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Chapter 1

Introduction

1.1 Outline of cooperative game theory

This Ph.D. thesis aims to contribute to cooperative game theory, as originally proposed
by von Neumann and Morgenstern (1944). “Game theory aims to help us understand sit-
uations in which decision-makers interact” (Osborne (2009), p.1). Non-cooperative game
theory targets the interactions between players that result from their chosen strategies.
In contrast, cooperative game theory targets interactions caused by conflicts among coali-
tions. Several situations can result in conflict, such as cost-allocation problems, voting,
matching problems, and markets, all of which fall within the scope of the theory.

Among the many problems studied using cooperative game theory, this thesis focuses
on the following problem: “What is a fair assessment of individual responsibilities in the
formation of total cost (or surplus)?” (Moulin (2004), p.139). As a first step to tackle this
problem, we construct an economic model that is “intended to be a simplified description
of the part of the economy that is relevant for the analysis” (Hindriks and Myles (2006),
p.4). We abstract the following two components from the target situation: the set of
agents involved, and the attainable outcomes for each coalition. Considered together,
these two components are called a game.

A distinctive feature of the theory is that it focuses on coalitions, which often play an
important role in allocation problems. To illustrate this, we refer to the cost-allocation
problem studied by Moulin (2004):

This four-story building has one apartment on each of the second, third, and
fourth floors · · · . The manager of the building wishes to split fairly the cost of
running an elevator to the three apartments. The cost of an elevator serving
only the second floor is $5,000. That of an elevator serving the second and
third floors is $10,000. An elevator serving all floors would cost $40,000 · · · .

(Moulin (2004), p.11)

How should the manager split the total cost of $40,000? To solve this problem, we need
to consider the coalition comprising apartments 2 and 3. If the total imputed cost is
higher than $10,000, then this is unfair because “each one of apartments 2 and 3 pays
more than the full cost of an elevator stopping at its own floor” (Moulin (2004), p.12).

There are many examples of fair-division problems1 in which individuals and coalitions

1For other examples, see Chapter 5 of Moulin (2004).
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play key roles. Cooperative game theory offers a simple and general model for analyzing
such problems.

In cooperative game theory, we describe the attainable outcomes for each coalition
using attainable utility profiles. Following the terminology of cooperative game theory,
we refer to utility as a payoff in the remainder of the paper. Here, we do not focus
on the process of deriving a game from a target situation. Instead, assuming games
are already given, we investigate a universal rule that describes how to distribute the
total payoff obtained as a result of cooperation among all players. Such a rule is called a
solution, and the resulting payoff distribution is called a payoff vector. There are two types
of solutions: single-valued solutions, and set-valued solutions. A single-valued solution
describes a single payoff vector for each game, while a set-valued solution describes a set
of payoff vectors for each game. An example of a single-valued solution is the Shapley
value, developed by Shapley (1953). The value determines each player’s final payoff based
on his/her contributions to the attainable payoffs for each coalition. An example of a
set-valued solution is the core. This describes a set of payoff vectors that no coalition can
improve upon on its own, representing “stable” outcomes against coalitional deviations.

A major contribution of cooperative game theory to economics is that it reveals the
theoretical properties of the two solutions, enabling them to be applied to a variety of
problems. Scarf (1967) identified a sufficient condition for the nonemptiness of the core,
which Kaneko (1982) then applied to markets with indivisible goods. A line of literature
on the Shapley value has uncovered its desirability as a distribution rule, and the value
has subsequently provided a guide for fair division in many problems, such as sharing the
cost of constructing an airport runway (Littlechild and Thompson (1977)), allocating the
cost of cleaning a polluted river (Ni and Wang (2007)), and sharing the cost of damage
caused jointly by several tortfeasors (Dehez and Ferey (2013)).

The remainder of this section explains several technical terms used in cooperative
game theory.

TU game and NTU game

Depending on a target situation, games can take one of two forms, described here
based on the work of Kaneko and Wooders (2004). The first is transferable utility games,
abbreviated as TU games. To derive a TU game from a target situation, we implicitly
assume that the players have quasi-linear utility functions and that monetary transfers
are possible among the players. Under these assumptions, the set of attainable payoffs
is described by a real number,2 which makes the analysis simple and tractable. The
second form is non-transferable utility games, abbreviated as NTU games. In an NTU
game, we describe the attainable payoffs by a subset of a vector space. An NTU game
is constructed without the two assumptions of TU games, and targets problems that are
more general than those of TU games.

The core is defined for both TU and NTU games, but the Shapley value is defined
only for TU games. A typical way of defining a single-valued solution for an NTU game
is to extend the Shapley value. In this case, we introduce a solution that assigns a payoff
vector to each NTU game and, in the class of TU games, assigns the same payoff vector
as the Shapley value. These extensions are defined formally in Chapter 4.

2For a formal proof of this statement, see, for example, Proposition 2.1 in Kaneko and Wooders
(2004).
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Axiomatization

Axiomatization (or axiomatic characterization) is a method used to characterize so-
lutions. It consists of the following two steps:

(1) We introduce some desirable properties (called axioms) that should be satisfied by
a solution.

(2) We identify a unique solution satisfying the axioms.

In (1), we judge desirability based on our sense of equity or fairness. For example, an
axiom called symmetry states that if two players make the same contributions in a game,
then they should receive the same payoff.

In game theory, axiomatization was first studied by Nash (1950) in the context of
bargaining problems. In terms of TU games, Shapley (1953) provided an axiomatization
of the Shapley value using the four classical axioms of efficiency, symmetry, the null player
property, and additivity.3 Axiomatization helps us understand the difference between
solutions from the viewpoint of the axioms that characterize them.

1.2 Remarks on “fairness” or “desirability”

The purpose of this section is to clarify what kind of information underlies the justi-
fication for fairness or desirability.

As detailed in Section 1.1, we describe a game in terms of attainable utility profiles
and then discuss fairness/desirability at the utility level. Personal characteristics (e.g.,
physical conditions, historical backgrounds), which often have significant meaning when
considering fairness, cannot be discussed unless they are reflected faithfully in utility
functions.

To illustrate this point, we consider the income distribution problem studied by Sen
(1997).

Consider two income distributions x and y, with identical total, over a collec-
tion of n people who are symmetric in all respects except that person 1 works
in a nasty coal mine and has tougher working conditions than persons 3 to
n, while person 2 works under pleasant working conditions than these other
persons.

(Sen (1997), p.80)

For simplicity, we assume that the n people are identical in terms of their attainable
income. If we formulate this situation as a TU game (i.e., quasi-linearity is imposed on
the utility functions), then the utilities of agents 1 and 2 are measured by money and,
therefore, we cannot reflect the difference in their working conditions. The symmetry
axiom in cooperative game theory concludes that an equal split of the total income is
“desirable.” However, the “assumption of symmetry in the evaluation of income dis-
tributions may, therefore, have to be rejected · · · because of differences in non-income
characteristics (e.g., particular working conditions)” (Sen (1997), p. 80).

3These axioms are defined formally in Section 1.4.1.
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A game is an extreme simplification of a target situation. On the one hand, this
simplification has the disadvantage of making it difficult to incorporate information not
directly related to attainable payoffs. On the other hand, this simplification makes it
possible to expand the applicability of cooperative game theory, as explained in Section
1.1.

In Section 4.2, we introduce the notion of a weight, which enables us to take a step
closer to a target situation.

1.3 Overview of this thesis

The main contribution of this Ph.D. thesis is to provide new results on the relationship
between the Shapley value and other solutions, both in TU games and in NTU games.

The first part of this thesis is devoted to analyses in TU games. To analyze the
relationship between the Shapley value and other solutions, it is essential to understand
the Shapley value itself. Thus, in Chapter 2, we develop new mathematical tools for
analyzing the value. Mathematically, the Shapley value is written as a linear function
from a linear space (the set of TU games) to another linear space (the set of payoff
vectors). We introduce a new basis for the domain of the value, called the commander
games, and examine its properties. The new basis identifies the set of TU games to which
the Shapley value assigns the 0 vector, and clarifies how the Shapley value is determined
in a TU game. We further extend the commander games to introduce new bases that
have desirable properties related to the Shapley value.

In Chapter 3, we provide new axiomatizations of solutions by using monotonicity.4 A
monotonicity axiom in cooperative games states an increase in some parameters of a game
as a hypothesis, and states an increase in a player’s payoff as a conclusion. Young (1985)
first introduced this type of axiom, called strong monotonicity. This axiom states that if
a player’s contributions weakly increase, then the player’s final payoff should also weakly
increase. Later, van den Brink et al. (2013) introduced a weakened axiom called weak
monotonicity. This axiom states that if a player’s contributions and the attainable payoffs
for all players weakly increase, then the player’s payoff also weakly increases. Under
efficiency and symmetry, Young (1985) proved that strong monotonicity characterizes
the Shapley value, and Casajus and Huettner (2014) proved that weak monotonicity
characterizes the class of egalitarian Shapley values introduced by Joosten (1996). An
egalitarian Shapley value takes a convex combination of the Shapley value payoff and an
equal share of the total attainable payoff. Here, we develop the above line of literature
further. We introduce new monotonicity axioms, and show that a monotonicity axiom
and standard axioms characterize various solutions. More specifically, we characterize (i)
four linear solutions in the literature, namely, the Shapley value, the equal division value,
the CIS value, and the ENSC value, and (ii) a class of solutions obtained by taking a
convex combination of the above solutions. With our characterizations, the differences
between solutions can be explained comprehensively using the differences between the
monotonicity axioms. In the proof of theorems, we utilize a basis developed in Chapter
2.

In Chapter 4, we focus on the relationship between the Shapley value and the core.
A seminal paper by Monderer et al. (1992) describes a critical relationship between the
two: in the class of TU games, any element of the core is attainable as the outcome of a

4See Sprumont (2008) for a survey on monotonicity in economics.
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weighted Shapley value. A weighted Shapley value is an extension of the Shapley value
that incorporates players’ asymmetric characteristics. The core is a widely accepted
solution in many research fields (e.g., market theory and matching theory). Thus, its
relationship to weighted Shapley values seems to represent a bridge between cooperative
game theory and other research fields. However, this is not necessarily the case, because of
the underlying assumptions behind TU games. As discussed in Section 1.1, we implicitly
assume that agents have quasi-linear utility functions and that monetary transfers are
allowed. Quasi-linearity implies there is no income effect, which is a severe restriction
in economic models. To circumvent this difficulty, we extend Monderer et al.’s (1992)
result to NTU games. As an extension of the weighted Shapley value to NTU games,
we focus on the weighted egalitarian solutions introduced by Kalai and Samet (1985).
We prove that, in the class of NTU games, any element of the core is attainable as the
outcome of a weighted egalitarian solution. Because weighted egalitarian solutions are
supported by normative axioms, our result provides a normative foundation for the core.
We further examine the relationship between the core and other extensions of weighted
Shapley values to NTU games.

Structure of this thesis

Section 1.4 deals with preliminaries. In Chapter 2, we introduce a new basis for the set
of TU games, and discuss its extensions. In Chapter 3, we provide new axiomatizations
of solutions in TU games using monotonicity. In Chapter 4, we show the relationship
between the core and the Shapley value in NTU games. Then, Chapter 5 discusses
possible areas of future research and concludes this thesis.

Original published papers

Each chapter in this thesis is based on a paper published in a peer-reviewed journal.
Chapter 2 is based on Yokote et al. (2016), published in Mathematical Social Sciences.
Chapter 3 is based on Yokote and Funaki (2017), published in Social Choice and Welfare.
Chapter 4 is based on Yokote (2017), published in International Journal of Game Theory.

1.4 Preliminaries

Let N denote the set of natural numbers, Q denote the set of rational numbers, and
R be the set of real numbers. For two sets A and B, A ⊆ B means that A is a subset of
B, and A ⊂ B means that A ⊆ B and A ̸= B. Let |A| denote the cardinality of A.

Let N = {1, · · · , n} denote a finite set of players. In the standard terminology, a
game is defined as the pair of a player set and a characteristic function that describes the
attainable payoffs for each coalition. However , in this thesis, we fix a player set N , and
focus on the characteristic functions. Hence, we identify a characteristic function with a
game. As discussed in Section 1.1, the description of a game takes two different forms:
TU games and NTU games.

1.4.1 TU game

A TU game is a function v : 2N → R with v(∅) = 0. For each S ⊆ N , v(S) represents
the attainable payoff for S and is called the worth of coalition S.
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Let Γ denote the set of all TU games. To conduct a mathematical analysis, it is useful
to define addition and scalar multiplication in Γ. For any v, w ∈ Γ and α ∈ R, we define
v + w and αv by (v + w)(S) = v(S) + w(S) for all S ⊆ N , and (αv)(S) = αv(S) for all
S ⊆ N . Because a game assigns a real number to each non-empty subset, we can identify
a game as a 2n − 1-dimensional vector. Together with the operation defined above, we
can identify Γ as a linear space R2n−1. We say that a finite set of games {vk}ℓk=1 ⊆ Γ
spans X ⊆ Γ if

X =
{ ℓ∑

k=1

αkvk : αk ∈ R for all k = 1, · · · , ℓ
}
.

For a finite set of games {vk}ℓk=1 ⊆ Γ, let Sp({vk}ℓk=1) denote the set of games spanned
by {vk}ℓk=1.

Let v ∈ Γ and i, j ∈ N . For each T ⊆ N\i,5 we define the contribution of player i to
coalition T as ∆iv(T ) = v(T ∪ i)− v(T ).

A (single-valued) solution is a function from Γ to Rn. In other words, a solution
assigns to each game an n-dimensional payoff vector, representing the payoff for each
player. We define the Shapley value, introduced by Shapley (1953), as follows:

Shi(v) =
∑

T⊆N\i

|T |!(n− |T | − 1)!

n!
·∆iv(T ) for all v ∈ Γ, i ∈ N.

The Shapley value determines player i’s final payoff based on the expected value of his/her
contributions. An equivalent formula is given as follows: for any v ∈ Γ,

Shi(v) =
∑

T⊆N :i∈T

1

|T |
D(T, v) for all i ∈ N, (1.1)

where
D(T, v) =

∑
S⊆T

(−1)|T\S|v(S) for all T ⊆ N, T ̸= ∅. (1.2)

For each T ⊆ N , T ̸= ∅, D(T, v) is called the dividend of T .
For each T ⊆ N , T ̸= ∅, we define the T -unanimity game uT , introduced by Shapley

(1953), as follows:

uT (S) =

{
1 if T ⊆ S,

0 otherwise.
(1.3)

The set of unanimity games forms a basis for the linear space Γ. Moreover, when we
express a game v ∈ Γ as a linear combination of {uT}∅̸=T⊆N , the coefficient of uT is equal
to the dividend D(T, v). In other words, for any v ∈ Γ,

v =
∑

T⊆N :T ̸=∅

D(T, v) · uT .

Mathematically, the Shapley value Sh is a surjective linear mapping from R2n−1 to Rn.

5For simplicity, we denote a singleton set {i} simply by i.
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The mapping Sh has the null space defined by

{v ∈ Γ : Sh(v) = 0}. (1.4)

The null space is the set of all games to which the Shapley value assigns the 0 vector. As
is well known in linear algebra, the dimension of the space is equal to 2n − 1− n.6

Let v ∈ Γ and i, j ∈ N , i ̸= j. We say that i and j are substitutes in v if ∆iv(S) =
∆jv(S) for all S ⊆ N\{i, j}. We say that i is a null player in v if ∆iv(S) = 0 for all
S ⊆ N\i. Shapley (1953) characterized the Shapley value using the following axioms
imposed on a solution ψ:

Efficiency
∑

i∈N ψi(v) = v(N) for all v ∈ Γ.

Symmetry If i and j are substitutes in v ∈ Γ, then ψi(v) = ψj(v).

Null Player Property If i is a null player in v ∈ Γ, then ψi(v) = 0.

Additivity For any v, w ∈ Γ, we have ψ(v + w) = ψ(v) + ψ(w).

Efficiency states that the total payoff should be fully distributed among the players.
Symmetry states that if i and j make the same contributions, then they should receive
the same payoff. The null player property states that if player i does not make any
contribution, then i should receive nothing. Additivity states that the payoff vector in
v + w is obtained by calculating the payoff vectors in games v and w independently.

Note that the Shapley value satisfies the following axiom, which is stronger than
additivity:

Linearity For any v, w ∈ Γ and α, β ∈ R, we have ψ(αv + βw) = αψ(v) + βψ(w).

A solution satisfying linearity is called a linear solution.

1.4.2 NTU game

To define an NTU game, we first introduce some mathematical preliminaries. For
each S ⊆ N , S ̸= ∅, let RS denote the |S|-dimensional Euclidean space; an element
(xi)i∈S ∈ RS is indexed by the players in S. For each S ⊆ N , S ̸= ∅, we identify RS as
the subspace of RN . Let RS

+ denote the space with non-negative coordinates and RS
++

denote the space with positive coordinates. We define vector inequalities as follows: for
each S ⊆ N , S ̸= ∅, and x, y ∈ RS, x ≫ y means xi > yi for all i ∈ S; x ≥ y means
xi ≥ yi for all i ∈ S; x > y means x ≥ y and x ̸= y. For each x ∈ RN and S ( N , S ̸= ∅,
let xS ∈ RS denote the projection of x on RS (i.e., (xS)i = xi, for all i ∈ S). For a subset
X of RS, let ∂X denote the boundary of X, and let clX denote the closure of X. For
each x, y ∈ RS, let x · y denote the inner product of x and y, i.e.,

x · y =
∑
i∈N

xi · yi.

An NTU game is a function V that associates a subset of RS with each coalition
S ⊆ N , S ̸= ∅. If x ∈ V (S), this means that x is attainable through cooperation of
players in S. We make the following assumptions on V : for each S ⊆ N , S ̸= ∅, V (S) is

6See, for example, Theorem 2 of Lax (2007).
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N1: a non-empty proper subset of RS;

N2: closed, convex, and comprehensive (i.e., x ∈ V (S) and y ≤ x imply y ∈ V (S)); and

N3: uniformly non-leveled. There exists a real number δ > 0 such that for every nor-
malized vector λ ∈ RS (i.e.,

∑
i∈S λi = 1), the following condition holds:

sup
x∈V (S)

λ · x < +∞ implies λi ≥ δ for all i ∈ S.

For each S ⊆ N , S ̸= ∅, ∂V (S) is called the Pareto frontier for S (or simply the Pareto
frontier, when it is clear which coalition is alluded to).

The meaning of N1 is clear. In N2, comprehensiveness means free disposal ; that is, if
x is an attainable payoff, then any “worse” payoff vector y with y ≤ x is also attainable.
N3 was first introduced by Maschler and Owen (1992), and then later employed by other
researchers, such as Hinojosa et al. (2012). To see the meaning of this condition, we
provide an example in which N3 is not satisfied. Let N = {1, 2} and suppose that V (N)
is represented as in Fig. 1.

Fig. 1 Description of V (N).

In this example, V (N) is contained in the closed half-space {x ∈ RN : xj ≤ d}. Let
λ = (0, 1), as shown in Fig. 1. Then, supx∈V (N)λ · x ≤ d < +∞, but λi = 0. Hence, we
cannot take a positive real number δ > 0 with λi ≥ δ, which is a violation of N3. As this
example illustrates, N3 excludes the case in which ∂V (N) has a leveled part. This is why
N3 is called uniformly “non-leveled.”

To understand N3 in the context of allocation problems, we introduce the notion of
the transfer rates of utilities between i and j.7 Consider the Pareto optimal point x,
which is depicted in Fig. 1. From this point, if player i gives up δi, then player j gets δj.
Taking the limit of the quotient δj/δi yields the slope at x, which is interpreted as the
local transfer rates of utilities. In Fig. 1, this slope asymptotically approaches to 0 as x
moves to the upper-left corner of ∂V (N). If the slope is 0, decreasing i’s payoff does not
improve j’s payoff. N3 excludes these extreme transfer rates of utilities.

Let Γ̂ denote the set of all NTU games. We can embed a TU game v : 2N → R in Γ̂
by defining an NTU game V as follows: for each S ⊆ N , S ̸= ∅,

V (S) =
{
x ∈ RS :

∑
i∈S

xi ≤ v(S)
}
. (1.5)

7The explanation of transfer rates is borrowed from Peleg and Sudhölter (2007) (see p. 236).
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To see the difference between a TU game and an NTU game, consider a two-player
coalition S = {i, j}. In the case of a TU game, (1.5) means that the Pareto frontier for
coalition S (i.e., the boundary of the set of attainable payoffs for S) is described by the
hyperplane {y ∈ RS : yi + yj ≤ v(S)}. In the case of an NTU game, the Pareto frontier
is not necessarily a hyperplane. The two cases are compared in Fig. 2.

Fig. 2 Descriptions of the attainable payoffs for TU and NTU games.

A solution is defined in the same way as in the class of TU games. In other words, a
(single-valued) solution is a function from the set of all NTU games Γ̂ to the set of payoff
vectors RN . A set-valued solution is a function that assigns a set of payoff vectors to each
NTU game.
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Chapter 2

Basis and the Shapley value

2.1 Introduction

The basis consisting of the unanimity games (Shapley (1953)) has long been recog-
nized as a useful tool for analyses in TU games. The basis is often used in the proof of
axiomatization of the Shapley value; see Young (1985), Chun (1989), Kalai and Samet
(1987) or van den Brink (2002). The coefficients in the linear combination of the una-
nimity games are called the dividends (see (1.2)). The class of games with nonnegative
dividends was investigated by Llerena and Rafels (2006) or van den Brink et al. (2014).
As the set of TU games has a linear structure, to consider a basis is an essential task.
The purpose of this chapter is to introduce new bases and explore their properties.

In the T -unanimity game (see (1.3)), the cooperation of all players in T yields payoff.
We introduce a new game, termed the T -commander game, in which only one player in
T yields payoff. The set of the commander games forms a basis and has two properties.
First, when we express a game by a linear combination of the new basis, the coefficients
related to singletons coincide with the Shapley value. Second, the basis induces the null
space of the Shapley value (see (1.4)). The payoff vector of each commander game is
uniquely determined by using three axioms: efficiency, symmetry and the null player
property. Moreover, by using the two properties of the new basis, we can fully answer
the inverse problem, i.e., the problem of how to characterize the class of games to which
the Shapley value assigns a fixed vector.

The unanimity games and the commander games describe two extreme cases: the
former requires the cooperation of all players, while the latter requires that of only one
player. We consider intermediate games between them. More specifically, for a coalition T
and k ∈ {1, · · · , |T |}, we introduce the T k-intermediate game in which the cooperation of
k players in T yields payoff. We show that, under some conditions, the set of intermediate
games forms a basis and preserves desirable properties of the commander games.

The new bases developed in this chapter are applicable to several research topics of the
Shapley value. In Chapter 3, we apply a new basis to axiomatization of linear solutions.1

Moreover, the basis consisting of the commander games can be used to investigate the
coincidence between the Shapley value and other solutions; see Yokote et al. (2017).

This chapter is organized as follows. In Section 2,2, we define the commander games
and show that the set of these games is a basis. In Section 2.3, we discuss the new basis
from Shapley’s (1953) axioms. In Section 2.4, we discuss intermediate games.

1As a relevant work, Yokote (2015) applied the commander games to axiomatization of the weighted
Shapley values.
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2.2 New basis

Let T ⊆ N , T ̸= ∅. We define ūT as follows:

ūT (S) =

{
1 if |S ∩ T | = 1,

0 otherwise.
(2.1)

We call ūT the T -commander game. The interpretation of this game is as follows. Each
member in T is a commander and has authority to control other players. If a coalition
including only one member in T forms, then the member behaves as a commander.
The coalition obtains power, which results in the payoff of 1. In contrast, if a coalition
including two or more members in T forms, then they compete with each other and the
coalition obtains nothing.

To show that the set of the commander games is a basis, we prove a lemma.

Lemma 1. Let T ⊆ N , T ̸= ∅. Then, we have

|T |uT =
∑

S⊆T :S ̸=∅

(−1)|S|−1ūS.

Proof. Let R ⊆ N . We calculate the worth of coalition R in the right-hand side. By
definition of the commander games, we only need to consider a coalition S ⊆ T such that
|S ∩ R| = 1. Such a coalition S can be determined by choosing one player from T ∩ R
and k players from T\R, where 0 ≤ k ≤ |T\R|. Hence,

∑
S⊆T :S ̸=∅

(−1)|S|−1ūS(R) = |T ∩R| ·
|T\R|∑
k=0

(
|T\R|
k

)
(−1)k =

{
|T | if T ⊆ R,

0 otherwise,

where the second equality follows from the binomial theorem. It follows that the worth
of coalition R in the right-hand side is equal to |T |uT (R).

Theorem 1. The set of games {ūT}∅̸=T⊆N is a basis for Γ.

Proof. Let v ∈ Γ. Since the dividends are the coefficients in the linear combination of
the unanimity games, we have

v =
∑

R⊆N :R ̸=∅

D(R, v)

|R|
· |R|uR

=
∑

R⊆N :R ̸=∅

D(R, v)

|R|
·

∑
S⊆R:S ̸=∅

(−1)|S|−1ūS

=
∑

S⊆N :S ̸=∅

(−1)|S|−1
∑

R⊆N :S⊆R

D(R, v)

|R|
ūS, (2.2)

where the second equality follows from Lemma 1. Hence, any game v ∈ Γ can be expressed
by a linear combination of the games {ūT}∅≠T⊆N . Mathematically, the set {ūT}∅̸=T⊆N

spans the linear space Γ. If the set {ūT}∅≠T⊆N is linearly dependent, then there exist a
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coalition T ⊆ N , T ̸= ∅, and a vector (αS)∅≠S⊆N,S ̸=T such that

ūT =
∑

S⊆N :S ̸=∅,S ̸=T

αSūS.

Together with (2.2), the set Γ can be spanned by vectors with less than 2n − 1 vectors,
which is a contradiction to the fact that the dimension of Γ is 2n − 1.2

By Theorem 1, any game v ∈ Γ is uniquely represented by a linear combination of
{ūT}∅̸=T⊆N . Let d(T, v) denote the coefficient of ūT in the linear combination, namely,
v =

∑
T⊆N :T ̸=∅ d(T, v)ūT . By (1.1) and (2.2), we obtain the following theorem:

Theorem 2. For any v ∈ Γ,

d({i}, v) =
∑

R⊆N :i∈R

D(R, v)

|R|
= Shi(v) for all i ∈ N.

Theorem 2 states that the coefficients related to singletons coincide with the Shapley
value.

2.3 Basis and Shapley’s axioms

The unanimity games are useful in the sense that the payoff vector of each game can
be uniquely determined by using the standard axioms. In this section, we show that the
commander games have the same property.

Consider the four axioms in Section 1.4.1. Using efficiency, symmetry and the null
player property, we can calculate the Shapley value in ūT for T ⊆ N , |T | ≥ 2. First,
consider a player j ∈ N\T . Then, for any S ⊆ N\j, we have |S∩T | = |(S∪j)∩T |. Thus,
j is a null player, which implies Shj(ūT ) = 0 by the null player property. By efficiency,∑

i∈T Shi(ūT ) = 0. Since any two players in T are substitutes, by symmetry, we have
Shi(ūT ) = 0 for all i ∈ T . It follows that Sh(ūT ) = 0. Note that we can determine the
payoff vector in the game ū{i}, i ∈ N , in the same way.

Since the set {ūT : T ⊆ N, |T | ≥ 2} consists of 2n−1−n linearly independent vectors,
we obtain the following theorem:

Theorem 3. The set {ūT : T ⊆ N, |T | ≥ 2} spans the null space of Sh, i.e.,

{v ∈ Γ : Sh(v) = 0} = Sp({ūT : T ⊆ N, |T | ≥ 2}).

Theorem 3 states that the Shapley value does not depend on the coefficients d(T, v),
T ⊆ N , |T | ≥ 2. Together with Theorem 2, we obtain the following corollary:

Corollary 1. Let x ∈ Rn. Then, Sh(v) = x if and only if there exists a vector
(αT )T⊆N :|T |≥2 ∈ R2n−1−n such that

v =
∑
i∈N

xiū{i} +
∑

T⊆N :|T |≥2

αT ūT .

2Here, we implicitly use the following result in linear algebra: if vectors x1, · · · , xn span a linear
space X and the vectors y1, · · · , yj in X are linearly independent, then j ≤ n. See Lax (2007), Lemma
1 on page 5.
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Corollary 1 solves the inverse problem, i.e., we characterize the set of all games to
which the Shapley value assigns a fixed vector. It is worth stressing that the Shapley
value is determined only by the coefficients of ūi for i ∈ N and is silent about the change
in the coefficients of ūT for T ⊆ N , |T | ≥ 2. This result clarifies how the Shapley value
determines the players’ payoffs.

Example 1. We apply Corollary 1 to 3-person games. Let N = {1, 2, 3} and v ∈ Γ.
Then, Sh(v) = x if and only if there exists (y12, y13, y23, yN) ∈ R4 such that v(N) =
x1 + x2 + x3 and

v({i, j}) = xi + xj + yik + yjk, v({k}) = xk + yik + yjk + yN ,

where i, j, k are distinct players in N . The above equations imply

v({i, j}) = xi + xj + v({k})− xk − yN .

As a result, we obtain the following: let N = {1, 2, 3} and v ∈ Γ be a game such that
v({k}) = 0 for all k ∈ N . Then, Sh(v) = x if and only if there exists y ∈ R such that
v(N) = x1 + x2 + x3 and

v({i, j}) = xi + xj − xk + y,

where i, j, k are distinct players in N . The only-if part says that, given an arbitrary
vector x, we can always find an identical amount y for all coalitions with 2 players.

2.4 Intermediate games and new bases

In this section, we extend the basis consisting of the commander games.3 For each
T ⊆ N , T ̸= ∅, the T -commander game assigns 1 to coalitions including only one member
in T and 0 otherwise. In contrast, the T -unanimity game assigns 1 to a coalition including
all players in T and 0 otherwise. These two games describe two extreme cases for obtaining
a payoff: only one player or all players in T . In this section, we consider intermediate
cases between them.

Let T ⊆ N and k ∈ N, 1 ≤ k ≤ |T |. We define the T k-intermediate game ūkT by

ūkT (S) =

{
1 if |S ∩ T | = k,

0 otherwise.
(2.3)

Note that ū1T = ūT and ū
|T |
T = uT . We show that, if there is a certain relationship between

the size of coalition T and k, then we can construct a basis.
Consider a function ℓ : {1, · · · , n} → {1, · · · , n} satisfying the following conditions:

C1: ℓ(1) = 1.

C2: ℓ(t) = ℓ(t− 1) or ℓ(t− 1) + 1 or ℓ(t− 1)− 1 for all t = 2, · · · , n.

Theorem 4. Let ℓ be a function satisfying C1 and C2. Then, the set of games {ūℓ(|T |)
T }∅̸=T⊆N

is a basis for Γ.

3The results in this section are based on Yokote and Funaki (2015).
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Special cases of interest are when ℓ(k) = 1 for all k = 1, · · · , n and ℓ(k) = k for all
k = 1, · · · , n. The former coincides with the basis consisting of the commander games
and the latter coincides with the basis consisting of the unanimity games. Thus, Theorem
4 generalizes the results by Shapley (1953) and Theorem 1.

To prove Theorem 4, we first prove a lemma.

Lemma 2. Let T ⊆ N , |T | ≥ 2, and k ∈ N, 2 ≤ k ≤ |T |. Then, we have

ūkT =
1

k

(∑
i∈T ū

(k−1)
T\i − (|T | − k + 1)ū

(k−1)
T

)
.

Proof. Let S ⊆ N , S ̸= ∅. We calculate the worth of S in both sides.

Case 1 0 ≤ |T ∩ S| ≤ k − 2.

By definition of ūkT , we have ūkT (S) = ū
(k−1)
T (S) = 0. Consider the game ū

(k−1)
T\i ,

i ∈ T .

If i ∈ S, |(T\i) ∩ S| ≤ k − 3.

If i /∈ S, |(T\i) ∩ S| ≤ k − 2.

It follows that ū
(k−1)
T\i (S) = 0 for all i ∈ T .

Case 2 k + 1 ≤ |T ∩ S| ≤ |T |.

By definition of ūkT , we have ūkT (S) = ū
(k−1)
T (S) = 0. Consider the game ū

(k−1)
T\i ,

i ∈ T .

If i ∈ S, |(T\i) ∩ S| ≥ k.

If i /∈ S, |(T\i) ∩ S| ≥ k + 1.

It follows that ū
(k−1)
T\i (S) = 0 for all i ∈ T .

Case 3 |T ∩ S| = k − 1.

By definition of ūkT , we have ūkT (S) = 0. Let i ∈ T .

If i ∈ S, |(T\{i}) ∩ S| = k − 2.

If i /∈ S, |(T\{i}) ∩ S| = k − 1.

That is, if i ∈ S ∩ T , then ū(k−1)
T\i (S) = 0. As a result,∑

i∈T

ū
(k−1)
T\i (S) =

∑
i∈T\S

ū
(k−1)
T\i (S)

=
∑
i∈T\S

ū
(k−1)
T (S)

= |T | − (k − 1),

where the second equality follows from (T\i) ∩ S = T ∩ S for i ∈ T\S. Together

with −(|T | − k + 1)ū
(k−1)
T (S) = −(|T | − k + 1), the right-hand side is equal to 0,

which is equal to the left-hand side.
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Case 4 |T ∩ S| = k.

By definition of ūkT , we have ū
(k−1)
T (S) = 0. Let i ∈ T .

If i ∈ S, |(T\i) ∩ S| = k − 1,

If i /∈ S, |(T\i) ∩ S| = k.

Hence,
∑

i∈T ū
(k−1)
T\i (S) = k, which implies that the right-hand side is equal to 1.

Since the left-hand side is also equal to 1, the proof completes

Proof of Theorem 4 . Throughout the proof, we refer to functions ℓ satisfying C1 and
C2. For a function ℓ, we define

K(ℓ) =
n∑

k=1

ℓ(k),

M(ℓ) = max{ℓ(k) : k = 1, · · · , n},
Q(ℓ) = {k : ℓ(k) =M(ℓ)}.

Induction base: Suppose K(ℓ) = n, namely, ℓ(k) = 1 for all k = 1, · · · , n. In this case,
Theorem 1 completes the proof.
Induction step: Suppose the result holds for all l with n ≤ K(ℓ) ≤ p, and we prove the

result for ℓ with K(ℓ) = p+ 1, where n ≤ p ≤ n(n+1)
2

− 1.

Suppose to the contrary that {ūℓ(|T |)
T }∅≠T⊆N is not a basis. Then, there exists a vector

(λT )∅≠T⊆N ̸= 0 such that ∑
T⊆N :T ̸=∅

λT ū
ℓ(|T |)
T = 0. (2.4)

Let q ≥ 2 be such that ℓ(q) =M(ℓ) and q ≤ k for all k ∈ Q(ℓ). Then,

ℓ(q − 1) = ℓ(q)− 1 ≥ 1.

By (2.4), ∑
T⊆N :T ̸=∅,|T |≠q

λT ū
ℓ(|T |)
T +

∑
T⊆N :|T |=q

λT ū
ℓ(q)
T = 0.

By Lemma 2, ∑
T⊆N :T ̸=∅,|T |̸=q

λT ū
ℓ(|T |)
T

+
∑

T⊆N :|T |=q

λT
ℓ(q)

(∑
i∈T ū

(ℓ(q)−1)
T\i − (q − ℓ(q) + 1)ū

(ℓ(q)−1)
T

)
= 0. (2.5)

We define ℓ′ by

ℓ′(|T |) =

{
ℓ(|T |) if |T | ≠ q,

ℓ(q)− 1 if |T | = q.
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We show that ℓ′ satisfies C1 and C2. Since q ≥ 2, ℓ′(1) = ℓ(1) = 1, which proves C1.
Since ℓ(q) =M(ℓ), we have

ℓ(q + 1) = ℓ(q) or ℓ(q)− 1.

If ℓ(q + 1) = ℓ(q), then ℓ′(q + 1) = ℓ(q + 1) = ℓ′(q) + 1. If ℓ(q + 1) = ℓ(q) − 1,
then ℓ′(q + 1) = ℓ(q + 1) = ℓ′(q). Namely, ℓ′(q + 1) = ℓ′(q) + 1 or ℓ′(q). In addition,
ℓ′(q) =M(ℓ)− 1 = ℓ(q − 1) = ℓ′(q − 1), which proves C2.

Using the function ℓ′, (2.5) can be written as follows:∑
T⊆N :T ̸=∅,|T |≠q

λT ū
ℓ′(|T |)
T +

∑
T⊆N :|T |=q

λT
ℓ(q)

(∑
i∈T ū

ℓ′(|T\i|)
T\i − (q − ℓ′(q))ū

ℓ′(q)
T

)
=

∑
T⊆N :T ̸=∅,|T |≤q−2,|T |≥q+1

λT ū
ℓ′(|T |)
T

+
∑

T⊆N :|T |=q−1

(
λT +

∑
j∈N\T

λT∪j

ℓ(q)

)
ū
ℓ′(|T |)
T (2.6)

−
∑

T⊆N :|T |=q

λT (q − ℓ′(q))

ℓ(q)
ū
ℓ′(q)
T

=0.

Since K(ℓ′) ≤ p, by the induction hypothesis, all the coefficients in the above equation
are 0. We obtain

λT = 0 for all T ⊆ N, T ̸= ∅, |T | ≤ q − 2, |T | ≥ q + 1,

and, together with ℓ′(q) = ℓ(q)− 1 ≤ q − 1,

λT = 0 for all T ⊆ N, |T | = q.

Substituting this equation into the coefficients in (2.6),

λT = 0 for all T ⊆ N, |T | = q − 1.

We obtain a contradiction to (λT )∅≠T⊆N ̸= 0.

As proven in Section 2.2, the set {ūT}∅≠T⊆N has two desirable properties. First, when
we express a game v by a linear combination of the basis, the coefficients related to
singletons coincide with the Shapley value. Second, the set of games {ūT}T⊆N :|T |≥2 spans
the null space of the Shapley value. We prove that, by making an additional assumption
on ℓ, the basis consisting of the intermediate games preserves the desirable properties.

Theorem 5. Let ℓ be a function satisfying C1, C2 and ℓ(2) = 1. Then,

(1): The set of games {ūℓ(|T |)
T }∅≠T⊆N is a basis for Γ.

(2): When we express a game v ∈ Γ by a linear combination of this basis, the coefficient
of ū1{i} is equal to Shi(v) for all i ∈ N .

(3): The set {ūℓ(|T |)
T : T ⊆ N, |T | ≥ 2} spans the null space of Sh.
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Proof . The first statement (1) follows from Theorem 4. Let T ⊆ N , |T | ≥ 2, and
j ∈ N\T . Then, for any S ⊆ N\j, we have |S ∩ T | = |(S ∪ j) ∩ T |. It follows that j is

a null player. By the null player property, we obtain Shj(ū
ℓ(|T |)
T ) = 0. By symmetry and

ū
ℓ(|T |)
T (N) = 0, we have Shi(ū

ℓ(|T |)
T ) = 0 for all i ∈ N . As a result, (3) holds. It remains

to prove (2). Let v ∈ Γ and (αT )∅≠T⊆N be the coefficients in the linear combination of v

by {ūℓ(|T |)
T }∅̸=T⊆N . Then, for any i ∈ N ,

Shi(v) = Shi

( ∑
T⊆N :T ̸=∅

αT ū
ℓ(|T |)
T

)
=

∑
T⊆N :T ̸=∅

αTShi(ū
ℓ(|T |)
T )

=
∑
j∈N

α{j}Shi(ū
1
{j})

= α{i},

where the first equality follows from linearity of the Shapley value, and the fourth equality
follows from Shi(ū

1
{i}) = 1 and Shi(ū

1
{j}) = 0 for all j ∈ N\i.4

Using a new basis developed in this chapter, we provide new axiomatizations of solu-
tions in the next chapter.

4These equations follow from the null player property and efficiency.
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Chapter 3

Monotonicity and axiomatization of
linear solutions

3.1 Introduction

Monotonicity has been intensively discussed not only in specific fair allocation prob-
lems but also in the general class of TU games. A major finding in the literature is that,
for entire class of TU games, monotonicity and standard axioms imply linearity. Under
efficiency and symmetry, Young (1985) proved that strong monotonicity characterizes the
Shapley value, and Casajus and Huettner (2014) proved that weak monotonicity char-
acterizes the egalitarian Shapley values, the convex combinations of the Shapley value
and the equal division value. Linearity as an axiom is often criticized as merely being a
technical condition, while monotonicity can be regarded as a fairness criterion. Therefore,
the above results support the desirability of linear solutions.

The above results enable us to conjecture that other linear solutions can also be
characterized by monotonicity. If such a characterization is possible, then the difference
among them can be comprehensively explained using the difference in monotonicity ax-
ioms. This is the underlying motivation of this study, and we show that a variety of
solutions can be characterized by efficiency, symmetry and monotonicity.

A monotonicity axiom states an increase in certain parameters of a game as a hy-
pothesis and states an increase in a player’s payoff as a conclusion. We focus on various
parameters of a game and introduce new axioms. Combined with previous results, we
prove that efficiency, symmetry and a monotonicity axiom characterize (i) four linear
solutions in the literature, namely, the Shapley value, the equal division value, the CIS
value and the ENSC value, and (ii) a class of solutions obtained by taking a convex
combination of the above solutions.

To see the relationship between the characterization of a single solution and that
of a class of solutions, consider two parameters x and y of a game (for example, x
represents a player’s contributions, and y is the worth of the grand coalition). An axiom
called x-monotonicity states that if parameter x increases, then a player’s payoff weakly
increases, and y-monotonicity is defined analogously. Suppose that x-monotonicity and
y-monotonicity, when combined with efficiency and symmetry, characterize a solution X
and a solution Y , respectively. Here, we consider a new axiom, x+y-monotonicity, which
states that if both x and y increase, then a player’s payoff weakly increases. We show
that x + y-monotonicity, together with efficiency and symmetry, characterizes a class of
solutions obtained by taking a convex combination of solutions X and Y .
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Our methodological contribution is to provide a new linear algebraic approach for
characterizing solutions by monotonicity. Using a new basis developed in Chapter 2,
we decompose the whole space into three subspaces. This decomposition enables us to
identify a set of games in which a solution that satisfies monotonicity is linear. Our
approach provides some intuition for why monotonicity implies linearity.

This study is part of the literature on the characterization of convex combinations of
solutions. For other approaches to this problem, see van den Brink and Funaki (2009),
van den Brink et al. (2013) or Casajus and Huettner (2013). Casajus (2015) applied an
approach based on monotonicity to the problem of redistributing income in a society.

The remainder of this chapter is organized as follows. Section 3.2 deals with prelimi-
naries. In Section 3.3, we introduce new monotonicity axioms and provide a comprehen-
sive characterization of linear solutions by monotonicity. In Section 3.4, we revisit a basis
in Chapter 2 and explain why the basis is useful. In Section 3.5, we illustrate a sketch of
the proof of our main result. Section 3.6 shows the independence of the axioms employed
in our characterizations. All proofs are provided in Section 3.7.

3.2 Preliminaries

We define additional solutions. The equal division value is defined by

EDi(v) =
v(N)

n
for all i ∈ N, v ∈ Γ.

The CIS value and the ENSC value (Driessen and Funaki (1991)) are defined by

CISi(v) = v(i) +
v(N)−

∑
j∈N v(j)

n
for all i ∈ N, v ∈ Γ,

ENSCi(v) = v(N)− v(N\i) +
v(N)−

∑
j∈N

{
v(N)− v(N\j)

}
n

for all i ∈ N, v ∈ Γ.

For each α ∈ [0, 1], we define the α-egalitarian Shapley value (Joosten (1996)) by

Shα(v) = αSh(v) + (1− α)ED(v) for all v ∈ Γ.

For each α ∈ [0, 1], we define the α-consensus value (Ju et al. (2007)) Ψα by

Ψα(v) = αSh(v) + (1− α)CIS(v) for all v ∈ Γ.

3.3 Monotonicity

We first revisit previous monotonicity axioms. Young (1985) introduced the following
axiom:

Strong monotonicity (Young (1985)). Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥ ∆iw(S) for
all S ⊆ N\i, then ψi(v) ≥ ψi(w).

As argued by van den Brink et al. (2013), strong monotonicity is a very strong axiom
in the sense that i’s payoff could increase irrespective of what is to be allocated. Hence,
van den Brink et al. (2013) introduced the following weakened form:
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Weak monotonicity (van den Brink et al. (2013)). Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥
∆iw(S) for all S ⊆ N\i and v(N) ≥ w(N), then ψi(v) ≥ ψi(w).

Under efficiency and symmetry, strong monotonicity characterizes the Shapley value
and weak monotonicity characterizes the egalitarian Shapley values, as proven by Young
(1985) and Casajus and Huettner (2014), respectively.1 The difference between the two
axioms lies in the parameters stated in the hypothesis; strong monotonicity states an
increase in a player’s contributions, while weak monotonicity states an increase in a
player’s contributions and the grand coalition worth. Note that increasing the number
of parameters stated in the hypothesis of an axiom weakens the axiom.

Following the above line of research, we establish a comprehensive characterization
of linear solutions by monotonicity. To define new monotonicity axioms, we consider the
following four parameters of a game v, with their abbreviations in parentheses:

(i) v(i), a player’s individual worth (id);

(ii) (∆iv(S))S⊆N\i, a player’s contributions (cont);

(iii) v(N), the grand coalition worth (gr); and

(iv) v(N)−
∑

i∈N v(i), the cooperative surplus (sur).

We use as prefix to “monotonicity” the list of parameters that increase. For example,
strong monotonicity and weak monotonicity are reformulated as follows:

cont-monotonicity. Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥ ∆iw(S) for all S ⊆ N\i, then
ψi(v) ≥ ψi(w).

cont+gr-monotonicity. Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥ ∆iw(S) for all S ⊆ N\i and
v(N) ≥ w(N), then ψi(v) ≥ ψi(w).

Different configurations of parameters yield new axioms. We start from the weakest
axiom and then consider stronger axioms.

cont+gr+sur-monotonicity. Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥ ∆iw(S) for all S ⊆
N\i, v(N) ≥ w(N) and v(N)−

∑
i∈N v(i) ≥ w(N)−

∑
i∈N w(i), then ψi(v) ≥ ψi(w).

One can check that this axiom is satisfied by the Shapley value, the equal division
value and the CIS value. Our first result shows that efficiency, symmetry and this axiom
characterize the convex combinations of the three solutions.

Theorem 6. Let n ≥ 6. Then, ψ satisfies efficiency, symmetry and cont+gr+sur-
monotonicity if and only if there exist α, β ∈ [0, 1] with α + β ≤ 1 such that

ψ = αSh+ βCIS + (1− α− β)ED. (3.1)

1We remark that Young’s (1985) result is valid for an arbitrary number of players, while Casajus
and Huettner’s (2014) result is valid except for 2-person games.
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We defer the formal proof to Section 3.7.1. Since the proof is involved, in Section 3.5,
we illustrate a sketch of the proof and explain why we need at least 6 players.

In (3.1), by letting β = 0, we obtain an egalitarian Shapley value, which is interpreted
as a compromise between a player’s productivity and egalitarian principles (see van den
Brink et al. (2013)). We interpret (3.1) as an extension of this idea. To be more precise
about what we mean by “extension,” we provide two equivalent formulas for (3.1).

The first equivalent formula is given as follows: there exist α, β ∈ [0, 1] with α+β ≤ 1
such that

ψi(v) = αShi(v) + βv(i) +
v(N)−

(
αv(N) +

∑
j∈N βv(j)

)
n

for all v ∈ Γ, i ∈ N.

In this solution, we assign to players uniform fractions α and β in their singleton worth and
their Shapley value payoff, respectively, and the remainder is equally divided. Compared
to the α-egalitarian Shapley values, the above formula allows a solution to be more
dependent on a player’s individual worth. As individual worth often plays an important
role in allocation problems,2 it is more appealing to create further room for it.

The second equivalent formula is given as follows: there exist α′, β′ ∈ [0, 1] such that

ψ(v) = α′Sh(v) + (1− α′)
(
β′CIS(v) + (1− β′)ED(v)

)
for all v ∈ Γ.

In this solution, we assign to players an uniform fraction α in their Shapley payoff and
the reminder is distributed according to a convex combination of the CIS value and the
ENSC value. The equal division value and the CIS value evenly distribute the grand
coalition worth and the cooperative surplus, respectively, both of which seem to capture
the egalitarian principle. We allow for any convex combination of the equal division value
and the CIS value. In this sense, the above formula creates further room for considering
the egalitarian principle.

By replacing cont + gr + sur-monotonicity with a stronger axiom, we obtain new
characterizations. Consider the following axioms:

cont+sur-monotonicity. Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥ ∆iw(S) for all S ⊆ N\i
and v(N)−

∑
i∈N v(i) ≥ w(N)−

∑
i∈N w(i), then ψi(v) ≥ ψi(w).

id+gr+sur-monotonicity. Let v, w ∈ Γ and i ∈ N . If v(i) ≥ w(i), v(N) ≥ w(N) and
v(N)−

∑
i∈N v(i) ≥ w(N)−

∑
i∈N w(i), then ψi(v) ≥ ψi(w).

id+sur-monotonicity. Let v, w ∈ Γ and i ∈ N . If v(i) ≥ w(i) and v(N) −
∑

i∈N v(i) ≥
w(N)−

∑
i∈N w(i), then ψi(v) ≥ ψi(w).

Theorem 7. Let n ≥ 6. Then, ψ satisfies efficiency, symmetry and cont+sur-monotonicity
if and only if there exists α ∈ [0, 1] such that ψ = Ψα.

Theorem 8. Let n ≥ 6. Then, ψ satisfies efficiency, symmetry and id+gr+sur-monotonicity
if and only if there exists α ∈ [0, 1] such that ψ = αCIS + (1− α)ED.

Theorem 9. Let n ≥ 6. Then, ψ satisfies efficiency, symmetry and id+sur-monotonicity
if and only if ψ = CIS.

2For example, in public good provision problems (Moulin (1995)), the voluntary participation axiom
states that a player should receive no less than his individual worth.
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We prove Theorems 7 to 9 in Section 3.7.2.
We emphasize the correspondence between axioms and solutions. Note that the four

parameters (i) to (iv) are used in the definitions of solutions; a player’s contributions are
in the Shapley value, the grand coalition worth is in the equal division value, and the
individual worth and the cooperative surplus are in the CIS value. In Theorems 6 to 9,
the parameters stated in an axiom correspond to the parameters used in the definitions
of the solutions characterized by the axiom.

Remark 1. In Theorems 7 and 8, we employ stronger axioms than cont + gr + sur-
monotonicity. As a result, a coefficient in (3.1) degenerates to 0 and we obtain a smaller
class of solutions. In Theorem 9, we employ an even stronger axiom, which results in a
new characterization of the CIS value. Note that the CIS value is determined only by
the worth of 1-person and n-person coalitions, and id + sur-monotonicity requires this
property. Based on this, one may argue that id + sur-monotonicity is too strong. The
main message of Theorem 9, however, is the following: among many solutions depending
only on the worth of 1-person and n-person coalitions, the CIS value is the only solution
satisfying efficiency, symmetry and id + sur-monotonicity. Thus, id + sur-monotonicity
clarifies the difference between the CIS value and other solutions.

Another direction for extending Theorem 6 is to take the dual of the new axiom. For
v ∈ Γ, we define the dual game v∗ ∈ Γ by

v∗(S) = v(N)− v(N\S) for all S ⊆ N,S ̸= ∅.

Regarding a player’s individual worth and the cooperative surplus, taking the dual yields
new parameters of a game. A player’s individual worth in the dual game, v∗(i) = v(N)−
v(N\i), represents the player’s contribution to the grand coalition. The cooperative
surplus in the dual game,

v∗(N)−
∑
i∈N

v∗(i) = v(N)−
∑
i∈N

{
v(N)− v(N\i)

}
,

represents the difference between the grand coalition worth and the sum of the contribu-
tions to the grand coalition.

To capture the above parameters, we introduce the dual of an axiom, and characterize
the duals of solutions. For a detailed discussion on the dual approach, we refer the reader
to Oishi et al. (2016).

Given a monotonicity axiom, its dual is defined by replacing an increase in v(i) by
an increase in v∗(i) and replacing an increase in v(N) −

∑
i∈N v(i) by an increase in

v(N) −
∑

i∈N v
∗(i); the other two parameters, a player’s contributions and the grand

coalition worth, remain the same. We attach the superscript ∗ to a parameter to represent
the fact that the parameter is considered in the dual game. For example, the dual of
cont+ gr + sur-monotonicity is given as follows:

cont+gr+sur∗-monotonicity. Let v, w ∈ Γ and i ∈ N . If ∆iv(S) ≥ ∆iw(S) for all
S ⊆ N\i, v(N) ≥ w(N) and v(N) −

∑
i∈N v

∗(i) ≥ w(N) −
∑

i∈N w
∗(i), then

ψi(v) ≥ ψi(w).
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The consequence of taking the dual of an axiom can be seen by the duality of solutions.
Let ψ, ψ∗ be two solutions. We say that ψ∗ is the dual of ψ if

ψ∗(v) = ψ(v∗) for all v ∈ Γ.

We say that ψ is self-dual if ψ is the dual of ψ.
One can easily verify that the CIS value is the dual of the ENSC value (and vice

versa) and that the Shapley value and the equal division are self-dual. Moreover, the
duality relationship is preserved under convex operations. To be more precise, let ψ, ϕ be
solutions, and ψ∗, ϕ∗ be their duals, respectively. Then, for any α ∈ [0, 1], αψ∗+(1−α)ϕ∗

is the dual of αψ + (1− α)ϕ. Together with the duality of parameters, it can be proved
that the dual of a monotonicity axiom characterizes the convex combinations of the duals
of solutions. We exemplify one theorem obtained by the duality approach.

Theorem 6∗ . Let n ≥ 6. Then, ψ satisfies efficiency, symmetry and cont+gr+sur∗-
monotonicity if and only if there exist α, β ∈ [0, 1] with α + β ≤ 1 such that ψ =
αSh+ βENSC + (1− α− β)ED.

Thus far, we have introduced several characterizations of the convex combinations of
solutions by monotonicity. We refer to one more axiom, grand coalition monotonicity
(Casajus and Huettner (2014)), which is formulated as follows:

gr-monotonicity. Let v, w ∈ Γ and i ∈ N . If v(N) ≥ w(N), then ψi(v) ≥ ψi(w).

As proven by Casajus and Huettner (2014), the above axiom, together with efficiency
and symmetry, characterizes the equal division value.

Remark 2. The following coalitional monotonicity (van den Brink (2007)), which is
weaker than gr-monotonicity, also characterizes the equal division value: for any v, w ∈ N
and i ∈ N , if v(S) ≥ w(S) for all S ∋ i, then ψi(v) ≥ ψi(w).

Characterizations of solutions by monotonicity are summarized in Table 1 below.
Below each axiom, we indicate by ↑ the parameters that are stated in the axiom.
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Axioms \ Solutions Sh ED CIS ENSC

cont+ gr + sur-monotonicity (Th. 6)
√ √ √

∆iv(S) ↑, v(N) ↑, v(N)−
∑

i∈N v(i) ↑
cont+ gr + sur∗-monotonicity (Th. 6∗)

√ √ √

∆iv(S) ↑, v(N) ↑, v(N)−
∑

i∈N v
∗(i) ↑

cont+ gr-monotonicity
√ √

∆iv(S) ↑, v(N) ↑
cont+ sur-monotonicity (Th. 7)

√ √

∆iv(S) ↑, v(N)−
∑

i∈N v(i) ↑
cont+ sur∗-monotonicity

√ √

∆iv(S) ↑, v(N)−
∑

i∈N v
∗(i) ↑

id+ gr + sur-monotonicity (Th. 8)
√ √

v(i) ↑, v(N) ↑, v(N)−
∑

i∈N v(i) ↑
id∗ + gr + sur∗-monotonicity

√ √

v∗(i) ↑, v(N) ↑, v(N)−
∑

i∈N v
∗(i) ↑

cont-monotonicity
√

∆iv(S) ↑
id+ sur-monotonicity (Th. 9)

√

v(i) ↑, v(N)−
∑

i∈N v(i) ↑
id+ sur∗-monotonicity

√

v∗(i) ↑, v(N)−
∑

i∈N v
∗(i) ↑

gr-monotonicity
√

v(N) ↑
Table 1. Summary of characterizations of solutions.

Table 1 is read as follows: each axiom in a row characterizes the convex combinations
of solutions marked by

√
.3 As a concrete example, let us focus on the first row. This

row means that cont + gr + sur-monotonicity characterizes the convex combinations of
the solutions marked by

√
, namely the Shapley value, the equal division value and the

CIS value.

3.4 Basis and monotonicity

The proof of Theorem 6 relies heavily on a basis introduced in Chapter 2. The basis
enables us to identify a class of games in which a solution satisfying monotonicity is
linear. Our proof method based on the basis is different from Casajus and Huettner’s
(2014) proof and offers a new approach for characterizing solutions.

We first argue that the basis consisting of the unanimity games (see (1.3)) is not
suitable in view of applying cont + gr + sur-monotonicity. To apply this axiom, it is
important to focus on the addition of games after which the parameters do not change; in
such cases, monotonicity has a strong implication that a player’s payoff does not change.
From this perspective, the unanimity games are not suitable because after adding uT
for |T | ≥ 2, both the grand coalition worth and the cooperative surplus increase. This
observation leads us to search for an alternative basis.

3By our characterization results, a solution in a column does not satisfy the axiom with an empty
cell.
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An ideal basis would be the set of games {wT}∅̸=T⊆N with the following properties:
for any T ⊆ N , T ̸= ∅,

(a) any two players in T are substitutes in wT ;

(b) all players outside T are null players in wT ;

(c) wT (N) = 0; and

(d) wT (N)−
∑

i∈N wT (i) = 0.

However, for |T | = 1, 2, (a) to (d) are incompatible. For |T | = 1, (b) implies that
wT = λuT for some λ and (c) implies wT = 0, which never constitutes a basis. For
|T | = 2, (b) and (c) imply wT (S) = 0 for all S ⊇ T , which is equivalent to saying that
wT (S) = 0 for all S ⊆ N with |S ∩ T | = 2. Moreover, (b) implies wT (S) = 0 for all
S ⊆ N with |S ∩ T | = 0. Together with (a), there exists λ ∈ R such that wT (S) = λ if
|S ∩ T | = 1, 0 otherwise. However by (c) and (d),

∑
iwT (i) = 2λ = 0. This means that

wT = 0.
The above discussion leads us to require (a) to (d) only for |T | ≥ 3. This requirement

turns out to be achievable. For each T ⊆ N with |T | ≥ 3, we consider the game ū2T
defined by (2.3), namely,

ū2T (S) =

{
1 if |S ∩ T | = 2,

0 otherwise.

One can easily verify that for |T | ≥ 3, ū2T satisfies (a) to (d). By Theorem 4,4 the following
set

{uT : T ⊆ N, 1 ≤ |T | ≤ 2} ∪ {ū2T : T ⊆ N, |T | ≥ 3} (3.2)

is a basis of Γ. Regarding |T | = 1, 2, we modify the games {uT : T ⊆ N, 1 ≤ |T | ≤ 2} in
a way that the grand coalition worth and the cooperative surplus are zero for as many
games as possible. To preserve linear independence, we use the following result in linear
algebra:5 Let A = {wT}∅≠T⊆N be a basis of Γ. If B is a set of games obtained from A

• by multiplying each game by a nonzero constant, or

• by replacing a game wT with itself plus a scalar multiple of some other game wT ′ ,

then B is also a basis.
Since (3.2) is a basis, the following set{

u1
}
∪ {u1 − ui : i ∈ N, i ̸= 1} ∪ {u12}

∪ {u12 − uT : T ⊆ N, |T | = 2, T ̸= {1, 2}} ∪ {ū2T : |T | ≥ 3}

is a basis. Define u1 =
∑

i∈N ui, u
2 =

∑
T⊆N :|T |=2 uT . Since

u1 = nu1 −
∑

i∈N :i̸=1

(u1 − ui), u
2 =

n(n− 1)

2
u12 −

∑
T⊆N :|T |=2,T ̸={1,2}

(u12 − uT ),

4Theorem 4 refers to a function ℓ : {1, · · · , n} → {1, · · · , n}. Here, we define ℓ as follows: ℓ(1) = 1,
ℓ(t) = 2 for all t ≥ 2.

5See, for example, Theorem 1.42 of Sundaram (1996).
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the following set{
u1
}
∪ {u1 − ui : i ∈ N, i ̸= 1} ∪ {u2}

∪ {u12 − uT : T ⊆ N, |T | = 2, T ̸= {1, 2}} ∪ {ū2T : |T | ≥ 3}

is also a basis. We provide an example for n = 3:

u1 u1 − u2 u1 − u3 u2 u12 − u13 u12 − u23 ū2N

1
2
3
12
13
23
123



1
1
1
2
2
2
3





1
−1
0
0
1
−1
0





1
0
−1
1
0
−1
0





0
0
0
1
1
1
3





0
0
0
1
−1
0
0





0
0
0
1
0
−1
0





0
0
0
1
1
1
0


Define

V 1 = {u1} ∪ {u2} ∪ {ūT : |T | ≥ 3}, Γ1 = Sp(V 1),

V 2 = {u12 − uT : T ⊆ N, |T | = 2, T ̸= {1, 2}}, Γ2 = Sp(V 2),

V 3 = {u1 − ui : i ∈ N, i ̸= 1}, Γ3 = Sp(V 3).

Note that Sp(V 1 ∪ V 2 ∪ V 3) = Γ.
As it turns out, the payoff vector of a solution satisfying efficiency, symmetry and

cont + gr + sur-monotonicity is tractable in each subspace. Section 3.5 provides some
intuition for this result, and Section 3.7 provides a formal proof.

3.5 Proof sketch of Theorem 6

We illustrate a sketch of the proof of Theorem 6. We provide some intuition for why
the three axioms imply linearity and explain why our proof does not cover the cases
n < 6.

Let ψ be a solution satisfying efficiency, symmetry and cont+ gr+ sur-monotonicity.
The key step of the proof involves showing that ψ is linear with respect to the addition
of games in Γ3. Suppose for simplicity that N = {1, 2, 3}. To see the key idea of proving
linearity, we prove the simplest equation, ψ1(2u1 − 2u2) = 2ψ1(u1 − u2).

ψ1(2u1 − 2u2) = ψ1

(
2u1 − u2 − u3

)
= −ψ2

(
2u1 − u2 − u3

)
− ψ3

(
2u1 − u2 − u3

)
= −ψ2(u1 − u2)− ψ3(u1 − u3)

= ψ1(u1 − u2) + ψ1(u1 − u3)

= ψ1(u1 − u2) + ψ1(u1 − u2),

where the first equality follows from cont + gr + sur-monotonicity, the second equality
follows from efficiency, the third equality follows from cont+ gr + sur-monotonicity, the
fourth equality follows from efficiency and ψ3(u1 − u2) = ψ2(u1 − u3) = 0,6 and the last

6We can prove ψ3(u1 − u2) = 0 in the following way: by efficiency and symmetry, ψ3(0) = 0, and by
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equality follows from cont+ gr + sur-monotonicity.
The key idea of the above calculation is to replace −2u2 with −u2 − u3. Note that

after this change, player 1’s contributions, the grand coalition worth and the cooperative
surplus are invariant. Hence by cont+ gr + sur-monotonicity, 1’s payoff is invariant. In
general, this replacement yields a relationship between an integer q and q − 1. Using an
induction argument, we prove the following lemma:

Lemma 3. Let v ∈ Γ, i, j ∈ N , i ̸= j, and λ ∈ R. Then,

ψ
(
v + λ(ui − uj)

)
= ψ(v) + λψ(ui − uj).

Next, we prove that ψ is linear with respect to the addition of games in Γ2. Again,
we focus on the simplest equation, ψ1(2u12 − 2u34) = 2ψ1(u12 − u34). To apply the same
idea of the proof of ψ1(2u1 − 2u2) = 2ψ1(u1 − u2), we construct a game 2u12 − u34 − u56.
Mimicking the proof of Lemma 3, we obtain the following lemma:

Lemma 4. Let v ∈ Γ, λ ∈ R, and S, T ⊆ N with |S| = |T | = 2, S ̸= T . If v(i) = v(j)
for all i, j ∈ N , then

ψ
(
v + λ(uS − uT )

)
− ψ(v) = λψ(uS − uT ).

The remaining task is to determine the payoff vector of a game in Γ1. Using the
properties (a) to (d) discussed in Section 3.4 and mimicking Young’s (1985) proof, we
obtain the following lemma:

Lemma 5. Let v ∈ Γ1. Then,

ψi(v) =
v(N)

n
for all i ∈ N.

Combining Lemmas 3 to 5, we prove that ψ is a convex combination of the three
solutions on the whole class of games.

Remark 3. As we discussed in Section 3.4, our new basis is derived by focusing on
the parameters (a) to (d). When we employ stronger axioms than cont + gr + sur-
monotonicity, we can decrease the number of parameters we consider. Thus, there is
a possibility to find a “better” basis in the sense that having fewer players suffices for
the proof. This is indeed true in the case of cont + gr-monotonicity (namely, weak
monotonicity). For the commander games {ūT}∅̸=T⊆N (see (2.1)), ūT satisfies (a) to (c)
for all T ⊆ N with |T | ≥ 2. Using this basis, we can provide another proof for Casajus
and Huettner’s (2014) theorem for the cases n ≥ 3; see Appendix A. Regarding cont+sur-
monotonicity, we could not obtain an alternative basis. However, it is worth mentioning
that there exists a solution for n = 3 satisfying efficiency, symmetry and cont + sur-
monotonicity, but is not a convex combination of linear solutions; see appendix B. Thus,
we can at least say that the characterization of the consensus values requires more players
than that of the egalitarian Shapley values.

Remark 4. Theorem 6 is concerned only with the cases n ≥ 6. For n = 1, efficiency
uniquely determines the solution. For n = 2, Casajus and Huettner (2014) provided a

cont+ gr + sur-monotonicity, ψ3(0) = ψ3(u1 − u2).
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counterexample that satisfies efficiency, symmetry and weak monotonicity, but is not a
convex combination of linear solutions. This solution is also a counterexample to Theorem
6. For n = 3, we provide a counterexample in Appendix B. For n = 4, 5, the validity of
Theorem 6 is an open question.

3.6 Independence of axioms

We show the logical independence of the axioms employed in our characterizations.
Efficiency: The solution ψ̄ defined by ψ̄(v) = 0 for all v ∈ Γ satisfies symmetry and all
monotonicity axioms, but violates efficiency.
Symmetry: Choose one monotonicity axiom and let ψ be the solution that satisfies
efficiency, symmetry and the monotonicity axiom. Define ψ̃ as follows:

ψ̃i(v) =


ψi(v) + 1 if i = 1,

ψi(v)− 1 if i = 2,

ψi(v) otherwise,

for all v ∈ Γ.

Then, ψ̃ satisfies efficiency and the monotonicity axiom, but violates symmetry.
Monotonicity: We define ψ̂ by

ψ̂i(v) =


v(N)

n
if v(j) = v(k) for some j, k ∈ N,

v(N) if v(j) ̸= v(k) for all j, k ∈ N, i = 1,

0 if v(j) ̸= v(k) for all j, k ∈ N, i ̸= 1,

for all v ∈ Γ.

Then, ψ̂ satisfies efficiency and symmetry. Consider the following two games w,w′ ∈ Γ:

w =
n∑

j=2

j · uj, w′ =
n∑

j=2

j · u2.

One can check that ∆1w(S) = ∆1w
′(S) for all S ⊆ N\{1}, w(N) = w′(N), w(1) = w′(1),

w∗(1) = w′∗(1),
∑

i∈N w(i) =
∑

i∈N w
′(i) and

∑
i∈N w

∗(i) =
∑

i∈N w
′∗(i). Thus, all

monotonicity axioms state the invariance of 1’s payoff between w and w′. However,

ψ̂1(w) = w(N) ̸= w′(N)

n
= ψ̂1(w

′).

3.7 Proofs

3.7.1 Proof of Theorem 6

We use the following abbreviations:

Claim → C, Induction hypothesis → IH, Lemma → L,

cont+ gr + sur-monotonicity → M, Efficiency → E, Symmetry → S.

The proof consists of 5 steps.
Step 1: We show that ψ is linear with respect to the addition of v ∈ Γ3.
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Claim 1. Let i ∈ N , v ∈ Γ. Then, for any p, q ∈ N and j ∈ N , j ̸= i,

ψi

(
v +

q

p
(ui − uj)

)
− ψi(v) = q

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
.

Proof. Let p be fixed.
Induction base: If q = 1, the result holds.
Induction step: Suppose that the result holds for q = r − 1, and we prove the result
for q = r, where r ≥ 2. Let k ∈ N\{i, j}. Define w = v + r

p
ui − r−1

p
uj − 1

p
uk. Then,

ψj(w)− ψj(v)
M
= ψj

(
v +

r − 1

p
(ui − uj)

)
− ψj(v)

E,M
= −

[
ψi

(
v +

r − 1

p
(ui − uj)

)
− ψi(v)

]
IH
= −(r − 1)

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
,

ψk(w)− ψk(v)
M
= ψk

(
v +

1

p
(ui − uk)

)
− ψk(v)

E,M
= −

[
ψi

(
v +

1

p
(ui − uk)

)
− ψi(v)

]
M
= −

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
.

Thus,

ψi(w)− ψi(v)
E,M
= −{ψj(w)− ψj(v)} − {ψk(w)− ψk(v)}

= (r − 1)
[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
+ ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

= r
[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
. (3.3)

On the other hand,

ψi(w)− ψi(v)
M
= ψi

(
v +

r

p
(ui − uj)

)
− ψi(v). (3.4)

Equations (3.3) and (3.4) complete the proof.

Claim 2. Let i ∈ N , v ∈ Γ. Then, for any p, q ∈ N and j ∈ N , j ̸= i,

ψi

(
v +

q

p
(ui − uj)

)
− ψi(v) =

q

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Proof. Let p be fixed. Then, by letting q = p in C1,

ψi

(
v + (ui − uj)

)
− ψi(v)

C1
= p

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
,

1

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
= ψi

(
v +

1

p
(ui − uj)

)
− ψi(v).

29



It follows that, for any q ∈ N,

ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

C1
= q

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
=
q

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Claim 3. Let v ∈ Γ, i, j ∈ N , i ̸= j, and p, q ∈ N. Then,

ψi

(
v − q

p
(ui − uj)

)
− ψi(v) = −

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
.

Proof. Let k ∈ N\{i, j}. Define w = v + q
p
(ui + uj)− 2q

p
uk. Then,

ψj(w)− ψj(v)
M
= ψj

(
v − q

p
(ui − uj)

)
− ψj(v)

E,M
= −

[
ψi

(
v − q

p
(ui − uj)

)
− ψi(v)

]
,

ψk(w)− ψk(v)
M
= ψk

(
v +

2q

p
(ui − uk)

)
− ψk(v)

C2
= 2 · q

p

[
ψk

(
v + (ui − uk)

)
− ψk(v)

]
C2
= 2

[
ψk

(
v +

q

p
(ui − uk)

)
− ψk(v)

]
E,M
= −2

[
ψi

(
v +

q

p
(ui − uk)

)
− ψi(v)

]
M
= −2

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
.

Thus,

ψi(w)− ψi(v)
E,M
= −{ψj(w)− ψj(v)} − {ψk(w)− ψk(v)}

=
[
ψi

(
v − q

p
(ui − uj)

)
− ψi(v)

]
+ 2

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
. (3.5)

On the other hand,

ψi(w)− ψi(v)
M
= ψi

(
v +

q

p
(ui − uj)

)
− ψi(v). (3.6)

Equations (3.5) and (3.6) complete the proof.

Claim 4. Let v ∈ Γ, i, j ∈ N , i ̸= j. Then, for any s ∈ Q,

ψi

(
v + s(ui − uj)

)
− ψi(v) = s

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Proof. If s ≥ 0, C2 completes the proof. Suppose that s < 0. Then, we can write s = − q
p
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for some p, q ∈ N.

ψi

(
v + s(ui − uj)

)
− ψi(v) = ψi

(
v − q

p
(ui − uj)

)
− ψi(v)

C3
= −

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
C2
= −q

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
= s

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Claim 5. Let i ∈ N , v ∈ Γ. Then, for any λ ∈ R and j ∈ N , j ̸= i,

ψi

(
v + λ(ui − uj)

)
− ψi(v) = λ

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Proof. Let λ ∈ R. Choose sequences of rational numbers {rt} and {st} that converge to
λ from below and above, respectively. Then,

rt

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
C4
= ψi

(
v + rt(ui − uj)

)
− ψi(v)

M

≤ ψi

(
v + λ(ui − uj)

)
− ψi(v)

M

≤ ψi

(
v + st(ui − uj)

)
− ψi(v)

C4
= st

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Letting t→ ∞, we obtain the result.

Claim 6. Let v, w ∈ Γ. Then,

ψi

(
v + (ui − uj)

)
− ψi(v) = ψi

(
w + (ui − uj)

)
− ψi(w).

Proof. Let z ∈ Γ be such that

z(N) ≥ v(N), z(N)−
∑
m∈N

z(m) ≥ v(N)−
∑
m∈N

v(m),∆iz(S) ≥ ∆iv(S)

for all S ⊆ N\i,

z(N) ≥ w(N), z(N)−
∑
m∈N

z(m) ≥ w(N)−
∑
m∈N

w(m),∆iz(S) ≥ ∆iw(S)

for all S ⊆ N\i.

Suppose that

ψi

(
v + (ui − uj)

)
− ψi(v) ̸= ψi

(
z + (ui − uj)

)
− ψi(z).
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For any λ ∈ R,

ψi

(
v + λ(ui − uj)

)
− ψi(v)−

{
ψi

(
z + λ(ui − uj)

)
− ψi(z)

}
C5
=λ

[
ψi

(
v + (ui − uj)

)
− ψi(v)−

{
ψi

(
z + (ui − uj)

)
− ψi(z)

}]
,

ψi

(
v + λ(ui − uj)

)
− ψi

(
z + λ(ui − uj)

)
=λ

[
ψi

(
v + (ui − uj)

)
− ψi(v)−

{
ψi

(
z + (ui − uj)

)
− ψi(z)

}]
+ ψi(v)− ψi(z).

So, by appropriately choosing λ, we obtain

ψi

(
v + λ(ui − uj)

)
− ψi

(
z + λ(ui − uj)

)
> 0.

This contradicts M. So, we must have

ψi

(
v + (ui − uj)

)
− ψi(v) = ψi

(
z + (ui − uj)

)
− ψi(z).

Applying the same argument to the games w and z, we obtain the desired equation.

Lemma 3 . Let v ∈ Γ, i, j ∈ N , i ̸= j, and λ ∈ R. Then,

ψ
(
v + λ(ui − uj)

)
= ψ(v) + λψ(ui − uj).

Proof. By E and S, ψi(0) = 0 for all i ∈ N . With this equation in hand, by letting w = 0
in C6,

λψi(ui − uj)
C6
= λ

[
ψi

(
v + (ui − uj))− ψi(v)

]
C5
= ψi

(
v + λ(ui − uj)

)
− ψi(v).

For k ∈ N\{i, j},

ψk

(
v + λ(ui − uj)

)
− ψk(v)

M
= 0 = λψk(0)

M
= λψk(ui − uj).

E completes the proof.

Step 2: We show ψ is linear with respect to the addition of v ∈ Γ2. For any v ∈ Γ and
i, j ∈ N , i ̸= j, define

ψij(v) = ψi(v) + ψj(v).

Claim 7. Let v ∈ Γ and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then, for any p, q ∈ N,

ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v) = q

[
ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v)

]
.

Proof. Let p be fixed.
Induction base: If q = 1, the result holds.
Induction step: Suppose that the result holds for q = r − 1, and we prove the result
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for q = r, where r ≥ 2. Without loss of generality, suppose that 1 = i, 2 = j, 3 = k and
4 = l. Define w = v + r

p
u12 − r−1

p
u34 − 1

p
u56. Then,

ψ34(w)− ψ34(v)
M
= ψ34

(
v +

r − 1

p
(u12 − u34)

)
− ψ34(v)

E,M
= −

[
ψ12

(
v +

r − 1

p
(u12 − u34)

)
− ψ12(v)

]
IH
= −(r − 1)

[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
,

ψ56(w)− ψ56(v)
M
= ψ56

(
v +

1

p
(u12 − u56)

)
− ψ56(v)

E,M
= −

[
ψ12

(
v +

1

p
(u12 − u56)

)
− ψ12(v)

]
M
= −

[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
.

Thus,

ψ12(w)− ψ12(v)
E,M
= −{ψ34(w)− ψ34(v)} − {ψ56(w)− ψ56(v)}

= (r − 1)
[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
+
[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
= r

[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
. (3.7)

On the other hand,

ψ12(w)− ψ12(v)
M
= ψ12

(
v +

r

p
(u12 − u34)

)
− ψ12(v). (3.8)

Equations (3.7) and (3.8) complete the proof.

Claim 8. Let v ∈ Γ and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then, for any p, q ∈ N,

ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v) =

q

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Proof. Let p be fixed. Then, by letting q = p in C7,

ψij

(
v + (uij − ukl)

)
− ψij(v)

C7
= p

[
ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v)

]
,

1

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
= ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v).

It follows that, for any q ∈ N,

ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v)

C7
= q

[
ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v)

]
=
q

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.
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Claim 9. Let v ∈ Γ, i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l, and p, q ∈ N. Then,

ψij

(
v − q

p
(uij − ukl)

)
− ψij(v) = −

[
ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v)

]
.

Proof. Without loss of generality, suppose that 1 = i, 2 = j, 3 = k and 4 = l. Define
w = v + q

p
(u12 + u34)− 2q

p
u56. Then,

ψ34(w)− ψ34(v)
M
= ψ34

(
v − q

p
(u12 − u34)

)
− ψ34(v)

E,M
= −

[
ψ12

(
v − q

p
(u12 − u34)

)
− ψ12(v)

]
,

ψ56(w)− ψ56(v)
M
= ψ56

(
v +

2q

p
(u12 − u56)

)
− ψ56(v)

C8
= 2 · q

p

[
ψ56

(
v + (u12 − u56)

)
− ψ56(v)

]
C8
= 2

[
ψ56

(
v +

q

p
(u12 − u56)

)
− ψ56(v)

]
E,M
= −2

[
ψ12

(
v +

q

p
(u12 − u56)

)
− ψ12(v)

]
M
= −2

[
ψ12

(
v +

q

p
(u12 − u34)

)
− ψ12(v)

]
.

Thus,

ψ12(w)− ψ12(v)
E,M
= −{ψ34(w)− ψ34(v)} − {ψ56(w)− ψ56(v)}

=
[
ψ12

(
v − q

p
(u12 − u34)

)
− ψ12(v)

]
+ 2

[
ψ12

(
v +

q

p
(u12 − u34)

)
− ψ12(v)

]
. (3.9)

On the other hand,

ψ12(w)− ψ12(v)
M
= ψ12

(
v +

q

p
(u12 − u34)

)
− ψ12(v). (3.10)

Equations (3.9) and (3.10) complete the proof.

Claim 10. Let v ∈ Γ, i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then, for any s ∈ Q,

ψij

(
v + s(uij − ukl)

)
− ψij(v) = s

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Proof. If s ≥ 0, C8 completes the proof. Suppose that s < 0. Then, we can write s = − q
p
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for some p, q ∈ N.

ψij

(
v + s(uij − ukl)

)
− ψij(v) = ψij

(
v − q

p
(uij − ukl)

)
− ψij(v)

C9
= −

[
ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v)

]
C8
= −q

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
= s

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Claim 11. Let v ∈ Γ, λ ∈ R and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then,

ψij

(
v + λ(uij − ukl)

)
− ψij(v) = λ

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Proof. Let λ ∈ R. Choose sequences of rational numbers {rt} and {st} that converge to
λ from below and above, respectively. Then,

rt

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
C10
= ψij

(
v + rt(uij − ukl)

)
− ψij(v)

M

≤ ψij

(
v + λ(uij − ukl)

)
− ψij(v)

M

≤ ψij

(
v + st(uij − ukl)

)
− ψij(v)

C10
= st

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Letting t→ ∞, we obtain the result.

Claim 12. Let v, w ∈ Γ and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then,

ψij

(
v + (uij − ukl)

)
− ψij(v) = ψij

(
w + (uij − ukl)

)
− ψij(w).

Proof. Let z ∈ Γ be such that

z(N) ≥ v(N), z(N)−
∑
m∈N

z(m) ≥ v(N)−
∑
m∈N

v(m),

∆iz(S) ≥ ∆iv(S) for all S ⊆ N\i,∆jz(S) ≥ ∆jv(S) for all S ⊆ N\j,

z(N) ≥ w(N), z(N)−
∑
m∈N

z(m) ≥ w(N)−
∑
m∈N

w(m),

∆iz(S) ≥ ∆iw(S) for all S ⊆ N\i,∆jz(S) ≥ ∆jw(S) for all S ⊆ N\j.

Suppose that

ψij

(
v + (uij − ukl)

)
− ψij(v) ̸= ψij

(
z + (uij − ukl)

)
− ψij(z).
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For any λ ∈ R,

ψij

(
v + λ(uij − ukl)

)
− ψij(v)−

{
ψij

(
z + λ(uij − ukl)

)
− ψij(z)

}
C11
= λ

[
ψij(v + (uij − ukl))− ψij(v)−

{
ψij

(
z + (uij − ukl)

)
− ψij(z)

}]
,

ψij

(
v + λ(uij − ukl)

)
− ψij

(
z + λ(uij − ukl)

)
= λ

[
ψij(v + (uij − ukl))− ψij(v)−

{
ψij

(
z + (uij − ukl)

)
− ψij(z)

}]
+ ψij(v)− ψij(z).

So, by appropriately choosing λ, we obtain

ψij

(
v + λ(uij − ukl)

)
− ψij

(
z + λ(uij − ukl)

)
> 0.

This contradicts M. So, we must have

ψij

(
v + (uij − ukl)

)
− ψij(v) = ψij

(
z + (uij − ukl)

)
− ψij(z).

Applying the same argument to the games w and z, we obtain the desired equation.

Claim 13. Let v ∈ Γ, λ ∈ R, and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. If v(i) = v(j),
then,

ψi

(
v + λ(uij − ukl)

)
− ψi(v) = λψi(uij − ukl).

Proof. Case 1: Suppose that i and j are substitutes in v. Then,

2
[
ψi

(
v + λ(uij − ukl)

)
− ψi(v)

]
S
= ψij

(
v + λ(uij − ukl)

)
− ψij(v)

C11
= λ

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
C12
= λψij(uij − ukl)

S
= 2λψi(uij − ukl).

Case 2: Suppose that i and j are not substitutes in v. By Pintér (2015), there exists
w ∈ Γ such that

∆iv(S) = ∆iw(S) for all S ⊆ N\i,
i and j are substitutes in w.

Note that w(j) = w(i) = v(i) = v(j). Let k, l ∈ N\{i, j}, k ̸= l, and define z ∈ Γ by

z = w +
∑

m∈N\{i,j}

(
v(m)− w(m)

)
um

+
(
v(N)− w(N)−

∑
m∈N\{i,j}

(
v(m)− w(m)

))
ukl.

Then, ∆iv(S) = ∆iz(S) for all S ⊆ N\i, v(m) = z(m) for all m ∈ N , and v(N) = z(N).
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Moreover, i and j are substitutes in z. Hence,

ψi

(
v + λ(uij − ukl)

)
− ψi(v)

M
= ψi

(
z + λ(uij − ukl)

)
− ψi(z)

Case1
= λψi(uij − ukl).

Lemma 4 . Let v ∈ Γ, λ ∈ R, and S, T ⊆ N , |S| = |T | = 2, S ̸= T . If v(i) = v(j) for
all i, j ∈ N , then

ψ
(
v + λ(uS − uT )

)
− ψ(v) = λψ(uS − uT ).

Proof. Case 1: Suppose that S ∩ T = ∅. Let S = {i, j}, T = {k, l}. Then, for m = i, j,

ψm

(
v + λ(uij − ukl)

)
− ψm(v)

C13
= λψm(uij − ukl).

For m = k, l,

ψm

(
v + λ(uij − ukl)

)
− ψm(v) = ψm

(
v − λ(ukl − uij)

)
− ψm(v)

C13
= −λψm(ukl − uij)

= λψm(uij − ukl),

where the last equality follows from C13 and ψm(0)
E,S
= 0. For player m ∈ N\{i, j, k, l},

ψm

(
v + λ(uij − ukl)

)
− ψm(v)

M
= 0

E,S
= ψm(0)

M
= λψm(uij − ukl).

Case 2: Suppose that S ∩ T ̸= ∅. Let S = {i, j}, T = {j, k}. Let l ∈ N\{i, j, k}. For
player i,

ψi

(
v + λ(uij − ujk)

)
− ψi(v)

M
= ψi

(
v + λ(uij − ukl)

)
− ψi(v)

C13
= λψi(uij − ukl)

M
= λψi(uij − ujk).

For player k,

ψk(v + λ(uij − ujk))− ψk(v) = ψk

(
v − λ(ujk − uij)

)
− ψk(v)

M
= ψk

(
v − λ(ujk − uil)

)
− ψk(v)

C13
= −λψk(ujk − uil)

C13
= λψk(uil − ujk)

M
= λψk(uij − ujk).

For player m ∈ N\{i, j, k},

ψm

(
v + λ(uij − ujk)

)
− ψm(v)

M
= 0

E,S
= ψm(0)

M
= λψm(uij − ujk).

E completes the proof.
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Step 3 We endogenously derive coefficients of Sh and ED.

Claim 14. For distinct players i, j, k ∈ N ,

ψj(uij − ujk) = 0.

Proof. Without loss of generality, suppose that 1 = i, 2 = j, 3 = k. Then,

ψ1(u12 − u23)
M
= ψ1(u12 + u23 − 2u45),

ψ3(u23 − u12)
M
= ψ3(u12 + u23 − 2u45),

ψ1(u12 + u23 − 2u45)
S
= ψ3(u12 + u23 − 2u45).

The above equations imply

ψ1(u12 − u23) = ψ3(u23 − u12). (3.11)

For player m ∈ N\{1, 2, 3},

ψm(u12 − u23)
M
= ψm(0)

E,S
= 0.

Thus,

ψ2(u12 − u23)
E
= −ψ1(u12 − u23)− ψ3(u12 − u23)

= −ψ1(u12 − u23) + ψ3(u23 − u12)

= 0,

where the second equality follows from L2 and ψ3(0)
E,S
= 0, and the last equality follows

from (3.11).

Define

y = ψ3(nu1), (3.12)

z = ψ3(nu12). (3.13)

Then,

0
E,S
= ψ3(0)

M

≤ y
M

≤ ψ3(nuN)
E,S
= 1,

0
E,S
= ψ3(0)

M

≤ z
M

≤ ψ3(nuN)
E,S
= 1.

In addition,

y = ψ3(nu1)
M

≤ ψ3(nu12) = z.

Define x = 1− z. Note that 0 ≤ x ≤ 1, 0 ≤ x+ y ≤ 1. Define a new solution Φx,y by

Φx,y(v) = xSh(v) + yED(v) + (1− x− y)CIS(v) for all v ∈ Γ. (3.14)
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Claim 15. Let i ∈ N , i ̸= 1. Then,

ψ(u1 − ui) = Φx,y(u1 − ui).

Proof. Recall that u1 =
∑

j∈N uj.

1
E,S
= ψ1(u

1)

= ψ1

(
nu1 −

∑
j ̸=1

(u1 − uj)
)

L1
= ψ1(nu1)−

∑
j ̸=1

ψ1(u1 − uj)

E,S
=

(
n− (n− 1)y

)
−

∑
j ̸=1

ψ1(u1 − uj)

M
=

(
n− (n− 1)y

)
− (n− 1)ψ1(u1 − ui).

By rearranging,

ψ1(u1 − ui) = 1− y.

Moreover, since Sh1(u1 − ui) = CIS1(u1 − ui) = 1 and ED1(u1 − ui) = 0, we obtain
Φx,y

1 (u1 − ui) = 1− y. Together with the above equation,

ψ1(u1 − ui) = Φx,y
1 (u1 − ui).

For player j ∈ N\{1, i},

ψj(u1 − ui)
M
= ψj(0)

E,S
= 0 = Φx,y

j (u1 − ui).

E completes the proof.

Claim 16. Let S ⊆ N , |S| = 2, S ̸= {1, 2}. Then,

ψ(u12 − uS) = Φx,y(u12 − uS).

Proof. Case 1: Suppose that 2 /∈ S. Since u2 =
∑

T⊆N :|T |=2 uT ,

u2(N) =
n(n− 1)

2
and u2 =

n(n− 1)

2
u12 −

∑
T⊆N :|T |=2,T ̸={1,2}

(u12 − uT ).
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With this in mind,

1
E,S
= ψ2

( 2

n− 1
u2
)

= ψ2

(
nu12 −

2

n− 1

∑
T⊆N :|T |=2,T ̸={1,2}

(u12 − uT )
)

L2
= ψ2(nu12)−

2

n− 1

∑
T⊆N :|T |=2,T ̸={1,2}

ψ2(u12 − uT )

E,S
=

1

2

{
n− (n− 2)z

}
− 2

n− 1

∑
T⊆N :|T |=2,T ̸={1,2}

ψ2(u12 − uT )

C14
=

1

2

{
n− (n− 2)z

}
− 2

n− 1

∑
T⊆N :|T |=2,2/∈T

ψ2(u12 − uT )

M
=

1

2

{
n− (n− 2)z

}
− 2

n− 1
· (n− 1)(n− 2)

2
ψ2(u12 − uS)

=
1

2

{
n− (n− 2)z

}
− (n− 2)ψ2(u12 − uS).

By rearranging,

ψ2(u12 − uS) =
1− z

2
=
x

2
= Φx,y

2 (u12 − uS).

If 1 /∈ S,

ψ1(u12 − uS)
S
= ψ2(u12 − uS) = Φx,y

2 (u12 − uS) = Φx,y
1 (u12 − uS).

If 1 ∈ S,

ψ1(u12 − uS)
C14
= 0 = Φx,y

1 (u12 − uS).

For m ∈ N\(S ∪ {1, 2}),

ψm(u12 − uS)
M
= ψm(0)

E,S
= 0 = Φx,y

m (u12 − uS).

E and S establish the desired equation.
Case 2: Suppose that 2 ∈ S. We can write S = {2, i} for some i ∈ N\{1, 2}.

ψ1(u12 − u2i)
M
= ψ1(u12 − u34)

Case1
= Φx,y

1 (u12 − u34) = Φx,y
1 (u12 − u2i),

ψ2(u12 − u2i)
C14
= 0 = Φx,y

2 (u12 − u2i).

For m ∈ N\{1, 2, i},

ψm(u12 − u2i)
M
= ψm(0)

E,S
= 0 = Φx,y

m (u12 − u2i).

E completes the proof.

Step 4 We show that ψ coincides with ED on Γ1.
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Lemma 5 . Let v ∈ Γ1. Then,

ψi(v) = Φx,y
i (v) =

v(N)

n
for all i ∈ N.

Proof. Since v ∈ Γ1, there exist unique real numbers α, β, γT , T ⊆ N , |T | ≥ 3, such that

v = αu1 + βu2 +
∑

T⊆N :|T |≥3

γT ūT .

Let C = {T ⊆ N : |T | ≥ 3, γT ̸= 0}. We proceed by induction.
Induction base: If |C| = 0, then v = αu1 + βu2. In this game, any two players are
substitutes in v. Hence, the result follows from E and S.
Induction step: Suppose that the result holds for |C| = t− 1, and we prove the result
for |C| = t, where t ≥ 1.
Let j ∈ N\(∩R∈CR). Let R be such that R ∈ C and j /∈ R. Then, we have

ψj(v)
M
= ψj(v − γRūR)

IH
=
v(N)

n
.

Hence, the payoff of player j ∈ N\(∩R∈CR) is determined. Since any two players in
∩R∈CR are substitutes in v, E and S uniquely determine the payoffs of all players.

Step 5 We show that ψ(v) = Φx,y(v) for all v ∈ Γ.

Claim 17. Let v1 ∈ Γ1, v2 ∈ Γ2. Then, ψ(v1 + v2) = Φx,y(v1 + v2).

Proof. Since v2 ∈ Γ2, there exist unique real numbers γT for T ⊆ N , |T | = 2, T ̸= {1, 2},
such that

v2 =
∑

T⊆N :|T |=2,T ̸={1,2}

γT (u12 − uT ).

Since v1(i) = v1(j) for all i, j ∈ N ,7

ψ(v1 + v2)
L4
= ψ(v1) +

∑
T⊆N :|T |=2,T ̸={1,2}

γTψ(u12 − uT )

L5,C16
= Φx,y(v1) +

∑
T⊆N :|T |=2,T ̸={1,2}

γTΦ
x,y(u12 − uT )

= Φx,y(v1 + v2).

We resume the proof of Theorem 6. Let v ∈ Γ. Then, there exist v1 ∈ Γ1, v2 ∈ Γ2

and v3 ∈ Γ3 such that
v = v1 + v2 + v3.

Since v3 ∈ Γ3, there exist unique real numbers γi, i ∈ N , such that

v3 =
∑
i∈N

γi(u1 − ui).

7Note that (u1 + u2)(i) = (u1 + u2)(j) for all i, j ∈ N and ūT (i) = 0 for all T ⊆ N , |T | ≥ 3, i ∈ N .
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Then,

ψ(v1 + v2 + v3) = ψ
(
v1 + v2 +

∑
i∈N

γi(u1 − ui)
)

L3
= ψ(v1 + v2) +

∑
i∈N

γiψ(u1 − ui)

C17, C15
= Φx,y(v1 + v2) +

∑
i∈N

γiΦ
x,y(u1 − ui)

= Φx,y(v1 + v2 + v3).

Thus, ψ = Φx,y.

Remark 5. In some part of the proof, we borrowed ideas of previous works. The proofs
of Claims 6 and 12 are based on the proof of Claim 5 of Casajus and Huettner (2014).
The proof of Lemma 3 is based on the proof of Theorem 2 of Young (1985).

3.7.2 Proofs of Theorems 7, 8 and 9

Note that the axioms employed in Theorems 7, 8 and 9 are stronger than cont+ gr+
sur-monotonicity. Thus, we can follow the same line of the proof of Theorem 6. We only
change the proof of Step 3 in which we endogenously derive the coefficients of a convex
combination.

Proof of Theorem 7 . Define y and z as we did in equations (3.12), (3.13) and let
x = 1− z. Then,

0
E,S
= ψ3(0) = ψ3(nu1) = y,

where the second equality follows from cont + sur-monotonicity. Thus, equation (3.14)
reduces to

Φx,y(v) = xSh(v) + (1− x)CIS(v) for all v ∈ Γ.

Proof of Theorem 8 . Define y and z as we did in equations (3.12), (3.13) and let
x = 1− z. Then,

z = ψ3(nu12) = ψ3(nuN) = 1,

where the second equality follows from id+ gr+ sur-monotonicity. It follows that x = 0.
Thus, equation (3.14) reduces to

Φx,y(v) = yCIS(v) + (1− y)ED(v) for all v ∈ Γ.

Proof of Theorem 9 . Define y and z as we did in equations (3.12), (3.13) and let
x = 1− z. Then,

0
E,S
= ψ3(0) = ψ3(nu1) = y,
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where the second equality follows from id+ sur-monotonicity. In addition,

z = ψ3(nu12) = ψ3(nuN) = 1,

where the second equality follows from id+ sur-monotonicity. It follows that x = y = 0.
Thus, equation (3.14) reduces to

Φx,y(v) = CIS(v) for all v ∈ Γ.
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Chapter 4

The Shapley value and the core in
NTU games

4.1 Introduction

The core and the Shapley value are two central solutions in the class of TU games.
The two solutions are typically discussed separately, but there is a general relationship
between them. Monderer et al. (1992) proved that any core element is attainable as the
outcome of a weighted Shapley value, an asymmetric extension of the Shapley value.1 To
be more precise, let V be an NTU game and x be a core element of V . Then, there exists
a weight w such that the weighted Shapley value with weight w in game V coincides with
x. This is a notable result “in light of the difference in concept behind these solutions
(Monderer et al. (1992)).”

Monderer et al.’s (1992) result, however, relies on the underlying assumptions behind
TU games. As the core has been applied to allocation problems without the quasi-linearity
assumption, e.g., exchange economies or matching markets, its relationship needs to be
studied in NTU games. The purpose of this chapter is to extend Monderer et al.’s (1992)
result to NTU games.

We can extend the core to NTU games in a straightforward way, while an extension of
the weighted Shapley value is not unique. We focus on several extensions of the weighted
Shapley values. We first show that the core is included in the closure of the outcomes
of the weighted egalitarian solutions introduced by Kalai and Samet (1985). This result
provides a normative foundation to the core. In contrast, we show that the core is not
always included in the closure of the outcomes of the weighted Shapley NTU values
(Shapley (1969, 1988)). Similarly we show that the core is not always included in the
closure of the weighted MC values (Otten et al. (1998)).

The above results offer new insight into the problem of extending the weighted Shapley
value to NTU games. In view of the relationship to the core, the weighted egalitarian
solutions are a more desirable extension.

As a byproduct of our approach, we study the relationship between the core and
contributions of players in NTU games. We show that, if the attainable payoffs for the
grand coalition is represented as a closed half-space, then any element of the core is
attainable as the expected value of contributions.

1Here, the word “asymmetric” is intended to mean that all the weighted Shapley values (except for
the original Shapley value) do not satisfy the symmetry axiom (see Section 1.4.1).
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The remainder of this chapter is organized as follows. Section 4.2 deals with prelimi-
naries. In Section 4.3, we study the relationship between the core and extensions of the
weighted Shapley value to NTU games. All proofs are provided in Section 4.4.

4.2 Preliminaries

Let V ∈ Γ̂, x, y ∈ V (N) and S ⊆ N , S ̸= ∅. We say that y dominates x via S
if yi > xi for all i ∈ S and yS ∈ V (S). We say that y dominates x if there exists a
non-empty coalition S such that y dominates x via S. We define the core of V by

C(V ) = {x ∈ RN : there exists no y ∈ RN that dominates x}.

The core describes the set of outcomes that no coalition can improve upon on its own.
For each S ⊆ N , S ̸= ∅, we define

∆S
++ =

{
x ∈ RS

++ :
∑
i∈S

xi = 1
}
.

In this chapter, we consider solutions that do not satisfy the symmetry axiom. Such
solutions are formulated by using the notion of a weight. An element w = (wi)i∈N ∈ ∆N

++

is called a weight and is interpreted as follows:2

These weights can be interpreted as “a-priori measures of importance;” they
are taken to reflect considerations not captured by the game.

(Hart and Mas-Colell (1989), p.603)

For example, “when players are of unequal ‘size’ (e.g. a player may represent a ‘group’,
a ‘department’, and so on)” (Hart (1989)), a weight captures the asymmetry inherited in
the difference of size.

A weighted solution is a function from ∆N
++ × Γ̂ to RN . Namely, a weighted solution

assigns a payoff vector to each pair of a game and a weight. All the weighted solutions
discussed in this chapter coincide with a weighted Shapley value on the class of TU games
Γ ⊆ Γ̂.3 For each w ∈ ∆N

++ and v ∈ Γ, we define the w-weighted Shapley value by

Shwi (v) =
∑

T⊆N :i∈T

D(T, v) ·
wi∑
j∈T wj

for all i ∈ N.

4.3 The core and weighted solutions

We first provide a lemma that identifies a sufficient condition under which the closure
of a family of values contains the core. Let ψ : ∆N

++ × Γ̂ → RN be an arbitrary weighted

solution. Let V ∈ Γ̂ be fixed and we restrict the domain of ψ to ∆N
++, i.e., we consider

the function ψw(V ) : ∆N
++ → RN . Consider the following three conditions on ψw(V ):

C1: ψw(V ) ∈ ∂V (N) for all w ∈ ∆N
++.

2We replace “characteristic function” in the original text with “game”.
3As discussed in Section 1.4.2, any TU game is represented as an NTU game.
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C2: ψw(V ) is continuous with respect to w.

C3: Let {wk}∞k=1 be a convergent sequence such that there exists T ( N , T ̸= ∅,
satisfying limk→∞wk

i = 0 for all i ∈ T and limk→∞wk
j > 0 for all j ∈ N\T . Then,

{ψwk
(V )}∞k=1 has a convergent subsequence satisfying

lim
k→∞

ψwk

T (V ) ∈ V (T ).

C1 states that the outcome ψw(V ) is always Pareto optimal. C2 states that if a weight
vector w slightly changes, then the final outcome also slightly changes. C3 states that, if
the weights of players in T go to 0, then the players receive a payoff vector in V (T ). In
other words, if importance of players in T becomes increasingly small, then the players
in T only receive the attainable payoff on their own.

Lemma 6. Let V ∈ Γ̂ and ψ be a weighted solution. If the function ψw(V ) : ∆N
++ → RN

satisfies C1 to C3, then
C(V ) ⊆ cl{ψw(V ) : w ∈ ∆N

++}.

Proof. See Section 4.4.1.

Some intuition for this lemma can be seen in the following example:

Example 2. Consider the following 2-person game V 1:

V 1({i}) = {x ∈ R : x ≤ 0} for i = 1, 2,

and V 1({1, 2}) is depicted by Fig. 3.

Fig. 3 Description of V 1({1, 2})

The core is the set of payoff vectors represented by the arc from x to x′. Consider
now a function ψw(V 1) that satisfies C1 to C3. We focus on the locus of ψw(V 1) as w
changes. By C1 and C2, ψw(V 1) continuously moves along the boundary of V 1({1, 2}).
Moreover, by C3, ψw(V 1) reaches the left-hand side of point x (emphasized by the bold
line) when w1 → 0. Similarly, ψw(V 1) reaches the right-hand side of point x′ (emphasized
by the bold line) when w2 → 0. These observations indicate that the range of ψw(V 1)
includes the core as w changes.

Lemma 6 is used to prove theorems in the remainder of this section.
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4.3.1 Weighted egalitarian solutions

We focus on the weighted egalitarian solutions introduced by Kalai and Samet (1985).
Let V ∈ Γ̂ and w ∈ ∆N

++. We define Dw(V, S) ∈ RS and Zw(V, S) ∈ RS for S ⊆ N ,
S ̸= ∅, inductively on the size of S as follows: for each i ∈ N ,

Zw(V, {i}) = Dw(V, {i}) = max{t ∈ R : t ∈ V ({i})}.

For each S ⊆ N , |S| ≥ 2,

Zw
i (V, S) =

∑
T(S:i∈T

Dw
i (V, T ) for all i ∈ S.

Dw
i (V, S) = wimax{t : (Zw(V, S) + twS) ∈ V (S)} for all i ∈ S. (4.1)

For each w ∈ ∆N
++, we define the w-weighted egalitarian solution ξw : Γ̂ → RN as follows:

ξwi (V ) =
∑

S⊆N :i∈S

Dw
i (V, S) for all i ∈ N, V ∈ Γ̂.

We explain what kind of payoff vector is assigned by ξw. For 1-person coalitions,
Zw(V, {i}) (equivalently Dw(V, {i})) represents the maximum attainable payoff for i.
Next, consider the 2-person coalition {1, 2}. The vector Zw(V, {1, 2}) ∈ R2 represents
the attainable payoff for each player, i.e.,

Zw
1 (V, {1, 2}) = Zw(V, {1}), Zw

2 (V, {1, 2}) = Zw(V, {2}).

From the reference point Zw(V, {1, 2}), we draw a line in the direction of w until we reach
the Pareto frontier and obtain Dw({1, 2}, V ). See Fig. 4 below:

Fig. 4 Graphical representations of Zw and Dw for {1, 2}

In this way, we obtain Dw(V, S) for all 2-person coalitions, which enables us to derive
Zw(V, S) for 3-person coalitions. Again, from the reference point Zw(V, S), we draw a
line in the direction of w and obtain Dw(V, S) for 3-person coalitions. Repeating this
procedure, we obtain Dw(V, S) for all coalitions. The w-weighted egalitarian solution
assigns the sum of Dw

i (V, S), S ⊆ N , i ∈ S, to player i.
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In the class of TU games, the w-weighted egalitarian solution ξw coincides with the
w-weighted Shapley value; see Theorem 4 of Kalai and Samet (1985). For each V ∈ Γ̂,
we define the set of weighted egalitarian solutions Ξ(V ) as follows:

Ξ(V ) = {ξw(V ) : w ∈ ∆N
++}.

Applying Lemma 6, we obtain the following theorem:

Theorem 10. For any V ∈ Γ̂, C(V ) ⊆ clΞ(V ).

Proof. See Section 5.2.

The weighted egalitarian solutions are supported by desirable axioms; see Kalai and
Samet (1985) or Hart and Mas-Colell (1989). Theorem 10 states that any element of the
core is “almost” attainable as the outcome of the solution. This result strengthens the
elements of the core as reasonable outcomes in NTU games.

4.3.2 Shapley NTU value

The Shapley NTU value was first introduced by Shapley (1969, 1988). To calculate
this value, we first derive a TU game from the original NTU game and then apply the
Shapley value to the derived game. We can define the weighted version by using the
weighted Shapley value instead of the (symmetric) Shapley value.

In this section, we provide a counterexample in which the weighted version of the
Shapley NTU value does not contain the core. Intuitively, this negative result is obtained
because an element of the core in the original NTU game is not necessarily an element
of the core in the derived TU game.

We revisit definition of the Shapley NTU value by following notations of Peleg and
Sudhölter (2007). Let V ∈ Γ̂. For each λ ∈ ∆N

++, we define vλ : 2N → R ∪ {+∞} by

vλ(S) = sup{λS · x : x ∈ V (S)} for all S ⊆ N,S ̸= ∅. (4.2)

We say that λ ∈ ∆N
++ is viable in V if vλ(S) ∈ R for all S ⊆ N , S ̸= ∅. For y, z ∈ RN ,

we define y ∗ z = (yizi)i∈N ∈ RN . We say that x ∈ V (N) is a weighted Shapley NTU
value with positive weight w ∈ ∆N

++ if there exists λ such that λ is viable in V and
λ ∗ x = Shw(vλ).

Example 3. Consider the following 3-person game V 2:

V 2(N) = {x ∈ RN : x1 + x2 + x3 ≤ 1},

V 2(S) =
{
x ∈ RS :

∑
i∈S

xi ≤ 0
}
if S ̸= N,S ̸= {1, 2}.

V 2({1, 2}) is the shaded area of Fig. 5.
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Fig. 5 Description of V 2({1, 2}).

Consider (0, 0, 1) ∈ C(V 2). We show that any convergent sequence of the weighted
Shapley NTU values cannot attain this vector as the limit point.

For λ to be viable in V 2, we must have λ = (1/3, 1/3, 1/3); otherwise, vλ(N) = +∞.
Set µ = (1/3, 1/3, 1/3). By definitions of V 2 and vµ,

vµ(S) =

{
1
3

if S ∈ {N, {1, 2}},
0 otherwise.

If x ∈ RN is a weighted Shapley NTU value, we must have µ ∗ x = Shw(vµ), which is
equivalent to saying that x = Shw(3 · vµ). As player 3’s contribution is always equal to 0
in 3 · vµ, we conclude that (0, 0, 1) is not attainable as the outcome of a weighted Shapley
NTU value.

Comparing the results in Subsections 4.3.1 and 4.3.2 provides new insight into the
problem of extending the weighted Shapley value to NTU games. When we extend
a value in TU games to NTU games, an important criterion is whether the extension
preserves desirable properties of the original version.4 In view of the relationship to the
core, the weighted egalitarian solutions are a more desirable extension.

4.3.3 The core and contributions of players

In the class of TU games, Theorem 10 states that the core is included in the closure of
the weighted Shapley values, as proven by Monderer et al. (1992). This inclusion theorem
provides another interpretation of the core: if a payoff vector is not dominated by any
coalition, then the vector can be represented as the expected value of contributions. The
question here is whether this interpretation of the core remains valid even in NTU games.5

In this section, we provide a positive answer to the above question in a restricted
class of Γ̂. We show that, if V (N) is a closed half-space, then any element of the core is
represented as the expected value of contributions.

We introduce some notation. Let R(N) denote the set of orders of players in N . For
any R ∈ R(N) and i ∈ N , let B(R, i) denote the set of players preceding i in R. For
each R ∈ R(N) and V ∈ Γ̂, we define the contribution vector mR(V ) ∈ RN as follows:
for player i ∈ N with B(R, i) = ∅,

mR
i (V ) =max{t ∈ R : t ∈ V ({i})} if B(R, i) = ∅.

4Section 1 of Chang and Chen (2013) discusses this criterion in detail.
5Otten et al. (1998) also raised this open question in their concluding remarks.
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Assume that mR
j (V ) are defined for all j ∈ B(R, i) and we define

mR
i (V ) =max

{
t ∈ R :

(
t, (mR

j (V ))j∈B(R,i)

)
∈ V

(
B(R, i) ∪ {i}

)}
.

In words, mR
i (V ) represents the maximum attainable payoff for i ∈ N given the payoff

of preceding players in the order R.

Remark 6. Under the assumptions N1 to N3 (see Section 1.4.2), the contribution vector
is always well-defined. We prove this result in Appendix C.

For X ⊆ RN , let coX denote the convex hull of X.

Theorem 11. Let V ∈ Γ̂ be such that V (N) is a closed half-space. Then, C(V ) ⊆
co{mR(V ) : R ∈ R(N)}.

Theorem 11 says that, if V (N) is a closed half-space, then the relationship between
the core and contributions in TU games is preserved in NTU games.

4.3.4 MC value

We focus on the MC value developed by Otten et al. (1998). The basic idea of this
value is to rescale the expected value of contributions in such a way that the resulting
vector is Pareto optimal. We consider the weighted version of this value.

We introduce additional notations. For each R = (i1, · · · , in) ∈ R(N) and w =
(wi1 , · · · , win) ∈ ∆N

++, we define Pw(R) by
6

Pw(R) =
n∏

m=1

(
wim

/ m∑
t=1

wit

)
. (4.3)

For each V ∈ Γ̂ and w ∈ ∆N
++, we define ϕw(V ) as follows:

ϕw(V ) =
∑

R∈R(N)

Pw(R)m
R(V ). (4.4)

Let V ∈ Γ̂. The weighted MC value with positive weight w, denoted as MCw(V ), is the
unique payoff vector that satisfies the following:

1: MCw(V ) = αϕw(V ) for some α ∈ R.

2: MCw(V ) ∈ ∂V (N).

We provide a counterexample in which the weighted MC values do not contain the
core.

Example 4. Consider the following 3-person game V 3:

V 3(S) =
{
x ∈ RS :

∑
i∈S

xi ≤ 0
}
for all S ⊆ N,S ̸= ∅, S ̸= N,S ̸= {1, 2},

V 3({1, 2}) = {x ∈ R2 : x1 + x2 ≤ 1},
6If we calculate the expected value of contributions by using this probability in TU games, then we

obtain the weighted Shapley value; see Kalai and Samet (1987).
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and V 3(N) is the set of payoff vectors in R3 such that the cross-sectional view along each
plane is represented by Fig. 6.

Fig. 6 Description of V 3(N)

Consider the payoff vector z = (1/2, 1/2, a) such that a > 0 and z ∈ ∂V 3(N). Then,
we have z ∈ C(V 3). In this game, we can verify thatmR

3 (V
3) = 0 for all R ∈ R(N), which

implies that MCw
3 (V

3) = 0 for all w ∈ ∆N
++. Thus, the vector z cannot be represented

as the outcome of MCw(V 3).
In view of Proposition 1, MCw(V 3) violates one of the three conditions C1, C2 and

C3. We show that it violates C3. To see this, consider a sequence of weights wk ∈ ∆N
++

such that wk = (1/k, 1/k, 1− 2/k), k = 3, 4, · · · . Then, we can verify that

lim
k→∞

MCwk

(V 3) = y,

where y is depicted in Fig. 6. Because y /∈ V 3({1, 2}), MCw(V 3) violates C3.

Remark 7. Monderer et al. (1992) proved the following two theorems in the class of TU
games:

(I) For any core element, there exists a weight such that the corresponding weighted
Shapley value coincides with the element.

(II) A TU game is convex if and only if the core and the set of weighted Shapley values
coincide.

In this paper, we proved that (I) can be extended to NTU games. However, it remains as
an open question whether we can extend (II) to NTU games. Convexity in NTU games
has been defined in previous works: cardinal convexity by Sharkey (1981) and strongly
ordinal convexity by Masuzawa (2012). It may be the case that these notions are related
to the coincidence between the solution concepts discussed in this paper.

4.4 Proofs

In this section, we prove Lemma 6 and Theorems 10 and 11.
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4.4.1 Proof of Lemma 6

We provide a remark on N3 (uniformly non-levelled). In view of proving Lemma 6,
the following weaker condition than N3 is sufficient: for each S ⊆ N , S ̸= ∅,

N3’: x, y ∈ ∂V (S) and x ≤ y imply x = y.

We say that V is non-levelled if it satisfies N3’.
We prove Lemma 6 by using the fixed point theorem. Since ∆N

++ is an open set, we
cannot directly apply the theorem. To overcome the difficulty, we approximate the open
set by a sequence of closed sets. We borrow this idea from the proof of Theorem 5.3 by
Jehle and Reny (2011).

We introduce some notation. For each x, y ∈ RN , we define min{x, y} by

min{x, y} = (z1, · · · , zn) ∈ RN , where zk = min{xk, yk} for all k = 1, · · · , n.

We define max{x, y} in a parallel manner.

Proof of Lemma 6 . Suppose C(V ) ̸= ∅ and let x ∈ C(V ). Let Ψ : ∆N
++ → RN denote

the following function:

Ψ(w) = x− ψw(V ) for all w ∈ ∆N
++. (4.5)

Since ψw(V ) is continuous by C2, Ψ is also continuous. For any w ∈ ∆N
++, let Ψ̃(w) =

min{Ψ(w),1}. For any ϵ ∈ (0, 1), we define

Sϵ =
{
w ∈ ∆N

++ : wi ≥
ϵ

1 + 2n
for all i ∈ N

}
.

The set is compact and convex. We can also check that the set is non-empty; for any
ϵ ∈ (0, 1), we define d ∈ ∆N

++ by

di =
2 + 1

n

1 + 2n
for all i = 1, · · · , n.

Then, d ∈ Sϵ.
We define g : Sϵ → RN as follows:7

gi(w) =
ϵ+ wi +max{0, Ψ̃i(w)}

nϵ+ 1 +
∑

j∈N max{0, Ψ̃j(w)}
for all i ∈ N. (4.6)

Note that
gi(w) ≥

ϵ

nϵ+ 1 + n
≥ ϵ

1 + 2n
for all i ∈ N.

Hence, g : Sϵ → Sϵ is a continuous function from the compact, convex and non-empty set
to itself. By Brouwer’s fixed point theorem, there exists a fixed point. For any k ∈ N,
k ≥ 2, let w

1
k ∈ S 1

k
denote the vector that satisfies g(w

1
k ) = w

1
k .

7We explain the motivation for this function. Our final goal is to find a sequence of weights with
which the weighted values converge to x. Suppose that Ψ̃i(w) > 0, i.e., xi > ψw(V ). This means that
the value assigned by a given weight vector to player i falls short of i’s payoff in the core outcome x.
Then, the function g requires that the weight assigned to i should be increased.
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Now, consider the sequence {w 1
k }∞k=2. Since the sequence is bounded, there exists a

convergent subsequence. Take a convergent subsequence {w 1
k } ⊆ {w 1

k }∞k=2. By (4.6), we
have, for any k,

w
1
k
i

[n
k
+
∑
j∈N

max
{
0, Ψ̃j(w

1
k )
}]

=
1

k
+max

{
0, Ψ̃i(w

1
k )
}
for all i ∈ N. (4.7)

Let w∗ be the limit point of {w 1
k }, i.e., w 1

k → w∗. Since
∑

i∈N w
∗
i = 1 and w∗

i ≥ 0 for all
i = 1, · · · , n, there is at least one player i such that w∗

i > 0. Without loss of generality,
assume that

w∗
i > 0 for i = 1, · · · , t,

w∗
j = 0 for j = t+ 1, · · · , n.

We define S = {1, · · · , t} and T = {t+ 1, · · · , n}. Note that T might be empty.

Case 1: If S = N , we have w∗
i > 0 for all i ∈ N . By C2, limk→∞ Ψ̃i(w

1
k ) = Ψ̃i(w

∗)
for all i ∈ N . Taking the limit k → ∞ of both sides of (4.7),

w∗
i

[∑
j∈N

max
{
0, Ψ̃j(w

∗)
}]

= max
{
0, Ψ̃i(w

∗)
}
for all i ∈ N. (4.8)

Suppose to the contrary that
[∑

j∈N max
{
0, Ψ̃j(w

∗)
}]

> 0. Then, by (4.8), Ψ̃i(w
∗) > 0

for all i ∈ N . In this case, there exists a sufficiently large k′ such that Ψ̃i(w
1
k′ ) > 0 for

all i ∈ N . It follows that

Ψ̃i(w
1
k′ ) = min{Ψi(w

1
k′ ), 1} > 0 for all i ∈ N,

Ψi(w
1
k′ ) > 0 for all i ∈ N,

xi > ψw
1
k′

i (V ) for all i ∈ N.

Since x ∈ C(V ), we have x ∈ ∂V (N). By C1, ψw
1
k′ (V ) ∈ ∂V (N). By N3’, x = ψ(w

1
k′ ),

contradicting xi > ψi(w
1
k′ ) for all i ∈ N .

As a result, we must have
[∑

j∈N max
{
0, Ψ̃∗

j

}]
= 0. By (4.8),

Ψ̃i(w
∗) ≤ 0 for all i ∈ N,

lim
k→∞

min{Ψi(w
1
k ), 1} ≤ 0 for all i ∈ N,

lim
k→∞

Ψi(w
1
k ) ≤ 0 for all i ∈ N.

By (4.5),

lim
k→∞

{
xi − ψw

1
k

i (V )
}
≤ 0 for all i ∈ N,

xi ≤ ψw∗

i (V ) for all i ∈ N.

Since x, ψw∗
(V ) ∈ ∂V (N), by N3’, x = ψw∗

(V ). It follows that x = limk→∞ ψw
1
k (V ).

Case 2: The remaining possibility is that 1 ≤ |S| < n. Consider the sequence
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ψw
1
k (V ). By C3, ψw

1
k (V ) has a convergent subsequence that satisfies the condition stated

in C3. To simplify the notation, suppose that ψw
1
k (V ) itself converges and let ψ∗ denote

the limit point. Since ψw
1
k (V ) converges, Ψ(w

1
k ) and Ψ̃(w

1
k ) = min{Ψ(w

1
k ),1} also

converge. Let Ψ̃∗ denote the limit point of Ψ̃(w
1
k ). Taking the limit k → ∞ of both sides

of (4.7),

w∗
i

[∑
j∈N

max
{
0, Ψ̃∗

j

}]
= max

{
0, Ψ̃∗

i

}
for all i ∈ N. (4.9)

Suppose to the contrary that
[∑

j∈N max
{
0, Ψ̃∗

j

}]
> 0. Then, by (4.9),{

Ψ̃∗
i > 0 for all i ∈ S,

Ψ̃∗
j ≤ 0 for all j ∈ T.

By definition of Ψ̃∗
i , we have{

Ψ̃∗
i = limk→∞ Ψ̃i(w

1
k ) = limk→∞ min{Ψi(w

1
k ), 1} > 0 for all i ∈ S,

Ψ̃∗
j = limk→∞ Ψ̃j(w

1
k ) = limk→∞ min{Ψj(w

1
k ), 1} ≤ 0 for all j ∈ T.

The above two conditions imply{
limk→∞ Ψi(w

1
k ) > 0 for all i ∈ S,

limk→∞ Ψj(w
1
k ) ≤ 0 for all j ∈ T.

Let us focus on the sequence Ψj(w
1
k ) for j ∈ T . Since limk→∞ Ψj(w

1
k ) ≤ 0,

xj − lim
k→∞

ψw
1
k

j (V ) ≤ 0 for all j ∈ T,

xj ≤ ψ∗
j for all j ∈ T.

By C3, ψ∗
T ∈ V (T ). Since xT ≤ ψ∗

T , together with N2 (comprehensive), we have xT ∈
V (T ). Since x ∈ C(V ), we have xT ∈ ∂V (T ). By N3’, xT = ψ∗

T . On the other hand, for
each i ∈ S, we have

xi − lim
k→∞

ψw
1
k

i (V ) > 0 for all i ∈ S,

xi > ψ∗
i for all i ∈ S.

It follows that x ≥ ψ∗. Since x, ψ∗ ∈ ∂V (N), by N3’, x = ψ∗, contradicting xi > ψ∗
i for

all i ∈ S.
As a result, we must have

[∑
i∈N max

{
0, Ψ̃∗

i

}]
= 0. By (4.9),

Ψ̃∗
i ≤ 0 for all i ∈ N,

lim
k→∞

min{Ψi(w
1
k ), 1} ≤ 0 for all i ∈ N,

lim
k→∞

Ψi(w
1
k ) ≤ 0 for all i ∈ N.
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By (4.5),

lim
k→∞

{
xi − ψw

1
k

i (V )
}
≤ 0 for all i ∈ N,

xi ≤ ψ∗
i for all i ∈ N.

Since x, ψ∗ ∈ ∂V (N), by N3’, x = ψ∗. Thus, we have x = limk→∞ ψw
1
k (V ).

4.4.2 Proof of Theorem 10

Let V ∈ Γ̂ and we go back to definition of ξw(V ). In (4.1), there always exists a
unique real number t that attains the maximum by N1 (proper subset) and N2 (closed,
comprehensive). We introduce a function that assigns the unique real number t to each
w ∈ ∆N

++ and S ⊆ N , S ̸= ∅. Let Q : ∆N
++ × 2N\∅ → R denote the function such that

Dw
i (V, S) = wiQ(w, S) for all w ∈ ∆N

++, S ∈ 2N\∅, i ∈ S.

We briefly explain the proof method. To apply Lemma 6, we prove that ξw(V ) satisfies
C2 and C3. In both conditions, we consider a sequence of weights {wk}∞k=1. For each
S ⊆ N , S ̸= ∅, a sequence of weights yields the sequence Dwk

(V, S) = wkQ(wk, S),
k = 1, 2, · · · . If Q(wk, S) diverges, then it becomes difficult to capture the behavior of
wkQ(wk, S). To avoid this difficulty, we provide a claim (Claim 20) which shows that the
function Dw(V, S) is bounded from both sides.

Consider the following two conditions on V (S), S ⊆ N , S ̸= ∅:

N4: {xk}∞k=1 ⊆ ∂V (S) and xki → +∞ for some i ∈ S implies xj → −∞ for some j ∈ S.

N5: {xk}∞k=1 ⊆ ∂V (S) and xki → −∞ for some i ∈ S implies xj → +∞ for some j ∈ S.

Claim 18. Let V ∈ Γ̂. Then, V satisfies N4.

Proof . Let x ∈ ∂V (S). Then, by N2 (convex), there exists a normal vector λ(x) such
that

V (S) ⊆ {y ∈ RS : y · λ(x) ≤ x · λ(x)}.

Since supy∈V (S) y · λ(x) = x · λ(x) < +∞, by N3, there exists δ > 0 such that λi(x) ≥ δ

for all i ∈ N . Now, consider a sequence {xk}∞k=1 ⊆ ∂V (S) such that xki → +∞ for some
i ∈ S. Then, xk · λ(x) ≤ x · λ(x) for all k = 1, 2, · · · . Since λ(x) ∈ ∆N

++ and xki → +∞,
xki · λi(x) → +∞. Since the sequence xk · λ(x) is bounded from above, there must be a
player j ∈ N such that xkj → −∞.

Claim 19. Let V ∈ Γ̂. Then, V satisfies N5.

Proof . Consider a sequence {xk}∞k=1 ⊆ ∂V (S) such that xki → −∞ for some i ∈ S. By
N2 (convex), for each xk, there exists a normal vector λ(xk) such that

V (S) ⊆ {y ∈ RS : y · λ(xk) ≤ xk · λ(xk)}.

As a result, for each k = 1, 2, · · · , supx∈V (S) x · λ(xk) = xk · λ(xk) < +∞. By N3,

there exists δ > 0 such that λi(x
k) ≥ δ for all i ∈ S, k = 1, 2, · · · . It follows that
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xki · λi(xk) → −∞. Since the sequence xk · λ(xk) is bounded from below,8 there must be
a player j ∈ N such that xkj → +∞.

Using the above two lemmas, we prove a lemma which shows that the range of the
function ξw(V ) : ∆N

++ → RN is bounded.

Claim 20. Let V ∈ Γ̂, i ∈ N and S ⊆ N , i ∈ S. Then, there exist M > 0 and m < 0
such that for all w ∈ ∆N

++, m ≤ Dw
i (V, S) ≤M .

Proof . We proceed by induction. If S = {i}, then for all w ∈ ∆N
++, D

w
i (V, {i}) =

max{xi : x ∈ V ({i})} and the statement holds. Suppose that the result holds for T ⊆ N ,
i ∈ T , |T | = r, and we prove the result for S ⊆ N , i ∈ S, |S| = r + 1, where r ≥ 1.

We first prove that there exists M > 0 such that Dw
i (V, S) ≤ M for all w ∈ ∆N

++.
Assume to the contrary that for all M > 0, there exists w ∈ ∆S

++ such that

Dw
i (V, S) = wiQ(w, S) > M.

Then, we have the following statement: for all k = 1, 2, · · · , there exists wk ∈ ∆N
++ such

that

wk
iQ(w

k, S) > k,(
Zwk

(V, S) + wkQ(wk, S)
)
∈ ∂V (S).

By the induction hypothesis, Zwk
(V, S) is bounded from below. Then, zk := Zwk

(V, S)+
wkQ(wk, S) is a sequence such that zk ∈ ∂V (S) for all k = 1, 2, · · · , and limk→∞ zki = +∞.
On the other hand, zk is bounded from below for all k = 1, 2, · · · , contradicting N4. We
can prove that there exists m < 0 such that m ≤ Dw

i (V, S) for all w ∈ ∆N
++ in a parallel

manner by using N5.

Using Claim 20, we prove that ξw(V ) satisfies C2 and C3.

Claim 21. Let V ∈ Γ̂. Then, the function ξw(V ) : ∆N
++ → RN satisfies C3.

Proof . Let wk be a convergent sequence such that there exists a non-empty coalition
T ( N satisfying limk→∞wk

j = 0 for all j ∈ T and limk→∞wk
i > 0 for all i ∈ N\T .

Let j ∈ T be fixed. Consider the sequence Dwk

j (V, S) for S ⊆ N, j ∈ S. By Claim 20,

there exists a convergent subsequence of Dwk

j (V, S) for each S ⊆ N, j ∈ S. For notational

convenience, we assume that Dwk

j (V, S) itself converges for all S ⊆ N , j ∈ S. Let S̄ ⊆ N

be such that j ∈ S̄ and S̄ * T . We prove that limk→∞Dwk

j (V, S̄) = 0. By definition of
Q(w, S), for any k,

Dwk

(V, S̄) = wkQ(wk, S̄).

Let i ∈ S̄\T . Suppose that limk→∞Q(wk, S̄) = +∞. Then, the sequence zk :=
Zwk

(V, S̄) + wkQ(wk, S̄) satisfies zk ∈ ∂V (S̄) for all k and limk→∞ zki = +∞. Since
zk is bounded from below by Claim 20, this result contradicts N4. Similarly, if we assume

8To check this fact, let x ∈ V (S) be fixed and let λ̄ be the vector such that λ̄i = 1 if xi < 0 and
λ̄i = 0 otherwise. Then, x · λ̄ ≤ x · λ(xk) ≤ xk · λ(xk) for all k = 1, 2, · · · .
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limk→∞Q(wk, S̄) = −∞, we can obtain the result that contradicts N5. It follows that
Q(wk, S̄) is a bounded sequence. Since limk→∞wk

j = 0, we have

lim
k→∞

Dwk

j (V, S̄) = 0.

As a result, we obtain

lim
k→∞

ξw
k

j (V ) = lim
k→∞

∑
R⊆T :j∈R

Dwk

j (V,R) for all j ∈ T.

It follows that limk→∞ ξw
k

T (V ) ∈ ∂V (T ).

Claim 22. Let V ∈ Γ̂. Then, the function ξw(V ) : ∆N
++ → RN satisfies C2.

Proof . We prove that Dw(V, S) is continuous for each non-empty S ⊆ N . The result
holds for S = {i}, i ∈ N . We proceed by induction.

Take an arbitrary sequence {wk}∞k=1 ⊆ ∆N
++ such that wk → w∗ ∈ ∆N

++. Let i ∈ S.
By Claim 20, there exist M > 0 and m < 0 such that for all k,

m ≤ wk
iQ(w

k, S) ≤M.

Since wk
iQ(w

k, S) is a bounded sequence and i is an arbitrary player, wk
SQ(w

k, S) is also
a bounded sequence. Thus, there exists a convergent subsequence. Take an arbitrary
convergent subsequence w

l(k)
S Q(wl(k), S) → w∗

SQ
∗, where l : N → N is a strictly increasing

function. By the induction hypothesis, Zw(V, S) is continuous, which implies(
Zwl(k)

(V, S) + w
l(k)
S Q(wl(k), S)

)
→

(
Zw∗

(V, S) + w∗
SQ

∗) ∈ ∂V (S).

SinceQ(w∗, S) is unique, we obtainQ∗ = Q(w∗, S). Thus, w
l(k)
S Q(wl(k), S) → w∗

SQ(w
∗, S).

Since any convergent subsequence of wk
SQ(w

k, S) converges to w∗
SQ(w

∗, S), we have
wk

SQ(w
k, S) → w∗

SQ(w
∗, S). That is, Dwk

(V, S) → Dw∗
(V, S), which proves continu-

ity of Dw(V, S).

Proof of Theorem 10 . By Claims 21 and 22, for any V ∈ Γ̂, any weighted egalitar-
ian solution satisfies C2 and C3. C1 follows from definition of the solution. Lemma 6
completes the proof.

4.4.3 Proof of Theorem 11

Let V ∈ Γ̂. We focus on the expected value of contributions ϕw(V ) for w ∈ ∆N
++

defined by (4.4). We define Φ(V ) by

Φ(V ) = {ϕw(V ) : w ∈ ∆N
++}.

By definition of ϕw(V ), Φ(V ) ⊆ co{mR(V ) : R ∈ R(N)}. Moreover, since co{mR(V ) :
R ∈ R(N)} is a closed set, we have

clΦ(V ) ⊆ co{mR(V ) : R ∈ R(N)}. (4.10)

We prove that, for any V ∈ Γ̂, ϕw(V ) satisfies C3. For any order R ∈ R(N), let
i ≻R j mean that i is a successor of j in the order R.
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Claim 23. Let V ∈ Γ̂. Then, the function ϕw(V ) : ∆N
++ → RN satisfies C3.

Proof . Let {wk}∞k=1 be a convergent sequence such that there exists a coalition T ( N ,
T ̸= ∅, such that

lim
k→∞

wk
i = 0 for all i ∈ T,

lim
k→∞

wk
j > 0 for all j ∈ N\T.

For any R = (i1, · · · , in) ∈ R(N) and m ∈ {1, · · · , n}, the sequence

wk
im∑m

t=1w
k
it

, k = 1, 2, · · · (4.11)

is bounded. Thus, there exists a convergent subsequence. Assume for simplicity that the
sequence (4.11) converges for any R = (i1, · · · , in) ∈ R(N) and m ∈ {1, · · · , n}. Then,
the sequence {Pwk(R)}∞k=1 also converges. Let P ∗(R) denote its limit point.

Let R = (i1, · · · , in) ∈ R(N) be an order such that there exist i ∈ N\T and j ∈ T ,
j ̸= i, such that j ≻R i. Let m

′ ∈ {2, · · · , n} by such that j = im′ . By (4.3), we have

P ∗(R) = lim
k→∞

n∏
m=1

(
wk

im

/ m∑
t=1

wk
it

)
. (4.12)

By assumption, limk→∞wk
im′ = 0 and limk→∞

∑m′

t=1w
k
it > 0. It follows that

lim
k→∞

(
wk

im′

/ m′∑
t=1

wk
it

)
= 0.

Thus, (4.12) is equal to 0. As a result, we restrict our attention to the following set of
orders:

R′(N) = {R ∈ R(N) : i ≻R j for all i ∈ N\T and j ∈ T}.

We calculate the limit of ϕwk

T (V ):

lim
k→∞

ϕwk

T (V ) = lim
k→∞

∑
R∈R(N)

Pwk(R)mR
T (V ) =

∑
R∈R′(N)

P ∗(R)mR
T (V ).

For each R ∈ R′(N), we have mR
T (V ) ∈ ∂V (T ). By N2 (convex), we have ϕwk

T (V ) ∈ V (T )
for each k. By N2 (closed), limk→∞ ϕwk

T (V ) ∈ V (T ).

Proof of Theorem 11 . By Claim 23, ϕw(V ) satisfies C3. It satisfies C2 by definition
of the solution. Since V (N) is a closed half-space, C1 holds. By Proposition 1, C(V ) ⊆
clΦ(V ). Together with (4.10), the desired condition follows.
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Chapter 5

Conclusion

We first summarize the results obtained in each chapter and then discuss new insights
obtained in this thesis.

• Chapter 2: This chapter studies bases of the linear space of TU games. The
commander games are basically the opposite of the unanimity games in the sense
that the former regards a single player as a productive unit, while the latter regards
a whole coalition as a productive unit. The basis consisting of the commander games
decomposes the whole game space into two subspaces. The first space, spanned by
the games defined for singleton coalitions, essentially determines the Shapley value
of a given TU game. The second space, spanned by the games defined for coalitions
with no less than two players, forms the null space of the Shapley value. We
also consider intermediate cases between the commander games and the unanimity
games, and construct new bases. Our new bases contribute to the understanding
of how the Shapley value is determined in a given TU game, as well as provide new
tools for axiomatizing solutions.

• Chapter 3: This chapter provides new axiomatizations of linear solutions. Mono-
tonicity basically states that if a player’s productivity and/or the size of the pie for
society as a whole increases, then the player should be better off. In combination
with previous results, we prove that efficiency, symmetry, and a monotonicity axiom
characterize (i) four linear solutions in the literature, namely, the Shapley value,
the equal division value, the CIS value, and the ENSC value, and (ii) a class of solu-
tions obtained by taking a convex combination of the above solutions. Remarkably,
monotonicity and two of the standard axioms (efficiency, symmetry) are satisfied
only by linear solutions. Our result extends the existing literature and supports the
desirability of linear solutions, as well as clarifying the difference between them.

• Chapter 4: This chapter uncovers a striking relationship between the Shapley
value and the core in NTU games. For an arbitrary NTU game, any element of
the core is attainable as the outcome of an extension of the Shapley value, called
a weighted egalitarian solution, as introduced by Kalai and Samet (1985). This
result shows a close tie between stability against coalitional deviation and fairness
inherited by the weighted egalitarian solutions. We further prove that the inclusion
of the core is not a common property among extensions of the weighted Shapley
values to NTU games; for example, the weighted Shapley NTU values (Shapley
(1969, 1988)) do not always contain the core. We also discuss the relationship
between the core and players’ contributions.
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The Shapley value has long been recognized as one of the most convincing formulae
for fair division. “It is the most important contribution of game theory to distributive
justice” (Moulin (2004), p.12). However, if we focus only on the Shapley value, then our
understanding of fair division is limited. The Shapley value determines the final payoffs
using only the contributions of players, and does not allow for other fairness principles
(e.g., egalitarian principles). To correct this flaw, several variants of the Shapley value
have been proposed. The solutions examined in this thesis, such as egalitarian Shapley
values and weighted Shapley values, are examples of such variants.

A desirable variant of the Shapley value would be one that possesses a different nor-
mative property than that of the Shapley value. Such a variant enables a more fruitful
discussion of fair division by comparing the payoff vector of the variant with that of the
Shapley value. The results described in this thesis show that existing variants indeed pos-
sess different normative properties, in two separate dimensions: (i) monotonicity, and (ii)
core stability. With regard to (i), we show that the Shapley value satisfies monotonicity
with respect to players’ contributions, while a convex combination of the Shapley value
and other solutions satisfies monotonicity with respect to different parameters. With
regard to (ii), we show that a weighted variant of the Shapley value satisfies core stability
in NTU games.

To overcome conflicts in allocation problems, it is important to compare the desir-
ability of various solutions. Our results achieve a clearer comparison of the Shapley value
and its variants, thereby broadening the applicability of solutions in cooperative game
theory.

Future works

We conclude this thesis by discussing future works. In this thesis, we ignore external-
ities. In other words, we assumed that the worth of coalition S is not affected by outside
players. To allow for the existence of externalities, Thrall and Lucas (1963) introduced
the notion of games in partition function form. A recent paper by Sanchez-Perez (2017)
took a linear algebraic approach to games in partition function form, and analyzed linear
and symmetric solutions. Extending our new bases to the class of games in partition
function form might yield a new tool for analyzing existing solutions.

In resource allocation problems, Moulin (2004) studied a monotonicity axiom called
resource monotonicity. This axiom states that if the total amount of resources in a society
increases, then no one should end up with a lower payoff. Moulin (2004) studied which
solution is compatible with this axiom. In future work, we will extend our monotonicity
axioms in TU games to other problems.

Pérez-Castrillo and Wettstein (2006) extend the Shapley value to a general class of
pure exchange economies, which is a subclass of NTU games. It remains as a topic
for future work to study the relationship between the competitive equilibria and the
weighted solutions in exchange economies. It is often observed in exchange economies
that, in addition to attainable payoffs, players’ bargaining positions play an important
role. To illustrate this, consider the three-person glove market,1 in which one owner of
a left-hand glove (player 1) and two owners of right-hand gloves (players 2, 3) exchange
gloves in an attempt to make an assembled pair. The unique core allocation coincides
with the competitive equilibria and assigns all generated payoffs to player 1. Intuitively,

1For a detailed study on this market, see Shapley and Shubik (1969).
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the left-hand glove is in short supply, and the owner (player 1) is in a much better
bargaining position than those of players 2 and 3. Here, it seems possible to reflect the
players’ bargaining positions by introducing a weight w = (1− 2ϵ, ϵ, ϵ), where ϵ is a small
real number. Letting ϵ → 0, the corresponding weighted Shapley values converge to the
core. In other words, the Shapley value, which is intended to be a fair distribution of
the surplus, approaches the competitive equilibria. This observation appears to deepen
our understanding of the discrepancy between fairness and asymmetry driven by the
competition for initial endowments.
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Appendix A

Another proof of Casajus and
Huettner’s (2014) theorem

The purpose of this appendix is to provide another proof of Casajus and Huettner’s
(2014) theorem by using a basis. For the definition of the α-egalitarian Shapley value Shα,
see Section 3.2. Weak monotonicity (see Section 3.3) is abbreviated as WM throughout
this appendix.

Theorem (Casajus and Huettner (2014)) . Let n ≥ 3. Then, a solution ψ satisfies
E, S and WM if and only if there exists α ∈ [0, 1] such that ψ = Shα.

Proof . By Theorem 1, the commander games {ūT}∅≠T⊆N form a basis for Γ, from which
we obtain the following basis:{

u1
}
∪ {u1 − ui : i ∈ N, i ̸= 1} ∪ {ūT : |T | ≥ 2}, (A.1)

where u1 =
∑

i∈N ui.
Let i ∈ N\{1} and x = ψ1(u1 − ui). Here, x does not depend on the choice of

i ∈ N\{1}. To see this, let i, j ∈ N\{1}. Then,

ψ1(u1 − ui)
WM
= ψ1

(
u1 −

1

2
ui −

1

2
uj

)
WM
= ψ1(u1 − uj).

Note that x satisfies

0
E,S
= ψ1(0)

WM

≤ x
WM

≤ ψ1(u
1)

E,S
= 1.

The following equality holds: for any i ∈ N\{1},

ψ(u1 − ui) = Shx(u1 − ui). (A.2)

Indeed, for player j ∈ N\{1, i},

ψj(u1 − ui)
WM
= ψj(0)

E,S
= 0.

Since ψ1(u1 − ui) = Shx1(u1 − ui), E implies ψ(u1 − ui) = Shx(u1 − ui).
We go back to Step 1 in the proof of Theorem 6. To prove Lemma 3, it suffices to

assume that n ≥ 3. Since WM is stronger than cont+ gr+ sur-monotonicity, we can use
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the lemma:

ψ
(
v + λ(u1 − ui)

)
= ψ(v) + λψ(u1 − ui) for all v ∈ Γ, i ̸= 1, and λ ∈ R. (A.3)

Define

Γ4 = Sp(u1 ∪ {ūT : T ⊆ N, |T | ≥ 2}).

Following the same line of the proof of Lemma 5, we obtain

ψi(v) = Shxi (v) =
v(N)

n
for all i ∈ N, v ∈ Γ4. (A.4)

Let v ∈ Γ. As the set of games in (A.1) is a basis, there exist γi ∈ R, i ̸= 1, and v4 ∈ Γ4

such that

v =
∑

i∈N :i ̸=1

γi(u1 − ui) + v4.

We conclude that

ψ(v)
(A.3)
=

∑
i∈N :i̸=1

γiψ(u1 − ui) + ψ(v4)

(A.2), (A.4)
=

∑
i∈N :i̸=1

γiΦ
x(u1 − ui) + Shx(v4)

= Shx(v).
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Appendix B

Counterexample to Theorem 6 for
n = 3

The purpose of this appendix is to introduce a solution φ for n = 3 that satisfies
efficiency, symmetry, cont+ sur-monotonicity, but is not a convex combination of linear
solutions. Since cont+ sur-monotonicity is stronger than cont+ gr + sur-monotonicity,
this solution is a counterexample to Theorems 6 and 7 for n = 3.

Let N = {1, 2, 3}. For λ ∈ R and T ⊆ N , T ̸= ∅, we define φ(λuT ) as follows:

φ(λuT ) =

{
ED(λuT ) if λ < 0 and |T | = 2,

Sh(λuT ) otherwise.

For v ∈ Γ and T ⊆ N , T ̸= ∅, let dvT = D(T, v) (see (1.1)). We define φ for a general
game v ∈ Γ as follows:

φ(v) =
∑

T⊆N :T ̸=∅

φ(dvTuT ).

Let v, w ∈ Γ be games such that ∆1v(S) ≥ ∆1w(S) for all S ⊆ N\{1} and v(N) −∑
i∈N v(i) ≥ w(N)−

∑
i∈N w(i). Our goal is to prove that

φ1(v)− φ1(w) =
∑

T∈2N\∅

φ1(d
v
TuT )−

∑
T∈2N\∅

φ1(d
w
TuT )

=
∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

}
≥ 0.

For each T ⊆ N , T ̸= ∅, let δT = dvT − dwT . We provide a claim that immediately follows
from the definition of φ.

Claim 24. The following two statements hold:

(i) Let i ∈ N\{1}. If δ1i ≥ 0, then φ1(d
v
1iu1i) − φ1(d

w
1iu1i) ≥ δ1i

3
. If δ1i ≤ 0, then

φ1(d
v
1iu1i)− φ1(d

w
1iu1i) ≥ δ1i

2
.

(ii) If δ23 ≥ 0, then φ1(d
v
23u23) − φ1(d

w
23u23) ≥ 0. If δ23 ≤ 0, then φ1(d

v
23u23) −

φ1(d
w
23u23) ≥ δ23

3
.
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In what follows, Claim 24 is abbreviated as C24.
If δ1 < 0, then v(1) < w(1), which is a contradiction with ∆1v(S) ≥ ∆1w(S) for all

S ⊆ N\1. Thus, δ1 ≥ 0. Depending on the signs of δ12, δ13, δ23 and δ123, we consider 16
cases.

If δT ≥ 0 for all T ⊆ N , |T | ≥ 2, then φ1(v) ≥ φ1(w) immediately holds. If δT < 0 for
all T ⊆ N , |T | ≥ 2, we obtain a contradiction with v(N)−

∑
i∈N v(i) ≥ w(N)−

∑
i∈N w(i).

In what follows, we consider other 14 cases.

• Case 1: δ12 < 0, δ13 ≥ 0, δ23 ≥ 0, δ123 ≥ 0.

In order that v(12)− v(2) ≥ w(12)− w(2), we must have δ1 ≥ −δ12. Then,∑
T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12

2
≥ δ1 + δ12 ≥ 0.

• Case 2: δ12 ≥ 0, δ13 < 0, δ23 ≥ 0, δ123 ≥ 0.

This case can be proved in the same way as Case 1.

• Case 3: δ12 ≥ 0, δ13 ≥ 0, δ23 < 0, δ123 ≥ 0.

In order that v(N)−
∑

i∈N v(i) ≥ w(N)−
∑

i∈N w(i), we must have δ12+δ13+δ123 ≥
−δ23. Then,∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ12 + δ13 + δ123
3

+
δ23
3

≥ 0.

• Case 4: δ12 ≥ 0, δ13 ≥ 0, δ23 ≥ 0, δ123 < 0.

In order that v(N)− v(23) ≥ w(N)− w(23), we must have δ1 + δ12 + δ13 ≥ −δ123.
Then, ∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12 + δ13

3
+
δ123
3

≥ δ1 + δ12 + δ13
3

+
δ123
3

≥ 0.

• Case 5: δ12 < 0, δ13 < 0, δ23 ≥ 0, δ123 ≥ 0.

In order that v(12) − v(2) ≥ w(12) − w(2) and v(13) − v(3) ≥ w(13) − w(3), we
must have δ1 ≥ −min{δ12, δ13}. Then,∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12 + δ13

2

≥ δ1 +min{δ12, δ13} ≥ 0.

• Case 6: δ12 < 0, δ13 ≥ 0, δ23 < 0, δ123 ≥ 0.
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In order that v(12)− v(2) ≥ w(12)− w(2), we must have δ1 ≥ −δ12. In order that
v(N)−

∑
i∈N v(i) ≥ w(N)−

∑
i∈N w(i), we must have δ13+δ123 ≥ −δ12−δ23 ≥ −δ23.

Then, ∑
T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12
2

+
δ13
3

+
δ23
3

+
δ123
3

≥ δ1 + δ12 +
δ13 + δ23 + δ123

3
≥ 0.

• Case 7: δ12 ≥ 0, δ13 < 0, δ23 < 0, δ123 ≥ 0.

This case can be proved in the same way as Case 6.

• Case 8: δ12 < 0, δ13 ≥ 0, δ23 ≥ 0, δ123 < 0.

In order that v(12)− v(2) ≥ w(12)− w(2) and v(N)− v(23) ≥ w(N)− w(23), we
must have δ1 ≥ −δ12 and δ1 + δ13 ≥ −δ12 − δ123 ≥ −δ123. Then,∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12
2

+
δ13
3

+
δ123
3

≥ δ1 + δ12
2

+
δ1 + δ13 + δ123

3
≥ 0.

• Case 9: δ12 ≥ 0, δ13 < 0, δ23 ≥ 0, δ123 < 0.

This case can be proved in the same way as Case 8.

• Case 10: δ12 ≥ 0, δ13 ≥ 0, δ23 < 0, δ123 < 0.

In order that v(N) −
∑

i∈N v(i) ≥ w(N) −
∑

i∈N w(i), we must have δ12 + δ13 ≥
−δ23 − δ123. Then,∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ12
2

+
δ13
2

+
δ23
3

+
δ123
3

≥ δ12 + δ13 + δ23 + δ123
3

≥ 0.

• Case 11: δ12 < 0, δ13 ≥ 0, δ23 < 0, δ123 < 0.

In order that v(12)− v(2) ≥ w(12)− w(2), we must have δ1 ≥ −δ12. In order that
v(N) −

∑
i∈N v(i) ≥ w(N) −

∑
i∈N w(i), we must have δ13 ≥ −δ12 − δ23 − δ123 ≥

−δ23 − δ123. Then,∑
T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12
2

+
δ13
3

+
δ23
3

+
δ123
3

≥ δ1 + δ12 +
δ13 + δ23 + δ123

3
≥ 0.

• Case 12: δ12 ≥ 0, δ13 < 0, δ23 < 0, δ123 < 0.
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This case can be proved in the same way as Case 11.

• Case 13: δ12 < 0, δ13 < 0, δ23 ≥ 0, δ123 < 0.

In order that v(12) − v(2) ≥ w(12) − w(2) and v(13) − v(3) ≥ w(13) − w(3), we
must have δ1 ≥ −min{δ12, δ13}. In order that v(N) − v(23) ≥ w(N) − w(23), we
must have δ1 ≥ −δ12 − δ13 − δ123. Then,∑

T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12
2

+
δ13
2

+
δ123
3

≥ δ1
3
+
δ12
6

+
δ13

6
+
δ1 + δ12 + δ13 + δ123

3

≥ δ1
3
+

min{δ12, δ13}
3

≥ 0.

• Case 14: δ12 < 0, δ13 < 0, δ23 < 0, δ123 ≥ 0.

In order that v(12)−v(2) ≥ w(12)−w(2) and v(13)−v(3) ≥ w(13)−w(3), we must
have δ1 ≥ −min{δ12, δ13}. In order that v(N) −

∑
i∈N v(i) ≥ w(N) −

∑
i∈N w(i),

we must have δ123 ≥ −δ12 − δ13 − δ23 ≥ −δ23. Then,∑
T∈2N\{∅,{2},{3}}

{
φ1(d

v
TuT )− φ1(d

w
TuT )

} C24

≥ δ1 +
δ12
2

+
δ13
2

+
δ23
3

+
δ123
3

≥ δ1 +min{δ12, δ13}+
δ23 + δ123

3
≥ 0.
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Appendix C

Proof of well-definedness of the
contribution vector in NTU games

The purpose of this appendix is to prove that the contribution vector mR(V ) (see
Section 4.3.3) is well-defined.

Proof . Let V ∈ Γ̂, S ⊆ N , |S| ≥ 2, j ∈ S and z ∈ RS\j. We define Y ⊆ R by

Y =
{
r ∈ R :

(
(zk)k∈S\j, r

)
∈ V (S)

}
By N2 (closed), Y is closed. Thus, to prove Claim 1, it suffices to prove that Y is bounded
from above and non-empty.

Let x ∈ ∂V (S). By N2 (convex), there exists a normal vector λ such that

V (S) ⊆ {y ∈ RS : y · λ ≤ x · λ}.

Moreover, by N3, there exists δ > 0 such that λj ≥ δ. It follows that Y is bounded from
above.

We prove Y ̸= ∅, i.e., there exists r ∈ R such that
(
(zk)k∈S\j, r

)
∈ V (S). Assume, by

way of contradiction, that for any r ∈ R,
(
(zk)k∈S\j, r

)
/∈ V (S). We define Z ⊆ RS by

Z =
{(

(zk)k∈S\j, r
)
: r ∈ R

}
.

The two sets V (S) and Z are convex, and the intersection between the two sets is empty.
By the separation theorem, there exists p ∈ RS, p ̸= 0, such that

p · x ≤ p · y for all x ∈ V (S), y ∈ Z. (C.1)

Assume pj > 0. Then, by taking an arbitrary sequence {yk}∞k=1 ⊆ Z such that ykj → −∞,
we have p · yk → −∞, which contradicts (C.1). Similarly, if we assume pj < 0, we have
a contradiction with (C.1). As a result, pj = 0.

Assume pi < 0 for some i ∈ S\j. Consider the sequence {xl}∞l=1 ⊆ V (S) such that
xli → −∞ and xlh = xl+1

h for all h ∈ S, h ̸= i, l = 1, 2, · · · . By N2 (comprehensive), such
a sequence always exists. Then, p · xl → +∞, which contradicts (C.1). It follows that
p ≥ 0. Since p ̸= 0, there exists a player i′ ∈ S\j such that pi′ > 0.

Let x ∈ ∂V (S) be arbitrarily given. For any m ∈ N, let x̃m denote the following
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vector:

x̃mj = xj −m, x̃mi = xi for all i ∈ S\j.

By N2 (comprehensive), x̃m ∈ V (S). Then, for any m ∈ N, there exists xm such that

xmj = x̃mj ,

xmh = xh for all h ∈ S, h ̸= i′, h ̸= j,

xm ∈ ∂V (S).

Consider the sequence {xm}∞m=1 ⊆ ∂V (S). Since xmj → −∞, by N4, we have xmi′ → +∞.
Since pj = 0 and pi′ > 0, we have p · xm → +∞, which contradicts (C.1).
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