リンク式流体慣性ダンパによる 構造物の地震応答制御に関する研究

Seismic Response Control of Structures Using Linked Fluid Inertia Mass Damper

2018年2月

渡井 一樹

Kazuki WATAI

リンク式流体慣性ダンパによる 構造物の地震応答制御に関する研究

Seismic Response Control of Structures Using Linked Fluid Inertia Mass Damper

2018年2月

早稻田大学大学院 創造理工学研究科

建築学専攻 建築構造設計研究

渡井 一樹

Kazuki WATAI

第1章	序論
炉 1 平	厂厂開

1.1	研究の背景	 3
1.2	既往の研究	 5
	1.2.1 負剛性制御に関する研究	 5
	1.2.2 慣性質量ダンパに関する研究	 5
	1.2.3 リンク機構に関する研究	 6
1.3	研究の目的	 7
1.4	論文の構成	 8
第2章	リンク式流体慣性ダンパの基本機構と制振構法の原理	
2.1	はじめに	 11

2.2	リンク式流体慣性ダンパの基本機構		11
2.3	リンク式流体慣性ダンパを用いた制振構法の原理		13
	2.3.1 せん断質点系の運動方程式	•••••	13
	2.3.2 固有周期、減衰定数、刺激関数の導出		16
2.4	リンク式流体慣性ダンパを応用した制振構法の提案		21
2.5	リンク式流体慣性ダンパの力学モデル		23
	2.5.1 基本性能試験の概要		23
	2.5.2 試験結果及び考察	•••••	26
	2.5.3 力学モデルの構築と精度検証		30
2.6	まとめ		34

第3章 リンク式流体慣性ダンパの高性能化

3.1	はじめに	 37
3.2	リンク式流体慣性ダンパの基本性能評価試験	 37
	3.2.1 性能評価試験の概要	 37
	3.2.2 試験結果及び考察	 40
3.3	リンク式流体慣性ダンパの高性能化手法と性能評価	 45
	3.3.1 リンク式流体慣性ダンパの高性能化手法	 45
	3.3.2 単体性能試験の概要	 49
	3.3.3 基本性能の評価	 51
	3.3.4 高性能化の定量的評価	 52
	3.3.5 粘性減衰力を算出する理論式の精度検証	 59

3.4	小型	2 層鉄骨フレームによる振動台実験		60
	3.4.1	振動台実験の概要	•••••	60
	3.4.2	加振方法		62
	3.4.3	計測システム		63
	3.4.4	振動特性の把握		64
	3.4.5	制振効果の評価		65
	3.4.6	力学モデルの構築と精度検証		70
	3.4.7	慣性質量効果の定量的評価		72
3.5	まと	. <i>ф</i>		74

3.5 まとめ

第4章 リンク式流体慣性ダンパによる層間変形制御機構の動力学特性

4.1	はじめに	 77
4.2	層間変形制御機構の基本性能	 77
	4.2.1 単体性能試験の概要	 77
	4.2.2 試験結果及び考察	 80
4.3	層間変形制御機構を設置したせん断質点系モデルの定常振動解	 83
	4.3.1 調和振動に対する定常振動解の導出	 83
	4.3.2 弾性応答時のせん断力の再分配則	 87
	4.3.3 地震動に対する応答	 89
	4.3.4 弾塑性応答時のせん断力の再分配則	 90
4.4	小型2層鉄骨フレームによる振動台実験	 94
	4.4.1 振動台実験の概要	 94
	4.4.2 加振方法	 96
	4.4.3 計測システム	 97
	4.4.4 振動特性の把握と固有値の算出	 98
	4.4.5 力学モデルの構築	 99
	4.4.6 制振効果の評価と力学モデルの精度検証	 100
	4.4.7 せん断力の再分配量の定量的評価	 102
4.5	まとめ	 103

第5章 リンク式流体慣性ダンパを設置した実寸2層小型フレームによる振動台実験

5.1	はじめに		107
5.2	振動台実験の概要	•••••	107
	5.2.1 実験システム		107
	5.2.2 試験体仕様		108

	5.2.3 試験体パラメータ	 109
	5.2.4 リンク式流体慣性ダンパの力学特性	 110
	5.2.5 リンク式流体慣性ダンパの設置方法	 111
	5.2.6 計測システム	 113
	5.2.7 加振方法	 114
5.3	実験結果	 115
	5.3.1 振動特性の把握	 115
	5.3.2 最大応答の比較	 116
	5.3.3 荷重変形関係	 117
	5.3.4 リンク式流体慣性ダンパの挙動	 121
	5.3.5 エネルギー吸収量	 122
5.4	力学モデルの構築と実験結果の考察	 122
	5.4.1 主構造のモデル化	 122
	5.4.2 リンク式流体慣性ダンパのモデル化	 124
	5.4.3 構築した力学モデルの精度検証	 125
5.5	各力学要素と制振効果の関係	 126
5.6	ダンパの等価剛性	 127
5.7	まとめ	 129
第6章	は論	 133
附録		 137
参考文南	₹.	 143
本論文に	関わる研究発表一覧	 147
謝辞		 149

第1章

序論

1.1 研究の背景

1995 年兵庫県南部地震以降多発している震度 7 クラスの地震動は、戸建住宅をはじめと する低層構造物に甚大な被害をもたらしている。これらの地震動は、現行の建築基準法で構 造物の終局耐震安全評価の基準として想定している極めて稀な地震動を遥かに上回る破壊 力を持っていることから、以下では過酷な地震動りと称することとする。しかしながら、建 築防災体制の観点からは如何に過酷な地震動であろうとも少なくとも構造物の倒壊を防ぐ ことが必要である。また、このような地震動に対して構造物の耐震性能を向上させるために は、従来のように耐力壁を増設することで主要構造部材の剛性及び耐力を向上させる「耐震 構造法」では対応しきれないことが懸念されている。近年観測された過酷な地震動は極めて 稀な地震動と比較して 2 倍以上の最大速度を発揮することから、構造物は従来の構造シス テムと比較して4倍以上のエネルギーを吸収する必要がある。そこで、ダンパと呼ばれるエ ネルギー吸収装置を付加する「制振構造」や、構造物と地面の間にアイソレータと呼ばれる 積層ゴムなどのせん断剛性が低い支承を設置する「免震構造」を普及させることで効果的に 構造物の耐震安全性を向上させることができると考えられる。制振・免震構造は主に中高層 及び超高層建築物に対しては広く普及しているが、戸建住宅程度の低層構造物は耐震構造 法が主な補強方法となっている。2016 年熊本地震のように過酷な地震動が短期間で数回発 生した場合には、木造住宅のように経験した変形が大きくなるほど剛性が低下する構造物 では倒壊する危険性が非常に高くなる。さらに、耐震構造法により主構造の剛性・耐力が高 められていたとしても、僅かな剛性・耐力のばらつきにより特定層もしくは特定構面に変形 が集中することで倒壊に至る恐れがある。特に、直下型の地震に伴って発生することの多い 指向性パルス波は、相対的に弱層となる層に損傷集中を生じさせて層崩壊を生じさせる傾 向が非常に強い²⁾。層崩壊は人命を著しく脅かすことからその防止に効果的な構造システム の開発が求められている。

制振構法の振動制御手法のひとつに「負剛性制御」と呼ばれるものがある。これは、負の 剛性を有するデバイスを構造系に導入することで、構造系が有している正の剛性を見かけ 上低減する手法であり、絶対加速度の低減に優れているという特徴を持つ。この手法はアク ティブ/セミアクティブ制御により概念的には容易に実現されるが、外部からのエネルギ 一供給や複雑な制御装置が必要になるなど数多くの問題を伴っている。そこで、パッシブ制 御で負剛性を簡易に発現できる機構として「慣性質量ダンパ」と呼ばれる制振装置が開発・ 実用化されている。これは構造物の質点間の相対加速度に比例した慣性力を生じさせるこ とにより負剛性を発現するもので、実際の質量よりも非常に大きな慣性質量を発揮する事 が可能である。現在開発されているものの多くは大規模な構造物を制御することを目的と した鋼塊の回転慣性を利用した慣性質量ダンパとなっている。しかし、戸建住宅程度の小規 模な構造物であれば流体の慣性質量を利用して、簡易な機構で負剛性制御を適用すること が可能と考えられる。 第1章 序論

近年、戸建住宅に対して制振構造を適用する有為性が認識され始めており、戸建住宅用の 制振装置が開発されている^{例えば3、4}。いずれの制振構法も構造物のエネルギー吸収性能を向 上させることで耐震性能を向上させることを目指したものである。本研究で提案する「リン ク式流体慣性ダンパ」は 2 つのオイルダンパをリンクチューブにより接続することで構成 する。リンク式流体慣性ダンパは流体慣性質量を用いてパッシブ制御で負剛性制御を実現 でき、粘性減衰効果を発揮することから構造物のエネルギー吸収能力を向上させることが できる。また、リンクされた 2 つのダンパのピストンロッドは一方を動かすことでもう一方 が追従して動く仕組みであり、ダンパを設置した構面同士の変形分布を制御できる。リンク 式流体慣性ダンパは簡易な機構でありながら前述の 3 つの制振効果を同時に発現できるデ バイスであり、応答変形と応答加速度のトレードオフの関係を緩和する効果を期待できる。 また、リンク効果の調整により構造物の変形分布を任意の形状に定めることができるため、 損傷集中の抑制に効果的であり層崩壊の防止に有効な手段となる。このように、既往の制振 装置では実現できない多彩な制振効果を実現できるリンク式流体慣性ダンパは、構造物の 耐震性能の向上だけでなく、制振構法の高度化に大きく資するものとなる。

1.2 既往の研究

1.2.1 負剛性制御に関する研究

近年、負剛性制御に関する研究は建築・土木分野において盛んに行われている。建築分野 では家村らにより MR ダンパによる擬似負剛性セミアクティブ制御 5や、五十嵐らによりス カイフック制御と負剛性制御の間の対応関係を明らかにすることで擬似負剛性制御を行う ための最適なパラメータの調整法が提案されている %。袖山らは負剛性を発揮する MR ダン パ及びその制御則を提案しており 7、曽田らは免震層の剛性を打ち消すように MR ダンパを 制御する有為性を示している [&] 9。また、沈らはスカイフック制御に見られる負剛性特性を 反映するセミアクティブ制御手法の研究を行っており ¹⁰、曽田らは振動台実験によりフィ ードフォワードスカイフック制御を適用した MR ダンパが実際に負剛性を発揮することと その制振効果を明らかにしている ^{11、12}。一方、土木分野では豊岡らにより振り子型摩擦支 承の原理を応用して負剛性を発揮するパッシブ摩擦ダンパが開発されている ¹³。また、池 田らにより鉄道橋へ適用するための耐震性能評価によりダンパを適用した構造物の基礎的 な特性を把握し、最適なパラメータを設定することで下部構造の応答を低減できることが 明らかにされている ¹⁴。

1.2.2 慣性質量ダンパに関する研究

慣性質量ダンパはダイナミック・マスとも呼ばれる増幅された見かけの質量(慣性質量) を発揮させるための機構の違いから2種類に分類することができる。1つ目はボールねじを 用いて鋼製の錘の回転慣性を利用するものであり、2つ目は流体の高速運動による慣性質量 を利用するものである。

垂の回転慣性を利用した慣性質量ダンパとは、建築物の層間変形を軸方向の変位として ダンパに入力し、ボールねじを介して高速な回転運動に変換することで非常に大きな慣性 質量を得るものである。既往の研究として、奥村らは慣性質量ダンパを慣性接続要素と称し、 特定の振動数に対して入力振動を完全に遮断できる振動遮断接続機構を発表しており¹⁵⁾、 柴田らはこれを免震構造物に適用した検討を行っている¹⁶⁾。また、中南らは粘性減衰機構 を併せ持つ減衰コマを開発し、慣性質量要素の評価式を導き実機レベルの動的試験を行っ ている¹⁷⁾。古橋らは慣性接続要素を用いた多層構造物のモード制御に関する検討を行って おり、特定の周期を伸長させる手法や高次モードの影響を取り除く完全モード制御¹⁸⁾、特 定の高次モードの成分を取り除く擬次モード制御¹⁹⁾や少ない慣性質量でモード制御を行う ことができる部分モード制御²⁰⁾を提案している。磯田らは錘の質量を変えずに慣性質量を 大きくするためにリードの異なるボールねじを組み合わせることで錘の回転速度を増幅さ
 せ、1.6[t]の錘で 10,000[t]の慣性質量を発揮する回転慣性質量ダンパを開発している²¹⁾。

流体の慣性質量を利用した慣性質量ダンパとは、流体で満たされた 2 つの容器を細いバ イパス管によってつなぎ、相対的な変位によりバイパス管内で流体を高速運動させること で慣性質量を得るものである。既往の研究として、川股らは流体の慣性及び粘性抵抗を利用 した慣性ポンプダンパーを開発し、流体の質量移動が慣性質量に相当することを明らかに し、そのような補助質量機構を利用することで入力低減効果や周期伸長効果が得られるこ とを明らかにしている²²⁾。Smith は電子回路において 2 接点間の入力差に対して各接点へ出 力を得られることに着目し、力学系においても同様に質点間の入力差(相対加速度)に比例 した慣性力を発揮する見かけの質量を利用した装置(inerter)を提案しており²³⁾、Wang は 流体の運動によりモーターを回転させ見かけの質量を増幅させる Hydraulic inerter を提案し ている²⁴⁾。また、松岡らは流体に磁気粘性流体を用いることで強磁場化において慣性質量 を増加させることができる振動低減装置を提案しており²⁵⁾、山野らは流体を利用してさら に大きな慣性質量を発揮するために螺旋バイパス管を持つ MR 流体慣性ダンパを提案して いる²⁶⁾。曽田らは戸建住宅への適用を目指した流体慣性ダンパの開発を行っており²⁷⁾、柱 梁接合部慣性力載荷試験により実構造に設置した場合においても負剛性を発現することを 確認している²⁸。

1.2.3 リンク機構に関する研究

リンク機構とは、広義には変形しない棒状の部材をピン接合して回転運動させることに より他の部材にも動きを伝達する機構であり、機械分野において広く利用されてきている。 近年、建築分野でもリンク機構を応用した層間変形制御機構やねじれ変形防止機構として の開発が進められており、その制振構法は機械機構のメカニカルリンクシステムを用いる 構法と油圧式リンク機構を用いる構法の2つに分類することができる。

メカニカルリンクシステムを用いた構法は、鋼製のフレームを取り付ける手法^{29~31)}や、 RCのロッキング壁を用いる手法³²⁾、外付けのトラスを利用する手法³³⁾が提案されており、 いずれの手法も建物剛性に比べて十分に大きな剛性を有する部材をピン接合して付加する ことで各層の変形を一様化することを目指したものである。油圧式リンク機構を用いた構 法は本論で提案するリンク式流体慣性ダンパを用いる手法であり、振動台実験により変形 を同一にするリンク効果を発揮することを確認している³⁴⁾。一方で、リンク機構を用いず に損傷集中を抑制することを目的とした手法として、秋山らは梁降伏型の構造物に対して 主構造とは別の弾性柱を配置する手法を提案している³⁵⁾。

1.3 研究の目的

本研究では、慣性質量効果、リンク効果、粘性減衰効果の3つの特性を併せ持つ「リンク 式流体慣性ダンパ」を提案し、リンク式流体慣性ダンパを用いた制振構法の原理及びその制 振効果を明らかにすることで同ダンパを利用した構造システムの有用性を示すことを目的 とする。既往の制振装置では実現できない制振効果を実現し、構造物の耐震性能を向上させ るだけでなく制振構法の高度化を図るために以下の手順に従い検討を進める。

- リンク式流体慣性ダンパの基本機構を示し、構造物にダンパを設置した際の運動方程 式を導くことで提案する制振構法の原理を明らかにする。また、リンク式流体慣性ダン パの単体性能試験を行うことで、ダンパの基本的な力学特性を把握する。(第2章)
- 2) 慣性質量効果による制振効果を向上させることを目的としたダンパの高性能化を行う。 本研究ではダンパの高性能化を「粘性減衰力に対する慣性力を相対的に大きくすること」と定義し、具体的な高性能化手法と高性能化したダンパを設置した構造システムの 制振効果を検討する。(第3章)
- 3) リンク式流体慣性ダンパによる層間変形制御機構を用いて構造物の変形分布を制御する場合に、層間変形制御機構が構造物の振動特性に与える影響について検討する。また、 層間変形制御機構が発揮する動力学特性を正確に把握することで、構造物の耐震設計 上リンク式流体慣性ダンパを設置することの有為性を明らかにする。(第4章)
- 4) リンク式流体慣性ダンパを用いた制振構法が理論通りの高い制振効果を発揮すること を示すために、同ダンパを設置した実寸2層小型フレームによる振動台実験を行う。また、実験結果を正確に模擬できる力学モデルを構築することで実験結果の定量的評価 を実施し、リンク式流体慣性ダンパを用いた制振構法の有用性・実用性を明らかにする。 (第5章)

1.4 論文の構成

第1章 序論

1.1 節において本研究の背景を記し、1.2 節では負剛性制御、慣性質量ダンパ、リンク機構 に関する既往の研究について示す。1.3 節では本研究の目的を述べる。

第2章 リンク式流体慣性ダンパの基本機構と制振構法の原理

2.2 節では提案するリンク式流体慣性ダンパの基本機構について示し、2.3 節でリンク式 流体慣性ダンパを設置した構造物の運動方程式の定式化を行う。次いで、2.4 節ではリンク 式流体慣性ダンパを応用した制振構法の提案を行い、2.5 節では単体性能試験により同ダン パの基本的な力学特性の評価と力学モデルの構築方法を示す。

第3章 リンク式流体慣性ダンパの高性能化

リンク式流体慣性ダンパの基本性能に影響を与える基本仕様に関する検討の一環として、 3.2 節ではリンクチューブに関する検討を行う。3.3 節では具体的な高性能化手法として流 体密度と流体動粘度に関する検討を行い、高性能化の程度を定量的に評価する。次いで、3.4 節では高性能化したダンパを設置した小型2層鉄骨フレームによる振動台実験行うことで、 高性能化による制振効果を検討する。

第4章 リンク式流体慣性ダンパによる層間変形制御機構の動力学特性

4.2節では層間変形制御機構の基本性能として、リンク式流体慣性ダンパの2つのピスト ンロッドの変位量を任意の比率にする場合の力学特性を単体性能試験により確認する。4.3 節では層間変形制御機構を設置した構造物の調和振動に対する定常振動解を導出すること で、同機構が構造物の振動特性に与える影響について整理する。次いで、4.4節では小型2 層鉄骨フレームによる振動台実験により層間変形制御機構が理論通りの力学特性を実際に 発揮することを確認する。

第5章 リンク式流体慣性ダンパを設置した実寸2層小型フレームによる振動台実験

5.2 節では実寸 2 層小型フレームによる振動台実験の概要を示す。5.3 節では試験体の振動特性と地震動に対する応答について実験結果と考察を示す。次いで、5.4 節では構築した 力学モデルが実験結果を精度よく模擬できることを確認し、5.5 節及び 5.6 節では構築した 力学モデルを用いて実験結果から得られた制振効果を定量的に評価する。

第6章 結論

本論文の総括を述べる。

第2章

リンク式流体慣性ダンパの基本機構と制振構法の原理

2.1 はじめに

本章では、提案するリンク式流体慣性ダンパの基本機構と制振構法の原理について述べる。まず2.2節においてリンク式流体慣性ダンパの基本機構とその特徴について概要を述べる。次いで、2.3節ではリンク式流体慣性ダンパを用いた制振構法の原理として上下層間の 損傷集中を抑制する設置方法について運動方程式の定式化を行い、2.4節では同ダンパを応 用した制振構法の提案を行う。2.5節では単体性能試験によりダンパの基本的な力学特性の 評価と力学モデルの構築方法を示す。

2.2 リンク式流体慣性ダンパの基本機構

図 2.1 にリンク式流体慣性ダンパ(Linked Fluid Inertia Mass Damper)の基本機構を示す。 リンク式流体慣性ダンパはシリンダ、ピストンロッド、リンクチューブから構成され、2 つ のシリンダの油室間を互いにリンクチューブでつないだオイルダンパである。ピストンに オリフィスは設けておらず、一方のピストンロッドを動かせばシリンダ内の作動流体がチ ューブ内を移動し、もう一方のシリンダに流れ込むことで 2 つのピストンロッドが追従し て動くことでリンク効果を発揮する仕組みである。このとき、チューブによりリンクさせる 油室の断面積 *A*_iの比率を調整することで2 つのピストンロッドの移動量 *x*_{di}の比率を任意に 設定することが可能であり、断面積を等しくすれば 2 つのピストンロッドの移動量は等し くなる。ここで、2 つのピストンロッドの移動量の比率をリンク変形比 *a*_{Link} と称し、式(2.1) で定義する。

$$\alpha_{Link} = \frac{x_{d2}}{x_{d1}} = \frac{A_1}{A_2} \tag{2.1}$$

また、細いチューブがオリフィスの役割を果たすために粘性減衰効果を発揮し、封入された 流体はチューブ内を高速で運動するために慣性質量効果を発揮する。なお、リンク式流体慣 性ダンパは図 2.1 に示すようにリンクさせた 1 組をダンパ単体と称することにする。

図 2.1 リンク式流体慣性ダンパ単体の基本機構

慣性質量効果を発揮するための機構は2種類に分類することができる。1つはボールねじ を用いて鋼製の錘の回転慣性を利用するものであり、他は流体の高速運動を利用するもの である。鋼製の回転慣性を利用する場合、増幅倍率β(増幅された見かけの質量/実際の質 量)はβ=100~10,000程度²¹)と非常に大きいことから大規模な構造物への適用が可能となる。 一方、流体の慣性質量を利用する場合の増幅倍率はβ=20~200程度^{27,28})と鋼塊の回転慣性 を利用する場合と比べると小さいが、小規模な住宅程度の構造物であれば適用が可能だと 考えられる。流体の高速運動により増幅された見かけの質量(以下、慣性質量)は、以下の ように算出することができ、断面圧縮比の2乗と流体密度に比例した慣性質量を発揮する。

 油圧システムにおける内部圧力は各部で等しくなることから、図 2.2 に示すピストン ロッドに生じる抵抗力 F とチューブ内の慣性力 P の関係は次式で表される。

$$\frac{F}{A} = \frac{P}{a}$$
(2.2)

A:シリンダ断面積 a:チューブ断面積

2) ここで、シリンダの断面積とチューブの断面積の比として断面圧縮比 α₄を定義する。

$$\alpha_A = \frac{A}{a} = \frac{D_1^2 - D_2^2}{d^2}$$
(2.3)

D1:シリンダ内径 D2:ピストンロッド径 d:チューブ内径

 チューブ内に生じる流体の慣性力 P はピストンロッドの変位を x_d、チューブ内の流 体変位を y、流体質量を m'とすれば次式で表される。

$$P = -m' \cdot \ddot{y} = -m' \cdot \alpha_A \cdot \ddot{x}_d \tag{2.4}$$

4) 1と3の関係から流体の慣性力Pによりピストンロッドに生じる抵抗力Fが求まる。

$$F = P \cdot \alpha_A = -m' \cdot \alpha_A^2 \cdot \ddot{x}_d \tag{2.5}$$

(2.6)

5) 流体の密度を ρ、チューブ長さを l とすれば流体の慣性質量 m_s が求まる。

図 2.2 流体による慣性力発生機構の概念図

2.3 リンク式流体慣性ダンパを用いた制振構法の原理

2.3.1 せん断質点系の運動方程式

図 2.3 に示す 2 層フレームを例にしてリンク式流体慣性ダンパ(*LFIMD*)を上下層間の損 傷集中を抑制することを目的として設置した場合の運動方程式の定式化を行う。

リンク機構の抵抗力はリンクさせたシリンダのピストン変位 *x*_{d1}、*x*_{d2}を任意の比率(リン ク変形比 α_{Link})にするように働く。このとき、リンク機構が発揮する力 *F*_{Link} は 2 つのピス トン変位の差に比例する力となり式(2.7)で表される。

$$F_{Link} = k_{Link} \cdot (\alpha_{Link} \cdot x_{d1} - x_{d2}) \tag{2.7}$$

また、ピストン変位 *x_{di}* と各層の層間変形は等しくなるとすれば、リンク機構が発揮する力は式(2.8)で表せる。

$$F_{Link} = k_{Link} \cdot \{\alpha_{Link} \cdot x_1 - (x_2 - x_1)\} = k_{Link} \cdot \{(\alpha_{Link} + 1)x_1 - x_2\}$$
(2.8)

 k_{Link} はリンク機構の剛性を表し、封入する作動流体の圧縮剛性及びチューブの剛性により決まる。つまり、 $k_{Link}=0$ であればリンク機構は働かず、 $k_{Link}=\infty$ とすれば2つのピストン変位は完全にリンクする。以降、リンク機構の剛性 k_{Link} をリンク剛性と称する。

次に、粘性流体による減衰力は各層のシリンダが有する減衰係数を *c_i* とすれば式(2.9)で 表せる。

$$F_{oil} = c_i \cdot \dot{x}_{di} \tag{2.9}$$

このとき、バイパス管内の流体の移動量を*y*1、*y*2とすれば振動系全体の運動エネルギー*T*、 エネルギーの消散関数 *F*、ポテンシャルエネルギー*V*は次式で表される。

$$T = \frac{1}{2}m_1(\dot{x}_1 + \dot{x}_g)^2 + \frac{1}{2}m'(-\dot{y}_1 + \dot{x}_g)^2 + \frac{1}{2}m_2(\dot{x}_2 + \dot{x}_g)^2 + \frac{1}{2}m'(-\dot{y}_2 + \dot{x}_g)^2 \quad (2.10)$$

$$F = \frac{1}{2}c_1\dot{x}_1^2 + \frac{1}{2}c_2(\dot{x}_2 - \dot{x}_1)^2$$
(2.11)

$$V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(x_2 - x_1)^2 + \frac{1}{2}k_{Link}\{(\alpha_{Link} + 1)x_1 - x_2\}^2$$
(2.12)

ここで、チューブ内とシリンダ内の流体の移動量は、連続条件により断面圧縮比 α₄ を用い て表すと1層については以下のようになる。

$$\frac{\pi d^2}{4} \cdot y_1 = \frac{\pi (D_1^2 - D_2^2)}{4} \cdot x_1 \tag{2.13}$$

$$y_1 = \frac{\left(D_1^2 - D_2^2\right)}{d^2} \cdot x_1 = \alpha_{A1} \cdot x_1 \tag{2.14}$$

また、2層については以下のようになる。

$$\frac{\pi d^2}{4} \cdot y_2 = \frac{\pi \left(D_1^2 - D_2^2 \right)}{4} \cdot (x_2 - x_1)$$
(2.15)

$$y_2 = \frac{\left(D_1^2 - D_2^2\right)}{d^2} \cdot (x_2 - x_1) = \alpha_{A2} \cdot (x_2 - x_1)$$
(2.16)

式(2.10)に式(2.14)、(2.16)を代入すると次式が得られる。

$$T = \frac{1}{2}m_1(\dot{x}_1 + \dot{x}_g)^2 + \frac{1}{2}m'(-\alpha_{A1}\dot{x}_1 + \dot{x}_g)^2 + \frac{1}{2}m_2(\dot{x}_2 + \dot{x}_g)^2 + \frac{1}{2}m'(-\alpha_{A2}(\dot{x}_2 - \dot{x}_1) + \dot{x}_g)^2$$
(2.17)

次に、式(2.18)に示す Euler-Lagrange の方程式に式(2.17)、(2.11)、(2.12)を代入して整理すれば1層については以下のようになる。

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_{i}}\right) + \frac{\partial F}{\partial \dot{x}_{i}} + \frac{\partial V}{\partial x_{i}} = 0$$
(2.18)

 $\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_{1}}\right) = (m_{1} + \alpha_{A1}^{2}m' + \alpha_{A2}^{2}m')\ddot{x}_{1} - \alpha_{A2}^{2} \cdot m' \cdot \ddot{x}_{2} + (m_{1} - \alpha_{A1}m' - \alpha_{A2}m')\ddot{x}_{g}$ (2.19)

$$\frac{\partial F}{\partial \dot{x_1}} = (c_1 + c_2) \cdot \dot{x_1} - c_2 \cdot \dot{x_2}$$
(2.20)

$$\frac{\partial V}{\partial x_1} = \{k_1 + k_2 + (\alpha_{Link} + 1)^2 k_{Link}\} x_1 - \{k_2 + (\alpha_{Link} + 1) k_{Link}\} x_2$$
(2.21)

また、2層については以下のようになる。

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_2} \right) = -\alpha_{A2}^2 \cdot m' \cdot \ddot{x}_1 + (m_2 + \alpha_{A2}^2 \cdot m') \ddot{x}_2 + (m_2 - \alpha_{A2} \cdot m') \ddot{x}_g$$
(2.22)

$$\frac{\partial F}{\partial \dot{x_2}} = -c_2 \cdot \dot{x_1} + c_2 \cdot \dot{x_2} \tag{2.23}$$

$$\frac{\partial V}{\partial x_2} = -\{k_2 + (\alpha_{Link} + 1)k_{Link}\}x_1 + \{k_2 + k_{Link}\}x_2$$
(2.24)

以上より、各層の加速度項には流体の質量と断面圧縮比の2乗の積 $m' \cdot \alpha_A^2$ が付加されていることがわかる。これは、前節において式(2.6)で示した流体の慣性質量である。したがって、式(2.19)、(2.22)は次のように表せる。

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x_1}} \right) = (m_1 + m_{s1} + m_{s2}) \ddot{x}_1 - m_{s2} \cdot \ddot{x}_2 + (m_1 - \alpha_{A1}m' - \alpha_{A2}m') \ddot{x}_g$$
(2.25)

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x_2}}\right) = -m_{s1} \cdot \ddot{x}_1 + (m_2 + m_{s2})\ddot{x}_2 + (m_2 - \alpha_{A2}m')\ddot{x}_g$$
(2.26)

式(2.20)、(2.21)、(2.23)、(2.24)、(2.25)、(2.26)を整理すると式(2.27)が得られる。ここで、[*M*] は主質量の質量マトリクス、[*M*_s]は慣性質量マトリクス、[*C*]は減衰マトリクス、[*K*]は主構 造の剛性マトリクス、[*K*_{Link}]はリンク剛性マトリクス、[*M*_s']は流体の質量マトリクスを表す。 また、式(2.27)の右辺では流体質量[*M*_s']の主質量[*M*]に対する比率は一般的に1%程度と小さ いので、これを無視して簡潔な評価を行うために以後は右辺の質量項は[*M*]のみとして扱う。

 $([M] + [M_s]){\ddot{X}} + [C]{\dot{X}} + ([K] + [K_{Link}]){X} = -([M] - [M_s']){1}\ddot{x}_g = -[M]{1}\ddot{x}_g \quad (2.27)$ 以下に各マトリクスを示す。

$$[M] = \begin{bmatrix} m_1 & 0\\ 0 & m_2 \end{bmatrix}$$
(2.28)

$$[M_s] = \begin{bmatrix} m_{s1} + m_{s2} & -m_{s2} \\ -m_{s2} & m_{s2} \end{bmatrix}$$
(2.29)

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 \end{bmatrix}$$
(2.30)

$$[K] = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$
(2.31)

$$[K_{Link}] = \begin{bmatrix} (\alpha_{Link} + 1)^2 k_{Link} & -(\alpha_{Link} + 1) k_{Link} \\ -(\alpha_{Link} + 1) k_{Link} & k_{Link} \end{bmatrix}$$
(2.32)

$$[M_s'] = \begin{bmatrix} \alpha_{A1}m' + \alpha_{A2}m' & 0\\ 0 & \alpha_{A2}m' \end{bmatrix}$$
(2.33)

$$\{X\} = \begin{cases} x_1 \\ x_2 \end{cases}$$
(2.34)

2.3.2 固有周期、減衰定数、刺激関数の算出

リンク式流体慣性ダンパを設置した構造物の基本的な動力学特性を把握するために式 (2.27)に示した運動方程式を用いて固有周期、減衰定数、刺激関数を算出する。非制振時の 自由振動に対する一般固有値問題は式(2.35)で表せる。

$$\langle -_{s}\omega^{2}([M] + [M_{s}]) + ([K] + [K_{Link}]) \rangle_{s} \{U\} = \{0\}$$
(2.35)

*s*ω²は固有値、*s*{*U*}は固有ベクトル、左下の添え字は次数を表す。ここで各モードに対して 展開した広義慣性質量 *sMs*と広義質量 *sM*の比 *s*μを広義質量比、広義リンク剛性 *sKLink*と広 義剛性 *sK*の比 *s*γ*Link*を広義リンク剛性比として定義する。また、ダンパにより付加される減 衰マトリクス[*C*]を簡易的に比例減衰と仮定して広義減衰係数 *sC*を定義する。なお、以下の 書式において各ベクトル及びマトリクスの右上の添え字*T*は転置を表す。

$${}_{s}\mu = \frac{{}_{s}M_{s}}{{}_{s}M} = \frac{{}_{s}\{U\}^{T}[M_{s}] {}_{s}\{U\}}{{}_{s}\{U\}^{T}[M] {}_{s}\{U\}}$$
(2.36)

$${}_{s}\gamma_{Link} = \frac{{}_{s}K_{Link}}{{}_{s}K} = \frac{{}_{s}\{U\}^{T}[K_{Link}] {}_{s}\{U\}}{{}_{s}\{U\}^{T}[K] {}_{s}\{U\}}$$
(2.37)

$${}_{s}C = {}_{s}\{U\}^{T}[C] {}_{s}\{U\}$$
(2.38)

さらに、式(2.27)の運動方程式の両辺を ${}_{s}M+{}_{s}M_{s}$ で除して s 次の減衰定数 ${}_{s}h$ 、刺激係数 ${}_{s}\beta$ を 用いて整理すると次のようになる。

$${}_{s}\ddot{q} + 2 {}_{s}h {}_{s}\omega {}_{s}\dot{q} + {}_{s}\omega^{2} {}_{s}q = - {}_{s}\beta\ddot{x}_{g}$$

$$(2.39)$$

$${}_{s}q = \frac{{}_{s}\{U\}^{T}([[M] + [M_{s}]])\{X\}}{{}_{s}M + {}_{s}M_{s}}$$
(2.40)

$${}_{s}\omega^{2} = \frac{{}_{s}K + {}_{s}K_{Link}}{{}_{s}M + {}_{s}M_{s}} = \frac{1 + {}_{s}\gamma_{Link}}{1 + {}_{s}\mu} \cdot \frac{{}_{s}K}{{}_{s}M}$$
(2.41)

$${}_{s}h = \frac{{}_{s}C}{2\sqrt{\left({}_{s}M + {}_{s}M_{s}\right)\left({}_{s}K + {}_{s}K_{Link}\right)}} = \frac{{}_{s}C}{2\sqrt{\left(1 + {}_{s}\mu\right)\left(1 + {}_{s}\gamma_{Link}\right){}_{s}M{}_{s}K}}$$
(2.42)

$${}_{s}\beta = \frac{{}_{s}\{U\}^{T}[M]\{1\}}{{}_{s}M + {}_{s}M_{s}} = \frac{1}{1 + {}_{s}\mu} \cdot \frac{{}_{s}\{U\}^{T}[M]\{1\}}{{}_{s}M}$$
(2.43)

このとき、1 次モードの振動系の固有ベクトルは $\alpha_{Link,0,I}=1.0$ とすればリンク変形比を用いて 式(2.44)で表すことができる。なお、 α_{Link} の右下の添え字はリンクさせる 2 つの層を表す。

$${}_{1}u_{i} = {}_{1}u_{1} \sum_{j=1}^{i} \left(\prod_{k=1}^{j} \alpha_{Link,k-1,k} \right)$$
(2.44)

次に、図 2.4 に示すリンク式流体慣性ダンパを設置した弾性 2 質点系せん断モデルに対し て固有値解析を行い、理論的に示した慣性質量とリンク機構が振動系の動力学特性に与え る影響を確認する。解析モデルの質量は 2 階床が $m_1=20[t]$ 、屋根階床が $m_2=12[t]$ であり 1 次 固有周期は 0.24[s]とする。また、主構造の剛性 k_i は剛性比 $\gamma_k=k_2/k_1$ をパラメータとして $\gamma_k=0.4$ 、 0.6、0.8 となるように定める。表 2.1 には主構造の諸元一覧を示す。以降の検討では各層に 付加される慣性質量と主質量の比を質量比 μ 、リンク剛性と主構造 1 層の剛性の比をリンク 剛性比 γ_{Link} として用いる。なお、一般固有値問題においてダッシュポットの減衰を考慮しな い場合でもリンク機構の抵抗力は伝わるものとする。

m_2		表 2.1 解析	fモデル諸元	
m _{s2}	Yĸ	0.4	0.6	0.8
	m ₁ [t]	20	20	20
	m ₂ [t]	12	12	12
m ₁ k _{Link}	k ₁ [kN/m]	34269.5	29206.7	26992.3
() m _{s1}	k ₂ [kN/m]	13707.8	17524.0	21593.8
	T_[S]	0.24	0.24	0.24
$k_1 \geq \swarrow$	T ₂ [s]	0.12	0.11	0.11

図 2.4 2 質点系弾性モデル

a. 固有周期に関する検討

まず、慣性質量とリンク機構が固有周期に対して与える影響について示す。図 2.5 には質量比 μ とリンク剛性比 γLink を変化させた時の原振動系の固有周期 iT に対するダンパを付加した振動系の固有周期 iT の比率を示す。なお、いずれのグラフにおいてもリンク変形比は αLink=1.0 である。式(2.44)で示した固有ベクトルを用いて 1 次モードに対する広義リンク剛性を算出すると、式(2.45)で示すように iKLink=0 となることからリンク剛性比を大きくしても 1 次モードの固有周期は変化しない。一方で、2 次モードの固有周期はリンク剛性比を大きくするほど短くなることから、層間変形が完全にリンクされている状態であれば 2 次モードの影響を取り除く効果を発揮する。慣性質量はリンク剛性比が小さい場合には 1 次モードと 2 次モード、リンク剛性比が大きい場合には 1 次モードに対してのみ周期伸長効果を発揮している。以上より、リンク機構は 2 次モードに対して周期低減効果を発揮する。つまり、リンク式流体慣性ダンパを設置した振動系は 1 次モードの振動成分のみを考慮すればよく、固有周期は式(2.46)で表すことができる。

$${}_{1}K_{Link} = (\alpha_{Link} + 1)^{2}k_{Link} \cdot {}_{1}u_{1}^{2} - 2(\alpha_{Link} + 1)k_{Link} \cdot {}_{1}u_{1} \cdot {}_{1}u_{2} + k_{Link} \cdot {}_{1}u_{2}^{2}$$

= $(\alpha_{Link} + 1)^{2}k_{Link} \cdot {}_{1}u_{1}^{2} - 2(\alpha_{Link} + 1)^{2}k_{Link} \cdot {}_{1}u_{1}^{2} + (\alpha_{Link} + 1)^{2}k_{Link} \cdot {}_{1}u_{1}^{2}$
= 0 (2.45)

$${}_{1}T = \sqrt{\frac{1+{}_{1}\mu}{1+{}_{1}\gamma_{Link}}} \cdot {}_{1}T_{0} = \sqrt{1+{}_{1}\mu} \cdot {}_{1}T_{0}$$
(2.46)

b. 固有ベクトルに関する検討

次に、慣性質量とリンク機構が固有ベクトルに与える影響について示す。図 2.6 には a_{Link} を変化させたときの、1 次モードにおける 2 層の固有ベクトル成分 u_2 と 1 層の固有ベクトル成分 u_1 の比率を示す。 $\gamma_k=0.4$ の場合には慣性質量を付加することで u_2 と u_1 の比率が大き くなる傾向が見られるが、 $\gamma_k=0.6$ 、0.8 の場合には質量比の違いにより大きな差は認められ ない。また、リンク剛性比を大きくすることで u_2 と u_1 の比率は ($a_{Link}+1$) に収束しており、 リンク機構により変形分布を制御できることを確認できる。

(左:リンク変形比α_{Link}=1.0 右:リンク変形比α_{Link}=1.5)
 図 2.6 1次モードの固有ベクトル成分 u₂ と u₁の比率

c. 刺激関数に関する検討

最後に、慣性質量とリンク機構が刺激関数に与える影響について示す。図 2.7 にはリンク 変形比 α_{Link}=1.0 としたときの 1 次モードの刺激関数を示す。γ_{Link}=0 の場合、γ_k=0.4 であれば 2 層、γ_k =0.8 であれば 1 層の刺激関数が大きくなるが γ_{Link} =∞とすることで刺激関数が直線 状となり変形の一様化に期待できる。刺激関数の値はリンク機構の有無によらず慣性質量 を大きくするほど小さくなっていることから、慣性質量効果による入力低減効果を確認で きる。一方で、質量比が同様であればリンク剛性比の大きさによらず刺激関数の最大値に変 化はないことから、リンク機構は入力低減効果に寄与しないことを確認できる。

2.4 リンク式流体慣性ダンパを応用した制振構法の提案

a. 捩れ振動を抑制する設置方法

リンク式流体慣性ダンパのリンク機構を応用することで、2.3節で示した上下層間の損傷 集中抑制効果以外にも様々な制振効果を得ることができる。例えば、図2.8に示す1層1ス パンフレームの向かい合う構面にリンク式流体慣性ダンパを設置することでねじれ振動の 抑制効果を発揮する。

図 2.8 リンク式流体慣性ダンパを設置した1層1スパンフレーム

このとき、運動方程式は地動変位を xg、xy とすれば式(2.47)のように表される。上下層間の 損傷集中を抑制する場合と同様に質量項に慣性質量が、剛性項にリンク機構の剛性マトリ クスが足されていることがわかる。捩れ振動を抑制することを目的とすることからリンク 変形比 aLink=1.0 とすればリンク機構の抵抗力は式(2.48)で表され、回転方向の運動に対して 抵抗力を発揮する。

$$([M] + [M_s]) \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{\theta} \end{pmatrix} + [C] \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} + ([K] + [K_{Link}]) \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} = -[M] \begin{pmatrix} \ddot{x}_g \\ \ddot{y}_g \\ 0 \end{pmatrix}$$
(2.47)

$$F_{Link} = k_{Link} \cdot \left\{ \alpha_{Link} \left(x + l_{y1} \theta \right) - \left(x + l_{y2} \theta \right) \right\} = k_{Link} \cdot \left(l_{y1} - l_{y2} \right) \theta$$
(2.48)

b. 免震構造物のロッキング応答を抑制する設置方法

免震積層ゴムは固定荷重に対する圧縮力や地震によるせん断力に対しては十分な剛性・ 靱性を有しているが、引張力に対しては非常に脆性的である。そこで、図 2.9 に示すように 免震構造物の最上階に設置した錘と免震層をリンクさせることで構築するパッシブマスド ライバー (PMD)を提案する。リンク機構にはリンク式流体慣性ダンパを用いることで免震 層の変位を任意の増幅倍率で錘の移動量として入力することが可能となる。また、免震層の 変位とは逆位相となるように錘を制御すれば上部構造の転倒モーメントを低減することが でき、ロッキング応答の抑制に期待できるシステムとなる。

(左:設置方法概念図 右:力学モデル) 図 2.9 パッシブマスドライバーの概念図と力学モデル

このとき、運動方程式は式(2.47)と同様な形で表すことができ、力学モデルは y 軸方向にの み剛性偏心を有する 1 軸偏心モデルとなる。また、リンク機構の抵抗力は式(2.49)で表され、 x 方向の変形とロッキング回転角に対して抵抗力を発揮する。

$$F_{Link} = k_{Link} \{ \alpha_{Link} (x_1 + l_{y2}\theta) - (x_2 - x_1 - l_{y1}\theta) \}$$
$$= k_{Link} \{ (\alpha_{Link} + 1)x_1 - x_2 + (l_{y1} + \alpha_{Link}l_{y2})\theta \}$$
(2.49)

2.5 リンク式流体慣性ダンパの力学モデル

2.5.1 基本性能試験の概要

リンク式流体慣性ダンパの力学特性を把握し、その力学モデルを構築するためにシリン ダをリンクさせずに流体慣性ダンパ(FIMD)として使用する場合と2本のシリンダをリン クしてリンク式流体慣性ダンパ(LFIMD)とした場合の2通りについて単体性能試験を行 った。図 2.10 に本試験で使用するリンク式流体慣性ダンパの平面図、表 2.2 にダンパの基 本仕様及び封入する作動流体の諸元、図 2.11 に試験システムを示す。ダンパは両ロッド形 式の大型ダンパであり、2 つのシリンダの断面積は等しいことからリンク変形比は atim=1.0 となる。ダンパに封入する流体はフッ素オイル³⁶の BARRIERTA J25 FLUID(以下、 BARRIERTA)とし、リンクチューブにはワイヤーブレードによる補強が施された耐圧性の ゴムチューブを用いた。本試験では加振時に加振梁と接続するシリンダを加振側ダンパ、も う一方のシリンダを追従側ダンパと称する。加振側ダンパは加振梁にピン接合、追従側ダン パはシリンダを反力台に固定してピストンロッドは自由に振動できる場合(以下、反力なし) と、ピストンロッドの先をコイルばねとピン接合することで反力を与える場合(以下、反力 あり)の2通りの試験を行った。なお、コイルばねは2本並列に設置してありこのときの剛 性は 892[kN/m]であることが確かめてある。計測項目はダンパとコイルばねの抵抗力、2基 のダンパのピストン変位とし、反力なしの場合は試験システムからコイルばねを取り外し て加振を行った。加振は変位制御により行い、反力なしの場合は三角波(振動数:0.01[Hz]、 振幅±30[mm])と正弦波、反力ありの場合は正弦波を用いた。正弦波は振動数と振幅をパ ラメータとし、入力した正弦波の一覧を表 2.3 に示す。動的載荷はアクチュエータへの負担 を考慮し、振幅の漸増漸減域を有する波形とし、漸増域、定常部分、漸減域でそれぞれ3サ イクルの加振を行った。なお、加振は最大加振速度が 60[cm/s]以内、またはダンパの最大荷 重が 50[kN]以下となる範囲で実施した。写真 2.1 には流体慣性ダンパ、写真 2.2 にはリンク 式流体慣性ダンパの設置状況を示す。

図 2.10 大型リンク式流体慣性ダンパ(LFIMD)の平面図

シリンダ径 [mm]	<i>φ</i> 80.0			
ピストンロッド径 [mm]	ピストンロッド径 [mm]			
ストローク [mm]		±100		
チューブ長さ [m]	チューブ長さ [m]			
チューブ内径 [mm]		φ 12.7		
		BARRIERTA		
作動流体密度 [g/cm ³	作動流体密度 [g/cm³]			
作動流体動粘度	20°C	59.96		
[mm ² /s] 40°C		25.00		
流体体積弾性係数 [GF	°a]	0.798		

表 2.2 ダンパの基本仕様及び作動流体の諸元

図 2.11 試験システム(LFIMD_反力あり)

FIMD		変位[mm]						
		±5	±10	±20	±30	±40	±50	±60
	0.01	-	-	-	-	-	-	-
	0.5	0	0	0	0	0	0	0
长手	1.0	0	0	0	0	0	0	0
110町数 [山]	2.0	0	0	0	0	0	-	-
[ייי]	3.0	0	0	0	0	-	-	-
	4.0	0	0	0	-	-	-	-
	5.0	0	0	-	-	-	-	-

表 2.3 加振スケジュール

LFIMD		変位[mm]						
(反力なし)		±5	±10	±20	±30	±40	±50	± 60
	0.01	-	-	-	-	-	-	-
	0.5	0	0	0	0	0	0	0
忙乱粉	1.0	0	0	0	0	0	0	1
1 成 判 致 「凵」	2.0	0	0	0	-	-	-	-
[nz]	3.0	0	0	-	-	-	-	-
	4.0	0	-	-	-	-	-	-
	5.0	-	-	-	-	-	-	-

LFIMD		変位[mm]			
(反力あり)		±5	±10	±20	± 30
振動数 [Hz]	0.01	-	-	-	0
	0.5	0	0	0	0
	1.0	0	0	0	0
	2.0	0	0	0	-
	3.0	0	0	-	-
	4.0	-	-	-	-
	5.0	-	-	-	-

写真 2.1 流体慣性ダンパの設置状況

写真 2.2 リンク式流体慣性ダンパの設置状況

2.5.2 試験結果及び考察

a. 追従側ダンパのピストンロッドが自由に振動できる場合

図 2.12 にリンク式流体慣性ダンパとした場合に追従側ダンパに反力を与えずに三角波を 入力したときのピストン変位時刻歴と荷重変位関係を示す。加振側及び追従側ダンパのピ ストン変位が一致していることからリンク効果が良好に機能していることを確認できる。 また、三角波はほぼ静的な載荷であることからダンパ荷重は摩擦力であると判断でき、ダン パは内部摩擦力として 0.80[kN]程度の抵抗力を発揮することがわかる。

図 2.13 及び図 2.14 には表 2.3 で示した反力なし試験において正弦波を入力したときの定 常状態における1 サイクルを取り出して全ての振幅について重ねた荷重変位関係を示す。 流体慣性ダンパとした場合には振動数、振幅によらず履歴はきれいな楕円形を描いており、 明瞭に負剛性を発揮していることからダンパが正常に機能していることを確認できる。特 に、振動数 4.0、5.0[Hz]の荷重変位関係は非常に大きな慣性力を発現しており、慣性力が最 も大きくなる最大変位時の抵抗力が、粘性減衰力が最大となる原点付近の抵抗力よりも大 きくなっている。一方で、リンク式流体慣性ダンパの場合には、履歴はきれいな楕円形を描 いているものの、粘性減衰力による影響が大きく変位反転時の油撃による履歴の乱れが小 さくなっている。また、粘性減衰力が大きいことから履歴形状は全体として円形に近く、大 振幅の加振時には負剛性が明瞭に見られない。しかし、低振幅の加振時には負剛性が明瞭に 確認できることから、大振幅の加振時にも負剛性が発揮されていると判断できる。また、振 動数が 4.0[Hz]以上になると履歴の傾きが不明確となり、粘性減衰力による履歴の膨らみと 油撃による履歴の乱れだけが顕著に表れている。図 2.15 には正弦波を入力したときの各加 振における最大速度時の抵抗力をプロットした荷重速度関係を示す。なお、最大速度及び抵 抗力は正側と負側の平均した値を用いている。いずれのダンパとした場合においてもプロ ットは 2 次関数的な挙動を示すことを確認でき、プロットは大きく乱れずに整列している ことから安定した粘性減衰力を発揮している。また、リンク式流体慣性案ダンパとした場合 には流体慣性ダンパと比較して粘性減衰力が概ね2倍になることを確認できる。

図 2.12 LFIMD に三角波を入力した時のピストン変位時刻歴と荷重変位関係

図 2.14 正弦波を入力した時の荷重変位関係(LFIMD_反力なし)

b. 追従側ダンパに反力を与える場合

図 2.16 には追従側ダンパに反力を与えてほぼ静的に加振した時のピストン変位時刻歴と システム全体の荷重 F を加振側ピストン変位 x_{d1} と追従側ピストン変位 x_{d2} の差を用いて算 出した荷重変位関係を示す。なお、追従側ダンパに反力を与える場合では加振梁に設置した 荷重計で計測される荷重をシステム全体の荷重と称する。ピストン変位時刻歴は加振側に 対して追従側が小さくなっており、このときのピストン変位差を用いて算出した荷重変位 関係は原点付近での荷重のスリップが小さく流体の圧縮剛性が早期に発揮されていること から高いリンク効果を発揮することを期待できる。ここで、リンク機構の剛性を式(2.50)で 定義すると、図 2.16 で示した荷重変位関係に最小二乗法を適用して線形近似することでリ ンク剛性を算出することができる。

$$k_{Link} = \frac{F}{x_{d1} - x_{d2}} \tag{2.50}$$

 k_{Link} : リンク剛性 F; システム全体の荷重 x_{di} : ピストン変位

図 2.17 には動的に正弦波を入力したときの定常状態における1サイクルを取り出して全 ての振幅について重ねた荷重変位関係を示す。なお、荷重変位関係の変位は加振側ピストン 変位、ダンパ荷重はシステム全体の荷重からコイルばねの抵抗力を引くことで算出した。振 動数が 0.5[Hz]の加振時には変位が原点を通過する際に履歴が乱れる傾向が見られ、振動数 が大きくなると変位反転時に履歴に乱れが生じる傾向が確認できる。また、いずれの振動数 においても履歴は原点について点対象であり、明瞭な負剛性を発揮していることからダン パが正常に機能していると判断できる。

図 2.16 静的に正弦波を入力した時のピストン変位時刻歴と荷重変位関係(LFIMD_反力あり)

図 2.17 動的に正弦波を入力した時の荷重変位関係(LFIMD_反力あり)

2.5.3 カ学モデルの構築と精度検証

a. 流体慣性ダンパの力学モデル

流体慣性ダンパの抵抗力 F_{dam} は内部摩擦力 F_{fri} 、粘性減衰力 F_{oil} 、慣性力 F_{im} の和となる。 ダンパの力学モデルは図 2.18.a のように表すことができるが、本検討で用いている作動流 体の圧縮剛性は十分に大きく、チューブも高圧用の仕様であり剛性は十分に大きいことか ら図 2.18.b のように流体及びチューブの剛性 K_d は無限大として扱う。内部摩擦力は図 2.12 において 0.80[kN]であることを確認したため、シリンダ1本の場合の力学モデルは 0.40[kN] で降伏し、初期剛性が十分に大きく第2剛性が0のバイリニア型として模擬する。粘性抵 抗による減衰力は図 2.15 に示したように抵抗力と速度の関係が非線形であることから、非 線形ダッシュポットの速度と抵抗力の関係は式(2.53)で表され、減衰係数は図 2.15 に最小二 乗法を適用して求めた。慣性力による負剛性は式(2.54)で示すように慣性質量と円振動数 ω の 2 乗の積により求まる等価剛性 k_{eq} とピストン変位 x_d の積により算出する。なお、式(2.6) により算出した慣性質量は 2.419[t]である。

$$F_{dam} = F_{fri} + F_{oil} + F_{im} \tag{2.51}$$

$$F_{fri} = const. = 0.40 \tag{2.52}$$

$$F_{oil} = c_1 \cdot \dot{x}_d + c_2 \cdot \dot{x}_d^2 = 40.04 \dot{x}_d + 94.41 \dot{x}_d^2$$
(2.53)

$$F_{im} = k_{eq} \cdot x_d = -m_s \cdot \omega^2 \cdot x_d = -2.419 \cdot \omega^2 \cdot x_d \tag{2.54}$$

図 2.18 ダンパの力学モデル

図 2.19 に構築した力学モデルに前節の反力なし試験で振動数ごとに最大振幅の加振を行った際に計測したピストン変位を入力して得た定常部分の 1 サイクルを取り出して試験結果と比較した荷重変位関係を示す。低振動数時には実線で示す試験結果と破線で示す解析結果が概ね一致していることがわかる。高振動数になると変位反転時に見られる履歴の乱れが模擬できていないが、減衰力による履歴の膨らみと慣性力による負剛性は概ね一致していることを確認できる。また、定量的な評価として図 2.20 に累積吸収エネルギー量の試験値に対する解析値の比を示す。いずれの振動数においても約 1.0 であることから、構築した力学モデルが妥当であると判断できる。

図 2.19 解析結果と試験結果の荷重変位関係の比較(FIMD)

図 2.20 解析結果と試験結果の累積吸収エネルギーの比較(FIMD)

b. リンク式流体慣性ダンパのモデル化

次に、リンク式流体慣性ダンパのリンク機構のモデル化を行う。追従側ダンパに反力があ る状態でのリンク式流体慣性ダンパの抵抗力 F_{dam}にはリンク機構の抵抗力 F_{Link}が加わる。 力学モデルを図 2.21 に示し左側の力学モデルを加振側ダンパ、右側の力学モデルを追従側 ダンパとして破線で示すリンク機構により接続する。このとき、リンク式流体慣性ダンパの 抵抗力は式(2.55)で表される。ダンパの力学要素として内部摩擦力、慣性力については式 (2.52)、(2.54)と同様とし、減衰力については図 2.15 で示した荷重速度関係に最小二乗法を 適用して算出した減衰係数を2つの力学モデルに等分配するため式(2.56)で表される。また、 リンク機構の抵抗力は 2 つのピストン変位の差に比例した抵抗力を発揮することから式 (2.57)、(2.58) で表され、リンク機構の剛性 k_{Link} は図 2.16 の荷重変位関係に最小二乗法を適 用して線形近似により求めた。リンク機構の低抗力は加振側または追従側ダンパそれぞれ の抵抗力を算出する場合には考慮する必要があるが、ダンパ単体の抵抗力を算出する場合 には打ち消しあうためゼロになる。

$$F_{dam} = \sum_{i=1}^{2} \left(F_{fri,i} + F_{oil,i} + F_{im,i} + F_{Link,i} \right)$$
(2.55)

$$F_{fri} = const. = 0.40$$
 (2.52)(再揭)

$$F_{oil} = \frac{c_1}{2} \cdot \dot{x}_d + \frac{c_2}{2} \cdot \dot{x}_d^2 = 22.57 \dot{x}_d + 123.3 \dot{x}_d^2$$
(2.56)

$$F_{im} = k_{eq} \cdot x_d = -m_s \cdot \omega^2 \cdot x_d = -2.419 \cdot \omega^2 \cdot x_d$$
(2.54)(再掲)

$$F_{Link,1} = k_{Link} \cdot (x_{d1} - x_{d2}) = 2166 \cdot (x_{d1} - x_{d2})$$
(2.57)

$$F_{Link,2} = k_{Link} \cdot (x_{d2} - x_{d1}) = 2166 \cdot (x_{d2} - x_{d1})$$
(2.58)

図 2.21 リンク機構を考慮した力学モデル(LFIMD)

図 2.22 に構築した力学モデルに前節の反力ありの試験で振動数ごとに最大振幅の加振を 行った際に計測したピストン変位を入力して得た定常部分の 1 サイクルを取り出して試験 結果と比較した荷重変位関係と追従側ピストン変位を示す。荷重変位関係は原点付近で特 に顕著となる履歴の乱れが正確に模擬できていないものの、履歴全体の膨らみと傾きにつ いては概ね一致していることを確認できる。追従側ピストン変位については負側の最大変 位付近で若干のズレが認められるが試験結果と解析結果が概ね一致することを確認できる ことから、構築した力学モデルが妥当であると判断できる。

(上:荷重変位関係 下:追従側ピストン変位)図 2. 22 解析結果と試験結果の比較(LFIMD)

2.6 まとめ

本章では提案するリンク式流体慣性ダンパの基本機構を示し、上下層間の損傷集中を抑 制することを目的とした設置方法における運動方程式の定式化を行った。また、ダンパの単 体性能試験を行い基本的な力学特性と力学モデルの構築方法を示した。

まず、2.2節ではリンク式流体慣性ダンパの基本機構を述べた。リンク式流体慣性ダンパ は流体の高速運動によりシリンダとチューブの断面積の比から定まる断面圧縮比の2 乗と 流体密度に比例した慣性質量を発揮することで、簡易な機構でありながら慣性質量効果に よる負剛性制御を実現できることを示した。また、リンク機構により構造物の変形分布を任 意に制御することで損傷集中の抑制に期待できるデバイスであることを示した。

次いで、2.3節では上下層間の損傷集中を抑制することを目的としてダンパを設置した構造物の運動方程式の定式化を行い、運動方程式には質量項に慣性質量、剛性項にリンク機構の剛性が加わることを示した。このとき、慣性質量は周期伸長効果、減衰定数低減効果、入力低減効果を発揮し、リンク機構は高次モードの周期低減効果、減衰定数低減効果、固有ベクトルを任意の比率にするリンク効果を発揮することを示した。また、2.4節ではリンク式流体慣性ダンパのリンク機構を応用した制振構法として捩れ振動の抑制を目的とした設置方法と免震構造物のロッキング応答を抑制する設置方法を提案した。

最後に、2.5節ではリンク式流体慣性ダンパの単体性能試験を実施し、ダンパの基本性能 として速度の2乗に比例した抵抗力を発揮する粘性減衰力と、慣性質量と円振動数の2乗 の積により求まる等価剛性がピストン変位に比例した慣性力を発揮することを確認した。 また、2つのピストンがリンクして動くためのリンク剛性は混入空気等が圧縮される低振幅 時にはやや小さい値をとるが、流体の圧縮剛性が働くことで良好なリンク効果を発揮する ことを確認した。最後に、リンク剛性の非線形性を考慮せずに線形近似した場合においても 構築した力学モデルは実験結果を精度よく模擬できることを示した。

34

第3章

リンク式流体慣性ダンパの高性能化

3.1 はじめに

本章では、リンク式流体慣性ダンパの高性能化手法の提案と力学特性の定量的評価手法 について述べる。まず 3.2 節においてリンク式流体慣性ダンパの基本性能としてダンパが安 定した性能を発揮するための基本仕様について検討した結果を示す。次いで、3.3 節ではダ ンパの具体的な高性能化手法の提案と高性能化手法を適用した場合の力学特性について高 性能化の程度を定量的に評価する。3.4 節では高性能化したダンパを設置した小型 2 層鉄骨 フレームによる振動台実験を実施することで、リンク式流体慣性ダンパを用いた構造シス テムの制振効果を示す。

3.2 リンク式流体慣性ダンパの基本性能評価試験

3.2.1 性能評価試験の概要

リンク式流体慣性ダンパの力学特性を把握し、安定した基本性能を発揮するための基本 仕様を策定するために単体性能試験を行った。図3.1に試作した小型リンク式流体慣性ダン パの平面図、表 3.1 にダンパの基本仕様及び作動流体として封入するフッ素オイルの BARRIERTA J25 FLUID(以下、BARRIERTA)の諸元を示す。ダンパは片ロッド形式を採用 しており、チューブには内径 φ 6.0[mm]、長さ 1.6[m]のナイロン素材の樹脂チューブと銅チ ューブの2種類をそれぞれ用いる。また、本試験ではアクチュエータと接続するシリンダを 加振側ダンパ、もう一方のシリンダを追従側ダンパと称する。図 3.2 には試験システムを示 す。加振側ダンパはアクチュエータとピン接合し、追従側ダンパのピストンロッドは自由に 振動できる場合(以下、反力なし)とピストンロッドの先を帯鋼板と接続することで反力を 与える場合(以下、反力あり)の2通りの試験を行った。反力を与えるための帯鋼板(25× 3.5[mm])の剛性は 50.8[kN/m]であることを確かめてあり、加振方向に対して若干ハードニ ングの特性を示すが性能評価に影響はない。計測項目はダンパと帯鋼板の抵抗力、2 基のダ ンパのピストン変位とし、反力なし試験は図 3.2 に示す試験システムから帯鋼板を取り外し て加振を実施した。加振は変位制御により表 3.2 に示す振動数と振幅をパラメータとした正 弦波を入力した。動的載荷はアクチュエータへの負担を考慮して振幅の漸増漸減域を有す る波形を用い、漸増域と漸減域は3サイクル、定常部分は4サイクルとした。写真3.1には 樹脂チューブ、写真 3.2 には銅チューブを使用したときの試験体の設置状況を示す。

図 3.1 小型リンク式流体慣性ダンパの平面図

図 3.2 試験システム

表 3.1 ダンパの基本仕様及び流体諸元

シリンダ径 [mm]	<i>φ</i> 25	
ピストンロッド径 [n	φ 12	
ストローク [mm]	±25	
チューブ内径 [mm	φ 6.0	
チューブ長さ [m]	1.6	
流体密度 [g/cm³]	1.88	
流体動粘度	59.98	
[mm²/s]	25.00	
流体体積弾性係数 [G	0.798	

振動数	振幅 [mm]					振動数	扔	www.email.com	ר]	
[Hz]	±2.5	±5.0	±7.5	±10	±12	±15	[Hz]	±3.0	±5.0	±7.0
0.01	-	-	-	-	-	-	0.01	-	-	0
0.5	0	0	0	0	0	0	0.5	0	0	0
1.0	0	0	0	0	0	0	1.0	0	0	0
2.0	0	0	0	0	0	0	2.0	0	0	0
3.0	0	0	0	0	0	-	3.0	0	0	0
4.0	0	0	0	-	-	-	4.0	-	-	-
5.0	0	0	-	-	-	-	5.0	-	-	-

表 3.2 入力した正弦波の一覧 (左:反力なし 右:反力あり)

写真3.1 試験体の設置状況(樹脂チューブ)

写真3.2 試験体の設置状況(銅チューブ)

3.2.2 試験結果及び考察

a. 追従側ダンパのピストンロッドが自由に振動できる場合

図 3.3 に樹脂チューブ、図 3.4 に銅チューブを使用した場合の追従側ダンパに反力を与え ずに各振動数最大振幅の正弦波を入力した時の定常状態におけるピストン変位時刻歴、定 常状態における1サイクルを取り出してすべての振幅について重ねた荷重変位関係を示す。 樹脂チューブを使用した場合、低振動数時には加振側ダンパに対して追従側ダンパのピス ト変位は追従できているが、高振動数になるにつれて追従側ダンパが位相遅れを生じるだ けでなく最大変位も追従しきれていないことがわかる。荷重変位関係についても、振動数 1.0[Hz]までであれば履歴はきれいな楕円形を描き、明瞭な負剛性を発揮しているが、振動数 が高くなり加振速度が上がると第1、3象限に膨らみが生じ見かけ上正の剛性を発揮してい ることがわかる。一方で、銅チューブを使用した場合には振動数によらず追従側ダンパが加 振側ダンパに追従できており、荷重変位関係もきれいな楕円形と明瞭な負剛性を発揮して いることからダンパが正常に機能していると判断できる。 図 3.5 に示す荷重速度関係からも 樹脂チューブを使用した場合の方が、変位が原点を通過する際の抵抗力が銅チューブを使 用した場合よりも大きくなることから傾きも大きく評価されている。これは、流体がチュー ブ内を高速運動するときに生じる負圧によりチューブが内径を小さくする方向に収縮変形 することが原因だと考えられる。また、変位反転時の油撃による荷重の増加は銅チューブを 使用した場合の方が顕著に表れている。

図3.3 正弦波を入力したときのピストン変位時刻歴と荷重変位関係(樹脂チューブ)

図 3.4 正弦波を入力したときのピストン変位時刻歴と荷重変位関係(銅チューブ)

第3章 リンク式流体慣性ダンパの高性能化

b. 追従側ダンパに反力を与える場合

図 3.6 には追従側ダンパに反力を与えてほぼ静的に載荷したときシステム全体の荷重 F と加振側ピストン変位 x_{dl} 及び追従側ピストン変位 x_{dl} の差を用いて算出した荷重変位関係 を示す。なお、追従側ダンパに反力を与える場合ではアクチュエータヘッドに接続した荷重 計で計測される荷重をシステム全体の荷重と称する。いずれのチューブを使用した場合に おいても変位差が小さいときには内部に混入した微量の空気が圧縮されるために荷重にス リップが見られるが、変位差が大きくなると流体の圧縮剛性が働くために履歴の傾きは大 きくなっている。このとき、リンク機構の剛性は式(3.1)で定義され、その傾きは銅チューブ を使用した方が大きく、変位差は負側に対して正側の方が大きいことがわかる。これはピス トンロッドがある油室(相対的に受圧面積が小さい油室)に載荷する方向が変位差が正とな るからであり、同じ抵抗力を発揮した場合にピストンロッドがない油室に載荷する場合に 比べて圧力が大きくなるからである。

$$k_{Link} = \frac{F}{x_{d1} - x_{d2}}$$
(3.1)

 k_{Link} : リンク剛性 F; システム全体の荷重 x_{di} : ピストン変位

図 3.7 に樹脂チューブ、図 3.8 に銅チューブを使用した場合に追従側ダンパに反力を与え て表 3.2 右の正弦波を動的に載荷したときの定常状態における 1 サイクルを取り出してす べての振幅について重ねた荷重変位関係を示す。なお、ダンパ単体の抵抗力はシステム全体 の荷重から帯鋼板の荷重を引くことで算出した。いずれのチューブを使用した場合にも負 剛性は発揮しているが、銅チューブを使用した場合の方が履歴形状は原点について点対象 性が高いことから安定した性能を発揮していると判断できる。

第3章 リンク式流体慣性ダンパの高性能化

0.6

0.6

図3.7 正弦波を入力した時の荷重変位関係(樹脂チューブ_反力あり)

図3.8 正弦波を入力した時の荷重変位関係(銅チューブ_反力あり)

3.3 リンク式流体慣性ダンパの高性能化手法と性能評価

3.3.1 リンク式流体慣性ダンパの高性能化手法

本研究ではリンク式流体慣性ダンパの高性能化を「粘性減衰力に対する慣性力を相対的 に大きくすること」と定義する。2章で示したように、構造物にリンク式流体慣性ダンパを 設置することで慣性質量効果は周期伸長効果、減衰定数低減効果、入力低減効果を発揮し、 リンク効果は高次モードの周期低減効果、減衰定数低減効果、変形分布を任意の形状にする リンク効果を発揮することで高い制振効果を得ることができる。負剛性を発揮するダンパ は図 3.9 に示すように主構造が塑性域に至った後も建物全体の剛性を見かけ上低減するこ とで荷重の増加を防ぐことができるため、一般のオイルダンパを設置するよりも加速度の 低減効果に期待できる。そこで、リンク式流体慣性ダンパを高性能化することで慣性質量効 果による負剛性を大きくし、負剛性制御による絶対加速度の低減効果を大きくすることで 構造システムの制振性能を向上させることを目標とする。

図 3.9 制振効果の概念図

粘性減衰力に対する慣性力を相対的に増加させるためには、慣性質量を増加させる手法 と粘性減衰力を低減する手法の2通りが考えられる。まず、流体の慣性質量効果による付加 質量はシリンダ内とチューブ内における流体移動量の連続条件より式(3.2)で表される。前者 の手法を用いて高性能化を実現するために慣性質量を大きくするためには、封入する作動 流体の密度を大きくすることが効果的である。また、チューブを長くするか、シリンダとチ ューブの断面圧縮比を大きくすることでも慣性質量を大きくすることが可能である。

$$m_s = \rho \frac{\pi d^2 l}{4} \left(\frac{D_1^2 - D_2^2}{d^2} \right)^2$$
(3.2)

 $D_1: シリンダ内径 D_2: ピストンロッド径 <math>d: \mathcal{F}_2 - \mathcal{T}$ 内径 $\rho:$ 流体密度 $l: \mathcal{F}_2 - \mathcal{T}$ 長さ

次に、後者の手法で高性能化を実現するためにはダンパの粘性減衰力発生機構を把握する 必要がある。そのために、リンク式流体慣性ダンパの粘性減衰力を算出するための理論式を 構築する。なお、以下に示す理論式の構築方法は砂子田らの研究^{37,38)}を参考にした。

シリンダ内のピストン速度 V とチューブ内の流速 u_iの関係は、いずれの機構においても 流量 Q が等しくなることからチューブの断面積を a とすれば式(3.3)で表せる。また、リン ク式流体慣性ダンパが発揮する粘性減衰力は油圧システム内の各機構における圧力損失 *Api* と受圧面積 A_iの積により算出でき、式(3.4)に示すように損失係数 ξ_iとピストン速度 V の関 数で表される。リンク式流体慣性ダンパの場合、両ロッド形式であれば受圧面積 A₁に対し て算出される粘性減衰力の 2 倍、片ロッド形式の場合にはそれぞれの受圧面積 A_iに対して 算出される粘性減衰力を足しわせた抵抗力を発揮することになる。

$$Q = A_i \cdot V = a \cdot u_i \iff u_i = \frac{A_i}{a} \cdot V \tag{3.3}$$

$$F_{i} = \Delta p_{i} \cdot A_{i} = \frac{1}{2} \rho \zeta_{i} u_{i}^{2} \cdot A_{i} = \frac{1}{2} \rho \zeta_{i} \frac{A_{i}^{3}}{a^{2}} V^{2}$$
(3.4)

 Δp_i: 圧力損失
 A_i: 受圧面積
 ξ_i: 損失係数
 u_i: 流速

 V: ピストン速度
 Q: 流量
 a: チューブ断面積

(左:両ロッド形式 右:片ロッド形式)図 3.10 ダンパのロッド形式と断面積

第3章 リンク式流体慣性ダンパの高性能化

リンク式流体慣性ダンパの粘性減衰力は内部摩擦 $F_{friction}$ 、チューブ内における流れ F_{flow} 、 エルボにおける流れの屈角 F_{elbow} 、動的圧力 $F_{dynamics}$ によるものである。そのため、ダンパ全体の粘性減衰力 F_{oil} はそれぞれの機構で発揮される減衰力を足し合わせたものとなる。

 ダンパの内部摩擦力は流体動粘度やピストン速度、O リングの接触面積や緊迫力により定まる。摩擦係数の小さい流体潤滑の場合には諸条件により摩擦係数は一義的に定まるが、シリンダとOリングの固体接触を生じる場合には1つの曲線に定まらない³⁹⁾。 そこで、本研究ではほぼ静的に加振したときの試験結果を基に常に一定の荷重を発揮するものとして内部摩擦力を扱うこととする。

$$F_{friction} = const. \tag{3.5}$$

2) チューブ内の流れは未発達な層流、発達した層流、発達した乱流の3つに分類することができる。シリンダからチューブに流れ込んだ流体はチューブ入り口付近では未発達な層流となるが、十分な助走距離を経た後に発達した層流となる。さらに流速が増加すると流れは発達した乱流へと遷移する。本研究では層流から乱流に遷移する限界レイノルズ数を Re=2300 とする。まず、チューブ入り口における未発達な層流による粘性減衰力 F_{flow-1} は式(3.6)で表される。次に、十分に発達した流れによる粘性減衰力 F_{flow-2} は式(3.7)で表され、式中の管摩擦係数 λ_iは層流の場合 Hagen Poiseuille の式を用いて式(3.8)、乱流の場合には Blasius の式を用いて式(3.9)により算出する。ここで、v は流体動粘度を表す。

$$F_{flow-1} = \frac{2}{15}\rho \cdot \frac{A_i^{\ 3}}{a^2} V^2 \tag{3.6}$$

$$F_{flow-2} = \frac{1}{2}\rho\lambda_{i}\frac{l}{d} \cdot \frac{A_{i}^{3}}{a^{2}}V^{2}$$
(3.7)

$$\lambda_1 = \frac{64}{Re} = \frac{64\nu}{du} \tag{3.8}$$

$$\lambda_2 = 0.3164 R e^{-0.25} = 0.3164 \left(\frac{du}{v}\right)^{-0.25}$$
(3.9)

 流れの方向を曲げるエルボにおける損失係数は多数の実験から近似的に式(3.10)で算出 できる⁴⁰⁾。本検討で扱うエルボはシリンダとチューブの接続部であり、その曲げ角度 θ は 90 度である。

$$\xi_{elbow} = 0.946 \sin^2 \frac{\theta}{2} + 2.05 s \sin^4 \frac{\theta}{2}$$
(3.10)

4) 動的圧力は流体が有するポテンシャルエネルギーがチューブからシリンダへ流れ込む 急拡大部において噴流となることで運動エネルギーへと変化し、瞬時に熱エネルギー へと変換される一連の流れによりオリフィス出口以降で発揮される粘性減衰力であり 式(3.11)により算出する。

$$F_{dynamics} = \frac{1}{2}\rho \cdot \frac{A^3}{a^2} V^2 \tag{3.11}$$

以上より、ダンパの粘性減衰力を低減するためにはチューブ内における管摩擦係数を軽 減することが効果的であり、これを実現するためには作動流体の動粘度を小さくすること が有効である。作動流体は温度変化による密度の変化は極めて小さいが動粘度は温度依存 性が強く温度 t によりその値は著しく変動する。流体動粘度 v の温度依存性は Walther の実 験式として式(3.12)で表すことができる³⁹⁾。ここで、式中の A、B は作動流体によって決ま る定数である。

$$\log\{\log(\nu + 0.8)\} = A - B\log(t + 273.15)$$
(3.12)

図 3.11 には式(3.12)を用いて算出したフッ素オイル(BARRIERTA)と一般的な作動流体と して用いられている鉱物系の作動油であるダフニースーパーハイドロ A22(以下、DAPHNE) の流体動粘度の温度依存性を示す。常温付近(20 度前後)の単位温度における動粘度の変 化量は高温時と比べて極めて大きいことから、流体を加熱することで効果的に動粘度を軽 減することが可能だと考えられる。

図 3.11 流体動粘度の温度依存性

3.3.2 単体性能試験の概要

前節で示した手法を適用することで意図通りダンパを高性能化できるか検証するために 単体性能試験を実施した。ダンパの基本仕様及び試験システムは 3.2 節と同様とし、リンク チューブは 1.6[m]の銅管とする。表 3.3 には作動流体としてダンパに封入する鉱物油の DAPHNE、フッ素オイルの BARRIERTA、比重分離用重液のポリタングステン酸ナトリウム ⁴¹⁾(以下、SPT)の諸元及び式(3.2)より算出した流体封入時の慣性質量を示す。なお、リン ク式流体慣性ダンパは 2 つのシリンダをリンクさせた状態を単体と称することから、慣性 質量は各受圧面積について算出したものを足し合わせることでダンパ単体の慣性質量とし た。試験はそれぞれの流体を封入して常温(20°C)で加振を行い、次いで最も動粘度が大き い BARRIERTA を封入して流体温度を 30°C、40°Cに上昇させた状態で加振を行う。加振は 流体温度が常温の場合には反力なし及び反力あり、流体を加熱する場合には反力なしで加 振を行い、図 3.12 で示すようにチューブ全体をアルミ箔で覆い、チューブの中央部分をリ ボンヒーターにより加熱した。また、チューブ端部において計測したチューブ温度を流体温 度として評価し、加振は表 3.2 で示した正弦波に加えて三角波(振動数:0.01[Hz]、振幅: ±10[mm])を入力した。写真 3.3 には流体を加熱して加振した際の試験体設置状況、写真 3.4 には作動流体の様子を示す。

表3.3 作動流体の諸元と流体封入時の慣性質量

		DAPHNE	BARRIERTA	SPT
密度[g/cm³]		0.84	1.88	3.00
動粘度 <u>20℃</u> [mm³/s] 40℃		50.38	59.96	26.33
		21.71	25.00	15.00
体積弾性係数[GPa]		1.951	0.798	2.190
		18.27	40.82	65.12

図 3.12 試験システム(流体を加熱する場合)

第3章 リンク式流体慣性ダンパの高性能化

写真3.3 流体加熱時の試験体設置状況

(左:DAPHNE 中:BARRIERTA 右:SPT) 写真 3.4 作動流体の様子

3.3.3 基本性能の評価

図 3.13 に試験体の追従側ダンパに反力を与えずにほぼ静的に三角波を入力したときの荷 重変位関係、図 3.14 に追従側ダンパに反力を与えた状態でほぼ静的に正弦波を入力したと きのシステム全体の荷重とピストン変位差に関する荷重変位関係を示す。内部摩擦力は DAPHNE 及び BARRIERTA を封入した場合には履歴がきれいな四角形であり、0.02[kN]程 度の安定した摩擦力を発揮していることがわかる。一方で SPT を封入した場合には変位に より摩擦荷重が変動する傾向が見られ、DAPHNE や BARRIERTA よりもやや大きな 0.04[kN] 程度の摩擦力を発揮している。また、反力を与えた場合には SPT を封入したときの原点付 近に見られる荷重のスリップが DAPHNE や BARRIERTA を封入した場合と比べてやや大き いことがわかる。これは流体充填作業時に混入空気が多くなってしまったことが原因であ る。しかし、流体の圧縮剛性が働く際の傾きはいずれの流体においても同程度であることか ら、流体の違いがリンク機構の剛性に与える影響は小さいと考えられる。

3.3.4 高性能化の定量的評価

図 3.15 には流体温度を常温として表 3.2 左に示した正弦波を入力したときの定常状態に おける1サイクルを取り出してすべての振幅について重ねた荷重変位関係、図 3.16 には正 弦波を入力したときの最大速度時における抵抗力をプロットした荷重速度関係を示す。な お、図中の黒の破線は式(3.13)により算出した慣性力である。また、同様に図 3.17 には流体 温度を加熱して正弦波を入力した時の荷重変位関係、図 3.18 に荷重速度関係を示す。

$$F_{im} = k_{eq} \cdot x_{d1} = -m_s \cdot \omega^2 \cdot x_{d1} \tag{3.13}$$

 F_{im} :慣性力 k_{eq} :等価剛性 x_{d1} :加振側ピストン変位 m_s :慣性質量 ω :円振動数

まず、流体温度が常温の場合の荷重変位関係を見ると、いずれの流体を封入した場合におい ても履歴はきれいな楕円形を描いており、明瞭に負剛性を発揮していることからダンパが 正常に機能していることを確認できる。また、黒の破線で示す慣性力の傾きは流体密度を大 きくすることで意図通り大きくなっており、履歴全体の負勾配も大きくなっていることを 確認できる。粘性減衰力による抵抗力の大きさは BARRIERTA、SPT、DAPHNE の順に大き く、理論式通り流体動粘度が小さい場合にも流体密度が大きくなると抵抗力が大きくなる ことを確認できる。一方で抵抗力が最も大きくなった BARRIERTA について見ると、流体を 加熱した場合においても履歴はきれいな楕円形を描いており、明瞭な負剛性を発揮してい ることがわかる。また、流体温度が大きくなると意図通り慣性力による履歴の傾きは維持し たまま粘性減衰力による履歴の膨らみを低減できている。流体温度を上昇させた時の荷重 速度関係を見ると、加振速度を 0.05[m/s]以上とした場合については流体温度の上昇に伴い 傾きが小さくなることを確認できるが、加振速度が 0.05[m/s]以下の場合には流体温度を上 昇させた方が抵抗力は大きくなっている。流体潤滑における摩擦は 3.3.1 項で示したように 速度の低下や動粘度の低下により部分的に固体接触を生じやすくなり摩擦係数が大きくな る傾向があるため、流体温度を上昇させた場合では低速度時に摩擦係数が増加することで ダンパの抵抗力が大きくなったと考えられる。しかし、いずれの作動流体、流体温度の試験 結果についても黒の破線で示される実際に発揮されている慣性力に対して油撃を考慮した 見かけの負勾配は大きくなっている。

図 3.15-1 正弦波を入力した時の荷重変位関係(流体密度の比較_20℃)

(左:DAPHNE 中:BARRIERTA 右:SPT)図 3.15-2 正弦波を入力した時の荷重変位関係(流体密度の比較_20℃)

図 3.17-1 正弦波を入力した時の荷重変位関係(流体温度の比較_BARRIERTA)

(左:DAPHNE 中:BARRIERTA 右:SPT) 図 3.17-2 正弦波を入力した時の荷重変位関係(流体温度の比較_BARRIERTA)

図 3.18 荷重速度関係 (流体温度の比較_BARRIERTA)

表 3.4 には振動数を f=1.0[Hz]として式(3.14)により算出した慣性力と粘性減衰力の比率を示す。高性能化手法を適用することで意図通り粘性減衰力に対する慣性力が相対的に大きくなることを確認できる。しかし、式(3.14)の評価方法ではダンパが実際に発揮する油撃による付加的な負勾配を考慮した見かけの負剛性を評価できていない。

表3.4 慣性力と粘性減衰力の比率

$$\gamma = \frac{F_{im}}{F_{oil}} = \frac{-m_s \cdot (2\pi f) \cdot \dot{x}_{d1}}{c \cdot \dot{x}_{d1}}$$
(3.14)

(上:流体密度の比較 下:流体温度の比較) 流体 DAPHNE BARRIERTA SPT 20°C 20°C 20°C 流体温度 18.27 40.82 65.12 慣性質量[kg] 減衰係数[kN・s/m] 1.104 2.434 1.889 -0.104 -0.217 -0.105 ٧ 流体 BARRIERTA 流体温度 20°C 30°C 40°C 慣性質量[kg] 40.82 40.82 40.82 減衰係数[kN・s/m] 2.434 1.410 0.787 -0.105 -0.182 -0.326 v

次に、油撃による付加的な負勾配を考慮してダンパの性能を定量的に評価するために、図 3.19 及び式(3.15)で表される等価粘性減衰定数(*heq*)を算出する。なお、式中の WE は油撃を考 慮して弾性ひずみエネルギーが最大となる変位と荷重を用いて流体の慣性力によるエネル ギーとして算出する。

$$h_{eq} = \frac{1}{4\pi} \cdot \frac{\Delta W}{W_E} \tag{3.15}$$

図 3.20、3.21 には等価粘性減衰定数の算出結果を示す。加振速度によらず算出結果は流体ご とに概ね一定の値となり、流体温度が常温の場合には SPT を封入することで値は最も小さ くなることがわかる。また、BARRIERTA を常温で封入した場合には等価粘性減衰定数はや や大きな値となるが、流体温度を上昇させることで SPT と同程度の値まで低減させること ができている。慣性質量効果による負勾配と油撃による付加的な負勾配が大きくなれば W_E は大きくなる一方で *AW* はほぼ変化しないことより等価粘性減衰定数は小さく評価される ためダンパが高性能化したと判断できる。したがって、高密度な流体を封入する手法と流体 を加熱する手法はダンパの高性能化に有効な手法であるといえる。流体を加熱することで ダンパを高性能化させた場合、その他の仕様とした場合のダンパと同程度の減衰力を発揮 するように複数基のダンパを設置することを考えれば、系全体としてはエネルギー吸収量 を低下させることなく慣性質量効果による負剛性制御の効果を大きくすることが可能とな る。また、ダンパ単体では高性能化により等価粘性減衰定数は小さく評価されるが、系全体 の等価粘性減衰定数は大きく評価されるため、制振効果の向上に寄与するものとなる。

3.3.5 粘性減衰力を算出する理論式の精度検証

図 3.22 には BARRIERTA を封入して流体を加熱したときに正弦波を入力して得られた荷 重速度関係に 3.3.1 項で構築した理論式を用いて算出した荷重速度関係を重ねて示す。なお、 図中右上の温度は一連の加振における流体の平均温度であり、動粘度は式(3.12)を用いて算 出した平均温度時の値である。いずれの流体温度においても試験結果と理論値の傾きが概 ね一致していることを確認できる。しかし、流体温度を上昇させた場合においては加振速度 が 0.05[m/s]以下になると試験結果が理論値よりも大きくなっている。これは、理論式の算 出において内部摩擦力を常温の試験結果を基に一定の荷重が作用すると仮定しているから であり、流体温度の上昇に伴い動粘度が小さくなることやピストン速度の低下によりピス トン部分の摩擦係数が増加することが原因である。しかし、粘性減衰力の影響が大きくなる 高速度時の傾向を精度よく模擬できていることから理論式が妥当であると判断できる。

59

3.4 小型2層鉄骨フレームによる振動台実験

3.4.1 振動台実験の概要

リンク式流体慣性ダンパを用いた構造システムの制振効果を評価することを目的として、 高密度な流体を封入することで高性能化したダンパを設置した小型 2 層鉄骨フレームによ る振動台実験を行った。加振には早稲田大学理工学部 59 号館材料実験室に設置されている 3次元振動台を使用した。振動台は3次元に加振可能(最大振幅:±200[mm]、最大加速度: 2G)であるが、本実験では X 方向のみの単軸加振を行った。試験体は小型 2 層鉄骨フレー ムとし、柱材は1層が4.5×38[mm]、2層が4.5×32[mm]の帯鋼板を加振方向が弱軸となる ように設置した。柱材は柱長さが 250[mm]となるように上下端を不等辺山形鋼 7×75× 100[mm]により両側から挟み込んで M10 高力ボルトにより留めつけ、不等辺山形鋼は床の 鋼材 850×250×32[mm]に M16 高力ボルトにより接合した。試験体の質量は 2 階床が 128.2[kg]、屋根階床が 113.7[kg]でありこれらの質量には周辺治具と計測器の質量も算入し てある。ダンパは上下層間の損傷集中を抑制するために1層と2層に跨って設置しており、 シリンダは各層の床鋼板に設置した溝形鋼に M6 ボルトにより留めつけ、天井鋼板に取り付 けた L 字アングルにピン接合することで層間変形を直接ピストン変位として入力する。ま た、ダンパは表 3.1 に示した仕様で全長 1.6[m]の銅チューブを使用した。作動流体はフッ素 オイルの BARRIERTA または重液の SPT として常温のまま加振を実施した。なお、チュー ブは試験体への設置の都合上 0.8[m]の銅チューブ 2 本を樹脂チューブ(長さ 50[mm])によ り接続することで全長 1.6[m]としている。3.2 節で示したようにチューブの仕様がダンパの 力学特性に与える影響は大きいことから事前に振動台実験に使用するダンパと同様な仕様 で単体性能試験を実施して評価した力学特性の一覧を表 3.5 に示す。また、図 3.23 に試験 システムの立面図、写真3.5には試験体の設置状況を示す。

図 3.23 試験システム

流体名称	BARRIERTA	SPT
内部摩擦力[kN]	0.03	0.06
減衰係数[kN・s/m]	2.794	2.541
慣性質量[kg]	40.82	65.13
リンク剛性[kN/m]	133.2	88.4

表 3.5 ダンパの力学特性

写真3.5 試験体の設置状況

3.4.2 加振方法

加振にはホワイトノイズ (バンド幅:0.1~20[Hz])と位相特性が乱数位相で第2種地盤の Gs 略算式を用いて求めた地表加速度応答スペクトルに適合した告示波⁴²(以下、告示波_lv*) と 1995 年兵庫県南部地震神戸海洋気象台観測波南北成分(以下、神戸 NS_*%)を試験体の 損傷レベルを確認しながら適宜規準化して入力した。表 3.6 には加振スケジュールを示す。

表 3.6 加振スケジュール

No.	地震動	規準化倍率	最大加速度[gal]
1	ホワイトノイズ	-	60
2	神戸NS	10%	83.1
3	神戸NS	20%	166.1
4	告示波	lv1	130.1
5	神戸NS	30%	249.2
6	神戸NS	40%	332.2
7	神戸NS	60%	498.4

a)ダンパなし

b)ダンパ設置

No.	地震動	規準化倍率	最大加速度[gal]
1	ホワイトノイズ	-	60
2	神戸NS	10%	83.1
3	神戸NS	30%	249.2
4	告示波	lv1	130.1
5	神戸NS	60%	498.4
6	告示波	lv2	561.6
7	神戸NS	100%	830.6

3.4.3 計測システム

表 3.7 には計測項目及び本実験で使用した計測器の一覧、図 3.24 には計測器の設置位置 を示す。ダンパには層間変形が直接ピストン変位として入力されるように設置しているた め、層間変形とピストン変位は同一のものと見なす。また、リンク式流体慣性ダンパはリン クさせた1組のダンパを単体と称することから、1層及び2層で計測したダンパ荷重を足し 合わせることでダンパ単体の荷重を算出する。

ch.	計測項目	計測器
1	振動台内蔵変位	振動台内蔵
2	振動台内蔵加速度	振動台内蔵
3	1層層間変形	DLT-30AS
4	2層層間変形	DLT-30AS
5	振動台加速度	ARF-20A
6	1 階床加速度	ARF-20A
7	2階床加速度	ARF-20A
8	R階床加速度	ARF-20A
9	1層ダンパ荷重	TCLZ-10KNA
10	2層ダンパ荷重	TCLZ-500KA
11	1層柱脚ひずみ	YEFLA-2
12	1層柱頭ひずみ	YEFLA-2
13	2層柱脚ひずみ	YEFLA-2
14	2層柱頭ひずみ	YEFLA-2

表3.7 計測項目及び計測機器一覧

図 3.24 計測器の設置位置

3.4.4 振動特性の把握

図 3.25 にダンパを設置しない非制振の試験体にホワイトノイズ、ダンパを設置した試験 体に告示波_lv2 を入力したときの R 階床の絶対加速度応答倍率、表 3.8 には振動特性の一 覧を示す。ダンパを設置することで1 次モードのピークが大幅に低減されているとともに、 慣性質量効果によりピークが低振動数側に移動しており、慣性質量効果による周期伸長効 果は流体密度の大きい SPT を封入した場合の方が大きいことを確認できる。2 次モードに ついては BARRIERTA を封入した場合にはリンク効果により明瞭なピークが現れていない が、SPT を封入した場合には10[Hz]付近にやや大きなピークが認められる。また、高振動数 時の応答倍率は非制振時と比べてダンパを設置した場合の方が大きくなっているもののそ の値は1.0 程度である。これは高次モードの影響が取り除かれることで試験体が高振動数で 振動しないためだと考えられる。また、非制振時の試験体の自由振動波形から算出した減衰 定数は0.38%であったが、ダンパを設置することで減衰定数は15%程度まで向上した。

表 3.8 振動特性一覧

	固有振動数[Hz]		固有周	减去中步	
	1次	2次	1次	2次	<u> </u>
ダンパなし	3.052	7.483	0.328	0.134	0.0038
BARRIERTA	2.991	-	0.334	-	0.162
SPT	2.869	9.949	0.349	0.101	0.131
3.4.5 制振効果の評価

図 3.26 に神戸 NS を各規準化倍率で入力したときの最大層間変形を示す。ダンパを設置 しない非制振の場合には1層の変形が2層に対して相対的に大きいことがわかる。一方で、 ダンパを設置することで作動流体によらず最大層間変形は非制振の場合と比べて1層で小 さく、2層で大きくなることで各層の変形が同程度になっていることからリンク効果が良好 に発揮されていることを確認できる。

図 3.27 には非制振、図 3.28 には BARRIERTA を封入したダンパを設置した場合、図 3.29 には SPT を封入したダンパを設置した場合に神戸波を入力して得られた荷重変形関係を示 す。なお、ダンパの荷重変位関係は 1 層と 2 層のダンパ荷重を足し合わせた荷重と 1 層の ピストン変位を用いて算出し、主構造のせん断力は各階で計測した加速度に各階の質量を 乗じて算出した慣性力から各層のダンパ荷重を引くことで算出した。非制振の場合、入力レ ベルが小さければ荷重変形関係は線形であり、神戸 NS_60%を入力した場合には塑性変形を 生じ降伏耐力が 2.0[kN]程度、降伏変位が 18[mm]程度であることがわかる。一方で、ダンパ を設置した場合にはダンパの荷重変位関係が明瞭に負剛性を発揮していることを確認でき る。これにより、2 層においては黒で示す主構造のせん断力に対して層全体のせん断力の荷 重が低減されている。しかし、1 層においては主構造のせん断力に対して層全体のせん断力 が大きくなる現象が認められる。また、ダンパの荷重変位関係は BARRIERTA を封入した場 合より SPT を封入した場合の方が履歴の膨らみは小さくなっているものの慣性力による負 剛性の傾きは大きくなっており、2 層における荷重の低減効果が大きくなり、1 層では層全 体の荷重の増加は抑えられていることを確認できる。

(左:1 層 中:2 層 右:ダンパ)

図 3.28 神戸波を入力したときの荷重変形関係 (BARRIERTA)

(左:1層 中:2層 右:ダンパ) 図 3.29 神戸波を入力したときの荷重変形関係(SPT)

図 3.30 に神戸 NS を入力したときの最大層間変形と最大応答加速度の関係として見かけ の剛性の傾き、図 3.31 に累積吸収エネルギー量を示す。見かけの剛性の傾きは1層では非 制振時と比べてダンパを設置した場合の方が大きくなるが、2層ではダンパを設置した場合 の方が小さくなっている。また、2階の応答加速度はダンパを設置することで非制振時と比 べて増大するが、一般的に応答加速度は上階に行くほど大きくなることから、ダンパを設置 することで R 階の応答加速度は低減できており、建物全体としての応答加速度を低減でき ていると判断できる。このとき、慣性質量効果による負剛性は SPT を封入した場合の方が 大きくなるが、BARRIERTA を封入した場合の方がエネルギー吸収量は大きくなることから 地震応答低減効果は同程度になったと考えられる。しかし、SPT を封入した場合の方が BARRIERTA を封入した場合より変形が大きくなった時の加速度の低減効果はやや大きく なった。

図 3.30 神戸波を入力した時の最大応答加速度と最大層間変形の関係

図 3.31 神戸 NS を入力した時の累積吸収エネルギー量

3.4.6 カ学モデルの構築と精度検証

試験体をせん断質点系に置換することで解析モデルを構築し、時刻歴応答解析によりダンパの力学モデルの精度検証を行う。主構造は図 3.32 で示す 2 質点系モデルとし、主構造の復元力特性は図 3.33 に示す骨格曲線を有するトリリニア型、主構造の減衰は初期剛性比例型の 0.38%とする。表 3.9 には主構造の諸元を示す。また、図 3.34 に示すダンパの力学モデルは 2.5.3 項で示した構築方法により表 3.5 に示した力学特性を用いて構築する。

図 3.35 に BARRIERTA を封入したときのダンパの力学特性を用いて構築した力学モデル に告示波_lv2 を入力したときの R 階床の絶対加速度応答倍率及び神戸 NS_100%を入力した 時の荷重変形関係を実験値と解析値を重ねて示す。ダンパを設置した場合の加速度の伝達 関数は1次モードのピークは精度よく一致しているものの高振動数帯ではズレが見られる。 神戸 NS_100%を入力したときの荷重変形関係においても実験値と解析値で若干のズレは見 られるものの、ダンパと層全体の履歴の膨らみと傾きは精度よく模擬できていることから、 理論的に想定されるダンパの力学特性を実験において確認することができた。

表 3.9 主構造の諸元

	質量	初期剛性	降伏耐力[kN]		
	[kg]	[kN/m]	q ₁	q ₂	
1層	128.2	116.3	1.73	2.00	
2層	113.7	101.8	1.47	1.70	

図 3.34 ダンパの力学モデル

3.4.7 慣性質量効果の定量的評価

図 3.36 に神戸 NS を入力して得られた実験結果から算出した最大半サイクル発生時の各層のダンパ及びダンパ単体の等価剛性、図 3.37 に全サイクルの荷重変位関係に最大半サイクルの履歴を重ねて示す。前述の通り、ダンパ単体の荷重は 1 層と 2 層のダンパ荷重を足し合わせて算出することから 1 層と 2 層で発揮されるダンパの等価剛性を足しわせた値がダンパ単体の等価剛性となる。また、作動流体が同様であればダンパ単体の等価剛性は入力レベルによらず概ね同様の値となることがわかる。

(左: BARRIERTA 右: SPT)図 3.36 神戸波を入力したときのダンパの等価剛性

図 3.36 に示したダンパの等価剛性に関する各制振効果の寄与度を定量的に評価するため に、構築した力学モデルに神戸 NS_100%を入力したときの各層のダンパが発揮する等価剛 性について慣性質量効果とリンク効果による影響を分離した結果を図 3.38 に示す。慣性質 量効果による負剛性の大きさは SPT を封入した場合の方が大きくなることを確認できる。 一方で、リンク機構の等価剛性は1層と2層で逆符号となり同程度の傾きを発揮している。 また、各層で発揮されるダンパの等価剛性は慣性質量効果とリンク効果による等価剛性の 足し合わせであることから、慣性質量効果に対して相対的に大きな等価剛性を発揮してい るリンク効果による影響が支配的となる。そのため、図 3.30 で示したように1層ではリン ク機構が正の剛性を発揮するために層全体の見かけの剛性は非制振の場合と比べて大きく なり、2層ではリンク機構が負剛性を発揮するために層全体の傾きは小さくなったと考えら れる。しかし、流体の違いによらずリンク効果による等価剛性は同様であり、慣性質量効果 による負剛性の大きさは SPT を封入した場合の方が大きくなることから、ダンパを高性能 化したことで構造系の加速度低減効果は大きくなったと判断できる。なお、リンク機構が振 動特性に与える影響については4章で詳細に検討を行う。

(左: BARRIERTA 右: SPT)

図 3.38 構築した力学モデルに神戸 NS_100%を入力したときの制振効果の定量的評価

73

3.5 まとめ

本章ではリンク式流体慣性ダンパの高性能化を「粘性減衰力に対する慣性力を相対的に 大きくすること」と定義し、安定した基本性能を発揮するための基本仕様及び高性能化のた めの具体的な手法を単体性能試験により検証した。また、高性能化したダンパを設置した小 型2層鉄骨フレームによる振動台実験を実施することで、リンク式流体慣性ダンパを用い た構造システムの制振効果を示した。

まず、3.2節ではリンク式流体慣性ダンパの基本仕様を策定するために単体性能試験を実施し、リンクチューブには硬い材質を用いることで安定した粘性減衰力を発揮するだけでなく高いリンク剛性を発揮することを示した。

次いで、3.3節ではダンパの具体的な高性能化手法として慣性質量を大きくする手法と粘 性減衰力を低減することで相対的に慣性力を大きくする手法を提案した。また、提案した手 法を適用することでダンパが実際に高性能化することを単体性能試験により確認した。

最後に、3.4節では高性能化したダンパを設置した小型2層鉄骨フレームによる振動台実 験を実施し、リンク式流体慣性ダンパを用いた構造システムが慣性質量効果とリンク効果 により高い制振効果を発揮することを示した。また、高性能化したダンパを設置して慣性質 量効果による制振効果を向上させることで絶対加速度の低減効果が大きくなることを確認 した。

第4章

リンク式流体慣性ダンパによる 層間変形制御機構の動力学特性

4.1 はじめに

本章では、リンク式流体慣性ダンパの層間変形制御機構が振動系の動力学特性に与える 影響について述べる。まず4.2節において変形分布を任意の形状に制御することができる層 間変形制御機構を構成するリンク式流体慣性ダンパの油圧式リンク機構の基本性能を示す。 次いで、4.3節では層間変形制御機構を設置したせん断質点系モデルの定常振動解を導出す ることで同機構によるせん断力の再分配則を明らかにする。最後に、4.4節では小型2層鉄 骨フレームによる振動台実験により、リンク効果による制振効果示す。

4.2 層間変形制御機構の基本性能

4.2.1 単体性能試験の概要

2.2 節で示したように、リンク式流体慣性ダンパはリンクさせる油室の断面積の比率を調 整することで 2 つのピストンロッドの移動量を任意の比率にすることが可能である。そこ で、本節では 2 つのピストン変位を任意の比率にする場合の油圧式リンク機構の動力学特 性を把握するために単体性能試験を実施した。図 4.1 には試験システムを示し、アクチュエ ータとピン接続するシリンダを加振側ダンパ、もう一方のシリンダを追従側ダンパと称し、 追従側に設置するシリンダの断面積を変えることでリンク変形比を変化させる。試験は追 従側ダンパが自由に振動できる状態で加振する場合(以下、反力なし)と追従側ダンパに帯 鋼板をピン接合して反力を与える場合(以下、反力あり)の2通りとし、反力なしの場合に は図 4.1 に示す試験システムから帯鋼板を取り外して加振を実施した。表 4.1 にはダンパの 基本仕様を示す。チューブには内径 φ 6.0[mm]、長さ 1.6[m]の銅管を使用し、作動流体とし てフッ素オイルの BARRIERTA J25 FLUID を封入した。2 つのピストン変位を任意の比率に する場合のリンク変形比は伸びが $\alpha_{Link,l}=1.85$ 、圧縮が $\alpha_{Link,2}=1.93$ となる。以降、2 つのピス トン変位が同じになる場合を α_{Link}=1.00、2 つのピストン変位を任意の比率にする場合をリ ンク変形比の平均値をとり αLink=1.89 と称する。加振は変位制御により表 4.2 に示す振動数 と振幅をパラメータとした正弦波を入力した。動的載荷はアクチュエータへの負担を考慮 して振幅の漸増漸減域を有する波形を用い、漸増域と漸減域は3サイクル、定常部分は4サ イクルとした。写真 4.1 には試験体の設置状況を示す。なお、α_{Link}=1.00の試験結果は 3.2 節 において示したものと同様であることから、グラフの掲載は一部割愛する。

図 4.1 試験システム

設置箇所		加振側	追従側			
シリンダ内径 [mm]		φ 25.0	φ 25.0	φ 18.0		
ピストンロッド径 [mm]		φ 12.0	φ 12.0	φ 8.00		
ストローク [m	nm]	±25.0	±25.0	±50.0		
断面積	A ₁	377.8	377.8	204.2		
[mm²]	A ₂	490.9	490.9	254.5		
リンク変形比	α1	-	1.00	1.85		
α_{Link}	α2	-	1.00	1.93		
チューブ内径 [rr	וm]	φ6.0				
 チューブ長さ[m]		1.6				
		1.88				
·····································	20°C		59.96			
川平町和皮[IIIII/S]	40°C	25.00				
流体体積弾性係数	t [GPa]	0.798				

表 4.1 ダンパの基本仕様及び作動流体諸元

振動数		振幅 [mm]							扔	www.kefa [kefa kefa for the large states where the large states whe	ן]
[Hz]	±2.5	±5.0	±7.5	±10.0	±12.5	±15.0		[Hz]	±3.0	±5.0	±7.0
0.01	-	-	-	-	-	-		0.01	-	-	0
0.5	0	0	0	0	0	0		0.5	0	0	0
1.0	0	0	0	0	0	0		1.0	0	0	0
2.0	0	0	0	0	0	0		2.0	0	0	0
3.0	0	0	0	0	0	-		3.0	0	0	-
4.0	0	0	0	-	-	-		4.0	-	-	-
5.0	0	0	-	-	-	-		5.0	-	-	-
			_	_							

表 4.2 入力した正弦波一覧

(左:反力なし 右:反力あり)

写真 4.1 試験体の設置状況 (α_{Link}=1.89)

4.2.2 試験結果及び考察

a. 追従側ダンパのピストンロッドが自由に振動できる場合

図 4.2 に正弦波 (振動数:1.0[Hz]、振幅:±15[mm])を入力した時のピストン変位時刻歴、 図 4.3 に各振動数最大振幅の正弦波を入力した時の各サイクルにおける最大ピストン変位 の加振側と追従側の比率を示す。リンク変形比の値によらず、加振側ピストン変位に対して 追従側ピストン変位が意図通りの比率で追従していることを確認できるが、ピストン変位 の比率を任意の値にする場合については正方向(伸び)の小振幅時に最大ピストン変位の比 率が低下する傾向が見られる。また、今回試作したシリンダは伸びと圧縮でリンク変形比が 異なるがピストン変位は片流れを生じていないことを確認できる。

図 4.2 正弦波(振動数:1.0[Hz]、振幅:±15[mm])を入力した時のピストン変位時刻歴

図 4.3 正弦波を入力した時のリンク変形比の評価

図 4.4 に *aLink*=1.89 の試験体に表 4.2 左に示した正弦波を入力したときの定常状態における1サイクルを取り出してすべての振幅について重ねた荷重変位関係を示す。なお、変位は加振側ピストン変位を用いている。リンク変形比を大きくした場合においても履歴は楕円形を描いており明瞭に負剛性を発揮していることからダンパが正常に機能していることを確認できる。また、変位反転時の油撃については *aLink*=1.89 とした場合の方が顕著に表れている。図 4.5 には正弦波を入力した時の最大速度時の抵抗力をプロットした荷重速度関係を示す。リンク変形比によらずプロットは直線状に並んでいることから安定した粘性減衰力を発揮していることを確認でき、*aLink*=1.89 とした場合の方が傾きはやや大きくなっている。

b. 追従側ダンパに反力を与える場合

図 4.6 に追従側ダンパに反力を与えてほぼ静的に載荷したときのシステム全体の荷重 F と加振側ピストン変位 x_{d1} 及び追従側ピストン変位 x_{d2} の差を用いて算出した荷重変位関係 を示す。なお、追従側ダンパに反力を与える場合ではアクチュエータヘッドに接続した荷重 計により計測した荷重をシステム全体の荷重と称し、ピストン変位の差は式(4.1)に示すよう にリンク変形比を考慮して求めた。

$$k_{Link} = \frac{F}{\alpha_{Link} \cdot x_{d1} - x_{d2}} \tag{4.1}$$

 $F: システム全体の荷重 \alpha_{Link}: リンク変形比 x_{di}: ピストン変位 k_{Link}: リンク剛性$

荷重変位関係はリンク変形比に依らず同様な履歴形状を示しており、原点付近では荷重に スリップが見られるが変位差が 2[mm]を越える付近から傾きが増加していることからリン ク機構が意図通り働くことを期待できる。図 4.7 には動的に正弦波を入力した時のダンパの 荷重変位関係を示す。なお、ダンパ単体の抵抗力はシステム全体の荷重から反力用帯鋼板の 荷重を引くことで算出した。変位が原点を通過する際には履歴に乱れが現れており、粘性減 衰力による履歴の膨らみと正負対称な履歴を描くことからリンク変形比を任意の値にして 反力を与えた場合にもダンパが正常に機能することを確認できる。

第4章 リンク式流体慣性ダンパによる層間変形制御機構の動力学特性

4.3 層間変形制御機構を設置したせん断質点系のモデルの定常振動解

4.3.1 調和振動に対する定常振動解の導出

層間変形制御機構を設置した構造物の調和振動に対する定常振動解を導出することで同 機構が振動系の動力学特性に与える影響について把握する。なお、層間変形制御機構はリン ク式流体慣性ダンパの油圧式リンク機構を用いるが、慣性質量効果は考慮せずに検討を行 う。また、以降は層間変形制御機構のことを単にリンク機構と称する。このとき、リンク機 構を設置した運動方程式は式(4.2)で表される。

$$[M]\{\ddot{X}\} + [C]\{\dot{X}\} + ([K] + [K_{Link}])\{X\} = -[M]\{1\}\ddot{x}_{g}$$
(4.2)

2.3 節で示したように、各モードに対して展開した広義質量 _sM、広義剛性 _sK、広義リンク剛性 _sKLink、広義リンク剛性比 _syLink、広義減衰係数 _sC は次式で定義されている。

$${}_{s}M = {}_{s}\{U\}^{T}[M] {}_{s}\{U\}$$
(4.3)

$${}_{s}\gamma_{Link} = \frac{{}_{s}K_{Link}}{{}_{s}K} = \frac{{}_{s}\{U\}^{T}[K_{Link}] {}_{s}\{U\}}{{}_{s}\{U\}^{T}[K] {}_{s}\{U\}}$$
(2.37)(再掲)

$${}_{s}C = {}_{s}\{U\}^{T}[C] {}_{s}\{U\}$$
(2.38)(再揭)

さらに、式(4.2)の両辺を質量マトリクス[*M*]で除して固有ベクトルの直交性を利用すること で式(2.39)が得られる。また、2.3.2 項の固有値解析結果でも示したようにリンク機構は1次 モードの固有周期には影響を与えずに2次モード以降の高次モードの影響を取り除く周期 低減効果と、固有ベクトルを式(2.44)で表せる任意の形にするリンク効果を発揮する。

$${}_{s}\ddot{q}+2{}_{s}h{}_{s}\omega{}_{s}\dot{q}+{}_{s}\omega^{2}{}_{s}q=-{}_{s}\beta\ddot{x}_{g} \qquad (2.39)(\overline{P}_{a}B)$$

$${}_{s}q = \frac{{}_{s}\{U\}^{T}[M]\{X\}}{{}_{s}M}$$
(4.4)

$${}_{s}\omega^{2} = \frac{{}_{s}K + {}_{s}K_{Link}}{{}_{s}M} = \frac{{}_{s}K(1 + {}_{s}\gamma_{Link})}{{}_{s}M}$$
(4.5)

$${}_{s}h = \frac{{}_{s}C}{2\sqrt{\left({}_{s}M\right)\left({}_{s}K + {}_{s}K_{Link}\right)}} = \frac{{}_{s}C}{2\sqrt{\left(1 + {}_{s}\gamma_{Link}\right){}_{s}M{}_{s}K}}$$
(4.6)

$${}_{s}\beta = \frac{{}_{s}\{U\}^{T}[M]\{1\}}{{}_{s}M}$$
(4.7)

$$u_{i} = u_{1} \sum_{j=1}^{i} \left(\prod_{k=1}^{j} \alpha_{Link,k-1,k} \right) (\alpha_{Link,0} = 1.0)$$
 (2.44)(再揭)

式(2.39)で示した運動方程式に調和地動を代入すると運動方程式は式(4.8)で表され、変位 解は一般的に式(4.9)~(4.11)で表すことができる⁴³⁾。ここで、*a*は地動の円振動数、*a*⁰は地 動振幅変位である。前述の通りリンク機構の剛性が十分に大きく完全にリンクする場合に は2次モードの振動成分が極めて小さくなることから、1次モードの定常振動解のみを求め れば系全体の応答を概ね近似して算出することができる。

$${}_{s}\ddot{q} + 2 {}_{s}h {}_{s}\omega {}_{s}\dot{q} + {}_{s}\omega^{2} {}_{s}q = {}_{s}\beta \cdot \overline{\omega}^{2}a_{0}\sin(\overline{\omega}t)$$

$$(4.8)$$

$$\{X\} = \sum_{s=1}^{n} Q_s \cdot {}_s \beta \cdot {}_s \{U\}$$

$$(4.9)$$

$$Q_s = \frac{\overline{\omega}^2 a_0}{\sqrt{\left(2 sh\overline{\omega} s\omega\right)^2 + \left(s\omega^2 - \overline{\omega}^2\right)^2}} \cdot \sin(\overline{\omega}t + \phi_s)$$
(4.10)

$$\tan\phi_s = \frac{-2 sh\overline{\omega} \omega}{s\omega^2 - \overline{\omega}^2}$$
(4.11)

まず、図 4.8 に示すリンク機構を設置した 2 質点系弾性モデルの調和振動に対する定常振動解を算出する。表 4.3 に対象とするモデルの諸元及び振動特性の一覧を示す。質量は 2 階床が m_1 =20[t]、屋根階床が m_2 =12[t]とし、1 次固有周期が 0.24[s]となるように 1 層の剛性 k_1 と 2 層の剛性 k_2 の比率である層剛性比 $\gamma_k \epsilon \gamma_k = k_2/k_1 = 0.4$ 、0.6、0.8 と変化させる。また、1 次モードに対する減衰定数を 3.0%、リンク機構の剛性は十分に大きく完全にリンクするものとし、リンク変形比は a_{Link} =1.0、1.5 とする。なお、調和振動の振動数は弾性モデルが 1 次モードで共振する振動数、地動振幅は a_0 =0.001[m]とする。

表4.3 弾性モデルの諸元

Υĸ	0.4	0.6	0.8
m1 [t]	20	20	20
m ₂ [t]	12	12	12
k ₁ [kN/m]	34269.5	29206.7	26992.3
k ₂ [kN/m]	13707.8	17524.0	21593.8
T ₁ [s]	0.24	0.24	0.24
T ₂ [s]	0.12	0.11	0.11
u ₂ /u ₁	2.50	1.88	1.62

図 4.8 弾性モデル

図 4.9 にはリンク機構を付加しない場合、図 4.10 にはリンク変形比 aLink=1.0、図 4.11 に はリンク変形比 aLink=1.5 としてリンク機構を付加した場合の調和振動に対する変位応答解 から算出した荷重変形関係を示す。 リンク機構を設置しない場合には表 4.1 で示した固有べ クトル成分の比率 u_2/u_1 が示すように $y_k=0.4$ の場合には 2 層、 $y_k=0.8$ の場合には 1 層の変形 が大きくなり、γ_k=0.6の場合には各層の変形が同程度になることを確認できる。また、ダン パの履歴は粘性系ダンパ特有の傾きを有しない楕円形の履歴を描いている。リンク変形比 alink=1.0 のリンク機構を付加した場合には各層の変形が一様化されているが、リンク機構を 付加することで非制振の場合と見かけの剛性の傾きが変化していることがわかる。このと き、ダンパの履歴は yk=0.4 の場合は1層で負剛性、yk=0.8 の場合には1層で正の剛性を発揮 していることから、ykの値によらず層全体の見かけの剛性は同程度となっている。また、リ ンク変形比 α_{Link}=1.5 のリンク機構を付加した場合、y_k=0.4 の場合にはダンパは見かけの傾き を発揮していないが、y_k=0.6の場合には1層で正の剛性を発揮しており、y_k=0.8の場合には 1層でさらに大きな正の剛性を発揮している。しかし、いずれのモデルにおいてもダンパが 発揮する見かけの剛性はリンクされた層同士で逆符号でその傾きは同程度であることから、 上下層間でせん断力の再分配が行われていると判断できる。つまり、リンク機構を設置した 構造物は主構造が有する振動特性とは異なる見かけの剛性に依存した振動特性を発揮する ことになる。

図4.9 調和振動に対する定常振動解(リンク機構なし)

4.3.2 弾性応答時のせん断力の再分配則

先に示したリンク機構によるせん断力の再分配量を主構造の振動特性とリンク変形比の 関係から定量的に評価する。まず、式(4.2)で示した運動方程式の一般固有値問題は式(4.12) で表せる。一方で、図 4.10、4.11 で示したリンク機構を設置した振動系が有する見かけの剛 性マトリクスを[K]とすればリンク機構を付加した振動系の一般固有値問題は式(4.13)で表 せる。リンク機構の剛性が十分に大きく層間変形が完全にリンクされている状態であれば、 リンク機構により 2 次モードの振動成分は極めて小さくなる。また、リンク機構は 1 次モ ードの固有周期には影響を与えないことから式(4.12)と式(4.13)は 1 次モードにおいてはほ ぼ同義であるといえ、剛性マトリクスについては式(4.14)の関係が成り立つ。ここで、式(4.14) における[K_{Link}]をリンク機構による付加的な剛性マトリクスであるとすれば、せん断力の再 分配による見かけの剛性の変化量はみかけの剛性マトリクス[K]と主構造の剛性マトリク ス[K]の差分として表せる。

$$\langle -_{s}\omega^{2}[M] + ([K] + [K_{Link}]) \rangle_{s} \{U\} = \{0\}$$
 (4.12)

$$\langle -_{s}\omega^{2}[M] + [K'] \rangle_{s} \{U\} = \{0\}$$
 (4.13)

$$[K] + [K_{Link}] = [K']$$
(4.14)

特に、2 質点系のモデルの場合には1 層と2 層の固有ベクトル成分の比を用いてせん断力の 再分配による付加的な剛性 k'_{Link} を次のように表すことができる。ただし、 u_i が原振動系、 u_i がリンク機構を付加した振動系の固有ベクトルであり、 $u_1=u_1$ = 1.0 として規準化してある。

$$k'_{Link,1} = k'_{1} - k_{1} = {}_{1}\omega^{2}m_{2}\left(\frac{u'_{2}}{u'_{1}} - \frac{u_{2}}{u_{1}}\right)$$
(4.15)

$$k'_{Link,2} = k'_{2} - k_{2} = {}_{1}\omega^{2}m_{2}\frac{(u_{2} - u'_{2})}{\left(\frac{u'_{2}}{u'_{1}} - 1\right)\left(\frac{u_{2}}{u_{1}} - 1\right)}$$
(4.16)

以上より、原振動系の固有ベクトル成分の比率 u2/u1 と (aLink+1) が等しくなるようにリンク 変形比を調整することで固有ベクトルの差はゼロとなり、リンク機構はせん断力の再分配 を行わないことになる。また、せん断力の再分配により付加される見かけの剛性の符号は式 (4.17)で表され、符号はリンク機構設置前後の固有ベクトルの差分で決まることから上下層 で反転する。つまり、せん断力の再分配量は原振動系の固有値が既知であれば応答計算を行 わずに算出することが可能であり、リンク機構は相対的に弱層となる層に対して相対的に 強い層からせん断力を分け与えるように抵抗力を発揮することになる。

$$\begin{cases} \frac{u_2}{u_1} < (\alpha_{Link} + 1) \implies k'_{Link} > 0 \\\\ \frac{u_2}{u_1} = (\alpha_{Link} + 1) \implies k'_{Link} = 0 \\\\ \frac{u_2}{u_1} > (\alpha_{Link} + 1) \implies k'_{Link} < 0 \end{cases}$$
(4.17)

ただし、

 $u'_{2} = (\alpha_{Link} + 1), \ k_{Link,1} + k_{Link,2} = 0$

しかし、剛性分布が著しく偏っている場合やリンク機構の剛性が小さい場合にはリンク機構を設置した振動系の実固有値を用いて算出する見かけの剛性と構造物が有する剛性との 差分を求める精算が必要となる。

4.3.3 地震動に対する応答

図 4.8 に示した 2 質点系弾性モデルについて、地震動を入力した時のせん断力の再分配量 について検討を行うために時刻歴応答解析を行う。解析モデルの 1 次固有周期は 0.24[s]と し、主構造の剛性分布を γ_k =0.1~1.0 まで変化させる。ダンパのパラメータは 1 次モードに対 する減衰定数を 3.0%とし、リンク機構の剛性は十分に大きくリンク変形比は α_{Link} =1.0 とす る。入力地震動は 1995 年兵庫県南部地震神戸海洋気象台観測波南北成分の最大速度を 25[cm/s]に規準化した地震動を用いる。図 4.12 にはリンク機構を設置しない原振動系の 1 次 固有周期 $_1T_0$ に対するリンク機構を付加した振動系の 1 次固有周期 $_1T$ の比率、地震動を入 力したときの最大半サイクルにおけるリンク機構が発揮する見かけの等価剛性 k'_{Link} と主構 造の等価剛性 k_i の比である等価剛性比 γ_{eq} 、最大応答加速度、最大層間変形を示す。等価剛 性比は主構造の層剛性比が大きくなるほど 1 層で正側、2 層で負側に増加することがわか る。なお、図中の点線は 4.3.2 項で示したせん断力の再分配量を実固有値を用いて算出した 結果であり、解析結果と概ね一致することから理論解が妥当であると判断できる。また、リ ンク機構を設置しても 1 次モードの固有周期が変化しない γ_k =0.4~0.8 の間では等価剛性比 が 0~±0.2 程度であり、主構造の諸元によらず概ね同様な最大応答となることがわかる。

図 4.12 地震動を入力した時の応答(*α*_{Link}=1.0)

4.3.4 弾塑性応答時のせん断力の再分配則

4.3.2 項で示したせん断力の再分配則は弾性応答範囲内における理論解であるため、弾塑性応答時の再分配則を把握するために時刻歴応答解析を行う。解析モデルは図 4.8 に示した2質点系モデルとし、主構造の復元力特性はバイリニア型とする。主構造の剛性比は yk=1.0として降伏耐力比を q2/q1=0.2、0.6、1.0と変化させ、降伏後の第2剛性 2k を初期剛性 1k に対して 2k/1k=0.1 とする場合と、2k=0とする場合の2通りについて検討を行う。なお、主構造の減衰は初期剛性比例型の 3.0%、リンク機構の剛性は十分に大きく完全にリンクするものとし、リンク変形比は aLink=1.0とする。表 4.4 に解析モデルの諸元、図 4.13 にはバイリニア型の骨格曲線を示す。入力地震動は 1940年 Imperial Valley 地震 El Centro 観測波南北成分、1995 年兵庫県南部地震神戸海洋気象台観測波南北成分、2011 年東北地方太平洋沖地震芳賀観測波東西成分を規準化して用いる。

耐力比	q ₂ /q ₁	0.2	0.6	1.0		
1次固有周期[s]	T ₁	0.24				
質量	質量 m ₁ 20					
[t]	m ₂	12				
剛性	k 1	25784.7				
[kN/m]	k ₂	25784.7				
降伏耐力	q ₁	78.3				
[kN]	q ₂	15.7	47.0	78.3		

表4.4 解析モデルの諸元

図 4.13 バイリニア型の骨格曲線

図 4.14 に主構造の第 2 剛性が 2k=0 の場合、図 4.15 に 2k/1k=0.1 とした場合に各地震動を 入力した時の最大半サイクルにおけるリンク機構が発揮する見かけの等価剛性 k'Link.eq と主 構造の等価剛性 keq との比である等価剛性比 yeq を示す。なお、図中の黒線は各層の塑性率に 応じて主構造の等価剛性を算出し、このときの等価剛性を用いて弾性定常応答を仮定して せん断力の再分配量を算出した理論解である。いずれのモデルにおいても塑性率が μ=10 程 度までであれば解析結果と理論解が概ね一致することがわかる。つまり、主構造が塑性域に 至った場合にもリンク機構により弾性応答時と同様な変形モードを維持するために等価剛 性から算出する固有値が有効であるということであり、弾性応答時と同様にせん断力の再 分配量を固有値から算出できるということである。

図 4.14 弾塑性応答時の主構造とリンク機構の等価剛性比(2k=0)

図 4.15 弾塑性応答時の主構造とリンク機構の等価剛性比 (2k/1k=0.1)

次に、せん断力の再分配が耐震設計に与える影響について示す。対象とするモデルは2階 建木造住宅を2 質点系モデルに置換したものとし、主構造の復元力特性は構造用合板耐力 壁を模擬した拡張 NCL⁴⁴とする。対象とするモデルの質量は2階床が m₁=12[t]、屋根階床が m₂=8[t]とし、1次固有周期は0.24[s]とする。各層の耐力はC₀=1.0、Ds=0.3 としてAi分布に より定めるAiモデルと、Aiモデルの2層の耐力を1層の耐力と等しくしたUniモデルの2 通りとする。Uniモデルは意図的に1層に弱層を設けたモデルであり1層に損傷が集中しや すくなるモデルである。なお、リンク機構の剛性は十分に大きく変形は完全にリンクするも のとし、リンク変形比は a_{Link}=1.0 とする。図 4.16 にはリンク機構を設置しない原振動系の 骨格曲線とリンク機構によるせん断力の再分配を考慮した見かけの骨格曲線を示す。Aiモ デルの場合にはせん断力の再分配量が小さいことからリンク機構設置前後で大きな差は認 められない。一方で、Uniモデルの場合には相対的に1層が弱層となることからせん断力の 再分配により1層では見かけの剛性・耐力が増加しており、2層では低下していることがわ かる。このように、あらかじめ弱層となる層の見かけの耐力を増加させ、見かけのエネルギ 一吸収量を増加させることで耐震性能の向上を図ることが可能となる。

図 4.16 せん断力の再分配によるみかけの骨格曲線の変化

4.4 小型2層鉄骨フレームによる振動台実験

4.4.1 振動台実験の概要

リンク機構を付加した構造物の動力学特性及びリンク機構による制振効果を検証するこ とを目的として小型2層鉄骨フレームによる振動台実験を実施した。加振には早稲田大学 理工学部 59 号館材料実験室に設置されている3次元振動台を使用した。振動台は3次元に 加振可能(最大振幅:±200[mm]、最大加速度:2G)であるが、本実験ではX方向のみの単 軸加振を行った。試験体は小型2層鉄骨フレームとし、柱材は1層が4.5×32[mm]、2層が 4.5×25[mm]または 4.5×32[mm]の帯鋼板を加振方向が弱軸となるように設置した。柱材は 柱長さが 250[mm]となるように上下端を不等辺山形鋼 7×75×100[mm]により両側から挟み 込んで M10 高力ボルトにより留めつけ、不等辺山形鋼は床の鋼材 850×250×32[mm]に M16 高力ボルトにより接合した。リンク式流体慣性ダンパは上下層間の損傷集中を抑制するた めに1層と2層に跨って設置しており、各層に設置したシリンダを長さ1.6[m]の銅チュー ブで接続することで各層の変形をリンクさせる。なお、試験体は2層の柱幅が25[mm]のも のを試験体A、32[mm]のものを試験体Bと称する。図4.17には実験システムの立面図、表 4.5 にダンパの基本仕様及び力学特性、写真 4.2 には試験体の設置状況を示す。なお、ダン パの力学特性は 3.3 節で示したリンクチューブに銅管を使用した場合の試験結果から算出 しており、減衰係数は図 3.5、リンク剛性は図 3.6.b に最小二乗法を適用して線形近似により 求めた。

図 4.17 実験システム

	シリンダ内径[r	φ 25		
# > º	ピストンロッド征	ピストンロッド径[mm]		
タンハ 仕様	ストローク[m	m]	±25	
江作來	チューブ内径[r	nm]	φ 6.0	
	チューブ長さ[r	1.6		
	流体名称	BARRIERTA		
	密度[g/cm ³]	1.88		
流体諸元	動粘度	20°C	59.96	
	[mm ² /s]	40°C	25.00	
	体積弾性係数[0	0.798		
	減衰係数[kN・s	2.434		
ダンパ	慣性質量[kg	40.96		
力学特性	内部摩擦力[k	N]	0.03	
	リンク剛性[kN	l/m]	158.8	

表 4.5 ダンパの基本仕様及び力学特性一覧

写真4.2 試験体の設置状況

4.4.2 加振方法

加振にはホワイトノイズ (バンド幅:0.1~20[Hz])と位相特性が乱数位相で第2種地盤の Gs 略算式を用いて求めた地表加速度応答スペクトルに適合した告示波⁴²(以下、告示波 lv*) と1995 年兵庫県南部地震神戸海洋気象台観測波南北成分(以下、神戸 NS_*%)を試験体の 損傷レベルを確認しながら適宜規準化して入力した。表 4.6 には加振スケジュールを示す。

表 4.6 加振スケジュール

		••••	
No.	地震動	規準化倍率	最大加速度[gal]
1	ホワイトノイズ	-	60.0
2	神戸NS	10%	83. 1
3	神戸NS	20%	166.1
4	告示波	lv1	130. 1
5	神戸NS	30%	249. 2
6	神戸NS	40%	332.2
7	神戸NS	60%	498.4
8	神戸NS	80%	664.5

a)ダンパなし

b)ダンパ設置

No.	地震動	規準化倍率	最大加速度[gal]
1	WN	-	60.0
2	神戸NS	10%	83.1
3	神戸NS	30%	249. 2
4	告示波	lv1	130. 1
5	神戸NS	40%	332.2
6	神戸NS	60%	498.4
7	告示波	lv2	561.6
8	神戸NS	80%	664.5
9	神戸NS	100%	830.6

4.4.3 計測システム

表 4.7 には計測項目及び使用する計測器の一覧、図 4.18 には計測器の設置位置を示す。 ダンパには層間変形が直接ピストン変位として入力されるように設置しているため、層間 変形とピストン変位は同一のものと見なす。また、リンク式流体慣性ダンパはリンクさせた 1 組のダンパを単体と称することから、1 層及び2 層で計測したダンパ荷重を足し合わせる ことでダンパ単体の荷重を算出する。

ch.	計測項目	計測器
1	振動台内蔵変位	振動台内蔵
2	振動台内蔵加速度	振動台内蔵
3	1層層間変形	ANR1215
4	2層層間変形	ANR1215
5	振動台加速度	ARF-10A
6	1階床加速度	ARF-10A
7	2階床加速度	ARF-20A
8	R階床加速度	ARF-20A
9	1層ダンパ荷重	TCLZ-10KNA
10	2層ダンパ荷重	TCLZ-500KA
11	1層柱脚ひずみ	YEFLA-2
12	1層柱頭ひずみ	YEFLA-2
13	2層柱脚ひずみ	YEFLA-2
14	2層柱頭ひずみ	YEFLA-2

表4.7 計測項目及び計測機器一覧

図 4.18 計測器の設置位置

4.4.4 振動特性の把握と固有値の算出

図 4.19 に非制振の試験体にホワイトノイズ、ダンパを設置した試験体に告示波 lv.2 を入 力して得られた R 階床の絶対加速度応答倍率を示す。試験体の剛性分布によらずダンパを 設置することで 1 次モードの応答倍率が大幅に低減されており、非制振時の 7.0[Hz]付近に 見られた 2 次モードのピークが現れていないことを確認できる。

表 4.8 には図 4.19 で示した伝達関数から得られた振動特性の一覧を示す。なお、試験体の質量は周辺治具や計測器の質量も算入したものであり、主構造の剛性は地震動を入力して得られた荷重変形関係から算出した値である。固有ベクトル成分の比率は試験体 A で u₂/u₁=2.059、試験体 B で u₂/u₁=1.754 であることから、試験体 A は各層で変形分布が概ね一様となるモデル、試験体 B は 1 層が相対的に弱層となり 1 層に損傷が集中する恐れのあるモデルであると推測できる。一方で、ダンパを設置した場合には慣性質量効果により 1 次モードの固有周期が非制振時に比べて若干ではあるが伸長しており、固有ベクトル成分の比率はリンク効果により概ね 2.0 となっていることから変形の一様化に期待できる。このとき、試験体 A ではリンク機構によるせん断力の再分配量は小さく、試験体 B では 2 層から 1 層へせん断力が再分配されるため 1 層で正、2 層で負の剛性を発揮すると推測できる。

図 4.19 R 階床の絶対加速度応答倍率

表4.8 試験体の振動特性一覧

= # ₽₽ /★ ∧	質量[kg]		層剛性[kN/m]		固有周期[s]		固有ベクトル
武殿147	2階	屋根階	1層	2層	1次	2次	u2/u1
非制振	126.2	111.0	126.0	02 50	0.324	0.137	2.059
ダンパ設置	120.5	114.0	130.0	03.50	0.335	0.081	2.020
封殿/4□ 質量		[kg]	層剛性[kN/m]		固有周	哥期[s]	固有ベクトル
i式 尚史 1/4 D	2階	屋根階	1層	2層	1次	2次	u2/u1
非制振					0.308	0 126	1 754
	126 5	111 2	126 0	110 5	0.000	0.120	1.1 0 1

4.4.5 力学モデルの構築

構築した力学モデルの応答と実験結果を比較することでその妥当性を検証し、ダンパが 発揮する見かけの剛性について慣性質量効果とリンク機構によるせん断力の再分配による 影響を分離して定量的に評価する。図 4.20 に示すダンパの力学モデルは、2.5.3 項で示した 構築方法をもとに、表 4.5 に示した力学特性を用いて構築する。また、主構造の復元力特性 は図 4.21 に示す骨格曲線を有するトリリニア型とし、試験体の諸元は表 4.8 に示した質量 と剛性、表 4.9 に示す降伏耐力を用いる。主構造の減衰は初期剛性比例型とし、試験体 A が 0.79%、試験体 B が 0.87%とする。なお、主構造の減衰定数は非制振時の自由振動波形より 算出した。

表 4.9 降伏耐力

試験体		/	4	В		
		1層	2層	1層	2層	
降伏耐力 [kN]	q ₂	2.244	1.378	2.244	1.823	
	q ₁	1.496	0.919	1.496	1.216	

4.4.6 制振効果の評価と力学モデルの精度検証

図 4.22 に神戸 NS を入力したときの最大層間変形を示す。また、図 4.23 には試験体 A、 図 4.24 には試験体 B に神戸 NS100%を入力したときの荷重変形関係を実験結果と解析結果 を重ねて示す。4.4.4 項で示したように非制振の場合、試験体 A は各層の変形が同程度であ り試験体 B は 1 層の変形が相対的に大きくなることを確認できる。また、ダンパを設置す ることで試験体の剛性分布によらず、変形を一様化できていることからリンク効果が良好 に働いていることを確認できる。ダンパの荷重変形関係は試験体 A の場合には各層で同程 度の負剛性を発揮しているが、試験体 B の場合には 1 層において見かけの剛性は発揮され ておらず 2 層において大きな負剛性を発揮している。また、いずれの試験体においても変位 反転時の荷重に若干の差が認められるが、実験結果と解析結果が概ね一致していることか ら構築した力学モデルが妥当であると判断できる。

(左;非制振 右:ダンパ設置) 図 4.22 神戸波を入力したときの最大層間変形

101

4.4.7 せん断力の再分配量の定量的評価

図 4.25 に試験体 A 及び試験体 B について構築した力学モデルに神戸 NS を入力したとき のダンパが発揮する見かけの剛性に関する定量的評価として、最大半サイクルにおけるダ ンパの等価剛性を慣性質量効果とリンク効果について分離した結果を示す。試験体 A にお いて、リンク機構は等価剛性を発揮していないことからせん断力の再分配量が小さいこと がわかる。一方で、試験体 B についてはリンク機構が 1 層で正、2 層で負の剛性を発揮して おり、理論的に想定されるリンク機構の動力学特性を実験において確認することができた。 また、慣性質量効果による等価剛性は試験体によらず同様であることからダンパが各層で 発揮する見かけの剛性はリンク機構により付加される剛性が支配的であるといえる。

(下:1層 上:2層)

図 4.25 神戸波を入力したときのダンパの等価剛性

4.5 まとめ

本章ではリンク式流体慣性ダンパによる層間変形制御機構の基本性能及び同機構が振動 系の動力学特性に与える影響について検討した。

まず、4.2節では層間変形制御機構の基本性能として、リンク式流体慣性ダンパの2つの ピストンロッドの移動量を任意の比率にする場合について単体性能試験を実施し、変位の 増幅倍率によらず安定した基本性能とリンク剛性を発揮することを示した。

次いで、4.3節では構造物に層間変形制御機構を設置した場合の動力学特性を把握するために調和振動に対する定常振動解を導出し、リンク機構の剛性が十分に大きければ1次モードの振動解のみを算出することで系全体の応答を概ね近似して算出できることを確認した。また、層間変形制御機構を設置することで本来構造系が有する振動特性とは異なる見かけの剛性に依存した振動特性を発揮することからリンクされた層間でせん断力の再分配が行われることを明らかにした。このときのせん断力の再分配量は原振動系の固有値と層間変形制御機構の変形比を用いることで算出できることを示した。

最後に、4.4節では上下層間の剛性比が異なる小型2層鉄骨フレームによる振動台実験を 実施し、試験体の剛性分布によらずリンク式流体慣性ダンパのリンク効果が良好に働くこ とで高い制振効果を発揮することを示した。また、実験結果を模擬できる力学モデルを構築 することでダンパが発揮する等価剛性を慣性質量効果とリンク効果による影響を分離する ことで定量的に評価し、理論的に想定されるせん断力の再分配が実際に発揮されることを 確認した。

第5章

リンク式流体慣性ダンパを設置した 実寸2層小型フレームによる振動台実験

5.1 はじめに

本章では、実大を想定したダンパの制振効果を検証するために実施した実寸 2 層小型フレームによる振動台実験について述べる。まず 5.2 節において振動台実験の概要、次いで、 5.3 節ではダンパを設置しない基本架構の加振結果とリンク式流体慣性ダンパを設置した場合の加振結果を比較して示す。5.4 節では試験体及びダンパの力学モデルを構築し、5.5 及び 5.6 節では構築した力学モデルを用いて制振効果を定量的に評価した結果を示す。

5.2 振動台実験の概要

5.2.1 実験システム

写真 5.1 にリンク式流体慣性ダンパ(LFIMD)を設置した実寸 2 層小型フレームを示す。 本実験で使用した振動台は旭化成ホームズ住宅総合技術研究所が所有する振動試験装置で ある。振動台の性能は最大速度 150[cm/s]、最大加速度 2G、最大振幅±400[mm]、載荷重量制 限 100[kN]、許容転倒モーメント 400[kN・m]であり、1 方向への加振が可能である。

写真 5.1 実験システム全体

5.2.2 試験体仕様

図 5.1 に各階平面図、図 5.2 に各構面の立面図を示す。試験体は階高 2730[mm]、最高高さ 6080[mm]であり、1 階床梁は重量鉄骨、2 階床及び屋根階床は厚さ 210[mm]の CLT 材とし て薄板軽量形鋼造耐力壁を組み合わせて構成した。加振方向構面(Y 構面)については Y1、 Y3 構面の各層に摩擦機構内蔵耐力壁を 1P、Y2 構面の各層にリンク式流体慣性ダンパを 45 度方向に設置してリンクチューブにより接続した。また、加振方向に直交する構面(X 構面) である X1、X2 構面には構造用合板耐力壁を各層に 2P 設置することで加振方向外へ試験体 が変形することを防止した。いずれの耐力壁についても上下枠材と CLT パネルを木ねじ接 合(最下部のみ鋼製土台と高力ボルトにより接合)すると共に、耐力壁縦枠材の上下に取り 付けたホールダウン金物をアンカーボルトを介して接合した。各階の錘はリンク式流体慣 性ダンパ設置時の試験体質量として 2 階床が 2.78 [t]、屋根階床が 2.28[t]となるように 1210 ×90×28[mm]と 1210×90×55[mm]の錘をそれぞれ 2 枚ずつ設置した。

図 5.1 各階平面図

5.2.3 試験体パラメータ

本実験では摩擦機構内蔵耐力壁の摩擦機構部のボルトに導入する締付トルクを調整する ことで耐力壁の降伏せん断耐力を任意の値に調整できる特性 45,400を利用して上下層の耐力 比をパラメータとして実験を行った。表 5.1 に試験体名と摩擦機構部のボルト締付トルク・ 降伏せん断耐力の一覧を示す。試験体名は各層の降伏せん断耐力を表しており、頭文字のF はダンパを設置しない基本架構、Hはリンク式流体慣性ダンパを設置した場合を表す。

夜 J. L. 武殿14石 C. 庠 惊悚 伸前 リハハル ト柿ハ トルフ 一座1人 ビ ハルル	表 5.1	1 試験体名。	- 摩擦機構部のボ	ルト締付トルク	・ 降伏せん	断耐力
--	-------	---------	-----------	---------	--------	-----

試験体名	3称	層	降伏せん断耐力 [kN]	降伏せん断力係数	ボルト締付トルク [N・m]
F-18-1	F-18-14 ² 厚		14	0.52	30
H-18-1	4	1層	18	0.38	43
F-23-1	4	2層	14	0.52	30
H-23-1	4	1層	23	0.48	56

F:摩擦機構内蔵耐力壁の基本架構 H:リンク式流体慣性ダンパ設置

1層降伏せん断耐力:23kNor18kN

5.2.4 リンク式流体慣性ダンパの力学特性

本実験で使用したリンク式流体慣性ダンパは 2.5 節で力学特性の把握及び力学モデルを 構築した両ロッド形式の大型ダンパである。表 5.2 にはダンパの基本仕様及び作動流体の諸 元、表 5.3 には事前の単体性能試験により得られているダンパの軸方向の力学特性をダンパ の設置角度を 45 度として式(5.1)~(5.5)を用いてせん断方向に置換した力学特性を示す。

	シリンダ径 [m	φ 80.0	
ダンパ	ピストンロッド径	φ 35.5	
ダンハ	チューブ内径 [r	φ 12.7	
圣中口家	チューブ長さ	10	
	ストローク [m	±100	
	流体密度 [g/cn	1.88	
法休学二	流体動粘度	20 °C	59.98
加四百几	[mm²/s]	25.00	
	流体体積弾性係数	0.798	

表 5.2 ダンパの基本仕様及び流体緒元

表	5.	3	ダン	パの力学特性
-	۰.	•	/ -	

力学	特性	軸方向	せん断方向
内部摩排	察力 [kN]	0.80	0.40
慣性質	量 m _s [t]	4.837	2.419
试百亿粉	c₁ [kN ・ s/m]	45.14	22.57
/	$c_2 [kN \cdot s^2/m^2]$	246.6	87.18
 リンク剛性	k _{Link} [kN/m]	2167	1083

$$x_d = x \cdot \frac{a}{\sqrt{2}h} \tag{5.1}$$

$$F_{fric} = const. = const. \cdot \left(\frac{a}{\sqrt{2}h}\right)^2$$
 (5.2)

$$F_{im} = -m_s \cdot x_d = -m_s \cdot \frac{a}{\sqrt{2h}} \cdot x \cdot \frac{a}{\sqrt{2h}} = -m_s \cdot \left(\frac{a}{\sqrt{2h}}\right)^2 \cdot x \tag{5.3}$$

$$F_{oil} = c_1 \cdot \dot{x}_d + c_2 \cdot \dot{x}_d^2 = c_1 \cdot \left(\frac{a}{\sqrt{2h}}\right)^2 \cdot \dot{x}_d + c_2 \cdot \left(\frac{a}{\sqrt{2h}}\right)^3 \cdot \dot{x}_d^2$$
(5.4)

$$F_{Link} = k_{Link} \cdot (x_{d1} - x_{d2}) = k_{Link} \cdot \left(\frac{a}{\sqrt{2h}}\right)^2 \cdot (\delta_1 - \delta_2)$$
(5.5)

 x_{d} :ピストン変位 x:変位 δ :層間変形 a:ダンパ設置水平距離 h:ダンパ設置高さ F_{fric} : 内部摩擦力 F_{ini} :慣性力 F_{oil} :粘性減衰力 F_{Link} :リンク機構の抵抗力 %a = h = 2591[mm]

5.2.5 リンク式流体慣性ダンパの設置方法

図 5.3 にダンパ設置方法の詳細図を示す。1 層に設置するダンパの足元については重量鉄 骨に高力ボルト接合した治具にピン接合、それ以外の箇所については CLT 床板に木ねじ接 合した治具にピン接合することで各層にダンパを設置する。ダンパ保持治具は 3 本の溝形 鋼(180×75×7×10.5[mm])を組み合わせることで構成し、接合部には 40[mm]の長孔加工 を施して保持治具の長さを調整可能にすることで施工誤差に対応できる仕様とした。保持 治具を含めたダンパのピン間距離は 3664.2[mm]である。写真 5.2~5.7 には各部における実際 の設置状況を示す。

図 5.3 ダンパ設置方法の詳細図

写真 5.2 1 層ダンパ

写真 5.4 保持治具天井側接合部

写真 5.5 保持治具延長部

写真 5.7 1 層ダンパ床側接合部

5.2.6 計測システム

表 5.4 に使用した計測器の一覧、図 5.4 に試験体への計測器設置位置を示す。試験体の中 央には倒壊防止兼計測用架台が設置してあり、各層の層間変形は計測用架台から Y2 構面上 で計測し、ダンパの荷重及びピストン変位は軸方向の値を直接計測した。なお、層全体のせ ん断力は各階で計測した加速度に各階の質量を乗じることで算出する。

ch.	計測項目	名称	計測器	ch.	計測項目	名称	計測器
1	振動台変位	disp_1	内蔵変位計	31	2階床加速度(Y3)	acc_5	ARF-20A
2	1層層間変形(計測用架台-Y1側)	disp_2	IL-600	32	屋根階加速度(Y1)	acc_6	ARF-20A
3	1層層間変形(計測用架台-Y3側)	disp_3	IL-600	33	屋根階床加速度(Y2)	acc_7	ARJ-50A-D
4	2層層間変形(計測用架台-Y1側)	disp_4	IL-600	34	2層層間変形	disp_29	DLT-300AS
5	2層層間変形(計測用架台-Y3側)	disp_5	IL-600	35	屋根階加速度(Y3)	acc_8	ARF-20A
6	1層壁滑り変位(Y1)	disp_6	CDP-10	36	1層計測用架台加速度(中央)	acc_9	ARF-20A-T
7	1層壁滑り変位(Y3)	disp_7	CDP-10	37	2層計測用架台加速度(中央)	acc_10	ARF-20A-T
8	2層壁滑り変位(Y1)	disp_8	CDP-10	38	1層摩擦機構ボルトひずみ(Y1-1)	str_1	KFG3
9	2層壁滑り変位(Y3)	disp_9	CDP-10	39	1層摩擦機構ボルトひずみ(Y1-2)	str_2	KFG3
10	1層左浮上変形(Y1左)	disp_10	CDP-50	40	1層摩擦機構ボルトひずみ(Y1-3)	str_3	KFG3
11	1層右浮上変形(Y1右)	disp_11	CDP-50	41	1層摩擦機構ボルトひずみ(Y1-4)	str_4	KFG3
12	1層左浮上変形(Y3左)	disp_12	CDP-50	42	1層摩擦機構ボルトひずみ(Y3-1)	str_5	KFG3
13	1層右浮上変形(Y3右)	1層右浮上変形(Y3右) disp_13		43	1層摩擦機構ボルトひずみ(Y3-2)	str_6	KFG3
14	2層左浮上変形(Y1左)	disp_14	CDP-50	44	1層摩擦機構ボルトひずみ(Y3-3)	str_7	KFG3
15	2層右浮上変形(Y1右)	disp_15	CDP-50	45	1層摩擦機構ボルトひずみ(Y3-4)	str_8	KFG3
16	2層左浮上変形(Y3左)	disp_16	CDP-50	46	2層摩擦機構ボルトひずみ(Y1-1)	str_9	KFG3
17	2層右浮上変形(Y3右)	disp_17	CDP-50	47	2層摩擦機構ボルトひずみ(Y1-2)	str_10	KFG3
18	1層左摩擦機構変形(Y1左)	disp_18	CDP-100	48	2層摩擦機構ボルトひずみ(Y1-3)	str_11	KFG3
19	1層右摩擦機構変形(Y1右)	disp_19	CDP-100	49	2層摩擦機構ボルトひずみ(Y1-4)	str_12	KFG3
20	1層左摩擦機構変形(Y3左)	disp_20	CDP-100	50	2層摩擦機構ボルトひずみ(Y3-1)	str_13	KFG3
21	1層右摩擦機構変形(Y3右)	disp_21	CDP-100	51	2層摩擦機構ボルトひずみ(Y3-2)	str_14	KFG3
22	2層左摩擦機構変形(Y1左)	disp_22	DLT-30AS	52	2層摩擦機構ボルトひずみ(Y3-3)	str_15	KFG3
23	2層右摩擦機構変形(Y1右)	disp_23	DLT-30AS	53	2層摩擦機構ボルトひずみ(Y3-4)	str_16	KFG3
24	2層左摩擦機構変形(Y3左)	disp_24	CDP-50	54	1層ダンパ ピストン変位	disp_26	SDP-200D
25	2層右摩擦機構変形(Y3右)	disp_25	CDP-50	55	2層ダンパ ピストン変位	disp_27	SDP-200D
26	振動台上加速度1	acc_1	ARF-20A	56	1層ダンパ ダンパ荷重	load_1	TCLM-50KNB
27	振動台上加速度2	acc_2	ARJ-50A-D	57	2層ダンパ ダンパ荷重	load_2	TCLM-50KNB
28	2階床加速度(Y1)	acc_3	ARF-20A	58	2階床回転(Y2左)	disp_30	IL-600
29	2階床加速度(Y2)	acc_4	ARJ-50A-D	59	2階床回転(Y2右)	disp_31	IL-600
30	1層層間変形	disp_28	DLT-300AS				

表 5.4 使用した計測器の一覧

5.2.7 加振方法

表 5.5 には入力した地震動の一覧を示す。記録地震動及び告示波を入力する場合には入力 波の後尾に加振 No.0 のホワイトノイズ (WN) (振動数: 0.1~20[Hz]、継続時間: 150[s])を 続けた一連の波形を入力した。

No.	地震名	観測成分・位相	規準化 倍率	最大変位 [mm]	最大速度 [kine]	最大加速度 [gal]	WN
0	ホワイトノイズ	0.1~20[Hz]	-	-	-	30	-
1	第2種地盤告示波	乱数位相波	Lv1	145	16.3	128	0
2			0.3	64.7	21.5	359	0
3	2011年 東北地方太平洋沖地震	KiK芳賀EW	0.6	130	46.7	718	0
4			1.0	216	77.9	1197	0
5	1995年兵庫県南部地震	JMA神戸NS	1.0	183	82.9	820	0

表 5.5 加振スケジュール

5.3 実験結果

5.3.1 振動特性の把握

図 5.5 に H-18-14 及び F-18-14 に WN または告示波 Lv1 を入力して得られた R 階床の絶対 加速度応答倍率、表 5.6 に各地震動入力時の応答加速度から部分空間法 (PO-MOESO 法)⁴⁷⁾ を用いて同定した固有周期と減衰定数を示す。ダンパを設置した場合においても WN によ る評価では 2 次モードの振動成分が現れているが、告示波 Lv1 による評価では 2 次モード のピークが現れていないことがわかる。油圧式リンク機構は流体の圧縮剛性が働くまで混 入空気が圧縮されるために初期リンク剛性が極めて小さくなる非線形性を示す特徴がある ことから、応答レベルの小さい WN 入力時にはリンク効果が作用しなかったことが要因と 考えられる。しかし、いずれの入力波に対してもダンパを設置することで減衰定数の増加が 認められる。

図 5.5 R 階床の絶対加速度応答倍率

入 -	弐段/╁	固有周	§期[s]	減衰定数		
	品人词失一个	1st	2nd	1st	2nd	
	F-18-14	0.334	0.121	0.012	0.014	
VVIN	H-18-14	0.261	0.081	0.041	0.064	
告示波	F-18-14	0.362	0.129	0.051	0.039	
Lv1	H-18-14	0.326	-	0.132	-	

表 5.6	固有周期と減衰定数の同定結果
-------	----------------

5.3.2 最大応答の比較

図 5.6 に各地震動を入力したときの最大層間変形角を基本架構とリンク式流体慣性ダン パを設置した場合を重ねて示す。基本架構の場合にはいずれの試験体においても 1 層に変 形が集中する傾向が見られ、その傾向は 1 層の耐力が小さくなるほど顕著となっている。一 方で、ダンパを設置した場合には基本架構と比べて 1 層の変形角は大幅に低減されている。 また、リンク効果により 2 層の変形角が大きくなっており各層の変形が同程度となること で意図通りの損傷集中抑制効果を確認できる。図 5.7 には同様に地震動ごとの最大応答加速 度を示すが、ダンパを設置したことで最大層間変形角を大幅に低減できた一方で、最大応答 加速度については基本架構と比べてダンパを設置した場合の方が大きくなっている。しか しながら、その値は 1G 以下に抑えられている。

図 5.7 最大応答加速度

5.3.3 荷重変形関係

a. 基本架構

図 5.8 に F-18-14、図 5.9 に F-23-18 に各地震動を入力したときの荷重変形関係を示す。い ずれの試験体においても弾性応答となる告示波 Lv1 の入力に対しては各層が同じ剛性を発 揮しており、最大層間変形角が 1/200[rad]程度となる芳賀 EW60%以降の加振においてバイ リニアに近い復元力特性となることから高いエネルギー吸収性能を発揮していることがわ かる。また、最大層間変形角が 1/20[rad]に達する神戸 NS100%を入力するまで耐力低下を生 じることなくいずれの地震動に対しても極めて安定した応答を発揮する能力を有している が、損傷は1層に対して偏る傾向が顕著である。

図 5.8 各地震動を入力したときの荷重変形関係(F-18-14)

b. リンク式流体慣性ダンパを設置した場合

図 5.10 に H-18-14 及び H-23-14 に芳賀 EW100%、図 5.11 に神戸 NS100%を入力した時の 荷重変形関係を示す。なお、主構造のみのせん断力は各層で計測した軸方向のダンパ荷重を せん断方向に置換して層全体のせん断力から差し引くことで算出し、ダンパ単体の荷重変 位関係は、各層で計測した軸方向のダンパ荷重を足し合わせて、1 層ダンパのピストン変位 を用いて算出した。いずれの試験体においてもダンパは粘性減衰力による履歴の膨らみと 明瞭な負剛性を発揮していることを確認できる。また、1 層では主構造のみのせん断力に対 して層全体のせん断力が増加しているが、2層では最大変形時において層全体のせん断力が 主構造のみのせん断力と比べて小さくなっている。しかしながら、特に芳賀 EW100%を入 力した場合には原点付近においてダンパが大きな抵抗力を発揮したために層全体のせん断 力が大きくなり応答加速度を増大させてしまったと考えられる。図 5.12 には神戸 NS100% を入力したときの層ごとのダンパの荷重変位関係を示す。1層では第2.4象限において若干 ではあるが荷重のスリップが見られ、見かけの剛性は極めて小さい。しかし、2 層ダンパの 荷重変位関係はきれいな楕円形と大きな負剛性を発揮していることを確認できる。これは、 リンク機構によるせん断力の再分配が相対的に弱層となる1層に対して正の剛性、2層に対 して負の剛性を付加したからである。また、各層の付加的な剛性はダンパ単体で見れば打ち 消しあうことからダンパ単体の履歴は試験体の耐力分布によらず同様な履歴を描いている。

(左:1層ダンパ 中:2層ダンパ 右:ダンパ単体) 図 5.12 神戸 NS100%を入力した時のダンパの荷重変位関係

5.3.4 リンク式流体慣性ダンパの挙動

図 5.13 には H-18-14 に芳賀 EW100%及び神戸 NS100%を入力したときのピストン変位に ついて、式(5.6)で表される層間変形との幾何学的な関係をもとに予測したピストン変位を実 験結果と重ねて示す。1 層ダンパは予測値と計測値が一致しているのに対して2 層について は計測値の方がやや大きくなる傾向が見られる。この傾向はピストン変位が大きくなる時 刻においてより顕著である。しかし、予測値に対して位相遅れを生じていないことからもダ ンパが正常に機能していたと判断できる。

 $x_{di}: ピストン変位 \theta: ダンパと床材がなす角$

 $x_{di} = 3664.2 - \frac{1}{\cos\theta}$

(5.6)

図 5.13 ピストン変位時刻歴の予測値と計測値の比較(H-18-14)

5.3.5 エネルギー吸収量

図 5.14 に H-18-14 及び F-18-14 に芳賀 EW100%及び神戸 NS100%を入力した時の累積吸 収エネルギー量を示す。基本架構の場合には 1 層のみでエネルギーを吸収しているのに対 してリンク式流体慣性ダンパを設置することで 2 層でのエネルギー吸収量が増大している ことを確認できる。

5.4 力学モデルの構築と精度検証

5.4.1 主構造のモデル化

振動台実験により得られた各層の荷重変形関係を基に主構造の力学モデルを構築する。 復元力特性はトリリニア型で模擬するものとし、表 5.7 に基本架構の実験結果から構築した 力学モデルの諸元を示す。第1剛性、第2剛性については締付トルクによらず一定の値と し、第3剛性のみトルクの増大に伴い低下するように設定した。図 5.15 には実験結果と構 築した力学モデルの諸元を用いた解析結果を比較して示す。実験結果は芳賀 EW100%に対 する荷重変形関係であり、解析結果は実験結果の層間変形角を入力とする変位増分解析を 行った結果である。解析結果は実験結果を概ね精度よく模擬できていることから、リンク式 流体慣性ダンパを設置した場合の主構造の履歴特性が基本架構の実験結果と同様であるこ とを確認する。図 5.16 には H-18-14 と F-18-14 の1層、H-23-14 と F-23-14 の1層及び2層 について芳賀 EW100%を入力した時の耐力壁が負担するせん断力について算出した荷重変 形角関係を重ねて示す。いずれのモデルにおいてもせん断力の切片荷重は概ね一致してお り、履歴特性も同様な性状を示していることから、主構造についてはダンパを設置した場合

降伏せん断耐力	降伏せん断耐力 ボルト締付トルク		第2剛性	第3剛性	第1降伏点	第2降伏点
[kN]	[N • m]	[kN/m]	[kN/m]	[kN/m]	[kN]	[kN]
14	30	1800	900	210	9	14
18	43	1800	900	170	12	18
23	56	1800	900	160	14	23

表 5.7 解析モデルの諸元一覧(トリリニア型)

5.4.2 リンク式流体慣性ダンパのモデル化

地震動を入力して得られたピストン変位を基に、ダンパが想定通りの力学特性を発揮し ていたか検証するために式(5.1)~(5.5)を用いて理論的に想定されるダンパの荷重変位関係を 算出する。ここでは、ダンパの力学特性は表 5.3 に示した軸方向の値を用いる。まず、リン ク機構の影響がないダンパ単体の履歴について考察する。図 5.17.a には H-18-14 に神戸 NS100%を入力したときの実験により得られた荷重変位関係と計測したピストン変位と力 学特性から算出した理論値を重ねて示す。理論値は変位反転時に見られる荷重の増加につ いては模擬できていないものの、履歴の膨らみと傾きについては概ね模擬できていること から内部摩擦力、粘性減衰力、慣性力については想定通りの力学特性を発揮していたと判断 できる。次いで、リンク機構の抵抗力を考慮して各層のダンパ荷重を算出する。事前に実施 した単体性能試験により得られていた軸方向のリンク剛性は 2167[kN/m]であったが、この 値を用いてダンパ荷重を算出したところダンパが発揮する見かけの剛性を模擬できないこ とが明らかになった。そこで、各層のダンパが最大変位で発揮する荷重値が概ね等しくなる ようなリンク剛性を策定したところ、軸方向のリンク剛性を 400[kN/m]とすることで図 5.17.b,c に示すように実験値と理論値の履歴の膨らみと傾きが概ね一致した。以降のモデル 化においては、軸方向のリンク剛性を 400[kN/m]として検討を進めることとする。

図 5.17 ダンパの荷重変位関係の実験値と理論値の比較(H-18-14、神戸 NS100%)

5.4.3 構築した力学モデルの精度検証

図 5.18 に示す解析モデルと各地震動を入力したときに振動台 上で計測した加速度を用いて時刻歴応答解析を行う。モデルの質 量は2階床が2.78[t]、屋根階床が2.28[t]であり、主構造はトリリ ニア型として表8で示した諸元とし、主構造の減衰は瞬間剛性比 例型で1.5%とする。ダンパの力学要素は表5.3で示した値を各層 に等分配するものとし、リンク剛性は400[kN/m](せん断方向: 200[kN/m])とする。また、ダンパは取り付け部材を介して各層に 設置しており、取り付け部材の剛性はk_{b1}=k_{b2}=1800[kN/m]とした。

図 5.19 には構築した力学モデルに地震動を入力したときの最大層間変形角を示す。解析結果は実験結果の傾向を精度よく模擬できていることを確認できる。図 5.20 には H-18-14 に 神戸 NS100%を入力したときの荷重変形関係を実験値と解析値を重ねて示す。履歴には若干 の差は認められるものの、解析結果が実験結果の傾向を概ね模擬できていると判断できる。

5.5 各力学要素と制振効果の関係

5.4.3 項で構築した力学モデルを用いてリンク式流体慣性ダンパの各力学要素が制振効果 ヘ与える影響について検討するために、各力学要素を単独で付加した場合の時刻歴応答解 析を行う。検討の対象とする力学要素は粘性減衰要素(以下、VD)とリンク機構(以下、 LK)の2種類とし、主構造の諸元は H-18-14とする。なお、比較として基本架構とリンク 式流体慣性ダンパ(LFIMD)を設置した場合についても解析を行った。図 5.21 には基本架 構の解析結果と各力学要素を付加したときの最大層間変形角を比較して示す。粘性減衰の みを付加した場合には基本架構と比べて1層の変形角を大幅に低減できている。一方で、リ ンク機構のみを付加した場合には大幅な変形角の低減効果は認められないものの、基本架 構と比べて2層の変形角が大きくなっており損傷集中を抑制することで、建物全体で損傷 を負担していることを確認できる。以上より、リンク式流体慣性ダンパを設置した場合には 粘性減衰効果による変形低減効果とリンク効果による損傷集中抑制効果を発揮することで 高い制振効果を発揮したといえる。

図 5.21 各力学要素を付加したときの最大層間変形角の比較(H-18-14、解析結果)

5.6 ダンパの等価剛性

5.4.3 項で構築した力学モデルを用いて各試験体に地震動を入力したときにダンパが発揮 する見かけの剛性について、慣性質量効果による影響とリンク機構による影響を分離して 定量的に評価する。なお、本検討ではダンパの等価剛性はせん断方向に置換した荷重と層間 変形を用いて評価する。図 5.22 には各地震動を入力したときの最大半サイクルにおける主 構造の等価剛性 *skeq* に対する各制振要素の発揮する等価剛性及び各層ダンパの等価剛性 *damkeq* の比率である等価剛性比 *yeq=damkeq/skeq*を示す。H-18-14 のモデルの方が H-23-14 と比較 して 1 層への損傷集中が顕著であったことから、リンク機構が発揮する抵抗力は H-18-14 の 方が大きくなることを確認できる。また、いずれのモデルにおいても弾性応答となる告示波 Lv1 に対しては初期剛性が等しいことから同様な等価剛性を発揮しており、入力レベルが大 きくなるとリンク効果が発揮する等価剛性比が大きくなる傾向が見られる。一方で、慣性質 量効果が発揮する等価剛性は芳賀 EW の規準化倍率を大きくすることで増加する傾向が見 られ、試験体の耐力比によらず地震動ごとに同様な等価剛性比になることがわかる。

図 5.22 構築した力学モデルに地震動を入力したときの主構造とダンパの等価剛性比

図 5.23 には構築した力学モデルに各地震動を入力したときのダンパ単体の等価剛性を示 す。図 5.22 では慣性質量効果が発揮する等価剛性比はモデルによらずほぼ同様であったこ と、ダンパ単体では各層で発揮されるリンク機構の抵抗力が打ち消しあうことから解析モ デルの耐力比によらずダンパ単体の等価剛性は概ね一致することを確認できる。

図 5.23 構築した力学モデルに地震動を入力したときのダンパ単体の等価剛性

5.7 まとめ

本章では実大を想定したリンク式流体慣性ダンパを設置した構造物の制振効果を検証す ること目的とした実寸2層小型フレームによる振動台実験について述べた

まず、5.2節では実験概要として実験システム、試験体仕様、リンク式流体慣性ダンパの 基本機構及び設置方法、計測システム、加振方法について述べた。

5.3節では基本架構とリンク式流体慣性ダンパを設置した場合についての実験結果を示した。まず、ホワイトノイズと告示波 Lv1の加振結果より、ダンパを設置することでリンク効果による 2 次モードの周期低減効果を確認し、基本架構と比べて減衰定数が増大することを確認した。次いで、記録地震動による加振結果より、ダンパを設置することで基本架構と比べて最大層間変形角を大幅に低減できるだけでなく、リンク機構により 2 層の変形を大きくして上下層間の変形差を小さくすることで損傷集中抑制効果を発揮することを示した。

次いで、5.4節では実験結果を基に主構造及びリンク式流体慣性ダンパの力学モデルの構築を行った。ダンパは内部摩擦力、粘性減衰力、慣性力については想定した通りの力学特性を発揮したが、リンク機構については想定したリンク剛性よりも抵抗力が小さくなっていることが明らかになった。しかし、実験結果から策定したリンク剛性を用いて力学モデルを構築することで実験結果を精度よく模擬できることを確認した。

5.5 節では、構築した力学モデルを用いてリンク式流体慣性ダンパの制振効果に寄与する 力学要素について検討を行い、粘性減衰効果が最大応答変形の低減、リンク効果が損傷集中 の抑制効果を発揮することで高い制振効果を発揮することを確認した。

5.6 節においても構築した力学モデルを用いてダンパが発揮する等価剛性に関する検討を 行い、慣性質量効果とリンク効果による影響を定量的に評価した。各層のダンパが発揮する 等価剛性はリンク機構のせん断力の再分配量により変化し、耐力分布の偏りが大きいモデ ル程リンク機構の等価剛性が大きくなる傾向を示した。一方で、慣性質量効果による等価剛 性は試験体によらず同程度であり、リンク機構の抵抗力はリンクされた層同士で打ち消し あうことから、ダンパ単体の等価剛性は試験体によらず概ね一致することを確認した。

129

第6章

結論

第6章 結論

本研究では既往の制振装置では実現困難な制振効果を実現し、制振構法の高度化を図る ために「リンク式流体慣性ダンパ」を提案し、同ダンパを用いた制振構法の原理及びその制 振効果を明らかにすることで同構造システムの有用性を示すための検討を行った。以下に 各章で得られた知見を要約して記す。

第2章では、提案するリンク式流体慣性ダンパの基本機構を記した。同ダンパは粘性減衰 効果に加えて流体の高速運動に伴う慣性質量効果を利用して簡易な機構で負剛性制御を実 現でき、さらに、リンク機構により構造物の変形分布を任意に制御することで損傷集中の抑 制に大きな効果が期待できるデバイスであることを示した。また、リンク機構を応用するこ とで上下層間の損傷集中の抑制だけでなく、捩れ振動の抑制や免震構造物のロッキング応 答の抑制にも効果を発揮する設置方法を提案した。次に、試作したリンク式流体慣性ダンパ の単体性能試験を実施することで、ダンパの基本性能として速度の2 乗に比例した抵抗力 を発揮する粘性減衰力と、慣性質量と円振動数の2 乗の積により求まる等価剛性がピスト ン変位に比例した慣性力を発揮することを確認した。また、2 つのピストンロッドがリンク して動くためのリンク剛性は混入空気が圧縮される影響が大きい小振幅時にはやや小さい 値をとるが、その影響が相対的に小さくなる大振幅域では良好なリンク効果を発揮するこ とを示した。力学モデルの構築においてはリンク機構の剛性を線形近似した場合において も実験結果を精度よく模擬できることを示した。

第3章では、「リンク式流体慣性ダンパの高性能化」を粘性減衰力に対する慣性力を相対 的に大きくすることと定義して、小型ダンパを用いて安定した基本性能を発揮するための 基本仕様の策定及び高性能化手法の有用性を検証するために単体性能試験を実施した。単 体性能試験により、ダンパの基本性能として安定した粘性減衰力とリンク効果を発揮する ためには、リンクチューブには硬い材質を用いる必要があることを示した。さらに、ダンパ の高性能化には密度の大きな流体を封入することで慣性質量を大きくする手法と流体動粘 度を軽減して粘性減衰力を低減することで相対的に慣性力を大きくする手法のいずれも有 効であることを明らかにした。また、リンク式流体ダンパを設置した小型2層鉄骨フレーム による振動台実験を行い、慣性質量効果とリンク効果により高い制振効果が得られること を示し、高性能化したダンパを設置することで慣性質量効果による絶対加速度の低減効果 が大きくなることを示した。

第4章では、リンク式流体慣性ダンパによる層間変形制御機構の基本性能及び同機構が 振動系の動力学特性に与える影響について記した。リンク式流体慣性ダンパの2つのピス トンロッドの移動量の比率が異なる仕様とした場合の単体性能試験を実施し、ダンパの基 本仕様が同様であればピストンロッドの移動量の比率を変えた場合にも同様なリンク剛性 を発揮することを示した。次いで、層間変形制御機構を構造物に設置した場合の振動特性の 変化を把握するために調和振動に対する定常振動解を導出し、リンクされた層の間では層 間変形制御機構によりせん断力の再分配が行われることを示した。また、層間変形制御機構 を設置した構造物は主構造が本来有する振動特性とは異なる見かけの剛性に依存した振動 特性を発揮することを明らかにした。このとき、せん断力の再分配量は原振動系の固有値と 層間変形制御機構の変形分布の比率を用いることで時刻歴応答解析を行わずに算出できる ことを示した。さらに、上下層間の剛性分布が異なる試験体を用いて振動台実験を行い、理 論的に想定される層間変形制御機構の動力学特性が実際に発揮されることを確認した。

第5章では、実大を想定したリンク式流体慣性ダンパを設置した実寸2層小型フレーム による振動台実験を行った。リンク式流体慣性ダンパを設置することで2次モードの周期 低減効果とダンパを設置しない場合に比べて系全体の減衰定数が向上することを確認した。 また、同ダンパを設置した構造システムが最大層間変形角を大幅に低減できるだけでなく、 リンク効果により上下層間の変形差を小さくすることで損傷集中を抑制し、構造物全体で エネルギー吸収を行うことで高い制振効果が得られることを実証した。次いで、実験結果を 基に主構造及びリンク式流体慣性ダンパの力学モデルを構築し、実験結果の傾向を概ね精 度よく模擬できることを確認した。また、構築した力学モデルを用いてダンパの各力学要素 が制振効果に与える影響について定量的に評価することで、粘性減衰効果が最大応答変形 の低減効果に、リンク効果が損傷集中の抑制効果にそれぞれ効果を発揮することで総合的 に高い制振効果が得られることを明らかにした。

以上より、本研究で提案するリンク式流体慣性ダンパが様々な制振性能を有しているこ と、構造物にリンク式流体慣性ダンパを設置することで高い制振効果を得られることを実 験的・解析的に示した。また、リンク式流体慣性ダンパを高性能化することでより高い制振 効果を発揮することに期待でき、既往の制振装置では実現できない制振効果を発揮できる ことからその有用性・実用性は極めて高く、構造物の耐震性の向上及び制振構法の高度化の ための有効な手段だといえる。

134

附録
附録1 流体摩擦における摩擦係数の変化

ダンパに封入する作動流体は粘性減衰力を小さくして慣性力を相対的に大きくするため にも動粘度は小さく密度が大きいものが望ましいが、作動流体の諸元によってはダンパの 基本性能に影響を与える恐れがある。流体摩擦における摩擦係数は一般的に流体密度と流 体動粘度、ピストン速度の積と潤滑面の平均圧力の比である無次元量の軸受特性係数 G の 関数になり附式(1)で表すことができる。ここで、B は潤滑面の幾何学形状によって決まる定 数であり、n は実験式として提案されておりピストンの O リングの場合は 0.6 であることが 確かめられている⁴⁸⁾。

$$f = BG = B\left(\frac{\rho v V}{p_m}\right)^n \tag{1}$$

f:摩擦係数 B:定数 ρ:作動流体密度 v:作動流体動粘度 V:速度 pm:潤滑面にかかる圧力

附図 1 には摩擦係数と軸受特性係数の関係を表すストライベック線図を示す。流体摩擦は 幾何学的条件が同じであれば一義的に決まるが(流体潤滑)、固体接触が生じると1つの曲 線に定まらない(混合潤滑または境界潤滑)。固体接触が生じる原因は流体の動粘度が小さ すぎることや摺動部分における速度の低下が挙げられ、摩擦係数を増大させる要因となる。

附図1 ストライベック線図

附録2 リンク剛性の定量的評価

リンク剛性は作動流体の圧縮剛性とチューブ剛性により決まることを 2.3 節において示 した。一般的に、作動流体の体積弾性係数は非常に大きく非圧縮性流体として扱われるが、 油圧システム内に空気が混入した場合には有効体積弾性係数は著しく低下するため圧縮性 を考慮した検討が必要となる。附図 2 には附式(2)から求まる空気混入量と圧力導入時の有 効体積弾性係数の関係を示す⁴⁹。低圧下では混入空気の影響が非常に大きいことがわかる。

$$k_{TB} = \frac{1 + \frac{P_0}{p}(x)}{1 + k_{T0}\frac{P_0}{p^2}(x)}$$
 (#12)

k_{TB}:有効体積弾性係数 k_{T0}:体積弾性係数

P₀:標準圧力(0.1[MPa]) p:導入圧力 x:空気の体積混合比(空気体積/容器体積)

また、載荷時には流体だけでなくチューブにも変形が生じることが考えられる。チューブの 圧縮率は附式(3)により表され、3.2節においてチューブに柔らかい素材を用いた場合にリン ク剛性が低下することを確認している。

$$\beta_{tube} = \frac{1}{k_{tube}} = \frac{2}{E} \left(\frac{d_o^2 + d_i^2}{d_o^2 - d_i^2} + v_p \right)$$
防(3)
β:圧縮率 k:体積弾性係数 E:ヤング率

d_o:チューブ外径 d_i:チューブ内径 v_o:ポアソン比

また、シリンダは変形が無視できる剛体であると仮定すればダンパ全体の有効体積弾性係 数はシリンダ及びチューブの体積比の関係から附式(4)で表せる⁵⁰⁾。ここで算出した有効体 積弾性係数を用いて附式(5)より圧縮量を算出し、受圧面積で除すことでダンパ内部での圧 縮変位量を求め、これをピストン変位差として扱う。

$$\frac{1}{k_{oil}} = \frac{1}{V_{cylinder} + V_{tube}} \cdot \left\{ V_{tuve} \cdot \left(\frac{1}{k_{oil}} + \frac{1}{k_{tube}}\right) + V_{cylinder} \cdot \frac{1}{k_{oil}} \right\} \qquad \text{ (4)}$$

$$\Delta V = \frac{\Delta p \cdot V}{k} \tag{5}$$

k:有効体積弾性係数 V:体積 △V:圧縮量 △p:圧力

附図 3 には 3.2 節で示したチューブの材質を変化させた場合の単体性能試験においてチュ ーブ長さを変化させたときのリンク剛性を評価する荷重変位関係について試験結果と理論 式により算出した値を重ねて示す。なお、作動流体の有効体積弾性係数は 0.15[MPa]載荷時 の値とし、グラフ右上の数字は荷重変位関係のスリップ変位から算出した混入空気量を表 す。試験結果は非線形な傾向を示しているのに対して理論式により算出した値は線形であ るが、リンク剛性を線形近似して算出することを考慮すれば試験における最大変位差付近 における荷重値が概ね一致していることから理論式が妥当であると判断できる。

附録

附図3 リンク剛性の定量的評価

参考文献

- 曽田五月也, 堀込克哉: 過酷な地震動に対する建築物の備え―エネルギーに基づく地震動の過酷度指標の提案―, 日本建築学会大会(東海), 学術講演梗概集, 構造 II, pp.717-718, 2012.9
- 2) 曽田五月也:1995 年兵庫県南部地震による建築構造被害について,理工総研報告特集 号,pp.189-211,1996.1
- ・曽田五月也,宮津裕次,松永裕樹:方杖型圧効きオイルダンパによる木造住宅の制振に 関する実験的研究,日本建築学会構造系論文集,第75巻,649号,pp.559-566,2010.3
- 4) 曽田五月也,袖山博,神谷佳祐,渡辺啓太,大入慎也:軽量鉄骨造ラーメンの粘弾性仕 ロダンパによる制振補強に関する研究 -その 1- 仕ロダンパの設置方法,日本建築学会 大会(九州),学術講演梗概集,構造Ⅲ,pp.901-902, 2016.8
- 5) 家村浩和,五十嵐晃,鈴木陽介:MR ダンパーによる擬似負剛性セミアクティブ制御の 実時間ハイブリッド実験による検証,第27回地震工学研究発表会梗概集,pp.268,2003
- 五十嵐晃,樋口匡輝,家村浩和:スカイフック制御との対応関係に着目した負剛性制御の最適調整法,土木学会論文集A, Vol.65, No.3, pp.814-824, 2009.9
- 7) 袖山博,砂子田勝昭,藤谷秀雄,曽田五月也,岩田範生:高知能建築構造システムに関する日米共同構造実験研究(その14)2kN、20kN 級 MR ダンパーの開発,日本建築学会大会(東北),学術講演梗概集,B-2,構造II,pp.917-918, 2000.9
- 8) 曽田五月也,茶谷良介,楠本玄英,袖山博:高知能建築構造システムの開発に関する日 米共同構造実験研究(その53 各種 MR ダンパーの力学特性に関する実験的研究),日本 建築学会大会(北陸),学術講演梗概集,B-2, pp.929-930, 2002.8
- 9) 曽田五月也,楠本玄英,茶谷良介,藤谷秀雄,塩崎洋一,樋渡健:高知能建築構造シス テムの開発に関する日米共同構造実験研究(その56 MR ダンパーを設置した免震建物モ デルのセミアクティブ振動実験),日本建築学会大会(北陸),学術講演梗概集,B-2, pp.935-936, 2002.8
- 10) 沈里通, 荻野和臣, 曽田五月也: MR ダンパを設置した小型3層免震フレームのセミア クティブ振動制御実験, 日本建築学会構造系論文集, 第617号, pp.63-70, 2007.7
- 11) 曽田五月也,庄司裕明,井上宏介,沈里通,荻野和臣,今西淳夫:MR ダンパによる免 震構造物のスカイフックセミアクティブ制御(その1.MR ダンパ及び小型免震フレーム の特性),日本建築学会大会(九州),学術講演梗概集,B-2,構造II,pp.1021-1022,2007.7
- 12) 曽田五月也,井上宏介,庄司裕明,沈里通,荻野和臣,今西淳夫:MR ダンパによる免 震構造物のスカイフックセミアクティブ制御(その 2. 制御理論概要と制御実験による 検討),日本建築学会大会(九州),学術講演梗概集,B-2,構造II,pp.1023-1024, 2007.7
- 13) 豊岡亮洋,河内山修,家村浩和,池田学,下田郁夫:パッシブ型負剛性摩擦ダンパーの 開発と振動台実験による制震性能の検証,土木学会論文集,vol.66A, pp.148-162, 2010.3

- 14)池田学,豊岡亮洋,松本信之,市川篤史,長谷川淳史,西村昭彦,家村浩和:パッシブ 型負剛性摩擦ダンパーの適用による鉄道橋の耐震評価,土木学会構造工学論文集, Vol.58A, pp.504-517, 2012.3
- 15) 奥村敦史:振動遮断接続機構,早稲田大学技術シリーズ, No.TLO2000-02, 2000
- 16) 柴田和彦,飯山文也,五十幡直文,袖山博,奥村敦史,久田俊明:慣性接続要素を用いた免制震装置の開発 その1~4,日本建築学会大会学術講演梗概集,pp.731-738,2006.7
- 17) 中南滋樹,鈴木亨,木田英範,古橋剛,田中久也:慣性質量を有する粘性減衰装置の開発,三井住友建設技術研究所報告 第3号, pp.157-164, 2005
- 18) 古橋剛,石丸辰治:慣性接続要素による多質点振動系の応答制御 慣性接続要素による 応答制御に関する研究 その2,日本建築学会構造系論文集,第601号, pp.83-90, 2006.3
- 19) 廣谷直也,石丸辰治,秦一平,古橋剛,増井智彰:擬似モード制御による D.M.同調シ ステムに関する研究 その1~2,日本建築学会大会学術講演梗概集,pp.725-728, 2011.8
- 20) 登坂遼太朗, 玉木龍, 古橋剛, 石丸辰治: D.M.を用いたモード制御に関する基礎的研究 その1 部分モード制御の提案, 日本建築学会大会学術講演梗概集, 構造 II, pp.823-824, 2012.9
- 21) 磯田和彦,松井和幸:増速機構付き回転慣性質量ダンパーの開発 その1~7,日本建築 学会大会学術講演梗概集,21012.9~2014.9
- 22) 川股重也、大沼正昭:慣性ポンプダンパーによる構造物の振動制御 その1 理論モデル と正弦波応答特性、日本建築学会大会学術講演梗概集,B、構造Ⅱ,1986.8
- Malcom C. Smith: Synthesis of mechanical networks: The Inerter, IEEE Transactions on Automatic Control, Vol.47, No.10, pp.1648-1662, 2002.10
- 24) F-C. Wang, M-F. Hong, T-C. Lin: Designing and Testing a Hydraulic Inerter, Proceedings of the Institution of Mechanical Engineers, Journal of mechanical Engineering Science, Vol.225, Part C, pp.66-72, 2010.3
- 25) 松岡太一,砂子田勝昭:流体の慣性質量を利用した振動低減装置,日本機械学会論文集, C編,75巻,759号,pp.41-46,2009.11
- 26) 山野翔馬,松岡太一,平元和彦,砂子田勝昭,阿部直人,Pei-Yang LIN:螺旋バイパス 管をもつ MR 流体慣性ダンパ,日本機械学会 Dynamics and Design Conference 2015, USB 論文集 339, 2015.8
- 27) Satsuya Soda, Yuji Miyazu: Seismic Response Control by Fluid Inertia Mass Damper with Negative Equivalent Stiffness,13th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, CD-ROM Paper No.886064, 2013,9
- 28) 曽田五月也, 矢嶌遥, 瀬戸純平, 谷敬成: 流体の慣性質量を利用したパッシブ負剛性ダ

ンパに関する研究 その 3, 日本建築学会大会学術講演梗概集,構造 II, pp.1005-1006, 2013.8

- 29) 手塚武仁,神原浩,平島真一:層損傷集中制御制震構造,鋼構造論文集,第5巻,第20号,pp.1-8, 1998.12
- 30) 伊藤彰保, 宮津裕次: 多層偏心構造物の地震応答層間変形を一様化する構造システムに 関する研究, 日本建築学会大会学術講演梗概集, B-2, pp.305-306, 2016.8
- 31) 森川翔平, 宮津裕次, 長谷川冬馬: リンク式制振装置による低層木造建築物の地震応答 制御, 日本建築学会大会学術講演梗概集, C-1, pp.255-256, 2016.8
- 32) Akira Wada et al: Seismic Retrofit Using Rocking Walls and Steel Damper, ATC/SEI Conference in Improving the Seismic Performance of Existing Buildings and Other Structures, pp.1010-1021, 2009.12
- 33) 宮津裕次, 曽田五月也: 外付け式層間変形制御装置による中低層建築物の地震応答制御, 日本建築学会構造系論文集, Vol.80, No.710, pp.561-570, 2015.4
- 34) 曽田五月也,安田拓也:リンク式オイルダンパの制振効果に関する研究,日本建築学会 大会学術講演梗概集,B-2,構造II,pp.821-822,2007.8
- 35) 秋山宏,高橋誠:損傷分散型多層骨組のDs値,日本建築学会論文報告集,第341号, pp.54-61,1984.7
- 36) Naoki Nojiri et al: Effect of Pressure on Density and Viscosity of Perfluoropolyether, 第9回日 本熱物性シンポジウム, B204, 1988.9.21
- 37) 砂子田勝昭,袖山博:オイルダンパの設計手法に関する研究(減衰力の発生の基礎的研究),日本機械学会機械力学・計測制御講演論文集,No.98-8, 1998.8
- 38) 袖山博,鈴木浩平,岩田範夫,砂子田勝昭:バイパス式 MR ダンパの設計法に関する研究,日本機械学会論文集,C編,No.691, pp.17-24, 2004.3
- 39) 日本油空圧学会:新版油空圧便覧,オーム社,1989.2
- 40) 古川明徳, 金子賢二, 林秀千人: 流れの工学, 朝倉書店, pp.88-90, 2000.4
- 41) 檀原徹, 岩野英樹, 糟谷正雄, 山下透, 角井朝昭: 無毒な SPT(ポリタングステン酸ナトリウム)とその利用, 地質ニュース 455 号, pp.31-36, 1992.7
- 42) 建設省建築研究所(財)日本建築センター:設計用入力地震動作成手法技術指針(案), 1992.3
- 43) 西川孝夫 他: 建築の振動 初歩から学ぶ建築の揺れ, 朝倉書店, pp.57-59, 2005.1.15
- 44) 松永裕樹, 宮津裕次, 曽田五月也:木造軸組耐力/非耐力壁の汎用モデル化手法に関する研究,日本建築学会構造系論文集,No.639, pp.889-896.2009.5
- 45) 曽田五月也, 脇田健裕他: 高靭性・高減衰・高耐力型薄板軽量形鋼造建築物の開発(そ

の 6~10), 2017 年度日本建築学会大会学術講演梗概集, pp.1117~1126, 2017.8

- 46) 曽田五月也,脇田健裕,京田隆寛,齋藤健寛,大岩奈央: 高靭性・高減衰・高耐力型 薄板軽量形鋼造建築物の開発(その1~その5),2016 年度日本建築学会大会学術講演 梗概集,pp 845-854,2016.8
- 47) 肥田剛典, 永野正行: 部分空間法に基づくシステム同定による建物の固有振動数と減衰 定数の推定精度, 日本建築学会構造系論文集, 第 79 巻, 第 701 号, pp.923-932, 2014.7
- 48) Shoichi Furuhama, Shinichi Sasaki: New Device for the Measurement of Piston Friction Forces in Small Engines, SAE Paper No.831284, pp.39, 1983
- 49) 中川孝之,大住剛: 混入空気を考慮した油圧作動油の体積弾性係数について,富山大学 工学部紀要第 27 巻, 1976.3, pp25-30
- 50) 小波倭文朗, 西海孝夫:油圧制御システム, 東京電機大学出版局, 1999.11.20

本論文に関する研究発表一覧

種類	題名	掲載誌 掲載頁	揭載年月	共著者
論文	リンク式流体慣性ダンパによる 層間変形制御機構の動力学特性 に関する研究	日本建築学会構造系 論文集、Vol83、No.746	2018年4月 【掲載決定】	曽田五月也
論文	リンク式流体慣性ダンパの性能 設計法に関する実験的研究	日本建築学会構造系 論文集 Vol.82、No.737 pp.991-1001	2017年7月	曽田五月也
論文	リンク式流体慣性ダンパによる 建物の制振に関する研究	日本建築学会構造系 論文集 Vol.81、No.725 pp.1071-1079	2016年7月	曽田五月也
講演	実寸 2 層小型薄板軽量形鋼造を 主構造とする制振建物の振動台 実験	第6回制振構造デザイ ン技術の高度化に関す るシンポジウム pp.76-93	2017年9月	曽田五月也 脇田健裕 宮津裕次
講演	油圧式リンク機構による変形分 散型制振システムの開発	第6回制振構造デザイ ン技術の高度化に関す るシンポジウム pp.56-65	2017年9月	曽田五月也
講演	油圧式変位増幅機構を用いたパ ッシブマスドライバーの開発	日本建築学会大会 学術講演梗概集 構造Ⅱ、pp.667-668	2017年8月	曽田五月也
講演	超高層建築物のリンク機構によ る振動モード制御手法に関する 研究	日本建築学会大会 学術講演梗概集 構造Ⅱ、pp.723-724	2017年8月	曽田五月也 金井佳吾
講演	リンク式流体慣性ダンパによる 構造物の層間変形制御システム の動力学特性に関する研究	Dynamics and Design Conference 2017 講演論文集 No.205	2017年8月	曽田五月也
講演	リンク式流体慣性ダンパによる 2 層建物の変形・絶対加速度の制 御	第 5 回制振構造デザイ ン技術の高度化に関す るシンポジウム pp.62-73	2016年9月	曽田五月也

講演	リンク式流体慣性ダンパの高性 能化	第5回制振構造デザイ ン技術の高度化に関す るシンポジウム pp.26-35	2016年9月	曽田五月也
講演	リンク式流体慣性ダンパの高性 能化に関する研究(その 3.2 つの ピストン変位を任意の比率にす る場合)	日本建築学会大会 学術講演梗概集 構造Ⅱ、pp.263-236	2016年8月	曽田五月也
講演	高性能リンク式流体慣性ダンパ の開発	Dynamics and Design Conference 2016 講演論文集 No.233	2016年8月	曽田五月也 金井佳吾
講演	リンク式流体慣性ダンパによる 建築物の制振に関する研究	第4回制振構造デザイ ン技術の高度化に関 するシンポジウム pp.45-65	2015年9月	曽田五月也
講演	リンク式流体慣性ダンパの高性 能化に関する研究 (その 2.小型 リンク式流体慣性ダンパの単体 性能実験)	日本建築学会大会 学術講演梗概集 構造Ⅱ、pp.681-682	2015年9月	曽田五月也
講演	リンク式流体慣性ダンパを用い た構造物の制振に関する研究	Dynamics and Design Conference 2015 講演論文集 No.320	2015年8月	曽田五月也
講演	リンク式流体慣性ダンパの制振 効果に関する研究	第3回制振構造デザイン技術の高度化に関するシンポジウムpp.84-93	2014年9月	曽田五月也
講演	リンク式流体慣性ダンパの高性 能化に関する研究	日本建築学会大会 学術講演梗概集 構造Ⅱ、pp.807-808	2014年9月	曽田五月也 瀬戸純平 矢嶌遥

謝辞

本研究は、筆者が早稲田大学創造理工学研究科建築学専攻博士課程在学中、また同大学創 造理工学部建築学科助手の在任中に行った研究の成果をまとめたものです。同大学教授の 曽田五月也先生には研究計画の立て方から研究手法、研究成果の論じ方まで多くのご指導 を賜りました。学位取得まで2年間という期限付きの大きなプレッシャーの中、先生の下で 学んだ経験は筆者がこれから研究者としての道を進むうえで貴重な財産となると思います。 また、曽田研究室最後の年に博士課程及び助手として在籍できたことを光栄に思います。こ こに深く感謝し、御礼申し上げます。

早稲田大学建築学科教授の西谷章先生、前田寿朗先生、山田眞先生には本研究の審査にあたり有益なご助言を賜りました。ここに感謝の意を表します。

本研究の中枢を担う「リンク式流体慣性ダンパ」の製作には有限会社シズメテックの鎭目 武治氏、米窪義健氏、鎭目真喜子氏にご協力いただきました。設計・製作段階だけでなく、 動作性の検証から仕様改良まで機械機構に素人である筆者に対しても細かく丁寧なご助言 を賜りました。また、本研究の第5章で実施した振動台実験には、旭化成ホームズ株式会社 住宅総合研究所の所有する振動台を使用させていただきました。同研究所の中田信治博士 からは振動台実験の実施にあたり多大なるご協力をいただきました。皆様に深く御礼申し 上げます。

早稲田大学曽田研究室の先輩である早稲田大学理工学研究所次席研究員の脇田健裕博士 には実寸2層小型フレーム試験体による振動台実験計画の遂行にあたり多くのご協力とご 助言を頂きました。同先輩の広島大学大学院助教の宮津裕次博士には解析手法やデータ処 理方法、実験結果の考察まで多岐にわたりご指導頂きました。また、CTSエンジニアリング 技術研究所の宋成彬博士からは多くの励ましの言葉を頂きました。皆様に深く御礼申し上 げます。

早稲田大学曽田研究室の後輩である学生の皆様にも多くのご協力を頂きました。本論文 中の多くの実験が実施できたのは皆様のご協力の賜物です。皆様に深く感謝し、これからの 活躍を心より祈っております。

最後に、一度は就職を決めた身でありながら研究者としての道を進むために進学するこ とを反対せずに支えてくれた両親(父:一作、母:順子)に心から感謝致します。