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Chapter 1

Introduction
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Let R be the set of real numbers. Let m and n be positive integers. Throughout

this thesis, let A ∈ R
n×n and C ∈ R

m×m be symmetric positive semidefinite matrices

with m ≤ n, and B ∈ R
n×m be a full rank matrix. Let x, f ∈ R

n and y, g ∈ R
m.

In this thesis, we put l = n + m. We consider a numerical method for verifying

the accuracy of numerical solutions of the following symmetric saddle point linear

systems:

Hu = b, (1)

where

H =

⎛
⎝ A B

BT −C

⎞
⎠ , u =

⎛
⎝ x

y

⎞
⎠ , b =

⎛
⎝ f

g

⎞
⎠ .

We treat the case where H is nonsingular.

Purposes of this study are to verify the existence and the uniqueness of an exact

solution of (1) and to compute an error bound between an approximate solution and

the exact solution of (1) such that

‖u∗ − u‖2 ≤ κ, for u ∈ R
l,

where u∗ is the exact solution of (1). In this thesis, such a method is called a verifi-

cation method.

1.1. Background

In a scientific computation, when we consider a natural or a social phenomenon

and compute it’s numerical solution, the obtained numerical solution include various

errors as Figure 1.1. In many case, when we compute an error bound between the

approximation and the exact solution using the verification method, we take into

account approximation errors and numerical errors (Error 2 and Error 3 in Figure 1.1).

In this thesis, especially we focus on numerical errors (Error 3 in Figure 1.1).
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Figure 1.1. Numerical computing models and errors.

Here, we show an easy example of numerical errors. We consider the following

system:

⎛
⎝ 64919121 −159018721

41869520.5 −102558961

⎞
⎠
⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ 1

0

⎞
⎠ .

In this problem, the exact solution is

⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ 205117922

83739041

⎞
⎠ .

However, when we compute it using Gaussian elimination with IEEE 754 double-

precision floating point numbers, we get the following solution:

⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ 106018308.0071325

43281793.0017831

⎞
⎠ .

This may be an artificial example. However, even such simple linear systems will

cause trouble. So, it is important to verify the accuracy of obtained solutions.

On the other hand, saddle point linear systems described by (1) arise from the

various problems [3, 4, 6, 12]. For example, we apply a mixed finite element method

to partial differential equations, then we get a discretized equation having saddle point

form. Moreover, when we solve a convex optimization problem using an interior point
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algorithm, we need to solve saddle point linear systems. According to the ubiquity of

saddle point systems, methods and results on their numerical solution have appeared

in many books and papers. Therefore, to verify the accuracy of an approximation of

linear systems in saddle point form is very important.

1.2. Purpose

A large amount of work has been devoted to developing efficient algorithms for

solving (1) (see [3]). For example, as a method for solving (1) with the positive

definiteness of A, there is a method using Schur complement. Here, Schur complement

of A in H is defined as S = C + BTA−1B. Using Schur complement, we can obtain

a solution as follows:

Sy = BTA−1f − g,

Ax = f −By.

(2)

In optimization, structural analysis, and electrical engineering, this method is called

the range-space method, the displacement method, and the nodal analysis method,

respectively [13]. Another method is the method that is based on the null space

for the matrix BT . In optimization, this method is popular and is called the reduced

Hessian methods [8, 14]. However, this method requires C = O. There methods solve

two reduced systems whose size is smaller than the size of original one. Also, some

iterative methods like the Arrow-Hurwicz method and the Uzawa method [1] have

been developed. Moreover, when A is singular, the augmented Lagrangian method

can be used. The idea of this mehtod is to replace the original systems with the

singularity of A with the ones with the nonsingularity of A. In this thesis, we mainly

consider the verification method using Schur complement.

In general, the verification method for solving linear systems uses an approxima-

tion of the inverse of the coefficient matrix. However, in [5, 6], authors have proposed

the verification methods using the special structure of saddle point matrix without
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using an approximation of H−1. In [5], Chen and Hashimoto have studied the ver-

ification methods for an approximate solution of (1) with A is symmetric positive

definite. These methods are based on the system (2). In [6], Kimura and Chen have

studied the verification methods for approximate solutions of (1) with C = O. These

methods use the preconditioner with Schur complement. These methods are efficient

compared to methods using an approximation of H−1 for saddle point linear systems.

However, a verification method for a solution of (1) with both A and C are symmetric

positive semidefinite was not developed yet. Therefore, in this thesis, we consider the

case where both A and C are symmetric positive semidefinite matrices.

We propose fast verification methods using results of an algebraic analysis of a

block diagonal preconditioner. These method are based on the extension of theorem

studied by Kimura and Chen [6]. These method can be used alternatively to the meth-

ods developed by Kimura and Chen [6], or to the ones by Chen and Hashimoto [5].

All quantities required to compute in the proposed verification method are also re-

quired to compute in executing Chen-Hashimoto’s method. Thus, once all quantities

needed in Chen-Hashimoto’s methods are computed, then all quantities needed to

execute the proposed verification methods are provided.

1.3. Organization

In Chapter 2, we denote some notations and definitions. And we review some

previous works. In Chapter 3, we propose new verification methods for approximate

solutions of (1). First, we show a method of regularizing A of (1). Next, we define

a preconditioner and propose a theorem for all eigenvalues of the preconditioned

matrix. And, we propose a new error bound for (1) using the above theorem. In

Chapter 4, we compare our verification methods with Chen-Hashimoto’s methods

and the verification methods for an approximate solution of general linear systems.

We show numerical results to illustrate the effectiveness of the proposed methods.

Finally, we conclude results of our studies in Chapter 5.
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Chapter 2

Preliminaries
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2.1. Notations and Definitions

Let R be the set of real numbers. Let m and n be positive integers (n ≥ m). We

set l = m + n. The superscript T is the transpose. I is an identity matrix and O is

a zero matrix. A positive definite or semidefinite matrix is defined as follows:

Definition 2.1.

Let M ∈ R
n×n and z ∈ R

n.

M is positive definite if zTMz > 0 for all z �= 0.

M is positive semidefinite if zTMz ≥ 0 for all z �= 0.

Moreover, M � O (M 	 O) denote that M is positive (semi-)definite. Through-

out this thesis, let A ∈ R
n×n be a symmetric positive semidefinite matrix and

Ã ∈ R
n×n be a symmetric positive definite matrix. Let B, B̃ ∈ R

n×m be full rank

matrices and C, C̃ ∈ R
m×m be symmetric positive semidefinite matrices. For the

matrix

H =

⎛
⎝ A B

BT −C

⎞
⎠ ,

Schur complement of A in H is defined as S := C +BTA−1B.

The comparison matrix 〈M〉 is defined as follows:

〈M〉ij :=
⎧⎨
⎩ |Mij| if i = j

−|Mij| if i �= j
.

Let N ∈ R
n×m. The infinity norm of a matrix N is defined as follows:

‖N‖∞ := max
1≤i≤n

m∑
i=1

|Nij|.

The 2-norm of N is defined as follows:

‖N‖2 :=
√

λmax(NTN).

8



where λmax(N) is a maximum eigenvalue of N .

2.2. Previous works

Here, we briefly review some previous works.

Theorem 2.1 is studied by Kimura and Chen [6, Theorem 2.1]. This theorem can

be applied to the following equation:

Hu = b, H =

⎛
⎝ A B

BT O

⎞
⎠ , b =

⎛
⎝ f

g

⎞
⎠ , (3)

where A ∈ R
n×n is symmetric positive semidefinite and B ∈ R

n×m has full rank.

Theorem 2.1 ([6, Theorem 2.1]). Assume that A ∈ R
n×n is symmetric positive

semidefinite and B ∈ R
n×m has full rank. Let W be an m × m symmetric positive

semidefinite matrix such that

Ã = A+BWBT ,

is symmetric positive definite. Let u∗ be a rigorous solution of (3). For any u ∈ R
l,

we have

‖u∗ − u‖2 ≤
2√
5− 1

max
(∥∥∥Ã−1

∥∥∥
2
,
∥∥∥Ã∥∥∥

2

∥∥∥(BTB
)−1

∥∥∥
2

)
‖b−Hu‖2 .

Theorem 2.2 is studied by Chen and Hashimoto [5, Theorem 1]. The authors

consider the following equation:

H̃u = b̃, H̃ =

⎛
⎝ Ã B̃

B̃T −C̃

⎞
⎠ , b̃ =

⎛
⎝ f̃

g̃

⎞
⎠ , (4)

where Ã ∈ R
n×n and C̃ ∈ R

m×m are symmetric positive definite and semidefinite

respectively, B̃ ∈ R
n×m has full rank.

Theorem 2.2 ([5, Theorem 1]). Assume that Ã ∈ R
n×n and C̃ ∈ R

m×m are

symmetric positive definite and semidefinite respectively, B̃ ∈ R
n×m has full rank,

9



and S̃ := C̃ + B̃T Ã−1B̃. Let u∗ =
(
x∗T , y∗T

)T
be a rigorous solution of (4). For any

u =
(
xT , yT

)T ∈ R
l, we have the following inequalities:

‖x∗ − x‖2 ≤
∥∥∥Ã−1

∥∥∥
2

(
‖r1‖2 +

∥∥∥B̃∥∥∥
2
‖y∗ − y‖2

)
,

‖y∗ − y‖2 ≤
∥∥∥S̃−1

∥∥∥
2

(
‖r2‖2 +

∥∥∥B̃T Ã−1
∥∥∥
2
‖r1‖2

)
,

and

∥∥∥S̃−1
∥∥∥
2

≤

∥∥∥Ã∥∥∥
2

∥∥∥∥(B̃T B̃
)−1

∥∥∥∥
2

1 +
∥∥∥Ã∥∥∥

2

∥∥∥∥(B̃T B̃
)−1

∥∥∥∥
2

λmin(C̃)

, (5)

where the residual vectors r1, r2 is defined as

⎛
⎝ r1

r2

⎞
⎠ =

⎛
⎝ Ã B̃

B̃T −C̃

⎞
⎠
⎛
⎝ x

y

⎞
⎠−

⎛
⎝ f̃

g̃

⎞
⎠ ,

and λmin(C̃) is a minimum eigenvalue of C̃.

Theorem 2.3 is studied by Chen and Hashimoto [5, estimation (15) and (16)]. The

authors treat the following equation:

⎛
⎝ Ã B̃L−T

(B̃L−T )T −L−1C̃L−T

⎞
⎠
⎛
⎝ x

LTy

⎞
⎠ =

⎛
⎝ f̃

L−1g̃

⎞
⎠ . (6)

where Ã ∈ R
n×n and C̃ ∈ R

m×m are symmetric positive definite and semidefinite

respectively, B̃ ∈ R
n×m has full rank, and L ∈ R

m×m is a nonsingular matrix.

Theorem 2.3 ([5, estimation (15) and (16)]). Assume that Ã ∈ R
n×n and C̃ ∈

R
m×m are symmetric positive definite and semidefinite respectively, B̃ ∈ R

n×m has

full rank, and L ∈ R
m×m is nonsingular. Let u∗ =

(
x∗T , y∗T

)T
be a rigorous solution

of (6). Let Sl = L−1C̃L−T + (B̃L−T )T Ã−1B̃L−T be Schur complement of Ã in the
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coefficient matrix of (6). The Residual vectors r1, r2 are defined as in Theorem 2.2.

For any u =
(
xT , yT

)T ∈ R
l, we have the following inequality:

‖x∗ − x‖2 ≤
∥∥∥Ã−1

∥∥∥
2

(
‖r1‖2 +

∥∥∥B̃L−T
∥∥∥
2

∥∥LT (y∗ − y)
∥∥
2

)
,

∥∥LT (y∗ − y)
∥∥
2

≤ ∥∥S−1
l

∥∥
2

(∥∥L−1r2
∥∥
2
+

∥∥∥∥(B̃L−T
)T

Ã−1

∥∥∥∥
2

‖r1‖2
)
,

and

∥∥S−1
l

∥∥
2

≤

∥∥∥Ã∥∥∥
2

∥∥∥∥LT
(
B̃T B̃

)−1

L

∥∥∥∥
2

1 +
∥∥∥Ã∥∥∥

2

∥∥∥∥LT
(
B̃T B̃

)−1

L

∥∥∥∥
2

λmin(L−1C̃L−T )

.
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New Verification Methods
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3.1. Regularization of A

In this thesis, we will propose methods based on Schur complement. However,

since A of (1) is symmetric positive semidefinite, that may be singular, we can’t

directly apply those methods to (1). So, in this section, we show a method that

regularize A of (1).

First, we show the following proposition and prove it.

Proposition 3.1. Let A ∈ R
n×n and C ∈ R

m×m be symmetric positive semidef-

inite, and B ∈ R
n×m has full rank. Assume that W ∈ R

m×m is symmetric positive

definite. Under the conditions that H of (1) is nonsingular, there exists a matrix W

satisfying the following conditions:

(a) Ã := A+BWBT is a symmetric positive definite matrix,

(b) B̃ := B − BWC has full rank,

(c) C̃ := C − CWC is a symmetric positive semidefinite matrix.

Proof. We use the method of proof by contradiction to prove that the condition

(a) is satisfied. We assume that x̄ �= 0 is a solution of Ãx̄ = 0, then we have

x̄T Ãx̄ = x̄TAx̄+ x̄TBWBT x̄ = 0.

Since A and BWBT are positive semidefinite, we obtain

x̄TAx̄ = 0 and x̄TBWBT x̄ = 0.

By the positive definiteness of W , we have

BT x̄ = 0.

14



Moreover, sinceA is symmetric positive semidefinite, we can factorize asA = LAL
T
A(LA ∈

R
n×n) and the following equations are satisfied

x̄TAx̄ = x̄TLAL
T
Ax̄ = 0.

Then

‖LT
Ax̄‖ = 0.

Thus, we have

Ax̄ = 0.

Let z = (x̄, 0)T , then Hz = 0. However, this contradicts to the fact that H is

nonsingular. Thus, Ã is symmetric positive definite.

It remains to prove that conditions (b) and (c) are satisfied. In the case of C = O,

it is clear to satisfy conditions (b) and (c). In this case, W can be chosen as follows:

W =
α

‖BBT‖2
I,

where α satisfies 0 < α < 1 (See [6]).

Next, we consider the case C �= O. For example, we can take

W =
α

‖C‖2
I, (7)

where α satisfies 0 < α < 1. Denote λi (i = 1, . . . , m) as the nonnegative eigenvalues

of C. Since C is symmetric positive semidefinite, C can be factorized as

C = QTDQ, (8)

where D is a diagonal matrix whose diagonal elements are λi (i = 1, . . . , m) and Q

is an orthogonal matrix.

15



By (7), (8), and B̃ := B − BWC, we have

B̃ = B(I −WC),

= B(QTQ− α

‖C‖2
QTDQ),

= BQT (I − α

‖C‖2
D)Q.

Since B has full rank, Q is an orthgonal matrix, ‖C‖2 = max(λi), D = diag(λi), and

0 < α < 1, then B̃ has full rank.

Similarly, by (7), (8), and C̃ := C − CWC, we have

C̃ = C − CWC,

= QTDQ− (QTDQ)
α

‖C‖2
I(QTDQ),

= QTDQ− α

‖C‖2
QTD(QQT )DQ,

= QTD1/2(I − α

‖C‖2
D)D1/2Q,

where D1/2 = diag(
√
λi). Since ‖C‖2 = max(λi), D = diag(λi), 0 < α < 1, and Q is

an orthogonal matrix, for x �= 0, we have

xT C̃x = xQTD1/2(I − α

‖C‖2
D)D1/2Qx ≥ 0. (9)

Thus C̃ is symmetric positive semidefinite. �

Next, using the W in Proposition 3.1, we define a preconditioner as follows:

Pw =

⎛
⎝ I BW

O (I −WC)T

⎞
⎠ . (10)

Multiplying both sides of (1) by Pw, equation (1) can be rewritten as

H̃u = b̃, H̃ := PwH =

⎛
⎝ Ã B̃

B̃T −C̃

⎞
⎠ , b̃ := Pwb =

⎛
⎝ f̃

g̃

⎞
⎠ , (11)
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where Ã, B̃, and C̃ are defined as in Proposition 3.1, f̃ := f+BWg, and g̃ := g−CWg.

Since Ã of (11) is nonsingular, we can apply the methods based on Schur complement

to (11).

The preconditioner Pw is nonsingular, because it is upper triangular block matrix

and it’s diagonal block matrices I and (I −WC)T are nonsingular. So, (11) is equiv-

alent to (1) and the coefficient H̃ becomes nonsingular. It is known that when Ã is

nonsingular, H̃ is nonsingular if and only if S̃ is nonsingular (see [3]). Because H̃ can

be factorized as follows:

H̃ =

⎛
⎝ Ã B̃

B̃T −C̃

⎞
⎠ =

⎛
⎝ I O

B̃T Ã−1 I

⎞
⎠
⎛
⎝ Ã O

O S̃

⎞
⎠
⎛
⎝ I B̃Ã−1

O I

⎞
⎠ ,

where

S̃ := C̃ + B̃T Ã−1B̃. (12)

Since H̃ is nonsingular, S̃ becomes nonsingular.

3.2. Eigenvalues of the preconditioned matrix

In next section, we will propose a new error bound for an approximate solution

of (11). This method is based on results of an algebraic analysis of a preconditioner.

First, we consider an inclusion of all eigenvalues of the preconditioned matrix. For

(11), we define the following preconditioner:

P =

⎛
⎝ Ã O

O S̃

⎞
⎠ , (13)

where S̃ := C̃ + B̃T Ã−1B̃.

In [2], Axelsson and Neytcheva have proved that all eigenvalues of the precondi-

tioned matrix P−1H̃ are included in

[
−1, −1

2

]
∪ [1, 2] .
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We improve this inclusion of all eigenvalues of the preconditioned matrix as follows:

Theorem 3.1. A preconditioner P is defined as (13). All eigenvalues of the

preconditioned matrix P−1H̃ are included in(
−1,

1−√
5

2

]
∪
[
1,

1 +
√
5

2

]
.

Proof. Let μ �= 0 be an eigenvalue of P−1H̃ with an eigenvector
(
uT , vT

)T �= 0,

i.e.,

⎛
⎝ Ã B̃

B̃T −C̃

⎞
⎠
⎛
⎝ u

v

⎞
⎠ = μ

⎛
⎝ Ã O

O S̃

⎞
⎠
⎛
⎝ u

v

⎞
⎠ . (14)

We show that μ = 1 if and only if v is a zero vector. If μ = 1, the first equation

of (14) can be rewritten as

Ãu+ B̃v = Ãu.

Sine B̃ is full rank, v = 0. If v = 0, the first equation of (14) can be rewritten as

Ãu = μÃu. (15)

By
(
uT , vT

)T �= 0 and A is nonsingular, we have Ãu �= 0. Thus μ = 1.

If μ �= 1, then v is a nonzero vector. In this case, (14) can be rewritten as

Ãu+ B̃v = μÃu, (16a)

B̃Tu− C̃v = μS̃v. (16b)

From (16a), we have

u =
1

(μ− 1)
Ã−1B̃v. (17)

18



Substituting (17) to (16b), we get the following equation:

(μ2S̃ − μ(B̃T Ã−1B̃)− S̃)v = 0. (18)

Equation (18) can be rewritten as

B̃T Ã−1B̃v = λS̃v, (19)

where

λ =
μ2 − 1

μ
. (20)

Now, we try to include the eigenvalues of (19). First, we show 0 < λ ≤ 1.

If v �= 0 and C̃v = 0, then from the nonsingularity of S̃, it follows that B̃T Ã−1B̃v �=
0 and λ = 1. Conversely, if λ = 1, then C̃v = 0.

If λ �= 1, then (19) can be rewritten as

B̃T Ã−1B̃v =
λ

1− λ
C̃v.

Since B̃T Ã−1B̃ and C̃ are positive definite and semidefinite respectively and C̃v �= 0,

the generalized eigenvalues λ/(1−λ) must be positive. Hence 0 < λ < 1. We showed

0 < λ ≤ 1 for (19).

Since (20) and 0 < λ ≤ 1, we have

1 <
1

2

(
λ+

√
λ2 + 4

)
≤ 1

2
(1 +

√
5),

and

−1 <
1

2

(
λ−

√
λ2 + 4

)
≤ 1

2
(1−

√
5).

Consequently, all eigenvalues of the preconditioned matrix P−1H̃ are included in(
−1,

1−√
5

2

]
∪
[
1,

1 +
√
5

2

]
.
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3.3. New error bound

From Theorem 3.1, we obtain the following rigorous error bound for (11).

Theorem 3.2. Assume that Ã ∈ R
n×n and C̃ ∈ R

m×m are symmetric positive

definite and semidefinite respectively, B̃ ∈ R
n×m has full rank, and S̃ := C̃+B̃T Ã−1B̃.

H̃ and b̃ are defined by (11). Let u∗ be a rigorous solution of (11). For any u ∈ R
l ,

we have

‖u∗ − u‖2 ≤ 2√
5− 1

max
(∥∥∥Ã−1

∥∥∥
2
,
∥∥∥S̃−1

∥∥∥
2

)∥∥∥b̃− H̃u
∥∥∥
2
.

Proof. Obviously, we have

‖u∗ − u‖2 ≤
∥∥∥H̃−1

∥∥∥
2

∥∥∥b̃− H̃u
∥∥∥
2
.

Let L be a nonsingular matrix such that LLT = P . We define

G = L−1H̃L−T . (21)

Then, the inverse of H̃ can be given as

H̃−1 = L−TG−1L−1.

Since H̃ and G are symmetric, we have

∥∥∥H̃−1
∥∥∥
2
= max

v∈Rl , v �=0

∣∣∣∣vTL−TG−1L−1v

vTv

∣∣∣∣ ,
= max

v∈Rl , v �=0

∣∣∣∣vTL−TG−1L−1v

vTL−TL−1v

vTL−TL−1v

vTv

∣∣∣∣ ,
≤ max

w∈Rl , w �=0

∣∣∣∣wTG−1w

wTw

∣∣∣∣ max
v∈Rl , v �=0

∣∣∣∣vTP−1v

vTv

∣∣∣∣ ,
=
∥∥G−1

∥∥
2

∥∥P−1
∥∥
2
.
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From (21) and LLT = P , we have

G = LTP−1H̃L−T .

Hence, G and P−1H̃ have the same eigenvalues.

By Theorem 3.1, all eigenvalues of P−1H̃ are included in(
−1,

1−√
5

2

]
∪
[
1,

1 +
√
5

2

]
.

Hence the norm of the matrix G−1 satisfies

∥∥G−1
∥∥
2
≤ 2√

5− 1
,

then we obtain

∥∥∥H̃−1
∥∥∥
2
≤ 2√

5− 1

∥∥P−1
∥∥
2
.

Moreover, from (13), we have

∥∥P−1
∥∥
2
≤ max

(∥∥∥Ã−1
∥∥∥
2
,
∥∥∥S̃−1

∥∥∥
2

)
.

�

In this thesis, when we compute the matrix norm ‖S̃−1‖2, we use the following

inequality:

∥∥∥S̃−1
∥∥∥
2
≤

∥∥∥Ã∥∥∥
2

∥∥∥∥(B̃T B̃
)−1

∥∥∥∥
2

1 +
∥∥∥Ã∥∥∥

2

∥∥∥∥(B̃T B̃
)−1

∥∥∥∥
2

λmin(C̃)

. (22)

The proof of this inequality can be found in [5]. Usually, when we compute ‖(C̃ +

B̃T Ã−1B̃)−1‖2 using the verification method, the main computing cost is 1
3
m3+4mn2+

4m2n+ 1
3
n3. The details are as follows:

the inverse of Ã : 1
3
m3,
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the inclusion of B̃T Ã−1B̃ : 4mn2 + 4m2n,

the norm of (C̃ + B̃T Ã−1B̃)−1 : 1
3
n3.

However, when we compute the right hand side of the inequality (22), the main

computing cost is 2
3
m3 + 4m2n+ 1

3
n3. The details are as follows:

the norm of Ã : 1
3
n3,

the inclusion of B̃T B̃ : 4m2n,

the norm of (B̃T B̃)−1 : 1
3
m3,

the minimum eigenvalue of C̃ : 1
3
m3.

Remark 3.1. Theorem 3.2 is the extension of Theorem 2.1 in [6]. If C = O, then

Theorem 3.2 reduces to Theorem 2.1 in [6].

Remark 3.2. By computing the matrix norms ‖Ã−1‖2, ‖S̃−1‖2, and the resid-

ual ‖b̃ − H̃u‖2 =
(‖r1‖22 + ‖r2‖22

)1/2
, one can obtain two bounds for ‖u∗ − u‖2 from

Theorems 3.2 and 2.2. Comparing the two bounds, we can choose smaller one.

3.4. Error bounds for preconditioned problem

In [5, 6], a useful preconditioner is proposed for (11). A method used the pre-

conditioner is efficient when ‖(B̃T B̃)−1‖2 is large. The error bound of Theorem 3.2

depends on ‖S̃−1‖2 that includes ‖(B̃T B̃)−1‖2. Therefore, the error bound may be-

come large when ‖(B̃T B̃)−1‖2 is large. However, when this method is used, the error

bound may be improved. To improve the error bound of Theorem 3.2, we apply the

preconditioning method to Theorem 3.2.

Let L ∈ R
m×m be a nonsingular matrix. We define a preconditioner

Pl =

⎛
⎝ I O

O L−1

⎞
⎠ . (23)
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In this thesis, we use an approximation of the Cholesky factor of B̃T B̃ as L. Multi-

plying both side of (11) by (23), then we have

Pl

⎛
⎝ Ã B̃

B̃T −C̃

⎞
⎠
⎛
⎝ x

y

⎞
⎠ = Pl

⎛
⎝ f̃

g̃

⎞
⎠ .

This can be rewritten as⎛
⎝ Ã B̃L−T

(B̃L−T )T −L−1C̃L−T

⎞
⎠
⎛
⎝ x

LTy

⎞
⎠ =

⎛
⎝ f̃

L−1g̃

⎞
⎠ . (24)

Moreover, the residual (r1, r2) of the approximate solution (x, y) satisfies

⎛
⎝ r1

L−1r2

⎞
⎠ =

⎛
⎝ Ã B̃L−T

(B̃L−T )T −L−1C̃L−T

⎞
⎠
⎛
⎝ x

LTy

⎞
⎠−

⎛
⎝ f̃

L−1g̃

⎞
⎠ .

Applying Theorem 2.2 to (24), we immediately obtain Theorem 2.3. Similarly, by

applying Theorem 3.2 to (24), we have the following theorem:

Theorem 3.3. Assume that Ã ∈ R
n×n and C̃ ∈ R

m×mare symmetric positive

definite and semidefinite respectively, B̃ ∈ R
n×m has full rank, and L ∈ R

m×m is

nonsingular. Pl is defined by (23). H̃ and b̃ are defined by (11). Let Sl = L−1C̃L−T +

(B̃L−T )T Ã−1B̃L−T be Schur complement of Ã in the coefficient matrix of (24). Let

u∗ be a rigorous solution of (24). For any u ∈ R
l , we have

‖u∗ − u‖2 ≤ 2√
5− 1

max
(∥∥∥Ã−1

∥∥∥
2
,
∥∥S−1

l

∥∥
2

)∥∥PT
l

∥∥
2

∥∥∥Pl

(
b̃− H̃u

)∥∥∥
2
,

where

‖PT
l ‖2 ≤ max

(
1,
∥∥L−1

∥∥
2

)
.
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Proof. We have

‖u∗ − u‖2 =
∥∥∥PT

l P−T
l H̃−1P−1

l Pl(b̃− H̃u)
∥∥∥
2

≤ ∥∥PT
l

∥∥
2

∥∥∥(PlH̃PT
l )

−1
∥∥∥
2

∥∥∥Pl(b̃− H̃u)
∥∥∥
2
.

Since PlH̃PT
l is symmetric, we have

∥∥∥(PlH̃PT
l )

−1
∥∥∥
2
≤ 2√

5− 1
max

(∥∥∥Ã−1
∥∥∥
2
,
∥∥S−1

l

∥∥
2

)
.

Moreover, from (23), we have

∥∥PT
l

∥∥
2
≤ max

(
1,
∥∥L−1

∥∥
2

)
.

�

In this thesis, when we compute the matrix norm ‖S−1
l ‖2, we use the following

inequality:

∥∥S−1
l

∥∥
2
≤

∥∥∥Ã∥∥∥
2

∥∥∥∥LT
(
B̃T B̃

)−1

L

∥∥∥∥
2

1 +
∥∥∥Ã∥∥∥

2

∥∥∥∥LT
(
B̃T B̃

)−1

L

∥∥∥∥
2

λmin(L−1C̃L−T )

.

The proof is similar to the proof of (22).

3.5. Verification Methods

We have to further consider rounding errors to compute the rigorous error bounds

based on Theorems 3.2 and 3.3. We use interval arithmetic to take care of rounding

errors.

For obtaining the rigorous error bounds based on Theorems 3.2 and 3.3, we need

to compute the upper bound of the 2-norms of a symmetric matrix and its inverse.

To compute these upper bounds, we use two methods which are pointed out in Rump

[9, Eq.(3.19), (5.10-12)]. First, we show a method of computing the error bound of

the 2-norm of a matrix.
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Method 3.1 (Verification method for the 2-norm of a matrix). Assume that M

is symmetric. Let p̃ be an approximation of ‖M‖2, for any M ∈ R
n×n. We define

p = (1 + e)p̃ for any e > 0. If

MT = M, pI −M 	 0 and pI +M 	 0

is satisfied, then

‖M‖2 ≤ p.

A method of computing the error bound of the 2-norm of an inverse matrix is

studied by Rump [9, p12].

Method 3.2 (Verification method of the 2-norm of an inverse matrix). We define

p =
∥∥LT

DG
−1LD

∥∥
2
,

where G ∈ R
n×n is symmetric, D ∈ R

n×n is symmetric positive definite, and LD is the

Cholesky factor of D such that LDL
T
D = D. And we define q̃ is an approximation of the

minimum eigenvalue of a generalized eigenvalue problem Gx = λDx and q = (1− e)q̃

for any 0 < e < 1. If

q > 0 and G− qD 	 0

is satisfied, then

p ≤ q−1.

In the actual computing, we use the function isspd of INTLAB [11] to verify the

positive definiteness. INTLAB is a toolbox of MATLAB for using interval arithmetic.

This function uses the Cholesky decomposition when the matrix is symmetric, so the

computational cost is O(n3/3). If a matrix is sparse, then the computational cost
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is smaller. Note that when we compute ‖C‖2, ‖L−1‖2, and other norms using the

function isspd, we set e = 10−6, 10−4, and 10−2, respectively.

Obviously, an error bound of Theorem 3.2 depends on the choice of W . In this

thesis, if A is singular, we consider the following choice:

W =
α

‖BBT‖2
I (C = O) or W =

α

‖C‖2
I (C �= O),

where α satisfies 0 < α < 1. We set W = O if A is nonsingular.

When we compute the rigorous error bounds using a preconditioned method (The-

orem 3.3), we use the technique in [5, 6]. Let L̂ be an approximation of the Cholesky

factor of B̃T B̃ such that L̂L̂T ≈ B̃T B̃. Let Rl be an approximation of the inverse of L̂

such that L̂Rl ≈ I. Define the error matrices by E1 := L̂L̂T−B̃T B̃ and E2 := RlL̂−I.

Moreover, let E3 := E2 + ET
2 + E2E

T
2 −RlE1R

T
l be.

If ‖E3‖2 < 1 is satisfied, then, by [5], we have the following inequalities:

∥∥∥∥R−T
l

(
B̃T B̃

)−1

R−1
l

∥∥∥∥
2

≤ 1

1− ‖E3‖∞
,

and

∥∥∥RlB̃
T
∥∥∥2
2
≤
∥∥∥∥(RlB̃

T
)T
∥∥∥∥
2

2

≤ 1 + ‖E3‖∞ .
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Chapter 4

Numerical experiments
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To illustrate the usefulness of the proposed methods, we carried out some numer-

ical examples and compared the proposed verification methods based on Theorems

3.2 and 3.3 with the methods based on Theorems 2.2 and 2.3, the method studied

by Rump [10], and the method studied by Minamihata, Sekine, Ogita, Rump, and

Oishi [7, Theorem 3.3]. Here, Rump’s method and Minamihata-Sekine-Ogita-Rump-

Oishi’s method are the verification methods for an approximate solution of general

linear systems. We briefly show these methods.

Theorem 4.1 (Rump’s method[10]). Let H ∈ R
n×n and b ∈ R

n be given. Let

x̃ ∈ R
n be an approximation of Hx = b and R ∈ R

n×n be an approximation of H−1.

Assume that v > 0 ∈ R
n satisfies u := 〈RH〉v > 0. Let D ∈ R

n×n be the diagonal

part of 〈RH〉. w ∈ R
n is defined as:

wk := max
1≤i≤n

Gik

ui

for 1 ≤ k ≤ n.

where G := I − 〈RH〉D−1 ≥ O. Then RH is nonsingular and

|H−1b− x̃| ≤ (D−1 + vwT )|c|, c := R(b−Hx̃).

Theorem 4.2 (Minamihata et al. method[7]). Let H, R ∈ R
n×n and b, x̃ ∈ R

n

be given. c, u, v, w, and D are defined as in Theorem 4.1. We define Ds :=

diag(s1, . . . , sn) ∈ R
n×n with

sk := ukwk ≥ 0 (1 ≤ k ≤ n).

Then RH is nonsingular and

|H−1b− x̃| ≤ (D−1 + vwT )(I +Ds)−1|c|.

Numerical experiments were carried out on the following environment:

• OS : CentOS 6.6

• CPU : 2.6GHz 24 Intel(R) Xeon(R) CPU E5-2690
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• memory: 252.2GB

• tool : MATLAB R2016a, INTLAB V9 [11]

We use INTLAB [11] to take care of rounding errors.

4.1. Example 1

We consider linear systems as follows:

Hu =

⎛
⎝ A B

BT −C

⎞
⎠
⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ f

g

⎞
⎠ , (25)

where

A =

⎛
⎝ X O

O O

⎞
⎠ , B =

⎛
⎝ O

Y

⎞
⎠ , x =

⎛
⎝ x1

x2

⎞
⎠ , f =

⎛
⎝ f1

f2

⎞
⎠ , (26)

X ∈ R
n1×n1 , C ∈ R

m×m are symmetric positive definite, Y ∈ R
n2×m has full rank,

x1, f1 ∈ R
n1 , x2, f2 ∈ R

n2 , y, g ∈ R
m and n = n1 + n2. In this example, we set

n1 = 2n2.

The matrices X and C are generated using the function sprandsym of MATLAB

as follows:

X = 10× sprandsym(n1, 5/n1, 10
−2, 1),

C = 0.1× sprandsym(m, 5/m, 10−4, 1).

Here, the function sprandsym(size, density, rc, kind) returns a symmetric random,

size× size, sparse, positive definite matrix with a reciprocal condition number equal

to rc and approximately density × size× size nonzeros. The matrix Y is generated

using the function sprand of MATLAB as follows:

Y = sprand(n2,m, 5/n2, 10
−1).

29



Here, the function sprand(row, col, density, rc) returns a random, row × col, sparse

matrix with a reciprocal condition number equal to rc and approximately density ×
row×col nonzeros. The vectors f1, f2, g are defined as Hu where u is all-ones vector.

An approximate solution of (25) is obtained using the function mldivide of MAT-

LAB. In this example, since A is singular, we set W = α
‖C‖2 I where α = 0.5.

In Figure 4.1, error bounds of each methods for example 1 and exact errors are

shown. Since we know an exact solution u∗ and have an approximation u, we calculate

an upper bound of ‖u∗ − u‖2 and show it as the exact error.
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Figure 4.1. Error bounds for example 1.

In Figure 4.2, CPU time of each methods for example 1 are shown.

In Table 4.1, we show numerical results of error bounds and CPU time for example

1. In this table, quantities inside square brackets are CPU time (sec). Moreover,

“Apptime” is CPU time (sec) of computing the approximation, and “Cond Num” is

the condition number of the coefficient matrix. Residual ‖b−Hu‖2 are shown in 4th

row.

Since we know the exact solution, we show the upper bounds of ‖u∗ − u‖2 as the

exact error in the 5th row. In the 6th to 8th rows of this table, we show the upper

bounds of the norm of quantities needed in Theorem 3.2. Similarly, in the 13th to
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Figure 4.2. CPU time for example 1.

15th rows, we show the upper bounds of the norm of quantities needed in Theorem

3.3.

In this example, since we know the eigenvalues of X and C and the singular values

of Y , we can calculate the 2-norm of the inverse of Ã. ‖Ã−1‖2 = max(‖X−1‖2, 2‖C‖2
‖(Y Y T )−1‖2) ≈ 2.000∗10. It is shown that the computed values of the norm are near

the calculated ones. The error bounds are as in Table 4.1.

The new method and the new preconditioned method give error bounds sharper

than those obtained by the methods based on Theorems 2.2 and 2.3. CPU time of the

methods based on Theorem 3.2 and 2.2 are almost same. The method on Theorem

3.2 is faster than the verification methods for general linear systems. CPU time of the

preconditioned methods based on Theorems 3.3 and 2.3 are almost same. However,

only in this example, CPU time of the preconditioned methods are longer than the

verification methods for general linear systems. Because L in this example is more

dense than one in other examples. Therefore, the computing cost of ‖L−1‖2 and

‖LT (B̃T B̃)−1L‖2 become high.
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Table 4.1. Error bounds and CPU time for example 1.

(n, m) (1500, 500) (3000, 1000) (6000, 2000) (12000, 4000) (24000, 8000)

Apptime [5.128e-02s] [2.852e-01s] [1.676e+00s] [1.195e+01s] [1.094e+02s]

Cond Num 2.163e+02 2.773e+02 3.454e+02 4.321e+02 3.700e+02

‖b−Hu‖2 1.421e-14 1.776e-14 2.309e-14 2.132e-14 2.309e-14

‖u∗ − u‖2 2.680e-14 3.176e-14 4.696e-14 6.255e-14 9.653e-14

‖Ã−1‖2 2.020e+01 2.020e+01 2.020e+01 2.020e+01 2.020e+01

‖S̃−1‖2 1.651e+03 2.748e+03 2.947e+03 1.948e+03 2.400e+03

‖b̃− H̃u‖2 1.423e-14 1.776e-14 2.309e-14 2.132e-14 2.309e-14

Theorem 3.2 3.800e-11 7.899e-11 1.101e-10 6.717e-11 8.966e-11
(New) [3.037e-01s] [1.068e+00s] [5.177e+00s] [2.818e+01s] [2.204e+02s]

Theorem 2.2 4.971e-08 1.290e-07 1.895e-07 1.741e-07 3.049e-07
(Previous) [3.948e-01s] [1.467e+00s] [5.936e+00s] [3.281e+01s] [2.441e+02s]

‖S−1
l ‖2 1.010e+01 1.010e+01 1.010e+01 1.010e+01 1.010e+01

‖L−1‖2 1.283e+01 1.664e+01 1.725e+01 1.395e+01 1.552e+01

‖Pl(b̃− H̃u)‖2 1.423e-14 1.776e-14 2.309e-14 2.132e-14 2.309e-14

Theorem 3.3 5.966e-12 9.664e-12 1.302e-11 9.723e-12 1.172e-11
(New) [8.413e-01s] [4.848e+00s] [3.325e+01s] [3.028e+02s] [2.400e+03s]

Theorem 2.3 4.216e-10 7.118e-10 1.077e-09 1.349e-09 1.829e-09
(Previous) [8.451e-01s] [4.770e+00s] [3.301e+01s] [2.896e+02s] [2.394e+03s]

Rump’s 4.949e-14 6.547e-14 4.942e-14 1.269e-13 7.438e-14
method [5.677e-01s] [2.635e+00s] [1.369e+01s] [8.318e+01s] [6.155e+02s]

Minamihata’s 4.949e-14 6.547e-14 4.942e-14 1.269e-13 7.438e-14
method [5.739e-01s] [2.741e+00s] [1.433e+01s] [8.443e+01s] [6.099e+02s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition

number of the coefficient matrix.

4.2. Example 2

We consider linear systems as follows:

Hu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

αI 0 0

0 0 βI

0 βI
0 0

0 −γI

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ x

y

⎞
⎠ =

⎛
⎝ f

g

⎞
⎠ , (27)

where α = 2.0, β = 1.2, γ = 1.5. The vectors f , g are defined as Hu where u is

all-ones vector.
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An approximate solution of (27) is obtained using the function mldivide of MAT-

LAB. In this example, since A is singular, we set W = α
‖C‖2 I where α = 0.5.

In Figure 4.3, error bounds of each methods for example 2 are shown.
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Figure 4.3. Error bounds for example 2.

In Figure 4.4, CPU time of each methods for example 2 are shown.
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Figure 4.4. CPU time for example 2.

In Table 4.2, we show numerical results of error bounds and CPU time for example

2.

The new method and the new preconditioned method give error bounds sharper

than those obtained by the methods based on Theorems 2.2 and 2.3. The new method
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Table 4.2. Error bounds and CPU time for example 2.

(n, m) (2001, 1001) (4001, 2001) (8001, 4001) (16001, 8001) (32001, 16001)

Apptime 1.777e-03 4.130e-03 7.690e-03 1.515e-02 3.271e-02

Cond Num 7.111e+00 7.111e+00 7.111e+00 7.111e+00 7.111e+00

‖b−Hu‖2 4.441e-16 4.441e-16 4.441e-16 4.441e-16 4.441e-16

Theorem 3.2 5.050e-15 5.050e-15 5.050e-15 5.050e-15 5.050e-15
(New) [8.969e-02s] [2.903e-01s] [7.210e-01s] [1.969e+00s] [6.597e+00s]

Theorem 2.2 7.933e-13 1.121e-12 1.584e-12 2.240e-12 3.167e-12
(Previous) [1.257e-01s] [3.331e-01s] [7.824e-01s] [2.081e+00s] [6.774e+00s]

Theorem 3.3 3.000e-15 3.000e-15 3.000e-15 3.000e-15 3.000e-15
(New) [1.245e-01s] [4.630e-01s] [1.303e+00s] [3.977e+00s] [1.431e+01s]

Theorem 2.3 1.863e-13 2.631e-13 3.716e-13 5.252e-13 7.423e-13
(Previous) [1.262e-01s] [3.256e-01s] [7.971e-01s] [2.092e+00s] [6.804e+00s]

Rump’s 3.701e-16 3.701e-16 3.701e-16 3.701e-16 3.701e-16
method [1.439e+00s] [7.429e+00s] [3.891e+01s] [2.591e+02s] [1.973e+03s]

Minamihata’s 3.701e-16 3.701e-16 3.701e-16 3.701e-16 3.701e-16
method [1.511e+00s] [7.690e+00s] [3.962e+01s] [2.626e+02s] [1.995e+03s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition

number of the coefficient matrix.

is faster than other verification methods. The new preconditioned method is faster

than the verification methods for general linear systems.

4.3. Example 3 (Stokes equation [4, §6])
We consider saddle point linear systems arising from the mixed finite element

discretization of the stationary Stokes equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−νΔu+∇p = f in Ω,

−div u = 0 in Ω,

u = 0 on ∂Ω,∫
Ω

p dx = 0,

where Ω = (0, 1)× (0, 1), ∂Ω is the boundary of Ω, ν is a positive parameter, f is a

given force field, u : Ω → R
2 is a velocity field, and p : Ω → R is a pressure field.
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We reformulate the stationary Stokes equation into a weak formulation with a

penalty term [4, §6] as follows:
⎧⎨
⎩ ν(∇u, ∇v) + (∇p, v) = (f, v) , ∀v ∈ H1

0 ,

(div u, q)− t2(p, q) = 0 , ∀q ∈ L2
0.

In this example, we set ν = 1 and t = 10−2.

We apply a mixed finite element approximation with uniform triangular meshes,

where the velocity is approximated by the standard piecewise quadratic basis func-

tions and the pressure is approximated by the standard piecewise linear basis func-

tions. Then, we obtain a discretized equation (11). An approximate solution of (11)

is obtained using the function mldivide of MATLAB. We set α = 0 because A is

symmetric positive definite.
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Figure 4.5. Error bounds for the Stokes equation.

In Figure 4.5, error bounds of each methods for the Stokes equation are shown.

In Figure 4.6, CPU time of each methods for the Stokes equation are shown.

In Table 4.3, we show numerical results of error bounds and CPU time for the

Stokes equation. The new method gives error bounds sharper than those obtained by

the method based on Theorem 2.2, although CPU time of two methods are almost

same. Similarly, the new preconditioned method gives error bounds sharper than
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Figure 4.6. CPU time for the Stokes equation.

Table 4.3. Error bounds and CPU time for the Stokes equation.

(n,m) (882,143) (3362,483) (7442,1023) (13122,1763) (20402,2703)

Apptime 7.038e-03 1.152e-01 8.546e-01 3.822e+00 1.247e+01

Cond Num 4.098e+05 1.477e+06 3.205e+06 5.595e+06 8.645e+06

‖b−Hu‖2 5.708e-16 1.047e-15 1.590e-15 2.073e-15 2.594e-15

Theorem 3.2 3.435e-11 1.400e-10 3.870e-10 6.193e-10 1.098e-09
(New) [5.441e-02s] [4.004e-01s] [1.580e+00s] [5.720e+00s] [1.645e+01s]

Theorem 2.2 8.697e-13 6.726e-12 2.741e-11 5.799e-11 1.279e-10
(Previous) [8.094e-02s] [7.163e-01s] [2.985e+00s] [1.220e+01s] [3.571e+01s]

Theorem 3.3 3.609e-09 8.649e-08 6.152e-07 2.542e-06 7.545e-06
(New) [5.652e-02s] [4.438e-01s] [1.603e+00s] [5.657e+00s] [1.675e+01s]

Theorem 2.3 4.137e-11 5.050e-10 2.419e-09 7.640e-09 2.265e-08
(Previous) [8.482e-02s] [7.615e-01s] [3.339e+00s] [1.349e+01s] [3.947e+01s]

Rump’s 2.197e-14 6.250e-14 1.168e-13 2.060e-13 3.314e-13
method [1.962e-01s] [2.626e+00s] [1.643e+01s] [6.831e+01s] [2.396e+02s]

Minamihata’s 2.197e-14 6.250e-14 1.168e-13 2.060e-13 3.314e-13
method [2.214e-01s] [2.738e+00s] [1.676e+01s] [7.078e+01s] [2.430e+02s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition

number of the coefficient matrix.

those obtained by the method based on Theorem 2.3, although CPU time of two

methods are almost same. Moreover, the new methods are faster than the verification

methods for approximate solutions of general linear systems.
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4.4. Example 4 (the Brinkman problem [12])

We consider saddle point linear systems arising from the finite element discretiza-

tion of the Brinkman problem:

⎧⎨
⎩ −νΔu+ u+∇p = f(x) ∀x ∈ Ω,

div u = g(x) ∀x ∈ Ω,
(28)

where ν is the fluid viscosity and Ω = (0, 1) × (0, 1) × (0, 1), f(x) and g(x) are

given force fields, u : Ω → R
3 is a velocity field, and p : Ω → R is a pressure field.

By introducing the vorticity variable

σ = ε curl u, ε =
√
ν,

then we have the following weak formulation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σ, τ ) −ε(u, curl τ ) = 0,

(div u, q) = (g, q),

−ε(curl σ, v) +(p, div v) −ε2(div u, div v)− (u, v) = −(f , v),

where

∀τ ∈ H1
0 (curl; Ω) :=

{
τ ∈ H1

0 |curl τ ∈ H1
0 , τ × n = 0 on ∂Ω

}
,

∀v ∈ H1
0 (div; Ω) :=

{
v ∈ H1

0 |div v ∈ H1
0 , v · n = 0 on ∂Ω

}
,

∀q ∈ L2
0,

and n ∈ R
3 is the unit outward normal vector.

By applying the Q1 finite element method on a uniform cubic mesh to the above

weak formulation, we obtain a discretized equation (1). An approximate solution of

(1) is obtained using the function mldivide of MATLAB.
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Figure 4.7. Error bounds of Theorem 3.2 for the Brinkman problem
with different α. (n,m) = (256, 192).

In this example, f(x), g(x) and Dirichlet boundary conditions are chosen such

that

σex = επ

⎡
⎢⎢⎢⎣

sin(πx) cos(πy)− cos(πz) sin(πx)

sin(πy) cos(πz)− cos(πx) sin(πy)

sin(πz) cos(πx)− cos(πy) sin(πz)

⎤
⎥⎥⎥⎦ ,

uex =

⎡
⎢⎢⎢⎣

sin(πy) sin(πz)

sin(πz) sin(πx)

sin(πx) sin(πy)

⎤
⎥⎥⎥⎦ ,

and

pex = 8.0 sin(πx) sin(πy) sin(πz),

are the exact solutions of (28). We set ν = 1.

In this example, since A is singular, we setW = α
‖C‖2 I where 0 < α < 1. Figure 4.7

shows error bounds obtained by Theorem 3.2 for the Brinkman problem with (n,m) =

(256, 192) changing α from 0.01 to 0.99. Note that error bounds don’t diverge when
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α = 1, because the error bound of ‖Ã−1‖2 is larger than one of ‖S̃−1‖2 regardless of

the changing of α.
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Figure 4.8. Error bounds for the Brinkman problem.
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Figure 4.9. CPU time for the Brinkman problem.

In Figure 4.8, error bounds of each methods for the Brinkman problem are shown.

In Figure 4.9, CPU time of each methods for the Brinkman problem are shown.

In Table 4.4, we show numerical results of error bounds and CPU time for the

Brinkman problem with α = 0.99.
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Table 4.4. Error bounds and CPU time for example 3. α = 0.99.

(n,m) (5324,3993) (8788,6591) (13500,10125) (19652,14739) (27436,20577)

Apptime [2.610e-01s] [8.142e-01s] [2.398e+00s] [6.339e+00s] [1.553e+01s]

Cond Num 2.058e+08 5.054e+08 8.492e+08 2.890e+09 4.115e+09

Residual 5.854e-14 9.106e-14 1.353e-13 1.966e-13 2.496e-13

Theorem 3.2 2.139e-05 6.977e-05 1.842e-04 5.712e-04 9.487e-04
(New) [8.354e+00s] [2.150e+01s] [4.549e+01s] [9.031e+01s] [1.705e+02s]

Theorem 2.2 1.068e+03 7.770e+03 5.048e+04 3.998e+05 1.066e+06
(Previous) [1.967e+01s] [5.860e+01s] [1.540e+02s] [4.313e+02s] [1.119e+03s]

Theorem 3.3 7.265e+01 4.437e+02 1.531e+03 1.059e+04 2.201e+04
(New) [1.301e+01s] [3.272e+01s] [6.762e+01s] [1.258e+02s] [2.307e+02s]

Theorem 2.3 1.676e+01 1.094e+02 4.462e+02 3.712e+03 8.051e+03
(Previous) [1.942e+01s] [5.663e+01s] [1.490e+02s] [4.245e+02s] [1.095e+03s]

Rump’s 1.543e-10 7.788e-10 9.099e-10 2.710e-09 5.251e-09
method [2.111e+01s] [7.711e+01s] [2.515e+02s] [7.536e+02s] [2.077e+03s]

Minamihata’s 1.543e-10 7.788e-10 9.099e-10 2.710e-09 5.251e-09
method [2.215e+01s] [7.686e+01s] [2.613e+02s] [7.669e+02s] [2.014e+03s]

Note: Quantities inside square brackets are CPU time (sec), “Apptime” is CPU
time(sec) of computing the approximation, and “Cond Num” is the condition

number of the coefficient matrix.

In this example, the method based on Theorem 3.2 gives error bounds sharper

than those obtained by the methods based on Theorems 2.2 and 2.3, although CPU

time of Theorem 3.2 is less than those of Theorems 2.2 and 2.3.

Remark 4.1. In four examples, numerical results show that CPU time of the

proposed method is less than those of other methods and error bounds of the proposed

method is sharper than those based on Theorem 2.2.

40



Chapter 5

Conclusion
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For a symmetric saddle point linear systems with both diagonal block matrices

A and C are symmetric positive semidefinite, we proposed fast verification methods

based on Schur complement.

First, because Schur complement require the regularity of A in the coefficient

matrix H, we proposed a proposition and presented the method to regularize a matrix

A. we defined the preconditioner with Schur complement and proposed the theorem

of an inclusion of all eigenvalues of the preconditioned matrix. Using the absolute

minimum eigenvalue obtained by the above theorem, we proposed the theorem of a

new error bound for an approximation of the saddle point linear systems. In addition,

we showed the theorem of another new error bound applying the technique studied in

the previous works. We provided a verification method based on the above theorems.

We carried out four numerical experiments for illustrating the usefulness of pro-

posed verification methods. These experiments include artificial ones and ones arising

from actual problems. We compared proposed methods with the methods studied by

Chen and Hashimoto and the methods using an approximate solution of the inverse

of the coefficient matrix. The proposed method could be computed faster than other

methods. And the error bound obtained by the proposed method is smaller than one

by Chen and Hashimoto’s methods.
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