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Acronyms and abbreviations 

 

The following acronyms and abbreviations are adopted throughout this thesis. 

Several abbreviations not included in this list are defined as combinations of these 

acronyms/abbreviations. 

 

AO atomic orbital 

AOC average of configuration 

BPD Binkley–Pople–Dobosh 

BSS Barysz–Sadlej–Snijders 

CBS complete-basis-set 

CC coupled-cluster 

CCSD coupled-cluster singles and doubles 

CCSDT coupled-cluster singles, doubles, and triples 

CCSDTQ coupled-cluster singles, doubles, triples, and quadruples 

CCSD(T) coupled-cluster singles, doubles with a perturbative triples 

correction 

CCSD(2)TQ coupled-cluster singles and doubles with second-order triples and 

quadruples corrections 

CI configuration interaction 

D Davidson 

DC Dirac–Coulomb 

DCB Dirac–Coulomb–Breit 

D&C divide-and-conquer 

DFT density functional theory 

DIIS direct inversion in the iterative subspace 
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DKH Douglas–Kroll–Hess 

DKHn nth-order Douglas–Kroll–Hess 

DODS different orbitals for different spins 

EA electron affinity 

EDA energy density analysis 

EDIIS energy direct inversion in the iterative subspace 

EE Euler equations 

FM Fægri–Manne 

FOA frozen-orbital approximation 

FP fixed point 

FW Foldy–Wouthuysen 

GHF generalized Hartree–Fock 

GMP2 second-order generalized Møller–Plesset perturbation theory 

GS Guest–Saunders 

GSO generalized spin-orbital 

HF Hartree–Fock 

HS highest spin 

IODKH infinite-order Douglas–Kroll–Hess 

IODKH/IODKH infinite-order Douglas–Kroll–Hess method for many-electron 

systems 

IOTC infinite-order two-component 

IP ionization potential 

KROHF Kramers-restricted open-shell Hartree–Fock 

KRHF Kramers-restricted Hartree–Fock 

KT Koopmans’ theorem 

KUHF Kramers-unrestricted Hartree–Fock 

LS lowest spin 



 

vii 

LUT local unitary transformation 

MaxAD maximum absolute deviation 

MD McWeeny–Diercksen 

MO molecular orbital 

MS molecular spinor 

MP Møller–Plesset 

MPn nth-order Møller–Plesset perturbation theory 

MPPT Møller–Plesset perturbation theory 

NESC normalized elimination of the small components 

NR non-relativistic 

PGB Plakhutin–Gorelik–Breslavskaya 

R Roothaan 

RA regular approximation 

RESC relativistic scheme by eliminating small components 

RH Roothaan–Hall 

RHF restricted Hartree–Fock 

ROHF restricted open-shell Hartree–Fock 

RS Rayleigh–Schrödinger 

SCF self-consistent field 

SD spin-dependent 

SESC symmetrized elimination of the small components 

SF spin-free 

SO spin–orbit 

SODS same orbitals for different spins 

TCE tensor contraction engine 

TSCW torsional spin current wave 

TSW torsional spin wave 



 

viii 

UESC unnormalized elimination of the small components 

UHF unrestricted Hartree–Fock 

UMP2 second-order unrestricted Møller–Plesset perturbation theory 

X2C exact two-component 

ZORA zeroth-order regular approximation 

 

The nomenclature of two-component Hamiltonians in this thesis is as follows: 

SS-OOOOO/TTTTT, (1)

where SS denotes the level of the treatment of spin (SF or SD), and OOOOO and TTTTT 

denote the levels of one- and two-electron parts of the Hamiltonian (NR, DKHn, IODKH, 

and so forth), respectively. For example, SF-IODKH/NR represents the one-electron 

IODKH Hamiltonian with the two-electron NR Coulomb interaction in the SF formalism. 
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Chapter 1  

General introduction 

 

Quantum chemical calculation is a powerful tool to analyze or predict chemical and 

physical properties of atoms and molecules such as structures, interactions, and 

reactivities. Large-scale quantum chemical calculations can now be readily performed 

with a high degree of accuracy for organic- or bio-molecules consisting of light elements 

through the recent development of sophisticated theories and programs. In contrast, 

accurate and efficient black-box treatment is still difficult for molecules including heavy 

elements, since relativistic effects, which are vital in the chemical and physical properties 

of heavy elements, are not appropriately considered by many quantum chemical programs. 

Relativistic effects are classified into SF and SD effects [1]. The SF effects, including 

the so-called mass-velocity and Darwin interactions, mainly contribute to the contraction 

of s/p-orbitals and the expansion of d/f-orbitals. The SD effects, including the SO and 

other magnetic interactions, contribute to the energy level splitting and the coupling of 

multiple spin states, which results in phosphorescence and inter-system crossing. 

Theories and algorithms that can appropriately describe these relativistic effects in the 

quantum chemical calculations must be based on wave equations that satisfy the Lorentz 

invariance, i.e., the fundamental physical condition arising from special relativity, instead 

of the NR Schrödinger equation. 

Modern relativistic quantum chemistry is based on the Dirac equation [2], which is 

Lorentz-invariant with respect to the motion of a single electron. The Dirac-equation-

based formalism is called the four-component method because the wavefunction of the 
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Dirac equation contains four components, corresponding to electrons and positrons each 

with both alpha- and beta-spins. 

A wide variety of two-component methods have been developed to describe only the 

electronic states, which play an important role in chemistry, by decoupling them from the 

positronic states using several mathematical operations [3,4]. The two-component 

methods remedy many of the problems that occur in the four-component methods: for 

example, the enormous computational cost and difficulty of obtaining a physical 

interpretation of the solutions due to the positronic components. Since the development 

of the IODKH method by Barysz, Sadlej, and Snijders in 2002 [5-8], the X2C method [9-

13], which exactly reproduces the solutions of the four-component Dirac equation, has 

become the standard two-component approach. The IODKH and X2C methods were 

originally developed for one-electron systems. The IODKH/IODKH method proposed by 

Seino and Hada in 2008 achieved highly accurate two-component calculations for many-

electron systems [14]. Furthermore, the LUT scheme proposed by Seino and Nakai in 

2012 enables more efficient two-component relativistic quantum chemical calculations, 

with computational costs that scale linearly [15-17]. 

The two-component relativistic quantum chemical calculations are typically based 

on the GHF method [18-27]. GHF defines an orbital by the superposition of alpha and 

beta spin bases, enabling each spin-quantized axis to rotate independently. Thus, GHF 

can describe non-collinear spin states, i.e., non-one-dimensional spin orientations, which 

are seen in electronic structures under SO interactions and geometrically frustrated spin 

systems, for example. Through these two-component relativistic quantum chemical 

calculations, one can, in principle, analyze the electronic structures of heavy-element or 

non-collinear spin systems. However, there are many barriers to be overcome from the 
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viewpoint of routinely performing these calculations. For example, the low convergence 

behavior of the SCF procedure in GHF calculations that consider the SD relativistic 

effects is problematic. The interpretation of the calculated results is complicated by the 

hybridization of multiple spin states. Therefore, methods that consider the SD relativistic 

effect in a post-treatment to NR or SF relativistic calculations have been widely used 

[1,28]. Although this type of treatment is effective for light-element systems, the 

relativistic effects in heavy-element systems cannot be treated correctively. The 

relativistic effects must be rigorously considered from the HF stage to obtain results that 

are qualitatively and quantitatively reasonable across the whole periodic table. 

In the context of these challenges, the author herein has developed highly accurate 

and efficient SD two-component relativistic wavefunction methods based mainly on the 

IODKH and IODKH/IODKH methods. This thesis consists of eight chapters, including 

the general introduction mentioned in this chapter. The outline of each chapter is as 

follows. 

In Chapter 2, the theoretical background of the present thesis is summarized. The 

basic concepts and equations of the four- and two-component methods, IODKH-related 

methods, and two-component HF methods including GHF and KRHF [29-32] are briefly 

reviewed. The author also tackled the development of theoretical methodologies in the 

SF framework, although the present thesis mainly focuses on those in the SD framework. 

Their low computational cost allows the SF calculations to act as a valuable initial 

assessment for the SD calculations. Thus, Chapter 2 also reports the implementation of 

higher-order electron correlation methods in accordance with the SF relativistic 

Hamiltonians and their extension to the linear-scaling D&C scheme [33-35] using TCE 

[36-42], which is a computerized symbolic algebra system. TCE supports the derivation 
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and implementation of the complicated working equations of the higher-order correlation 

methods. Numerical assessments demonstrate that the D&C-based higher-order 

correlation methods provide reliable correlation energies with significantly less 

computational cost than the D&C-free methods. 

Chapter 3 assesses the SCF convergence behavior of the GHF method, which is one 

of the practical problems in SD calculations. Four acceleration algorithms are 

implemented to obtain efficient SCF convergence of GHF: the damping algorithm, DIIS 

algorithm [43,44], EDIIS algorithm [45], and a combination of the DIIS and EDIIS 

algorithms [45,46]. Numerical assessments demonstrate the effectiveness of the DIIS and 

EDIIS combination algorithm for GHF calculations in comparison with the other 

discussed algorithms. 

In Chapters 4 and 5, new types of the two-component HF methods are proposed based 

on time-reversal symmetry. The problems in the GHF method, including the poor SCF 

convergence behavior, are mainly due to the absence of spin-related symmetry constraints 

in the GHF wavefunction. The KRHF method, which preserves time-reversal symmetry, 

is another representative scheme for SD calculations. However, KRHF is applicable only 

in closed-shell systems. These chapters develop KUHF and KROHF, i.e., two-component 

HF methods for open-shell systems that partially and fully preserve time-reversal 

symmetry, respectively. Chapter 4 discusses the KUHF method. Numerical assessments 

demonstrate that KUHF gives wavefunctions that are simpler than GHF and similar to 

UHF wavefunctions, with better SCF convergence behavior. Chapter 5 discusses the 

KROHF method. The ambiguity of the KROHF Fock operator affects the spinor energy 

values and SCF convergence behavior. The use of a canonical parametrization of KROHF 

to satisfy KT and obtain physically meaningful spinor energies is discussed. 
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Chapter 6 extends the IODKH and IODKH/IODKH methods to the GMP2 method 

[47-50], i.e., one of the fundamental electron correlation theories that use the GHF 

wavefunction as a reference state, to improve computational accuracy. The author has 

derived and implemented a universal formulation of the GMP2 method in accordance 

with SD two-component many-electron Hamiltonians. Numerical assessments 

demonstrate that the present GMP2 method using the SD-IODKH/IODKH Hamiltonian 

reproduces the correlation energies of the four-component MP2 method with less 

computational cost. 

In Chapter 7, an application of the two-component methods developed in the previous 

chapters to frustrated spin systems is demonstrated. This chapter focuses on equilateral 

hydrogen rings, which are representative examples of molecules with frustrated spin 

characteristics. The basic properties of these systems are examined from the viewpoint of 

potential energy curves and spin expectation values using the GHF and GMP2 methods. 

Finally, in Chapter 8, the general conclusion and prospects of this thesis are presented. 
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Chapter 2  

Theoretical background 

 

Modern relativistic quantum chemistry is established based on the four-component 

method, which directly solves the Dirac equation [1]. Unlike the NR Schrödinger 

equation, the solutions of the Dirac equation are multi-dimensional and mathematically 

complicated, because they include the positronic states as well as the electronic states. In 

addition, the existence of the positron-derived small components increases the 

computational cost of the construction of the four-component Hamiltonian matrix and its 

diagonalization. Thus, a broad range of the two-component methods, which handle only 

the electronic states, have been developed through the block-diagonalization of the four-

component Hamiltonian by a unitary transformation or the algebraic elimination of the 

small components. The equivalence of these two derivation approaches is shown in Ref. 

[2].  

The two-component methods are classified from the viewpoint of the algorithm and 

accuracy. Two major algorithms are used for the two-component calculations, termed the 

operator and matrix formulations [3]. In the operator formulation, the analytical two-

component electronic Hamiltonian is first derived, and the matrix representation of the 

Hamiltonian is then constructed. In the matrix formulation, in contrast, the matrix 

representation of the four-component Hamiltonian is first built, and the algebraic two-

component Hamiltonian is then constructed. There are also two main categories of two-

component methods with respect to the degree of accuracy: the approximate and exact 

decoupling procedures. Originally, the decoupling of the positronic states was achieved 
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approximately. The approximate two-component Hamiltonians are correct to a finite 

order with respect to the reciprocal of the speed of light in comparison with the parent 

four-component Hamiltonian. For example, the FW [4], DKH [5-12], RA [13-16], and 

RESC [17] methods are the approximate approaches in the operator formulation; the 

UESC [18], NESC [18-20], and SESC [21] are the approximate approaches in the matrix 

formulation. Since the development of the IODKH method (also called the BSS or IOTC 

method) by Barysz et al. [22-25], several exact decoupling procedures, which reproduce 

the solutions of the four-component Hamiltonian, have been proposed. The IODKH 

method is classified as the exact approach in the operator formulation. The one-step [2,26-

28] and two-step [29] X2C methods are other exact approaches, which are classified as 

matrix formulations.  

In the present thesis, the author focuses on the IODKH method for the following three 

reasons. Firstly, the IODKH method provides the accurate and numerically stable 

Hamiltonian. Secondly, the IODKH method has been extended to the calculations for 

many-electron systems: the IODKH/IODKH method [30]. Thirdly, an efficient 

computational technique, termed the LUT method [31,32], has been proposed for the 

IODKH method (also for the IODKH/IODKH method). 

In the two-component methods including IODKH and IODKH/IODKH, the NR 

wavefunction theories cannot be used in an as-is manner. This is because the two-

component Hamiltonians include the SD terms, which results in the spin symmetry 

breaking of the two-component wavefunction. In addition, the SD terms also lead to the 

complex wavefunction. For an appropriate description of the SD terms, the complex GHF 

method [33-42], which does not impose any symmetry constraints, is required. In the case 

of the two-component calculations for closed-shell systems, the KRHF method [43-46] 
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can also be used. KRHF exploits time-reversal symmetry corresponding to the 

generalization of the spin symmetry. 

By neglecting the SD terms of the two-component Hamiltonians, the same 

computational framework can be applied as that used in the NR case. This type of 

treatment is referred to as the SF, scalar relativistic, or one-component approach. The 

accuracy of SF calculations is inferior to that of SD calculations in heavy-element systems 

because the SD terms play a crucial role. However, the computational cost of the SF 

calculations is lower than that of the SD calculations by one order of magnitude. Thus, 

the SF calculations are valuable for the initial assessment of a system under consideration, 

providing guidelines for further calculations that consider the SD terms. The author has 

also tackled the development of higher-order electron correlation methods in combination 

with the linear-scaling D&C scheme [47-49] within the SF framework, although the 

present thesis mainly focuses on the SD theories. 

In this chapter, the theoretical background, key concepts, and equations for the 

present thesis are briefly reviewed. This chapter is organized as follows: Section 2.1 

explains the four-component Dirac and DC Hamiltonians. In Sec. 2.2, the general 

formulation of the two-component Hamiltonians is presented. Then, the IODKH-related 

methods are described: the IODKH method in Sec. 2.3, the IODKH/IODKH method in 

Sec. 2.4, and the LUT method in Sec. 2.5. Sections 2.6 and 2.7 explain the GHF and 

KRHF methods, respectively. Additionally, Sec. 2.8 reports the implementation of the 

higher-order electron correlation methods and their extension to the D&C scheme in the 

SF framework. 
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2.1 Four-component method 

The four-component method is based on the Dirac Hamiltonian [1]. The Dirac 

Hamiltonian for a single electron in the electrostatic potential V  under the Born–

Oppenheimer approximation is given by  

D 2
22

V c
c V

c V
h c

c
  

  


 
   

σ p
α p

σ p
, (2.1)

where c  denotes the speed of light, p  the momentum operator, and 

2

2

 
  
 

0 σ
α

σ 0
 (2.2)

and 

2 2

2 22


     

0 0

0 I
 (2.3)

the Dirac matrices in their standard representation. Here, nI  and n0  are the n n  

identity and null matrices, respectively. σ  is the set of Pauli matrices, 

 , ,y zx  σ , (2.4)

where 

0 1

1 0x  
  
 

, (2.5)

0

0y

i

i


 
  
 

, (2.6)

and 

1 0

0 1z  
   

. (2.7)

One of the key features of the Dirac Hamiltonian is the Lorentz-invariance property with 

respect to the motion of the single electron. Namely, the spatial and time variables for an 

electron are treated on an equal-footing, which is the fundamental condition of the special 
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relativity. 

The wave equation for the Dirac Hamiltonian, 

D 4c 4ch E   , (2.8)

is termed the Dirac equation, which is the relativistic counterpart of the NR Schrödinger 

equation. Here, E  denotes the energy eigenvalues. The eigenfunctions of the Dirac 

equation are expressed in a four-spinor form, 

1

L
24c

S
3

4

 
          
 







 





. (2.9)

This is the reason why the Dirac-based formalism is called the four-component method. 

The upper ( L ) and lower ( S ) two-spinors are collectively termed the large- and small-

components, respectively. The large- and small-components possess the positive and 

negative eigenvalues, respectively. The positive energy eigenvalues correspond to the 

electronic states. In contrast, the negative eigenvalues arise from positrons in the picture 

of the Dirac sea [50], where positrons are interpreted as holes of the fully-occupied 

negative energy states. 

The Dirac Hamiltonian is defined for the one-electron system. For the 

straightforward extension toward many-electron systems, the two-electron NR Coulomb 

operator 41 ijr I  is simply added to the Dirac Hamiltonian, 

DC D
4

1
i

iji i j

H h
r

   I , (2.10)

where ijr  is the inter-electron distances, and  ,i j  refers to electrons. DCH  is termed 

the DC Hamiltonian. More rigorous relativistic treatment for the two-electron term is 
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available through the further addition of the Gaunt [51] or Breit [52] operators derived 

from quantum electrodynamics. 

 

2.2 Two-component method 

The four-component method handles both electronic and positronic states as 

mentioned in the previous section. In many chemical phenomena, however, the effects of 

positrons are usually negligible. Thus, the decoupling of the positronic states from the 

four-component framework provides a computationally more efficient approach. Such a 

method is referred to as the two-component method, which handles only the electronic 

states. This section provides a brief explanation of the general form of the two-component 

Hamiltonians. 

The two-component Hamiltonians have the following generic form [53]: 

2c 2c 2c

i
i i

i j
jH h g



   , (2.11)

where h  and g  denote the one- and two-electron parts of the Hamiltonian, 

respectively. At the same level as the DC theory, the one- and two-electron parts are 

generalized as 

2c SF SD
i i ih h h   (2.12)

with 

SD SD( )i i i ih X σ Ω  (2.13)

and 

2c SF SD1 SD2 SD3
ij ij ij ij ijg g g g g    (2.14)

with 
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SD1 SD1( )ij i i ijg X σ Ω , (2.15)

SD2 SD2( )ij j j ijg X σ Ω , (2.16)

and 

 SD3 SD3( )ij i i j j ijg X  σ Ω σ Ω , (2.17)

respectively. Here, the superscripts SF and SD indicate being the SF and SD terms, 

respectively; σ  is the set of Pauli matrices [Eq. (2.4)]; X  is the scalar one- and two-

electron operator; and Ω  is the vectorial momentum cross-product operator,  

( )i i iX X Ω p p , (2.18)

with the momentum operator  , ,x y zp p pp . The components of  , ,x
i i i

y z
i   Ω  

are defined as 

  1( )x y z z y
i i i ii ix

X p p pX X pX    p p , (2.19)

 ( )y z x x z
i i i i ii iy

X p p pX X pX    p p , (2.20)

and 

 ( )z x y y x
i i i i ii iz

X p p pX X pX    p p . (2.21)

In Eq. (2.17), Ω  is used recursively, 

 ( ( )) ji ij j ij i ijXX   Ω Ω p p p p . (2.22)

It should be noted that Eq. (2.22) has a tensor structure; that is, the electrons i  and j  

are in completely different Hilbert spaces. 
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2.3 IODKH method 

This section provides a brief explanation on the IODKH method [22-25], which is 

one of the most accurate two-component methods. In the IODKH method, the Dirac 

Hamiltonian of Eq. (2.1) is exactly block-diagonalized to decouple the electronic ( h ) 

and positronic ( h ) Hamiltonians by a unitary transformation U , 

† D 2

2

i i
i

i

i

U
h

h
h

U




 
  
 

0

0
. (2.23)

Using the generalized notation for the two-component Hamiltonians presented in the 

previous section, the electronic Hamiltonian IODKH
i ih h   obtained through the 

transformation is expressed as  

 
 

SF † 2 2

1

† 1

2
† 1 1 2

21
i

i i i i i i i i i i i i i

i i i i i i i i i i i i i

i i i i i i i i i i i i

i
i i i i i i i i i i i i i

i

i

i
p

i i i

K Y

K

p
p p Y

e

h p b K V K K b V b K

V b K p K b V p K

Y b pV K K p V b K

Y K V K p K bV b K p













 

 



 


 


  



 



    
  


 

p p

p p

p p

p p I

 

(2.24)

and 

SD † 2 1

† 1 † 1 1
1 ,

i i i i i i i i i i i i i

i i i i i i i i i ii i i

X i K bV b K K bV p K Y

p pY K p V b K Y V K YK

 





  

 





 


 

(2.25)

where 

1

c
   (2.26)

denotes the fine-structure constant; 
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1 2
1

2
i

i

p
i

p

e
K

e

 
   
 

, (2.27)

1

1

i

i
pe

b


 , (2.28)

and 

 12 2 2
1

ip ie p   (2.29)

denote the kinematic factors. i  is the normalization factor defined by 

†

1

1
i

i iYY
 


, (2.30)

where iY  is determined by solving the so-called R-operator equation, i.e., a condition to 

exactly block-diagonalize the Dirac Hamiltonian, 

 
  

  
  

2

3 1 1
2 2

2 1 1 1 1
2 2

4
2 2

3

i ip i i p

i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i i i i i

i i i i i

Y Y

p K bV p K V b ip K V b

p K V p K ip K V p

e e

K K K

Y Y K V K

K V b K p Y

K Y

p b Y VK b K K b K

b

b iY V b

Y K V









 

   



  

  

 

 

  



 

I

I p p I σ Ω

p p I σ Ω I

I p p I σ Ω

p   1 1
2 2 .i i i i i i i i i i i i i i i iK p iK V K Yb K p V K b p   p I σ Ω I

 

(2.31)

 

2.4 IODKH method for many-electron systems 

This section explains the IODKH/IODKH method [30], which is the extension of the 

IODKH method for many-electron systems. For the straightforward extension, one should 

start from the block-diagonalization of the four-component DC Hamiltonian by a unitary 

transformation,  

    2† D 2
4

22

1
, , , , iji

i
i i j i i j ijij i

gh
i j h U j

r
U i

gh











    
         

 
   

   
00

I
00

  , (2.32)
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Here, ih  ( ih ) and ijg   ( ijg  ) denote the one- and two-particle parts of the electronic 

(positronic) Hamiltonian, respectively. However, the exact expression of  , ,U i j   

cannot be analytically determined because it involves the coordinates of more-than-two 

particles. Thus, in the IODKH/IODKH method, the one-body approximation is adopted 

to define the unitary transformation: the many-body unitary transformation  , ,U i j   

is approximately expressed by the direct product of the one-body transformation  U i , 

which is determined in the one-electron IODKH procedure, 

   , ,
i

U i j U i . (2.33)

The electron–positron decoupling in the IODKH/IODKH method is not exactly achieved 

due to this approximation on the unitary transformation. However, the off-diagonal 

components of the transformed two-electron part are negligibly small, because the two-

electron relativistic interaction is commonly smaller than the one-electron interaction. 

Consequently, the transformed two-electron part of the Hamiltonian IODKH
ij ijg g   is 

expressed as 

SF

2

1 1

1 1
,

ij i j j i i j i i j i
ij ij

i j j j j i i j i j j i j i
ij ij

g M M M d M M d
r r

M d d M d d d d
r

M

r

 


 



           

p p

p p p p p p I

 (2.34)

SD1 1 1
ij i j j i i j j j j i

ij ij

i d M M d d d d
r

X d
r


 

 


 


p p , (2.35)

SD2 1 1
ij i j j i i j i i j i

ij ij

X M d d M d d d
r r

i d
 

  





p p , (2.36)

and 
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SD3 1
ij i j j i

ij

X d d d d
r

  , (2.37)

using the generalized notation presented in Sec. 2.2. Here, the kinematic factors are 

defined by 

 
†

1
1

1
i i i i i

i i

M K b pY
Y Y




  (2.38)

and 

 1

†

1

1
i i i i i

i i

d K b p Y
Y Y

 


  . (2.39)

The combination of the one-electron IODKH operator [Eqs. (2.24) and (2.25)] and the 

transformed two-electron operator [Eqs. (2.34)–(2.37)] are termed the IODKH/IODKH 

Hamiltonian. 

Additionally, the less accurate but simpler treatment is the combination of the one-

electron IODKH operator [Eqs. (2.24) and (2.25)] and the untransformed two-electron 

NR Coulomb operator, 

SF
2

1
ij

ij

g
r

 I  (2.40)

and 

SD1 SD2 SD3
12 12 12 0X X X   . (2.41)

In the present thesis, this type of Hamiltonian is termed IODKH/NR. 

 

2.5 LUT method 

The computational bottlenecks of the IODKH and IODKH/IODKH methods are the 

multiplication of the unitary transformation matrices to decouple the electronic and 

positronic Hamiltonians. In this section, the LUT method [31,32], which reduces the cost 
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of the unitary transformation, is briefly explained. 

The concept of the LUT method is based on the locality of the relativistic effect. 

Namely, the unitary transformation for the entire system U  is approximated by the 

direct sum of the unitary transformations AU  defined for the local disjoint subsystems 

 A , 

A

A

U U . (2.42)

Normally, the atomic partitioning is adopted for the subsystem construction, although the 

arbitrary partitioning is available in principle. The relativistic effects in the one-electron 

kinetic energy, one-electron potential energy, and two-electron interaction terms are 

dominant in the atomic (one-center) contributions. Additionally, the relativistic effect in 

the one-electron potential energy term is also dominant in the inter-atomic (two-center) 

contributions within a small distance  . Consequently, the LUT-based, IODKH-

transformed one- and two-electron terms are given by 

IODKH NR IODKH

IODKH NR NR IODKH

,

NR NR

( )

( , )

( , )

C C

A B
C C

A A

A B A B
i C C AB

A A B

A B
C AB

C C

C

T V V A B

h T V V A B R

T V A B R

 

    

  

 

 


  



   












 

 



 (2.43)

and 

IODKH

IODKH

NR otherwis

( )

( )e

A B C D
ij

A B C D
ij

A B C D
ij

A B C
g

g

g D   
   

   

    


, (2.44)

respectively. Here, the so-called physicists’ notation is used, 

   di i iX i X i      r  (2.45)
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and 

       d dij i j ijX i j X i j           r r , (2.46)

where    denotes the AOs, X  the arbitrary one- or two-electron operators, and r  

the spatial coordinates. ABR  is the distance between atoms A  and B . IODKHT  and 

IODKH
CV  are the V-free and V-dependent parts of the IODKH-transformed one-electron 

term [Eqs. (2.24) and (2.25)] with the substitution of V  with the atomic contribution 

CV . IODKH
ijg  is the IODKH-transformed two-electron term [Eqs. (2.34)–(2.37)]. NRT , 

NR
CV , and NR

ijg  are the standard NR kinetic energy, potential energy, and electron 

repulsion terms, 

NR 2
2

1

2
T p I , (2.47)

NR
2C CV V I , (2.48)

and 

NR
2

1
ij

ij

g
r

 I . (2.49)

By applying the LUT method, the computational costs of the IODKH and 

IODKH/IODKH methods are reduced from 3( )O N  to 3( )O Mn  and from 5( )O N  to 

5( )O Mn , respectively. Here, N  denotes the basis set dimension in the entire system, 

M  the number of atoms in the entire system, and n N  the basis set dimension in the 

atomic subsystems. In particular, for sufficiently large-scale systems, i.e., 3 5n n M  , 

the LUT method enables the linear-scaling computation of the IODKH and 

IODKH/IODKH procedures. 
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2.6 GHF method 

In the GHF method [33-42], the total electronic wavefunction for an N-electron 

system is expressed by a single Slater determinant, 

       GHF
1 2 1 1 2 2, , , N N N   x x x x x x  , (2.50)

where   is the GSOs. The GSO is represented by a linear combination of alpha- and 

beta-spin components, 

             i ii i i i i ii i ii
              x x x r r  (2.51)

with 

   
1

K

i i iiC


  
 



 


r r  (2.52)

and 

   
1

i

K

i iiC


  
 



 


r r . (2.53)

Here,   is the AOs, C  is the MO coefficients, and K  is the number of the AOs. The 

variable x  contains the spatial coordinate r  and the spin coordinate  . Hereafter, 

these arguments are omitted for simplicity. In addition, the same    and    sets 

are adopted in this thesis. 

The two-component RH equation, i.e., a working equation of GHF, is given in block 

form, 

    

    

      
     

     

F F C S 0 C
ε

F F C 0 S C
, (2.54)

where F  denotes the Fock matrix, S  the overlap matrix, and ε  the orbital energies. 

The Fock and overlap matrix elements are defined as 
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 ,

i

ij ij

hF

D g g




 



 

 

       







 

    



  
 (2.55)

and 

S
   

 , (2.56)

respectively. Here,    is the Kronecker delta, 

1 ( )

0 ( )

 


 





 


. (2.57)

The density matrix of GHF is also expressed in block form, 

†   

   

     
     

 


   

D D C C
D f

D D C C
, (2.58)

where f  is the occupation number vector. The total energy expression is given by 

 GHF tr
1

2
E    D h F , (2.59)

where h  is the one-electron part of the Fock matrix. 

 

2.7 Time-reversal symmetry and KRHF method 

Because the Hamiltonian of a closed-shell system satisfies time-reversal symmetry, 

the equations of KRHF [43-46] are derived by imposing the time-reversal invariance on 

GHF. When an arbitrary Hermitian one-electron operator   satisfies time-reversal 

symmetry, i.e.,   is commutable with the time-reversal operator K , 

 , 0K K K    , (2.60)

0yK i K  , (2.61)

where y  is the y-component of the Pauli matrices and 0K  is the complex conjugation 



24 

operator, the matrix representation of   has the following structure, 

.
i i

i i

 

 

 

 

   

   

 





   

 
 
 
 

  
 
  

      

Ω Ω
Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

 

(2.62)

Here, Ω  and Ω  are Hermitian and skew-symmetric matrices, respectively; the 

asterisk (*) denotes the complex conjugate. The matrix can be expanded using the Pauli 

matrices, 

     2 z y xi i i              Ω I Ω Ω Ω Ω , (2.63)

where 2I  denotes the 2 2  identity matrix and σ  the Pauli matrices in their standard 

representation [Eqs. (2.4)–(2.7)]. The algebra of the products of the imaginary unit and 

the Pauli matrices is known to be identical to that of the quaternion units i


, j


, and k


 

[54], i.e., 

, ,z y xi i j i k i    
 

. (2.64)

Therefore, there is an isomorphic connection between the matrix representation under 

time-reversal symmetry and quaternions, 

Q i j k
 

   
  

  
 

     
 

Ω Ω
Ω Ω Ω Ω Ω Ω

Ω Ω

 
. (2.65)

Here, the pre-superscript Q  indicates being a quaternion matrix. The relationship 

between time-reversal symmetry and quaternion algebra is described in detail in Ref. [55]. 

Because the Fock matrix of KRHF can be represented by the same structure as Eq. 

(2.65), the RH equation for KRHF in complex form is written as 
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    

     

       
      

       

F F C S 0 C
ε

F F C 0 S C
. (2.66)

By performing a quaternion unitary transformation, 
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12

j

j

 
 
 

U


 , (2.67)

the Fock matrix in KRHF can be block-diagonalized to 

 
†

j

kjk

  

   

  



      

F F 0F F
U U

0 F FF F


 . (2.68)

The corresponding transformation of the eigenvectors is 

† j

j

  

  





   
      


C C C

U
C C C


 . (2.69)

Each block of Eq. (2.68) leads to two equivalent eigenvalue problems whose eigenvalues 

are common, and the eigenvectors are related by the time-reversal operation. The 

eigenvalue problem is therefore doubly degenerated in KRHF. The pair of doubly 

degenerated eigenvectors is called a Kramers pair. Thus, it suffices to consider the upper-

diagonal block of Eq. (2.68), and the complex eigenvalue problem can be reduced to a 

quaternion problem of half the dimension, 

     Q Q Q Q j j j          F C S Cε F F C C S C C ε
  

. (2.70)

This idea is an analogous to a numerical method where an n n  complex Hermitian 

eigenvalue problem can be replaced by a 2 2n n  real symmetric one [56]. 

From Eq. (2.69), the spin-orbitals of KRHF are expressed as 

Q
i i ij     


. (2.71)

On the basis of  Q
i , the total electronic wavefunction of KRHF is defined as 
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KRHF Q Q Q
1 2 /2N     . (2.72)

Finally, the total electronic energy is given by 

 KRHF Q Q Q

2
tr

1
E    D h F . (2.73)

 

2.8 Large-scale higher-order electron correlation method with SF 

relativistic Hamiltonian 

2.8.1 Introduction 

The CI, MPPT, and CC methods are robust theoretical approaches that systematically 

improve the total energy and the wavefunction of atoms and molecules with increasing 

order of electron excitations included. Based on these correlated methods, the energetics 

of many molecules can be predicted with chemical accuracy by considering the 

contribution of triple or quadruple excitations. One of the examples is the CCSD(T) 

method [57], which has been widely used in practical applications and benchmark studies 

through the years [58]. The success of the CCSD(T) model has inspired further 

development of similar methodologies [59-73]. Despite their reliability, the correlation 

methods have two severe drawbacks manifesting at high excitation orders. 

The first drawback is the immense complexity in the derivation and subsequent 

implementation of the working equations of the higher-order methods. For example, the 

total numbers of terms included in the working equations of the CCSD, CCSDT, and 

CCSDTQ methods are 48, 102, and 183, respectively [74]. The development of general-

purpose codes is in fact a major bottleneck in routinely performing calculations based on 

these methods. The pioneering implementation of the higher-order CC methods was 

reported by Kállay and Surján [75] using a string-based algorithm, i.e., in a single 
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algorithmic framework, and by Hirata et al. [76-82] using TCE, which is a computerized 

symbolic algebra system. TCE permits automatic derivation and implementation of the 

majority of standard electron correlation methods, i.e., CI, MPPT, CC, and any 

combination thereof, at an arbitrary order. 

The second drawback of the higher-order correlation methods is their tremendous 

computational cost with respect to the system size n. For example, the computational 

costs of CCSD, CCSDT, and CCSDTQ are asymptotically O(n6), O(n8), and O(n10), 

respectively. A wide variety of fragmentation-based low-scaling techniques have been 

reported for the electron correlation methods. In such an approach, the system under 

consideration is divided into several fragments; the electronic energy and properties of 

the entire system are then obtained by merging the results of these fragment calculations. 

This approach includes the cluster-in-molecule scheme [83-85], the fragment molecular 

orbital scheme [86], the incremental scheme [87-89], and the divide-expand-consolidate 

scheme [90]. The D&C scheme is also one of the fragmentation-based linear-scaling 

approaches, which was originally developed for the efficient HF and DFT calculations 

[47,91-94]. Kobayashi and co-workers have reported the development of the D&C-based 

linear-scaling electron correlation methods at the MP2 [95,96], CCSD [97], CCSD(T) 

[98], and symmetry adapted cluster [99] levels in the NR framework. Recently, the D&C 

method was applied to the one-component or SF relativistic electron correlation 

calculations up to the CCSD(T) level, together with the LUT scheme, i.e., an efficient 

construction technique for the relativistic Hamiltonian [100]. At this moment, however, 

the highest excitation level to which a linear-scaling computation is applied is the triples 

regardless of which specific linear-scaling technique is invoked. A higher-order, linear-

scaling electron correlation method is, therefore, desired for a more accurate description 
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of electronic structures of large-scale systems. 

In this section, higher-order CC methods up to connected quadruple excitation and 

MPPT methods up to fourth order as well as their combinations compatible with the NR 

and SF relativistic calculations have been implemented by means of TCE, and extended 

to the linear-scaling D&C method. This section is organized as follows: Section 2.8.2 

explains the theory and implementation, where the general D&C-based formulae of the 

standard CC and MPPT methods are first described and the energy expression of the 

D&C-based CC methods augmented with the perturbation correction is then presented. 

Section 2.8.3 presents the numerical assessments of the conventional (D&C-free) and 

D&C-based correlation methods. Finally, concluding remarks are given in Sec. 2.8.4. 

 

2.8.2 Theory and implementation 

 D&C-based higher-order CC and MPPT methods 

This subsection presents the generic D&C-based formulation of the standard CC and 

MPPT methods at an arbitrary order. In the D&C method, the system under consideration 

is spatially divided into disjoint subsystems. A set of AOs in a subsystem s  is 

represented by (s , where 

 ( (s s s s        . (2.74)

The union of (s  is represented by 

(
s

s   , (2.75)

which corresponds to a set of AOs in the entire system. To improve the description of the 

subsystem, a neighboring region referred to as a buffer region is considered in the 

construction of the subsystem MOs. A set of AOs in the buffer region of s , as denoted 
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by (s� , is added to (s  in order to construct a set of AOs in the localization region 

expressed as 

( (s s s       . (2.76)

The D&C-based correlation energy is estimated by summing up the correlation 

energies corresponding to the individual subsystems and is as follows: 

corr corr
DC ( )s

s

E E  . (2.77)

The correlation energy  )
corr
( (sE s  of the localization region s  can be 

straightforwardly evaluated from the so-called energy equation defined for s , 

 ( ) ( ) ( )
0o r N 0c r (s s sE s H    , (2.78)

where ( )
0
s  represents the reference wavefunction in each subsystem (localization 

region) obtained from the (D&C-)HF calculations, and NH  is the normal-ordered 

effective Hamiltonian. However, the sum of the correlation energies over all the 

localization regions will provide an inappropriate estimate of the correlation energy for 

the entire system, viz., 

 corr corr
( ) ( ) (s sE E s  , (2.79)

because the localization regions overlap with each other owing to the existence of the 

buffer region. Therefore, the contribution of the correlation energy corresponding to the 

pure subsystem must be extracted. This is accomplished by using the concept of EDA, 

which was proposed by Nakai [101]. The EDA technique partitions the energy into atomic 

contributions in an analogous manner to the Mulliken population analysis. By applying 

the EDA technique to Nesbet’s correlation energy representation [102] and leaving the 

last quarter integral transformation undone, the correlation energy can be re-written as the 
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sum of the pure contributions of each subsystem, 

   

 

  

 
1

1 2 1 2

1 2 1 2 1 1 2 2 1 2 2 1
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, ,

( ) ( ) ( ) ( ) ( )
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h

p p h h s
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E C h p p
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







 

  
  

(2.80)

where ( )s
hC  is the subsystem MO coefficients, 

1 1

( )s
h pT    is the subsystem excitation 

amplitudes,   refers to the AOs belonging to (s , and ( )sh  and ( )sp  refer to the 

particle and hole orbitals of the subsystem s , respectively. Note that the correlation 

energies of the arbitrary-order CC and MPPT methods are expressed as Eq. (2.80) with 

the substitution of corresponding amplitudes. The subsystem amplitudes are obtained by 

solving the so-called amplitude equations straightforwardly defined for each subsystem 

as 

( ) ( )
0 0s s

m NH   , (2.81)

where ( )s
m  is the m-tuply excited determinant manifold relative to ( )

0
s  in the 

subsystem s . 

 

 D&C-based CC methods augmented with perturbation correction 

The energy contribution of the higher-order electron correlation can be simply 

evaluated through the RS perturbation theory [103,104]. In this context, the zeroth-order 

energy is the correlation energy of the parent CC method. The first-order RS correction 

vanishes by assuming the canonical HF reference. The second-order RS corrections to 

the CCSD energy have the following generic form: 

  
1 2 1 2 1 2 1 2

1 2 1 2 11 2 2

partic

X

le hole
h p h p

h h h p

h p h p

p p h pD

A B
E

  

      

   

, (2.82)
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where 
1 2 1 2h h ppA    and 

1 2 1 2h h ppB    are the tensors that are composed of the excitation 

amplitudes, the de-excitation coefficients, and the two-electron integrals, and 
1 2 1 2h h ppD    

is the energy denominator. For the second-order triple substitution correction [ TX (2) ], 

1 2 1 2h h ppA    and 
1 2 1 2h h ppB    are six-index tensors given by 

 
1 2 3 1 2 33 21 12 310 2

ˆ1 ˆ
h h p p p N h h h ph p pA H     (2.83)

and 

1 2 3 1 2 33 1 2 3 1 2 0h h p p p h h h p p ph NB H   , (2.84)

respectively. The energy denominator is 

1 2 3 1 2 31 2 3 1 2 3h h p p p h h h p p phD            . (2.85)

Here, ˆ
m  denotes the m-body de-excitation operators and   denotes the orbital 

energies. For the quadruple substitution correction [ QX (2) ], the tensors and energy 

denominator possess eight indices, as shown below: 

 
1 2 3 4 1 1 2 3 1 2 32 3 4 4 41 20

ˆ ˆ1h h h p p p p N h ph h h h p p pA H     , (2.86)

1 2 3 4 1 2 3 1 2 34 1 34 42 0h h h p p p p h h h h p p ph p NB H   , (2.87)

and 

1 2 3 4 1 2 3 41 2 3 4 1 2 3 4h h h h p p p p h h h h p p p pD                . (2.88)

The de-excitation coefficients ( 1  and 2 ), which are included in 
1 2 1 2h h ppA   , are 

evaluated by solving the so-called Λ equation, 

 10 2
ˆ ˆ1 0N mH      . (2.89)
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The CCSD method corrected by the terms with TX (2)  and Q(2)  is referred to as the 

CCSD(2)TQ method [79]. Furthermore, by substituting †
1 1

ˆ T̂   and †
2 2

ˆ T̂   into Eq. 

(2.83) and retaining only the binary tensor contractions, the formula for the so-called (T) 

correction, i.e., the perturbative triples correction, is obtained. 

To extend these perturbative treatments to the D&C method, the pure subsystem 

contribution of the correlation energy must be extracted from Eq. (2.82), as described in 

the previous subsection. However, this approach cannot be directly applied to these 

perturbative treatments because Eq. (2.82) does not follow Nesbet’s energy expression 

[Eq. (2.80)], as explained for CCSD(T) in a previous study [98]. In the long algebraic 

expressions of the (2)T and (2)Q [and also (T)] corrections given in Ref. [105], all the 

terms of 
1 2 1 2h h ppB    consist of the sum of the tensor products that are generalized as  

 
 

1 1
, , ,t w

h
v

p
u

b T tu vw    . (2.90)

Here, b  is the scalar coefficient, 
1 1h pT    is the general form of the product among 

the single and double excitation amplitudes, t, u, v, and w refer to the arbitrary spin-

orbitals, and the summation runs over any combination of  , , ,t u v w . Thus, the 

perturbation correction for the subsystem s  is formulated as follows: 

  
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( )
( )
X (

particle hole

)

h h p h h p

p p h h p

s s
p ps

s
h h p

A B
E

D  

      

   

, (2.91)

where 
1 2 1 2

( )
h h p

s
pA   , 

1 2 1 2

( )
h h p

s
pB   , and 

1 2 1 2

( )
h h p

s
pD    are constructed from the matrix elements 

of each subsystem. In particular, 
1 2 1 2

( )
h h p

s
pB    is defined as 
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 
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S

 (2.92)

through the EDA partitioning, that is, by leaving the last quarter integral transformation 

undone. Here, i  refers to the term number in the derived algebraic expression of the (2)T, 

(2)Q, and (T) corrections. It should be noted that there is arbitrariness in Eq. (2.92) 

associated with the choice of the untransformed spin-orbital from  , , ,t u v w . The 

previous study on the D&C-based CCSD(T) method [98] revealed that any choices lead 

to the comparable correlation energies. Thus, the present implementation adopts the fixed 

expression of Eq. (2.92), where the one-index transformation for the spin-orbital t  (the 

first index of the two-electron integral) is left undone, for all the correction terms. Besides, 

the de-excitation coefficients included in 
1 2 1 2

( )
h h p

s
pA    are obtained by solving the Λ 

equation straightforwardly defined for each subsystem as 

 1
( ) ( )
0 2

ˆ ˆ1 0s s
N mH     . (2.93)

 

 Implementation 

In the present subsection, the D&C-free/D&C-based MP2, MP3, MP4, CCSD, 

CCSDT, CCSDTQ, CCSD(T), and CCSD(2)TQ methods were implemented through the 

symbolic algebra system TCE. For the various orders of the CC and MPPT methods, TCE 

automates the derivation and implementation of programmable expressions of the energy 

equation [Eq. (2.80)], the amplitude equation [Eq. (2.81)], the Λ equation [Eq. (2.93)], 

and the perturbation correction [Eq. (2.91)], as well as the required tensor components in 

these expressions. The general capabilities and inner workings of TCE have been reported 

elsewhere [77-79]. The driver codes as well as the integral transformation were manually 
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written in order to interface with the in-house program suite, which is compatible with 

both the NR and relativistic Hamiltonians. The one-component or SF relativistic all-

electron correlated calculations can be performed by replacing the NR reference 

wavefunction, i.e., the NR orbital energies (more generally, the Fock matrix elements) 

and the MO coefficients with the relativistic ones. 

The overview of the present implementation is explained as follows. Figure 2.1(a) 

shows the pseudocode of a manually written driver subroutine of the D&C-based CC and 

MPPT methods. The outermost loop (line 2) runs over the subsystems that are set up in 

line 1. For each subsystem, the correlation energy and the excitation amplitudes, ( )sT , 

are determined by solving the non-linear amplitude equations in an iterative manner (lines 

3–8). It should be noted that this loop for solving the amplitude equations is employed in 

both the CC and MPPT calculations. However, in the widely used implementation of 

MPPT for the canonical HF reference, where the Fock matrix is assumed to be diagonal, 

the correlation energy is directly obtained through a single analytical formula rather than 

through the iterative evaluation of the amplitudes. In the present implementation, not the 

diagonal but the entire Fock matrix is used to construct the zeroth-order Hamiltonian. 

Thus, the present MPPT codes are more general and robust, that is, they are compatible 

with non-canonical or non-orthogonal reference orbitals. In case of the CC calculations 

augmented with the RS perturbation theory, a series of the Λ equations is iteratively 

solved to determine the de-excitation coefficients (lines 10–14). The perturbative energy 

correction is subsequently evaluated (line 15). At the end of each subsystem calculation, 

all the excitation amplitudes, de-excitation coefficients, and other intermediates required 

for the calculations are deleted, and the memory allocated for them is released (lines 16 

and 18). This is because the energy, amplitude, and Λ equations are defined for each of 
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the subsystems. The individual tensor components required in lines 5, 6, 12, and 15 are 

evaluated through a number of TCE-synthesized subroutines for a unary tensor 

substitution or a binary tensor contraction.  

A general form of the TCE-synthesized subroutines, which provide a tensor ( )sZ  by 

contracting two seed tensors ( )sX  and ( )sY  for the subsystem s , is shown in Figure 

2.1(b). Here, the so-called tiling algorithm was adopted, as reported in previous studies 

[77-79]. Thus, the nested outer loops run over the hole and particle tiles (line 1). Here, a 

tile is a small segment of tensors possessing the same spin symmetry. In the tiling 

algorithm, all the operations for tensors such as loading, saving, sorting, addition, and 

multiplication are performed in a tile-wise fashion rather than in an element-wise fashion 

for efficiency purposes. In the loops of line 1, the canonical relationship (index 

permutation symmetry) is also considered at the tile level to restrict the loop range. In 

line 2, the spin symmetry is taken into account, that is, the tensor elements that are 

symmetrically zero are excluded from arithmetic. For the non-zero cases, the tiles of the 

seed tensors, ( )sX  and ( )sY , are loaded from the storage (lines 3 and 5). In lines 4 and 

6, the tiles are subsequently sorted so that they lead to a unit stride in the following tensor 

contraction (matrix multiplication) in line 8. In line 7, a factor multiplied in the tensor 

contraction is determined from the index permutation symmetry. This factor also includes 

the energy denominator value [Eq. (2.85) or (2.88)] in the case of the perturbation 

correction. Finally, the tile of the contracted tensor ( )sZ  is saved to the storage in line 9. 
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Figure 2.1. Pseudocodes of (a) a manually written driver subroutine of the D&C-based CC and 

MPPT methods and (b) a general TCE-synthesized subroutine for binary tensor contraction. The 

loop for solving the Λ equations is required in case of the CC methods augmented with the second-

order RS perturbation correction. X(s), Y(s), and Z(s) denote general tensors defined for the 

subsystem s. 

 

2.8.3 Numerical assessments 

 Computational details 

This subsection assesses the performance of the D&C-based MP2, MP3, MP4, CCSD, 

CCSDT, CCSDTQ, CCSD(T), and CCSD(2)TQ methods, which were implemented into 

the in-house program suite. The results of the D&C-free calculations are also shown to 

verify the present implementation. 

The following two levels of Hamiltonians were employed for comparison: the one-

electron NR Hamiltonian with the two-electron NR Coulomb interaction (NR/NR) and 

the SF one-electron IODKH Hamiltonian [24] with the two-electron NR Coulomb 

interaction (SF-IODKH/NR). In the SF-IODKH/NR calculations, a value of 
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137.035999676 a.u. was adopted for the speed of light. The point charge model was used 

to evaluate the nuclear potential terms. 

Numerical assessments were performed for hydrogen halides HX (X = F, Cl, Br, I, 

and At) and their zigzag one-dimensional chains (HX)n (n = 4–40). The outermost s- and 

p-electrons were correlated for the halogens. The geometries of HX were fixed as follows 

unless otherwise indicated. The experimental bond lengths [106] of 0.917, 1.275, 1.414, 

and 1.609 Å were adopted for X = F, Cl, Br, and I, respectively. The optimized bond 

length of 1.738 Å, reported in a previous theoretical study [107], was used for X = At. 

For the (HX)n calculations, the intra- and inter-molecular bond lengths were optimized at 

the ωB97X-D [108,109] level using the Stuttgart–Dresden effective core potentials [110-

112] and the DZP basis sets [113]. The intra-molecular bond lengths for X = F, Cl, Br, I, 

and At were 0.973, 1.323, 1.453, 1,639, and 1.729 Å, while the inter-molecular bond 

lengths were 1.497, 2.341, 2.651, 2.969, and 3.148 Å, respectively. The bond angles were 

fixed at XHX 180    and 2HXH 1 0  . In the D&C-based calculations for (HX)n, 

an HX unit was used as a subsystem. The atoms lying within 5.5 Å of each subsystem 

were treated as the buffer region.  

 

 D&C-free calculation 

This subsection discusses the results of the electron correlation calculations without 

the D&C technique. First, the behaviors of the potential energy curves for the HAt 

molecule at the NR/NR and SF-IODKH/NR levels are discussed. Figure 2.2 shows the 

potential energy curves using the HF, MP2, MP3, MP4, CCSD, CCSD(T), and CCSDT 

methods. Here, the DZP(-DKH) basis sets [113-116] were adopted. The horizontal axis 

represents the bond length in Å, while the vertical axis represents the dissociation energy 



38 

in kcal/mol. Panel (a) shows the results at the NR/NR level with the RHF reference. In 

HF, the behavior of the curve is different from those of the other methods. HF 

underestimates the absolute value of the dissociation energy around the equilibrium 

region due to a lack of dynamical correlation. Besides, the dissociation energy diverges 

positively at a large distance. This inaccuracy in the dissociation limit arises from the 

occupation of the identical spatial orbital by the anti-parallel spin pair. In MP2–4, the 

reasonably shaped curves are obtained around the equilibrium region. However, they 

exhibit maxima in the intermediate region, and their energies negatively diverge in the 

dissociation region. The magnitudes of the maxima are in the order MP2 > MP3 > MP4. 

The rates of the divergence are expected to be in the order MP3 > MP4 > MP2 from the 

results at 8.0 Å. The incorrect behaviors of MP2–4 are because the near-degenerate state 

seen in the dissociation region cannot be generally described by the non-degenerate 

perturbation theory due to a lack of major static correlation. CCSD and CCSD(T) exhibit 

the reasonably shaped curves over the entire region. However, they cannot describe the 

dissociation limit correctly. The energies are overestimated and underestimated by ~3 

kcal/mol at 8.0 Å in CCSD and CCSD(T), respectively. In contrast, CCSDT displays the 

reasonably shaped curve, which converges at the correct dissociation limit. Thus, CCSDT 

is immune to the inferiority of the RHF reference through the inclusion of the higher-

order electron correlation. 

Figure 2.2(b) shows the results at the NR/NR level with the UHF reference. The UHF 

reference improves the behavior of the potential energy curves in all the methods as 

compared to the RHF reference. Namely, the shapes of the curves are reasonable, and the 

correct dissociation limit is obtained. In UHF, the absolute value of the dissociation 

energy around the equilibrium region is considerably underestimated in comparison with 
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those of the correlation methods, as seen in the RHF case. In MP2–4, the absolute values 

of the energies around the equilibrium region are improved as compared to those of HF. 

Another striking feature of MP2–4 is that the curves show a rapid rise in the intermediate 

region, that is, the curves of MP2–4 possess large curvatures. The rates at which the 

curves rise decrease in the order MP2 > MP3 > MP4. In CCSD, CCSD(T), and CCSDT, 

the reasonable curves are obtained with similar behaviors. However, the rates at which 

the curves rise in the intermediate region slightly differ: CCSD > CCSD(T) > CCSDT.  

Figure 2.2(c) shows the potential energy curves at the SF-IODKH/NR level with the 

UHF reference. The general trends are similar to the NR/NR case, that is, the reasonably 

shaped curves converging to the correct dissociation limit are obtained. The difference is 

the shorter equilibrium bond length (by ~0.05 Å) and the smaller absolute value of the 

dissociation energy around the equilibrium region (by several kcal/mol), which is 

inconsistent with the chemical intuition, i.e., a shorter bond length leads to a stronger 

bond. However, this is one of the common relativistic effects, as pointed out by Filatov 

and Cremer [117]. In this system, the magnitudes of the atomic charges decrease due to 

the relativistic orbital contraction. The Mulliken charges of the H and At atoms are ±0.08 

and ±0.06 a.u. at the NR/NR and SF-IODKH/NR levels, respectively. Consequently, in 

the SF-IODKH/NR calculation, the polarity of the H–At bond decreases, which results in 

the smaller absolute value of the dissociation energy. 
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(a) 

(b) 

(c) 

 

Figure 2.2. Potential energy curves of the HAt molecule using the HF, MP2, MP3, MP4, CCSD, 

CCSD(T), and CCSDT methods at the (a) NR/NR level with the RHF reference, (b) NR/NR level 

with the UHF reference, and (c) SF-IODKH/NR level with the UHF reference. 
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Table 2.1. Equilibrium bond lengths Re (in Å) and harmonic frequencies ωe (in cm−1) of the HX 

molecules (X = F, Cl, Br, and I) using the HF, MP2, CCSD, CCSD(T), and CCSD(2)TQ methods 

at the NR/NR and SF-IODKH/NR levels. The UHF wavefunction was used as a reference state. 

The CBS extrapolation was performed with the cc-pVXZ basis sets. The original experimental 

values [106] are shown in the Exptl. rows, and the deviations from the Exptl. values are shown 

for the other rows. The relativistic changes Δ are also shown. 

 

  

Molecule Method 
Re ωe 

NR/NR 
SF-

IODKH/NR
Δ NR/NR 

SF-
IODKH/NR 

Δ 

HF HF −0.020 −0.020 0.000 337 335 −2
 MP2 0.001 0.001 0.000 −2 −4 −2
 CCSD −0.003 −0.003 0.000 53 51 −2
 CCSD(T) 0.000 0.000 0.000 3 0 −3
 CCSD(2)TQ 0.000 0.000 0.000 3 0 −3
 Exptl. 0.917 4138 
      

HCl HF −0.010 −0.010 0.000 149 144 −5
 MP2 −0.002 −0.002 0.000 50 45 −5
 CCSD 0.000 0.000 0.000 25 19 −6
 CCSD(T) 0.002 0.002 0.000 4 −1 −5
 CCSD(2)TQ 0.002 0.002 0.000 3 −2 −5
 Exptl. 1.275 2991 
      

HBr HF −0.007 −0.010 −0.003 147 160 13
 MP2 0.001 −0.002 −0.003 75 70 −5
 CCSD 0.005 0.002 −0.003 48 32 −16
 CCSD(T) 0.007 0.005 −0.002 13 −9 −22
 CCSD(2)TQ 0.007 0.005 −0.002 11 −5 −16
 Exptl. 1.414 2648 
      

HI HF −0.001 −0.009 −0.008 182 145 −37
 MP2 0.002 −0.005 −0.007 104 51 −53
 CCSD 0.009 0.002 −0.007 48 29 −19
 CCSD(T) 0.011 0.004 −0.007 33 −11 −44
 CCSD(2)TQ 0.011 0.005 −0.006 36 −5 −41

 Exptl. 1.609 2309 
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For a more quantitative discussion, Table 2.1 presents the equilibrium bond lengths 

and the harmonic frequencies for the HX molecules (X = F, Cl, Br, and I) at the NR/NR 

and SF-IODKH/NR levels using the HF, MP2, CCSD, CCSD(T), and CCSD(2)TQ 

methods with the UHF reference, and compares them with the experimental data [106]. 

The original experimental values are shown in the rows labeled as “Exptl.”, while the 

deviations from the experimental values are shown in the other rows. The relativistic 

changes Δ, which are defined as the differences between the NR/NR and SF-IODKH/NR 

results, are also presented. Here, the CBS extrapolation [118] was performed based on 

the calculations with the cc-pVXZ(-DK) basis sets: X = D, T, and Q for the HF 

calculations and X = T and Q for the correlated calculations. In general, the use of the 

higher-order correlation methods in tandem with the SF-IODKH/NR Hamiltonian 

systematically improves the results. The maximum absolute deviation of the bond lengths 

and the harmonic frequencies from the experimental values are reduced from 0.020 Å and 

337 cm−1 in the HF calculations at the NR/NR level to 0.005 Å and 5 cm−1 in the 

CCSD(2)TQ calculations at the SF-IODKH/NR level. The latter is theoretically the best 

combination of all the methods here.  

Next, the values of Δ are discussed. For HF and HCl, the relativistic effect does not 

affect the equilibrium bond lengths in the order of 0.001 Å. On the other hand, the 

relativistic effect reduces the harmonic frequencies by 2–3 and 5–6 cm−1 for HF and HCl, 

respectively, irrespective of the wavefunction theory. This implies the additivity of the 

relativistic and electron correlation effects. In contrast, for HBr and HI, where the 

relativistic effect is more significant, the equilibrium bond lengths shorten by 0.002–

0.003 and 0.006–0.008 Å, respectively. The relativistic effect on the harmonic frequencies 

of HBr and HI varies according to the wavefunction theory, ranging from −22 to 13 cm−1 
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in HBr and from −53 to −19 cm−1 in HI. Thus, the larger the relativistic effect, the more 

dependent are the results on the choice of the correlation methods. 

Consequently, the results shown above are consistent with the well-known behaviors 

of the CC and MPPT methods [107,117,119,120], indicating the validity of the present 

implementation of these methods without the D&C technique. 

 

 D&C-based calculation 

This subsection discusses the results of the electron correlation calculations for one-

dimensional hydrogen halide chains (HX)n (X = F, Cl, Br, I, and At) using the D&C 

technique. First, the accuracy of the D&C-based correlation methods is examined. Table 

2.2 shows the correlation energies (in hartrees) of (HX)6 evaluated by MP2, CCSD, 

CCSD(T), and CCSD(2)TQ with and without the D&C scheme at the SF-IODKH/NR level. 

The deviations of the D&C-based methods are shown as Δ. Hereafter, the Sapporo-

(DKH3-)DZP-2012 basis sets [121,122] and the UHF reference were adopted for the 

calculations of (HX)n. MP2, CCSD, CCSD(T), and CCSD(2)TQ accord similar small 

absolute values of Δ to each other, which is less than one millihartree. This indicates the 

validity of the D&C scheme regardless of the correlation methods. Besides, CCSD(2)TQ 

shows very similar behavior to CCSD(T) in these systems. 

Next, the hydrogen bond energies of (HX)n are examined. Table 2.3 summarizes the 

averaged hydrogen bond energies (in kcal/mol) for n = 10–40 evaluated by HF, MP2, 

CCSD, CCSD(T), and CCSD(2)TQ using the D&C method at the NR/NR and SF-

IODKH/NR levels. Here, the averaged hydrogen bond energy is defined as 

      HX (HX) 1nnE E n  , where  E   indicates the total energy of the system. 

In all the correlation methods, the bond energies of X = F, Cl, Br, and I asymptotically 



44 

increase as n increases at both the NR/NR and SF-IODKH/NR levels. For X = At, 

although the slightly deviated behavior appears at 10n  , the bond energy 

asymptotically decreases with increasing n . Namely, the influence of the chain lengths 

becomes smaller with their increase. The HF method gives the lower bond energies than 

do the correlation methods for X = F, and the non-physical negative bond energies for X 

= Cl, Br, I, and At. This reflects that the dispersion interaction described by the dynamical 

correlation positively contributes to the energies of the hydrogen bonds. MP2 and CCSD 

give the larger and smaller bond energies, respectively, than does CCSD(2)TQ, which is 

theoretically the best method here. These behaviors imply the overestimation and 

underestimation of the magnitude of the dispersion interaction by MP2 and CCSD, 

respectively. The energy values obtained by CCSD(T) are very close to those of 

CCSD(2)TQ; the maximum absolute deviation is 0.062 kcal/mol for (HF)40 at the SF-

IODKH/NR level. 
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Table 2.2. Correlation energies (in hartrees) of the (HX)6 chains (X = F, Cl, Br, I, and At) using the MP2, CCSD, CCSD(T), and CCSD(2)TQ methods 

with and without (w/o) the D&C scheme at the SF-IODKH/NR level. The deviations of the D&C-based methods Δ are also shown. 

Molecule
MP2 CCSD CCSD(T) CCSD(2)TQ 

w/o D&C D&C Δ w/o D&C D&C Δ w/o D&C D&C Δ w/o D&C D&C Δ 

(HF)6 −1.330612 −1.330612 0.000000 −1.348409 −1.348376 −0.000033 −1.365687 −1.365657 −0.000031 −1.367816 −1.367786 −0.000031 

(HCl)6 −0.950040 −0.950026 −0.000014 −1.050525 −1.050513 −0.000011 −1.072010 −1.071995 −0.000014 −1.073681 −1.073667 −0.000014 

(HBr)6 −0.815851 −0.815654 −0.000197 −0.899573 −0.899426 −0.000147 −0.918873 −0.918694 −0.000180 −0.920306 −0.920126 −0.000180 

(HI)6 −0.701942 −0.701710 −0.000232 −0.787503 −0.787322 −0.000181 −0.804999 −0.804786 −0.000212 −0.806253 −0.806041 −0.000213 

(HAt)6 −0.656375 −0.656153 −0.000222 −0.740182 −0.740007 −0.000176 −0.758176 −0.757969 −0.000207 −0.759358 −0.759151 −0.000208 
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Table 2.3. Averaged hydrogen bond energies (in kcal/mol) of the (HX)n chains (X = F, Cl, Br, I, and At; n = 10–40) using the HF, MP2, CCSD, 

CCSD(T), and CCSD(2)TQ methods with the D&C scheme at the NR/NR and SF-IODKH/NR levels. 

Molecule n 
NR/NR SF-IODKH/NR 

HF MP2 CCSD CCSD(T) CCSD(2)TQ HF MP2 CCSD CCSD(T) CCSD(2)TQ

(HF)n 10 9.057 10.709 9.882 10.186 10.131 9.039 10.695 9.864 10.170 10.114

 20 9.752 11.427 10.589 10.898 10.839 9.733 11.414 10.572 10.882 10.822

 30 9.982 11.664 10.827 11.137 11.076 9.964 11.650 10.809 11.120 11.060

 40 10.097 11.782 10.943 11.254 11.193 10.078 11.769 10.926 11.238 11.176

  

(HCl)n 10 −0.146 1.947 1.234 1.465 1.465 −0.178 1.985 1.270 1.501 1.501

 20 −0.246 2.052 1.331 1.563 1.563 −0.277 2.088 1.366 1.598 1.598

 30 −0.279 2.086 1.363 1.596 1.596 −0.309 2.122 1.397 1.630 1.630

 40 −0.296 2.103 1.379 1.612 1.612 −0.326 2.139 1.413 1.646 1.646

  

(HBr)n 10 −0.182 1.392 0.844 1.015 1.015 −0.203 1.365 0.816 0.987 0.987

 20 −0.133 1.441 0.889 1.061 1.061 −0.157 1.412 0.858 1.029 1.029

 30 −0.116 1.457 0.903 1.076 1.076 −0.142 1.427 0.871 1.043 1.043

 40 −0.108 1.465 0.911 1.083 1.083 −0.135 1.434 0.878 1.050 1.050

  

(HI)n 10 −0.778 0.805 0.292 0.459 0.459 −0.724 0.838 0.329 0.491 0.491

 20 −0.755 0.829 0.313 0.480 0.480 −0.704 0.858 0.346 0.509 0.509

 30 −0.748 0.836 0.320 0.487 0.487 −0.698 0.864 0.352 0.515 0.515

 40 −0.744 0.840 0.323 0.490 0.490 −0.695 0.868 0.355 0.518 0.518

  

(HAt)n 10 −0.776 0.781 0.301 0.461 0.461 −0.715 0.818 0.341 0.497 0.497

 20 −0.766 0.793 0.311 0.471 0.471 −0.709 0.826 0.348 0.504 0.504

 30 −0.770 0.789 0.307 0.467 0.467 −0.715 0.820 0.342 0.498 0.498

 40 −0.773 0.786 0.305 0.465 0.465 −0.718 0.817 0.340 0.496 0.496
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Finally, the computational cost of the D&C-based correlation methods is examined. 

Figure 2.3 shows the system-size dependence of the CPU time of the MP2, MP3, MP4, 

CCSD, CCSDT, CCSDTQ, CCSD(T), and CCSD(2)TQ calculations for (HF)n (n = 4–20) 

with and without the D&C method at the SF-IODKH/NR level. The MPPT and CC results 

are presented in panels (a) and (b), respectively. The horizontal axis represents the number 

of molecules n , while the vertical axis represents the CPU times in minutes on a 

logarithmic scale. The times taken for the HF calculations are not included. The CPU 

times were measured using 16 cores of an Intel Xeon E5-2690 (2.90 GHz) processor. 

Based on the D&C approach, the CPU times for all the correlation methods drastically 

decrease. The computational scaling reduces from O(n5.1) to O(n1.1) in MP2, O(n6.1) to 

O(n1.1) in MP3, O(n7.1) to O(n1.1) in MP4, O(n6.0) to O(n1.1) in CCSD, O(n8.1) to O(n1.1) in 

CCSDT, O(n10.2) to O(n1.1) in CCSDTQ, O(n7.1) to O(n1.1) in CCSD(T), and O(n9.1) to 

O(n1.2) in CCSD(2)TQ. The fifth power scaling of the present MP2 method is due to 

solving the amplitude equation iteratively, as explained in Sec. 2.8.2.3. On the other hand, 

the common implementation of the canonical MP2 method adopts the non-iterative, one-

shot algorithm, which is known to approximately scale as the fourth power (disregarding 

the integral-transformation step). The similar computational times between the 

(D&C-)CCSD and (D&C-)MP3 methods, both of which scale as the sixth power of the 

system size, are for the same reason. Consequently, the present D&C-based methods 

achieve a quasi-linear-scaling computational cost with respect to the system size. 
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Figure 2.3. System-size dependence of the CPU time of the electron correlation calculations for 

the (HF)n chains (n = 4–20) with and without the D&C scheme at the SF-IODKH/NR level: (a) 

MP2, MP3, and MP4 calculations; (b) CCSD, CCSDT, CCSDTQ, CCSD(T), and CCSD(2)TQ 

calculations. 16 cores of an Intel Xeon E5-2690 (2.90 GHz) processor were used. 

 

2.8.4 Conclusion 

In this section, the higher-order CC and MPPT methods as well as their combinations 

compatible with the NR and SF relativistic calculations were implemented using the 

computerized symbolic algebra system TCE, and extended to the linear-scaling D&C 

scheme. For the standard CC and MPPT methods, such as MP2–4, CCSD, CCSDT, and 

CCSDTQ, Nesbet’s energy expression was applied to the general excitation order to 
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define the subsystem correlation energy in the D&C scheme, together with the EDA 

technique. For the CC methods augmented with the perturbation correction, such as 

CCSD(T) and CCSD(2)TQ, which do not follow Nesbet’s formula, the general formulation 

of the D&C-based perturbation correction was proposed by means of the EDA 

partitioning. 

For the numerical assessment of the D&C-free correlation methods, the potential 

energy curves, equilibrium bond lengths, and harmonic vibration frequencies of hydrogen 

halides were evaluated. Based on the UHF reference, all the MPPT and CC methods 

produced the reasonably shaped curves converging at the correct dissociation limit at both 

the NR/NR and SF-IODKH/NR levels. The equilibrium bond lengths and harmonic 

frequencies obtained by the combination of SF-IODKH/NR and CCSD(2)TQ agreed well 

with the experimental data within the errors of 0.005 Å and 5 cm−1, respectively.  

The accuracy and the computational cost of the D&C-based correlation methods were 

also assessed for one-dimensional hydrogen halide chains. The D&C-based methods 

achieved a high degree of accuracy within millihartree orders of errors from the results 

of the D&C-free methods. The CPU times of the D&C-based methods were considerably 

smaller as compared to those of the D&C-free methods. The present methods achieved 

quasi-linear-scaling computational cost with respect to the system size. 
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Chapter 3  

Assessment of self-consistent field convergence in spin-

dependent relativistic calculations 

 

3.1 Introduction 

In chemistry and physics, relativistic effects are vital to accurately describe the 

heavier elements. These effects are classified into two primary types: SF or scalar 

relativistic effects, which are mainly responsible for orbital contraction and expansion; 

and SD effects, which induce energy level splitting through the coupling of orbital and 

spin angular momenta. In quantum chemical calculations, SF effects are included by 

perturbative treatments or by using the same ansatz as an NR treatment. SD effects can 

be considered by using either the SOCI method or perturbative treatments [1,2]. These 

schemes for the SD effects are effective for light elements, whose relativistic effects are 

comparatively small, and the SD effects of these systems can be treated as an additional 

correction to the NR or SF relativistic calculations. Alternative approaches to include SD 

effects are the two- and four-component relativistic methods [3-17]. These treatments 

give accurate results across the whole periodic table because the relativistic effects are 

explicitly considered in the SCF calculations. 

In SD calculations, generally, the spin symmetries of the two- and four-component 

relativistic wavefunctions are broken because spin is not a good quantum number. To 

describe the correct spin behavior, the GHF method [18-27], where any symmetry 

constraints are removed, can be used instead of either the RHF or UHF. Because the 

additional spin degrees of freedom rotate the spin-quantized axes independently, GHF is 
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also termed a non-collinear method. 

However, it is well-known that the convergence in GHF calculations is difficult due 

to the additional spin degrees of freedom. This sometimes causes the calculations to fall 

into a higher energy saddle point. One solution for the local minima problem is an 

extension of the second-order orbital optimization scheme to GHF, which has been 

proposed by Goings et al. [28]. In this chapter, the author tackles the convergence problem 

in the GHF calculations from the viewpoint of the SCF acceleration techniques. Here, 

four acceleration techniques, which are typical for NR calculations, are implemented to 

GHF. The first method is the use of a damping algorithm, the simplest form of 

acceleration algorithm. The second, and most popular, method is Pulay’s DIIS method 

[29,30]. A number of variants of the DIIS algorithm have been developed, and these also 

accelerate SCF convergence [31-35]. One DIIS variant, the EDIIS method developed by 

Kudin et al. [31], is also assessed in this chapter. The fourth scheme assessed here is a 

combination algorithm comprising the DIIS and EDIIS algorithms, denoted as 

EDIIS+DIIS. This algorithm was assessed by Garza and Scuseria [36], and Sulzer et al. 

[35], and they concluded that this combination algorithm is the best choice for NR 

molecular calculations. 

This chapter is organized as follows: Section 3.2 briefly presents theoretical aspects 

of the SCF acceleration techniques. Then, the numerical assessments are shown and 

discussed in Sec. 3.3, and concluding remarks are given in Sec. 3.4. 

 

3.2 Theoretical aspects 

This section provides brief explanations of the SCF acceleration algorithms in the 

GHF framework. Here, five techniques to solve the GHF-based RH equation [Eq. (2.54)] 
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are used. The first is the FP algorithm, which uses no acceleration techniques. The second 

is the static damping algorithm, whose equation is written as 

 1
new 1i i   D D D , (3.1)

where iD  denotes the density matrix in the i-th iteration and   is the weighting factor. 

In the NR calculations, the damping algorithm is stable, but its rate of convergence is 

slow.  

The other techniques used here are related to the DIIS algorithm. In these algorithms, 

a new density matrix is estimated by the linear combination of the density matrices from 

the previous SCF iterations, 

1
i i

n

i

c


 D D , (3.2)

where n  is the number of the dimension of the DIIS subspace. This treatment is also 

available for the Fock matrix instead of the density matrix because of the linear 

relationship between the density and Fock matrices. The third techniques used here is the 

conventional DIIS method, which optimizes the coefficients  ic  by minimizing the so-

called DIIS error vector e . The error vector is commonly given by 

 ,  e F D FD DF  in an orthonormal basis. This is because   0, F D  is the 

necessary condition for a converged SCF. The optimal DIIS coefficients are 

mathematically given by 

 
1 1 1

arginf , 1
n n n

k k
j k i

i j j ic c c c
  

    
  
  e e . (3.3)

Here, the working equation to obtain the coefficients is written as 

t

0 1
     

     
    

c 0B 1

1
, (3.4)
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where 

ij i jB  e e , (3.5)

 t

1 2, , ,i nc c cc  , (3.6)

  t
1, 1, 1,1  . (3.7)

Here,   is a Lagrange multiplier. Equation (3.4) is a linear equation and is solved by 

matrix inversion. In the NR calculations, DIIS performance is known to depend on the 

initial guess, although the rate of convergence is fast. In the RHF/UHF calculations for 

the relativistic Hamiltonian including only SF terms, denoted as SF-RHF/UHF, Eq. (3.4) 

can be straightforwardly applied. On the other hand, in the GHF calculations for the 

relativistic Hamiltonian involving not only SF terms but also SD ones, denoted as SD-

GHF, the Fock and density matrices become complex and have dimensions twice the size 

of those of NR and SF relativistic calculations. Thus, Eq. (3.4) is solved in complex space. 

The fourth technique is the EDIIS method. The coefficients for the linear 

combination of the previously iterated density matrices is given by 

   
1 1

HFarg inf , 1, 1 0,
n

i i i i i

n

i i

c cc E c
 

   
 

 
  

 
 D , (3.8)

where HFE  is the HF energy functional, which is defined as, 

 
1 1 1 1

HF HF 1

4

n n

i i i i i j i j i j

n n

i i i j

c c c cE E
   

      
 
  D D D D F F . (3.9)

This means that the EDIIS coefficients are chosen to minimize the HF energy functional. 

The minimization problem under the restriction of  0,1ic   is solved by constrained 

optimization methods such as the reduced gradient algorithm [37]. EDIIS is known to 

work efficiently even if the SCF calculation starts from poor initial guess orbitals. 
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However, the rate of convergence is slower near the minimum than that of DIIS. The 

imaginary part of the second term of Eq. (3.9) is normally approximated to be zero even 

in complex SD-GHF calculations. Thus, for minimization, real coefficients have been 

used. 

The final and fifth technique is a combination algorithm comprising DIIS and EDIIS, 

known as EDIIS+DIIS. As described before, EDIIS is efficient even when starting with a 

poor initial guess and DIIS is efficient near the minimum. Thus, a combination algorithm 

is more efficient than either of the algorithms separately. Here, a similar EDIIS+DIIS 

algorithm to that used in a previous study of NR calculations [36] are adopted. In the early 

steps, EDIIS is used alone, until the largest absolute element of the DIIS error vector is 

less than 10−1 a.u. In the region where the largest absolute element is between 10−1 and 

10−4 a.u., the coefficients for the linear combination of the density matrices can be given 

by 

 EDIIS DIIS10max{ } 1 10max{ }n
p p

ne e  c c c , (3.10)

where EDIISc  and DIISe  are the EDIIS and DIIS coefficients, respectively. Here 

max{ }n
pe  denotes the largest element of the DIIS error vector in the present (n-th) 

iteration. Finally, in the region where max{ }n
pe  is less than 10−4 a.u., DIIS is used alone 

until SCF convergence is achieved. 

 

3.3 Numerical assessments 

3.3.1 Computational details 

This subsection describes the computational details used to assess the acceleration 

techniques in GHF. The three DIIS-related algorithms (DIIS, EDIIS, and EDIIS+DIIS) 



62 

were implemented in the in-house program. For comparison, the simple FP and damping 

algorithms were also used. In the damping algorithm, the weighting factor for the previous 

density matrix was fixed to 0.25  . The maximum number of the dimension of the 

DIIS and EDIIS subspaces, i.e., the number of the density and Fock matrices involved in 

the linear combination, was fixed to 20. The efficiencies of the five algorithms were 

numerically assessed through SD-GHF level calculations. For comparison of the SCF 

convergence behavior, SF-RHF/UHF calculations, generally giving better convergence 

behavior than SD-GHF, were also performed. It should be noted that SF-RHF/UHF 

methods generally cannot describe SO interactions, stable spin states of non-collinear spin 

systems, and so forth. For the relativistic Hamiltonian, IODKH/NR [13] was adopted. 

The SD-GHF calculations with the IODKH/NR Hamiltonian include SO interactions, 

while the SF-RHF/UHF ones do not. The basis sets used were DKH3-Gen-TK/NOSec-

V-TZP [38,39], whose contraction coefficients were optimized with the DKH3 

Hamiltonian. The SCF calculations started from the diagonalization of the bare nucleus 

Hamiltonian and the superposition of the atomic densities guess [40] for atomic and 

molecular systems, respectively. SCF convergence criteria are the total energy difference 

of less than 10−9 a.u. and a maximum absolute difference of the density matrix elements 

of 10−5 a.u. from the previous iteration. 

Numerical tests were performed for four types of benchmark systems, i.e., neutral 

atomic systems from He to Lr, W(CO)6, Cr3, and UF4, to investigate the convergence 

behaviors of the different acceleration techniques. The geometry of the octahedral 

W(CO)6 complex was taken from Ref. [41], where RW–C = 2.06 Å and RC–O = 1.17 Å. The 

bond lengths of the equilateral triangle Cr3 and tetrahedral UF4 were 2.89 and 2.00 Å, 

respectively [28,31]. The neutral atomic systems were selected as a test set with various 
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electron configurations from singlet to nonet and with several magnitudes of relativistic 

effects. The W(CO)6 complex was chosen as a simple example of a heavy-element system 

whose SCF convergence is well-behaved. The Cr3 molecule was selected as an example 

of a non-collinear spin system. Finally, UF4 was chosen as an example of a system for 

which SCF convergence is difficult to achieve both in the NR and relativistic frameworks. 

 

3.3.2 Atomic systems from He to Lr 

This subsection discusses the SCF convergence behaviors for the atomic systems 

from He to Lr. The number of cycles required to converge the SCF procedures are 

summarized for s- and p-block elements in Table 3.1, d-block elements in Table 3.2, and 

f-block elements in Table 3.3. If the calculations did not converge within 1000 cycles, 

N.C. is given instead of the number of cycles in the tables. Atomic numbers ( Z ) and spin 

multiplicities for the SF calculations ( 2 1S  ) are also shown. The five algorithms, i.e., 

FP, damping, DIIS, EDIIS, and EDIIS+DIIS, were used for the SD-GHF calculations as 

well as SF-RHF/UHF ones. 

For the s- and p-block elements listed in Table 3.1, most SF calculations converged; 

however, convergence with the FP algorithm was not achieved for Ga, Ge, and As. For 

systems that did converge with the FP algorithm, the number of SCF cycles required 

ranged from 7 to 32. In contrast, the damping algorithm required more SCF cycles than 

FP, but all the calculations using damping converged. In most cases, in terms of the 

number of cycles, EDIIS was the algorithm most similar to FP. This is because the local 

search ability of EDIIS is similar to that of FP, although the global search ability is higher 

in EDIIS. DIIS and EDIIS+DIIS both achieved convergence in the least number of cycles. 

These results indicate that the local search ability is important for efficient SF calculations 
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in these systems. In the case of the SD calculations, the situation is slightly different from 

the SF calculations. In FP, several elements required more cycles to achieve convergence: 

five elements did not converge and 11 elements required more than 100 cycles. In the 

damping algorithm, the trend is similar to the above one in FP, although the algorithm 

required more cycles than FP for most elements. In the DIIS-based algorithms (DIIS, 

EDIIS, and EDIIS+DIIS), closed-shell elements with singlet spin, alkaline metals with 

doublet spin, and carbon group elements with triplet spin except Si required the similar 

number of iterations to those of the SF calculations. In contrast, elements with doublet 

spin states, such as halogens, some triplet spin elements, and quartet spin elements 

required more cycles compared with the SF calculations. 

For the d-block elements listed in Table 3.2, more cycles were required in comparison 

with the s- and p-block elements. Furthermore, most SF and SD calculations using FP did 

not converge. At the SF level, DIIS and EDIIS+DIIS required the least number of cycles, 

as was the case with the s- and p-block elements. At the SD level, EDIIS+DIIS achieved 

convergence in all cases except Ru. Let us compare the unfavorable convergence behavior 

of Ru in comparison with Fe and Os in the group 8. The electronic configurations of Ru, 

Fe, and Os in the ground states are [Kr](4d)7(5s)1, [Ar](3d)6(4s)2, and [Xe](4f)14(5d)6(6s)2, 

respectively. Thus, in the SCF iterations of the SD-GHF calculations for Ru, electronic 

fluctuation between 4d- and 5s-orbitals might happen, whereas those for Fe and Os might 

not.  

DIIS required less cycles than EDIIS+DIIS in 10 elements including some triplet and 

quartet spin systems: Sc, Ti, V, Ni, Zn, Zr, Lu, Hf, Ta, and Pt. This behavior may be caused 

by the feature of DIIS, which is efficient when starting with a good initial guess.  

In general, the singlet elements demonstrated a good convergence behavior. In 
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addition, Cr, Mn, Mo, Tc, and Re, which have completely singly-occupied d-orbitals, i.e., 

d5s1 or d5s2, and correspond to sextet or septet systems, showed a reasonable convergence 

behavior. For these elements, the electronic fluctuation among the d-orbitals is expected 

to be small, which is the origin of less SCF cycles. The rest elements possess both singly- 

and doubly-occupied (unoccupied) d-orbitals, corresponding to the doublet, triplet, 

quintet, and quartet states. Since the d-electron fluctuation might occur, the SCF 

convergence became comparatively slow for these elements. 

For the f-block elements listed in Table 3.3, the convergence behaviors were worse 

in comparison with elements from other blocks. At the SF level, SCF convergence was 

not achieved using FP, except for Th. In the SF calculations, the SCF calculations for 16 

elements failed to converge when using damping, eight for DIIS, five for EDIIS, and one 

for EDIIS+DIIS. In the SD calculations, the numbers of systems that did not converge 

were 18 for damping, 11 for DIIS, six for EDIIS, and seven for EDIIS+DIIS. In these 

systems, global search is important. A general trend was not found in terms of the SCF 

convergence for the f-block elements; the poor convergence behavior of the f-block 

elements is due to the large SD effects that arise from open-shell electrons in the d- and 

f-orbitals, which have large angular momenta, from the viewpoint of the jj-coupling 

scheme. 

Table 3.4 summarizes the statistical results. #Failure is the sum of the number of 

elements that failed to converge for each algorithm. The average, minimum, and 

maximum numbers of iterations for the elements that achieved convergence by each 

method are shown relative to the EDIIS+DIIS values. They are represented 

as %Average, %Best, and %Worst, respectively. For example, the %Average for FP is 

calculated as 
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     
 

#Average FP #Average EDIIS+DIIS
%Average FP

#Average EDIIS+DII
10

S
0


  , (3.11)

where  Average X  denotes the average number of iterations using algorithm X.  

For every algorithm, #Failure was lowest for s/p- and highest for f-block elements. 

Furthermore, the SD calculations had a higher rate of failure (higher #Failure) than the 

corresponding SF calculations. In most cases, #Failure decreased in the order of FP, 

damping, DIIS, EDIIS, and EDIIS+DIIS, as listed in the table. Taking into account the 

calculated values of %Average, %Best, and %Worst, in most cases, FP and damping 

required more cycles than the DIIS-related algorithms. For the DIIS-related algorithms, 

EDIIS required the most cycles. The performance of DIIS was comparatively similar to 

that of EDIIS+DIIS. In conclusion, EDIIS+DIIS stably achieves SCF convergence with 

fewer cycles for both SD and SF relativistic calculations. 
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Table 3.1. Number of cycles required for SCF convergence in s- and p-block neutral atomic systems at the SF- and SD-IODKH/NR levels using the 

FP, damping, DIIS, EDIIS, and EDIIS+DIIS algorithms. 

Element Z 2S+1 
SF-IODKH/NR SD-IODKH/NR 

FP Damping DIIS EDIIS EDIIS+DIIS FP Damping DIIS EDIIS EDIIS+DIIS 
Period 1    
He 2 1 7 63 6 7 6 7 63 6 7 6 

    
Period 2    
Li 3 2 17 69 9 17 9 17 69 10 17 10 
Be 4 1 10 70 7 10 7 9 70 7 9 7 
B 5 2 17 72 10 17 10 244 848 28 244 58 
C 6 3 14 76 10 13 10 333 N.C. 25 300 24 
N 7 4 14 77 10 14 10 77 284 25 93 174 
O 8 3 14 80 10 14 11 266 888 22 266 27 
F 9 2 17 80 11 16 12 17 80 11 16 12 
Ne 10 1 22 79 10 19 12 22 79 13 19 13 

    
Period 3    
Na 11 2 20 80 13 19 13 19 80 17 18 13 
Mg 12 1 15 81 11 14 11 15 81 15 14 12 
Al 13 2 19 83 11 18 11 142 494 25 142 23 
Si 14 3 14 79 11 14 11 11 78 10 11 10 
P 15 4 15 79 10 14 10 109 397 141 133 127 
S 16 3 16 81 11 16 11 267 892 33 269 32 
Cl 17 2 15 81 11 15 12 338 N.C. 181 307 205 
Ar 18 1 14 81 9 13 10 13 81 11 13 11 

    
Period 4    
K 19 2 19 83 14 21 13 19 82 75 20 14 
Ca 20 1 18 82 12 19 12 18 82 108 17 15 
Ga 31 2 N.C. 83 14 20 12 N.C. 480 23 139 20 
Ge 32 3 N.C. 81 12 19 13 N.C. 81 19 19 14 
As 33 4 N.C. 82 12 18 12 N.C. 314 52 94 101 
Se 34 3 25 83 13 18 13 N.C. N.C. 221 N.C. 159 
Br 35 2 22 84 12 18 13 285 N.C. 86 538 34 

* N.C. means no convergence in 1000 cycles.  
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Table 3.1. (Continued.) 

Element Z 2S+1 
SF-IODKH/NR SD-IODKH/NR 

FP Damping DIIS EDIIS EDIIS+DIIS FP Damping DIIS EDIIS EDIIS+DIIS 
Period 4    
Kr 36 1 21 84 11 18 12 20 84 16 17 14 

    
Period 5    
Rb 37 2 25 95 14 22 15 24 96 52 22 17 
Sr 38 1 18 90 12 18 14 18 101 58 23 19 
In 49 2 21 84 13 20 13 89 321 19 93 18 
Sn 50 3 19 83 12 18 13 18 82 14 16 12 
Sb 51 4 19 83 12 17 12 79 304 25 80 25 
Te 52 3 19 83 12 18 13 N.C. N.C. 26 606 29 
I 53 2 18 84 12 17 13 386 N.C. 45 254 41 
Xe 54 1 19 84 10 17 11 18 84 11 17 13 

    
Period 6    
Cs 55 2 23 87 14 22 14 25 84 15 20 14 
Ba 56 1 19 85 16 24 15 18 85 430 33 22 
Tl 81 2 32 87 13 22 15 58 157 19 54 18 
Pb 82 3 26 88 13 20 14 36 88 18 33 17 
Bi 83 4 24 88 13 20 14 78 312 36 93 217 
Po 84 3 23 88 13 20 14 927 N.C. 31 N.C. 43 
At 85 2 23 89 12 20 14 305 921 113 314 43 
Rn 86 1 23 89 11 20 14 22 89 13 19 15 

    
Period 7    
Fr 87 2 28 104 15 24 16 26 152 96 23 17 
Ra 88 1 20 97 14 19 15 20 117 19 18 16 

* N.C. means no convergence in 1000 cycles.  
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Table 3.2. Number of cycles required for SCF convergence in d-block neutral atomic systems at the SF- and SD-IODKH/NR levels using the FP, 

damping, DIIS, EDIIS, and EDIIS+DIIS algorithms. 

Element Z 2S+1 
SF-IODKH/NR SD-IODKH/NR 

FP Damping DIIS EDIIS EDIIS+DIIS FP Damping DIIS EDIIS EDIIS+DIIS 
Period 4    
Sc 21 2 N.C. N.C. 24 283 25 N.C. N.C. 195 N.C. 605 
Ti 22 3 N.C. N.C. 26 125 26 N.C. N.C. 14 786 192 
V 23 4 N.C. 281 21 121 27 N.C. N.C. 44 838 476 
Cr 24 7 N.C. 81 13 22 13 N.C. 584 304 N.C. 38 
Mn 25 6 N.C. 82 15 22 13 N.C. 268 N.C. 55 22 
Fe 26 5 N.C. 88 42 22 14 N.C. N.C. 639 27 114 
Co 27 4 N.C. 218 23 111 24 N.C. N.C. N.C. 856 447 
Ni 28 3 N.C. 92 15 35 16 N.C. N.C. 28 N.C. 464 
Cu 29 2 N.C. 87 15 51 17 N.C. 87 19 27 16 
Zn 30 1 N.C. 84 12 20 12 N.C. 84 16 19 25 

    
Period 5    
Y 39 2 219 710 24 221 30 518 N.C. 885 470 195 
Zr 40 3 198 478 29 155 24 N.C. N.C. 32 N.C. 49 
Nb 41 6 61 79 17 22 14 878 N.C. N.C. N.C. 247 
Mo 42 7 24 80 11 19 12 166 729 N.C. 185 34 
Tc 43 6 809 148 26 39 14 N.C. 223 N.C. 66 50 
Ru 44 5 99 163 19 189 60 N.C. N.C. 585 389 N.C. 
Rh 45 4 N.C. 358 25 108 26 N.C. N.C. 470 N.C. 142 
Pd 46 1 N.C. 159 13 41 13 N.C. 284 17 39 16 
Ag 47 2 N.C. 112 14 25 14 N.C. 242 16 24 15 
Cd 48 1 N.C. 84 12 22 13 N.C. 84 15 21 14 

    
Period 6    
Lu 71 2 N.C. 469 21 42 19 N.C. 959 40 347 555 
Hf 72 3 N.C. 587 27 168 29 N.C. N.C. 82 608 447 
Ta 73 4 N.C. 288 33 151 38 N.C. N.C. 78 296 841 
W 74 5 N.C. 446 20 80 28 N.C. 110 31 226 21 
Re 75 6 N.C. 213 30 22 15 N.C. 261 27 57 26 
Os 76 5 N.C. 226 24 43 16 N.C. 884 560 179 290 

* N.C. means no convergence in 1000 cycles.  
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Table 3.2. (Continued.) 

Element Z 2S+1 
SF-IODKH/NR SD-IODKH/NR 

FP Damping DIIS EDIIS EDIIS+DIIS FP Damping DIIS EDIIS EDIIS+DIIS 
Period 6    
Ir 77 4 N.C. 367 43 144 24 N.C. N.C. N.C. 689 239 
Pt 78 3 N.C. 409 28 124 22 N.C. N.C. 25 984 628 
Au 79 2 N.C. 94 14 46 18 N.C. 89 19 33 18 
Hg 80 1 N.C. 88 12 21 13 N.C. 87 16 20 14 

    
Period 7    
Lr 103 2 N.C. 516 56 175 26 N.C. 266 201 111 37 

* N.C. means no convergence in 1000 cycles.  
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Table 3.3. Number of cycles required for SCF convergence in f-block neutral atomic systems at the SF- and SD-IODKH/NR levels using the FP, 

damping, DIIS, EDIIS, and EDIIS+DIIS algorithms. 

Element Z 2S+1 
SF-IODKH/NR SD-IODKH/NR 

FP Damping DIIS EDIIS EDIIS+DIIS FP Damping DIIS EDIIS EDIIS+DIIS 
Period 6    
La 57 2 N.C. 733 N.C. 177 33 N.C. N.C. 275 437 N.C. 
Ce 58 1 N.C. 262 30 N.C. 26 N.C. N.C. N.C. N.C. 338 
Pr 59 4 N.C. N.C. 157 430 61 N.C. N.C. 801 N.C. 221 
Nd 60 5 N.C. N.C. 110 438 161 N.C. N.C. N.C. N.C. N.C. 
Pm 61 6 N.C. N.C. 47 679 64 N.C. 515 286 N.C. 227 
Sm 62 7 N.C. N.C. 71 685 31 N.C. 951 486 258 33 
Eu 63 8 N.C. 223 132 74 29 N.C. 257 N.C. 95 48 
Gd 64 9 N.C. 819 29 203 31 N.C. N.C. 711 890 N.C. 
Tb 65 6 N.C. 688 33 N.C. N.C. N.C. 878 366 334 58 
Dy 66 5 N.C. N.C. N.C. 304 464 N.C. N.C. 488 N.C. 123 
Ho 67 4 N.C. N.C. 69 387 104 N.C. 204 554 94 28 
Er 68 3 N.C. N.C. N.C. 291 34 N.C. N.C. N.C. 813 N.C. 
Tm 69 2 N.C. N.C. N.C. 467 35 N.C. N.C. 699 948 478 
Yb 70 1 N.C. 94 20 30 17 N.C. 108 N.C. 32 28 

    
Period 7    
Ac 89 2 N.C. 907 23 72 25 N.C. N.C. 149 155 43 
Th 90 3 348 191 32 240 42 N.C. N.C. 32 N.C. 35 
Pa 91 4 N.C. N.C. N.C. 892 124 N.C. N.C. N.C. 937 N.C. 
U 92 5 N.C. N.C. N.C. N.C. 470 N.C. N.C. N.C. 423 70 
Np 93 6 N.C. N.C. 82 N.C. 407 N.C. N.C. 54 380 N.C. 
Pu 94 7 N.C. N.C. 30 465 36 N.C. N.C. 35 292 N.C. 
Am 95 8 N.C. 269 27 805 579 N.C. 305 368 93 55 
Cm 96 9 N.C. 726 24 150 41 N.C. 816 458 204 429 
Bk 97 6 N.C. N.C. 51 N.C. 75 N.C. 580 N.C. 268 180 
Cf 98 5 N.C. N.C. N.C. 245 557 N.C. N.C. N.C. 884 468 
Es 99 4 N.C. N.C. N.C. 107 24 N.C. N.C. 309 888 595 
Fm 100 3 N.C. N.C. 22 50 20 N.C. N.C. 434 642 498 
Md 101 2 N.C. 153 23 548 34 N.C. N.C. N.C. 101 39 
No 102 1 N.C. 94 18 35 16 N.C. 165 N.C. 94 61 

* N.C. means no convergence in 1000 cycles.  
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Table 3.4. Summary of the SCF convergence behaviors in s/p-, d-, and f-block neutral atomic systems at the SF- and SD-IODKH/NR levels using the 

FP, damping, DIIS, EDIIS, and EDIIS+DIIS algorithms. 

System Characteristic 
SF-IODKH/NR SD-IODKH/NR 

FP Damping DIIS EDIIS EDIIS+DIIS FP Damping DIIS EDIIS EDIIS+DIIS 

s/p-block #Failure 3 0 0 0 0 5 7 0 2 0 
elements %Average 56.4 578.3 4.6 44.6 — 187.3 493.4 28.2 169.0 — 
 %Best 16.7 950.0 0.0 16.7 — 16.7 950.0 0.0 16.7 — 
 %Worst 100.0 550.0 0.0 50.0 — 327.2 324.4 98.2 179.3 — 
     
d-block #Failure 25 2 0 0 0 28 15 6 6 1 
elements %Average 1012.2 1056.6 7.5 307.5 — 148.8 56.6 −16.7 40.6 — 
 %Best 100.0 558.3 −8.3 58.3 — 1085.7 500.0 0.0 35.7 — 
 %Worst 1248.3 1083.3 −6.7 371.7 — 4.4 14.0 5.2 17.0 — 
     
f-block #Failure 27 16 8 5 1 28 18 11 6 7 
elements %Average 0165.4 227.9 −60.7 157.8 — — 147.5 98.2 118.0 — 
 %Best 2075.0 487.5 12.5 87.5 — — 285.7 14.3 14.3 — 
 %Worst −39.9 56.6 −72.9 54.1 — — 59.8 34.6 59.3 — 

* #Failure represents the number of elements which failed the SCF convergence within 1000 cycles. 

** %X means the ratio of X to EDIIS+DIIS, i.e., %X = (X − X(EDIIS+DIIS)) / X(EDIIS+DIIS) × 100%. 
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3.3.3 A well-behaved system: W(CO)6 

This subsection discusses the SCF convergence behavior of the W(CO)6 complex. 

The complex was selected as an example of a simple heavy-element system whose 

convergence is well-behaved. This is true because W(CO)6 has a completely closed-shell 

configuration, even in SD calculations. Figure 3.1 shows the SCF convergence behaviors 

in GHF for the W(CO)6 complex using FP and the four acceleration techniques: damping, 

DIIS, EDIIS, and EDIIS+DIIS. The SF result using EDIIS+DIIS is also shown for 

comparison. The vertical and horizontal axes show the absolute energy difference 

between the successive iterations on a logarithmic scale and the iteration number, 

respectively. With all algorithms except FP, SCF convergence was achieved. These 

methods converged to the same total energy (E = −16809.23228 a.u.). DIIS and 

EDIIS+DIIS were the fastest algorithms, converging in the same number of iterations, 

i.e., 19 cycles. In contrast, EDIIS and damping required more cycles; 39 cycles for EDIIS 

and 79 cycles for damping. These indicate that the initial guess was a good approximate 

solution for the simple and typical electronic structure of W(CO)6. Thus, the local search 

performance mainly determines the rate of convergence here. The difference in the 

number of iterations between the SF and SD calculations was small: 14 cycles for 

EDIIS+DIIS at the SF level. The well-behaved nature of the SCF convergence of W(CO)6 

is due to its typical closed-shell character and small contributions of SD effects to SCF 

convergence. 
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Figure 3.1. SCF convergence behavior in GHF calculations for W(CO)6 with FP, damping, DIIS, 

EDIIS, and EDIIS+DIIS. The SF result using EDIIS+DIIS is also shown. The converged energy 

determined in the SD calculation was −16809.23228 a.u. 

 

3.3.1 A non-collinear system: Cr3 

This subsection discusses the SCF convergence behavior of the Cr3 molecule. Cr3 is 

an example of a non-collinear spin system. In non-collinear systems such as the open-

shell triangular Cr3 complex, the stable spin structure is isotropic with respect to the 

molecular plane due to geometrical frustration. To describe the stable spin structure of the 

non-collinear system, GHF, which freely rotates each spin-quantized axis, is required. An 

SF-UHF calculation was also performed for comparison of the SCF convergence behavior. 

Figure 3.2 shows the SCF convergence results obtained from the GHF calculations for 

the non-collinear Cr3 system using the four acceleration techniques and the FP algorithm 

as well as the result of an SF calculation. Only the EDIIS+DIIS algorithm achieved SCF 

convergence within 1000 cycles. The converged total energy obtained using EDIIS+DIIS 

in GHF was −3148.60769 a.u. Using FP led to large energy differences, which are due to 

the oscillation between two states. In damping and DIIS, the energy differences decreased 

slowly, although they failed to converge within 1000 cycles. In EDIIS, the energy 



 

75 

differences also decreased slowly in both early and late iterations, as shown in Figure 3.2. 

However, in the middle iteration region, the differences increased. This result indicates 

that local searching is important in achieving convergence for this system. The difference 

between SF and SD calculations was larger than that of W(CO)6 because the electronic 

structure obtained by GHF is more complicated, arising from the geometrical non-

collinearity in Cr3. In conclusion, the EDIIS+DIIS approach is effective for non-collinear 

spin systems. 

 

 
Figure 3.2. SCF convergence behavior in GHF calculations for Cr3 with FP, damping, DIIS, EDIIS, 

and EDIIS+DIIS. The SF result using EDIIS+DIIS is also shown. The converged energy 

determined in the SD calculation was −3148.60769 a.u. 

 

3.3.4 A challenging system: UF4 

This subsection describes the SCF convergence behavior in UF4, which is a 

representative challenging case. This system has been used as a challenging example in 

previous studies investigating convergence acceleration techniques [31,35,36]. Figure 3.3 

shows the convergence behaviors in the GHF calculations for the UF4 molecule using the 

FP algorithm and the four acceleration techniques as well as the SF result. In this system, 



 

76 

when DIIS and EDIIS+DIIS were used, the SCF calculations converged within 1000 

cycles. EDIIS+DIIS converged twice as fast as DIIS, although EDIIS+DIIS required 334 

iterations to achieve convergence. This result indicates that SCF convergence is 

challenging in SD calculations of UF4. The converged total energy was −28380.18867 

a.u. for EDIIS+DIIS and −28380.18851 a.u. for DIIS. This means that these two 

calculations converged to different SCF solutions with each other. From the analysis of 

the converged density matrices, the major differences were observed for 5f-orbitals of the 

uranium atom, reflecting their various microstates. Damping and EDIIS slowly but 

monotonically decreased the energy errors, which steadily approached the values 

obtained by EDIIS+DIIS/DIIS. The difference between the number of iterations required 

by SF and SD calculations was approximately 200. This result indicates that SO 

interactions contribute significantly to the electronic structure of UF4. Thus, the SCF 

convergence for UF4 is more difficult at SD than SF level. However, EDIIS+DIIS was an 

effective algorithm for this challenging system. 

 

 
Figure 3.3. SCF convergence behavior in GHF calculations for UF4 with FP, damping, DIIS, 

EDIIS, and EDIIS+DIIS. The SF result using EDIIS+DIIS is also shown. The converged energy 

determined in the SD calculation was −28380.18867 a.u. 
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In summary, the EDIIS+DIIS algorithm is applicable for many cases: typical and 

simple systems, non-collinear systems, which require GHF treatment to describe the 

geometrically frustrated spin structure, and challenging systems, which require GHF 

treatment with SD effects. 

 

3.4 Conclusion 

In this chapter, the author has assessed the FP algorithm and four SCF acceleration 

algorithms including the damping, DIIS, EDIIS, and EDIIS+DIIS algorithms in the 

complex GHF framework both with SF and SD relativistic effects. Here, IODKH/NR was 

used as a many-electron Hamiltonian. The benchmark systems adopted were atoms from 

He to Lr, the W(CO)6 complex as an example of a well-behaved system, Cr3 as a non-

collinear spin system, and UF4 as a challenging system. The numerical assessments 

revealed that the EDIIS+DIIS algorithm provides fast and stable SCF convergence in the 

GHF framework in comparison with the other algorithms. 

  



 

78 

References 

[1] K. G. Dyall, K. Faegri, Introduction to Relativistic Quantum Chemistry, Oxford 

University Press, New York, 2007. 

[2] P. Schwerdtfeger, Relativistic Electronic Structure Theory, Part 2. Applications, 

Elsevier Science, Amsterdam, 2004. 

[3] R. E. Moss, Advanced Molecular Quantum Mechanics: An Introduction to 

Relativistic Quantum Mechanics and the Quantum Theory of Radiation, Chapman 

and Hall, London, 1973. 

[4] L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 

[5] M. Douglas, N. M. Kroll, Ann. Phys. (Leipzig) 82, 89 (1974). 

[6] B. A. Hess, Phys. Rev. A 32, 756 (1985). 

[7] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 99, 4597 (1993). 

[8] S. Faas, J. G. Snijders, J. H. van Lenthe, E. van Lenthe, E. J. Baerends, Chem. Phys. 

Lett. 246, 632 (1995). 

[9] R. Samzow, B. A. Hess, G. Jansen, J. Chem. Phys. 96, 1227 (1992). 

[10] K. G. Dyall, J. Chem. Phys. 106, 9618 (1997). 

[11] T. Nakajima, K. Hirao, J. Chem. Phys. 113, 7786 (2000). 

[12] A. Wolf, M. Reiher, B. A. Hess, J. Chem. Phys. 117, 9215 (2002). 

[13] M. Barysz, A. J. Sadlej, J. Chem. Phys. 116, 2696 (2002). 

[14] C. van Wüllen, C. Michauk, J. Chem. Phys. 123, 204113 (2005). 

[15] D. Peng, W. Liu, Y. Xiao, L. Cheng, J. Chem. Phys. 127, 104106 (2007). 

[16] J. Sikkema, L. Visscher, T. Saue, M. Iliaš, J. Chem. Phys. 131, 124116 (2009). 

[17] W. Liu, Mol. Phys. 108, 1679 (2010). 

[18] R. Seeger, J. A. Pople, J. Chem. Phys. 66, 3045 (1977). 



 

79 

[19] H. Fukutome, Int. J. Quantum Chem. 20, 955 (1981). 

[20] J.-L. Calais, Adv. Quantum Chem. 17, 225 (1985). 

[21] R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London, 

1989. 

[22] P.-O. Löwdin, I. Mayer, Adv. Quantum Chem. 24, 79 (1992). 

[23] S. Hammes-Schiffer, H. C. Andersen, J. Chem. Phys. 99, 1901 (1993). 

[24] S. K. Wolff, D. Jayatilaka, G. S. Chandler, J. Chem. Phys. 103, 4562 (1995). 

[25] D. Jayatilaka, J. Chem. Phys. 108, 7587 (1998). 

[26] J. L. Stuber, J. Paldus, in: E. J. Brändas, E. S. Kryachko (Eds.), Fundamental World 

of Quantum Chemistry, Kluwer Academic Publishers, Dordrecht, 2003, p. 67. 

[27] M. K. Armbruster, F. Weigend, C. van Wüllen, W. Klopper, Phys. Chem. Chem. Phys. 

10, 1748 (2008). 

[28] J. J. Goings, F. Ding, M. J. Frisch, X. Li, J. Chem. Phys. 142, 154109 (2015). 

[29] P. Pulay, Chem. Phys. Lett. 73, 393 (1980). 

[30] P. Pulay, J. Comput. Chem. 3, 556 (1982). 

[31] K. N. Kudin, G. E. Scuseria, E. Cancès, J. Chem. Phys. 116, 8255 (2002). 

[32] X. Hu, W. Yang, J. Chem. Phys. 132, 054109 (2010). 

[33] Y. A. Wang, C. Y. Yam, Y. K. Chen, G. Chen, J. Chem. Phys. 134, 241103 (2011). 

[34] Y. K. Chen, Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011). 

[35] D. Sulzer, S. Iuchi, K. Yasuda, Chem. Phys. Lett. 635, 201 (2015). 

[36] A. J. Garza, G. E. Scuseria, J. Chem. Phys. 137, 054110 (2012). 

[37] D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, Springer, New York, 

2008. 

[38] T. Koga, H. Tatewaki, T. Shimazaki, Chem. Phys. Lett. 328, 473 (2000). 



 

80 

[39]Y. Osanai, T. Noro, E. Miyoshi, M. Sekiya, T. Koga, J. Chem. Phys. 120, 6408 (2004). 

[40] J. H. van Lenthe, R. Zwaans, H. J. J. van Dam, M. F. Guest, J. Comput. Chem. 27, 

926 (2006). 

[41] K. Liu, C. G. Ning, Z. H. Luo, L. L. Shi, J. K. Deng, Chem. Phys. Lett. 497, 229 

(2010). 

 



81 

Chapter 4  

Spin-dependent relativistic open-shell Hartree–Fock 

theory using time-reversal symmetry: The unrestricted 

approach 

 

4.1 Introduction 

Relativistic effects play an important role in the chemical and physical properties of 

heavy-element compounds. These effects are classified into SF and SD effects. The SF 

effects, which include the mass-velocity and Darwin interactions, mainly contribute to 

orbital contraction and expansion. The SD effects, including the SO and other magnetic 

interactions, induce energy level splitting. For an accurate description of these effects, 

two- and four-component relativistic theories [1-15] are required instead of NR theory, 

and these theories give accurate results for arbitrary elements in the periodic table because 

the relativistic effects are considered in an SCF manner. 

At the HF level of theory, solutions are classified by the preserved symmetries: square 

and z-component of spin symmetry ( 2S  and zS ), time-reversal symmetry K , and 

complex conjugation symmetry 0K  [16,17]. For example, RHF and ROHF solutions 

possess 2S , zS , K , and 0K  symmetries, while a UHF solution has zS  and 0K  

symmetries. Because an SF Hamiltonian is commutable with the spin operators and spin 

is a good quantum number, these methods are applicable to SF calculations. In SD 

calculations, on the other hand, the Hamiltonian explicitly includes the spin operators and 

complex terms, and it is not invariant for the above symmetry operations. Thus, these 
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symmetries must be relaxed. 

One scheme for SD calculations is the GHF method [16-25], which does not include 

any symmetry constraints. In GHF, the additional spin degrees of freedom allow the 

coupling of alpha and beta spins and free rotation about each spin-quantized axis. 

Furthermore, GHF can be used both in closed- and open-shell systems. However, the 

additional degrees of freedom result in local minima and non-convergence problems in 

the SCF part of the calculation. One solution to the local minima problem is the use of 

the second-order orbital optimization scheme, which has been extended to GHF by 

Goings et al. [26]. A solution for the non-convergence problem is the use of SCF 

acceleration techniques. Recently, the author has shown that a combination of Pulay’s 

DIIS [27,28] and EDIIS [29] succeeds in improving the GHF convergence behavior for 

heavy-element systems, although systems with high spin multiplicities, e.g., d- and f-

block elements, still require a large number of iterations [30]. 

The other representative scheme for the SD calculations is the KRHF method [31-

34], which preserves only time-reversal symmetry. The time-reversal invariance works as 

a generalization of spin restriction and induces two-fold degeneracy for spinors. 

Therefore, KRHF is regarded as the relativistic counterpart of RHF. However, KRHF can 

only be applied to closed-shell systems.  

For open-shell systems, a HF method for the SD relativistic calculations, which is 

termed the moment polarization scheme or KUHF, was discussed in several groups [35-

37]. In this chapter, the fundamental characteristics of KUHF are examined. The present 

KUHF scheme is reformulated on the basis that the computational procedure for KRHF 

is similar to that of RHF, using quaternion algebra. It should be noted that KUHF here is 

distinct from GHF, although GHF is sometimes also called KUHF [38,39]. 
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This chapter is organized as follows: Section 4.2 presents theoretical aspects of 

KUHF. Numerical assessments performed are discussed in Sec. 4.3. Finally, concluding 

remarks are given in Sec. 4.4. 

 

4.2 Theory 

4.2.1 Relationship between RHF and KRHF methods 

This subsection compares a relationship between RHF and KRHF in terms of their 

algorithms. Figure 4.1 illustrates the comparison. Here, mono- and four-layered squares 

represent the real and quaternion matrices, respectively. In RHF, the Fock matrix F  is 

first calculated. Then, F  is diagonalized to give the MO coefficients C  as 

eigenvectors. In addition, the square of C  gives the density matrix D . This procedure 

is repeated until the values of total energy and/or matrix elements converge. Here, all the 

matrices including F , C , and D  are defined in real space. The computational 

procedure of KRHF is similar to that of RHF. The difference is that the matrices in KRHF 

are defined in quaternionic space rather than real space. From the computational point of 

view, KRHF is therefore regarded as a quaternionic counterpart to RHF. 

 

  



84 

 

Figure 4.1. Schematic of (a) RHF and (b) KRHF procedures. The mono- and four-layered square 

represents real and quaternionic matrices, respectively. 

 

4.2.2 KUHF method 

This subsection presents the formulation of KUHF with the same strategy as shown 

in Figure 4.1 for KRHF. Namely, the present KUHF method is defined as a quaternionic 

counterpart of UHF; this idea is summarized in Figure 4.2. In UHF, similar procedures to 

those of RHF calculations are performed independently for alpha and beta spins, as shown 

in Figure 4.2(a). Both spins are coupled in the evaluation of the Fock matrices. In KUHF, 

a similar algorithm as that used in UHF is applied using quaternion algebra shown in 

Figure 4.2(b). Because the two-component framework allows the hybridization of alpha 

and beta spins, one interprets that a linear combination of alpha and beta spin bases give 

new rotated spin bases,   and  , in KUHF. Here,   and   are termed pseudo-

alpha and pseudo-beta spins, respectively. The pseudo-spin pair corresponds to the 

Kramers pair. The grouping of the spinor pair is still valid, although the pseudo-alpha and 

pseudo-beta spinors of KUHF are not exactly related by the time-reversal operation. In 

KUHF, in summary, a UHF-like calculation is performed for pseudo-alpha and pseudo-

F

C

D

F

D

C
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beta spin bases in a quaternionic manner. 

 

 

Figure 4.2. Schematic of (a) UHF and (b) KUHF procedures. The mono- and four-layered square 

represents real and quaternionic matrices, respectively. 

 

According to the algorithm given in Figure 4.2(b), the RH equation of KUHF can be 

formulated as 

where 

If the two-electron part of a Hamiltonian ijg  consists of only SF terms, the Fock matrix 

elements are given by 

Fσ
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Dσ

Fσ

Cσ

Dσ

̅

̅

̅

Fα

Dα

Cα

Fβ

Dβ

Cβ

     
    

Q Q Q Q

Q Q Q Q

,
j j j

j j j

    

    

       

       

 

 




    

 









 

F C S C ε

F C S C ε

F F C C S C C ε

F F C C S C C ε

  

  

 

(4.1)

Q Q     S S S S . (4.2)

    
AO

Q Q Q Q Q
{ }

ij ijF gh gD D D   
    



          (4.3)
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where h , D , and  ijg   are the one-electron part of the Fock matrix element, a 

density matrix element, and a two-electron integral, respectively. 

From analogy with KRHF, the MSs of KUHF are given by 

The total electronic wavefunction and energy are defined as 

and 

respectively. Here, the number of electrons is given by 

where each term is the sum of occupation numbers f  for the corresponding pseudo-

spin, 

There is no general scheme to separate the pseudo-alpha and pseudo-beta spinors. Here, 

to define UHF-like configurations, the occupation numbers for alpha and beta orbitals are 

adopted as those for pseudo-alpha and pseudo-beta spinors. Thus, the density matrices in 

KUHF are defined by Eqs. (4.12) and (4.13). 

    
AO

Q Q Q Q Q
{ }

ij ijF gh gD D D   
    



         , (4.4)

Q
i i ij      


 (4.5)

Q
i i ij      


. (4.6)

KUHF Q Q Q Q Q Q
1 2 1 2N N 
               (4.7)

   KUHF Q Q Q Q Q Q1

2
trE         D h F D h F , (4.8)

N N N   , (4.9)

i
iN f    (4.10)

i
iN f   . (4.11)

   † †Q Q Q Q Q       D C f C C f C  (4.12)
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When one adopts the UHF occupation numbers corresponding to the singlet configuration 

in Eqs. (4.12) and (4.13), the configuration is termed pseudo-singlet, and this is the case 

with other multiplicities. Furthermore, pseudo-singlet, pseudo-doublet, and so forth are 

collectively termed as pseudo-spin multiplicities. 

In the family of broken-symmetry HF methods in the independent particle model, 

KUHF is classified in the group of TSW and complex GHF (following Fukutome’s [16], 

and Stuber and Paldus’ notations [17], respectively) because no symmetry is preserved 

and because of the matrix structure shown above. Unlike the ordinary GHF framework, 

however, not all of the spinors are considered independently, and the pseudo-alpha and 

pseudo-beta spinors correspond to each other, which is similar to the concept of Kramers 

pairs. From this point of view, KUHF is regarded as TSCW-like TSW or paired-GHF-like 

complex GHF following the above mentioned notation. 

 

4.3 Numerical assessments 

4.3.1 Computational details 

This subsection describes the computational details for the numerical assessments. 

KUHF was implemented into the in-house program. For comparison, several calculations 

were performed at the RHF, UHF, KRHF, and GHF levels as well. To obtain the 

symmetry-adapted eigenvectors through diagonalization in KRHF and KUHF, a 

quaternionic diagonalization algorithm based on the Householder transformation and 

subsequent QR decomposition was implemented in the program [33,40,41]. 

For a relativistic Hamiltonian, IODKH/NR [11] was adopted. The SD terms of the 

IODKH/NR Hamiltonian were considered in the KRHF, KUHF, and GHF calculations 

   † †Q Q Q Q Q       D C f C C f C  (4.13)
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(unless otherwise indicated). The basis sets adopted here were DKH3-Gen-TK/NOSec-

V-TZP [42,43]. 

To assess SCF convergence, several computational options were fixed as follows. 

The initial guess orbitals were obtained by the diagonalization of the bare nucleus 

Hamiltonian. A combination algorithm comprising DIIS and EDIIS was extended in a 

quaternionic manner for use as an SCF acceleration algorithm. The number of dimension 

of the DIIS subspace was set to 10. SCF convergence was considered to be achieved when 

the total energy difference and the maximum difference of density matrix elements were 

less than 10−9 hartrees and 10−5 a.u., respectively, between successive iterations. 

 

4.3.2 Total and spinor energies 

This subsection investigates the characteristics of KUHF from the viewpoint of total 

and spinor energies in comparison with UHF and GHF. Table 4.1 shows the total energies 

of coinage metal atoms (Cu, Ag, and Au) in their ground states using the SF- and SD-

IODKH/NR Hamiltonians. The energy differences between KUHF and GHF in the SD 

calculations are also shown as Δ in the table. Here, the doublet and pseudo-doublet 

configurations are specified in UHF and KUHF, respectively.  

In the SF calculations, all the methods, including KUHF, give the same total energy 

values for each system, indicating that the formulations of UHF, KUHF, and GHF are 

equivalent in the common SF cases. This is because alpha (or beta) spin does not 

commonly couple with beta (or alpha) spin without SD effects, and pseudo-alpha 

(pseudo-beta) spin is thus equivalent to alpha (beta) spin. 

In the SD calculations, KUHF yields very close energies to those of GHF. The energy 

deviations Δ are less than 14 microhartrees, although Δ increases as the element gets 
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heavier. KUHF commonly gives higher total energy than GHF. This trend is closely 

related with the so-called Löwdin’s dilemma [44] in broken-symmetry studies, i.e., higher 

symmetry leads to higher energy. Namely, the higher energies in KUHF are due to the 

partial use of time-reversal symmetry. 

 

Table 4.1. Total energies (in hartrees) of the Cu, Ag, and Au atoms computed by UHF, KUHF, 

and GHF using the SF- and SD-IODKH/NR Hamiltonians. Δ shows the energy deviations of 

KUHF from GHF in the SD-IODKH/NR calculations. 

System 
SF-IODKH/NR SD-IODKH/NR 

UHF KUHF GHF KUHF GHF Δ 

Cu −1653.186332 −1653.186332 −1653.186332 −1653.169972 −1653.169972 0.000000

Ag −5312.905841 −5312.905841 −5312.905841 −5312.467469 −5312.467470 0.000001

Au −19011.187190 −19011.187190 −19011.187190 −18999.596626 −18999.596640 0.000014

 

Table 4.2 shows the spinor energies of an Au atom in the ground state at the SF- and 

SD-IODKH/NR levels. In the SF calculations, KUHF give the same spinor energies as 

UHF and GHF for each spin. In the SD calculations, KUHF yields very similar spinor 

energies to GHF. The maximum absolute deviations are 0.000032, 0.001354, 0.003975, 

and 0.000132 hartrees, for s, p, d, and f spinors, respectively. The magnitudes of the 

deviations for valence spinors are higher than those for core spinors because the 

configuration in the core region is close to the closed-shell configuration and the 

occupation numbers are almost unique. 

The spinors given by KUHF have exactly (2j+1)-fold degeneracies in the SD 

calculations. The p, d, and f spinor levels split in ratios of two to four, four to six, and six 

to eight, respectively, indicating that KUHF properly describes the SO interactions. In 

contrast, slight energy differences are seen among the spinors in the same group in the 

GHF results, although they possess approximately (2j+1)-fold degeneracies. KUHF is 

similar to a jj-coupling scheme, while GHF is based on the mixed-coupling procedure 
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and yields a broken-symmetry solution with a mixture of LS- and jj-coupling schemes as 

pointed out in Ref. [39]. 

 

4.3.3 Potential energy curves 

This subsection discusses the dissociation curves for HAt molecule at the SF- and 

SD-IODKH/NR levels. In the ground state, HAt dissociates into 2S  hydrogen and 2P  

astatine atoms via the 1
g  surface. If spin is a good quantum number, 0sm   is 

required to describe the HAt molecule in the singlet state. On the other hand, each of the 

dissociated atoms requires 1 2sm   , and, consequently, the overall system has 

0, 1sm   . In consequence, pseudo-singlet and pseudo-triplet states were specified in 

KUHF, while singlet and triplet ones were used in the UHF case. Hereafter, a UHF 

solution obtained from the singlet (triplet) configuration is simply expressed as a singlet 

(triplet) solution, although it does not correspond to the exact singlet (triplet) state due to 

the 2S  symmetry breaking. 

Figure 4.3(a) shows the dissociation curves for HAt using the SF-IODKH/NR 

Hamiltonian. The RHF curve is identical to the UHF curve in the singlet state near the 

equilibrium bond length. As dissociation proceeds, the RHF solution yields a higher 

energy than the UHF solution in the singlet state. At the dissociation limit, the RHF 

energy exceeds the sum of the atomic total energies. This is a well-known problem of 

RHF, and RHF cannot describe the dissociation limit because the spin pair occupies the 

same spatial orbital. In contrast, the UHF solution in the singlet state describes well the 

open-singlet spin state of the overall system at the dissociation limit. The UHF calculation 

in the triplet state gives a repulsive curve and converges to the correct dissociation limit. 

Figure 4.3(b) shows the dissociation curves given by KUHF as well as KRHF and 
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GHF using the SD-IODKH/NR Hamiltonian. The KRHF calculation gives the similar 

curve to those of the KUHF calculation in the pseudo-singlet state and the GHF 

calculation near the equilibrium bond length. The KUHF solutions in the pseudo-singlet 

and pseudo-triplet states and the GHF solution describe the correct dissociation limit, 

while the KRHF solution cannot; the KUHF calculation in the pseudo-triplet state gives 

a repulsive curve. These potential energy curves in the SD calculations are similar to those 

in the SF curves: the solutions of KUHF considering SD relativistic effects correspond to 

those of UHF. 

It should be noted that the shapes of the SD curves are not completely identical to 

those of the SF curves although they are similar. The difference of the shapes leads to the 

difference of dissociation energies: 44.5 kcal/mol and 29.6 kcal/mol at the SF and SD 

levels, respectively. As the bond distance increases, the SD solutions give relatively lower 

energies than the SF solutions. This energy lowering is due to the stabilization of the 2P  

state of the dissociated astatine atom, induced by the SO interactions. As a result, the 

dissociation energy in the SD calculation decreased by 14.9 kcal/mol in comparison with 

the SF calculation. 
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Table 4.2. Spinor energies (in hartrees) of the Au atom computed by UHF, KUHF, and GHF using the SF- and SD-IODKH/NR Hamiltonians. Δ shows 

the energy deviations of KUHF from GHF in the SD-IODKH/NR calculations. 

Spinor 

SF-IODKH/NR 

Spinor

SD-IODKH/NR 

UHF, KUHF, GHF KUHF 
GHF 

Δ 

alpha beta pseudo-alpha pseudo-beta pseudo-alpha pseudo-beta 

1s −2983.472572 −2983.470752 1s1/2 −2983.664511 −2983.662702 −2983.664524 −2983.662701 0.000013 −0.000002

2s −531.922682 −531.921901 2s1/2 −532.059911 −532.059123 −532.059921 −532.059124 0.000010 0.000000

2p −461.553351 −461.553801 2p1/2 −502.780464 −502.780769 −502.780572 −502.780674 0.000108 −0.000095

 −461.553351 −461.553801 2p3/2 −439.732360 −439.732946 −439.732560 −439.732947 0.000200 0.000002

 −461.553351 −461.553801  −439.732360 −439.732946 −439.732369 −439.732753 0.000009 −0.000192

3s −128.057989 −128.056136 3s1/2 −128.142654 −128.140799 −128.142665 −128.140797 0.000011 −0.000003

3p −107.229837 −107.229487 3p1/2 −115.639180 −115.638740 −115.639038 −115.638891 −0.000142 0.000151

 −107.229837 −107.229487 3p3/2 −102.135773 −102.135535 −102.135780 −102.135617 0.000007 0.000081

 −107.229837 −107.229487 −102.135773 −102.135535 −102.135698 −102.135536 −0.000075 0.000001

3d −84.017649 −84.018066 3d3/2 −86.274412 −86.274738 −86.274548 −86.274676 0.000137 −0.000062

 −84.017649 −84.018066 −86.274412 −86.274738 −86.274484 −86.274612 0.000072 −0.000126

 −84.017649 −84.018066 3d5/2 −82.647564 −82.648064 −82.647767 −82.648066 0.000202 0.000002

 −84.017649 −84.018066  −82.647564 −82.648064 −82.647668 −82.647965 0.000104 −0.000098

 −84.017649 −84.018066  −82.647564 −82.648064 −82.647570 −82.647866 0.000006 −0.000198

4s −29.137833 −29.135044 4s1/2 −29.183216 −29.180427 −29.183230 −29.180418 0.000015 −0.000009

4p −22.163133 −22.162820 4p1/2 −24.066645 −24.066301 −24.066535 −24.066420 −0.000110 0.000118

 −22.163133 −22.162820 4p3/2 −20.910842 −20.910559 −20.910849 −20.910653 0.000007 0.000094

 −22.163133 −22.162820  −20.910842 −20.910559 −20.910750 −20.910557 −0.000092 −0.000001

4d −13.449587 −13.450163 4d3/2 −13.949353 −13.949768 −13.949525 −13.949688 0.000173 −0.000081

 −13.449587 −13.450163 −13.949353 −13.949768 −13.949443 −13.949607 0.000090 −0.000161

 −13.449587 −13.450163 4d5/2 −13.175584 −13.176270 −13.175858 −13.176271 0.000273 0.000001

 −13.449587 −13.450163  −13.175584 −13.176270 −13.175722 −13.176132 0.000138 −0.000138

 −13.449587 −13.450163  −13.175584 −13.176270 −13.175589 −13.175994 0.000004 −0.000276

5s −4.683457 −4.679816 5s1/2 −4.697489 −4.693773 −4.697507 −4.693759 0.000018 −0.000015
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Table 4.2. (Continued.) 

Spinor 

SF-IODKH/NR 

Spinor

SD-IODKH/NR 

UHF, KUHF, GHF KUHF 
GHF 

Δ 

alpha beta pseudo-alpha pseudo-beta pseudo-alpha pseudo-beta 

4f −3.789548 −3.789821 4f5/2 −3.958448 −3.958660 −3.958543 −3.958632 0.000095 −0.000028

 −3.789548 −3.789821  −3.958448 −3.958660 −3.958513 −3.958602 0.000065 −0.000057

 −3.789548 −3.789821  −3.958448 −3.958660 −3.958483 −3.958573 0.000035 −0.000087

 −3.789548 −3.789821 4f7/2 −3.735189 −3.735496 −3.735322 −3.735499 0.000132 0.000002

 −3.789548 −3.789821  −3.735189 −3.735496 −3.735278 −3.735454 0.000089 −0.000043

 −3.789548 −3.789821  −3.735189 −3.735496 −3.735235 −3.735409 0.000046 −0.000087

 −3.789548 −3.789821  −3.735189 −3.735496 −3.735193 −3.735365 0.000003 −0.000131

5p −2.741429 −2.744912 5p1/2 −3.065739 −3.069749 −3.067093 −3.068431 0.001354 −0.001318

 −2.741429 −2.744911 5p3/2 −2.532606 −2.535076 −2.533418 −2.535063 0.000812 −0.000013

 −2.741429 −2.744911  −2.532606 −2.535076 −2.532621 −2.534232 0.000015 −0.000844

5d −0.456969 −0.448494 5d3/2 −0.508588 −0.501140 −0.507258 −0.504354 −0.001330 0.003214

 −0.456969 −0.448494 −0.508588 −0.501140 −0.505842 −0.502782 −0.002745 0.001642

 −0.456969 −0.448494 5d5/2 −0.434483 −0.425130 −0.434498 −0.428642 0.000015 0.003511

 −0.456969 −0.448494  −0.434483 −0.425130 −0.432456 −0.426847 −0.002027 0.001716

 −0.456969 −0.448494  −0.434483 −0.425130 −0.430508 −0.425115 −0.003975 −0.000016

6s −0.291814 — 6s1/2 −0.293449 — −0.293481 — 0.000032 —
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Figure 4.3. Potential energy curves of the HAt molecule computed at the (a) SF- and (b) SD-

IODKH/NR levels. 

 

4.3.4 SCF convergence 

This subsection discusses the SCF convergence of KUHF. The d- and f-block atoms, 

which commonly require a large number of SCF cycles (as seen in the previous study by 

the author and co-workers [30]), were used as test systems. For comparison, GHF 

calculations were also performed. Table 4.3 shows the number of cycles required to 

converge the SCF calculation for the d-block atoms. Here, N.C. means that the 

convergence was not obtained within 1000 cycles. The average number of cycles 

(Average) and the number of systems that failed to converge (#Failure) are also shown.  

Among the 29 d-block elements, 19 elements required fewer cycles in KUHF than in 

GHF. The average number of cycles decreased from 173.9 in GHF to 108.1 in KUHF. 

#Failure was one in KUHF, but two in GHF. The partial use of time-reversal symmetry 

in KUHF thus improves the SCF convergence behavior in the SD relativistic calculations 

for many d-block systems. However, for several elements (V, Mn, Zn, Y, Zr, Tc, Pd, Cd, 

and Re), KUHF worsened the convergence behavior compared with GHF. The difficulty 
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in convergence of the group 7 elements, i.e., Mn, Tc, and Re, seems to arise from their 

high spin multiplicities. For the closed-shell systems, including Zn, Pd, and Cd, KUHF is 

equivalent to KRHF from a theoretical point of view. KUHF involves redundant 

calculations for these systems because the pseudo-alpha and pseudo-beta calculations are 

identical. Using KRHF instead of KUHF halves the cost of the formation and the 

diagonalization of the Fock matrix. Thus, KRHF covers a large number of SCF cycles for 

these closed-shell systems and reduces effective computational time. For V, Y, and Zr, 

electronic fluctuations between 4d and 5s spinors during the SCF iterations may occur, 

which results in poor convergence behavior in the KUHF calculations. 

Table 4.4 shows the results of the similar assessment for the f-block atoms. Among 

the 30 f-block elements, 23 elements require fewer cycles in KUHF than in GHF. The 

average number of cycles decreased from 285.8 in GHF to 78.8 in KUHF. In addition, 

#Failure was one in KUHF, but five in GHF. For Ce, Ho, Yb, Ac, No, and Lr, KUHF 

required more cycles than GHF. As seen in the d-block systems, a greater number of 

iterations were required for closed-shell systems, e.g., Yb and No. For the other elements 

(Ce, Ho, Ac, and Lr), the poor convergence behavior seems to originate from the 

electronic fluctuations among the orbitals that possess different orbital angular momenta. 
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Table 4.3. Number of cycles required for SCF convergence for d-block atoms using 

KUHF and GHF. N.C. means no convergence within 1000 cycles. #Failure is the 

number of elements that gave N.C. Average is the average number of cycles, where the 

N.C. elements are excluded. The difference of KUHF from GHF is also shown as Δ. 

Element KUHF GHF Δ 
Sc 16 417 −401 
Ti 20 215 −195 
V N.C. 120 — 
Cr 10 48 −38 
Mn 279 23 256 
Fe 17 380 −363 
Co 70 623 −553 
Ni 16 662 −646 
Cu 11 16 −5 
Zn 33 16 17 
Y 707 127 580 
Zr 968 79 889 
Nb 19 N.C. — 
Mo 13 33 −20 
Tc 568 26 542 
Ru 27 N.C. — 
Rh 10 137 −127 
Pd 26 16 10 
Ag 15 15 0 
Cd 20 14 6 
Hf 10 166 −156 
Ta 8 492 −484 
W 19 21 −2 
Re 56 26 30 
Os 25 319 −294 
Ir 32 59 −27 
Pt 9 613 −604 
Au 11 19 −8 
Hg 11 14 −3 
Average 108.1 173.9 −61.4 
#Failure 1 2 −1 



 

97 

Table 4.4. Number of cycles required for SCF convergence for f-block atoms using 

KUHF and GHF. N.C. means no convergence within 1000 cycles. #Failure is the 

number of elements that gave N.C. Average is the average number of cycles, where the 

N.C. elements are excluded. The difference of KUHF from GHF is also shown as Δ. 

Element KUHF GHF Δ 
La N.C. N.C. — 
Ce 854 181 673 
Pr 25 147 −122 
Nd 11 N.C. — 
Pm 26 N.C. — 
Sm 25 32 −7 
Eu 21 43 −22 
Gd 23 915 −892 
Tb 33 62 −29 
Dy 16 138 −122 
Ho 30 25 5 
Er 28 589 −561 
Tm 25 443 −418 
Yb 23 20 3 
Lu 47 54 −7 
Ac 73 37 36 
Th 9 36 −27 
Pa 26 N.C. — 
U 22 888 −866 
Np 37 N.C. — 
Pu 18 847 −829 
Am 21 53 −32 
Cm 32 962 −930 
Bk 32 75 −43 
Cf 18 694 −676 
Es 18 105 −87 
Fm 16 320 −304 
Md 275 387 −112 
No 121 44 77 
Lr 379 49 330 
Average 78.8 285.8 −198.5 
#Failure 1 5 −4 
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4.4 Conclusion 

In this chapter, an open-shell HF theory for SD two-component relativistic 

calculations, which is termed KUHF, has been developed. As KRHF is a quaternionic 

counterpart of RHF, the present KUHF method is defined as a quaternionic counterpart 

of UHF, partly exploiting time-reversal symmetry. For the numerical assessments, the 

total energies for the coinage metal atoms, the spinor energies for the Au atom, and the 

potential energy curves for the HAt molecule were investigated. These numerical results 

confirmed that KUHF gives very similar energies to those of GHF for ground state 

calculations. KUHF gives a corresponding solution to UHF, including the SO interactions. 

Furthermore, KUHF was found to improve the SCF convergence behavior for the d- and 

f-block elements in the SD relativistic calculations, of which convergences are difficult 

to be achieved in the standard GHF calculations. 
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Chapter 5  

Spin-dependent relativistic open-shell Hartree–Fock 

theory using time-reversal symmetry: The restricted 

approach 

 

5.1 Introduction 

Two types of open-shell HF methods, i.e., UHF [1] and ROHF [2], are fundamental 

tools in the quantum chemical study of paramagnetic systems. ROHF is in general 

applicable to arbitrary open-shell configurations [3-6], while UHF can only be applied to 

half-filled high-spin open-shell systems [7]. The deficiency of ROHF is the partial 

arbitrariness in the construction of the Fock operator, which results in unphysical MOs 

and orbital energies. Plakhutin and co-workers [7-10] have proposed sophisticated 

solutions of this problem: they derived several conditions to explicitly satisfy KT [11] 

within a simple ROHF framework. Amended UHF procedures [12-18] have also been 

proposed as alternatives. 

Relativistic effects are vital to the study of paramagnetic systems because they often 

contain heavy elements. In these systems, SD relativistic effects, such as SO interactions, 

play an important role as well as scalar or SF relativistic effects. The whole relativistic 

effects can be accurately considered with four-component or corresponding two-

component theories [19-33]. In SD two-component relativistic calculations for open-shell 

systems, the GHF method [34-43], with no symmetry constraints, is usually employed. 

However, GHF commonly shows poor convergence behavior, and hybridization of 

different spin states by SD relativistic effects makes it difficult to interpret GHF solutions 
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[44,45]. In the previous chapter, the author reformulated an alternative of relativistic 

open-shell HF theory, termed the KUHF method [46-48]. KUHF was redefined as a 

relativistic analogue of UHF by the partial use of time-reversal symmetry and by 

quaternion algebra in the same manner that the KRHF method [49-52] can be interpreted 

as a relativistic analogue of RHF. KUHF inherits most of the properties of UHF theory. 

Hence, relativistic ROHF theory is required to complement the deficiencies of UHF, as 

seen in the NR case. 

In the relativistic, Kramers-restricted regime, an open-shell system is often treated by 

the AOC type of ROHF theory [53-55]. The single determinant wavefunction of AOC-

ROHF is expressed by the average of several configurations, leading to fractional 

occupation numbers. In this chapter, a simpler relativistic ROHF method using time-

reversal symmetry, termed the KROHF method, is formulated as a relativistic analogue 

of the well-established ROHF theory. KROHF is based on the KUHF method. In 

particular, a canonical KROHF expression where spinor energies satisfy KT is derived, 

based on the procedure proposed by Plakhutin et al. [8] for ROHF theory. In addition, 

behaviors of other canonicalization schemes are also discussed.  

This chapter is organized as follows. In Sec. 5.2, the theoretical aspects of KROHF 

are presented. This section also discusses the canonical parametrization of KROHF, 

which relates to KT. Section 5.3 reports numerical assessments of KROHF. Finally, Sec. 

5.4 presents concluding remarks. 
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5.2 Theory 

As a first step, the present KROHF theory takes the SODS approach, although 

Plakhutin and Davidson [7] recently proposed a more general DODS approach. This is 

because the SODS approach is simpler to implement and more common in the NR 

framework. KROHF here is designed to give Kramers-degenerate spinors, where each 

spinor pair is connected with the time-reversal operation, as common ROHF theory gives 

degenerate alpha and beta orbitals under spin restriction. 

 

Fα Fβ

C

FROHF

DβDα

C

Dσ

FKROHF

Fσ Fσ̅

Dσ̅

 

Figure 5.1. Schematic of (a) ROHF and (b) KROHF procedures. The mono- and four-layered 

squares represent real and quaternion matrices, respectively. 

 

Figure 5.1(a) shows the computational procedure of the ROHF method within the 

SODS approach. In Figure 5.1, mono- and four-layered squares represent the real and 

quaternion matrices, respectively. In ROHF, the UHF Fock matrices for alpha and beta 

spin components ( F  and F ) are first calculated. F  and F  are then assembled to 

give Roothaan’s effective Fock matrix of ROHF ROHFF . There are various procedures to 

construct ROHFF  [2,8,10,56-61]. After assembling, ROHFF  is diagonalized to obtain the 
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MO coefficients C . Furthermore, the square of C  together with the occupation 

numbers for alpha and beta orbitals yields the alpha and beta density matrices ( D  and 

D ), respectively. This procedure is iterated until the values of the total electronic energy 

and/or matrix elements converge. Here, all the matrices are defined in real space. 

Similar to the extension of UHF to KUHF, KROHF is defined as a relativistic 

analogue of the ROHF method. Hence, the computational procedure of KROHF is 

obtained by replacing the real matrices of ROHF with quaternion matrices, as shown in 

Figure 5.1(b). As is the case with KUHF, KROHF is formulated for the pseudo-alpha and 

pseudo-beta spin bases instead of the alpha and beta spin bases. 

First, from the analogy of the familiar energy expression in ROHF, the KROHF total 

electronic energy in the MS basis is defined as 

where h, J, and K denote the one-electron, Coulomb, and exchange parts of the KROHF 

Fock matrix defined below, respectively. Parameters a and b are constants specific to the 

states. Here, as a first step, the scalar cases are assumed for a and b, although they should 

have matrix structures to describe special cases, i.e., non-Roothaan N  states [62-64]. 

In addition, Eq. (5.1) is equivalent to the total energy expression in KRHF when 

1a b  . 

According to Figure 5.1(b), the RH equation of KROHF is defined as 

where Q KROHFF  is Roothaan’s effective Fock operator extended to quaternions. 

Analogous to the ROHF theory, Q KROHFF  is given by 

 
occ. occ{ } { }.

KROHF Q Q Q2 2i ii i j ij ij
i i

j i
j

i jE f h f f a J b K    , (5.1)

Q KROHF Q Q QF C S Cε , (5.2)
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Hereafter, subscripts C, O, and V represent closed-, open-, and virtual-shell MSs, 

respectively. The Fock matrix elements that connect the different categories of MSs, i.e., 

off-diagonal blocks of the Fock matrix, must vanish when the energy reaches a stationary 

point. The off-diagonal blocks of Eq. (5.3) are thus given by considering the variational 

principle under canonicalization conditions [2,56,65]. Then,  

and 

are obtained. Here, Q F  and Q F  are the pseudo-alpha and pseudo-beta KUHF Fock 

matrices, whose elements are 

and 

respectively. The details of these equations are given in Sec. 4.2. The lower-triangular 

blocks of Eq. (5.3) can be deduced from the Hermiticity of the Fock matrix. At SCF 

convergence, the Fock matrix elements of the off-diagonal blocks go to zero as follows: 

Q Q Q
CC CO CV

Q KROHF Q Q Q
OC OO OV

Q Q Q
VC VO VV

 
   
 
 

R F F

F F R F

F F R

. (5.3)

Q Q
CO

F F , (5.4)

 Q Q Q
CV

1

2
  F F F , (5.5)

Q Q
OV

F F  (5.6)

Q Q Q Q QF h J J K   
         (5.7)

Q Q Q Q QF h J J K   
        , (5.8)

Q Q Q 0ˆ
k mF    (5.9)

 Q Q Q Q1 ˆ ˆ
2

0k aF F     (5.10)
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where  , ,k l  ,  , ,m n  , and  , ,a b  refer to the closed-, open-, and virtual-shell 

spinors, respectively. The conditions in Eqs. (5.9)–(5.11) are the quaternion versions of 

the well-known Brillouin’s theorem [66]. 

In contrast, the diagonal blocks of Eq. (5.3) are arbitrary; the choice of the diagonal 

blocks has no effect on the density matrices, total electronic energy, and total electronic 

wavefunction. In the NR framework, the diagonal blocks are commonly given by a linear 

combination of the alpha and beta UHF Fock matrices. Similarly, KROHF defines the 

diagonal blocks of the Fock matrix by a linear combination of the pseudo-alpha and 

pseudo-beta KUHF Fock matrices using arbitrary coupling coefficients A and B, 

where X = C, O, and V. 

Although they do not affect the total energy and properties, the choice of the coupling 

coefficients may result in two problematic situations. First, the coupling coefficients 

significantly affect SCF convergence. This is because uneven choices of the coefficients 

may yield numerically ill-balanced situations. In the ROHF study by Guest and Saunders 

[56], they pointed out that the use of entirely balanced coefficients, 

empirically shows good SCF convergence behavior. In the present chapter, the parameter 

set of Eq. (5.13) is termed the GS set. 

Second, the choice of A and B also affects the spinor energies and coefficients. This 

is because the spinor energies of KROHF are given by  

Q Q Q 0ˆ
m aF   , (5.11)

Q Q Q
XX XX XXA B  R F F , (5.12)

CC OO VV CC OO VV

1

2
A A A B B B      , (5.13)
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and they explicitly depend on the coupling coefficients, A and B. It is clear from Eq. 

(5.14) that a thoughtless choice of the coefficients results in physically meaningless spinor 

energies. Here, a set of coupling coefficients that yields spinor energies to satisfy KT will 

be derived, following the procedure proposed by Plakhutin, Gorelik, and Breslavskaya 

[8]. 

In KT, negative-signed spinor energies equal the corresponding vertical IP or EA. 

The present chapter assumes that ionization occurs to give a high-spin configuration. 

Hence, the following three ionization processes are considered: removing a pseudo-beta 

electron from the k-th closed-shell MS, removing a pseudo-alpha electron from the m-th 

open-shell MS, and attaching a pseudo-alpha electron into the a-th virtual-shell MS. KT 

for these situations is written as 

where I and A are IP and EA, respectively. From Eqs. (5.7), (5.8), and (5.14), together 

with the assumption on the ionization processes mentioned above, the spinor energies in 

KROHF are given by 

The vertical IP and EA are given by 

 Q Q Q Q Q Q
XX XX XX XX

ˆ ˆ
i i i ii

A B F A BF        F F  (5.14)

k kI    (5.15)

m mI    (5.16)

a aA   , (5.17)

 
   
  

Q
XX XX

Q Q
XX XX

Q Q
XX XX XX

2

.

k

i ii

ik ik

im m
m

i

A B

A B

A B

h

A

J K

J K

  

  

  





 

(5.18)

   KROHF KROHF
frozeniI E S E S   (5.19)
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where  KROHFE S  is the KROHF energy for the initial system S; similar is the notation 

for the ionized systems S  . Here, the FOA underlying KT is adopted: the same orbitals 

(spinors) and integrals as the initial system S  are used to calculate  KROHF
frozenE S  . From 

Eqs. (5.1), (5.19), and (5.20), the IPs and EA corresponding to the three ionization 

processes above are given by 

By comparing Eqs. (5.21)–(5.23) with Eq. (5.18), the coupling coefficients which 

satisfy KT, 

are obtained. 

In this chapter, the parameter set of Eq. (5.24) is termed the PGB set. Incidentally, 

the PGB set of Eq. (5.24) is the same as that reported in the ROHF study by Plakhutin 

et al. [8]. This coincidence is reasonable because of the similarity of KROHF to ROHF. 

Without the SD relativistic effects, the pseudo-alpha and pseudo-beta spin bases are 

equivalent to the alpha and beta spin bases. In this case, the formulation of KROHF is 

equivalent to that of ROHF. 

Likewise, the sets of coupling coefficients in KROHF are to be common with those 

in ROHF for the other canonicalization schemes [2,8,56-61]. The sets of coupling 

coefficients imported from ROHF studies are summarized in Table 5.1. The table includes 

   KROHF KROHF
frozeniA E S E S   , (5.20)

 Q Q Q Q2k kk kl kl km
l m

h J K JI
 

     
 

   (5.21)

   Q Q Q Q Q2m mm mk mk mn m
k n

nh J K JI K
 

      
 

   (5.22)

   Q Q Q Q Q2a aa ak ak am a
k m

mh J K JA K
 

      
 

  . (5.23)

OO VV CC

CC OO VV

1

0,

A A B

A B B

  
  

 (5.24)
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the corresponding A and B values for each set based on the study of Roothaan (R) [2], 

Davidson (D) [57], Binkley, Pople, and Dobosh (BPD) [58], McWeeny and Diercksen 

(MD) [59], and Fægri and Manne (FM) [60] as well as the GS [56] and PGB [8] sets. 

Also shown is the coefficient set derived from the Euler equations (EE) [61]. Hereafter, 

these parameter sets are denoted by the acronyms of the developers (or the equations) for 

brevity. 

 

Table 5.1. Sets of coupling coefficients for the diagonal blocks of the Fock matrix in KROHF 

imported from the ROHF studies. 

Set ACC AOO AVV BCC BOO BVV 

Guest and Saunders (GS)  1/2 1/2 1/2 1/2 1/2 1/2

Roothaan (R)  −1/2 1/2 3/2 3/2 1/2 −1/2

Davidson (D)  1/2 1 1 1/2 0 0

Binkley, Pople, and Dobosh (BPD)  1/2 1 0 1/2 0 1

McWeeny and Diercksen (MD)  1/3 1/3 2/3 2/3 1/3 1/3

Fægri and Manne (FM)  1/2 1 1/2 1/2 0 1/2

Euler equations (EE)  1/2 1/2 1/2 1/2 0 1/2

Plakhutin, Gorelik, and Breslavskaya (PGB) 0 1 1 1 0 0

* References for each set are described in the text. 

 

5.3 Numerical assessments 

5.3.1 Computational details 

The KROHF code, together with the quaternion linear algebra module including 

matrix diagonalization [51,67,68], is implemented into the in-house relativistic program 

package. The codes of other wavefunction theories, i.e., KUHF and GHF, were also 

implemented for comparison. 

The relativistic Hamiltonian adopted here was composed of the IODKH Hamiltonian 

[29] for the one-electron part and the NR Coulomb operator for the two-electron part, 
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which is denoted by IODKH/NR. The SD terms as well as the SF terms of the IODKH/NR 

Hamiltonian were included (SD-IODKH/NR). In several calculations, only the SF terms 

were considered (SF-IODKH/NR). The basis sets used here were the DKH3-Gen-

TK/NOSec-V-TZP [69,70]. 

In Sec. 5.3.4, the following options were used to assess SCF convergence. The initial 

guess orbitals were generated by diagonalization of the bare nucleus Hamiltonian. The 

hybrid algorithm of Pulay’s DIIS [71,72] and EDIIS [73] was employed as the SCF 

acceleration technique. The SCF convergence criteria were set to 10−9 and 10−5 a.u. for 

the differences between two successive iterations in the total electronic energies and in 

the density matrix elements, respectively. 

 

5.3.2 Total energies 

In the previous study on canonical ROHF theory [8], the free N atom was used as a 

test system. Likewise, the test systems in the present chapter are the free pnictogens 

including the heavier elements, i.e., N through Bi atoms, in their ground states. 

Table 5.2 compares the total energies of the free pnictogen atoms computed by 

KROHF, KUHF, and GHF at the SD-IODKH/NR level. In each system, KROHF gives 

the identical total energy regardless of the set of coupling coefficients as discussed in Sec. 

5.2. The KROHF and KUHF calculations yield total energies close to the GHF results; 

the differences are less than 4.003 millihartrees. In addition, the magnitude of the total 

energies is in the following order: KROHF KUHF GHF  . This trend reflects the so-

called Löwdin’s dilemma [74] in broken-symmetry studies: the higher symmetry a 

wavefunction possesses, the higher its energy is. GHF gives the lowest energy because 

no symmetry constraints are imposed. In KUHF and KROHF, in contrast, time-reversal 
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symmetry is partly and fully considered, respectively. Hence, the energy of KROHF is 

highest. 

 

Table 5.2. Total energies (in hartrees) of the pnictogen atoms in their ground states computed by 

KROHF, KUHF, and GHF at the SD-IODKH/NR level. The values in parentheses represent the 

differences from the GHF results. 

System KROHF KUHF GHF 

N −54.430043 (0.003520) −54.433563 (0.000002) −54.433563

P −341.536028 (0.000443) −341.536471 (0.000015) −341.536471

As −2259.041489 (0.001397) −2259.042886 (0.000110) −2259.042886

Sb −6477.312245 (0.002073) −6477.314317 (0.000884) −6477.314317

Bi −21518.910907 (0.004003) −21518.914910 (0.001185) −21518.914910

 

5.3.3 Spinor energies 

This subsection discusses the spinor energies, which are the most significant 

properties in the present KROHF theory. Here, the GS set, which is a popular set in NR 

studies, and the PGB set (derived in Sec. 5.2) are adopted for the coupling coefficients to 

discuss the basic behaviors of the spinor energies in KROHF. (The behavior of other sets 

is discussed in the next subsection.) Hereafter, KROHF using the GS set is simply referred 

to as KROHF(GS), as is the case with other sets. 

Table 5.3 shows the spinor energies of the Bi atom in the ground state (electronic 

configuration [Hg]6p3) computed by KROHF(GS), KROHF(PGB), and KUHF using the 

SD-IODKH/NR Hamiltonian. The spinor energies in KROHF(PGB) at the SF-

IODKH/NR level are also shown. The KUHF columns include the information on the 

pseudo-alpha and pseudo-beta spinors because KUHF is based on the DODS formalism.  

As in the KUHF case, both KROHF(GS) and KROHF(PGB) correctly describe the 

SO splitting of the spinors. The levels of the p-, d-, and f-spinors are split in the ratios of 
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1:2, 2:3, and 3:4, respectively. The s-spinors, whose orbital angular momenta are zero, 

are not split. Each spinor exactly possesses a (2j+1)-fold degeneracy at the SD level, while 

a (2l+1)-fold degeneracy at the SF level. Consequently, it is suggested that the SD 

relativistic effects can be correctly described by the present KROHF theory. 

In the KROHF(PGB) results, the energy levels of the closed-shell spinors are very 

close to those of the pseudo-beta spins given by KUHF. For the open- and virtual-shell 

spinors, the energy levels obtained by KROHF(PGB) are very similar to those of pseudo-

alpha spinors calculated by KUHF. These facts are consistent with the assumptions on the 

ionization processes to get the PGB set to satisfy KT (described in Sec. 5.2). 

In KROHF(GS), on the other hand, all spinor energy levels approximately lie in the 

middle between the corresponding pseudo-alpha and pseudo-beta spinor energy levels 

given by KUHF. This is because in the construction of the diagonal blocks of the KROHF 

Fock matrix [Eq. (5.12)] the contribution of the pseudo-alpha and pseudo-beta spins in 

KUHF are assembled with the same magnitude for all the spinors using the GS set [Eq. 

(5.13)].  
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Table 5.3. Spinor energies (in hartrees) of the Bi atom in the ground state computed by KROHF (using the GS and PGB sets) and KUHF at the SD-

IODKH/NR level. Also shown is the result of KROHF with the PGB set at the SF-IODKH/NR level. The values in parentheses represent degeneracies. 

SF−IODKH/NR  SD−IODKH/NR 

Spinor 
KROHF 

Spinor 
KROHF KUHF 

PGB GS PGB pseudo-alpha pseudo-beta 
1s (2) −3346.673685 1s1/2 (2) −3347.285569 −3347.284197 −3347.286851 −3347.284481
2s (2) −607.136374 2s1/2 (2) −607.536574 −607.535591 −607.536587 −607.536505
2p (6) −521.823938 2p1/2 (2) −546.499508 −546.498140 −546.500460 −546.498870
 2p3/2 (4) −470.448008 −470.446388 −470.449135 −470.447202
3s (2) −149.266017 3s1/2 (2) −149.490542 −149.489180 −149.491590 −149.489774
3p (6) −124.421921 3p1/2 (2) −129.890973 −129.889199 −129.892575 −129.889617
 3p3/2 (4) −111.614702 −111.612615 −111.616574 −111.613079
3d (10) −98.165104 3d3/2 (4) −100.201337 −100.200410 −100.201823 −100.201099
 3d5/2 (6) −95.670417 −95.669485 −95.670814 −95.670263
4s (2) −35.724942 4s1/2 (2) −35.839573 −35.836548 −35.841588 −35.837731
4p (6) −27.413941 4p1/2 (2) −28.783939 −28.780671 −28.786447 −28.781534
 4p3/2 (4) −24.079901 −24.076118 −24.082877 −24.077043
4d (10) −17.470092 4d3/2 (4) −17.970767 −17.968706 −17.971726 −17.969871
 4d5/2 (6) −16.954938 −16.952927 −16.955686 −16.954250
5s (2) −6.667249 5s1/2 (2) −6.816403 −6.814810 −6.817255 −6.815618
4f (14) −6.585368 4f5/2 (6) −6.716165 −6.706223 −6.721332 −6.710884
 4f7/2 (8) −6.513239 −6.511731 −6.513982 −6.512566
5p (6) −4.231103 5p1/2 (2) −4.517131 −4.507114 −4.522016 −4.511847
 5p3/2 (4) −3.622844 −3.613293 −3.627229 −3.618020
5d (10) −1.297464 5d3/2 (4) −1.383347 −1.371634 −1.390085 −1.376375
 5d5/2 (6) −1.249795 −1.238451 −1.256142 −1.243186
6s (2) −0.574956 6s1/2 (2) −0.686211 −0.585248 −0.786131 −0.587531
6p (6) −0.316937 6p1/2 (2) −0.155597 −0.343952 −0.346174 0.016760
 6p3/2 (4) −0.095084 −0.262879 −0.265308 0.049478
7s (2) 0.178947 7s1/2 (2) 0.182190 0.169394 0.169428 0.212333
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Table 5.4 shows the spinor energy deviations from the negative-signed IP/EA values 

through the FOA of the Bi atom in the ground state computed by KROHF(GS) and 

KROHF(PGB). The IP/EA values here are evaluated by Eqs. (5.19) and (5.20). As seen 

in Table 5.3, KROHF(GS) and KROHF(PGB) give different spinor energies. The 

MaxADs from the IP/EA values under the FOA are 188.355 and 0.207 millihartrees for 

the GS and PGB sets, respectively. In particular, the absolute values of the deviations for 

the occupied spinors are less than one microhartree in KROHF(PGB). The reason for the 

relatively large deviation for the virtual spinors in comparison with the occupied spinors 

is that the virtual spinors are not optimized in KROHF calculations. As a result, 

KROHF(PGB) gives physically more reasonable spinor energies than KROHF(GS). 

Let us now compare the spinor energies in KROHF with experimental data. Table 5.5 

shows the SO splitting of the outermost p-shells of the pnictogen atoms computed by 

KROHF(GS) and KROHF(PGB) in accordance with KT at the SD-IODKH/NR level. 

The experimental IPs in the table are taken from the NIST Atomic Spectra Database [75], 

and directly reflect the effects of SO interactions. 

KROHF(PGB) yields similar IPs to the experimental values, while KROHF(GS) 

gives irrelevant results. In terms of the deviation from the experimental data, the MaxADs 

are 9.651 and 1.455 eV in KROHF(GS) and KROHF(PGB), respectively, which supports 

the physical validity of the PGB set. The deviations in the PGB set arise from the effects 

of spinor relaxation and electron correlation. 

From the viewpoint of the splitting widths between the p1/2 and p3/2 spinors, for the 

N and P atoms, the absolute values of deviations are smaller in KROHF(GS) than in 

KROHF(PGB). However, this does not indicate that the GS set is superior to the PGB set 

for the description of SO splitting. In systems with small relativistic effects, such as N 
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and P, the splitting widths are relatively narrow. Therefore, the splitting widths are 

numerically buried in the errors of the spinor energies due to spinor relaxation and 

electron correlation. It is hence difficult for these systems to directly compare the IPs 

calculated within the KT and HF framework with the experimental IPs. 

In heavier systems where relativistic effects are significant, i.e., As, Sb, and Bi, the 

GS splitting widths are buried in the spinor energy deviations as seen in the lighter 

elements. The deviations of the splitting widths are large; the MaxAD of the splitting is 

0.465 eV. In contrast, the PGB set yields physically reasonable spinor energies, with 

deviations less than 0.094 eV. Hence, the PGB set can perform a qualitatively correct 

evaluation of the splitting widths. 
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Table 5.4. Deviations of the spinor energies of the Bi atom in the ground state computed by 

KROHF from the negative-signed IP/EA values under the FOA (in hartrees). The GS and PGB 

sets were used for the coupling coefficients. The values in parentheses represent degeneracies. 

Spinor GS PGB IP/EA(FOA) 

1s1/2 (2) −0.001372 0.000000 3347.284197

2s1/2 (2) −0.000783 0.000000 607.535591

2p1/2 (2) −0.001368 0.000000 546.498140

2p3/2 (4) −0.001620 0.000000 470.446388

3s1/2 (2) −0.001362 0.000000 149.489180

3p1/2 (2) −0.001774 0.000000 129.889199

3p3/2 (4) −0.002087 0.000000 111.612615

3d3/2 (4) −0.000928 0.000000 100.200410

3d5/2 (6) −0.000933 0.000000 95.669485

4s1/2 (2) −0.003025 0.000000 35.836548

4p1/2 (2) −0.003269 0.000000 28.780671

4p3/2 (4) −0.003783 0.000000 24.076118

4d3/2 (4) −0.002061 0.000000 17.968706

4d5/2 (6) −0.002011 0.000000 16.952927

5s1/2 (2) −0.001592 0.000000 6.814810

4f5/2 (6) −0.009943 −0.000001 6.706222

4f7/2 (8) −0.001508 0.000000 6.511731

5p1/2 (2) −0.010017 0.000000 4.507114

5p3/2 (4) −0.009551 0.000000 3.613293

5d3/2 (4) −0.011712 0.000000 1.371634

5d5/2 (6) −0.011344 0.000000 1.238451

6s1/2 (2) −0.100962 0.000001 0.585248

6p1/2 (2) 0.188355 0.000000 0.343952

6p3/2 (4) 0.167796 0.000000 0.262879

7s1/2 (2) 0.012588 −0.000207 −0.169602
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Table 5.5. SO splitting of the IPs (in eV) for the outermost p-shells of the pnictogen atoms 

computed by KT at the KROHF level with the SD-IODKH/NR Hamiltonian. The GS and PGB 

sets were used for the coupling coefficients. The experimental values are also shown. The values 

in parentheses represent the energy deviations between the KROHF results and the experimental 

values. 

System Spinor GS PGB Exptl.* 

N 2p1/2 4.883 (−9.651) 15.415 (0.880) 14.534

 2p3/2 4.905 (−9.635) 15.448 (0.908) 14.540

 Splitting 0.022 (0.016) 0.034 (0.028) 0.006

   

P 3p1/2 4.221 (−6.266) 10.592 (0.105) 10.487

 3p3/2 4.277 (−6.268) 10.669 (0.124) 10.545

 Splitting 0.056 (−0.002) 0.077 (0.018) 0.058

   

As 4p1/2 3.908 (−5.881) 9.790 (0.001) 9.789

 4p3/2 4.162 (−5.942) 10.134 (0.030) 10.104

 Splitting 0.254 (−0.061) 0.344 (0.029) 0.315

   

Sb 5p1/2 3.503 (−5.105) 8.564 (−0.044) 8.608

 5p3/2 4.053 (−5.257) 9.295 (−0.016) 9.310

 Splitting 0.550 (−0.152) 0.730 (0.028) 0.702

   

Bi 6p1/2 2.587 (−6.021) 7.153 (−1.455) 8.608

 6p3/2 4.234 (−5.076) 9.360 (0.050) 9.310

 Splitting 1.647 (−0.465) 2.206 (0.094) 2.112

* Ref. [75]. 
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5.3.4 Dependence on coupling coefficients 

This subsection discusses the behavior of the various sets of coupling coefficients 

listed in Table 5.1. Table 5.6 shows a similar analysis to Table 5.4, which is extended to 

the other (R, D, BPD, MD, FM, and EE) sets. The behaviors of KROHF(R), KROHF(D), 

KROHF(BPD), KROHF(MD), KROHF(FM), and KROHF(EE) are similar to those of 

KROHF(GS) and KROHF(PGB). Namely, KROHF calculations using these sets also 

describe the SO splitting of the spinor energy levels, i.e., (2j+1)-fold degeneracies of the 

spinors. Furthermore, the spinor energies given by these sets approximately correspond 

to the averages of the pseudo-alpha and pseudo-beta spinor energies of KUHF weighted 

by the coupling coefficients. 

In terms of the deviations from the negative-signed IP/EA values based on the FOA, 

the behaviors of these sets are similar to that of KROHF(GS). Namely, MaxADs are 

188.355 millihartrees for KROHF(R), 100.962 millihartrees for KROHF(D), 

KROHF(BPD), and KROHF(FM), 240.221 millihartrees for KROHF(MD), and 171.976 

millihartrees for KROHF(EE), while 188.355 millihartrees for KROHF(GS) as shown in 

the previous subsection. Consequently, KROHF(PGB) possesses the lowest MaxAD 

value (0.207 millihartrees), indicating that KROHF(PGB) gives the most reasonable 

spinor energies. 
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Table 5.6. Deviations of the spinor energies of the Bi atom in the ground state computed by KROHF using each coefficient set from the negative-

signed IP/EA values under the FOA (in hartrees). The values in parentheses represent degeneracies. Refer to Table 5.4 for the GS and PGB results. 

Spinor R D BPD MD FM EE IP/EA(FOA) 

1s1/2 (2) 0.001372 −0.001372 −0.001372 −0.000915 −0.001372 −0.001372 3347.284197

2s1/2 (2) 0.000783 −0.000783 −0.000783 −0.000522 −0.000783 −0.000783 607.535591

2p1/2 (2) 0.001368 −0.001368 −0.001368 −0.000912 −0.001368 −0.001368 546.498140

2p3/2 (4) 0.001620 −0.001620 −0.001620 −0.001080 −0.001620 −0.001620 470.446388

3s1/2 (2) 0.001362 −0.001362 −0.001362 −0.000908 −0.001362 −0.001362 149.489180

3p1/2 (2) 0.001774 −0.001774 −0.001774 −0.001183 −0.001774 −0.001774 129.889199

3p3/2 (4) 0.002087 −0.002087 −0.002087 −0.001392 −0.002087 −0.002087 111.612615

3d3/2 (4) 0.000928 −0.000928 −0.000928 −0.000619 −0.000928 −0.000928 100.200410

3d5/2 (6) 0.000933 −0.000933 −0.000933 −0.000622 −0.000933 −0.000933 95.669485

4s1/2 (2) 0.003025 −0.003025 −0.003025 −0.002017 −0.003025 −0.003025 35.836548

4p1/2 (2) 0.003269 −0.003269 −0.003269 −0.002179 −0.003269 −0.003269 28.780671

4p3/2 (4) 0.003783 −0.003783 −0.003783 −0.002522 −0.003783 −0.003783 24.076118

4d3/2 (4) 0.002061 −0.002061 −0.002061 −0.001374 −0.002061 −0.002061 17.968706

4d5/2 (6) 0.002011 −0.002011 −0.002011 −0.001341 −0.002011 −0.002011 16.952927

5s1/2 (2) 0.001592 −0.001592 −0.001592 −0.001062 −0.001592 −0.001592 6.814810

4f5/2 (6) 0.009940 −0.009943 −0.009943 −0.006629 −0.009943 −0.009943 6.706222

4f7/2 (8) 0.001508 −0.001508 −0.001508 −0.001005 −0.001508 −0.001508 6.511731

5p1/2 (2) 0.010017 −0.010017 −0.010017 −0.006678 −0.010017 −0.010017 4.507114

5p3/2 (4) 0.009551 −0.009551 −0.009551 −0.006367 −0.009551 −0.009551 3.613293

5d3/2 (4) 0.011712 −0.011712 −0.011712 −0.007808 −0.011712 −0.011712 1.371634

5d5/2 (6) 0.011344 −0.011344 −0.011344 −0.007563 −0.011344 −0.011344 1.238451

6s1/2 (2) 0.100966 −0.100962 −0.100962 −0.067308 −0.100962 −0.100962 0.585248

6p1/2 (2) 0.188355 0.000000 0.000000 0.240221 0.000000 0.171976 0.343952

6p3/2 (4) 0.167796 0.000000 0.000000 0.199490 0.000000 0.131440 0.262879

7s1/2 (2) −0.013431 −0.000207 0.024976 0.008369 0.012588 0.012588 −0.169602
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Figure 5.2 shows the first IPs of the free atoms H to Lr computed by KROHF using 

each set of coupling coefficients with the SD-IODKH/NR Hamiltonian. Each point 

corresponds to the result for each atom. The horizontal and vertical axes indicate the IPs 

calculated through KT and FOA, respectively. The slopes and correlation coefficients (R2) 

based on the least squares method are also shown in each graph of Figure 5.2. A point on 

the 45° line, or slope equaling one, shows good agreement with KT. 

As seen in the above paragraph, KROHF(PGB) shows the physically best results of 

all the sets. Namely, both the slope and R2 values are 1.000. Similar behaviors are 

observed in KROHF(D), KROHF(BPD), and KROHF(FM), although the values of the 

slope and R2 are slightly smaller than those of KROHF(PGB). In KROHF(GS), 

KROHF(R), KROHF(MD), and KROHF(EE), there exist two groups on the plots; each 

group has distinct values of the slope and R2. The group of slopes equaling 1.000 

corresponds to the results of closed-shell structures, while the other group corresponds to 

the open-shell structures. Namely, KROHF(GS), KROHF(R), KROHF(MD), and 

KROHF(EE) correctly describe the behaviors of only the closed-shell structures, while 

they give unphysical spinor energies to the open-shell structures. 

The values of the slope and R2 can be explained from the viewpoint of spinor energies 

being represented by the weighted averages of KUHF spinor energies through the 

coupling coefficients. The open-shell groups in KROHF(GS), KROHF(R), and 

KROHF(EE) have slope values that are close to two. In KROHF(MD), the slope value of 

the open-shell group is approximately three. These slopes reflect the reciprocal of the 

coupling coefficient for the pseudo-alpha open-shell part, OOA . This is also the case with 

KROHF(D), KROHF(BPD), KROHF(FM), and KROHF(PGB). 

The dispersion of the plots, i.e., a small value of R2, is observed in the open-shell 
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groups of KROHF(GS), KROHF(R), and KROHF(MD), while the others have R2 values 

close to one. This reflects the numerical contamination of the pseudo-alpha spinor 

energies with the pseudo-beta spinor energies, i.e., non-zero values of the coupling 

coefficients for the pseudo-beta open-shell part, OOB . Consequently, the values of the 

slope and R2 close to one, i.e., the good descriptions of the first IPs in KROHF(D), 

KROHF(BPD), KROHF(FM), and KROHF(PGB) are derived from    OO OO, 1,0BA  . 

As mentioned above, the points corresponding to the closed-shell structures are on 

the 45° line for all sets of coupling coefficients. This is because KROHF is equivalent to 

KRHF, which satisfies KT, for these points. However, it should be noted that KROHF is 

not always equivalent to KRHF in closed-shell cases. The necessary and sufficient 

condition in KROHF to reproduce the KRHF spinor energies is 

as discussed by Glaesemann and Schmidt [76] for ROHF. This condition normalizes the 

Fock matrix when assembled in the KROHF procedure, and consequently gives the 

normalized spinor energies. All the sets of coupling coefficients adopted here satisfy Eq. 

(5.25). 

At the end of this chapter, let us discuss SCF convergence of KROHF. Here, the 29 

d- and 30 f-block atoms are adopted as test systems because of their SCF convergence 

difficulties observed in SD relativistic calculations as seen in the previous study by the 

author and co-workers [44]. Table 5.7 shows the SCF convergence properties of KROHF 

using each set of coupling coefficients from Table 5.1. The KUHF and GHF results are 

also shown for comparison. The table includes the average number of cycles required to 

achieve SCF convergence (Average), where the elements unconverged within 1000 cycles 

   CC CC VV VV1 1A B A B    , (5.25) 
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are excluded. The number of elements that failed to converge within 1000 cycles is 

tabulated under #Failure. 

As seen in the previous chapter, KUHF shows better SCF convergence behavior than 

GHF for both d- and f-block elements. From the viewpoint of both Average and #Failure, 

KROHF(GS) also shows better convergence behavior than GHF for both d- and f-block 

elements. This is because, in KROHF, the introduction of time-reversal symmetry 

suppresses the spin degrees of freedom, which are the main source of the convergence 

difficulties in SD relativistic calculations. However, the efficacy of KROHF(GS) for SCF 

convergence is inferior to that of KUHF. This is affected by the higher symmetry of the 

KROHF wavefunction than the KUHF wavefunction. A similar situation appears in the 

ROHF and UHF calculations. Consequently, both tight and loose symmetry constraints 

on spin lead to poor SCF convergence behavior. 

KROHF(R) shows a similar convergence behavior to KROHF(GS); KROHF(R) is 

superior in Average but inferior in #Failure. The convergence behavior of KROHF(MD) 

is also relatively similar to that of KROHF(GS) but worse from the viewpoint of both 

Average and #Failure. The behavior of KROHF(MD) is rather close to that of GHF.  

On the other hand, #Failure of KROHF using the other sets, i.e., KROHF(D), 

KROHF(BPD), KROHF(FM), KROHF(EE), and KROHF(PGB), are much larger; in 

particular, the values range from 12 to 18 for f-block systems. This reflects the poorer 

convergence behavior of these sets. The common point of these sets is that they have zero 

values in the coupling coefficients, while the GS, R, and MD sets do not. The existence 

of the zero values in the coupling coefficients would make convergence of KROHF worse. 

Hence, it is suggested that the GS set is the most useful from the viewpoint of stable 

convergence behavior. From the physical point of view, however, the PGB set should be 
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adopted. 

Then, as a simple remedy, the following scheme is available. First, a KROHF(GS) 

calculation is performed. After the calculation converges, the coupling coefficients of the 

GS set are replaced with the PGB set. Here, this scheme is denoted as 

KROHF(GS→PGB). In the KROHF(GS→PGB) scheme, the additional KROHF(PGB) 

calculation converges within one or two SCF cycles. The average values are 151.8 and 

212.4 for the d- and f-block systems, respectively. This scheme is reasonable because the 

variational problems of the KROHF(GS) and KROHF(PGB) are defined on the common 

HF manifold as described in the previous section. In fact, KROHF(GS→PGB) gives the 

same spinor energies as the original KROHF(PGB) calculations within the given criterion 

for SCF convergence. This scheme is, of course, also available in the other sets as well as 

the PGB set. Furthermore, this approach is effective even in ROHF calculations. Actually, 

a similar approach is adopted by Tsuchimochi and Scuseria [16] in their NR study. In 

conclusion, the order of the facility in SCF convergence is written as 

 

  

KUHF KROHF(GS) KROHF(GS PGB)

KROHF(R) GHF KROHF(the other sets).

 
  


 

(5.26)
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Figure 5.2. Comparison of the KT and FOA results for the first IPs of the free atoms from H to Lr calculated by KROHF using each set of coupling 

coefficients. Also shown are the values of slopes and correlation coefficients (R2) based on the least squares analysis. 
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Table 5.7. SCF convergence properties of KROHF with each coefficient set, KUHF, and GHF for 29 d- and 30 f-block atoms using the SD-IODKH/NR 

Hamiltonian. Average indicates the average number of cycles to achieve SCF convergence, where elements unconverged within 1000 cycles are 

excluded. #Failure shows the number of the elements unconverged within 1000 cycles. 

System 
KROHF 

KUHF GHF 
GS R D BPD MD FM EE PGB 

d-Block   

Average 150.8 93.8 29.0 29.1 157.0 32.1 77.7 131.4 108.1 173.9 

#Failure 0 2 13 13 2 14 1 13 1 2 

f-Block   

Average 211.4 182.4 269.4 197.5 288.0 237.4 319.6 190.5 78.8 285.8 

#Failure 2 4 17 18 6 17 12 16 0 4 
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5.4 Conclusion 

In this chapter, an open-shell HF theory for SD two-component relativistic 

calculations, termed KROHF, has been developed. The present KROHF method is 

formulated as a relativistic analogue of ROHF: KROHF is based on KUHF (proposed in 

the previous chapter), adopts quaternion algebra, and satisfies time-reversal symmetry, 

while ROHF is based on UHF, adopts real algebra, and satisfies spin restriction. 

Furthermore, the canonical ROHF procedure by Plakhutin and his co-workers (PGB), 

which satisfies KT and Brillouin’s theorem, has been extended to the present KROHF 

theory; the coupling coefficients for the construction of the KROHF Fock matrix have 

been derived. 

The total energies of the pnictogen atoms were first calculated to examine the 

KROHF method. KROHF gives reasonable but higher total energies in comparison with 

KUHF and GHF, reflecting the higher symmetry of the KROHF wavefunction. The 

choice of the coupling coefficients is confirmed not to affect the total energies in KROHF. 

Then, the spinor energies for the pnictogen atoms were investigated. It was confirmed 

that KROHF(PGB) gives physically reasonable spinor energies, which agree well with 

KT, i.e., the negative-signed spinor energies of KROHF(PGB) are in good agreement with 

the IP and EA values, while KROHF(GS) does not. The spinor energies given by 

KROHF(PGB) also describe the effects of SO interactions well. 

Furthermore, the behaviors of the various sets of coupling coefficients (including the 

GS and PGB sets) were discussed. The spinor energies for the Bi atom and the first IP 

values for H through Lr atoms were investigated. The behaviors of the spinor energies 

given by each set are well described by the weighted averages of the pseudo-alpha and 

pseudo-beta KUHF spinor energies through the coupling coefficients. In consequence, 
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the PGB sets gave the physically best results of all the sets. 

Finally, the SCF convergence behavior of KROHF was compared with KUHF and 

GHF. In KROHF(GS), the SCF convergence behavior is better than GHF but worse than 

KUHF. In contrast, most of the schemes including KROHF(PGB) show poorer 

convergence behavior than GHF. The KROHF(GS→PGB) approach, which changes the 

coupling coefficients, works as a simple remedy to complement the poor SCF 

convergence behaviors of KROHF(PGB) and the other schemes. 
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Chapter 6  

Generalized second-order Møller–Plesset perturbation 

theory for many-electron two-component relativistic 

Hamiltonian 

 

6.1 Introduction 

To accurately describe the electronic structure of molecules including heavy elements, 

relativistic and electron correlation effects are indispensable. Accurate standards for 

modern relativistic quantum chemical calculations are established on the four-component 

DC or DCB Hamiltonians, which consist of the one-particle Dirac operator and the 

electron-electron Coulomb or Breit interactions. The four-component method considers 

both electronic and positronic states. By decoupling the positronic states from the four-

component framework, a wide variety of two-component methods, which are 

computationally more efficient, have been developed. For details and the history of the 

two-component methods, see the review articles by Liu [1] and Saue [2].  

The two-component Hamiltonians are divided into four contributions: the SF and SD 

parts of the one- and two-electron terms. In many quantum chemical program packages, 

only the SF one-electron terms are considered because typical NR codes are available 

with small modifications. Namely, the real-valued formalism using the NR two-electron 

Coulomb interaction can be applied by replacing the NR one-electron integrals with the 

SF relativistic one-electron integrals. However, the other relativistic contributions are also 

important in heavy-element systems. 

To include the relativistic two-electron terms, two methodological approaches are 
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available: the operator and matrix formulations [1]. In the operator formulations, the 

analytical two-component electronic Hamiltonian is first derived, and the matrix 

representation of the Hamiltonian is then constructed. Most analytical two-component 

many-electron Hamiltonians have been derived using the free-particle FW or DKH 

transformations for the four-component DC Hamiltonian [3-8]. Although these methods 

require unitary transformations for two-electron integrals, whose computational scaling 

is O(n5) with the basis set dimension n , the two-electron LUT scheme, i.e., an extension 

of local treatment for the relativistic one-electron terms [9,10], reduces the computational 

cost to O(n) [11]. In contrast, the matrix formulations start from the matrix representation 

of the four-component DC Hamiltonian, and the algebraic two-component many-electron 

Hamiltonian is then constructed [12-16]. The matrix formulations avoid the explicit 

treatment of the complicated two-component operators, although the evaluation of the 

four-component matrix elements increases the computational prefactor. Mostly, these 

methodological approaches have been discussed at the HF level of theory for the 

relativistic two-electron interactions; there has been less discussion at the post-HF level 

of theory [12]. 

For the inclusion of the SD terms such as the SO interaction, there are two types of 

approximate treatment. One type introduces the SD effects as a post-treatment to the NR 

or SF relativistic calculations using either perturbation theory or the CI method [17,18]. 

Another type is based on the approximate representation of the SD two-electron operators. 

For example, in the atomic mean-field approach [19], the effective SD one-electron 

Hamiltonian is constructed by averaging the two-electron contributions. The screened 

nuclear SO approximation [20] and the flexible nuclear screening SO approximation [21] 

avoid the explicit evaluation of the SD two-electron integrals by using simplified physical 
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models that mimic the SD two-electron effects. Both types of approximate treatment can 

be used in combination. 

For a rigorous approach on the SD terms, a self-consistent treatment based on the 

GHF method [22-31], where any symmetry constraints are removed, has been used. This 

is because the spin symmetry of the SD relativistic wavefunction is generally broken due 

to the non-commutativity of the SD relativistic Hamiltonian with spin operators. 

Furthermore, two-component post-HF methods, which use the GHF wavefunction as a 

reference state, have also been developed, such as the GMP2 method [32-35] and the 

generalized CC theories [36-40]. However, these methods are limited to the treatment of 

the lower-order SD two-electron relativistic corrections.  

In this chapter, a general formulation of the GMP2 method in accordance with the 

analytical SD two-component relativistic many-electron Hamiltonians has been derived 

to describe the full relativistic effects within the DC framework. Based on the general 

formulation, the author has implemented the GMP2 code for the IODKH Hamiltonian for 

many-electron systems, denoted as IODKH/IODKH, which is one of the most accurate 

two-component many-electron Hamiltonians. Furthermore, the significance of the two-

electron relativistic effect has been examined as well as the SD treatment. This chapter is 

organized as follows: Theory and implementation are explained in Sec. 6.2. In Sec. 6.3, 

the present GMP2 method is numerically assessed for atomic and molecular systems. 

Finally, in Sec. 6.4, concluding remarks are presented. 
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6.2 Theory and implementation 

6.2.1 GMP2 method 

The GMP2 method is one of the fundamental electron correlation theories, which 

uses the GHF wavefunction as a reference state. In the GHF-based method, GSOs are 

defined by the superposition of AOs for alpha- and beta-spins, 

{ , }{AO}

i iC
 

 
 

 

     , (6.1)

where   denotes the AOs (labeled by Greek letters), C  the complex MO coefficients, 

and   the spin functions. Note that the spin degrees of freedom are not integrated out 

in Eq. (6.1). 

The GMP2 correlation energy for the general two-component Hamiltonian in Eq. 

(2.11) is given by 

     
2

occ vir
12 12GMP2

corr

1

4 a b ib jij a

ia g jb ib g ja
E

   




 
  , (6.2)

where ,i j  and ,a b  refer to occupied and virtual orbitals, respectively [32]. The two-

electron integrals in the MO basis are constructed from the corresponding AO integrals 

via a four-index transformation, 

     
  , AO

12 12i a j bia g jb C C C C g
 

   
   

  

  
  

 

     , (6.3)

where  ,   and  ,    denote the spin functions for electrons 1 and 2, respectively. 

Here, the so-called chemists’ notation is used.  

In this chapter, programmable expressions of the four-index transformation have 

been derived for the general two-component two-electron operators in Eq. (2.14). For 

each operator in Eq. (2.14), Eq. (6.3) is factorized into spatial and spin parts as follows: 
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     
   

  2

1 2

1 2 1

, AO , ,

12

12 1 2 ,

x y z

i a j bia g jb C C C C
 

   
   

    

        

  

 

   

  
 

(6.4)

where   and   are the spatial and spin parts of the two-electron operators, 

respectively, and 1  and 2  denote x, y, or z directions. For SF
12g ,   and   are 

defined as 

1 2 SF
12 12g    (6.5)

and 

1 2
1 2

1

3
    ; (6.6)

for SD1
12g , 

 1 2 1
12 1 12X    , (6.7)

1 1
1 1
  , (6.8)

and 

2
2

1

3
  ; (6.9)

for SD2
12g , 

 1 2 2
12 2 12X    , (6.10)

1
1

1

3
  , (6.11)

and 

2 2
2 1
  ; (6.12)

and for SD3
12g , 
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  1 2 1 2
12 1 2 12X      , (6.13)

1 1
1 1
  , (6.14)

and 

2 2
2 1
  . (6.15)

The factors, 1 3 , in Eqs. (6.6), (6.9), and (6.11) are introduced to normalize the 

summation over the direction  . By performing spin integration in Eq. (6.4), the 

programmable forms of the transformation are obtained. Table 6.1 summarizes the 

formulae of the transformation for each operator using the ladder-like operator defined as 

x yi     . (6.16)

The spin pairs in the rows and columns indicate the spin components for electron 1 (  

and  ) and electron 2 (  and  ), respectively. Each cell shows the non-zero spatial 

components of the operators. For example, for the SD1
12g  type operator, Eq. (6.4) is 

 
   

   

  

      
   

1 1

1 2

1 1

1

SD1
12

, AO , ,

1 12 1

, AO , ,

1 12 1

1

3

,

x y z

i a j b

x y z

i a j b

ia g jb

C C C C X

C C C C X

 
    

   
    

 
    

    
   

      

     

  

 

  


 

 











 

 

 

(6.17) 

where   is the Kronecker delta. Assuming    , , , , , ,          , the spatial and 

spin factors in Eq. (6.17) become 

  
 

     
 

   

1 1

1

1

, ,

1 12 1

, ,

1 12 1 1 12 1

1 12 1 .

x y z

x y z
x x y y

z z

X

X X

X

 






     

         

    



 



 





  

(6.18) 
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By substituting  †
1 0   and the definitions of the Pauli matrices [Eqs. (2.5)–(2.7)], 

the first and second terms in Eq. (6.18) vanish. Consequently, the 

   , , , , , ,          contribution to the MO integral results in  

      
 AO

1 12
z

i a j bC C C C X   
   



 
 

  , (6.19)

as in the top-left cell of row SD1
12g  in Table 6.1. In the same manner, the 

   , , , , , ,          contribution of SD1
12g  is 0, as in the next cell, because 

0      in Eq. (6.17). 
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Table 6.1. Summary of the formulae for the four-index transformation. α and β in the rows and 

columns correspond to the spin components for electrons 1 and 2, respectively. Each cell shows 

the non-zero component of the spatial part of the operators, where X12 is omitted for simplicity. 

Operator Spin for elec. 1 
Spin for elec. 2 

αα  αβ  βα  ββ  

SF

12g αα ( )SF

12gμν ρλ+ 0 0 ( )SF

12gμν ρλ+

αβ 0 0 0 0

βα 0 0 0 0

ββ ( )SF

12gμν ρλ+ 0 0 ( )SF

12gμν ρλ+

SD1

12g αα ( )1

zμν ρλ+ Ω 0 0 ( )1

zμν ρλ+ Ω

αβ ( )1μν ρλ−+ Ω 0 0 ( )1
μν ρλ−+ Ω

βα ( )1
μν ρλ++ Ω 0 0 ( )1μν ρλ++ Ω

ββ ( )1

zμν ρλ− Ω 0 0 ( )1

zμν ρλ− Ω

SD2

12g αα ( )2

zμν ρλ+ Ω ( )2μν ρλ−+ Ω ( )2μν ρλ++ Ω ( )2

zμν ρλ− Ω

αβ 0 0 0 0

βα 0 0 0 0

ββ ( )2

zμν ρλ+ Ω ( )2μν ρλ−+ Ω ( )2μν ρλ++ Ω ( )2

zμν ρλ− Ω

SD3

12g αα ( )( )1 2

z zμν ρλΩ+ Ω ( )( )1 2

zμν ρλ−Ω+ Ω ( )( )1 2

zμν ρλ+Ω+ Ω ( )( )1 2

z zμν ρλΩ− Ω

αβ ( )( )1 2

zμν ρλ− Ω+ Ω ( )( )1 2μν ρλ− −Ω+ Ω ( )( )1 2μν ρλ− +Ω+ Ω ( )( )1 2

zμν ρλ− Ω− Ω

βα ( )( )1 2

zμν ρλ+ Ω+ Ω ( )( )1 2μν ρλ+ −Ω+ Ω ( )( )1 2μν ρλ+ +Ω+ Ω ( )( )1 2

zμν ρλ+ Ω− Ω

ββ ( )( )1 2

z zμν ρλΩ− Ω ( )( )1 2

zμν ρλ−Ω− Ω ( )( )1 2

zμν ρλ+Ω− Ω ( )( )1 2

z zμν ρλΩ+ Ω

 

 

6.2.2 Implementation 

In this chapter, the GMP2 method combined with several levels of two-component 

Hamiltonians was implemented, according to the formulae described in the previous 

subsection. The most accurate two-component Hamiltonian adopted here is based on the 

IODKH transformation for the four-component DC Hamiltonian, termed 

IODKH/IODKH. Here, the strings before and after the slash mark (/) denote the levels of 

the relativistic corrections for the one- and two-electron parts of the Hamiltonian, 
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respectively. The definitions of the IODKH-transformed one-electron [41] and two-

electron [8] parts of the Hamiltonian are given in Secs. 2.3 and 2.4, respectively. The 

present GMP2 code is also compatible with the IODKH/NR Hamiltonian, i.e., the 

combination of the IODKH one-electron terms and the untransformed NR electron-

electron Coulomb operator.  

In the present implementation, the four-index transformation is performed as four 

sequential one-index transformations in the same manner as the well-established NR four-

index transformation [42], 

     
  , AO

12 12ii g C g
 




 

   


   , (6.20)

   
  , AO

12 12ag C gia i
 




 

  



   , (6.21)

     
  , AO

12 12jia j iag C g
 




 

 


   , (6.22)

and 

   
  , AO

12 12bg C gia jb ia j
 




 





   . (6.23)

There are three modifications of the algorithm compared to the NR transformation. 

The first modification is the use of complex algebra instead of real algebra to describe the 

SD relativistic effects. The integral values and MO coefficients will be complex numbers 

in the general case of the SD relativistic calculations. The second modification is the 

expansion of the two-electron integrals. Namely, the NR two-electron Coulomb integrals 

are replaced by the SF
12g , SD1

12g , SD2
12g , and SD3

12g  type two-electron integrals; the 

transformation for each type of integral follows the formulae in the previous subsection. 

The third modification is the permutational symmetry, which is accompanied by the 
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second modification. The SF
12g  type integrals have the same eight-fold symmetry as the 

NR two-electron Coulomb integrals, 

       
       

SF SF SF SF
12 12 12 12

SF SF SF SF
12 12 12 12 .

g g g g

g g g g

       

       

  

   
 

(6.24)

In contrast, for the spatial parts of the SD1
12g  and SD2

12g  type integrals, there exist four-

fold-like symmetries, 

       1 1 1 1
1 1 1 1
                  (6.25)

and 

       2 2 2 2
2 2 2 2
                 . (6.26)

For the spatial part of the SD3
12g  type integrals, there exists an eight-fold-like symmetry 

in the diagonal ( 1 2  ) tensor components,  

     
     

     
     

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 ,

   

   

   

   

   

   

   

   

 

  

   

   

   

   

  

  

 

(6.27)

and a four-fold-like symmetry in the off-diagonal ( 1 2  ) tensor components, 

     
     

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 .

   

   

   

   

 

 

   

   
 

(6.28)

Note that the minus signs in Eqs. (6.25)–(6.28) stem from the anti-commutativity of the 

cross-product contained in the Ω  operators. 
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6.3 Numerical assessments 

6.3.1 Computational details 

This section assesses the performance of the present GMP2 method combined with 

five levels of Hamiltonians: the one-electron NR Hamiltonian with the two-electron NR 

Coulomb interaction (NR/NR), the one-electron IODKH Hamiltonian with the two-

electron NR Coulomb interaction in the SF (SF-IODKH/NR) and SD (SD-IODKH/NR) 

formalisms, and the one-electron IODKH Hamiltonian with the two-electron IODKH-

transformed Coulomb interaction in the SF (SF-IODKH/IODKH) and SD (SD-

IODKH/IODKH) formalisms. For the reference calculations, the four-component DC 

Hamiltonian was adopted. For comparison, five widely-used two-component 

Hamiltonians were also used with the two-electron NR coulomb interaction in the SF 

formalism: the SF-ZORA/NR, SF-RESC/NR, and SF-DKHn/NR (n = 1, 2, and 3) 

Hamiltonians. The higher-order SD contributions in the IODKH transformation for the 

two-electron terms were neglected to reduce the computational cost, as explained in the 

previous study [8]. The point nucleus model was used in the evaluation of the electron-

nucleus interaction. The NR/NR, SF-IODKH/NR, SD-IODKH/NR, SF-IODKH/IODKH, 

and SD-IODKH/IODKH calculations were performed using the in-house relativistic 

program. The DC and SF-ZORA/NR calculations were performed using DIRAC12 [43]. 

The SF-RESC/NR and SF-DKHn/NR calculations were performed using GAMESS [44]. 

Numerical assessments were performed for He-like atoms (with nuclear charges Z = 

2, 10, 20, …, and 110), Ne-like atoms (Z = 10, 20, …, and 110), and 16 diatomic 

molecules including HX, X2 (X = F, Cl, Br, I, and At), MH, and M2 (M = Cu, Ag, and 

Au). For the atomic systems, the universal Gaussian-type basis sets optimized for the 

four-component DC calculations by Malli et al. [45] were employed, i.e., (40s40p) for the 
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He-like atoms and (40s40p25d) for the Ne-like atoms. For the molecular systems, the 

Sapporo-(DKH3-)DZP-2012 basis sets [46,47] were used in an uncontracted form. The 

experimental bond lengths [48,49] were used, except for HAt and At2. The optimized 

bond lengths reported in previous theoretical studies [50,51] were used for HAt and At2. 

In the molecular MP2 calculations, the outermost s/p- and s/p/d-electrons were correlated 

for the halogens and the coinage metal atoms, respectively. 

 

6.3.2 Accuracy in He- and Ne-like atoms 

In relativistic quantum chemistry, He-like atoms with large Z are widely used as test 

systems because the relativistic effects derived from the 1s2 configuration affects the 

electronic energy and properties significantly. In particular, the behavior of the electron 

correlation energy with respect to Z depends on the level of accuracy of the relativistic 

Hamiltonian [52-54]. For example, the absolute value of the correlation energy calculated 

using SF-DKH3/NR, which is one of the widely-used two-component relativistic 

Hamiltonians, is largely overestimated in comparison with the DC results [53]. This 

subsection discusses the Hamiltonian dependence of the MP2 correlation energies of the 

He-like atoms as well as the Ne-like atoms to examine the accuracy of the present GMP2 

method. Here, the MP2 correlation energies are investigated in terms of the four 

relativistic effects: SF one-electron, SF two-electron, SD one-electron, and SD two-

electron effects.  

First, the SF one-electron effect is examined. Figure 6.1 shows the MP2 correlation 

energies of the He-like atoms with Z = 2–110 at the NR/NR, SF-ZORA/NR, SF-

RESC/NR, SF-DKHn/NR (n = 1, 2, and 3), SF-IODKH/NR, and DC levels. The nuclear 

charge Z is shown on the horizontal axis. The vertical axis represents the MP2 correlation 
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energies in hartrees. The NR/NR correlation energies are almost constant with 

approximately −0.04 hartrees from Z = 10 to 110. At the four-component DC level, the 

correlation energies decrease monotonically with increasing Z. The larger absolute values 

of the correlation energies in DC compared to those in NR/NR are due to the enhancement 

of the electron repulsion induced by the relativistic orbital contraction.  

All the SF one-electron Hamiltonians overestimate the absolute values of the 

correlation energies compared with the results of the DC calculations, although the 

energies also monotonically decrease. This can be explained by the excessive shrinkage 

of the 1s orbital due to the unbalanced treatment of the one- and two-electron parts of the 

two-component Hamiltonian, as pointed out by Tatewaki and Noro [53]. SF-IODKH/NR, 

whose one-electron part is equivalent to the four-component Dirac Hamiltonian, gives the 

limit of the correlation energy when the SF one-electron relativistic effect alone is 

considered. In SF-ZORA/NR, the absolute values of the correlation energies are 

significantly overestimated compared with those of SF-IODKH/NR. In SF-RESC/NR, 

the absolute values of the correlation energies are smaller than those in SF-IODKH/NR, 

although the values are closer to SF-IODKH/NR compared with SF-ZORA/NR. SF-

DKH1/NR also overestimates the absolute values of the SF-IODKH/NR results. In 

contrast, the behaviors of SF-DKH2/NR and SF-DKH3/NR are similar to that of SF-

IODKH/NR. These improvements are due to the inclusion of the higher-order relativistic 

terms. Consequently, more accurate relativistic treatments than the DKH2 level are 

required to correctly describe the SF one-electron relativistic effect in the correlation 

energies; however, the SF one-electron relativistic effect alone is insufficient to describe 

the correlation energies at the DC level. 
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Figure 6.1. MP2 correlation energies for He-like atoms with Z = 2–110 using the NR/NR, SF-

ZORA/NR, SF-RESC/NR, SF-DKHn/NR (n = 1, 2, and 3), SF-IODKH/NR, and DC 

Hamiltonians. 

 

 
Figure 6.2. MP2 correlation energies for He-like atoms with Z = 2–110 using the NR/NR, SF-

IODKH/NR, SD-IODKH/NR, SF-IODKH/IODKH, SD-IODKH/IODKH, and DC Hamiltonians. 

  



149 

Next, the other relativistic effects are examined. Figure 6.2 shows the MP2 

correlation energies of the He-like atoms at the NR/NR, SF-IODKH/NR, SD-IODKH/NR, 

SF-IODKH/IODKH, SD-IODKH/IODKH, and DC levels. Let us focus on the SF two-

electron relativistic effect. SF-IODKH/IODKH reproduces the DC correlation energies 

well, which indicates that both SF one- and two-electron relativistic effects contribute to 

the correlation energies significantly. The smaller absolute values of the correlation 

energies in SF-IODKH/IODKH compared with those in SF-IODKH/NR are because the 

electron-electron Darwin interaction, which is included in the IODKH-transformed two-

electron terms, induces the inter-electron attraction. 

Now, let us discuss the SD one- and two-electron effects. SD-IODKH/NR 

overestimates the absolute values of the DC correlation energies, and its behavior is 

similar to that of SF-IODKH/NR. This indicates that the SD one-electron relativistic 

effect slightly affects the correlation energies because of the 1s2 configuration. SD-

IODKH/IODKH reproduces the DC results as well as SF-IODKH/IODKH. The absolute 

values of the correlation energies in SD-IODKH/IODKH are slightly larger than those in 

SF-IODKH/IODKH. Additionally, the difference between SF- and SD-IODKH/NR is 

larger than that between SF- and SD-IODKH/IODKH. This indicates that the SD two-

electron effect is larger than the SD one-electron effect in the correlation energies. 

Consequently, the SF one- and two-electron relativistic effects are essential to reproduce 

the correlation energies at the DC level for the He-like atoms. 

Finally, the relativistic effects in the correlation energies for the Ne-like atoms are 

examined. Figure 6.3 shows the MP2 correlation energies for the Ne-like atoms with Z = 

10–110 using the NR/NR, SF-IODKH/NR, SD-IODKH/NR, SF-IODKH/IODKH, SD-

IODKH/IODKH, and DC Hamiltonians. The trends in the correlation energies with 
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respect to Z are similar to those of the He-like atoms. In NR/NR, almost constant 

correlation energies are obtained. In DC, the correlation energies decrease with increasing 

Z. SF-IODKH/NR overestimates the absolute values of the DC results. In SD-

IODKH/NR, the absolute values of the correlation energies are slightly larger than those 

in SF-IODKH/NR.  

In contrast, the behavior of the correlation energies in SF-IODKH/IODKH is 

different from that for the He-like atoms. Namely, SF-IODKH/IODKH underestimates 

the absolute values of the DC correlation energies, although the behavior is similar to that 

of DC. In SD-IODKH/IODKH, the behavior of the correlation energies is improved, 

although the absolute values are slightly overestimated compared with those of DC. 

Namely, the inclusion of the SD one- and two-electron terms contributes to an increase in 

the absolute values of the correlation energies in comparison with SF-IODKH/IODKH. 

The significance of the SD relativistic effects for the Ne-like atoms is due to the 1s22s22p6 

configuration: the 2p shell, which is the innermost shell affected by SO interactions, is 

occupied in the ground state. Consequently, the four relativistic terms, i.e., the SF one-

electron, SD one-electron, SF two-electron, and SD two-electron terms are essential for 

the correlation energies of the Ne-like atoms. 
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Figure 6.3. MP2 correlation energies for Ne-like atoms with Z = 10–110 using the NR/NR, SF-

IODKH/NR, SD-IODKH/NR, SF-IODKH/IODKH, SD-IODKH/IODKH, and DC Hamiltonians. 

 

6.3.3 Accuracy in diatomic molecules 

This subsection investigates the accuracy of the present GMP2 method for 16 typical 

diatomic molecules including the first- to sixth-row elements. Table 6.2 shows the MP2 

correlation energies using the NR/NR, SF-IODKH/NR, SD-IODKH/NR, SF-

IODKH/IODKH, SD-IODKH/IODKH, and DC Hamiltonians. The original values of the 

correlation energies are shown for DC, and the deviations from the DC values are shown 

for the other Hamiltonians. In NR/NR, the MaxAD of the correlation energies is 0.091913 

hartrees for Au2. In SF-IODKH/NR, the correlation energies are improved by one order 

of magnitude through the inclusion of the SF one-electron relativistic effect, where the 

MaxAD is 0.003072 hartrees for Au2. In SD-IODKH/NR, the correlation energies are 

improved by one more orders of magnitude due to the SD one-electron effect, where the 

MaxAD is 0.000318 hartrees for Au2. In SF-IODKH/IODKH, the MaxAD in the 
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correlation energies is 0.002732 hartrees for Au2, which is the smaller value compared 

with SF-IODKH/NR due to the SF two-electron relativistic effect. In SD-

IODKH/IODKH, further improvement of the MP2 correlation energies is achieved 

through the inclusion of the SD two-electron relativistic effect, where the MaxAD is 

0.000032 hartrees for Au2. Consequently, SD-IODKH/IODKH reproduces the DC 

correlation energies for the typical heavy-element systems with sub-microhartree 

accuracy. 

 

6.3.4 Computational cost 

This subsection discusses the computational cost of the present GMP2 method for 16 

diatomic molecules. Table 6.3 shows the CPU times taken for the MP2 calculations at the 

SD-IODKH/NR, SD-IODKH/IODKH, and DC levels. The speed-up ratios in comparison 

with the DC results are also shown. A single core of an Intel Xeon E5-2690 (2.90 GHz) 

processor was used. 

In SD-IODKH/NR, the MP2 calculations are 29.6 to 141.5 times faster than those in 

DC. This is due to two factors. The first factor is the size of the AO space. The number of 

dimensions of the AO space in DC is approximately 1.6 to 1.7 times more than that in 

SD-IODKH/NR. The increased AO dimension arises from the small component basis 

functions generated by the restricted kinetic balance condition, which is a condition to 

avoid variational collapse in the four-component calculations. The second factor is the 

number of types of two-electron integrals. In SD-IODKH/NR, one type of two-electron 

integrals is treated, whereas DC requires 16 types of two-electron integrals involving the 

large (L) and small (S) component basis functions, i.e., one type of (LL|LL), three types 

of (LL|SS), three types of (SS|LL), and nine types of (SS|SS) integrals. The (LL|LL)-type 
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integrals correspond to the NR two-electron integrals appearing in the SD-IODKH/NR 

calculations. 

In SD-IODKH/IODKH, the MP2 calculations are 2.2 to 8.4 times faster than those 

in DC. The longer CPU time in DC is due to the larger size of the AO space, as explained 

above. Compared with SD-IODKH/NR, SD-IODKH/IODKH requires approximately 

13.5 to 16.8 times greater CPU time. This is because, as DC, SD-IODKH/IODKH also 

treats 16 types of two-electron integrals. This extra computational cost in SD-

IODKH/IODKH would be efficiently reduced by parallelization because the four-index 

transformation for each type of integral is completely independent. 

 

6.4 Conclusion 

In this chapter, the author has proposed a general formulation for the GMP2 method 

in accordance with the analytical two-component relativistic Hamiltonians for many-

electron systems, allowing the description of the full relativistic effects at the DC level. 

Based on this general formulation, the GMP2 code for the IODKH/IODKH Hamiltonian 

have been implemented. 

For the numerical assessments, the correlation energies for He-like and Ne-like atoms 

were evaluated. For the He-like atoms, the trend in the MP2 correlation energies of DC 

with respect to the nuclear charge was reproduced well by the SF- and SD-

IODKH/IODKH Hamiltonians, indicating the significance of the SF one- and two-

electron relativistic effects. For the Ne-like atoms, on the other hand, the DC results were 

reproduced well only by the SD-IODKH/IODKH Hamiltonian, indicating the 

significance of the full relativistic effects, i.e., the SF and SD one-/two-electron effects. 

The accuracy and computational cost of the present GMP2 method were also 
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assessed for 16 typical diatomic molecules including first- to sixth-row elements. In these 

systems, the MP2 correlation energies using the DC Hamiltonian were reproduced by the 

SD-IODKH/IODKH Hamiltonian with sub-microhartree accuracy. The CPU times of the 

present GMP2 calculations for the SD-IODKH/IODKH Hamiltonian were 2.2 to 8.4 

times smaller than that for the DC Hamiltonian. 

The present method, where the GHF wavefunction is used as a reference state, can 

be extended to higher-order electron correlation theories including configuration 

interaction and coupled cluster methods in the same manner. 
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Table 6.2. MP2 correlation energies (in hartrees) for 16 diatomic molecules. The original values are shown in the DC column; the deviations from the 

DC values are shown in the other columns. 

Molecule 
Deviation from DC 

DC 
NR/NR SF-IODKH/NR SD-IODKH/NR SF-IODKH/IODKH SD-IODKH/IODKH

HF 0.000232 −0.000036 −0.000036 0.000000 0.000000 −0.250145

HCl 0.000220 −0.000009 −0.000008 −0.000001 0.000000 −0.177509

HBr 0.000383 −0.000028 0.000000 −0.000025 0.000000 −0.147837

HI 0.000074 −0.000125 0.000001 −0.000123 −0.000001 −0.124264

HAt −0.001004 −0.001412 0.000029 −0.001418 −0.000010 −0.117239

CuH 0.008674 −0.000102 −0.000069 −0.000019 −0.000007 −0.828655

AgH 0.016011 0.000098 0.000047 0.000069 −0.000011 −0.590833

AuH 0.049990 0.001358 0.000214 0.001126 −0.000016 −0.543153

F2 0.000458 −0.000069 −0.000068 −0.000001 0.000000 −0.485178

Cl2 0.000472 −0.000014 −0.000012 −0.000002 0.000000 −0.326546

Br2 0.000912 −0.000048 0.000004 −0.000048 −0.000001 −0.267605

I2 0.000473 −0.000243 0.000005 −0.000246 −0.000002 −0.218481

At2 −0.010399 0.001614 0.000081 0.001609 −0.000025 −0.205443

Cu2 0.016714 −0.000214 −0.000130 −0.000044 −0.000012 −1.619134

Ag2 0.031357 0.000208 0.000087 0.000163 −0.000019 −1.159289

Au2 0.091913 0.003072 0.000318 0.002732 −0.000032 −1.049347
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Table 6.3. CPU time (in seconds) of MP2 calculations for 16 diatomic molecules. A single core 

of an Intel Xeon E5-2690 (2.90 GHz) processor was used. The values in parentheses show speed-

up ratios of the SD-IODKH/NR and SD-IODKH/IODKH calculations to the DC calculations. 

The number of AOs for one component (or large component) is also shown as nAO. 

Molecule nAO 
CPU time 

SD-IODKH/NR SD-IODKH/IODKH DC 

HF 45 0.1 (35.0) 1.3 (2.7) 3.4

HCl 74 0.5 (52.2) 7.7 (3.7) 28.3

HBr 131 4.0 (86.5) 60.9 (5.6) 342.0

HI 148 5.8 (89.7) 88.7 (5.8) 515.8

HAt 231 30.6 (131.9) 485.8 (8.3) 4035.0

CuH 125 8.2 (37.7) 116.7 (2.6) 308.4

AgH 145 12.9 (42.7) 183.3 (3.0) 552.7

AuH 219 54.7 (61.0) 904.6 (3.7) 3338.4

F2 64 0.6 (29.6) 8.0 (2.2) 17.7

Cl2 122 5.4 (54.5) 74.4 (3.9) 292.3

Br2 236 55.0 (95.5) 801.0 (6.6) 5249.0

I2 270 83.6 (110.5) 1231.4 (7.5) 9237.8

At2 436 584.1 (141.5) 9848.3 (8.4) 82677.3

Cu2 224 128.8 (38.3) 1808.9 (2.7) 4932.2

Ag2 264 210.0 (45.0) 3021.8 (3.1) 9440.0

Au2 412 1087.4 (62.9) 17736.7 (3.9) 68378.4
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Chapter 7  

Examination of frustrated spin systems based on the 

two-component approach: A case study for hydrogen 

ring clusters 

 

7.1 Introduction 

In quantum chemical calculations, open-shell or strongly correlated systems that 

have multi-radical characters are commonly treated using UHF-based methods. This 

approach assumes the collinearity of spin, i.e., one-dimensional spin alignment. However, 

multi-radical systems are highly diverse. For example, there exist many non-collinear 

spin systems, i.e., molecules with two- or three-dimensional spin orientations. The 

geometrically frustrated spin systems are the typical examples, possessing spin non-

collinearity. The correct spin behaviors of the non-collinear or frustrated spin systems 

cannot be described by means of one-component UHF-based methods because the spin-

quantized axis is fixed along one particular direction (normally the z-direction) in these 

methods. 

A straightforward approach to investigate the non-collinear systems is to use two-

component GHF-based methods [1-9]. In GHF, each of the spin-quantized axes can rotate 

freely because the spin-orbitals of GHF, termed the GSOs, are composed of a 

superposition of alpha and beta spin components. Although GHF and its related methods 

[2,8] have long been studied, they have rarely been adopted in practical applications. The 

main reason for this is that the GHF wavefunction is generally complex-valued and 

possesses high spin degrees of freedom, leading to local minima and SCF convergence 
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problems. Recently, several remedies to these problems have been proposed based on the 

second-order SCF [10] and DIIS [11] methods. A simple analysis to test the non-

collinearity of the obtained solution has also been proposed. In addition, GHF has been 

extended to electron correlation methods within the NR [12,13] and relativistic [14] 

frameworks, the real-time propagation method of the time-dependent HF equation [15], 

and the spin projection method [16]. Thus far, there have been a few examples of 

application studies performed for the non-collinear or frustrated spin systems by means 

of GHF or the generalized Kohn–Sham method [17,18], i.e., the GHF’s DFT cousin; for 

example, for fullerenes [19], hydrogen clusters [10,12,20], manganese clusters [21], and 

iron–sulfur clusters [22]. However, there is still a lot of room to elucidate the fundamental 

properties of frustrated spin systems. Furthermore, to the best of the knowledge, there is 

only one example of a post-GHF level study for these systems: for an asymmetric 

stretching of H3 [12]. 

This chapter investigates the core properties of the equilateral triangular H3 molecule, 

which is one of the simplest frustrated spin systems, and its extended systems (the H7 and 

H11 molecules) by means of UHF and UMP2, i.e., one-component (collinear) methods; 

and by means of GHF and GMP2, i.e., two-component (non-collinear) methods. In 

particular, the author has focused on the potential energy curves and spin expectation 

values. This is because the major difference between UHF and GHF is the preserved spin 

symmetry; that is, UHF preserves the zS  but not 2S  symmetry, while GHF does not 

[2,8]. In addition, the difference of the spin symmetry leads to a difference in the total 

energies, which is known as Löwdin’s dilemma [23]. 

This chapter is organized as follows. In Sec. 7.2, the computational details for the 

present examination is described. Section 7.3 discusses the behaviors of the potential 
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energy curves and spin expectation values for H3, H7, and H11. Finally, Sec. 7.4 gives 

concluding remarks. 

 

7.2 Computational details 

All the calculations were performed at the UHF, UMP2, GHF and GMP2 levels using 

the Gaussian 09 program [24] and the in-house two-component code. The basis set 

adopted here was cc-pVDZ [25], which is the minimum required set to describe the 

polarization of the hydrogen s-orbitals. The geometries of the H3, H7, and H11 molecules 

were fixed as an equilateral triangle, heptagon, and hendecagon, respectively. In the UHF 

and UMP2 calculations, the LS and HS states were assumed for each of the molecules; 

that is, the doublet and quartet states for H3, the doublet and octet states for H7, and the 

doublet and dodecet states for H11.  

 

7.3 Results and discussion 

Figure 7.1 shows the potential energy curves of the H3 molecule at the UHF, GHF, 

UMP2, and GMP2 levels of theory. The bond length is indicated on the horizontal axis in 

ångström units. The vertical axis indicates the total energy in hartrees. Here, the UHF 

(UMP2) calculations for the LS and HS states are simply denoted as UHF(LS) and 

UHF(HS) [UMP2(LS) and UMP2(HS)], respectively. In UHF(LS), a potential energy 

curve that has a minimum value around 1.0 Å is obtained, while a repulsive curve is 

obtained in UHF(HS). The repulsive character of the UHF(HS) curve is due to Pauli 

repulsion between all the spin sites. Both of the curves converge to the same total energy 

value, i.e., approximately −1.5 hartrees, which is three times as large as the exact energy 

value of the single hydrogen atom (−0.5 hartrees). In GHF, the potential energy curve has 
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a minimum around 1.0 Å and converges to approximately −1.5 hartrees. However, the 

total energy values of the GHF solution are smaller than those of UHF(LS) at equilibrium 

through intermediate regions, indicating that GHF gives a broken-symmetry solution by 

removing the spin symmetry constraints. In addition, the UHF(LS) curve possesses the 

local maximum around 1.5 Å, while GHF does not. This behavior in UHF(LS) is because 

of the spin contamination by the HS (quartet spin) state. In GHF, the absence of a local 

maximum implies less spin contamination. In UMP2(LS), a bound potential curve is 

obtained, and the depth of the potential well is greater than that in UHF(LS) because of 

the inclusion of electron correlation. UMP2(HS) gives a qualitatively similar, repulsive 

curve to that of UHF(HS). The behavior of the GMP2 curve is similar to that of 

UMP2(LS). The total energy values of GMP2 are smaller than those of UMP2(LS), which 

indicates that GMP2 inherits the broken-symmetry character of GHF. All of the MP2 

curves correctly converge to the same dissociation limit as those seen in the HF cases.  

Incidentally, in Ref. [20], it is pointed out that GHF alone, i.e., without the spin-

projection or multi-configurational techniques, cannot describe the equilibrium state of 

H3, which is inconsistent with the aforementioned result. Possibly, unstable GHF 

solutions were obtained in the previous study, while variationally more stable GHF 

solutions are obtained here. 

Figure 7.2 shows zS  (in the top panel) and 2S  (in the bottom panel), i.e., the 

spin expectation values of the 2S  and zS  operators, respectively, for the H3 molecule 

at the UHF and GHF levels. The bond length is shown on the horizontal axis in ångström 

units. The vertical axis indicates the expectation values in atomic units. The HS and LS 

results are shown for UHF. In UHF(LS) and UHF(HS), the zS  values are constant for 

the entire region; the values are exactly 1 2 0.5  and 3 2 1.5 , respectively. These 
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values reflect the doublet and quartet spin states, and also reflect that UHF preserves the 

Sz symmetry. In GHF, the zS  values are exactly zero and constant for the entire region, 

indicating that the non-collinear solutions are correctly obtained. The zero zS  values 

are due to the global cancellation of the individual atomic spin magnetization vectors on 

account of spin frustration. Importantly, xS  and yS  are also exactly zero for the 

entire region in GHF as well as UHF(LS) and UHF(HS), although they are not shown in 

the figure. 

As shown in the bottom panel, 2S  of UHF(HS) is exactly 3.75. This value is 

obtained by substituting 3 2S   for  1S S  , which coincides with the exact 

eigenvalue of the 2S  operator. Thus, the UHF(HS) solution here gives the non-spin-

contaminated solutions, which correspond to the exact quartet eigenstate. In UHF(LS), 

the 2S  value is close to 0.75, i.e., the exact eigenvalue of the 2S  operator for the 

doublet states, in the equilibrium region. 2S  monotonically increases with respect to 

the bond length, and converges to 1.75 in the dissociation region. This behavior indicates 

that the magnitude of the spin contamination becomes larger with increasing bond length, 

as seen in many molecules [26]. A similar behavior concerning 2S  is obtained in GHF. 

Namely, the 2S  value is approximately 0.75 in the equilibrium region, and 

monotonically increases with respect to the bond length. In the dissociation region, 

however, the value converges to 1.50, which is smaller than the corresponding UHF(LS) 

value. Thus, the GHF solution gives a less spin-contaminated solution than UHF for the 

dissociation process, as previously mentioned. 
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Figure 7.1. Potential energy curves of H3 at the UHF, GHF, UMP2, and GMP2 levels. The LS and 

HS solutions of UHF and UMP2 correspond to the doublet and quartet states, respectively. 
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Figure 7.2. Expectation values of Sz (top) and S2 (bottom) for H3 at the UHF and GHF. The LS 

and HS values are shown for UHF. 
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Next, the results of the extended systems, i.e., the H7 and H11 molecules, are discussed. 

Figures 7.3 and 7.4 show the potential energy curves of H7 and H11, respectively. The 

general trends of these curves are similar to that of the H3 curves. Namely, in UHF(LS), 

GHF, UMP2(LS), and GMP2, the curves have minima around 1.0 Å. GHF and GMP2 

give lower total energies than UHF(LS) and UMP2(LS), respectively. The potential well 

depths of UMP2(LS) and GMP2 are larger than those of UHF(LS) and GHF, respectively. 

The behaviors of the UHF(HS) and UMP2(HS) curves are similar, both of which show 

the repulsive character. Additionally, these curves approximately converge to the value of 

multiplying –0.5 hartrees (the exact energy value of the hydrogen atom) by the number 

of the hydrogen atoms included in each system. The difference between the H7 and H11 

curves from the H3 curve is the absence of the local maximum around the intermediate 

region in UHF(LS), which does not indicate the lesser degree of spin contamination in H7 

and H11 than in H3, as described later. This is because the contaminating contribution of 

the HS state in the UHF(LS) solution is relatively reduced by the increase in that of the 

other intermediate spin states. 

Figures 7.5 and 7.6 show the spin expectation values of H7 and H11, respectively, at 

the UHF and GHF levels. For the both molecules, constant zS  values are obtained in 

the entire region, as seen in the H3 case. UHF(LS) gives 1 2 0.5zS   , indicating its 

doublet character. UHF(HS) gives 7 2 3.5zS    for H7 and 11 2 5.5zS    for 

H11, representing the octet and dodecet characters, respectively. In GHF, the zS  values 

are entirely zero, as well as xS  and yS , because of the cancellation of the atomic 

magnetization vectors. Consequently, it is confirmed that the non-collinear solutions are 

correctly obtained for H7 and H11. 

The 2S  values of UHF(HS) are exactly 15.75 for H7 and 35.75 for H11. These 
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values are obtained by substituting 7 2S   and 11 2  for  1S S  , respectively, and 

correspond to the exact eigenvalues of the 2S  operator. In UHF(LS) and GHF, the 2S  

values in the equilibrium region are approximately 0.75, which is close to the exact 2S  

eigenvalue for the doublet state. The values increase as the bond length gets longer. Here, 

Table 7.1 lists the 2S  values at 3.5 Å in UHF(LS) and GHF. For H7 and H11, the 2S  

values of GHF at 3.5 Å are smaller than those of UHF(LS), indicating the lesser degree 

of spin contamination in GHF than in UHF(LS) at the dissociation region, as seen in the 

H3 case. Furthermore, in both of UHF(LS) and GHF, 2S  around the dissociation 

region becomes larger with increasing ring size, n . Thus, the spin contamination 

becomes more significant with increasing n . This is because of the large number of 

degrees of freedom with respect to the orientation of the spin magnetization vectors on 

each of the spin sites at large ring sizes. 
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Figure 7.3. Potential energy curves of H7 at the UHF, GHF, UMP2, and GMP2 levels. The LS and 

HS solutions of UHF and UMP2 correspond to the doublet and octet states, respectively. 
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Figure 7.4. Potential energy curves of H11 at the UHF, GHF, UMP2, and GMP2 levels. The LS 

and HS solutions of UHF and UMP2 correspond to the doublet and dodecet states, respectively.
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Figure 7.5. Expectation values of Sz (top) and S2 (bottom) for H7 at the UHF and GHF. The LS 

and HS values are shown for UHF. 
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Figure 7.6. Expectation values of Sz (top) and S2 (bottom) for H11 at the UHF and GHF. The LS 

and HS values are shown for UHF.  
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Table 7.1. Expectation values of S2 for the equilateral Hn molecules, where the bond lengths are 

3.5 Å, at the UHF and GHF levels. The LS states are assumed in UHF.  

n UHF(LS) GHF 

3 1.75 1.50 

7 3.74 3.49 

11 5.74 5.49 

 

7.4 Conclusion 

In this chapter, the fundamental properties of the hydrogen ring clusters, i.e., H3, H7, 

and H11, have been investigated by means of one-component approaches (UHF and 

UMP2) and two-component approaches (GHF and GMP2). In particular, the potential 

energy curves and spin expectation values of these molecules were evaluated. 

Concerning the potential energy curves, GHF (GMP2) gives lower total energies in 

comparison with UHF (UMP2) because of the absence of preserved spin symmetry. 

Bound potential curves are obtained for UHF(LS), GHF, UMP2(LS), and GMP2, while 

repulsive curves are obtained for UHF(HS) and UMP2(HS). The potential well depths in 

UMP2(LS) and GMP2 are larger than those in UHF(LS) and GHF. All the curves 

converge to the correct and identical dissociation limit for each of the molecules. 

The zS  values of UHF coincide with the exact eigenvalues of the zS  operator, 

because UHF preserves the zS  symmetry. The xS , yS , and zS  values of GHF 

are entirely zero, which indicates being the non-collinear solutions. From the 2S  

values, it was revealed that UHF(HS) gives the eigenfunctions of the 2S  operator, while 

UHF(LS) and GHF give the spin-contaminated solutions, in particular, at long distances. 

Additionally, the GHF solutions are less spin-contaminated in comparison with the 

UHF(LS) solutions in the dissociation region.  
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Chapter 8  

General conclusion 

 

In this thesis, the author developed and discussed highly accurate and efficient SD 

two-component relativistic wavefunction methods to enable black-box treatment to be 

applied to all the elements in the periodic table. 

In Chapter 3, four SCF acceleration algorithms, i.e., the damping, DIIS, EDIIS, and 

EDIIS+DIIS methods, were extended to the GHF method. Then, the SCF convergence 

behavior of GHF was examined for He–Lr atoms and metal complexes including W(CO)6, 

Cr3, and UF4. Numerical assessments showed that the EDIIS+DIIS method led to more 

stable convergence of the SCF calculations with fewer iterations than the other 

acceleration algorithms for all the test systems. 

In Chapters 4 and 5, the KUHF and KROHF methods were developed as new choices 

for two-component HF calculations for open-shell systems. The KUHF and KROHF 

methods were defined as relativistic analogies of the UHF and ROHF methods, 

respectively, using quaternion algebra. The use of quaternion algebra allows the KUHF 

and KROHF wavefunctions to partially and fully satisfy time-reversal symmetry, 

respectively, while the GHF wavefunction satisfies no symmetry. Furthermore, the MSs 

of KUHF and KROHF are formulated on paired spin bases, termed pseudo-alpha and 

pseudo-beta spin bases, which are represented by the superposition of alpha and beta spin 

bases. Numerical assessments for coinage metal atoms and pnictogen atoms showed that 

the total energies of KUHF, KROHF, and GHF were similar but slightly different: the 

magnitudes of the total energies varied in the order of GHF < KUHF < KROHF. The 
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spinor energies of KUHF were close to those of GHF, showing (2j+1)-fold degeneracies, 

which confirmed that the SO interactions were descried appropriately. The potential 

energy curves for HAt showed that KUHF gave similar spin states to those seen in UHF, 

while GHF gave completely hybridized spin states. The test calculations for d- and f-

block atoms demonstrated that SCF convergence in KUHF was several times more rapid 

than in GHF. 

Furthermore, numerical assessments for pnictogen and d- and f-block atoms revealed 

that the spinor energies and SCF convergence behavior in KROHF strongly depended on 

the choice of coupling parameters used to construct the Fock matrix. While the choice of 

the parameter set affected the absolute values of the spinor energies, all parameter sets 

led to spinor energies with (2j+1)-fold degeneracies, indicating that the SO interactions 

were properly described. The PGB set, which was formulated to satisfy KT, gave 

physically reasonable spinor energies. However, the GS set showed the most rapid SCF 

convergence behavior of all the sets. This dilemma was solved by simply switching the 

parameter set from GS to PGB during the SCF cycles. The SCF convergence behavior in 

this procedure was superior to that in GHF, although inferior to that in KUHF. 

In Chapter 6, a universal formulation of the GMP2 method was derived in accordance 

with two-component many-electron Hamiltonians to describe the full relativistic effects, 

i.e., the SF one-electron, SF-two-electron, SD one-electron, and SD two-electron 

relativistic effects. Based on this general formulation, a GMP2 code combined with the 

IODKH/NR and IODKH/IODKH Hamiltonians in the SF and SD formalisms was further 

implemented. Numerical assessments for He-like and Ne-like atoms and 16 typical 

diatomic molecules using various levels of Hamiltonians showed that the inclusion of the 

two-electron relativistic terms, as well as the one-electron terms, resulted in a systematic 
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improvement of the MP2 correlation energies. The MP2 correlation energies obtained 

using the SD-IODKH/IODKH Hamiltonian agreed particularly well with those from the 

four-component DC Hamiltonian. Furthermore, the GMP2 method with the SD-

IODKH/IODKH Hamiltonian was shown to be computationally more efficient than the 

four-component MP2 method with the DC Hamiltonian. 

In Chapter 7, the fundamental properties of equilateral hydrogen rings were 

investigated as an application study of two-component methods. In particular, the 

behaviors of the potential energy curves and spin expectation values with respect to the 

bond length were compared between the one- (UHF and UMP2) and two-component 

(GHF and GMP2) calculations. GHF and GMP2 gave lower total energies than UHF and 

UMP2, respectively, because of the absence of any symmetry constraints. Concerning the 

spin expectation values, while UHF showed non-zero zS  values, GHF showed zero 

values for xS , yS , and zS , reflecting the frustrated spin character. From the 

2S  values, GHF was shown to give solutions that were less spin-contaminated than 

those of UHF at large bond lengths. 

The series of studies presented in this thesis enhance the applicability of SD two-

component relativistic wavefunction methods from the viewpoint of accuracy, efficiency, 

and versatility. The DIIS-based acceleration algorithms improve the SCF convergence of 

GHF; KUHF and KROHF provide new, simpler choices of a reference wavefunction with 

better SCF convergence behavior than in GHF; and the present GMP2 reproduces the 

parent four-component results with less computational cost. Indeed, the utility of the 

GHF-based methods has also been demonstrated by the application study of frustrated 

spin systems. Thus, a cornerstone of practical SD two-component relativistic quantum 

chemistry for all the elements in the periodic table has now been established.  
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To date, it is a well-known fact that SD interactions play a crucial role in 

phosphorescence, inter-system crossing, spin crossover, and many other spin-related 

phenomena. Through the extension to excited-state theories, the present methodologies 

for the ground state are expected to be applied for the theoretical analysis of these 

phenomena or theoretical molecular design for, e.g., highly efficient organic luminescent 

materials.  

Furthermore, non-collinear spin states described by the two-component methods 

discussed herein are vital for new generation matters such as topological materials and 

quantum spin liquids, which are suggested to be a key of quantum computer, high-

temperature superconductor, and so forth. The author hopes that the theoretical 

methodologies developed in this thesis will assist the exploration of the next frontier of 

material science. 
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ました。吉川武司博士には共にイリノイ大学に訪問していただき、第 2.8 節の研

究に限らず、日頃より親身になって数多くのご指導をいただきました。また、今

村穣博士、菊池那明博士、小林正人博士、赤間知子博士、西澤宏晃博士、五十幡

康弘博士、石川敦之博士、王祺博士、西村好史博士、小野純一博士、大越昌樹博

士、周建斌博士の皆様、および研究室秘書の小河原侑子さん、吉村真由美さん、

池田麻由理さんに感謝いたします。 

同輩である中嶋裕也博士は、学部生時代より互いに切磋琢磨し、共に博士後期
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課程に進学しました。大学生活を通して、良きライバルであり、良き相談相手で

あった中嶋博士に感謝いたします。優秀な後輩諸君にも恵まれ、特に「相対論班」

のメンバーには研究に限らず日々の生活においても様々お世話になりました。

速水雅生修士には研究やプログラム実装にあたり多くの議論を交わしていただ

きました。中村亮太修士には第 5 章の研究に関して数多くの協力をいただきま

した。 

また、2015 年度においては、早稲田大学理工学術院総合研究所「アーリーバ

ードプログラム」による研究費の補助をいただき、円滑に研究を進めることがで

きました。ここに御礼申し上げます。 

最後に、長年の学生生活を許容し、精神的・経済的に支え続けてくれました家

族に感謝いたします。 

2017 年 3 月
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List of achievements 

 

Original articles 

○ 1. “Assessment of self-consistent field convergence in spin-dependent relativistic 

calculations” 

M. Nakano, J. Seino, H. Nakai, Chem. Phys. Lett. 657, 65 (2016). 

○ 2. “Development of spin-dependent relativistic open-shell Hartree–Fock theory with 

time-reversal symmetry (I): The unrestricted approach” 

M. Nakano, J. Seino, H. Nakai, Int. J. Quantum Chem. 117, e25356 (2017). 

○ 3. “Development of spin-dependent relativistic open-shell Hartree–Fock theory with 

time-reversal symmetry (II): The restricted open-shell approach” 

M. Nakano, J. Seino, H. Nakai, Int. J. Quantum Chem. 117, e25366 (2017). 

○ 4. “Universal formulation of second-order generalized Møller–Plesset perturbation 

theory for a spin-dependent two-component relativistic many-electron 

Hamiltonian” 

M. Nakano, J. Seino, H. Nakai, Chem. Phys. Lett. 675, 137 (2017). 
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Presentations 

International conferences/symposia 

1. “Relativistic spin-dependent open-shell Hartree–Fock theory with time-reversal 

symmetry: Unrestricted and restricted approaches” 

M. Nakano, R. Nakamura, J. Seino, H. Nakai, Current Trends and Future Directions 

in Relativistic Many Electron Theories (RMET2016), Tokyo (Japan), Sep. 2016 

[Invited Lecture]. 

2. “Relativistic open-shell Hartree–Fock theory with time-reversal symmetry” 

M. Nakano, R. Nakamura, J. Seino, H. Nakai, The International Chemical Congress 

of Pacific Basin Societies (Pacifichem 2015), Hawaii (USA), Dec. 2015. 

3. “Large-scale MP2 calculation based on spin-dependent two-component Hamiltonian 

and divide-and-conquer approach” 

M. Nakano, J. Seino, H. Nakai, 5th Japan–Czech–Slovakia International Symposium 

on Theoretical Chemistry, Nara (Japan), Dec. 2013. 

4. “Development of Electron Correlation Theory Based on Spin-Dependent Two-

Component Hamiltonian” 

M. Nakano, J. Seino, H. Nakai, 6th Asia–Pacific Conference of Theoretical and 

Computational Chemistry (APCTCC 6), Gyeongju (Korea), Jul. 2013. 
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Domestic conferences/symposia 

1. “スカラー相対論法に基づく分割統治型電子相関プログラムの自動実装” 

吉川武司, 中野匡彦, 平田聡, 中井浩巳, 第 10 回分子科学討論会, 兵庫, 2016

年 9 月. 

2. “Koopmans の定理と時間反転対称性を同時に考慮した相対論的開殻 Hartree–

Fock 法” 

中村亮太, 中野匡彦, 清野淳司, 中井浩巳, 日本コンピュータ化学会 2015 春

季年会, 東京, 2015 年 5 月. 

3. “Kramers 制限を課した相対論的開殻 Hartree–Fock 法の開発” 

中野匡彦, 中村亮太, 清野淳司, 中井浩巳, 第 18 回理論化学討論会, 大阪, 

2015 年 5 月. 

4. “時間反転対称性を利用した新規相対論的開殻 Hartree–Fock 法の開発：KUHF

法” 

中野匡彦, 清野淳司, 中井浩巳, 日本化学会第 95春季年会, 千葉, 2015年3月. 

5. “時間反転対称性を利用した新規相対論的開殻 Hartree–Fock 法の開発：

KROHF 法” 

中村亮太, 中野匡彦, 清野淳司, 中井浩巳, 日本化学会第 95 春季年会, 千葉, 

2015 年 3 月. 

6. “スピン－軌道相互作用を露わに考慮した大規模・高精度な相対論的量子化

学計算法の開発” 

中野匡彦, 清野淳司, 中井浩巳, 第 4 回 CSJ 化学フェスタ 2014, 東京, 2014 年

10 月. 

7. “相対論的電子相関計算における picture change 効果” 

中野匡彦, 清野淳司, 中井浩巳, 日本化学会第 94春季年会, 愛知, 2014年3月. 
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8. “CO2 化学吸収法における吸収・放散反応機構の理論的解明” 

寺西慶, 中嶋裕也, 中野匡彦, 佐藤裕, 中井浩巳, 東京, 第 3 回 CSJ 化学フェ

スタ 2013, 2013 年 10 月. 

9. “相対論効果と電子相関効果を同時に取り込んだ大規模計算法の開発” 

中野匡彦, 清野淳司, 中井浩巳, 第 7 回分子科学討論会, 京都, 2013 年 9 月. 

10. “スピン依存 2 成分相対論法に基づく分割統治型電子相関理論の開発” 

中野匡彦, 清野淳司, 中井浩巳, 日本コンピュータ化学会 2013 春季年会, 東

京, 2013 年 5 月. 

11. “一般化スピン軌道に対応した分割統治法に基づく大規模電子相関計算手法

の開発” 

中野匡彦, 清野淳司, 中井浩巳, 第 16 回理論化学討論会, 福岡, 2013 年 5 月. 

12. “スピン依存 2 成分相対論的ハミルトニアンに対応した分割統治型電子相関

理論の開発” 

中野匡彦, 清野淳司, 中井浩巳, 日本化学会第93春季年会, 滋賀, 2013年3月. 

13. “QED 効果を取り入れた 2 電子 Gaunt–Pauli 近似の精度検証” 

清野淳司, 中野匡彦, 中井浩巳, 第 15 回理論化学討論会, 宮城, 2012 年 5 月. 

14. “スピン依存 2 成分相対論に基づく電子相関計算手法の開発” 

中野匡彦, 清野淳司, 中井浩巳, 第 15 回理論化学討論会, 宮城, 2012 年 5 月. 

15. “スピン依存 2 成分相対論法に対応した電子相関理論の開発” 

中野匡彦, 清野淳司, 中井浩巳, 日本コンピュータ化学会 2012 春季年会, 東

京, 2012 年 5 月. 

16. “二成分相対論法に基づく一般化電子相関理論の開発” 

中野匡彦, 清野淳司, 中井浩巳, 日本化学会第 92 春季年会, 神奈川, 2012 年 3

月.  
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Awards 

1. 卒論発表賞, 早稲田大学 先進理工学部 化学・生命化学科, 2012 年 3 月. 

2. Best Poster Award, 6th Asia–Pacific Conference of Theoretical and Computational 

Chemistry (APCTCC 6), 2013 年 7 月. 

3. 最優秀ポスター発表賞, 第 4 回 CSJ 化学フェスタ, 2014 年 11 月. 

4. 学生講演賞, 日本化学会第 95 春季年会, 2015 年 4 月. 

5. Student Poster Competition Award, The International Chemical Congress of Pacific 

Basin Societies (Pacifichem 2015), 2015 年 12 月. 
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