Study on the Learning Effects Based on
Characteristics in Programming Learning

Environments for Novice Learners

HEERIF 7077 I v r7FEBREBEOREICE DR

BMRICEAT DH R

February 2018

Waseda University
Graduate School of Fundamental Science and Engineering

Department of Computer Science and Communications Engineering,

Research on Reliable Software Engineering

Daisuke SAITO

N PN

ABSTRACT

Novice learners are often children aged 6 to 12 who are inexperienced
with programming learning. They tend to use programming learning
environments when learning to program. Programming learning includes
computer science learning and mathematical learning. It is also used to

develop problem-solving and abstraction abilities.

Each programming learning environment has unique characteristics. In
this research, I identify the characteristics of the programming learning
environments and investigate the learning effects based on these

characteristics.

As novice learners utilize numerous programming learning environments,
I initially investigated the kinds of programming learning environments.
A Google Custom Search API with specific keywords yielded 800 search
results. Then I extracted the programming learning environments by
morphological analysis and visual observations, which resulted in over
70 environments for programming learning. Examples such as Scratch,
Alice, and Greenfoot are used in a visual programming language, while

CodeCombat and Minecraft Education Edition exist in game software.

Previously, Kelleher et al. <classified multiple programming
environments, demonstrating that these environments have unique
characteristics. However, environments, including learning
environments, continue to be developed. Several studies have
demonstrated the learning effects in programming learning environments.
Some have shown that the learning environment called Scratch is suitable
to improve learners' interest and passion for programming. Others have
revealed that wusing a game called Minecraft tends to improve
programming skills. These studies suggest that the learning effects may
depend on the programming learning method and the learning
environment. However, these environments are used at the discretion of

educators and learners. Moreover, it is unclear what kinds of learning

IT

effects are derived from the characteristics of each learning environment.
Investigating the characteristics of learning environments should reveal
the learning effects. Considering the programming learning environment
for novice learners, my research investigates the learning effects based
on characteristics. This can be used to maximize the learning effects of

novice learners.

The main research question is, “How can novice learners maximize
learning effects in programming learning?” The goal of this research is
to clarify the learning effects by grasping the characteristics of the
programming learning environment because it should improve learning

of novice learners.

Chapter 1 highlights that there are over 70 kinds of programming
learning environments. This diversity leads to issues with programming
learning environments. Additionally, I explain the research outline and

research goals.

Chapter 2 describes the taxonomy to evaluate multiple programming
environments and the classification results based on the taxonomy. The
taxonomy is created by defining items to classify programming learning
environments using Kelleher et al. as a reference. Specifically, I
optimize Kelleher’s table for learning environments and add a new

category. The taxonomy table divides the 56 items into 11 categories.

Then I apply the taxonomy to classify several programming learning
environments. Based on the results, the characteristics of each
environment, including the attributes of visual programming language
environments and game software environments, are evaluated. I survey
43 kinds of environments with an emphasis on visual languages and
software that works alone on PCs or similar devices to create a taxonomy
table for programming learning environments. The proposed table can
evaluate and compare such environments. An experiment confirms that

the classification and evaluation results are independent of the evaluator.

I1T

Therefore, this classification table helps users (learners and educators)

identify the characteristics of a programming learning environment.

Chapter 3 investigates learning effects as a function of characteristics
in the same environment. Herein the differences between visual and text
input methods (Representation of Code and Construction of Programs)
are investigated in the same Lua programming environment to determine
if the input method influences the learning effects. Although many visual
and text comparative studies have been conducted, investigations
including characteristics such as linguistic representation are scant.
These differences in characteristics should impact the learning effects.
Specifically, I compare a combination of text (Representation of Code)
and typing code (Construction of Programs) with a combination of image
(Representation of Code) and drag-and-drop (Construction of Programs).
The results indicate that a visual input method is better suited for a
novice programming learning. However, the comparison results suggest
that actions change the learning effects. Hence, the text input method
can be used for programming learning of novice learners from the
viewpoints of the representation of code and construction of programs in

a programming environment.

Chapter 4 investigates the characteristics and learning effects of
multiple environments. This chapter considers the learning effects based
on the characteristics of programming constructs and game elements as
well as the characteristics discussed in Chapter 3. I conduct a
quantitative evaluation by a workshop on six programming learning
environments. The characteristics of the classification influence the
learning effects. However, if the software involves "physical objects"

and "assembling physical objects," the learner may become bored as the
workload increases. The three groups (visual programming language,
game software, and physical environment) show a difference in attitude
toward programming. A visual programming language tends to reduce

programming difficulty. Although environments with game elements tend

IV

to increase fun, they also increase the perceived difficulty of

programming.

Chapter 5 summarizes this thesis and explains future research. Future
research will focus on three main areas: to propose and create a
programming learning environment, to optimize the characteristics and
functions of the taxonomy table, and to create guidelines to select the
appropriate programming learning environment. One project that I am
proposing is to develop an environment to predict the learning effects
from characteristics. This environment would be an extension of the
environment that I tried to develop to consider learning effects. In this
work, only partial environments or prototypes are implemented.

Currently, I am working on expanding the function of this environment.

ACKNOWLEDGMENTS

I would like to thank Prof. Hironori Washizaki for his considerable
guidance in advancing this research and thesis. I would like to recognize
Prof. Yoshiaki Fukazawa (Waseda University), Prof. Tatsuo Nakajima
(Waseda University), and Dr. Tsuneo Yamaura (Tokai University, Former
Associate Professor of Tokai University) for their cooperation in writing

this thesis.

I would like to express my gratitude to Mr. Yusuke Muto (Fuji Television
Kids Entertainment) and Mr. Akira Takebayashi (TENTO) for their great
cooperation in this research. I would also like to acknowledge Mariko
Tamura (D2C) and Mr. Toshihisa Nishizawa (Denno-Shokai) for their
cooperation. In addition, I would like to thank all the companies and

individuals who supported with this research.

I would like to thank Ms. Ayana Sasaki of the Washizaki Laboratory for
preparing for the experiment and promoting this research as well as all
members of the laboratory. Lastly, I would like to thank my family for

supporting my research and thesis writing.

VI

Table of Contents

A B ST A R C T e e II
ACKNOWLEDGMENT S e e e e VI
Table Of COMtEMES Louunttt ettt ettt e ettt et e et iee e et e e e e eiaaeeaans VI
D S 0 0 2 T 1 o X 1
D T A A 1 0 X I
1. INTRODU CT ION e 1

1.1. Programming Learningooouviuiiniinniitiiiiii e eeiaennens 4

1.2. Programming Learning Environmentscooiiiiiiiiiiinniina. 4

1.2.1. Method to identify Programming Learning Environments 5

1.3, ContribuUtions «o..iiii e e 7
1.4. Organization of This Thesisoooiiiiiiiiiiiii s 7
2. CLASSIFICATION OF PROGRAMMING LEARNING
ENVIRONMEN T S e e e e e 8
2.1 Backgroundo 8
2.2. Creation Of TaXOMOMY «ouuiiuiintit ittt 9
2.2.1. Taxonomy details......oouiiiiiii i 11
2.3. Selection of Environments to Classify...........cooociiiiiiiiiiiit, 12
2.4. Results and Analysis of Classification by Taxonomy.............. 14
2.4.1. Analytical method.......... i 14
2.4.2. Overall results ..o 14
2.4.3. Results of each attribute.........cooooiiiiiii i 18
2.5 DaSCUSSIOMN « ettt 20
2.6. Related WorKs ..ot e 21
A D B 1 B 1 0 o 1 21
2.8, ConCIUSTOM .t e 22

VII

3. COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL

REPRESENTATIONS IN PROGRAMMING METHOD....................o 23
3.1, Backgroundoooooiiii e 24
3.1.1. Programming learning for novice learners........................ 24
3.1.2. Two input methods.....oouiiiiii i 24

3.1.3. Minecraft and ComputerCraftEdu with Programming Learning

26
3.2, WoOrkshop Design .couiiniiii e e 28
R JNC TN S5 0 b o B 14 TS0 o 29
TR T IO o i e o 5 30
RIS IR O 1 1 T A o) 151 I B § I U 30
3.3.3. Analysis Methodcoooiiiiiiii e 31
3 R SULL cei i 33
3.4.1. Attitude Toward Programmingcooiiiiiiiiiiiiiiini... 33
3.4.2. Understanding Programming...........coooiiiiiiiiiiiiiiniiinienn. 39
3. S DaSCUSSIOM ttttt ettt ettt ettt e et e 42
3.5.1. Result of RQ 3 -1 ..o e 42
3.5.2. Result of RQ3-2 i e 44
3.6, LImitations «ouuueetiiie ettt ettt et ettt et 45
3.7 ConCIUSTON e 46

4. QUANTITATIVE EVALUATION OF THE LEARNING EFFECT
EVALUATION OF PROGRAMMING LEARNING ENVIRONMENTS ...48

4.1, Backgroundoooioiiii 49
4.2. Programming Learning Environmentsccooiiiiiiiiiinneienn.. 50
4.2 1. ScratCh . e 50
4.2.2. VISCUIL tottttttt e 51
4.2.3. CodeMoOnKeY oottt e 52

VIII

4.2, 4. Lightbot oo e e 53

4.2.5. OSMO CoOoding .ooeiiiniitttii e e e 54
4.2.6. RODOt TUItLES oottt e e 55
4.3, ClassifiCation oottt 56
S D @ 075 1 14 U3 £ 58
4.4.1. About EXPeriments. . .o.ueeuniiiutiit e 58
4.4.2. Questionnaire and LeSt.......iuininiriiiini it 58
4.4.3. Learning comprehension testc.oooiuiiiiiiiiiiiiiiiiiinie.n. 58
4.4.4. Questionnaire about the attitude toward programming 60
4.5, WOrKShOD o 61
4.5.1. Schedule of the workshop ... 61

4.5.2. Number of students and effective questionnaire responses .61

4.6. Results and Analysisoiiiiiiiiiiiiiiii i e 62
4.6.1. Learning comprehension testoooiiiiiiiiiiiiiiiiniiiininne. 62
4.6.2. Attitude toward Programmingc..ooeuuieiiiiiiiineiiineiiinaein. 65

4.6.3. Comparison of the characteristics in individual Environments

68

A B B ol N o 78
4.7.1. Answer of RQ4-1 .o i 78
4.7.2. Answer of RQ4 -2 oo e 78
4.7.3. Answer of RQ4-3 o 79
4.8. Related WorKsS ..o e e e e 80
4.9, LImitations ..uueeeunie ittt et et 81
410, ConClUSION tiitt it e e 81
S CON CLUSTION e e e e e e 83
S B 1 40 T 83
5.2, Future researCh. .. oo 84

5.2.1. Propose and Create a Programming Learning Environment .86

5.2.2. Other future research ...t i 89
REFE REN CES ..o i 92
RESEARCH ACHIEVEMENT ... i 101

J U Al s (o 101
International Conferenceso.iiiiuiiiiiii e 101
Domestic CoOnferenCes . o.uue ittt 103
o D o 103
B OO K S i 104

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

1-1. Outline of this researchco i, 3
2-1. Result of Classificationooooiiiiiiiiiiiiii ... 18
3-1. Two input method (Visual)........coooiiiiii i, 27
3-2. Two input method (TexXt).....ooviiiiiiiiiiiiiii i, 27
3-3. Comparison of input methods..............ccoooiiiiiiiin, 28
3-4. Analysis Method ... 32
3-5. Result of VG .o 34
3-6. Result of TG..oooiiii e 34
3-7. Six problems Response Ratecooiiiiiiiiiin, 41
3-8. Result of Free Problemcooiiiiiiii ... 42
4-1. Scratch [T oo e e 50
4-2. Viscuit [4 1] .o e e 51
4-3. CodeMonkey [42] i 52
4-4. Lightbot [14] oo e e e 53
4-5. OSMO Coding [43] .cieiriiiiiii e i 54
4-6. Robot Turtles [44] ..o e 55
4-7. Question Example ..o 59
4-8. Free description problem..............coiiiiiiiiiiiiiii.. 60
4-9. Results of Visual Programmingcooooiiiiaaa.. 63
4-10. Results of Game Software...........coooviiiiiiiiiiiin .. 63
4-11. Results of Physical Environmentoo.... 64
4-12. Results of the Free Description Problem................. 65

X1

XII

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

4-13. Results of visual programming language................. 67
4-14. Results of game software...........ccooviiiiiiiiiiiii.. 67
4-15. Results of the physical environment 68
5-1. Future Research ... 85
5-2. MakeCode [58] for MEE..........oiiii . 87
5-3. Python Environments for MEE, 88
5-4. Basic specificationscouviiiiiiiiiii i, 88
5-5. Comparison of source code........ccoviiiiiiiiiiiiiiinin... 89
5-6. About Guideline.........oooiiiiiiiiiiii i 90

List of Tables

Table 1-1.

Table 1-2.

Table 2-1.

Table 2-2.

Table 2-3.

Table 2-4.

Table 2-5.

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Table 3-6.

Table 4-1.

Google Keyword Search ..., 5
Programming Learning Environments List 6
Taxonomy Table (Optimized Kelleher’s [11]) 10
Environments survey list........oiiiiiiiiiiiiiiiiiiiiiiiinn., 13
Classification Result ..., 17
Crosstabulation with game elements 19
Attribute Table ..o 20
Problem Contentscoooiiiiiiiiii i 29
QUESTIONMAITE oottt et e e e e eeaennns 31
Result of the Shapiro-Wilk test..........c.oooiiiiiiiiiii., 32
Result of Arithmetic average (Al)......coooiiiiiiiiiiiii, 38
Result of A2 - AS i i 39
Description formula questionnaire result................... 42
Classification Result ... 57

Table 4-2. Results of The Significant Difference Test (Learning

Comprehension Test) ... e 64

Table 4-3. Results of The Significant Difference Test (Attitude

Toward Programming)couuiiiuiiiiiii i 68
Table 4-4. Feature Table of the Environments 75
Table 4-5. Analysis of test resultscooiiiiiiiiiiiii i 76
Table 4-6. Analysis of attitude questionnairec...ccoiveennn... 76
Table 4-7. Analysis of the learning effectscooiiiiiiiiiiit 77

XIII

X1V

INTRODUCTION

CHAPTER 1

INTRODUCTION

This chapter discusses issues in programming learning and programming
learning environments. Novice learners often use programming learning
environments when learning to write code. In this thesis, novice learners are
defined as children aged 6 to 12 who are inexperienced in programming.
Programming learning environments have diverse characteristics. In this
research, I identify characteristics of programming learning environments and

investigate the learning effects based on the characteristics.

Figure 1-1 shows how my research is related to previous research on
programming environments. Although many studies have employed
programming environments, the learning effects of each learning environment

are unknown.
The research question, solution, and goal of this research are as follows:

1. Research Questionl-1(RQ1-1): How can novice learners maximize learning

effects in programming learning?

» Goal 1-1(Gl1-1): To support selecting an appropriate learning

environment for programming learning by novice learners.

< Solution 1-1 (S1-1): To clarify the learning effects by grasping the

characteristics of the programming learning environment.

On the way to answer RQ 1-1 is to achieve G1-1. As a solution, I investigated
mainly S1-1. I created a classification to evaluate multiple environments and
identify the characteristics of the programming learning environment. However,
classification alone does not elucidate the learning effects. Therefore, I
examined the learning effects of the text method and the visual method in the
same programming learning environment. Although many text and visual
comparative studies exist [6][35][36], investigations that include
characteristics such as linguistic representation are scant. Because these
characteristics differences should impact the learning effects, I investigated

their differences as well as the learning effects of multiple environments.

CHAPTER 1

Specifically, I examined the effect of multiple elements in a programming
learning environment on the learning effects. It should be noted that the
development of a programming learning environment based on characteristics

is future work.

I employed the results of several studies to examine multiple elements because
this technique provides stronger evidence of the impact of elements on the
learning effects. The subsequent sections will explain my research in more

detail.

INTRODUCTION

Ydieasal 1no 0] pa:

108UUO) = e

Yaiessal ay] SBOUBN[JU| = dssrssrsases

Yoleasal Ul pasuaiayal s =

Yoieasal Ul PpRleal]} §| = 4= = = =

yoieasai Ay = U anssj= | “ Yoleasal snoiaald = 7 JuBWUOIIAUS Jo uoniejndod = ﬂ\ “) T JUSWUOIIAUS jo uonejndogd =) sweu juswuomaug =
.. A S0T0C $0002 S0L6T|
ﬁ " *sisA|eue awes ay} Suisn sjuswuonAua ajdijnw Suiten|eas salphis maj a1e m_wc._.an
k TTTTTTT T T Soeye Juiuies| pue yaie %aloummm_l._m_ﬂllllllllllllll tost
—{gzltoToZ)SuTwEISoTg (8EIlLE1(0T0Z)Ys3e155 ; (986T)BuInjos
pasay piemo3 sapninay pue J00ju2319 pasuanjjul aq 01 wajqoid jo
L —] _juswdojanaqg
5199 i N : 1l
i >__>_ | 13943 paseg-1xap) \ EEIETR (;
Yaieasay \| 49andwod uiSujuieay 086T)uciieanp3
e | L Sulwieaq 0] |[ENSI/ WOJJ UCIISUBL] Y] 1\ | s pasusnul 3G 03 . g ol
“ (" Isvllotoz)swalgns ey =
y ynsas urya3ens [2](9002) BupjuiyL \
_ i) Aq3u 150ad |euoneindwo) \
i SjuaWwuoIiAuS - 10 uonaINpoIUl Jo \
i a|dnjnw jo _sauanjjuj ay1alenjens \
A 1 uosuedwo) .._ |
“ ynsal [9]{eT0Z) sawed yaueasal \ \
\ ul SujwiwesSoad ur pasn N i
3.
! andu-3x2} pue ey . | Hoazosad \
! ndui-jensia \ : y \ u pasn y
| \ J
o uosiedwo S \
_ 2 : ° Eaay p g [6zlIsz](€00Z ‘T00T) oy tl
£ < 3, * AN Al
diysuonejey k. SE— lezllocl(sT02) e Suiuses| eipawnw e mn_mku _””“h
| a8en3ue| Sujwwesdoad u13xe} pue saSew; . :
| 1xa1 pue afen3ue| SulwweiSoxd ——
jo uosuedwo) 1
1 |ensia jo uosuedwo) % y A
. : _
T \ e1) % S) ,
| e L e A
| e sdljsusloeley) m -Alessa3au s| UOREIYISSE|D " nmucmN.N_MM_”EEmmemmt. \ / \ ___
salnjea 4 | ! \ A
jeaq “ mau ‘padojsnsp usaq aney “ SujwwesSorg : \ \ 5
| suswuosiAua Auew asuls s - N e B2
T i | “esmonjoAwduoxelyi \ = 8 =
a
uonejnisse;) psausnpui agoy | [t1] (s002) \ 2 _n.cr,
5 Awouoxel Aq A
allajal .
Awouoxe] ajeal) oy H uoneawssE / .__
A ~—7_ : A e \ 1]
||||| -|||||x||||||||-|-u.||-|p_|-|||-._T.;.uuunnuy-np-- R e]
NN | o e ; 1 ¥ " eas X eSS = R
1_--" sajunLloqoy . H / upssn o0 9NV s}aays) e ST
»: ~
\M L|QWOIAPOD yajeids \ = juady o001)
~e A . \ o
S — [P ; 100§uU3319 S Aoz L ¥
“ *$13430 pUE 5103EINP? ‘s19d0[3N3P JO UOIFBIISIP BY3 JE PASN BIE SJUSWILOIAUT | BT T e o A o
il L i e v e e s s i - 8 L Eadta it o T
SO0T0Z 5000¢ S0L6T]

Subjects learning

in expression

Difference

Classification

Environment

Figure 1-1. Outline of this research

CHAPTER 1

1.1.Programming Learning

Students learn to programme for a variety of reasons. For example,
programming learning is used to teach Computational Thinking. The phrase
“Computational Thinking” was first used by Seymour Papert in 1980 [1], when
he was working on computer education for children using LOGO. In 2008, J.
Wing added "abstraction" and "problem-solving" [2]. The effects of
programming learning have been extensively studied. Several studies have
shown that the learning environment called Scratch [3] improves learners'
interest and passion for programming [4][5]. Other studies have shown that
using a game called Minecraft tends to improve programming skills [6][7][61].
The results of these studies suggest that the learning effect depends on the

method of programming instruction and the learning environment.

In this thesis, I consider the programming learning environment for novice

learners and investigate learning effects based on various characteristics.

1.2.Programming Learning Environments

Numerous programming learning environments are utilized for novice learners
[31[91[59]1[69]1[70]. As examples, Scratch [3][8], Alice [31] and Greenfoot[69]
are used in a visual programming language, while CodeCombat [9] and
Minecraft Education Edition [10] exist in game software. Previously, Kellaher
et al. classified multiple programming environments [11], demonstrating that
these environments have unique characteristics. However, the issue is that these
environments are used at the discretion of educators and learners. Moreover, it
is unclear what kinds of learning effect are derived from the characteristics of
each learning environment. Investigating the characteristics of learning
environments should reveal the learning effect. This is useful as information

to maximize the learning effect of the novice learners.

INTRODUCTION

1.2.1. Method to identify Programming Learning
Environments

As the founding premise of this research, I investigated various kinds of
programming learning environments. To develop a method for surveying
program learning environments described in the literature, I referred to the
study by Kai Petersen et al. [12], which is often used for comprehensive
literature investigations. First, I employed a Google Custom Search API to
search the Web for eight sets of keywords (four sets each from Japanese and
English) (Table 1-1). In the table, keywords in the same row have the same
meaning in Japanese and English. The top 100 search results for each set of
keywords were used, yielding a total of 800 results. I then extracted the
programming learning environments by morphological analysis and visual

observations, yielding 76 environments for programming learning (Table 1-2).

Table 1-1. Google Keyword Search

Japanese English
Ta s vy e Yy -4 Programming learning game kids
T s I v EE Ty v— Programming learning tool kids
Tur IV HBE LS T4 Programming education game kids
T sV HE FELY O V— Programming education tool kids

CHAPTER 1

Table 1-2. Programming Learning Environments List

No. | Software No. Software No. Software No | Software
Name Name Name . Name
1 Alice 21 LOGO 41 Programin 61 LEGO
MindStorms
2 Ardublock 22 Daisy the | 42 RoboMind 62 | Romo
Dinosaur
3 Blockly 23 Empire of | 43 Run Marco! | 63 | Root
Code
4 MOONBIloc |24 Erase All | 44 Swift 64 | Sphero SPRK
k Kittens Playground
s
5 Pyonkee 25 Flappy 45 Tech 65 | Vortex
Rocket
6 Scrach 26 Greenfoot 46 The Foos 66 | Wonder
Workshop
7 Scratchlr 27 HackforPlay | 47 Tickle 67 | Arduino
8 SmalRuby 28 Hopscotch 48 Turtle 68 Ichigojam
Academy
9 Viscuit 29 JointApps 49 MaKey 69 Java
10 Osmo 30 Junior 50 Osmo 70 | JavaScript
Coding Coder Coding
11 AgentSheets | 31 Kodu Game | 51 PETS 71 Python
Lab
12 BetaTheRob | 32 Learn 52 Puzzlets 72 | Ruby
ot Python
13 BotLogic.us | 33 LearnToMo | 53 Bitsbox 73 Swift
d
14 Box Island 34 Lightbot 54 c-jump 74 | Tynker
15 Code 35 Minecraft 55 Hello Ruby |75 | PROCK
Monster
16 Code Studio | 36 MinecraftEd | 56 Robot 76 Algologic
u Turtles
17 Code-Girl 37 Minecraft 57 Kano
Collection Education
Edition
18 CodeComba | 38 Move the | 58 Bee-Bot
t Turtle
19 CodeMonke |39 Squeak 59 Codie
y
20 Crunchzilla | 40 Penjee 60 Hackaball

INTRODUCTION

1.3.Contributions

The contributions of this paper are as follows:

I provide a taxonomy to qualitatively categorize the programming learning

environment.

I show the difference in learning effects based on the input method of the

programming learning environment.

I show the learning effects as the difference of multiple programming

learning environments.

I show the learning effects derived from the individual characteristics of

the programming learning environment.

These contributions will help the novice learners because they assist in selecting

the proper programming learning environment.

1.4.0rganization of This Thesis

Chapter 1 highlights my research goal. There are over 76 kinds of programming
learning environments, leading to issues with programming learning

environments.

The rest of this thesis is organized as follows. Chapter 2 explains the taxonomy
to evaluate multiple programming environments and shows the classification
results based on the proposed taxonomy. Chapter 3 highlights the learning
effects by different programming methods (text input and visual input). Chapter
4 investigates the learning effects based on the characteristics in multiple
environments. In addition, the correlation between characteristics is shown.

Finally, Chapter 5 summarizes this thesis and describes future works.

CHAPTER 2

CHAPTER 2

CLASSIFICATION OF PROGRAMMING
LEARNING ENVIRONMENTS

First, I created a taxonomy by defining items for classification of programming
learning environments. [then wused this taxonomy to classify several
environments. Based on the results, I evaluated the characteristics of each
environment, including the attributes of the visual language environment and

game software. This survey addressed the following research question:

Research Question 2-1 (RQ2-1): Can a taxonomy group, evaluate, and

compare programming learning environments effectively?

The contributions of this research are:

Development of a taxonomy table for comparison and evaluation of

environments based on a standard protocol.

The taxonomy table aids users in selecting environments with appropriate

attributes for the learning objective.

2.1.Background

Caitlin Kelleher et al. [11] investigated dozens of programming environments
by classifying them into categories. Furthermore, Shuhaida Sheridan et al. [13]
classified learning assessment for novice programming, and then evaluated
programming environments using the same taxonomy. Unlike the work of
Kelleher et al [11], which included numerous programming environments, this
study focuses on programming learning environments for children, with the goal
of creating a taxonomy table that is optimized to help users [educators and
learners (children)] select the environments referred to in [11]. Additionally, I
use our taxonomy table to evaluate the programming learning environments
intended for programming education. Because the number of available

environments has drastically increased, the environments targeted in this

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

chapter are visual languages, game software, and other software that work on

PCs (including tablets and other devices).

2.2.Creation of Taxonomy

I created a taxonomy table to evaluate program learning environments
qualitatively (Table 2-1) by referencing Kelleher et al. [11]. Specifically, I
optimized Kelleher’s table for learning environments and added the following
categories: Game Elements and Requirements. Game elements are added
because playing a game is a suitable learning method for programming,
especially programming concepts. The number of the games to learn
programming has increased. Examples include CodeCombat [9] and Lightbot
[14]. This survey considered game elements that deal with games. I used
Rule/Restriction, Goal, and Reward (the common parts of the definition by Katie
Seaborn et al. [15] and Juho Hamari et al. [16]) to define game elements. From

the viewpoint of multi-play, I also added Cooperation [17].

CHAPTER 2

Table 2-1. Taxonomy Table (Optimized Kelleher’s taxonomy [11])

Style of programming | Programming constructs | Representation of code (C3)
(Cl) (C2)

Procedural (il1) Conditional (i21) text (31)

Functional (i12) Loop (i22) pictures (i32)

Object-based (i13)

Variables (i23)

flow chart (i33)

Object-oriented (i14)

Parameters (i24)

animation (i34)

Event-based (il5)

Procedures/methods (i25)

forms (i35)

Statemachine-based
(i16)

User-defined data types (i26)

finite state machine (i36)

Pre and post conditions (i27)

physical objects (i37)

Recursion (i28)

Construction of
programs (C4)

Support to understand

programs (C5)

Designing Accessible

Languages (C6)

typing code (i41)

back stories (i51)

limit the domain (i61)

assembling graphical | debugging (i52) select user-centered
objects (i42) keywords (i62)
demonstrating actions | physical interpretation (i53) | remove unnecessary
(i43) punctuation (i63)
selecting/form filling | liveness (i54) use natural language (164)
(i44)

assembling physical | genereated examples (i55) remove redundancy (i65)

objects (i45)

Game elements (C7)

Supporting Language (C8)

Operating Environment (C9)

Rule/Restriction (i71)

Japanese (i81)

Windows (i91)

Goal (i72) English (i82) Mac (i92)

Rewards (i73) Others (i83) Linux (i93)

Cooperation (i74) Web (194)
i0S (i95)

Android (i96)

Others (i97)

Interface (C10)

Experience (C11)

PC (i101)

unnecessary (il11)

Tablet(8inch~) (i102)

necessary (i112)

Smartphone (i103)

Other Interface (i104)

10

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

2.2.1. Taxonomy details

The taxonomy table divides the 56 items into 11 categories. Each category is

explained below.

Style of Programming (C1) indicates the programming style built into the
environment. There are six styles: procedural, functional, object-based, object-

oriented, event-based, and state machine—based.

Programming Construct (C2) reflects the programming construct that can be
learned in an environment. Constructs include conditionals, loops, variables,
parameters, procedures/methods, user-defined data types, pre-and-post
conditions, and recursions. In this survey, all types of loops were lumped
together because they are conceptually identical from the standpoint of teaching.

I also included recursion, because some environments teach this concept.

Representation of Code (C3) explains how programs are displayed.
Representations include text, pictures, flowcharts, animations, forms, finite

state machines, and physical objects.

Construction of Programs (C4) describes how to programs are input. Items
include typing code, assembling graphical objects, demonstrating actions,

selecting/form-filling, and assembling physical objects.

Support of Program Understanding (C5) focuses on how the environment helps
the user comprehend a program. Examples include back stories, debugging,

physical interpretations, liveliness, and generating examples.

Designing Accessible Language (C6) represents the functions that make
programming languages easier to learn. Functions include limiting the domain,
selecting user-centered keywords, removing unnecessary punctuation, using

natural language, and removing redundancy.

Game Elements (C7) is a new category representing the game element included
in an environment, such as rewards and goals. The presence or absence of such

elements influences the learning effect.

Supporting Language (C8) is the language used in each environment. This has
been added because the wusers’ understanding of the description of the
environments is relevant to the learning effect. Supporting languages are

classified as English, Japanese, and others.

11

CHAPTER 2

Operating Environment (C9) is the platform in which each environment works.
I added this category because the way that an environment is launched and used
is an is an important aspect of usability. Operating environments were classified
as Windows, Mac, Linux, Android, 10S, Web, and others.

Interface (C10) denotes the device suitable for the environment. This was added
for the same reason as Operating Environment. Interfaces are classified as PC,

Tablet, Smartphone, and Other.

Experience (C11) indicates whether the environment targets novice
programmers. This was added because this research aimed to survey program

learning environments for children without programming experience.

2.3.Selection of Environments to Classify

I identified 76 environments based on the method described Chapter 1. This
Chapter targets software working on a device such as a PC or a tablet, reducing
the number of environments to 43 (Table 2-2). The environments are divided
into three attributes (At): visual programming environments (Vi), game
software (GM), and other educational software (Ot). Then the environments are
classified according to the text from the official website. Although the websites
are classified into these three attributes, their definitions are ambiguous. The
attributes are characterized using a taxonomy, which should be useful to group

future characteristic sets.

12

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

Table 2-2. Environments survey list

ID Name At ID Name At ID Name At
T1 | Alice Vi T21 Code-Girl GM T41 | Squeak Ot
Collection
T2 | Ardublock | Vi T22 CodeMonkey GM T42 | Swift Ot
Playgrounds
T3 | Blockly Vi T23 Crunchzilla GM T43 | Tynker Ot
T4 | MOONBIlo | Vi T24 Daisy the GM
ck Dinasaur
T5 | Pyonkee Vi T25 Empire of GM
Code
T6 | Scrach Vi T26 Erase All GM
Kittens
T7 | Scratchlr Vi T27 Flappy GM
T8 | SmalRuby | Vi T28 HackforPlay GM
T9 | Viscuit Vi T29 Junior Coder GM
T1 | Greenfoot | Vi T30 Lightbot GM
0
T1 | Hopscotch | Vi T31 Move the GM
1 Turtle
T1 | Kodu Vi T32 Penjee GM
2
T1 | LearnToM | Vi T33 RoboMind GM
3 od
T1 | Programin | Vi T34 Run Marco! GM
4
T1 | BetaTheRo | GM T35 Tech Rocket GM
5 bot
T1 | Bol Island | GM T36 The Foos GM
6
T1 | BotLogic.u | GM T37 Tickle GM
7 S
T1 | Code GM T38 Turtle GM
8 Monster Academy
T1 | Code GM T39 JointApps Ot
9 Studio
T2 | CodeComb | GM T40 Learn Python Ot
0 at

13

CHAPTER 2

2.4.Results and Analysis of Classification by

Taxonomy

2.4.1. Analytical method

In this section, I surveyed the features of programming learning environments.
As a classification method, two people separately evaluated each environment

according to the following process:

(1) Read the words on the official website of each environment.
(2) Use each environment.

(3) Verify the classification in the taxonomy table.

(4) Cross-check the classification results of the evaluators.

2.4.2. Overall results

Table 2-3 is a taxonomy table, which shows the classifications and attributes of
the environments. Furthermore, Figure 2-1 shows the corresponding number of
environments for each classification. Several environments have multiple
attributes. Additionally, some classifications may be applicable to other
attributes (e.g., “robot” or “unplugged tool”). Therefore, additional research is

necessary.

For Style of Programming (C1), Procedural, the most basic concept, has the
most entries (25 environments). Visual programming environments have been
applied to the Object-oriented style of programming. Because Procedural and
Object-oriented are basic styles of programming, many environments have been

developed for these aspects.

For Programming Constructs (C2), five entries are supported by more than half
of the environments: conditionals, loops, variables, parameters, and
procedures/methods. All of these are important concepts for programming. A
total of 28 environments incorporate conditions and loops as basic programming

concepts, indicating that many environments teach the logic of programming.

14

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

For Representation of Code (C3), 90% of the environments use text. Such
environments refer to general languages, allowing users to learn programming
in a style that closely resembles regular programming, or to understand
programs in a natural language. Additionally, some environments, such as
Lightbot, use pictures to represent programs. These environments are more

easily intuitively understood than text-based ones.

In Construction of Programs (C4), assembling graphical objects, a way to
visualize language, has the most entries. Although some environments require
users to type code, many others enable users to input code by dragging and
dropping. This is advantageous because these environments were developed for

children who may not be proficient at typing or using a keyboard.

In Support to Understand Programs (C5), physical interpretation has the most
entries. In this classification, the code is expressed by a specific action such as
“walk” or “jump”; again, this is appropriate because these environments were

developed for children.

In Designing Accessible Language (C6), the attribute ‘limit the domain’ has the
most entries (31 environments). Limiting the domain makes it easier for learners

to understand programming.

In Game Elements (C7), many environments include Rules/Restrictions and
Goals. At least one game element is present in 24 of the 43 software
environments. Therefore, most environments are categorized as game software,
enabling users to learn programming by playing a game. The advantage of game
software is that users can understand programs by watching an action rather

than reading written instructions.

In Supporting Language (C8), English was the most supported (36
environments), largely because many programming learning environments were
developed in Europe and North America. Some environments support multiple
languages, enabling learners to learn in their own languages, leading to a better

understanding of programming.

In Operating Environment (C9), Web has the most entries. Because
environments that work on the Web do not require extensive preparation,
beginners can more quickly begin to learn to program. Additionally, some
applications corresponding to tablets and smartphones are supported by some

environments. These environments make it easier to learn programming.

15

CHAPTER 2

In Interface (C10), PC has the most entries (33 environments), indicating that

most environments aim to teach users a general language.

In Experience (C11), over 90% (40 environments) of the environments can be

used by beginners (especially children).

16

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

Table 2-3. Classification Result

V1

A%

V1

A%

V1

A%

A%

V1

Vi1

V1

Vi1

V1

Vi1

GM
GM
GM
GM
GM
GM
GM

GM

GM
GM
GM
GM
GM
GM

GM
GM
GM
GM
GM
GM
Ot

Ot

Ot

Ot

x|GM

x|GM

C11| At

x|x| VI

x|x|GM

x|x|GM

x|x| Ot

C10

X

9

X

X|X[X[X|X[X|X

X|X[X[X|X[X|X

X|X[X[X|X[X|X

X

X

X

X[X|X[X

X

C8

X

X

X

X

X

X

X

X

X[X|X[X]|X[X

X[X]X[X

c7

X

X[X|X[X|X[X]|X

X[X|X[X|X[X]|X

X

X[X|X[X

X

X

X

X

X

X

Co

X[X|X[X

Cs5

X|X[X]|X[X

X

Cc4

X

C3

Cc2

X

X

X

X

X

X

X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X

X|X|X[X[X

X|X|X[X[X

X|X|X[X[X

C1

X

X

X

X

X

T\ |I|11(2121212121212|12131333333|4|4|4|4|4|5(5|5[5(5(6(6|6(|6(6|7|7(7(7|8|81(81(9(2|9(|9 99910101010]|I|I

1121314|5(6(1123[4|5(6|7|811123 4567|112 34|5234(5[11213|14|5(112 341231121314 |5(6|71|23|4]|1]|2]At

T1

T2

T3

T4

TS

T6

T7

T8

T9

T10
T11
T12
T13
T14

T15 | x

T16 | x

T17 | x

T18|x
T19

T20 | x

T21|x

T22 | x

T23 | x

T24 | x

T25|x
T26

T27 |x
T28

T29 |x

T30 | x

T31|x

T32|x

T33|x

T34 |x

T35|x

T36 | x
T37

T38| x
T39

T40 | x
T41

T42 | x

T43 | x

17

CHAPTER 2

C1
25
12
10
. . .
I
i11 i13 i14 i15
C4
21
18
I |
i41 i42 id4
c7
24
21
8
. .
i71 i72 i73 i74
C10

i1o1 i102 i103 i104

Figure 2-1. Result of Classification

2.4.3.

2.4.3.1.

C2
31 30 30
25 o
4 3
H ==
i21 i22 i23 i24 i25 i27 i28
c5
27
14
I 5 5 :
i51 i52 i53 is4 i55
c8
36
19
. -
is1 i82 i83
L6 i §
40
7

111 i112

Results of each attribute

Visual programming environments

38

i31

w
bt

i61

i62

C3

C6

Cc9
28

94

i63 i64

13
T
I 5 .
95 i96 97

Among the environments I examined, there are 14 visual environments. Many

visual programming environments are object-based and include basic concepts

such as conditionals, loops, and procedures/methods. Learning to program is

easier in a form that is closer to real programming. Accordingly, text is used as

a representation of the code. Additionally, as a method of programming, many

environments involve assembly of graphical objects, making it possible to

program by dragging and dropping. Not all visual environments possess game

elements. In other words, these environments are not games, but are instead

specialized for creating programs.

18

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

2.4.3.2. Game software

In addition, there are 24 game software environments, many of which use a
Procedural style of programming or have Rules/Restrictions and Goals among
the game elements. These elements clarify the learning goals. Therefore, game
software is highly suitable for introductory learning. In addition, I performed a
cross-tabulation with Game Elements, a newly added category, and
Programming Constructs, the basic goal of programming learning. Table 2-4
shows the results. Many of the environments that have Rules/Restrictions and
Goals include conditionals and loops. The reason for this is that showing the
action of a conditional in a game helps users to comprehend such concepts.
Many games with these game elements, such as CodeCombat [9] and Lightbot
[14], are similar to Turtle Graphics. If users (educators and learners) want to
learn conditionals and loops, which are important aspects of programming logic,

they should select a game.

Table 2-4. Crosstabulation with game elements

Game Conditio Loop Variables | Parameter | Procedures Pre and post Recurs
Elements nal S /methods conditions ion
Rule/Restricti 12 11 8 10 9 2 2
on
Goal 15 13 11 13 12 2 2
Reward 6 6 5 3 5 1 1
Cooperation 2 2 1
with Others 3 3 3 0

2.4.3.3. Other Software

Five of the environments are classified as neither game software nor visual
language. Many web services gather programming learning applications, and
there is an environment for easily developing applications. Five programming
expression environments use textual representations. For other items, there are
individual characteristics for each environment. Furthermore, it is possible to

break down the field of each environment.

19

CHAPTER 2

2.4.3.4. Summary of Attributes

Each attribute has common characteristics. Table 2-5 shows the characteristics
most applicable to each attribute, demonstrating that ambiguous definitions can
be determined with this taxonomy. However, this taxonomy is not applicable to

one environment.

Table 2-5. Attribute Table

Attribute Common Characteristics

Vi Assembling graphical objects or Selecting/form filling

Object-based programming

GM Typing Code or Assembling graphical objects

Rule/Restriction, Goal, Rewards

Ot A collection of various tools without common
characteristics
2.5.Discussion

I investigated the following research question:

RQ2-1: Can a taxonomy group, evaluate, and compare programming

learning environments effectively?

I derived a suitable taxonomy table based on Kelleher [11] to compare and
evaluate programming learning environments, as demonstrated by the fact that
my taxonomy can classify all 43 environments. For example, many
environments represent code by text and demand that the code is inputted by
assembling graphical objects. Environments with game elements are suitable to

improve motivation and teach programming concepts [66][67].

Environments often have common characteristics (Table 2-5). Hence, it is
possible to classify environments by attributes. Herein a classification using
three attributes (visual, game software and other) is demonstrated. Therefore,
it is possible to characterize the attributes of a learning environment by my

taxonomy.

20

CLASSIFICATION OF PROGRAMMING LEARNING ENVIRONMENTS

Not only is it feasible to evaluate environments using a unified taxonomy, it is

also possible to select environments based on learning objectives.

2.6.Related Works

In 2005, Caitlin Kelleher and Randy Pausch surveyed programming learning
environments, classified them using their original taxonomy, and created a table
to explain environmental attributes [11]. Their survey and taxonomy were
highly detailed, and greatly contributed to resolving issues in this field. Due to
advances in programming learning environments, a new survey is necessary to
improve the taxonomy and incorporate new technology. In addition, the
preceding survey targeted all kinds of programming education environments,
which would be extremely difficult today due to the greater diversity of
environments. Accordingly, our survey specialized in environments categorized
as software developed for the purpose of education. This approach provides a

taxonomy table suitable evaluation of environments targeting beginners.

2.7.Limitations

One limitation of this study is that the results of evaluation may depend on the
evaluator. Although two researchers cross-checked the findings in this survey,
repetition and reproduction of the findings with more evaluators will necessary

in order to confirm the conclusions.

In addition, the keywords used to extract the environments (Table 1-1) did not
cover all environments for beginners. In this search, I targeted "children".
However, not all applicable environments may be labeled as “for children”.
Thus, from the viewpoint of the retrieval method, acquisition of high-quality

data is an important goal for future research.

Additionally, because I used the results of a Google search, it is possible that
older environments were excluded. Such environments may have greater
influence than newer environments. Accordingly, it is important to also classify

older environments.

21

CHAPTER 2

2.8.Conclusion

I surveyed 43 environments with an emphasis on a visual language and software
that work alone on PCs or similar devices to create a taxonomy table for
programming learning environments. The proposed table can evaluate and
compare such environments. Furthermore, my taxonomy can characterize the
definition of visual language and game software from their characteristics. The
"Other" attribute needs to be divided further. The experiment confirms that the
classification and evaluation results are independent of the evaluator.
Consequently, this taxonomy table helps users (learners and educators) select

the appropriate environment based on their objective.

In the future, more than two people must verify the taxonomy table to verify its
reliability. Additionally, I will continue to investigate whether this taxonomy

table helps users select the most appropriate environment in actual situations.

22

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

CHAPTER 3

COMPARISON OF LEARNING EFFECTS OF
TEXT AND VISUAL REPRESENTATIONS IN
PROGRAMMING METHOD

This chapter investigates learning effects as a function of the characteristics of
the same environment. In particular, this chapter focuses on Representation of
Code and Construction of Programs because the results in Chapter 2 indicated
that many environments use common characteristics. The code is represented by
typing or assembling graphical objects, whereas programs are constructed using
text or pictures. Herein the differences between visual and text input methods
(Representation of Code and Construction of Programs) are investigated in the
same Lua programming environment to determine if the input method influences
the learning effects. Specifically, a combination of text (Representation of
Code) and typing code (Construction of Programs) are compared with a
combination of image (Representation of Code) and drag-and-drop

(Construction of Programs).
This research examines the following Research Questions (RQs):

Research Question 3-1 (RQ3-11): Does a visual-based input method induce

a different attitude toward programming than a text-based input method?

Research Question 3-2 (RQ3-2): Does the understanding of programming

differ between visual-based and text-based input methods?

RQ3-1 assesses whether a given programming method is suitable for an
introductory environment. This RQ can elucidate the attitude of novice learners
toward programming, based on the input method. The results should assist in
selecting the most suitable method for introductory programming. RQ3-2
evaluates the understanding of programming basics. Furthermore, it examines
the understanding of programming concepts by focusing on sequential execution,
conditional branching, and repetition. This RQ can reveal which method is most

suitable for learning. Because increasing learning efficiency should enhance the

23

CHAPTER 3

learning effect, these RQs can elucidate the appropriate programming method
and environment for introductory education. In addition, the proper learning

environment should improve novice learners’ motivation to learn.

3.1.Background

3.1.1. Programming learning for novice learners

It is often noted that beginners have difficulty learning to program [11] [18].
Several studies have been conducted to address this issue. Some used a visual
method like Scratch, developed at MIT [3][4][8][19], whereas another study
used a text method (the C language) [20]. Other studies used both visual and
text methods for Project-based Learning for programming based on problem-
solving [21][50], as well as Game-based Learning [22][23][24][68]. In addition,

some studies investigated attitudes toward programming [25].

Each method has its own learning effect. Some success with novice learners has
been reported using these methods. However, it remains unknown which
programming input method (visual or text representation of code) is more
suitable for novice learners, and the learning effect for each method is also
unclear. Based on this situation, this chapter focuses on the input method, and
compares the learning effects of both kinds of input methods within the same
programming environment. This approach is intended to serve as a reference for

educators when selecting an input method for teaching novice learners.

3.1.2. Two input methods

In this section, I compare the learning effects of text and visual inputs in the
same programming language. Comparisons of the learning effects of text and
visual methods can be traced back to the Dual-coding theory (DCT) proposed
by Paivio [26] [27]. In this theory, human information processing can be divided
into two systems: language and non-language. Language systems use character
information such as characters and voices, whereas non-language systems use
sensory information such as images. These features affect recognition by
humans [27].

24

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

Several studies have examined characters and images using DCT. One study
investigated the influence of the student's prior knowledge on learning in a
computer-based physical lesson as a function of differences in the presentation
format (text, images, or animation) [28]. The results revealed that when
teaching beginners, images are useful for descriptive and procedural learning.
Another study concluded that it is more effective to use images and characters
together [29]. Furthermore, Eitel et al. reviewed 42 studies on the presentation
order of text and images during learning [30]. The boundary condition to
determine whether it is better to use the first process as an image or text is
stated as the relative complexity of the image and the text. Unlike this study,
which focuses on programming languages, these studies focused on multimedia

learning.

A programming language can be expressed as text or visual representations. For
example, visual programming languages such as Scratch [3] or Alice [31] use
drag-and-drop of visual inputs. A visual language is suitable for initial exposure
of novice learners who are unfamiliar with programming languages.
Furthermore, text programming languages such as Python and JavaScript
receive typed input via the keyboard. Text languages can be more sophisticated
than visual languages; however, while a text language is better suited if the
purpose is clear, learners must possess sufficient typing skills. In addition,
some researchers have investigated the transition to text-based programming
from visual-based programming [32][33][34]. Hence, the research results
implemented in the field of multimedia are applicable to novice learners of

programming.

In a study comparing programming methods, visual methods were noted to be
an easy for educators [35]. Studies on programming in higher education have
shown that visual-based languages produce better results than alternative
approaches [36]. One study developed an extended function of CodeBlock,
which expands the visual programming function to Minecraft, and found that
this environment resulted in improved recognition of programming. Although
this study compared visual programming functions to text environments, no

significant difference was detected [6].

Several studies regarding multimedia and programming learning have reported
that the visual method is suitable for novice learners. In other words, they

suggest that using a visual input method may be more advantageous for novice

25

CHAPTER 3

learners. However, programming involves both visual information and
behavioral aspects, such as input of programs and confirmation of execution
results. It is difficult to support all results in the multimedia field. In addition,
there is no significant difference in recognition of programming in comparison
with the text environment [4]. Consequently, the proper input method for novice
learners has not been definitively established. To provide clear answers, this
study uses visual inputs and text inputs at the same level of abstraction, built
in the same environment. Hence, the comparison is based only on differences in
input, with no effect on the environment. In addition, this study strives to

include younger participants.

3.1.3. Minecraft and ComputerCraftEdu with
Programming Learning

For programming learning, I used Minecraft, an internationally popular sandbox
game that involves using various materials to build objects and structures.
Minecraft has been used as an educational environment in mathematics and

science [37][38].

ComputerCraft is a Minecraft modification (mod) that adds the functions of the
Lua programming language. Previous research used a workshop approach to
study programming language education using ComputerCraft, based on the
revised taxonomy of Bloom [7]. The results revealed that student motivation
improved when using ComputerCraft. Consistent with this, another study
reported that ComputerCraft is a beneficial tool for programming language

education [6].

I used ComputerCraftEdu (CCEdu), the education version of ComputerCraft.
The CCEdu has two environments for programming: text-based and visual-based
(Figure 3-1 and Figure 3-2). Text-based programming can be controlled in
Minecraft using the same method as general text programming, whereas visual-
based programming employs illustration blocks. Both environments have the
same level of abstraction. For example, the instruction ‘turtle.forward()’ moves

the turtle forward. Figure 3-3 shows the relationship between the two methods.

26

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

| |#]4 |

J\?Q‘@H |
__I_J!_lﬁ
ﬂ I |unie EI’ vl

Ma Library

Untitledz

Uitz |

| Code Editor IHJ Izl

Figure 3-1. Two input method (Visual)

Functions

turthe e
turtledownc

turtleturnlefic

turnfiig
, forwardC .
turnleft oo Mu Library

=] I'| s Untitledz

Untitled2 =

oy [wisual Editor || @J E ;

Figure 3-2. Two input method (Text)

27

CHAPTER 3

Visual Input Text Input

Move up ,', turtle.up()
turtle.foward()

Move forward
turtle.place()

Place block
turtle.inspect()

Inspect block

10| 5|00 for X=1to b5 do
for sentence
end
i | Ggjree if turtle.detecte() then
if sentence
end

Figure 3-3. Comparison of input methods

3.2.Workshop Design

I implemented two types of workshops (visual-based and text-based), designed
for elementary and junior high school students. Each workshop was configured
as a short course, and both covered the same contents. Specifically, each
workshop consisted of a tutorial, sequential execution, repeat, conditional
branching, and a free problem. The order of the workshop contents was as

follows:
(1) Tutorial content focused on operations in Minecraft and ComputerCraftEdu.

(2) Sequential execution, programming fundamental. The example in the
workshop was to move a turtle and place a block in Minecraft. The user
learns the turtle instructions for moving forward, back, left, right, up, or

down.

(3) Repetition: loops using the “for” statement to place blocks (Stack and Load
Line) using the turtle. Examples included stacking five blocks and creating

a staircase pattern.

(4) Conditionals using the “if” statement to avoid a block. The workshop used

two examples: “avoid obstacles” and “remove TNT.”

28

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

(5) Finally, a free problem was used to assess the students’ programming skills.
In this problem, the user needed to create one alphabetic character. In
addition, to gauge the user’s understanding of programming, the workshop

included six problems (Table 3-1).

The total time for the workshop was approximately 3.5 hours, allocated as
follows: Tutorial (30 minutes), Sequential (50 minutes), Repetition (25 minutes),
Conditional (25 minutes), Free problems (30 minutes), and a Break (30 minutes).
Although the course was short, it taught the programming concepts of

Conditional, Loop, and Sequential were taught.

Table 3-1. Problem Contents

Problem Contents Survey
Category
P1 | Move the turtle three steps, rotate left, and move two more | Sequential
steps.
P2 | Add four blocks. Sequential
P3 | Stack eight blocks. Loop
P4 | Create a stairway with eight steps. Loop
P5 | If a TNT block is in front of the turtle, avoid it. Conditional
P6 | If a diamond block is in front of the turtle, mine it. Conditional
3.3.Experiments

Using comparative experiments based on the "Workshop Design" described in
the section 3.2, I investigated whether the text or visual method is more suitable
for introductory education. In addition, I developed two hypotheses that

correspond to the RQs:

Hypotheses 3-1(H3-1): Visual input programming lecture induces a larger

change in attitude toward programming.

Hypotheses 3-2(H3-2): Programming is easier to understand using the visual

input method.

29

CHAPTER 3

H3-1, which corresponds to RQ3-1, speculates that the change in attitude toward
programming is more significant for the visual input group because the visual
input method is more intuitive than the text input method. H3-2 corresponds to
RQ3-2. Similar to the rationale for H3-1, I hypothesized that it should be easier

to comprehend programming using visual inputs.

3.3.1. Participants

I recruited participants via a website. Participants were primary and junior high
school students in Japan ranging in age from 6 to about 15 years old. The
application allowed participants to select the course type (visual or text). In
each year, 36 students responded to the recruitment targeting novice learners;
thus, a total of 72 subjects participated. Based on the participant’s preference,
they were divided into the Visual Group (VG) and the Text Group (TG).
Learners attended the workshop corresponding to their group. VG had 46
participants, whereas TG had 26.

3.3.2. Questionnaire

The same questionnaire was administered twice to assess the change in attitude
toward programming: Before Questionnaire (BQ: Q1B-Q10B) and After
Questionnaire (AQ: Q1A-Q10A) (Table 3-2). Based on Zorn et al [6], I used
five factors to assess attitude: Interest, Difficulty, Usefulness, Fun, and
Willingness. Willingness is included because the desire to learn is an important
element. Each question was evaluated using the six stages of the Likert scale
(1: Strongly disagree, 2: Disagree, 3: Somewhat disagree, 4: Somewhat agree,
5: Agree and 6: Strongly agree). The Likert scale was set to six stages to
eliminate an intermediate value, allowing the responses to be divided into "can"
and "cannot". For all questions except Q2 and Q7, a higher score in the AQ
indicated an improvement. For Q2 and Q7, a lower score in the AQ indicated an
improvement. Furthermore, I created two questions (Q11, Q12) to assess the

participants’ understanding of programming.

30

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

Table 3-2. Questionnaire

Attitude Toward Programming Question Survey Category
Q1 Are you interested in programming? Interest
Q2 Do you think that learning to program is difficult? Difficulty
Q3 Do you think that knowing how to program is useful? Usefulness
Q4 Do you think programming is fun? Fun
Q5 Do you want to learn to program? Willingness
Q6 Are you interested in the turtle program? Interest(Turtle)
Q7 Do you think that the learning the turtle program is | Difficulty(Turtle)
difficult?
Q8 Do you think that knowing how to turtle program is useful? | Usefulness(Turtle)
Q9 Do you think turtle programming is fun? Fun(Turtle)
Q10 Do you want to learn to turtle program? Willingness(Turtle)
Understanding Programming questions
Ql1 What is a conditional? Conditional
Q12 What is a loop? Loop
3.3.3. Analysis Method

To determine the appropriate analysis method, I tested the normality of the
results of each questionnaire using the Shapiro—Wilk test. In this test, which
evaluates the normality of a given distribution, a p-value < 0.05 indicates lack
of normality. In all populations, I was unable to confirm that the data follows a
normal distribution (Table 3-3). Hence, I adopted the Wilcoxon signed-rank test
and the Wilcoxon rank—sum test. Unlike t-tests, these tests can be used without
an assumption of normality. The Wilcoxon signed-rank test is used to test for
significant differences between two groups with correspondence, whereas the
rank—-sum test is used to test for significant differences between two groups

without correspondence.

The number of valid responses was 38 (VG) and 26 (TG). To address RQ3-1, I

evaluated the following
(A1) Analyze the change in a simple averaged value
(A2) Implement a Wilcoxon signed-rank test in BQ and AQ, by group
(A3) Implement a Wilcoxon rank—sum test for the results of BQ, by group
(A4) Implement a Wilcoxon rank—-sum test for the results of AQ, by group

(AS5) Implement a Wilcoxon rank—-sum test for the change from BQ to AQ.

Figure 3-4 shows the details of the analysis.

31

CHAPTER 3

Table 3-3. Result of the Shapiro-Wilk test

32

Wilcoxon rank sum test

VG TG
BQ AQ BQ AQ
Y p W p W p Y p

Q1 0.8411 8.11E- 0.7024 1.80E- | 0.6994 | 5.21E- 0.5938 2.51E-
49 05 22 07 44 06 14 07

Q2 0.9240 |0.0131 0.8829 | 0.0008 | 0.8894 | 0.0091 0.8841 0.0070
76 1 25 7 36 65 48 52

Q3 0.6482 | 2.67E- 0.6240 1.21E- | 0.6684 | 2.02E- 0.5451 7.30E-
26 08 26 08 89 06 2 08

Q4 0.7570 1.56E- 0.6612 | 4.15E- | 0.6425 | 9.52E- 0.5273 | 4.76E-
55 06 49 08 64 07 94 08

Q5 0.7762 | 3.56E- 0.6643 | 4.61E- | 0.6346 | 7.60E- 0.6907 | 3.97E-
91 06 08 08 14 07 53 06

Q6 0.8040 1.27E- 0.6649 | 4.71E- | 0.7606 | 4.04E- 0.6659 1.88E-
84 05 48 08 26 05 6 06

Q7 0.9042 | 0.0033 0.9111 0.0053 | 0.8610 | 0.0023 |0.8696 | 0.0035
73 72 77 5 33 46 28 03

Q8 0.7966 | 8.93E- 0.6734 | 6.34E- | 0.6963 | 4.73E- 0.7815 8.69E-
19 06 67 08 93 06 64 05

Q9 0.7698 | 2.69E- 0.6907 1.17E- [0.7082 | 6.88E- 0.5792 1.72E-
49 06 09 07 25 06 84 07

Q10 [0.8146 |2.11E- 0.6989 1.58E- | 0.6755 | 2.50E- 0.7028 5.81E-
39 05 07 84 06 7 06

Gl G2

A3

G1: Before Questionnaire

Wilcoxon rank sum test

Ab
(AQ Value — BQ Value)

(BQ) -
w
e i
am Z Sx
Ec]
mm 5
L SO =
= =}
-+~ ®© A <
<L ow>T o0
c T < 2 %
- Qo ®© s
@ oo
a © 2
ES o
23 2
] — =
=

Wilcoxon rank sum test

] yuels-paudis uoxo

oM

153

G1: After Questionnaire (AQ)

A4

(A1) Analyze the change as the simple averaged value (Table3)

G2: Before Questionnaire

(BQ)

=

pefesone o|dw|s
ay} Supedwo)n

N
v pUE g UT Snfen

G2: After Questionnaire (AQ)

(A2) Implement a Wilcoxon signed-rank test in the BQ and AQ of each group

Implement a Wilcoxon rank sum test for the results of BQ in G1 and G2

(A4) Implement a Wilcoxon rank sum test for the results of AQ in G1 and G2
(AB) Implement a Wilcoxon rank sum test for the change in BQ and AQ

)
)
(A3)
)
)

Figure 3-4. Analysis Method

v

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS

IN PROGRAMMING METHOD
3.4.Result
3.4.1. Attitude Toward Programming
3.4.1.1. Questionnaire result

Figures 3-5 (VG) and 3-6 (TG) show the results of the questionnaires (Q1-Q10)
using violin plots. A violin plot expresses the distribution of data, allowing the
distribution density, average value, and median value to be confirmed. Thus, it
is possible to verify the change in the value of the Likert scale before and after
the workshop, as well as and the distribution density. The green lines in the plot
(Figures 3-5 and 3-6) show the average values. After the workshop, the results
for most categories improved in the VG group. On the other hand, the results in
the TG group decreased to an overall negative attitude, except for those related
to interest in programming (Q1, Q6) and difficulty of programming (Q2, Q7),
which showed improvement. The change in values was larger in VG than TG.
Hence, visual inputs may be more suitable for novice learners than text inputs.
However, the TG had a larger improvement in the difficulty of programming
than VG. In addition, there was no difference between BQ and AQ in VG,

because the answers regarding difficulty were largely positive in BQ.

33

CHAPTER 3

34

Evaluation Value(1-6)

Evaluation Value(1-6)

Evaluation Value(1-6)

Evaluation Value(1-6)

Visual Group

Questions ID
QIQIA QIB)
Q2(Q2A,Q2B)
Q3(Q3A,Q3B)
Q4(Q4A, Q4B)
Q5(Q5A, Q5B)
Q6(Q6A, Q6B)
Q7(Q7A, Q7B)
QB8(Q8A, Q8B)
Q9(QYA, QIB)

Survey Category

Interest
Difficulty
Usefulness
Fun
Willingness
Interest(Turtle)
Difficulty(Turtle)

Usefulness(Turtle)

Fun(Turtle)

QI10(Q10A, Q10B) Willingness(Turtle,

)

_Averagevalue | Standard

VG TG VG

deviation
TG

Before After Before After Before After

Before| After

Qi

4.842 5.211/5.346

5.615 1.182 1.196

0.958 |0.684

Q2

Q3

3.737 3.711|4.269
5.316 5.368|5.577

4.038 1.408 |1.805
5.4621.126 1.134

1.533 1.675
0.631 1.046

Q4

5.105 5.289| 5.5

5.423 1.165 1.168

0.844 |1.246

Qs

5.079 5.289|5.538

5.385 1.133 1.168

0.796 |0.923

Q6

| 4.684 5.263|5.192

5.269 1.524 1.207

1.038 1.094

Q7

| 3.868 3.816|4.462

3.962 1.609 1.636

1.474 1.808

Q8

4.711 |5.184|5.154

4.808 1.503 |1.315

1.063 1.468

Q0

5.026 |5.263| 5.308

5423 1.246 | 1.14

0.991 | 1.08

Ql

(=]

4.842 |5.237|5.385

5.231 1.268 1.157

0.964 |1.085

l L 1 ¥ ww 1 1 1 1 1 1 |
QB Q1A 028 Q2A Q3B G3A Q4B Q4A Q5B O5A
Question
6 e - e . e — —— - _ . i
5 < \[7 =1 T o 8] = W A
4 - = < 1
3 i
2
Q6B QA Q/B Q/A Q88 G8A Q98 QYA QI0B QIOA
Question
Figure 3-5. Result of VG
Text Group
6 - — - —
1 J
4 T -+ |
3 i
2 i
QB Q1A 028 Q2A Q38 Q3 Q4B OQ4A Q5B O5A
Question
6 e e e = rer o
5k it e =l K il =
41 =
3 4
2 4
A i1 I W 1 1 1
68 Q6A O7B OJ/A 08B Q8A Q9% GQ9A QI0B QI0A
Question

Figure 3-6. Result of TG

Questions ID
QIQIA QIB)
Q2(Q2A, Q2B)
Q3(Q3A, Q3B)
Q4(Q4A, Q4B)
Q5(Q5A, Q5B)
Q6(Q6A, Q6B)
Q7(Q7A, Q7B)
QB8(Q8A, Q8B)
Q9(QYA, QIB)
QI0Q10A, Q10B)

Survey Category
Interest
Difficulty
Usefulness
Fun
Willingness
Interest(Turtle)
Difficulty(Turtle)
Usefulness(Turtle)

Fun(Turtle)

Willingness(Turtle)

Q1

Average value
VG TG VG

Standard deviation

TG

4.842 (5.211|5.346

5.615/1.182 |1.196

(Before| After Before) After|Before| After [Before| After

0.958 |0.684

Q2

3.737|3.711|4.269

|a.038| 1.408 |1.805

1.533 [1.675

Qa3

5.316 [5.368|5.577

|5.462|1.126 1134

0.631 |1.046

Q4

5.105 |5.289 5.5

|5.423]1.165 |1.168

0.844 (1.246

5.079 [5.289|5.538

5.385/1.133 |1.168

0.796 |0.923

Q6

4.684 |5.263|5.192

5.269|1.524 |1.207

1.038 |1.094

Q7
Qs

3.868 [3.816|4.462
4.711(5.184/5.154

3.962|1.609 |1.636
4.808| 1.503 |1.315

1.474 |1.808
1.063 [1.468

Q9

5.026 [5.263|5.308

5.423|1.246 | 1.14

0.991|1.08

Q10

4.842 |5.2375.385

5.231|1.268 |1.157

0.964 |1.085

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

3.4.1.2. Analysis of the results

I analyzed the questionnaire results using the Wilcoxon signed-rank test and the
Wilcoxon rank—sum test (p-value < 0.05). Table 3-4 shows the results for Al,
whereas Table 3-5 shows the results for A2-A3. According to A1, VG improved
in all categories. In particular, the attitude towards turtle programming
improved, and the interest in turtle programming improved by about 0.6 points.
However, some of the learners reported a lower value for attitude after the
lecture. It is possible that some learners became bored with programming or
were more absorbed in playing the game than programming. In TG, some
categories also improved to a positive attitude, whereas others decreased to a
negative attitude. The large amount of input necessary to program may inspire
a negative attitude. Attitudes regarding the interest and difficulty of
programming became positive. Furthermore, attitudes regarding the interest,

difficulty, and fun of turtle programming improved.

In VG, the results of A2 revealed a statistically significant difference in the AQ
for Q1 (interest in programming, p = 0.029), Q6 (interest in turtle programming,
p = 0.008), and Q8 (usefulness of turtle programming, p = 0.045), suggesting
that the workshop increased interest in programming. On the other hand, there
was no significant difference in TG. In both groups, the responses tended to
differ significantly from the turtle programming-specific questions. In VG, the
responses were more significant regarding the attitude toward programming

than TG.

A3 involved a Wilcoxon rank-sum test of the BQ responses between the two
groups. There were no significant differences, but marginal differences were
observed for interest in programming (p = 0.079) and willingness to engage in
turtle programming (p = 0.069). The marginal differences are attributed to the
negative values in the BQ in VG.

The A4 analysis was the same as the A3 analysis, except that the AQ results

were compared. The results were statistically insignificant.

The A5 analysis was carried out on the change in value. The change in the

usefulness of turtle program was marginally significant (p = 0.069).

Overall, VG had a larger positive change in attitudes toward programming than

TG. However, both VG and TG exhibited increase in interest in programming.

35

CHAPTER 3

After the workshop, both groups reported that programming is difficult. TG
showed a very slight improvement in comparison to VG [TG (A1l: -0.231) vs.
VG (Al: -0.026)], but the difference was insignificant. However, the results
imply that the text method has a larger effect on decreasing the difficulty level

of programming than the visual input method.

Regarding the usefulness of programming, VG exhibited an improvement,
whereas TG did not. However, the results did not differ significantly. The text
input had more input responses than the visual input, which may have

contributed to the decrease in TG.

Regarding the fun of programming, VG slightly increased, whereas TG slightly
decreased. However, the difference was not significant. Similar to above, text
input had more input responses than visual input, which have contributed to the

decrease in TG.

As for willingness to engage in programming, VG improved, whereas TG did
not. However, the difference was not significant. The decline in willingness in

TG could be attributed to the decline in the fun of programming.

Both VG and TG exhibited increased interest in turtle programming, and the
response for VG was statistically significant. Therefore, VG had greater interest

in manipulating turtles using programming.

VG and TG both indicated that turtle programming was easier after the
workshop, but the results were statistically insignificant. However, based on
the results of A1, the value of evaluation changed considerably for TG.

Therefore, TG tended to feel that programming is easier.

VG exhibited increase in the usefulness of turtle programming, whereas TG
exhibited decrease. The different was significant for VG (A2). Thus, the visual
expression affected the evaluation: VG intuitively understood the turtle

instructions from the illustration.

VG exhibited an improved willingness to use turtle programming, whereas TG

did not. However, the difference between the two groups was not significant.

Based on these results, VG exhibited the most improvement, and the differences
were often more significant than those in TG. These observations confirm
hypothesis H3-1, which speculates that visual-based programming is adequate

for introductory programming learning by novice learners. In addition, some

36

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

learners in both groups exhibited reduced values, but the differences were not
significant. In particular, many learners in VG commented that programming
difficulty increased after the workshop, whereas many learners in TG indicated
decrease in usefulness and willingness after the workshop. Because TG requires
more input, it is possible that the learners had to take more time to program.
Furthermore, the degree of difficulty for programming was more likely to

change to a positive value for TG.

37

CHAPTER 3

Table 3-4. Result of Arithmetic average (Al)

VG TG
Before | After CV! | Evaluati | Before After Ccv Evaluati
on on
Q1 | 4.842 5.211 0.36 | Improve | 5.346 5.615 0.26 | Improve
8 ment 9 ment
Q2 |3.737 3.711 - Improve | 4.269 4.038 - Improve
0.02 | ment 0.23 | ment
6 1
Q3 |5.316 5.368 0.05 | Improve | 5.577 5.462 - Degrada
3 ment 0.11 |tion
5
Q4 |5.105 5.289 0.18 | Improve | 5.500 5.423 - Degrada
4 ment 0.07 |tion
7
Q5 |5.079 5.289 0.21 | Improve | 5.538 5.385 - Degrada
1 ment 0.15 |tion
4
Q6 | 4.684 5.263 0.57 | Improve | 5.192 5.269 0.07 | Improve
9 ment 7 ment
Q7 |3.868 3.816 - Improve | 4.462 3.962 - Improve
0.05 | ment 0.50 | ment
3 0
Q8 |4.711 5.184 0.47 | Improve | 5.154 4.808 - Degrada
4 ment 0.34 |tion
6
Q9 |5.026 5.263 0.23 | Improve | 5.308 5.423 0.11 | Improve
7 ment 5 ment
Q1 | 4.842 5.237 0.39 | Improve | 5.385 5.231 - Degrada
0 5 ment 0.15 | tion
4

'CV = Change Value

38

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

Table 3-5. Result of A2 - AS

A2(VG) A2(TG) A3 A4 A5
S p S p S p S p S p
Q1 32 0.029 | 5.5 0.143 | -1.76 | 0.079 | -1.05 | 0.293 | 0.40 | 0.687
kosk sk
Q2 157.5 10.891 | 27 0.338 | -1.54 | 0.124 |-0.71 | 0.477 [0.96 | 0.339
Q3 53 0.672 |13 0.863 | -0.52 | 0.603 |-0.04 {0.967 [0.03] 0.978
Q4 23 0.2 18 1 -1.24 1 0.214 | -0.57 [0.566 | 0.05 | 0.956

Q5 22.5 0.183 |20 0.427 | -1.61 | 0.107 |-0.01 |{0.989 | 1.00 | 0.315
Q6 30.5 0.008 | 35 0.439 | -1.1 0.271 0.4 0.692 | 1.09 | 0.274

koK
Q7 144.5 [0.873 | 62 0.178 | -1.46 | 0.145 |-0.41 [0.682 | 0.51 | 0.613
Q8 35 0.045 | 27.5 | 0.185 | -0.9 0.371 1.13]0.257 | 1.82 | 0.069
%k 3k %k
Q9 42 0.151 | 42 0.5 -0.74 [0.46 -0.51 [0.613 | 0.1 0.924
Q10 | 34 0.070 | 42 0.5 -1.82 [0.069 | 0.05 |0.956 | 1.35 | 0.176
* %
* = Significant trend, ** = Significant difference
3.4.2. Understanding Programming
3.4.2.1. Problem results and analyses

I used tests and questionnaires to confirm the comprehension level of novice
learners. There were six questions (Table 3-1) and one free problem. Each
learner self-declared when a problem was complete, and then took a screenshot
to confirm the solution. In addition, I acquired the source code as part of the
answer. Figure 3-7 shows the response rate. A low response rate was a problem.
There was not any difference in P1 by the group. For P2, the percentage of
correct answers was higher for VG than TG. This difference is attributed to the
amount of input required to program. TG returned a higher percentage of correct
answers than VG for P3, which was about loop statements, indicating that the
operation amount (i.e., input amount) of VG had increased. Consequently, the
correct answer rate decreased for VG. The result of P4 was the same as that of
P3. On the other hand, P5, which was about conditional statements, had the
opposite result, i.e., VG had a higher percentage of correct responses than TG.
Because complicated conditional expressions had to be input for TG, it was
more difficult to obtain a correct response in TG than in VG. The result of P6

was the same as that of P5.

39

CHAPTER 3

In the free problem, the student was required to create a single letter of the
alphabet. Figure 3-8 shows the answer to the free problem. Both groups utilized
many iterations, indicating that a conditional branch is a difficult concept to
understand. The differences between groups were statistically insignificant,
confirming that the abstraction level of the visual language was similar to that
of the text language. However, some learners in both groups were unable to

solve the free problem.

3.4.2.2. Description formula questionnaire result and analysis

Q11 and Q12 used the description formula questionnaire (Table 3-2). Table 3-6
shows the answers to the questionnaire. The answers were grouped into four
categories: “Explain in relation to game events (CTG1)”, “Explain the action in
words (CTG2)”, “Associate with a programming language (CTG3)”,
“Unanswered - Unknown - Other (CTG4)”. "Explain in relation to game events"
indicates that an answer was created in association with Minecraft, e.g., "Avoid
certain blocks the using turtle”". Many responses to QI1 and Q12 by the VG
group fit into this category, but this response was rare in TG. It is possible that
VG applied this category more often because the expression of the programming
language used for visual input was easy to imagine as an event of the game.
"Explain the action in words" indicates that the answer was explained using
words without being related to game events. In VG, many learners’ responses
to Q11 and Q12fit into this group. Even in TG, few learners fit into this group.
"Associated with a programming language" indicates that the answer was
derived from the programming language, e.g., "for x =1, ~ do ~ end". Responses
for both groups fit this category, but more from TG. It is possible that TG
grasped the meaning of the question in the programming language. "Unanswered
- Unknown - others" indicates users who did not respond or indicated that they
were unsure. Impressions include, "I do not know" and "It is difficult". This
category applied to learners in both groups, but more from TG. Thus, TG may

have had more difficulty verbalizing concepts or understanding programming.

40

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

3.4.2.3. Summary of results

The results do not confirm H3-2. The results for the loop problem (Q3 and Q4)
were better for TG than for VG. On the other hand, the results for the conditional
problem showed the opposite trend (Q5 and Q6). In addition, the manipulated
variables and input quantities in each input method may influence the correct

answer rate.

Q11 and Q12 reveal that the type of response related to programming concepts
differs according to the programming input method. It is possible that the
expression method of the programming language has a significant influence in
this regard. Because both groups responded similarly to the question about the
description formula, I believe there no substantial difference in the degree of

understanding of programming as a function of the input method.

73.1
69.6
‘ ‘577

P1 P2 P3 P4 P5 P6
Problems

90.0

80.8

80.0

73.1
69.6

70.0

60.9 60.9
60.0

56.5

50.0

40.0

30.0

Correct Answer Rate (%)

20.0

10.0

0.0

B VGrate MWTG rate

Figure 3-7. Six problems Response Rate

41

CHAPTER 3

Program Finished product
ror| ¥ [=| 1| 10] 5 |0
VG
TG
Figure 3-8. Result of Free Problem
Table 3-6. Description formula questionnaire result
What is a conditional? What is a loop?
VG (%) | TG (%) | Answer Example VG (%) | TG (%) | Answer Example
CTG1 19.57 3.85 Avoid certain | 17.39 0 Process to stack many
blocks the wusing blocks
turtle
CTG2 36.96 26.92 If there is ~, run | 34.78 15.38 Repeat as many times
the program. as it was said
CTG3 13.04 23.08 if ~ then 10.87 30.77 for x = 0, ~ do
end end
CTG4 30.43 46.15 I am difficult 36.96 53.85 I do not know
3.5.Discussion
3.5.1. Result of RQ3-1

RQ3-1: Does the visual-based input method induce a different attitude

toward programming than the text-based input method?

42

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

» H3-1: The visual input programming lecture induces a larger change in

attitude toward programming.

In RQ3-1, there is a difference between VG and TG in terms of visual
expression. The results of this study also differ from those of previous research.
Zorn et al. used a mod of CodeBlock for a student lecture course in 2013 [6].
Their research, which compared the learning effect of block programming to
that of text programming, found that block programming increases student
interest. In our research, VG exhibited statistically significant differences in
the interest and wusefulness of turtle programming. VG also exhibited
statistically significant differences in the interest of programming overall.
These results indicate that visual inputs are likely to increase interest in
programming. In addition, our results showed that VG increased usefulness and
willingness. This may be because VG is more intuitive than TG. Also, because

a keyboard was not used in VG, less time is necessary to see results.

TG had no statistically significant difference in some of the analyses. However,
the change in the arithmetic mean indicated that the difficulty of programming
improved more in TG than in VG. A previous comparison study that investigated
programming difficulty [39] revealed that a novice cannot distinguish the cause
of programming difficulties because they do not recognize challenges that arise
due to differences between interfaces. By contrast, our study revealed a
difference in attitude. This difference may be due to the fact that text input is
a more realistic programming method than visual input. Learners may have a
prejudice that text is more representative of programming, which is perceived
as more difficult. However, our workshop interposed games, creating the
possibility that learners would feel that programming is easy. Consequently,

programming difficulty exhibited a larger improvement in TG.

The visual input method improved attitudes towards programming to a greater
extent than the text input method. Although the differences were not
statistically significant, I can confirm H3-1. Thus, from the standpoint of the
attitude of novice learners toward programming, the visual input method is more
suitable. However, the text input method decreases the difficulty level more
than the visual input method. Consequently, the text input method can be
adapted to novice learners. Data accumulated in future studies should further

distinguish between the two input methods.

43

CHAPTER 3

3.5.2. Result of RQ3-2

RQ3-2: Does the understanding of programming differ between visual-based

and text-based input methods?
» H3-2: Programming is easier to understand using a visual input method.

For RQ3-2, the low response rate was an issue for both groups. VG had a high
percentage of correct answers regarding the conditional problem. This is
attributed to the fact that the visual method requires less input to create the
conditional program. Furthermore, visual input allows the conditional to be
viewed as images instead of text. The score exhibited a larger improvement in
VG than in TG. In addition, some VG learners could not solve the free problem.
More answers used loops than conditional branching, suggesting that loops are
conceptually simpler than conditional branching. TG had a high percentage of
correct answers for the loop problem because less input is required to create
loops with text inputs. Hence, the score exhibited a larger improvement in TG
than in VG.

Many responses in VG used the same loop for the free problems. Based on these
findings, it can be assumed that both groups are influenced by the operations
and input quantity in the environment. In addition, the results also support the
notion that a loop is a simpler concept than conditional branching. This result
suggests that the expression of a programming language influences learners’
understanding level if DCT is considered [27][30].

Furthermore, the rate of correct response to the problem regarding programming
indicates that both methods are useful. As discussed above, the results indicate
that loops are a simpler concept than conditional branching. Therefore, both
methods can be applied to novice learners. The programming input method and
input quantity may influence the rate of correct answers to the problem about
the understanding of programming (Table 3-1). In the questionnaire about
programming concepts, VG exhibited a larger improvement than TG. Consistent
with previous research [28][35], this result suggests that visual inputs are

beneficial for novice learners.

The answer to RQ3-2, H3-2, cannot be confirmed using the results of this study.
The two groups exhibited a clear difference in their understanding of

programming. The rate of correct response to the problem regarding

44

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS

IN PROGRAMMING METHOD

programming indicates that both methods are useful. Thus, both methods can be

applied to novice learners.

3.6.Limitations

This research had several limitations, some of which could be addressed by

future research. Here, I note five limitations:

)

2)

3)

4)

5)

The response rates to the problems confirming the degree of understanding
(P1-P6) were low due to self-assessment. Although implementing a paper
test could increase the response rate, it may not resolve this issue. I am

currently considering other options.

Because participants were recruited via the Internet, there was a difference
in the number of participants in the two groups. Participants selected their
group (visual or text) when volunteering for the study. This difference is
likely due to the perception, at the time of recruitment, that the text method
would more difficult. To address this imbalance, in the future each group

should have roughly the same number of participants.

Because the participants were recruited via the Internet, learners were able
to select the programming method, and could register for either the visual
or text workshop. In the future, participants should be randomly assigned

to each method.

Novice learners were recruited online. However, some participants may
have had some previous exposure to programming, which may have affected
the results, especially the understanding of programming concepts. In the
future, filtering and other adjustments will be conducted to decrease the

exceptions of participants.

The small population size may have affected our results. In the future, more

experimental data should be accumulated.

45

CHAPTER 3

3.7.Conclusion

Iinvestigated whether a text or visual input method is better for novice learners.
In the field of DCT and multimedia, it has been reported that visual expressions,
as well as the application of text and images in a balanced manner, are effective
for novice learners. Hence, it may be beneficial to teach programming visually.
However, programming involves behavioral aspects, such as entering and
executing programs. Because information is acquired by more than just vision,
programming differs in several aspects of multimedia learning. Some previous
studies have applied and compared programming learning methods for novice
learners, but their results did not clarify whether visual or text input is more
suitable for novice learners. Therefore, we compared the learning effects of two
input methods for novice learners using ComputerCraftEdu in Minecraft. The
visual input method resulted in a larger change in attitude. Significant
differences were noted, especially in regard to interest in programming
(including Turtle programming). Although text input tended to make

programming less difficult, the difference was not significant.

In rate of correct response to the problem assessing the understanding of
programming (Table 3-1), there was a difference between conditional branching
and loops. The rate of correct response to the conditional problem was higher
for visual input, whereas the rate for the loop problem was higher for text input.
I speculate that the differences are influenced by operations and input quantity,
but additional studies will be necessary to definitively determine the cause. In
addition, differences were observed in the questionnaire results regarding the
programming concept. VG tried to explain the concept by applying it to a
specific action, whereas many TG in tried to explain the concept in relation to
programming. Thus, the expression method of programming language may

influence the perception of concepts.

The overall results indicate that the visual input method is better suited for an
introduction to programming. These results coincide with the DCT, implying
that it is easier to use a visual input method. However, the comparison results
suggested that actions change the learning effect. Hence, from the viewpoints
of the amount of operations and input in the programming environment, the text
input method can be used for programming learning by novice learners. In the
future, I plan to investigate the learning effect from the perspective of behavior

recognition. Furthermore, I plan to collect and analyze additional data, as well

46

COMPARISON OF LEARNING EFFECTS OF TEXT AND VISUAL REPRESENTATIONS
IN PROGRAMMING METHOD

as determine the correlation between attitudes and understanding of

programming.

47

CHAPTER 4

CHAPTER 4

QUANTITATIVE EVALUATION OF THE
LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING
ENVIRONMENTS

This chapter investigates the characteristics of multiple environments, as well
as the learning effect of each environment. In this chapter, I consider the
learning effect based on the characteristics of programming constructs and game

elements, in addition to the characteristics discussed in Chapter 3

Each environment has unique characteristics. Several studies have evaluated
various environments [53][54][55][56][57], but the learning effects due to the

characteristics of a given environment have yet to be sufficiently examined.
To address this issue, I investigated the following Research Questions (RQs):

Research Question 4-1 (RQ4-1): Is there a difference in characteristics

between programming environments?

Research Question 4-2 (RQ4-2): Does the programming environment

influence the learning effect?

Research Question 4-3 (RQ4-3): Is there a relationship between the

characteristics of an environment and the learning effect?

RQ4-1 determines whether each environment has unique characteristics.
Because the most appropriate environment for the intended purpose can be
selected based on the desired characteristics, RQ4-1 should enhance the
effectiveness of applying environments. RQ4-2 evaluates the influence of each
environment on the learning effect. RQ4-3 elucidates how learning effects are
related to the characteristics of each environment. Understanding the learning
effect from these perspectives will aid in selection of the appropriate

environment based on learning objectives and goals.

48

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

4.1. Background

Programming learning for beginners has been conducted using various learning
environments. For example, Scratch [3][8] is used in a visual programming
language, while CodeCombat [9] and Minecraft Education Edition [11] exist
within game software. These environments have different characteristics,
including program expression and programming method. For example, program
expression can be text, visual, etc. A previous study on multimedia learning
revealed that learner recognition and learning effects differ between text

expression and image expression [30].

In addition, these environments differ widely in terms of developers' intentions
and learning objectives. Although many researchers have investigated
programming learning environments (e.g., evaluation of a single environment
[40] and comparisons between text and visual languages [36]), few studies have
compared programming learning environments in multiple fields. Therefore, the
types of learning effects that depend on the characteristics of the programming

learning environment remain unknown.

In this research, I evaluated environments with three different programming
methods [visual programming languages, game software, and physical
environments (tangible [72] and unplugged)] in the same framework, using a

workshop.

49

CHAPTER 4

4.2.Programming Learning Environments

I selected six environments that are commonly available in Japan.

4.2.1. Scratch

Scratch [71] (Sc, Figure 4-1) is a visual language used to create stories, games,
and animations. This globally popular environment was developed by the MIT

Media Laboratory. Some previous studies [4][5] have used this environment.

GERRE & s v EEv exh W
r [Untitied Zoude | oRFa-—4 | B
| ~e

=
ot
L

m
iv

eI

A Q--
6
J2

I A

a
-
W
*]
&=

PoUwbEnicts

X: 290 ¥: 130
ATSA b HFUZTSA N @ /@

Figure 4-1. Scratch [71]

50

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

4.2.2. Viscuit

Viscuit [41] (Vi, Figure 4-2) is a Visual Programming Language and
Environment developed by Digital Pocket in Japan. It can control a written

illustration using a special form of programming called "glasses".

36/42 K=
i1 o S

Figure 4-2. Viscuit [41]

51

CHAPTER 4

4.2.3. CodeMonkey

CodeMonkey [42] (CM, Figure 4-3) is game software used to program the

behavior of a monkey collecting bananas. This game uses a programming

language called CoffeeScript.

upe FrL>NOE R —
turn left

step 5.

turn right

step 16

turn right

step 5

OLICh

..‘6' ”

Figure 4-3. CodeMonkey [42]

52

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

4.2.4. Lightbot

Lightbot [14] [60] (Li, Figure 4-4) is game software used to program the

behavior of a robot to achieve a goal. It teaches the concept of recursion as a

"Loop".

<« LB
’ BB

2=1

B
3

Figure 4-4. Lightbot [14]

53

CHAPTER 4

4.2.5. OSMO Coding

Osmo Coding [43] (OC, Figure 4-5) is a tangible device. It uses physical blocks

for programming to control characters via an iPad application.

Figure 4-5. OSMO Coding [43]

54

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

4.2.6. Robot Turtles

Robot Turtles [44] (RT, Figure 4-6) is a board game in an unplugged tool. The

purpose is to create a program to manipulate the turtle and collect jewels.

Figure 4-6. Robot Turtles [44]

55

CHAPTER 4

4.3.Classification

These six environments can be divided into three fields, based on their
characteristics: visual programming environment, game software, and physical
environment. In addition, I qualitatively evaluated the environments based on

the taxonomy described in Chapter 2. The results are shown in Table 4-1.

The visual programming environment uses a visual programming language
within a programming method with a drag-and-drop feature. This feature allows
content to be freely created. Viscuit and Scratch are visual programming
environments, and the main difference between them is the expression of code.

Scratch is expressed in text, whereas Viscuit is expressed in images.

Game software is software with game elements, including Rules/Restrictions,
Goals, Rewards, and Cooperation [15][16][17]. Lightbot and CodeMonkey are
game software, and these environments differ in both the expression of code
and the programming method. Lightbot expresses code in images, and
programming is performed by drag-and-drop. In contrast, CodeMonkey uses text

to express code, and programming is performed by typing the code.

A physical environment is one that allows programming using physical cards or
blocks. OSMO Coding and Robot Turtles are examples of physical environments
that differ in the location of the program execution results. In OSMO Coding,
the result of programming is reflected in the software, i.e., the program works
in a virtual space. On the other hand, the execution result of Robot Turtle is
reflected by the behavior of a piece on a board game. In other words, the

program works in real space.

56

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF

PROGRAMMING LEARNING ENVIRONMENTS

Table 4-1. Classification Result

Category

Characteristic

Sc

Vi

CM

Li

oC

RT

style of programming

procedural

functional

object-based

object-oriented

event-based

statemachine-based

programming constructs

conditional

loop

variables

parameters

procedures/methods

user-defined data types

pre and post conditions

recursion

Representation of code

text

pictures

flow chart

ion

forms

finite state machine

physical objects

Construction of programs

typing code

assembling graphical objects

demonstrating actions

selecting/form filling

assembling physical objects

Support to understand programs

back stories

debugging

physical interpretation

liveness

genereated examples

limit the domain

select user-centered keywords

remove unnecessary punctuation

use natural language

remove redundancy

Rule/Restriction

Goal

Game

Rewards

Cooperation

Supporting Language

Japanese

English

others

Operating Environment

Windows

Mac

Linux

Web

i0S

Android

others

Interface

PC

Tablet(8inch~)

Smartphone

others

Experience

unnecessary

necessary

57

CHAPTER 4

4.4.Experiments

4.4.1. About Experiments

To evaluate the six environments, I focused on the understanding of basic
programming concepts (sequential execution, repetition, conditional) and the
influence of applied skills (especially, abstraction and problem solving) in a
workshop. In addition, I researched attitudes toward programming using a
questionnaire and an eight-point learning comprehension test (programming

basics and applied programming test).

4.4.2. Questionnaire and test

I conducted a questionnaire and a test to analyze the learning effect.

4.4.3. Learning comprehension test

The test to investigate the influence of the environment on the understanding of

programming consisted of eight questions:
Sequential: one question
Repetition: three questions
Conditional: two questions

Free description problem: two questions

Figure 4-7 and 4-8 show the types of questions asked.

58

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

GOAL

I want to go from the start (O) to the goal ().

If you have the following rules, what kind of route do you follow?

Please draw a line in the maze. (Hint: Let's unravel while rotating the paper)
1. If there is a wall on the right hand and there is no wall in front, proceed
2. If there is no wall on the right hand, rotate to the right

3. [If there is a wall in front and the right hand, rotate to the left

Figure 4-7. Question Example

59

CHAPTER 4

(o0

6 \\= 5
o>

5

4

3

2

1

Q1 Please freely draw a line so that the robot passes through all the squares. At first
it is facing right.

Q2 Please explain with a simple program why you drew such a line.

Figure 4-8. Free description problem

4.4.4. Questionnaire about the attitude toward
programming

This questionnaire was conducted before and after the workshop to investigate
changes in attitudes toward programming: fun (QlA, Q1B), difficulty (Q2A,
Q2B), usefulness (Q3A, Q3B), willingness (Q4A, Q4B), and interest (QS5A,
Q5B)]. Responses were on a six-stage Likert Scale (1: Strongly disagree, 2:
Disagree, 3: Somewhat disagree, 4: Somewhat agree, 5: Agree and 6: Strongly
agree). Based on Chapter 3, the questionnaire consisted of the following five

questions:
Q1: Do you think programming is fun?

Q2: Do you think programming is difficult?

60

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS
Q3: Do you think programming is useful?
Q4: Do you want to learn programming?

Q5: Are you interested in programming?

4.5.Workshop

The workshop system was organized by two to four persons, including lecturers
and assistants. The learners were elementary students in grades 3 to 6, except
for learners using Robot Turtles, who were in grades 1 to 3 at an elementary
school where the environment was announced officially as a subject. The

teaching materials included online environments, handouts, etc.

4.5.1. Schedule of the workshop

The workshop lasted 90 minutes with the following format:

1. Pre-Questionnaire: 2 min;

2. Pre-Test: 5 min;

3. Workshop Time: 75 min;

4. Post-Test: 5 min;

5. Post-Questionnaire: 3 min (+5 additional minutes allowed)

4.5.2. Number of students and effective questionnaire
responses

Fifty-nine students participated in the workshop wusing the following
environments: Scratch (10 people), Viscuit (9), CodeMonkey (9), Lightbot (7),
OSOMO Coding (16), and Robot Turtles (8). The numbers of valid responses to

the test and questionnaire were as follows:

. Learning comprehension test: 45 people

61

CHAPTER 4

. Questionnaire of attitude toward programming: 49 people

. Questionnaire on impressions: 49 people

4.6.Results and Analysis
4.6.1. Learning comprehension test

4.6.1.1. Overall test results

First, [analyzed three groups: visual programming environment, game software,
and physical environment. Figures 4-9 — 4-11 show the learning comprehension
test results, by group. Each group exhibited improved learning comprehension
after the workshop. For each result, the prior and posterior scores were
evaluated using the Wilcoxon signed-rank test (confidence interval 95%; p <

0.05 indicates a significant difference). Table 4-2 summarizes the results.

The visual group improved as a whole, with a Wilcoxon signed-rank test p-value
of about 0.08. Although the difference was not significant, the trend indicates
that the workshop was effective. However, a few learners had reduced scores
after the workshop. One reason for a lower score might be that learners became

tired of learning in the visual programming language and stopped taking the test.

The game software group exhibited a large improvement in learning. The
Wilcoxon signed-rank test had a p-value of about 0.006, which is statistically
significant. Game elements provide an explanation for the significant
difference: because the goal in a game is clear, the students are engaged until
the test was complete. However, it is possible that the scores improved because

the problems asked in the test were similar to those in the game software.

Similarly, the learning effect improved in the physical environment group after
the workshop, although the change was not significant (Wilcoxon signed-rank
test p-value of 0.28). The scores of some learners declined after the workshop,

possibly because of the difference in work volume due to physical intervention.

62

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

score

score

Visual Programming Environmnts

I I I

| 1 |

after
Before & After, Data Num:15

Figure 4-9. Results of Visual Programming

Game Software

T 1 I

1 | |

after
Before & After, Data Num:12

Figure 4-10. Results of Game Software

63

CHAPTER 4

. Physical Environmnts
1 I 1

score

0 1 1 1
after

Before & After, Data Num:18

Figure 4-11. Results of Physical Environment

Table 4-2. Results of The Significant Difference Test (Learning

Comprehension Test)

Category Statistics p-value
Visual Programming | 17.5 0.0834 *
Environments

Game Software 0 0.0059 **
Physical Environments 30 0.2752

** Significant difference, * Significant trend

4.6.1.2. Programming applied test

Two patterns emerged in the responses to the free description questions. The
descriptive patterns were either U-shaped (Figure 4-12, left) or spiral-shaped
(Figure 4-12, right). Because both were correct due to problem solving, it is
possible that learners improved their problem-solving abilities and explanatory
skills. The spiral type can be simply described using a small number of
procedures and components. Therefore, the improvement may have been due to

an enhanced abstraction ability. Interestingly, only the Viscuit participants

64

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

responded using a spiral, suggesting that Viscuit may have features not found

in the other environments.

None of the learners could explain the program prior to the workshop, and only
a small number could after workshop. Furthermore, the differences among the
environments were not significant. For example, learners felt that they "wanted

to proceed until hitting the wall".

6 | =% 6 ‘E—QJJ—‘—‘—‘—‘—
E i =
5 5
|
|
2 % 2 |
1 I 1 |
1 2 3 4 5 6 1 2 3 4 5 6
Figure 4-12. Results of the Free Description Problem
4.6.2. Attitude toward programming

Figures 4-13 — 4-15 show the results of the questionnaire regarding attitudes
about programming, by the group. Table 4-3 shows the results of the Wilcoxon

signed-rank test.

If the environment included game elements, interest in programming improved
in the after workshop, likely because games are more fun than physical
environments with game elements. We evaluated the significance of the
difference using the Wilcoxon signed-rank test. The p-value for interest in the
game software group is about 0.06, indicating a significant trend. From a
comprehensive viewpoint, game elements make programming seem more

interesting.

65

CHAPTER 4

Visual programming languages tend to decrease the difficulty of programming;
learners can easily create software by visual programming because it is
consistent with the general image of programming. The visual programming
group had Wilcoxon signed-rank test p-value of approximately 0.09, a slightly
significant trend. Both the game software and physical environment groups felt
that programming was more difficult after the workshop. For the game software

group, the p-value was about 0.07.

The visual programming language and physical environment group indicated
that the workshop did not increase their perception of the usefulness of
programming. However, the game software group reported increased value of
usefulness after the workshop. This difference may be because the game
software is instantaneously executed, yielding a concrete result. However, the
Wilcoxon signed-rank test indicated an insignificant difference between the

groups.

Each group exhibited a similar willingness to learn, and the Wilcoxon signed-
rank test indicated no significant differences. This workshop included a short
introduction, which had a negligible effect on willingness. Depending on the
environment, some learners reported decrease in willingness after the workshop;

the reasons for this need to be considered further.

Each group reported a slight improvement in interest in programming. Although
the students only studied programming for a short time, their interest improved.

However, the Wilcoxon signed-rank test did not confirm a significant difference.

66

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF

score

score

PROGRAMMING LEARNING ENVIRONMENTS

Visual Programming Environments

1 1 1 I I I I 1 1

1

1
Q1B

1 1 L L 1 1 1 1
Q1A 028 02A Q3B Q3A 048 04A 058 05A
Data Num:17

Figure 4-13. Results of visual programming language

Game Software

1
Q1B

1 1 1 1 1 1 1 1 1
Q1A 028 02A 03B 03A 048 04A 058 05A
Data Num:14

Figure 4-14. Results of game software

67

CHAPTER 4

Physical Environments

I 1 1 1 T T T I I 1

score
|

1 1 1 1 1 1 1
02A Q3B Q3A 048 04A 058 05A
Data Num:18

1 1 L
Q1B Q1A (2B
Figure 4-15. Results of the physical environment

Table 4-3. Results of The Significant Difference Test (Attitude Toward

Programming)

Visual language Game Software Physical environment

Statistics p-value Statistics p-value Statistics p-value
Ql 6.000 0.160 0.000 0.059%* 2.000 0.131
Q2 17.500 0.087* 0.000 0.066* 26.000 0.522
Q3 11.000 0.608 1.000 0.285 30.500 0.813
Q4 5.500 0.279 7.500 1.000 4.500 0.854
Q5 6.000 0.317 0.000 0.109 2.500 0.157

4.6.3.

Environments

* Significant trend

Comparison of the characteristics in individual

Table 4-4 overviews the characteristics of each environment. In addition, the

questionnaire results on the impressions about each environment are considered.

68

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

The tools are divided into populations to analyze each characteristic
individually using the before questionnaire/test results and the after
questionnaire/test results. In addition, the results of the comprehension test and
the questionnaire on attitudes towards programming are analyzed separately.
Table 4-5 shows the analysis results of the relationship between each
characteristic and the comprehension test, while Table 4-6 shows the
relationship between each characteristic and the attitude questionnaire. These
tables use the average point change (Ac) and the p value (p) of the Wilcoxon
code rank test for each population. Table 4-7 summarizes the results of the
learning effects for each characteristic (Programming constructs,
Representation of Code, Construction of Programs, and Game elements) of the
programming environments. These results are analyzed using the average value
of the understanding of a programming concept (excluding the free description
problem) and the results of the attitude questionnaire. "x", “xx”, and “xxx”
denote a change in the mean value, a significant trend in the significant
difference test, and significance in the significant difference test, respectively.
Programming constructs promote the understanding of each programming
concept. In particular, the characteristic of a loop helps comprehend the concept
of iteration. Moreover, the characteristic of recursion may promote the

understanding of iteration and conditional branching.

In Representation of Code, text representation reduces programming difficulty.
The Wilcoxon signed-rank test, which was conducted using the attitude
questionnaire results in an environment where the representation of text is given
as a population, indicates that the change in the degree of difficulty shows a
significant trend. Hence, the representation of text reduces the difficulty level.
The Wilcoxon signed-rank test, which was conducted with the attitude
questionnaire results in an environment where the representation of a picture is
given as a population, indicates that fun and willingness exhibit significant
trends, and interest displays a significant difference. The Wilcoxon signed-rank
test, which was conducted with the attitude questionnaire results in an
environment where the representation of physical objects is given as a
population, does not show a significant difference, indicating that more data is
necessary to confirm whether physical objects improve fun and interest in

programming.

In Construction of Programs, assembling graphical objects may improve

attitudes other than usefulness. Combining selecting/format filling and typing

69

CHAPTER 4

code may prevent increase in difficulty and a reduction in usefulness. In

addition, assembling physical objects improves fun and interest.

Game elements improve usefulness, interest, and fun for programming. The
Wilcoxon signed-rank test, which was conducted with the attitude questionnaire
results in an environment where the game elements are given as a population,
shows significant differences in fun and interest. Moreover, combining game
elements with elements of physical objects may affect the difficulty level and

usefulness.

Supporting the results of Chapter 3, elements related to problem solving and
neutralization abilities are expressions of codes and construction of programs.
Characteristics such as liveliness and generated examples in Support may also
be influential because these factors confirm the execution result of a program
by the motion of a picture. This leads to an understanding of programming.
Therefore, such characteristics may lead to abstraction and problem solving.
However, the results may depend on the tool. Consequently, teacher's teaching

methods and teaching materials may also be involved.

Finally, the learning effects derived from each characteristic are summarized

below:
* Programming Constructs
» Conditional
< It is suitable to learn conditional.
» Loops
< It is suitable to learn loops.
» Recursion
< It is suitable to learn loops.
» Representation of Code
» Text
< It alleviates difficulties in programming.
< It may improve fun and interest of programming.

> Pictures

70

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF

PROGRAMMING LEARNING ENVIRONMENTS

< It improves interest in programming.
< It improves fun and willingness of programming.

< It may reduce difficulties in programming and improve usefulness.

» Physical objects

< It may improve fun and interest of programming.

* Construction of Programs

>

Typing code

< It may improve fun and interest of programming.

< It may have an effect when combined with selecting/form filling.
Assembling graphical objects

< It may improve fun, difficulty, usefulness, willingness, and interest

of programming
Selecting / form filling
< It may improve fun and interest of programming.
< It may have an effect when combined with typing code.
Assembling physical objects

< It may improve fun and interest of programming.

¢ Game Elements

>

>

Rule/Restriction

Goal

Rewards

< It improves fun and interest of programming.
< It may improve usefulness of programming.

< It is effective to use game elements in combination with other game

elements and others characteristics.

71

CHAPTER 4

4.6.3.1. Scratch

Scratch tended to improve the rate of correct responses in the learning
comprehension test. In the free description test, many learners described the
pattern as U-shaped. Additionally, after the workshop, the perception of the

difficulty of programming was remarkably reduced.

In this method, the programming method involves dragging and dropping a
block. Hence, action is validated immediately after execution. This method is
considered to contribute to the reduction of "difficulty," as assembling
graphical objects is a major element of this environment. Furthermore,
impressions of "making things" and "making apps" are observed. Accordingly,
learners can quickly visualize movement using illustrations. Furthermore, the
high degree of freedom in this style of programming seems to contribute to such

impressions.

4.6.3.2. Viscuit

This environment tended to improve the rate of correct responses in the learning
comprehension test. Both U-shaped and spiral responses were provided in the
free descriptions. It is possible that this environment stimulates creativity. The
spiral shape can be described simply, using only a few procedures and
components. Hence, the ability to abstract problems improved after the

workshop.

Common learner’s impressions included "moving a picture" and "glasses,"

possibly because movements with “eyeglasses” are intuitive.

4.6.3.3. CodeMonkey

This environment tended to improve the correct answer rate of the learning
comprehension test. In the free description test, many learners described the
pattern as U-shaped. In addition, many of the learners tried to explain programs
in the free description, indicating that they had thought about and then solved

the problem independently. Thus, this environment improved explanation skills.

72

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

In addition, there was also trend toward improvement in attitudes toward
programming. Interestingly, the perceived difficulty of programming did not
change after the workshop, possibly because the programming method was easy,

combining keyboard input and form selection.

One learner commented, "There were various programs, and I learned something
very interesting". This environment contains a collection of problems, allowing
the learner to progress continuously without a large gap in difficulty level. This
environment seemed to lead to continuous enthusiasm and fun, and it was easy

to express the goals and rules of the game elements.

4.6.3.4. Lightbot

This environment tended to improve the rat of correct responses in the learning
comprehension test because it helped the learner comprehend different
programming concepts. In the free description test, many learners described the
pattern as U-shaped. This environment is a simple puzzle game, which can be
operated intuitively using a tablet (or smart phone). The learner sees the
program that he or she creates as the movements of a robot, promoting the

understanding of programming concepts.

One learner commented that it is “easier to learn with the feeling of a game.”
This "game sensation" improves the learners’ motivation and promotes their

understanding of programming.

4.6.3.5. OSMO Coding

This environment tended to improve the rat of correct responses in the learning
comprehension test. In the free description test, many learners described the
pattern as U-shaped. Although major features are not found for specific matters,
each subject is approached in a balanced manner. Because the environment is a
tangible device, it is considered to be effective for continuous learning without
decrease in motivation. However, due to the relationship between the physical
block and the software element, the workload may increase, causing learners to

quit.

73

CHAPTER 4

In addition, learners’ impressions often included the word "move," e.g., "move
the computer” or "move it as instructed", which may be related to assembling

and programming the blocks.

4.6.3.6. Robot Turtles

This environment tended to improve the rat of correct responses in the learning
comprehension test. In the free description test, many learners described the
pattern as U-shaped. The environment is unplugged, and learners can work in
groups. Group learning can increase the diversity of knowledge and promote
comprehension by enabling students to share the programs they create.
Cooperation with others also invokes a game element. Impressions suggested
that learners believed that programming could be optimized, as noted in

responses such as a "faster way to go forward.”

74

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

Table 4-4. Feature Table of the Environments

Programming constructs Attitude toward programming
Sequen | Lo | Condi | Condit | Free Free Fun Diffi | Usefu | Willin
tial op tional |ional 2 | Descri | Descri culty | Iness gness
1 ption ption
(line) (Descri
ption)
Sc X X X XX
Vi X XX X
C X X X
M
Li X X XX XX
oC
RT X X

x = Characteristic and feature, xx = Strong Characteristic and feature

75

CHAPTER 4

Table 4-5. Analysis of test results

Sequential Loops Conditional
Ac p Ac p Ac p
Programming conditional -0.105 0.134 | 0.368 0.029 | 0.579 0.00014
constructs loops
recursion -0.143 0.317 | 1 0.157 | 0.857 0.034

Table 4-6. Analysis of attitude questionnaire

Fun Difficulty | Usefulnes | willingne | Interest
s Ss
Ac p Ac P Ac p Ac p Ac p
Representatio text 0.1 (0.3 |- 0.0 |- 0.6 |- 0.2 0.0 |0.7
n of code 25 17 0.5 | 84 0.0 | 55 0.1 | 57 63 85
63 63 88
pictures 0.6 {0.0 {05 |03 |0.5 (0.2 |[0.6 [0.0 |[0.6 |0.0
43 84 71 39 71 68 43 84 43 34
physical 0.4 0.1 {03 |[0.4 |0.0 |1.0 |- 0.4 0.2 |0.2
objects 29 09 57 73 00 00 0.3 | 14 86 57
57
Construction typing 0.1 0.3 |0.0 |nan |[0.0 | nan |- 0.1 [0.2 |0.3
of programs code 25 17 00 00 0.2 |57 50 17
50
assemblin [0.1 | 0.3 |- 0.1 {00 [09 (0.1 |04 |0.1 |04
g 88 17 0.6 |35 63 15 88 08 25 80
graphical 88
objects
selecting/ | 0.1 [0.3 [0.0 | nan | 0.0 | nan | - 0.1 [0.2 |0.3
form 25 17 00 00 0.2 |57 50 17
filling 50
assemblin [0.4 (0.1 [0.3 (0.4 0.0 |1.0 |- 0.4 0.2 |0.2
g 29 09 57 73 00 00 0.3 | 14 86 57
physical 57
objects
Game Rule/Rest | 0.5 [0.0 [0.5 [0.0 [0.2 |0.4 |- 0.6 0.4 |0.0
Elements riction 00 16 36 80 14 84 0.0 | 08 29 48
Goal 71
Rewards

76

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

Table 4-7. Analysis of the learning effects

Cate
gory

Characteri
stics

Seque
ntial

Loops

Condit
ional

Fun

Diffic
ulty

Useful
ness

willin
gness

Intere
St

programming constructs

conditional

XXX

loops

XXX

variables

parameters

procedures
/methods

user-
defined
data types

pre and
post
conditions

recursion

Representation of cod

text

pictures

flow chart

animation

forms

finite state
machine

physical
objects

Construction of
programs

typing
code

assembling
graphical
objects

demonstrat
ing actions

selecting/f
orm filling

assembling
physical
objects

Game elements

Rule/Restr
iction

Goal

Rewards

Cooperatio
n with
Others

XX

XX

XX

XXX

XXX

XXX

x = Average value changes, xx = Significant trend, xxx = Significant

difference

77

CHAPTER 4

4.7.Discussion

In this section, each RQ is discussed.
4.7.1. Answer of RQ4-1

RQ4-1: Is there a difference in characteristics between programming

environments?

Each environment had unique characteristics (e.g., programming method and
expression of programming language), confirming RQ4-1. Table 4-1 shows the
qualitative characteristics of the programming environments. As noted in
Chapter 2 and in Kelleher et al. [11], some environments share common
characteristics. For example, visual programming environments employ a
programming method using a drag-and-drop feature. Similarly, in some
programming languages, a physical object can be touched by hand. Game
software shares common elements (i.e., game elements). The attributes of each

environment can be classified from the classification results.

The learning effect depends on the characteristics of the environment. The 43
environments were divided into six categories based on their attributes (Table
4-4). This analysis confirms that all programming learning environments have

unique characteristics.

4.7.2. Answer of RQ4-2

RQ4-2: Does the programming environment influence the learning effect?

Each environment displayed its own learning effect. Due to the small sample
size, however, RQ4-2 must be investigated further. In particular, a difference
in the learning effect was observed in the free description problem. However,
the influence of each environment on the response to the free description
problem must be further evaluated. This is obvious from the fact that there were

two answers (Figure 4-12).

The questionnaire revealed a difference in attitude regarding the "difficulty" of
programming; this is also evident from the results in Figure 4-13 — 4-15. Other

attitudes exhibited trends toward improvement. In Chapter 3, it was

78

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

demonstrated that visual programming environments improve attitudes toward

programming.

4.7.3. Answer of RQ4-3

RQ4-3: Is there a relation between the characteristics of an environment and

the learning effect?

The learning effects of each environment are based on its unique characteristics,
confirming RQ4-3. Table 4-1 lists the qualitative characteristics of the
programming environment. RQ4-2 reveals that the learning effects depend on
the environment. In particular, factors that influence the learning effects
include representation of code and construction of programs. Representations
of images and texts affect recognition in multimedia research [28][29]. The
amount of work (e.g., typing the code) in a programming learning environment
impacts the learning effects. The difference in work may influence learners’
attitudes toward programming. Juho Hamari and Veikko Eranti reported that

game elements impact attitudes toward programming [14].

Each environment also has its own characteristics (Table 4-4). For example,
spiral-type answers are found in the free description problem with Viscuit,
suggesting that Viscuit helps cultivate abstraction skills. As shown in Table 4-
7, the learning effects are easily obtained by characteristics. Programming
construct characteristics affect the outcome of each programming concept
(loops and conditions). This suggests that characteristics play an important role
in understanding the concept of programming, although this finding is a natural
result. Moreover, multimedia research reveals that there are differences in the

learning effects in the representation of the code [29][30].

This chapter reveals a difference in expression of three patterns of text, picture,
and physical objects, which influence the attitude toward programming. The
advantage of text representation is that 'code meaning' can be understood by
looking at it. The representation of a picture affects the attitude of programming
when the illustration used is more relevant to the program's movement,
increasing interest in particular. Chapter 3 reveals that a difference in

representation affects the learning effects. In addition, the influence of the

79

CHAPTER 4

representation is also mentioned in a multimedia study [30]. Hence, it is obvious

that the difference in expression impacts attitude.

Construction of Programs also affects attitudes towards programming. Typing
code is keyboard input. Hence, if learners do not know how to type, this input
may reduce willingness. However, by combining selecting/form filling, it may
be possible to prevent the decrease in willingness. Assembling graphical objects
involves drag and drop, making it relatively easy to program. Thus, graphical
objects have the potential to improve the attitude towards programming.
Assembling physical objects may not be effective, depending on the tool. The
programming method is the easiest. However, it is possible that the learning
effect may decrease because the relation between reality and virtual is weak.

Furthermore, it is possible that programming is done without a computer

(unplugged).

Furthermore, the characteristics of the representation of code and programming
constructs may be closely related. For example, when the representation is text,
assembling graphical objects tends to make programming feel easier. Even in

the case of pictures, interest may be enhanced by assembling physical objects.

As described in previous studies, game elements improve fun and interest
[22][23]. It is obvious that these characteristics impact the learning effects.
Therefore, the characteristics of each environment may be related to the

learning effects.

These unique features may enhance the learning effects according to the

intended purpose.

4.8.Related Works

Kelleher et al. [11] qualitatively investigated and categorized multiple
programming environments. However, to assess the characteristics and learning
effects of these environments, a quantitative investigation is necessary. This
research focused on quantitative evaluation with the goal of clarifying the

learning effect of environmental characteristics.

Paul Gross and Kris Powers [18] summarized evaluations of programming

environments for beginners. Furthermore, they created a rubric to ascertain the

80

QUANTITATIVE EVALUATION OF THE LEARNING EFFECT EVALUATION OF
PROGRAMMING LEARNING ENVIRONMENTS

quality of their evaluations, and assessed courses using several different
environments. By contrast, our research analyzed the environments themselves
and investigated the learning effects of environmental characteristics. By
combining their contributions with ours, it may be possible to realize a more

systematic evaluation.

4.9.Limitations

I noted the following limitations:

1) The population size is small and the number of participants in each

environment is biased.
2) Some of the test problems were similar to those within the environments.

3) It is possible that the learning effects of environmental characteristics

depended on the instructor's teaching method.

The bias in the number of learners weakens the statistical validity of this
research. To address this problem, we need to accumulate additional data and
analyze the data further. The purpose of this research was to investigate
environmental characteristics. However, it is possible that the learning effect
in each environment depended on the lecturer in charge of the workshop. To
solve this problem, the workshop design must be generalized. In future

initiatives, we will design a more general workshop.

4.10. Conclusion

I conducted a quantitative evaluation of six programming learning environments,
using a workshop approach. The elements of classification influenced the
learning effect. All environments improved the result of a learning
comprehension test. However, when the software involved physical elements,
learners could become bored as the workload increases. Students in three groups
(visual programming language, game software, and physical environment)
exhibited differences in attitudes toward programming. The use of a visual
programming language tended to decrease the perceived difficulty of

programming. Although environments with game elements tended to make

81

CHAPTER 4

programming more fun, they also increased the perceived difficulty of

programming.

In the future, I plan to increase both the number of environments and the number
of learners. I also plan to design a workshop that is independent of the lecturer

and the setting where learning takes place.

82

CONCLUSION

CHAPTER 5

CONCLUSION

5.1.Summary

This research investigates the characteristics of the programming learning
environment in an effort to determine the learning effects based on
characteristics. In Chapter 2, I created a taxonomy table for programming
learning environments. This table can classify the programming learning

environment, confirming that each environment has unique characteristics.

In Chapter 3, I focused on two different methods in the same environment.
Specifically, I examined the learning effects for text-input and visual-input
(Representation of Code and Construction of Programs) methods. The method
influences not only the attitude towards programming, but also the
understanding of programming, demonstrating that the programming method

influences the learning effects.

In Chapter 4, I classified the characteristics of six environments. These
environments are divided into three categories: visual language, game software,
and physical tools (unplugged and tangible device). Furthermore, I examined
the learning effects of each category. Similar to the environment, each category
influences the learning effects. In particular, characteristics such as
Representation of Code (text, image, or physical), Construction of Programs
(typing or drag and drop), and Game elements lead to large differences in the

learning effects.

Chapter 2 categorizes various environments by characteristics. Chapters 3 and
4 investigate the relationship between the characteristics and the learning
effects quantitatively. Moreover, the results show that grasping the
characteristics of each environment may maximize the learning effects. The
results in Table 2-3 and Table 4-7 assist novice learners in choosing a proper
environment. For example, since the representation of the image improves the
attitude toward programming on the whole, it is excellent for learning at the
very beginning. Assembling graphical objects is a feature seen in visual
languages. This environment is excellent for cultivating creativity because it

makes programming easy. The environment with game elements makes

&3

CHAPTER 5

programming more interesting. In addition, it is most suitable for learners who
wish to acquire logical thinking and problem solving skills. Hence, RQ 1-1 is
affirmatively answered. I am convinced that this research will greatly benefit

programming learning.

5.2.Future research

Figure 5-1 overviews my future research. The three main areas are to propose
and create a programming learning environment, optimize the characteristics
and functions of the taxonomy table, and create guidelines to select the
appropriate programming learning environment. These future activities are not
intended to provide a list of “good” and “bad” environments nor are they
designed to simply compare different environments. Instead, they are designed
to highlight the merits and demerits of different environments, allowing learners
and educators to select the environment to maximize the learning effects based

on the learning objective.

84

CONCLUSION

youessal
aumng= " I._

)
yoieasas AN = _ _ ._ anss| = “ “

ydzieasal ino 0] paldauuo) = e——

sy saousnpuj = T

Youeasal
yo.ieasal uj paousiayel s| =

ydieasal Ul palesl] §| = 4= = = =

~

219521 SNOINDI] = | 3uswuonaus jo uopendod = ¢~ 71 wewuonaus jo uonejndod = ¢y sweu wawuoiAug =

-

A $000Z mchm.g
awes ay} Suisn sjuswuosAu ajdi}nw SUNBN|EAS S3IPNIS M3J 3.8 31aY |
. (9861)3ulnjos
paduanjjul aq 01 wagoid Jo w
J £
o e A c
. FRETTE| N :Nau_ (9002) Mu:m_Um It] w
Suiusea] (AR 1eundwod uj Sujuiea (0867)uoneanp3 2
_ q 3 A\ paseq-wajqoid | pesusnyuiaqol - 19mndwor 2
| nsal (letl{9t0zZ)sMBlqns W = - \. 2
ul yoleus V| 2 (9002) SupjuiyL 1 .w
i
_ _ | Aq Sujwwessoud A Jeuopendwod \ n
" 2 JUSWIUOIIAUD 0 uopdnpolul jo A ,[z.|\ .._
_ : ajdimnw jo _@uanjju] ay1 aienjeay / (A ;
! auljaping T i | 1 : -
: uonajes | UOSHERESD [o](€T0Z) sewes yoseasal § oy \ 2
_ j0 _ uj SujwwesSoud upasn i N \ m
i y £} . =
uoneas) 1ndurixal pue paLey 38 PUS I \ yaleasel 3 S
_ _ _ jo uosuedwo) \ ul pasn b
i ndui-jensia — \ " — V4 =
1nuosedwo) Paugs, \ Y TezNser(sooe [z](1L6T) T
_ p . vou o
: ¥ TeelloelisToz)™ Pousya, ‘T00z) Sujules) e Aioayy <
almes) e se a8ensue| Sulwwessoid a1 elpawnnw Buipo) |eng &
pue @8enSue| SujwweiSoid uj 3xa} pue safew) - =
’ |ensia jo uosuedwo) __ jo uospedwo)y —_ e
LET] 3 X N\ 3]
H Jnsuapele v ‘Asessaeu | (6002} “Jusussassy- \ z/] e
I_ s w H S1UOIEIIISSED MaU | SApewwns f \ A ' -)
i saimeoay ! ‘padojanap usaganey | / // S= s g
1] = T
& A - o =
: woneoysepy | 1 Seuoimnus e sous | ool e | 38| &
: A pasayel | Awouoxe; Aq N i m
| wiouoxe] s3eald paausnpul aq 01 uonesiysse|) N \
¥ A i youeasal : b} b3 — — \ |
| | UIP3SN _ cemmmem=mpsmSSTTTTTTRTTIOATTO LTy AT o STt TToh =
i I S eI AT = 2 yueasas - S N
juswuonaus f M\ == sejunLi0q0d . wpssn o o oV 199ys N
_ Jo uoneas) | Esmpmrse IEALOIRD it | = juady 0501 ‘L 5
: ; | S~ Ao13 I T]
N e & - 1 pue s10183npa ‘s12do[aA3P JO UONBIISIP 3Y1 I8 PISN 318 SJUBWUOIIAUT | 0oojuaaln N | e = ||\\ P _._un“
S0T0Z S000Z S0L6T|

. Future Research

Figure 5-1

85

CHAPTER 5

5.2.1. Propose and Create a Programming Learning
Environment

As a future task, I propose an environment to predict learning effects from

characteristics.
I would like to obtain the following learning effects:

Continue fun and interest in programming
Promote the understanding of programming concepts

According to Chapters 3 and 4, the following characteristics may influence the

learning effects:

Rule/Restriction and Reword (Game Elements): It is possible to promote the

understanding of programming concepts while enhancing learners ’
enjoyment of programming.

Typing Code and Selecting/form filling (Construction of Programs): It can

reduce the input procedure more than assembling graphical objects.

Depending on the learner, it may even reduce the programming difficulty.

Text and Picture (Representation of Code): Combining text representation

and image representation may promote understanding of programming.

I propose expanding an existing environment. In this thesis, I used Code
Connection [62] (CC) of the programming environment in Minecraft Education
Edition [10] (MEE). In MEE, it is possible to add to an existing programming
environment called CC. In CC, MakeCode [58], Scratch, and Tynker [59] can
be used for programming. An example of MakeCode programming is shown in
the Figure 5-2. Either a visual programming language or JavaScript can be used

to program in MakeCode.

As an implementation method, I tried to combine Python in a programming
language with CC. Python 1is well utilized in programming Ilearning
[45][46][52][64]1[65]. I created a prototype of the proposed environment with a
simple Python library and Web application using the API of publicly available
CC [63] (Fig. 5-4). However, image representations cannot be implemented in

this prototype. Figure 5-5 shows the basic specifications of this environment.

86

CONCLUSION

This prototype can control Minecraft using a simpler code by eliminating the
complexity seen in MakeCode (JavaScript). For example, Fig. 5-5 compares
programs that stack blocks on MEE. The prototype environment provides easier-
to-understand instructions and a library of Python that works on a PC when
Python is installed. In this case, the language for image expression cannot be

used, but it is easy to shift to full-fledged programming.

In this research, I tried to develop an environment that considers the learning
effects. The proposed environment is an extension based on an existing
environment. In this work, only partial environments or prototypes are
implemented. Currently, I am working on expanding the function of this
environment. Moreover, I plan to investigate whether the anticipated learning
benefits are obtained based on the characteristics of the prototype environment

using a workshop.

Figure 5-2. MakeCode [58] for MEE

87

CHAPTER 5

88

B & 51 Python for MeE x [=) b
O @ coriginate.com * % L
CT—
:
3 mee.tpagent()
3
&= tor 1 1p rangatays
6 wee. novedgent{“wp")
5
1
i et

ge(3)
nee. placeslock(,

9
1
3 e turnagert(*laft")
4

Figure 5-3. Python Environments for MEE

(2)Execution (1)Trigger
instruction

Code Connection

‘ AP

(4)Execution
instruction

(3)Execution of program - .
(HTTP Request) ‘ Existing environment ‘

(1)Execution of
program Coda © a (2)Execution
(HTTP Request) ode Lonnection Instruction

! API

Available programming languages
Web Application and Library My environment
Operating environment Web, Windows/Linux/Mac

Numbers in () = Execution order

Figure 5-4. Basic specifications

CONCLUSION

import mee player.onChatCommand("tofu", [],function ({ }) {
for (leti=0;i<4;i++){
foriin range(4): agent.move(SixDirection.Up, 1) 3 Fy bITVE EANLES
mee.moveAgent("up") for (leti=0;i<4;i++) {
for (leti=0;i<3;i++) {
for jin range(4): agent.move(SixDirection.Forward, 1)
for k in range(3): agent.place(SixDirection.Down) i« ffl] FovoBBaus
mee.placeBlock(1, "down") } | _ﬂ}mm:;:::
mee.moveAgent("forward") agent.turn(TurnDirection.Left)
}
mee.turnAgent("left") 0
Proposed environment MakeCode MakeCode
(Python) (JavaScript) (Visual Programming)

Figure 5-5. Comparison of source code

5.2.2. Other future research

In the future, I plan to increase the survey environment, as well as optimize the

characteristics and functions of the taxonomy table.

Then, I will create guidelines to select the appropriate programming
environment based on the learning effect. These guidelines will associate
attributes and learning effects (Fig. 5-6). In addition, this research
demonstrates the usefulness of guidelines and provides developers with
guidance in the creation of programming learning environments. These
endeavors will not only help learners and educators select a more appropriate

environment, but will also facilitate the design of programming learning.

89

CHAPTER 5

Programming learning environments

Characteristics = — = Relation = — —»| Learning effects

aracteristics
Acquisition of target learning effect

Select one that conforms to the desiredlearning effect

Learning effect to be acquired

‘ \ J
\User Category Learners Educators ‘ Developers

<= A a4
~. \ -

IR 1 .-
-.o. 1 e
~. . -

Objective learning effect

Figure 5-6. About Guideline

90

91

REFERENCES

[1]

[2]

[31]

[4]

[5]

[6]

[7]

[8]

92

Papert Seymour, Mindstorms: Children, computers, and powerful

ideas, Basic Books, Inc., 1980.

Jeannette M. Wing, Computational Thinking, Communications of the

ACM, Vol.49(3), ACM, 2006, pp. 33-35.

John Maloney; Mitchel Resnick; Natalie Rusk; Brian Silverman and
Evelyn Eastmond, The Scratch Programming Language and
Environment, Transactions on Computing Education, Vol.10(4), ACM,

2010, Article No. 16.

David J. Malan and Henry H. Leitner, Scratch for Budding Computer
Scientists, Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, ACM, 2007, pp. 223-227.

Chiung-Fang Chiu, Introducing Scratch as the Fundamental to Study
App Inventor Programming, Learning and Teaching in Computing and
Engineering (LaTiCE), 2015 International Conference on, IEEE, 2015,
pp. 219-220.

Christopher Zorn; Chadwick Wingrave; Emiko Charbonneau and
Joseph J. Laviola, Exploring Minecraft as a Conduit for Increasing
Interest in Programming, The 8th International Conference on the
Foundations of Digital Games, Foundations of Digital Games, 2013,
pp. 352-359.

Brett Wilkinson; Neville Williams and Patrick Armstrong, Improving
Student Understanding, Application and Synthesis of Computer
Programming Concepts with Minecraft, The European Conference on

Technology in the Classroom, IAFOR, 2013

Mitchel Resnick; John Maloney; Andrés Monroy-Herndndez; Natalie

Rusk; Evelyn Eastmond; Karen Brennan; Amon Millner; Eric

Rosenbaum; Jay Silver; Brian Silverman and Yasmin Kafai, Scratch:
Programming for All, Communications of the ACM, Vol. 52(11),
ACM, 2009, pp. 60-67.

[9] CodeCombat Inc, CodeCombat, Retrieved from

https://codecombat.com/, Accessed on June, 2016.

[10] Microsoft, Minecraft Education Edition, Retrieved from

https://education.minecraft.net/, Accessed on June, 2016.

[11] Caitlin Kelleher and Randy Pausch, Lowering the Barriers to
Programming: A Taxonomy of Programming Environments and
Languages for Novice Programmers, ACM Computing Surveys, Vol.

37(2), ACM, 2005, pp. 83-137.

[12] Kai Petersen; Robert Feldt; Shahid Mujtaba and Michael Mattsson,
Systematic Mapping Studies in Software Engineering. Proceedings of
the 12th International Conference on Evaluation and Assessment in

Software Engineering, ACM, 2008, pp. 68-77.

[13] Shuhaida Shuhidan; Margaret Hamilton and Daryl D'Souza, A
Taxonomic Study of Novice Programming Summative Assessment,

Proceedings of the Eleventh Australasian Conference on Computing

Education, Vol.95, ACM.2009, pp. 147-156.

[14] Daniel Yaroslavski, Lightbot, Retrieved from https://lightbot.com/,

Accessed on June, 2016.

[15] Katie Seaborn and Deborah I. Fels, Gamification in Theory and
Action: A survey, International Journal of Human-Computer Studies,

Vol.74, Elsevier, 2015, pp. 14-31.

[16] Juho Hamari and Veikko Eranti, Framework for Designing and
Evaluating Game Achievements, Proceedings of the 2011 DiGRA
International Conference: Think Design Play, DiGRA/Utrecht School
of the Arts, 2011.

93

[17] Jesper Juul, Half-real: Video Games Between Real Rules and
Fictional Worlds. The MIT Press, 2011.

[18] Paul Gross and Kris Powers, Evaluating Assessments of Novice
Programming Environments, Proceedings of the First International

Workshop on Computing Education Research, ACM, 2005, pp. 99-110.

[19] José-Manuel Sdez-Loépez; Marcos Romdn-Gonzidlez and Esteban
Vazquez-Cano, Visual Programming Languages Integrated Across the
Curriculum in Elementary School: A Two Year Case Study Using
"Scratch" in Five Schools, Computers & Education, Vol.97, Elsevier,

2016, pp. 129-141.

[20] Daisuke Saito and Tsuneo Yamaura, A New Approach to
Programming Language Education for Beginners with Top-Down
Learning, International Journal of Engineering Pedagogy, Vol.3(S4),
IGIP, 2013, pp. 16-21.

[21] Jackie O'Kelly and J. Paul Gibson, RoboCode & Problem-based
Learning: A Non-prescriptive Approach to Teaching Programming,
Proceedings of the 11th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ACM, 2006, pp. 217-
221

[22] Ju Long, Just for Fun: Using Programming Games in Software
Programming Training and Education -A Field Study of IBM
RoboCode Community, Journal of Information Technology Education,

Vol.6, Informing Science Institute, 2007, pp. 279-290.

[23] Hewijin Christine Jiau; Jinghong Cox Chen and Kuo-Feng Ssu,
Enhancing Self-motivation in Learning Programming Using Game-
based Simulation and Metrics, IEEE Transactions on Education,

Vol.52(4), IEEE, 2009, pp. 555-562.

[24] Vasilateanu Andrei; Pavaloiu Bujor Ionel and Wyrazic Sebastian,
A Science Fiction Serious Game for Learning Programming

Languages, Proceedings of the 12th International Scientific

94

Conference "eLearning and Software for Education" , Vol.1, "Carol

I" National Defence University, 2016, pp. 561-564.

[25] Jie Du; Hayden Wimmer and Roy Rada, “Hour of Code”: Can It
Change Students’ Attitudes Toward Programming?, Journal of
Information Technology Education: Innovations in Practice, Vol.15,

Informing Science Institute, 2016, pp. 53-73.

[26] Allan Paivio, Imagery and verbal processes, Psychology Press,
2013.

[27] James M. Clark and Allan Paivio, Dual Coding Theory and
Education, Educational Psychology Review, Vol.3(3), Springer, 1991,
pp- 149-210.

[28] L ChanLin, Formats and Prior Knowledge on Learning in a
Computer-based Lesson, Journal of Computer Assisted Learning,

Vol.17(4), Wiley, 2001, pp. 409-419.

[29] Richard E. Mayer, The Promise of Multimedia Learning: Using the
Same Instructional Design Methods Across Different Meedia,

Learning and instruction, Vol.13(2), Elsevier, 2003, pp. 125-139.

[30] Alexander Eitel and Katharina Scheiter, Picture or Text First?
Explaining Sequence Effects when Learning with Pictures and Text,
Educational Psychology Review, Vo0i.27(1), Springer, 2015, pp. 153-
180.

[31] Wanda P. Dann and Randy Pausch, Learning to Program with Alice
(w/CD ROM), Prentice Hall Press, 2011.

[32] Michael Ko6lling; Neil C. C. Brown and Amjad Altadmri, Frame-
Based Editing: Easing the Transition from Blocks to Text-Based
Programming, Proceedings of the Workshop in Primary and

Secondary Computing Education, ACM, 2015, pp. 29-38.

[33] Essi Lahtinen; Kirsti Ala-Mutka and Hannu-Matti Jdrvinen, A

Study of the Difficulties of Novice Programmers, Proceedings of the

95

10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ACM, 2005, pp. 14-18.

[34] David Bau; Anthony Bau; Matthew Dawson and C. Sydney Pickens,
Pencil Code: Block Code for a Text World, Proceedings of the 14th
International Conference on Interaction Design and Children, ACM,

2015,pp. 445-448,

[35] David Weintrop and Uri Wilensky, To Block or Not to Block, That
is the Question: Students' Perceptions of Blocks-based Programming,
Proceedings of the 14th International Conference on Interaction

Design and Children, ACM, 2015, pp. 199-208.

[36] David Weintrop and Uri Wilensky, Using Commutative
Assessments to Compare Conceptual Understanding in Blocks-based
and Text-based Programs, Proceedings of the Eleventh Annual
International Conference on International Computing Education

Research, ACM, 2015, pp. 101-110.

[37] Jessica D. Bayliss, Teaching Game AI Through Minecraft Mods,
Games Innovation Conference (IGIC), 2012 IEEE International, IEEE
2012,

[38] Colin Gallagher, An Educator's Guide to Using Minecraft in the
Classroom: Ideas, Inspiration, and Student Projects for Teachers,

Peachpit Press, 2014,

[39] Thomas W. Price and Tiffany Barnes, Comparing Textual and
Block Interfaces in a Novice Programming Environment, Proceedings
of the Eleventh Annual International Conference on International

Computing Education Research, ACM, 2015, pp. 91-99.

[40] Ana M Pinto-Llorente; Sonia Casillas Martin; Marcos Cabezas
Gonzdlez and Francisco José Garcia-Pefialvo, Developing
Computational Thinking via the Visual Programming Tool: Lego

Education WeDo, Proceedings of the Fourth International Conference

96

on Technological Ecosystems for Enhancing Multiculturality, ACM,
2016, pp. 45-50.

[41] Digital-Pocket, Viscuit, Retrieved from

http://www.viscuit.com/,Accessed on June, 2016.

[42] J21 Corporation. CodeMonkey, Retrieved from
https://codemonkey.jp/, Accessed on June, 2016.

[43] Tangible Play, OSMO Coding, Retrieved from

https://www.playosmo.com/ja/coding/, Accessed on June, 2016.

[44] Thinkfun, Robot Turtles, Retrieved from
http://www.thinkfun.com/products/robot-turtles/, Accessed on June,

2016.

[45] Austin Cory Bart; Javier Tibau; Eli Tilevich; Clifford A. Shaffer
and Dennis Kafura, BlockPy: An Open Access Data-Science

Environment for Introductory Programmers, Computer, Vol.50(5),

IEEE, 2017, pp. 18-26.

[46] Linda Grandell; Mia Peltomiki; Ralph-Johan Back and Tapio
Salakoski, Why Complicate Things?: Introducing Programming in
High School Using Python, Proceedings of the 8th Australasian
Conference on Computing Education, Vol.52, ACM, 2006, pp. 71-80.

[47] Tan Utting; Stephen Cooper; Michael Ko6lling; John Maloney and
Mitchel Resnick, Alice, Greenfoot, and Scratch -- A Discussion,
ACM Transactions on Computing Education, Vol.10(4), ACM, 2010,
Article No. 17.

[48] Sally Fincher; Stephen Cooper; Michael Kélling and John Maloney,
Comparing Alice, Greenfoot & Scratch, Proceedings of the 41st ACM
Technical Symposium on Computer Science Education, ACM, 2010,
pp- 192-193.

[49] Jestis Moreno Ledn; Gregorio Robles and Marcos Romdn-Gonzilez,

Code to Learn: Where Does It Belong in the K-12 Curriculum?,

97

Journal of Information Technology Education: Research, Vol.15,

Informing Science Institute, 2016, pp. 283-303.

[50] Noreen M. Webb; Philip Ender and Scott Lewis, Problem-solving
Strategies and Group Processes in Small Groups Learning Computer

Programming, American Educational Research Journal, Vol.23(2),

SAGE, 1986, pp. 243-261.

[51] Yoshiaki Matsuzawa; Takashi Ohata; Manabu Sugiura and Sanshiro
Sakai, Language Migration in Non-cs Introductory Programming
Through Mutual Language Translation Environment, Proceedings of
the 46th ACM Technical Symposium on Computer Science Education,
ACM, 2015, pp. 185-190.

[52] Atanas Radenski, "Python first": A Lab-based Digital Introduction
to Computer Science, Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science

Education, ACM, 2008, pp. 197-201.

[53] Dylan J. Portelance; Amanda L. Strawhacker and Marina Umaschi
Bers, Constructing the ScratchJr Programming Language in the Early
Childhood Classroom, International Journal of Technology and

Design Education, Vol.26(4), Springer, 2016, pp. 489-504.

[54] Ryan Andrew Nivens and Rosemary Geiken, Using a Computer
Science-based Board Game to Develop Preschoolers' Mathematics,
13th International Congress on Mathematical Education, Society of

Didactics of Mathematics, 2016, Poster presentation.

[55] Tihomir Orehovacki and SnjeZana Babié¢, Inspecting Quality of
Games Designed for Learning Programming, International
Conference on Learning and Collaboration Technologies, Springer,

2015, pp. 620-631.

[56] Lindsey Ann Gouws; Karen Bradshaw and Peter Wentworth,
Computational Thinking in Educational Activities: An Evaluation of

the Educational Game Light-bot, Proceedings of the 18th ACM

98

Conference on Innovation and Technology in Computer Science

Education, ACM, 2013, pp. 10-15.

[57] Susan H. Rodger; Maggie Bashford; Lana Dyck; Jenna Hayes; Liz
Liang; Deborah Nelson and Henry Qin, Enhancing K-12 Education
with Alice Programming Adventures, Proceedings of the Fifteenth

Annual Conference on Innovation and Technology in Computer

Science Education, ACM, 2010, pp. 234-238.

[58] Microsoft, MakeCode for Minecraft, Retrieved from

https://minecraft.makecode.com/, Accessed on September, 2017.

[59] Tynker, Tynker, Retrieved from https://www.tynker.com/,
Accessed on September, 2017.

[60] Daniel Yaroslavski, How Does Lightbot Teach Programming?,
Retrieved From
http://lightbot.com/Lightbot_HowDoesLightbotTeachProgramming.p
df, Accessed on June, 2016.

[61] Alexander Repenning; David C. Webb; Catharine Brand; Fred
Gluck; Ryan Grover; Susan Miller; Hilarie Nickerson and Muyang
Song, Beyond Minecraft: Facilitating Computational Thinking
Through Modeling and Programming in 3d, IEEE Computer Graphics
and Applications, Vol.34(3), IEEE, pp. 68-71.

[62] Microsoft, Code Connection, Retrieved from
https://education.minecraft.net/support/knowledge-base/connecting-

code-connection-minecraft/, Accessed on September, 2017.

[63] Microsoft, Code Connection: API Documentation, Retrieved from

http://aka.ms/mee-ccapi, Accessed on September, 2017.

[64] Craig Richardson, Learn to Program with Minecraft: Transform

Your World with the Power of Python, No Starch Press, 2015

[65] Jason Briggs, Python for Kids: A Playful Introduction to
Programming, No Starch Press, 2013.

99

[66] Marina Papastergiou, Digital Game-based Learning in High School
Computer Science Education: Impact on Educational Effectiveness
and Student Motivation, Computers & Education, Vol.52(1), ACM,
2009, pp. 1-12.

[67] Tamotsu Mitamura; Yasuhiro Suzuki and Takahumi Oohori,
Serious Games for Learning Programming languages, Systems, Man,
and Cybernetics (SMC), 2012 IEEE International Conference on,
IEEE, 2012, pp. 1812-1817.

[68] Cagin Kazimoglu; Mary Kiernan; Liz Bacon and Lachlan
Mackinnon, A Serious Game for Developing Computational Thinking
and Learning Introductory Computer Programming, Procedia-Social

and Behavioral Sciences, Vol.47, Elsevier, 2012, pp. 1991-1999.

[69] University of Kent; oracle, Greenfoot, Retrieved from

https://www.greenfoot.org/door, Accessed on September, 2017.

[70] Michael Kolling, The Greenfoot Programming Environment, ACM
Transactions on Computing Education, Vol,10(4), ACM, 2010,
Article No. 14.

[71] MIT Media Lab, Scratch - Imagine, Program, Share,

https://scratch.mit.edu/, Accessed on September, 2017.

[72] Hiroshi Ishii, The Tangible User Interface and Its Cvolution,
Communications of the ACM, Vol.51(6), ACM, 2008, pp. 32-36.

100

RESEARCH ACHIEVEMENT

Journals

O

Daisuke Saito; Hironori Washizaki and Yoshiaki Fukazawa,

Comparison of Text-Based and Visual-Based Programming Input
Methods for First-Time Learners, Journal of Information Technology
Education: Research, Vol. 16, Informing Science Institute, Jun. 2017,

pp. 209-226.

Daisuke Saito and Tsuneo Yamaura, A New Approach to Programming
Language Education for Beginners with Top-Down Learning,
International Journal of Engineering Pedagogy, Vol. 3(S4),
International Society of Engineering Education, Dec. 2013, pp. 16-
21.

International Conferences

O

Daisuke Saito; Ayana Sasaki; Hironori Washizaki; Yoshiaki

Fukazawa and Yusuke Muto, Quantitative Learning Effect Evaluation
of Programming Learning Tools, Teaching, Assessment, and Learning
for Engineering (TALE), 2017 IEEE International Conference on.
IEEE, Dec. 2017, pp. 209-216, Hongkong, Chania.

Daisuke Saito; Ayana Sasaki; Hironori Washizaki; Yoshiaki

Fukazawa and Yusuke Muto, Program Learning for Beginners: Survey
and Taxonomy of Programming Learning Tools, Engineering
Education (ICEED), 2017 IEEE 9th International Conference on.
IEEE, Nov. 2017, pp. 137-142, Ishikawa, Japan.

Daisuke Saito; Hironori Washizaki and Yoshiaki Fukazawa, Analysis

of the Learning Effects Between Text-based and Visual-based

101

102

Beginner Programming Environments, Engineering Education
(ICEED), 2016 IEEE 8th International Conference on, IEEE, Dec.
2016, pp. 208-213, Kuala Lumpur, Malaysia.

Daisuke Saito; Hironori Washizaki and Yoshiaki Fukazawa, Influence

of the Programming Environment on Programming Education,
Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education, ACM, Jul. 2016, pp.
354-354, Arequipa, Peru.

Daisuke Saito; Hironori Washizaki and Yoshiaki Fukazawa, Work in

progress: A Comparison of Programming Way: Illustration-based
Programming and Text-based Programming, Teaching, Assessment,
and Learning for Engineering (TALE), 2015 IEEE International
Conference on, IEEE, Dec. 2015, pp. 220-223, Zhuhai, China.

Daisuke Saito; Akira Takebayashi; Tsuneo Yamaura: Hironori

Washizaki and Yoshiaki Fukazawa, An Evaluation and Result or a
Workshop Using Minecraft for ICT Education. Replaying Japan 2015:
3rd International Japan Game Studies Conference, May. 2015. Kyoto,

Japan.

Daisuke Saito and Tsuneo Yamaura, Applying the Top-down

Approach to Beginners in Programming Language Education,
Interactive Collaborative Learning (ICL), 2014 International

Conference on, IEEE, Dec. 2014, pp. 311-318. Dubai, UAE.

Daisuke Saito; Akira Takebayashi and Tsuneo Yamaura, Minecraft-
based Preparatory Training for Software Development Project,
Professional Communication Conference (IPCC), 2014 IEEE
International, IEEE, Oct. 2014, pp. 1-9, Pittsburgh, USA.

Daisuke Saito; Akira Takebayashi; Taiki Nizuma; Renato Nojiri and

Tsunao Yamaura, Minecraft-based Communication Learning to

Elementary School Students and Junior High School Students,

Replaying Japan 2014: 2nd International Conference on Japanese

Game Studies, Aug. 2014, pp. 30, Edmonton, Canada.

Daisuke Saito and Tsuneo Yamaura, A New Approach to Programming

Language Education for Beginners with Top-down Learning,
Teaching, Assessment and Learning for Engineering (TALE), 2013
IEEE International Conference on, IEEE, Aug. 2013, pp. 752-755,

Bali, Indonesia.

Domestic Conferences

e 2 R %2, BIR 50H; B KW, % RE, R #0,; vuE FliE, /D
YRICBF L2707 7 I v IIBEFBCEWCERAERL—-TY v 7 O
Z, HRT V2V BEMELEL2E 6RERKRE, HAT V2LV ERFEX 2,
2017 4 8 A, pp. 33-34, WAL,

O mmBe KWl £ 4K &3, BiF 5hH:, ®FE R, R EN. VIFEERT 7

07 IVIERY BT S—LAY 7 by T ORELE S, H
KTV RENVT — L¥E 2016 fFE FRRE, HRT VAT — L%R,
2017 £ 3 H, pp. 51-54, ZEHE.

Lectures

WEE KW, BiE 50H, Python Z&TLEB DO T v /7 I v /I FEOHH
B FEEHRE O - K o0 Hr, PyCon JP 2017, 2017 £ 9 H 8 H,
ng: I

~
~
~

ERE KW, BEUREEEGELILDEV] - 2 @F7Ta s
VI EOBE G-, 2017 FEE F1RLIERENDMEYXEHS - TR
2 LTRSS, 2017 FE 8 A S H, BEHE.

Daisuke Saito, Learn to Program with Minecraft: A Comparison of

the Effects of Learning with Programming Methods, PCS-J 2nd

103

Technical Meeting and General Assembly 2015, IEEE Professional
Communication Society Japan Chapter, 20154 12 H 19 H, R¥ 1.

Books

75 KW, Minecraft TH L { ¥ % Python 70 2/ 7 I v/, V—
7%, 2017 % 6 H 10 H, ISBN: 978-4800711656.

T v
WE S, B Kilifi: 787 v, nishi, AALKRIFZ! ~4 v 2 57 b

BALBATu I v asy R 7ay 28, VYL, 2017 3 H 21
H, ISBN: 978-4802610780

104

