-
points on a previous frame. The Ll-norm of x-y coordinates is calculated
between a keypoint on a current frame and the keypoint on a previous frame
which is the minimum distance of the descriptor. The L1-norm of x-y coordi-
nates of the two keypoints, M, is utilized as motion information for weighting
keypoints. Each keypoint is weighted by spatio-temporal information. The

value which decides KOI is defined by,
wimax(hy, ha, -+, hag) + wa M, (3.4)
where wy and wy are parameters which are decided by experiments.

3.2.2.3 Connection of adjacent keypoints

As the calculation of local correlation, density clustering of keypoint class
is proposed in order to reduce computational complexity while maintaining
accuracy. In this section, division means the operation which divides a region
into plural regions. The conventional method [40] utilizes MRF and the graph-
cut algorithm. The method requires all keypoint connections on MRF. In

addition, it includes an optimization problem with iterations. The calculation
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is not suitable for FPGA implementation because it cannot be analyzed when
the calculation is finished. The computational complexity of the graph cut is
O(V - E?), where E is the number of branches and V is the number of nodes.
It depends on three variants.

This thesis proposed a density clustering 1 dimension filter whose compu-
tational complexity is O(V'). First, the algorithm divides an image into several
regions. The regions are 2 dimensions and aligned at equal spaces. The can-
didates of KOI which are calculated by Eq. (3.3) in each region are counted.
Each keypoint has a flag which represents whether the keypoint is KOI or not
and the flag is checked during counting. The counted values are contained in
variants whose number is equal to the number of regions. When the number of
the candidates of KOI is larger than the threshold, all keypoints of the region
are redefined as KOI. The flags of keypoints in the region also are rewritten.
Otherwise, all keypoints of the region are redefined as not KOI. The pixel
which is in ¢-th region r; is decided as KOI utilizing threshold, Ts, when the

condition below is satisfied:

l \/

M
Z (3.5)
=1, kj€e

(KOI)
(3.6)

(not KOI)

where k; is the flag which represents whether the j-th keypoint is a candidate
of KOI or not. M is the number of extracted keypoints. Figure 3.3 shows an
example of the proposed process. First, an image is divided into plural region.
In each region, there are keypoints which are candidates of KOI (red keypoins)

and not candidates of KOI (blue keypoints). Then, flags of each keypoints k;
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are checked. If Eq. (3.5) is satisfied, flags of all keypoints in the region are
updated as KOI.

e BRAM
. 1
image I o °.: —_ 1| 11101--11
1 i r 10100--01
1 LI I Y 1
I E— L_a
'--: CIC I :--
a2 L
01010+ -10

Figure 3.3: Density clustering of KOI smoothing.

3.2.3 Approximation based on SAD, bit-shift and LUT

To this point, the proposed low complexity algorithm remains relatively com-
plex set of calculations. This consumes a large amount of hardware resources.
The approximated calculators reduce the use of resources and enhances fre-
quency of circuits. This also deals with P1.

First, equation (2.2) incorporates a square root. To solve the square root,
many methods have been proposed, such as extraction of square root. How-
ever, these methods use iterations, which have the possibility that generates
hardware delays because its number of iteration is unknown. Thus, the mag-
nitude of gradient is considered. It is replaced by SAD because the magnitude

is a weight of histogram computation. By this, magnitude of gradient in Eq.

65



3. FULL-HD 60 FPS FPGA IMPLEMENTATION USING
GRADIENT HISTOGRAM

(2.2) is redefined as

m(z,y) = |La(z,y)|+ |Ly(z,y)], (3.7)

where L, L, are the gradients of the pixels on each direction. Similarly, the
distance d calculation at the time of keypoint matching is also approximated

as follows.
1 1 2 2 128 128
d=|v; —vp[+|v] —vi[+ -+ ;™ =07, (3.8)

where v shows the descriptor on each dimension. It is calculated more simply.
The distance of two descriptors is computed similarly during matching process.

Next, the direction of gradient in Eq. (2.3) is computed approximately.
It includes division and arctan. It occurs in two steps. First, the division is
approximated by bit shift. Concretely, numerator is shifted by the value of
denominator. Second, the arctan is computed by the Look Up Table (LUT).
the value of arctan is decided by each result of the division. The direction
of magnitude is quantized in 32 directions. Figure 3.4 is the detail of this
approximation. The software simulations using these approximation do not
show largely precision loss. It is considered that this algorithm does not require

high precision computation because of quantization.

66



3.2 Hardware-friendly algorithm based on gradient histogram and
density clustering

L (x,y)
O(x,y)=tan ———=
L (x,y)
Stepl if |L|=0— allbirl
I if |LJ]<2— |L|0bitshift
Y 3 Bit-shift if |[L|<4—> ‘Ly‘lbitshift
x if |L|<8— |L|2bitshift
Step2 i 0.00000<|L |/|L,| <0.09375-00000
-1 Table :
0.09375<|L | /|L,| < 0.29687— 00001
tan %approximationl,f ‘ y‘ | < ~
if 029687<|L|/|L|<0.53125-00010

Figure 3.4: The approximation of the arctan calculation.
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3.3 FPGA implementation based on parallelized

gradient histogram

This section shows low-complexity architecture of spatio-temporal keypoint ex-
traction. The architecture is based on 60-fps spatial-feature-based keypoint ex-
traction hardware [41]. First, we shows the architecture. This thesis proposes
a gradient-histogram based keypoint extraction hardware to remove detection
modules, which is paralleled with the descriptor module. In addition, when the
keypoint is matched in the user’s device, a plural matching process is required.
In that case, a lot of memory must be utilized. To solve this, parallelization of
the keypoint matching module which is based on Least Recently Used (LRU)
is proposed. Moreover, the grid-division based method requires a number of
processes. Thus, this paper proposes a parallel counter on each division-based
implementation of dense clustering by grid division. The proposed architec-
ture is shown in Fig. 3.5. The details of the FPGA implementation are shown

next.
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3.3.1 60-fps spatial-feature-based keypoint extraction hard-

ware

The entire block diagram is expressed in Fig. 3.6. The inputted RGB data
is entered into the keypoint extraction module. In the keypoint extraction
module (Fig. 3.7), 1 descriptor is outputted for 1 RGB data. The RGB data
is converted to the gray scale data. It is accumulated in 5x5 and smoothed by
gaussian coefficients. Next, these are entered into line buffer and vertical 15
pixels are kept. These are inputted to the detection module and the descriptor
module in parallel. In the detection module, 15x15 pixel data is kept and
weighted by the filter in Fig. 2.8. In the descriptor module, after the orienta-
tion computation (9x9 region), the SIFT descriptor (8 bitx128 D=1024 bit)
is generated in 15x15 region. The descriptor is generated in all pixels because
the structure is a pixel pipelining. If the pixel is detected as a keypoint (the
signal of is_keypoint is 1), the position and descriptor data are memorized in

block RAM.

Keypoint matching process is performed with 1 frame delay in keypoint
matching module (Fig. 3.9). The descriptor data in the block RAM are
fetched and Sum of Absolute Difference (SAD) is computed. It is a distance
of feature vector. The minimum data between 1 inputted keypoint and all
database keypoints is kept and sent to block RAM. In all clock, the address of
block RAM is computed. Finally, an output image is generated by using the
kepoint data and matching results. The fundamental modules are described

in more detail next.
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3.3.1.1 RGB to gray converter module

RGB to gray converter module converts grayscale RGB data (24 bit) of input
into output grayscale data (8 bit). Pipeline processing for each pixel is per-
formed. Each input RGB data is assumed to be a fixed point, and approximate
calculation is performed by 1/3 with 16 bit precision by bit shift and addition.

This process takes three clocks.

3.3.1.2 Gaussian filter module

The Gaussian filter module holds 1920 x 4 pieces of 8 bit data using FIFO
memory using the input grayscale data, and performs a convolution operation.
15 x 15 are processed in order. It calculates the Gaussian filter with a distri-
bution of 1.6 with the coefficient fixed for the region of 15 x 15. Again, the
operation is a fixed decimal point and the operation is represented by only bit

shift and addition. This process ends the operation with five clocks.

3.3.1.3 Line memory module

The line memory module functions as a buffer for pipeline processing of inputs
of gray scale pixels (8 bits) smoothed by the Gaussian filter on a line-by-line
basis. The memory is FIFO, 1920 entries are held and output in the order of
input. By arranging this in 14 lines, you can output data of 8 bit times 15

line in order. This is done with one clock delay.

3.3.1.4 Corner detection module

The corner detection module performs a process of detecting a corner with

respect to an input image. Processing is performed in a pipeline system for
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each pixel line (8 bits x 15 line). It prepares registers and hold 15 rows of pixel
data, so we will process 15 x 15 area. As processing, we first calculate the
sum of rectangular regions by weighting like the Box filter. Since the amount
of data to be held in the integral image becomes enormous and it is difficult
to realize the hardware, it is not used. The sum of the rectangular areas is
obtained by dividing into four clocks. Since it is necessary to multiply here,
use DSP. The calculation result is compared with the threshold value, and 1
bit data is_ feature of whether or not the target pixel is a corner is outputted.
All processing can be calculated with 9 clocks, but the output result must be
held in the register because it is necessary to output it in synchronization with

the descriptor module.

3.3.1.5 Orientation computation module

In the orientation computation module, the orientation which is the direction
of the luminance gradient of the keypoint is calculated. Data of a pixel line (8
bits x 9 line) is input to this module, and processing is performed in a pipeline
system. The input data are sequentially processed. First, calculate the abso-
lute value of the difference, and then use it to calculate the arc tangent which is
sum and direction that is intensity in parallel. Thereafter, histogram creation
is performed, but in this case, unlike creation of feature amount histogram,
there are no multiple grids that cannot be said to have equal dimensions. For
that reason, nine histogram registers are prepared and assigned sequentially
to the histogram, and then the addition is performed for each dimension. Af-
ter finishing the histogram creation, it searches for the orientation with the

maximum weight. This is only a matter of finding the maximum value, but
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if you try to do it in a simple way, it must do 32 comparisons, which cannot
operate at high speed. Therefore, the maximum value in the tournament for-
mula such as comparing 32 pieces of data two by two and keeping the larger
one was searched. This requires five clocks, but since it is possible to reduce
the number of calculations sequentially performed for one clock, a high-speed
circuit can be maintained. Then, it outputs an orientation with the obtained

maximum intensity and sends it to the descriptor module.

3.3.1.6 SIFT descriptor computation module

In the SIFT descriptor computation module, it receives the input 5-bit ori-
entation data, determines the dimension as a descriptor for all grids in the
description area, and creates a feature amount histogram. Processing is done
to the region of 15x 15 by the pipeline method for each pixel line (8 bits x
15 line). As with the orientation computation module, hold the data for each
grid until the orientation input is made, after the strength and orientation of
the luminance gradient are obtained and held in the register. Upon input,
trigonometric functions are computed using the data. When the trigonometric
function is calculated, for each grid of the descriptor description area, calcu-
late which position of the SIFT descriptor is divided into 4 x 4. In parallel
therewith, the orientation of each grid is subtracted according to the direction
obtained from each grid, and the process of rotating the description area is
advanced. Subsequently, as suggested above, values are assigned to the de-
scriptor register in parallel, and the sum for each dimension is calculated to
complete the SIF'T descriptor. The calculation of the orientation and the de-

scription processing of the SIFT feature amount are completed in 22 clocks in
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Figure 3.6: The block diagram of entire structure.
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3.3.2 Architecture of keypoint detection based on the
gradient histogram of the descriptor computation

module

The conventional approach [41] implements parallel design of the detection
module and descriptor module on 60 fps video. In an approach of this the-
sis, the detection module which calculates the determinant and trace of the
Harris matrix is deleted by the proposed algorithm of the previous section.
The gradient generation module calculates the magnitude and orientation of
the gradient on each inputted pixel. The orientation computation module cal-
culates the gradient histogram whose magnitude is added together on each
quantized orientation by 9x9 magnitude and orientation of pixels. In the SIFT
descriptor computation module, the 15x15 gradient information is inputted
and the descriptor of a pixel is outputted. The keypoint detection module cal-
culates binary which indicates if the pixel is a keypoint or not by the gradient
histogram and orientation data. Then, the is_feature which expresses if the
pixel is keypoint or not and descriptor signal are outputted from the keypoint

extraction module in parallel.

In the keypoint detection module, the sum of the magnitude of each bin of
the gradient histogram is calculated by comparators and the largest bin and
second largest bin are selected. Thresholds to these bins of decision of the

keypoint module decide whether a pixel is a keypoint or not by Eq. (2.13).
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3.3.3 Parallelization of detection module and descriptor

module

SIFT has the dependency between keypoint detection and computation of de-
scriptor because a scale has to be computed and it determines the descriptor
region. However, the proposed algorithm does not compute a scale. There-
fore, it becomes possible to parallelize keypoint detection and computation of
descriptor. It reduces clocks to compute. 15 pixel data are inputted from line
memory. After that, detection and description are computed simultaneously.

After the results are obtained, they are synchronized.

3.3.4 Parallelization of descriptor computation

The SIFT descriptor is computed by histogram computation. In general, it
is serial processing because a conflict between registers occurs. It takes many
clocks to generate descriptor. Concretely, 225 clocks are required because it
uses 15x 15 region. To solve this, SIF'T descriptor computation is parallelized.
SIF'T descriptor divides the region into 4x4 grids. The bins of histogram
do not have a dependence on each other. Thus, it is possible to parallelize
distinct grid. The simulation result shows that 9 pixels at regular intervals
do not depend on each other. It computes 15x15 keypoint region by placing
25 descriptor registers. After registers have values, they are added together in
each bins. It computes descriptor in 4 clocks with finality. Fig. 3.8 is a schema

that shows this processing.
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Figure 3.8: Parallelization of histogram computation.

3.3.5 Pipelining by fetching pixel lines from block RAM

To calculate SIFT descriptor in each pixel, it is necessary to process 9x9
region for orientation and 15x15 region for descriptor in 1 clock. It requires
9% 94-15x15=306 calculators if it is computed simultaneously. To reduce the
hardware resources , pipelining using 15 pixel lines is proposed. It deals with
P1. When the vertical 15 pixel is inputed, these are calculated and m, 8 are
generated. After that, obtained values are kept in 14 clocks by registers. Only
9+15=24 calculator is required by this pipelining. This architecture is shown
in the line buffer of Fig. 3.5.
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3.3.6 Matching process by keypoint pipelining

Each keypoint has the descriptor data (1024 bit) and the position data (22
bit). It is very long bit data. If plural keypoints is processed simultaneously,
a lot of hardware resources are required. To deal with P4, 1 keypoint data is
fetched from block RAM in 1 clock and entered into the matching module of
pipelining structure. The nearest neighbor search is performed. The obtained
keypoint pairs are memorized in block RAM. The structure is shown in Fig.

3.9.

descriptor_1

128D x 8bit position !
Position_l_9 22bit distance 15bit
22bit SAD distance Keep minimum] position 22bit
15bit .
— —pldistance data
descriptor_2
128D x 8bit
o Input keypoints counter 10bit
Position_2
29bit N Data Address|patabase keypoints counter 10bit
Start signal Calculator  [write timing 1bit >
1bit

Figure 3.9: The structure of keypoint matching module.

3.3.7 Architecture of temporal information calculation

and keypoint connectivity calculation

For the spatial information, the gradient histogram is added to the weight of
keypoints to decide whether the pixel is a KOI. In the gradient histogram, the
maximum value of all bins is utilized and is sent from the SIFT descriptor

computation module to the KOI selection module. For the temporal infor-
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mation, the motion of each keypoint is obtained by an inter-frame keypoint
matching. The keypoints of the previous frame in BRAM are read by the
inter-frame matching module. The L1-norm of x-y coordinates of the two key-
points is calculated between one detected keypoint and all keypoints in the
previous frame. The Ll-norm on the keypoint with the smallest distance is
memorized in BRAM. It is inter-frame motion and utilized in the KOI selec-
tion module. The obtained spatio-temporal information is weighted and added
together. Then, the value is binarized by the threshold, and the KOI-selection
signal is generated. The difference in software implementation and FPGA

implementation is shown in Fig. 3.10.

First, this subsection describes a LRU-based memory utilization of inter-
frame-keypoint matching. The proposed algorithm requires memories which
contain keypoints in the current frame and previous frame. Fig. 3.11 shows
the block diagram. WE represents write enable signal. The matching process
calculates the Sum of Absolute Difference (SAD) to obtain the distance of
the descriptor. BRAM1 and BRAM2 are utilized to keep descriptor data and
coordinates of the keypoints. Keypoints’ data in £ — 2 are expelled when data
in k frame are inputted utilizing LRU. The input of data is detected by vertical
synchronization signal which represents effective timing of pixel data obtained
from video signal. The hardware contains counter which represents the number
of inputted frames. The SAD module is performed utilizing BRAM1 and
BRAM2 in parallel and recognizes which data is obtained from current frame
by the counter. The minimum-distance pair is memorized in BRAM3 utilizing
the WE controller. Keypoints in the current frame are memorized in the least

recently used memory of BRAM1 and BRAM?2.
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Figure 3.10: The difference of software implementation and FPGA implemen-

tation.

Next, for implementation of the connectivity of adjacent keypoints, imple-
mentation of dense clustering by parallel counter on each division is shown.
The decision of the KOI module calculates candidates of KOI. Candidates of
KOI are smoothed by dense clustering. Fig. 3.12 shows the block diagram of
parallel implementation. The signal which shows if the pixel is KOI or not is
sent to the counter depending on a region which the pixel belongs to by axis

of candidates of KOI. Counter modules calculate the number of candidates of
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Figure 3.11: Memory utilization of keypoint matching.

KOI. The decision modules decide the KOI region utilizing counters. Finally,

a KOI map shows all the KOI regions on a grid division. Utilizing the map,

candidates of KOI are updated and outputted. The keypoints of next frame

are decided by the results on each grid.

Decision of KOI

A 4

\4

Region 1 | counter » Decision
_____________________________ R
Region 2 | counter » Decision

_____
Region n | counter »| Decision

KOl map
calculation

Figure 3.12: Grid-region based parallelization of density clustering.
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3.4 Evaluation

3.4.1 Evaluation of keypoint detection performance

The proposed algorithm is compared with SIF'T with respect to performance.
The development environment for software is Visual Studio C++ 2008. CPU
is Intel Core i5 CPU M 450 2.40GHz.

3.4.1.1 Detector performance

First, performances of implemented keypoint extraction which is composed
of Harris detector and SIF'T descriptor are examined on test sequences. For
evaluation of correct matches and repeatability in Fig. 3.13 (a) and (b), we
use the framework proposed by Mikolajczyk et al. [45]. The boat image
shown in the paper is used as a test sequences. It includes both scale changes
and rotation. The correct transformation matrix is obtained by RANdom
SAmple Consensus (RANSAC) [46]. When L2 distance between the correct
value and experimental value is under 10, the pair is regarded as a successful
match. Figure 3.13 (a) shows the correct matches. The stability of descriptor
is measured from this. The proposed algorithm is a little unstable but obtains
more correct correspondences on many scales compared with SIFT. Figure
3.13 (b) is the repeatability. It means if keypoints are detected at the same
positions between two images with a viewpoint change. It shows performance
of detector. We can observe that the proposed corner detection obtained a lot
of correspondences and better performance than the DoG detector of SIFT.
Figure 3.13 (c) is an evaluation on wall images. This images include many

gradients. In this case, SIFT has the ideal ROC curve and the proposed
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algorithm also has the comparable ROC curve. Figure 3.13 (d) is an evaluation
in bike images. This images are natural scenes. Both algorithms are not ideal
results. The ROC curve of the proposed algorithm is the more gradual curve.

SIFT has better performance in these scene.
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Figure 3.13: The comparison between the proposed algorithm and SIFT. (a)
Number of correct nearest neighbour matches (Boat sequence). (b) Repeata-
bility score for scale change (Boat sequence). (¢) ROC curve (Wall sequence).
(d) ROC curve (Bikes sequence).

Figure 3.14 shows the performance of the keypoint detection of the pro-
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Figure 3.14: Performance of keypoint detection with the proposed algorithm
and SIFT.

posed algorithm and conventional algorithm, SIFT [11]. Repeatability was
evaluated. We used the framework proposed by Mikolajczyk et al. [45]. The
boat image shown in the paper was used as a test sequence. It includes both
scale changes and rotation. The detected keypoints in the images are shown
in Fig. 3.15. The transformation matrix H for definition of correct matching

is obtained by RANSAC [46]. Repeatability is defined as

Repeatability(e) = ,R#, (3.9)
min(ny, na)
R(e) = {(x1,x2)|dist(Hx1,X2) < €}, (3.10)

where x; and x3 are numbers of keypoints of evaluated two images. mini()

function selects the lower value from two input numbers. dist(Hxj,x3) rep-
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Figure 3.15: Keypoints which are detected by the proposed algorithm (top)
and SIFT (bottom).

resents detection errors. In this experiment, we fixed ¢ = 10. The proposed
method shows the results of the keypoint matching with multi-scale (0.5, 1.0
and 2.0 times) images of the same objects. Scale is the size of the target
objects compared with one image. The result shows the proposed algorithm
has almost the same accuracy compared with SIFT. It is considered that the
stability of detected keypoints is not greatly changed because the proposed
method also utilized gradient-based keypoint detection and it greatly does not

differ from conventional methods which calculate gradient on a region.
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Figure 3.16: Performance of the MRF based method and proposal.

3.4.1.2 Keypoint clustering performance

Figure 3.16 shows comparison of smoothing KOI methods between MRF based
algorithm [40] and proposal utilizing precision and recall. The KOI which are
obtained by MRF based algorithm are defined as correct detection points.
The keypoints which are obtained by proposal were evaluated. We utilized
the video in surveillance scene and smoothing methods of KOI are compared
shown as Fig. 3.17. Recall is higher than 0.8 when 1 — precision has lower
value. This means that keypoints which are obtained by MRF based method

and proposal are located in almost same position.
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Figure 3.17: Keypoints of the MRF based method (red keypoints) and proposal
(green keypoints).

3.4.2 Evaluation of processing performance

This section shows the evaluation results of the processing speeds and utilized
resources. First, evaluation conditions are described. Then, evaluation results
are shown. The evaluation conditions show the parameters of implemented
hardware. The evaluation results show the results of processing time and uti-

lized resource of the proposed FPGA architecture compared with conventional

methods.
Table 3.1: The parameter on evaluation condition.
Block Parameter
Gaussian filter 5 [pixel] x 5 [pixel] x 5 [module]
keypoint memory 1024 [bit] x 1024 x 2
Register of grid division 8 x 8 [grid] x 4 [bit]
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3.4.2.1 Evaluation condition

The evaluation condition is shown in Tab. 3.1. The input data is 24bit of
RGB color. The calculation of conversion, RGB to Gray, is Y of YUV color
space. The data is converted to 8 bits. Five Gaussian filter modules of smooth-
ing processing for detection are utilized for stable keypoint extraction. Line
memory memorizes pixels in 15 x 15 regions. Then, the 9-bit magnitude and
5-bit orientation are calculated in the gradient generation. The orientation
calculation generates a 32-dimension histogram. The SIFT descriptor calcula-
tion generates an 128-dimension descriptor. The Keypoint detection module
generates a 1-bit signal which shows if a point is a keypoint or not. In the
inter-frame matching module, a database keypoint memory and two-keypoint
memory are utilized. In the KOI selection module, a 4-bit register on each 8x8
grid is utilized during the smoothing of the KOI. Finally, the selector generates

a 1-bit signal which shows whether the pixel is a KOI or not.

3.4.2.2 Evaluation results

The proposed algorithm is compared with SIFT with respect to performance
and speed. The development environment for software is Visual Studio C++
2008. CPU is Intel Core i5 CPU M 450 2.40GHz. Vertex-5 (XC5VLX330-
1FF1760C, Fig 3.18) as FPGA offered by Xilinx, Inc. and option boards
(TB-SUB-DVI) are used for hardware evaluation. They are connected each
others, input videos are entered into the FPGA and the calculation results are
displayed in monitor like Fig. 3.20. Specifications of the boards are shown in
Tab. 3.2 and 3.3. The logic synthesis on FPGA is performed by ISE14.7. The

evaluation is shown by two steps. First step is the FPGA implementation of
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spatial-feature-based keypoint extraction. Second is that of spatio-temporal

keypoint extraction.

Figure 3.18: FPGA (TB-5V-LX330)

Table 3.2: Specification of FPGA board (TB-5V-LX330-DDR2)

FPGA XCHVLX330-1FF1760
DDR2SDRAM memory 512Mbit X 3
DDR2SDRAM SO-DIMM Maximum 2GB
Ethernet 10/100 Base Ethernet MAC & PHY
Serial communication RS232C
I/O port LVDS I/0O, generic 1/O, option 1/0O
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inrevium

Figure 3.19: Option board (TB-SUB-DVI)

TB-5V-LX330-DDR2

TB-SUB-DVI
(Rx)

Image data XC5VLX330-

(1920 % 1080) 1FF1760C
TB-SUB-DVI

< (Tx)
&-

Figure 3.20: FPGA environment

3.4.2.3 Evaluation of spatial-feature-based keypoint extraction

Hardware of only spatial-feature-based keypoint extraction on the FPGA and

the algorithm on software are compared with SIFT and SURF. SIFT imple-
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Table 3.3: Available resources of FPGA device (XC5VLX330-1FF1760C)

device XC5VLX330
array 240 X 108
slice 51,840
maximum variance RAM (Kb) 3,420
DSP48E slice 192
maximum block RAM (Kb) 10,368
all I/0 bank 33
maximum user [/O 1,200

Table 3.4: Comparison of processing time (SW or HW/VGA or Full-HD)

Processing time [ms] | Number of keypoints
SIFT 1026 252
SURF VGA 184 254
Proposal 85 258
SIFT SW 6840 986
SURF Full 2043 980
Proposal -HD 982 950
Proposal | HW 16 1024

mented by Hess [54] and SURF in OpenCV2.1 library are used. The evaluation
is performed by VGA (640x 480) and Full-HD (1920x 1080). The number of
keypoints is almost same in each resolution. Table 3.4 is a result comparing
processing time per frame between SIFT and the proposals. The result com-
paring proposal (SW/VGA) with SIFT (SW/VGA) shows that the proposed
algorithm is about 12 times faster than SIF'T on software. Moreover, it is about

2 times faster than SURF. It performs 10 fps keypoint extraction and match-
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ing for VGA video. The result comparing proposal (HW /Full-HD) with SIFT

(SW/Full-HD), proposal (SW/Full-HD) shows that the proposed hardware on

FPGA is about 427 times faster than SIFT and about 61 times faster than

the proposed algorithm on software. The proposed hardware performs at 60

fps keypoint extraction and matching for Full-HD video. The number of key-

points is also shown, but the processing time of keypoint extraction does not

depend on the number of keypoints due to pixel pipelining. On the other the

hand, keypoint matching depends on the number of keypoints due to keypoint

pipelining. We have verified that it is possible to perform keypoint matching

up to 1024 keypoints on the FPGA.

3.4.2.4 Evaluation of spatio-temporal keypoint extraction

Table 3.5: Resource comparison of conventional work and proposal.

Conventional work

Proposed architecure

FPGA resource Available | Used | Utilization | Used | Utilization
slice register 207,360 | 55,407 26% 50,466 24%
slice LUTs 207,360 | 108,322 52% 113,657 54%
occupied slices 51,840 32,741 63% 32,274 62%
BlockRAM/FIFO 288 89 30% 150 52%
DSP48Es 192 3 1% 0 0%
Maximum frequency 168.464 MHz 160.197 MHz

The hardware resources including spatial and spatio-temporal methods are

shown in Tab. 3.5. It shows that the resource of the proposed spatio-temporal

keypoint extraction FPGA architecture are almost the same as that of the

conventional keypoint extraction hardware [41] which utilizes only spatial in-
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formation. Utilization of the slice register, occupied slice and DSP48Es are
24%, 62% and 0%, respectively. They are lower than the resource utilization
of conventional FPGA architecture. DSP48Es is completely removed by the
proposed detection algorithm. Utilization of slice LUTs and BlockRAM /FIFO
are 4% and 52%, respectively. They are slightly higher than the resource uti-
lization of conventional FPGA architecture. In particular, BlockRAM/FIFO
is utilized in the inter-frame matching of the keypoints part by the proposed
FPGA architecture. Implementation on lower and cheaper resourced devices

is expected because all utilization is lower than available resources.

Next, table 3.6 shows processing time. SW and HW of the spatio-temporal
keypoint extraction are the proposed methods. Regarding software implemen-
tation, processing time of the conventional keypoint extraction algorithm [41]
is 754 ms per frame. Processing time of the spatio-temporal keypoint extrac-
tion algorithm [40, 53] is 190 ms per frame. Thus, the proposed keypoint
extraction hardware is 47 times faster than the spatial-feature-based keypoint
extraction of the software and 12 times faster than the spatio-temporal key-
point extraction of the software. In this case, the number of keypoints which
can be memorized is 1024 to compare performance utilizing same conditions
with other methods. However, if the sizes of the BRAM1 and BRAM?2 are
expanded, it is possible to increase the number of keypoints which can be pro-
cessed. The number of keypoints can be increased up to n-1) - < 2073600,
where n; represents the number of keypoints in ¢ frame, because the keypoint
matching between (¢ — 1)-frame keypoints and ¢-frame keypoins must be pro-

cessed in one frame.

Table 3.7 shows the processing speed of the proposed FPGA architecture
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and conventional methods [36, 37, 38]. The proposed FPGA architecture
achieves keypoint extraction processing of Full-HD (1920x1080 pixel) 60 fps.
There is no hardware proposal for spatio-temporal keypoint extraction. Thus,
implementation of the spatial-feature-based keypoint extraction is shown as
the conventional works. The proposed FPGA architecture of spatio-temporal
keypoint extraction is a higher processing speed. This is because in the con-
ventional method, peripheral information of keypoints is buffered in a memory
after keypoint extraction, and then feature amounts are generated sequentially.
In the proposed method, the keypoint extraction, the number of resources of
the descriptor generation module is reduced and the pipeline structure is im-
plemented to operate at the same frequency, and it operates with the video

clock.
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3.5 Conclusion

Figure 3.21 shows a system utilizing an FPGA board. The system is com-
posed of FPGA board, camera and monitor. It shows the real-time perfor-
mance of keypoint matching by the proposed spatio-temporal keypoint extrac-

tion.

Camera

FPGAboard B

Figure 3.21: A system utilizing FPGA board.

3.5 Conclusion

This chapter described the proposed hardware-friendly algorithm of spatio-
temporal keypoint extraction and its FPGA implementation. The proposed
algorithm and implementation method are evaluated by implementation on

real FPGA. These proposals realize FPGA resource reduction and enhance-
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ment of processing speed by combining.

The algorithm is based on optical flow computation parallelization of mem-
ory utilization and dual threshold keypoint detection for real-time cloud-based
recognition systems to achieve high-speed systems and reduce hardware re-
sources containing the specification of processing. The KLT tracker which
obtains motion information is replaced with inter-frame keypoint matching,
and a detection algorithm which is processed with the descriptor calculation
in parallel is replaced with a gradient-histogram based algorithm. A FPGA
implementation of memory utilization and grid division, and dense-clustering
based keypoint smoothing method are shown.

Finally, the evaluation results of the FPGA implementation showed that
the implemented hardware achieves Full-HD (1920x1080)-60 fps spatio-temporal
keypoint extraction and is 47 times faster than the low-complexity keypoint
extraction on the software and 12 times faster than spatio-temporal keypoint
extraction on the software, and the hardware resource is almost the same as

with SIFT implementation, maintaining accuracy.
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Chapter 4

Conclusion

This thesis summarizes the technology for reducing the amount of data to be
transmitted to the cloud and the technology for realizing real-time processing
at the user terminal in the cloud video recognition system. The cloud sys-
tems start to be utilized for services which analyze user’s data in the region
of multimedia. In video recognition, there ares few services that has been put
to practical use yet. The system is assumed that keypoints are extracted from
videos, the data is sent to cloud, and the data is used for identification pro-
cessing in cloud server. The system includes a keypoint extraction part in user
terminal and a identification part in cloud server. In the keypoint extraction
part of the system, there are two problems of large number of keypoints to
be sent to cloud server and real-time processing of keypoint extraction in user
terminal. Chapter 2 has solved the first problem and chapter 3 has solved the
second problem. The achievements obtained by the research are summarized
below.

Chapter 2 proposed a keypoint extraction algorithm to reduce the amount
of data sent to the cloud by combining spatio-temporal keypoint extraction

with local correlation. Along with the progress of IoT, the number of termi-
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nals connected to the edge in the network increases, and it is thought that the
amount of data flowing in the network will increase. For the first time, this
chapter proposed the keypoint extraction algorithm to reduce data amount
for cloud video recognition in the IoT era and have presented its effectiveness.
This chapter proposed spatio-temporal keypoint extraction based on local cor-
relation to reduce the number of keypoints. The algorithm is composed of
three elements: spatial information, temporal information and connectivity
of adjacent keypoints. The proposed method includes an approximated KLT
tracker to calculate positions of keypoints and optical flows simultaneously.
This algorithm calculates weights at each keypoint using two kinds of features,
namely, an intensity gradient and an optical flow. It reduces noise of extraction
by comparing states of the intended keypoint with states of surrounding key-
points. Camera motion estimation is added to the algorithm and it calculates
camera-motion invariant optical flows. Evaluation showed the recall-precision
performance and number of keypoints by the proposed method to confirm
that the number of keypoints to be sent to cloud server is reduced. The pro-
posed algorithm achieves about 93% reduction of keypoints compared with
conventional keypoint extraction while detecting required keypoints (17-45%
enhancement of F-measure). These results shows that reduction of the num-
ber of keypoints to be sent to cloud server is realized while detecting necessary

keypoints for cloud video recognition.

Chapter 3 proposed a hardware-friendly algorithm and its FPGA imple-
mentation which realizes real-time keypoint extraction in user terminal on
cloud system by utilizing gradient histogram effectively and parallelizing them.

There is no conventional FPGA implementation of keypoint extraction for
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cloud video recognition. In the hardware of keypoint extraction, there is no
work whose target is real-time processing for VGA. For the first time, this
chapter proposed the Full-HD 60 fps FPGA implementation of keypoint ex-
traction for cloud video recognition and demonstrates it by real FPGA. This
chapter proposed the hardware-friendly KOI algorithm with low amount of
computations and its real-time FPGA implementation based on dual thresh-
old keypoint detection by gradient histogram and parallelization of connec-
tivity of adjacent keypoint-utilizing register counters. The algorithm utilizes
dual-histogram based detection and keypoint-matching based calculation of
motion information and dense-clustering based keypoint smoothing. The hard-
ware architecture is composed of a detection module utilizing descriptor, and
grid-region-parallelization based density clustering. The detection and the de-
scriptor generation modules are placed in parallel. The descriptor generation
module is parallelized by considering grid placements. The processing time of
descriptor computation in this hardware is independent of the number of key-
points because its descriptor generation is pipelining structure of pixel. Eval-
uation showed the hardware resource amount, processing time and keypoint
detection performance to confirm real-time performance. The proposed hard-
ware achieves Full-HD 60 fps spatio-temporal keypoint extraction on FPGA.
Further, it is 47 times faster than low complexity keypoint extraction on soft-
ware and 12 times faster than spatio-temporal keypoint extraction on software,
and the hardware resources are almost the same as SIF'T hardware implemen-
tation, maintaining accuracy. These results shows that real-time processing of

keypoint extraction for cloud video recognition is realized.

By these proposals, the keypoint extraction algorithm for cloud video recog-
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nition and its real time system have been realized. The algorithm and hardware
are expected to be applied to various applications such as surveillance cameras
and in-vehicle cameras by cloud video recognition. Two main future works
are remaining to be done in order to realize the entire cloud video recognition
system. Firstly, evaluation of recognition accuracy is necessary to realize appli-
cations. The framework of the recognition consists of keypoint extraction and
identification. It is necessary to evaluate recognition accuracy by combining
the proposed keypoint extraction with identification processing. As identifica-
tion processing, support vector machine (SVM) is widely used. Since multiple
kinds of applications are assumed, evaluation of optimizing parameters of the
proposed algorithm and SVM is required for each application. Secondly, it
is necessary to evaluate the real-time performance including the entire cloud
system. In the proposed hardware, it is limited to achieving real-time perfor-
mance in the user terminal. The actual cloud video recognition system includes
a process in which keypoint, flows through the network, a process of identify-
ing, and a process of returning information to the user. These processes also
cause dela l-time verification via the network is necessary to

confirm whether real-time performance can be achieved in the whole system.
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