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CHAPTER 1

INTRODUCTION



Let R be the set of real numbers. Let m and n be positive integers. Throughout
this thesis, let A € R™™ and C' € R™*™ be symmetric positive semidefinite matrices
with m < n, and B € R"™™ be a full rank matrix. Let z, f € R" and y, g € R™.
In this thesis, we put | = n + m. We consider a numerical method for verifying
the accuracy of numerical solutions of the following symmetric saddle point linear

systems:

where

We treat the case where H is nonsingular.
Purposes of this study are to verify the existence and the uniqueness of an exact
solution of (1) and to compute an error bound between an approximate solution and

the exact solution of (1) such that
|u* —ull; <K, forueR,

where u* is the exact solution of (1). In this thesis, such a method is called a verifi-

cation method.

1.1. BACKGROUND

In a scientific computation, when we consider a natural or a social phenomenon
and compute it’s numerical solution, the obtained numerical solution include various
errors as Figure 1.1. In many case, when we compute an error bound between the
approximation and the exact solution using the verification method, we take into
account approximation errors and numerical errors (Error 2 and Error 3 in Figure 1.1).

In this thesis, especially we focus on numerical errors (Error 3 in Figure 1.1).



| (D Natural and social phenomenon ‘

———————— ‘ Error 1(Modeling error ) ‘

‘ (2) Mathematical model ‘ (e.g. partial differential equation)

———————— ‘ Error 2(Discretization error etc.) ‘

‘ @) Approximate model ‘ (e.g. linear system)

———————— ‘ Error 3(Rounding error etc.) ‘
Y

‘ (4) Numerical model ‘

FIGUurE 1.1. Numerical computing models and errors.

Here, we show an easy example of numerical errors. We consider the following

system:

64919121 —159018721 x 1
41869520.5 —102558961 Y 0

In this problem, the exact solution is

T 205117922
Y 83739041

However, when we compute it using Gaussian elimination with IEEE 754 double-

precision floating point numbers, we get the following solution:

x 106018308.0071325
Y 43281793.0017831

This may be an artificial example. However, even such simple linear systems will
cause trouble. So, it is important to verify the accuracy of obtained solutions.

On the other hand, saddle point linear systems described by (1) arise from the
various problems [3, 4, 6, 12]. For example, we apply a mixed finite element method
to partial differential equations, then we get a discretized equation having saddle point

form. Moreover, when we solve a convex optimization problem using an interior point



algorithm, we need to solve saddle point linear systems. According to the ubiquity of
saddle point systems, methods and results on their numerical solution have appeared
in many books and papers. Therefore, to verify the accuracy of an approximation of

linear systems in saddle point form is very important.

1.2. PURPOSE

A large amount of work has been devoted to developing efficient algorithms for
solving (1) (see [3]). For example, as a method for solving (1) with the positive
definiteness of A, there is a method using Schur complement. Here, Schur complement
of Ain H is defined as S = C + BT A~'B. Using Schur complement, we can obtain
a solution as follows:

Sy=B'A"'f —g,

(2)

Axr = f — By.
In optimization, structural analysis, and electrical engineering, this method is called
the range-space method, the displacement method, and the nodal analysis method,
respectively [13]. Another method is the method that is based on the null space
for the matrix B”. In optimization, this method is popular and is called the reduced
Hessian methods [8, 14]. However, this method requires C' = O. There methods solve
two reduced systems whose size is smaller than the size of original one. Also, some
iterative methods like the Arrow-Hurwicz method and the Uzawa method [1] have
been developed. Moreover, when A is singular, the augmented Lagrangian method
can be used. The idea of this mehtod is to replace the original systems with the
singularity of A with the ones with the nonsingularity of A. In this thesis, we mainly
consider the verification method using Schur complement.

In general, the verification method for solving linear systems uses an approxima-
tion of the inverse of the coefficient matrix. However, in [5, 6], authors have proposed

the verification methods using the special structure of saddle point matrix without



using an approximation of #~!. In [5], Chen and Hashimoto have studied the ver-
ification methods for an approximate solution of (1) with A is symmetric positive
definite. These methods are based on the system (2). In [6], Kimura and Chen have
studied the verification methods for approximate solutions of (1) with C' = O. These
methods use the preconditioner with Schur complement. These methods are efficient
compared to methods using an approximation of H~! for saddle point linear systems.
However, a verification method for a solution of (1) with both A and C are symmetric
positive semidefinite was not developed yet. Therefore, in this thesis, we consider the
case where both A and C' are symmetric positive semidefinite matrices.

We propose fast verification methods using results of an algebraic analysis of a
block diagonal preconditioner. These method are based on the extension of theorem
studied by Kimura and Chen [6]. These method can be used alternatively to the meth-
ods developed by Kimura and Chen [6], or to the ones by Chen and Hashimoto [5].
All quantities required to compute in the proposed verification method are also re-
quired to compute in executing Chen-Hashimoto’s method. Thus, once all quantities
needed in Chen-Hashimoto’s methods are computed, then all quantities needed to

execute the proposed verification methods are provided.

1.3. ORGANIZATION

In Chapter 2, we denote some notations and definitions. And we review some
previous works. In Chapter 3, we propose new verification methods for approximate
solutions of (1). First, we show a method of regularizing A of (1). Next, we define
a preconditioner and propose a theorem for all eigenvalues of the preconditioned
matrix. And, we propose a new error bound for (1) using the above theorem. In
Chapter 4, we compare our verification methods with Chen-Hashimoto’s methods
and the verification methods for an approximate solution of general linear systems.
We show numerical results to illustrate the effectiveness of the proposed methods.

Finally, we conclude results of our studies in Chapter 5.






CHAPTER 2

PRELIMINARIES



2.1. NOTATIONS AND DEFINITIONS

Let R be the set of real numbers. Let m and n be positive integers (n > m). We

set [ = m + n. The superscript T is the transpose. [ is an identity matrix and O is

a zero matrix. A positive definite or semidefinite matrix is defined as follows:

DEFINITION 2.1.
Let M € R™™ and z € R".
M is positive definite if 2T Mz > 0 for all z # 0.

M s positive semidefinite if zX Mz > 0 for all z # 0.

Moreover, M = O (M = O) denote that M is positive (semi-)definite. Through-

out this thesis, let A € R™"™ be a symmetric positive semidefinite matrix and

A € R™ be a symmetric positive definite matrix. Let B, B € R™™ be full rank

matrices and C, C' € R™ ™ he symmetric positive semidefinite matrices.

matrix

A B
BT —-C

Schur complement of A in H is defined as S := C + BTA™'B.
The comparison matrix (M) is defined as follows:
—|My| i

(M) =

Let N € R™™. The infinity norm of a matrix /V is defined as follows:

m
[N ]oo := ga;gz; | Nijl.
1=

The 2-norm of N is defined as follows:

IN|l2 :== v/ Amax(NTN).

For the



where A\pax (V) is a maximum eigenvalue of N.

2.2. PREVIOUS WORKS

Here, we briefly review some previous works.
Theorem 2.1 is studied by Kimura and Chen [6, Theorem 2.1]. This theorem can

be applied to the following equation:

A B f
Hu=">b, H= b= : (3)
BT O g

where A € R™ " is symmetric positive semidefinite and B € R™*™ has full rank.

THEOREM 2.1 ([6, Theorem 2.1]). Assume that A € R™™ is symmetric positive
semidefinite and B € R™™ has full rank. Let W be an m X m symmetric positive

semidefinite matriz such that
A=A+ BWBT,

is symmetric positive definite. Let u* be a rigorous solution of (3). For any u € R,

we have

2
V5 —1

Theorem 2.2 is studied by Chen and Hashimoto [5, Theorem 1]. The authors

= ul, < (B"B)"

max <H/~171

\A

Al ) o= 2all,.

consider the following equation:
Hu=0b, H=| _ b= , (4)

where A € R™™ and C' € R™™ are symmetric positive definite and semidefinite

respectively, B € R™™ has full rank.

THEOREM 2.2 ([5, Theorem 1]). Assume that A € R™" and C € R™™ are

symmetric positive definite and semidefinite respectively, B € R™™ has full rank,



and S :=C + BTA'B. Let u* = (1’ T y*T)T be a rigorous solution of (4). For any
U= (:cT, yT)T € R!, we have the following inequalities:
ot =all, < A7 (Il + || B] o = wl,)
Iy =yl < ||SH, (ol + || B4 lirall,)
and
- -1
|, |(573)
. 2
|5 S (5)
g HAH (BTB) A (€)
2 2
where the residual vectors r1, r9 is defined as
™ A B T f
Ty BT —C Y g

and Amin(C) is a minimum eigenvalue of C.

Theorem 2.3 is studied by Chen and Hashimoto [5, estimation (15) and (16)]. The
authors treat the following equation:
A BLT x f
i . = : (6)
(BL=T)YT —LCL7T LTy L7 'g
where A € R™" and C' € R™™ are symmetric positive definite and semidefinite

respectively, B € R™™ has full rank, and L € R™*™ is a nonsingular matrix.

THEOREM 2.3 ([5, estimation (15) and (16)]). Assume that A € R™" and C €
R™ ™ qre symmetric positive definite and semidefinite respectively, B € R™™ has

full rank, and L € R™*™ is nonsingular. Let u* = (x*T, y*T)T be a rigorous solution

of (6). Let Sy = L'CL™" + (BL™")TA'BL™T be Schur complement of A in the

10



coefficient matriz of (6). The Residual vectors ry, ry are defined as in Theorem 2.2.

For any u = (xT, yT)T € R, we have the following inequality:

lo* =l < ||A7|, (Iralle + || B2 (127 5 = w)]l,)-
L (y* - < s, LIE BLT) At
12 =l < [l (127l + | (B20) A7 il )

and
|4] [z (B7B) "
s, < - = R
[ (5783 wizenn
2 2

11
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3.1. REGULARIZATION OF A

In this thesis, we will propose methods based on Schur complement. However,
since A of (1) is symmetric positive semidefinite, that may be singular, we can’t
directly apply those methods to (1). So, in this section, we show a method that
regularize A of (1).

First, we show the following proposition and prove it.

PROPOSITION 3.1. Let A € R™™ and C' € R™ ™ be symmetric positive semidef-
inite, and B € R™™ has full rank. Assume that W € R™*™ s symmetric positive
definite. Under the conditions that H of (1) is nonsingular, there exists a matriz W
satisfying the following conditions:

(a) A:=A+ BWBT is a symmetric positive definite matriz,
(b)) B:=B— BWC has full rank,

(¢c) C:=C—CWC is a symmetric positive semidefinite matriz.

PRrROOF. We use the method of proof by contradiction to prove that the condition

(a) is satisfied. We assume that Z # 0 is a solution of AZ = 0, then we have
" Az = 7" Az + 7" BWB % = 0.

Since A and BW BT are positive semidefinite, we obtain
#"Az =0 and ' BWB'z=0.

By the positive definiteness of W, we have

14



Moreover, since A is symmetric positive semidefinite, we can factorize as A = Ly L% (L, €

R™™) and the following equations are satisfied
' Az = 2" L, L7 = 0.
Then
IL5z) = o.
Thus, we have
Az = 0.

Let z = (7, 0)7, then Hz = 0. However, this contradicts to the fact that H is
nonsingular. Thus, A is symmetric positive definite.
It remains to prove that conditions (b) and (c) are satisfied. In the case of C' = O,

it is clear to satisfy conditions (b) and (c). In this case, W can be chosen as follows:

«

W= ——"
BB,

1,

where « satisfies 0 < a < 1 (See [6]).

Next, we consider the case C' # O. For example, we can take

(07

I — 7
i @)

where « satisfies 0 < o < 1. Denote \; (i = 1, ..., m) as the nonnegative eigenvalues

of C'. Since C' is symmetric positive semidefinite, C' can be factorized as

C =Q"DQ, (8)

where D is a diagonal matrix whose diagonal elements are \; (i =1, ..., m) and @

is an orthogonal matrix.

15



By (7), (8), and B := B — BWC, we have

B=BI-W0),

— B T o « TD
@"Q - @ D),

— BOT(I - —2_D)O.
G e, P

Since B has full rank, @) is an orthgonal matrix, ||C||, = max();), D = diag(}\;), and
0 < a < 1, then B has full rank.
Similarly, by (7), (8), and C' := C — CWC, we have

C=C-Cwc,
o

Q"D

=Q"'DQ - (Q"DQ)

«

D "D
HOH2Q (QQ")DQ,

= Q"DV(1 - —=—D)D'*Q,
1C1l,

- Q"DQ -

where DV/? = diag(v/A;). Since [|C||, = max()\;), D = diag(\;), 0 < a < 1, and Q is

an orthogonal matrix, for x # 0, we have

ﬂbx::xQUﬂW[—W%JnDWszo (9)
2

Thus C is symmetric positive semidefinite. 0

Next, using the W in Proposition 3.1, we define a preconditioner as follows:

I BW
Py = . (10)
O (I-we)T

Multiplying both sides of (1) by P,, equation (1) can be rewritten as

L B 3 f
Hu=0b, H:=P,H= , b:="P,b= , (11)



where A, B, and C are defined as in Proposition 3.1, f := f+BWg, and § := g—CWg.
Since A of (11) is nonsingular, we can apply the methods based on Schur complement
to (11).

The preconditioner P, is nonsingular, because it is upper triangular block matrix
and it’s diagonal block matrices I and (I — W ()T are nonsingular. So, (11) is equiv-
alent to (1) and the coefficient H becomes nonsingular. It is known that when A is
nonsingular, # is nonsingular if and only if S is nonsingular (see [3]). Because H can

be factorized as follows:

i A B I 0, A O I BA-!
BT —¢ BTA-1 o0 3 o 1 |
where
S:=C+BTA'B. (12)

Since H is nonsingular, S becomes nonsingular.

3.2. EIGENVALUES OF THE PRECONDITIONED MATRIX

In next section, we will propose a new error bound for an approximate solution
of (11). This method is based on results of an algebraic analysis of a preconditioner.
First, we consider an inclusion of all eigenvalues of the preconditioned matrix. For

(11), we define the following preconditioner:

A O
P = ; (13)

o S

where S :=C + BTA™'B.
In [2], Axelsson and Neytcheva have proved that all eigenvalues of the precondi-

tioned matrix P~'H are included in
1
-1, —=| U1, 2].
{ ’ 2:| [ ’ ]

17



We improve this inclusion of all eigenvalues of the preconditioned matrix as follows:

THEOREM 3.1. A preconditioner P is defined as (13). All eigenvalues of the

preconditioned matriz P~ H are included in

1—+5
( : ]

PROOF. Let pu # 0 be an eigenvalue of P~'H with an eigenvector (uT, UT)T # 0,

. 1++5
) 2 .

ie.,

A B u A O u

N N = ) : (14)
BT —C v O S

v

We show that ;= 1 if and only if v is a zero vector. If u = 1, the first equation

of (14) can be rewritten as
Au + Bv = Au.
Sine B is full rank, v = 0. If v = 0, the first equation of (14) can be rewritten as
Au = pAu. (15)

By (uT, UT)T # 0 and A is nonsingular, we have Au # 0. Thus = 1.

If ;o # 1, then v is a nonzero vector. In this case, (14) can be rewritten as

Au + Buv = uflu,

(16a)
BTy — Cv = puSv. (16b)
From (16a), we have
u= ! A™'Bu (17)
(n=1) ‘



Substituting (17) to (16b), we get the following equation:
(1S — (BT A™'B) — S)v = 0. (18)
Equation (18) can be rewritten as
BTA7'By = \Sv, (19)

where

(20)

Now, we try to include the eigenvalues of (19). First, we show 0 < A < 1.

If v # 0 and Cv = 0, then from the nonsingularity of S, it follows that BT A~'Bv #
0 and A = 1. Conversely, if A = 1, then Cv = 0.

If X # 1, then (19) can be rewritten as

BTA By =
YT

Since BTA™'B and C' are positive definite and semidefinite respectively and Cv # 0,
the generalized eigenvalues \/(1 — \) must be positive. Hence 0 < A < 1. We showed
0 < X< 1 for (19).

Since (20) and 0 < A < 1, we have

1<%Q+¢v:®g (1+V5),

1
2
and

1< (V- VATE) < 50— V)

Consequently, all eigenvalues of the preconditioned matrix P~1H are included in

(_1, 1—2\/3] Gl 1+

2
19

1,




3.3. NEW ERROR BOUND

From Theorem 3.1, we obtain the following rigorous error bound for (11).

THEOREM 3.2. Assume that A € R™"™ and C' € R™™ are symmetric positive
definite and semidefinite respectively, B € R"™™ has full rank, and S -= C+BTA™'B.
H and b are defined by (11). Let u* be a rigorous solution of (11). For any u € R,

we have

9 _ _ L
< A 5 -,
lu* —ull, < \/5—1maX<HA , S 2) b—Hu )
PrOOF. Obviously, we have
e — ull, < Hﬁrl b— Hu
2 2

Let £ be a nonsingular matrix such that ££7 = P. We define
G=LT"HLT (21)
Then, the inverse of # can be given as
H'=L7"g e

Since H and G are symmetric, we have

_— v L7TG L
H = max 7 ,
2 weR! v£0 vy
VLG L T LT L
= max
veRl, v20 | vITLTL 1y vTo
wl'Gw TPty
< max |————| max = ,
weRL, w#0 w=w veRL, v#£0 vTv
=g, P~
Hg 2 1Pl

20



From (21) and £LT = P, we have
G=LTPTHLT

Hence, G and P~'H have the same eigenvalues.

By Theorem 3.1, all eigenvalues of P~'H are included in

(_1’ 1 —2\/5] AR

2
Hence the norm of the matrix G~! satisfies

L,

2
1

then we obtain

2
<
27 /51

|7

1P,

Moreover, from (13), we have

[P, < max (|| 4

2’ Hg_l

)

In this thesis, when we compute the matrix norm ||S~!||5, we use the following
inequality:
~ ~ o\ 1
). (575)
2
~ -\ —1
(575)

The proof of this inequality can be found in [5]. Usually, when we compute ||(C' +

2 . (22)
Amin(C)

2

|5

oAl
2

BT A~ B) 7|, using the verification method, the main computing cost is %m3+4mn2+

Am?n + %n?’. The details are as follows:

the inverse of A : %m?’ ,

21



the inclusion of BTA™'B :  4mn? + 4m?n,

the norm of (C'+ BTA'B)~! : 5.

However, when we compute the right hand side of the inequality (22), the main

computing cost is %m?’ + 4m?2n + %n?’. The details are as follows:

the norm of A : an?,

the inclusion of BTB : 4m?n,

the norm of (BTB)~1:  1m?

the minimum eigenvalue of C : %m?’.

REMARK 3.1. Theorem 3.2 is the extension of Theorem 2.1 in [6]. If C'= O, then

Theorem 3.2 reduces to Theorem 2.1 in [6].

REMARK 3.2. By computing the matriz norms ||[A=Y|s, ||S™"2, and the resid-

/2
)1

wal ||b — Hully = (Hrng +||m2l3) 7, one can obtain two bounds for |u* — ull, from

Theorems 3.2 and 2.2. Comparing the two bounds, we can choose smaller one.

3.4. ERROR BOUNDS FOR PRECONDITIONED PROBLEM

In [5, 6], a useful preconditioner is proposed for (11). A method used the pre-
conditioner is efficient when ||(B”B)~!||5 is large. The error bound of Theorem 3.2
depends on ||S~!||, that includes ||(BTB)~!||;. Therefore, the error bound may be-
come large when (BT B)~!||, is large. However, when this method is used, the error
bound may be improved. To improve the error bound of Theorem 3.2, we apply the
preconditioning method to Theorem 3.2.

Let L € R™*™ be a nonsingular matrix. We define a preconditioner

I O
P = . (23)
O Lt

22



In this thesis, we use an approximation of the Cholesky factor of BTB as L. Multi-

plying both side of (11) by (23), then we have

A B T f
Py ~ B =P
BT —C y g
This can be rewritten as
A BLT x f
- - = . (24)
(BL_T)T —L oL T LTy L71g

Moreover, the residual (71, r2) of the approximate solution (z, y) satisfies

r1 A BLT x f

L~ 'r, (BL=T)T —L'CL T LTy L'

Applying Theorem 2.2 to (24), we immediately obtain Theorem 2.3. Similarly, by

applying Theorem 3.2 to (24), we have the following theorem:

THEOREM 3.3. Assume that A € R™™ and C € R™™are symmetric positive
definite and semidefinite respectively, B € R™™ has full rank, and L € R™™ s
nonsingular. Py is defined by (23). H and b are defined by (11). Let S, = L-'CL™T +
(BL""YTA-'BLT be Schur complement of A in the coefficient matriz of (24). Let

u* be a rigorous solution of (24). For any u € R', we have

[lu* — UHQ <

max <H%~1*1

1S711,) I1PF 1,

2’ Pi <B_QU>H2’

2
V5 —1

P> < masx (1, [[271],) -

23



PRrROOF. We have

lwt = ull, = |[PIPTH PP~ )|

2

IN

|PT|, | (PEPT)

-

2

Since P HP[ is symmetric, we have

|y

< max (Hﬁfl‘
2

o lIsl) -

V5 -1
Moreover, from (23), we have

1P, < max (1, [IL7H],) -

O

In this thesis, when we compute the matrix norm ||S; |2, we use the following

inequality:

bl o )

2

IS, < -
Amin(L~1C'L-T)

2

1+ HAH2 L7 (B7B) L

The proof is similar to the proof of (22).

3.5. VERIFICATION METHODS

We have to further consider rounding errors to compute the rigorous error bounds
based on Theorems 3.2 and 3.3. We use interval arithmetic to take care of rounding
errors.

For obtaining the rigorous error bounds based on Theorems 3.2 and 3.3, we need
to compute the upper bound of the 2-norms of a symmetric matrix and its inverse.
To compute these upper bounds, we use two methods which are pointed out in Rump
9, Eq.(3.19), (5.10-12)]. First, we show a method of computing the error bound of

the 2-norm of a matrix.

24



METHOD 3.1 (Verification method for the 2-norm of a matrix). Assume that M
is symmetric. Let p be an approzimation of | M||,, for any M € R™™. We define

p=(1+e)p for any e > 0. If

MT =M, pI—M>=0 and pl+M >0

18 satisfied, then

1My < p.

A method of computing the error bound of the 2-norm of an inverse matrix is

studied by Rump [9, p12].

METHOD 3.2 (Verification method of the 2-norm of an inverse matrix). We define
p=[lLpG Lol

where G € R™™ 1s symmetric, D € R™*"™ is symmetric positive definite, and Lp is the
Cholesky factor of D such that Lp LY = D. And we define q is an approzimation of the
minimum eigenvalue of a generalized eigenvalue problem Gz = ADx and ¢ = (1 —e)q

forany 0 <e<1. If
g>0 and G—qD =0

18 satisfied, then
pP=q

In the actual computing, we use the function isspd of INTLAB [11] to verify the
positive definiteness. INTLAB is a toolbox of MATLAB for using interval arithmetic.
This function uses the Cholesky decomposition when the matrix is symmetric, so the

computational cost is O(n3/3). If a matrix is sparse, then the computational cost

25



is smaller. Note that when we compute ||C||2, ||L7!|]2, and other norms using the
function isspd, we set e = 1075, 107, and 1072, respectively.
Obviously, an error bound of Theorem 3.2 depends on the choice of W. In this

thesis, if A is singular, we consider the following choice:

o (0%

W =T C = O or W =
5, (€9 T

I (C#0),

where « satisfies 0 < a < 1. We set W = O if A is nonsingular.

When we compute the rigorous error bounds using a preconditioned method (The-
orem 3.3), we use the technique in [5, 6]. Let L be an approximation of the Cholesky
factor of BT B such that LLT ~ BTB. Let R, be an approximation of the inverse of L
such that le ~ I. Define the error matrices by E; := LLT — BT B and Ey = Rlﬁ—l.
Moreover, let Es := Ey + EQT + EgEg — RlElR;‘F be.

If [[E5]], < 1 is satisfied, then, by [5], we have the following inequalities:

1

- N\ —1
R—T(BTB) RY <—
H’ Pl T 1= (1Bl

and

2
<1+ 1Bl -
2

s < | (r57)’
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CHAPTER 4

NUMERICAL EXPERIMENTS
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To illustrate the usefulness of the proposed methods, we carried out some numer-
ical examples and compared the proposed verification methods based on Theorems
3.2 and 3.3 with the methods based on Theorems 2.2 and 2.3, the method studied
by Rump [10], and the method studied by Minamihata, Sekine, Ogita, Rump, and
Oishi [7, Theorem 3.3]. Here, Rump’s method and Minamihata-Sekine-Ogita-Rump-
Oishi’s method are the verification methods for an approximate solution of general

linear systems. We briefly show these methods.

THEOREM 4.1 (Rump’s method[10]). Let H € R™™ and b € R" be given. Let
7 € R" be an approzimation of Hx = b and R € R™™ be an approzimation of H~1.
Assume that v > 0 € R" satisfies u := (RH)v > 0. Let D € R"™" be the diagonal
part of (RH). w € R" is defined as:

ik

Wy 1= max for 1<k <n.

1<i<n U;
where G .= I — (RH)D™' > O. Then RH is nonsingular and
|H ' — 3| < (D' +ovwh)|c|], c¢:=R(b— HT).

THEOREM 4.2 (Minamihata et al. method[7]). Let H, R € R™*" and b, & € R"
be given. ¢, u, v, w, and D are defined as in Theorem 4.1. We define D, :=

diag(si, ..., s,) € R™™ with
sp=upwp >0 (1 <k<n).
Then RH is nonsingular and
|H ' — 2| < (D" +vw") (I + Ds)™Yc|.

Numerical experiments were carried out on the following environment:

e OS : CentOS 6.6
e CPU :2.6GHz x 24 Intel(R) Xeon(R) CPU E5-2690
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e memory: 252.2GB
e tool : MATLAB R2016a, INTLAB V9 [11]

We use INTLAB [11] to take care of rounding errors.

4.1. EXAMPLE 1

We consider linear systems as follows:

A B x f
Hu = = : (25)
BT —C Yy g
where
X O @) T
A= , B= =)= (). (26)
O O Y Ty f2

X € Rmxm (e R™™ are symmetric positive definite, Y € R™*™ has full rank,
r1, fr € R™, x9, fo € R gy, g€ R™ and n = ny + ny. In this example, we set
ny = 2nos.

The matrices X and C are generated using the function sprandsym of MATLAB

as follows:

X =10 x sprandsym(ny, 5/ny, 1072, 1),

C = 0.1 x sprandsym(m, 5/m, 107*,1).

Here, the function sprandsym(size, density, rc, kind) returns a symmetric random,
size X size, sparse, positive definite matrix with a reciprocal condition number equal
to rc and approximately density X size X size nonzeros. The matrix Y is generated

using the function sprand of MATLAB as follows:

Y = sprand(ny, m, 5/ny, 1071).
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Here, the function sprand(row, col, density, rc) returns a random, row X col, sparse
matrix with a reciprocal condition number equal to rc and approximately density X
row X col nonzeros. The vectors fi, fo, g are defined as Hu where u is all-ones vector.
An approximate solution of (25) is obtained using the function mldivide of MAT-
LAB. In this example, since A is singular, we set W = ﬁ] where oo = 0.5.
In Figure 4.1, error bounds of each methods for example 1 and exact errors are
shown. Since we know an exact solution u* and have an approximation u, we calculate

an upper bound of ||u* — ulls and show it as the exact error.
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Matrix Size x10%

F1GURE 4.1. Error bounds for example 1.

In Figure 4.2, CPU time of each methods for example 1 are shown.

In Table 4.1, we show numerical results of error bounds and CPU time for example
1. In this table, quantities inside square brackets are CPU time (sec). Moreover,
“Apptime” is CPU time (sec) of computing the approximation, and “Cond Num” is
the condition number of the coefficient matrix. Residual ||b — Hul|; are shown in 4th
TOwW.

Since we know the exact solution, we show the upper bounds of ||u* — ul|s as the
exact error in the 5th row. In the 6th to 8th rows of this table, we show the upper

bounds of the norm of quantities needed in Theorem 3.2. Similarly, in the 13th to
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F1GURE 4.2. CPU time for example 1.

15th rows, we show the upper bounds of the norm of quantities needed in Theorem
3.3.

In this example, since we know the eigenvalues of X and C' and the singular values
of Y, we can calculate the 2-norm of the inverse of A. ||A~"||; = max (|| X2, 2||C]|2
1(YYT)7Y|4) & 2.000%10. It is shown that the computed values of the norm are near
the calculated ones. The error bounds are as in Table 4.1.

The new method and the new preconditioned method give error bounds sharper
than those obtained by the methods based on Theorems 2.2 and 2.3. CPU time of the
methods based on Theorem 3.2 and 2.2 are almost same. The method on Theorem
3.2 is faster than the verification methods for general linear systems. CPU time of the
preconditioned methods based on Theorems 3.3 and 2.3 are almost same. However,
only in this example, CPU time of the preconditioned methods are longer than the
verification methods for general linear systems. Because L in this example is more
dense than one in other examples. Therefore, the computing cost of ||L7!||, and

|LT(BTB)~'L||> become high.
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TABLE 4.1. Error bounds and CPU time for example 1.

(n, m) (1500, 500) (3000, 1000) (6000, 2000) (12000, 4000) (24000, 8000)
Apptime [5.128¢-025] [2.852e-01s] [1.676e+00s] [1.195¢+01s] [1.094e+02s]
Cond Num 2.163e+02  2.773e+02  3.454e+02 4.321e+02 3.700e+02
|b — Hul|2 1.421e-14 1.776e-14 2.309e-14 2.132¢-14 2.309e-14
lu* — w2 2.680e-14 3.176e-14 4.696e-14 6.255e-14 9.653e-14
AT, 2.020e+01  2.020e+01  2.020e+01  2.020e+01  2.020e+01
151, 1.651e+03  2.748¢+03  2.947e+03  1.948¢+03  2.400e+03
15— Hul, 1.423e-14  1.776e-14  2.309e-14  2.132¢-14 2.300¢-14
Theorem 3.2 3.800e-11 7.899¢-11 1.101e-10 6.717e-11 8.966e-11
(New) [3.037e-01s] [1.068¢+00s] [5.177e+00s] [2.818e+01s] [2.204e-+02s]
Theorem 2.2 4.971e-08 1.290e-07 1.895e-07 1.741e-07 3.049e-07
(Previous) [3.948e-01s] [1.467e+00s] [5.936e+00s] [3.281e+01s]  [2.441e+02s]
15, 1.010e+01  1.010e+01  1.010e+01  1.010e+01  1.010e+01
1L, 1.283e+01  1.664e+01  1.725e+01  1.395¢+01  1.552e+01
IPy(b—Hu)|s 1.423e-14  1.776e-14  2.309e-14 2.132¢-14 2.309¢-14
Theorem 3.3 5.966e-12 9.664e-12 1.302e-11 9.723e-12 1.172e-11
(New) [8.413e-01s] [4.848e+00s] [3.325e+01s] [3.028e+02s]  [2.400e+03s]
Theorem 2.3 4.216e-10 7.118e-10 1.077e-09 1.349e-09 1.829e-09
(Previous) [8.451e-01s] [4.770e+00s] [3.301e+01s] [2.896e+02s]  [2.394e+03s]
Rump’s 4.949e-14 6.547e-14 4.942¢-14 1.269e-13 7.438e-14
method [5.677e-01s] [2.635e+00s] [1.369e+01s] [8.318e+01s]  [6.155e+02s]
Minamihata’s  4.949e-14 6.547e-14 4.942e-14 1.269e-13 7.438e-14
method [5.739e-01s] [2.741e+00s] [1.433e+01s] [8.443e+01s]  [6.099e+02s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition
number of the coefficient matrix.

4.2. EXAMPLE 2

We consider linear systems as follows:

al 0 0
0 0 61 T
Hu = = d : (27)
0 0 (] g
0 plI
0 —f

where a = 2.0, f = 1.2, v = 1.5. The vectors f, g are defined as Hu where u is

all-ones vector.
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An approximate solution of (27) is obtained using the function mldivide of MAT-

LAB. In this example, since A is singular, we set W =

ﬁ[ where o = 0.5.

In Figure 4.3, error bounds of each methods for example 2 are shown.
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FI1GURE 4.3. Error bounds for example 2.

In Figure 4.4, CPU time of each methods for example 2 are shown.
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FI1GURE 4.4. CPU time for example 2.

In Table 4.2, we show numerical results of error bounds and CPU time for example

The new method and the new preconditioned method give error bounds sharper

than those obtained by the methods based on Theorems 2.2 and 2.3. The new method
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TABLE 4.2. Error bounds and CPU time for example 2.

(n, m) (2001, 1001) (4001, 2001) (8001, 4001) (16001, 8001) (32001, 16001)
Apptime 1.777e-03 4.130e-03 7.690e-03 1.515e-02 3.271e-02
Cond Num 7.111e+00 7.111e+00 7.111e+00 7.111e+00 7.111e+00
b — Hull 4441e-16  4441e-16  4.441e-16  4.441e-16 4.441¢-16
Theorem 3.2 5.050e-15 5.050e-15 5.050e-15 5.050e-15 5.050e-15
(New) 8.969¢-025]  [2.903¢-015]  [7.210e-01s]  [1.969e+00s]  [6.597e+00s]
Theorem 2.2 7.933e-13 1.121e-12 1.584e-12 2.240e-12 3.167e-12
(Previous) [1.257e-01s] [3.331e-01s| [7.824e-01s] [2.081e+00s]  [6.774e+00s]
Theorem 3.3 3.000e-15 3.000e-15 3.000e-15 3.000e-15 3.000e-15
(New) [1.245e-01s]  [4.630e-01s] [1.303e+00s] [3.977e+00s|  [1.431e+401s]
Theorem 2.3 1.863e-13 2.631e-13 3.716e-13 5.252e-13 7.423e-13
(Previous) [1.262¢-01s]  [3.256e-01s]  [7.971e-01s]  [2.092e+00s|  [6.804e+00s]
Rump’s 3.701e-16 3.701e-16 3.701e-16 3.701e-16 3.701e-16
method [1.439e+00s] [7.429e+00s] [3.891e+01s] [2.591e+02s]  [1.973e+03s]
Minamihata’s ~ 3.701e-16 3.701e-16 3.701e-16 3.701e-16 3.701e-16
method [1.511e+00s] [7.690e-+00s] [3.962e+01s] [2.626e+025]  [1.995e+03s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition
number of the coefficient matrix.

is faster than other verification methods. The new preconditioned method is faster

than the verification methods for general linear systems.

4.3. EXAMPLE 3 (STOKES EQUATION [4, §6])

We consider saddle point linear systems arising from the mixed finite element

discretization of the stationary Stokes equation:

;

—vAu+Vp=f in €,
—divu=0 in €,
wu=0 on 01,

Jo pdx=0,

\
where Q = (0, 1) x (0, 1), 09 is the boundary of €, v is a positive parameter, f is a

given force field, u : Q — R? is a velocity field, and p : Q — R is a pressure field.
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We reformulate the stationary Stokes equation into a weak formulation with a

penalty term [4, §6] as follows:

v(Vu, Vo) + (Vp, v) = (f, v) , Vv € H,
(div u, q) —t*(p, q) =0 , Vg€ L§.

In this example, we set v = 1 and t = 1072.

We apply a mixed finite element approximation with uniform triangular meshes,
where the velocity is approximated by the standard piecewise quadratic basis func-
tions and the pressure is approximated by the standard piecewise linear basis func-
tions. Then, we obtain a discretized equation (11). An approximate solution of (11)
is obtained using the function mldivide of MATLAB. We set a = 0 because A is

symmetric positive definite.
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FIGURE 4.5. Error bounds for the Stokes equation.

In Figure 4.5, error bounds of each methods for the Stokes equation are shown.

In Figure 4.6, CPU time of each methods for the Stokes equation are shown.

In Table 4.3, we show numerical results of error bounds and CPU time for the
Stokes equation. The new method gives error bounds sharper than those obtained by
the method based on Theorem 2.2, although CPU time of two methods are almost

same. Similarly, the new preconditioned method gives error bounds sharper than
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TABLE 4.3. Error bounds and CPU time for the Stokes equation.

(n,m) (882,143)  (3362,483)  (7442,1023) (13122,1763) (20402,2703)
Apptime 7.038e-03 1.152¢-01 8.546e-01 3.822e+00 1.247e+01
Cond Num 4.098e+-05 1.477e+4-06 3.205e+06 5.595e+06 8.645e+4-06
b — Huls 5.708e-16 1.047e-15 1.590e-15 2.073e-15 2.594e-15
Theorem 3.2 3.435e-11 1.400e-10 3.870e-10 6.193e-10 1.098e-09
(New) [5.441e-02s]  [4.004e-01s| [1.580e+00s| [5.720e+00s] [1.645e+401s]
Theorem 2.2 8.697e-13 6.726e-12 2.741e-11 5.799e-11 1.279e-10
(Previous) [8.094e-02s]  [7.163e-01s]  [2.985e+00s] [1.220e+01s] [3.571e401s]
Theorem 3.3 3.609e-09 8.649e-08 6.152e-07 2.542¢-06 7.545e-06
(New) [5.6520-025]  [4.438¢-01s] [1.603¢+00s] [5.657e-+00s] [1.675¢+01s]
Theorem 2.3 4.137e-11 5.050e-10 2.419e-09 7.640e-09 2.265e-08
(Previous)  [8.482¢-025] [7.615¢-01s]  [3.339e-+00s] [1.349e+01s] [3.947e+01s]
Rump’s 2.197e-14 6.250e-14 1.168e-13 2.060e-13 3.314e-13
method [1.962e-01s] [2.626e+00s] [1.643e+01s] [6.831le4+01s] [2.396e+402s]
Minamihata’s  2.197e-14 6.250e-14 1.168e-13 2.060e-13 3.314e-13
method 2.214e-01s] [2.738¢+00s] [1.676e+01s] [7.078¢+01s]  [2.430e+02s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition
number of the coefficient matrix.

those obtained by the method based on Theorem 2.3, although CPU time of two

methods are almost same. Moreover, the new methods are faster than the verification

methods for approximate solutions of general linear systems.
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4.4. EXAMPLE 4 (THE BRINKMAN PROBLEM [12])

We consider saddle point linear systems arising from the finite element discretiza-

tion of the Brinkman problem:

—vAu+u+ Vp= f(x) Vre,
p=f(z) (28)
divu = g(x) VreQ,

where v is the fluid viscosity and Q = (0, 1) x (0, 1) x (0, 1), f(x) and g(z) are
given force fields, u :  — R? is a velocity field, and p :  — R is a pressure field.

By introducing the vorticity variable
oc=ccurlu, €=+,

then we have the following weak formulation:

(o, T) —e(u, curl 7) = 0,
(div u, q) = (9,9,
—e(curl o, v) +(p, div v) —e2(div w, divv) — (u, v) = —(f, v),

where

V1 € Hy(curl; Q) := {7 € Hy|curl T € Hj, 7 x n =0 on 60},
Vv € Hy(div; Q) := {v € Hyldivv € Hj, v-n =0 on dQ},
Vq € Lg,
and n € R? is the unit outward normal vector.
By applying the Q1 finite element method on a uniform cubic mesh to the above

weak formulation, we obtain a discretized equation (1). An approximate solution of

(1) is obtained using the function mldivide of MATLAB.
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FI1GURE 4.7. Error bounds of Theorem 3.2 for the Brinkman problem
with different a.. (n,m) = (256, 192).

In this example, f(x), g(x) and Dirichlet boundary conditions are chosen such

that

sin(mz) cos(my) — cos(mwz) sin(mx)

S
~—

Uey = | sin(mz)sin(nr

sin(mz) sin(mwy)
and

Pex = 8.0sin(mx) sin(my) sin(7z),

are the exact solutions of (28). We set v = 1.
In this example, since A is singular, we set W = ﬁ] where 0 < o < 1. Figure 4.7
shows error bounds obtained by Theorem 3.2 for the Brinkman problem with (n, m) =

(256, 192) changing « from 0.01 to 0.99. Note that error bounds don’t diverge when
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o = 1, because the error bound of ||A~"|, is larger than one of ||S~!||, regardless of

the changing of a.
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FIGURE 4.9. CPU time for the Brinkman problem.

In Figure 4.8, error bounds of each methods for the Brinkman problem are shown.
In Figure 4.9, CPU time of each methods for the Brinkman problem are shown.
In Table 4.4, we show numerical results of error bounds and CPU time for the

Brinkman problem with a = 0.99.
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TABLE 4.4. Error bounds and CPU time for example 3. o« = 0.99.

(n,m)

(5324,3993)

(8788,6591)

(13500,10125)

(19652,14739)

(27436,20577)

Apptime [2.610e-01s]  [8.142e-01s]  [2.398e4+00s]  [6.339¢+00s]  [1.553e+01s]
Cond Num 2.058e+-08 5.054e+4-08 8.492e+08 2.890e+09 4.115e+09
Residual 5.854e-14 9.106e-14 1.353e-13 1.966e-13 2.496e-13

Theorem 3.2 2.139e-05 6.977e-05 1.842e-04 5.712e-04 9.487e-04

(New) [8.354e+00s] [2.150e+01s] [4.549e+01s]  [9.031e-+01s]  [1.705e+02s]
Theorem 2.2 1.068e+03 7.770e+03 5.048e+04 3.998e+-05 1.066e4-06
(Previous) [1.967e+01s] [5.860e+01s] [1.540e+02s]  [4.313e4+02s]  [1.119e+03s]
Theorem 3.3 7.265e+01 4.437e+02 1.531e+03 1.059e4-04 2.201e4-04
(New) [1.301e+01s] [3.272e+01s] [6.762e4+01s]  [1.258e+02s]  [2.307e+02s]
Theorem 2.3 1.676e+01 1.094e+-02 4.462e+02 3.712e+03 8.051e4-03
(Previous) [1.942e+01s] [5.663e+01s] [1.490e+02s]  [4.245e4+02s]  [1.095e+03s]
Rump’s 1.543e-10 7.788e-10 9.099e-10 2.710e-09 5.251e-09

method [2.111e+01s] [7.711e+01s] [2.515e402s]  [7.536e+02s]  [2.077e+03s]
Minamihata’s ~ 1.543e-10 7.788e-10 9.099e-10 2.710e-09 5.251e-09

method [2.215e+01s] [7.686e+01s] [2.613e+02s]  [7.669e+02s]  [2.014e+03s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition
number of the coefficient matrix.

In this example, the method based on Theorem 3.2 gives error bounds sharper

than those obtained by the methods based on Theorems 2.2 and 2.3, although CPU

time of Theorem 3.2 is less than those of Theorems 2.2 and 2.3.

REMARK 4.1. In four examples, numerical results show that CPU time of the

proposed method is less than those of other methods and error bounds of the proposed

method is sharper than those based on Theorem 2.2.
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CHAPTER 5

CONCLUSION

41



For a symmetric saddle point linear systems with both diagonal block matrices
A and C are symmetric positive semidefinite, we proposed fast verification methods
based on Schur complement.

First, because Schur complement require the regularity of A in the coefficient
matrix H, we proposed a proposition and presented the method to regularize a matrix
A. we defined the preconditioner with Schur complement and proposed the theorem
of an inclusion of all eigenvalues of the preconditioned matrix. Using the absolute
minimum eigenvalue obtained by the above theorem, we proposed the theorem of a
new error bound for an approximation of the saddle point linear systems. In addition,
we showed the theorem of another new error bound applying the technique studied in
the previous works. We provided a verification method based on the above theorems.

We carried out four numerical experiments for illustrating the usefulness of pro-
posed verification methods. These experiments include artificial ones and ones arising
from actual problems. We compared proposed methods with the methods studied by
Chen and Hashimoto and the methods using an approximate solution of the inverse
of the coefficient matrix. The proposed method could be computed faster than other
methods. And the error bound obtained by the proposed method is smaller than one

by Chen and Hashimoto’s methods.
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