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1.3.1 Conceptual Difference with Works from My Group
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2. Block Merging based Unified HEVC

Parameter Decoder Design
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2.1.1 Motion Vector Decoding

The process of calculating motion vector is to decode syntax elements into motion

parameters, which can be directly used by the following motion compensation module.

A block's motion parameters have high possibility to be similar to spatial or temporal

neighboring. In HEVC, irregular coding algorithm is employed to eliminate such kinds

of redundancy for compression efficiency.

Current Blk.

B1 B0B2

A0

A1

Col-
Ctr

Col-
Br

Region A

Region B

Region Col

List_0

Comb(0,1)

List_1

List_0

Cand. 1

List_1

List_0

Cand. 0

List_1

Example for producing
combination candidate

As is introduced in Section 1.1.2, Advanced Motion Vector Prediction (AMVP)

mode and merge prediction mode are employed by HEVC for coding MV parameters.

Both of them require prediction parameters of five spatial neighboring blocks and two

temporal co-located blocks as input, as depicted in Fig. 17. Besides, each of the two
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prediction modes owns its unique algorithm and resource sharing between them is

limited.

In AMVP, all seven reference blocks are categorized into three regions, A, B and

Col regions. Each region will produce at most one candidate so that a list of at most

three candidates can be constructed in general. If the neighbors in the left are not

available, two motion vector candidates are derived both from the above side, which is

the region B. After removing the identical ones in the list, I will add zero MV candidates

into the list. In the last step, I will also try to remove the MV candidates whose index

is larger than 1. Then, the final MV will be selected by the syntax mvp_lx_flag.

In merge mode, motion parameter decision starts with constructing merge

candidate list. Firstly, valid blocks are pushed into the list in the order of B0, A0, A1,

B1, B2 and Col. Up to four spatial neighbours and one temporal neighbour will be

pushed into the candidate lists if they are available. For the spatial candidates, I also

have to check partition redundancy removal so that I will never merging 2 2N×N blocks

into one 2N×2N block. If the candidates are fewer than five in default, the combined

candidates will be assembled with the content of candidate list and added into list with

the valid candidates in the first step if the current slice supports bi-prediction. Finally,

zero candidates with different reference frames are produced if the list is not full. After

the list is constructed, merge MV result is chosen by the merge_idx from the list. Note

that in each mode, the scaling operations will be processed when there is a difference

between reference frame of current block and that of reference block [12].

tb

curr_pic col_piccurr_refneighbor_ref

curr_PU

neighbor_PU
curr_PU

neighbor_PU

curr_piccurr_refneighbor_ref

tb

td td

mvNeighbor
mvNeighbor

mvScaled
mvScaled

Scaling calculator is an operation frequently used in AMVP mode. It is also used
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for the temporal candidates in the merge mode. Fig. 18 shows two cases where scaling

calculator is utilized when tb!=td. (tb & td represent POC differences, Left:

neighbor_PU is temporal; Right: neighbor_PU is spatial). In the figure tb (td) indicates

the POC difference between current (neighbor) picture and its reference picture. When

tb and td are not the same, mvNeighbor can't be directly used as the prediction of motion

vector and it must be scaled. Therefore, mvScaled should be deduced by following

equations defined in HEVC specification [12].

tb = Clip3( -128, 127, DiffPicOrderCnt( curr_pic, curr_ref ) )
td = Clip3( -128, 127, DiffPicOrderCnt( neighbor_pic, neighbor_ref ) )
tx = ( 16384 + ( Abs(td) >>1 ) ) / td
distScaleFactor = Clip3( -4096, 4095, ( tb * tx + 32 ) >> 6 )
mvScaled = Clip3( -32768, 32767, Sign( distScaleFactor * mvNeighbor ) *

( ( Abs( distScaleFactor * mvNeighbor ) + 127 ) >> 8 ) )

2.1.2 Boundary Strength Decoding

Boundary strength is used in de-blocking filter for filter selection. The calculation

of BS can be divided into two steps. The first step is to prepare necessary data.

Generally, I have to fetch the MV parameters of current block and all the adjacent

neighboring blocks in the left and top. Then in the second step, specific algorithm is

used to produce the BS result by comparing MV parameters between current block and

neighboring blocks.

BS calculation will be executed on all the prediction unit (PU) and transform unit

(TU) edges at 8×8 block grid. Although the BS values are calculated at 4x4 block basis,

but the final result is re-mapped to an 8×8 grid by choosing the larger BS value from

the two 4×4 grid edges. Let P and Q be the two blocks beside a certain edge. The full

algorithm for BS calculation is shown in Fig. 20. If P or Q is intra prediction, BS is

equal to 2. Otherwise, PU and TU edges have different algorithms to produce BS value.

The algorithm for TU edges is quite simple, which just check whether P or Q has non-

zero coefficients. In contrast, the algorithm for PU edges are much more complex.
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Almost all the motion information has to be compared between P and Q blocks, such

as the number of reference frames, the number of MV and the MV difference [12].

2.1.3 Block Merging for Data Reuse of Motion Vector

13

P or Q is
intra

Bs = 2

Yes No

P & Q has
different ref?

Bs = 1

|MV_Ph MV_Qh| >=4
or

|MV_Pv MV_Qv| >=4

Bs = 0
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Yes

No

No

P & Q has
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P or Q has
non-0 ?
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2.1.4 Literature Review
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2.2 Unified CU-adaptive Pipelined Dataflow
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2.2.1 Dataflow Analysis
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2.2.1.1 Variable block approach

2.2.1.2 Constant block approach
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2.2.1.3 Proposed CU-adaptive block approach (Unified CU-adaptive Pipelined

Dataflow)
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2.2.2 Block Diagram for the CU-adaptive Pipeline
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2.2.3 Reference Data Fetching

B0 B1 A0 A1

ColCtr ColBr

cal cal cal cal

Ax Bx

ColCtr ColBr

cal cal cal cal cal cal

4 cycles delay

Stage 1

Stage 2

Stage 3

Cycles for 1st PU in CU

cal cal

B2

nop

Line buffer

Collocated SRAM

Left-top register

MV cal (fixed 4 cycles) MV cal

cal cal MV MemWr.MV MemWr.
8 cycles delay

Line buffer

Cycles for 2nd PU in
CU

BS BS...

nop



39

2.2.4 Proposed Index Mapping Optimization
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2.2.6 Analysis of Design Overheads
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2.3 Multi-level Memory Hierarchy Design

2.3.1 Memory Hierarchy for Spatial Storage
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2.3.3 Cyclic Memory for Temporal Storage
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2.3.4 Design overhead of This Section
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2.4 Experimental Results

2.4.1 Simulation on PU-based Coding Scheme
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Compensation Architecture
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3.1.1 Function Description in Decoder
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3.1.2.2 DRAM Bandwidth: Memory Access Energy
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3.2 System-level Architecture
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3.2.2 Width-fixed Strip Process Pattern
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3.2.3 Reuse-aware Design of Parallel Interpolator
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3.2.4 Weighted Prediction
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3.2.5 Interfaces and Data Flow
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3.3 Distance Biased Direct-mapped Cache Design

Facing the intensive DRAM bandwidth requirement, many previous approaches

utilize two-dimensional (2D) cache to alleviate this issue. They can be classified into

two groups, direct-mapped cache and multi-way set associative cache.

District 0 District 2

District 1 District 3

Ref. frame 0

Direct-
mapped
2D cache

Cache index consists of lower bits of x,y and reference index

Ref. frame 1

A direct-mapped cache organization has its advantages on area-efficient

characteristics. A general implementation for a direct-mapped 2D cache maps each

cache line based on the lower bits of both x and y coordinates. However, the support
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for multiple reference frames of HEVC/H.265 is not efficient. Two cache lines with the

same coordinates across different reference pictures will conflict to each other.

Therefore, the cache performance is decreased due to these conflicts.

In order to solve this problem, another direct mapping method adds reference index

to the mapping. Thus, a cache index consists of not only the lower bits of coordinates

but also the reference index, as is shown in Fig. 54. The cache is equally divided into

four cache districts and each reference frame is directly mapped to a separated district

inside the cache to avoid the conflict across different pictures.

The drawback of direct mapping with reference index is the large cache memory

size. In some severe cases, HEVC will support up to 16 possible reference frames. If

the cache is designed for the worst case, it will consume a huge amount of memory

resources. Compared to the general direct mapping, N times larger cache size is

required where N is the number of possible reference frames, which becomes

unacceptable despite of its cost-efficiency for the control logic.

set 0Ref. frame 0

Ref. frame 1

Each cache line can be mapped to multiple (in this case is
four) alternative memory cells in cache

set 1

set 2

set 3

4-way set
associative
2D cache

Cache line Replacement strategy

The multi-way set associative cache organization is efficient to address the multiple

reference issue like [21]. Taking the 4-way cache in Fig. 55 for example, it maps each

cache line based on its x and y coordinates. Different from the direct mapping, a cache

line of the 4-way cache can be stored in any one of four alternative memory cells in the
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cache. Replacement strategy should be considered as 4 alternatives are available when

writing a cache line into cache.This redundancy is capable of relieving the conflicts

caused by multiple reference pictures. Compared to a direct-mapped cache with the

same size, this cache organization can usually achieve better performance at the

expense of higher area cost due to the complicated control. In [21] where a 4-way set

associative cache is employed, up to 126k logic gates are required for implementation.

Test sequence: PeopleOnStreet, 2560×1600

Cache Organization Cache Size (pixel) Hit rate

Direct Mapping 128×128=16,384 45.0%

4-way set associative mapping 64×64×4=16,384 56.6%

Direct mapping with reference

index

64×64×4=16,384 52.7%

128×128×4=65,536 56.9%

A simple comparison for the mentioned cache organizations are given in .

Considering the same cache size (16k) for a fair comparison, the 4-way cache shows

the best performance at the expense of high complexity. If I enlarge each district size

of the direct-mapped cache with reference index from 64×64 to 128×128, the

performance can be improved to be equivalent to the 4-way cache. This proves that the

previous works are trading-off between memory resources and the hardware design

complexities.

Based on the discussions, I propose the distance biased direct mapping scheme to

simplify control logics without sacrificing the performance. The distance biased direct

mapping is a kind of direct-mapped cache organization. A general example is shown in

. Cache is divided into several cache districts, each of which can be mapped to

a specific reference frame. The size of cache districts depends on the distances between

the reference frames and current decoding frame. Similar to the direct-mapped cache,

the cache index also consists of the reference frame index and the lower parts of x and
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y coordinates. The distinction is that the cache district sizes for each reference frames

vary, depending on the distance values between the reference frame and current frame.

The details of distance biased direct mapping are discussed in the following subsections.

...

Ref. frame 1

Different cache district size is allocated to each
reference picture based on its POC distance

Ref. frame 2 Ref. frame 3

District
0

District
1

District
2&3

Ref. frame 0

Distance biased
direct mapping

From the viewpoint of hardware architecture, the proposed cache approach is like

Fig. 57. Compared with the previous approaches as shown in Fig. 45 and Fig. 46, this

approach proposed that the cache can be regarded to consist of a big physical cache set.

The motivation is to use direct mapping for simplifying the hardware design complexity

mentioned above. To solve the problem of multiple reference frames, the solution is to

divide this big cache set into multiple logical cache sets. By doing this, each cache set

is in charge of handling the reuse of reference from a specific reference frame.

Therefore, no data flushing from different reference frames happens due to the

separated storage in this approach. Moreover, because the multiple cache sets are

logically divided, it can be on-the-fly programmed as will be discussed in the following

sections in detail FIXME, so that the video features, which will be introduced in Section
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3.3.1 and 3.3.2, can be used to improve the performance of cache.

3.3.1 Distance Biased Direct Mapping (DBDM)

Test sequence: PeopleOnStreet, 2560×1600

Distance
QP=22 QP=37

Access # Percentage Access # Percentage

1 78578051 82.3% 66304610 88.5%

2 9787409 10.3% 5389776 7.2%

3 4003179 4.2% 1690667 2.3%

4 3080105 3.2% 1532751 2.0%

The first video feature proposed in this work is the relationship of distance and

similarity between video frames. The distance is the absolute value of the picture order

count (POC) difference between the reference frame and current decoding frame.
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Generally, video consists of continuous frames which are captured in a short time. The

contents of these frames are expected to be similar as shown in Fig. 58. Moreover, if

two frames are closer to each other, the more similarity they may have. This is the first

video feature used for cache design.

The experiments also prove the proposed video feature is feasible. I notice that

pictures with smaller indexes in L0/L1 usually own smaller distance values due to the

algorithm of constructing the reference list in HEVC/H.265. As the inter prediction

exploits the temporal correlation between pictures, a picture with small distance should

occupy a high probability to be chosen as the reference. Experiments were conducted

for the lowdelay configuration, where the reference frame with smaller index always

has a smaller distance. The number of DRAM requests without cache is counted. The

results are shown in Table 11. The requests for the first reference frame account for the

major proportion (more than 80%). On the other hand, only less than 5% of the total

requests are for the picture with largest index.
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The distance biased direct mapping is proposed to shrink the size of direct-mapped

cache with reference index while keeping its hit rate performance. I have recognized a

reference frame with a smaller distance leads to a higher requirement on memory

bandwidth in the last paragraph. It inspires us to allocate different sizes of cache

districts according to their distances. I first conduct experiments to observe the relation

between the hit rate and the district size for each reference pictures under the lowdelay

configuration. As shown in Fig. 59, Slice P has one reference frame list, in which

distances of each frames are larger if the indexes are larger. For a single reference

picture with direct mapping, increasing cache district size leads to an improvement on

hit rate. The improvement of Ref_idx_0 is much clearer than the rest. On the other hand,

only around 1% of the total DRAM requests are for Ref_idx_2 or Ref_idx_3. Therefore,

a relatively larger cache district size should be allocated to Ref_idx_0, so as to

guarantee the hit rate performance. On the other hand, a small district size can be

assigned to pictures with large indexes to pursue a smaller cache size in total without
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sacrificing performance. An example is given in Fig. 60 where the sizes of cache sets

vary based on the importance in Fig. 59. These form the basic idea on the distance

biased direct mapping.

3.3.2 Frame Structure Adaptive Mapping Scheme

The second video feature proposed in this approach is the reference frame structure.

Fig. 58 illustrates an example of low-delay-P configuration where all the reference

frames are prior to the current frames. In such a case, the similarity of these frames

gradually decreases when they distance becomes larger. In other cases, the frame

structure may be changed so that the reference frames may either prior to the current

frame or after the current frame as shown in Fig. 61. This section tries to utilize this video

feature to further enhance the cache performance.
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I further propose the adaptivity based on the current frame structure. The frame

structure refers to the content of reference picture list (RPL). The adaptation means

cache mapping is dynamically adjusted based on the variation of RPL content. In detail,

HEVC/H.265 support two slice type, slice_P and slice_B. They usually own different

compositions of RPL. Slice_P in lowdelay configuration usually has two identical RPL,

L0 and L1, while slice_B contains two reference pictures in each list and each list has

the similar rule of Slice P. As shown in Fig. 62, two pictures with idx_0 from both L0

and L1 occupy most of the DRAM access. The results prove that smaller distance infers

a larger proportion of the total DRAM accesses. The reason is that Ref_idx_l0_0 and

Ref_idx_l1_0 are the closest pictures prior to and after the current decoding picture,

respectively. These two pictures should both be allocated with larger cache district sizes,

which is quite different with slice_P. When my proposed MC cache decodes a video

sequence, it can adaptively adjust its mapping strategy based on current decoding slice
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type to achieve a better hit rate performance.

3.3.3 Simulation Results for Distance Biased Direct Mapping
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3.3.4 Design Overheads of This Section

Slice Type Ref. Picture Cache district size (pixel)

Slice_P

Ref_idx_0 64×128

18,432
Ref_idx_0 64×96

Ref_idx_0
32×128

Ref_idx_0

Slice_B

Ref_l0_idx_0 96×96

18,432
Ref_l1_idx_0 64×96

Ref_l0_idx_1
32×96

Ref_l1_idx_1

The complex for hardware implementation of distance biased direct mapping cache

is higher than the previous works. In the design phase, the distance biased direct mapping

is implemented by a reconfigurable Look-Up-Table. Designers can flexibly initialize the

content of Look-Up-Table based on their design demand. Thus, the distance biased

direct mapping is capable of handling different configurations of frame structure. Look-

Up-Tables are utilized to store the parameters of each cache districts (width and height,

district offset inside cache). These parameters are important to address the cache

structure (tag, index, offset). For example, the cache district division in Table 13

corresponds to the content of Look-Up-Table as shown in Fig. 63.

When checking whether a cache line is hit or miss, I can first calculate the location

of this cache line by using motion information. Then, the index of the cache line is

generated by the lower bits of coordinates and the reference frame index. The cache

district offset value is then added to generate the index, like the formulas in Fig. 63.

Meanwhile, the tag information combines the rest of the coordinate bits. The definition

of the lower bits is the modulus of dividing the coordinates by the cache district size.

Especially in my proposed distance biased direct mapping, the cache district size is

distance biased and can be read from the Look-Up-Table. Finally, tag memory is read
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with the calculated index and the read data are matched with the calculated tag to decide

a cache hit or miss. This is the basic processing flow of the proposed cache organization.

(64,128,0)

(64,96,256)

(32,128,448)

(32,128,448)

(96,96,0)

(64,96,288)

(32,96,480)

(32,96,480)

Look-Up-Table
(width,height,offset)

Tag = [x/width/8 , y/height/4 , ref_pic]
Index = (x%width)/8 + (y%height)/4*(width/8) + offset

Read Look-Up-Table based on
current slice type and
reference frame index

Ex. SliceType = P, ref_idx = 0, cache line = [72,128]
Width = 64, Height = 128, Offset = 0

Tag = [5'd1, 4'd0, 2'd0]
Index = 1 + 0 + 0 = 1

3.4 Optimization for High Integration Density

Hit/Miss check

Miss request

Cache Read

Width-fixed
strip to row

DRAM
Interface

row
DDRDDRDDR

Four-parallel
Cache tag
memory

WFS pipelining
Row-based miss
Info. compress Cache line pipeling

Strip-FIFO3
Ready to
output

Strip-FIFO2
Miss is

requested

Strip-FIFO1
Tag is checked

RMI-FIFO
Save miss row
and last row

Miss request

Mask-based block conflict check

Input: Motion
info. of strip

Output: Four cache lines in a row

To Interpolation

x_mask

i-th
WPS in

FIFO

Bit-wise AND
x_mask

y_mask

WCL
Bit-wise AND

conflict

Cache

Last miss cache line in FIFO (WCL)

Cache Write

DDRDDRDDRDDRDDRDDRDDREight-bank
Cache data memory
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3.4.1 Bank Organization of Cache Memory

3.4.1.1 Tag Organization

3.4.1.2 Eight-bank Data Memory
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3.4.2 Row-based Miss Information Compression
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miss miss

0

1

2

3

4

miss miss

5

Row Four cache lines in a row RMIC

00000 0101

00001 0000

00010 0000

00011 0000

00100 0110

00101 0000

Row index inside the strip

hit/miss of cache lines in the row

Miss row

All-hit row

Last row

Miss row

Row-based miss information
compression (RMIC) scheme

Each row are presented by 9 bits.
Miss rows and last rows are pushed into RMI-FIFO,

while all-hit rows are abandoned.

Row types
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3.4.3 Mask-based Block Conflict Check

( )

( )



92

A block for
conflict check

(16+8 = 24 bits)

8x4-1bit

64x64 cache

Mask_x_blk = 8 bits

8x4 MAU

Current MAU for writing
Just only one 1 in both width

and height (Shifting op.)

Mask_x_blk >> MAU_x
Mask_y_blk >> MAU_y

Conflict = Mask_x_blk[0] & Mask_y_blk[0]
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3.5 Experimental Results
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4-way[18] 8-way Proposed (8-bit)
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DRAM BW w/ cache
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131.1kb 262.2kb 221.2kb

Luma-chroma serial Luma-chroma parallel
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3.6 Summary

1)

2)

3)

4)
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4. Conclusion

4.1 Summary of This Dissertation
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4.2 Future Works
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