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Abstract

Along with explosive VLSI applications in modern technologies, VLSI design using software
tools becomes of the utmost importance, which is referred to as electronic design automation (EDA).
EDA design flow, also called IC design flow, is a process which consists of several automated steps
to accomplish the design of an IC. Since EDA tools play an important role in developing ICs with
high performance, low cost and fast time-to-market, the development of high etficiency algorithms
used in EDA design flow for various optimization objectives are attracting mote and mote research
interests. The general EDA design flow contains several representative steps including high level
synthesis (HLS), logic synthesis, and physical synthesis, etc., to meet various design requirements
such as power, chip area, clock frequency and signal delay.

Since mid-1970s, the investigations of EDA design methodologies have been carried on for
decades, and significance achievements have been made for automated designs instead of manual
designs. Along with the development of commercial EDA tools, EDA companies are also growing
fast and continuously, proposing latest design solutions. Apart from the achievements, there are still
unsolved problems in the flow, either because of the hardness of the problem, or because of the
rapidly growing problem size. For example in HLS, tor the researches in low power scheduling and
binding, the solution quality is still lower than manual designs, which has a large room for
improvement; for the researches in interconnection optimization, some important problems such as
the port assignment problem, are ignored and not being fully investigated, which is regretful since
they do has a great affection on total power consumption. Therefore, algorithms with high optimality
are still expected, which equal or even excel manual designs. In addition, in physical synthesis, one of
the problems is, together with the growing design and circuit size, some problems, say the TSV
assignment problem, become extremely huge, which makes it difficult to be solved using existing
algorithms. Therefore, algorithms with high efficiency are expected to handle large scaled problems
in physical synthesis.

Motivated by the existing issues, in this research, several problems in two main stages, are to be
studied, including high level synthesis and physical synthesis, because most problems in high level
synthesis and physical synthesis share similar problem formulations, say Integer Linear Programming
(ILP) formulation or graph formulation. Given their similar properties, in this reseatch, some
combined approaches of graph theory and mathematical programming, is to be investigated and
to be applied on HLS and physical synthesis to solve the above issues. In the HLS process, several
major steps including scheduling, resource allocation and binding, and intetconnection optimization
are discussed. In physical synthesis for 3D IC, the TSV insertion problem for 3D-IC is mainly
studied.  They are studied by common technologies, including graph theory, mathematical
programming and iterative methods say local search with random re-start, with the principle of

mnproving the algorithm optimality and efficiency. This thesis is organized as the follows.



Chapter 1, [Introduction], first gives a brief introduction to EDA design flow, mainly including
high level synthesis, logic synthesis and physical synthesis. Some existing problems in current EDA
design flow are addressed, for example in high level synthesis, the optimality of existing algorithms is
not high enough, and in physical synthesis the algorithm efficiency is low especially for large scaled
problems. Motivated by the existing problems, the principles of this research are given, which are
improving algorithm optimality for small and medium sized problems, as well as improving algorithm
etficiency for large sized problems. Then, three major topics of this research are introduced,
including: (1) the multiple supply/threshold voltage scheduling for dynamic/leakage power
minimization, which corresponds to the scheduling step in HLS; (3) the interconnection optimization
between functional units and registers, which corresponds to the interconnection allocation step in
HLS:; and (3) the through silicon via (TSV) mnsertion on 3D-ICs to reduce routing wite length, which
corresponds to the floor plan and placement step in physical synthesis. Their common technologies
are also briefly addressed. Finally, the background knowledge of HLS, 3D IC and TSV insertion
problem are briefly addressed.

Chapter 2, [A Unified Scheduling Apptoach with Multiple /';; ot/and Vy, in HLS], discusses
the dynamic and leakage power minimization problem using multiple V;; and V7, technology in
operation scheduling. The combined scheduling and binding method 1s also discussed in this chapter.
For this problem, the inputs are small or medium scaled, but the optimality of existing algorithms are
still not high enough because of the hardness of this problem. Therefore, the purpose of this topic is
to propose algotithms with high optimality, which equal ot even excel the manual designs.

In this chapter, a unified scheduling approach which is applicable to various optimization
problems is proposed, including: (1) dynamic power and resource usage co-optimization; (2) leakage
power optimization; and (3) dynamic power and leakage power co-optimization. To deal with
different objectives with high flexibility, three problems are divided into two common sub-problems
including delay assignment and resource density variance minimization. Then a vertex potential based
mobility allocation model is proposed to solve two sub-problems simultaneously. On the proposed
mobility graph, the network simplex method is applied to solve the mobility allocation problem,
which optimizes both dynamic power and resource usage by adjusting the vertex potentials. The
mobility allocation is iteratively updated by local search until the algorithm meets stop criteria. The
combined scheduling and binding for power minimization is also investigate, which conducts binding
after scheduling only when the scheduling results are promising in reducing current overall power
consumption.

Experimental results show that, for dynamic power and resoutce co-optimization, the proposed
unified scheduling approach produces optimum solutions for all 6 benchmarks with 15 groups of data;
for leakage power optimization, it also greatly excels the latest existing work, by 20% leakage power
reduction and 52 times speedup. Besides, for dynamic power and leakage power co-optimization, the
Pareto Solutions are studied.

Chapter 3, [Interconnection Allocation Between Functional Units and Registers in HLS]|,
discusses the interconnection optimization techniques in HLS, which has not been fully investigated.
Algorithms are proposed for the port assighment problem between functional units and registers. This

problem is also small or medium scaled, but has a large impact on chip design, such as chip area, power



consumption and signal delay. Further, this problem may be solved iteratively in HLS tools, which
requires high efficiency of the algorithms.

In this chapter, the port assignment problem for binary commutative operators for
interconnection complexity reduction is discussed. First, the port assignment problem is formulated
on a constraint graph. By constructing a spanning tree and extracting a conflict graph, a practical
method is proposed to find a valid and initial solution. For solution optimization, an elementary
spanning tree transformation based local search algorithm is proposed. To improve the etficiency of
optimization, a matrix formulation is also proposed, and by substituting the O for + operations in LP
formulation, network simplex method is adopted, where pivoting operations are used to perform
optimization. The pivoting properties and two-step successive pivotings are also discussed to further
improve algorithm efficiency and optimality.

The experimental results show that on the randomly generated test cases, the matrix-based
algorithm shows the highest solution optimality and is five times faster than the elementary
transformation method. On the real high-level synthesis benchmarks, the matrix-based method
reduces 14% interconnections, while the previous greedy algorithm reduces 8% on average, which
implies that interconnection reduction has a large impact on chip performance.

Chapter 4, [A Multi-Level Algorithm for 3D-IC TSV Assignment in Physical Synthesis],
discusses the problem of Through Silicon Via (TSV) insertion on 3D-ICs in physical synthesis. The
problems in this stage ate generally large scaled, which lack of efficient algorithms. For example, for
large scaled inputs, the execution time of cutrent algorithms may exceed ours or days. Therefore in this
topic, the purpose is to propose algorithms with high efficiency, and meanwhile the solution quality is
not sactificed.

Through-silicon via (I'SV) assignment problem is one of the key design challenges of 3D-ICs,
which is crucial to the wire length and signal delay. In this chapter the TSV assignment problem i1s
tormulated as an Integer Minimum Cost Multi Commodity (IMCMC) problem on a IMCMC network.
To reduce the huge number of edges of the IMCMC network, a multi-level algorithm is proposed.
It first coarsens the IMCMC network level by level, applies a rough tlow assignment on each level
of coarsened graph, and then generates only promising edges to reduce the IMCMC network size.
Benefiting from the multi-level structure, a mixed single and multi commodity flow method is proposed
to improve the TSV assignment solution quality. Besides, given a TSV assignment, an extended layer
by layer algorithm is proposed to further optimize the TSV assignment.

The experimental results show that the proposed multi-level proposal achieves 37X speedup
compared to the previous work, and meanwhile reduces the total wire length by 7.0%, which shows
both high optimality and high efficiency. The extended layer by layer optimization further reduces
0.6% total wire length.

Chapter 5, [Conclusions], summaties this thesis and addresses some open issues of this research.

Some future works are also addressed.
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Introduction

Very Large Scale mtegration (VLSI) first appeared m the 1970s, and then quickly began to show
evolutional improvements over discrete circuits mainly on cost and performance, and are becoming
one of the most indispensable components of the modern technology. Accordingly, designing and
developing various functional VLSI, especially by software tools because of the high complexity of
modetn circuits, are also become ot the utmost importance, which is referred to as electronic design
automation (EDA), also as electronic computed aided design (ECAD).

Sprouted by the mid-1970s, the EDA industry is going through a rapid growth during the past
decades, and is still attracting more and more exploring interests in nowadays. Given the pressing
demands for faster and stronger EDA tools especially along with the continuous scaling of
semiconductor technology, in this work, main efforts are put in the design field of EDA tools, in
order to improve the efficiency and performance of particular methods in the EDA design flow:.

In the following parts of this chapter, first, a brief introduction to EDA design flow is given in
Section 1.1, as well as some existing problems in cutrent EDA design flow. and in Section 1.2, the
motivations and principles of this research are addressed. In Section 1.3, the main contents and
common technologies of this research are briefly introduced. Finally in Section 1.6 the organization

of this thesis is given.
11 Background

1.1.1  EDA Design Flow

EDA design flow is a process which consists of several automated steps to accomplish the design of a
VLSI citcuit. The general EDA design tlow contains several representative steps, as shown in Fig.1.1,

including:

1. High-Level Synthesis (HLS) (or behavioural synthesis) — takes architectural design as an input,

transforms architectural desigh descriptions (eg. designs written in C/C++) into registet transfer
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Figure 1.1: A traditional EDA design flow.

level (RTL) desctiptions, which 1s referred to as functional design or logic design;

2. Logic Synthesis — takes the logic design as an input, transforms the RTL description (eg. designs
written in Verilog or VHLD) into a netlist of logic gates, which is called circuit design;

3. Physical Synthesis — takes the circuit design as an input, transforms the gate-level circuits into

geometric representations with exactly determined locations for circuit components, which are
ready for layout;

4. Verification, fabrication and finally Tape-out — last steps in EDA design tlow before a chip is
manufactured and into market.

During the EDA design flow, up to dozens of design requirements are needed to be considered,
such as chip area, power, thermal, routability, signal timing, delay, noise, reliability, etc., which makes it
extremely difficult to meet all or a critical part of the requirements while keeping the design cost low
and time-to-market fast. Therefore, the development of high efficiency algorithims used in EDA design

steps fotr various optimization objectives are continuously attracting both industrial and academical

research interests.



1.1.2 Research Status

The investigations of EDA design methodologies have been carried on for decades since mid-1970s,
and significance achievements have been made for automated designs instead of manual designs.
Along with the developments of commercial EDA tools, EDDA companies are also growing fast and
continuously proposing latest design solutions. Following shows a brief review of the current

worldwide research situation.

1. High Level Synthesis: HLS is one mportant technology to deal with rapid growing VLSI
integration by raising the abstraction level of system descriptions. In recent years, along with the
growth of portable and battery-equipped devices, reducing power has became the first-priority
design factor. Therefore, the low power HLS has became the new hottest topic in HLS.

Consequently, more and more works are focusing on low power HLS technologies, for
example the multple supply voltage or multiple threshold voltage technology for power
reduction, power reduction through interconnection optimization, clock gating and power
gating, and dynamic power and frequency scaling, etc. Among them, the proposals for multiple

supply or threshold voltage technology, like W B 1# 4nd 7823

, shows significance achievements in
reducing power consumption in the scheduling and binding step of HLS. Besides, works
like #1325 try to reduce power by reducing the interconnection complexity, mainly in the

interconnection allocation step of HLS.

Existing issues: Although there are plenty works have been proposed for low power HLS,
they are still far from mature. For the researches in low power scheduling and binding, the
solution quality is still lower than manual designs, which is expected to be greatly improved,
for the researches in interconnection optimization, some important problems such as the port
assignment problem, are ignored and not being fully investigated, which is regretful since they

do has a great affection on total power consumption.

1o

Logic Synthesis: Logical synthesis has a much longer history than HLS, which makes its
solutions far more mature than HLS. Also, there are a plenty of commercial logic synthesis
tools such as the Design Compiler by Synopsys, Encounter RTL Compiler by Cadence Design
Systems, HDL Designer by Mentor Graphics, Quartus II integrated Synthesis by Altera, XST
(delivered within ISE) by Xilinx, etc. There are also open source tools like the Logic Synthesis
Tool (SIS)*’. In academic researches, there are several major topics including combinational
and sequential logic synthesis, synthesis for asynchronous circuits, synthesis for elastic circuits,
automatic pipelining, etc*.
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Existing issues: As pointed out in*, equivalence checking problem still exists in the
transformations that modity timing beyond the natural boundaries of RTL state signals.

Besides, the automation for out-ot-otrder execution is also pointed out as another challenge.

3. Physical Synthesis: Similar to logic synthesis, physical synthesis also has a long history with
several mature commercial tools.  such as the RTL Compiler/Build Gates/Physically
Knowledgeable Synthesis (PKS) by Cadence, and the Design Compiler by Synopsys.

Therefore, the solution quality is satisfied for traditional synthesis, such as partitioning,



Abstraction Power Saving Optimization
Level Opportunity Effort

v

U EE

10-20X

Behavioral

Minutes
to
Hours

L

Log

sl el s

d

Physical

Figure 1.2: Power saving opportunity and effort at different levels of abstraction from®

tloorplan and placement, clock tree synthesis and routing. On the other hand, along with the
development of 3D ICs, the physical synthesis for 3D IC, or 3D Network-on-Chip (NoC), has

became a new topic in the physical synthesis.

In the physical synthesis for 3D IC, one important topic is the Through Silicon Via (TSV)
insertion (also called the TSV assignment problem), because the TSVs are very large compared
to logic gates, say dozens to hundreds of times the area of a standard cell, and the TSV
assighment 1s crucial to the wire length and signal delays of 3-D circuits. In the related works
of TSV assighment, some works handle TSV insertion as an independent problem, whose
optimization objectives include: total wire length, chip thermal, interconnection complexity,
etc. Some other works perform TSV insertion together with floorplan or placement, whete
TSVs are pre-planned during floorplan or placement, and are once mote optimized after the
floorplan or placement is finished. These works imply that a careful TSV assighment can

greatly reduce total wire length, chip area or improve thermal issues.

Existing issues: One of the problems in TSV assighment is, together with the growing design
and circuit size, the TSV assignment problem size 1s also becoming huge, which makes it
difficult to be solved using existing algorithms. For example in the work ", since the problem
formulation is extremely huge, the authors proposed several methods to reduce the
formulation size by scarifying the solution optimality. Another work”’ proposed a Lagrangian
based algorithm but it cannot be applied on large testcases.

1.2 Research Motivations and Principles

Motivated by the existing issues in EIDA design flow, in this research, several problems in two parts are
to be studied. One is the low powet HLS technology, including the scheduling, resoutce allocation and
binding, and interconnection optimization. Another is the physical synthesis for 3D IC technology,

\\%
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1. Both low power HLS and physical synthesis for 3D IC technologies are of gteat importance with
worth deep investigation. As pointed out in’, attempting to reduce power at RT level typically
requires much more efforts than at behaviourial or system level, and as shown in Fig.1.2, the
higher abstraction level is, the less optimization effort 1s needed, and the higher power saving
opportunity 1s. Therefore exploration for low power HLS is a promising topic both now and in
the future. On the other hand, physical synthesis for 3D IC is an indispensable step for impelling
real applications of 3D IC chips in industry, which is a promising solution for higher and higher
IC integration.

2. There are open issues for low power HLS and physical synthesis for 3D IC to be solved, as
pointed out in Section 1.1.2. In HLS, it is still difficult for the automated design algorithms
to produce optimal solutions better than manual designs for even small or medium sized HLS
problems. Therefore, mote optimized algorithms in HLS are required. In physical synthesis,
along with the design size growing, it is difficult for the current existing algorithms to handle
huge sized problems. Therefore, more efficient algorithms for huge sized problems are
required.

Essentially, these open issues for low power HLS and physical synthesis for 3D IC are essentially
the same, which is to propose high efficiency algorithms. In order to improve the algorithm
optimality, one important and effective way is to use iterative optimization: assume the possibility
to get optimum solutions in one iteration is p(o <p< I), if the algorithm is executed for »
iterations with random restart, the possibility to get optimum solutions is p* = 1 — (1 — p)".
Obviously the larger # is, the closer p* is to 1. This requires in each iteration, the algorithm must
be efficient enough to produce solutions fast. Therefore, fast and highly optimized algorithms
are still expected.

3. Moreover, the problems for both low power HLS and physical synthesis for 3D IC share
similar formulations, which allows similar methodologies to be adopted. To be specific, all
these problems can be formulated by Integer Linear Programming (ILP), one of the methods
in mathematical programming, and written into A4 - x = B where x ate integers. In these
problems, matrix 4 happens to be the incidence matrix of a graph. Therefore, if the
constraints that x are integers can be relaxed (for example if .4 is totally unimodular), the ILP
formulations can be transformed into Linear Programming (LP), and therefore graph
theories can be considered. Besides, since one of the purposes is to improve optimality,
iterative methods are also expected. Consequently, common technologies can be applied to

these problems, to improve the efficiency and optimality of their solutions.

1.2.1 Research Principle

Therefore, the principle of this research is stated as the following:
By utilizing graph theory and mathematical programming methods, which are widely used

methodologies in EDA design area,



1. Fot small and medium sized problems in HLS, say the scheduling and binding problems,
algorithms that produce solutions as optimal as possible (optimal or sub-optimal), which excel
manual designs, are to be proposed. For this purpose, since iterative optimizations are expected

to improve solution quality, algorithms also expected to be efficient for one iteration.

1o

For huge sized ptoblems in physical synthesis of 3D-IC which are impossible for manual
design or with no existing practical solutions, for example in tloorplan and placement step in
physical synthesis, algorithms which are etficient enough to produce solutions in reasonable time

with no or slight optimality degrade are to be proposed.

1.3 Research Contents and Common Technologies

In this section, the principles of this research, as well as main contents, common key technologies and
contributions are introduced. Fig.1.3 gives an overview of the organization of this research. There are
three parts in this research, corresponding to particular design steps in EDA design tlow. The first
two parts are the works in HLS, and the third part is the work in physical synthesis. The three works
share common key technologies including graph theoty, mathematical programming and iterative
optimization, as shown in the right part of Fig.1.3.

In the tollowing, three works are briefly introduced tespectively, as well as their common and

specified core technologies shown in Fig.1.4.

1.3.1  Dynamic and leakage power minimization’

The dynhamic and leakage power minimization under multi-Vy; or/and multd-Vy, corresponds to the
highest step, operation scheduling in HLS procedure. It solves the problem that, how to determine the
schedule and the supply/threshold voltage for each operation, to reduce the ovetall dynamic/leakage
power consumed by functional units. The goal is to propose a new algorithm, which can excel previous
works in both efficiency and solution optimality. Besides, the combined scheduling and binding for
power minimization is also discussed.

Technologies: it is first given mathematical formulation, the integer lineat programming (ILP),
and then is relaxed to linear programming (LP) formulation. Although general linear programming
methods can solve this problem, given the special properties of its constraint graph, the network
simplex method, one of the graph theoretical methods, is adopted to tmprove the algorithm
efficiency. Further, to improve solution quality, an iterative method, local search based optimization

with random restart, 1s adopted.

1.3.2 Interconnection allocation between FUs and registers »

The research of this part corresponds to the interconnection allocation step in HLS procedure. It solves

the problem that, after functional unit and register binding, how to determine the interconnections
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Figure 1.4: Common Technologies: graph theory, mathematical programming and iterative methods

between registers and functional unit ports, in order to minimize the interconnection complexity and
multiplexer size, and further to reduce the interconnection power and chip area.

Technologies: it is first formulated as a graph with spanning tree, and solved using graph
theoretical methods including elementary tree transformation and minimum vertex cover. Then, to
mmprove algorithm efficiency, the problem is reformulated as LP problem by replacing adding
operations in standard LP by exclusive-or operations. By doing so, the algorithm is speeded up by
pivoting operations in standard LP, which is one of mathematical programming methods. Finally, to
improve solution quality, similar to work 1, an iterative method, local search based optimization with

random restart, is also adopted.

1.3.3  Through silicon via (TSV) insettion for 3D-I1C™

TSV insertion for 3D-IC is the physical synthesis for 3D ICs. It solves the problem that, given a
tloorplan of modular on a 3D chip and a net list, how to insert TSVs between chip dies, such that
the total wite length that connecting signal pins and TSVs is minimized. More importantly, when the

problem size 1s huge, i.e., over one thousand nets and more than 3 chip dies, how to solve the problem
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within reasonable execution time without sacrificing the solution quality, while the current existing
algorithms are not able to handle.

Technologies: it is first formulated by a mult-level graph, and is solved by mixed single and
multiple commodity min-cost flow. To improve solution quality, the bipartite matching is adopted,

which is also a method of graph theoty.

14 Preliminaries of High Level Synthesis

High-level synthesis (HLS), also referred to as behavioral synthesis, is an automated design process that
interprets an algorithmic description of a desired behavior and creates digital hardware that implements
that behavior”. Fig.1.5 shows the basic concept of HLS. The inputs of HLS are specifications described
by languages with system-level abstractions such as ANSI C, SystemC, C++ or SystemVetilog. During
synthesis process, the input codes are first compiled and analyzed, and procedures including operation
scheduling, resource allocation and binding are went through. Then a register-transfer level (RTL)
hardware description is generated, which is the outputs of the HLS, containing data path components
including registers, multiplexers, functional units, buses, and controlling logics. Finally logic synthesis

is conducted on the RTL structure.

1.4.1 Necessity of High Level Synthesis

HLS technology begins to attract research interests since the late 20th century, and now is stll one
of the hottest topics in current EDA field. One of the reasons is, it enables IC designers to describe

the design at a higher electronic system-level (ESL), and to efficiently build and verity hardware even



without specific hardware knowledge.

Another reason for HLS being strongly required is, the ESL paradigm is shifting to higher level of
abstractions caused by the rise of system complexities. To be more exact, along with the integration
of ICs growing rapidly in recent decades, the vary-large-scale integrated circuits (VLSI) and the ultra-
large-scale integration circuits (ULSI), which have more than 1 million transistors, ate being proposed
and begin to put into production. The huge size of target circuits makes it impossible for manual
design, especially from lower circuit levels due to the extremely huge number of circuit components.
As a result, designing from higher circuit levels is an inevitable choice, that is, fast IC scaling trend strongly
calls for HL.S.

More importantly, in recent years, HLS 1s not only necessary for large scale designs; moreover, it
is especially required for low power IC designs because of the outstanding performances that HLS
technology has shown in a series of low power works, which is referred as to low power high level

synthesis.

142 Necessity of Low Power High Level Synthesis (HLS)

Along with the rapid growth of portable and battery-equipped devices, reducing power consumption
has became the primary limiter of scaling semiconductor process technologies and adding features to
integrated circuits. As a result, the IC design 1s undergoing a significant transition from performance
oriented to power oriented, where power has became one of the first-priority design factors®. This
transition invokes many researches working on low power techniques on register transfer level, such as
power gating, clock gating, multiple supply or threshold voltage techniques, and recently approximate
computing resources in etror-tolerant applications.

However, as pointed out in”, attempting to reduce power at RT level typically requires much more
efforts than at behaviourial or system level, because making decisions at higher levels usually result in
larger impact on final designs. As shown in Fig.1.2, the higher abstraction level is, the less optimization
effort is needed, and the higher power saving opportunity is. Consequently, reducing power from higher

level imperatively calls for HLS' technigues.
1.4.3 Related Low Power HLS Works

Major Power Dissipations

Thete are broadly three kinds of power dissipations of a circuit: switching power (also teferred to as
dynamic power), static power (also called leakage power) and short-circuit power, Among the three,
dynamic power, denoted as Py, and leakage power, denoted as Py, are much higher than the short-

circuit power, and attract most research interests.

* Dynamic power is consumed through circuit activities, e.g. when switching takes place on logic

gates, computed as:

Py = Cp x Vi X fx sw (1.1
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where C; is the output capacitance, Vy, is the supply voltage, fis the clock frequency, and sw
is the switching activity. Easy to see, Py, 1s positively related to the supply voltage V4, of logic
gates, fand sw. Therefore, one effective way in HLS procedure to reduce dynamic power is to

use multiple supply voltage (multi-};) technology.

* Leakage power is ptimarily the result of unwanted subthreshold current in the transistor
channels, and is consumed whenever circuit components are busy or idle. It has became more
dominating than dynamic power especially in in deep sub-micron process technology (65nm
and below), say more than 50% of the total IC power consumption®, which makes it a top
concern for current IC design. The subthreshold-driven leakage power is strongly influenced
by variations in the transistor threshold voltage, denoted as V. Therefore, lowering threshold
voltage, or using dual or multiple threshold voltage (multi-Vy,), 1s effective to reduce leakage

powet.

Previous Low Power Technologies

There has already been a latge amount of investigations on low power HLS techniques, to reduce
either dynamic power or leakage power, which focus on one or several particular steps in HLS, such as
operation scheduling, resource allocation or interconnection allocation. In the following several typical

categories of low power technologies as well as their representative literatures are listed.

* Multiple supply voltage (multi-};;). The multiple supply voltage technology is mostly

itt2i314 It shows

applied on operation scheduling or binding in HLS procedure, like
promising results in reducing dynamic power by assigning different Vy; to operators. Chen et
al." presented a network flow based dual-V binding algorithm for low-power resource
binding with switching activity being considered. Liu et al.'* addressed a voltage partitioning
problem arising in multiple supply voltage design during HLS. They proved it as NP-hard, and
ptoposed an efficient approximation algotithm with linear time-complexity for practical
designs, which is tens to hundreds of times faster than previous works. Jiang et al."? discussed
a multiple supply voltage scheduling problem in HLS to minimize the system power
consumption. They formulated it as a linearly constrained separable convex optimization
problem, and solved it using the integer time budgeting technique, which produced
near-optimal results.

* Multiple threshold voltage (multi-/;). The multiple threshold voltage technology is also
78923

applied on scheduling or binding like , where operations are first scheduled and are
assigned to different types of functional units (FU) executed under different threshold voltages.
In’ a greedy method was proposed that prioritized modules with largest leakage reduction
potentials for high-V};, implementation. In® a composite constraint graph was proposed to
present resource binding constraints, together with a maximum weight independent set based
scheduling algorithm. In” leakage power was minimized by characterizing the bounded delay

degradations for FUs with multi-V, values. The latest work™ proposed a binding conflict

11
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Figure 1.6: An example of 3D-IC and Through Silicon Vias (TSV).

graph based scheduling method to minimize the number of FUs. They all showed that
multi-}y, approach in HLS can significantly reduce leakage power dissipation.

* Power Reduction through Interconnection Optimization. Since the interconnections also
consume a large fraction of leakage power, minimizing the interconnection complexity also
reduces power consumption. For example in work™, the interconnections between functional
units and registers are discussed. In other works*’ and*!, other interconnections, for example

multiplexers, are also considered.

¢ Other technologies like clock gating®, power gating®**  d

1.5 Preliminaries of 3D-IC and Through Silicon Via Insettion

Three-dimensional integrated circuit (3-D IC) is a promising IC manufactural technology with stacks
of dies that approaches higher density, reduced power, smaller footprint, improved performance and
lower cost compared with traditional monolithic 1Cs, and many important works on 3-D IC

technology are proposed in recent years®

. The 3-D IC technology uses through-silicon vias (TSV)
to provide vertical electrical connections passing through a silicon wafer or die. The TSV is an
emerging interconnection technology that will replace the traditional wire-bonding process in
chip/wafer stacking, to increase inter-die communication bandwidth, reduce form factor, and lower
power consumption of stacked multi-die systems by eliminating the need of long cross-chip
interconnects existing in 2-D ICs. Fig.1.6 shows an example of 3D IC die stacks with TSVs.

One of the key design challenges of 3-D IC is the optimization of the number and locations of
TSVs, which is generally called the TSV assignment problem. Given a 3-D IC netlist describing the
inter-die nets, TSV assignment is to decide which TSVs are used to implement the nets spanning
different chip dies. After the TSV assignment, routing is applied on each die to complete the electrical

connection of every net. Since the TSVs are very large compared to logic gates, say dozens to hundreds



of times the area of a standard cell, the TSV assignment is crucial to the wire length and signal delays

of 3-D circuits, and it is now attracting broad interest among both academic and industrial researchers.

1.6 Thesis Otrganization

This thesis consists five chapters. The rest of this thesis is organized as follows.

In chapter 2, [A Unified Scheduling Approach with Multiple };; ot/and V;, in HLS], the
dynamic and leakage power minimization problem using multiple ¥4y and 7}, technology in operation
scheduling is discussed. The combined scheduling and binding method is also discussed in this chapter.

In chapter 3, [Interconnection Allocation Between Functional Units and Registers in
HLS], the interconnection optimization techniques in HLS, which has not been fully investigated, 1s
discussed in this chapter, and several algorithms ate proposed for the port assignment problem
between functional units and registers.

In chapter 4, [A Multi-Level Algorithm for 3D-IC TSV Assignment in Physical Synthesis],
the problem of Through Silicon Via (TSV) insertion on 31D-1Cs in physical synthesis 1s discussed, which
has no practical algorithms when the problem size becomes huge. In this chapter the methodologies
and graph theories used in HLS are utilized in physical synthesis stage.

In chapter 5, [Conclusions and Future Work], this thesis is concluded and some future works

are given.
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A Unified Scheduling Approach with Multiple
V4 otr/and V., in HLS

In this chapter, the first topic, dynamic and leakage power minimization, is to be discussed, which
corresponds to the scheduling and binding step in HLS. It determines the supply voltage or threshold
voltage for opetations and FUs, as well as the scheduling for operations, to minimize the total power
consumption. The purpose is to propose algorithms to get optimum or near-optimum solutions. The
problems are first formulated by Integer Linear Programming, and by relaxing to Linear Programming,
the network simplex method 1s adopted iteratively to solve the LP problem for optimization. The

detailed formulations and algorithms are discussed in the following of this chapter.

2.1 Background and Contributions

Low power integrated circuit (IC) design, in the recent ten years, has been a substantial research theme
because of the fast growth of portable computing devices and reliability requirements under higher
operation temperature. The major powet dissipation sources include leakage powet, short circuit power
and dynamic powet, in which the leakage power and dynamic power are more dominating than short
circuit power. The threshold driven leakage power is strongly influenced by the transistor threshold
voltage V', and the dynamic power decreases with the decreasing of supply voltage V4. Consequently,
it is promising and populat to use dual or multiple threshold voltage and/or multiple supply voltage
technique for power reduction, by trading off the performance of less timing-critical logics®. For
example, there are many approaches that minimize both the leakage and dynamic power in generic
digital CMOS designs15 1601718 by determining the ¥, and Vg4 of each module or logic gate in gate
level.

Except for the CMOS level optimizations undet multiple-voltage technologies, there are also many
power scaling efforts have been made in the high-level synthesis (HLS) stage, because it was pointed out

that power saving opportunities at behavioral and system levels are much higher than that at register-
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transfer level (RTL). One of the most powerful techniques is multiple voltage scheduling, which
allows functional units (FU) work with different threshold voltages Vy,, or different supply voltages
V 44, with different execution delays.

11i213t4

The multiple supply voltage scheduling approaches showed promising results in
reducing dynamic power by assigning different V. Chen et al.'’ presented a network flow based
dual-V; binding algorithm for low-power resource binding with switching activity being considered.
Liu et al.'? addressed a voltage partitioning problem arising in multiple supply voltage design during
HLS. They proved it as NP-hard, and proposed an efficient approximation algorithm with linear
time-complexity for practical designs, which is tens to hundreds of times faster than previous works.
Jiang et al.'? discussed a multiple supply voltage scheduling problem in HLS to minimize the system
power consumption. They formulated it as a linearly constrained separable convex optimization
problem, and solved it using the integer time budgeting technique, which produced near-optimal
results.

The multiple threshold volrage scheduling approaches’®?* schedule the operations and assign
different threshold ¥}, voltages. In’ a greedy method was proposed that prioritized modules with
largest leakage reduction potentials for high-¥, implementation. Tn® a composite constraint graph
was proposed to present resource binding constraints, together with a maximum weight independent
set based scheduling algorithm. In” leakage power was minimized by characterizing the bounded delay
degradations for FUs with multi-Vy, values. The latest work* proposed a binding conflict graph based
scheduling method to minimize the number of FUs. They all showed that multi-};, approach in HLS
can significantly reduce leakage power dissipation.

Although a great quantity of literatures have been proposed for multiple voltage problems, further
studies for multi-Vy,; and multi-F, scheduling are still needed. For example for multi-}4, problem,12
tully studied voltage partitioning but not operation scheduling;13 solved the scheduling problem but
did not consider the resource usage. For multi-¥}, problem,” targeted in resource binding rather than
scheduling, and the efficiency of the scheduling algorithm in* is a big concern. In addition, in previous
works for leakage power reduction, either scheduling or binding is considered independently, but there
is no work that considers two steps jointly. Accordingly, in this work, the multi-F4; problem and the
multi-Vy, problem are first solved separately, and then discuss the impact of binding on the overall
power including the interconnection powet. Besides, tor multi-V 4 and mult-V;, problems, a unified
approach is proposed, which provides an opportunity that the dynamic and leakage power can be
minimized simultaneously, which is believed to be worth studying.

In this paper, my previous work" is extended to propose a unified scheduling scheme that works
both for leakage and dynamic power optimization, given multiple threshold or/and multiple supply
voltages. In*, a dynamic power and resource co-optimization problem is solved under multiple supply

voltage using Network Simplex Method; the additional contributions in this work are stated as:

* A unified scheduling scheme is proposed for three different optimization problems: (1)
dynamic power and resource co-optimization; (2) leakage power optimization; (3) dynamic

power and leakage power co-optimization.
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* Itis revealed that the three problems with multiple objectives shate two common sub-problems:
operation delay assignment and resource density variance minimization; the two sub-problems

are simultaneously solved using vertex potentials proposed in this work.

* For leakage power optimization, a post processing is proposed to eliminate the limitation of
the proposed scheduling algorithm when being utilized for leakage power.

* Functional unit and register binding is combined into operation scheduling, to reduce

multiplexet and register powert, thus to reduce overall power consumption.

* It is shown in the experiments that, when the proposed unitied scheduling scheme is utilized
for leakage power minimization, it significantly excels the latest existing work both in terms of

power and execution time.

The rest of this chapter is organized as follows. Section 2.2 gives the problem formulation, Section
2.3 motivates this work, Section 2.4 solves the delay assignment problem, and Section 2.5 solves the
resoutce density minimization problem. Section 2.7 introduces the unified scheduling scheme, and
Section 2.8 utilizes it on three problems. Section 3.6 shows the experimental results, followed by

conclusions in Section 2.10.

2.2 Problem Formulations

In this section, the inputs, outputs, and objectives of three problems are clarified, followed by a unified

Integrated Linear Programming (ILP) formulation for three problems.

221 Problem Description

According to®, for a FU under a fixed supply voltage Vg, its leakage power decreases, and delay
increases monotonously along with the increasing of threshold voltage Vy; according to'?, for a FU
under a fixed Vy,, its dynamic power decreases, and delay increases monotonously along with the
decreasing of V4. In this work, the schedulings under a fixed Vy, and multi-V 44, and under a fixed Vyy
and multi-},, are mainly discussed. Since the delay-voltage curve of a FU is monotonous, to unify
Vi and V7, the FU delays are considered instead of their real voltage values during scheduling; after
scheduling, the real voltages for FUs can be known according to their delays.

The inputs of the scheduling algorithm include:

* A data flow graph (DFG) G = (V, F) of a behavioral description, where Vs the set of operations
and E is the data dependencies. Fach operation ap € V" has a type 7,, € T, where I represents
all operation types such as addition, multiplication, etc.

* A discrete function describing the fakage power of FUs under fixed Vy; and ditferent V7,
denoted as LK (d), 7 € I'. dis the FU delay under a certain ¥, given in the number of clock
cycles, i.e., the number of control steps, where d,, < d <d, . LK (d)is the leakage power
of a FU of type 7 and delay 4.
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Table 2.1: Dynamic Power-Delay Table for ADD and MUL under clock frequency of 769MHz (clock period
1.3ns)

Piynamic Exec. Vop Delay
(uW?) Time (volts) (clock cycles)
195.46 1.2ns 1.1 1
ADD 62.44 2.0ns 0.9 2
34.67 2.7ns 0.7 3
2259 2.3ns 1.1 2
MUL 723 3.9ns 0.9 3
384 5.2ns 0.7 4

T .2: Leakage Power-Delay Table for ADD and MUL under clock frequency of 769M (clock period 1.3ns)

Proan Exec. Vi Delay
(uW)  Time (volts) (clock cycles)
160.05  1l.lns 0.18 (low-Vy) 1
ADD | - o
711 l4ns 032 (high-I7) 2
27071 2.1ns 0.18 (low-Vy) 2
MUL .
27.40 34ns  0.32 thigh-Vy,) 3

* A discrete function describing the dynamic power of FUs under fixed V7, and difterent Vyy,
denoted as DY (d), 7 € T. dis the FU delay under a certain Vy,, where d,, < d < d__ .
DY (d) refets to the dynamic power of a FU for an active execution.

The constraint is the scheduling latency, denoted as 7,,, which is the maximum allowable number
of control steps to finish the execution of data flow

The outputs include: (1) a delay assignment for each op < d, op € V and (2) a scheduling for each
op < [1, Ten), 0p € V such that all the dependency constraints are satisfied.

The objectives for three problems atre separatively stated as:

* Problem 1. dynamic power and resoutce co-optimization: to minimize total dynamic power of

all operations, then reduce the number of FUs;

* Problem 2. leakage power optimization: to minimize total leakage power consumption of all
FUs;

* Problem 3. dynamic and leakage power co-optimization: to minimize dynamic power as well as

leakage powet.

The leakage and dynamic power and delay data used in this work are shown in Table 4.1 from? and
Table 2.1 from*. All data are obtained by HSpice simulation in 90nm TSMC CMOS technology, under
the clock frequency of 769MHz (clock period 1.3ns), 16-bit data width. The delays of FUs are given
in numbers of control steps which are integers. In additional, to adopt linear programming, which is
discussed in Section 2.4.1, the integer delays for FUs shall be consecutive. For example in Table 2.1

the possible delays of an adder are {1, 2,3}, and of a multiplier are {2,3, 4 }.
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2.2.2  Unified ILP Formulation

Givena DFG G = (V, E), for each operation op, € V, two variables p, and g, are defined, which means
op, starts at time p. and ends at time g,. Here the time means the time point between two control steps,

as the example shown in Fig.2.1(b). The constraints of ILP formulation can be expressed as:

Ve = (op,, opj) €L: g-p <o (2.1)
Ve=(s,0p) € E: s—p <o (2.2)
Ve=(op,t) € E: g, —t<o (2.3)
Vop, € V: A5 < g —p < duit 2.4
0<t—5< T 2.5)

where s, 2,p,,4,,1 = 1- - n, are integers, and variables s and # indicate the beginning and ending time
of the execution of data flow. Eq.2.1 to Eq.2.3 are data dependency constraints, Eq.2.4 are delay
constraints, and Eq.2.5 1s latency constraint.

To express the objectives of three problems, denote the total dynamic power as 7P, the total
leakage power as TPy, and the resource usage cost as RES, defined in Eq.2.7 to Eq.2.9.

For dynamic power TP, it is calculated as the summation of dynamic powers of all operations,
since dynamic power 1s consumed only when a FU is active. For leakage power TPy, it 1s estimated
using the numbers of FUs after scheduling and FU allocation, since leakage power is consumed whether
a FU is idle or active.” The number of FUs of type 7 and delay d, denoted as N(d, 7), is the maximum
N,(d, ) in all control steps:

N(d,7) = max{N,(d, 7)},1 <t < T, (2.6)

where N;(d, 7) is the number of active operations of type 7 and delay  at control step .
Besides, the overall leakage power consumption, including multiplexers and registers, is also to be
evaluated by combining binding into scheduling, which is discussed in Section 2.7.3.
R
. For example, RES is the total number of FUs if 8, are all set
as 1, or is the approximate total area of all FUs if 8, are set as the area value of FU of type 7 and
delay 4.

Therefore, the dynamic power 7Py, leakage power 7Py, and resource usage RES are calculated as:

TPy =Y DY , (d(op,) 2.7

UASS

TPe=)»_ > LK (d)-Nd,7) 2.8)

elrd,, <d<d

min max

"Don’t consider the power gating technology in this work.
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Figure 2.1: Different scheduling and delay assignment results for: (b) dynamic power minimization, (c) dynamic power
and resource usage co-optimization, (d) leakage power minimization, and (¢) resoutce minimization only. In the figures 1d
means the delay of operation is 1, etc; cs-1 means control step 1, etc.

RES=>" > @, -N(dr) (2.9)

erd,<d<d,.

min

where d(opi) is the delay of ap,, DY is the dynamic power function, LK is the leakage power function,
g, is the weight for FU of type 7 and delay 4.

The objectives of three problems are written as:
* problem 1: min — TPy + RES
* problem 2: min — TPy,

* problem 3 min — Tpd}, + TPy

2.3 Preliminaries and Motivations

In this section it is first explained that the three problems share two common sub-problems, operation
delay assignment and resource density variance minimization; then some preliminaries including

mobility graph, mobility allocation and vertex potential are introduced and motivated.
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Common objectives of the three problems

Lower Power | EEj ‘ Less Resource
________________________________________ ‘_ g
determines (dynamic power) helps to estimate/reduce
or affects (leakage power) the number of FUs
Operation Delay Assignment Resource Density Variance Minimization
. 3
determines controls

Mobility Allocation by Vertex Potential

Figure 2.2: Three problems share two common sub-problems: delay assignment and resource density variance
minimization. Mobility allocation by vertex potential is proposed to optimize the two problems simultaneously.

231 Two Common Sub-problems

Given three problems, Fig.2.1 shows an example to illustrate the difterences and similarities of their
optimization objectives.

First, Fig.2.1(a) shows a DFG; Fig.2.1(b) shows the minimized dynamic power, where as large as
possible delays are assigned to operations within latency constraint. Fig.2.1(c) shows the dynamic power
and resource usage co-optimization (problem 1), where the dynamic power is the same as Fig.2.1(b) but
the number of FUs reduces by 1. Fig.2.1(d) shows the minimized leakage power (problem 2), whete
the number of FUs is smaller than that in Fig.2.1(c) because leakage power 1s primarily determined by
the number of FUs; meanwhile, operators with larger delays are preferable, for example two 2-delay
adders (A, and A4 in Fig.2.1(d)) consume less powet than one 1-delay adder (A, in Fig.2.1(e)). Problem
3 can be regarded as a combination of problem 1 and 2 with conditions.

Consequently, as illustrated in Fig.2.2, three problems share two common objectives: lower power

and less resource; they are respectively realized by two common sub-problems:

Operation Delay Assignment

dynamic power is determined by, and leakage power is greatly affected by the delays of operations,
because intuitively FUs with latger delays consume less powet, as shown in Table 4.1 and 2.1; therefore

it is preterable that as large as possible delays can be assigned to each operation.

R

.5.1. As known from Eq.2.6, in



ordet to minimize N(d, ), the number of FUs, it is preferable to uniformly distribute resonrce density among
all control steps, 1.e., to minimize the resource density variance.

Consequently, the common objective for three problems is:
min: P+ - R (2.10)

where P is the objective function of the first sub-problem, operation delay assignment, and R 1s the
objective function of the second sub-problem, resource density variance minimization. y is the trade-
off parameter between power and resource which is discussed in the following sections. To solve the
two sub-problems Pand R simultaneously, the mobility allocation and vertex potential are proposed
in this paper. I first show the motivations for mobility allocation and vertex potential, and give their

definitions in Section 2.4 and Section 2.5, respectively.

2.3.2  Mobility and Mobility Overlap

In HLS scheduling problems, the mobility of operation are proposed mainly for operation probability
estimation®:

DEFINITION 1 The mobility of operation op. is defined as an interval of consecutive control steps
that op, could be scheduled to, denoted as M(api) = [ms;, me;], where my; is the earliest starting time
and me; 1s the Jatest ending time.

One method to determine mobilities is to use as soon as possible and as late as possible scheduling,
as the example shown in Fig.2.3(a). In this case, however, scheduling operations freely within their
mobilities may violate data dependencies, for example in Fig.2.3(a) gp, may be scheduled later than op.
This is due to mwobility overlaps among operations, defined as:

DEFINITION 2 Two operations op, and op; have mobility overlap if there is a data dependency from
op; and op;, and their mobilities satisfy M(op,) N M(op].) £ ().

Fig.2.3(c) shows examples of mobility overlaps between op, and gp_, op, and op,, and op, and p,-
The mobility overlaps are expected to be removed, because: (1) since the existence of mobility overlaps
is the essential reason for data dependency violation*, without mobility overlaps, naturally the data
dependencies will not be violate; (2) thus, operations can be scheduled within their mobilities freely;
(3) consequently, the calculations of operation probabilities and resource densities are more accurate

than the ones with ovetlaps, which makes the resource usage estimation more accurate.

2.3.3 Motivations for Mobility Graph and Mobility Allocation

For mobility overlap removal, there are several existing works. For example in >, as shown in Fig.2.3(d),
the overlaps are removed operation by operation: once an operation 1s picked up and mobility overlap
is removed, the mobilities of all related operations are updated using 2 depth first search on DFG.
uses a similar way to remove mobility ovetlaps using Simulated Annealing. These proposals are very
time consuming since obilities of operations are defined on vertices on the original DFG, as shown in Fig.2.3(a).

So in this work, mobilities of sperations will be defined on edges on a graph, called mobility graph. 1t means, each

N
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Figure 2.3: Motivations for mobility graph and vertex potential. (a) In previous works mobilities are defined on vertices. ()
Mobility graph: mobilities ate defined on edges. (c) Mobility overlaps. (d) Mobility ovetlap temoval in 2, (&) Overlap-free
mobility allocation in this proposal.

operation 1s represented by an edge on the mobility graph: the two vertices of the edge refer to time
points ,the earliest starting schedule time and latest ending schedule time respectively, which are the
mobility boundaries of the operation. An example mobility graph is shown in Fig.2.3(b), corresponding
to the DFG in Fig.2.3(2). On this graph, operations are represented by the bold edges, say edge (s, v;)
represents op , and (v, ) represents op,. The vertices associated with values (fime points) restrict the
mobilities of operations; for example s = o, v = = =, which means the mobility of
op, is M(op,) = [0,2], and so as gp, to 0p,- These values are called vertex potentials. The detailed
definitions of the mobility graph and vertex potential will be given in Section 2.4.3 and Section 2.4.4,
respectively.

The set of mobilities of all operations 1s called a2 mobility allocation. For example given the
mobilities shown in Fig.2.3(b), its corresponding mobility allocation is shown in Fig.2.3(e). The labeled
lines correspond to the vertices on the mobility graph with vertex potentials. Evidently, it is a over/ap-
free mobility allocation, which 1s also dependency-free among operations. Thus, an overlap-free mobility

allocation is obtained from a mobility graph, determined by vertex potentials.

2.3.4 Motivations for Vertex Potential

Vertex potentials proposed in this wotk not only determine mobilities of operations, but can also solve
two sub-problems simultaneously. Examples are shown in Fig.2.4 (original DFG is in Fig.2.3(a)), where

all operations are assumed to be the same type, say adder, and the possible delays are 1 and 2.



Resource Densities: FU; FU, Resource Densities: FU; FU,

e e R
10 10 0.0 20

P IR 1- - ............................
_ 0.0 1.7 0.0 2.0

\’ 2 - femmmm oo V1=2_— V2=1 -------------------
3 2d 00 1.7 00 20

2 e b |

al L] 00 LT . al L 00 20 .
Resource Density Variance: 0.19 0.09 Resource Density Variance: 0.00 0.00

@ ()
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Vertex Potential and Delay Assignment

As shown before, vertex potentials determine a dependency-free mobility allocation, so that operations
can be scheduled within their mobilities freely and can be assigned arbitrary delays; to minimize power,
each operation should be assigned largest delay within its mobility. Thus, by controlling vertex potential,

the sub-problem of delay assignhment can be optimized.

Vertex Potential and Resource Density

Given vertex potentials, a , as shown
in Fig.2.4(a) and Fig.2.4(b), and resource usage can be approximately estimated. By adjusting vertex
potentials, resource densities can be distributed more uniformly. For example in Fig.2.4(b), resource
density variances are smaller than those in Fig.2.4(a), which has a larger opportunity to achieve smaller
resource usage. Thus, by controlling vertex potential, resource density variances can be minimized.
Therefore, the vertex potentials are the key variables to solve two sub-problems simultaneously.
In the following sections, how operation delay assignment and resource density varlance minimization

are solved by vertex potentials, are discussed in detail in Section 2.4 and Section 2.5 respectively.

2.4 Operation Delay Assignment

In this section the first sub-problem, operation delay assignment is introduced; the second
sub-problem, resource density vatiance minimization, is to be discussed in the next section.
The objective of operation delay assignment is to assign as large as possible delays to operations

within latency constraint to minimize P, which is a function of delays of all operations:

ZapEVDY ”, (d(op,)), for dynamic power;
zapEVLK %_(d(Opi)), for leakage power.

P= @.11)

When P is defined for dynamic power (problem 1), it is the summation of dynamic power of all
operations; in this case the delay assignment problem is equivalent to dynamic power minimization,

e, min: P= TP When Pis defined for leakage power minimization (problem 2), it is computed as
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the summation of leakage power of all operations; it is not exact but a good approximation for overall
leakage power, which is introduced in Section 2.8.2.

In this section I discuss the case for dynamic power as an example to show how P is minimized,
and 1s applied for leakage power similarly. In the following, the sub-problem of delay assignment is
tirst relaxed into a linear programming from ILP formulation, then the definitions of mobility graph,

mobility allocation and vertex potential are given.

241 Linear Programming (LP) Relaxation From ILP

The TLP formulation for the sub-problem of delay assignment, including constraints of Eq.2.1 to
Eq.2.4 and objective function of Eq.2.7, can be written into a mattix equation Ax = B: the coefficient
matrix A4 = (&;)mx, Whete a; € {0, 1, =1}, x = [p,4.0,,9,, 1P 4,5 17 Mattix A is node-atc
incidence matrix of a network graph, w —1 entry
while other are o; so that A 1s a totally nnimodular matrix. Because all the values in A4 and B are integers,
and A is totally unimodular, the equation 4x = b has integer feasible solutions '’. Accordingly, the ILP
tormulation for the delay assighment problem can be relaxed to an LP problem which has the same
integer feasible solutions with ILP. When the cost function is convex, as the power-delay curve shown
in Fig.2.6(a), the optimum solution can be obtained.

The LP problem is solved using the piecewise-linear extended Network Simplex: Method (PLNSM)*. Since
the LP formulation will be solved repeatedly in the scheduling algorithm, its high efficiency is crucial

and expected. Especially in this work where the objective function is piecewise-1

W , a splitting graph 1is first
defined as:

DEFINITION 3 Splitting graph, denoted as G, = (V,, E)), is a graph to represent the
constraints of the ILP formulation defined in Eq.1 to Eq.4: the vertices represent the variables p, and
g, of operation op,, where p, is the exac starting time and g, is the exas? ending time of gp;; directed
edge e = (pl., qi), called splifting edge, represents operation op,, and the edge length L, is the exact delay
of op,, whete |, = q. — p. € [, d,...]. Each edge is associated with a cost w, = DY ([,), referring
to the dynamic power of op, when its delay is .

Fig.2.5(b) shows an example splitting graph, whose original DFG is in Fig.2.5(a). The bold edges

are splitting edges representing operations, for example ¢, = (p,, g,) represents op_in Fig.2.5(a), w

, motivated in Section 2.3.3, is built from the splitting graph with two purposes: (1) to

relax the maximum operation delay constraints and execution time points trestricted by split edges; (2)



splitting graph:

a graph which represents the
constraints of the ILP formulation
defined in Eq.(1) to Eq.(4):

ve = (op,op;) €E: qi—p; <0
ve={s,op;) €E: s—p; <0

Ve = (op;,t) € E: g;—t<0

Vop; €V dpin £ 4 — i < dings

vertices: exact starting/ending
time points of operations

edges: data dependencies and
the exact delays of operations

mobility graph:
built from the splitting graph by removing redundant
vertices and max. delay constraints:

®) ®) Eq.2:pj—q; =0

: op Eq.6: q; —pi 2 dmin | | i
i @ 1Pt Epe24Eqe: . I nd
i P —pi = dn || i
® ® O @
i Rule 1 'l Rule2 !

vertices: mobility boundaries of operations, i.e., possible
starting/ending time points

edges: data dependencies and the mobilities of operations

©

Figure 2.5: (a) DFG. (b) The splitting graph built from (a). (c) The mobility graph built from (b) by redundant vertex
removal undet two rules.
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to reduce splitting graph size. Both purposes can be achieved by redundant vertex removal and cost
function DY () extension associated on split edges.

A vertex on the splitting graph, w -degree and out-degree are both 1, 1s called a redundant
vertex. For example on the splitting graph in Fig2.5(b), vertices like p,, p,, 4,, are redundant and can be
removed, but vertex P, 1s not because its in-degree is 2. A redundant vertices can be removed because,
the exact starting and ending execution time points of operations, restricted on the splitting graph, can
be relaxed to possible titme points — the ear/iest starting and /afest ending execution time points — which

1s the mobility of operations.

Redundant Vertex Removal

According to Hq.2.1 and Eq.2.4, given two operations op, and op; with data dependency, there are:
p =4 > o (Eq21)and g, — p, > dyin (Eq.2.4); adding two equations, 2~ > d}fmn and variable g,
which is a redundant vertex, is removed. Thus, the mobility of gp, is extended from [pi, qi] to [pi, p]]
Similatly, by adding P4 > oand 9, — P > doin, b; 1s removed, corresponding to Rule 2.

Fig.2.5(c) shows the mobility graph built from splitting graph in Fig.2.5(b) by redundant vertex
removal, following Rule 1 and Rule 2. For gp, represented by ¢, in Fig.2.5(b), by removing the redundant
vertices p and g, the mobility of 9p, is extended from [pl, ql] to [s, ps] For op, represented by e,, its
mobility is extended from [pg, qg] to [ps, p4].

Cost Function Extension

Since when variable g, is removed as shown in Rule 1, the maximum delay constraint, g, — p, <
Apmax, wiitten in BEq.2.4, is also removed. To temain the objective function unchanged after removing

maximum delay constraint, the cost function DY (d) is extended as:

DY (d), d < dyax

DY (d) =
@ DY (dpax), d> dyax

2.12)

DY (d) is the extended cost function from DY (d), where Fig.2.6(a) and Fig.2.6(b) show this
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extension. When d is smaller or equal to d,,,,, the value of extended DY’ equals to original DY (d);
when d is larger than d,,,,, the value of DY (d) shall always be DY (dy,y ), because even d is larger

than d,,,,,, the possible delay assigned to an operation is at most dy,,y.

Thus, by redundant vertex removal and power-delay function extension, a mobility graph is built
from a splitting graph: DEFINTITION 4 Mobility gtaph, denoted as G,, = (V},, En), is a graph on
which, the mobilities of operations, as well as data dependencies among operations, are represented by
edges, and the problem objective function is defined by edge costs.

On the mobility graph, £, = Ej, U E,,, where edge ¢; € E,, represents operation gp,, and £,
represents data dependencies. For each ¢; = (#,v) € E,,, the edge length of ¢;, denoted as /,, is the
mobility length of op,. Similar to splitting graph, each edge s also associated with a cost «, = DY (L),

/
w

, I now give the exact definitions of vertex potential

and mobility allocation in this section.
DEFINITION 5 Given mobility graph G,, = (V,, E,.), Yv; € Vi, vy is associated with a value,
denoted as vp,, defined as the vertex potential. All vertex potentials are written into a vector, denoted

as VP. The vertex potentials satisfy:

1. for cach edge ¢ = (#,v) € E,,, vp, — vp, > d, ;.

min’

2. for each edge ¢ = (u#,v) € E,,,, vp, < vp,;

DEFINITION 6 A mobility allocation is defined as a valid solution set of vertex potentials. For
each edge ¢ = (u,v) € E,, which represents an operation, its allocated mobility is represented using
the vertex potential as M(e) = [vpu, vpv]. A valid mobility allocation is denoted as a vector VP to
represent vertex potentials for all operations.

Fig.2.7(a) and Fig.2.7(b) show an example of vertex potentials on a mobility graph with its
corresponding mobility allocation. In Fig2.7(a) each vertex v; on the mobility graph is associated
with a vertex potential value vp, defined in Definition 5. Fig2.7(b) shows the corresponding mobility
allocation derived from Fig.2.7(a). Fot example, for edge ¢, = (v,, 1), where vp, = 4 and vp, = 7,its
allocated mobility is [4, 7], which means that the execution of operation op, must start after time point
4 and ends before time point 7.

PROPERTY 1 Mobility-ovetlap-free: Once a mobility graph is built, the mobility overlap
between operations are naturally removed. For any two operations gp, and op; with allocated
mobilities [#s;, me;] and [ms;, me;|, even if there is a data dependency from op, to op; on DFG, it is
guaranteed that me; < ms;, thus the data dependencies are never violated.
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Figure 2.7: (a) The mobility graph with vertex potentials. ( . (c) Delay assignment

and scheduling

245 Delay Assignment

Given a mobility allocation, each operation, represented by edge ¢ = (#, v), is assigned as the largest

delay within its mobility [vpu, vpv] to minimize power consumption:

d(e) = min{op —vp . d,;.} (2.13)

For example as Fig.2.7(c) shows, for the multiplication operation gp,, its largest delay is 4 and
allocated mobility is [o, 5], so delay 4 is assigned to ap o> for the addition operation 9, its largest delay
is 3 and allocated mobility is [8, 10], delay 2 is assigned to 9, Since this assighment always assigns
largest allowable delays to operations, it may result in larger numbers of FUs and thus larger leakage

power consumption. To eliminate this limitation, a post processing is ptoposed for leakage power
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minimization, which is to be discussed in Section 2.8.2.

2.4.6  Mobility Allocation Problem

Consequently, the sub-problem of delay assighment is transformed to a mobility allocation problem
as the following:
Given mobility graph G,, = (Vy,, En), 2 mobility allocation is to be found, w

€ V,, a vertex potential up; is associated that minimizes:

min : P= TPy = Z DY (uvp,— vp,) (2.14)

e=(u,v)EEp,

Although the delay assignment problem is discussed by taking dynamic power minimization as an
example, it is solved in the same way for leakage power minimization. For simplicity a vector VP is

adopted to represent all vertex potentials, and the objective function Pin Eq.2.11 is rewrote as:

_ { > DY'(VP), for dynamic power; 2.15)

> LK'"(VP), for leakage power.

where ¢ refers to the edges on a mobility graph that represent operations. DY” is a function of VP
where dynamic power data are used, and similarly ZK” is a function of VP where leakage power data
are used.

As discussed in Section 2.4.1, the mobility allocation problem is also a linear programming problem,
since its coefficient matrix is a node-arc incidence matrix of the mobility graph. The PLNSM is adopted

to solve mobility allocation problem.

2.5 Resource Density Variance Minimization

In this section, the second sub-problem, tesource density vatiance minimization, is to be solved
simultaneously with the first sub-problem by vertex potentials.

251 Resource Density

During operation scheduling, it 1s difficult to directly count the number of FUs; instead, resource
density is used to estimate the number of FUs, defined as: DEFINITION 7 The density of an
operation ¢ = (u,v) € E,, with allocated mobility [vp , vp,| at control step £, denoted as dnf, is

defined as:

dnt =

T

(216
o, others )

d(e)
{ 1)[’1171)[’117 Upu é d S Upv

where d(e) is the delay assigned to operation ¢ in Fq.2.13.
DEFINITION 8 The tesoutce density of a FU of type 7 and delay 4 at control step £, is defined

as the the summation of densities of all the operations of the same type that is scheduled in 7. Since it
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1s a function of vertex potentials VP, it 1s denoted as dnf’ (VP) and calculated as:

dn® (VP) = z dn; (2.17)

op,EV

Since the tesource usage is greatly affected by the maximum density among all the control steps,
the resource densities are expected to distribute uniformly; therefore the sariance of resource densities

is to be minimized:

min:R=Y_ Y > (dnf (VP)—dny (VP)) (2.18)

€lrd,,;,<d<d 1<t<Teon

min = max

where the dn®  (VP) is the average resource density of all the control steps computed as dn®  (VP) =
Ydnf [ Ton.
In the objective function of Eq.2.10, taking Eq.2.18 as the R (for resource density variance

minimization) and Eq.2.15 as the P (for delay assignment), Eq.2.10 is wtitten as:

min: P+y-R

= ZDYH(VP) +y- ZZZ(LZ”;L (VP) _ d;’li’ (VP))Z (2.19)

where ) has the same meaning as in Eq.2.10, and is given in Table 2.3 for different problems.

252  Objective Linearizing Using Target Vertex Potential

Observing Eq.2.19, both terms, the delay assignment term DY”(J'P) and the resource density term
dnf’ (V'P), ate both functions of vertex potentials ¥’P. Consequently, by controlling the values of
VPt , as motivated in previous Section 2.3.4. Moreover, if both
terms are linear functions of VP, the PLNSM can be applied to get optimal solutions efficiently.

However, since the second term in Eq.2.19 is quadratic, in order to apply PLNSM, Zarge? vertex
potentials are proposed to deal with the quadtatic term in a linear way.

DEFINITION 9 Assume that a set of vertex potentials have already been found, under which
FEq.2.18 (the quadratic term in Eq.2.19) is minimized; these vertex potentials, denoted as
VP = (op!,vpl,--- ,vp}), are called tatget vertex potentials.

Given target vertex potential J’P*, a linear formula with absolute value is proposed as:

Z DY (vp,— vp,) + ¥ X Z lvp, — vp]| (2.20)

EZ(M,U)EEma Vi€V

whete ¢ = (#,v) and v; refer to edges that represent operations and vertices on the mobility graph
respectively; |up, — vp?| means that the vertex potential vp, is expected to be close to its target sp’.
has the same meaning as in Fq.2.10.

By introducing target vertex potentials, linear formula in Eq.2.20 is solved instead of solving
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quadratic formula in Eq.2.19; the two equations ate not equivalent but similar to each othet, since the
second term of Eq.2.19 minimizes Eq.2.18 directly, and the second term of Eq.2.20 tries to get as
close as possible to optimal target vertex potentials that minimizes Fq.2.18.

Since it is not able to obtain optimal target vertex potentials in one iteration because of its non-
linear property, they are iteratively updated to gradually minimize Eq.2.19. In each iteration, given
current target vertex potentials, the partial derivative value for each v; is computed, and the potentials
of k vertices with largest absolute values are updated.

To sum up, under fixed JP*, optimum solutions for Eq.2.20 can be obtained by PLNSM. That is,
given a set of target vertex potentials, the mobility allocation problem defined by Eq.2.20, can be solved
optimally. In this way, the operation delay assignment and resource density variance minimization are

optimized simultaneously.

2.6 Piecewise-Linear Extended Network Simplex Method

As discussed before, mobility allocation and extended mobility allocation problem ate solved using
the piecewise-linear extended Network Simplex Method which is introduced in this section. First the

outline of PLNSM is introduced, then explain its application on mobility allocation problems.

2.6.1 Oautline of PLNSM

General Network Simplex Method is a specific class of Simplex Method which is applied on a directed
network graph G = (V, E). For each edge e, it is attached with:

* a function f, as edge cost
* unit cost function ]i as edge weight, denoted as wgt(¢)
* edge length, denoted as len(e)

¢ slack value as the largest distance between current len(e) to its upper or lower bound, denoted

as slk(e)

Suppose a spanning tree 7 is constructed on graph G, there ate following theorems: Theorem 1.
The non-basic variables of any basic solution cortespond to the tree edges on graph G.

Theorem 2. The condition that a ptimal feasible solution exists is that, the values of all
tundamental loops (FL) are non-positive. Here the value of

fundamental loop means the summation of all the edge weights along the loop direction. Theorem
3. The condition that a dual feasible solution exists is that, the value of all fundamental cut sets (FCS)
are non-negative. Here the value of fundamental cut set means the summation of all the edge weights
along the cut set direction.

Basically, Simplex Method has a mapping to Network Simplex Method as:

* non-basic variables {nb;} — tree edges {¢'};
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basic variables {;} — co-tree edges {¢ };
* entering variable nb — e, with largest value of FCS(e;)
* leaving variable b — ¢, € FCS(¢;) with smallest slk(e,)

* Pivot operation — Elementary tree transformation

When the cost function f becomes convex sepatable piecewise-linear (P-L) function jk with
(b) 4 4

increasing breakpoints 7,

(—2) (-9

Ve <" e

<% o

<yl (2.21)

Then fj 1s specified by a linear function on each interval ['yg,)’ ')/,Eh+l)]. In this case the entering

variables and leaving variables may move between two adjacent breakpoints instead of lower bound
or upper bound, and curtent interval of variables may change even if pivot operation is not
performed, which means, in Network Simplex Method, the edge weight may changes even if
elementary transformation is not performed on the spanning tree.

The detailed PLNSM is given in Algorithm 2.

Algorithm 2: PLNSM(G, edge weight functions)
1. Get initial solution by conputing longest path on G,

represented by spanning tree T
2. while(primal feasible solution not obtained) do
3. Compute all FCS values fore € T,
choose Tree edge e, with largest FCS value

4 Compute slk(e) for all edges e € FCS(e,) U {e,}
5. ife. € FCS(e,) has the smallest slack
6 Elementary transformation on T of e, and e,
7 else if e, has the smallest slack
8. Tree Structure keeps unchanged
9. Update wgt(e,), wer(e,), len(e.), len(e;)
10.  endwhile

In this way, the Network Simplex Method 1s extended to the PLNSM under piecewise-1

, the PLNSM solves the
problem on directed graphs without large matrix operations in traditional Simplex Method, which is

supposed to be a much faster specific solver for this problem.

2.6.2 PLNSM Based Mobility Allocation

When applying the PLNSM on mobility grtaph G,, = (V,,, E,y) where E,, = E,, U E,,, U {er}, the

len(e) for ¢ € E,,, means the current mobility of operation e, the len(er) means the current control
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Cutset value of ¢,
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=1776

e -12, (= | -0, 0)

(a) Initial tree (b) After one transformation (c) Final tree

Figure 2.8: Example of PLNSM on mobility graph.

step number. Further, for e = (v;,1;), len(e) is calculated as len(e) = vp(v;) — vp(v;); for e € E,,
wgt(e) is calculated as the interval gradient of Pyy(; for ¢ € Ey, wgt(e) = o; for e = er, wgt(e) = o
if len(e) < Tiyy or wgt(e) = +00if len(e) > T,y Note that wgt(e) is related to the curtent piecewise
intervals of len(e).

Based on the graph G,,, the PLNSM is performed following the Algorithm 2. Fig.2.8 shows an
example. [n Fig.2.8(a), the bold edges represent tree edges, the value of ¢; represents the edge length,
the values in square brackets represent the current piecewise intervals of variables, and the values in
parenthesis represent the edge weights for each piecewise interval.

Step 1: Set the minimum len(e) for each e as the initial solution, and build a spanning tree by
computing longest path on graph G,,. Note that if there’s any positive cycle of fundamental cut sets, it
means no feasible solution can be obtained.

Step 2: The PLNSM algorithm terminates when the values of all fundamental cut sets are non-
negative, according to Theorem 3.

Step 3: For each tree edge ¢, compute the value of FCS(e,) as wgr(e,) + ) +uwgt(e,), and

e €FCS(e
choose the edge with largest value. Note that the sign of wgt(e,) is positive if the direcélon of ¢ 1s along
with the cue set, otherwise is negative. For example, for edge e, the FCS(¢;) = {¢,, ¢,, ¢}, and val(e,)
is (—888) 4 (—888) + (o) — (o) = —1776.

Step 4-8: Suppose eF is chosen in Step 3, then for each edge e € FCS(e*) U {e*}, compute slk(e)
and choose one with smallest s/k(¢). In this case, e = ¢, and compute the slack value for {e, e, ¢;, ¢, }
and get min{slk(e,), slk(e,), stk(e,), slk(e,) } = min{3—2,3—2,00—3,5—3} = slk(e,). So e, is chosen
and tree transformation is performed by taking e, out of the tree and adding e, into the tree, as shown
in Fig.2.8(b).

Step 9: Update the edge length and weight for ¢, and e € FCS () according to their new piecewise

intervals. In this case, e, ¢,, ¢, and ¢ is updated as shown in Fig.2.8(b). Since ¢ becomes a co-tree
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Figure 2.9: Example of PLNSM with target vertex potential.

edge, its interval reduces to one ([3, 4]) and the intervals of e, increase to two ([2, 3, 4)).
By applying the PLNSM, the final solution is obtained presented by the tree as shown in Fig.2.8(c).

The mobilities of operations are allocated along with the vertex potential vector VP be determined.

2.6.3 PLNSM based Extended Mobility Allocation

Given the modified mobility graph, the PLNSM can also apply on it with only |}/] extra potential edges.

Fig.2.9 shows an example of the modified mobility graph with tinal mobility allocation and delay
assighment solution. In Fig.2.9(a), the dotted edges represent the target potential edges. In this
example, the vertex g is assoclated with target potential vpt(U(,) = 8 and p = 1. As a result, the vertex
potential of vp(vs) moves from 4 to 8 in Fig2.9(b) due to the introduction of tatget potential.

Fig.2.9(a) shows the final tree and Fig.2.9(b) shows the corresponding mobility allocation.

2.6.4 Analysis of PLNSM
Complexity Analysis

For linear programming problem, the complexity of general Simplex Method as well as the Network
Simplex Method are both closely related to the variants and the number of pivot operations. For one
particular problem, the Simplex Method and the Network Simplex Method may have the same pivot
number but absolutely different complexity of each pivot operation. Especially when the linear
programming is extended with a piecewise-linear objective function, the complexity of traditional
Simplex Method grows significantly due to the introduction of large amount of new variables to
reformulate it as a new linear programming problem'?, while the Network Simplex Method is proved

to be scalable with the complexity almost unchanged.
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In the algorithm of NPMVS, the kernel step is solving the mobility graph iteratively by Network
Simplex Method, whereas the efficiency of Network Simplex Method 1s crucial to the global efficiency.

Non-convex function Extension

In this work the MVS problem has a convex objective function, which guarantees the optimality of the
Network Stmplex Method. However even in the case of non-convex power-delay curve, the proposed
method can also be applied with a high probability to gain optimum solutions by repeating random

starts combined with local search that is able to escape from local optimal solutions.

2.7 Proposed Unified Scheduling Scheme

Input DFG, latency constraint, power data

| Build mobility graph from DFG |

l:

| Initialize target vertex potential VP* |

»

Solve the sub-problem of mobility allocation

(defined by Eq.20) optimally using PLNSM[1]
Update target vertex
potential VP* ¢
y Dependency-Free Scheduling

N
Apply binding?
Accept as local Interconnect-aware
best solution FU and REG binding [35]

[

Improved?

Output final delay assignment
and operation scheduling

Figure 2.10: Flow-chart of the unified scheduling approach.

In the previous two sections, the two sub-problems are respectively discussed. In this section, the
proposed unified scheduling scheme is introduced. Its utilizations on three problems are discussed in

Section 2.8.
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Algorithm 1 Proposed Unified Scheduling Scheme

Requite: Data Flow Graph, latency constraint

Ensure: A Delay assignment d(opi) and an operation scheduling 5(0pi) for each operation op;
1: Extended mobility graph generation from input data flow graph
2: Initialize target vertex potential up; for each y;
3. while stop criteria NOT met do

4 Update the vertex potential for ecach vertex to minimize Eq.2.20
5: Dependency-free scheduling

6: Compute the total power PJ@Z”’ of all allocated FUs

TP < (14 48) - PR do

8: Perform FU and register binding

9: Update target vertex potentials of k vertices
10: end while

271  Overview of Unified Scheduling Scheme

The overview of the proposed unified scheduling scheme 1s shown in Algorithm 1, and the flowchart
is shown in Fig.2.10.

From input DFG and power data, an extended mobility graph is first built as shown line 1; then the
delay assignment problem is first solved without considering tesoutce, i.e., Eq.2.14 is solved optimally
using PLNSM,; the vertex potentials obtained hete ate set to be initial target vertex potentials VP,

Given initial vertex potentials, the scheduling algorithm is executed iteratively, as shown in line
4-9. First, the mobility allocation defined by Eq.20 is solved using PLNSM, and the optimum vertex
potentials with tespect to the given target vertex potentials are obtained as line 4. Based on the
mobility allocation determined by vertex potentials, dependency-free scheduling is applied as line 5.
After dependency-free scheduling, the number of allocated FUs are obtained. dynamic power,
leakage power and resource usage evaluated by Eq.2.7 to Eq.2.9, respectively, according to different
objectives of the three problems. Then the FU and register binding is performed conditionally, which
is to be introduced in Section 2.7.3. Finally, & target vertex potentials are updated as line 9, and
extended mobility allocation is solved again under new V' P*. According to the experiments, k is set as
5% to 10% of total vertices on the mobility graph, which shows highest efficiency. The algotithm
terminates when the total number of iterations exceeds the preset value.

When the scheduling scheme 1s applied on problem 3 given two objectives, to obtain Pareto

Solutions, a solution 1s saved either dynamic or leakage power reduces.

2.7.2  Dependency-Free Scheduling

Given an extended mobility allocation, a dependency-free scheduling is proposed to determine the final
schedule for each operation, as shown in Algorithm 2. There ate two stages: stage 1, shown in line 1
to 6, is to estimate the numbers of FUs for each type 7 with delay 4, and stage 2, shown in line 7 to 11,

is to gradually reduce the estimated numbers of FUs. In stage 1, initially the numbers of all used FUs
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Algorithm 2 Dependency-free Scheduling

Require: Extended Mobility allocation with vertex potentials
Ensure: Schedule for each operation

L /[ Stage 1: extimate the number of FUs of each type
Set all numbers of used FU of type 7 and delay d as 1
while Not all operations are scheduled do

Increase the number of FU by 1 for un-scheduled operation op; of type 7 and delay d

ol

Apply list scheduling within current number of FUs
6: end while
// Stage 2: reduce the number of FUs

8: while List scheduling succeeds do

=l

: Reduce the number of FU of type 7 and delay & by 1
10: Apply list scheduling undet decreased FU usage

11: end while

of type 7 and delay 4 are set to be 1, and operations ate scheduled using list scheduling; the priority is
the acceding order of ending times of operations mobilities, and operations shall be scheduled within
their mobilities. If gp, is failed to be scheduled within the current number of FUs, the number of FU
for op, is increased by 1, and list scheduling is performed again, until all operations are scheduled. In
stage 2, the numbet of FUs of each type by is tried to reduce by 1 in each iteration; during this step,
mobility constraints of operations are relaxed, and list scheduling is applied on the original DFG; the
priority is the same as in step 1. The algorithm terminates when the numbers of FUs cannot be further

reduced.

2.7.3 Functional Unit and Register Binding

Because FU and register binding step has a large impact on the interconnection complexity and
multiplexer sizes, in the proposed scheduling approach, interconnect-aware FU and register binding
is also conducted to reduce overall power consumption, including multiplexer power and register
power, as shown in line 6. The adopted binding algorithm is proposed in?’, whose objective is to
reduce the number of registers and input counts of multiplexers. [t 1s a sumplified weighted
compatibility graph based dynamic programming method improved from work in®?.  Since
performing binding in each iteration is time consuming, it is skipped if the current scheduling
solution has a low possibility to reduce the overall power of the current best solution (the scheduling
that has lowest overall power consumption up to now): denote the FU power of the current solution
as P and the FU power of the current best solution as P}:”-b“, the FU and register binding is only
performed when P3" < (1+9) - P}Zﬂ-b”, as line 6-8. In this work ¢ is set as o.1. After binding, the
numbers of used FUs, registers and multiplexers are known, and the overall power is computed; if it
1s smaller than the curtent lowest power, the current scheduling and binding are accepted and PJ%I;b is

updated.
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Table 2.3: Scheduling Algorithm Utilizations on Three Problems.

Algorithm Utilizations and Parameters

Common Objective: P + ¥ R

Problem 1 | Descrp.  Dynamic Power Min.  +  Resource Min.
Data Power-Delay Table 2.1 under multi-¥ 44

Oby. S DY'(VP) 4y - > > > (dn,(VP) — dn,(VP))*

Param. ¥ =o.l

Problem 2 | Descrp.  Leakage Power Min.
Data Power-Delay Table 4.1 under multi-V7,
Obj. Y EEUD o SSSSSLK(VP) - (dn(VP) — dng(VD))?

Param. oy =35

Problem 3" Descrp.  Dynamic Power Min.  +  Leakage Power Min.
Data Power-Delay Table" under multi-V ;4 and multi-,
Ob;. SSDY'(VP) 4+ - >3 > LK (VP) - (dn,(VP) — dn,(VP))?

Param. 7 varies for Pareto Solutions

* Problem 3 can only be solved with conditions; in experiments the dynamic power in Fig.10 are
from Table II and leakage power are from Table I.

2.8 Algorithm Utilization on Three Problems
In this section, the proposed scheduling scheme is utilized on three problems with different power
data, objective functions and parameters, as illustrated in Table 2.3.

2.8.1 Problem 1: Dynamic Power and Resource Co-Optimization

As discussed in Section 2.2.2, only dynamic power minimization can be relaxed to linear programming
and solved optimally. When dynamic power is co-optimized with resource usage, solutions with optimal
dynamic power values are firstly chosen, and then resource is minimized without sacrificing dynamic
power. For example the solutions in Fig.2.1(b) and Fig.2.1(c) have same optimal dynamic power but
Fig.2.1(c) has a smaller resource usage. Therefore, its objective function, where Pis defined as Eq.2.15
and R is defined as Eq.2.18; 1s:

min: P+ - R

— Z DYH(VP) + - Z Z Z(dnltt (VP) - d?’lj’ (VP))z (222)

where in the experiments, 7 1s set as 0.1, which 1s a small enough value to suggest that dynamic power
is first optimized and then followed by the resource usage.
2.8.2 Problem 2: Leakage Power Minimization

Leakage power minimization also contains the same two sub-problems Pand R, as illustrated in Section
2.3.1. Since the estimation of leakage power is different from dynamic power, the definitions ot P and

R are needed some modifications.
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Delay Assignment

As defined in Eq.2.15, Pis written as:

min: P=Y LK  (d(op,)) ZLK” (VP) (2.23)

op,EV

where Pis computed as the summation of leakage power of a// operations in DFG.
On the other hand, as defined in Eq.2.8, the actual leakage power consumption shall be computed

as the summation of leakage power of a/l allocated FUj5 as:

Pl = Z Z LK (d) ’ N(d, 7-) (224)

e€lrd,,, <d<d

min— max

Note that P computed in Eq.2.23 1s the objective function of operation delay assignment to be
minimized, while P, computed in £q.2.24 s the actual leakage power consumption. Obviously, the
more similar Pand P, are, the more accurate scheduling approach is for leakage power optimization.

To compensate the difference between P and P, the operation reuse ratio, denoted as et s
proposed to approximately suggest that how many operations in DFG can share one physical allocated
FU. Therefore, dividing Pin Eq.2.23 by e? for each kind of FU of type 7 and delay 4, a compensated

function Py is defined as:

min > Pompsy = (2.25)

LK (d(ap,)) LK'(V'P)

Prympst 15 closer to Py than P, and 1s the new objective function of operation delay assignment
for leakage power minimization. The initial reuse ratios are obtained from pre-experiments for each
testbench, by applying a simple list scheduling; duting the proposed scheduling algorithm, the ratios
are updated as the actual values obtained from previous iteration.

Table IV shows two sets of solutions, where the first ones are obtained by just minimizing function
Peymps defined as Eq.2.25, and second ones are obtained by minimizing both P,,,; and R, where R is
to be introduced in Section 2.8.2. It shows that, for most cases, the number of FUs obtained by just
minimizing P, 1s only 1 or 2 more than that both P, and R are minimized. This implies that,
first, the function Py, in Eq.2.25 is a good approximation of leakage power, and thus is effective
in minimizing leakage power. Second, the resource minimization cannot be neglected, because a low
threshold voltage (lvf) FU consumes much more power than a high threshold voltage (bof) FU, and
one less [vt FU may result in much lower total leakage power. For example for case rand0) under latency
Teon = 25, the number of /vt MUL is reduced by only one if R is considered, but the leakage power
greatly reduces from sg9o.1ul¥ to 319.4u . This implies that minimizing R must be conducted for

leakage power minimization.
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Table 2.4: Leakage powet minimization without and with resource concern

Only Minimizing Py Minimizing Py, and R
DFG | T ADD MUL 12 ADD MUL Py

bot | ot | bor | I (1) bot | ot | bor | It (1)

7 1 1 4 1 547.5 1 ! 3 1 520.1

diff 9 1 1 4 1 276.8 1 1 3 0 2494

11 2 0 3 0 96.4 2 0 2 0 69.0

24 12 2 8 1 895.3 6 3 6 0 687.2

fft 30 12 1 6 0 409.8 9 1 5 0 361.0
36 8 1 5 0 353.9 6 1 4 0 201.7

20 8 2 5 1 784.77 7 2 4 1 750.2

randQ 25 7 1 4 1 590.1 7 1 4 0 319.4
30 6 0 3 0 124.9 6 0 3 0 124.9

23 13 3 4 1 952.9 12 3 4 0 675.1

rand! 28 12 2 4 0 515.0 11 1 4 0 347.9
33 11 1 3 0 320.5 9 1 3 0 306.2
36 46 3 14 1 1461.5 40 3 13 1 1391.5

rand2 45 33 2 13 0 910.9 32 1 10 0 661.6
54 28 1 9 0 605.7 26 0 8 0 4041

, when R is computed for leakage power, the
weight for the density of FUs of type 7 and delays d shall be set as its leakage power consumption
LK (d), to estimate actual total leakage power more accurately, because the resource density is
positively related to actual number of FUs. Besides, although the computation for R is an
approximation for leakage power, the number of FUs and leakage power are computed according to
Eq.2.8 each time after dependency-free scheduling, to evaluate actual leakage power more accurately.

Consequently for leakage power minimization, R is computed as:
R=>"3"NIK (d)-(dn (VP)—dnt (VP)) (2.26)
d t
To sum up, the objective function for leakage power minimization, is written as:

min Z —LK;E V) +
(2.27)

v SOSTSTLK (d)- (dnt (vP) - dnt (vP))

where 7 is set as larger than that in problem 1, say oy = 5 in experiments because for problem 2, the
numbers of FUs primarily determine the leakage power and thus need to be minimized under a large
welght. It is also solved on the mobility graph using PLNSM. Eq.2.27 1s lineatized in a similar way as
Eq.2.20 being linearized from Eq.2.19.
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Figure 2.11: Example of post processing for leakage power minimization.

Post Processing

As discussed in Section 2.4.5, in this proposal, given a mobility allocation, to each operation the largest
possible delay is always assigned, which may potentially increase the number of FUs of larger delays,
and thus increase total leakage power. For example as a solution produced by this scheduling approach
shown in Fig.2.11, three FUs are used, two 2-delay multipliers and one 3-delay multiplier. However if
the three 3-delay operations are reassigned as 2-delay, all of them can reuse the already allocated 2-delay
multipliers and the 3-delay multiplier can be saved.

Consequently, after dependency-free scheduling, a post processing for leakage power minimization
1s proposed: by reassigning smaller delays to operations and tescheduling these operations to other FUs,
the number of FUs can be reduced.

For each FU of type 7 and delay 4, each operation op, implemented on it is checked whether op,
can be reassigned to delay d that d < d and rescheduled to other FUs of delay d. For example for
M, in Fig2.11(a), op,, op, and op, are checked. gp, can only be rescheduled within 5, t;+d], where £; is
the current starting control step of op,, in order to guarantee that data dependencies are not violated.
For example for op, in Fig.2.11(a) whose original schedule is [7,10], it can be rescheduled to [7, 9] or
8, 10], 2s shown in Fig.2.11(b). If all operations on a FU can be rescheduled by being reassigned smaller
delays, this FU is saved, as shown in Fig.2.11(b), A4, is saved and only two FUs are used.

2.83 Problem 3: Dynamic and Leakage Power Co-Optimization

Problem 3 has a major difference from problem 1 and 2. In problem 1 and 2, either of the voltages
V44 or Vi 1s tixed; then, once the delay of an operation is determined, the other voltage, Vi, or Vg, 1s
uniquely determined. Meanwhile, the leakage power or dynamic power of the FU with the determined
delay 1s also unique. Therefore, the scheduling approach deals with operation delays instead of real

voltage values. On the other hand, in problem 3, multi-V;; and multi-V;, are given at the same time.
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In this case, if the pair of Vy; and V), still can be uniquely determined by operation delay, this unified
scheduling approach can be applied. Under this assumption, the objective function of problem 3 is

written as:

min :ZDY”(VP)Jr
(2.28)

v ) D D LK (d)-(dn} (VP)—dnl (VP))

where P is defined as Eq.2.15 for dynamic power minimization, R is defined as Fq.2.26 for leakage
power minimization. y is used to balance between dynamic and leakage power, whose values are given
in Section 2.9.3.

Since there are two objectives of problem 3, the dynamic power and the leakage power, a unique
optimal solution may not exist. Therefore, a function is added in Algorithm 1, to save the Pareto
Solutions during the minimization of Eq.2.28.

On the other hand, if one operation delay cortesponds to mote than one pairs of Vy; and Vy,

an additional processing is necessary to select one pair from the different pairs, w

(, , ,50,100,200,250), first as 5, and is increased to the

next larger value untl the scheduling algorithm terminates.
The results show that for all benchmarks that ILP succeeded, this scheduling approach is able to
produce solutions with both optimum dynamic power and resoutce usage the same as ILP solutions.

Further, among 22 groups of data the longest running time of the algorithm is 0.25sec (FFT under
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Tom = 36), and the average run time is less than 0.1sec.

Table 2.5: Compatisons between this scheduling approach and ILP solution

MINE ILP
PFG | Teon | 7 0f | Pay 1440 3g | 2d | 30+ 20+ | 1d+ | 72 [ 4av | 3a | 20| sd+ | 2d+ | 1d+
ir. | (u¥) ()
470 5 [68664| 1 [ 23 0 [ 1| 268664 1 [2]3] 0] 1] 2
ad2 | 70 | 5 23463 2 | 3 | 1| 2 | 0 | O (23463 2 |3 |1 | 2[00
94 | 5 15385 3 | 1 | 0| 2 | 1 | 0 |15385| 3 |1 |0 |2 | 1|0
721052747 2 [t [ 2] 1 | 1|2 [5M47|21]2]1]1]2
ae [ 90| 50 |26815| 1 | 2 [ 1| 1 | 2] 0 | NA NA| - -] -
108| 50 [20374| 3 | 1 | 0| 2 | 1 | 0 | NA INA| - | - | - | -
1350 18380 4 [0 4] 1[0 2188404 1]0]2
ac | 16 (100 9524 | 2 | 4 | 0 | 1 | 2 | 2 [ 9524 | 2 4 [0 | 1| 2] 2
19 [100 | 7636 | 4 |0 | 0| 1 [ 2] 0 |763 | 4]0|0|1|2]0
70506030 1|1 ]2]1]1]1]en0|1|1]2]1]1]1
diff | 9 |50 [ 3138 | 2 | 20| 1|1 |1 [338]2]|2|0|1[1]1
1102666 |3 0|0 | 1] 1[o0]2666|3]0[0][1]|1]0
25120 (47850 1 | 1 [ 3| 0 [ 2| 2 [47850[ 1 |1 ]3]0 2]2
clip | 30 | 20 (29777 2 | 2 | 1 | 1 | 2 | 0 [29777 2 |2 | 1 | 1 [ 2]0O
35|50 [10925| 4 [ 1 | 0| 2 | 0| 0 [1095]4 |1 [0]2]0]0
36| 5 Jteast| Lottt ]2t t|o]t]1][1]2
mpeg| 42 | 50 |10826| 1 | O | 1 | 1 | 2 | I | NA [NA| - | - | - | -
50 |50 [ 8697 | 1 | 1[0 [ 2] 2| 0| NA|NA| - |- |- |-
2410022329 4 [ 6 [ 2] 6| 8| 4 [22329[ 4|6 |26 ] 8][4
fft | 30 [ 100 [17516| 5 | 4 | 1 | 9 | 5 | 1 | NA [NA| - | - | - | -
36 | 100 (15841 7 | 2 [0 [ 10 ] 2 | 0 | NA [NA| - | - | - | -
AVG | | L0 | | L0 |

2.9.2 Leakage Power Minimization

In this section the proposed scheduling algorithm is applied for leakage power minimization, by
comparing it to the latest existing work BCGS™ and an early work MWIS™, as shown in Table 3.4.
To make a comparison, the same formulation is adopted as in™, where dual threshold voltages are
used: high-V,, denoted as bot and low-V,, denoted as lot.

In terms of leakage power consumption, first, compare MINE and BCGS to MWIS showing in
the row of AVGT1. It shows that BCGS reduces leakage power by 52.0% compared to MWIS, while my
proposal MINE reduces leakage power by 61.8% compared to MWIS. Secondly, MINE is compared
to BCGS, showing in the row of AVG2. Tt shows that my proposal reduces leakage power by 20.4%
compared to BCGS. Moreover, comparing to small testcases, my proposal saves much more power
under larger cases, say fff, rando, randt and randz; undet these four cases my approach saves 43.9%
leakage power on average compared to BCGS?.

In terms of execution time, BCGS suffers from 2.0 times overhead compared to MWISH

Comparing to MWIS, the CPU time of my proposal is only 3.8% of MWIS, which is a 26X speedup;

TThe authors of BCGS adjust the parameters to let their algorithm produce solutions as good as possible, say by
increasing the iteration time, ect., so that for fairness the two cases ate excluded when comparing the CPU tme.
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Figure 2.12: Dynamic power and leakage power solution space.

and compating to BCGS, the CPU time of my proposal is 1.9% of BCGS, which is 2 52X speedup.
For test bench randz, the actual comparison is less than 1.0e — 4 but for simplicity it is recorded as
0.001.

The experimental results imply that my approach is efficient for leakage power minimization, where

both power and execution time excel®. The reasons are analyzed as:

* For power consumption, in*, all operations ate initially assigned by smallest delays and
reassigned to larger delays during the optimization; thus, the initial solution is farthest from
final solution, and the optimization is easily fallen into local optimum solutions. On the other
hand, in my proposal, the initial solution 1s computed using linear programming, which is quite
close to final solution and can be obtained in one iteration. For example as shown in Table TV,
only minimizing P can already get solutions quite close to the final solution; based on a good

initial solution, R is optimized to further reduce leakage power.

* For execution time, in>, the most time consuming part is the perturbation of mobility overlap
removal, where Simulated Annealing is adopted; while in my proposal, mobility-overlap-free

solutions are easily obtained by adjusting vertex potentials, w

-Optimization
To show concept of problem 3, the possible delays for adders are assumed as (1,2) and for multipliers
are (2,3); dynamic power in Table 2.1 and leakage power in Table 4.1 are adopted. Because there are
two optimization objectives, the leakage power and dynamic power, Pareto Solutions are shown in
Fig.2.12 under testbench FFT with latency 7, = 24. The power values are obtained under different
patameters iy = 0.8, % = 1.0 and ¥ = L.2. In order to compare leakage and dynamic powet, the
dynamic power shown here 1s the average consumption during all control steps. The overall trend
shows that along with the decreasing of dynamic power, the leakage power increases, which is typical

tor Pareto Solutions. On the other hand, with the decreasing of dynamic power, operations are assigned
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Table 2.6: Compatisons between my scheduling approach and existing work? for leakage power minimization only.

MINE BCGS™ MWIS*
DFG|Teon|# of| ADD | MUL PIJ, t ADD|MUL Pl}, t ADD|MUL PIJ, t
itr. hw‘|lvt hvt|lvt (u) Cmp (ms) Cop bul|lvt hvt|lvt (u) Cmp (ms) Cmp hvt|lvt bvt|lvt ()| (ms)
71 5 [0f2]0]3[1132.2(1.000] 0.70 |0.017] 0 [2] 0 | 3[1132.2{1.000 7400 | 1761 [0 |2]| 0|3 |1132.2] 42
ad2 |70 [ 10 |0 | 1|3 |0|242.3(0.273| 1.30 [0.022{ 0 | 1| 1 |1]458.2]0.515/190200| 3279 | 0 [2| 1 |2]|888.9 58
94110 |1 |0 2 (0| 61.9 |0.248] 1.71 [0.035| 1 |0| 2|0 61.9 |0.248|303600| 6195 |1 |13 [0]|2494 49
72110 [0 [1]1[1]4582(0.532| 2.62 |0.006| 2 [0 3 [1]367.1[0.426| 177 391 |0 |2|0|2|861.5| 453
ae |90 |200] 1 (1]3]0]|249.4)|0.544|46.42 (0112 1 [1| 3| 0|249.4(0.544| 1902 | 457 |0 [1|1[1]4582| 416
108100 1|10 20| 61.9 |0.241| 1831 (0.046| 3 [0| 2 | 0| 76.1 |0.297| 3954 | 989 |2 [1]|3]0]256.5| 400
13150024 (|2]971.1]0.611| 0.52 |0.005| 0 |2| O |4|1402.9|0.882| 239 208 | 03| 1[4]15904| 115
ar [ 162000 [2] 4 [0][429.7]0.285| 15.96(0.126| 0 | 2| 5 |0 |457.1 |0.303| 402 298 [0 [4|2|3|1507.1] 135
1912002 |0 4[0]123.8(0.154[12.99(0.091| 2 |0 | 4 |0|123.8|0.154| 393 275 |0 (4]|6|0]804.6 143
71501013 ]|1[513.0(0.795| 1.08 |0.030| 0 [1]| 3 |1]513.0]0.795| 38 1.06 |0|2|2]1]645.6 36
diff | 9 [100( 0 [1]3[0|242.3(0529 2.13 [0.061| 0 |1|3|0|242.3|0.529| 52 149 |0 |1|1]1]|4582 35
112502 (0] 20| 69.0 [0.269] 5.65 |0.138| 2 |0| 3 |0]| 964 |0.376] 54 132 [ 2]1]3]0]256.5 41
36| 5 [1[2] 1]1]6253]0.698] 0.61 [0.002] 1 |2]1[1]6253[0.698/31800(91.12F| 1 |2| 1 [2]896.0| 349
mpeg| 42| 50 | 2|2 1|0]361.7]0.554| 6.09 |0.019| 2 | 2| 2|0]|382.0|0.585| 57400 1811 1|22 ]1]|652.7| 317
502001 |1]1]0]194.6(1.000{27.95(0.070| 2 | 1|1 |0]201.7 [1.037[209800[521.9F| 1 [1| 1 | 0] 194.6| 402
241200 6 [3] 6| 0]687.2(0.233|262.40[0.020| 6 |4 | 5 |2 [1361.3|0.462| 5992 | 0.453 | O |14| 6 | 2 |2946.5] 13228
fft [30(100(9 [1]5[0|361.0(0.157{134.81{0.011| 9 |4 | 8 | 1 [1194.1|0.520| 7458 | 0.584 | 6 | 9|10| 2|2298.5| 12780
36 [100] 6 |1 4]0(312.3(0.269| 90.30|0.006/10(2| 9 | 0] 637.8(0.549/ 12083 0.831 | 9 |6| 5|0 [1161.3] 14534
20 (100 7 (2] 4 |1]750.2]0.491| 40.66(0.019|11|2| 5 |1 |806.0(0.527| 3125 | 1.842 | 0 |6 | 1 |2(1529.1] 2109
rand0| 251200 7 [1] 4 | 0]319.4]0.259/98.56|0.044| 9 (1|3 |1[577.0[0467| 4014 | 1.802| 0 |5| 6 |1 [1235.4| 2228
30 (2006 (0] 3[0]124.9]0.111]|116.76/0.042| 7 |0 | 4 |0[159.4 [0.142] 4841 | 1.761 | O |5| 2 |1 [1125.8] 2749
23 (200(12|3 (4 |0|675.10.307|211.98|0.020| 8 | 6| 8 | 0 [1236.4{0.563| 7800 | 0.732 | 0 |10]| 2 | 2 [2196.7| 10659
randl| 28 | 50 |11 1] 4 | 0| 347.9(0.178| 65.56 |0.006|/15[3 | 6 [ 0| 751.2[0.385| 11219 | 1.059 | O (10| 3 |1 {1953.4| 10598
33|50 (9 (1]3]0]306.2(0.198] 83.26(0.007|16|1| 4 |0|383.4(0.247[ 14185 1.235| 0 |9 | 4 | 0|1550.1| 11486
36 | 10 (40|13 (13| 1 (1391.5/0.158]|170.24{0.001|51| 7 |20 1 [2301.7{0.262(432211| 0.481 | 0 |27| 5 |16|8789.7| 898483
rand2| 45| 50 |32]1 (10| 0| 661.6|0.102|693.58|0.001|42 |3 [15| 2 [1731.2]0.268|564703| 0.623 | 0 2511 8 [6468.3| 906971
54| 50 (260 | 8 | 0| 404.1|0.106|770.99{0.001(43| 0 [13| 0| 661.9 |0.173|635786| 0.614 | 0 |20[13| 1 |3827.9(1035776
AVG1 (compate to MWIS) 0.382 0.038 0.480 2.004 1.000 | 1.000
AVG2 (compare to BCGS) 0.796 0.019 1.000 1.000 2.083 | 0.499
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Table 2.7: Scheduling combined with FU and register binding for leakage power minimization

Scheduling w/o FU and REG Binding Scheduling with FU and REG Binding Bw/o
DEIG|Tewn ADD |MUL | # of |Int# of|]  Leakage Power( W) ADD | MUL | # of |Int.# of] Leakage Power( W) Binding
bvtllvr hvtllvt REGs| MUX | Py | PreG | Pyux | Protal hvrllvt bvtllvr RIEGs| MUX | Pry |PREG Pamux | Pryral Pryral
47 10210 (3] 25 143 |1132.2| 1625 [ 177.8 |14725| 0 | 2] 0 | 3| 23 121 |1132.2{149.5| 155.3 [1437.0 (0.976)[1472.5 (1.000)
ad2 (70 [ O |13 ]|0] 25 131 | 2423|1625 | 167.7|5725| 0 | 1| 3|0 25 124 | 2423 [1625] 162.4 | 567.2 (0.991) | 788.4 (1.377)
94 [ 1|o]2]0| 25 114 | 61.9 | 1625 | 467 (3711 L [0 2|0] 23 105 | 61.9 [149.5] 1374 | 348.8 (0.940) | 377.6 (1.018)
7200|111 34 154 | 4582|2210 169.8 8490 | 1 | 1| 1| 1| 31 146 | 465.3 |201.5| 157.8 | 8§24.6 (0.971) | 770.9 (0.900)
ae (90 [ 1|1 3]0 36 170 | 2494|2340 (19636797 2 (1|3 |0] 34 157 | 2565 |221.0| 187.1 | 664.6 (0.978) | 684.8 (1.008)
081 {of2]0] 36 150 | 61.9 | 2340 (1768|4727 | 1 | 0| 2 [0 ] 31 149 | 61.9 [2015| 176.3 | 439.7 (0.930) | 493.4 (1.044)
Blo|214(|2] 6 40 (9701 39.0 | 580 |1068.1 L |2|4 2] 5 35 | 9782325 55.1 [1065.8 (0.998)[1499.9 (1.404)
ar |16 [0[2]4]|0| 8 42 (4297 520 | 650 | 5467 1|24 |0 6 40 [ 436.8(39.0| 61.6 | 537.4 (0.983) | 574.1 (1.050)
of(2(0]4|0| 8 40 [ 1238 520 | 605 |2363| 2|04 |0 6 37 | 123.8(39.0| 56.7 | 2195 (0.929) | 2375 (1.005)
7ol0t]3|t| 4 15 5130 260 | 286 |5676|0 |13 (1] 4 15 | 513.0| 260 | 274 |566.4 (0.998) | 568.7 (1.002)
diff |9 [oft]|3]0| 3 15 (2423 195 | 273 |2891| 0| 1|3 (0] 3 13 [2423| 195 25.0 | 286.8 (0.992) | 289.1 (1.000)
milzjoj2|0| 3 11 69.0 | 195|238 [1123(2|0[2[0| 3 9 69.0 | 19.5| 21.4 | 109.9 (0.979) | 139.7 (1.244)
3G [ |21t 19 104 | 6253|1235 12198707 1 (21 |1] 17 98 | 6253 [110.5] 1119 | 847.7 (0.974) | 8855 (1.017)
mpegl42 [ 22| 1|0 20 123 | 3617 | 130.0 [ 148.6 | 6403 | 2 | 2| 1 | 1| 19 99 | 389.1 [123.5| 125.8 | 638.4 (0.997) | 654.1 (1.022
50 [ 1|t 10| 20 T | 1946 | 130.0 [ 1419|4665 2 | 1| 1|0 19 101 | 208.8 [123.5| 117.7 | 450.0 (0.965) | 480.1 (1.029)
24 163160 41 358 [ 687.2 2665 (4809 [1434.6] 6 3| 6|0 39 350 | 687.2(253.5| 474.8 |1415.5 (0.987)|2115.2 (1.474)
fic |30 | 91|50 46 340 [ 361.0[299.0 | 4654 (11254 9 | 1| 5 (0| 45 323 | 361.0 (2925 462.4 [1115.9 (0.992)[1965.0 (1.746)
366|140 46 346 [ 3123(299.0 | 437.0 (10483 7 | 1| 6 (0| 41 314 | 374.2 |266.5| 398.8 [1039.5 (0.992)[1367.3 (1.304)
2007 (|2]4|1| 19 168 | 750.2 | 123.5 [ 196.6 |[1070.3| 8 | 2| 4 | 1| 17 162 | 757.3 |110.5] 183.1 [1050.9 (0.982)|1132.6 (1.058)
rand025 | 7 [ 1| 4|0 17 159 | 3194|1105 [ 168.1 (5980 8 1|4 |0]| 16 151 | 3265 [104.0| 156.9 | 587.4 (0.982) | 862.1 (1.442)
(60l 3(0] 24 157 [124.9 1560 (1695 (4504 | 6 [0 3 [0 | 22 153 | 124.9 [143.0| 168.1 | 436.0 (0.968) | 959.9 (1.062)
23 (123 4|0 31 289 [ 675.1[201.5| 3364 (1213.0/12|3 | 4 (0| 28 280 | 675.1 [182.0| 328.1 [1185.2 (0.977)[1774.3 (1.463)
rand1|28 |11[1]| 4 [0 32 201 | 34792080 [ 334.6 [ 8905 (13|14 |0]| 26 277 | 355.0 [169.0| 315.3 | 846.3 (10.950) [1280.8 (1.438)
33191 3[0] 35 300 | 306.2) 2275|3425 (8762 |10 1| 3 [0 34 295 | 306.2 [221.0) 3101 | 844.5 (0.964) | 959.9 (1.096)
36 (403|131 135 | 1398 |1391.4| 877.5 [1514.7|3783.6|42| 3 |15 1 | 105 | 1382 |1433.1|682.5|1449.3|3564.9 (0.942)|4706.9 (1.244)
rand2(45 [32] 1|10 0| 163 | 1393 | 661.6 |1059.5[1531.0{3252.1| 33| L | 11| 0| 121 | 1362 | 696.1 |786.5]1426.7|2909.3 (1.895)|4302.2 (1.323)
54 (2610 8|0 (75| 1357 |404.1|1137.5[1498.3(3039.9| 270 9 | 0| 124 | 1310 | 438.6 |806.0{1369.8|2614.4 (0.860)|3304.2 (1.078)
AVG | [ 1.000 | 1.000 [ 1.000 ] 1.000 | [1.025[0.895[0.934] 0.966 | 1180

to larger delays, and potentially the number of FUs will increase, since the sharing ratio among FUs of

larger delays is lower than the ratio among FUs of smaller delays.

2.9.4 Interconnection-Awatre FU and Register Binding

In this section the impact of binding on leakage power is shown, w

, Int. # of MUXes shows the total number of
mputs of all MUXes. Pry, Prec and Pyyy are the total leakage powers of FUS, registers and MUXes,
respectively; Py, 1s the summation of the three, the overall leakage power. The scheduling w/o FU
and REG binding columns show the results that binding is performed only once after scheduling; the
scheduling with FU and REG binding show the results with binding being combined into scheduling.
The overall leakage power, including register and MUX power, of previous work*® are also shown in
the last column. The power values are obtained by performing binding once on the final scheduling

results of >,
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Firstly, the overall leakage power of> is 18% larger than mine on average, when binding is
performed once after scheduling of both approaches, mainly because less FUs are used mn my
scheduling solutions. Secondly, in my scheduling solutions with binding, the numbers of FUs slightly
increase compated to those without binding, as shown in the columns of ADD and MUL. This is
because, w , the objective is to minimize the total power
including registers and MUXes, and the solutions with more FUs may have less registers and smaller
MUXes. For example, for cases like ae, ar, mpeg, {ft, randr and rand>, the numbers of FUs increase
by 1 or 2, and correspondingly the leakage power of FUs, Pgy, increases by 2.5% on average; on the
other hand, the numbers of registers and total inputs of MUXes greatly reduce for these cases, thus
the overall power also reduces. On average, with binding, the register power reduces by 10.5%, the
MUX power reduces by 7.6%, and the overall power reduces by 3.4%, compared to the results
without binding. Tt strongly implies that binding shall be conducted together with scheduling.

2.10 Summary

In this wotk, a unified low-power scheduling algorithm with multiple threshold or supply voltage
technologies is proposed. Two problems are first solved by the unified scheduling algorithm: (1)
dynamic power and resource usage co-optimization, and (2) leakage power optimization; besides, the
Pareto solutions are discussed for problem (3), dynamic and leakage power co-optimization. The
problems are first formulated by ILP, and then are relaxed to LP tormulations because the constraint
matrices of ILP are totally unimodular. Based on the LP formulation, a mobility graph is built, on
which each vertex is associated with a vertex potential. On the mobility graph, the network simplex

method is applied to solve the mobility allocation problem, w

, which conducts binding after scheduling only when the scheduling
results are promising in reducing current overall power consumption. Experimental results show that,
tor dynamic power and resource co-optimization the proposed scheduling approach produce
optimum solutions for all benchmarks, and for leakage power the scheduling approach excels the
latest existing work by 20% leakage power reduction with 52 times speedup. Besides, the combined
scheduling and binding results show that integrating binding into scheduling is benefit in reducing

overall leakage power consumption.
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Interconnection Allocation Between Functional

Units and Registers in HLS

In this chapter, the second topic, interconnection allocation between FUs and registers, is discussed,
W

, called port assignment
problem. The purpose is to propose algorithms that can produce optimum solutions with a
probability higher than 99%. Besides, the high efficiency is also expected because the port
assignment problem is to be solved repeatedly in the interconnection allocation step. The problem is
tirst formulated by ILP, and then solved on a constraint graph. To speedup, a matrix formulation is
also to be proposed with pivoting operations of LP. The detailed formulations and algorithms are
discussed in the following of this chapter.

3.1 Background and Contributions

In High-Level Synthesis (HLS), interconnections have become one of the key features that influences

7 interconnections consume a considerable

the performance of integration designs. As shown in’
fraction of total circuit power, and*® shows that interconnections count for more than 0% of dynamic
power of Intel microprocessors. Meanwhile, 2 multiplexer (MUX) is usually expensive in terms of both
area and power consumption, especially the ones with large numbers of input ports. As pointed out
in?’| the area and power consumption of a 32-to-1 MUX are almost equivalent to a 18-bit multiplier.
Therefore, it is important to reduce the complexity of the interconnections that stitch the functional
units (FU) and registers, as well as MUX power and area.

The port assignhment is an important step in connectivity binding in the High-Level Synthesis to
reduce interconnection complexity. Given a fixed binding of FUs and registers, the intetconnection

1s allocated from the registers to FUs through MUXes, w
s work®! and is proved to be NP-Complete. When the operators are all
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binary commutative, it is more accurately defined as the Port Assignment Problem for Binary
Commutative Operators (PAP-BCO) in™. Since the port assignment is performed on each FU after
binding, its high quality solutions are highly expected since they directly determine the
interconnection complexity and MUX usage. Besides, if the port assignment can be combined into
register binding step, it can help evaluate the solution quality of register binding in terms of
interconnection complexity. Theretore, the execution time of port assignment algorithm must be

b

short, w , for example”’, and being
solved repeatedly.  Consequently, producing optimal solutions, and estimating interconnection
complexity quickly and accurately, are the essential demands for port assignment algorithms.

There are already several literatures that deal with the port assighment problem. The work in>?
performed global permutation of all the inputs of a FU during MUX generation, and the work in>’
designed an integer linear programming algorithm; for both algorithms the complexity is a concern.
Chen and Cong in>* proposed a greedy algorithm by swapping the operands of an operator if some
operands are assighed to the registers that drive both ports. However it has a limitation that operand
swapping will not help when there is a series of operations that have circular dependencies. The work
in®® tried to decrease the MUX size discrepancy between the two ports. It reformulated the PAP-BCO
problem as PAP-BCO*, which accounted for evenly distributing input signals among two multiplexers,
but it did not propose practical algorithms for PAP-BCO problem.

333436 33

I also have published several works for port assignment problem was the first to propose

a practical spanning tree based algorithm, where elementary tree transformation is adopted tor

* extended the algorithm from >

solution optimization.” to also take MUX power into
consideration.”® still adopted the spanning tree for initial solution generation, but used a Fiduccia and
Mattheyses (FM) based method for optimization instead of elementary tree transformation. All these
proposed algorithms excel other existing work say54, but they still have problems. For example in ™’
and™, the elementary tree transformation used for solution optimization was time consuming, which
degraded the algorithm efficiency. In”, for port assignment solution perturbation, the FM based
algorithm only allowed one vertex being moved or two vertices being swapped in each iteration of
local search; thus the search area was small, which limited the solution optimality.

Therefore in this work, [ improve my earlier works® and® by proposing a new matrix based

% and another existing work®®. The contributions are stated as the

algotithm, and compare it to
following, among which (1) and (2) have been proposed in™ and™, and (3) to (5) are additional

contributions in this paper:

1. A spanning tree and conflict graph based method is first proposed to obtain feasible solutions
tor port assignment problem. It not only generates high quality initial solutions, but can also

estimate interconnection complexity during register binding with little time cost.

2. An elementary tree transformation based method 1s proposed for solution optimization. In
each iteration, the spanning tree structure is changed by elementary tree transformation, to get

a smaller conflict graph.

50



3. To improve the efficiency of solution optimization, a matrix formulation is proposed by
defining two operations & and &; because the coefficient matrix agrees with the Simplex
Tableau format, Simplex Method is adopted and pivotings are performed for optimization.

4. To improve the efficiency of pivot selection, the properties of pivotings are studied and
successive pivotings are proposed; three pivoting rules are proposed to filter unpromising ot
redundant pivoting calculations, which significantly speeds up the pivoting selection.

5. My algorithm is tested on teal benchmatks to evaluate the improvements in terms of power, area
and delay; moreover, the testbench FFT is implemented on FPGA to get actual improvements

of power, area and clock frequency achieved by my algorithm.

The rest of this paper is otganized as follows. Section 4.2 describes the problem formulation,
Section 3.3 mntroduces the mitial solution generation. Section 3.4 illustrates the elementary tree
transformation based solution optimization. In Section 3.5 the matrix formulation is proposed and
Simplex Method is applied for optimization speedup. Section 3.6 shows the experimental results and

tollowed by conclusion and future work in Section 3.7.

3.2 Problem Formulation

After scheduling and FU and register binding in high-level synthesis, the final step is to connect
allocated registers to FUs through MUXes. For each allocated FU, denoted as fu, a number of
operations {op,ap,,...,0p,} are carried on it sequentially. The input operands of op, to gp, are
stored in the allocated registers, w ’s input ports through MUXes. The
step 1s called port assignment, and it 1s performed on one FU each time.

When the fu is a binary commutative operator with two input ports, say ”+” or ” x”, the problem is
called the Port_Assignment Problem for Binary Commntative Operators (P-1P-BCO). In this work only the binary
commutative FUs are considered. ‘Thetefore, each fu has two potts, and a register can be connected to

f#’s lett or right port, or to both ports.

The objective of port assignment is to minimize the number of interconnections that connect the
two ports of a FU to its input registers through MUXes. Naturally, the widths of two MUXes ate also
minimized.

Fig.3.1(a) shows an example of a FU that carries ”+” operation with two input ports, and
Fig.3.1(b) shows the sequential operations that are executed on it. In control step ¢, the operands
stored in registers 7, and 7, are executed on the FU, and in ¢, the operands stored in 7, and », are
executed. Fig.3.1(c) shows the port assignment result for this example. In this case the number of
interconnections between the registers and the FU ports is 6, which 1s the objective to be minimized.

Besides, since wider MUXes have larger signal delays that may affect the critical path delay of a
circuit, the size of the largest MUX in a circuit is also minimized as a secondary objective in this work.

In the remaining of this section, first the graph based formulation 1s introduced, and followed by

an ILP formulation.
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Cy,: r,+r,
C,t T+ 13
Cyy ry3+ 1y
G, Ist 1y
Cy,: r,+ 13
Cy,: r,+ 13

(1) An example of a function unit that  (b) The operations executed in
carries 7+ operation sequential control steps

Number of
| ‘ Interconnections is 6
MUX MUX

(c) Interconnections allocated between tegisters and fu potts

Figure 3.1: An example of a binary commutative functional unit with the interconnection allocation between the registers
and MUXes.

321 Graph-Based Formulation

In this work, the port assignment problem is formulated on an undirected simple graph G = (¥, E),
called the aonstraint graph. V= {v,, v, ..., vy} is the set of registers that store input operands of f#,
and are to be connected to fi, E = {¢, €,,. .., €,}, where each e = (v;, vj) € E means registers 7; and
7;j are providing two operands for fu in one operation.

To indicate the port which a register is connected to, vertex set V'is denoted as V' = V; UV UV
VinNVe =8, VNV =, VgV = &), avertex v; € V if its corresponding register #; is
connected to fu's left port, v; € Vg if 7; is connected to fu's right port, or v; € Vp if #; is connected
to both ports. Therefore, the port assignment problem is also regarded as a wertex: partition problem, and
hereafter the vertex partition and port assignment ate used indisctiminately.

For each edge ¢ = (vi, vj), their corresponding registers 7; and 7; shall be connected to different
potts of fu separately, or at least one of them is connected to both ports, like 7, shown in Fig.3.1(c), to
guarantee that the operands stored in #; and 7; can be provided to fu in the same control step. Therefore,
the vertex partition is valid if and only if when each edge ¢ = (v, vj) satisties the tollowing Partition
Rutes:

v; € VL, U]' € VR (31)
v; € VR, l)j S V]_ <32)
v; € VB or Z)j € VB (33)
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As proved in”, minimizing the interconnections between the fi and MUXes equals minimizing
the number of registers that are connected to both ports, ie., the value of |V3|. For example in

Fig.3.2(a) and Fig.3.2(c), two different vertex partitions are shown, w

, and in Fig.3.2(d) there are two registers 7 and 7; being connected to both ports. The number

of registers being connected to both ports are to be minimized.

Therefore, the port assignment problem is formulated as:

Given: An undirected simple graph G = (V, E), where v; € V stands for register 7; which is to be
connected to functional unit fi, and ¢ = (y;, Uj) € [ stands for an execution of 7; and 7; in a particular
control step.

Goal: To tind a vertex partition on constraint graph G, where each v € V' is partitioned to V7,
Vg or V; following the partition rules, to minimize |Vp|; after that, max{| V.|, |Vz|} is minimized as a

secondary objective.

3.2.2 ILP Formulation

For each vettex v; € V), thtee 0-1 vatiables 9}, J}, d}, ate defined to reptesents its pattition, for example,

if v; € V7, then 8! = 1, otherwise 8' = o. They are stated as:

=1, €V S=oifv, ¢V, (3.4
i=1ifvy, € Vg, 3L =oifv ¢ Vi (3.5)
;’ =1 Z_.fl)i € VB; 32 =0 Z_.fUi ¢ VB (36)

Therefore, the ILP formulation is written as:

Min : ZJZ

v,EV

.t fOVVZ)i evV: 3i,a\i, 32 € {O,I} (3.7)
for¥o, € Vi + 8+, =1
forVe = (v;,v) € E: 3;’+J{§ 1,3i+3\4§ I

This ILP formulation can be solved using a general linear programming tool lp_solver®.

In the following, first, an efficient algorithm is proposed to generate feasible initial solutions for
port assignment problem in Section 3.3. Given an initial solution, an elementary tree transformation
based optimization is proposed to improve the solution quality, discussed in Section 3.4. To improve
the efficiency of tree transtormation based optimization, another optimization method, the Simplex
Method based optimization, is proposed in Section 3.5. The properties of pivotings and successive

pivotings are studied as well to speedup the Simplex Method based optimization.
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{c) Another valid vertex partition (d) Port assignment from (¢) with 7

interconnections

Figure 3.2: The examples of vertex partitions and the corresponding port assignment solutions.

3.3 Conflict Graph Based Initial Solution Genetation

In this section, a heuristic method 1s proposed to tind a valid initial port assighment solution. First,

vertices are initially partitioned by a spanning tree, which is introduced in Section 3.3.1, and then the

vertex partition is legalized by a minimum vertex cover based method on a conflict graph, which is

introduced in Section 3.3.2.
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Initial Vertex Partition on the Spanning Tree

Some graph notations from°® that will be used in this paper are given:

A spanning tree of graph G 1s denoted as T. The f#ree edges on the spanning tree are denoted as ¢,

and the won-tree edge are denoted as e,.

A Jundamental cycle, also called fundamental loop, 1s denoted as FIL. Each fundamental loop FL has

only one non-tree edge ¢, and each ¢, has a unique fundamental loop, denoted as FL(e,).

A fundamental eutset 1s denoted as FC. Similarly, each tree edge ¢, has a unique fundamental cutset,
denoted as FC(¢,).

The fundamental loop size refers to the number of edges in the loop. The parity of a non-tree
edge ¢, denoted as p(e,), is defined on the size of fundamental loop FL(e,): if the loop size is
odd, the parity of ¢, is odd, and e, 1s an odd edge; otherwise the parity of ¢, 1s even and e, 1s an even

edge.

On the given constraint graph G = (¥, E), a spanning tree T, rooted v, is first built, and E is

written as E = E, U E, U E,, where L, is the set of tree edges, E, 1s the set of odd non-tree edges, and
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Level 0 tree edge \'A
Level 1 Vi
Level 2 Vo
Level 3 Vi
Figure 3.3: Example of tree edges, odd non-t -tree edges.
V2 \& v, V3EVy
Vs Vo Vg VoEVy
(a) The conflict graph {(b) The vertex cover VC on the conflict

graph

Figure 3.4: The example of initial vertex partition legalization.

E, is the set of even non-tree edges. The wertex: level, denoted as [vl(v), is defined as the distance from
vertex v to root ¢, on the tree. Then the initial vertex partition is applied according to the vertex levels

as:

v — Vi if lol(v) is even (3.8)
v — Vx if lol(v) is odd (3.9)

Fig.3.3 shows an example of initial vertex partition on a spanning tree. The gray edges are tree
edges; the level of vertex v, is o, the level of vertices v,, v, and 9, 1s 1, etc. The vertices whose levels
are 0 and 2 are initally partitioned to V7,1 , U5, Ug and v,, and the vertices whose levels are 1 and 3
are partitioned to Vp.

Given the mitial partition, there is a theorem as the following:

Theorem 1. Each odd non-tree edge violates the partition rules, while tree edges and even non-tree
edges do not.

The proof is straightforward and is omitted. For example in Fig.3.3, the odd non-tree edge (v, v,)
violates the partition rules because both v, and v, are partitioned to set Vg, while the even non-tree

edge (s, v5) does not.

3.3.2  Solution Legalization: Vertex Cover on Conflict Graph

The initial vertex partition is usually non-valid because odd non-tree edges violate the partition rules;

these edges are defined as conflict edges. To record all conflict edges, a conflict graph composed of
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conflict edges is defined as:

Definition 1. A graph G, = (V, E,) is defined as the conflict graph, where ¢ € E, is the set of
conflict edges, and v € V, are the endpoints of conflict edges.

Fig.3.4(a) shows the conflict graph built from Fig.3.3, where the edges (v,, v3), (v3, v,) and (vg, vy)
are conflict edges.

To legalize the initial vertex partition, some vertices on the conflict graph are needed to be
repartitioned to to Vg, to make all conflict edges satisfy the partition rules. For each conflict edge

e. = (v, U]-), if either v; or v; or both of them are re-partitioned to Vp, edge ¢, is legalized according to

pattition rule 3. On the other hand, since the objective of vertex partition is to minimize |Vj|, the
number of vertices that are repartitioned to Vp is expected to be as small as possible.

Consequently, a minimum vertex cover is proposed to determine the vertices to be repartitioned
on the conflict graph:

Definition 2. A vertex cover of a graph G s a set of vertices that each edge ot the graph is adjacent
to at least one vertex in the set. A minimum vertex cover, denoted as V'C, is a vertex cover with the
smallest number of vertices in it.

Theorem 2. Given a conflict graph G, and its minimum vertex covet VC, the initial vertex partition

is legalized by tepartitioning all the vertices v € V'C to V5.

Praof. According to the definition of a vertex cover, each edge ¢ = (1;, v;) of G, is adjacent to at least
one vertex v € VC, and v € Vp; therefore for each e = (;, vj), either v; or ; is in Vp, which no longer

violates the partition rule. Il

Though finding a minimum vertex covet is NP-hard, many high-quality algorithms have been
proposed these years. Moreover, if minimum vertex cover 1s to be found on a graph which is a tree, it
1s reduced to a class-P problem and optimal solutions can be easily obtained. For port assighment
problem, from pre-experiments, it shows that the conflict graphs are mostly sparse graphs and almost
90% of them are trees. Therefot, in most cases optimal minimum vettex cover can be obtained

7 is adopted to solve minimum vertex cover

efficiently. In this work a simple greedy heuristic in
problem.

Fig.3.4 shows an example of vertex partition legalization. Fig.3.4(a) shows the conflict graph built
trom Fig.3.3, and Fig.3.4(b) shows its minimum vertex covet including v, and v,. By tepartitioning v,

and v, to Vp, the vertex pattition 1s legalized.

In this section the algorithm to produce a valid port assighment solution is proposed. As
discussed in the introduction, this is practical for interconnection complexity estimation during the
register binding because of its high efficiency. Moreover, as to be shown in the experiments, the
initial solutions have only 20% overhead compared to optimum solutions by ILP, which can be
regarded as a good approximation for interconnections.

Given the NP-completeness of the port assighment problem, however, further optimizations are
still needed to get near-optimal or optimal solutions. My proposed solution optimizations are

introduced in the following sections.
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» fundamental cutset FC(e,) :
(el> €5, €9, €105 e13)

« tree edge set E, :
(€1 €, €3, €4, &, €7, €1, C14)

« conflict edge set 1 :
(s, €, €13)

Figure 3.5: Example of fundamental cutset FC, tree edge set E; and conflict edge set ).

3.4 Elementary Tree Transformation Based Solution Optimization

In this section the elementary tree transformation based optimization is introduced. Firstly some
definitions and the objective of solution optimization 1s given in Section 3.4.1. Then an elementary
tree transformation based local search method is discussed in Section 3.4.2 and Section 3.4.3. Also,

two important properties of elementary tree transformation to speed up the optimization are given.

3.4.1 Solution Optimization

Given a specific spanning tree 7" on the constraint graph, a unique contlict graph G, is determined,
then the minimum vertex cover 1s found on G, and a valid vertex partition solution is obtained. Since
most of the conflict graphs are trees or near-trees, the chance to get an optimal minimum vertex cover
is high, so that the vertex partition solution is predominantly determined by spanning tree. Therefore,
changing spanning tree structure greatly atfects solution quality.

On the other hand, calculating the minimum vertex cover every titne 1s time consuming. Since
empirically the minimum vertex cover size is positively correlated to the number of conflict edges, the
objective of solution optimization is to minimize the number of conflict edges for efficiency, defining:

Definition 3: A conflict edge set, denoted as ), is the set of all the conflict edges, i.e., the odd
non-tree edges. The number of edges in ) is defined as the size of \, denoted as ||/]|.

Fig.3.5 shows examples of fundamental cutset, tree edge set and conflict edge set. The edges of
the spanning tree are bold ones in the set £ the fundamental cutset of tree edge ¢, is FCl (et), including

Cis C5, €9, € ~tree edges ¢;, ¢, and e, and ||<}/|| is 3.

To sum up, the solution optimization is stated as: by iteratively changing the structure of the

spanning tree on the constraint graph, the value of ||| is minimized.

3.4.2 Elementary Tree Transformation

For solution optimization, a local search based algorithm is proposed; in each iteration, the structure
of spanning tree is changed using elementary tree transformation. It is one of the most widely-used
transformations when computing minimum-cost tree problems as explained in®!, defined as:
Definition 4: The elementary transformation of a spanning tree 7 refers to the process that,
a tree edge ¢, being removed out of 7, tesulting in the disjoint of two sub-ttees, and an edge e, # ¢,

being added to into the tree so that the two sub-trees are connected as a new spanning tree 77,
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Accordingly, an elementary transformation can be uniquely defined by two specific edges, a tree ¢,
and a non-tree edge in the fundamental cutset of ;, 1.e., ¢, € FC(e,); thus, an elementary transformation
is denoted as ET(e;, ¢,).

Specific to this problem, there are two properties of the elementary tree transformation, which can
be used to speedup the local search based optimization by avoiding redundant calculations of E7 (e, ¢,)
or FC(e,).

Propetty 1: For an elementaty transformation E7(e;, ¢,), the conflict edge set [ is updated as:

= \P’ P(“"C) =0
v { L A FCle), ple) =1 (3.10)

where p(e,) is the parity of non-tree edge ¢, and the A is the symmetric difference between two sets defined

as:

ANB=(AUB)—(ANB) (3.11)

Property 2: For an elementary transformation E7(e;, ¢,), the fundamental cutset for each tree
edge ¢ 1s updated as:
FC(e), e & FL(e,)

FC(e,) A FCle;), e € FL(e,) (3.12)

FC (e;) = {
whete FL(e,) is the fundamental loop of non-tree edge ¢,.

Property 1 shows that when performing an elementary tree transformation E7(e, e,), if the
non-tree edge ¢ is an even edge, the conflict edge set <l remains unchanged; therefore these
transformations shall be avoided. Property 2 shows that after performing an elementary tree
transformation, the fundamental cutsets of tree edges can be calculated through set opetations, and
only a part of the fundamental cutsets are needed to be updated. The proofs are given in Section 3.5

through matrix formulations and operations.

343 Local Search Based Optimization Algorithm

Adopting the elementary tree transformation as local transformation, a local search based algorithm is
proposed shown in Algorithm 1, including both initial solution generation and solution optimization.

First, the outermost cycle 1s the random start as shown in line 1. In each iteration of the random
start, an initial spanning tree is first built on the constraint graph G = (¥, E), and initial port
assignment solution is obtained, shown in line 2 and 3; and then, local search based solution
optimization is performed shown in line 4 to 20.

In each iteration of local search, first & candidate edge pairs for elementary transformation are
collected shown in line 5 to 9. For each tree edge ¢, and all the non-tree edges e, € FC(¢,), the
value of || x,(// || is computed for each edge pair (¢, ¢, ), but the elementary transformation is not actually
performed. Total a candidate edge pairs in set Cdr are kept with smallest || \I//H

Then as shown in line 11 to 15, the elementary transformation is performed on each edge pair in
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Algotithm 3 Local Search Based Port Assighment Algorithm

Requite: Constraint graph G = (V, E)

Ensure: Find a valid vertex partitioning of each v
1: while stop criteria of random start NOT met do
2: Build an initial spanning tree T°
3 Calculate the inigal port assignment solution
4 while 1 do

5 for cach tree edge ¢; € E; do

6: for each ¢, € FC(e;) do

7 k <+ the value of |[<}/|| is computed

8 If k is small enough, keep (¢, ¢.) in set Cdt

9

end for
10: end for
11: for each candidate pait (e, ¢,) € Cdr do
12: Perform transformation E7(e;, ¢;) without updating 7
13 Find minimum vertex cover on the new conflict graph
14: Keep the best solution as (e, ¢, )
15: end for
16: if current solution not improved then Break
17: Choose an odd non-tree ¢,, € FC(e;,) randomly
18: Apply transformation E7(e,, ¢, ), update tree T

19: end while
20: end while

Cdt, and the minimum vertex cover on the conflict graph is found. The best solution (e, , ¢, ) with the
minimum | 73| is kept. The solution (¢, €, ) is accepted if it improves the current global best solution,

otherwise the local search stops.

3.44 Critical Path Optimization

As described in Section 4.2, critical path delay is the secondary objective function of port assignment

problem. Therefore, after |Vp| being minimized, the size of the largest MUX among all MUXGes is
minimized, because among all control steps, the one with the largest MUX has a much higher possibility
to be the critical path.

Critical path optimization can be performed by selecting from a group of port assignment solutions.
During the optimization, many solutions may be found which have the same value of | V5| but different
values of V; and Vp; therefore from the solutions which already have minimized |V, the one with

minimized max{|V|, |Vz|} is chosen.

3.5 Simplex Method Based Solution Optimization

In Section 3.4, the elementary tree transformation based solution optimization is introduced.

Although the two properties can speed up the algorithm, the tree transformation is still time
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Figure 3.6: Examples of fundamental cut vector C and edge status vector \]_/

consuming. To further improve the efficiency of solution optimization, in this section, a new matrix
formulation is first proposed by defining two mathematic operations, < and &, which is introduced
in Section 3.5.2. Since the coetficient matrix of this proposed formulation meets the Simplex
Tableau format, the Simplex Method is adopted to efficiently petform the optimization, which is
introduced in Section 3.5.3. Moreover, to improve both efficiency and optimality, the properties of
pivotings and successive pivotings specific to port assignment problem are discussed. Based on
these properties, a pivoting selection method, and a two-step pivoting selection method are

proposed, which significantly contribute to algorithm speedup and optimality improvement.

3.5.1 Preliminaries and Mathematic Formulation
Fundamental cutset and edge status vectot

In Section 3.4 the fundamental cut set FC, fundamental loop set FL and conflict edge set <) are defined.
In this section, in order to organize the formulation into a matrix, vecfors are proposed to instead edge sets.
Without confusion, the same notations of FC, FL and +) are still adopted to represent edge vectors.

Definition 5: A fundamental cutset vectot of tree edge ¢;, denoted as FC(¢;), is a 0-1 column
vector with an entry for each edge on the constraint graph G = (V, E): if edge ¢ is in the fundamental
cut set of e, its entry is 1; otherwise is 0.

Definition 6: An edge status vectort, denoted 2s ), is also a2 0-1 column vector with an entry for
each edge: it edge e 1s a tree edge or even non-tree edge, its entry 1s 0; if e is an odd non-tree edge, i.e.,
the conflict edge, its entry is 1. The number of 1-entries is the size of <), denoted as ||||.

Fig.3.6 shows examples of edge status vector 1, and fundamental cutset vectors FC(e,) and FC(e,).

Mathematic Formulation
To formulate the port assignment optimization mathematically, an exclusive-or operation is first
defined.

Definition 7: The @® operation between two 0-1 values is defined as:

I, X=1,y=00rx=o0,y=1,

Xy = (3.13)

0, X=0,y=00rx=1Yy=1
Given an initial spanning tree and initial vettex partition on the constraint graph G = (V, E), where

60



each v € V has been assigned to V; or Vg, the variables v and e are defined as:

L vel,
U:{O rEre (3.14)
I, Z)EVR

o, eis tree edge or even non-tree edge
¢ — (3.15)

1, eis odd non-tree edge (conflict edge)

The definition of e is consistent with the parity of non-tree edges, and the parity of tree edges are
regarded as 0. Also, it is consistent with the definition of the edge status vector .

Fot each contlict edge where e = 1, it has:
oreach e, = (v;,0;)) EE .0, v, Se=1 3.16
] 7

If & operations are performed among the formulas in Eq.3.16, where all edges exactly form a /op
in the graph G, the variables v; can be completely eliminated because v; @ v; = o. Therefore, for each

fundamental loop FL(e,), it has:

for each FL(e,) = {e;, ¢, ... 7€ik} :

(3.17)
¢ e, ... 0¢ :p(ec)

Eq.3.17 shows the mathematic constraints of port assignment optimization; the objective is to
minimize ||<}||. Fig.3.7(a) shows an example. For fundamental loop FL(e;) = {e,e;,¢,}, it has a

constraint of ¢, D e; B e, = 1 = p(e,), whete the loop size of FC(e,) is 3 and the parity of ¢, is p(e;) = 1.

3.5.2 Matrix Formulation

Definition 8: The & operation between two matrices A4 and B, where A and B are both m X n with
only 0-1 entries, is defined as:

(A® B)y=A;© By (3.18)

Definition 9: The X operation between two matrices 4 and B, where A is a # X m matrix and B
is a m X p matrix with 0-1 entries, is defined as the ordered multiplication and exclusive-or operations

as the following:

According to the theory of Fundamental Cycle Matrix (FCM) Theory?®, the formulas in Eq.3.17
1s written into the following equation:

BQE=P (3.20)

w ()

) shows the matrix formula organized from Fig.3.7(a) w



Fl(e;): e, D e; D ey = 1= p(e3)
FL(eo): e; D e, Be, Deg = 0= p(e)
FL(eg): €4 D e5 D eg D e = 0= p(ey)
Fl(e;): e @ e, Bes@®e; D ey =1=p(ey)

B ® E =P
€, €2 €3 € €5 e, €; €z €
| I 1 . l
(I RS DR o 1|0
11 L]0
11 1 1 1 A
(
(1 A ) ® E =P
&
€3 €5 €7 Cg €1 €3 €4 €5 €9 h o
esf 1 ] 1 1
es| 1 111 ol & ||
& L1111 |e | [r]renoof
e;: ple;)
es| 1 111 0]
L%
fundamental loop of e fundamental cutset of e,
FL(e;) = {e4. ey, €5, €5, €9} FC(e)) = (e, €3, e, €4}

) Write into fundamental cycle matrix format (Simplex Tableau
format)

Figure 3.7: The example of mathematic formulation and its matrix formulation.

combination of a 7, X n, squate identity matrix / and a 7, X n, matrix A4, written as:

B=(TA)=F B - Pl prett oL b =

EC[ DRI ecﬂ DRI ecnc Etl DRI etq DI etnt
ECI I bn blq blm
(3.21)
€, 1 by bpg bpn,
€en, I bua bncq bu.n,
W >, L€, €, tO €, 3

the matrix A represents the coefficients of the tree edge variables, i.e., ¢ to ¢, . The column vector

U (n.+1 < i < n) represent the fundamental cutset of the tree edge ¢, and the row vector # (1 < j < n,)
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represents the fundamental loop of the non-tree edge ¢;.

Letting E, represent the non-tree edge variables and E; represent the tree edge variables, E1s written
as E = (E, E;)7, and Eq.3.20 is written as:

(4

oale =P (3.22)

t

Fig.3.7(c) shows the matrix format of Eq.3.22, where the coefficient matrix B is organized as a
tundamental cycle matrix.

Therefore, the matrix formulation of port assignment optimization is stated as:

Minimize : ||| = Zp(ei)
€k, (3.23)
st.: BQRE=P
3.5.3 Simplex Tableau Format

The formulation shown in Eq.3.23 agrees with the Linear Programming Problem (LPP) standard form

because:

1. All variables are non-negative, i.e., all o-1 variables;

£

The coefficient matrix B = (I A) agrees with the Simplex Tableau format, where the matrix
[ is an identity submatrix, whose vatiables are basic variables, and the vatiables in A are nonbasic

variables.

3. When all nonbasic variables are o, the right-hand value are determined by basic variables: in
this formulation the nonbasic variables are tree edges and the basic variables are non-tree edges;
the edge patities, i.e., the tight-hand values, are determined by the @ operations of all non-tree
variables.

The differences between the proposed formulation and LPP are:

1. The proposed objective function is not a linear combination of all variables while the LPP is;

2. The proposed tormulation is composed of @, @ and multiplications, while LPP is composed of
additions, substractions and multiplications.

Therefore the proposed formulation is not guaranteed to get optimum solutions as the linear

programming using Simplex Method. However, since it agrees the LPP form, the similar pivoting of

Simplex Method can be adopted.
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T ® B ® E_ = T ® P
€3 €g €7 €g €1 €, €4 €5 €9 e.3
1 1 1 11 e 11 1
11 1 111 s| | 11 0
1 ® 1 11 1 |®el B | ®1
1 1 111 : 1 0
| € |

Figure 3.8: Example of the pivoting using pivoting matrix 7.

Original edge status vector and fundamental cutset vectors

€ € €3 €, €5 € €; €g €
Y 001 0 0 O0 10 0
FClep) |1 1 11
FC(ez) 1 1 1
FC(eq) 11 1 1
FC(es) 1 11
FC(eg) 11 1

Edge status vector and fundamental cutset vectors after ET(e,, e,)
€; € €3 € & € €& € &

3 100 0 01 0 0 0

FC'(e7) | 1 1 1 1

FC'ex) |1 1 1 FC'(e;) = FCleg) A FC(ey)
FC'(ey4) 1 1 1 1 FC'(ey) = FCey)
FC'(es) | 1 1 1 1 1 FC'(es) = FCes) AFC(e))
FC'(eg) | 1 1 1 1 1 |FC'(eq) = FCles) A FC(ey)

(2) The tree transformation on the constraint graph.

FC(e,) remains unchanged

€3 €5 €7 €g €1 €3 €4 €5 &g €3 € €7 €g €4
e 1 1 ez 1 1 0
€g 1 1 T®B €s 11 0
€7 ] | — €7 1 ]
€g 1 eg 1

tt
FC(e,), FC(es) and FC(e,) are updated

{(b) The calculation of coefficient matrix B from B.

T P P’
When p(e,)=1:
Lol P=P @B}, ' =y AFC(e)
1 } Assume p(e,)=0:
1 P’=P, ¥ =19

(¢) The calculation of parity matrix P from P.

Figure 3.9: The example of the pivoting using pivoting matrix 7.
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354 Pivoting

The general pivoting of Simplex Method refers to the process that improving the current solution (if
is not optimal) by moving a nonbasic variable (entering variable) into the basis, and moving a basic
variable (leaving variable) out of the basis. Similarly, the pivoting of the proposed matrix formulation
is defined as:

Definition 10: A pivoting refers to the process that moving a non-tree edge variable e, out of the
basis, and moving a tree-edge variable ¢, into the basis, where bpq = 1(byq 1s the entry of the coefficient
matrix B). A pivoting between leaving variable ¢, and entering variable ¢, is denoted as PV{e,, ¢;).

The definition specifies that the tree edge ¢, must be in the fundamental loop of the non-tree edge
€,» OF the non-tree edge €, must be in the fundamental cutset of the tree edge €r,» which is equivalent
to an elementary tree transformation.

To perform a pivoting, a pivoting matrix T 1s introduced as:
TRQBFQE=TQP (3.24)

T'is a n, X n, square matrix written as:

f # P
1 by
(S
T = byg (3.25)
o
bmq I
W Jie, ? =

The matrix B after the pivoting is calculated as:

B=TQB=(b"--b" - b7 - "7 (3.26)

And the matrix P after the pivoting is calculated as:

P = o;
P=TeP=q Py = (3.28)
P& b p, =1t
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This calculation can be easily proved given the definition of ¢ and & operations, so the detailed
steps are omitted.

Fig.3.8 shows an example of a pivoting PV(e,, ¢,) using a pivoting matrix 7. In this example the
entering variable is ¢, and the leaving variable is ¢;.

According the definition of v and e in Eq.3.14 and Eq.3.15, the definition of the fundamental cutset
vector exactly agrees with the the column vector ', and the definition of edge status vector ) also

agrees with the matrix P. Therefore from Eq.3.27 and Eq.3.28, there are:

FC(e;), e € FL(QP);

(3.29)
FCle;) A FCle,,), e ¢ FL(e.,).

FC'(¢) = {

o \bv P(C’cp) =o;
o { VA FC(frq), p(c’cp) =1 (3.30)

The above Eq.3.29 and Eq.3.30 are exactly the same as the elementary tree transformation
properties discussed in Section 3.4.2, and the examples are shown in Fig.3.9. Fig.3.9(a) shows the
example of the elementary transformation between edges ¢ and ¢,, and Fig.3.9(b) and Fig.3.9(c) show
the corresponding matrix calculations.

Fig.3.9(b) i

-tree edge ¢, its fundamental cutset keeps unchanged, say edge ¢,; otherwise, the
fundamental cutset is updated using A\ operations between two vectors, as the columns for edges e,,
e; and e,.
Fig.3.9(c) 1
()=
()=

(,) () = ,itis called as an effective pivoting, otherwise it is
called an zneffective pivoting. Ignoring all the ineffective pivots, all the pivotings mentioned are effective
ones.

Theotem 3: For pivotings PV, (e, ¢;) and PV, (e,,, ;) with the same entering variable ¢, \l) = \J;
the two pivotings are regarded as eguivalent in terms of the edge status vector \},//.

From Theorem 3 it is known that for a specified entering variable ¢, all the pivotings PV (e, ¢;)
where ¢, € FC(e;) are equivalent and undistinguished; so pivoting is denoted as as PV(x, ¢;) if the

leaving variables for an entering variable ¢, are not cared.

3.5.5 Pivot Selection

Pivot selection is a crucial step in the Simplex Method since good choices can lead to a significant
speed up in finding the optimal solutions. However in the proposed formulation, a pivoting 1s not

guaranteed to always improve the solution, so that in order to make a pivot selection that results in
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Algorithm 4 General Pivot Selection

Ensure: Inital matrix formulation B, & £, = P;
Require: Pivoting PV(ey, ¢,) to be performed

1: Build initial edge status vector \,(/ and FC vectors

[\

: Calculate Edge Status Table for each tree edge e
: Choose PV(x, ¢;) with the smallest ||\1b/|| in Edge Status Table, e, = ¢;

= W

: Choose ¢; € FC(¢;) randomly, e, = &

Edge Status Table — Level 1

Vl e]
Py e; €, e; e, e; €5 e, ey e[|l
PV(x.e))|1 1 2
PV(xe)| 1 1 1 3
PV(x,e,) 1 111 4
PV(x,e5) 1 1 1 3
PV(x,e,) 1 1 1| 3

Figure 3.10: Pivot selection using an edge status table.

the smallest number of odd non-tree edges, all potential pivotings are needed to be checked, which 1s
obviously time consuming.

Notice that each pivoting T & B ® E = T & P consists two steps: the calculation of coefficient
matrix B = T'® B, and parity matrix P = T'® P. Obviously the size of matrix B is much larger than
P, and the calculation of B is more time consuming than P. Therefore it is expected that P can be
calculated first without the calculating B'.

Based on this motivation, an edge status table is proposed, where each row of the table is an edge
status vector obtained after one pivoting PF(x, ¢;,). Fig.3.10 shows an example of the edge status table
which shows the possible pivotings for all the tree edges. Then a pivoting selection method based on
the edge status table is proposed shown in Algorithm 2. Before each pivoting, the edge status table is
first calculated. For the entering vatiable, ¢; of pivoting PV(x, ¢;) which has smallest ||| is chosen;

tor the leaving variable, one variable ¢; € FC (¢;) is randomly chosen.

3.5.6 Successive Pivotings

e; € € € e e € € e | |y
PVi(e;, e))+PV,(es, e5)| 1 1 2
PV(e,, ey) 1 1 2
PV, (e, e5)+PV,(eg, €,) 1 1 1 1 4
PV(x, e,) 1 1 1 4

Figure 3.11: Examples of redundant successive pivotings.

Definition 12: Two adjacent pivotings, for example pivoting PV is performed and is followed by
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Edge Status Table — Level 2

PV PV, Vs X |8y €1 €3 e4 €5 €45 €7 €5 €9
PVi(x,e)|PVa(y,e2) |1 AFC(er) |e3 [ 1 1 1 Need calculation
y*e |P AFC(e;) |ey 11 1 = PVi(x, e3)
PVo(y,eq) |1h1 AFC(ey) | €7 1 1 Need calculation
yF#e |p AFC(ey) |3 1 111 = PV,(x,e4)
PVy(v,es) |y AFC(es) |e5 | 1 1 Need calculation
y#e |Pp AFC(es) |ey 1 1 1 = PV;(x, e5)
PVy (v eq) |1 AFC(eg) |e3 | 1 1 1 1 1 |Need calculation
y#+e |YAFC(es) |ey 1 1 1[=PVi(xe)
PV (x,83)|PVa (v, eq) [ AFC(ey) | e 1 1 1 Need calculation
Y F e — —
PV, (y, e5) - -
y#e |PiAFC(es) |e; 1 1 1 = PV, (x, e5)
PV, (y, &) - -
y#e [WAFC(e) | ey 1 1 1]|=PV(xe9)

Figure 3.12: Example of the edge status table of level 2.

pivoting PV, are regarded as successive pivotings, denoted as PV, + PV,. The original edge status vector
is denoted as ~J/, the one after PV is <), and the one after PV, is 1.
When applying Algorithm 2 for optimization, in each iteration, all possible pivotings are calculated;

however there are some redundant calculation between two successive pivotings:

* The result of two successive pivotings may be the same as before pivoting, for example in
Fig.3.11, the edge status vector ) after PV(e,, ¢;) is the same as the vector aftet two successive
pivotings PV, (e, ¢,) + PV, (e,, 6);

* The result of two successive pivotings may have already been calculated: for example the \L after

PV (e, ;) + PV, (eq, ¢,) is the same as PV(x,¢,).

Therefore, for two successive pivotings, the following two theorems are proposed, to avoid
redundant pivoting calculations in early stage, before the first pivoting being performed.

Theorem 4: For two successive pivotings PV;(e., ;) followed by PV, (e, e;), they have:
PV (ex, ) + PV, (), ¢,) = PV (e, €;) (3.31)

This theorem can be easily explained by tree transtormation so that the proot is omitted.
Theorem 5: For successive pivotings PVi(e, , ¢, ) followed by PV, (e, , ¢, ), where p(e, ) = 1and
p(epz) ) bpqu = 1 they have:

* when by, =1, by, by =

V, = A FCle,) (3.33)



* othets: successive pivotings cannot be applied

Proof. Firstly, the condition p(e, ) = 1 and p(e.) © by, = 1 are to guarantee that both PV; and PV,
are effective pivotings, which are the same as the conditions in Eq.3.30.

Secondly, the condition that pivoting PV, can be performed is that ¥ = 1, which refers to the

29
entry of b, , after PV, When b; g =1is ensured, there are:

V= A Fdle,) (.34

€, =L, A FC(e,) (3.35)
EC A FCl by =1,
FC'(e,) = (¢q,) (eq), bpg, =1 (3.36)
: FCle, ), byq = o.
- LA FCle,) A FCley), byy =1 (337
LA FCle,), by, = o.
Since b; ;. 18 calculated as:
by 4, b,, = o;
bhg, = { L (3.38)
pa, O Opay Opg, =T
to ensure b;, g, = 1 there shall be by, =0, by, =1, which is the condition for Eq.3.32, or there shall
be by, =1, by, @ by, =1, which is the condition for Eq.3.33. (]

From Eq.3.32 and Eq.3.33 in Theorem 5, it shows that when performing two successive
pivotings PV, and PV, the edge status vector \LZ of the PV, can be directly calculated using the
original fundamental cutset vectors like FC(eq‘) and FCl (eqz). It means the result of two successive
pivotings PV, + PV, can be calculated without actually performing pivoting PV,. Besides, Eq.3.33
shows that, in some cases the successive pivotings PV, + PV, may get the same result as PV, and the
calculations for these cases can be avoided.

Based on Theorem 4 and 5, an edge status table of level 2 is proposed, to calculate the results of
the successive pivotings based on the edge status table of level 1. Fig.3.12 shows an example of edge
status table of level 2. Given the edge status table of level 1, the successive pivotings ot each two tree
edges ¢, and ¢, (order is neglected) are calculated, denoted as PVi(e, , ¢, ) and PV, (e, , ¢, ). For each
PV, according to Eq.3.32 and Eq.3.33, thete are two possible solutions: If bﬂlqz = 1, like shown in the
first row where ¢, 1s ¢;, the <, is calculated as <), = b A FC(e) A FCle,) according to Fq.3.32; while
it by, = o, like shown in the second row where ¢, is ¢, the b, is calculated as <), = < A FC(e,)
according to Eq.3.33. Moreover, in the second situation, the result of \Lz has already been calculated

in the edge status table of level 1, so that no calculation is needed. It can be seen from the table shown
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PV1

PV, + PV, €q; €q3°

general pivot selection Two-step pivot selection

Figure 3.13: The two-step pivot selection

in Fig.3.12 that for all possible successive pivotings only a portion of them need calculation, and most

successive pivotings can be skipped. Theretore the pivot selection efficiency is expected to be greatly

enhanced.

3.5.7 A Two-Step Pivot Selection

Based on the edge status tables, a two-step pivoting selection method is proposed, shown in Algorithm

3.

Algorithm 5 Two-Step Pivot Selection

Ensurte: Initial matrix formulation By & E, = P,

Requite: Pivotings PV, and PV, to be performed

1:

Build initial edge status vector \1!/

2: Step 1: Calculate Edge Status Table of Level 1
3:
4

Step 2: Calculate Edge Status Table of Level 2

4: Choose k successive pivotings with the smallest ||\,f/2|| mn Fdge Status Table of Level 2, solve the exact

minimum vertex cover

: Perform pivoting PV and pivoting PV, with the smallest vertex cover solution

The major improvements from Algorithm 2 including:

* Determining two successive pivotings in one iteration is more efficient than that in Algorithm 2,
because the execution of a pivoting is time consuming due to the large size of coetficient matrix

B.

E

* It improves the optimality ot the pivoting selections, because the selection of PV, may be blind
if the result of PV, are unpredictable;

Fig.3.13 shows the major differences of the two pivot selection methods. Starting from a matrix

tormula B, % E, = P,, the two-step pivoting selection is able to forecast the results of PV; + PV, and

skip the calculation of PV, and choose a best solution of PV, + PV,.
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Table 3.1: Information of Test Benches

DFG 7 E T, | DFG v E Ty
arf 29 42 11 rand0 92 136 7
ewf 35 55 17 || mndl 158 234 19
ar 29 42 11 | mand2 632 943 30
ac 54 143 60 | rand3 658 1392 42
ad2 47 110 47 || rand4 917 2601 189

ellip 35 67 25 rand5 1916 5387 251
mpeg 54 114 36 rand6 1832 5428 583
tft 134 234 20

" The longest path in DFG

3.5.8  Multi-Step Pivotings

In Section 3.5.6 two-step successive pivoting is discussed; in this section multi-step successive pivotings
are discussed.

For successive pivotings PVI(EPI, eqt), PVz(epz, eqz) and PVE(EPQ c’q3) with edge status vectors
(before PV}, <, ), and \!/3. Similar to Eq.3.33 and Eq.3.32, \[/3 can be computed directly from ~
and FC(eql) to FC’(eq;) under some special conditions as:

(LA FCley) & FCley) O FCley), cond. 1,
VA FCley) & FCley,), cond. 2,
Y, =19 VA FCe,) A FCle,), cond. 3; (3.39)
VA FCley ), cond. 4;
L succesive pivotings cannot be performed, others,

where cond. 11s:

prqZ = o, Zapt% = o, bpzfg = o, bpqu =1, bl’ﬂ; =1 (3.40)

and conditions cond. 2 to cond. 4 ate more complicated. Besides, the conditions to guarantee PV, to
PV, are all eftective pivotings, similar to the ones in Theorem 5, are also needed. If all conditions are
not met, successive pivotings cannot be applied. The proof is omitted due to page limit.

Knowing trom Eq.3.39 and Eq.3.40, first, the conditions for three-step successive pivoting is much
more strict than two-step pivoting as Eq.3.40, so that the situations that three-step pivotings cannot
be applied are much more than two-step pivotings. Second, the condition check, i.e., the calculation
of cond. 1to cond. 4 is also much more time consuming than two-step pivotings. Consequently, it is
believed that multi-step pivotings do not contribute to optimality more than two-step pivoting, and the

time consumption will be much larger.

3.6 Expetimental Results

The proposed algorithms are implemented in C on the platform of Windows7 with 2.8GHz CPU and
8GB memory. The algorithms are evaluated on randomly generated constraint graphs and real high
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Table 3.2: Area, power and delay of multiplexers from 63,

MUX | Power () | Area(um?®) | Delay(ns)
2to1 27.58 130 0.81
4101 44.24 317 1.05
8tol 78.82 748 1.40
16to 1 138.99 1315 1.74
32to1 257.82 2464 2.08
T 3: comparison between elementary tree transformation based and matrix transformation based
optimization methods
TestBench| ILP Initial Solution T Matrix Based Opt. I' | Matrix Based Opt. 11>
Vix. | Den. |[INT|Cmp| INT [Cmp|T | INT |Cmp| Time [Cmp| INT |Cnp | Time [Cmp| INT [Cmp| T [Cop
40 | 2.0 9 1 110.77(1.197]{0.027| 9.01 [1.001] 9.281 |4.57 | 9.054 |1.006| 2.03 1 9.01 [1.001] 2.55 [1.26
40 | 5.0 | 18 1 120.69 [1.149(0.011] 18.19 [1.011| 46.81 | 6.55| 18.03 [1.002| 7.15 1 | 18.02|1.001| 7.98 |1.12
50 | 25 | 12 1 [15.10(1.258(0.050| 12.16 {1.013| 24.32 | 2.48 | 12.14 {1.012| 9.82 1 |12.04 |1.003| 8.65 |0.88
50 | 3.0 | 16 1 [18.42(1.151{0.063| 16.04 [1.003| 32.06 | 3.87 | 16.04 {1.002| 8.28 1 116.02|1.001| 8.72 [1.05
50 | 40 | 18 1 | 21.94 |1.219]0.268| 18.62 |1.034| 64.93 | 4.91 | 1847 (1.026]| 13.23 | 1 |18.39 (1.022| 20.71 | 1.57
70 | 2.0 | 14 1 [17.78 [1.270(0.192] 14.04 (1.003| 24.59 | 6.60 | 14.02 {1.002| 3.88 1 |14.01 [1.001| 4.28 [1.10
70 | 3.0 | 20 1 126.30 |1.315]0.489| 20.96 [1.048(109.03| 3.64 | 20.81 [1.041| 29.99 | 1 |20.54 [1.027| 35.55|1.19
70 | 4.0 | 26 1 |31.49|1.211[0.688| 26.88 |1.034|154.73|4.51| 26.17 |1.007| 34.31 | 1 |26.04 (1.002| 38.20|1.11
100 | 2.0 | 17 1 123.91(1.406[0.488| 18.15 [1.068(105.03|6.89 | 17.86 [1.051| 15.24 | 1 |[17.58 |1.034| 17.44 | 1.14
100 | 3.0 | 29 1 | 37.53[1.294(0.950| 32.09 [1.107|213.65] 9.06 | 30.87 [1.064| 23.58 | 1 |30.56 [1.054| 28.59 [ 1.21
100 | 4.0 | 36 | 1 |44.42|1.234|1.387| 39.43 |1.095|316.97|9.99| 38.11 |1.059] 31.72 | 1 |37.77|1.049] 39.02|1.23
200 2.0 | 32| 1 |47.37(1.480| 1.94 | 40.12 [1.254(|163.85| 2.55| 35.62 |1.113| 64.25 | 1 |35.28 |1.103| 63.16 | 0.98
200 | 4.0 | 777 1 |87.66|1.138] 4.75 | 84.04 [1.091(529.66| 5.13 | 80.86 |1.050{103.29| 1 | 77.92|1.082| 92.28 | 0.89
300 | 25 | 72" 1 | 91.60 |1.272] 5.14 | 83.45 |1.159|636.07| 6.25 | 80.90 |1.124|101.80| 1 | 78.01 [1.083[122.99|1.21
300 | 45 [129] 1 [140.67[1.090|11.80[135.15(1.048[1439.5| 6.15 [135.34|1.049|233.98| 1 [133.27]1.033|298.00|1.27
400 | 25 [104] 1 [124.26[1.195| 7.10 [114.35(1.100[1170.9| 5.88 [111.03]1.068|198.99| 1 [109.05|1.049|257.981.30
400 | 45 [174] 1 [190.91[1.097|15.49]185.60|1.067|2658.5| 6.03 [181.51|1.043|440.58| 1 |[177.45]1.020|576.44| 1.31
500 | 5.0 | 2197 1 |253.22|1.156|24.29|249.10|1.137|5462.6| 6.57 |243.18]1.110|831.23| 1 [226.05(1.032|980.51|1.18
600 | 5.0 |285] 1 [304.55/1.069|43.57|300.20(1.053|9866.0| 8.00 |292.99(1.028(/1233.3| 1 |289.05|1.014|1260.2| 1.02
AVG 1 1.221 1.069 5.77 1.045 1 1.032 1.16

! The general pivot selection shown in Algorithm 2 is used in the local search optimization.

2 The two-step successive pivot selection shown in Algorithm 3 is used in the local search optimization.

* For testcases with more than 200 vertices the ILP failed to produce solutions within limited time. The values here are the
minimum numbers of interconnections among 1000 runs produced by the proposed algorithm.



Table 3.4: port assignment on high level synthesis testbenches

Test W/O PA Greedy>* T Matrix Based Opt. I Matrix Based Opt. II
BenchNT[Tim¢ # of INT | Time(ms) | #of INT | Time(ms) | #ofINT | Time(ms) | #of INT | Time(ms)
arf [ 19| 4 [ 18(94.74%) [-0.022(0.55%) 18(94.74%) | +0.39(9.75%) | 17(89.47%) [+0.17(4.25%)| 17(89.47%) |+0.18(4.50%
ewf |17 | 4 | 16(94.12%) [F0.021(0.53%) 15(38.24%) | +0.67(16.75%)| 16(94.12%) | +0.14(3.50%)| 15(38.24%) | +0.15(3.75%)
ar | 31] 6 | 28(90.32%) H0.019(0.32%) 28(90.32%) | +0.41(6.83%) | 28(90.32%) |+0.07(1.17%%)| 28(90.32%) [+0.07(1.17%)
ac | 35 | 16 | 32(91.43%) [H0.048(0.30%) 31(88.57%) | +0.87(5.44%) | 31(88.57%) |+0.31(1.94%)| 27(77.14%) |[+0.22(1.38%)
ad2 | 37 | 16 | 33(89.19%) [+0.035(0.22%%) 31(83.78%) | +1.41(8.81%) | 31(83.78%) |+0.22(1.38%)| 30(31.08%) |+0.29(1.81%)
ellip | 45 | 14 | 42(93.33%) [0.019(0.14%) 40(88.89%) | +0.82(5.86%) | 40(88.89%) |+0.05(0.36%%)| 40(88.89%) |+0.05(0.36%)
mpeg| 35 | 20 | 32(91.43%) [+0.055(0.28%) 30(85.71%) | +1.00(5.00%) | 29(82.86%) [+0.10(0.50%) | 29(82.86%) |+0.11(0.55%)
ffc | 75 | 46 | 67(89.33%) H0.095(0.21%) 63(84.00%) H10.01(21.76%) 63 (84.00%) | +4.44(0.65%)| 62(82.67%) | +4.52(0.83%)
rand0| 81 | 21 | 74(91.36%) [+0.048(0.23%) 73(90.12%) | +1.15(5.48%) | 74(91.36%) |+0.40(1.90%)| 72(88.89%) [+0.39(1.86%)
rand1 129 54 |123(95.35%) H0.053(0.10%) 120(93.02%) | +4.47(3.28%) |118(91.47%)|+1.09(2.02%) | 118(91.47%%)| +1.28(2.37%%)
rand2 458|371 |418(91.27%) H0.591(0.16%6) 409(89.30%) [+92.70(24.99%) 405(88.43%) [ +17.24(4.65%) 402(87.77%) [-19.69(5.31%)
rand3 554|260 |513(92.60%) | +1.81(0.70%) | 487(87.91%) [+ 82.18(31.61%5) 485(87.55%) | +9.09(3.50%%) | 480(86.64%%) | 12.86(4.95%%)
rand4 692|417 | 654(94.51%) | +2.05(0.49%) | 630(91.04%) H48.77(11.70%) 623(90.03%%) 1+15.02(3.60%) 621(89.74%5) H-18.09(4.34%%)
rand5 [11582137[1030(88.95%) +5.84(0.27%) [1020(88.08%0)+237.8(11.13%0)1019(88.00%0)+88.50(4.14%)1006(78.50%0)+94.22(4.41%)
rand6 111320881 068(95.96%0)+12.14(0.58%)1044(93.80%0)+426.2(20.41%)1033(92.81%)+108.2(5.18%)1031(92.63%)+121.7(5.83%)
AVG 92.26% +0.34% 89.17% +12.92% 88.78% 3.18% 86.42% +3.49%
T .5: Estimated areca, power and critical path delay of all MUXes.
Test W/0 PA Greedy 54 MINE
Bench | Power | Area | Delay Power | A | Delay Power | Area | Delay(w/o cp) | Delay(with cp)
arf | 256.29 | 2030 | 1.05 | 247.78 (96.68%u) | 1937 (95.42%) | 1.05 (100.0%) | 239.31 (93.37%) | 1829 (90.10%%) | 1.05 (100.0%) | 0.93 (88.57%)
ewf | 22037 | 1807 | 1.05 | 211.73 (96.08%) | 1699 (94.23%) | 0.93 (88.57%) | 203.26 (92.24%%) | 1591 (88.05%%) | 0.93 (88.57%%) | 0.93 (RR.57%4)
ar 356.16 | 3198 | .14 | 322.48 (90.54%) | 2949 (92.21%) | 1.05 (92.11%) | 322.48 (90.54%4) | 2949 (92.21%) | 1.05 (92.11%%) | 1.05 (92.11%4)
ae 391.85 | 3666 | 1.23 | 367.05 (93.67%) | 3380 (92.20%) | 1.23 (100.0%) | 324.00 (82.68%%) | 2841 (77.50%%) | 1.14 (92.68%) | 1.05 (85.37%4)
ad2 | 406.89 | 3808 | 1.44 | 37457 (92.06°%) | 3451 (90.63%) | 1.23 (85.42%%) | 349.76 (85.96°%) | 3164 (83.09%%) | 1.23 (85.42%%) | 1.14 (79.17%)
ellip | 416.60 | 3949 | 153 | 304.12 (94.60%) | 3735 (94.584) | (.49 (97.39%) | 379.17 (91.02%%) | 3593 (90.99%%) | 1.44 (94.12%) | 1.31 (85.62%%)
mpeg | 41147 | 3697 | 1.23 | 385.68 (93.73%) | 3388 (91.64%4) | 1.23 (100.0%) | 359.92 (87.47%%) | 3165 (85.61%%) | 1.23 (100.0%) | 1.05 (85.37%4)
fft 720.84 | 6830 | 1.49 | 660.77 (91.67%) | 6262 (91.68%) | 1.49 (100.0%) | 622.14 (86.31%) | 5870 (85.94%) | 1.44 (96.64%) | 1.44 (96.64%0)
cand) | 86757 | 8149 | 131 | 81268 (93.67%) | 7579 (93.01%) | 1.31 (100.0%) | 797.63 (91.94%) | 7437 (91.26%%) | 1.23 (93.89%) | 1.05 (80.15%)
randl | 1151.00 | 10930 | 1.66 | 1106.34 (96.12%) | 10510 (96.16%) | 1.61 (96.99%) | 1069.01 (92.88%0) | 10153 (92.89%) | 1.61 (96.99%) | 1.57 (94.58%)
rand2 | 4489.64 | 42507 | 1.78 | 4185.37 (93.18%) | 39486 (92.89%) | 1.76 (98.87%) | 4062.10 (90.47%) | 38313 (90.13%) | 1.74 (97.75%) | 1.61 (90.45%)
rand3 | 5416.90 | 51224 | 187 |5106.87 (94.28%) | 48238 (94.17%) | 1.83 (97.86%) | 4854.54 (89.62%0) | 45748 (39.319%) | 1.80 (96.26%) | 1.76 (94.12%)
rand4 | 645439 | 61163 | 202 | 6170.18 (95.60%) | 58433 (95.57%) | 1.95 (96.53%) | 5923.31 (91.77%) | 56092 (91.71%) | 1.91 (94.55%) | 1.85 (91.58%)
rand5 | 10254.15 | 97466 | 2.08 [ 9301.22 (90.71%) | 88288 (90.58%) | 2.02 (97.12%) | 9122.93 (88.97%) | 86569 (88.82%) | 2.00 (96.15%) | 1.89 (90.87%%)
rand6 | 991928 | 94226 | 204 | 958413 (96.62%) | 91014 (96.59%) | 2.02 99.02%) | 9308.06 (93.84%4) | 88346 (93.76%) | 1.95 (9559%) | 1.87 (91.67%)
AVG 1|1 [ 1 | 9304w | 9341 | 9665% | 89.93% | 8875% | 9471% | 88.98%
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level synthesis benchmarks from?’.

3.6.1 Optmality and Runtime Test on Random Constraint Graph

In Table 4.3, the proposed algorithms are first evaluated on the randomly generated constraint graphs
with difterent numbers of vertices and graph densities. The column Vtx. shows the number of
vertices of the constraint graph from 40 to 6oo, and the column Den. shows the graph density
varying from 2.0 to s.o. For each pair of Vtx. and Den., one graph is randomly generated as the
constraint graph. On each constraint graph, the proposed algorithm is executed for 1000 times and
the number of interconnections is the average value of 1000 runs. The # of INT shows the total
number of interconnections. The columns of Cmp refer to the comparisons.

The proposed algorithms are compared to the optimum solutions generated by Integer Lineat
Programming, shown in the column of ILP, solved by /p_so/ver*®, including: 1) the initial solutions,
obtained by conflict graph and minimum vertex cover discussed in Section 3.3, shown in the column
of Initial Solution; 2) the elementary tree transformation based Algorithm 1, discussed in Section
3.4, shown in the column of Tree Based Opt.; 3) the matrix based optimization discussed in Section
3.5, where the general pivoting selection of Algorithm 2 is adopted, shown in the column of Marix
Based Opt.I; 4) the matrix based optimization, where the two-step pivoting selection of Algorithm 3
1s adopted, shown in the column of Matrix Based Optll.

In terms of solution optimality, t.e., the number of interconnects, comparing to [LP, it shows that
the initial solutions are 1.221, the tree based optimization solutions are 1.069, the matrix based
optimization solutions using general pivot selection are 1.045, and the solutions using two-step pivot
selection are 1.032 times overhead, respectively. The matrix based optimization using two-step pivot
selection shows highest optimality, because it is able to predict two successive pivotings in one
iteration.

In terms of algorithm efficiency, the execution times of three optimization algorithms are shown
in milliseconds. The matrix based optimization using general pivoting is taken as the baseline for
comparison since it shows the shortest execution time. The elementary transformation based
optimization runs 5.7 times slower, because the tree transformations consume most of the execution
time. The two-step pivoting optimization has a slight overhead compared to the general pivoting
optimization, 1.16 on average. It is mainly because of the condition checks in Eq.3.33 and Eq.3.32.
Even though, compared to the elementary tree transformation based optimization, the matrix based

optimization still shows 4.9 times speedup.

3.6.2  Optimality and Runtime Test on DFGs

The proposed port assighment algorithms are also applied on real high level synthesis benchmarks,
by comparing to the previous work®* and*®, shown in Table 3.4. The benchmarks are given in the
format of data flow graphs (DFG) as shown in Table I. The first eight benchmarks are taken from?’,
and benchmarks from rand0 to rand6 are randomly generated using a DFG generator TGFF®. Each

benchmark is given the number of vertices in Column V, the number of edges in Column £, and
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the length of longest path in DFG is shown in Column 7j,. The scheduling, functional unit (FU)
and register binding are first performed using the method in?’; the number of interconnections is
shown in Column INT with runtime measured in milliseconds. Then port assignment is performed to
minimize the number of interconnections. The Greedy>* shows the results of the algorithm proposed
in>*; The FM[3] shows the results of the FM based algorithm proposed in*®. The Tree Based Opt.
shows the results of the algorithm proposed in* and*, in which the elementary tree transformation
1s adopted for optimization. The Matrix Based Opt.I and Matrix Based Opt.II show the results of the
proposed matrix based algorithm using pivotings, where Opt.I uses the general pivot selection shown
in Algotithm 2, and Opt.IT uses the two-step pivot selection shown in Algorithm 3.

It shows that, the greedy algorithm in>* reduces the number of interconnections by 7.7%, with a
time overhead of 0.34%; it shows high efficiency because of the algorithm simplicity. The FM based
algorithm™ reduces the number of interconnections by 9% with 2.06% time overhead. The
elementary tree transformation based algorithm reduces the numbet of intetconnections by 10%,
which is slightly higher than FM but with a large time ovethead of B3%. The matrix based
optimization using general pivot selection, reduces the interconnections by 11.2% with 3.18% time
overhead; the two-step pivot selection shows the highest optimality, reducing the interconnections by
13.7% with 3.49% time overhead.

The results show that the matrix method proposed in this work excels the FM based algorithm in

terms of optimality, and the possible reasons could be:

1. The FM based algorithm in [3] is a local search based optimization method, where a bipartite
graph is used for vertex partition. In each iteration of local search, on the bipartite graph, either
one vertex 1s moved from one partition to the other, or two vertices are swapped to change their
partitions. Thus, each time the number of vertices whose partitions are changed is limited to
1 or 2. It means when the solutions in the neighborhood are being searched by local search,
only the ones that are quite close to the current solution are investigated; that 1s, the search
area is very narrow. In the actual experiments, it show that, the possibility that a better solution
exists nearby the current solution is low; as a result, the local seatch mostly terminates only

after a few iterations, w

(). This
corresponds to the operation that changes the partitions of the descendant vertices of tree edge
e; on the graph. Thus, the number of vertices whose partitions are changed is much larger than
that in [3]. It means that, in the matrix based algorithm, the solutions far from the current
solution ate also investigated, and the search area of my proposal is broader than [3]. Moteover,
by proposing the successive pivoting method, the search area is further broadened by predicting
the solutions of the next iteration. Benefiting from the diversification of search area, the mattix
based algorithm shows higher optimality than [3].
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Table 3.6: Implementation of testbench FFT on FPGA platform under 50MHz clock frequency

Power(mW) R ) Delay({rs)
Total | dyn | leak | # of Reg | #of LUTs | Max. Frq.1| Min. Prd.2
W/O PA 327 286 41 2282 3598 57.607 17.359
Greed}754 313 272 41 2092 3518 58.517 17.089
Mine w/o cp 289 249 40 1900 3453 60.140 16.628
Mine 289 249 40 1908 3446 60.190 16.614

1 Max. Frq: maximum frequency (MHz)
2 Min. Prd: minimum period (ns)

3.6.3 Power, Area and Delay Evaluation

In this secton the estimated improvements of area, power and critical path delay achieved by the
proposed port assignment algorithm ate shown. Reducing the number of interconnections by pott
assighment leads to the reduction of MUX size before the input ports of functional units; smaller
MUXes result in smaller area, lower power and shorter critical path delay. In this work, the reduction
of area, power and critical path delay are estimated by calculating all the MUXes before input ports
of FUs, because the proposed algorithm does not change the FU and register binding but only affects
the MUX size. The area, power and delay information of MUXes of different sizes are obtained from
work® and shown in Table IT. Since only 2-to-1, 4-to-1, 8-to-1, 16-to-1 and 32-to-1 MUXes are given,
they are combined to make MUXes of other sizes like 23-to-1. The total area and power are computed
by summarizing all the MUXes in a benchmark, and the critical path delay is approximately estimated
using the largest MUX in a benchmark.

Table 3.5 shows the estimated reduction of area, power and critical path delay of all MUXes after
port assignment, by comparing to the results without port assignment. It shows that the work in** is
able to reduce power by 6% and area by 6.6% of MUXes on average, and this work is able to reduce
power by 10% and area by 11.2% on average. As for the critical path delay, the work in®* reduces the
delay by 3.5%, and the proposed one reduces the delay by 5.3% if no special optimization for critical
path is conducted, as shown in the Column Delay(w/o cp). If the critical path is considered, the delay
is reduced by 1% as shown in the Column Delay(with cp), achieved by reducing the size of the largest
MUX.

Moreover, a most typical testbench FFT is picked up and implement it on the FPGA platform
to evaluate the actual improvement in terms of power, area and delay. The simulation is conducted
using Xillinx ISE 14.7 on the evaluation platform Spartan-6 SP605 Evaluation Platform under a clock
trequency of 50MHz. The results are shown in Table VI, including the result without port assignment,
the result produced by>*, and the result produced by the proposed algorithm without and with critical
path consideration. Tt shows that the port assignment indeed reduces the power and area (reflected by
the resoutces on FPGA), and increases the maximum clock frequency as well. Compated to the work

in>*, the proposed algorithm achieves more power and area reduction and higher clock trequency.
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3.7 Summary

In this work a port assignment algorithm for interconnect reduction after the FU and register binding
in HLS is proposed. First the problem is formulated on a constraint graph, and feasible solutions are
obtained by spanning tree and vertex cover. Then the solutions are optimized by an elementary tree
transformation based iterative method. To speedup, the problem is again formulated by a matrix, and
by substituting the © for + operations in LP formulation, network simplex method are adopted with
pivoting operations to perform optimization. The two-step successive pivoting is also discussed to
turther improve algorithm efficiency and optimality. The experimental results show that on the
randomly generated test cases, the matrix-based port assignment algorithm shows higher optimality
and efficiency than the spanning tree based algorithm, which is 4.9 times faster when both algorithms
produce optimum solutions with a probability higher than 99%. On the real benchmarks, 14%
interconnections are reduced with 3.5% time overhead on average, while the previous work reduces

% on average.
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A Multi-Level Algorithm for 3D-IC TSV
Assignment 1n Physical Synthesis

In this chapter, the third topic, TSV insertion for 3D-IC, is to be discussed, which corresponds to the
physical synthesis step. [t determines the positions of TSVs on each TSV die, to minimize the total wire
length. Compating to the problems in HLS, it is a huge sized problem, so the putrpose of this research
1s to propose a high efficiency algorithm, to solve the problem not only fast but without sacrificing
the solution quality. This problem is first formulated as the Integer Mult-Commodity Min-Cost flow
problem, and then an iterative multi-level algorithm is to be proposed to handle the huge sized inputs.
To improve the solution quality, a mixed single and multi-commodity tlow method is to be proposed,
tollowed by a bipartite matching method for solution optimization. The detailed formulations and

algorithms are discussed in the following of this chapter.

4.1 Introduction

Three-dimensional integrated circuit (3-D IC) is a promising IC manufactural technology with stacks
of dies that approaches higher density, reduced power, smaller footprint, improved performance and
lower cost compared with traditional monolithic 1Cs, and many important works on 3-D IC

technology are proposed in recent years

. The 3-D IC technology uses through-silicon vias (TSV)
to provide vertical electrical connections passing through a silicon wafer or die. The TSV is an
emerging interconnection technology that will replace the traditional wire-bonding process in
chip/wafer stacking, to increase inter-die communication bandwidth, reduce form factor, and lower
power consumption of stacked multi-die systems by eliminating the need of long cross-chip
nterconnects existing in 2-D ICs.

One of the key design challenges of 3-D IC is the optimization of the number and locations of
TSVs, which is generally called the TSV assignment problem. Given a 3-D IC netlist describing the

inter-die nets, TSV assignment is to decide which TSVs are used to implement the nets spanning

79



different chip dies. After the TSV assignment, routing is applied on each die to complete the electrical
connection of every net. Since the TSVs are very large compared to logic gates, say dozens to hundreds
of times the area of a standard cell, the TSV assignment is crucial to the wire length and signal delays
of 3-D circuits, and it is now attracting broad interest among both academic and industrial researchers.

There are already several literatures that have been proposed for the TSV assignment problem
on 3-D ICY -7 In% the TSV assignment is considered during the routing process and a min-cost
max-flow method is proposed. In® the inter-layer TSV placement is discussed, but the formulation is
ideal, where TSVs are considered placable anywhere on the chip even the spaces occupied by modular.

In 70

a two-stage 3-D flootrplanning algorithm is proposed, where the first stage plans hard macros and
TSV-blocks, and the second stage reassigns signal TSVs. Some more recent works tend to solve the
TSV assignment net by net, for example the work in? proposes a minimum spanning tree (MST) based
method which applies Kruskal’s algorithm net by net. The work ® proposes an integrated method for
pre-placed TSVs on chip dies, which has four steps including net by net shortest path seatrch, bipartite
matching, min-cost max-flow and postprocessing. The work in”’ formulates the TSV assignment on
the grid structure that, after the floorplan of blocks, the available grids for TSV are calculated according
to the white space, and the lagrangian relaxation 1s used to minimize the total wire length.

" and”, formulated the TSV assignment problem as an

Some of the previous works, for example
integer min-cost multi-commodity problem (IMCMC). In this work, the same IMCMC formulation is adopted,
and a multi-level heuristic algorithm is proposed aiming at both high efficiency and optimality. The

contributions of this proposal are as the following, among which (1) and (2) are briefly discussed in“*:

1. To reduce the IMCMC network complexity, i.e., the number of edges, a multi-level method is
proposed including grid coarsening and un-coarsening. Benefiting from the multi-level proposal,
the pure multi-commodity problem is transformed into a mixed single and multi commodity
problem, and the net order reliance is partially removed.

2. Given aninitial TSV assighment, an extended layer by layer optimization method is proposed
to improve the solution quality; it extends the optimization from adjacent two chip layers to

arbitrary two chip layers.

3. Since the number of generated edges in the coarsened graphs may be to limited to find a good

TSV assignment, a grid extension method is proposed, extended from®'.

4. The mixed flow algorithm is also improved from® to enhance rough flow assignment optimality,
including: (1) to decrease the routing detours, the formulation graph are modified to take TSV
congestions into consideration; (2) the shortest path computation in the mixed flow algorithm
is modified by introducing a penalty function; (3) the single flow algorithm is applied on the
grid vertices of coarsened graphs.

5. In the experiments, comparing to previous work'®, the proposed algorithm reduces the wire
length by 7.0% with a speedup of 37X. In additional, comparing to an eatlier work®*, the wire
length is reduced by 2.3%.
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Dies TSVs inserted into white space Dies Pre-placed TSV

(a) W (b) Pre-placed TSVs

TSV layerl TSV layer2 TSV layer3 TSV layer4
€1 Cz C3 Cq

(¢) Integer min-cost multi-commodity flow problem formulated on

the IMCMC network

Figure 4.1: Both kinds of TSV assignment problems can be formulated as an integer min-cost multi-commodity (IMCMC)
problem.

The remainder of the paper is organized as follows. Section 2 formulates the problem, Section
3 introduces the mult-level proposal, Section 4 introduces the mixed single and multi commodity
tlow algorithm, and Section 5 discusses the extended layer by layer optimization. Section 6 shows the

expetimental results and Section 7 concludes the papet.

4.2 Problem Formulation

421 Problem Description

71T where chip

Thete are basically two classes of TSV assignment. One is the grid structure like in
dies are evenly divided into P X @ grids, and TSVs can only be inserted into white spaces among
modules, as shown in Fig4.1(a). The other one is the pre-placed TSVs ™ ®, where the nets shall use
the TSVs that are already inserted into the chip with fixed positions, as shown in Fig.4.1(b). The two
models can be formulated in a unified way using the cpacity to describe the number of TSVs that can
be inserted, and using grzd to represent both the grids in the grid structure and the pre-placed TSVs.

The inputs include:
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* A3-DICwithnchipdies D = {d,, d,,- - ,d,} and n-1' TSV layets L = {/, L,,- -+ ,L,_,}, where
TSV layer [, connects chip dies dy and dj.

* The set of grids ¢ € T representing the pre-placed TSVs or grids in the grd structure. Each
grid g has a capacity ¢, referring to the number of TSVs that can be inserted into g. For the
pre-placed TSVs, ¢g = o or 1, and for the grids, ¢; > o. Each grid gis associated with a position
trom the left bottom corner of the chip, denoted as = (xg, Jp Zg), where z, s the chip die of

g

* The 3-D net list with total m nets, denoted as NL, which describes the connections of pins.

Each net is a two-pin net, denoted as y = (5,7) € NL, where s is the source pin and #is the

sink pin, gotten by multi-pin decomposing using the minimum spanning tree . Fach pin also
has a position p = (xj,yf, ;) or P, = (xt,yr, 2:). 2, and z; refer to the chip dies of s and #, where

2z, > 2.

The bounding box of a net 5 = (s, 7) is defined as 2 2-D minimum rectangular region encapsulating
both source pin s and sink pin £, which are projected onto one layer, because in this work the length of
the vertical connection of a two-pin net is assumed as a constant. For a net 5y = (s,£), 2, — 2, TSVs are
needed, denoted as 7, to 7, ; the wire length of 5, denoted as wl(y), is estimated by accumulating

the Manhattan Distances of TSVs in adjacent layers ot soutce/sink pins:

wliy) =d, + Y d, . +d . +e—s) (4.1)

where d[,ﬂ is the Manhattan Distance of p and ¢: p and g refer to TSVs in adjacent layers or source/sink
pins; (2; — z) represents the length of vertical connections, which is a constant and not considered in
this work.

The constraint is, for each grid g, the number of TSVs in g occupied by nets is not larger than its
capacity ¢g.

The goal is to find a TSV assighment for each net »; = (&, %) to minimize the total wire length,

computed as:

min Z wl(y;) (4.2)

1<i<m

422 IMCMC Network Formulation

The TSV assignment problem is formulated as an Integer Multi-Commodity Min-Cost (IMCMC) flow
problem on an IMCMC network ®, which is a directed graph G = (V, E) with capacities and costs
assoctated on edges. The vertices V' = V, U VUV, where g € V represents the n-th grid on
the m-th TSV layer, V; represent the soutce pins and V; represent the sink pins. Each grid vertex
&, 18 associated with a capacity of ¢,. The edges E = {ele = (#,0)}, where u € V,,v € V,, or
u€Vyv€V,oruveVyd, =d,+ 1 edge direction is from # to v. Each edge (#, v) is associated

with a cost w,,, defined as the routing cost between pins and TSVs, w



dy , the same as in Eq.1. The capacities of edges coming from s or going into ¢ are 1, and the capacities
of the edges between grid vertices are infinite.

Assigning TSVs for a net y = (s, £) is equivalent to sending a flow from s to ¢ on the IMCMC
network through grid vertices. The flow on edge ¢ = (#,v) € E from s to tis denoted as 5 ty. The
objective is to find a flow for each net y = (s, ) under the constraint of vertex capacities, to minimize
the total cost of all the nets.

Fig.4.1(c) shows an example of IMCMC network with two nets y, = (s5,4) and , = (5,,4). A
tlow from s to £ going through three grids ¢ , g . and &, SO that the three corresponding TSVs are

assigned to Netl.

4.3 Previous Issues and Motivations

Given the IMCMC formulation, several problems are unavoidable and are already exposed in the
existing works.

First, the complexity of a complete IMCMC network is extremely high. Assume a 3-ID chip has #
dies and m nets, and each die is divided into P X @ grids; the number of possible edges between grids
is (n — 1) - (P x Q)% and between source/sink pins and grids is m X P X Q. The total number of
edges easily reaches millions, which greatly limits the efficiency of the proposed algorithms (eg. when
P = Q = 64, n = 4, the number of edges exceeds 5 millions). In the work ", the chip dies are divided
into 8o X 8o for small testhench such as amiq9, while for latge testbenches such as n100 and n3o00,
the chip dies are only divided into 30 X 30 grids. This is because the algorithm 1s not able to handle
more grids for larger testbenches, which degrades the accuracy of TSV assignment. The work in®
reduces the number of possible paths by restricting that for a net = (s, f) going through TSV 7,
the summation of the straight-line distance from s to 7 and from 7 to ¢ does not exceed the length of
the diagonal line of the chip die. However this method does not reduce the number of edges on the
IMCMC network, and moreover the solution quality is sacrificed.

Second, because of the NP-completeness of the integer multi commodity problem, optimal
solutions are extremely difficult to be obtained; once a flow 1s assigned for a commodity, it is fixed
and cannot be updated. In this problem, most previous works assign the TSVs net by net; thus, the
TSV assighment solution greatly relies on the net order, and may greatly deteriorate due to a bad
ordet. To obtain stable and high quality solutions, the reliance of net order is highly expected to be
removed.

Besides, the existing optimization methods are lack of efficiency. The post processing in® suffers
from 100X to 800X runtime overhead for 0.2% solution improvement on average, and the Lagrangian
Relaxationin "’ also suffers from s X runtime overhead. Thus, a fast yet effective optimization algorithm
1s expected.

Motivated by these problems, the proposed algorithm first targets at reducing the number of edges
of the IMCMC network. On the IMCMC network, only a small fraction of the edges are actually used,
therefore it is not necessary to generate all but only the promising edges — the edges that have higher

possibilities to be used in the final TSV assignment solution. Based on this obsetvation, a multi-
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e 2 grouped vertices are
: ; K ; regarded as one vertex

roughly sent flows

(a) Flows are roughly sent on grouped vertices

promising edges
(generated)

unpromising edges
(not generated)

() Only promising edges are generated according to the rough flows from (a) to reduce
the total number of edges

Figure 4.2: Main idea of the proposed multi-level algorithm.

level algorithm is proposed, whose basic idea is shown in Fig.4.2. On the original IMCMC network,
adjacent vertices together are grouped level by level to build smaller networks, and send rough flows
between the coarsened vettices, called rough flow assignment, as shown in Fig.4.2(a). The edges on which
rough flows are sent are regarded as promising, and are generated when the coarsened vertices are un-
coarsened, as shown in Fig.4.2(b); the unpromising edges are not generated to reduce the total number

of edges. The multi-level algorithm is to be introduced in Section 4.

4.4 Multi-Level TSV Assignment

The overall multi-level algorithm is shown in Algorithm 1, including three parts: the first part 1s grid
coarsening and source grouping on the IMCMC network, to build coarsened grids of multiple
levels, shown in line 1-10; the second and third parts are rough flow assignment and graph un-
coarsening, which are executed by tutns on each level of graphs composed of coarsened grids, as
shown in line 11-15. Each time after rough flow assignment being performed, promising edges are

generated on coarsened graphs according to the flow assignment result, shown in line 12.

441 Grid Coarsening and Source Grouping

First, the grid coarsening is performed level by level, and in each level, denoted as ¢, the coarsened
grids are generated:

Definition 1: A coatsened grid of level ¢ is defined as the grid clustered from &, X k, grids of
level ¢ — 1, denoted as gm,'ij (¢ > o). The capacity of grz'di]- is calculated as the capacity summation of
all the & X &, grids of level ¢ — 1. The grids of otiginal IMCMC netwotk are level O (¢ = o).
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Algotithm 6 Multi-Level TSV Assignment

Require: Grids, netlists
Ensure: TSV assignments for each net ;
Le=o /] Grid coarsening and source grouping
while number of coarsened grids NOT small enough do
while NO'T all grids are clustered do
Cluster adjacent &, X k, grids to coarsened grdij +1
end while
while NO'T all soutce pins are grouped do
Group soutce pins into group P; 1
end while
¢ =z +1
: end while

o AN A

—_
<

11: Build highest level of coarsened graph CG

12: while ¢ > o do /[ Graph un-coarsening
13: Rough flow assignment on graph CG
14 Genetate edges for coarsened graph CG ™'
15: ¢ —¢—1I

16: end while

17. Detailed TSV assignment on IMCMC netwotk

Second, the source pins are grouped, as shown in line 6-8. The source pins that locate in a same
coarsened grid are regarded as one group of level ¢, denoted as grp, .

Fig.4.3 shows an example of grid coarsening and source grouping from level o to 1. In Fig.4.3(a) the
chip dies ate divided into small grids. In Fig.4.3(b), the small grids are clustered into larger coarsened
grids, for example g to g, are clustered into grd,; then the source pins that locate in a same grid are
grouped, for example 5; and s, are grouped into grp! , and 5; and s, are grouped into grp: .

The grid coarsening is repeated until the number of coarsened grids on each die is small enough,

say 2 X 2.

442 Rough Flow Assignment and Graph Un-coarsening

After grid coarsening and source grouping, rough flow assignment and graph un-coarsening are
executed in turns, as shown in line 13 and 14. The rough flow assignment is performed on a directed
graph called coarsened graph:

Definition 2: A coarsened graph of level ¢, denoted as CG = (V,,
whose vertex set is composed by all coarsened grids of level ¢ and source/sink pins s and 7 and edge

Ecg), is a directed graph,

set ¢ contains edges between coarsened grids and source groups.

The direction of the edges is the same as the original IMCMC network. Fach edge is associated
with a cost @,, which is the Manhattan Distance between two coarsened grids the distance ot adjacent
coarsened grids 1s 1.

The first coarsened graph of level ¢, CG , is a layered graph composed of all coarsened grids
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Figure 4.4: Rough flow assignment and graph un-coarsening

of level ¢ and source/sink pins. The edges are generated beforehand between each two coarsened
grids of adjacent layers as well as source/sink pins, as shown in line 11 and an example in Fig.4.4(a).
On GC | rough flow assighment is first performed, as shown in line 13. Then, based on the flow
assignment result on GC | edges are generated for coarsened graph of level ¢ — 1, CG ", The grids
with non-zero capacities are called ¢ffective grids, both effective and ineffective grids are included in the
coarsened graph, but edges are only generated for effective grids. Fig.4.4(b) shows an example of the
coarsened graph of level ¢ — 1, built based on the tlow assignment result from Fig.4.4(a). Edges are only
generated for the grids that have flows in graph CG , and ineffective grids (gray ones) are skipped.
This procedure repeats till ¢ = o.

However, in this problem, a large fraction ot grids may be ineffective, and only by splitting grids with

tlows, the generated edges for the coarsened graph are limited, which may degrade the solution quality.
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P ° Computing the outwards extended grids

o e. C o Input: left-bottom grid (x,, o)
; Output: the set of grids V = {(x, ¥)} to be extended
fo 1:r=0
------ [ b : while (# of grids in V is NOT enough) do
L] o | O L r=r+1
i fori=0toi <rdo
V=V+(@xe+i+LlLy,+r—i+1)

V=V+(xg—iyg—7r+1i)
V=V+(xyg—r+iy+i+1)
end for

2
3
4
5
6 : V=V+@xg+r—i+1y,—1i)
7
3
9
10: end while

@) ()

Figure 4.5: (a) Grid extension on graph of level . (b) The procedure to compute the set of grids ¥ to be extended.

Therefore, a grid extension is proposed to include more effective grids to generate enough edges.
From the coarsened grid grd;; oflevel ¢, denoting the extending radins as r, edges are also generated for
the effective grids of level ¢ — 1 which are within the radius 7. The extension terminates until enough
edges are generated. In additional, for an extended grid, a smaller radius 7 means it is closer to the grid
which has flows from the higher level graph. This radius is also used in a penalty function, which is to
be introduced in Section 5.1.2.

Fig.4.5 shows an example of the grid extension. The grid grd,, is split into 4 smaller grids, as shown
in Fig.4.5(a); the ones marked with black dots are effective, in this example only grid 4 s etfective. Since
the generated edges are insufticient, more grids around « are included. Fig.4.5(a) shows the included
grids with » = 1and » = 2, and edges are also generated for these grids. Fig.4.5(b) shows the extending
procedure to computes the set of grids to be added.

In order not to sacrifice the solution optimality caused by edge reduction, the rough ftlow
assignments are expected to be as optimal as possible. A mixed single and multi commodity flow
algorithm is proposed to improve the flow assignment optimality, by removing the net order

reliance, which is to be introduced in Section 5.

4.5 Rough Flow Assignment: Mixed Single and Multi Commodity Flow

Most previous works, which formulate the TSV assignment as a typical integer multi-commodity flow

problem such as’’ "

, assign the flows net by net, because each net is regarded as a distinguished
commodity. Specifically, shortest paths are found sequentally for each pair of 5; to #;. As discussed in
Section 3, however, assigning flows net by net has a major problem that, once a flow is assigned, it is
tixed and cannot be updated; thus the solution optimality greatly relies on the net order.

On the other hand, in this work, given grouped source pins, #f the source pins of some nets belong fo a

same source group, they can be regarded as one commodity™

. For example as shown in Fig.4.6(a), the flow for
1, = (%, &) and the flow for 5, = (s,, £,) are undistinguished: since 5; and s, both belong to group grp,,

the flow from s, to f, can either be regarded as the one from edges ¢, and ¢, ot the one from edges e,
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Figute 4.6: (a) Grid vettices are replaced by edges; costs are grid capacities. Flows from a same soutce group are

undistinguished. () Assign a net of grp, through the residual edges. (c) Flows of grp, are updated.

and e;. This property allows the single commodity min-cost flow algorithm being adopted for the nets
whose source pins are of the same group.

Consequently, benefiting from the coarsened grid and grouped source structure proposed in this
work, the multi-commodity and single commodity methods can be mixed by adopting the swecessive
shortest path algorithm "®: when shortest pathes are found net by net, the typical residual edges™ are on for
the nets belongs to a same commodity, and are gff for those belong to different commodities.

Now the proposed mixed multi and single commodity flow algorithm are explained in detail.

4.5.1 Mixed Single and Multi Commodity Flow Algorithm
Definitions and Preliminaries

Before introducing the mixed flow algorithm, some definitions are first given.

1). Residnal edge statns and residual network: The same as single commodity min-cost flow, each time a
flow fl is sent, residual edges™ are generated for fl . However, when sending a new flow fj? trom source s;
to sink £, where s5; belongs to group grpsj, not all the residual edges are allowed to load flows; ]; 1s only
allowed to go through residual edges whose flows are ot the same commodity, i.e., the sources belong
to grpxj. Therefore, for a flow to be sent from s to 7, denoting the soutce group of s as grp,, the status
of a residual edge 1s defined as:

Definition 3: The edge status of a residual edge with respect to grp_is defined as on if the source
of the flow on ¢, belongs to grp,, otherwise is off.

Accordingly, the residual network is defined as:

Definition 4: The residual netwotk with respect to grp, refers to the network only containing
residual edges whose status are on. A shortest augmenting path from s to ¢ can only be found on the
residual network for group grp..

Fig4.7 shows examples of edge status and residual network. In Fig.4.7(a), suppose two flows are
sent for (s, 1) and (s,,2,), denoting £ and f; two residual edges, ¢ and e,, ate built respectively for f;
and f,. In Fig4.7(b), when a flow is to be sent for (s, 4;), where s; belongs to group grp, the residual
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residual edge e4 for flow s, to ¢, e4 is off with respect to grp,
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Figure 4.7: Edge status of on and off with respect to source groups. (a) Flows sent for (s,4) and (5, 2,)- (
. when sending flow for (1, 4;), whose source belongs to ap,.

edge e, with respect to grp is turned on and edge ¢, is turned off. Thus, the residual network with
respect to grp, contains ¢, but not ¢,.

2). Optimally assigned nets: A net is regarded as optimally assigned if and only if the grids being
assigned to the net satisfy the condition that, the horizontal and vertical coordinates of the grids as
well as source and sink pins are monotonous. That is, for a net y = (s, #), if the total wire length from
s to t equals to the half parameter of the bounding box of #, » is regarded as optimally assigned. For
example as shown in Fig.4.8(a), grids g, & and g, are assigned for Netl in order; obviously Netl is not
optimally assigned because of the detour from g g, Meanwhile, Net2 is optimally assigned since
the wire length from s, to £, equals to the half parameter of bounding box of Net2.

3). Modified coarsened graph with split edges: Since the capacities of grids, i.e., the numbet of TSVs
can be inserted, is limited, once a grid 1s fully occupied, other nets may need detours which results 1n
larger wire length or the failure of finding feasible flows. To take grid capacities into consideration to
avoid TSV congestions, the coarsened graph is modified: on the coarsened graph, each grid vertex ¢
1s replaced by a pair of vertices with a directed edge, called split edge, denoted as ¢,. The capacity of
¢g equals to the capacity of the grid vertex g, i.e, ¢, = ¢ Fig.4.6(a) shows an example of the modified

coarsened graph, w

The overall rough flow assignment is shown in Algorithm 2. The successive shortest path based
mixed flow method 1s first applied on groups of source pins, as shown in Line 1-5; then the single
commodity min-cost flow algorithm is applied on grid vertices of coarsened graphs, as shown in Line

6-10. The two parts are introduced respectively.

Mixed flow on groups of soutce pins

In this step, tlows are assigned net by net by successive shortest path. The purpose is to first ensure
a feasible assignment for each net, and then minimize the total wire length. For each net y = (s,1), a

residual network for grp_is built, and a shortest augmenting path p from s to ¢is found, denoted as P
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Algotithm 7 Mixed Single and Mult Commodity Assignment

Require: Coarsened grid graph of level ¢
Ensure: Rough flow assignments of all the nets
1: for each net y = (5,¢) do
2 grp; ¢ source group of s
3 Build the residual network for group grp,
4 Find a shortest augmenting path p from s to ¢, assign the flow for net » on path p
5: end for

6: for each grid vertex v € Vg in graph CG  do

7: if NOT all the flows on v are optimized then
8: Apply single commodity min-cost flow on vertex v
9: end if

10: end for

The length of path p” 1s computed as:

Lp™) = wet > Ple)+ Y Prie) (4.3)

eeps,t cgep:,t cgepf,[

w , indicating the routing cost in terms of wire length
to be minimized. Pc(ceg) and Pr(e,) are penally finctions:

Pc(ceg) is 2 monotonically decreasing function of the capacity of edge ;. Tt means the grids with
larger capacities are more preferable, in order to avoid TSV congestions.

Pr(e,) is a monotonically increasing function of the radius r (defined in Section 4.2) from grid g
(represented by edge ¢,) to the grid of 1-level higher which holds the same flow from s to ¢. This is
because on the coarsened graphs of higher levels, especially the highest level, most of the nets are
optimally assigned; when assigning flows on lower level graphs, the flows are still expected to be
assigned similarly to those of higher levels which are optimally assigned. For example 1n Fig.4.5(a),
suppose a flow going through grid grd,, on the coarsened graph of level ¢ + 1; the penalties for the
grids within radius » = 1, say grids & to ¢, ate smaller than the penalties for grids within » = 2, say
gtids fto ;.

Fig.4.6(b) and Fig.4.6(c) show examples ot the mixed commodity flow algorithm applied on source
group of grp.. In Fig4.6(b) two tlows from grp, to £ and 7, are already found. When processing net
y, = (8;,4), because 5, belongs to the same source group grp,, an augmenting path is found on the
residual network of grp , and all the flows of grp are updated as shown in Fig.4.6(c). In this work the

Tatjan’s algorithm®' is adopted for shortest path searching.

Min-cost flow on grid vettices

In the stage described in Section 4.5.1, shortest paths are computed including both the wire length and

penalty functions; in this stage, an optimization of already assigned flows is applied on grid vertices to
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Figure 4.8: The example of single flow algorithm applied on grids. (a) Before processing ¢, Netl is not optimized. (b)
After processing g, both Netl and Net2 are optimized. {c) Initial flow assignment. (d) A shortest path from g to .. (¢)
An augmenting path from g to £, going through a residual edge. (f) Updated flow assignments from (c).

minimize total wire length only.

Similar to each source group, for each grid vertex g, all the flows that come into g, or all the flows
that come out of g, can also be regarded as a same commodity. Therefore, on each grid vertex g,
the min-cost flow algorithm is applicable. For efficiency, only the vertices that not all nets are optimally
assigned are processed. As shown in line 7 in Algorithm 2, when processing a grid vertex g, it is first
examined that whether all the related nets, whose flows go through g, are optimally assigned; if not,
the single min-cost tlow algorithm is applied on g. Fig.4.8(c) to Fig.4.8(e) show an example of min-
cost tlow algorithm being applied on grid vertex g. Fig.4.8(c) shows the flow assignhment of Fig.4.8(a),
where Net2 is optimally assigned but Netl is not. When processing vertex g, as shown in Fig.4.8(d),
an augmenting path is found from g to # on the residual network. Fig.4.8(e) shows the updated flow

assighment of Fig.4.8(b), where both Netl and Net2 are optimally assigned.

4.6 Extended Layer by Layer TSV Assignment Optimization

In Section 4 and 5 a multi-level algorithm for TSV assighment is proposed, which generates initial
solutions. In this section, a TSV assignment optimization is introduced to further reduce total wire

length, which is a post-processing.
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Figure 4.9: (a) Traditional layer by layer optimization with total cost of 19. () Extended layer by laver optimization with
total cost of 16.

One existing method is to optimize the TSV assignment layer by layer between two adjacent chip
dies’. This method gets global optimum assignment for adjacent chip dies, but can hardly get global
optimum solution when non-adjacent dies ate considered. To temove the limitation, in this wotk, an
extended layer by layer optimization is proposed, which 1s able to optimize any two non-adjacent chip dies
under the constraint that the flows of other layers are fixed. As shown in Fig.4.9, the left figure is the
result after traditional layer by layer optimization, whose total cost is 19, and the right figure shows an
improved solution by extended layet by layer optimization, whose total cost is 16.

The optimization is performed on the lowest level of IMCMC network with no coarsened grid
anymore. Given an initial flow and two arbitrary TSV layers [, and /,, the goal is to optimize the flow
assignment for the nets whose pins are on chip dies d, and dy, as shown in Fig4.10(a). The flows
between d, and dgy, are fixed, as the gray shadow shown in Fig.4.10(a). A flow going out of 5, must
go through a fixed flow path and still go into £, to guarantee that the reassigned flows are still valid;
each fixed flow path has a capacity of 1-unit. For example in Fig.4.10(a), after the extended layer by
layer, the flow from s, still goes into #,.

To optimize the flows for chip dies 4, and d,,, a weighted bipartite graph is built as shown in
Fig.4.10(b). The edge weights of the bipartite graph are computed by summing the costs of two original
edges on IMCMC network of dies d, and d,, which belong to a same flow. For example the weight
for edge (5,5, v,) is @,y + @, because in Fig.4.10(a), w,, and w ¢ are of the same flow from s, to . Then
a min-cost matching is found on the bipartite graph and the tlow assignment is updated.

The algorithm is executed between every two chip dies 4, and dg4,: when g — p = o, say 4, and
d,, it is the same as the traditional layer by layer optimization; when g — p > 1, say 4, and 4, it is the

extended layer by layer optimization.
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Figure 4.10: (2) Extended layet by layer to optimize the TSV assignments of two non-adjacent dies. (b) The bipartite graph

for min-cost matching,

T -1: Edge reduction and algorithm speedup by the multi-level proposal

T HNets | #TSVs Grid Orig. Red. Cmp #Edges in CG
Bench Size | #Edges | #Edges ¢ =1 | ¢ =2 | ¢ =13
ami33 85 144 62X%61 284K 8K 35.5X 3K 2K 1K
ami49 357 652 79%x82 | 1080K 78K 13.8X || 26K | 20K IK

n50 382 627 5353 871K 49K 178X || 14K | 10K 6K
n100 650 1037 52x52 | 1279K 103K 124X || 33K | 24K | 10K
n200 1246 1945 31x31 2166K 187K 11.6X || 75K | 39K 19K
n300 1489 2325 68x68 | 5529K 243K 228X || 94K | 82K | 29K

AVG 19.0X

4.7 Expetimental Results

The experiments are cartied on Linux RedHat with 2.8GHz CPU and 8GB memory, implemented by
C. The benchmarks come from MCNC* and GSRC®*". All the algorithms are implemented by us on
the same platform. The grid size g X ¢ in tables refers to the number of grids on each chip die. The
wire length is computed from Eq.4.2. & = = . This work is first compared to
the latest existing work ' in terms of algorithm efficiency and solution quality, and then is compared
to previous work '’ in terms of algorithm efficiency. Some other works as ™ ’? also discussed the TSV
assignment, but they solved 1t with other problems jointly such as flootplan and placement, which
makes it difficult to make a comparison.

Firstly, the edge reductions and algorithm speedups by multi-level approach is shown in Table 1.
The Orig.#FEdges shows the number of edges without multi-level proposal; the Red. #Edges shows

the final reduced number of edges with multi-level proposal, 1.e,, ¢ = o. It shows that on average this
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Table 4.2: Comparisons between work 7® and the multi-level ptoposal with/without penalty function, and with/without

min-cost flow on grid vertices.

Test |Chip| Grid | Integ. TSV Assign’® ML + MF” ML + MF + PF° | ML + MF + PF + FG’
BenchLayes| Size Wirelengt Time(ms) | Wirelength [Tind Wirelength | Time | Wirelength | Time
| B2x61 3235 | 1478 (44.12) |3186 (0.985)| 42 (3179 (0.983) 43 (1.024) |3145 (0.972)| 46 (1.095)
B A s 5173|625t (167.45)|5459 (1.055)| 51 5081 (0.982)| 51 (1.000) [5073 (0.981)| 54 (1.059)
B3x33 7153 | 4277 (16.18) 6705 (0.937)| 344 6623 (0.926) (347 (1.009)|6531 (0.913)|369 (1.073)
ami49) 4 Pix41 9181 | 9770 (39.20) |8852 (0.964)| 355 (8765 (0.953)|358 (1.008)|8483 (0.924)|399 (1.124)
G4x 63 12555 | 11722 (42.65) 12833 (1.022) 408 [12159 (0.968)410 (1.005)[12053 (0.960) 433 (1.061)
79x82 15480 M8503 (204.07)15345 (0.991) 264 (15297 (0.988)267 (1.011)[14862 (0.960) 367 (1.390)
n50 | 4 B3x53 15580 | 5700 (24.20) (13459 (0.864) 243 [13413 (0.861)246 (1.012)[13359 (0.857) 362 (1.490)
D6x26 12193 | 6787 (7.16) [12003 (0.984) 994 [11821 (0.969)998 (1.004) (11761 (0.965}1416 (1.425)
a100] 4 POx29 11345 | 7754 (7.98) [10331 (0.911)1093[10203 (0.899)1100 (1.006)10181 (0.897Y1149 (1.051)
33x33 13005 | 7741 (8.32) f12554 (0.959) 981 [12229 (0.934)994 (1.013) (12129 (0.926)}1051 (1.071)
3838 14205 | 13052 (14.97) 13283 (0.935\1085[13157 (0.926)1091 (1.006)13131 (0.924)1262 (1.163)
5252 22589 15297 (19.88) P1790 (0.965) 806 P1600 (0.956)809 (1.004) 21323 (0.944) 932 (1.156)
ool 4 PBX28 22633 145282 (12.00)21099 (0.93214429p0107 (08884436 (100220079 (0.887)5246 (1.184)
31x31| 24840 |56861 (14.70) P3176 (0.933)471222358 (0.900)4727 (1.003)22346 (0.900)5137 (1.090)
Ugx 48 42757 (118182 (283341857 (0.979\696089823 (0.931)6981 (1.003)39787 (0.931)7581 (1.089)
m3001 4 k5656 45443 (149362 (444243981 (0.968)594642949 (0.945)5957 (1.00242391 (0.933)6155 (1.035)
Bx68 57766 [150342 (48.97)56704 (0.982)399755648 (0.96314012 (1.004)54184 (0.938)14865 (1.217)
AVR 1.00 43.80 0.963  [L.00Q  0.940 1.007 0.930 1.163

U ML tepresents the simple multi-level algotithm, MF reptesents the mixed flow method, PF represents penalty functions
Pc(c,,) and Pr(eg) in Eq.3, and FG represents the min-cost flow algorithm being applied on grid vertices.

proposal reduces the number of edges by 19X and speeds up the algorithm by 14.6X. It implies that
the unpromising edges are significantly reduced to improve the algorithm efficiency. Also, the number
of edges on coatsened graphs of different levels are shown in #FEdges in CG . Since the numbet of
levels varies with different testbenches, for simplicity only three levels are shown, i.e., ¢ = 1,2, and 3.
In Table 4.2 the proposal is compared to the latest work ’®, whose results are shown in Integ. TSV
Assign . For this proposal, three sets of solutions are shown: ML+MF refers to the multi-level
proposal with mixed flow algorithm being applied on group sources, which is the same as my eatlier
work®; ML+MF+PF means that the penalty functions P(c,) and Pr(e,) are included, and
ML+MF+PF+FG means that the min-cost flow algorithm being applied on the grid vertices,
discussed in Section 5.1.3, is also included. First, it shows that the mult-level algorithm with mixed

76

tlow proposal reduces the wire length by 3.7% on average compared to®. One suggested reason is,

76 as discussed in Section 3, while computing the shortest path, the possible paths are restricted

n
strictly and the solution quality is sacrificed. On the other hand, in the level by level proposal, most
of the flows assigned on higher level graphs are optimal; based on which, only promising edges are

generated, so that flows on lower levels are expected to be close to optimal solutions. Then, as
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Table 4.3: Evaluation of the traditional layer by layer 77 and the extended layer by layer optimizations.

T Grid Traditional LBL7 Extended LBL
Bench Size Wirelength | +Time(ms) Wirelength | +Time(ms)
62x61 3145 (1.000) +0 (1.000) 3145 (1.000) +0 (1.000)
75%77 5065 (0.998) +2 (1.043) 5062 (0.998) +3 (1.058)
33%33 6531 (1.000) +4 (1.012) 6502 (0.996) +6 (1.017)
amid9 | 41x41 8477 (0.999) +3 (1.008) 8411 (0.992) +11 (1.028)
64x65 | 12039 (0.999) +3 (1.008) 12010 (0.996) | +14 (1.034)
79x82 | 14854 (0.999) +4 (1.010) 14828 (0.996) | +22 (1.059)
150 53x53 | 13323 (0.997) +7 (1.018) 13301 (0.996) | +15 (1.040)
26x26 | 11669 (0.992) +3 (1.002) 11595 (0.986) +6 (1.004)
29%29 | 10164 (0.998) +6 (1.005) 10087 (0.991) | +14 (1.012)

ami33

M s | o 0.999) | +12(1.006) | 12009 (0.990) | +17 (1.016)

38%38 | 13104 (0.998) | +7(1.007) | 13015(0.991) | +16 (1.019)

52x52 | 21263 (0.997) | +4(1.003) | 21241 (0.996) | +19 (1.027)

jop | 2BX38 [ 20079(1.000) |44 (100D | 19985 (0.995) | +31 (1.006)
n

3131 | 22278 (0.997) | +10(1.002) | 22102 (0.989) | +32 (1.006)
48x48 | 39732(0.999) | +5(1.001) | 39609 (0.996) | +18 (1.002)
0300 5656 | 42342 (0.999) | +13(1.002) | 42217 (0.996) | +34 (1.007)
68x68 | 54130 (0.999) | +7(1.001) | 54008 (0.997) | +34 (1.007)
AVR 0.998 1.008 0.994 1.020

shown in MLL+MF+PF, including the penalty functions further reduces the wire length by 2.3%, and
applying the min-cost flow algorithm on grid vertices reduces another 1.0% as shown in
ML+MF+PF+FG. The run time is evaluated by normalizing all the values to the fastest one,
ML+MF. The work ’® shows longest execution time, which is 43.8X slower. The time overhead of
penalty functions is 0.7%, and the time overhead of min-cost flows on grid vertices 1s 16.3%. In
short, the multi-level proposal runs 37X faster than the previous work and also reduces the wire
length by 7.0%.

Besides, the algorithm efficiency is also compared to the previous work’’. For small testbenches
such as ami33, ami49 and nso with the grid size of 40 X 40, 80 X 80 and 30 X 30, the proposed algorithm
runs 6 to 12 times faster than’’. For larger testbenches such as n#100 and n300, the grids are expected
to be mote than 30 X 30 since the chip die is larger. For n100, the proposed algorithm divides the chip
die into 52 X 52, and for n300 the grids are 68 X 68. However, due to the efficiency limitation of "', it
tailed to produce solutions with grids more than 30 X 30. This implies that the proposed algorithm in
this work is much efficient than”’. As for wire length, this proposed algorithm is also tested for z100
and n300 with grids of 30 X 30, and the differences of wire length between this proposal and”’ s less
than 1%, while the execution time of this proposal is 5 and 7 times faster.

In Table 4.3, the traditional layer by layer (ILBL) optimization in”’ and the extended one are
evaluated. [t shows that the traditional LBL reduces the wire length by 0.2%, and the extended one

reduces the wire length by 0.6%. The time consumed by post processing after the multi level
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algotithm are also shown. The overheads of the traditional and extended layer by layer post

processing are 0.8% and 2%, respectively.

4.8 Summary

In this work an efficient mult-level algorithm for 3D-IC TSV assignment is proposed to minimize the
total wire length. It formulates the problem as an integer multiple commodity min cost IMCMC) flow
problem. To reduce the number of edges in the IMCMC network, an iterative multi-level approach
is proposed. In each iteration, a coarsened graph is built and the problem is roughly solved on the
coarsened graph, then a next-level coarsened graph is generated based on the rough solution to be
solved in the next iteration. Benefitting from the multi-level proposal, and in order to not to degrade
solution quality, 2 mixed single and multi-commodity min-cost flow method is proposed for solution
optimization. Besides, an extend layer by layer optimization method s also discussed. The experimental
results show that the proposed multi-level proposal achieves 37X speedup compared to the previous
work, and meanwhile reduces the total wire length by 7.0%. The extended layer by layer optimization

turther reduces 0.6% total wire length.
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Conclusions and Future Work

5.1 Conclusions

In this thesis, the following problems in the EDA design flow atre discussed and solved using common

technologies, graph theory, mathematical programming and iterative approaches.

1.

®)

Improved the solution optimality for small and medium scaled problems in HLS steps,
including: (1) multiple voltage scheduling (combined with binding) problem for power
minimization, and (2) port assignment problem for interconnection complexity reduction. For
(1), 2 mathematical formulation, the ILP formulation, is first given, and by relaxing ILP to LP,
the network simplex method in graph theory is adopted for speedup. For (2), a graph theory
based tree transformation approach is first proposed, and by substituting ¢ for + in LP, the
LP pivotings in mathematical programming is adopted for speedup. Besides, for both (1) and
(2), a local search with random restart based iterative method is proposed for solution
optimization. In the experiments, optimal or near-optimal solutions for both problem (1) and
(2) are obtained. For (1), the dynamic power minimization solutions are optimum compared to
ILP, and the leakage power minimization solutions saves 43.9% power compared to latest
existing work, with a 52 times speedup; For (2), the proposed algorithm gets optimum

solutions with a probability of more than 99% with less than 4% execution time overhead.

Improved the algorithm efficiency for a large scaled problem in physical synthesis: the
TSV insertion problem for 3D-ICs. Given huge size inputs, an iterative multi-level approach
is proposed. In each iteration, first a coatsened graph is built and the problem is roughly solved
on the coarsened graph; the rough solutions are used to generate a coarsened graph in the
next iteration to be solved. Benefitting from the multi-level proposal, and in order to not to
degrade solution quality, a graph theory based mixed single and multi-commodity min-cost flow
method is proposed for solution optimization, followed by a bipartite matching optimization.
In the expetiments, the large scaled ptoblems are much more efficiently solved by the proposed

97



algorithms compared to existing algorithms, where 7% total wire length is reduced with 37 times

speedup.

To briefly conclude, in this thesis, it shows that the graph theory, mathematical programming, as

well as the iterative methods, ate effective technologies in solving EDA design problems, for example

improving solution quality for small and medium scaled problems, and improving algorithm etficiency

tor large scaled problems.

5.2 Open Issues and Future Work

Although some achievements are made in this thesis, there are still several open issues on each topic:

1.

Dynamic and leakage power minimization®: (a) In this work, the proposed unified algorithm
is conditionally applicable — when the possible delays (number of control steps) of operations
are consecutive integers, and when the power-delay function curve is convex. In this work
the data of FU delays and power-delay functions are taken from previous related works, where
the conditions are satisfied; but it is possible that the conditions are not satisfied. (b) for the
dynamic and leakage power co-optimization problem in this work, there is an assumption that,
given both multiple V;; and multiple V7, the delays of FUs under different pairs of V; and V7,
are distinguished. However this assumption might be limited.

Interconnection allocation®: In this work two optimizations, the tree based and mattix based,
are discussed, while in my previous works the bipartite graph based optimization have also been
studied. It shows that the bipartite graph based algorithm runs faster than both tree based and
matrix based, but the solution quality is lower. This is because in each iteration, the number of
candidate neighborhood solutions to be searched are less. Even though, it is still possible that a

bipartite graph approach excels the matrix approach in both solution quality and efficiency.

Through silicon via (TSV) insertion for 3D-IC™": In the multi-level approach of this work,
in each iteration, the coarsened graph of the current level is generated according to the rough
solution, 1.e., the flow assignment results on the coarsened graph of the previous level. Currently,
after generating the coarsened graph, the previous flow assignment results are abandoned, and
the tlow assignment on the new generated graph is computed independently. However, since
the coarsened graphs of higher levels are small, the flow assignment results on them are closer
to optimum solutions. Therefore, it is suggested that the flow assignment results on the higher
level coarsened graphs may be used to guide the flow assighment on the lower level graphs, to

turther improve the solution quality.

Given the open issues, there are future works left for further investigation:

. In the method of multiple supply/threshold voltage scheduling, fitst, when the possible delays

of operations ate not consecutive integers, or the power-delay function is not convex, for leakage
and dynamic power minimization, when multiple 3, and multiple V7, voltages are given at the

same time, additional heuristic processing will be needed. Besides, one operation delay may
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cotrespond to more than one paits of ¥y and Vy,. In this case, a heuristic method is needed
to select from different pairs of Vyy and Vy,. Also, when the possible delays of an FU are not
consecutive integers, say (1,2, 4), and the FU is assigned by delay 3, another processing, for
example dynamic programming ot branch and bound, 1s needed to re-assign the delay of the
FU to a valid value. Finally, the pipeline operators and FU chaining are also expected to be

considered.

In the method of interconnection optimization, there are several improvements for current
algorithms that can be considered. For example, first, try to adopt tabu search in the iterative
method instead the current local search. Second, in the current algorithm, computing the
minimum vertex covet from the conflict graph in each iteration consumes a large fraction of
execution time; therefore, it 1s suggested that if the minimum vertex cover size can be
estimated from the contlict graph without actually computing, the CPU time of the current
algorithm may be shottened. Besides, it is expected that if FU and register binding are not
fixed and being solved with port assighment jointly, and the number of interconnections can
be further reduced. Finally, the port assignment problem is expected to be solved on chained

FUs with more than two mput ports, say three, and more explorations are expected.

In the method of 3D-IC TSV insettion, to improve the quality of flow assignment on coarsened
graphs by utilizing the flow assighment result on the previous level graph can be considered.
Besides, the chip thermal and hotshots are expected to be considered jointy with the wire length.
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