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Abstract

Abstract

Recently, 4K/8K ultra-high definition television (UHDTV) has been regarded as
the next frontier of video formats. The increased resolutions have stimulated a new
video coding standard in 2013 called HEVC (High Efficiency Video Coding).
Compared to H.264 standard, HEVC has announced its twice compression capacity to
achieve the same video quality at the expense of increased complexity, which is
challenging the VLSI implementation of real-time HEVC decoder system. For VLSI
implementations, the increases of computational complexity, external memory
bandwidth and on-chip memory requirement caused by HEVC are challenging us to
explore energy efficient VLSI a /8K UHDTV video decoding
hardware. In detail, to pursue better energy efficiency, it is critical to eliminate the
redundant memory accesses and computations by designing customized architectures
for the complicated HEVC decoding algorithms.

HEVC inherits the basic idea of previous video coding standards where each
sample can be intra or inter predicted. Especially, decoding inter prediction samples
contributes the major coding efficiency at the expense of more than 49% of decoding
complexity and 60% of memory bandwidth requirement. Therefore, it is indispensable
to design VLSI architectures for real-time decoding processing, which consists of

decoding motion vectors (called PDec: Parameter Decoder) a

. For example, the increased number
and maximum size of coding units require more design efforts because architectures
should handle all 24 possible cases, which are three times more than that of H.264.
Another example is the longer taps of MC interpolator, which directly introduces more
memory bandwidth requirements and computations. In total, it is desirable for new

VLSI a

To remedy this situation, this dissertation presents the proposed energy efficient
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VLSIa . These proposals are motivated from
a viewpoint of data reuse to reduce both memory accesses and computations by new
hardware architectures. The unexploited potentials for data reuse are discovered and
utilized to form the main idea in each design. Specifically, in PDec, the potential is that
the same result of motion vectors is computed repeatedly for several blocks. Therefore,
these blocks are merged together (called “Block Merging™) to reuse this result among
blocks for saving computing energy. In MC, I discovered the potential that possibility
of reuse is highly related to the distance between two frames. Thus, I applied this
relationship to the cache design (called “Distance-biased Cache™) to improve cache
memory energy efficiency. Besides the above proposals, the related memory hierarchy
and hardware optimization techniques are also carefully designed so as to achieve better
energy efficiency for both computing and memory parts of their VLSI a

The following presents the summaries of four chapters and related evaluation
results:

Chapter 1 [Introduction] gives the background and the new features of PDec and
MC in HEVC decoder, followed by the discussions on the VLSI design challenges
caused by these new features. The perspective viewpoint for solving the design

challenges and the research target are then discussed. Meanwhile, the state-of-the-a

Chapter 2 [Block Merging based Unified HEVC Parameter Decoder Design]|
presents an energy efficient VLSI PDec architecture by block merging. The proposed
idea of block merging bases on the discovery of unexploited reuse potentials between
blocks in previous works. All these blocks share the same MV result while they are
calculated for multiple times, once per block. This work merges these blocks together
to calculate this MV result only once and reuse this result for all blocks to save
computing energy. By doing this, CU-adaptive pipeline is proposed for block merging
to save up to 95.5% redundant computations and memory accesses compared to
previous works without block merging. Meanwhile, the idea of block merging can also

reduce the number of block shapes from 24 to 4 types to reduce the hardware costs.
1
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Besides block merging, a unified architecture decoding not only motion vector but also
boundary strength is proposed for memory sharing as well as enhancing data reuse
between these two decoding processes. Additionally, the memory architecture and
organization are proposed, and PU based coding scheme for co-located storage is
introduced for further reducing 30-90% DRAM bandwidth requirement. Finally, the
proposed area optimization techniques like index-mapping scheme save area costs by
43.2k logic gates. In total, the proposed PDec design supports real-time
7680x4320@601fps video decoding at 249MHz and it’s the world’s first design for the
new HEVC standard. Besides the reduced DRAM memory accesses, we also achieve
36% logic gate reduction by the proposed block merging and index-mapping scheme

compared to the state-of-the-a

-biased Cache based HEVC Motion Compensation
Architecture] presents a new cache memory design based on the discovery of the
relationship between distance and the data reuse potentials for each reference frame.
Instead of fixing all the cache sizes, this work can on-the-fly program the cache into
multiple cache sets and determine each cache size based on distances. Based on this
idea, a novel cache design with distance biased direct mapping scheme is first proposed.
The size of each cache set is inversely proportional to the proposed distance, which is
defined as the time interval between current and reference frames. This means a
reference frame with small distance is given a large cache set for its good reuse
possibility and vice versa. This can achieve a near-optimum hit rate while it involves
significantly lower complexity by being direct mapping. Besides, eight-bank cache is
organized differently at reading and writing interfaces to double the data delivery
efficiency by removing the unused data fetching as many as possible for energy and
area saving. Additionally, row based miss information compression is applied and
mask-based block conflict check scheme also efficiently solve the potential pipeline
hazards as well as reducing the design costs. The proposed architecture achieves 8x
throughput enhancement to support 7680x4320@601ps video applications. Compared

with the state-of-the-a
T
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improvement in terms of normalized logic gate, memory and power metrics. The

demerit is the increased logic gate costs for supporting the reconfigurability of cache.
Chapter 4 [Conclusion] summaries the contributions of this dissertation from the

view of data reuse for energy efficiency. The solved and remaining problems are

discussed with an expectation for future works.

v
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Introduction

1. Introduction

1.1 Background

v

1 . In the past decades, we have all witnessed the rapid
development of videos. One of the direct feeling is the increasing pixel resolutions of
videos. Although the High Definition (HD) with 1920x1080 pixels per frame is still the
mainstream format for the television broadcasting, we have already started to embrace
the new era called Ultra-High Definition Television (UHDTV) [2] for the next-
generation format in a near future. Generally, UHDTV may refer to 4K (3840x2160)
or 8K (7680x4320) format, which is at most sixteen times more pixels than the
conventional HD applications. This can bring consumers much better visual
experiences and has been attempted for broadcasting the coming 2020 Tokyo Olympic
Games.

However, the increasing demands for higher pixel resolutions from the consumers
not only bring a better visual experience, but also lead the video storage and
transmission a big challenge for researchers. For example, the real-time transmission
of raw 8K applications with 60 frames per second (fps) requires a bandwidth of around
4GB/s. This bandwidth is only for one channel and has already been beyond the existing
broadcasting peak bandwidth. Therefore, video coding is the fundamental need for
compressing those massive video data. The technology of video coding has been
developed for four decades by both researchers and industries. We have witnessed
several commercial standards like MPEG1/2/4 and H.264 in 2003. The newest video
coding standard, High Efficiency Video Coding (HEVC), has been standardized in 2013
and announced its twice compression capacity to achieve the same video quality
compared to the previous H.264 standard. The better compression capacity means that
HEVC is a promising solution for up to 8K UHDTV. Therefore, HEVC video decoder
design is required by both technology development and market demands.

-1-
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Inside a video decoder, decoding motion vectors and inter prediction samples

(which are called PDec and MC, respectively) are one of the dispensable function

modules because inter prediction samples contribute the major coding efficiency as

shown in Table 1. It is also the distinguished feature to be different with the image

coding [3] by exploiting the temporal correlations for removing the redundancy

between frames. However, the merits are obtained at the expense of consuming more

than 49% of the decoding complexity [4] and 60% of memory bandwidths, as shown

in Fig. 1. Therefore, the implementation of PDec and MC is important because it is not

only time-consuming but also energy consuming module inside the whole HEVC

decoder. VSLI approaches for PDec and MC are the promising solutions due to the high

integration density for high energy efficiency, high speed and low fabrication costs.

Table 1 Better coding efficiency contributed by inter prediction

Example:600-frame Vidyo4 Data Size Coding Efficiency
Original Video 829.440KB Ix
Coded with In

Coded with In In

* More block types

* Complicated HEVC algorithms
>49% complexity (Computing Energy)

Previous
| Frames

Motion

Compensation

4

N A SN I B B BN N W N .

» Longer filter taps

+ 8K Ultra high definition TV

>60% memory bandwidth (Memory Energy)

Fig. 1 Significance of PDec and MC in HEVC decoder system
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In the VLSI implementations of HEVC decoder system, two modules, PDec and
MC are related to the decoding process of motion vectors and inter prediction samples.
These two modules are cascaded inside the video decoder. PDec is in charge of
decoding motion data like motion vector and reference index from the implicit syntax
elements. Then, these motion data are utilized by MC to locate and fetch the reference
block data and do the interpolation to generate the compensated blocks as the decoded
results of current block. These two modules are researched together not only due to the
tight relationships of their functions, but also because they both need to access off-chip
memories for storing and fetching data.

Both the parameter decoder and motion compensation in HEVC has been evolved
throughout the development of standards for better coding efficiency. This high coding
efficiency is good at handling applications with a huge data volume like 4K/8K UHDTV.
For example, 8K(@60fps containing around 4G pixels/s can be coded into only 30KB/s
bandwidth requirement. This can significantly reduce the data for storage and
transmission and accelerate the popularization for 8K UHDTV.

In the following discussions, the new coding tools involved in HEVC for

improving the parameter decoder and motion compensation are briefly introduced.

1.1.1 Coding Tree Units and Coding Tree Block Structure in

Both PDec and MC

Block based video coding is the classical procedure throughout the history of video
coding including HEVC. HEVC tries to process each video frame block by block,
instead of sample by sample. Generally, motion vector is used to represent the
movement of objects between frames. However, the problem is that different objects
have different movements as shown in Fig. 2. Two objects, sun and cloud are moving
vertically and horizontally, respectively. Therefore, it is difficult to depict the
movements for the entire frame.

HEVC [5] solves this problem by dividing a frame into coding tree unit. Each

- 3-
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coding tree unit can be further divided into small square blocks (called coding unit in
HEVC). Each coding unit can further be split symmetrically or asymmetrically into two
rectangular blocks (called prediction unit in HEVC). The target is to make each block
belong one specific object. By doing this, each block can have its own motion vector.

This kind of block division is called coding tree block structure in HEVC.

_ Object 1 G»
./

e A
_ Vay
+“  Object2 = >
V2

Fig. 2 Block based inter prediction for objects with different movements

Compared to the H.264/AVC [6] in 2003, this coding block tree structure in HEVC
is much more complicated and flexible. In H.264, the basic coding block is called
macroblock. The macroblock can be divided into small blocks. The smallest blocks in
H.264 is 4x4. Meanwhile, each block can be further symmetrically divided into two
rectangular blocks. Totally, there are 8 different block shapes supported in H.264 as

shown in Fig. 3.

16 8 8 16 8 8
8 0 8| O 1 8
16 o] 16| O 1
8 8| 2 3 |8
16x16 8x16 16x8 8x8
8 4 4 8 4 4
4 0 4 0 1 4
8 0 8 0 1
4 4 2 3 4
8x8 4x8 8x4 4x4

Fig. 3 Possible block sizes in H.264/AVC.

On the other hand, HEVC contains up to 24 block shapes. The largest supporting

size is 64x64 in default, which is called a coding tree unit. This coding tree unit can be
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hierarchically divided into small coding blocks ranging from 8x8 to 64x64. Meanwhile,
the block can also be asymmetrically partitioned. This results an increased complexity
for both parameter decoding and motion compensation. To simplify the problem,
HEVC limits the asymmetrically partitions of 8x8 blocks to reduce the total number of

block shapes. An example of partition for coding tree unit is shown in Fig. 4.

Fig. 4 An example of 64x64 HEVC coding tree block structure.

1.1.2 New Features in Parameter Decoder

In block-based video coding, each block has a specific motion data as a vector of
(Ax, Ay, At). They represent the displacement in horizontal and vertical directions and
the distance with reference frames. This motion vector is calculated in the encoder while
it is not directly sent from encoder to decoder. Encoder expects this motion vector to be
similar to the ones of surrounding blocks. Therefore, encoder will find the most similar
one as the motion vector predictor and only the difference between actual motion vector

and the predictor is sent to the decoder for coding efficiency.
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Current
Block

Fig. 5 Spatial neighbours for motion data prediction in H.264

In H.264, four spatial neighbours and one temporal co-located neighbour will be

used as candidates of the predictor. Generally, only A, B and C in Fig. 5 will be

considered. Block D will be used only when C is not valid. In H.264, if a reference

block is intra-coded. then the motion data will be regarded with zero motion vectors.

The motion data of current blocks will be a copy of neighbours or the median value

among A, B and C in the skip mode.

B2

Bl

BO

Al

Current
Block

AO

Fig. 6 Spatial and temporal neighbors for motion data prediction in HEVC

In terms of HEVC, the algorithm for motion data coding becomes much more

complicated. Firstly, the involved neighbours are more than H.264, as shown in Fig. 6.

Five spatial neighbours (A0, Al, B0, BI, B2) a

-located neighbours (C1, C2)

support two prediction modes in HEVC, advanced motion vector prediction (AMVP)

mode and merge mode.
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For each reference picture list with refidxas an input

Spatial candidate positions (5)

Temporal candidate positions (2)

v

v

Select 2 candidates

Select 1 candidate

v

v

Remove duplicated MV candidates

!

Add zero MV candidates

v

Remove MV candidates whose index is larger than 1

v

Final motion vector candidates (2)

Fig. 7 Derivation of motion vector prediction candidates in AMVP in [12]

AMVP mode is depicted in Fig. 7. Up to two spatial candidates and one temporal
candidate will be first selected. In HEVC, if a neighbour is intra coded, this neighbour
is treated as no qualification to attend the competition. Then the algorithm will remove
the duplicated candidates and add zero candidates if the number of candidates is not
enough. Then, another selection will be conducted to exclude candidates whose At is
larger than 1. Finally, only two candidates will be left and the current block will choose

one of them as the predictor according to the received indexes from the bit stream.

Spatial candidate positions (5)

v

Select max. 4 candidates
(remove duplicated candidates)

Temporal candidate positions (2)

¥

Select max. 1 candidates

v

Add combined bi-predictive candidates for B slices

v

Add zero merge candidates

v

Final merge candidates (maximum number is equal to MaxNumMergeCand)

Partition redundancy removal
(e.g., avoid virtual 2Nx2N partition by merging 2 2NxN)

Fig. 8 Derivation of merge candidates in merge mode [12]

Merge mode is similar with the skip or direct mode in H.264. However, the

algorithm is complicated instead of copying or selecting the median of neighbors. As
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shown in Fig. 8, the first step is also the motion data competition. Up to four and one
candidates will be selected from the spatial and temporal neighbors, correspondingly.
Then, HEVC involves a new approach to generate combined bi-predictive candidates
based on the valid candidates in the motion data competition. Finally, zero candidates
with different At are selected if the amount of valid candidates is less than five in default.
Finally, current block will choose one of them as the motion data predictor according

to the received merge index.

1.1.3 New Features in Motion Compensation

S I Xo
D \ S | Ay,

1 1 .

>

iq—Ato—b: 4—At1—>|

T 1
Forward Current Backward AX 1
frame Picture frame \

Ay,
Two set of motion vector (At,, Ax,, Ay,) and (At,, Ax,, Ay,)

Fig. 9 Bi-directional prediction in HEVC.

Motion compensation in HEVC inherits most of the features in H.264. For example,
each block may have one or two motion vectors for prediction. In Fig. 9, an example is
given to show a bi-directional prediction where two reference frames come from the
prior and past of the current frame. In HEVC, bi-directional prediction can also have
two reference frames which are both from the prior frames. This case is called lowdelay
configuration. Therefore, HEVC supports a more flexible reference structure compared
to H.264.

The second important new feature in HEVC is that the precision of motion vector
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(Ax, Ay) is enhanced to support 1/4 pixel with a more sophisticated interpolation filter.
For half-pixel interpolation in H.264, a 6-tap two-dimensional interpolation filter is
employed. For quarter-pixel, the adjacent integer pixel and half-pixel will be used by a
simple linear interpolation. However, HEVC has introduced a new 7/8-tap interpolation
filter for either half-pixel samples or quarter-pixel samples, which can provide a better

prediction to reduce the data amount of residuals.

1.2 Design Challenges — Energy Efficiency

Before discussing the design challenges, I want to first clarify the research target.
In this dissertation, I want to design architectures for decoding motion vector and inter
prediction samples for real-time decoding HEVC 8K UHDTYV with 60 frame per second
fresh rate for bi-directional prediction. If I consider a reasonable clock frequency of 250
MHz, approximately 8 pixels per cycle should be achieved for both pixel and motion
data decoding. Besides the throughput requirement, I want to achieve high energy
efficiency as possible as I can so that to support the demands of battery-limited mobile
applications.

In terms of the throughput requirement, the architecture usually require higher
parallelism to support more concurrent processing. With the development of Moore’s
Law [7], it is not the bottleneck to support the higher throughput by parallelism as [ can
now integrate more logic gates within a unit silicon area.

Instead, the energy efficiency becomes the main target for VLSI designs. As
mentioned in [8], computing power cannot be scaled down proportionally like the
length of the gates as it is difficult to decreasing the supply voltage with the thinner and
shorter gate. On the other hand, memory energy has been consuming more than half of
the die energy. Careful designs for hardware architectures are urgently required under

the demands for mobility and In 9
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1.2.1 Computing Energy

Computing power is regarded as the power consumed by the logic gates instead of
memories. The computing power is concluded to be produced by two aspects.

The first one is the actual computing for arithmetic calculations. In HEVC, two
modes in parameter decoder and interpolation in motion compensation are the main
sources of the calculations. The energy costs for these part is fixed by the algorithms
and you have few space for optimizing them. However, I think there are potentials to
optimize the computing power for data motion prediction. For example, the merge
mode introduced in Section 1.1.2 involves many possible intermediate candidates like
bi-directional combined candidates. In the hardware design, I have to consider the worst
cases that all possible intermediate have to be generated due to the strict requirement
for throughput. Totally 24 candidates are produced and five of them are chosen. This
direct implementation involves a huge amount of logic gates and optimization is
required for saving the computing energy.

The second one is the computing energy for controller. The design of controller
will affect the efficiency of arithmetic calculations. An efficient controller can remove
the redundant calculations for computing energy saving. In HEVC, the flexible quad-
tree block partition dramatically increases the design complexity for the hardware
controller. In HEVC, the possible block sizes are listed in Table 2. Compared to H.264,

7 possible cases are increased to 24 cases with two times more complicated.

Table 2 Possible block sizes in HEVC

Level Possible sizes

8x8§ 8x8, 8x4, 4x8

16x16 16x16, 16x8, 8x16, 4x16, 12x16, 16x4, 16x12
32x32 32x32,32x16, 16x32, 8§x32, 24x32, 32x8, 32x24
64x64 64x64, 64x32, 32x64, 16x64, 48x64, 64x16, 64x48

In the hardware design, it is usual to exploit pipeline technique to improve the
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throughput. Generally, designers prefer the basic pipeline granularity to be unique for
simple controller designs as hardware is usually good at doing repeated works.
However, the 24 possible block sizes in HEVC challenge the design of pipeline
controller. It seems that in many previous works they choose a minimum possible block
as the pipeline granularity (4x4 for example) for their pipeline solutions, which will be
discussed in Section 2.1.4. However, these solutions cannot be adopted to my research
for 8K(@601ps specification due to their low computing efficiency.

The related complexity for computing power from H.264 to HEVC is listed in
Table 3.

Table 3 Computing energy related coding tools from H.264 to HEVC

H.264 HEVC Complexity
Possible block sizes 8 types 24 types 3x
Motion data prediction | Motion vector | AMVP mode + More than 2x
prediction Merge mode
Pixel prediction 6-tap 7/8-tap 1.78x

1.2.2 Memory Energy

The memory energy has dominated the main power of the decoder system.

Compared to previous works, this research faces more challenges according to Table 4.

Table 4 Memory energy related coding tools from H.264 to HEVC

H.264 HEVC Complexity
Research target 4K @601ps 8K@601fps 4x
Motion data prediction | 4 spatial + 5 spatial + 1.4x

1 temporal 2 temporal
Pixel prediction 6-tap 7/8-tap 1.78x

The total amount of memory accesses is increased in both pixel prediction and
-11-
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motion data prediction. This will proportionally consume the memory energy.
Moreover, as the reference data (temporal neighbours in motion data prediction and
reference frames in pixel prediction) is massive, off-chip memory like DRAM with
high energy costs have to be employed for the storage. This intensifies the design
challenges for energy-efficient designs.

Especially, motion compensation consumes the major communication bandwidth
with off-chip memories. In HEVC, if I consider the worst case that all the pixels are bi-
directional predicted, totally 1020GB/s memory accesses are required. This bandwidth
exceeds almost all the existing DRAM technologies.

Currently, cache based motion compensation for pixel prediction is the base for
relieving this memory intensive issue. The cache designs are still based on the ideas of
that on computers. Existing caches have to decide whether to pursue a high cache
performance or low design complexities. There is still a lack of discussion on an
efficient cache based architecture that can achieve both metrics. Moreover, cache
systems require many peripheral circuits to ensure its functionality. One of the most

important is the detect of contlicts due to the pipeline designs in Fig. 10.

Output queue (N)

Output -
MC Cache

Input -

ssssss

A 4

Conflict check circuit
1

Fig. 10 Conflict check circuits in motion compensation

The pipeline will make the cache be simultaneously written or read. We define an
output queue for reading data from cache and another queue for input. For the first write
request in the input queue, it should not be written into the regions which will be used
by any request in the output queue. Otherwise, read request will fetch the wrong data
from cache and I call it a conflict. Therefore, a copy of conflict circuit should be
maintained for each request in the output queue. This consumes a big number of logic

gates. Moreover, the increased memory bandwidth requirement in Table 4 may lead to
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a longer output queue, which will further challenge the hardware design of the cache

based motion compensation for pixel prediction.

1.3 Data Reuse based Approach

Time
o )\ o i o\ »
»(t0 > > >
A p 4 P 4
Access | R -~ ~ -~ i
! 5\55 /’ \\ a"‘ :
Data A Data B m Data D
Calculate Data locality.

Fig. 11 Data reuse exists in memory accesses and calculations

Data reuse based VLSI design approach is proposed in this dissertation to guide
the design of HEVC PDec and MC architectures inside video decoder. Data locality,
which provides the potentials for data reuse in HEVC, generally means to use
something near the thing you just used as shown in Fig. 11. It defines the cases that the
processes are similar for neighboring data. Therefore, it has high possibility that data
which are accessed or calculated once are likely to be accessed or calculated again.

Data reuse generally have two types according to the data locality, spatial locality
and temporal locality. Spatial locality refers to the use of neighboring data in a short
future while temporal locality means the current data will be reused in the future.
Temporal locality is the most common type for data reuses. Usually, we will allocate a

pitch of on-chip memory for storing these data for the reuse in the near future.

- 13-



Introduction

- 000 Q@000 | Horizontal filter result |,
(ONONONOAONONONO) 000 Q00
Q000000 0000000
8 ...3... 7outofsrows © 0 0 0 00 O
Rows| © © @ O O O & Horizontal filters© © O g...
COO YO OO0 arethesame O OO 000
(ONONONOLAONONONO, 000 Q000
LOOO0O QX000 0000000
00 Q0 000

Fig. 12 Example of one possible data reuse inside the motion compensation

Data reuse has the potentials for saving memory energy and computing energy with
an efficient architecture. In Fig. 12, an example shows one possible example inside the
motion compensation, whose algorithm will be given in Section 1.1.3. To generate each
pixel inside the current frame, up to 8x8 reference pixels are required. Moreover, if the
vertically adjacent pixel shares the same motion vector with the current pixel and is
processed sequentially, there will be 7/8 overlapped rows of reference pixels and
horizontal filter results. This provides the potential to reuse these overlapped data for
energy efficiency. On the other hand, the spatial locality can be found when off-chip
memories like DRAM are accessed. According to DRAM’s specification [10], burst
access technology is used to eliminate throughput gap. This means you will fetch a bulk
of data even if only parts of them are useful for the current calculation. However, the
spatial locality implies the rest data of this bulk will possibly be used in the near future.
This is a feature for motion compensation.

Based on the data reuse potentials in PDec and MC, the design methodology in this
dissertation is proposed in Fig. 13.

The data reuse based approach contains two steps. The first step tries to maximum
data reuse in the algorithms of PDec and MC. This is achieved by proposing efficient
dataflow. This dataflow decides the order of the processing and the parallelism selection.
An efficient process order can significantly reduce the design complexities for the
system controller for saving the computing energy. This issue is becoming more and

more important for the complicated HEVC standard. Besides, it can also exploit the
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data correlations between two adjacent processing units of pixels so that data reuses can
be enhanced. The parallelism is also designed to maximize the reference data overlaps
between paralleled pixels. These ideas for data sharing can significantly reduce the
necessary memory accesses for data fetching so that memory energy can also be

reduced.
Methodology Increase R Utilize
Data reuse Data reuse
Explore on-chip
Dataflow memory de5|gn

VLSI Design
B [ Compute + Controller ] [ Architecture + Organization
Component
) Enhance Reduce the number of accesses
Energy Gain | gata reuse as well as low HW costs + cost per access

Fig. 13 Data reuse based research approach

The second step is to utilize these data reuse to design the on-chip memory
hierarchy and computation core. As we have known the characteristic of the data reuse
in the algorithms, we will know how often data are reused since they are first fetched
from off-chip memory or from its generation. According to this information, we can
carefully design the architecture and organization of memory hierarchy. Two
considerations exist here. The first one is to allocate the memory accesses to the low-
cost memory level for energy saving by carefully designing memory architectures. The
second one is to enhance the data delivery efficiency so that the useful information per
access can be maximized as possible as we can by efficient memory organizations. Both
can improve the memory energy efficiency.

To apply the proposed data reuse based approach, I have designed the hardware
architectures of both PDec and MC for HEVC decoder, which contribute the major part
of the total off-chip memory accesses and involve a huge amount of computations. All
the works are implemented and evaluated with real hardware by fabricating a real chip

to verify its performance and correctness.
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1.3.1 Conceptual Difference with Works from My Group

Three works [19][22][26] which will be discussed in Section 2.1.4 and Section
3.1.3 are accomplished from my research group. This section clarifies the conceptual

difference of the approaches between this dissertation and related works.

Table 5 Conceptual difference between this work and works from my group

- HEVC m Conceptual Difference

Merge vs. Divide
* This work merges various block shapes
J. Zhou [28] into the same square block shapes
« [28] divides various block shapes into
the same small block shapes

Unfixed Cache vs. Fixed Cache
* This work has unfixed cache sizes by
Chapter 4 J. Zhou [34] on-the-fly determining sizes based on
(061 s NHEEVCN  of thiswork  D. Zhou [20] reuse possibility
« [20][34] have fixed cache sizes by using
conventional cache organization

Parameter Chapter 3
Decoder of this work

The conceptual differences are summarized in Table 5. This dissertation focuses on
the newest HEVC standard while [22][19][26] are accomplished for H.264 before
HEVC is standardized. HEVC involves many new coding tools for more design
challenges as are introduced in Section 1.1. Therefore, it is not fair to directly compared
the hardware costs like area or energy because the increased complexity of HEVC is
requiring more hardware resources. Therefore, we choose to compare the idea
differences by assuming their ideas are applied to HEVC, although it is difficult or
impossible to apply their ideas, which will be discussion I the following chapters in
detail.

For parameter decoder in Chapter 2, I conclude the idea difference as merge and
divide. The problem in HEVC is the increased number and maximum size of block
shapes as introduced in 1.1.1. [19] tried to solve this problem by dividing them into the
same small block shapes and calculating these small blocks sequentially. This work

chooses another idea to merge difference block shapes to the same square blocks.
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Although both can reduce the number of block shapes, this conceptual difference
between divide and merge can significantly reduce the redundant computations, which
will be further discussed in Section 2.2.

For motion compensation in Chapter 3, I conclude the difference is the cache
design. The contribution of [22][26] is to design the 2D cache using the conventional
cache mapping (direct mapping). All the cache sizes are fixed in the hardware. The idea
of this work is to achieve unfixed cache sizes by on-the-fly determining sizes based on
the distance. This conceptual difference can improve cache reuse possibility based on

distance to achieve better balance between cache performance and hardware costs.

1.4 Scope of the Dissertation

In this dissertation, decoding motion vector based on block merging and motion
compensation with distance-biased cache for energy-efficient VLSI architectures of
HEVC are proposed as shown in Fig. 14. Besides the two modules, I also made some
contributions to this group work [11] by designing an FPGA-based demonstration

system as well as verifying chip function and performance.

pm———————

3
Previous £ Motion /i'
]

This Work Frames Compensation
ISSCC’16 [10] * PDec (Chapter2)
Parameter Decoder for decoding motion vector
* MC (Chapter3)
I'---} Motion compensation for decoding inter prediction samples
TGSl ¢ Chip verification and demonstration

FPGA-based system for verifying chip function and performance

Fig. 14 Contributions inside the HEVC decoder chip [11]

The scenario of this dissertation is shown in Fig. 15.

Before the discussion of the design details, the preliminary knowledge has been
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given in Chapter 1. The new features of PDec and MC employed by HEVC are first
discussed. Then, we will figure out the design challenges for VLSI in terms of
complexity, parallelism, hardware under current silicon technologies. Finally, the
frontier of the related works from both my research group and other groups in this

research field are concluded at the end of this chapter.

Decoding Motion Vector based on Block Merging and Motion Compensation
with Distance-biased Cache for Energy-efficient VLSI architectures of HEVC

Chapter 1 Introduction

HEVC new features for both Clarify the Challenges of The forefront of PDec and
PDec and MC Hardware Architectures MC Architectures

Chapter 2 Block Merging based Unified HEVC Parameter Decoder Design

Solutions )
Unified parameter decoder
CU-adaptive pipeline controller
Global line buffer/Cyclically Mapped
SRAM/Left-top Register File

Evaluation Results
Simplified Pipeline Controller
Reduced redundant
computations & mem. access

Major Problems
Complicated algorithm

24 flexible block shapes
System-level Consideration

Chapter 3 Distance-biased cache based HEVC Motion Compensation Architecture

- Solutions .
Major Problems Evaluation Results

Hugh DRAM access volume D\v/ivsltda\t:;:)t;?:sztdrﬁriisten(i;ntei:lpo::z::?; Low-cost & High performance
High throughput requirement PpINg Cache based architecture

. ) . Eight-bank memory organization
) ; K fps B-f h h
High design complexity Row-based info. compression 4 8K@60fps B-frame throughput

Chapter 4 Conclusion

Energy efficient inter prediction architectures
High performance for 8K UHDTV with real chip and live demonstration

Fig. 15 Scenario of this dissertation.

In Chapter 2, a unified parameter decoder architecture for SK UHDTYV applications
is designed with the proposed block merging idea for data reuse. Block merging can
reduce block shapes to reduce hardware costs and maximize data reuse to reduce
energies for computations by at least 50% (50% is the case where 8x8 CU contains two
PUs). This unified architecture for MV and BS parameter decoder is proposed for
memory sharing. Secondly, memory architecture and organization are proposed based
on temporal data locality, and PU based coding scheme for co-located storage is
proposed for further reducing at least 30% DRAM bandwidth requirement. Thirdly,
CU-adaptive pipeline is proposed to simplify the design complexity caused by HEVC’s
complicated algorithm. Finally, the proposed area optimization techniques like index-

mapping scheme save area costs by 43.2k logic gates. In total, the proposed PDec
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design supports real-time 7680x4320@60fps video decoding at 249MHz and it’s the
world’s first design for the new HEVC standard. Besides the reduced DRAM memory

accesses, we also achieve 36% logic gate reduction compared to the state-of-the-a

-biased cache. This cache can improve
cache reuse possibility based on the proposed idea of distance. In detail, a novel cache
design with distance biased direct mapping scheme is proposed that can achieve a near-
optimum hit rate while it involves significantly lower complexity by being direct
mapping. Secondly, eight-bank cache is organized differently at reading and writing
interfaces to double the data delivery efficiency for energy and area saving. Thirdly,
row based miss information compression is applied and mask-based block conflict
check scheme also efficiently solve the potential pipeline hazard to reduce the design
costs. The proposed architecture achieves 8x throughput enhancement to support
7680x4320@601fps video applications. Compared with the state-of-the-art works, this
work shows 76%. 81% and 62% performance improvement in terms of logic gate,
memory and power. The demerit is the increased logic gate costs for supporting the
reconfigurability of cache.

In Chapter 4, the dissertation is concluded with solved and remaining problems and

the future works are also given.
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2. Block Merging based Unified HEVC

Parameter Decoder Design

In this chapter, a VLSI a (PDec) for motion data
prediction is proposed. I call it unified parameter decoder because it merges another
parameter decoding process (boundary strength decoding) into the motion data
decoding, considering the potential data reuse in HEVC. As a result, the proposed
parameter decoder in HEVC video decoder is in charge of decoding motion data like
motion vector (MV) a (BS) parameters. It is an important module
in VLSI decoder design.

Energy efficiency is the main design challenge for this unified parameter decoder.
The energy consumption consists of both computing energy and memory energy for
this particular module.

In terms of the computing energy, compared to the previous H.264, HEVC involves
high complexities including the flexible quad-tree coding unit (CU) structure, variable
sizes up to 64, asymmetric partitions and more complicated prediction algorithms for
motion vector generation. Moreover, efficient HEVC parameter decoder design is
challenging for real-time designs, especially for 8K UHD applications. Both the design
complexity and the high throughput requirement increase the design costs like required
logic gates. In modern silicon technology, the number of logic gate significantly affect
the leakage energy power. Therefore, an efficient design is desired to reduce the
computing energy in this part.

Memory energy comes from the writing and reading temporal neighbors in off-
chip DRAM memory. With the increasing throughput requirement and complicated
algorithm, the burst memory bandwidth and the total memory bandwidth are both
increased. Therefore, a proper on-chip memory hierarchy should support a higher burst
memory bandwidth as well as reducing the total memory bandwidth requirement as
DRAM memory accesses are quite expensive compared to the on-chip memory
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accesses and the computing energy.

In this chapter, I introduce the block merging based design approach for parameter
decoder design. Generally, the process order at the coding tree unit level is pre-
determined by the HEVC decoding algorithm. Therefore, the pre-known order can help
us save energy consumption from two aspects. For computing energy, I can design a
proper pipeline scheme so as to maximum the reuse for data or computing resources.
For memory energy, on-chip memory hierarchy can be optimized according to the data
reuse. For those data that will be reused in a relatively long time since it was first fetched,
I may prefer to store them in the global buffer instead of registers for energy saving.
Such kinds of ideas to exploit the potential data reuse occur in many proposals of this

parameter decoder.

2.1 Introduction

Unified MV&BS PDec
- — 7
CABAC Syntax | MV |
Decoder [ Decoder |
| MV result
¢ | v Mv :‘ >
BS 1
Q Il Decoder | 9
2 U
vy | ======- J v g9
IT L » Intra Motion > 2
Compensation
1 ¢ I
Reconstruction

Deblocking
Filter & SAO

e

Fig. 16 Unified MV and BS parameter decoder

In this section the overview of parameter decoder is discussed in detail. My
proposed unified parameter decoder contains two major parts, motion vector
calculation and boundary strength calculation, as shown in Fig. 16. The calculation for
intra prediction mode is excluded from the proposed PDec for following reasons. Firstly,
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in HEVC standard, decoding syntaxes of transform units in CABAC relies on the result
of intra prediction mode for current coding unit. If intra part is encapsulated in PDec, a
long feedback path inside the whole decoder is generated, leading to performance
degradation. Secondly, algorithm for intra prediction is simpler than MV’s and it
doesn’t need the reference data which is locates in different coding tree unit (CTU)
rows. Therefore, the overhead for adding intra part into CABAC is negligible compared
to MV and BS calculation. The rest of this chapter gives a brief overview for MV and
BS calculation in HEVC. Then the design consideration is given followed by the

previous works.

2.1.1 Motion Vector Decoding

The process of calculating motion vector is to decode syntax elements into motion
parameters, which can be directly used by the following motion compensation module.
A block's motion parameters have high possibility to be similar to spatial or temporal
neighboring. In HEVC, irregular coding algorithm is employed to eliminate such kinds

of redundancy for compression efficiency.
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Fig. 17 Candidate selection in MV decoding

As is introduced in Section 1.1.2, Advanced Motion Vector Prediction (AMVP)
mode and merge prediction mode are employed by HEVC for coding MV parameters.
Both of them require prediction parameters of five spatial neighboring blocks and two

temporal co-located blocks as input, as depicted in Fig. 17. Besides, each of the two
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prediction modes owns its unique algorithm and resource sharing between them is
limited.

In AMVP, all seven reference blocks are categorized into three regions, A, B and
Col regions. Each region will produce at most one candidate so that a list of at most
three candidates can be constructed in general. If the neighbors in the left are not
available, two motion vector candidates are derived both from the above side, which is
the region B. After removing the identical ones in the list, I will add zero MV candidates
into the list. In the last step, I will also try to remove the MV candidates whose index
is larger than 1. Then, the final MV will be selected by the syntax mvp Ix flag.

In merge mode, motion parameter decision starts with constructing merge
candidate list. Firstly, valid blocks are pushed into the list in the order of B0, A0, Al,
B1, B2 and Col. Up to four spatial neighbours and one temporal neighbour will be
pushed into the candidate lists if they are available. For the spatial candidates, I also
have to check partition redundancy removal so that I will never merging 2 2NxN blocks
into one 2Nx2N block. If the candidates are fewer than five in default, the combined
candidates will be assembled with the content of candidate list and added into list with
the valid candidates in the first step if the current slice supports bi-prediction. Finally,
zero candidates with different reference frames are produced if the list is not full. After
the list is constructed, merge MV result is chosen by the merge idx from the list. Note
that in each mode, the scaling operations will be processed when there is a difference

between reference frame of current block and that of reference block [12].

neighbor_ref curr_ref curr_pic  col_pic neighbor_ref curr_ref curr_pic
\\ mvNeighbor\ neighbor_PU
mvNeighbor .
neighbor_PU <t
----- curr_PU

<€ coan U mvScaled -

mvScaled - r

<“—>» tb tbh €—»
<t » td td €——>»

Fig. 18 Scaling calculation when different reference frames are chosen

Scaling calculator is an operation frequently used in AMVP mode. It is also used
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for the temporal candidates in the merge mode. Fig. 18 shows two cases where scaling
calculator is utilized when tb!=td. (tb & td represent POC differences, Left:
neighbor PU is temporal; Right: neighbor PU is spatial). In the figure tb (td) indicates
the POC difference between current (neighbor) picture and its reference picture. When
tb and td are not the same, mvNeighbor can't be directly used as the prediction of motion
vector and it must be scaled. Therefore, mvScaled should be deduced by following

equations defined in HEVC specification [12].

tb = Clip3(-128, 127, DiffPicOrderCnt( curr_pic, curr_ref))

td = Clip3(-128, 127, DiffPicOrderCnt( neighbor_pic, neighbor_ref))

tx = (16384 + ( Abs(td) >>1) ) / td

distScaleFactor = Clip3( -4096, 4095, (tb *tx + 32 )>>6)

mvScaled = Clip3( -32768, 32767, Sign( distScaleFactor * mvNeighbor ) *
( ( Abs( distScaleFactor * mvNeighbor ) + 127 ) >>8))

Fig. 19 Scaling algorithm in HEVC when reference frames are different [12]

2.1.2 Boundary Strength Decoding

Boundary strength is used in de-blocking filter for filter selection. The calculation
of BS can be divided into two steps. The first step is to prepare necessary data.
Generally, I have to fetch the MV parameters of current block and all the adjacent
neighboring blocks in the left and top. Then in the second step, specific algorithm is
used to produce the BS result by comparing MV parameters between current block and
neighboring blocks.

BS calculation will be executed on all the prediction unit (PU) and transform unit
(TU) edges at 8x8 block grid. Although the BS values are calculated at 4x4 block basis,
but the final result is re-mapped to an 8x8 grid by choosing the larger BS value from
the two 4x4 grid edges. Let P and Q be the two blocks beside a certain edge. The full
algorithm for BS calculation is shown in Fig. 20. If P or Q is intra prediction, BS is
equal to 2. Otherwise, PU and TU edges have different algorithms to produce BS value.
The algorithm for TU edges is quite simple, which just check whether P or Q has non-

zero coefficients. In contrast, the algorithm for PU edges are much more complex.
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Almost all the motion information has to be compared between P and Q blocks, such

as the number of reference frames, the number of MV and the MV difference [12].

PorQis
intra

No

PorQ has
non-0 coeffs?

No

P& Q has
differentref?

No

Yes

P& Qhas
different# of
MVs?

Yes

IMV_P,—=MV_Qy|>=4

or
IMV_P,-MV_Q,|>=4

Fig. 20 Flow diagram for BS calculation [12]

2.1.3 Block Merging for Data Reuse of Motion Vector

To design a parameter decoder for HEVC and 8K UHD applications, there exist
several challenges. Firstly, since high video resolution directly increases the burden on
system throughput because of the huge data volume, higher throughput requirement is
needed. Assuming the clock frequency is 250MHz, for 7680x4320@601fps, a
throughput of at least 8 pixel/cycle has to be achieved. On the other hand, new HEVC
standard introduces complicated coding tools in MV and BS calculation to achieve
better compression performance, such as Advanced Motion Vector Prediction (AMVP)
mode and merge mode. Flexible quad-tree CU structure is also introduced in HEVC.
All these new coding tools lead to challenges on memory bandwidth requirement, data
dependency and throughput requirement for high-performance VLSI implementation
[13].

I conclude above design challenges as energy efficiency issues, including both
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compute energy and memory access energy. Compute energy in PDec means the design
costs to support the complicated algorithm caused by HEVC. Memory access energy is
mainly introduced by the high resolution of 8K UHD applications where more pixels
per second have to be decoded.

To solve the energy issue, block merging is proposed to consider the data reuse
inside the parameter decoder. HEVC processes each video frame based on block in
Section 1.1.1, which means that the same MYV is used for all the samples inside each
block as shown in Fig. 21. This is called the reuse of MV. To optimally use this reuse,
the idea is that the calculation for MV only needs to be done once per block. By doing
this, the number of calculation times and memory accesses can be minimized. This is
ignored by previous works so that the block with the same MV are divided into small
blocks. Block merging is to merge these small blocks for energy efficiency. To achieve
this goal, the dataflow is first given in Section 2.2 and the related memory hierarchy is

given in Section 2.3 to further exploit the temporal data reuse inside the dataflow.

I
I > ‘ W
>
~ ly
Q S, o7 Access the same data

Calculate the same MV result

Fig. 21 Reuse of motion vector for block based process in HEVC

Therefore, this dissertation discusses the design consideration of VLSI a

-process is needed. Data and control flow
in pre-process is characterized an irregularity because these processes are highly input-
dependent and evolve with the algorithm itself. 3) The pre-process for decoding

syntaxes into parameters has less dependency with core calculation in MC and de-
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blocking filter (DBF). Further, BS calculation relies on the result of current block's MV,
which inspires us to build unified PDec architecture to share on-chip memory without

much extra control overhead.

2.1.4 Literature Review

Parameter decoder is named as many previous works unified other parameter
decoding with the motion vector decoding. Two representative previous works by K.
Yoo [17] and J. Zhou [19] are introduced. These two works are both for H.264 while

there is no research result for HEVC designs.

_—

IL’.'__]’ lr _?l /l ;;13
243164 Ao 7

\

= NG

8 Lo 112 =11
10411445 AT 15

(a) Conventional 4 x 4 (b) Proposed 4 x 4
Processing Order Processing Order

L AWAN

Fig. 22 The proposed novel processing order in [17]

K. Yoo [17] introduced a VLSI architecture design for decoding motion vectors in
H.264/AVC. The design challenges in this work are the complex derivation process of
motion data. In detail, the algorithm for motion vector prediction copes with the various
macroblock partition and spatial/temporal neighbours. To address these design
challenges. The macroblock is first divided into small 4x4 constant blocks and they are
processed sequentially. Three main proposal were mentioned. Firstly, it classified the
complex derivation process of motion data into three basic modes, regular, spatial direct
and temporal direct. They area efficiency was claimed by this design. Secondly, a novel
processing order was presented as shown in Fig. 22. The motivation is to reduce the
dependency for enhancing the throughput. For example, block with index 4 only relies
on the motion data of block 1, which means block 4 can start decoding after block 1
instead of waiting for the finish of block 3. By doing this, up to 36 and 72 cycles can

be reduced for P frames and B frames. Thirdly, the complicated pipeline design was
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achieved for the various macroblock partitions. Three deterministic processing loop
control scheme can handle all possible cases for simplify the designs.

J. Zhou [19] proposed a unified parameter decoder for H.264, including motion
vector, intra prediction and boundary strength. Unified architectures for multiple
parameter decoding can share the on-chip memory by careful designs to reduce
hardware costs. Targeting at 4K @601ps throughput, the main challenge was the support
of high throughput and low memory bandwidth requirement. To further simplify the
control logic compared to [17], a 64 cycle per macroblock pipeline was proposed to
increase the throughput and reduce the design costs. The implementation is to support
two basic pipeline block sizes, 8<8 and 4x4, with fixed cycle counts. Moreover, a
partition based storage format is applied to condense the macroblock level data. The
main idea is to use a simple entropy coding scheme, variable length coding, for

compressing the motion data.

Macroblock (16x16)

8x8 as basic
pipeline block

Macroblock is divided into
four pipeline block

75% redundant computing

Fig. 23 An example of proposed solution for various macroblock partition [19]

However, both works are for H.264 and their designs cannot be employed for
HEVC with minor revision. Firstly, both of these two works tried to solve the various
macroblock partitions due to its high complexity and design costs. In HEVC, this
problem becomes more and more complicated as discussed in Section 1.1.1. The
conventional methods chose the minimum block size as the pipeline granularity. When
a larger block is given, it will be divided into small blocks, resulting in redundant
computing because all the motion data inside the large block is the same. An example

is shown in Fig. 23. Secondly, neither of the previous works has a deep discussion on
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the memory hierarchy designs. The reason is that the throughput requirement for them
is not intensive. In [19], 4 cycles are allocated for a 4x4 block, which only require three
spatial neighbours and one temporal neighbour. Therefore, no specific hardware design
optimization is needed. However, I mentioned that the throughput requirement of my
research target is about 8 pixels/cycle, equivalent to 4 cycles for a minimum 4x8 or §x4
block in HEVC. For this block size, 5 spatial neighbours and 2 temporal neighbours
have to be fetched in 4 cycles. A novel memory hierarchy is required to support the
intensive memory accesses. Finally, the algorithm in HEVC is also complicated. I have
introduced the AMVP and merge modes in Section 1.1.2. Considering the design costs
in previous works, a low-cost and energy efficient architecture for HEVC algorithm
should also be explored.

Besides, several parameter decoder approaches are reported previously. In [14] an
approach for MPEQG?2 is achieved. For H.264/AVC, Xu, et al. [15] first shows a solution
for QCIF format. Higher throughput is also achieved in [16][17][18]. However, these
realizations have much room for optimization. The fastest throughput among them is
260 cycles/MB, which is far slower than the throughput requirement for §K UHDTV.
In Zhou et al.'s work [19], a joint parameter decoder with fixed pipeline granularity for
4K @60fps UHDTYV application is proposed for MV, BS and intra prediction mode.
Considering this H.264/AVC approach is not applicable for HEVC and the technique
can't support high throughput requirement for 8K video, I can't directly inherit [19] for
HEVC solution. Except the VLSI works mentioned above, FPGA-based
implementation in [20] is also reported. However, FPGA based work is too difficult to
be extended for 8K UHDTYV application. Many works for video decoder designs does
not involve the realization for MV decoding as they are not working on the design of

the whole system, while it is a tough work in HEVC for hardware implementation.

2.2 Unified CU-adaptive Pipelined Dataflow

This section shows the top level datatlow of the proposed PDec architecture. The
unified CU-adaptive pipeline is proposed to support high throughput of up to 8K
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application with reasonable implementation complexity. In this section, I also show
how data is reused in this dataflow as well as maintaining the data reuse potentials

between pipeline granularities.

2.2.1 Dataflow Analysis

Dataflow design highly affects the performance of PDec. As there are diverse block
types supported in HEVC, the design of dataflow is complicated if we design specific
hardware behavior for every possible block types which is around 24 types in HEVC
because the algorithm for MV calculation highly related to the block types. In Fig. 24 a
simple case is shown for this problem. Case 1 is processing a rectangular block so that
AQ is in the left decoded block. In this case, all the spatial neighboring blocks can be
used for the calculation. On the other hand, case 2 shows the current block is a square
block. The spatial neighboring block A0 is in the region which has not been decoded
yet. Therefore, HEVC algorithm will only use another four spatial neighboring blocks
for calculation. Therefore, two different hardware processor cores (core 1 and core 2 in
Fig. 24) are required for each case. This simple case proves that different block types
will highly affect the hardware behavior including memory access pattern and process
time of the algorithms. The hardware architecture should handle all 24 block types in

HEVC, which may lead to a high hardware costs.

Decaded Region Decc ded’ﬁgion

[=]_[=]=] 5 BE

A Not Decoded Not Decoded

A0 Region [: Region
[#]

AQ is already decoded )
AOis not decoded yet |
Case 1 Case 2
A0, A1, BO, B1, B2 are required AOQisignored, Al, BO, B1, B2 are required
Core 1 Core 2

Fig. 24 A case shows the design complexity for 24 block types in HEVC

To handle the diverse block types in HEVC, I conclude there are several approaches
like diverse block approach, constant block approach and the proposed CU-adaptive

block approach.
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2.2.1.1 Variable block approach

A direct approach is to process the diverse block types as they are. An example is
shown in which contains 6 blocks. In this approach, no matter what the size and shape
of the current block, the hardware is able to process it optimally by using a dedicated

Processor cores.

E.g. This simple case contains 6 blocks.

Process order: 6 1

Time
Required hardware: C"lre C°2re C;;e

Fig. 25 An example of variable block approach

The merit of this approach is that it ideally maintains the reuse potentials of motion
vector. Each block will only be calculated once with its corresponding processor core.
Therefore, a high throughput and few memory accesses can be expected by this
approach.

The demerit of this idea is also obvious. 24 different processor cores are required

to guarantee the functionality with a high complexity.

2.2.1.2 Constant block approach

Another approach is called constant block approach whose basic idea can be found
in many previous works introduced in Section 2.1.4. Given any block type, it is first
divided into small constant blocks like 4x4 and the hardware is designed to only support

the process of this 4x4 block for simplification. The basic idea is shown in Fig. 26.
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Process order: EE HEE N E E EE

Time
Core

1

Required hardware:

Fig. 26 An example of variable block approach with the same case in Fig. 25

The merit of the constant block approach is that the hardware design is significantly
simplified. Only one processor core is sufficient. However, this approach is only
suitable for H.264 because the division of blocks and the process based on divided

blocks are supported in H.264 [19] while HEVC doesn’t have this function.

T
1! 2
8x8 o
MVP = (7,8) :'
Block T
Number Pipeline Stage
1 RR | CAL | RWH====q=mm=fmmmm ----+ MVP = (7,8)
2 RR | CAL | RWpooommm oo oo oo es ? The same result is
3 RR | CAL | RW—=mm—qmm e m e repeatedly calculated
4 RR | CAL | RWdmmmmmeeee J for 4 times
Clock Cycle | 0O 4 8 12 | 16 | 20

Fig. 27 Constant block pipeline design introduces redundancy.

The demerit of this solution is that it will introduce many redundant computations
and cost more processing cycles. An example is given in Fig. 27. A 8x8 block is divided
into four constant blocks. Each block is pipelined with three stages reference read (RR),
calculation(CAL) and result write (RW). All of the four constant blocks contains the
same information so this information is repeatedly calculated four times. This
redundancy is accepted by the previous work because the research is only for 4K
throughput and H.264 standard. Even if the redundancy exists, the throughput is still
enough for their research target. However, the situation becomes worse for our target

of 8K and HEVC. Firstly, HEVC supports the maximum block size of 64x64. If the
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constant block pipeline is still employed, there will be up to 95.5% redundant
computations when processing this 64x64 block. Secondly, the required throughput
increases to four times than [19]. The designs in [19] is not capable for the high
throughput of 8K, especially considering the high redundancy in the previous work.
Therefore, in order to support high throughput requirement and HEVC standard, the
pipeline design has to be well designed which involves three aspects, pipeline
granularity, pipeline processing stages and cycle resource allocation.

2.2.1.3 Proposed CU-adaptive block approach (Unified CU-adaptive Pipelined
Dataflow)

According to the above discussion, I t

In
HEVC, pixels in one coding unit share the same prediction mode (inter or intra), pixels
in each PU share one MV. On the other hand, 4-pixel-length edges on 8x8 grid share
one BS for deblocking filter. By combining these two processes, it's better to define the
pipeline granularity as 8x8 blocks or larger. In previous works, fixed pipeline
granularity is adopted. Though pipeline controller for that is simple, the throughput will
be decreased in HEVC. For example, in [19], fixed 4x4 or 8x8 pipeline block is
designed. However, HEVC supports maximum 64x64 block size. If fixed 4x4 pipeline
granularity is used, large redundant calculation directly degrades the performance (for
example. one 64x64 prediction unit needs up to 256 4x4 pipeline blocks, even if pixels
in 64x64 block share one motion vector).

To overcome the redundancy problem, I propose the CU-adaptive pipeline
granularity. This approach is to adaptively process blocks based on CU sizes as shown
in Fig. 28 with the same case used in Fig. 25 and Fig. 26. The basic idea is to merge
PUs into the nearest CU and process CU as it is. By doing this, we also keep the reuse
potentials of motion vector because no division of blocks occurs in this approach so
that better energy efficiency can be expected. Meanwhile, the design overheads is

increased compared to the constant block approach because we should handle 4
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different CU types in HEVC. However, it still reduces lots of design costs compared to

the 24 block types in the variable block approach.

=1 23
213 1
Process order: E .

Time
Core Core Core Core

Required hardware: 1 5 3 4

Fig. 28 An example of proposed approach with the same case in Fig 29

In detail, pipeline granularity is coding unit. Though the size and partition mode
are various for different coding unit, the CU-adaptive pipeline can still have several
advantages. Firstly, compared to the previous fixed pipeline blocks, the CU-adaptive
pipeline scheme can efficiently eliminate the redundancy for larger CU cases, which is
considered to happen frequently in 8K UHDTYV. Secondly, instead of PU based pipeline,
the CU-adaptive pipeline scheme can reduce the implementation complexity for
pipeline controller. The reason is the proposed scheme can reduce the number of
possible cases for pipeline granularity, especially for asymmetrical partitions. Thirdly,
in spite of various sizes, the process for each CU follows similar procedure, leading to
easier implementation. Finally, even if CU contains two or more PU, neighboring
blocks for each PUs have overlap, which means that data reuse can be utilized for
memory bandwidth reduction, as shown in Fig. 29.

The left picture in Fig. 29 shows the regular case where a block is not divided into
two prediction units. Five spatial neighbors are required. When this block is partitioned
into two units like the right picture of Fig. 29, the B1 of left block and the B2 of the
right block will be overlapped so that I don’t need to fetch them twice. Moreover, I have
the preliminary that AQ of the right block is always not available. The A1 of the right
block is the result of the left block. In order to prevent 2Nx2N partition emulation, this
A1l will also be regarded as not available. In conclusion, I originally have to fetch ten
spatial neighbors for these two blocks. With the CU-adaptive pipeline design, only
seven neighbors are required, with 30% percent of memory reduction for motion data

prediction.
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Fig. 29 Data reuse in MV and BS reference fetching order

The CU-adaptive pipeline granularity also brings advantages on data sharing for
unified motion vector and boundary strength decoding. As is mentioned in Section 2.1.2,
boundary strength is calculated for each block edge. The involved operands for this
calculation are the motion data from the two blocks, which contain this edge. In my
architecture, I calculate the left and upper edges of each block. With the default Z-scan
order, this procedure can finish all the edge calculations for boundary strength. In such
a case, the left and upper neighbor blocks have to be fetched from memory. Notice that
the boundary strength is calculated on the grid of 4x4 so that the every 4x4 neighbor
block should be fetched separately. Compared to the five spatial neighbors involved by
motion data prediction, Al and B1 are always reused by both motion data prediction
and boundary strength prediction, as shown in the left side of Fig. 29. This saves
memory bandwidth requirement greatly, especially for small block size like 8x8. For
an 8x8 case, 25% of memory accesses for boundary strength can be saved. When this
block is divided into two prediction blocks, up to 50% of the memory accesses can be
saved for both accelerating process throughput and saving memory energy.

A simplified data flow in Fig. 30 illustrates that three pipeline processing stages
are designed for unified PDec. Considering BS calculation needs the result of current
block's MV, so BS calculation should be scheduled after the correspondent process for
MYV. Thus, by incorporating the two processes together, I define the unified pipeline as
consisting of three main steps: 1) memory reading for reference data fetching, 2) MV
calculation for current CU and 3) BS calculation and MV writing back. Notice that only

BS calculation for PU edge is in stage 3 while TU edge is done outside pipeline. The
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reason is that BS calculation for PU edge require MV information so it ties tightly with
the rest of CU-adaptive pipeline. Meanwhile, BS for TU edge is quite simple so that it

will not increase the hardware complexity much by separating it from PU edge.

Stage. 1 NOP
<-4 cycles -~ P Stage. 2 Stage. 2
& 8 cycles------ » Stage. 3 NOP Stage. 3 NOP
< Large CU i Small CUs------- S Small CU--=---- >

Fig. 30 Trailing NOP realization in the CU-adaptive pipeline

Table 6 shows the cycle resource allocation for each stage and for each pipeline
granularity. Generally, a pipeline's throughput is mainly decided by the slowest stage.
Hence the performance will not be degraded so much if I decelerate the faster stages.
Thus I unify the process speed of each granularity as the slowest stage among all three
stages, which is shown in the Max. Cycles column in Table 6. Notice that the data in
brackets indicates that a CU contains two PU. It is achieved by adding no operation
(NOP) cycles in the trailing of fast stages. The merit is the implementation for pipeline
controller is greatly simplified. The throughput for each CU sizes are also listed in the

table, which proves that the proposed PDec is competent for at least 8 pixels per cycle.

Table 6 Cycles allocation for different CU cases

Process Cycles for Each Stage
(Cycles for CU contains 2 PUs are shown in
Max.
CU brackets) Throughput
Cycles for
Size Stage 2 Stage 3 (Pixel/cycle)
Stage 1 each CU
MV BS Cal.
Memory Read
Calculation | Mem Wr.
8x8 8(8) 4(8) 3(4) 8(8) 8.0(8.0)
16x16 10(12) 4(8) 7(10) 10(12) 25.6(21.3)
32x32 18(20) 4(8) 15(22) 18(22) 56.9(46.5)
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64x64 34(36) 4(8) 31(46) 34(46) | 120.5(89.0)

If I further analyze the cycle allocation of each pipeline stage in Table 6, [ may
notice that the complexity of HEVC is much higher than H.264. In the previous works
mentioned in Section 2.1.4, the bottleneck of the pipeline design is the calculation stage.
They have paid many attentions on simplify the pipeline designs. However, Table 6
shows that the bottleneck stage is varying according to the block sizes. For a small
block size like 8%8, the slowest stage is the memory reading and calculation stage (only
when the coding unit is divided into two blocks). In such cases, the CU-adaptive
pipeline can enhance the data reuse for saving memory access cycles. On the other hand,
the bottleneck stage may change to memory write stage because the boundary strength
should be written back to memories for the usage of next block. For these cases, the
dependency issue may happen due the pipeline designs. Next block may use the current
block’s result while the result has not been written into memories. Some bypass circuits

should be design for this issue.

2.2.2 Block Diagram for the CU-adaptive Pipeline

I DRAM Interface I

[ Line Buffer (1936 cells x 95 bits = 23.0kB) ]
g
2 [ cyclically 1 SRAM | | Left-top Register |
-
-] Col B2 MV
Stagel: Mem. Rd Stage2: MV Cal.
1st PU MV Stage3. BS Cal & Mem.
Ref. Fetch 5 Merge Engine Wr. Deblocking
; Lao] g Cur. Blk MV Write back Filter
Syntax | Opt:2nd PUMV | z MV rite bac
CABAD | RefFetch | g S AMVP Engine BS
w
v a sub-stage Pipeline ; BS Cal. on PU edge BS Cal. on
TU edge

Split 4x4 blk. granularity 4

ey
Ref. Fetch Bypassl | CU based process

CU based Bypass2
ased process YP: TU Edge & cbf

] Forward By-passing data path----

Fig. 31 Block diagram for the CU-adaptive pipeline

Fig. 31 shows the whole framework of unified parameter decoder. The below part
illustrates the data flow inside the proposed CU-adaptive pipeline. Inside each pipeline
stage, important process units are depicted. The detail for these three stages will be

given in the following sections correspondingly. The upper part gives a brief
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representation for memory in this design, which will be discussed in Section 2.3. Based
on the pipeline analysis, no matter what the current and next CU's partition mode and
size are, they can be processed continuously without pipeline pause to guarantee high

pipeline performance.

2.2.3 Reference Data Fetching

The first stage is in charge of fetching neighboring data from memory, which will
be explained in Section 2.3. Generally, each PU in CU needs four cycles for fetching
MYV reference blocks' information, as shown in Fig. 30. When current CU contains more
than one PU, only extra two cycles are needed for second PU as the rest of the
neighboring blocks can be reused from first PU. After finishing MV reference fetching,

BS reference blocks are accessed and then pushed into FIFO in preparation for stage 3.

coge: IEN NN & (6 b5 s et -Cyccy':.sef:f:, 18t PU in CU
m m ColCtr ColBr Collocated SRAM cu
m Left-top register
Stage 2 «------- 4 cycles delay-------- )E MV cal

<€ 8 cycles delay

rm m _ MV MemWr. nop

Line buffer

Fig. 32 Cycle resource allocation in the CU-adaptive pipeline

Three memory controllers work in parallel as shown in Fig. 32. Rather than
sequential process, these controllers in parallel is to improve the throughput in worst
case. The worst case is defined that CU size is 8x8 and partition mode is symmetric
partition (two PU in this CU). For each PU, five spatial neighboring in line buffer and
2 temporal neighboring in collocated SRAM need 7 cycles to be fetched. Extra 3 cycles
are for fetching BS neighboring blocks. Thus, totally 20 cycles (ten for each PU) are
required for this worst case. Under this situation, the performance can't even support an
8K@301ps video application. Therefore, I propose three memory controllers working
parallel. Together with the data reuse scheme in Fig. 29, the design can achieve

throughput for 8K@601ps.
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2.2.4 Proposed Index Mapping Optimization

The algorithm-irregular MV calculation (AMVP mode and merge mode) is
schedule in Stage 2. The implementation suffers from huge area cost and timing issue.
Hence, I propose resource sharing scheme and index-mapping scheme for optimization.

Firstly, MV scaling calculator is optimized and reused. The data path of scaling
calculator is depicted in Fig. 33. In this procedure, one division, two multiplications
and several adders are employed. Without optimization, the synthesis result reports 7ns
critical path and around 10k gates cost. The critical path is marked as read in Fig. 33.
Such serious costs in both timing and area are unacceptable for an efficient design. Sub-
stage pipeline is proposed inside stage 2 for scaling calculator. Four sub-stages are
designed in Fig. 33, which are segmented by dotted line. By doing so, a balanced
division for critical path is achieved. Meanwhile, LUT replaces the division
implementation in the sub-stage 2 for area and timing saving. The proposed sub-stage
pipeline is capable for working under 2.5ns timing constrain. As one scaling calculator
is capable to process one motion vector, two calculators are necessary for scaling two
motion vectors in a bi-directional prediction case. Thus the optimized architecture for

scaling calculator can achieve 400MHz timing constrains.
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Fig. 33 Data path of scaling calculator and the scheme for sub-stage pipeline
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Fig. 34 Direct implementation without optimization

Secondly, index-mapping scheme for merge mode engine is proposed. Candidate
Producer in Fig. 34 follows the same procedure and accomplishes the identical function
for merge mode in HEVC standard. Taking Combined Candidate Producer as an
example. I receive available candidates (OrigCand) from 5 spatial and 2 temporal
candidates. If the number of received candidates is less than five (assuming n), then at
most (5-n) combined candidates (CombCand) will be produced. The procedure for
combined candidates is illustrated in right-bottom in Fig. 17. Two motion vectors for
two lists of combined candidate are copied from different OrigCand to construct a
combined one. Up to 12 kinds of combinations are employed in HEVC specification,
leading to 12 different combined candidates. Zero Candidate Producer produces
candidates (ZeroCand) when the number of OrigCand and CombCand is still less than
five. Up to five ZeroCand may be used by merge mode.

For hardware implementation, candidate list whose depth is five is first generated
from 24 possible candidates mentioned above. Then the final merge result is chosen
from this list by merge index. However, a 24-5 MUX with 95-bit in Fig. 34 for each

entry has to be utilized, which leads to huge area cost.
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Fig. 35 Index-mapping scheme

Index-mapping is an optimization to reducing area cost. The motivation is I notice
the motion vectors of final result can only have two cases: copy from inputs or zero MV.
Assuming zero MV as a special input, I can directly copy the input to the final result as
long as I construct a mapping relation between them. As is shown in the Fig. 35, Index-
mapping Scheme receives little data volume such as available flags as inputs, and five
candidates in the final lists are mapped to the original inputs. Based on the merge index
and the mapping results, the merge result can be directly copied from the original inputs.

For hardware implementation of Index-mapping scheme, final motion vector is
copied from seven original inputs (5 spatial candidates and 2 temporal ones) or zero
MYV. Considering bi-direction prediction containing two motion vectors, only two 8-1

multiplexers are required, which saves area cost a lot compared to the original design.

2.2.5 Memory Write Back

This stage is in charge of calculating boundary strength parameters and writing
motion data result back into memory. BS calculation relies on information of prediction

unit and transform unit, as is shown in Fig. 31. Split 4x4 pipeline scheme inside stage
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3 is proposed for pipeline buffer reduction. The CU-adaptive pipeline is proposed in the
top level of PDec design. However, when CU size is 64x64, totally 32 (64 / 4 x 2)
neighboring 4x4 blocks should be buffered before the start of BS calculation. I notice
that BS calculation is executed 4x4 by 4x4, thus a further separation for pipeline
granularity is feasible. By applying split 4x4 pipeline scheme, only 8 neighboring
blocks (the delay between stage 2 and 3) are needed to be buffered, which helps reduce
75% of buffering memory.

Process speed is analyzed for split 4x4 pipeline scheme. In stage 3 only left and
top edges of a PU is calculated to get an internal BS, which will be further refined by
TU information as shown in Fig. 31. For example, if a CU is completely a PU for a
64x64 CU, 64/4 = 16 4x4 blocks on PU left edge needs 16 cycles while another 16
cycles are for the PU top edge. Considering left and top PU edges have a 4x4 block
overlap, totally (16+16-1) =31 cycles are required. 46 cycles are for the case where CU
contains two PU so that one more PU edge inside CU will further cost another (16-1) =
15 cycles compared to the previous case, as is shown in Table 6.

Notice that I propose a dedicated data path for bypassing the current motion data
results by to stage 2, as shown in Fig. 31. This is to solve the data dependency problem
existing in both motion data prediction and boundary strength decoding. Both
calculations require the left and top blocks’ results as their prediction candidates. Due
to the pipeline design, the result of previous block may be required by the current block
for calculation while it has not been written back into memories. If no special
consideration is done for this issue, the fetched data will be a dirty one, resulting in the
wrong results. Therefore, I bypass the block’s result in stage 3 back to stage 2. When
blocks in stage 2 are fetching neighbors, the circuits will check whether a required
neighbor is the one in stage 3. If so, the data will be fetched through the bypass data
path. As the delay between stage 1 and stage 2 is fixed as 4 cycles, there will be only
one set of result needed to be bypassed to stage 2. This design eliminates the potential

hazard caused by the data dependency.
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2.2.6 Analysis of Design Overheads

In the above discussion, I have introduced the advantages of the proposed unified
CU-adaptive pipelined dataflow. This section will give a discussion about the design
overheads for achieving this proposal.

I conclude that three technical problems have to be solved which will decrease the
area efficiency of the proposed architecture: (1) Hardware should support four different
CU block types; (2) Hardware should handle the cases where the second CU may not
exist; (3) Due to the pipeline design, the data dependency is introduced. I will explain
these three problems in detail one by one.

The first design overhead comes from the more block types that should be handled
by the hardware architecture compared to the previous work [19]. If a finite-state
machine is used to describe the hardware behavior with two states, idle and busy. The
problem is that the busy cycles vary from CU to CU and from stage to stage as shown
in Table 6. Although I have chosen the slowest stage as the allocated cycles to simplify
the hardware design, extra hardware costs are still required for the implementation. In

detail, I implement the fifth column as a pre-defined look-u

-u

In total, at least a look-u

In the real implementation, I use an idea called data
gating to solve this technical challenge. In detail, a sophisticated finite-state machine is
used with a state called data gating as shown in Fig. 36. The states of Block 1 and Block
2 are in charge of normal processing for the first and second block inside a CU. Like
the clock gating which shut off the clock when necessary, the state of data gating is to
latch the primary input registers of a module. By doing this, the input registers are

disabled for data toggling so that all the related combinational circuits can avoid the
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unnecessary data toggling. This can save the dynamic power while complex hardware

is required like more enable signals for latching the input registers.
i
Stagel
Finite-State Machine T |

: Stage2 Memory
m No 2" Block T

L I
/ ’\ Close Enable Stage3

A

\‘ ( ) i Disable input registers of CAL
1
1

Avoid unnecessary data toggling

Fig. 36 Data gating for skipping the process when 2™ block doesn’t exist

The third design overhead is introduced for solving the data dependency problems
due to the usage of pipeline technique. An example in shows the problem of data
dependency where Block B will use the result of Block A. The stage 1 may fetch old
data from the memory because the results of Block A is not written back into memories
yet. This will decrease the pipeline performance. Therefore, data bypass technique is
used for propagating the data as soon as they are available. For example, the result of
Block A in Fig. 37 is available as soon as the stage 2 finishes its process. Therefore,
additional data paths are introduced to send the results to the calculation for the next
block in advance. Moreover, extra multiplexer is also required so that stage 2 can decide
whether to receive data from stage 1 or from the bypass paths. In total, in order to

climinate the pipeline stall, extra data paths inside the circuits are required.
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Fig. 37 Pipeline stall due to the data dependency issue.

In conclusion, the high performance of the proposed CU-adaptive pipelined
dataflow is realized at the expense of more complex hardware architectures for solving

the above three technical problems.

2.3 Multi-level Memory Hierarchy Design

Parameter decoder involves fetching neighboring blocks as the reference of current
decoding block. These reference data are usually reused in a short future. I call it
temporal data locality in PDec. In previous work [19], these data are stored in the off-
chip DRAM regardless when they are reused in the future. Therefore, whenever PDec
uses these data, it has to fetch them from the off-chip DRAM., which will result a high
energy consumption and a long access latency. This section shows how I design the
memory hierarchy to utilize these localities for energy efficiency. It contains the multi-
level storage for the spatial neighbors and a cyclic memory for the temporal neighbors

with corresponding compression scheme.

2.3.1 Memory Hierarchy for Spatial Storage

In parameter decoder design, data accessing for spatial neighboring is considered
as the bottleneck for achieving high throughput requirement of 8K UHDTYV application.
As is mentioned in Section 2.1, five neighboring blocks are needed for MV process and

all left and top neighboring blocks for BS calculation. All the data should be fetched
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within the scheduled cycles listed in Table 6. In order to meet the throughput, line buffer
is maintained as shown in Fig. 38. Considering the ability to distinguish different blocks,
the proposed line buffer's cell is set equal to minimum TU size (4x4). Meanwhile, to
simplify the control logic, single line buffer is employed to consist of not only the
storage of the top row (Top-Buffer) but also the left blocks of current CTU (Left-Buffer).
Under this memory organization, the neighboring block A0, Al are stored in Left-
Buffer while BO, B1 are in Top-Buffer correspondingly. For each prediction unit, these
four blocks can be read out from line buffer in four cycles. If CU is divided into two
PUs, at most two blocks (A0, B1 or A1, B0) can be reused so extra two cycles is needed.
Further, A1 and B1 can be reused for BS calculation to save extra two cycles.

In addition, fifteen registers are maintained to store the top-left B2 blocks. One is
that the proposed replacing strategy for line buffer can't store the blocks at the concave
corner in the decoded regions. So the top-left registers help implement the defection of
line buffer. On the other hand, I use register instead of reusing line buffer for B2 storage.
The reason is that B2 will be read and refreshed frequently inside CTU, implementation
by register will eliminate the potential memory accessing conflict problem (read and
write simultaneously). The Left-top register consists of fifteen identical registers, each
of which is 95 bits. The content of these 95 bits is the same as that in line buffer, which
is shown in Fig. 38. Whenever a block at concave corner is written into line buffer, it is
also written into correspondent Left-top register simultaneously. Thus there is no
communication between line buffer and Left-top register, so that further memory
conflict problem is avoided.

The proposed pipeline stages in Section 2.2 leads to potential hazards for memory
access. Forward by-passing is used to eliminate the problems. In detail, I allocate
memory reading and writing in stage 1 and stage 3 respectively. Thus two potential
memory conflict hazards exist. Firstly, the same memory address may be read and
written in one cycle simultaneously. The second is write-after-read hazard caused by
delayed writing operation. For these two hazards, two by-pass registers are inserted
between stage 1 and 2 as shown in Fig. 31. The proposed pipeline fixes the delays

between stages so that stage 3 is always 12 cycles delayed than stage 1. Meanwhile, the
- 46 -



Block Merging based Unified HEVC Parameter Decoder Design

minimum process cycles are 8 cycles when CU is 8x8. Therefore, when current CU is
on its third stage, at most following two CUs go through its first stage. Potential
memory hazards can only happen during these 10 cycles. Thus I use registers to store
the previous two CUSs' result. Whenever current CU wants to access contents of
previous two CU, I directly fetch them from registers instead of reading from line bufter.

Theretore, the forward by-pass scheme can efficiently deal with the potential hazards

for the line buffer.
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Mv_I0/Mv_|1: values of motion vectors, 16 bits in one direction

Fig. 38 Line buffer and left-top register organization

2.3.2 PU-based Coding Scheme

In this section PU-based coding scheme and the cyclically mapped SRAM are
introduced in detail. All the col-located data is stored in the off-chip DRAM because of
the huge data volume. Generally, DRAM bandwidth issue is regarded as the bottleneck
for the real-time video decoder. In terms of 8K UHDTYV, more attentions should be paid

to relieve the DRAM bandwidth burden.
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In the previous work [19], large blocks are divided into small constant blocks as
mentioned in Section 2.1.4. When the data are written to DRAM, they have to execute
some pre-processing to merge these small blocks into the original size. In my work, the
CU-adaptive pipeline ideally keeps the block information so that no pre-processing is
required. Therefore, the PU-based coding scheme is proposed.

The PU-based coding scheme is proposed for DRAM bandwidth reduction.
Writing data back to DRAM for each 4x4 blocks, just like the way of line buffer, is
unacceptable because of the huge data volume. I notice that only the top-left corner 4x4
block in each 16x16 block will be used as the temporal candidate in HEVC standard,
which means I only need to store one set of prediction parameters for each 16x16 block
for col-located storage. It will help reduce 93.75% of DRAM bandwidth. Further,
considering the prediction unit larger than 16x16, the same co-located information is
repeatedly written into DRAM for each 16x16, leading to meaningless burden on
bandwidth requirement. Thus [ propose the PU-based coding scheme for co-located
data compression. The data stored in DRAM contains not only the prediction
parameters but also the 8-bit description for current PU in CTU. As depicted in Fig. 39,
a 32x32 PU will write identical data (95 bits) into DRAM for four times. PU-based
scheme will avoid such kind of redundancy by writing this identical data (PU info.)
only once with 8 trailing bits. Though extra 8 bits for PU description is added for each
co-located block, the redundant DRAM storage is avoided. The experiment result
shows that by applying the PU-based coding scheme, further 30% of bandwidth

requirement reduction can be achieved.

-48 -



Block Merging based Unified HEVC Parameter Decoder Design

uononpal juawannbalr yipmpueq VI J0J dwayos Jurpod paseq-Nd 6¢ S

$320]q 9TX9T JNO} SUIRIUOI

Ajenuesd )20|q 9TX9T 1B 32IS Nd 4104 IYSI1aY pue Yipim Yyaea 10} sjq g :9z1§ Nd 2EXZE
Aluenuels 320|q 9TX9T 1B N1 u2.44nd Jo ajdwes 149]-dol syl 01 aAIlE[aJ Nd 1Ua44nd ay] Jo 3jdwes Ya|-dol ay) uppy

_IIJ

b 3
=« uonINpPal yIpIMPUDq NVEa :
: '
: Puatps Bup pose ﬁllu
1]
: 4
: “
‘s
. '
. '
' - ]
. .Fa-' - l.!.-.ff.’ f
N PR .r.r.r.f.f.-..f.f.fffdv
e J-f-r.f.-.f..f
e el ST
N fﬂn.n..r....ra.

T e wme o wm n o orwe v d

- 49-



Block Merging based Unified HEVC Parameter Decoder Design

2.3.3 Cyclic Memory for Temporal Storage

—Co:ded data—P» Cyclically Addr. Generator —

——Decoded data/ Read Req.
‘ -
,

Read data ,"

R Read request
L 3! unified PDec !

¢ > Cyclic SRAM is regarded as special
: > FIFO:
Write Stop <
Write Cursor 1) Rea ding:
When data stored in SRAM is more
Read Enable |Co-located than two CTU, SRAM can be read
Next CTU 2) Writing:
When writing cursor is close to read
Cerleetice cursor, SRAM refuses write request
CTu | Read Cursor

—

Fig. 40 Working mechanism of cyclically mapped SRAM

Fig. 40 illustrates the proposed cyclic SRAM. It is designed to support the random
access characteristic for accessing co-located data. As is mentioned above, the co-
located data is pre-coded before storage. In the reading side decoding process is first
done. After that the decoded data will be written into the SRAM for random access. The
proposed cyclic SRAM can be regarded as an addressable FIFO whose size is four
CTU's co-located information. Based on the analysis on HEVC, the current decoding
block will only use the co-located CTU and the col-located next CTU's data for MV
calculation, as shown in Fig. 41. Thus, as long as col-located following two CTUs'
content is stored inside, the cyclic SRAM can be read by PDec. In the non-read cycle,
cyclic SRAM will keep writing decoded data until the cyclic SRAM meets the full

condition, when writing cursor is equal to the write stop address. Single-port SRAM is
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capable of above functions so as to reduce control logic and save area cost.

Current coding tree block (CTU)

C1 Current block for decoding

Col-located temporal neighbour
in the same CTU

C2 Cl

Col-located temporal neighbour

c2 in the next CTU

Fig. 41 Distributions of collocated temporal neighbors

For the implementation, [ proposed a cyclically address generator as shown in Fig.
40 to control the data writing. In detail, the address generator has an input called read
request. This input is used to monitor the process status inside the pipeline. The status
represents the current processing block’s coordinates. By adding a redefined address
shift for two coding tree unit sizes, the result is regarded as the write stop address. If
current write cursor is less than the write stop cursor, this generator will write the
fetched data from off-chip DRAM into cyclical SRAM and increase its write cursor.
The write operation will be stopped as long as the updated write cursor is larger than
the write stop address.

A read enable signal is also implemented. This signal is used to indicate that the
cyclical SRAM has prepared enough data for the pipeline’s access. Generally, when the
address difference between write cursor and read cursor is larger than two coding tree
units, this signal is pulled high. If this signal is low, the pipeline has to be stalled to wait
the generator to write enough data into the cyclical SRAM. These hardware

implementations guarantee the correctness of temporal neighbor fetching in Fig. 41.

2.3.4 Design overhead of This Section

The design overhead for saving memory access energy is the more complex
memory architectures and organizations compared to the previous works like [19]. In

[19], the memory mainly consists of one global line buffer. All the data that need to
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transfer between oft-chip DRAM memory and the core architecture should be buffered
by this global buffer. In comparison, the proposed memory hierarchy in this section

contains separated memories as shown in Fig. 42 which increases the design costs.

Off-chip DRAM
Line Left-top Cyclic On-chip
Buffer Registers Memory Memories
col | [col Required data
el | il | Bl | i i il for processing

Fig. 42 On-chip available memory storages and their contents

Firstly, the more global buffer resources are required because this proposal tries to
buffer the data of an entire row for spatial storage. It is unlike [19] which bufters the
data mainly at the off-chip DRAM. Therefore, at least two times more memory
resources are necessary for supporting 8K applications compared to the 4K applications
in [19]. Meanwhile, because the increased complexity of HEVC, the required bits for
cach motion information are also increased, which will consume more memory
resources for this proposed memory hierarchy.

Secondly, extra addressing hardware costs are necessary for deciding when and
where to fetch reference data because they can be stored in either spatial storage
including line buffer and left-top registers in Section 2.3.1 or cyclic memory introduced
in Section 2.3.3. As shown in Fig. 42, processing of each CU may require five spatial
neighbors and two temporal neighbors, which are distributed in different on-chip
memories. Hardware should have the ability to decide when and where to fetch the
correct data. This is achieved by using the internal counter which has been introduced
in the first technical challenge of Section 2.3.4. This internal counter will decide the
hardware behavior for each specific cycle like shown in Fig. 32.

In conclusion, the proposed memory design in this section will require more on-

chip resources and complex addressing circuits for realization.
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2.4 Experimental Results

2.4.1 Simulation on PU-based Coding Scheme

Table 7 DRAM bandwidth reduction of PU-based coding scheme

Video Optimized
Configuration QP BW Reduction
Sequence Bandwidth
25 28.4MB/s 69.3%
06000 RA
40 11.2MB/s 87.9%
25 23.3MB/s 74.8%
12000 RA
40 10.8MB/s 88.3%
25 66.6MB/s 27.8%
LD
40 35.8MB/s 61.2%
ClassA
.OMB/s 33.9%
R
40 34.7MB/s 62.4%

PU-based coding scheme helps to reduce the DRAM bandwidth (BW). As this
work is aiming at UHDTV application, I choose ClassA sequences (Traffic and
PeopleOnStreet) which is 2560x1600 with 300 frames and two 7680x4320 video
sequences (06000 and 12000) with 150 frames as my test sequences. Different
configurations (RandomAccess (RA) and Lowdelay (LLD)) and QP value are considered.
The result is shown in Table 7.

In Table 7 all the bandwidth is normalized to 8K@60fps. If I use 16x16 block
storage as is mentioned in Section 4.2, necessary DRAM BW is 92.3MB/s. PU-based
coding scheme can further reduce the bandwidth by at least around 30%. For a

7680x4320 sequence 12000 at QP=40, up to 88.3% BW reduction can be achieved.
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2.4.2 Synthesis Results

The unified PDec is implemented on register-transfer level design using Verilog
HDL and further synthesized by Synopsys Design Compiler with TSMC 90nm process,
which is the same with the latest previous work [19] for a fair comparison.

In detail, the maximum clock frequency of my proposal can achieve 400MHz. The
arca under 300HMz is 93.3k. The size on-chip line buffer is 23.0kB for buffering the
last rows information. Here I analysis HEVC standard and define the worst is that the
whole frame is coded as 8x8 coding unit. From Table 6 I know that the cycles for worst
case are eight, equally to 8 pixels per cycle. This throughput is enough for real-time
decoding for 7680x4320@60pfs video sequence. Compared to the previous work [19],
we not only well pipelined the designs for a faster clock frequency, but also supports
the newest HEVC standard. In HEVC, the algorithm for generating motion vector is
much more complicated compared to that in H.264. I also simulate my proposals on
HEVC test sequence and the result shows the average process speed is 17.8pixel/cycle,
which is able to finish decoding highest profile 6.3 7680x4320@1201ps applications at
only around 111.8MHz on average.

Table 8 shows the comparison with other related works. Compared to existing
works, mine is the only one that supports HEVC standard. Notice that though in [18][19]
intra prediction mode calculation is included, it affects final area and timing cost little
since algorithm for it is quite simple compared to that of MV, especially in HEVC. On
the other hand, line buffer size is much larger than others for three reasons. 1) HEVC
support PU's edge equals to 4 at least, so storage for 4x4 block granularity is needed; 2)
MYV parameters in HEVC is more than that in H.264; 3) 8K UHDTV's frame width is
twice larger than 4K's, leads to double size of line buffer. Finally, as total area is related
to the throughput, I define the normalized gate number in the table for a fair comparison.
The normalized results show that my proposed unified architecture has around 36%
efficiency on area cost, even if supported HEVC's complexity is more than that of

H.264/AVC.
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Totally, my proposed unified motion vector and boundary strength parameter
decoder can support real-time decoding for 7680x4320@60fps video under 249MHz in
the worst case. The worst case is that all the shapes and sizes of prediction units in the

coded bit stream are 8x4 or 4x8, although this situation has few possibilities to be

appeared in the real cases.

Table 8 Comparison with state-of-the-a

Standard H.264/AVC H.264/AVC&AVS H.264/AVC H.265/HEVC

Function MV MV/BS/Intra MV/BS/Intra MV/BS
Wotst-case
Throughput 0.98 0.73 4.0 8.0
(Pixel/cycle)

Avg.
Throughput 1.6 1.6 4.0 17.8
(Pixel/cycle)
SRAM Size
2.8k(1080p) 4.75k(1080p) 3.6k(2160p) 23.0k(4320p)

(Line buffer)

Logic Gate 52k 63.0k 37.2k 93.3k
Norm. Logic

41.80 101.27 7.47 4.69
Gate
1920x1080 1920x1080 3840x2160 7680x4320
Max. Resolution @601ps @301ps @601ps @601ps
126MHz 84MHz 124MHz 249MHz
Technology 90nm 65nm 90nm 90nm
2.5 Summary

This chapter presents a unified parameter decoder VLSI a
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contributions are concluded in this chapter:

1) The unified architecture for MV and BS parameter decoder is proposed to
achieve memory sharing. Due to this scheme, only one line-buffer is employed inside
the whole decoder system for 50% saving of memory resources.

2) The CU-adaptive pipeline is proposed to support high throughput of up to 8K
application with reasonable implementation complexity. It guarantees the high
efficiency for processing the diverse block types in HEVC and enhances the data
sharing inside each block type.

3) The proposed Index-mapping and resource reuse schemes are introduced for
irregular process algorithm to achieve 43.2k logic gates reduction. Instead of generating
all the intermediate results, a mapping relationship between inputs and final outputs is
first built up so that the complicated circuits for intermediate results can be omitted.

4) Memory organization is well designed and PU-based coding scheme for co-
located storage can reduce 30% of the total off-chip DRAM bandwidth requirement.
Due to the proposed CU-adaptive pipeline, the pre-processing can be omitted before
the compression.

5) Memory architecture including top line buffer, left line buffer, top-left
RegisterFile and bypass designs can support energy-aware and sufficient burst memory
bandwidth requirement.

Temporal data reuse is utilized in these contributions for pursuing an efficient
design. For example, due to the preliminary knowledge of the data reuse between
motion vector and boundary strength decoding, a unified architecture is proposed.
Similarly, the CU-adaptive pipeline schemes can reduce the design complexity and
enhance the data reuses because I can predict the potential data reuse inside adjacent
blocks. For memory design, I maintain a top line buffer to store the motion data which
will be reused by the next row of 64x64 coding tree units. Instead of storing them in to
registers, SRAM memory is used to organize it. The reason is that I know the reuse of
these motion data and I have to store all the data of a frame width. These will consume
a huge amount of registers with significant energy costs.

As a result, energy efficiency is achieved by my block merging based approach.
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For memory energy, around 30% to 90% of the temporal neighbor access can be
achieved by the PU-based coding scheme. I also mentioned that CU-adaptive pipeline
can further enhance the data reuse for unified decoding of motion data and boundary
strength. In terms of the computing energy, optimization like index-mapping scheme
remove the redundant calculations for intermediate results to save up to 43.2k logic
gates, which is 46% of the final logic gate count. The reduced logic gates mean saving
for required computing energy, especially for the leakage power.

On the other hand, the design overheads are also increased in order to achieve the
above performance. Firstly, the pipeline design is more complex compared to [19] as
the hardware should handle four different CU types. Moreover, the required process

times vary according to the CU types. This is solved by a pre-defined Look-u

In total, these issues increase the design
overheads by requiring more logic gates up to 93.3k as shown in Table 8. Considering
the high throughput requirement and the supported new HEVC standard, the increasing
overheads are acceptable.

In conclusion, the proposed unified parameter decoder supports real-time HEVC

video decoding for 7680x4320@60fps application at 249MHz even in the worst case.
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3. Distance-biased Cache based HEVC Motion

Compensation Architecture

In this chapter, an energy efficient HEVC motion compensation architecture (MC)
with proposed distance biased direct mapping cache is proposed for real-time decoding
8K UHD applications. MC in HEVC decoder system contains two part, prediction part
and cache system. As the most area and power consuming modules inside the many
decode designs like [21], it is essential to put sufficient attentions on finding energy
efficient VLSI design solutions.

Computing energy issue mainly consists of two aspects in the design of motion
compensation. Firstly, the previous designs involve many redundant computations in
the pipeline designs. This redundancy will significantly influence the performance for
8K applications. Secondly, the higher throughput requirement also involves higher
design complexity of cache controller. Especially, cache conflict checks in Section 3.4.3
involves more computation resources in the previous designs. An efficient architecture
is proposed in this chapter for the computing energy.

Memory energy in motion compensation involves the design of cache system.
Existing cache designs cannot fully exploit the features of videos. The cache
performance is enhanced at the expense of higher logic gate costs, or vice versa. A better
solution for reducing memory energy with reasonable design complexity is also
discussed in this chapter.

Both temporal and spatial locality is involved in this design due to the random-
access features in motion compensation. To utilize these localities, cache based
architectures will be deeply discussed in this chapter. Meanwhile, the inefficient
pipeline designs in previous works destroy the data reuse potentials between pipeline
blocks so that the performance is dropped. This chapter will show a novel cache based
motion compensation architecture that can enhance the memory energy efficiency with

acceptable design complexity which is related to the computing energy efficiency.
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3.1 Introduction

High Definition Television (UHDTYV) has been attracting more and more attentions
in recent years. It can support 3840x2160 and 7680x4320 high resolution formats,
which are 4 to 32 times larger compared to high definition television (HDTV). Besides
that, higher frame rate at 120 frames/s and up to 10-12 bits depth per sample are
specified by UHDTYV to further enhance the visual experience. Behind the advantages,
the challenge for supporting real-time UHDTYV application is the critical throughput
requirement. Under this circumstance, new High Efficiency Video Coding
(H.265/HEVC) has been standardized by JCT-VC in 2013 [12]. It announced to double
the compression ratio when compared to previous Advanced Video Coding
(H.264/AVC) standard [6].

Inherited from past generations of mainstream video coding standards, motion
compensation undertakes the indispensable role on predicting inter coded samples.
Compared to H.264/AVC, inter prediction in H.265/HEVC achieves a better coding
efficiency at the cost of higher complexity. Hierarchical coding units ranging from 4 x4
to 64x64, not only produce much more input patterns than H.264/AVC, but also extend
the largest block from 16x16 in H.264/AVC to 64x64, leading to a notable increase of
buffer memory. Meanwhile, a new 8-tap interpolation filter increases the computational
complexity as well as imposing higher bandwidth requirement on off-chip DRAM
memory. All these mentioned above significantly challenge efficient hardware
implementations. If I further consider the high throughput of UHDTV and DRAM
bandwidth requirement, a novel MC architecture is desired for the upcoming UHDTV

and HEVC era.

3.1.1 Function Description in Decoder

Motion compensation is a block-based function unit in HEVC/H.265 as shown in
Fig. 43. In this paper, I define the MC architecture whose inputs are related motion

information of a prediction unit (PU), including its description (location and size),
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motion vectors (MV) and reference frame. Outputs are the motion-compensated
prediction for a block of pixels before reconstruction. Note that MV decoding is pre-
executed in an independent parameter decoder module prior to MC as shown in Fig. 43,
due to the complicated algorithm of MC in HEVC and considerations of the data

sharing in the level of the whole decoder. The detail can be found in Chapter 1.

CABAC q Parameter
Decoder Decoder l v
v 2
Motion S o
IQ&IT — Intra Compensation i g ,Uu
| i | | [ 2
- Deblocking f
Reconstruction > Filter & SAO

Fig. 43 MC in decoder connected with PDec and reconstruction module .

I conclude the function of MC into three steps. The first step is fetching reference
data of each inter-predicted PU from DRAM. The reference data refers to a block of
similar samples in previous decoded picture. The decoded pictures are stored in the off-
chip DRAM, so the reference data should be fetched first. The second step is the
interpolation. As the predictor is usually aligned to a fractional pixel location, MC will
call the 8-tap interpolation filter to generate the values of fractional samples. The last
step 1s weighted prediction (WP) for bi-predicted PU, which contains two available
modes. The explicit mode signals coefticients of WP directly through the bit stream.

The other mode is simply averaging two motion compensated predictions.

3.1.2 Data Reuse of Reference for Design Challenges

3.1.2.1 Throughput: Compute Energy
The most notable difficulty for 8K UHDTYV design is the throughput issue.

Considering 7680x4320@601fps specification, if 350MHz working frequency is
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assumed, at least 5.69 pixels/cycle should be achieved for real-time decoding. Moreover,
high precision interpolation filter kernels are supported by extending filter taps to 8 for
luma and 4 for chroma. This directly enlarges the calculation region for interpolation
as shown in Fig. 44. Taking one luma sample as an example, up to 8x8 reference
samples should be motion compensated to produce the fractional samples' values. The
example of calculating two vertical adjacent fractional pixels is given in Fig 50. Each
fractional pixel requires 8x8 reference pixels and data sharing can be found because of
overlapped internal results. A large amount of filtering calculations is executed during
the interpolation. Therefore, a large amount of logic gates is required to achieve the

high throughput requirement for real-time decoding 7680%x4320@60fps video

8-tap V filter

O

sequences.

8

© 0.0 0|0 © 00 O
© 0800 0,000

O o> 8-tap H filter
O ------- i 4 8-tap H filter
Q - 1 4 8-tap H filter

c_0O O
©O O 0O O 0|0 0 O 0O

6 H fractional results
are overlapping

O OO0 O O OO0 0 O0
©O O 0O O O O

Q - 14 8-tap H filter

8-tap V filter
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Fig. 44 8-tap interpolation filter kernel in HEVC/H.265

Parallel design of interpolation is applied in many previous approaches. For
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example, [21]'s approach increases the number of horizontal filters with variable pattern,
to achieve a throughput of 4 samples/cycle. The parallel implementation of
interpolation itself involves few new challenges. However, other MC modules, such as
MC cache, should be compatible with the throughput of interpolation. A higher
throughput usually requires a much more complicated implementation of cache. My
design aims to construct a reasonable interpolation so that it can take both performance

and compuatibility into account.

3.1.2.2 DRAM Bandwidth: Memory Access Energy

Another indispensable issue is the DRAM bandwidth requirement, which is even
regarded as the bottleneck of a whole video decoder. According to Fig. 43, there are
three modules in the decoder sharing the external DRAM, which are parameter decoder,
motion compensation and filters. In -prediction is designed to have no
communication with the external memory. Both the parameter decoder and filters
access the external memory in a pre-known order. It allows us to pre-buffer the read
and write accesses of these data in queues, and perform the real memory access only
when the memory interface is not being used by MC. However, the reduction of
bandwidth requirement of MC is quite challenging because of the random access for
reference pixels. In this work, I mainly focus on the MC-related DRAM issues because
of its crucial impact on the throughput performance.

This issue comes from two aspects. The major reason lies in the massive data
volume of UHDTYV. Along with the increasing resolution and frame rate, the amount of
reference pixels proportionally increases. The other reason is the longer interpolation
taps. Its effect is obvious when PU size is small. An 8x8 PU has up to 15x15 reference
region, leading to 2.5 times larger data volume compared to original PU size.

The importance of bandwidth issue attracts many researchers' attentions. MC cache
is an efficient contribution to reduce DRAM bandwidth requirement. However, the
cache design should handle the problems that multiple reference frames exist in HEVC.

To show this problem caused by multiple reference frames, the reuse of reference

is first given as shown in Fig. 45 as the overlapped data during the process. The example
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in Fig. 45 contains three blocks processed sequentially and block B has a different
reference frame. If the MC cache consists of only one cache set, the reference data must
be buffered by this cache set and reference of B will flush the data of reference of A.
When Block C is processed the available reuse of reference between A and C inside the
cache set is reduced, resulting in repeated accesses to the off-chip DRAM. Therefore,
this problem implies that an efficient cache design is required for keeping this reuse of

reference so that a better hit-rate can be expected.

[~ Available S~ Original

Locality of Reference Locality‘ of Reference

........ IE H

Frames

MC Cache Frame -2 Frame -1 Current

decoding
frame

n
>

Fig. 45 Reuse of reference in the MC cache design

To solve this problem, a basic idea is to increase the number of cache sets as shown
in Fig. 46. By doing this, the reference of Block B can be separately written into
different cache sets to avoid the data flushing mentioned in Fig. 45. This idea is used
by many previous works. For example, multi-way set associative cache has been widely
adopted to tolerate the potential tag conflict for multiple reference frames and
distinguishing luma and chroma component in comparison to the direct mapping.
Though it achieves acceptable performance on bandwidth issue, the complicated
control logic and mapping method causes MC cache to cost a notable amount of logic
gates. Moreover, up to 64x64 PU size is supported by HEVC/H.265 rather than 16x16
in H.264/AVC. Correspondingly, cache size must be enlarged so that equivalent
performance can be maintained. This results that the size of MC cache and its control

logic become new issues. In conclusion, [ expect a more efficient MC cache architecture
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to deal with the intensive DRAM bandwidth issue.

i

Fig. 46 An approach to increase cache sets for the problem in Fig. 45

3.1.3 Literature Review

Pixel prediction in video decoder, called motion compensation, has several
improvements compared to H.264 as mentioned in Section 1.1.3. There are many works
for H.264 including two works from my research lab [22][26]. These works mainly
focus on H.264 algorithms and pursue high throughput with an area efficiency.
However, insufficient discussions are given for energy efficiency except approaches on
off-chip DRAM bandwidth reduction. Therefore, high energy efficient architectures are
expected.

Two HEVC based works, P. Chiang [43] and M. Tikekar [21], are discussed.

O|1]14|5]16(17]20(21
213)16|7]18(19]22|23
819112(13})24(25]28|29
1011111415]26|27]30|31
3213313637148 |49]52|53
34|35|38|39|50|51]54 |55
40|41144(45|56|57]|60 |61
42143146(47]|58|59]|62 |63

Fig. 47 Direct mapping with 32x32 block mapped in a coding tree unit [43]
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-chip memory accesses.
Moreover, the work focuses on the simple direct mapping scheme for reducing the
design costs. The cache size is also very small (32x32) in Fig. 47, which would cause
many cache misses. This may not be an issue for 4K@30fps applications but will
dramatically drop the performance when working for my 8K@60fps specification. (4x4
redundant memory and compute, direct mapping with small size)

M. Tikekar [21] proposed another architecture for motion compensation with the
same 4K (@301fps specification. For interpolation, it defines the basic pipeline blocks as
16x16. Compared to the scheme of 4x4 in [43], This can remove some redundant
computations and memory accesses while still not so efficient for larger block sizes.
For the cache design, this work chose a cache associativity of four to handle the random
accesses for multiple reference frames. Although the cache performance is good, the
memory size, number of control registers and address mapping are relatively high
which has been mentioned in [43]. For example, the extra circuits for cache
replacements should be designed for these multi-way associative cache camping.
Moreover, four set of addressing circuit for each set are also introduced. The logic gate
count for cache is as many as 90.4k. Therefore, this problem is expected to be enlarged
for higher throughput requirement like 8K(@60fps applications.

In conclusion, although both works are designed for HEVC, there still remain some
design challenges for my research targets. Firstly, when the throughput requirement is
8K@401ps, the current design schemes are not efficient. For example, they both choose
a small block sizes (4x4 or 16x16) as the pipeline block. Although the design

complexity is reduced, the efficiency is scarified. These efficiency is valuable for the
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high-throughput applications like 8K@60fps. Therefore, a more efficient pipeline
designs should be considered. Secondly, cache design still has space for improvement.
In [43], resource costs are the main concern so they choose a simple direct mapping
scheme with a relatively low cache performance. On the other hand, M. Tikekar [25]
pursues a high cache performance by employing the multi-way associative cache
mapping. The involved design costs for logic gates also dramatically increased. An
efficient solution that can balance between cache performance and design cost is
urgently required as this part highly relates to the energy consumption of motion
compensation.

Besides, many other researchers have made their contributions to the architecture
design for MC. Chang et al. in [23] presented an optimal data mapping scheme to reduce
the required bandwidth. Chuang et al. in [24] proposed a bandwidth-efficient cache-
based MC architecture by exploiting intra-MB and inter-MB data reuse. Chen et al. in
[25] discussed a unified MC design supporting multiple video codec standards. Zhou
et al. in [26] extended Chen's work by giving approach on efficient detecting circuits
for conflict hazard when accessing MC cache. While above approaches and many
others like [27][28][29][30]]31][32][33][34][35]]36]|37] are designed for H.264/AVC,
Guo et al. in [38] first proposed an optimized MC interpolation filter for HEVC/H.265
that saves area cost. Other solutions of interpolation can be found in [39][40][41].
Sanghvi et al. in [42] proposed an efficient cache architecture to relieve pressures on
DRAM bandwidth demand. Meanwhile, Tikekar et al. in [21], Chiang et al. in [43] and
Cho et al. in [44] all gave integrated video decoder designs for HEVC/H.265 that

incorporate well-designed MC architecture to support 3840x2160@30fps throughput.

3.2 System-level Architecture

In Fig. 48 the top-level block diagram of my proposed MC architecture is
illustrated. The prediction part, the cache-related part and the off-chip DRAM memory
are depicted from left to right in turn. This work proposes several novel schemes on the
MC cache, which will be introduced in the following sections. MC core (containing
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interpolator and weighted prediction), MC cache and DRAM are three key modules
inside MC architecture. Before discussing these schemes, in this section I will briefly

state my system-level architecture design including the external memory choice.

From Parameter :
Decoder > H ;

FIFO H .| Proposed cache with Distance i _w| Off-chip
H Interpolator H Biased Direct mapping <€3-» DRAM
To E Double | Weighted
Reconstruction Buffer ' Predicton
Interfaces with other modules : MC core : MC cache system : Off-chip DRAM

Fig. 48 The top-level block diagram of the proposed MC architecture.

3.2.1 Data Organization in External DRAM Memory

All of DRAM requests are processed by a DRAM controller. This controller has
the ability to arbitrate when and which requests are sent to DRAM. I set a high priority
for the requests of MC compared to the rest two modules sharing this DRAM because
of the random accessing attribution and the real-time throughput requirement
mentioned in Section 3.1.2.

A 64-bit DDR3 DRAM memory forms my DRAM system in Fig. 49. DRAM
address consists of 13-bit row, 3-bit bank and 10-bit column. As the burst length of
DDR3 is eight, the minimum access unit (MAU) between DRAM and MC core is 512-
bit which maps an 8x4 block of 10-bit pixels containing luma and chroma components
(Actually 480 bits are mapped to this 512-bit space with only 6.7% overhead). MAU
exactly maps to a MC cache line, which will be further discussed in Section V.
Reference pixel data are stored in DRAM in an interleaved manner. The lower bits of
the DRAM address consist of bank addresses followed by the column addresses, while
row addresses are assigned to organize the higher bits. This is to avoid frequent pre-

charge/activate operations for row switching.
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Fig. 49 DRAM organization and interface with MC decoder.

This unified storage for luma and chroma samples brings several advantages.
Firstly, in HEVC/H.265 the MV of chroma component derives from that of
corresponding luma part. Both luma and chroma components share the same MV
information when accessing DRAM. Compared to a separated storage method, this
unified storage helps to avoid frequent DRAM row pre-charge/activation operations
when switching between luma and chroma components. Secondly, as the prediction of
luma and chroma has no dependency on each other, it is possible to process them in
parallel. Unified storage provides a suitable input pattern for the parallel interpolation
design, which is utilized in my design and will be discussed in the next subsection. Due
to the parallel design, the throughput of interpolation can be improved to 1.5 times
compared to serial design of interpolation like [21][43]. The following discussion on
the interpolation and cache will focus on the luma component, while readers should
have a sense that the chroma part is designed by similar architecture of luma part. The
word sample infers either luma or chroma component while pixel means both luma and

chroma samples.
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3.2.2 Width-fixed Strip Process Pattern
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Fig. 50 The division method for Width-fixed strips process pattern of a PU.

A pipeline system is utilized to hide the long latency when accessing the off-chip
DRAM memory. The pipeline granularity is defined as width-fixed strip (which I refer
as to strip in the following). Each PU will be split into several strips with a fixed width.
In this dissertation I unify this width as eight pixels. A strip may have a width of four
in cases where the width of PU is not a multiple of eight. Specifically, this happens
when the prediction unit’s size is 4x8, 4x16 and the last strip in a 12x16 block.

In previous works [21][43]. the pipeline block size is defined as 16x16. It is based
on the observation that I can interpolate a large PU in smaller blocks by treating each
of them as an independent PU whose motion information is identical to that of original
PU. However, the throughput of pipeline is not efficient for PU larger than 16x16.
Taking a 64x64 PU as an example, I actually need 71 x 64 = 4544 horizontal
interpolation operations originally. This is assumed that I have enough calculation
resources so that all the pixels in a 64x64 prediction unit can be processed in parallel.
Meanwhile, I assume that the two-dimensional interpolation is done by first doing the
horizontal filer followed by the vertical filter. The process order is like the example
shown in Fig. 44. Therefore, the horizontal filters can be shared by adjacent pixels in

vertical direction. Therefore, a column of 64 pixels will consume totally 71 horizontal
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interpolation operations considering the data sharing. Therefore, 4544 horizontal filters
are required.

However, 16x16 pipeline block is not efficient, especially for the blocks larger
than 16x16. Inside a 16x16 block, I require 23x16 horizontal interpolation operations
even if I assume that all the operations are done together. Therefore, 16 x (23 x 16) =
5888 operations are needed by continuously processing 16x16 blocks for a 64x64 block,
leading to around 30% performance decrease. If there are insufficient computation
resources to process all 16x16 pixels in parallel, the situation may become worse with
more redundant computations.

The strip-based process pattern is able to avoid this performance drop because no
horizontal cutting is introduced into a PU like Fig. 50. No horizontal cutting means that
the horizontal interpolation results can always be reused followed by the 8x4 pipeline
block which will be introduced in Fig. 52. Thus, a higher throughput performance can

be expected.

3.2.3 Reuse-aware Design of Parallel Interpolator

The implementation of MC core starts with the design of interpolation filter kernel,
which is the most computation intensive processing unit. The 8-tap filter kernel in
HEVC is implemented by the adder-tree structure so that area-consuming
multiplication is avoided to pursue a small area cost. There are three types of filter
coefficients for 1/4, 2/4 and 3/4 fractional locations in [6], which I call Type A, B and
C in Fig. 51 respectively. Three kinds of kernel coefficients supported by HEVC share
common parts, which are first extracted and implemented so that it can be reused. The
differential parts between the common part and each filter kernels are then implemented
respectively. The total structure is shown in Fig. 51. Note that the horizontal and vertical
interpolation filter kernels have the same architecture except the bit width for each
function units. The inputs of horizontal filter kernel are original pixels with 10-bit data
width, while the inputs of vertical filter kernel are the interpolated results from

horizontal filters so that wider data width is expected.
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Fig. 51 The adder-tree structure for implementing an interpolation filter kernel.

With the interpolation filter kernel, I can implement an interpolator unit whose
throughput is 1 pixel/cycle. It is implemented by serially connecting a horizontal filter
kernel, eight registers and a vertical filter kernel. The algorithm has been discussed in
Section 3.1.1. Totally 8x8 pixels are required to calculate one interpolated pixel. By
continuously consuming a row of eight pixels per cycle, horizontal filter kernel will
generate a horizontal interpolated sample value and push it into the register chain. Not

until eight registers are filled with interpolated results can I u
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Fig. 52 8x4 parallel prediction pattern for interpolation design .

Inside the strips, I further improve the parallelism to enhance the throughput by
stacking interpolator units in two directions. A prediction pattern of 8x4 pixels/cycle
are de-signed in Fig. 52 Because of the overlap, only 15%4 input reference pixels and
12 internal registers are required for 8x4 parallelism. The interpolation is capable of
outputting 8x4 pixels per cycle when the internal register chains are loaded with valid
data. I a

I first divide it into eight strips. For each 8x64 strip, the reference region
is 15x71, which can be read out from cache in 19 cycles. Considering the bi-prediction
case, totally 2x8x19 = 304 cycles are required for interpolating this 64x64 PU,

equivalently to a throughput of 13.5 samples/cycle.
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Table 9 Throughput analysis of the strip-based pipeline for each PU type

PU Type Partition | # of Cycles (Bi) Pixel/Cycle
64x64 All 2x8x19 13.5
32x32 All 2x4x11 11.6

2Nx2N,
2x2x7 9.1

Nx2N
2NN 2X2X2DXS 6.4

16x16 nLx2N,
2x7%3 6.1

nRx2N

2NxnU,
2 x (2x5+2%6) 5.8

2NxnD
2Nx2N 2x5 6.4
8x8 2NxN 2x4(Uni) 8.0
Nx2N 2x5(Uni) 6.4

3.2.4 Weighted Prediction
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Fig. 53 The brief block diagram for the weighted prediction.

Weighted prediction (WP) is an optional coding tool in HEVC but it must be

supported by a generic decoder. It is usually utilized to efficiently coding scenes with
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lighting changes like fading scenes by multiplying a weight coefficient for
compensation.

In bi-directional cases, two weighted coefficients, wp0O and wpl, are used to
generated the final inter-predicted pixel values by doing the weighted sum. The
implementation is shown in Fig. 53. The input of WP is the strips, which is defined as
the pipeline granularity in Section 3.2.2. The output of WP is the reconstruction module
as shown in Fig. 43. A double-buffer with two CTU-size are inserted to connect these
two modules. In detail, I will receive an 8x4 block of interpolated pixels from
interpolator every clock cycle. When WP is switched off, all the input data will be
bypassed and sent to the reconstruction module. When WP is switched on, there will be
two possible cases. If the input data are predicted from reference list 0, it will be
temporally buffered by a single-port SRAM inside WP. If the input data are predicted
from reference list 1, corresponding data stored in the SRAM will be read out and the
weighted sum of the two interpolated results of reference list 0 and 1 will be calculated.

The single-port SRAM whose size is equal to the largest PU is employed.

3.2.5 Interfaces and Data Flow

The input of motion compensation is the motion parameters of a PU from
parameter decoder like motion vector and the reference index. An FIFO is utilized to
buffer the outputs from parameter decoder. The output of MC is the inter-predicted
pixels of a PU and are buffered by a double buffer memory. It is connected with the
reconstruction module, which also has connections with intra prediction module and
transformation module as shown in Fig. 43.

In detail, MC starts working with the PU information received from parameter
decoder. This PU will be divided into several width-fixed strips according to the
proposed strip-based pipeline in Section 3.2.2. Then, for each strip I will check the
cache inside the motion compensation to find the missed data and fetch them from off-
chip DRAM. This cache can exploit the data reuse across strips to further reduce the

required DRAM memory bandwidth. The fetched data will be written into the cache
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sequentially under the supervision of conflict checking, which detects the potential
hazard of simultaneously reading and writing the same address. When the reference
data of a strip are ready, they will be read out from the cache and sent to the interpolation.
The throughput of interpolation in my proposed architecture is able to consume this
input pattern to produce a block of 8x4 predicted pixels. After weighted prediction, the
output of MC can be sent to the reconstruction module with a throughput of 8x4 block
pixels per cycle. Finally, in order to handle all cases that may be faced in HEVC
standard, I maintain a two CTU-size buffer between the output of MC and the

reconstruction module to ensure pipeline utilization.

3.3 Distance Biased Direct-mapped Cache Design

Facing the intensive DRAM bandwidth requirement, many previous approaches
utilize two-dimensional (2D) cache to alleviate this issue. They can be classified into

two groups, direct-mapped cache and multi-way set associative cache.
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Cache index consists of lower bits of x,y and reference index

Fig. 54 An example of direct-mapped 2D cache with reference index.

A direct-mapped cache organization has its advantages on area-efficient
characteristics. A general implementation for a direct-mapped 2D cache maps each
cache line based on the lower bits of both x and y coordinates. However, the support
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for multiple reference frames of HEVC/H.265 is not efficient. Two cache lines with the
same coordinates across different reference pictures will conflict to each other.
Therefore, the cache performance is decreased due to these conflicts.

In order to solve this problem, another direct mapping method adds reference index
to the mapping. Thus, a cache index consists of not only the lower bits of coordinates
but also the reference index, as is shown in Fig. 54. The cache is equally divided into
four cache districts and each reference frame is directly mapped to a separated district
inside the cache to avoid the conflict across different pictures.

The drawback of direct mapping with reference index is the large cache memory
size. In some severe cases, HEVC will support up to 16 possible reference frames. If
the cache is designed for the worst case, it will consume a huge amount of memory
resources. Compared to the general direct mapping, N times larger cache size is
required where N is the number of possible reference frames, which becomes

unacceptable despite of its cost-efficiency for the control logic.

Ref. frzlameO ----- [ seto
—I setl
- —I set 2
IT \\\\\\\ = —I set 3
- .
Ref. frame 1 4-way set
T associative
2D cache
I_ C[Ene L Replacement strategy

Each cache line can be mapped to multiple (in this case is

four) alternative memory cells in cache

Fig. 55 An example of 4-way set associative 2D cache organization.

The multi-way set associative cache organization is efficient to address the multiple
reference issue like [21]. Taking the 4-way cache in Fig. 55 for example, it maps each
cache line based on its x and y coordinates. Different from the direct mapping, a cache

line of the 4-way cache can be stored in any one of four alternative memory cells in the
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cache. Replacement strategy should be considered as 4 alternatives are available when
writing a cache line into cache.This redundancy is capable of relieving the conflicts
caused by multiple reference pictures. Compared to a direct-mapped cache with the
same size, this cache organization can usually achieve better performance at the
expense of higher area cost due to the complicated control. In [21] where a 4-way set

associative cache is employed, up to 126k logic gates are required for implementation.

Table 10 Cache size and hit rate performance on several mapping methods

Test sequence: PeopleOnStreet, 2560x1600

Cache Organization Cache Size (pixel) Hit rate
Direct Mapping 128%x128=16,384 45.0%
4-way set associative mapping 64x64%x4=16,384 56.6%
Direct mapping with reference 64%x64x4=16,384 52.7%
index 128x128%4=65,536 56.9%

A simple comparison for the mentioned cache organizations are given in Table 10.
Considering the same cache size (16k) for a fair comparison, the 4-way cache shows
the best performance at the expense of high complexity. If I enlarge each district size
of the direct-mapped cache with reference index from 64x64 to 128x128, the
performance can be improved to be equivalent to the 4-way cache. This proves that the
previous works are trading-off between memory resources and the hardware design
complexities.

Based on the discussions, I propose the distance biased direct mapping scheme to
simplify control logics without sacrificing the performance. The distance biased direct
mapping is a kind of direct-mapped cache organization. A general example is shown in
Fig. 56. Cache is divided into several cache districts, each of which can be mapped to
a specific reference frame. The size of cache districts depends on the distances between
the reference frames and current decoding frame. Similar to the direct-mapped cache,

the cache index also consists of the reference frame index and the lower parts of x and
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y coordinates. The distinction is that the cache district sizes for each reference frames
vary, depending on the distance values between the reference frame and current frame.

The details of distance biased direct mapping are discussed in the following subsections.

—
Ref. frame 0 > ~ Ref. frame 1

. /
/ « /
/
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Distance biased /
. . /
—— direct mapping /
- - /
/
District /
1 /
: / :
. ) / - .
District
283

Different cache district size is allocated to each
reference picture based on its POC distance

Fig. 56 An example of proposed DBDM 2D cache organization

From the viewpoint of hardware architecture, the proposed cache approach is like
Fig. 57. Compared with the previous approaches as shown in Fig. 45 and Fig. 46, this
approach proposed that the cache can be regarded to consist of a big physical cache set.
The motivation is to use direct mapping for simplifying the hardware design complexity
mentioned above. To solve the problem of multiple reference frames, the solution is to
divide this big cache set into multiple logical cache sets. By doing this, each cache set
is in charge of handling the reuse of reference from a specific reference frame.
Therefore, no data flushing from different reference frames happens due to the
separated storage in this approach. Moreover, because the multiple cache sets are
logically divided, it can be on-the-fly programmed as will be discussed in the following

sections in detail FIXME, so that the video features, which will be introduced in Section
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3.3.1 and 3.3.2, can be used to improve the performance of cache.

"'lllu---

Setl

Fig. 57 The proposed cache approach compared with Fig. 45 and Fig. 46

3.3.1 Distance Biased Direct Mapping (DBDM)

Table 11 DRAM access distribution from each reference picture with different

quantization parameter (QP)

Test sequence: PeopleOnStreet, 2560x1600
QP=22 QP=37
Distance
Access # Percentage Access # Percentage
1 78578051 82.3% 66304610 88.5%
2 9787409 10.3% 5389776 7.2%
3 4003179 4.2% 1690667 2.3%
4 3080105 3.2% 1532751 2.0%

The first video feature proposed in this work is the relationship of distance and
similarity between video frames. The distance is the absolute value of the picture order

count (POC) difference between the reference frame and current decoding frame.
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Generally, video consists of continuous frames which are captured in a short time. The
contents of these frames are expected to be similar as shown in Fig. 58. Moreover, if
two frames are closer to each other, the more similarity they may have. This is the first

video feature used for cache design.

Current
decoding
frame
Reference I I I I I .
Frames . . . . .
-4 -3 -2 -1
< - Similarit
Low High Y

Fig. 58 The relationship of similarity and distance in a video

The experiments also prove the proposed video feature is feasible. I notice that
pictures with smaller indexes in LO/L1 usually own smaller distance values due to the
algorithm of constructing the reference list in HEVC/H.265. As the inter prediction
exploits the temporal correlation between pictures, a picture with small distance should
occupy a high probability to be chosen as the reference. Experiments were conducted
for the lowdelay configuration, where the reference frame with smaller index always
has a smaller distance. The number of DRAM requests without cache is counted. The
results are shown in Table 11. The requests for the first reference frame account for the
major proportion (more than 80%). On the other hand, only less than 5% of the total

requests are for the picture with largest index.
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0.0% %’
32x32 64x64 96x96 128x128

Cache District Size / pixels

Fig. 59 The relationship between hit rate and cache size for Slice P.

The distance biased direct mapping is proposed to shrink the size of direct-mapped
cache with reference index while keeping its hit rate performance. I have recognized a
reference frame with a smaller distance leads to a higher requirement on memory
bandwidth in the last paragraph. It inspires us to allocate different sizes of cache
districts according to their distances. I first conduct experiments to observe the relation
between the hit rate and the district size for each reference pictures under the lowdelay
configuration. As shown in Fig. 59, Slice P has one reference frame list, in which
distances of each frames are larger if the indexes are larger. For a single reference
picture with direct mapping, increasing cache district size leads to an improvement on
hit rate. The improvement of Ref idx_0 is much clearer than the rest. On the other hand,
only around 1% of the total DRAM requests are for Ref idx 2 or Ref idx_ 3. Therefore,
a relatively larger cache district size should be allocated to Ref idx 0, so as to
guarantee the hit rate performance. On the other hand, a small district size can be

assigned to pictures with large indexes to pursue a smaller cache size in total without
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sacrificing performance. An example is given in Fig. 60 where the sizes of cache sets
vary based on the importance in Fig. 59. These form the basic idea on the distance

biased direct mapping.

MC cache sets

Ref_idx_0 Ref_idx_1 ; Ref idx

(64x128) (64x96) 28&3

(32x128)

Fig. 60 An example of allocation of cache resources based on frame distances

3.3.2 Frame Structure Adaptive Mapping Scheme

The second video feature proposed in this approach is the reference frame structure.
Fig. 58 illustrates an example of low-delay-P configuration where all the reference
frames are prior to the current frames. In such a case, the similarity of these frames
gradually decreases when they distance becomes larger. In other cases, the frame
structure may be changed so that the reference frames may either prior to the current
frame or after the current frame as shown in Fig. 61. This section tries to utilize this video

feature to further enhance the cache performance.

Current
decoding
frame
Reference ! ! ! -
Frame . . . o
-1 +1
< - Similarity >
Low High High Low

Fig. 61 An example of reference frames located prior and after current frame
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Fig. 62 The relationship between hit rate and cache size for Slice B.

I further propose the adaptivity based on the current frame structure. The frame
structure refers to the content of reference picture list (RPL). The adaptation means
cache mapping is dynamically adjusted based on the variation of RPL content. In detail,
HEVC/H.265 support two slice type, slice P and slice B. They usually own different
compositions of RPL. Slice P in lowdelay configuration usually has two identical RPL,
L0 and L1, while slice B contains two reference pictures in each list and each list has
the similar rule of Slice P. As shown in Fig. 62, two pictures with idx_0 from both LO
and L1 occupy most of the DRAM access. The results prove that smaller distance infers
a larger proportion of the total DRAM accesses. The reason is that Ref idx 10 0 and
Ref idx 11 O are the closest pictures prior to and after the current decoding picture,
respectively. These two pictures should both be allocated with larger cache district sizes,
which is quite different with slice P. When my proposed MC cache decodes a video

sequence, it can adaptively adjust its mapping strategy based on current decoding slice
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type to achieve a better hit rate performance.

3.3.3 Simulation Results for Distance Biased Direct Mapping

For the default configuration in HEVC/H.265, DBDM is designed to be a size of
18,432 pixels (576 8x4 cache lines) and is divided into three districts as shown in Table
13. For slice P, the first and the second largest districts are assigned to the first two
pictures in the reference list. The last district is shared by the rest of two reference
frames. Note that cache district sizes contain a number of 96, which is not a power of
2. When calculating a tag or index of a cache line, the division of 96 will be involved.
It is realized by right-shifting dividend with 5 bit and then dividing three. Division of
three is achieved by LUT whose input is 7-bit width for a 7680x4320 format.

Experiment results in Table 12 show that the hit rate performance of DBDM can
achieve around 10% improvement compared to the direct mapped cache with
equivalent cache size, since the proposed DBDM is more efficient in handling with the
multiple reference pictures. Meanwhile, the performance of DBDM is comparable to

that of the 4-way set associative cache, despite the direct mapping of DBDM.
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Table 12 Simulation and comparison results for the proposed DBDM.

Hit rate performance
Seq. Confi Direct 4 Proposed | Improvement
onfig. -wa,
Class 8 mapping (16 38}4/1) DBDM over direct
(16,384) ’ (18,432) mapping
LD22 63.0% 67.7% 67.2% 4.3%
Class | LD37 66.6% 67.7% 67.6% 1.0%
A RA22 49.1% 60.1% 59.1% 10.0%
RA37 53.0% 58.6% 58.1% 5.1%
LD22 67.0% 72.3% 71.9% 5.0%
Class | LD37 66.7% 67.7% 67.6% 0.9%
B RA22 50.2% 63.3% 62.4% 12.2%
RA37 52.9% 58.4% 58.3% 5.4%
LD22 58.5% 66.1% 65.4% 7.0%
Class | LD37 62.6% 64.1% 64.0% 1.4%
C RA22 44 8% 59.6% 58.8% 14.0%
RA37 49.4% 56.3% 56.0% 6.7%
LD22 57.8% 69.2% 68.3% 10.6%
Class | LD37 64.3% 66.5% 66.3% 2.0%
D RA22 40.1% 63.3% 62.0% 22.0%
RA37 48.0% 59.0% 58.6% 10.5%
LD22 47.6% 50.5% 50.4% 2.8%
Class | LD37 38.6% 39.0% 38.9% 0.4%
E RA22 33.1% 42.2% 42.0% 8.9%
RA37 23.2% 26.0% 26.1% 2.9%
LD22 34.8% 36.7% 36.5% 1.7%
Class | LD37 33.6% 34.2% 34.1% 0.5%
F RA22 25.3% 29.8% 29.4% 4.1%
RA37 24.5% 26.8% 26.5% 2.0%
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3.3.4 Design Overheads of This Section

Table 13 A cache district division example for DBDB

Slice Type Ref. Picture Cache district size (pixel)

Ref idx 0 64x128
Ref idx 0 64x96
Slice P 18,432
Ref idx 0
32x128
Ref idx 0

Ref 10 idx 0 | 96x96

Ref 11 idx 0 | 64x96
Slice B 18,432
Ref 10 idx 1

3296
Ref 11 _idx 1

The complex for hardware implementation of distance biased direct mapping cache
is higher than the previous works. In the design phase, the distance biased direct mapping
is implemented by a reconfigurable Look-Up-Table. Designers can flexibly initialize the
content of Look-Up-Table based on their design demand. Thus, the distance biased
direct mapping is capable of handling different configurations of frame structure. Look-
Up-Tables are utilized to store the parameters of each cache districts (width and height,
district offset inside cache). These parameters are important to address the cache
structure (tag, index, offset). For example, the cache district division in Table 13
corresponds to the content of Look-Up-Table as shown in Fig. 63.

When checking whether a cache line is hit or miss, I can first calculate the location
of this cache line by using motion information. Then, the index of the cache line is
generated by the lower bits of coordinates and the reference frame index. The cache
district offset value is then added to generate the index, like the formulas in Fig. 63.
Meanwhile, the tag information combines the rest of the coordinate bits. The definition
of the lower bits is the modulus of dividing the coordinates by the cache district size.
Especially in my proposed distance biased direct mapping, the cache district size is

distance biased and can be read from the Look-Up-Table. Finally, tag memory is read
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with the calculated index and the read data are matched with the calculated tag to decide

a cache hit or miss. This is the basic processing flow of the proposed cache organization.

Look-Up-Table Read Look-Up-Table based on

(width,height, offset) current slice type and
(64,128,0) reference frame index
= | (64,96,256) v
(5]
& | (32,128,448) Tag = [x/width/8 , y/height/4 , ref_pic]

— 0, H 0, 1 * 1
(32,128,448) Index = (x%width)/8 + (y%height)/4*(width/8) + offset

(96,96,0) Ex. SliceType = P, ref_idx = 0, cache line = [72,128]
(64,96,288) Width = 64, Height = 128, Offset = 0

v

Tag =[5'd1, 4'd0, 2'd0]
Index=1+0+0=1

Slice B

(32,96,480)

(32,96,480)

Fig. 63 An example of Look-Up-Table for cache address calculation

3.4 Optimization for High Integration Density

Aoy fTho) Row-based miss
Input: Motion  WFS pipelining Info. compress Cache line pipelin

info. of strip Width-fixed e Tl DRAM
strip to row Interface

Cache tag
memory

strip-FIFo1 [ —]
Tag is checked [
[ |

Miss request

Strip-FIFO2
Miss is
requested

Mask-based block conflict check

x_mask i
x_mask
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Bit-wise AND

=
Y - i-th

Strip-FIFO3 E :
Ready to > WPS in
e i FIFO y_mask

N Output: Four cache linesinarow

Cache Read - >
To Interpolation

Fig. 64 Detailed Block diagram on the proposed MC cache architecture

Fig. 64 illustrates the details of MC cache. Every input motion information of
width-fixed strips will be buffered throughout the whole process by three Strip-FIFOs
in a relay manner. In detail, all the cache lines of strips in Strip-FIFO1 are checked.
This process may find several missed cache lines. When all missed cache lines have

been requested to the DRAM, this strip will be transferred from Strip-FIFO1 to Strip-
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FIFO2. Strip-FIFO3 stores strips which are ready for output. It means all the missed
data in this FIFO has been stored in the cache. The strips will be kept in Strip-FIFO3

until all the reference data has been output to the interpolation.

3.4.1 Bank Organization of Cache Memory

3.4.1.1 Tag Organization

The tag memory consists of four banks. Each tag information corresponds to a 8x4
block cache lines. Four banks support up to four cache lines (32x4 block) in a row to
be checked simultaneously. This helps to improve the throughput due to the assumption
that more cache hits occur

than misses. The last two bits of the index of a cache line indicate which bank the
current MAU belongs to. The tag information will be updated immediately as soon as
a cache hit occurs so that following tag checking can be pipelined without having to

wait until the corresponding pixels in the data memory are really updated.

3.4.1.2 Eight-bank Data Memory
A DRAM MAU has been defined as 8x4 pixels containing both luma and chroma

components, which should be written into the cache in one cycle. Meanwhile, the
interpolation filter needs reading 15x4 pixels per cycle from the cache.

Generally, the cache data memory is designed to be consistent with the tag memory,
consisting of four banks. Each bank has a throughput of 8x4 pixels. Hence, totally 32x4
pixels can be read out from cache, among which only 15x4 pixels are used by the
interpolation. These 15%4 pixels are not aligned and could locate inside anywhere of
these 32x4 pixels. A barrel shifter which can achieve circular shift mechanism is used
to extract the specified 15x4 useful data. The shift offset ranges from 0 to 15, which is
able to be expressed by four bits. Thus I have organized the barrel shifter with four
layers. The first layer handle with the most-significant bit to decide whether to shift the
input 16x4 pixels by eight. Similarly, the last layer is for the least-significant bit with a

shifting value of one. However, concerns are voiced for this architecture. As the usetul
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data only account for 46.9% of 32x4 pixels, the barrel shifter has to filter out more than
half of the input data. This causes the barrel shifter to be implemented by a large amount
of multiplexer, leading to a huge area cost.

To resolve the concerns, the proposed memory consists of eight banks, each of
which supports a throughput of 2x4 pixels containing both luma and chroma parts. It
can reduce the cache output ports from 32 x4 to 16x4 without affecting the performance.
Thus, the proportion of the useful data increases from 46.9% to 93.8%. The specified
15x4 pixels can be easily selected from the 16x4 input pixels. Obviously, the circular
shift for this architecture can be quite smaller than that of the four banks solution. On
the other hand, this architecture does not affect the writing requirement. ADRAM MAU

can be written into specified four of eight banks based on the cache line address.

3.4.2 Row-based Miss Information Compression

Generally, every cache miss will produce a reading request to the off-chip DRAM,
which requires the corresponding location information to be buffered in FIFOs. Many
previous works like [21][25] check cache miss with a processing unit of cache line. In
detail, in each cycle a cache line request produced by MC core will be processed by
checking whether its tag is the same as that in tag memory. In case of a cache miss, a
reading request to the external DRAM is produced. In my consideration, this data
structure is not efficient for the hardware design. Firstly, a much more notable amount
of cache misses would appear because of the higher throughput requirement of UHDTV.
This significantly increases the internal memory size. Secondly, the four-parallel tag
memory supports four cache lines to be checked simultaneously and each of them can
be hit or miss. This means that the number of produced requests is uncertain, ranging
from 0 to 4. The uncertainty is not friendly to the hardware implementation which has

to be designed for the worst case. I ha

-based Miss Information Compression scheme is proposed to tackle with the

above concerns. | define the row as the four cache lines which are checked together.
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Row-based miss information means that the miss information is represented based on
the row, instead of cache line. Row-based Miss Information Compression of each row
consists of two parts. One is the 5-bit offset of the row, indicating the distance between
the current row and the first row inside this width-fixed strip. The other is the 4-bit
status flags, representing the hit or miss status for these four cache lines. According to
these nine bits, rows are classified into three types, miss row, all-hit row and last row,

as shown in Fig. 65.

Row  Four cache lines in a row RMIC Row types
miss miss 00000 0101 Miss row

00001 ; 0000
00010 {0000; | All-hit row
00011 ; 0000

miss | miss 00100 0110 Miss row

o1 o000
Row index inside the strip 4—]

hit/miss of cache lines in the row

v A WN =R O

Row-based miss information

compression (RMIC) scheme
Each row are presented by 9 bits.
Miss rows and last rows are pushed into RMI-FIFO,
while all-hit rows are abandoned.

Fig. 65 An example of row-based miss information compression.

Row-based miss information compression is capable of compressing the miss
information. Firstly, row-based information itself can be regarded as a compression
compared to the cache line based one, when multiple misses exist inside arow. Secondly,
I can expect more all-hit rows due to distance-biased direct mapping. The row-based
miss information compression of an all-hit row is meaningless because it contains no
reading request to the DRAM so I will not buffer them. Only the miss rows require to
be buffered. As a supplementary step, the last row of a width-fixed strip should always
be buffered even if this row is an all-hit row, to guarantee that following modules in
MC cache can recognize that this is the end of the strip. The reason is like this. Based

on the block diagram in Fig. 64, the Miss Request module would receive the
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information asserting the last row of a strip. This information indicates that all the cache
lines of the current processing strip have finished matching with the content of the tag
memory. Therefore, I can use this information to trigger Strip-FIFO1 for pulling this
strip out and Strip-FIFO2 for pushing the strip in. If the last row information is excluded
from the mechanism, I consider a corner case where all cache lines of a strip are hit. In
this case, the row-based miss information compression scheme will not produce any
information to the following Miss Request module. No information means no pull
operation of Strip-FIFO happens which should happen, resulting in errors of the total

system.

3.4.3 Mask-based Block Conflict Check

The pipeline is widely employed to eliminate the long DRAM accessing latency.
Because of pipeline, different modules might work in different stages. Specifically,
cache read module and cache write module may process two different strips at a certain
moment. All the strips in Strip-FIFO3 are ready to be fetched from the cache. If cache
write module writes a missed MAU into the cache, whose address coincides with that
in Strip-FIFO3, a conflict will occur.

In many previous works, this conflict is checked as a line-to-line manner. The first
line in (line-to-line) means a missed cache line (MCL) which is about to be written into
the cache. The second line in (line-to-line) implies all the cache lines of width-fixed
strips in Strip-FIFO3. The address of MCL has to be compared to the addresses of all
cache lines for conflict checking. Note that all the comparisons should be done in
parallel. Because of the pipeline, I can infer that there would be several strips in Strip-
FIFO3, each of which contains several cache lines. This would lead to a huge area cost

and a long critical path.
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Mask_x_blk = 8 bits

8x4-1bit |

Current MAU for writing
Just only one 1 in both width
and height (Shifting op.)

16 bits

A block for
conflict check Mask_x_blk >> MAU_x
(16+8 = 24 bits) Mask_y_blk >> MAU_y

Conflict = Mask_x_blk[0] & Mask_y_blk[0]

Mask_y_blk

64x64 cache

Fig. 66 Mask calculation in Mask-based Block Conflict Check

I propose the mask-based block conflict check scheme as shown in Fig. 66. The
mask-based block conflict check is based on a line-to-block architecture scheme. A
block means the strips in Strip-FIFO3. If the missed cache line overlaps with any strips,
a conflict is detected and cache write module is pended until the related strip is popped
out from FIFO. Because the number of strips in Strip-FIFO3 must be smaller than that
of cache lines, the circuit area for the line-to-block scheme should also be smaller.

The block mask is introduced in the mask-based block conflict check. A block mask
designates the region of a strip in Strip-FIFO3 within the corresponding cache district,
which cannot be modified until this strip is popped out. Since a cache district can be
defined by its width and height, the block mask is designed to consist of x-mask and y-
mask correspondingly, as shown in Fig. 66. Taking the x-mask for example, if [ assume
cache width is 96 and the width of cache line is 8, then x-mask would consist of 12 bits,
in which a sequence of ones (1s) exists. These ones designate the interval as being the
mapping of the width of strip. For example, a mask of 0x007 means the width of current
strip is mapped into the interval from O to 23. Instead of directly comparing the
coordinates of the cache line and every strips, I do the bitwise AND operation between
the current line and every block masks to reduce the area cost. If the result is not all-

zero, a conflict is detected.
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3.5 Experimental Results

The proposed MC has been implemented by Verilog HDL. Simulation has been
performed on both register-transfer level and post-synthesis level. Both the low-delay
and random-access configurations are tested with Quantization Parameter 22 and 37 for
verifying the hardware’s correctness. I have mentioned in Section 3.2.2 that
theoretically 5.69 pixels should be processed under 350MHz clock frequency.
Therefore, I implemented the highly parallel interpolation architecture with the fixed
8x4 prediction pattern inside the width-fixed strip pipeline in hardware level. This
allows us to be capable of predicting 5.8 pixels/cycle even in the worst case shown in
Table 9, which is sufficient to support the MC core for 7680x4320@601ps specification
at 342MHz.

The RTL design is synthesized with SMIC 40nm CMOS technology with Synopsys
Design Compiler. The result shows that the total gate count for 8/10-bit is 419.0k
(equivalent to 2-input NAND gate) and the achieved maximum clock frequency of my
proposal can achieve 400MHz. In detail, the major part of the area cost is from the
interpolation because of the high parallelism for 8K UHDTYV application. About 297.3k
gates are consumed for its implementation. 62k logic gates are taken to realize the
cache-related parts, containing the proposed distance-biased direct mapping cache and
several optimizations discussed in Section 3.4. Meanwhile, 276.5kb on-chip SRAM
memory for 10-bit storage is utilized for the cache data memory.

Table 14 shows the comparison with previous works. Compared to the H.264/AVC
approaches, implementations on HEVC/H.265 present a relatively larger cost on logic
gates due to the more complicated algorithm like 8-tap interpolation. In comparison to
the HEVC approaches, I mainly give a detailed discussion in the following about the
cache and interpolation parts since previous works do not involve the description of
weighted prediction though it closely tights with the motion compenstaion. Therefore,
the logic gates and memory resource utilizations are over-used because this work

supports the weighted prediction function.
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The conception of normalized gate count is introduced for a fair comparison since
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the logic gate cost is proportional to its maximum throughput. It is calculated by
dividing the gate count of cache and interpolation parts by the throughput. As is shown
in Table 14, compared to [43], my proposal achieves at least 2.01x area efficiency based
on the normalized gate count despite the increased complexity of 8x throughput
requirement. This area efficiency benefits from two parts. Firstly, the proposed cache is
capable of supporting the data delivery requirement of 7680x4320@601ps sequences
at the equivalent area cost of other works, due to the direct mapping of distance-biased
direct mapping scheme and optimizations like row-based miss information
compression and mask-based block conflict check discussed in Section IV and V,
respectively. Secondly, the high parallelism design of interpolation helps to eliminate
the hardware redundancy by exploiting the possible data sharing, such as reference data
and sharing information of luma and chroma components. Meanwhile, the interpolation
part contains an area-efficient circular shift owing to the eight-bank 2x4 memory
structure in Section 3.4.1. In total, the proposed MC cache architecture can realize a
near-optimum hit rate and area-efficient performance although a relative large size of
memory is utilized.

I further define the concept of the normalized memory. From the Table 14, the
memory requirement for HEVC is much more intensive compared to that of H.264 like
[26], due to the new coding tools like larger coding unit and 8-tap interpolation filter.
For the HEVC works, my memory shows a better efficiency in the normalized memory
usage except [43]. [43] does not provide a detailed discussion on their cache

architecture. I a

I think this
cache is not capable of real-time decoding an 8K (@601ps video sequence unless the size
could be enlarged so as to reduce the intensive bandwidth requirement for SK UHDTV.
By contrast, my proposed MC cache has proved to achieve near-optimal performance

with an efficient memory cost.
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Fig. 67 Cache workload comparison with [21]

The power consumption results are also provided in Table 14. As far as I know,
only Tikekar et al. in [21] provided the power consumption results of a whole decoder.
To make a relatively fair comparison, I calculate the power consumption of
corresponding modules (MC core and MC cache) according to the logic gate counts. In
my architecture, I employ an eight-bank 2x4 memory structure as cache memory to
double the data delivery efficiency, which is supposed to be helpful to save power. The
results prove that my proposed MC architecture is more efficient than [21] and 62.4%
of the normalized power consumption can be saved.

In Fig. 67 I present the comparisons of MC cache workload across three cache
organizations. The gray and white bars respectively present the numbers of reading and
writing requests for the cache. Compared to [21], my proposed the distance-biased
direct mapping cache shows a lower workload by around 50%. The reason why [21]
involves a higher workload comes from two aspects. The first one is the serial process
of luma and chroma components, which theoretically produces around half more
requests than the one in parallel. Secondly, the pipeline granularity is defined as 16x16,

which is not efficient for large PU as discussed in Section 3.2.2. A larger workload per
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unit time means a higher throughput requirement, which generally costs more logic
gates for the hardware implementation. Meanwhile, the more workload also means the
power consumption is larger. Additionally, I further propose several hardware
optimizations like row-based miss information compression and mask-based block
conflict check to reduce the area cost. In total, the logic gate count of my proposed
cache is 62.0k, which consumes similar area cost with others [21][43] despite the

increased data throughput.
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Fig. 68 DRAM bandwidth comparison with [21]

Fig. 68 depicts the bandwidth requirements and hit rate performances. Although
the 4-way set associative cache of [21] shows a higher hit rate and a smaller cache size,
the bandwidth requirement is still larger due to the more DRAM reading requests shown
in Fig. 67. I conclude the main reason as follows. Theoretically, a 4-way set associative
cache is capable of handling the multiple reference frames in HEVC/H.265 in which
four reference frames are supported in default configurations. However, [21] processes
luma and chroma components serially and they share the same cache. To guarantee the
performance, the cache associativity should be further increased. Therefore, I add a
simulation on an 8-way set associative cache organization and show the result in both
Fig. 67 and Fig. 68. I can find that the 8-way set associative cache organization can

provide a similar bandwidth requirement to mine. However, this performance
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improvement is at the expense of doubling the cache size compared to [21]. The
262.1kb of the 8-way set associative cache is 18.5% larger than mine. Moreover, as the
logic gate count of the cache control part reflects the complexity, the 8-way cache would
consume much more logic gates than the 4-way one. This makes the efficiency of the

cache part worse.

3.6 Summary

This chapter presents a motion compensation architecture which is capable of real-
time decoding 7680x4320@60fps video sequences at 342MHz clock frequency. It
significantly improves energy efficiency with several novel architecture optimizations,
as summarized below:

1) A distance biased direct mapping scheme is proposed to realize a high-
performance motion compensation cache that can achieve a near-optimum hit
rate close to that of a similarly sized multi-way associative cache. In the
meanwhile, the proposed cache involves significantly lower complexity by
being direct mapped.

2) An eight-bank 2x4 memory structure doubles the data delivery efficiency of
the cache by providing different word length in the input and output ports,
which saves area and power of the on-chip memory.

3) Width-fixed strip based pipeline design maintain the data reuse between
adjacent pipeline blocks, enhancing the data reuse and reducing the redundant
calculations to achieve the optimal data reuses in the vertical direction.

4) In implementation of the MC cache, row-based miss information compression
is applied to reduce the size of FIFOs in the pipeline. Mask-based block conflict
check is also proposed to efficiently detect the pipeline hazards.

Both temporal and spatial locality are exploited by the distance biased direct

mapping cache for achieve both computing and memory energy efficiency. The first
and second contributions come from this idea. Compared to previous works, this

scheme further utilizes the features of video to improve the design. Moreover, the
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temporal locality of horizontal interpolation results is also maintained in the proposed
width-fixed strip based pipeline design to remove the 30% redundant computations for
energy saving. Finally, some hardware optimization schemes in the last contribution
point are proposed to further reduce the computing energy.

The demerits of the proposed architectures are mainly the more consumption of
logic gates due to the following reasons. Firstly, the required logic gates are
significantly increased to support the high throughput requirement of 8K applications.
Secondly, the width-fixed strip pipeline design requires a sophisticated controller as the
height of strips is variant. Thirdly, the circuit for calculating the addresses is becoming
complicated compared to the direct mapping as the cache district can vary according to
the design demands, which may introduce the area-consuming division operations into
the circuits. Finally, the increased logic gates are used for supporting more functions
like 10-bit process and weighted prediction, which cannot be supported by the previous
work like [21].

In conclusion, the system is pipelined with the proposed width-fixed strip pipeline
granularity and is highly parallel designed so that 8x4 pixels can be processed
simultaneously. By applying these schemes, around 60% of redundant DRAM accesses
can be eliminated with a smaller control logic gate count due to the direct mapping. To
further reduce the area cost, several optimizations have been presented based on
hardware implementation. The row-based miss information compression helps to
compress the miss information and mask-based block conflict check has been designed
to achieve an efficient conflict checking circuits. By employing these approaches, my
MC design consumes 419.0k logic gates and 364.8kb on-chip SRAM for 10-bit

application in total, proving a better performance and the efficiency on area cost.
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4. Conclusion

4.1 Summary of This Dissertation

In order to achieve the big target of HEVC decoder for 8K UHDTYV, this
dissertation focuses on the inter prediction related functions for energy efficient VLSI
a
It contains two important modules, decoding motion vector (parameter decoder in
Chapter 2) and decoding inter prediction samples (motion compensation in Chapter 3).

To improve the energy efficiency, the basic motivation to investigate the potentials
from a data reuse point of view for these two modules. This work discovered
unexploited data reuse potentials and achieved energy reduction in both computing and
memory parts. The detailed summary of this work is as follows:

In Chapter 1, the preliminary of this dissertation is first given. The new features of
HEVC are first introduced and related VLSI design challenges are discussed for both
motion vector decoding and motion compensation. For 8K HEVC applications, the high
throughput requirement and energy efficiency are the main problems for designing an
efficient architecture.

In Chapter 2, a unified parameter decoder architecture for SK UHDTYV applications
is designed with the proposed block merging idea for data reuse. Block merging can
reduce block shapes to reduce hardware costs and maximize data reuse to reduce
energies for computations by at least 50% (50% is the case where 8x8 CU contains two
PUs). The design can accomplish the algorithm of MV and BS calculation for sharing
the memory and logic resources. In particular, CU-based pipeline strategy is the
approach to implement block merging to simplify control logic as well as supporting
HEVC's new coding tools. Moreover, on-chip line buffer and cyclic SRAM are
designed for both spatial and temporal reference storage to guarantee enough bandwidth
requirements. PU-based coding scheme can help reduce around 30% of DRAM

bandwidth. Finally, optimization on irregular algorithm is adopted for 43.2k logic gates
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reduction. In total, the proposed unified parameter decoder supports real-time video
decoding for 7680x4320@60fps application at 249MHz in worst case with 36%
reduction on the logic gate cost for reducing compute energy compared with the state-
of-the-art works. The demerit is the more area consumption for implementing
complicated hardware to support the diverse block types in HEVC.

In Chapter 3, a motion compensation architecture for decoding inter prediction
samples is presented with the proposed distance-biased cache. This cache can improve
cache reuse possibility based on the proposed idea of distance. In detail, the system is
pipelined with the proposed width-fixed strip pipeline granularity and is highly parallel
designed so that 8 x4 pixels can be processed simultaneously. Meanwhile, the distance
biased direct mapping scheme for cache organization achieves equivalent hit rate
performance to relieve the bandwidth pressure on DRAM. By applying this scheme,
around 60% of redundant DRAM accesses can be eliminated with a smaller control
logic gate count due to the direct mapping. To further reduce the area cost, several
optimizations have been presented based on hardware implementation. Row-based
missing information compression helps to compress the miss information and Mask-
based block conflict check has been designed to achieve an efficient conflict checking
circuits. By employing these approaches, my MC design consumes 419.0k logic gates
and 364.8kb on-chip SRAM for 10-bit application in total, proving a better performance
and the efficiency on area cost. Compared with the state-of-the-art works, this design
achieves 76%, 81% and 62% improvement in terms of logic gate, memory requirement
and energy consumption. The demerit is the increased logic gate costs for supporting
the reconfigurability of cache.

In total, the proposed architectures can support most of the basic coding tools for
HEVC inter prediction defined in HEVC Version 1, profile Main and Main 10 [12], as
shown in Table 15. For example, the CTU sizes can range from 16 to 64 and all the
possible partitions defined in [ 5] can be ideally supported by the proposed architectures.
Meanwhile, the supported chroma subsampling is 4:2:0 and the precision of each
sample can be 8/10-bit. Generally, if a video is encoded with HEVC version 1, profile

Main and Main 10[12], this work can be directly employed for decoding inter predicted
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samples without further efforts.

Table 15 Supported HEVC coding tools by this dissertation

Coding Tools Supported in this dissertation
CTU Size 16,32, 64
CU Size 8, 16,32, 64
PU Partition Symmetric/Asymmetric partition
Prediction Mode Merge mode, AMVP mode
Interpolation Filter 7/8-tap for luma and 4-tap for chroma

However, there are still some remaining problems in the current design. I will
discuss them from two views.

From the view of this research themes (PDec and MC), there are still potentials for
better efficiency in terms of area and memory costs. For example, the on-chip memory
resources in Chapter 2 are increased from 7.2k (normalized from 4K to 8K UHDTV)
to 23.0k for data reuse to reduce expensive off-chip memory energy. In Chapter 3, the
area costs are also increased compared to [19] due to the complicated cache control
circuits for implementing the distance-biased cache. These increased costs not only
increase the fabrication costs, but also consumes more leakage power, which might be
a problem if CMOS technology cannot scale down these energies in the future [7].
Therefore, it is meaningful to give a further discussion on how to reduce area costs as
well as improving energy efficiency.

From the view of the big target (w
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as unsolved problems for its better visual experience which might be demanded in the

near future.

4.2 Future Works

Based on the above summaries, I conclude that there are some meaningful future
works in three aspects, each of which is discussed from a data reuse point of view.

First, future works for this research themes could try to find better data reuse
techniques for hardware architecture designs. Currently, the better energy efficiency is
at the expense of more area costs because more on-chip memory resources are
employed for buffering these reused data. For example, one possible solution for
reducing memory resource requirements in Chapter 2 is to encode the data before
storing them into memories. This can save the memory resources at low costs if a proper
coding scheme is found. A possible solution for increased area costs in MC cache is to
optimize the high-cost division in current architectures. For example, we can still use
distance-biased ideas to divide the cache into sets, whose sizes can be limited to power
of 2 to omit the usage of divider. This might help us to reduce the increased demand for
the on-chip resources as well as achieving better energy efficiency.

Second, future works for the big target could be discussed in three parts. (a) It is
possible to improve energy efficiency of other modules. Some modules like intra
prediction or sample adaptive offset in HEVC decoder have the reuse potential in their
computing algorithms. For example, the data fetched for intra prediction need to be
smoothed for pre-processing. If the same data are fetched several times, pre-processing
will be repeatedly executed for each fetch, which consumes more energies. Another
meaningful work is to focus on other energy consuming modules like inverse
transformation, which dominants the second most energy consumptions. (b) It is also
important to find solutions toward a higher throughput like 8K (@ 120fps. One possible
solution is to investigate multi-core solutions where each core can inherit the results of
this thesis. A new L2 cache is expected which can enhance the data reuse among cores.
(c) Moreover, it is also meaningful to explore architectures for other HEVC profiles
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instead of profile Main and Main 10. For example, some of the new profiles are defined
for the usages under specific cases like 3D, screen content coding and so on. Some new
coding features in these profiles may have potentials to explore new architectures for
better energy efficiency. The above discussions are some meaningful future works for
achieving an energy efficient HEVC decoder system.

Finally, it is possible to extend the motivation of data reuse to other applications as
the future works. For example, HEVC encoder consumes more energies than decoder
and there are many potentials to reduce energy costs from data reuse. The inter
prediction in HEVC encoder, also known as motion estimation, dominates the majority
of the total encoding complexity. It usually employs block-matching algorithms by
sliding searching window inside the whole searching region. The overlapped searching

windows provide good potentials for exploiting energy efficiency VLSI a
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