
Floorplan-Aware High-Level Synthesis Algorithms

and their Acceleration by Ising Computations

February 2018

Kotaro TERADA

ాࣉ ଠ࿕ߊ

Floorplan-Aware High-Level Synthesis Algorithms

and their Acceleration by Ising Computations

ϑϩΞϓϥϯߴ޲ࢦҐ߹੒ख๏ͱ

ΠδϯάػࢉܭԠ༻ʹؔ͢Δڀݚ

February 2018

Waseda University

Graduate School of Fundamental Science and Engineering

Department of Computer Science and Communications Engineering,

Research on Information System Design

Kotaro TERADA

ాࣉ ଠ࿕ߊ

Contents

1 Introduction 1
1.1 Background . 1
1.2 Dissertation Overview . 4

2 A Floorplan-Aware High-Level Synthesis Algorithm with Operation Chain-
ings Based on Inter-Island Distance 8
2.1 Introduction . 8
2.2 Related Works . 9
2.3 Problem Formulation . 10

2.3.1 Control-Data Flow Graphs . 10
2.3.2 RDR Architecture . 11
2.3.3 Operation Chainings on RDR Architecture 13
2.3.4 Problem Definition . 14

2.4 Proposed Algorithm . 16
2.4.1 Analysis of Conventional Approaches 16
2.4.2 Strategy . 17
2.4.3 Synthesis Flow . 18

2.5 Experimental Results . 23
2.6 Conclusion . 28

3 AFloorplan-AwareHigh-Level SynthesisAlgorithmwithMultiple-Operation
Chainings Based on Path Enumeration 29
3.1 Introduction . 29
3.2 Related Works . 30
3.3 Problem Formulation . 30

3.3.1 Control-Data-Flow Graphs . 31
3.3.2 RDR Architecture . 31
3.3.3 Multiple-Operation Chainings on RDR Architecture 32
3.3.4 Problem Definition . 32

3.4 Proposed Algorithm . 34

i

ii CONTENTS

3.5 Experimental Results . 37
3.6 Conclusion . 40

4 A Floorplan-Driven Bitwidth-Aware High-Level Synthesis Algorithm Using
Operation Chainings 41
4.1 Introduction . 41
4.2 Motivating Examples . 44

4.2.1 Example 1: Approacheswith vs. without InterconnectionDelays
Consideration . 44

4.2.2 Example 2: Approaches with vs. without Bitwidth Consideration 45
4.3 Problem Formulation . 46

4.3.1 Control-Data-Flow Graphs and Functional Units with Bitwidth . 46
4.3.2 RDR Architecture . 47
4.3.3 Operation Chainings on RDR Architecture 48
4.3.4 Problem Definition . 48

4.4 Proposed Algorithm . 49
4.4.1 FU Characterization . 49
4.4.2 Strategy . 51
4.4.3 Synthesis Flow . 51

4.5 Experimental Results . 59
4.5.1 Experimental Setup . 59
4.5.2 Results and Discussion . 63
4.5.3 Computation Time . 68
4.5.4 Possible Improvement of the Floorplanning 68
4.5.5 Comparisons to the Conventional Algorithms 70

4.6 Conclusion . 71

5 A Fully-Connected Ising Model Embedding Method for 20k-Spin CMOS
Annealing Machines 72
5.1 Introduction . 72
5.2 Related Works . 75
5.3 Problem Formulation . 76

5.3.1 Ising Model . 76
5.3.2 20k-Spin CMOS Annealing Machine [70] 77
5.3.3 Embedding Logical Ising Models to Physical Ising Models . . . 78

5.4 Proposed Embedding Method . 79
5.5 Experimental Results . 83

5.5.1 Evaluation of Our Embedding Method 83
5.5.2 Evaluation ofOurMethodApplied to Combinatorial Optimizations 85

CONTENTS iii

5.6 Conclusion . 93

6 Rectangle Packing by Ising Computers 94
6.1 Introduction . 94
6.2 Problem Definition . 96
6.3 Proposed Ising Model Mapping of Rectangle Packing Problem 97

6.3.1 Sequence-Pair [44] . 97
6.3.2 Ising Model . 97
6.3.3 Mapping to Ising Model and Energy Function 99

6.4 Experiments and Discussion . 102
6.4.1 Experimental Results . 102
6.4.2 Comparison to Brute-Force Search 105
6.4.3 Comparison to Simulated Annealing 106
6.4.4 Discussion . 107

6.5 Conclusion . 108

7 Conclusion 109

Acknowledgment 111

List of Publications 121

List of Figures

1.1 Interconnection delays vs. gate delays based on ITRS 2013 [30]. 2
1.2 Overview of this dissertation. 5

2.1 RDR architecture model. 11
2.2 An example of multi-cycle data transfer between islands. 12
2.3 Operation chainings on SR architecture versus those on RDR architecture. 14
2.4 Inputs to our HLS problem with operation chainings for RDR architecture. 15
2.5 Outputs of ourHLSproblemwith operation chainings forRDRarchitecture. 15
2.6 Synthesis flow of our algorithm. 18
2.7 Enumeration of chaining candidates in Step 1. 20
2.8 Calculating MCD in Step 2. 21

3.1 Inputs to our HLS problem with multiple-operation chainings for RDR
architecture. 33

3.2 Outputs of our HLS problem with multiple-operation chainings for RDR
architecture. 33

3.3 Synthesis flow of our algorithm. 34

4.1 Schedulings of uniform bitwidth vs. non-uniform bitwidth with op-
eration chaining. The latency of scheduling (b) is lower than that of
scheduling (a). 42

4.2 A motivating example to demonstrate the operation chaining results
without vs. with interconnection delays consideration. 45

4.3 A motivating example to demonstrate the operation chaining results
without vs. with bitwidth of FUs consideration. 46

4.4 Inputs to our HLS problem with multiple-operation chainings for RDR
architecture. 50

4.5 Outputs of our HLS problem with multiple-operation chainings for RDR
architecture. 50

4.6 Overview of our synthesis flow. 51

iv

LIST OF FIGURES v

4.7 Algorithm of Step 2: Bitwidth unbalancing FU binding. 53
4.8 Illustration of Step 2. 54
4.9 Strategy for adding extra FUs in Step 3. 55
4.10 Algorithm of Step 3: Scheduling, binding, and FU allocation for RDR

architectures. 58
4.11 CPU time of Step 1. 68
4.12 CPU time of simulated annealing for “Rectangle Packing Problem” if we

consider extending our proposed HLS algorithm for HDR architectures. 69

5.1 Overview of Ising model and annealing. 73
5.2 Overall flow of solving combinatorial optimization problems using an-

nealing machines. 74
5.3 128×80×2-lattice Isingmodel topology of the 20k-spinCMOSannealing

machine [70]. 77
5.4 Example of our proposed embedding method which maps (a) Input:

Fully-connected logical Ising model (K5) to (b) Output: Physical Ising
model on 20k-spin CMOS annealing machine. 80

5.5 Comparison of required physical spins. The best of method [8] means
the result with the minimum total physical spins among we tried. The
average of method [8] means the average of all feasible solutions among
we tried. 85

5.6 Comparison of the probabilities of feasible solutions between [8] and
our proposed method in the MAX-CUT problem (Graph: SE3). 87

5.7 Comparison of the qualities of solutions (i.e. the numbers of cut-edges)
between [8] and our proposedmethod in theMAX-CUTproblem (Graph:
SE3). The white markers represent the best solutions, the colors markers
and lines represent the average solutions, and the error bars represent the
standard deviations. 88

6.1 An example of “Rectangle Packing Problem.” 95
6.2 Our proposed mapping to an Ising model for the “Rectangle Packing

Problem.” When the number of rectangles is N , we need three parts
of N3-spin Ising models. In total, 3N3 logical spins are required. The
colored edges represent interactions between spins, but many of them
are omitted. 98

6.3 Comparison of the required annealing time between simulated annealing
and CMOS annealing machine with the same quality of solutions (area). 106

List of Tables

1.1 Survey on HLS algorithms with operation chainings and/or bitwidth
optimization targeting SR and DR architectures. 4

2.1 The capacity costs and delay of FUs [1]. 25
2.2 Experimental results (1/2). 26
2.3 Experimental results (2/2). 27

3.1 The capacity costs and delay of FUs [1]. 37
3.2 Experimental results. 39

4.1 SA parameters. 52
4.2 Benchmark applications. 59
4.3 FUs area. 59
4.4 Delay and area of registers. 60
4.5 Delay and area of 2-to-1 MUXs. 61
4.6 Experimental results (1/2). 65
4.7 Experimental results (2/2). 66
4.8 Comparison between the delay models. 67
4.9 SA parameters for “Rectangle Packing Problem.” 69

5.1 Comparison of embeddings of fully-connected logical Ising models (Kn)
for the 20k-spin CMOS annealing machine. The “Min”, the “Max”,
and the “Total spins” columns of “Method [8]” mean the minimum, the
maximum, and the total lengths of the spin-chains (i.e. the number of
physical spins which corresponds to one logical spin) of the best result
(i.e. the result with the minimum total physical spins among we tried),
respectively. The total numbers of physical spins obtained from our
proposed method are n2 + n as we calculated in Section 5.4. 84

5.2 Simulation parameters. 86
5.3 Results of our proposed embedding method applied to MAX-CUT prob-

lem on the 20k-spin CMOS annealing machine (1/3). 90

vi

LIST OF TABLES vii

5.4 Results of our proposed embedding method applied to MAX-CUT prob-
lem on the 20k-spin CMOS annealing machine (2/3). 91

5.5 Results of our proposed embedding method applied to MAX-CUT prob-
lem on the 20k-spin CMOS annealing machine (3/3). 92

6.1 Summary of benchmarks. 103
6.2 Experimental results. 104
6.3 Simulation parameters. 105
6.4 Optimal solutions by the brute-force search. 105

Chapter 1

Introduction

1.1 Background
System LSI or system-on-a-chip (SoC) is an essential device in today’s highly sophis-
ticated information society. System LSI is already used widely in the world such as
personal computers, servers, mobile phones, automobiles, and consumer electronics. In
the Internet of thing (IoT) era, every “things” about to become informatization and sys-
tematized. Many SoCs with higher information processing are expected to be more and
more needed. In these kinds of systemdesigns, it is required to design a high-performance
and small area of a system LSI with a lower cost and a shorter time period.

Based on the background above, high-level synthesis (HLS) [21] has played a sig-
nificant and essential role as a promising electronic design automation (EDA) technique
nowadays. HLS synthesizes abstract application descriptions such as C, C++, Java, and
Python into register transfer level (RTL) descriptions. Since we can begin a system
design with a higher level of abstraction, it is expected to reduce a cost of design such as
design time (Time-to-Market) and design errors.

The main input to HLS is a behavioral description, and HLS outputs FSMD (Finite
State Machine with Datapath) which is composed of a datapath and a controller (FSM).
An input behavioral description is represented as a control data flow graph (CDFG)where
nodes correspond to operations and edges correspond to data-flows. An HLS algorithm
typically solves (1) Scheduling problem: assigns every operation in the CDFG to a
control step, (2) Allocation problem: determines the number and the type of functional
units (FUs) to be used, (3) Binding problem: assigns operations and variables to FUs
and registers, respectively.

Many HLS methods and tools have been proposed so far including ones for academic
purposes and ones for commercial purposes. For example, Xilinx, Inc. provides Vivado
Design Suite [64] for free (targeting for the limited types of FPGA). The group of

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Interconnection delays vs. gate delays based on ITRS 2013 [30].

University of Toronto has developed LegUp [9, 10, 60] as an open-source software.
Synthesijer [41] is also an open-source HLS tool which synthesizes Java codes and
generates VHDL and Verilog HDL. Polyphony [53] is also an open-source HLS tool
which synthesizes Python codes.

Field-programmable gate array (FPGA) comes into fashion nowadays. For example,
ZYNQ [65] by Xilinx, Inc. is a cheap SoC and it includes ARM processors as well
as FPGA. PYNQ [66] is a board which contains a ZYNQ SoC1. Not only commercial
designers and experts but any users can use FPGA easily and cheaply. HLS becomes
more and more essential nowadays.

However, in the deep-submicron era, interconnection delays are not negligible even in
high-level synthesis. Figure 1.1 shows the relative comparison between interconnection
delay and gate delay. The figure is based on the predicted data for 2013 to 2028 by
International Technology Roadmap for Semiconductors (ITRS) 2013 [30]. The relations
of the process technology node and (i) RC delays of global wires (interconnection delays)
and (ii) delays of NMOSFET (gate delays) are plotted. All values are normalized by
the values of 2013. The horizontal axis shows process technology node and the vertical
axis shows relative delays. In Fig. 1.1, we can see that the interconnection delay is

1The author and his colleagues have developed ZYNQ-based puzzle solver systems using Vivado HLS
for the “Algorithm Design Contest” as in ⟨7⟩ and ⟨9⟩, and won the prizes as in ⟨15⟩, ⟨16⟩, and ⟨17⟩

1.1. BACKGROUND 3

relatively increasing against the gate delay. Since the process technology node is getting
smaller nowadays, the gap between the interconnection delays and the gate delays is
increasing more and more. In the deep-submicron era, the interconnection delays are
the dominant among all delays. To design a high performance VLSI circuit (i.e., circuit
with low latency) is a basic requirement. However, the issue caused by interconnection
delays prevents it seriously. In this decade, to cope with this problem, distributed-
register and -controller architectures (DR architectures) along with their HLS algorithms
have been proposed as in [2, 3, 15, 18, 28, 36, 45] against conventional shared-register
architectures (SR architectures). RDR architecture [15] is one of DR architectures. DR
architecture is divided into clusters. In DR architecture, registers, FUs, and controllers
are placed distributed onto the clusters, and we can leave the interconnection delays
between registers and FUs being much smaller than those of SR architectures.

To design a high performanceVLSI circuit, “operation chaining” and “bitwidth-based
optimization” are reliable techniques2. HLS algorithms with operation chainings and/or
bitwidth optimization are proposed so far as in [13,18,20,35,54,56,75]. However, since
these works do not take the interconnection delays into account, we cannot use them for
DR architectures. [17] proposes a bitwidth-aware HLS algorithm considering intercon-
nection delays, however, it focuses on the area minimization and does not optimize the
latency.

Taking account the interconnection delays in HLS makes the optimizations difficult
since we have to deal with the delays between modules (such as FUs and registers).
In the first half of this dissertation (Chapter 2, Chapter 3, and Chapter 4), we propose
performance-driven floorplan-aware HLS algorithms targeting RDR architectures. The
objective is to minimize the latency (or maximize the performance). Table 1.1 shows
the survey on HLS algorithms with operation chainings and/or bitwidth optimization
targeting SR and DR architectures and relationship between this dissertation and other
works. Obviously from the table, to the best of our knowledge, Chapter 2 and Chapter 3
are the first HLS algorithms with operation chainings targeting RDR architectures, and
Chapter 4 is the first bitwidth-aware HLS algorithm using operation chainings targeting
RDR architectures.

Even if we optimize the system design through HLS, the floorplanning depends
on the metaheuristic algorithm, typically simulated annealing (SA) [32]. Thus, the
floorplanning remains the bottleneck in both speed and scalability.

Floorplanning of modules has been a significant role in VLSI design automation and
it can be formulated as the “Rectangles Packing Problem.” Novel physical Ising model-
based computers (annealing machines), which are the type of a non-von Neumann
computer, have been recently expected to solve combinatorial optimization problems

2The details of these techniques are described in Chapter 2, Chapter 3, and Chapter 4.

4 CHAPTER 1. INTRODUCTION

Table 1.1: Survey on HLS algorithms with operation chainings and/or bitwidth opti-
mization targeting SR and DR architectures.

SR architectures DR architectures
uniform bitwidth many methods [15] and many others
bitwidth-aware [35] and others [17]

w/ operation chainings many methods Chapter 2 and
Chapter 3

bitwidth-aware [20] Chapter 4w/ operation chainings

efficiently. CMOS annealing machine [70] is one of them. In those studies, a combina-
torial optimization problem is mapped onto a theoretical magnetic model in statistical
mechanics called Ising model. Ising model-based computers search the ground-state of
the Ising model, which corresponds to the optimal solution of the original combinatorial
optimization problem.

Some physical Ising model-based computers have been developed such as D-Wave
quantum annealing machine [7, 31], CMOS annealing machines [70, 73], and FPGA-
based annealing machine by Fujitsu Laboratories Ltd. [59].

To implement an Ising model to physical annealing machines, we need to convert an
Ising model with an arbitrary topology into an Ising model with the physical topology.
This flow is called embedding. If we achieve the efficient embedding algorithm, we can
increase the problem size implemented onto the annealing machines and may have better
results. Embedding the Ising model to the physical models plays an important role in the
programming flow of annealing machines.

The floorplanning algorithms in Chapter 2, Chapter 3 andChapter 4 are the bottleneck
in both speed and scalability as mentioned above. These annealing machines can be
used to accelerate these bottlenecks. In the last half of this dissertation (Chapter 5 and
Chapter 6), acceleration of the floorplanning problem by annealingmachines is proposed.
Solving relatively simple problems by annealing machines are studied so far. However,
not so many works focus on more practical problems such as the floorplanning problem.
This dissertation also contributes a large impact for the practical uses of annealing
machines.

1.2 Dissertation Overview
In this dissertation, we propose three floorplan-aware performance-driven HLS algo-
rithms targeting RDR architectures to cope with the increasing interconnection delays.
We also propose an embedding method of fully-connected Ising model onto 20k-spin

1.2. DISSERTATION OVERVIEW 5

Process size / Logic delays decrease Interconnection delays increase

However, floorplanning remains the bottleneck......

Chapter 5 & 6

Ising model-based Computers

Chapter 2 & 3

+
+

+
+

Key techniques:

- Operation-chaining candidates enumeration

- Chaining distance

Key techniques:

- Bitwidth consideration

- Adding extra FUs

MCD

Chapter 4

"Rectangle Packing Problem"

solved by

Figure 1.2: Overview of this dissertation.

CMOS annealing machines followed by proposing a mapping of the floorplan prob-
lem for Ising model-based computers to deal with the bottleneck in the floorplanning.
Figure 1.2 shows the overview of this dissertation.

This dissertation is organized as follows:
Chapter 2 [A Floorplan-Aware High-Level Synthesis Algorithm with Operation

Chainings Based on Inter-Island Distance] proposes a high-level synthesis algorithm
using operation chainings which reduces the overall latency targeting RDR architectures.

6 CHAPTER 1. INTRODUCTION

The proposed algorithm consists of three steps: The first step enumerates candidate
operations for chaining. The second step introduces maximal chaining distance (MCD),
which gives the maximal allowable inter-island distance on RDR architecture between
chaining candidate operations. The last step performs list-scheduling and binding si-
multaneously based on the results of the two preceding steps. The proposed algorithm
enumerates feasible chaining candidates and selects the best ones for RDR architecture.
Experimental results show that our proposed algorithm reduces the latency by up to
40.0% compared to the original approach, and by up to 25.0% compared to a conven-
tional approach. The proposed algorithm also reduces the number of registers and the
number of multiplexers compared to the conventional approaches in some cases.

Chapter 3 [A Floorplan-Aware High-Level Synthesis Algorithm with Multiple-
Operation Chainings Based on Path Enumeration] proposes a floorplan-driven high-
level synthesis algorithm using multiple-operation chainings composed of two or more
operations, and reduce the overall latency targeting RDR architecture. The proposed
algorithm enumerates multiple-operation-chaining path candidates before performing
scheduling/binding. Based on them, we find out optimal ones taking into account RDR
floorplan information. Experimental results show that our algorithm reduces the latency
by up to 30.4% compared to a conventional algorithm, and reduces the latency by up
to 24.4% compared to the algorithm proposed in Chapter 2, but is only effective to the
limited benchmarks.

Chapter 4 [AFloorplan-DrivenBitwidth-AwareHigh-Level SynthesisAlgorithm
Using Operation Chainings] proposes a bitwidth-aware high-level synthesis algorithm
using operation chainings targeting RDR architectures. Our proposed algorithm opti-
mizes bitwidths of functional units and utilizes the vacant islands by adding some extra
functional units to realize effective operation chainings to generate high-performance
circuits without increasing the total area. Experimental results show that our proposed
algorithm reduces the latency by up to 47% compared to the algorithm proposed in Chap-
ter 2 without area overheads by eliminating unnecessary bitwidths and adding efficient
extra FUs for RDR architectures.

These algorithms above successfully reduce the latency compared to the conventional
algorithms coping with the increasing interconnection delays. However, the SA-based
floorplanning remains the bottleneck in both speed and scalability. To deal with the
bottleneck above, we try to apply and accelerate the floorplanning problem to the forth-
coming Ising model-based computers (annealing machines).

Chapter 5 [A Fully-Connected Ising Model Embedding Method for 20k-Spin
CMOS Annealing Machines] proposes a fully-connected Ising model embedding
method onto 20k-spin CMOS annealing machine, and prove that the ground state of
the Ising models obtained from our proposed method is equivalent to that of the original
Ising model. Experimental results effectively show that our proposed method embeds

1.2. DISSERTATION OVERVIEW 7

Ising models using less physical spins compared to the de facto standard conventional
method in the practical problem size, and that the probability of feasible solutions and
the solution quality using our proposed method is better than those of the conventional
method when solving practical combinatorial optimization problems.

Chapter 6 [Rectangle Packing Problem by Ising Computers] proposes a mapping
of “Rectangle Packing Problem” for solving it by the Ising model-based computers.
In our proposed mapping, a sequence-pair is represented on an Ising model and the
energy function to obtain the optimal solution of the problem is constructed. Our
proposed approach maps a “Rectangle Packing Problem” with N rectangles onto a 3N3-
spin logical Ising model. Experimental results demonstrate that through the proposed
approach we can solve the problem with nine rectangles at the maximum on a fully-
connected annealing machine and the problem with three rectangles at the maximum on
20k-spin CMOS annealing machine.

Chapter 7 [Conclusion] summarizes this dissertation and gives some future works.

Chapter 2

A Floorplan-Aware High-Level
Synthesis Algorithm with Operation
Chainings Based on Inter-Island
Distance1

2.1 Introduction
As process technologies advance in deep-submicron era, it comes to be able to produce
highly integrated circuits. High-level synthesis (HLS) is one of the reliable solutions to
this problem, which synthesizes register-transfer level circuits from abstract behavioral
descriptions. HLS mainly consists of scheduling which assigns operation nodes to
control steps, allocation which selects functional units (FUs) from libraries, and binding
which binds operation nodes and variables to FUs and registers.

Highly integrated circuits cause interconnection delays to be relatively larger than
gate delays, which has become a main concern even in HLS. Interconnection delays
may exceed the clock period and a communication over an entire chip can no longer be
possible.

To cope with this problem, regular-distributed-register architectures (RDR architec-
tures) have been introduced in [15]. RDR architecture is one of the distributed-register
(DR) architectures in which registers are distributed over a chip, while registers are
concentrated in conventional shared-register (SR) architectures. RDR architecture is
divided into islands and enables multi-cycle communications on a chip easily. Each
island has the same size and then we can easily estimate interconnection delays on RDR
architecture for its regularity. An HLS algorithm for RDR architecture called MCAS

1Technical contents in this chapter have been presented in the publications ⟨2⟩, ⟨4⟩, and ⟨14⟩.

8

2.2. RELATED WORKS 9

was also proposed in [15].
We also have to deal with operation delays inHLS since every operation has a different

delay. For example, an adder typically has a smaller delay than a multiplier. Operation
chainings can solve this problem where we pack several data-depending operations into
packed control steps and reduce the overall latency.

In this chapter, we propose an HLS algorithm using operation chainings for RDR
architecture to reduce the overall latency. Our algorithm consists of three steps: The
first step enumerates chaining candidates. The second step introduces maximal chaining
distance (MCD), which gives the maximal allowable inter-island distance on RDR archi-
tecture between chaining candidate operations. The last step performs list-scheduling and
binding simultaneously based on the results of the two preceding steps. Our algorithm
enumerates feasible chaining candidates and selects the best ones for RDR architectures,
while in many other algorithms the candidates are given as assumptions. Experimental
results show that our algorithm reduces the latency, the number of registers, the number
of MUXs, compared to the conventional approaches.

The contributions of this chapter are:

(1) We realize the first floorplan-driven HLS with operation chainings which takes
into account inter-island delays in RDR architecture.

(2) Experimental results successfully demonstrate that our HLS algorithm efficiently
reduces the latency by applying operation chainings to the critical paths explicitly
including interconnection delays, compared to the conventional approaches.

This chapter is organized as follows: Section 2.2 reviews related works; Section 2.3
describes our problem formulation; Section 2.4 proposes our HLS algorithm with opera-
tion chainings for RDR architecture; Section 2.5 shows experimental results; Section 2.6
gives several concluding remarks.

2.2 Related Works
Many HLS algorithms with operation chainings have been studied. In [34,39,40,49,52],
an HLS problem using operation chainings is formulated as an integer linear program-
ming (ILP) problem. In [40, 58], timing-variation-aware HLS algorithms are proposed
which minimize the timing variations using operation chainings. In [42, 43, 47, 48, 51],
schedulings and bindings using bit-level operation chainings are proposed. In [71], a
scheduling algorithm based on list scheduling using operation chainings is proposed
for instruction cell based reconfigurable system. Since the approach in [71] has been
proposed for special-purpose architecture called instruction cell based reconfigurable
system, we cannot apply this approach to general HLS, although it takes into account

10 CHAPTER 2. HLS WITH OPERATION CHAININGS

interconnection delays between cells. In [74], an operation delay model for FPGA and
a scheduling algorithm using chainings are proposed to reduce control steps. In [63],
a heuristic scheduling algorithm using operation chainings is proposed. In many algo-
rithms, chaining candidates are given as assumptions but they are not given in some
algorithms. In [19, 67], template matchings are used to enumerate chaining candidates.
In [74], chaining candidates are enumerated by calculating operation delay time sequen-
tially and the operations on critical paths have high priorities to be chained. In [63],
all feasible chaining patterns are first generated and then we reduce them which cannot
reduce the latency using a cost function. Chaining candidates are searched greedy [38]
or formulated as ILP [34, 52]. Most of these studies are, however, based on SR archi-
tecture and no HLS algorithms with operation chainings have been proposed for RDR
architectures.

2.3 Problem Formulation
In this section, we define control-data flow graphs and RDR architecture. Then we define
operation chainings on RDR architectures. After that we define our HLS problem.

2.3.1 Control-Data Flow Graphs
An input of HLS is a behavioral description represented by a control-data flow graph
(CDFG). CDFG consists of data-flow graphs (DFGs) which represent operations and
their data-flows and control-flow graphs (CFGs) which represent control-flows including
conditional branches. For simplicity, we use a DFG in this chapter to explain our
algorithm but we can extend it to CDFG easily as in our experimental results.

A DFG is usually represented by a directed graph. Let G = (V, E) be a DFG where
V is a set of operation nodes and E is a set of edges between them. An edge from a node
v1 to a node v2 is denoted by ev1,v2 .

Let d f u be a delay of an FU f u and dreg be the sum of reading time and writing
time of a register. We assume that an FU delay includes MUX delays.2 MUX delays are
given as a constant value. Let dsum(f u) be the sum of the delays of reading data from a
register, operation on an FU f u, and writing data to a register and then it is calculated by

dsum(f u) = dreg + d f u. (2.1)
2We assume that both FU inputs and outputs have MUXs and total delay of them is given to each FU

as a constant value. As in Section 2.5, its value is just 0.12ns and we expect that it does not affect too
much. Note that register delay does not include MUX delays since they are included at FU output. In case
that register-to-register data transfer is required as in Fig. 2.2(b), an interconnection delay between islands
must be dominant and then we can ignore MUX delays in this case.

2.3. PROBLEM FORMULATION 11

!"#

… !
"
#

!"#$%&"'%

!"#

… !
"
#

!"#$%&"'%

!"#

… !
"
#

!"#$%&"'%

!"#

… !
"
#

!"#$%&"'%

!!!

!!!

!!!

!!!

!
!
!

!
!
!

!"#

… !
"
#

!"#$%&"'%

!"#

… !
"
#

!"#$%&"'%

!
!
!

!
!
!

!
!
!

!
!
!

!"!#"#$"%$!"!#"#$"%"#$!"!#"#$"%"%$

!"!#$"%$!"!#$"%"#$!"!#$"%"%$

()*+%,-).

Figure 2.1: RDR architecture model.

In this chapter, for simplicity, each operation can be bound to one type of FUs, and
an FU can execute only one type of operations. Therefore, each operation v has a unique
delay d(v). Let EFU(v) be a set of FUs which can execute an operation v, which is given
as an input.

A set of the immediate predecessors and successors of v ∈ V are denoted by P(v)
and S(v), respectively. The nodes which have no predecessors are called primary inputs
(PIs) and a set of them is denoted by PIs. The nodes which have no successors are
called primary outputs (POs) and a set of them is denoted by POs. The level ℓ(v) of the
operation node v is defined by:

ℓ(v) =
{
0 if v ∈ PIs
max
p∈P(v)

{ℓ(p)} + 1 otherwise. (2.2)

2.3.2 RDR Architecture
The RDR architecture [15] enables multi-cycle communication while considering inter-
connection delays in high-level synthesis. The chip is divided into several regular islands
and registers are distributed onto each island. We can easily estimate the interconnection
delays due to its regularity.

Figure 2.1 shows RDR architecture consisting of 2×3 islands. Every island has three
elements: A set of FUs, which execute operations, and their inputs/outputs are connected
to registers; A set of registers a storage unit for the island; Finite state machine (FSM)
controls FUs, registers, and MUXs associated with them in the island.

12 CHAPTER 2. HLS WITH OPERATION CHAININGS

!

v
0 ! fu

0

r
0

fu
1

(cs 1)

(cs 2)

v
1

(cs 3)

(cs 4)

r
1

(a) Scheduled DFG.

!

!!

!

r
0

r
1

fu
0

fu
1

(b) Floorplan of FUs and interconnection between
islands.

Figure 2.2: An example of multi-cycle data transfer between islands.

The size of an island is determined to complete its single-cycle operation and writ-
ing/reading registers in the same island within a single clock cycle. The islands are
connected by the global interconnection to each other.

Every island is assumed to be square. Assume that the entire chip is divided intoN×M
islands. The island in n-th row and m-th column is denoted by I(n,m) where 1 ≤ n ≤ N
and 1 ≤ m ≤ M . The data transfer time Dc(i1, i2) from the island i1 = I(n1,m1) to the
island i2 = I(n2,m2) is defined as follows [27, 57]:

Dc(i1, i2) = Cd · (|n1 − n2 | + |m1 − m2 |)2 (2.3)

where Cd is the interconnection-delay coefficient.3
Assume that an FU f u1 is placed in the island i1 = I(n1,m1) and we want to transfer

the output data from the FU f u1 to an FU f ux placed in the island ix = I(nx,mx). We
assume that the clock period is denoted by Tclk and dsum(f u1) ≤ Tclk .

In the case of Tclk ≥ Dc(i1, ix) + dsum(f u1):
The operation in f u1 and the data transfer to the island ix are done in a single
control step.

In the case of Tclk < Dc(i1, ix) + dsum(f u1):
After the operation in f u1 finishes, the data is temporarily stored in a register in

3We determine that interconnection delays are in proportion to the square of the distance as in Eq. (2.3)
just based on [27] and [57] using the Elmore delaymodel [23]. We can also assume that the interconnection
delays are in proportion to the distance between RDR islands. Even in this case, a similar discussion can
hold true.

2.3. PROBLEM FORMULATION 13

the island i1. After that, it is transferred to a register in the island ix taking next
⌈Dc(i1, ix)/Tclk⌉ steps as in the original RDR architecture [15]. Figure 2.2 shows
an example of multi-cycle data transfer between islands. When we transfer data
from register r0 to register r1 over two clock cycles, no registers are inserted in the
global interconnection between registers. Register r0 continues to output data in
(cs 2) and (cs 3) and register r1 receives data at (cs 4).

If dsum(f u1) > Tclk , a similar discussion can hold true.
An island has a capacity cost C, and an FU f u has the area cost c f u. The sum of the

area cost c f u of all the FUs placed in an island must not exceed C.

2.3.3 Operation Chainings on RDR Architecture
In this subsection, we define operation chainings on RDR architecture considering inter-
connection delays. We assume that the number of operations to be chained is just two.
Therefore, we read the data from a register, use two FUs, and write the data to a register
in an operation chaining.

Assume that operations v1 and v2 are bound to FUs f u1 and f u2, respectively. The
result produced by v1 is used by v2, i.e., v2 is dependent on v1. The number of cycles
cycle(f u1) to execute f u1 is defined by

cycle(f u1) =
⌈
dsum(f u1)

Tclk

⌉
. (2.4)

The combined delay dcon(f u1, f u2) for the two FUs, which is the sum of register
read/write delay and delays for executing FUs f u1 and f u2, is expressed by

dcon(f u1, f u2) = dreg + d f u1 + d f u2 . (2.5)

Now, assume that the FUs f u1 and f u2 are placed in the islands i1 and i2, respectively.
If the equation below is satisfied, the operations v1 and v2 can be chained.

dcon(f u1, f u2) + D(i1, i2) ≤ Tclk · cycle(f u1) (2.6)

Eq. (2.6) means that the operation v2 is packed into the last control step executing
the operation v1 without violating data transfer time between v1 and v2. Let v1 be an
operation in the input DFG. Then we can define a setCN(v1) ⊆ S(v1) of chainable nodes
to v1 by using Eq. (2.8) described later.

Figure 2.3 shows operation chainings on SR architecture versus those on RDR ar-
chitecture. HLS algorithms targeting SR architectures do not usually consider the inter-
connection delays. Now, assume that the clock period Tclk is 3.0ns, the delay of every
FU is 1.1ns, and the writing/reading delay of a register is 0.1ns. In SR architecture

14 CHAPTER 2. HLS WITH OPERATION CHAININGS

!
!

!fu
0

fu
1

fu
3

!
!

fu
2

fu
4

!"#$

(a) Operation chainings on an
SR architecture.

!
!
!

fu
0

fu
1

fu
3

!

!

fu
2

fu
4

!"#$
!"%$

!"&$

(b) Operation chainings on an
RDR architecture.

Figure 2.3: Operation chainings on SR architecture versus those on RDR architecture.

(Fig. 2.3(a)), f u0 and f u3 connected by the signal line (s1) can be chained, since the
sum of the delays of the two FUs and a register calculated by Eq. (2.5), (1.1+ 1.1+ 0.1),
is smaller than Tclk . However, after the actual floorplanning is done and these two FUs
are placed apart from each other, these two FUs cannot always be chained.

On the other hand, our proposed algorithm which targets RDR architecture considers
the communication delay between the islands in HLS. Now, assume that the data transfer
time between adjacent islands is 0.4ns and data transfer time between diagonally-placed
islands is 1.6ns. In RDR architecture (Fig. 2.3(b)), f u0 and f u2 connected by the signal
line (s2) can be chained, since the sum of the delays of the two FUs and a register, and the
transfer time between islands, (1.1+1.1+0.1+0.4) , is smaller than Tclk . Similarly, f u0
and f u1 connected by the signal line (s3) can also be chained. However, we can know in
HLS stage that f u0 and f u4 connected by the signal line (s4) cannot be chained on RDR
architecture, whereas they can be considered to be chainable on SR architecture.

2.3.4 Problem Definition
Based on the discussion above, we define our HLS problem with operation chainings for
RDR architecture as follows:

Definition 2.1. For a given DFGG = (V, E), the clock periodTclk , and the specifications
of RDR architecture, our HLS problem with operation chainings is, to schedule and bind
the input DFG and generate its floorplan on RDR architecture so as to minimize the
latency while allowing the operation chainings consisting of two operations. !

Example 2.1. Figure 2.4 and Figure 2.5 show the input and the output of our HLS

2.3. PROBLEM FORMULATION 15

!

"
!"!

v
0 !

v
1

v
3

v
2

v
4

v
5

!v
6

(a) DFG.

T 3.0 ns

of islands 2×2

of FUs

Adder×3 (fu , fu , fu)

Multiplier×2 (fu , fu)

Delay of a register 0.1 ns

Transfer time to

adjacent islands (C)

0.4 ns

Delay of an Adder 1.1 ns

Delay of a Multiplier 2.6 ns

Transfer time to

diagonally-placed islands

1.6 ns

(b) The clock period and the specifica-
tions of the RDR architecture.

Figure 2.4: Inputs to our HLS problem with operation chainings for RDR architecture.

!
" !"
!
v
0 !

v
1

v
3

v
2

v
4

v
5

!v
6

fu
0

fu
1

fu
3

fu
4

fu
0

fu
2

fu
2

(cs1)

(cs2)

(a) The scheduled and bound DFG.

!
!
"

i
11

fu
0

fu
1

fu
3

i
21

!

"

i
12

fu
2

fu
4

i
22

(b) The floorplan result.

Figure 2.5: Outputs of our HLS problem with operation chainings for RDR architecture.

problem with operation chainings for RDR architecture, respectively. Figure 2.4(a) is
the input DFG. Figure 2.4(b) shows the clock period and the specifications of RDR
architecture. Figure 2.5(a) shows scheduled and bound DFG where the operations v0
and v1 are the chained nodes and executed within a single control step. v5 and v6 are
also chained. Figure 2.5(b) shows the floorplan result. !

Generally, in HLS algorithms, synthesis is performed onto DFGs (which can be
extended to CDFGs) [21]. In this dissertation, since the standard HLS benchmarks are
provided as DFGs (or CDFGs) as in [25], we deal with DFGs (or CDFGs) in our HLS.
However, an abstract behavioral description can be also represented as different DFGs
(or CDFGs). In the future, we need to investigate to search the optimal solution by
combining with the front-end and the optimization of the software-compiler. This is one

16 CHAPTER 2. HLS WITH OPERATION CHAININGS

of the future works.

2.4 Proposed Algorithm
In this section, we propose our HLS algorithm with operation chainings for RDR archi-
tecture. We first analyze some conventional approaches, discuss the strategy, and then
describe each step of the proposed algorithm.

2.4.1 Analysis of Conventional Approaches
In this subsection, we first analyze the conventional approaches, particularly the ap-
proaches in [15] and [74] and demonstrate that it is difficult to apply them directly to our
HLS problem.

Firstly, the approach in [15] has been proposed for RDR architecture but does not
accept any operation chainings, while it accepts multi-cycle operations. When an opera-
tion has a smaller delay than the given clock period, we may have an extra slack time in
every clock cycle. We can reduce the latency furthermore if we utilize these slack times
somehow.

Secondly, the approach in [74] has been proposed for conventional SR architecture
and accepts operation chainings. It first enumerates chainable operations along every
DFG critical path and then generates operation chainings based on them. However, it
does not take into account interconnection delays explicitly when generating operation
chainings since we do not have any information on interconnection delays.

When we apply conventional SR-based approaches with operation chainings to RDR
architecture, we may face several problems as follows: Since conventional approaches
do not take into account interconnection delays explicitly, the easiest way that we can
apply them to RDR architecture is that we give a constant delay to each operation as an
interconnection delay. We can consider the following two cases:

1. We give the maximum possible interconnection delay to each operation node.

2. We give a constant value such as an average interconnection delay value to each
operation node.

In Case 1, for example, the maximum interconnection delay between RDR islands is
estimated to be 23.04ns in the largest RDR architecture used in our experiments in
Section 2.5. This value is sixteen times as long as the adder delay (which is just 1.44ns).
It is extremely pessimistic to give this value to each operation and we cannot construct
operation chainings efficiently. In Case 2, consider that we give an interconnection
delay value smaller than the maximum interconnection delay. Even if we can construct

2.4. PROPOSED ALGORITHM 17

operation chainings in HLS stage, we cannot construct their operation chainings after
actual floorplanning. We can conclude that neither the Case 1 nor Case 2 are practical.

Based on the discussions above, we have to solve the problems below in our proposed
algorithm:

(i) Apply operation chainings to the critical paths explicitly including interconnection
delays in RDR architecture.

(ii) Reduce the overall latency by reducing the critical path delays.

2.4.2 Strategy
Let us consider several strategies to reduce the latency by applying operation chainings to
HLS for RDR architecture. SinceMCAS [15] consists of scheduling, binding, allocation,
and floorplan, we consider each of them.

Scheduling and binding are the most important steps when we apply operation chain-
ings to HLS. We can reduce the latency by searching the chainable operation nodes,
assigning those operation nodes to control steps (scheduling), and binding those opera-
tion nodes to different FUs (binding).

Allocation is also an important step because adding extra FUsmay increase chainable
nodes. However adding extra FUs may violate island capacity and we cannot complete
an operation and writing/reading registers in each island within pre-determined clock
cycles. In this chapter, we add no FUs and we consider HLS under given FUs.

As an initial floorplan, we can use placement generated by [15]. The result must be an
optimal one in HLS without chainings. Since we use the same DFG even when we apply
operation chainings to HLS, we do not expect to generate a better solution by changing
the floorplan. On the contrary, changing the floorplan can affect overall scheduling and
binding, which can lead to a worse result. We conclude that changing floorplan is not a
good choice and thus we do not change the initial floorplan.

Based on the considerations above, our proposed algorithm first generates the place-
ment of FUs by using MCAS (“scheduling-driven placement”) [15] and then perform
operation chainings in scheduling and binding.

To perform operation chainings in scheduling and binding, we can have two solutions
below:

Solution 1: After preparing chaining nodes beforehand under several constraints, we
schedule and bind these nodes.

Solution 2: We just enumerate candidate nodes for chaining at first. After that, we
determine the actual chaining nodes.

18 CHAPTER 2. HLS WITH OPERATION CHAININGS

!"#$%&'(%)*+',","-)*'".,.'(%/

0'1*#1'(%)$'2,$'1)*+',","-).,/('"*%)

34056

7%&89&$)/*+%.#1,"-:;,".,"-

7%&89&$)/*+%.#1,"-<.&,=%")>1'*%$%"()

?09"-)!"#$%@A)BCCDE

!"# $%&'()*+,-&. /!/)0*+'-1-'23-&4

FG"(+%/,H%)&%-/(%&/A)4IJ/A)'".)KF4/

5'6+.7%+.89&74.)!"#

K199&>1'")98)KI/

F*+%.#1,"-:;,".,"-

#/,"-)9>%&'(,9")*+',","-/
F(%>)L

F(%>)B

F(%>)M

"%&&,*%24

Figure 2.6: Synthesis flow of our algorithm.

Although RDR architecture has an advantage of estimating interconnection delays easily,
we cannot estimate them before operation binding. This means that Solution 1 above is
too difficult to employ. On the other hand, Solution 2 just enumerates as many candidate
nodes as possible to be chained and, after that, we actually determine which nodes are
chained through scheduling and binding. Solution 2 is a reasonable option to construct
our HLS algorithm using operation chainings for RDR architecture.

Based on the discussion above, we first enumerate candidate operation nodes for
chaining, and then we actually schedule and bind the input DFG using the candidate
nodes.

2.4.3 Synthesis Flow
The synthesis flow of our algorithm is shown in Fig. 2.6. Initially, we determine on
which island every FU is placed by using MCAS (“scheduling-driven placement”) [15].

“Scheduling/binding using operation chainings” consists of three steps: In Step 1,
we enumerate candidate nodes for operation chaining. In this step, we do not consider

2.4. PROPOSED ALGORITHM 19

data transfer time between the candidate nodes. In Step 2, we newly introduce maximal
chaining distance (MCD) and calculate this value. By using MCD, our algorithm takes
into account the data transfer time and enables multi-cycle communication even for
operation chainings. We cannot know whether the FUs executing chained operations are
placed in the same island or not in Step 1. Then Step 1 just enumerates as many candidate
of chainings as possible without taking into account interconnection delays. After that,
we give the MCD value to each enumerated candidate chaining in Step 2. In Step 3,
we simultaneously schedule and bind the input DFG. In this step, we set a priority to
each node and determine which candidate nodes actually construct operation chainings
by using MCD. This step reduces the critical path delays by constructing chainings and
assigning them to as early control steps as possible. List-scheduling is one of reliable
approaches to realize this step. By effectively designing priorities in list-scheduling, we
expect to reduce the latency of the given DFG. Overall, we can solve the problems i) and
ii) enumerated in Section 2.4.1 through Step 1 to Step 3.

Our algorithm finally synthesizes registers, MUXs, and FSMs after completing
scheduling/binding.

Since the core of our flow is “scheduling/binding using operation chainings”, we
describe it in the rest of this subsection.

Enumerate Candidates for Chaining (Step 1)

Step 1 enumerates the candidates for chaining. The key point of this step is that we do
not determine the nodes for chaining directly. We allow that some nodes are included in
two or more candidates for chaining and we actually determine the operation chainings
in a later step.

For example, we enumerate ⟨v4, v5⟩ and ⟨v5, v6⟩ as candidates for chaining in Fig. 2.4(a).
The node v5 are included in both the candidates.

The candidates for chaining are enumerated as follows: We first calculate an imagi-
nary cycle for each edge in a DFG G(V, E). Let ev1,v2 ∈ E be an edge in the DFG and
v1 and v2 can be executed by FUs f u1 and f u2, respectively. For the edge ev1,v2 , an
imaginary cycle icycle(ev1,v2) is defined by

icycle(ev1,v2) =
{
0 if dcon(f u1, f u2) ≤ Tclk · cycle(f u1)
1 otherwise. (2.7)

If the imaginary cycle is 0, it means that the sum of operation delays that the edge e
connects does not exceed the control steps originally required for f u1. If the imaginary
cycle is 1, it means that the sum of operation delays that the edge e connects exceeds the
control step originally required for f u1.

After calculating imaginary cycles for all the edges, we determine whether the chain-
ings can be constructed or not and enumerate candidates for chaining. Let v ∈ V be a

20 CHAPTER 2. HLS WITH OPERATION CHAININGS

!

"
!"!

v
0 !

v
1

v
3

v
2

v
4

v
5

!v
6

Level 1

0

1

0

0

1

Level 2

Level 3

Figure 2.7: Enumeration of chaining candidates in Step 1.

node in a DFG where its level ℓ(v) = n. Then a set CN(v) of chainable nodes to v can be
defined by

CN(v) =
{
u ∈ S(v) | ℓ(u) = n + 1 ∧ icycle(ev,u) = 0

}
. (2.8)

Since the level of any node u ∈ CN(v) is larger by one than that of v, there exists a direct
edge from v to u and there are no paths from v to u via other nodes. icycle(ev,u) = 0
means that the sum of the delays of the two operations that the edge ev,u connects does
not exceed the control steps originally executing v. In this case, the nodes v and u can
be chained unless they are placed apart from each other. In this sense, CN(v) gives
candidates for chaining for the node v.

Example 2.2. Figure 2.7 shows an example of Step 1 when we give Fig. 2.4 as an input.
Operation nodes in the same height connected by a dotted line have the same level,
and the number written in the square beside the edge represents the imaginary cycle.
For the operation v0, we have ℓ(v0) = 0, ℓ(v1) = 1, ℓ(v3) = 1, icycle(v0, v1) = 0, and
icycle(v0, v3) = 1. Then we have CN(v0) = {v1}. In the same way, we have CN(v1) = +,
CN(v2) = +, CN(v3) = +, CN(v4) = {v5}, CN(v5) = {v6}, and CN(v6) = +. !

Calculate Maximal Chaining Distance (Step 2)

Step 2 calculates amaximal allowable inter-island distance for each candidate for chaining
obtained by Step 1. This is called maximal chaining distance (MCD). Let i1 = I(n1,m1)
and i2 = I(n2,m2) be two islands on RDR architecture. The inter-island distance between
them is give by |n1 − n2 | + |m1 −m2 |. Let v1 and v2 be two nodes in the input DFG where
v2 ∈ CN(v1). Let d(v1) and d(v2) be the FU delays to execute v1 and v2, respectively. Let
cycle(v1) be the required cycle to execute v1. Then MCD is defined by

MCD(v1, v2) =
⎢⎢⎢⎢⎢⎣

√
Tclk · cycle(v1) −

(
d(v1) + d(v2) + dreg

)
Cd

⎥⎥⎥⎥⎥⎦
. (2.9)

2.4. PROPOSED ALGORITHM 21

・・・
・・・

・・・
・・・+

+

++

+

i

i

i i

i i

iii

Figure 2.8: Calculating MCD in Step 2.

In Eq. (2.9), [Tclk ·cycle(v1)− (d(v1)+d(v2)+dreg)] is the difference between the product
of the clock period and the required steps for executing v1 (Tclk ·cycle(v1)), and executing
time of two operations (d(v1) + d(v2) + dreg). It shows the slack time when executing
v1 and v2 and it can be used for data transfer for them. Then the maximal inter-island
distance can be calculated based on Eq. (2.3). The floor function should be applied since
the inter-island distance is an integer. Overall, we can have Eq. (2.9).

Example 2.3. Since ⟨v0, v1⟩ in Fig. 2.4 is a chaining node candidate, we calculate
MCD(v0, v1) based on the values given by Fig. 2.4(b). v0 and v1 are the additions
and the adder delay is 1.1ns. Since the clock period Tclk is 3.0ns, we can calculate

MCD(v0, v1) =
⌊√

3.0×1−(1.1+1.1+0.1)
0.4

⌋
= 1.

Assume that the FU f u0 which executes v0 is placed on the island im,n, as shown
in Fig. 2.8. In this case, if the FU which executes v1 is placed on the island whose
inter-island distance from im,n is up to MCD(v0, v1), v0 and v1 can be chained. This
means that, if v1 is placed on im,n, im−1,n, im+1,n, im,n−1, or im,n+1, then v0 and v1 can be
chained. !

Since MCD is the allowable inter-island distance between two operations, it can be
applied to the adjacent two operations on the DFG but it cannot be simply applied to

22 CHAPTER 2. HLS WITH OPERATION CHAININGS

three or more operations. Assume that we have three operations v0, v1, and v2 connected
serially and we simply apply our algorithm to them. If we calculate MCDs for the
first two operations ⟨v0, v1⟩ and the last two operations ⟨v1, v2⟩ separately, the sum of
MCD(v0, v1) and MCD(v1, v2) may exceed the maximal allowable inter-islands distance
among the three operations and its scheduling result cannot satisfy the given clock cycle.
In this situation, MCDs of the three operations do not make sense. In order to extend our
operation chaining algorithm to three or more operations, we require extended MCDs
for any three-connected operations or more. How to define these extended MCDs and
how to apply them must be the challenging future works.

Perform Scheduling/binding (Step 3)

Step 3 performs scheduling and binding. We use list-scheduling as a scheduling algo-
rithm. We have to execute the nodes on the critical path as early as possible to minimize
the latency. According to [15], we calculate the priority based on the critical path length
(CPL). When a node v is bound to an FU f ui, the CPL from v to primary outputs is
recursively calculated as follows:

cpl(v, f ui) = dsum(f ui)+

max
vk∈S(v)

{
min

f ul∈EFU(vk)
{Dc(ii, il) + cpl(vk, f ul)}

}
(2.10)

where ii and il are the islands where the FUs f ui and f ul are placed, respectively. Based
on the CPL, the priority of the operation node v is calculated by

priority(v) = min
f ui∈EFU(v)

{cpl(v, f ui)} . (2.11)

List scheduling uses the priority queue PQ consisting of nodes which are ready to be
scheduled. For every control step CS, we pick up the operation node v which is able to
be scheduled and has the largest priority from PQ.

If the node v has no chainable nodes, i.e., CN(v) = ":
v is scheduled to the control step CS and bound to the FU f ui with the smallest
cpl(v, f ui) value. If there are no vacant FUs, v is scheduled to a later control step.

If the node v has chainable nodes, i.e., CN(v) ! ":
v is scheduled and bound in the same way above.
After that, we try to chain the node u ∈ CN(v) to v which has the maximum

priority(u) value. u is tried to be bound to an FU f uj with the smallest cpl(u, f uj)
value. If the inter-island distance between the island where f ui is placed and the
island where f uj is placed does not exceed MCD(v, u), u is actually bound to f uj

2.5. EXPERIMENTAL RESULTS 23

and the operation chaining is constructed. If not, we try another FU to which u
can be bound in the same way. If there are no other FUs to which u can be bound,
we try another node in CN(v) to be chained.
If we fail all the trials, only v is scheduled and bound and no chainings are

constructed.

If there are no FUs to be bound or no operations are in the queue, we increase the control
step count by one and repeat the same procedure. When we assign all the nodes in the
input DFG to control steps and FUs, we finish scheduling/binding.

Example 2.4. Assume that we have FU floorplan as shown in Fig. 2.5(b) for the input
DFG of Fig. 2.4 by using [15]. We have CN(v0) = {v1}, CN(v4) = {v5}, and CN(v5) =
{v6} in Step 1. Other nodes have no chainable nodes. We also have MCD(v0, v1) = 1,
MCD(v4, v5) = 1, and MCD(v5, v6) = 1 in Step 2.

In Step 3, we first set the control step count as CS = 1 and the priority queue
PQ includes v0 and v4. Their priorities are calculated as priority(v0) = 5.5 and
priority(v4) = 3.6. Since v0 has the largest priority, it is firstly picked up from PQ and
bound to the FU f u0. Since v0 has a chainable node v1, we try to chain v1 to v0. v1 can
be successfully bound to the FU f u1 within the maximal chaining distance (MCD). Then
v0 and v1 can construct an operation chaining.

Next, v4 is picked up from the priority queue and bound to the FU f u2. Although v4
has a chainable node v5, it cannot be chained to v4 since there are no available FUs.
Since there is no operations in the queue now, we increase the control step count by
one (CS = 2), we perform scheduling/binding in the same way. We finally obtain a
scheduling/binding result as shown in Fig. 2.5(a). !

2.5 Experimental Results
We have implemented our proposed algorithm in C++. We used CentOS 5.5 and AMD
Quad-Core Opteron 2360 SE 2.5 GHz × 2 machine with 16GB memory. We applied
our algorithm to six benchmark applications, PARKER (22 nodes including conditional
branches), EWF (34 nodes), DCT (48 nodes), FIR filter (75 nodes), EWF3 (102 nodes),
and COPY (378 nodes including conditional branches). FUs are assumed to have 16-bit
width under the 90nm technology node. The capacity cost of an island is C = 4. The
maximum size of an island is 240µm × 240µm for COPY and it is 90µm × 90µm for
the other applications. The interconnection delay is in proportion to the square of the
wire length and takes 1ns for 250µm × 250µm [1]. The clock period is set to 4.0ns
for COPY and 3.2ns for the other applications. The clock period here is defined by
the smallest possible delay so that two consecutive additions on DFG can construct

24 CHAPTER 2. HLS WITH OPERATION CHAININGS

an operation chaining when they are placed on two adjacent RDR islands. This is
because we demonstrate that our algorithm efficiently constructs operation chainings
on critical paths in a given DFG and then reduces its latency. We also optimize the
best possible clock period for MCAS [15].4 Controllers were synthesized with Synopsys
Design Compiler. Design Compiler tries to minimize the controller area under the given
clock period constraint. The capacity costs and delay of FUs with MUXs are shown in
Table 2.1. We set the worst MUX delay to be 0.12ns as a constant and give it to each FU.
We do not have multi-cycle operations in the experiments, even though we can handle
them as described in Section 2.3 and Section 2.4. We place a memory unit in one of the
islands.

We compared the three algorithms below to show the efficiency of our algorithm.

MCAS [15]: An original HLS algorithm for RDR architecture, which minimizes the
latency under the given clock period and RDR specifications.

[74] + Proposed: Balanced chaining [74] is used to enumerate chaining nodes before
our scheduling/binding is performed. After that, our our scheduling/binding is
performed.

Proposed: Our proposed algorithm.

MCAS [15] is an HLS algorithm for RDR architecture but it does not deal with
operation chainings. By comparing our algorithm to [15], we can demonstrate whether
our algorithm can effectively apply operation chainings to critical paths including inter-
connection delays. The approach in [74] just enumerates chainable operations on critical
paths in DFG not considering interconnection delays. By comparing our algorithm to
“ [74] + Proposed”, we can demonstrate whether our algorithm can effectively enumerate
chainable operation candidates on critical paths including interconnection delays.

The experimental results are shown in Table 2.2 and Table 2.3. In each benchmark
application, the first row shows the results for MCAS with the best possible clock period
and the other rows show the results for MCAS, “ [74] + Proposed”, and “Proposed” with
the fixed clock period. The latency is calculated by multiplying Tclk and the control
step counts. #chainings show the number of operation chainings, where each chaining is
composed of two nodes. The maximum area among all the islands is shown in the “Max
area” column, which is calculated by the sum of FU area, register area, and MUX area.
Our algorithm reduces the latency compared to MCAS except for FIR. Our algorithm
reduces the latency by up to 40.0% compared to MCAS, and by up to 25.0% compared
to [74] for PARKER. Note that our algorithm does not reduce the latency for FIR but

4In MCAS, we tried several clock periods from 3.0ns to 5.0ns and picked up the one as the best possible
clock period which gives the smallest latency for each benchmark application.

2.5. EXPERIMENTAL RESULTS 25

Table 2.1: The capacity costs and delay of FUs [1].
Functional unit Capacity cost Delay with MUXs [ns]

Adder 2 1.44
Subtractor 2 1.45
Multiplier 4 2.82

Right Shifter 2 0.67
Comparator 2 0.72

And 1 0.15
Memory unit – 2.82
Register – 0.11*

* Register delay does not include MUX delay.

does not increase it. Even when compared with MCAS with the best possible clock
period, our algorithm reduces the latency by up to 36.0%.5 Our algorithm reduces the
number of registers by up to 33.3% compared to MCAS. Our algorithm also reduces the
number of MUXs by up to 11.1% compared to MCAS. In general, we can reduce the
number of registers when we apply operation chainings because the registers between the
chained operations are not needed. The MUXs between the chained operations suppose
to be reduced. However, we cannot say that we can always reduce the number of MUXs
since it may increase by changing the FU bindings caused by operation chainings. In
some applications, registers and MUXs cannot necessarily be reduced, since they have
operation nodes which correlate to each other. In our algorithm, the maximum area
among all the islands can be reduced, since the required control steps are reduced in most
of the cases and then controller area can be reduced.

From the view point of enumeration of operation chainings, [74] mainly enumerates
nodes on the critical path while not allowing duplicate nodes in chaining candidates. On
the other hand, our algorithm effectively enumerate all the possible chaining candidates.

5In FIR, latency of MCAS with the best possible clock period is smaller than that of “Proposed.” It is
just because “Proposed” cannot construct operation chainings in this case. When we gave clock period of
3.06ns (which is the best possible clock period of MCAS) to “Proposed,” our algorithm also realized the
same latency as MCAS with the best possible clock period.

26 CHAPTER 2. HLS WITH OPERATION CHAININGS

Ta
bl
e2

.2
:E

xp
er
im

en
ta
lr
es
ul
ts
(1
/2
).

A
pp
.

#n
od
es

#i
sla

nd
s

FU
s

A
lg
or
ith

m
T c

lk
Co

nt
ro
l

La
te
nc
y

#c
ha
in
in
gs

#r
eg
ist
er
s

#M
U
X
s

M
ax

ar
ea

CP
U
Ti
m
e

[n
s]

ste
ps

[n
s]

[µ
m

2]
[s
ec
]

PA
RK

ER
22

2
×
2

Ad
d
×2

,
Su

b
×2

,
Co

m
p
×2

M
CA

S
[1
5]

3.
0

6
18
.0
(9
3.
8%

)
–

9
(1
00
.0
%
)

21
(1
00
.0
%
)

22
91

99
.0
8

M
CA

S
[1
5]

6
19
.2
(1
00
.0
%
)

–
9
(1
00
.0
%
)

21
(1
00
.0
%
)

22
55

95
.2
5

[7
4]

+
Pr
op
os
ed

3.
2

6
19
.2
(1
00
.0
%
)

4
10

(1
11
.1
%
)
21

(1
00
.0
%
)

16
95

95
.9
0

O
ur
s

5
16
.0
(8
3.
3%

)
5

7
(7
7.
8%

)
19

(9
0.
5%

)
15
19

70
.7
1

PA
RK

ER
22

2
×
3

Ad
d
×4

,
Su

b
×4

,
Co

m
p
×4

M
CA

S
[1
5]

3.
0

5
15
.0
(9
3.
8%

)
–

12
(1
00
.0
%
)
36

(1
00
.0
%
)

17
57

14
3.
49

M
CA

S
[1
5]

5
16
.0
(1
00
.0
%
)

–
12

(1
00
.0
%
)
36

(1
00
.0
%
)

17
43

14
3.
36

[7
4]

+
Pr
op
os
ed

3.
2

4
12
.8
(8
0.
0%

)
5

10
(8
3.
3%

)
36

(1
00
.0
%
)

15
19

98
.6
9

O
ur
s

3
9.
6
(6
0.
0%

)
6

8
(6
6.
7%

)
32

(8
8.
9%

)
14
07

74
.0
7

EW
F

34
2
×
3

Ad
d
×6

,
M
ul

×3

M
CA

S
[1
5]

3.
06

14
42
.8
6
(9
5.
7%

)
–

11
(1
00
.0
%
)
29

(1
00
.0
%
)

59
65

99
.7
2

M
CA

S
[1
5]

14
44
.8
(1
00
.0
%
)

–
11

(1
00
.0
%
)
29

(1
00
.0
%
)

54
34

12
2.
99

[7
4]

+
Pr
op
os
ed

3.
2

12
38
.4
(8
5.
7%

)
8

14
(1
27
.3
%
)
29

(1
00
.0
%
)

56
91

14
8.
31

O
ur
s

10
32
.0
(7
1.
4%

)
11

10
(9
0.
9%

)
28

(9
6.
6%

)
51
79

11
9.
40

D
CT

48
2
×
3

Ad
d
×4

,
M
ul

×4

M
CA

S
[1
5]

3.
0

9
27
.0
(9
3.
8%

)
–

25
(1
04
.2
%
)
41

(1
02
.5
%
)

65
16

14
9.
06

M
CA

S
[1
5]

9
28
.8
(1
00
.0
%
)

–
24

(1
00
.0
%
)
40

(1
00
.0
%
)

60
91

12
7.
01

[7
4]

+
Pr
op
os
ed

3.
2

8
25
.6
(8
8.
9%

)
5

21
(8
7.
5%

)
40

(1
00
.0
%
)

60
91

14
2.
65

O
ur
s

8
25
.6
(8
8.
9%

)
7

23
(9
5.
8%

)
39

(9
7.
5%

)
63
15

14
2.
07

2.5. EXPERIMENTAL RESULTS 27

Ta
bl
e2

.3
:E

xp
er
im

en
ta
lr
es
ul
ts
(2
/2
).

A
pp
.

#n
od
es

#i
sla

nd
s

FU
s

A
lg
or
ith

m
T c

lk
Co

nt
ro
l

La
te
nc
y

#c
ha
in
in
gs

#r
eg
ist
er
s

#M
U
X
s

M
ax

ar
ea

CP
U
Ti
m
e

[n
s]

ste
ps

[n
s]

[µ
m

2]
[s
ec
]

FI
R

75
2
×
3

Ad
d
×8

,
M
ul

×2

M
CA

S
[1
5]

3.
06

21
64
.2
6
(9
5.
6%

)
–

16
(1
00
.0
%
)

38
(1
00
.0
%
)

71
64

10
0.
95

M
CA

S
[1
5]

21
67
.2
(1
00
.0
%
)

–
16

(1
00
.0
%
)

38
(1
00
.0
%
)

68
44

97
.0
9

[7
4]

+
O
ur
s

3.
2

21
67
.2
(1
00
.0
%
)

0
16

(1
00
.0
%
)

38
(1
00
.0
%
)

68
44

95
.8
1

O
ur
s

21
67
.2
(1
00
.0
%
)

0
16

(1
00
.0
%
)

38
(1
00
.0
%
)

68
44

95
.9
2

EW
F3

10
2

2
×
2

Ad
d
×4

,
M
ul

×2

M
CA

S
[1
5]

3.
2

40
12
8.
0
(1
00
.0
%
)

–
15

(1
00
.0
%
)

27
(1
00
.0
%
)

67
30

10
0.
92

M
CA

S
[1
5]

40
12
8.
0
(1
00
.0
%
)

–
15

(1
00
.0
%
)

27
(1
00
.0
%
)

67
30

10
0.
92

[7
4]

+
O
ur
s

3.
2

37
11
8.
4
(9
2.
5%

)
18

14
(9
3.
3%

)
27

(1
00
.0
%
)

67
78

17
3.
71

O
ur
s

30
96
.0
(7
5.
0%

)
30

14
(9
3.
3%

)
26

(9
6.
3%

)
65
54

14
9.
19

EW
F3

10
2

2
×
4

Ad
d
×6

,
M
ul

×5

M
CA

S
[1
5]

3.
06

40
12
2.
4
(9
5.
6%

)
–

15
(8
8.
2%

)
37

(9
4.
9%

)
80
84

10
6.
46

M
CA

S
[1
5]

40
12
8.
0
(1
00
.0
%
)

–
17

(1
00
.0
%
)

39
(1
00
.0
%
)

70
02

10
0.
45

[7
4]

+
O
ur
s

3.
2

33
10
5.
6
(8
2.
5%

)
18

18
(1
05
.9
%
)

39
(1
00
.0
%
)

63
30

14
6.
66

O
ur
s

30
96
.0
(7
5.
0%

)
31

16
(9
4.
1%

)
38

(9
7.
4%

)
63
30

17
0.
33

CO
PY

37
8

3
×
4

Ad
d
×4

,S
ub

×2
,

M
ul

×4
,R

Sh
ift

×4
,

Co
m
p
×2

,A
nd

×2

M
CA

S
[1
5]

4.
0

85
34
0.
0
(1
00
.0
%
)

–
14
0
(1
00
.0
%
)
17
8
(1
00
.0
%
)

45
60
8

70
8.
39

M
CA

S
[1
5]

85
34
0.
0
(1
00
.0
%
)

–
14
0
(1
00
.0
%
)
17
8
(1
00
.0
%
)

45
60
8

70
8.
39

[7
4]

+
O
ur
s

4.
0

83
33
2.
0
(9
7.
6%

)
70

11
8
(8
4.
3%

)
15
6
(8
7.
6%

)
47
76
8

66
9.
63

O
ur
s

81
32
4.
0
(9
5.
3%

)
10
3

13
4
(9
5.
7%

)
17
2
(9
6.
6%

)
44
35
6

67
1.
71

28 CHAPTER 2. HLS WITH OPERATION CHAININGS

2.6 Conclusion
In this chapter, we proposed an HLS algorithm with operation chainings for RDR ar-
chitecture which explicitly considers interconnection delays. Experimental results show
that our proposed algorithm reduces the latency by up to 40.0% compared to [15], and
by up to 25.0% compared to [74]. Our algorithm also reduces the number of registers
and the number of multiplexers in some cases.

On the other hand, our algorithm does not reduce the latency for some applications.
Solve this problem by enumerating two or more nodes as chainable nodes is one of the
future works.

Chapter 3

A Floorplan-Aware High-Level
Synthesis Algorithm with
Multiple-Operation Chainings Based
on Path Enumeration1

3.1 Introduction
In Chapter 2, a high-level synthesis algorithm using operation chainings is proposed. It
reduces the overall latency targeting RDR architectures. However, it constructs operation
chainings with only up to two operations. In this chapter, the algorithm proposed
in Chapter 2 is extended to enumerate multiple-operation-chaining path candidates to
generate operation chainings with multiple-operation and reduce more latency.

As process technologies advance, highly integrated circuits are strongly required
and high-level synthesis (HLS) is becoming a very important design technique. HLS
synthesizes register-transfer level circuits from abstract behavioral descriptions, while
performing scheduling, allocation, and binding.

Highly integrated circuits cause interconnection delays to be relatively larger than
gate delays, which has been a main concern even in HLS. To cope with this problem,
regular-distributed-register (RDR) architecture has been introduced in [15]. RDR ar-
chitecture is one of the distributed-register (DR) architectures in which registers are
distributed over a chip, while registers are concentrated in conventional shared-register
(SR) architectures. RDR architecture divides a chip area into several islands and enables
multi-cycle communications on a chip. Since each island has the same size, we can
easily estimate interconnection delays in HLS. An HLS algorithm for RDR architecture

1Technical contents in this chapter have been presented in the publications ⟨3⟩ and ⟨13⟩.

29

30 CHAPTER 3. HLS WITH MULTIPLE-OPERATION CHAININGS

called MCAS was also proposed in [15].
Also we have to deal with operation delays in HLS since every operation has a

different delay generally. For example, an adder typically has a smaller delay than a
multiplier. Operation chainings can solve this problem where we pack several data-
depending operations into packed control steps and reduce the overall latency.

In this chapter, we propose an HLS algorithm with multiple-operation chainings for
RDR architecture. Our algorithm realizes a multiple-operation chaining by enumerating
feasible chaining paths in K steps, where K is given as a chaining search depth. Af-
ter enumerating chaining path candidates, our algorithm performs a scheduling/binding
taking into account explicitly interconnection delays between RDR islands and thus real-
izes floorplan-driven multiple-operation chainings. Experimental results show that our
algorithm reduces the latency by up to 30.4% compared to the conventional approaches.

The main contributions of this chapter are:

1. We realize floorplan-driven multiple-operation chainings in our HLS algorithm
which explicitly takes into account interconnection delays between operations.

2. Experimental results successfully demonstrate that our HLS algorithm efficiently
reduces the latency by 30.4%.

This chapter is organized as follows: Section 3.2 reviews related works; Section 3.3
describes our problem formulation; Section 3.4 proposes our HLS algorithm with
multiple-operation chainings for RDR architecture; Section 3.5 shows experimental
results; Section 3.6 gives several concluding remarks.

3.2 Related Works
ManyHLS algorithms with operation chainings have been studied as in [40,43,52,63,67,
74]. All of these studies are, however, based on SR architecture and no HLS algorithms
with operation chainings have been proposed for RDR architectures except for ours. We
have proposed an HLS algorithm using operation chainings targeting RDR architectures
in Chapter 2, where the maximum number of chainable operations is just two. How to
realize a multiple-operation chaining composed of two or more operations is one of the
key concerns.

3.3 Problem Formulation
In this section, we define control-data flow graphs and RDR architecture. Then we
define multiple-operation chainings on RDR architectures. After that we define our HLS
problem.

3.3. PROBLEM FORMULATION 31

3.3.1 Control-Data-Flow Graphs
An input of HLS is a behavioral description represented by a control-data flow graph
(CDFG). For simplicity, we use a DFG in this chapter to explain our algorithm but we
can extend it to CDFG easily as in our experimental results.

A DFG is usually represented by a directed graph. Let G = (V, E) be a DFG where
V is a set of operation nodes and E is a set of edges between them.

Let d f u be a delay of an FU f u and dreg be the sum of reading and writing time of a
register. We assume that an FU delay and a register delay include MUX delays.

For simplicity, each operation can be bound to one type of FUs, and an FU can
execute only one type of operations. Therefore, each operation v has a unique delay d(v).
Let EFU(v) be a set of FUs which can execute an operation v, given as an input.

We define a path on a DFG. A path from the node v1 to the node vn via the nodes
v2, v3, · · · , vn−1 is denoted by P = v1 v2 · · · vn, where there exists an edge between vi and
vi+1 for 1 ≤ i < n. A path delay dpath(P) is defined by

dpath(P) = dreg +
∑
v∈P

d(v) (3.1)

where P = v1 v2 · · · vn.

3.3.2 RDR Architecture
The RDR architecture [15] enables multi-cycle communication while considering inter-
connection delays in HLS. The chip is divided into several regular islands and registers
are distributed onto each island. We can easily estimate the interconnection delays for
its regularity.

RDR architecture was shown in Fig. 2.1. Every island has three elements: A set
of FUs; A set of registers is a storage unit for each island; Finite state machine (FSM)
controls FUs, registers, and MUXs associated with them in the island.

The size of an island is determined to complete its single-cycle operation and writ-
ing/reading registers in the same island within a single clock cycle. The islands are
connected by the global interconnection to each other. Every island is assumed to be
square. Assume that the entire chip is divided into N × M islands. The island in n-th
row and m-th column is denoted by I(n,m) where 1 ≤ n ≤ N and 1 ≤ m ≤ M . The
data transfer time Dc(i1, i2) from the island i1 = I(n1,m1) to the island i2 = I(n2,m2) is
defined as follows [27, 57]:

Dc(i1, i2) = Cd · (|n1 − n2 | + |m1 − m2 |)2 (3.2)

where Cd is the interconnection-delay coefficient.

32 CHAPTER 3. HLS WITH MULTIPLE-OPERATION CHAININGS

We want to transfer the output data from an FU in an island i1 to another FU in
another island i2. After the operation finishes in a control step in i1, the data will be
transferred to i2 within the control step if the slack time is enough to transfer. Otherwise,
the data is temporarily stored in a register in i1 at the first control step and, after that, the
data will be transferred to i2 using the next control step or more.

An island has a capacity cost C, and an FU f u has the area cost c f u. The sum of the
area cost c f u of all the FUs placed in an island must not exceed C.

3.3.3 Multiple-Operation Chainings on RDR Architecture
Unlike existing works, our multiple-operation chaining considers not only operation
delays but interconnection delays among them. Since we use RDR architecture, we can
effectively estimate them in HLS and solve this problem.

Let K be a chaining search depth. Let Tclk be a clock period. Then CP(v) is defined
by a set of paths in an input DFG whose start node is v and dpath(P) ≤ K · Tclk for any
path P ∈ CP(v). Every path P ∈ CP(v) is called a chaining path of v.

Assume that a node v1 ∈ V has only one chaining path, i.e., CP(v1) = {P}, where
P = v1v2v3 · · · vn. Let P′ be a sub-path in P whose start node is also v1, i.e., P′ =

v1v2v3 · · · vm (m ≤ n). In this case, we can construct a multiple-operation chaining on
RDR architecture for P′ if it satisfies

dreg + d(v1) +
m∑
i=2

(d(vi) + Dc(ii−1, ii)) ≤ K · Tclk (3.3)

where we assume that the FU executing vi is placed on the island ii. Eq. (3.1) just shows
the sum of operation delays but our multiple-operation chaining shown in Eq. (3.3)
considers both operation delays and interconnection delays between them.

3.3.4 Problem Definition
Based on the discussion above, we define our HLS problem as follows:

Definition 3.1. For a given DFG G = (V, E), the clock period Tclk , a chaining search
depth K , and the specifications of RDR architecture, our HLS problem with multiple-
operation chainings is, to schedule and bind the input DFG and generate its floorplan on
RDR architecture so as to minimize the latency while allowing the operation chainings
in the chaining search depth.

Example 3.1. Figure 3.1 and Figure 3.2 show the input and the output of our HLS prob-
lem with multiple-operation chainings for RDR architecture, respectively. Figure 3.1(a)
is the input DFG. Figure 3.1(b) shows the clock period and the specifications of RDR

3.3. PROBLEM FORMULATION 33

!
!"

v
0 #
v
1

v
2

v
3

!v
4 " v

5

!v
6

(a) DFG.

T
clk

3.0 ns

of islands 2×2

of FUs

Adder×3 (fu
0
, fu

1
, fu

2
)

Subtractor×2 (fu
3
, fu

4
)

Multiplier×1 (fu
5
)

Delay of a register 0.1 ns

Transfer time to

adjacent islands (C
d
)

0.2 ns

Delay of an adder /

a subtractor

1.5 ns

Delay of a multiplier 2.8 ns

2Chaining search depth (K)

(b) The clock period and the specifica-
tions of the RDR architecture.

Figure 3.1: Inputs to our HLS problem with multiple-operation chainings for RDR
architecture.

!
!

"

v
0 #
v
1

v
2

v
3

!
v
5

fu
5

fu
4

fu
3

fu
1

fu
0

(cs1)

(cs2)

"v
4

: register

(cs3)

!v
6

fu
2

fu
2

(a) The scheduled/bound
DFG.

!
!
"

i
11

fu
0

fu
1

fu
5

i
21

!i
12

fu
2

i
22

fu
3

fu
4

(b) The floorplan result.

Figure 3.2: Outputs of our HLS problem with multiple-operation chainings for RDR
architecture.

architecture. Figure 3.2(a) shows scheduled and bound DFG where the operations on
the chaining paths {v0, v1} and {v2, v3, v5} are chained and executed in packed control
steps. Figure 3.2(b) shows the floorplan result.

34 CHAPTER 3. HLS WITH MULTIPLE-OPERATION CHAININGS

!"#$%&'(%)*+',","-).'(+)*'"/,/'(%0

1'2*#2'(%).&,3&,(,%0)34)3.%&'(,3")"3/%0)'"/)

*+',","-).'(+0

5%&43&$)0*+%/#2,"-67,"/,"-

5%&43&$)0*+%/#2,"-8/&,9%").2'*%$%"()

:13"-)!"#$%;<)=>>?@

!"#$!%&'()*+,-&. /"/)0*+'-1-'23-&4

AB"(+%0,C%)&%-0(%&0<)DEF0<)'"/)GAD0

5'6+.7%+.89&74.)!"#$

G233&.2'")34)GE0

A*+%/#2,"-67,"/,"-

#0,"-)3.%&'(,3")*+',","-0
A(%.)H

A(%.)=

A(%.)I

#%&&,*%24

Figure 3.3: Synthesis flow of our algorithm.

3.4 Proposed Algorithm

In this section, we propose our HLS algorithm with multiple-operation chainings for
RDR architecture.

Figure 3.3 shows our proposed synthesis flow. Initially, we determine which island
every FU is placed in by using MCAS (scheduling-driven placement) [15] (Step 0).

The scheduling/binding using multiple-operation chainings consist of three steps: In
Step 1, we enumerate candidate of chaining paths. In this step, we ignore data transfer
time between operations and enumerate as many chaining paths as possible. In Step 2,
we set the priorities for operation nodes and chaining paths. The priory of an operation
node is calculated using cpl (critical path length) and the priority of a chaining path is
calculated using the node priorities included in the path. We determine which chaining
path is adopted as an actually chaining path based on the chaining path ordering obtained
in this step. In Step 3, we simultaneously schedule and bind the input DFG based on the
priorities calculated in Step 2. Our algorithm finally synthesizes registers, MUXs, and
FSMs after completing scheduling/binding.

3.4. PROPOSED ALGORITHM 35

Since our synthesis flow is based on enumeration of candidate chaining paths and
selects the best one among them, it can pack asmany chainable nodes as possible and thus
we can have optimal-latency scheduling/binding result considering RDR floorplanning.

Step 1: Enumerate chaining paths
Step 1 enumerates candidate of chaining paths for every node on DFG. Let v ∈ V be
a node in DFG. Then we visit every node from v in the depth-first-search manner and
calculate the path delay. When the path delay from v to some node exceeds K · Tclk , we
stop searching into deeper nodes. Then we add the longest path searched so far whose
path delay does not exceed K ·Tclk into CP(v) and try to search other paths from v in the
same way.

Since we do not consider data transfer time between nodes at this step, we can
enumerate the longest possible paths in this step.

Step 2: Calculate priorities of operation nodes and chaining paths
Operations on the critical path need to be executed earlier to minimize the overall latency.
We calculate the priority of the nodes based on cpl (critical path length) as in [15]. The
cpl from v to a primary output when a node v is bound to an FU f ui is recursively
calculated by

cpl(v, f ui) = dreg + d f ui+

max
vk∈S(v)

{
min

f uj ∈EFU(vk)

{
Dc(ii, i j) + cpl(vk, f uj)

}}
(3.4)

where we assume that f ui and f uj is placed on the islands ii and i j , respectively, and
S(v) shows a set of the successor nodes of v. The priority of a node v is calculated as

pr(v) = min
f ui∈EFU(v)

{cpl(v, f ui)} (3.5)

Every path also has a priority. Each chaining path in CP(v) is sorted in the following
way, and the path priority is set in the sorted order. Assume that the number of chaining
paths in CP(v) is m. Each path of CP(v) is represented by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1 = v11 v
1
2 · · ·

P2 = v21 v
2
2 · · ·

...

Pm = vm1 v
m
2 · · ·

where the j-th node in a path Pi (1 ≤ i ≤ m) is represented by vij . First, we set i = 1 and
sort the paths in the ascending order of pr(vi1). If pr(v

i
1) values are the same in several

36 CHAPTER 3. HLS WITH MULTIPLE-OPERATION CHAININGS

paths, we increase i by one and repeat the same process until all the paths in CP(v) are
sorted.

Step 3: Perform scheduling/binding
Step 3 performs scheduling and binding. We use list-scheduling as a scheduling al-
gorithm. In list-scheduling, a ready list RL is constructed as a priority queue which
includes the nodes not assigned yet and ready to be scheduled. We use the resource pool
RP(cs) = ⟨ f u1, f u2, · · · , f un⟩ which effectively shows a set of unused FUs at the control
step cs even when we consider operation chainings.

Initially we set cs = 1 and, for each control step cs, we pick up the node v1 with the
largest priority from RL.

If the node v1 has no chaining paths:
v1 is scheduled to cs, and is bound to the FU f u having the smallest possible
cpl(v1, f u) value considering the interconnection delays between v1 and each of
its parent nodes. If v1 is successfully bound to f u, it is eliminated from RP(cs). If
we fail to bind v1 to any FU at cs, v1 is pushed back into RL and will be assigned
in a later control step.

If the node v1 has chaining paths:
v1 is scheduled and bound in the same way above.

Let P ∈ CP(v1) be a chaining path with the largest path priority. Let v2 be the
second node in the path P. If all the conditions 1.–3. below are satisfied, v2 is
scheduled to cs and bound to the FU f u.

1. All parent nodes of v2 are already scheduled.

2. There exists the FU f u at the control step cs which can execute v2.

3. Except for v1, all the input data to v2 are ready to use for f u at cs considering
interconnection delays between v2 and each of its parent nodes.

If we fail to schedule/bind v2, we stop constructing operation chainings for P. If we
successfully schedule/bind v2, f u is eliminated from RP(i) for cs ≤ i ≤ (cs + k)
where v1, v2, and their interconnection delay between them occupies the control
steps from cs to (cs + k).

We repeat the same process for the remaining nodes in P until either condition
below becomes true.

• We reach the end of the chaining path P.

3.5. EXPERIMENTAL RESULTS 37

Table 3.1: The capacity costs and delay of FUs [1].
Functional unit Capacity cost Delay [ns]

Adder 1 1.44
Subtractor 1 1.45
Multiplier 2 2.82
Comparator 1 0.72
Memory unit – 2.82
Register – 0.11

• The number of occupied control steps to construct chaining nodes exceeds
K .

If we cannot construct any node chainings in P, we try a chaining path having
the second largest priority in CP(v1) and we continue this process.

If there are no FUs to be bound or no operations are in the queue RL, we increase the
control step count by one and repeat the same process.

3.5 Experimental Results
We have implemented our proposed algorithm in C++. We used CentOS 5.5 OS and
AMD Quad-Core Opteron 2360 SE 2.5 GHz × 2 machine with 16GB memory. We
applied our algorithm to four benchmark applications, PARKER (22 nodes including
conditional branches), EWF (34 nodes), FIR filter (75 nodes), and EWF3 (102 nodes).
FUs are assumed to have 16-bit width under the 90nm technology node. The clock
period is set to 3.0ns. The capacity cost of an island is C = 2. The maximum size of an
island is 90µm × 90µm. The interconnection delay is in proportion to the square of the
wire length and takes 1ns for 250µm × 250µm [1]. Controllers were synthesized with
Synopsys Design Compiler. The capacity costs and delay of FUs are shown in Table 3.1.
We place a memory unit in one of the islands.

We compared three algorithms below to show the efficiency of our algorithm.

MCAS [15]: We used the original HLS algorithm for RDR architecture without opera-
tion chainings.

HLS with chainings of up to two operation nodes (Chapter 2): We used the HLS algo-
rithm for RDR architecture with operation chainings of up to two nodes proposed
in Chapter 2.

38 CHAPTER 3. HLS WITH MULTIPLE-OPERATION CHAININGS

Ours: We used our proposed algorithm with multiple-operation chainings. We set the
chaining search depth K ∈ {1, 2}.

The experimental results are shown in Table 3.2. For PARKER, EWF, and EWF3,
Ours (K = 2) realizes the smallest latency compared to the other algorithms. For FIR,
Ours (K = 1) realizes the smallest latency.

Our algorithm reduces the latency by up to 30.4% compared to the algorithm without
chainings [15], and reduces the latency by up to 24.4% compared to the algorithm with
chainings of up to two nodes (Chapter 2) for EWF3.

Since our proposed algorithm is based on packing asmany chainable nodes as possible
in a give search depth, it is effective to the applications where many nodes are serially
connected such as in EWF and EWF3.

3.5. EXPERIMENTAL RESULTS 39

Ta
bl
e3

.2
:E

xp
er
im

en
ta
lr
es
ul
ts.

A
pp
.

#i
sla

nd
s

FU
s

T c
lk

A
lg
or
ith

m
Co

nt
ro
l

La
te
nc
y

#r
eg
ist
er
s

#M
U
X
s

M
ax

isl
an
d

CP
U
tim

e
#n
od
es

[n
s]

ste
ps

[n
s]

ar
ea

[µ
m

2]
[s
ec
]

PA
RK

ER
22

2
×
3

Ad
d×

4,
Su

b×
4,

Co
m
p×

4
3.
0

[1
5]

7
21
.0
(1
.0
0)

13
(1
.0
0)

37
(1
.0
0)

17
56

13
9.
45

Ch
.2

5
15
.0
(0
.7
1)

12
(0
.9
2)

36
(0
.9
7)

15
36

13
3.
37

O
ur
s(
K

=
1)

7
21
.0
(1
.0
0)

11
(0
.8
5)

35
(0
.9
5)

20
78

13
3.
70

O
ur
s(
K

=
2)

5
15
.0
(0
.7
1)

10
(0
.7
7)

34
(0
.9
2)

14
94

11
3.
38

EW
F

34
2
×
3

Ad
d×

6,
M
ul
×3

3.
0

[1
5]

17
51
.0
(1
.0
0)

13
(1
.0
0)

31
(1
.0
0)

60
50

93
.9
4

Ch
.2

15
45
.0
(0
.8
8)

14
(1
.0
8)

32
(1
.0
3)

56
62

13
7.
73

O
ur
s(
K

=
1)

16
48
.0
(0
.9
4)

15
(1
.1
5)

33
(1
.0
7)

57
17

14
1.
10

O
ur
s(
K

=
2)

13
39
.0
(0
.7
7)

14
(1
.0
8)

32
(1
.0
3)

51
13

12
0.
29

FI
R 75

2
×
3

Ad
d×

8,
M
ul
×2

3.
0

[1
5]

23
69
.0
(1
.0
0)

17
(1
.0
0)

39
(1
.0
0)

80
60

74
.7
1

Ch
.2

23
69
.0
(1
.0
0)

19
(1
.1
2)

41
(1
.0
5)

80
60

95
.9
2

O
ur
s(
K

=
1)

22
66
.0
(0
.9
6)

18
(1
.0
6)

40
(1
.0
3)

78
76

94
.3
3

O
ur
s(
K

=
2)

33
99
.0
(1
.4
4)

18
(1
.0
6)

40
(1
.0
3)

80
91

94
.2
7

EW
F3

10
2

3
×
3

Ad
d×

6,
M
ul
×6

3.
0

[1
5]

49
14
7.
0
(1
.0
0)

17
(1
.0
0)

41
(1
.0
0)

>
81
00

10
3.
26

Ch
.2

45
13
5.
0
(0
.9
2)

18
(1
.0
6)

42
(1
.0
2)

80
11

14
5.
54

O
ur
s(
K

=
1)

48
14
4.
0
(0
.9
8)

18
(1
.0
6)

42
(1
.0
2)

69
73

14
2.
77

O
ur
s(
K

=
2)

34
10
2.
0
(0
.6
9)

22
(1
.2
9)

46
(1
.1
2)

69
68

17
5.
40

40 CHAPTER 3. HLS WITH MULTIPLE-OPERATION CHAININGS

3.6 Conclusion
In this chapter, we proposed a floorplan-driven HLS algorithm with multiple-operation
chainings for RDR architecture by using enumeration of chaining paths. Chaining paths
of multiple-operation are constructed with a chaining search depth K and the optimal
ones are selected based on path priorities. Experimental results show that our algorithm
reduces the latency by up to 30.4% compared to the algorithm without chainings, and
reduces the latency by up to 24.4% compared to the algorithm with chainings of up to
two nodes proposed in Chapter 2.

Our algorithm may not by efficient for some applications, since it realizes operation
chaining as deep as possible in a greedy way. One of the future works is to solve this
problem by finding out the optimal size of chaining nodes.

Chapter 4

A Floorplan-Driven Bitwidth-Aware
High-Level Synthesis Algorithm Using
Operation Chainings1

4.1 Introduction
In Chapter 2, a high-level synthesis algorithm using operation chainings is proposed.
In Chapter 3, it is extended to deal with multiple-operation chainings. However, the
algorithm proposed in Chapter 3 is only effective to the limited benchmarks. In this
chapter, bitwidth-based optimization is used towards more performance optimization.

Thanks to the scaling of process technology, it comes to be able to produce highly
integrated circuits, and larger applications can be implemented on VLSI SoCs. Hardware
implementations for large applications in short time-to-market are strongly required.
High-level synthesis (HLS) which synthesize from abstract application descriptions such
as C, C++, Java, and Python into register transfer level (RTL) descriptions with low time
cost, becomes a more and more essential and promising EDA technique nowadays.

A main concern in HLS is interconnection delays. In highly integrated SoCs, inter-
connection delays are relatively larger compared to logic delays. Adding the maximum
possible interconnection delay to the clock cycle is a naïve way to solve the problem.
However, in large circuits, the maximum interconnection delay is estimated extremely
larger than logic delays and it worsens the overall performance, thus such approach is
not practical. Taking interconnection delays into account in HLS is an effective so-
lution to the problem by using distributed-register and -controller (DR) architecture,
while registers and controllers are concentrated in conventional shared-register and -
controller (SR) architectures. DR architecture is divided into clusters. Registers, FUs

1Technical contents in this chapter have been presented in the publications ⟨1⟩ and ⟨8⟩.

41

42 CHAPTER 4. BITWIDTH-AWARE HLS

+

+

+

*

16-bit

16-bit

16-bit

16-bit

ADD

(16-bit)

MUL

(8*8 =>

16-bit)

(a) Uniform bitwidth without
operation chainings.

+

+

+

*

4-bit

2-bit

2-bit

16-bit

ADD

(4-bit)

MUL

(8*8 =>

16-bit)

ADD

(2-bit)

ADD

(2-bit)

(b) Varied (non-uniform)
bitwidths with an operation
chaining.

Figure 4.1: Schedulings of uniform bitwidth vs. non-uniform bitwidth with operation
chaining. The latency of scheduling (b) is lower than that of scheduling (a).

(Functional Units), and controllers are placed distributed onto the clusters, and we can
leave the interconnection delays between registers and FUs being much smaller than SR
architectures. Many floorplan-driven HLS algorithms targeting DR architectures which
floorplan the modules layouts have been studied to take interconnection delays into ac-
count as in [2, 3, 15, 18, 28, 36, 45]. In some studies, they call such clusters on the DR
architectures islands.

When we design hardwares, it is profitable to consider data bitwidth. According
to an investigation in [55], on average 40% or more bits in operations are not used
in DSP applications written in C language. Contrasting with a software design, we
can design an arbitrary bitwidth for operations and variables on a hardware design and
reduce the useless bits to obtain a circuits with less delays and areas. Bitwidth-aware
HLS algorithms have been studied as in [18,20,35]. Proposed methods in [18,20,35] are
HLS algorithms with bitwidth considerations, but these methods are targeting general
SR architectures and they ignore interconnection delays.

Basically in HLS scheduling, each operation is assigned to a single clock cycle.
However, every operation or FU has a different delay. For example, an adder usually has
a smaller delay than a multiplier. We also have to deal with these operation delays in HLS
with operation chainings. Operation chainings pack several data-depending operations
into packed control steps and we can reduce the overall latency. Many HLS algorithms
with operation chainings have been studied as in [13,18,54,56,75], but most of them are
approaches targeting conventional SR architectures.

Since FUs with smaller number of bitwidth have smaller logic delays, we can ef-
fectively design operation chainings to reduce the overall latency as shown in Fig. 4.1.

4.1. INTRODUCTION 43

Coussy et al. proposed a bitwidth-aware HLS algorithm using operation chainings
in [20], however, selecting operation chainings in scheduling and binding is based on
pattern matching of user-specified chaining patterns, thus it does not realize operation
chainings automatically. Cong et al. proposed in [17] a bitwidth-aware HLS algorithm
considering interconnection delays targeting RDR architectures [15], however, it focuses
on the area minimization and does not realize operation chainings since the operation
delays are assumed to be the same in every bitwidth. The allocation and floorplan result
in [17] is the same as [15], since the allocation and floorplan result in [15] is optimized for
the uniform bitwidth. [17] does not change them specified for the bitwidth consideration.

Cong et al. proposed RDR architecture for FPGAs called DRFM architecture in [18],
in which registers are implemented as register files in FPGAs. [18] discusses a way of
applying operation chainings in their HLS algorithm for DRFM architecture. However,
DRFM architecture model does not calculate interconnection delays explicitly and an
operation chaining is executed only in a single island. Furthermore, it does not evaluate
the effects of their operation chainings. HLS algorithms with operation chainings target-
ing RDR architectures are proposed in Chapter 2 and Chapter 3. They realize operation
chainings by taking inter-island distances into account and reduce the overall latency,
however they do not consider operation bitwidths.

In this chapter, we propose a bitwidth-awareHLS algorithmusing operation chainings
to synthesize high-performance circuits targeting RDR architectures. RDR architecture
is divided into islands on which registers and controllers are placed. Each island assumes
to be the same size just like [11,12,15,16,18,26,28,29] for simplicity, and we can easily
estimate interconnection delays between islands on RDR architectures for its uniformity.
Since RDR architectures have uniformly sized islands, there often exist some vacant
islands. Our proposed algorithm takes the interconnection delays into account and
utilizes vacant islands to realize operation chainings considering operation delays which
depend on bitwidths, simultaneously.

The remainder of this chapter is organized as follows: Section 4.2 demonstrates
our motivating examples and shows that conventional approaches do not produce good
results; Section 4.3 describes formulation of RDR architectures and our problem defini-
tion; Section 4.4 proposes our bitwidth-aware HLS algorithm with operation chainings
for RDR architectures; Section 4.5 shows experimental results; Section 4.6 gives several
concluding remarks.

The main contributions of this chapter are:

1. We realize floorplan-driven bitwidth-aware operation chainings in our HLS algo-
rithm which explicitly takes into account interconnection delays between opera-
tions targeting RDR architectures.

2. Our HLS algorithm utilizes vacant islands in RDR architectures by eliminating

44 CHAPTER 4. BITWIDTH-AWARE HLS

unnecessary bitwidths and adding efficient extra FUs, and realizes operation chain-
ings.

3. Experimental results successfully demonstrate that our HLS algorithm efficiently
reduces the latency by up to 47% compared to the conventional approach without
increasing the total area.

4.2 Motivating Examples
In previous works, there have been proposed methods (1) realizing bitwidth-aware oper-
ation chainings without considering module floorplans, (2) realizing module floorplan-
based operation chainings without considering operation bitwidths, as described in Sec-
tion 4.1. In this section, we demonstrate that both of above do not generate practical
solutions through motivating examples.

4.2.1 Example 1: Approaches with vs. without Interconnection
Delays Consideration

Figure 4.2 shows a motivating example to demonstrate that conventional HLS methods
without interconnection delays considerations are not practical. Now, there are two
consecutive adder operations and we are trying to assign these operations and perform
physical floorplan. Let clock period be 3.0ns, and logic delays of 16-bit adder and 8-bit
adder be 1.0ns and 0.5ns, respectively. Register delays are ignored in this example.2 In
Fig. 4.2(a), bitwidth of both operations are 16-bit and no operation chainings are realized
on the SR architecture. Let us consider the operation bitwidth as in Fig. 4.2(b). In
Fig. 4.2(b), bitwidth of the second adder operation is 8-bit and a operation chaining is
realized by method [20] based on an SR architecture, but interconnection delay is too
large to meet the clock period constraint. Typical HLS algorithm succeeds to schedule an
operation chaining since just by adding logic delays of two operations and get the result
is smaller than the clock period. However after physical placement, interconnection
delays between FUs which two operations execute may be too large and violate the
clock constraint. Figure 4.2(c) and Figure 4.2(d) show a realized practical operation
chaining due to smaller interconnection delay on the RDR architecture and a solution
of no operation chaining are realized due to larger interconnection delay on the RDR
architecture, respectively. We need to get solutions like Fig. 4.2(c) and Fig. 4.2(d) rather
than Fig. 4.2(b).

2Register delays are ignored just for the examples in this section, we calculate them in our proposed
algorithm.

4.2. MOTIVATING EXAMPLES 45

+

+

16-bit

16-bit
Other

modules

ADD

(16-bit)

Registers

(a) Bitwidth of both operations
are 16-bit and no operation
chainings realized on an SR ar-
chitecture.

+

+

16-bit

8-bit

Other

modules

ADD

(16-bit)

Registers

ADD

(8-bit)

(b) Bitwidth of the second operation
is 8-bit and a operation chaining is
realized by [20] based on an SR ar-
chitecture, but interconnection delay
is too large to meet the clock period
constraint.

+

+

16-bit

8-bit

ADD

(8-bit)

Registers

Other

modules

ADD

(16-bit)

Registers

(c) Practical operation chaining is
realized due to smaller intercon-
nection delay on an RDR archi-
tecture.

+

+

16-bit

8-bit

Other

modules

Registers

ADD

(8-bit)

ADD

(16-bit)

Registers

(d) No operation chaining are re-
alized due to larger interconnec-
tion delay on an RDR architec-
ture.

Figure 4.2: A motivating example to demonstrate the operation chaining results without
vs. with interconnection delays consideration.

4.2.2 Example 2: Approaches with vs. without Bitwidth Consider-
ation

Figure 4.3 shows a motivating example to demonstrate that HLS methods without op-
eration bitwidth considerations are not good enough. In general, an FU with smaller
bitwidth has smaller delay/area. As described in Section 4.1, RDR architectures tend
to have vacant spaces in islands for its regularity. We can place FU(s) to utilize them
by considering bitwidth. Now, there are two consecutive adder operations and we are
trying to schedule these operations as an operation chaining. Let clock period be 3.0ns,
and logic delays/area of 16-bit adder and 8-bit adder be 1.0ns/160µm2 and 0.5ns/80µm2,
respectively. We assume an island have a 250µm2 capacity area, i.e., the sum of area of
FUs placed on the island must not exceed 250µm2. In this example, the interconnection

46 CHAPTER 4. BITWIDTH-AWARE HLS

+

+

16-bit

8-bit

...

.
.
.

ADD

(16-bit)

ADD

(16-bit)

Registers

(a) Both operations are tried to
be executed by 16-bit adders like
in Chapter 2, but it fails due to
short of vacant area.

+

+

16-bit

8-bit

...

.
.
.

ADD

(16-bit)

Registers

ADD (8-bit)

(b) Practical result due to the
second operation is executed by
8-bit adders.

Figure 4.3: A motivating example to demonstrate the operation chaining results without
vs. with bitwidth of FUs consideration.

delay between two adders is considered as zero because they are placed in the same
island, these two examples do not violate the timing. However, due to short of vacant
area, we can obtain solution in Fig. 4.3(b) but cannot do in Fig. 4.3(a). We need to get
solutions like Fig. 4.3(b) rather than Fig. 4.3(a).

4.3 Problem Formulation
In this section, we define control-data flow graphs and functional units. Then we define
RDR architectures and operation chainings on RDR architectures. After that we define
our HLS problem.

4.3.1 Control-Data-FlowGraphs andFunctionalUnitswithBitwidth
An input to HLS is a behavioral description represented by a control-data flow graph
(CDFG). For simplicity, we use a DFG in this chapter to explain our algorithm but we
can extend it to CDFG.

A DFG is usually represented by a directed graph. Let G = (V, B, E) be a DFG
where V is a set of operation nodes, B is a set of bitwidth for all operations, and
E is a set of edges between operation nodes. We can obtain bitwidth analysis result
for each operation which satisfy the overall calculation accuracy or user-constraints
by using bitwidth analysis methods like [33, 35, 55]. Therefore, we assume DFG and
bitwidth for operations are given as DFG annotated with bitwidths in this chapter. Each
operation vi ∈ V has its operation bitwidth denoted by bop(vi). Similarly, each FU f ui
has its bitwidth bfu(f ui). An operation vi can be executed on FUs f uj which satisfies

4.3. PROBLEM FORMULATION 47

bop(vi) ≤ bfu(f uj). The operations which have no predecessors are called primary inputs
(PIs) and a set of them is denoted by PIs. The operations which have no successors are
called primary outputs (POs) and a set of them is denoted by POs. Let EFU(v) be a set
of FUs which can execute an operation v.

Let d f u be a logic delay of an FU f u and dreg be the sum of reading and writing time
of a register. A delay of an FU f u depends on the FU bitwidths while that of a register
does not. We assume that an FU delay and a register delay include MUX delays. Let
dsingle(f u) be the sum of the delays of reading data from a register, logic delay on an FU
f u, and writing data to a register, and it is calculated by:

dsingle(f u) = dreg + d f (fu). (4.1)

4.3.2 RDR Architecture
The RDR architecture is divided into several regularly sized islands and distributes FUs,
local registers, and controllers onto the islands. We can leave the interconnection delays
between local registers and FUs being much smaller than non-RDR architectures. Every
island in RDR architecture assumes to be the same size just like [11, 12, 15, 16, 18, 26,
28,29] for simplicity. We can easily estimate the interconnection delays between islands
for its uniformly.

An example of RDR architecture model was shown in Fig. 2.1. Every island has
three elements: A set of FUs; Registers as storage units for each island; Controller
(FSM) which holds the current state and generates control (selection) signals to MUXs
associated registers and FUs.

The islands are connected by the global interconnections to each other. Every island
is assumed to be square. Assume that the entire architecture is divided into N × M
islands. The island in n-th row and m-th column is denoted by I(n,m) where 1 ≤ n ≤ N
and 1 ≤ m ≤ M . The data transfer time Dt(i1, i2) from the island i1 = I(n1,m1) to the
island i2 = I(n2,m2) is defined follows like in Chapter 2 and Chapter 3:

Dt(i1, i2) = Cd · (|n1 − n2 | + |m1 − m2 |) (4.2)

where Cd is the interconnection-delay coefficient.3
Wewant to transfer the output data from an FU in an island i1 to another FU in another

island i2. After the operation finishes in a control step in i1, the data will be transferred
3Interconnection delay is in proportion to the square of the distance in Chapter 2 and Chapter 3 based

on Elmore delay model. However we assume that the interconnection delay is in proportion to the distance
in this chapter because we can treat that the delay is in proportion to the distance by inserting some buffers
onto the wires [14]. In our experiments in Section 4.5, we modify the delay estimation described in
Chapter 2 and Chapter 3 to the model where the interconnection delay is in proportion to the distance.
More details are described in Section 4.5.5.

48 CHAPTER 4. BITWIDTH-AWARE HLS

to i2 within the control step if the slack time is enough to transfer. Otherwise, the data is
temporarily stored in a register in i1 at the same control step as the FU execution, then
the data will be transferred to i2 using the next control step or more.

Every island has an area capacity A, and an FU f u has the area cost a f u. The sum of
the area cost a f u of all the FUs placed in an island i is denoted by Ai, and it is constrained
not to exceed A, i.e., Ai ≤ A(∀i). The vacant area of an island i is calculated by A − Ai.
When there exists vacant area in island i, we can append additional extra FUs whose area
cost does not exceed A − Ai.

4.3.3 Operation Chainings on RDR Architecture
Unlike existing works, our operation chaining considers not only operation logic delays
but interconnection delays. Since we use RDR architecture, we can adequately estimate
them in HLS.

Let Tclk be a clock period. Assume that a path p in DFG G consists of n operations
v1 → v2 → v3 → · · · → vn, and operation vi ∈ p is bound to FU f uj , path execution
delay dpath(p) is calculated by:

dpath(p) = dreg +
∑
vi∈p

{
d f (fu j) + Dt(i j, i j+1)

}
. (4.3)

where we assume f uj is placed in island i j . The result of the last operation is transferred
to an island in+1.

Let PATH(v, u) be a set of all paths from v ∈ V ′ to u ∈ V ′ in a subgraph G′ =

(V ′, B′, E′) ⊆ G, where v is precedent of u in a topological order. Then, operations in G′

are realized as an operation chaining and executed in a single control step, if it satisfies

max
p∈PATH(i,o)

{
dpath(p)

}
≤ Tclk (4.4)

where i ∈ PIs(G′) and o ∈ POs(G′).

4.3.4 Problem Definition
We define our HLS problem as follows:

Definition 4.1. For a given DFGwith operation bitwidthsG = (V, B, E), the clock period
Tclk , initial FU allocation, and the specifications of RDR architecture, our bitwidth-
aware HLS problem with operation chainings is, to schedule and bind the input DFG
and generate its floorplan on RDR architecture so as to minimize the latency while
allowing the operation chainings and adding extra FUs into vacant area. !

4.4. PROPOSED ALGORITHM 49

Example 4.1. Figure 4.4 and Figure 4.5 show the input and the output of our bitwidth-
awareHLS problem instancewith operation chainings for RDRarchitecture, respectively.
Figure 4.4(a) is the input DFG with bitwidth information. Figure 4.4(b) shows the clock
period and the specifications of RDR architecture. Figure 4.5(a) shows scheduled and
bound DFG where the operations {v1, v2, v4} are realized as an operation chaining and
executed in packed single control step. Figure 4.5(b) shows the FU floorplan result.
FU f u4 (4-bit adder) is an additional extra FU. The chaining between operation v1
and v4 is completed in a single island I(1, 1), while the chaining between operation v1
and v2 is realized across the islands I(1, 1) and I(1, 2). The outputs of operation v2
and v4 are temporarily stored in islands I(1, 2) and I(1, 1), and transferred to islands
I(2, 2) and I(2, 1) in the second control step, respectively. Figure 4.5(c) shows the FU
characterization. The sum of FUs area in each island does not exceed 240. !

4.4 Proposed Algorithm
In this section, we propose a bitwidth-aware HLS algorithm with operation chainings for
RDR architectures. Firstly, our FU characterization method and some strategies of our
synthesis flow are discussed, and then our proposed algorithm is described.

4.4.1 FU Characterization
HLS needs to know delay and area information of FUs, and it performs characterization
to generate FUs information of delay and area. In a bitwidth-aware HLS, we have to
obtain a multiple-bitwidth FUs information of delay and area. We can get it by the
following ways:

1. Usingmodeling formulations to estimate FUs delay and area based on the bitwidth.

2. Performing characterization for all the kinds of FUs and all the numbers of bitwidths
to generate FUs information beforehand.

3. Performing characterization dynamically, i.e, performing it when it becomes nec-
essary.

Solution 1 is not a reasonable way since the relationship between bitwidths and de-
lays/areas depends on the implementations of FUs and the target devices, thus there is
no perfect modelings for estimating multiple-bitwidth FUs. Solution 2 is also unrea-
sonable since combinations of all the kinds of FUs (e.g., adders and multipliers) and all
the numbers of bitwidths are so large that it costs a long execution time if we perform
the characterization for those beforehand. Therefore, we employ Solution 3 as an FU
characterization policy in this chapter in order to save the HLS execution time.

50 CHAPTER 4. BITWIDTH-AWARE HLS

!
!

!

 4-bit

16-bit

16-bit

!
4-bit

"
8-bit

!
16-bit

!
16-bit

v
1

v
2

v
3

v
5

v
7

v
6

v
4

(a) DFG with bitwidths.

Tclk 3.0 ns
of Islands 2×2

of FUs Adder×3,
Multiplier×1

Delay of a register 0.4 ns
Transfer time to

adjacent islands (i.e., Cd)
1.0 ns

Area of an Island 240

(b) The clock period and the specifications of
RDR architecture.

Figure 4.4: Inputs to our HLS problem with multiple-operation chainings for RDR
architecture.

A4

A1

A3

A2

M1

A1

A1

v
1

v
2

v
3

v
5

v
7

v
6

v
4

CS 1

CS 2

CS 3

(a) The scheduled and bound
DFG.

!""#$

!"#$%&'

I(1,1) I(1,2)
!""#$

!"#$%&'(

I(2,1) I(2,2)

!""#%

!"#$%&'

!""#%

!"#$%&'(
&'(#$

!)$%&'(

!()**%&%+,)-((((((((((

./&0)(12

(b) The FU floorplan result.

 bitwidth !
4

8

16

0.5 ns / 40

"
--

2.0 ns / 160

--

--

2.5 ns / 240

(c) The FU characterization (delay/area).

Figure 4.5: Outputs of our HLS problem with multiple-operation chainings for RDR
architecture.

4.4. PROPOSED ALGORITHM 51

!"#

!"#$%&'(

!"#

!"#$%&'(

$%%

!"#$%&'(

!"#$%& !"#$%' !"#$%(

!"##$%"&'()#$(*'+)#$,(-+./+0.1

232(&$41+.54.*$56

7+./+0.1(*'-&"&'4+'8

!9(-+'0+'8

:4150*"+'8;(7+'0+'8;(&'0(

!9(&""#4&.+#'

<=(>?.$&(!9(&00+.+#'@

!"#$%&'()*+,-+.)'/($0+1'&,'2&3

:4150*"+'8(&'0(7+'0+'8

!9()"##$%"&'

!"#

!")$%&'(

!"#

!"*$%&'(

$%%

!"#$%&'(

!""

!*$%&'(

!""

!"+$%&'(

!"#

!")$%&'(

!"#

!")$%&'(

!"#

!"*$%&'(

!""

!,$%&'(

#$%

!-$%&'(

$%%

!"#$%&'(

!""

!*$%&'(

!""

!"+$%&'(

!""

!"+$%&'(

!""

!+$%&'(

!""

!*$%&'(

$%%

!"#$%&'(

$%%

!"#$%&'(

!"#$%&'()*+,-+)()4.)'/($0

1'&,'2&3

./0/1'2/34/

./0/1'2/34/ ./0/1'2/34/

./0/1'2

/34/

!"#$%&'()*+,-+)()4.)'/($0+

1'&,'2&3+5+!"#$%&'()+63%')')7*

!"#$% &$%#$%

A3!B

/C(-+./+0.1

D'+.+&"(!9(

&""#4&.+#'

A"#4E(%5$+#0

F%5$&.+#'(

64150*"+'8

7+'0+'8

G#0*"5(

)"##$%"&'

#'(232

232(

6%54+)+4&.+#'

&$'()*+(,-./(/0%1(20%/03%145/5'6(.#6'5%0."(7150"0"89(,.'(:;:(5'710%67%$'69

Figure 4.6: Overview of our synthesis flow.

4.4.2 Strategy
Let us consider several strategies to reduce the latency by applying operation chainings
for RDR architectures.

In an HLS flow, we consider operation scheduling, binding, allocation, and floor-
planning as in many HLS algorithms. In our target HLS problem, to realize operation
chainings, operation scheduling and FU binding play the most important roles since we
need to change them when constructing chainings. The conventional floorplan-aware
HLS algorithm (Chapter 2) mainly focuses on operation scheduling and FU binding.
However, we cannot take advantages of bitwidth-based FU cost (delay and area) only
using the conventional approach (Chapter 2). In this chapter, in order to take care oper-
ation bitwidth, we optimize FU allocation and floorplan as well as operation scheduling
and FU binding.

It is a complicated task to optimize floorplan-aware scheduling, FU binding, and their
bitwidths simultaneously. We divide the synthesis flow into two tasks. Firstly, we obtain
scheduling, binding, allocation, and floorplan result under uniform bitwidths (Step 1).
Then, we optimize bitwidths of FUs followed by updating scheduling and binding (Step 2
and Step 3).

4.4.3 Synthesis Flow
Overview of our proposed HLS flow is shown in Fig. 4.6. Firstly, we obtain uniform
bitwidth FU allocation and floorplan (Step 1). After that, the following two steps are

52 CHAPTER 4. BITWIDTH-AWARE HLS

Table 4.1: SA parameters.
Parameter Value
Initial temperature T 1000
Temperature updating T = 0.95 · T
Number of temperature annealing iterations (outer loop) 100 (at least)
Number of iterations at each temperature (inner loop) 1000
Weight parameter α in the cost function 0.9
Annealing exit condition Continuous 100000 inner loops

w/o decreasing the cost

performed: bitwidth unbalancing FU binding (Step 2) and multiple-bitwidth scheduling,
binding, and extra FU allocation (Step 3). The key idea is to create vacant islands and
place extra FUs into such islands to minimize the latency by realizing non-uniform-
bitwidth operation chainings. Operation scheduling, binding, and floorplan (Step 3)
performs followed by register binding and controller synthesis.

In this section, the details of key steps (Step 1 to 3) of our synthesis algorithm are
described below.

Step 1: Initial FU Allocation and Floorplanning

In the initial step, we find the initial FU floorplan on RDR architectures. We obtain
an allocation and a floorplan of FUs with uniform bitwidths using simulated annealing
(SA) [32], which optimizes the latency and the wire length between islands by finding
out the optimal allocation and floorplan. In this step, bitwidth of all operations are
fixed to the maximum uniform bitwidth in the input application. This step generates
an optimal scheduling and binding solution and an optimal floorplanning for uniform
bitwidth operations.

Step 1 is based on “SA-based coarse placement engine” in “scheduling-driven place-
ment” proposed in [15]. “Island” in our proposed algorithm corresponds to “bin struc-
ture” in [15]. In SA-based optimization in [15], they optimize placement of FUs onto
islands to minimize the overall control steps. According to [15], let Cc

delay(current)
and Cp

delay(previous) be current cost and previous cost of interconnection delay for all
edges in DFG, respectively, and Cc

wire(current) and C
p
wire(previous) be current cost and

previous cost of wire length, respectively. Cost function, Cost, of SA is represented by
the weighted sum of the interconnection delay cost and the wire length cost as below:

Cost = α ·
Cc
delay

Cp
delay

+ (1 − α) ·
Cc
wire

Cp
wire

, (4.5)

where α is the weight. The detailed definitions of these variables are described in [15].

4.4. PROPOSED ALGORITHM 53

Step 2.1: Let FU = { f u1, . . . , f un} be a set of functional units assigned to all the islands.

Step 2.2: For each control step cs and for each island t, perform (1)–(2) below:

(1): Sort the operation nodes inV ′ ⊆ V scheduled at cs and bound to t, in the descending
order of bop(v ′) value (v ′ ∈ V ′).

(2): For each operation node v ′ ∈ V ′, re-bind v ′ to FU f ui ∈ EFU(v ′) where f ui is
unused at cs and i is the smallest index in FU.

Step 2.3: For each functional unit f u ∈ FU, set FU bitwidth b f u(f u) = maxv′′∈V ′′{bop(v ′′)},
where V ′′ is a set of operation nodes which is bound to f u in Step 2.2. If the FU f u is not
used by any operations, f u is removed.

Figure 4.7: Algorithm of Step 2: Bitwidth unbalancing FU binding.

In our proposed algorithm, we also use the SA-based optimization algorithm [15].
Selection method of an adjacent solution and the cost function are the same as [15].
Table 4.1 shows the SA parameters we set as in [4, 57]. The annealing exits when
a continuous 100000 inner loops without decreasing the cost is achieved (when the
solution is sufficiently converged). As for the weight parameter α in the cost function,
we set α = 0.9 as in [4, 57] since we optimize total interconnection delays more than
total wire lengths.

Step 2: Bitwidth Unbalancing FU Binding for RDR Architecture

Step 2 tries to adjust the bitwidth of FUs to eliminate the unused bits. The goal of
this step is to resize them to the optimal bitwidth. FU binding plays an important and
effective role to achieve the goal, because operations assignments to FUs strongly affect
the required bitwidth of FUs. Assume that the maximum bitwidth for operations vi ∈ V
executed on an FU f u is M bits, f u needs at most M bits then we can eliminate the
unused bits if the FU f u has more than M bits initially.

In order to achieve the goal above, this step performs bitwidth unbalancing FU
binding to reduce bitwidth of FUs efficiently. Inputs to Step 2 are DFG G = (V, B, E),
initial FU floorplan, initial scheduling result, and initial FU binding result. Outputs of
Step 2 are FU floorplan in which FU bitwidths are reduced as much as possible and FU
binding. The objective is to maximize the vacant area in every island. Figure 4.7 shows
the algorithm of Step 2.

Figure 4.8 illustrates the algorithm of Step 2 shown in Fig. 4.7. Figure 4.8(a) shows
a part of inputs to Step 2. In Step 2.1, we get FU = { f u1, f u2}. In Step 2.2, for island
t, the following bindings are performed. When cs = n, operations in V ′ are sorted as

54 CHAPTER 4. BITWIDTH-AWARE HLS

!

!

!

!"#$%

&'"#$%

&'"#$%

!"#$%

&'#()*"%

+,-&'.

/#

&'#()*"%

+,-&'.

!

("#$%

)*+,-./!

01/"

01/"2&

!
!

!
"

!
#

!
$

!""#$

!"#$%&'(

!""#%

!"#$%&'(

#$
!

#$
"

(a) Before performing Step 2: Initial
binding is shown. FUs bitwidths can-
not be reduced.

!"#$%

&'"#$%

&'"#$%

!""#$

!"#$%&'(

!""#%

!)$%&'(

("#$%

!"#$%

&'#()*"%

+,-&'.

/#

&'#()*"%

+,-&'.

!
! !

!

)*+,-./!

!
!

!
"

!
#

!
$

"#
!

"#
"

(b) After performing Step 2:
FUs bitwidths are reduced.

Figure 4.8: Illustration of Step 2.

V ′ = {v2, v1}, then v2 and v1 are bound to ADD 1 (f u1) and ADD 2 (f u2), respectively.
When cs = n + 1, operations in V ′ are sorted as V ′ = {v3, v4}, then v3 and v4 are bound
to ADD 1 (f u1) and ADD 2 (f u2), respectively. In Step 2.3, for FU f u1, FU bitwidth is
calculated by b f u(f u1) = 16 and FU bitwidth is unchanged. For FU f u2, FU bitwidth is
calculated by b f u(f u2) = 4 and FU bitwidth is reduced to 4 bits. Note that if we bind v1
and v3 to ADD 1 (f u1), and v2 and v4 to ADD 2 (f u2), respectively, both FUs must have
a bitwidth of 16, i.e., we obtain a worse result.

This algorithm ensures that, for any types of functional units, bitwidth of an FU
with index i is greater than or equal to bitwidth of any FUs with indices i′ (i < i′).
The reason why we do not change operation schedulings in this algorithm is to prevent
the overall latency from increasing caused by influences of the interconnection delays
between islands.

Step 3: Multiple-Bitwidth Scheduling, Binding, and FU Allocation for RDR Archi-
tectures

Step 3 performs scheduling, binding, and FU allocation. Utilizing vacant islands gener-
ated by Step 2, we perform operation scheduling and binding while adding some extra
FUs to realize bitwidth-aware operation chainings to optimize the latency of the input
application.

4.4. PROPOSED ALGORITHM 55

+

+

+

2-bit

16-bit

4-bit

+

8-bit

Input DFG

v
1

v
2

v
3

v
4

Island i (area: 20)

Case: Locally optimal

ADD 1 (fu
1
)

(16-bit)

ADD 2 (fu
2
)

(2-bit)

+

+

+

2-bit

16-bit

4-bit

+

8-bit

v
1

v
2

v
3

v
4

fu
2

fu
1

fu
1

fu
1

Case: Globally optimal

ADD 1 (fu
1
)

(16-bit)

ADD 2 (fu
2
)

(4-bit)

+

+

+

2-bit

16-bit

4-bit

+

8-bit

v
1

v
2

v
3

v
4

fu
2

fu
1

fu
2

fu
1

Island i (area: 20)

Island i (area: 20)

ADD 1 (fu
1
)

(16-bit)

Initial floorplan

Figure 4.9: Strategy for adding extra FUs in Step 3.

Before scheduling and binding, we firstly perform profiling of the input application.
We obtain general bitwidth information in the input application through this profiling.
In this profiling, by traversing all operation nodes in the input application, frequency
counts of each operation type and the bitwidth are recorded as “bitwidth frequency”. For
example, in Fig. 4.4(a), the “bitwidth frequency” for 4-bit ‘+’ is 2 and this is represented
as bf (′+′, 4) = 2. In the same way, we can express bf (′+′, 16) = 4, bf (′∗′, 8) = 1, and
bf (′∗′, 16) = 0. These values are used in this step.

The scheduling is based on list-scheduling. Since we aim to schedule the operations

56 CHAPTER 4. BITWIDTH-AWARE HLS

on the critical path including interconnection delays, the priorities of the operations in
list-scheduling are set based on the critical path length with inter-islands delay, which
is named cpl. Based on the algorithm in Chapter 2, the cpl from v to a primary output
when a node v is bound to an FU f ui is calculated by

cpl(v, f ui) = dsingle(f ui)+

max
vk∈S(v)

{
min

f uj ∈EFU(vk)

{
Dt(ti, t j) + cpl(vk, f uj)

}}
(4.6)

where we assume f ui and f uj is placed on the island ti and t j , respectively, and S(v) is
a set of successor nodes of v. Then the priority of an operation v is calculated by

pr(v) = min
f ui∈EFU(v)

{cpl(v, f ui)} . (4.7)

If the priority calculated by Eq. (4.7) is equal, an operation with larger bitwidth is prior
to others. A ready list RL which contains ready operation nodes is implemented as a
priority queue.

In our scheduling algorithm, we try to append some extra FUs into the vacant islands
in the following way. Assume that an FU f u is placed in a island i. If bop(v) =

bfu(f u), v is scheduled/bound to cs/ f u. If bop(v) < bfu(f u), an FU f u′ with bfu(f u′) ∈{
bop(v), . . . ,Mb(op)

}
bits can be added into the island i, where Mb(op) is maximum

bitwidth of the type op in the input DFG. If there exists enough area, i.e., a f u′ ≤
A − Ai, we can append a new FU f u′ as an additional extra FU. Bitwidth of f u′ is
determined based on “bitwidth frequency” described above. Reason why we do not
append an FU whose bitwidth is exactly the same as bop(v) is that an FU with bop(v)
bitwidth is considered locally optimal here, but an FU with more bitwidth can have more
opportunities to be bound by other operation nodes and this can be globally optimal. Since
the characterization time for a new FU whose cost (delay and area) is unknown costs
much as described in Section 4.4.1, we want to keep the number of such characterizations
small as much as possible. Therefore, we determine bitwidth of the additional extra FU
in the following calculation: Let needed(op, b) be a needed count of FUs for executing
operation op with b-bit. needed(op, b) is calculated by

needed(op, b) = bf (op, b) − bound(op, b) −
∑
b≤b′

added(op, b′) (4.8)

where, bf (op, b) is “bitwidth frequency” of b-bit operation op defined above, bound(op, b)
is the number of b-bit operations op which have been already scheduled and bound, and
added(op, b) is the number of b-bit FUs added which can execute the operation op. The
bitwidth b′ which takes the maximum counts in needed(op, b′), i.e., b′ in

arg max
1≤b′≤Mb(op)

{needed(op, b′)} (4.9)

4.4. PROPOSED ALGORITHM 57

is determined as the bitwidth of the additional FU.
When we can add a required extra FU onto an island, we do not always determine

the FU bitwidth which is exactly the same as the FU bitwidth just required. Our strategy
adds an extra FU whose bitwidth is calculated by Eq. (4.8) and Eq. (4.9) based on our
application profiling. The calculated bitwidth may be greater than the FU bitwidth just
required. Let us explain that this strategy can avoid a locally optimal solution.

An example is show in Fig. 4.9. To explain the example, for simplicity, assume that
the clock period is 2.0ns, area of an island is 20, and delay/area of 16-bit, 4-bit, and 2-bit
adders are 1.6ns/16, 0.4ns/4, and 0.2ns/2, respectively. An FU delay assumes to include
register delay and MUX delay. Now, DFG and initial FUs floorplan are given as shown
in the figure. The priority of v1 assumes to be higher than priority of v3 in scheduling.
In list-scheduling, after picking up an addition v1, an extra FU addition onto the island t
is tried in Step 3.5-(2). If we add an extra FU f u2 with bop(v1) = 2 bits which is same as
an addition v1 (locally optimal), either v3 or v4 cannot be bound to f u2 but both of them
will be bound to f u1 instead. In this case, a scheduling result with 3 control steps will
be obtained. On the other hand, if we add an extra FU f u2 whose bitwidth is set to be 4
bits according to Eq. (4.8) and Eq. (4.9) (globally optimal), v3 and v4 are bound to f u2
and f u1, respectively, and a scheduling result with 2 control steps will be obtained.

Figure 4.10 shows the algorithm of Step 3. Inputs to Step 3 are DFG G = (V, B, E)
and FU floorplan which contains some vacant areas obtained by Step 2. Outputs of Step 3
are Operations scheduling, FU floorplan, and FU binding. The objective is to minimize
the latency of the input application. Step 3 is based on the list-scheduling to minimize
the critical path which includes the interconnection delays under the FUs constraint.

In our scheduling algorithm, we initially set cs = 1. For each control step cs, we
pick up an operation v with the largest priority from RL. If operation is ready to be
scheduled, i.e., inputs data of v are ready, v is tried to scheduled/bound to cs/ f u having
the smallest possible cpl(v, f u).

In the same cs, RL is re-constructed iteratively, and we continue scheduling until no
operations are scheduled. When the parents operations of v are already scheduled in the
same cs, a cluster including v and its parents is realized as multiple-bitwidth operation
chainings if it satisfy Eq. (4.4). Unlike the conventional algorithm (Chapter 2) which
construct operation chainings with successors greedily, our algorithm realizes operation
chainings based on cpl so chainings are realized on only the critical path(s). Because of
that, when there is no additional extra FUs, more optimized operation chainings solution
can be obtained compared to Chapter 2.

The idea of introducing cpl and node priority is similar to that of Chapter 2, but we
newly introduce in our algorithm the idea of adding extra FUs and constructing operation
chainings in Step 3. The main differences between our proposed algorithm and the
algorithm in Chapter 2 are:

58 CHAPTER 4. BITWIDTH-AWARE HLS

Step 3.1: Perform application profiling and obtain the “bitwidth frequency” as described in
Section 4.4.3.

Step 3.2: Construct a ready-list RL by inserting initial ready nodes into RL.

Step 3.3: If RL is empty, finish the scheduling.

Step 3.4: For all unscheduled nodes, (re-)calculate priority by Eq. (4.7).

Step 3.5: For every node v in RL in the descending order of its priority, perform (1)–(5) below:

(1): Choose an FU f u having the smallest possible cpl(v, f u) among currently available
FUs, and let t be the island on which f u is placed. If there is no such FU, skip
(2)–(5) below.

(2): If bop(v) < b f u(f u), try adding an extra FU for v onto t as described in Section 4.4.3.
If it succeeds, let f u be the added FU and obtain delay and area of functional unit
f u using logic synthesizer (described in Section 4.4.1).

(3): If at least one of the parent(s) of v are already scheduled to cs, and the cluster
composed of such parent(s) and v satisfies Eq. (4.4), v is scheduled/bound to cs/ f u
(multiple-bitwidth operation chaining is succeeded).

(4): Otherwise, v is tried to scheduled/bound to cs/ f u, and if data from all parent(s) of v
is transferable to v, then v is scheduled/bound to cs/ f u.

(5): If the scheduling and binding of v is succeeded, remove v from RL. Insert new ready
node(s) into RL.

Step 3.6: cs = cs + 1. Go to Step 3.3.

Figure 4.10: Algorithm of Step 3: Scheduling, binding, and FU allocation for RDR
architectures.

(1) Our proposed algorithm appends some extra FUs with appropriate bitwidths into
the vacant islands which are obtained in Step 2 (Step 3.1 and Step 3.5-(2)).

(2) The algorithm in Chapter 2 only realizes operation chainings on consecutive two
operations. However, our proposed algorithm can realize operation chainings
on clusters which include the operations in the critical path based on Eq. (4.4)
(Step 3.5-(3)).

Finally after this step, we obtain an optimized bitwidth-aware scheduling and FU
binding solution with operation chainings and an FU floorplan solution for RDR archi-
tectures.

4.5. EXPERIMENTAL RESULTS 59

Table 4.2: Benchmark applications.
Application name #operations
Auto Regression Filter (ARF) 28
Discrete Cosine Transform (DCT) 48
EPIC 56
Elliptic Wave Filter (EWF) 34
Elliptic Wave Filter (EWF3) 102
Finite Impulse Response Filter (FIR) 75
JPEG—BMP Header (JPEG-BMPH) 106
JPEG—Forward DCT (JPEG-FDCT) 134
JPEG—Inverse DCT (JPEG-IDCT) 122
JPEG—Smooth Downsample (JPEG-SD) 51
MESA—Horner Bezier (MESA-HB) 18
MESA—Interpolate Aux (MESA-IA) 108
MESA—Matrix Multiplication (MESA-MM) 109
MESA—Smooth Triangle (MESA-ST) 197

Table 4.3: FUs area.
FU Normalized area (16-bit)
Adder 0.44
Subtractor 0.45
Multiplier 1.00
Right shifter 0.46
Left shifter 0.44
Comparator 0.39
And 0.37

4.5 Experimental Results
In this section, the experimental results are shown, and some discussions are described.

4.5.1 Experimental Setup
We have implemented our proposed algorithm in C++ on Intel Xeon CPU E7-4870
2.4 GHz × 40 machine with 330GB memory. We applied our proposed algorithm to
14 benchmark applications. The benchmark applications are summarized in Table 4.2.
These benchmarks are derived from ExPRESS benchmarks [25]. Each operation have
different bitwidth. For our proposed algorithm, we give bitwidths of 2, 4, 6, or 8-bit

60 CHAPTER 4. BITWIDTH-AWARE HLS

Table 4.4: Delay and area of registers.
Bitwidth Delay [ns] Area [µm2]

1 0.11 13
2 0.11 26
3 0.11 40
4 0.11 53
5 0.11 67
6 0.11 80
7 0.11 93
8 0.11 107
9 0.11 120
10 0.11 134
11 0.11 147
12 0.11 160
13 0.11 174
14 0.11 187
15 0.11 201
16 0.11 214

to PI operations, and set bitwidths for other operations in the following manner: output
bitwidth of multiplier is sum of the two inputs’ bitwidth, output bitwidth of the other FUs
(e.g., adder and subtractor) is maximum of the two inputs’ bitwidth. We assume uniform
16-bit operations for the evaluation of the conventional approach. Synopsys Design
Compiler under 90nm technology node is used as the logic synthesis tool to evaluate
delay and area of FUs as well as controller (FSM) synthesis. The interconnection delay
is assumes to be in proportion to the distance and takes 1ns for 250µm according to [45].
In case an application needs memory accesses, a memory port is placed in one of the
islands, and the number of memory port is one.

We set the other parameters in the following manners.

Clock Period

According to a previous research (Chapter 2), which used the same manufacturing
process rule (90nm technology node), sum of FU’s delay (which includes MUXs’ delay)
and register’s delay is 2.93ns at most. Thus, we set the basic clock period to be 3.0ns.
For larger applications, however, we set the clock period to be 4.5ns as described just
below.

4.5. EXPERIMENTAL RESULTS 61

Table 4.5: Delay and area of 2-to-1 MUXs.
Bitwidth Delay [ns] Area [µm2]

1 0.04 7
2 0.04 14
3 0.04 21
4 0.04 28
5 0.04 35
6 0.04 42
7 0.04 49
8 0.04 56
9 0.04 63
10 0.04 70
11 0.04 77
12 0.04 84
13 0.04 91
14 0.04 98
15 0.04 105
16 0.04 112

Size of an Island

According to Chapter 2, functional unit with the largest delay is the multiplier and the
subtractor is the second. We assume that the number of multipliers in an island is one or
zero as in Chapter 2, and it is always placed adjacent to registers, so that we can ignore the
interconnection delays for multipliers. Let us consider the worst case of interconnection
delays for the other FUs. According to Chapter 2, delay of subtractor is 1.45ns and that
of register is 0.11ns, thus their total logic delay is 1.56ns. When the clock period is
3.0ns, allowable time for interconnection is 3.0− 1.56 = 1.44 ns. Now, since we assume
that the interconnection delay is 1ns for each 250µm wire length, we can transfer data to
250 × 1.44 = 360µm away for 1.44ns. Therefore, when the clock period is 3.0ns, we set
the square island size to be 360/4 = 90µm.

However, for the seven applicationswhich havemore than 100 operations in Table 4.2,
we set the clock period to be 4.5ns. When the clock period is 4.5ns, by a similar discussion
above, allowable time for interconnection is 4.5 − 1.56 = 2.94 ns. We can transfer data
to 250 × 2.94 = 735µm away for 2.94ns. Therefore, we need to set the island size not to
exceed 735/4 = 183.75µm. Then we set it to be 150µm.

62 CHAPTER 4. BITWIDTH-AWARE HLS

Number of Islands

Similar to the conventional research (Chapter 2), we set the number of islands to be 2×2
or 2 × 3. To show that our proposed algorithm is efficient not only a particular “number
of islands,” we added results for 2× 2 and 2× 3 for all the benchmark applications. Note
that, we added only 2 × 3 for EPIC and JPEG-BMPH as described just below.

Number of Initial Functional Units

Table 4.3 shows 16-bit FUs areas. The areas are normalized to the area of a multiplier
which has the largest area among all the FUs. We assume that the number of multipliers
in an island is one or zero as in Chapter 2.

As we can see the experimental results in Chapter 2, it is appropriate to determine
the “number of available operational units” by the following manner.

The main idea is that the initial numbers of FUs with each type should be set in
proportion to the corresponding operations with the same type in the input application.
Assume that every initial FU with type op has an identical area. For example, we
consider a 16-bit adder for an addition initially. Then we firstly calculate the ratio Pop

of the operations with each type op to all the operations in every application. Let OP be
a set of all operation types, Aop be a normalized area of FU with type op, T be a total
number of islands, we find the maximum scale factor nmax so that the total area does not
exceed the total islands area, which satisfies

∑
op∈OP

⌈⌈Pop · nmax⌉ · Aop⌉ ≤ T . (4.10)

Aop is given by Table 4.3. Then the initial number of FUs with each type op is set to
be ⌈Pop · nmax⌉.

For example, we set the initial numbers of FUs for EWF and islands 2×2 (total islands
T = 4) in the following way. EWF consists of 34 operations. 26 of those are additions
and 8 of those are multiplications. Thus, the ratios of operation types are calculated as
Padd = 26/34 = 0.76 and Pmul = 8/34 = 0.24, respectively. The maximum scale factor
nmax which satisfies Eq. (4.10) is nmax = 5 as in

∑
op∈OP

⌈⌈Pop · n⌉ · Aop⌉ = ⌈⌈0.76 · 5⌉ · 0.44⌉ + ⌈⌈0.24 · 5⌉ · 1.0⌉ = 4. (4.11)

Therefore, we have:

• Number of adders: ⌈0.76 · 5⌉ = 4.

• Number of multipliers: ⌈0.24 · 5⌉ = 2.

4.5. EXPERIMENTAL RESULTS 63

Then we give (A×4,M×2) to EWF for 2×2 islands in Table 4. Note that, by employing
this way, the obtained initial numbers of FUs with each type, which are four adders and
two multipliers, are almost the same as the ratios of the operations with each type in
EWF, which are 0.76 (additions) and 0.24 (multiplications).

For the other applications except for EPIC and JPEG-BMPH, initial numbers of FUs
are determined in the same way for islands 2× 2 and 2× 3. For EPIC and JPEG-BMPH,
there is no scale factor n which satisfies Eq. (4.10) for the islands 2 × 2, thus we show
the results only for the islands 2 × 3.

The results would be improved if we optimize these parameters, which is one of the
future works.

Delay and Area of Modules

For functional units and controllers, we obtain delay and area using a logic synthesis tool
(Synopsys Design Compiler 2012.06 under 90nm technology node) through our HLS
synthesis flow. For functional units, the logic synthesizer tries to minimize the delay to
minimize the number of control steps obtained. For controllers, the logic synthesizer
tries to minimize the area under the given clock period timing constraint.

For registers and MUXs, we prepare the delay and area for each bitwidth as before-
hand. This information is used in our HLS flow. Table 4.4 and Table 4.5 show delay and
area information of registers and MUXs, respectively.

4.5.2 Results and Discussion
To show the effectiveness of our proposed algorithm, we compared two algorithms below:

HLS with operation chainings for uniform bitwidth (Chapter 2): The conventional
HLS algorithm for RDR architecture with operation chainings proposed in Chap-
ter 2. Note that we modified the delay estimation to the model where the intercon-
nection delay is in proportion to the distance.4

Proposed: Our proposed algorithm with bitwidth-aware operation chainings described
in Section 4.4.

The experimental results are shown in Table 4.6 and Table 4.7. “Latency” column
shows the overall latency and we find out that our proposed algorithm reduces the latency
compared to the conventional algorithm in Chapter 2 for all experiments except for FIR
(2 × 3). Note that for FIR (2 × 3), our proposed algorithm does not increase the latency
compared to Chapter 2. Our algorithm reduces the latency by up to 47% compared

4More details are described in Section 4.5.5.

64 CHAPTER 4. BITWIDTH-AWARE HLS

to the algorithm in Chapter 2 for EWF, by 17% on average. “Additional extra FUs”
column shows the number of extra FUs added into the vacant islands in Step 3. In this
results, we can confirm the proposed algorithm can reduce the latency by good work of
the redundant bitwidth elimination (Step 2) and extra FUs adding (Step 3). We can see
in some cases the addition of extra FUs helps the construction of operation chainings,
which reduces the latency. Note that our scheduling and binding algorithm can reduce
the latency by realizing operation chainings even if there is no extra FUs are added.

“#registers” and “#MUX” in Table 4.6 and Table 4.7 are the number of generated
registers and 2-to-1 MUXs without taking into consideration of bitwidths. This means,
for example, if our proposed algorithm generates a 2-bit register and a 16-bit register,
the number of registers becomes two. To show more detailed results, “#registers (1-
bit)” and “#MUX (1-bit)” columns in Table 4.6 and Table 4.7 represent the number of
registers and 2-to-1 MUXs counted by their bitwidths. For example, if our proposed
algorithm generates a 2-bit register and a 16-bit register, the values are counted by 2 and
16, respectively.

Number of registers (“#registers”) is reduced by up to 32% and 4% on average.
Number of MUXs (“#MUX”) is reduced by up to 54% and 13% on average.

As seen in the result, even if our proposed algorithm increases the number of registers
and/or MUXs, our proposed algorithm does not increase the number of total bitwidths
in any cases. Therefore, we conclude that the number of registers and the number of
MUXs obtained by our algorithm are the same or reduced compared to the algorithm
in Chapter 2 from the bitwidth point of view in all the cases, which means the area of
registers and MUXs can be reduced.

However, in some cases, our proposed algorithm increases the number of registers
and/or MUXs as shown in “#registers” and “#MUX” (without taking into consideration
of bitwidths). The qualitative reasons are discussed below:

Reason why the number of registers may be increased:
Since a registers binding result is obtained by our proposed algorithm which is
different from a result by the algorithm in Chapter 2, the number of registers may
change. In particular, when the operations, which are calculated within the same
island by the algorithm in Chapter 2, are calculated in different islands by our
proposed algorithm, the total number of registers may be increased compared to
the algorithm in Chapter 2.

Reason why the number of MUXs may be increased:
Similarly, FUs/registers binding results are obtained by our proposed algorithm
which are different from results by Chapter 2. Since the FUs/registers sharings
are different between Chapter 2 and our proposed algorithm, the total number of
MUXs may be increased compared to Chapter 2.

4.5. EXPERIMENTAL RESULTS 65

Ta
bl
e4

.6
:E

xp
er
im

en
ta
lr
es
ul
ts
(1
/2
).

A
pp
.

#i
sla

nd
s

In
iti
al

A
lg
or
ith

m
Ad

di
tio

na
l

Cl
oc
k

Co
nt
ro
l

La
te
nc
y

#r
eg
ist
er
s

#r
eg
ist
er
s

#M
U
X
s

#M
U
X
s

FU
s*

**
*

ex
tra

FU
s

pe
rio

d
[n
s]

ste
ps

[n
s]

(1
-b
it)

(1
-b
it)

M
ES

A-
H
B

2
×
2

A
×2

,M
×3

,
M
em

×1
Ch

.2
–

3.
0

12
36
.0
(1
.0
0)

7
(1
.0
0)

11
2
(1
.0
0)

13
(1
.0
0)

20
8
(1
.0
0)

Pr
op
os
ed

A
×1

,M
×2

3.
0

8
24
.0
(0
.6
7)

7
(1
.0
0)

50
(0
.4
5)

6
(0
.4
6)

34
(0
.1
6)

M
ES

A-
H
B

2
×
3

A
×4

,M
×4

,
M
em

×1
Ch

.2
–

3.
0

12
36
.0
(1
.0
0)

9
(1
.0
0)

14
4
(1
.0
0)

11
(1
.0
0)

17
6
(1
.0
0)

Pr
op
os
ed

–
3.
0

10
30
.0
(0
.8
3)

7
(0
.7
8)

11
2
(0
.7
8)

9
(0
.8
2)

14
4
(0
.8
2)

A
RF

2
×
2

A
×2

,M
×3

Ch
.2

–
3.
0

12
36
.0
(1
.0
0)

11
(1
.0
0)

17
6
(1
.0
0)

26
(1
.0
0)

41
6
(1
.0
0)

Pr
op
os
ed

–
3.
0

10
30
.0
(0
.8
3)

11
(1
.0
0)

17
6
(1
.0
0)

24
(0
.9
2)

38
4
(0
.9
2)

A
RF

2
×
3

A
×3

,M
×4

Ch
.2

–
3.
0

11
33
.0
(1
.0
0)

12
(1
.0
0)

19
2
(1
.0
0)

26
(1
.0
0)

41
6
(1
.0
0)

Pr
op
os
ed

–
3.
0

8
24
.0
(0
.7
3)

12
(1
.0
0)

19
2
(1
.0
0)

19
(0
.7
3)

30
4
(0
.7
3)

EW
F

2
×
2

A
×4

,M
×2

Ch
.2

–
3.
0

15
45
.0
(1
.0
0)

12
(1
.0
0)

19
2
(1
.0
0)

36
(1
.0
0)

57
6
(1
.0
0)

Pr
op
os
ed

A
×2

3.
0

8
24
.0
(0
.5
3)

10
(0
.8
3)

74
(0
.3
9)

22
(0
.6
1)

16
6
(0
.2
9)

EW
F

2
×
3

A
×7

,M
×2

Ch
.2

–
3.
0

15
45
.0
(1
.0
0)

12
(1
.0
0)

19
2
(1
.0
0)

36
(1
.0
0)

57
6
(1
.0
0)

Pr
op
os
ed

A
×2

3.
0

9
27
.0
(0
.6
0)

11
(0
.9
2)

11
2
(0
.5
8)

19
(0
.5
3)

15
2
(0
.2
6)

D
CT

2
×
2

A
×4

,M
×2

Ch
.2

–
3.
0

11
33
.0
(1
.0
0)

21
(1
.0
0)

33
6
(1
.0
0)

64
(1
.0
0)

10
24

(1
.0
0)

Pr
op
os
ed

A
×1

,M
×3

3.
0

7
21
.0
(0
.6
4)

22
(1
.0
5)

26
0
(0
.7
7)

64
(1
.0
0)

76
2
(0
.7
4)

D
CT

2
×
3

A
×6

,M
×3

Ch
.2

–
3.
0

9
27
.0
(1
.0
0)

27
(1
.0
0)

43
2
(1
.0
0)

59
(1
.0
0)

94
4
(1
.0
0)

Pr
op
os
ed

A
×1

,M
×1

3.
0

7
21
.0
(0
.7
8)

22
(0
.8
1)

30
8
(0
.7
1)

60
(1
.0
2)

85
2
(0
.9
0)

JP
EG

-S
D

2
×
2

A
×4

,M
×1

,
R
×1

,M
em

×1
Ch

.2
–

3.
0

25
75
.0
(1
.0
0)

19
(1
.0
0)

30
4
(1
.0
0)

39
(1
.0
0)

62
4
(1
.0
0)

Pr
op
os
ed

A
×4

,M
×2

3.
0

20
60
.0
(0
.8
0)

19
(1
.0
0)

18
2
(0
.6
0)

36
(0
.9
2)

36
6
(0
.5
9)

JP
EG

-S
D

2
×
3

A
×9

,M
×1

,
R
×1

,M
em

×1
Ch

.2
–

3.
0

25
75
.0
(1
.0
0)

18
(1
.0
0)

28
8
(1
.0
0)

38
(1
.0
0)

60
8
(1
.0
0)

Pr
op
os
ed

A
×2

3.
0

23
69
.0
(0
.9
2)

17
(0
.9
4)

23
4
(0
.8
1)

40
(1
.0
5)

52
8
(0
.8
7)

EP
IC

2
×
3

A
×2

,S
×1

,M
×1

,
R
×1

,L
×1

,M
em

×1
Ch

.2
–

3.
0

21
63
.0
(1
.0
0)

14
(1
.0
0)

22
4
(1
.0
0)

32
(1
.0
0)

51
2
(1
.0
0)

Pr
op
os
ed

A
×3

,M
×3

3.
0

20
60
.0
(0
.9
5)

14
(1
.0
0)

92
(0
.4
1)

32
(1
.0
0)

20
8
(0
.4
1)

FI
R

2
×
2

A
×2

,M
×3

,
M
em

×1
Ch

.2
–

3.
0

22
66
.0
(1
.0
0)

21
(1
.0
0)

33
6
(1
.0
0)

51
(1
.0
0)

81
6
(1
.0
0)

Pr
op
os
ed

A
×2

3.
0

20
60
.0
(0
.9
1)

20
(0
.9
5)

24
4
(0
.7
3)

65
(1
.2
7)

80
4
(0
.9
9)

FI
R

2
×
3

A
×4

,M
×4

,
M
em

×1
Ch

.2
–

3.
0

16
48
.0
(1
.0
0)

19
(1
.0
0)

30
4
(1
.0
0)

46
(1
.0
0)

73
6
(1
.0
0)

Pr
op
os
ed

–
3.
0

16
48
.0
(1
.0
0)

13
(0
.6
8)

20
0
(0
.6
6)

41
(0
.8
9)

59
2
(0
.8
0)

**
**
FU

sa
re

sh
ow

n
in

th
e
sh
or
te
n
na
m
es
:
A
:A

dd
er
,S

:S
ub
tra

ct
or
,M

:M
ul
tip

lie
r,
R:

Ri
gh
ts
hi
fte

r,
L:

Le
ft
sh
ift
er
,C

:C
om

pa
ra
to
r,
A
nd
:
A
nd

un
it,

M
em

:M
em

or
y
po
rt.

66 CHAPTER 4. BITWIDTH-AWARE HLS
Ta
bl
e4

.7
:E

xp
er
im

en
ta
lr
es
ul
ts
(2
/2
).

A
pp
.

#i
sla

nd
s

In
iti
al

A
lg
or
ith

m
Ad

di
tio

na
l

Cl
oc
k

Co
nt
ro
l

La
te
nc
y

#r
eg
ist
er
s

#r
eg
ist
er
s

#M
U
X
s

#M
U
X
s

FU
s*

**
*

ex
tra

FU
s

pe
rio

d
[n
s]

ste
ps

[n
s]

(1
-b
it)

(1
-b
it)

EW
F3

2
×
2

A
×4

,M
×2

Ch
.2

–
4.
5

31
13
9.
5
(1
.0
0)

14
(1
.0
0)

22
4
(1
.0
0)

88
(1
.0
0)

14
08

(1
.0
0)

Pr
op
os
ed

–
4.
5

24
10
8.
0
(0
.7
7)

14
(1
.0
0)

22
4
(1
.0
0)

78
(0
.8
9)

12
48

(0
.8
9)

EW
F3

2
×
3

A
×7

,M
×2

Ch
.2

–
4.
5

30
13
5.
0
(1
.0
0)

17
(1
.0
0)

27
2
(1
.0
0)

89
(1
.0
0)

14
24

(1
.0
0)

Pr
op
os
ed

–
4.
5

23
10
3.
5
(0
.7
7)

15
(0
.8
8)

24
0
(0
.8
8)

78
(0
.8
8)

12
48

(0
.8
8)

JP
EG

-B
M
PH

2
×
3

A
×4

,M
×1

,R
×2

,
C
×1

,A
nd

×2
,M

em
×1

Ch
.2

–
4.
5

36
16
2.
0
(1
.0
0)

17
(1
.0
0)

27
2
(1
.0
0)

26
(1
.0
0)

41
6
(1
.0
0)

Pr
op
os
ed

A
×3

4.
5

35
15
7.
5
(0
.9
7)

16
(0
.9
4)

19
2
(0
.7
1)

17
(0
.6
5)

22
8
(0
.5
5)

M
ES

A-
IA

2
×
2

A
×1

,S
×1

,
M

×2
,M

em
×1

Ch
.2

–
4.
5

28
12
6.
0
(1
.0
0)

27
(1
.0
0)

43
2
(1
.0
0)

70
(1
.0
0)

11
20

(1
.0
0)

Pr
op
os
ed

A
×2

,M
×3

4.
5

20
90
.0
(0
.7
1)

33
(1
.2
2)

35
0
(0
.8
1)

95
(1
.3
6)

10
32

(0
.9
2)

M
ES

A-
IA

2
×
3

A
×4

,S
×1

,
M

×3
,M

em
×1

Ch
.2

–
4.
5

21
94
.5
(1
.0
0)

25
(1
.0
0)

40
0
(1
.0
0)

94
(1
.0
0)

15
04

(1
.0
0)

Pr
op
os
ed

A
×2

,M
×2

4.
5

18
81
.0
(0
.8
6)

27
(1
.0
8)

38
9
(0
.9
7)

10
2
(1
.0
9)

14
94

(0
.9
9)

M
ES

A-
M
M

2
×
2

A
×3

,M
×2

,
M
em

×1
Ch

.2
–

4.
5

26
11
7.
0
(1
.0
0)

30
(1
.0
0)

48
0
(1
.0
0)

98
(1
.0
0)

15
68

(1
.0
0)

Pr
op
os
ed

A
×1

4.
5

25
11
2.
5
(0
.9
6)

27
(0
.9
0)

39
2
(0
.8
2)

67
(0
.6
8)

10
16

(0
.6
5)

M
ES

A-
M
M

2
×
3

A
×5

,M
×3

,
M
em

×1
Ch

.2
–

4.
5

26
11
7.
0
(1
.0
0)

28
(1
.0
0)

44
8
(1
.0
0)

91
(1
.0
0)

14
56

(1
.0
0)

Pr
op
os
ed

–
4.
5

25
11
2.
5
(0
.9
6)

27
(0
.9
6)

43
2
(0
.9
6)

63
(0
.6
9)

10
08

(0
.6
9)

JP
EG

-ID
CT

2
×
2

A
×1

,S
×1

,M
×1

,
R
×1

,M
em

×1
Ch

.2
–

4.
5

46
20
7.
0
(1
.0
0)

28
(1
.0
0)

44
8
(1
.0
0)

11
6
(1
.0
0)

18
56

(1
.0
0)

Pr
op
os
ed

–
4.
5

44
19
8.
0
(0
.9
6)

28
(1
.0
0)

44
8
(1
.0
0)

96
(0
.8
3)

15
36

(0
.8
3)

JP
EG

-ID
CT

2
×
3

A
×2

,S
×2

,M
×2

,
R
×2

,M
em

×1
Ch

.2
–

4.
5

30
13
5.
0
(1
.0
0)

33
(1
.0
0)

52
8
(1
.0
0)

13
6
(1
.0
0)

21
76

(1
.0
0)

Pr
op
os
ed

A
×1

4.
5

27
12
1.
5
(0
.9
0)

31
(0
.9
4)

49
6
(0
.9
4)

97
(0
.7
1)

15
52

(0
.7
1)

JP
EG

-F
D
CT

2
×
2

A
×2

,S
×1

,M
×1

,
R
×1

,M
em

×1
Ch

.2
–

4.
5

40
18
0.
0
(1
.0
0)

23
(1
.0
0)

36
8
(1
.0
0)

94
(1
.0
0)

15
04

(1
.0
0)

Pr
op
os
ed

A
×5

,M
×2

4.
5

26
11
7.
0
(0
.6
5)

23
(1
.0
0)

22
0
(0
.6
0)

91
(0
.9
7)

83
6
(0
.5
6)

JP
EG

-F
D
CT

2
×
3

A
×4

,S
×1

,M
×2

,
R
×1

,M
em

×1
Ch

.2
–

4.
5

29
13
0.
5
(1
.0
0)

33
(1
.0
0)

52
8
(1
.0
0)

13
6
(1
.0
0)

21
76

(1
.0
0)

Pr
op
os
ed

A
×1

4.
5

26
11
7.
0
(0
.9
0)

26
(0
.7
9)

40
0
(0
.7
6)

10
5
(0
.7
7)

16
40

(0
.7
5)

M
ES

A-
ST

2
×
2

A
×2

,S
×1

,
M

×2
,M

em
×1

Ch
.2

–
4.
5

52
23
4.
0
(1
.0
0)

42
(1
.0
0)

67
2
(1
.0
0)

15
0
(1
.0
0)

24
00

(1
.0
0)

Pr
op
os
ed

–
4.
5

51
22
9.
5
(0
.9
8)

43
(1
.0
2)

65
6
(0
.9
8)

13
6
(0
.9
1)

21
52

(0
.9
0)

M
ES

A-
ST

2
×
3

A
×3

,S
×1

,
M

×3
,M

em
×1

Ch
.2

–
4.
5

52
23
4.
0
(1
.0
0)

51
(1
.0
0)

81
6
(1
.0
0)

13
7
(1
.0
0)

21
92

(1
.0
0)

Pr
op
os
ed

A
×3

4.
5

51
22
9.
5
(0
.9
8)

62
(1
.2
2)

74
2
(0
.9
1)

14
6
(1
.0
7)

17
08

(0
.7
8)

**
**
FU

s
ar
e
sh
ow

n
in

th
e
sh
or
te
n
na
m
es
:
A
:A

dd
er
,S

:S
ub
tra

ct
or
,M

:M
ul
tip

lie
r,
R:

Ri
gh
ts
hi
fte

r,
L:

Le
ft
sh
ift
er
,C

:C
om

pa
ra
to
r,
A
nd
:
A
nd

un
it,

M
em

:
M
em

or
y
po
rt.

4.5. EXPERIMENTAL RESULTS 67

Ta
bl
e4

.8
:C

om
pa
ris

on
be
tw
ee
n
th
ed

el
ay

m
od
el
s.

A
pp
.

#i
sla

nd
s

In
iti
al

D
el
ay

Ad
di
tio

na
l

Cl
oc
k

Co
nt
ro
l
La

te
nc
y

#r
eg
ist
er
s
#r
eg
ist
er
s
#M

U
X
s
#M

U
X
s

FU
s

m
od
el

ex
tra

FU
s

pe
rio

d
[n
s]

ste
ps

[n
s]

(1
-b
it)

(1
-b
it)

A
RF

2
×
2

A
×2

,M
×3

Li
ne
ar

–
3.
0

10
30
.0

11
17
6

24
38
4

El
m
or
e

–
3.
0

9
27
.0

12
18
8

25
40
0

A
RF

2
×
3

A
×3

,M
×4

Li
ne
ar

–
3.
0

8
24
.0

12
19
2

19
30
4

El
m
or
e

–
3.
0

8
24
.0

12
19
2

22
35
2

M
ES

A-
ST

2
×
2

A
×2

,S
×1

,
M

×2
,M

em
×1

Li
ne
ar

–
4.
5

51
22
9.
5

43
65
6

13
6

21
52

El
m
or
e

–
4.
5

51
22
9.
5

43
65
6

13
6

21
52

M
ES

A-
ST

2
×
3

A
×3

,S
×1

,
M

×3
,M

em
×1

Li
ne
ar

A
×3

4.
5

51
22
9.
5

62
74
2

14
6

17
08

El
m
or
e

A
×3

4.
5

51
22
9.
5

62
74
2

14
6

17
08

68 CHAPTER 4. BITWIDTH-AWARE HLS

Figure 4.11: CPU time of Step 1.

4.5.3 Computation Time
As described in Section 4.4, our proposed algorithm consists of three steps, Step 1
to Step 3. Step 1 is based on [15], and SA is used only in this step. As described
in Section 4.4.3, the annealing exits when a continuous 100000 inner loops without
decreasing the cost is achieved (when the solution is sufficiently converged). The CPU
time of Step 1 indicates thewhole computation time of the annealing. ForMESA-ST (197
operations) which has the largest number of operations among benchmark applications
that we used, CPU time of Step 1 is 33.06sec, which takes 98.31% CPU time of all the
steps. It is obvious that Step 1 is a dominant step in terms of CPU time.

Figure 4.11 shows the scalability of Step 1. In Fig. 4.11, the relations between the
number of operations and the CPU time of Step 1 for all benchmark applications are
plotted. The horizontal axis represents the number of operations in applications, and the
vertical axis represents the CPU time of Step 1 in logarithmic scale. We can see that the
CPU time of Step 1 tends to increase exponentially against the number of operations.
We can conclude that the scalability of Step 1 is not good.

When we apply our proposed algorithm to larger applications in the future, Step 1
can be a bottleneck in terms of the execution time. In these situations, Step 1 cannot
optimize the FUs floorplan sufficiently, and could affect bad influences to Step 2 and/or
Step 3. We then need to improve the SA-based algorithm based on [15] in the future.

4.5.4 Possible Improvement of the Floorplanning
We can easily consider an improvement of our proposed HLS algorithm for a different
DR architecture such as HDR architectures [2]. Similar to RDR architectures, HDR

4.5. EXPERIMENTAL RESULTS 69

Table 4.9: SA parameters for “Rectangle Packing Problem.”
Parameter Value
Initial temperature T 1000
Temperature updating T = 0.999 · T
Number of temperature annealing iterations 1000 (at least)
Annealing exit condition Continuous 1000 inner loops

w/o decreasing the area
(i.e., solution is sufficiently converged)

Figure 4.12: CPU time of simulated annealing for “Rectangle Packing Problem” if we
consider extending our proposed HLS algorithm for HDR architectures.

architecture [2] is also one of DR architectures but does not always have islands with
the same size, while RDR architecture has islands with the same size. We can use HDR
architectures to reduce the vacant area of islands in RDR architectures, since we can fit
the size of each island depending on the use of the island in HDR architectures. In anHLS
algorithm targeting HDR architectures, placing FUs without overlaps to minimize the
boundary box area (chip area) is defined as the floorplanning problem. In this problem,
an FU can be modeled as a rectangle, and we can formulate the problem as “Rectangle
Packing Problem.” “Rectangle Packing Problem” can be also optimized with simulated
annealing (SA) by using the floorplan representation called sequence-pair [44].

We have also implemented this SA-based algorithm by using sequence-pair for “Rect-
angle Packing Problem.” We have implemented it in C++ on CentOS 6.8 and Intel Xeon
CPU E5-2680 v3 2.50GHz × 40 machine with 270GB memory. Table 4.9 shows the
SA parameters for “Rectangle Packing Problem.” CPU time of this SA in the range of
3 ≤ N ≤ 20 (where N is the number of rectangles) is measured and the results are
shown in Fig. 4.12. As seen in Fig. 4.12, the CPU time of the SA also tends to increase

70 CHAPTER 4. BITWIDTH-AWARE HLS

exponentially against the number of rectangles as same as in Fig. 4.11. We can conclude
that the scalability of the floorplanning is not good if we consider extending our proposed
HLS algorithm in this chapter for another DR architecture such as HDR architecture.

4.5.5 Comparisons to the Conventional Algorithms
We compare our proposed algorithm to the several conventional algorithms.

Comparison Between Delay Models

The algorithm in Chapter 2 assumes that the interconnection delay is in proportion to the
square of the distance based on Elmore delay model. However, our proposed algorithm
assumes that the interconnection delay is in proportion to the distance. The reason why
we do so is that, in real designs, we can treat that the delay is in proportion to the distance
by inserting buffers onto the wires properly as described in [14]. Buffer area is small
enough and ignore it based on [14]. To clarify the influence caused by differences between
these delay models, we picked up some applications from benchmark applications from
Table 4.2 and compared two delay models below:

• The interconnection delay is in proportion to the distance (Linear),

• The interconnection delay is in proportion to the square of the distance (Elmore).

We picked up ARF which has the smallest number of operations among we used (28
operations) and MESA-ST which has the largest number of operations (197 operations).
For these applications, the comparison results between the two delay models are shown
in Table 4.8. As seen in the result, control steps are the same except for ARF (2 × 2),
and there are almost no differences in the number of registers and the number of MUXs.
Therefore, we can conclude that the difference of using these two delay estimationmodels
will not affect the results.

Note that “Chapter 2” in the experimental results in Table 4.6 and Table 4.7 uses
the modified interconnection delay estimation model where the delay assumes to be in
proportion to the distance, while the original algorithm in Chapter 2 uses the model
where the delay assumes to be in proportion to the square of the distance. Therefore,
the conditions of interconnection delay estimation is equivalent in this chapter and the
comparison is considered to be fair.

Comparison to [17]

We discuss the qualitative comparison between [17] and our proposed algorithm. [17]
proposes a bitwidth-aware HLS algorithm targeting DR architectures which are similar

4.6. CONCLUSION 71

to our targeting RDR architectures. Their algorithm considers that the FUs with different
bitwidths have different areas but have the same delays. It only focuses on the area
minimization and does not realize operation chainings since the operation delays are
assumed to be the same in every bitwidth. Therefore, our proposed algorithm has
advantages in terms of reducing the latency against [17] by the following reasons:

(1) Our proposed algorithm considers that the FUs with different bitwidths have dif-
ferent areas and different delays as well, and realizes operation chainings by calcu-
lating and utilizing such delays. Since our proposed algorithm realizes operation
chainings on the critical paths including the interconnection delays, it is expected
to reduce the control steps compared to [17].

(2) Our proposed algorithm appends some extra FUs into the vacant areas that help to
realize more operation chainings, and it is expected to reduce more control steps.

4.6 Conclusion
In this chapter, we proposed a bitwidth-aware HLS algorithm with operation chainings
for RDR architectures. Our proposed algorithm reduces the FU bitwidths and utilizes the
vacant islands by adding extra FUs to realize effective operation chainings. Experimental
results show that our algorithm reduces the latency by up to 47% compared to the
algorithm with uniform bitwidth operation chainings. Our algorithm generates high
performance circuits without increasing the total area.

However, the SA-based floorplanning remains the bottleneck in both speed and
scalability as we discussed in Section 4.5.3. Accelerating the floorplanning is one of the
future works. We do not evaluate the results on the real devices in this chapter. Another
future work is to implement and evaluate our HLS solutions onto FPGA devices.

Chapter 5

A Fully-Connected Ising Model
Embedding Method for 20k-Spin
CMOS Annealing Machines1

5.1 Introduction
In Chapter 2, Chapter 3, and Chapter 4, floorplan-aware HLS algorithms are proposed.
These algorithms successfully reduce the latency compared to the conventional algo-
rithms while coping with the problem caused by increasing interconnection delays.
However, the SA-based floorplanning in these algorithms remains the bottleneck in both
speed and scalability. To deal with the bottleneck above, we try to apply and accelerate the
floorplanning problem to the forthcoming Ising model-based computers (annealing ma-
chines). In this chapter, we firstly propose an embedding method of Ising models (which
are equivalent to combinatorial optimization problems including the floorplanning prob-
lem) onto 20k-spin CMOS annealing machines (our targeting annealing machines).

Solving combinatorial optimization problems efficiently using novel physical an-
nealing machines has been studied as in [7, 31, 46, 59, 69, 70, 72, 73]. In those studies,
a combinatorial optimization problem is mapped onto a theoretical magnetic model in
statistical mechanics called Ising model, and annealing machines search the ground-state
of the Ising model, which corresponds to the optimal solution of the original combina-
torial optimization problem. The overview of the Ising model and the annealing process
are shown in Fig. 5.1. 20k-spin CMOS annealing machine [70] is one of the annealing
machines and expected to be used to solve practical problems efficiently.

Figure 5.2 shows the overall flow of solving a combinatorial optimization problem
using annealing machines. The flow consists of four phases. In Phase 1, the combina-

1Technical contents in this chapter have been presented in the publications ⟨5⟩ and ⟨6⟩.

72

5.1. INTRODUCTION 73

!"#$%&!"

!
!
"!"#

'""#()*"%+,-#.

#+/+0

#+1+0

!
!
"!"#

$%&'&()*

2("345+,.*",

+&%()*

6$47"38,-(-#

95*"*575+#"#$%&:

;<

;<

8<

8<8<

;<

;<

;< ;<

8<

;<

;<

Figure 5.1: Overview of Ising model and annealing.

torial optimization problem to be solved is formulated (or mapped) onto an Ising model
including the objective function and the constraints. In Phase 2, the Ising model formu-
lated in Phase 1 is implemented on the physical annealing machine through Ising model
embedding. This embedding determines the required spins, interactions between spins,
and external magnetic fields of spins. In Phase 3, an annealing machine searches the
ground-state (at the point of the minimum energy) of the spins. In Phase 4, by observing
the final state of spins, we can obtain the solution of the input combinatorial optimization
problem.

When we formulate combinatorial optimization problems by Ising models, the Ising
models usually have interactions between any pairs of spins (fully-connected Ising mod-
els) because of the constraints of the problems. Generally, it is a hard task to embed
a fully-connected Ising model onto the Ising model topology of a particular annealing
machine. In this chapter, we propose a fully-connected Ising model embedding method
for 20k-spin CMOS annealing machines [70]. The reason why we are only target-
ing fully-connected Ising models is that; (1) it is a typical topology of combinatorial
optimization problems formulations as we described above; (2) once we embed a fully-
connected Ising-model, we can embed any other Ising models, because any Ising models

74 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

Combinatrial Optimization Problem

Obtain the solution

Phase 1

Phase 2

Phase 3

Phase 4

Mapping to the Ising model

Embedding to the annealing machine

Observation of the final state

Annealing machines

(or Ising computers)

search the ground-state

Logical Ising model

Physical Ising model

Figure 5.2: Overall flow of solving combinatorial optimization problems using annealing
machines.

(equivalent to graphs) are sub-graphs of the fully-connected Ising model.
Some Ising model embedding methods have been proposed as in [7,8,61] for D-Wave

quantum annealingmachines (or D-Wavemachines) [7,31], which is one of the annealing
machines. However, since these methods are applicable only to the D-Wave machine
topology or a general method, it is not efficient to apply these methods to 20k-spin CMOS
annealing machines [70]. In this chapter, we propose an Ising model embedding method
which maps a fully-connected Ising models that represent combinatorial optimization
problems onto the Isingmodels on 20k-spinCMOSannealingmachines [70], and evaluate
our embedding method through solving practical combinatorial optimization problems.

The main contributions of this chapter are:

1. We propose a general embedding method of Ising model for 20k-spin CMOS
annealingmachine, which is expected to be one of the practical annealingmachines,
for the first time and keep the number of required physical spins to be n2 + n when
the number of logical spins is n theoretically.

2. We prove that the ground state of the Ising models obtained from our proposed
method is equivalent to that of the original Ising model.

5.2. RELATED WORKS 75

3. Experimental results demonstrate that our proposed embedding method realizes
generating Ising models with a fewer number of spins compared to the de facto
standard conventional method in the practical problem size.

4. Experimental results through solving the practical combinatorial optimization
problems demonstrate that our proposed embedding method can be superior in
probabilities of feasible solutions and qualities of solutions compared to the con-
ventional method.

The remainder of this chapter is organized as follows: Section 5.2 reviews conven-
tional embeddingmethods for annealingmachines as relatedworks; Section 5.3 describes
our targeting Ising model and topology of the annealing machine, and defines our em-
bedding problem; Section 5.4 proposes our embedding method targeting the 20k-spin
CMOS annealing machine; Section 5.5 shows experimental results and evaluates the
efficiency of our method; Section 5.6 gives several concluding remarks.

5.2 Related Works
Many researches on solving combinatorial optimization problems have been done re-
cently. Most of them are targeting D-Wave quantum annealing machine [7,31]. D-Wave
machine contains superconductor chips which work under very low temperature of milli-
Kelvin order. The latest version of D-Wave machine has 2,048-spin (or -qubit) of Ising
model. The Ising model topology on D-Wave machine is called a Chimera graph. The
Chimera graph is a square-lattice of bipartite graphs K4,4 topology.

A fully-connected Ising model embedding method has been proposed for the Ising
model topology ofD-Wavemachine as in [7,61]. Bunyk et al. proposed a fully-connected
Ising model embedding method onto the Chimera graph topology on D-Wave machines
in [7]. In this method, the number of required spins on D-Wave machine is in proportion
to the square of the number of spins in the input Ising model. Although method [7]
can embed a fully-connected Ising model onto the Chimera graph topology on D-Wave
machine, method [7] cannot be used for other annealing machines which have different
Ising model topology from Chimera graphs. Thus, we cannot use method [7] for our
targeting 20k-spin CMOS annealing machines.

An embedding method of an arbitrary topology of Ising model for D-Wave machine
has also been proposed in [8]. Since such an embedding problem is known as NP-
hard [24], Cai et al. proposed a heuristic algorithm based on the shortest-path search
algorithm to solve the embedding problem in [8]. The method [8] is currently a de facto
standard embedding method for D-Wave machines. Since method [8] is based on the
general heuristic algorithm, both input Ising model topology and the targeting annealing

76 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

machine topology can be set by the user. Thus, we can use method [8] for our targeting
20k-spin CMOS annealing machines. However, since method [8] is a general heuristic,
the embedding for 20k-spin CMOS annealing machines using this method is considered
to be inefficient.

5.3 Problem Formulation
In this section, we define the Ising model, 20k-spin CMOS annealing machine, and our
Ising model embedding problem.

5.3.1 Ising Model
Ising model is a theoretical magnetic model in statistical mechanics, which consists
of microscopic variables called spins, interactions between them, and fields on each
spin called external magnetic fields. An Ising model is represented as an undirected
graph M = (V, E) where V and E are sets of spins and connections between spins,
respectively. For each pair of spins u ∈ V and v ∈ V (where u ! v), (u, v) ∈ E denotes
a connection between spin u and v. Each spin σi(i ∈ V) has either of the two values
+1/−1 (or states up/down). The energy (or Hamiltonian) of an Ising model is calculated
as

H = −
∑

(i, j)∈E
Ji jσiσj −

∑
i∈V

hiσi (5.1)

where Ji j is the interaction between spin σi and spin σj , hi is the extra magnetic field of
spin σi.

Logical Ising Model

In this chapter, we distinguish two types of Ising models; logical Ising models and
physical Ising models.

A logical Ising model ML = (VL, EL) is an Ising model where interactions can be
defined between any pairs of spins. Any graph topologies can be represented as logical
Ising models. Combinatorial optimization problems are also formulated as and mapped
to logical Ising models.

Spins on a logical Ising model are called logical spins. The interaction between
logical spins σi and σj is denoted as JLi j , and the external magnetic field on a logical
spin σi is denoted as hLi .

5.3. PROBLEM FORMULATION 77

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

σ
Μ,1,1

σ
Μ,2,1 σ

Μ,3,1
σ
Μ,Ν,1

σ
Μ,3,2

σ
Μ,Ν,2σ

Μ,1,2 σ
Μ,2,2

σ1,1,1 σ1,2,1 σ1,3,1 σ1,Ν,1

σ2,1,1 σ2,2,1 σ2,3,1 σ2,Ν,1

σ3,1,1 σ3,2,1 σ3,3,1
σ3,Ν,1

σ3,3,2 σ3,Ν,2

σ1,3,2
σ1,1,2

σ2,1,2 σ2,2,2 σ2,3,2 σ2,Ν,2

σ3,1,2 σ3,2,2

σ1,2,2 σ1,Ν,2

!

"

#

!"#$%&'(%

#)$%&'(%

Figure 5.3: 128 × 80 × 2-lattice Ising model topology of the 20k-spin CMOS annealing
machine [70].

Physical Ising Model

A physical Ising model MP = (VP, EP) is an Ising model where interactions can only
be defined between pairs of spins which are physically connected on the topology of
individual annealing machine. If we have an annealing machine whose topology is fully-
connected, we can directly and easily embed a logical Ising model which has interact
connections between any pairs of spins onto the annealing machine. Generally, such
annealing machines are not reasonable because it is complicated to connect spins which
are located physically far away each others. Thus, typical annealing machines have
physical Ising model topology where only physically adjacent spins are connected, for
example. A physical Ising model MP is a sub-graph of the Ising model topology of
the target annealing machine. A physical Ising model can be easily embedded onto the
annealing machine.

Spins on a physical Ising model are called physical spins. An interaction between
physical spins σi and σj is denoted as JPi j , and an external magnetic field on a physical
spin σi is denoted as hPi .

5.3.2 20k-Spin CMOS Annealing Machine [70]
In this chapter, our target annealing machine is 20k-spin CMOS annealing machine [70].
The overview of and the optimization in the 20k-spin CMOS annealing machine are

78 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

described below.

Overview of the Annealing Machine

The 20k-spin CMOS annealingmachine is implemented by using CMOS technology (65-
nm technology node) and was proposed by Yamaoka et al. in [70]. Since CMOS circuits
are used to realize annealings of Ising models, 20k-spin CMOS annealing machine works
at room temperature and does not need specific cooling equipment or power. Quantum
annealing machines typically need them, on the other hand, 20k-spin CMOS annealing
machine can be also designed and manufactured easily and have a better scalability by
using conventional technologies compared to quantum annealing machines. The number
of spins of 20k-spin CMOS annealing machine is 20,480 (20k).

Figure 5.3 shows 128 × 80 × 2-lattice Ising model topology of 20k-spin CMOS
annealingmachine. The topology is a cube-lattice topologywhere every spin is connected
to its adjacent spins. 20k-spin CMOS annealing machine has the two-layer of the square-
lattice topology and each layer is composed of 128 × 80 physical spins. The axes are
defined as shown in Fig. 5.3. A physical spin located at a coordinate (x, y, z) is denoted
as σx,y,z. For example, the bottom-left spin in Fig. 5.3 is σ1,1,1.

Optimization in the Annealing Machine

The optimization (annealing) in 20k-spin CMOS annealing machine [70] is described
below. The details of the optimization are also described in [46]. In 20k-spin CMOS
annealingmachine, a value of each spin is updated tominimize the local energy calculated
by the spin and its adjacent spins based on steepest descent method. To avoid sticking
to local minima, the spin is inverted (or flipped) at the rate of “spin flipping probability.”
The “spin flipping probability” is given by the exponential function which depends on the
current annealing step. The probability is defined as (a) “spin flipping probability (at the
beginning)” when the step is zero and (b) “spin flipping probability (at the end)” when
the step is the final step. These two probabilities are given as simulation parameters.

5.3.3 Embedding Logical Ising Models to Physical Ising Models
As we described in Section 5.3.1, we cannot usually embed a logical Ising model onto
the annealing machine directly, while we can easily do a physical Ising model. To embed
an Ising model onto the annealing machine, we need to convert a logical Ising model into
an equivalent physical Ising model. To achieve this, we prepare several physical spins
which represent a single logical spin. By preparing several redundant physical spins and
mapping a single logical spins to one or more physical spins, every interaction between
logical spins can be defined on the interaction between physical spins. These physical

5.4. PROPOSED EMBEDDING METHOD 79

spins which represent a single logical spin are called spin-chain. We can convert a
logical Ising model into an equivalent physical Ising model using spin-chains and embed
onto the annealing machine. Physical spins among a spin-chain are connected with the
interaction of the strong ferromagnetic interactions (JF > 0), so that every physical spins
in a spin-chain will have the same value. Additionally, it is known that the uniform length
of every spin-chain results in good result throughout the annealing process [6, 61]. The
uniform length of spin-chains is desirable and we have to deal with this issue as well.

We define this embedding as an embedding problem of logical Ising models onto
physical Ising models as follows:

Definition 5.1. The embedding problem of a logical Ising model ML = (VL, EL) to a
physical Ising model MP = (VP, EP) is, to define a mapping ϕ : VL → 2VP which satisfies
the following conditions:

(Condition 1) For all logical spins σi ∈ VL , physical spins in ϕ(σi) are connected,

(Condition 2) For all logical spinsσi ∈ VL andσj ∈ VL (whereσi ! σj), ϕ(σi)∩ϕ(σj) =
+,

(Condition 3) If logical spins σi and σj are connected on ML , one physical spin in ϕ(σi)
and one spin in ϕ(σj) on MP are connected.

(Condition 4) For all logical spins σi ∈ VL and σj ∈ VL (where σi ! σj), |ϕ(σi)| =
|ϕ(σj)|.

!

5.4 Proposed Embedding Method
In this section, we propose an embedding method which maps fully-connected logical
Ising models to physical Ising models on 20k-spin CMOS annealing machine.

In a fully-connected topology, there must be connections between any pairs of logical
spins. To express these connections onto the physical Ising model, we introduce the
following ideas:

(Idea i) In the bottom layer (z = 1) of the 20k-spin CMOS annealing machine topology,
physical spins which correspond to one logical spin are arranged vertically (x-axis
direction) and connected with strong ferromagnetic interactions (JF) each other to
form a spin-chain.

(Idea ii) In the top layer (z = 2), such physical spins are arranged horizontally (y-axis
direction) and connected with strong ferromagnetic interactions (JF) each other to
form a spin-chain.

80 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

σ
5

σ
1

σ
2

σ
3

σ
4

!
!"

!
!#

!
!$

!
!%

(a) Logical Ising model.

σ1,1,1 σ1,2,1 σ1,3,1

σ2,1,1 σ2,2,1 σ2,3,1

σ3,1,1 σ3,3,1

σ4,1,1 σ4,2,1 σ4,3,1

σ5,1,1 σ5,2,1 σ5,3,1

σ1,4,1

σ2,4,1

σ3,4,1

σ4,4,1

σ5,4,1

σ1,5,1

σ2,5,1

σ3,5,1

σ4,5,1

σ5,5,1

σ3,2,1

σ3,3,2

σ1,3,2
σ1,1,2

σ2,1,2 σ2,2,2 σ2,3,2

σ3,1,2 σ3,2,2

σ1,2,2

σ4,3,2
σ4,1,2 σ4,2,2

σ5,3,2
σ5,1,2 σ5,2,2

σ3,4,2

σ1,4,2

σ2,4,2

σ4,4,2

σ5,4,2

σ3,5,2

σ1,5,2

σ2,5,2

σ4,5,2

σ5,5,2

!
!"

!
!#

!
!$

!
!% !

!

!
!

!
!

!
!

!
!

"

#

$

(b) Physical Ising model (20k-spin CMOS Ising model).

Figure 5.4: Example of our proposed embedding method which maps (a) Input: Fully-
connected logical Ising model (K5) to (b) Output: Physical Ising model on 20k-spin
CMOS annealing machine.

(Idea iii) Interactions Ji j are set to the corresponding connections between the bottom
and the top layer.

Since all combinations of logical spins-pairs are appeared in the connections between
the bottom and the top layer, any fully-connected logical Ising models can be expressed
onto the physical Ising models.

Based on our ideas above, our proposed method is described below:

Input
A logical Ising model ML = (VL, EL) composed of n logical spins.

5.4. PROPOSED EMBEDDING METHOD 81

Output
A physical Ising model MP = (VP, EP) on 20k-spin CMOS annealing machine.

Step 1: Spins mapping
For each logical spin σi ∈ VL , the mapping ϕ(σi) is defined as follows:

ϕ(σi) =
i⋃

x=1
{σx,n−i+1,1} ∪

n−i+1⋃
y=1

{σi,y,2}. (5.2)

Step 2: Interactions setting

Step 2.1
For each logical spin σi ∈ VL , the interactions between the adjacent physical
spins in ϕ(σi) (obtained in Step 1) are set to JF .

Step 2.2
For i ∈ {1, . . . , n}, j ∈ {1, . . . , n} (where i < j), if there is a connection edge
between the logical spin σi and σj , then the interaction between the physical
spin σi′ = σi,n− j+1,1 and σj ′ = σi,n− j+1,2 is set to be JPi′ j ′ = JLi j . Otherwise,
it is set to be JPi′ j ′ = 0.

Step 2.3
For all connections on MP whose interactions have not been set in Step 2.1
or Step 2.2, the interaction is set to be zero.

Step 3: External magnetic field setting
For each logical spin σi, to distribute the external magnetic field of σi onto the
corresponding physical spins equivalently, the external magnetic fields of the
physical spins σi′ ∈ ϕ(σi) (σi ∈ VL) are set to be hPi′ = hi/(n + 1).

Example 5.1. Figure 5.4 shows our Ising model embedding example of a fully-connected
logical Ising model (n = 5) to a physical Ising model on 20k-spin CMOS annealing
machine. In Fig. 5.4(b), physical spins colored by the same color correspond to one
logical spin which has the same color in Fig. 5.4(a). For example, the logical spin σ1
in Fig. 5.4(a) (orange-colored) corresponds to the physical spins {σ1,1,2, σ1,2,2, σ1,3,2,
σ1,4,2, σ1,5,2, σ1,5,1} in Fig. 5.4(b). The physical spins colored by gray in Fig. 5.4(b) are
unused. !

Theorem 5.1. Our proposed embedding satisfies (Condition 1)–(Condition 4) in Defi-
nition 5.1.

Proof. Proof of satisfying (Condition 1): In Eq. (5.2) in Step 1, spins in the first term are
connected along x-axis since it is a set of spins whose x-coordinate is increased by one

82 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

from 1 to i. Similarly, spins in the second term are connected along y-axis since it is a
set of spins whose y-coordinate is increased by one from 1 to n− i + 1. Furthermore, the
physical spin where x = i in the first them is σi,n−i+1,1, and the spin where y = n− i+1 in
the second term is σi,n−i+1,2. These two physical spins are adjacent along z-axis. Thus,
for all logical spins σi ∈ VL , physical spins in ϕ(σi) are connected.

Proof of satisfying (Condition 2): In Eq. (5.2) in Step 1, y-coordinate n − i + 1 of
the spins in the first term is a linear function depending on i. Similarly, x-coordinate
i of the spins in the second term is also a linear function depending on i. This means
that these coordinates must not be the same value when i is different. z-coordinate is
always different between the first and the second terms of Eq. (5.2). Thus, physical spins
do not overlap each other which means for all logical spins σi ∈ VL and σj ∈ VL (where
σi ! σj), ϕ(σi) ∩ ϕ(σj) = +.

Proof of satisfying (Condition 3): For all pairs of logical spins (σi,σj), every pair is
connected in Step 2.2 one time. Thus, one physical spin in ϕ(σi) and one spin in ϕ(σj)
on MP are connected.

Proof of satisfying (Condition 4): In Eq. (5.2) in Step 1, the number of physical spins
in the first term is (i − 1 + 1), and the number of physical spins in the second term is
{(n − i + 1) − 1 + 1}. The number of total physical spins which corresponds to one
logical spin is then calculated as (i − 1 + 1) + {(n − i + 1) − 1 + 1} = n + 1. For every
logical spin, the number of physical spins which correspond to the logical spin is the
same value (n + 1). Thus, for all logical spins σi ∈ VL and σj ∈ VL (where σi ! σj),
|ϕ(σi)| = |ϕ(σj)|.

Therefore, our proposed embedding satisfies (Condition 1)–(Condition 4) in Defini-
tion 5.1. !

Our proposed method requires several redundant physical spins to embed logical
Ising models onto physical Ising models. However, since physical spins in the same
spin-chains are connected with strong ferromagnetic interactions (JF) as we described
in Section 5.3.3, the state of spins in the logical Ising model is equivalent to the state of
spins in the physical Ising model. We define this as follows:

Definition 5.2. If an embedding satisfies (Condition 1)–(Condition 3) of Definition 5.1,
the ground state of MP is equivalent to that of ML . !

Note that if an embedding does not satisfy (Condition 4), the ground state of the
embedded Ising model is equivalent to that of the original Ising model.

Theorem 5.2. The ground state of a physical Ising model obtained from our proposed
embedding method is equivalent to that of the original logical Ising model.

Proof. Based on Theorem 5.1, out proposedmethod satisfies (Condition 1)–(Condition 3)
of Definition 5.1. Therefore, Theorem 5.2 is proved. !

5.5. EXPERIMENTAL RESULTS 83

Our proposed method maps one logical spin to several physical spins and connects
them with strong ferromagnetic interactions (JF) to form a spin-chain so that these
spin values will become the same, as we described in Section 5.3.3. However, in a
practical annealing process, all physical spins in the same spin-chain do not always
have the same value. To take this problem into account, we determine the logical spin
value by the majority vote of the corresponding physical spins. If the number of +1
and the number of −1 are the same, we randomly determine the corresponding logical
spin value as +1 or −1. For example, assume that ϕ(σ1) = {σa,σb,σc,σd,σe}. If
σa = σb = σc = σd = σe = +1, then σ1 = +1 obviously. If σa = σb = +1,
σc = σd = σe = −1, then we determine σ1 = −1.

The required physical spins when embedding fully-connected logical Ising model
(Kn) by our proposed method is calculated as

(n + 1) · n = n2 + n. (5.3)

The number of required spins is in proportion to the square of n (i.e. O(n2)). Since the
lattice topology of 20k-spin CMOS annealing machine is 128 × 80 × 2, we can embed
fully-connected Ising model (K80) at the maximum by our proposed method.

5.5 Experimental Results
In this section, we evaluate the efficiency of our proposed method through some experi-
ments.

5.5.1 Evaluation of Our Embedding Method
To evaluate the quality of our proposed embedding method, we compare the results of the
de facto standard conventional embedding method [8] and our proposed method using
fully-connected logical Ising models.

We have implemented the conventional method [8] and our proposed method in
Python language on CentOS 6.8 and Intel Xeon CPU E5-2680 v3 2.50GHz × 40 machine
with 270GB memory. For every fully-connected logical Ising model which has the
number of logical spins of n = 4 to n = 12, we compare the embedding results obtained
from the conventional method [8] and our proposed method targeting 20k-spin CMOS
annealing machine. Since method [8] is based on the heuristic algorithm, the results may
be different each time. We tried to perform method [8] for ten times. The comparison of
the two embedding methods are shown in Table 5.1 and Fig. 5.5.

As seen in the result, we can conclude that our proposed method is superior to the
conventional method [8] in the following three considerations:

84 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

Table 5.1: Comparison of embeddings of fully-connected logical Ising models (Kn) for
the 20k-spin CMOS annealing machine. The “Min”, the “Max”, and the “Total spins”
columns of “Method [8]” mean the minimum, the maximum, and the total lengths of the
spin-chains (i.e. the number of physical spins which corresponds to one logical spin) of
the best result (i.e. the result with the minimum total physical spins among we tried),
respectively. The total numbers of physical spins obtained from our proposed method
are n2 + n as we calculated in Section 5.4.

n
Method [8] Our proposed method

Min Max Total spins Total spins
4 1 3 7 20
5 1 6 13 30
6 1 7 24 42
7 2 11 39 56
8 3 13 67 72
9 2 19 93 90
10 4 27 146 110
11 5 36 182 132
12 — — — * 156
* Computation of method [8] does not finish within one
hour.

1. Method [8] requires fewer physical spins when n is small (n ≤ 8). On the other
hand, our proposed method requires fewer physical spins when n is large (n ≥ 9),
while [8] requires more physical spins. In practical problems, an Ising model with
eight or less spins is considered to be too small, therefore, we can conclude that
our proposed method requires fewer physical spins in the practical problem size
compared to the conventional method [8].

2. Method [8] assigns logical spins to different lengths of physical spins (spin-chains)
which may cause a worse annealing result, while our proposed method assigns
every logical spins to the same lengths of physical spins (spin-chains), which may
affect to a better annealing result.

3. Method [8] does not generate a solution when n ≥ 12, while our proposed method
can generate embedding solutions when n becomes large. Since our proposed
method is based on the non-heuristic algorithm, we can obtain the stable embedding
solutions easily.

5.5. EXPERIMENTAL RESULTS 85

Figure 5.5: Comparison of required physical spins. The best of method [8] means the
result with the minimum total physical spins among we tried. The average of method [8]
means the average of all feasible solutions among we tried.

5.5.2 Evaluation of Our Method Applied to Combinatorial Opti-
mizations

To evaluate our proposed embeddingmethod in more practical uses, we solveMAX-CUT
problem, which is one of the combinatorial optimization problems, using our proposed
embedding method for the 20k-spin CMOS annealing machine.

Now, we solve the MAX-CUT problem of graph G = (V, E) where V and E are sets
of vertices and the edges of G, respectively. We aim to divide graph G into sub-graphs
S and T . The objective is to divide G into two sub-graphs such that |S | = |T | (when |V |
is even) or |S | = |T | ± 1 (when |V | is odd), while maximize the number of cut-edges
(edges between S and T). This problem can be formulated as a logical Ising model. As
in [37], we prepare |V | spins of logical spins, each of which corresponds to each vertex
in V . If σ is +1 then the corresponding vertex is considered to be in S, if σ is −1 then
the corresponding vertex is considered to be in T . The Ising model of this problem is
formulated as follows:

H = −
∑

(i, j)∈E

1 − σiσj
2 + α

(∑
i∈V
σi

)2
. (5.4)

When the solution is optimal, Eq. (5.4) becomes minimum (ground-state). The first term

86 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

Table 5.2: Simulation parameters.
Parameter Value
Initial spin value Random
Spin flipping probability (at the beginning) 0.75
Spin flipping probability (at the end) 0.001
Annealing steps 100,000 **

** It takes 10x msec on a real machine (100 MHz) which
inverts a 1/x part of total spins in one step. 20k-spin
CMOS annealing machine has x = 8, thus the execution
time would be 8 msec.

of Eq. (5.4) represents the objective function. For every edge, the first term reduces
unity (if the edge is a cut-edge, i.e., σi ! σj) or 0 (if the edge is not a cut-edge, i.e.,
σi = σj = ±1) from H. This means that when the number of cut-edges are the largest
energy H is minimized. The second term of Eq. (5.4) represents the constraint. When
|S | = |T |, the second term is zero. As the difference between |S | and |T | increases, the
second term becomes large and it will be a penalty increasing the energy H. Here, we
introduce a positive value α which is a weight parameter of the constraint term. Eq. (5.4)
can be written as:

H =
1
2

∑
(i, j)∈E

σiσj + α
∑

i∈V, j∈V,i! j
σiσj + const. (5.5)

Comparing Eq. (5.5) to the energy of Ising model shown in Eq. (6.1), the interactions
and the external magnetic fields of the Ising model are:

Ji j =
⎧⎪⎨
⎪⎩

−12 − α if (i, j) ∈ E

−α otherwise
(5.6)

hi = 0 ∀i ∈ V . (5.7)

Comparison Between [8] and Our Method

We solved the MAX-CUT problem using two embeddings obtained from [8] and ours
using 20k-spin CMOS annealing machine simulator [70], to compare and evaluate these
two embeddings. The benchmark graph SE3, which has the number of vertices |V | = 8, is
picked up fromGraph Collection [5] provided by Paderborn University AG-Monien. The
parameters are set to be α ∈ {1, 10, 100, 1000, 10000, 100000} and JF ∈ {0.1, 1, 10}. For
each parameter, the simulation was performed 100 times. Simulation setting parameters
are shown in Table 5.2. Spins randomly flip based on the “spin flipping probabilities (at
the beginning/end)” to avoid sticking to local minima as described in Section 5.3.2.

5.5. EXPERIMENTAL RESULTS 87

(a) JF = 0.1. (b) JF = 1.

(c) JF = 10.

Figure 5.6: Comparison of the probabilities of feasible solutions between [8] and our
proposed method in the MAX-CUT problem (Graph: SE3).

Figure 5.6 and Figure 5.7 show the results. The embedding used in method [8] is
the embedding with the minimum physical spins at n = 8. Figure 5.6 and Figure 5.7
represent the probability of feasible solutions (solutions which satisfy the constraint of
equally dividing) for each JF and the quality of solution (the numbers of cut-edges) in
feasible solution for each JF , respectively. As seen in the result in Fig. 5.6, we can see
that our proposed method has higher probabilities of feasible solutions except for the two
cases of (JF, α) = (1, 1) and (JF, α) = (10, 1). To map every logical spin to the same
length of physical spins by our method (i.e., to satisfy the Condition 4 in Problem 5.1)
is considered to be the reason for this result. As seen in the result in Fig. 5.7, we can see
that our proposed method has better solution qualities on average when α is large.

88 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

(a) JF = 0.1. (b) JF = 1.

(c) JF = 10.

Figure 5.7: Comparison of the qualities of solutions (i.e. the numbers of cut-edges)
between [8] and our proposed method in the MAX-CUT problem (Graph: SE3). The
white markers represent the best solutions, the colors markers and lines represent the
average solutions, and the error bars represent the standard deviations.

Evaluation of Our Method Using Other Graphs

Wesolved theMAX-CUTproblemusing our proposed embeddingmethod using 20k-spin
CMOS annealing machine simulator [70] for more benchmarks. 16 benchmark graphs
are picked up from Graph Collection [5]. All these benchmark graphs have the number
of vertices |V | = 80 or less, so that we can embedding to the 20k-spin CMOS annealing
machine using our proposed method. The parameters are set to be α ∈ {1, 10, 100, 1000}
and JF ∈ {0.1, 1, 10}. For each parameter, the simulation was performed 100 times. The

5.5. EXPERIMENTAL RESULTS 89

simulation setting parameters are the same as in the experiment in Section 5.5.2.
Table 5.3, Table 5.4, and Table 5.5 show the results. We can see that the solution

using our propose method can be obtained for FFT4 (|V | = 80) which has the largest
spins embeddable onto the 20k-spin CMOS annealing machine. For most benchmark
graphs in α = 1 or α = 10, when JF becomes larger, the probability of feasible solutions
tends to be increased while the quality of solutions tends to be decreased. For each
JF , when α becomes larger, the probability of feasible solutions tends to be decreased
while the quality of solutions tends to be increased. We can see the above results in the
MAX-CUT problem instances, general consideration about these parameters are one of
the future works.

90 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

Ta
bl
e5

.3
:R

es
ul
ts
of

ou
rp

ro
po
se
d
em

be
dd
in
g
m
et
ho
d
ap
pl
ie
d
to

M
A
X-

CU
T
pr
ob
le
m

on
th
e2

0k
-s
pi
n
CM

O
S
an
ne
al
in
g
m
ac
hi
ne

(1
/3
).

G
ra
ph

α
#c
ut
-e
dg
es

**
*

J F
=
0.
1

J F
=
1

J F
=
10

SE
3

(|V
|=

8,
|E

|=
10
)

1
6.
23

/8
/2

(4
3%

)
5.
27

/8
/2

(4
1%

)
4.
29

/6
/2

(3
5%

)
10

6.
23

/8
/2

(4
3%

)
6.
23

/8
/2

(4
3%

)
5.
27

/8
/2

(4
1%

)
10
0

6.
23

/8
/2

(4
3%

)
6.
23

/8
/2

(4
3%

)
6.
23

/8
/2

(4
3%

)
10
00

6.
23

/8
/2

(4
3%

)
6.
23

/8
/2

(4
3%

)
6.
23

/8
/2

(4
3%

)

SE
4

(|V
|=

16
,|
E
|=

21
)

1
11
.5
5
/1

7
/7

(3
1%

)
8.
33

/1
2
/3

(4
2%

)
6.
60

/9
/5

(7
0%

)
10

11
.5
5
/1

7
/7

(3
1%

)
11
.5
5
/1

7
/7

(3
1%

)
8.
33

/1
2
/3

(4
2%

)
10
0

11
.5
5
/1

7
/7

(3
1%

)
11
.5
5
/1

7
/7

(3
1%

)
11
.5
5
/1

7
/7

(3
1%

)
10
00

11
.5
5
/1

7
/7

(3
1%

)
11
.5
5
/1

7
/7

(3
1%

)
11
.5
5
/1

7
/7

(3
1%

)

G
rid

4x
4

(|V
|=

16
,|
E
|=

24
)

1
13
.5
5
/2

1
/7

(3
1%

)
8.
95

/1
6
/4

(4
2%

)
5.
49

/1
0
/4

(7
0%

)
10

13
.5
5
/2

1
/7

(3
1%

)
13
.5
5
/2

1
/7

(3
1%

)
8.
95

/1
6
/4

(4
2%

)
10
0

13
.5
5
/2

1
/7

(3
1%

)
13
.5
5
/2

1
/7

(3
1%

)
13
.5
5
/2

1
/7

(3
1%

)
10
00

13
.5
5
/2

1
/7

(3
1%

)
13
.5
5
/2

1
/7

(3
1%

)
13
.5
5
/2

1
/7

(3
1%

)

CC
A
3

(|V
|=

24
,|
E
|=

28
)

1
15
.3
4
/1

9
/9

(3
2%

)
7.
52

/1
5
/4

(3
1%

)
5.
20

/9
/4

(5
1%

)
10

15
.3
4
/1

9
/9

(3
2%

)
15
.3
4
/1

9
/9

(3
2%

)
7.
52

/1
5
/4

(3
1%

)
10
0

15
.3
4
/1

9
/9

(3
2%

)
15
.3
4
/1

9
/9

(3
2%

)
15
.3
4
/1

9
/9

(3
2%

)
10
00

15
.3
4
/1

9
/9

(3
2%

)
15
.3
4
/1

9
/9

(3
2%

)
15
.3
4
/1

9
/9

(3
2%

)

CC
C3

(|V
|=

24
,|
E
|=

36
)

1
17
.4
4
/2

2
/1

2
(3
2%

)
17
.8
5
/2

4
/1

2
(2
6%

)
16
.9
4
/1

8
/1

6
(5
1%

)
10

17
.4
4
/2

2
/1

2
(3
2%

)
17
.4
4
/2

2
/1

2
(3
2%

)
17
.8
5
/2

4
/1

2
(2
6%

)
10
0

17
.4
4
/2

2
/1

2
(3
2%

)
17
.4
4
/2

2
/1

2
(3
2%

)
17
.4
4
/2

2
/1

2
(3
2%

)
10
00

17
.4
4
/2

2
/1

2
(3
2%

)
17
.4
4
/2

2
/1

2
(3
2%

)
17
.4
4
/2

2
/1

2
(3
2%

)

BF
LY

3
(|V

|=
24
,|
E
|=

48
)

1
25
.3
1
/3

2
/1

8
(3
2%

)
14
.6
4
/2

2
/1

2
(2
8%

)
10
.0
8
/1

4
/8

(5
1%

)
10

25
.3
1
/3

2
/1

8
(3
2%

)
25
.3
1
/3

2
/1

8
(3
2%

)
14
.6
4
/2

2
/1

2
(2
8%

)
10
0

25
.3
1
/3

2
/1

8
(3
2%

)
25
.3
1
/3

2
/1

8
(3
2%

)
25
.3
1
/3

2
/1

8
(3
2%

)
10
00

25
.3
1
/3

2
/1

8
(3
2%

)
25
.3
1
/3

2
/1

8
(3
2%

)
25
.3
1
/3

2
/1

8
(3
2%

)
**

*
In

th
e
“#
cu
t-e

dg
es
”
co
lu
m
n,

ea
ch

ce
ll
sh
ow

s
th
e
nu
m
be
r
of

cu
t-e

dg
es

of
fe
as
ib
le

so
lu
tio

ns
in

a
fo
rm

at
of

“a
ve
ra
ge

/b
es
t/

wo
rs
t(
pr
ob
ab
ili
ty

of
fe
as
ib
le
so
lu
tio

ns
).”

5.5. EXPERIMENTAL RESULTS 91

Ta
bl
e5

.4
:R

es
ul
ts
of

ou
rp

ro
po
se
d
em

be
dd
in
g
m
et
ho
d
ap
pl
ie
d
to

M
A
X-

CU
T
pr
ob
le
m

on
th
e2

0k
-s
pi
n
CM

O
S
an
ne
al
in
g
m
ac
hi
ne

(2
/3
).

G
ra
ph

α
#c
ut
-e
dg
es

**
*

J F
=
0.
1

J F
=
1

J F
=
10

SE
5

(|V
|=

32
,|
E
|=

46
)

1
24
.4
0
/3

2
/1

8
(2
5%

)
16
.7
7
/2

0
/1

2
(2
6%

)
15
.3
2
/1

6
/1

4
(5
0%

)
10

24
.4
0
/3

2
/1

8
(2
5%

)
24
.4
0
/3

2
/1

8
(2
5%

)
16
.7
7
/2

0
/1

2
(2
6%

)
10
0

24
.4
0
/3

2
/1

8
(2
5%

)
24
.4
0
/3

2
/1

8
(2
5%

)
24
.4
0
/3

2
/1

8
(2
5%

)
10
00

24
.4
0
/3

2
/1

8
(2
5%

)
24
.4
0
/3

2
/1

8
(2
5%

)
24
.4
0
/3

2
/1

8
(2
5%

)

FF
T3

(|V
|=

32
,|
E
|=

48
)

1
25
.0
4
/3

2
/1

6
(2
5%

)
11
.8
5
/2

2
/8

(4
0%

)
9.
24

/1
2
/8

(5
0%

)
10

25
.0
4
/3

2
/1

6
(2
5%

)
25
.0
4
/3

2
/1

6
(2
5%

)
11
.8
5
/2

2
/8

(4
0%

)
10
0

25
.0
4
/3

2
/1

6
(2
5%

)
25
.0
4
/3

2
/1

6
(2
5%

)
25
.0
4
/3

2
/1

6
(2
5%

)
10
00

25
.0
4
/3

2
/1

6
(2
5%

)
25
.0
4
/3

2
/1

6
(2
5%

)
25
.0
4
/3

2
/1

6
(2
5%

)

bc
ss
tk
01

(|V
|=

48
,|
E
|=

17
6)

1
91
.4
1
/1

00
/7

8
(2
2%

)
68
.6
7
/8

9
/5

6
(2
1%

)
60
.3
7
/6

5
/5

8
(6
3%

)
10

91
.4
1
/1

00
/7

8
(2
2%

)
91
.4
1
/1

00
/7

8
(2
2%

)
68
.6
7
/8

9
/5

6
(2
1%

)
10
0

91
.4
1
/1

00
/7

8
(2
2%

)
91
.4
1
/1

00
/7

8
(2
2%

)
91
.4
1
/1

00
/7

8
(2
2%

)
10
00

91
.4
1
/1

00
/7

8
(2
2%

)
91
.4
1
/1

00
/7

8
(2
2%

)
91
.4
1
/1

00
/7

8
(2
2%

)

CC
A
4

(|V
|=

64
,|
E
|=

80
)

1
43
.5
0
/4

9
/3

4
(2
0%

)
10
.7
6
/1

7
/8

(3
8%

)
9.
20

/1
4
/8

(5
9%

)
10

43
.5
0
/4

9
/3

4
(2
0%

)
43
.5
0
/4

9
/3

4
(2
0%

)
10
.7
6
/1

7
/8

(3
8%

)
10
0

43
.5
0
/4

9
/3

4
(2
0%

)
43
.5
0
/4

9
/3

4
(2
0%

)
43
.5
0
/4

9
/3

4
(2
0%

)
10
00

43
.5
0
/4

9
/3

4
(2
0%

)
43
.5
0
/4

9
/3

4
(2
0%

)
43
.5
0
/4

9
/3

4
(2
0%

)

SE
6

(|V
|=

64
,|
E
|=

93
)

1
48
.1
0
/6

0
/4

0
(2
0%

)
32
.6
5
/3

7
/3

1
(1
7%

)
30
.7
6
/3

3
/2

9
(5
9%

)
10

48
.1
0
/6

0
/4

0
(2
0%

)
48
.1
0
/6

0
/4

0
(2
0%

)
32
.6
5
/3

7
/3

1
(1
7%

)
10
0

48
.1
0
/6

0
/4

0
(2
0%

)
48
.1
0
/6

0
/4

0
(2
0%

)
48
.1
0
/6

0
/4

0
(2
0%

)
10
00

48
.1
0
/6

0
/4

0
(2
0%

)
48
.1
0
/6

0
/4

0
(2
0%

)
48
.1
0
/6

0
/4

0
(2
0%

)
**

*
In

th
e“

#c
ut
-e
dg
es
”c

ol
um

n,
ea
ch

ce
ll
sh
ow

st
he

nu
m
be
ro

fc
ut
-e
dg
es

of
fe
as
ib
le
so
lu
tio

ns
in

af
or
m
at
of

“a
ve
ra
ge

/b
es
t/

wo
rs
t(
pr
ob
ab
ili
ty

of
fe
as
ib
le
so
lu
tio

ns
).”

92 CHAPTER 5. EMBEDDING FOR 20K-SPIN CMOS ANNEALING MACHINE

Ta
bl
e5

.5
:R

es
ul
ts
of

ou
rp

ro
po
se
d
em

be
dd
in
g
m
et
ho
d
ap
pl
ie
d
to

M
A
X-

CU
T
pr
ob
le
m

on
th
e2

0k
-s
pi
n
CM

O
S
an
ne
al
in
g
m
ac
hi
ne

(3
/3
).

G
ra
ph

α
#c
ut
-e
dg
es

**
*

J F
=
0.
1

J F
=
1

J F
=
10

CC
C4

(|V
|=

64
,|
E
|=

96
)

1
48
.1
0
/6

2
/4

0
(2
0%

)
34
.7
7
/3

6
/3

4
(1
3%

)
32
.7
1
/3

4
/3

2
(5
9%

)
10

48
.1
0
/6

2
/4

0
(2
0%

)
48
.1
0
/6

2
/4

0
(2
0%

)
34
.7
7
/3

6
/3

4
(1
3%

)
10
0

48
.1
0
/6

2
/4

0
(2
0%

)
48
.1
0
/6

2
/4

0
(2
0%

)
48
.1
0
/6

2
/4

0
(2
0%

)
10
00

48
.1
0
/6

2
/4

0
(2
0%

)
48
.1
0
/6

2
/4

0
(2
0%

)
48
.1
0
/6

2
/4

0
(2
0%

)

G
rid

8x
8

(|V
|=

64
,|
E
|=

11
2)

1
57
.4
0
/7

6
/4

7
(2
0%

)
12
.6
7
/1

8
/8

(2
4%

)
8.
97

/1
2
/8

(5
9%

)
10

57
.4
0
/7

6
/4

7
(2
0%

)
57
.4
0
/7

6
/4

7
(2
0%

)
12
.6
7
/1

8
/8

(2
4%

)
10
0

57
.4
0
/7

6
/4

7
(2
0%

)
57
.4
0
/7

6
/4

7
(2
0%

)
57
.4
0
/7

6
/4

7
(2
0%

)
10
00

57
.4
0
/7

6
/4

7
(2
0%

)
57
.4
0
/7

6
/4

7
(2
0%

)
57
.4
0
/7

6
/4

7
(2
0%

)

BF
LY

4
(|V

|=
64
,|
E
|=

12
8)

1
66
.9
0
/7

4
/6

0
(2
0%

)
19
.7
9
/2

8
/1

6
(3
9%

)
17
.9
3
/2

4
/1

6
(5
9%

)
10

66
.9
0
/7

4
/6

0
(2
0%

)
66
.9
0
/7

4
/6

0
(2
0%

)
19
.7
9
/2

8
/1

6
(3
9%

)
10
0

66
.9
0
/7

4
/6

0
(2
0%

)
66
.9
0
/7

4
/6

0
(2
0%

)
66
.9
0
/7

4
/6

0
(2
0%

)
10
00

66
.9
0
/7

4
/6

0
(2
0%

)
66
.9
0
/7

4
/6

0
(2
0%

)
66
.9
0
/7

4
/6

0
(2
0%

)

bc
ss
tk
02

(|V
|=

66
,|
E
|=

21
45
)

1
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(5
2%

)
10

10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
0

10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
00

10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)
10
89
.0
0
/1

08
9
/1

08
9
(1
3%

)

FF
T4

(|V
|=

80
,|
E
|=

12
8)

1
65
.1
0
/7

8
/5

6
(2
0%

)
20
.5
0
/3

6
/1

6
(3
2%

)
17
.3
0
/2

2
/1

6
(5
7%

)
10

65
.1
0
/7

8
/5

6
(2
0%

)
65
.1
0
/7

8
/5

6
(2
0%

)
20
.5
0
/3

6
/1

6
(3
2%

)
10
0

65
.1
0
/7

8
/5

6
(2
0%

)
65
.1
0
/7

8
/5

6
(2
0%

)
65
.1
0
/7

8
/5

6
(2
0%

)
10
00

65
.1
0
/7

8
/5

6
(2
0%

)
65
.1
0
/7

8
/5

6
(2
0%

)
65
.1
0
/7

8
/5

6
(2
0%

)
**

*
In

th
e
“#
cu
t-e

dg
es
”
co
lu
m
n,

ea
ch

ce
ll
sh
ow

st
he

nu
m
be
ro

fc
ut
-e
dg
es

of
fe
as
ib
le

so
lu
tio

ns
in

a
fo
rm

at
of

“a
ve
ra
ge

/b
es
t/

wo
rs
t(
pr
ob
ab
ili
ty

of
fe
as
ib
le
so
lu
tio

ns
).”

5.6. CONCLUSION 93

5.6 Conclusion
In this chapter, we proposed a fully-connected Ising model embedding method for 20k-
spin CMOS annealingmachines. Experimental results effectively show that our proposed
method embeds Ising models using less physical spins compared to the conventional de
facto standard method in the practical problem size, and that the probability of feasible
solutions and the solution quality using our proposed method is better than those of the
conventional method when solving practical combinatorial optimization problems.

General considerations and optimizations of the annealing parameters, and applying
our method to other combinatorial optimization problems are future works.

Chapter 6

Rectangle Packing by Ising Computers

6.1 Introduction
In Chapter 5, we firstly propose an embedding method of Ising models onto 20k-spin
CMOS annealing machines. In this chapter, to accelerate the floorplanning problem in
Chapter 2, Chapter 3, and Chapter 4, which is the bottleneck in both speed and scalability
as described in Section 4.5.3, a floorplanning problem is mapped onto an Ising model.
Annealings of the mapped Ising model are performed by using the embedding method
proposed in Chapter 5.

Floorplanning of modules has been a significant role in VLSI design automation.
Floorplanning can be formulated as the “Rectangle Packing Problem” (as shown in
Fig. 6.11) and many floorplanning methods have been proposed in this couple of decades.
It is known that floorplanning techniques are applied for not only VLSI design automa-
tion but also other domains such as the strip-packing problem (or marker making prob-
lem) [22] and the nesting problem [50] which are related to design methodologies in the
textile industry.

Ising model-based computers (or annealing machines) are the type of a non-von Neu-
mann computer and recently studied and expected to solve combinatorial optimization
problems efficiently. Annealing machines search the ground-state of Ising models. If
we give an assignment for the optimal solution of a combinatorial optimization prob-
lem to the ground-state of an Ising model (i.e., mapping of a problem onto an Ising
model), we can solve the combinatorial optimization problem by annealing machines.
Some physical annealing machines have been developed in [7, 31, 59, 70, 73]. D-Wave
quantum annealing machine [7, 31] has a superconductor chips which works under very
low temperature. D-Wave machine has 2,048 spins (or qubits) and they are connected
in Chimera graph topology. CMOS annealing machines [70,73] are annealing machines

1The problem details are described in Section 6.2.

94

6.1. INTRODUCTION 95

!

"

#

$

!"#$%

!"#$%!"&'$()*%+,$-&.")/&)/$"'&0"1$2&-"3$-

&'()*%+,)

4"%"5"3$!*'$*!#$

!

"

!"#$%&'()*"+

&$%#$%

6,77'8,*%&70&'$()*%+,$-&9":$:;&-$<=$%($>8*"'?

$

#
!

"

@&1&A @&1&@ B&1&C D&1&E

#$&F&9@G@?19@GC?

F&H1I&F&DA

Figure 6.1: An example of “Rectangle Packing Problem.”

using CMOS circuits. 20k-spin CMOS annealing machine [70] is implemented using
CMOS (65-nm) technology which works at room temperature. It has 20,480 (20k) spins
and they are connected in 128 × 80 × 2-lattice topology. According to [70], the power
efficiency of 20k-spin CMOS annealing machine is 1,800 times higher compared to that
of a 1.87-GHz Intel Core i5 processor. FPGA-based annealing machine by Fujitsu Lab-
oratories Ltd. [59] has 1,024 spins which are fully connected. According to [59], it can
solve a combinatorial optimization problem 12,000 times faster compared to a 3.5-GHz
Intel Xeon E5-1620 v3 processor.

Solving relatively simple problems by annealing machines are studied so far. How-
ever, not so many works focus on the more practical problems. The scheduling problems,
which are ones of relatively practical problems and related to EDA domains, are solved
on the D-Wave machine as a problem of “Job-Shop Scheduling” in [62]. Regarding
the “Rectangle Packing Problem,” which is also one of relatively practical problem,
sequence-pair [44] has a remarkable contribution. Sequence-pair can represent any
floorplans of rectangles by using two sequences of rectangles. Sequence-pair itself is a
representation of a floorplan. We generally optimize a sequence-pair (or floorplan) using
meta heuristic methods such as simulated annealing (SA) [32], where the computation
time may be the bottleneck. Thus, it is worth applying Ising model-based computations

96 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

for it. For the “Rectangle Packing Problem,” the energy function of Ising model has
been briefly proposed in [68], recently. They firstly proposed a mapping of “Rectangle
Packing Problem” to an Ising model and constructed the energy function. However, they
only evaluated the energy and did not evaluate the solutions of the problem. They does
not evaluate the performance with keeping the use of annealing machine in mind as well.

In this chapter, we try to solve the floorplanning problem by annealing machines to
investigate possibilities of annealing machines. We propose a mapping of “Rectangle
Packing Problem” for solving it by the annealing machines. In our proposed mapping,
a sequence-pair is represented on an Ising model, and the energy function to obtain
the optimal solution of the problem is constructed. Our proposed approach maps a
“Rectangle Packing Problem” with N rectangles onto a 3N3-spin logical Ising model.
Experimental results demonstrate that through the proposed approach we can solve the
problem with nine rectangles at the maximum on a fully-connected annealing machine
and the problem with three rectangles at the maximum on 20k-spin CMOS annealing
machine.

The contributions of this chapter are:

1. We realize the Ising model mapping of “Rectangle Packing Problem” with N
rectangles onto the 3N3-spin Ising model using sequence-pair for solving it by the
Ising model-based computers.

2. Experimental results successfully demonstrate that through the proposed approach
we can solve the problemwith nine rectangles at themaximumon a fully-connected
annealing machine and the problem with three rectangles at the maximum on 20k-
spin CMOS annealing machine.

This chapter is organized as follows: Section 6.2 describes our problem formulation;
Section 6.3 proposes our Ising model mapping to solve the “Rectangle Packing Prob-
lem”; Section 6.4 shows experimental results and discussion; Section 6.5 gives several
concluding remarks and future works.

6.2 Problem Definition
Figure 6.1 shows an example of “Rectangle Packing Problem.” Assume that a set of N
rectangles R = {ri |1 ≤ i ≤ N} are given. Let wi and hi be the width and height of a
rectangle ri, respectively. In this chapter, the width and height of a rectangle is fixed,
and no rotations are allowed, for simplicity. Let W and H be the width and the height
of the boundary box, respectively. The objective is to minimize the boundary box area
WH without overlapping of rectangles. The “Rectangle Packing Problem” is defined as
follows:

6.3. PROPOSED ISINGMODELMAPPINGOFRECTANGLEPACKINGPROBLEM97

Definition 6.1. For a given R (a set of N rectangles with their width and height), the
“Rectangle Packing Problem” is, to minimize WH and generate its floorplan without
overlapping rectangles whereW and H are the width and the height of the boundary box,
respectively. !

This problem is known as an NP-hard problem [44].

6.3 Proposed Ising Model Mapping of Rectangle Pack-
ing Problem

6.3.1 Sequence-Pair [44]
A few decades ago, Murata et al. proposed a remarkable floorplan representation named
sequence-pair [44]. The main advantage of sequence-pair is that any floorplans of
rectangles can be represented by two sequences of rectangles. Since sequence-pair itself
is a representation of a floorplan, we generally optimize a sequence-pair (or floorplan)
using metaheuristic methods such as simulated annealing (SA) [32]. For example, a
representation by sequence-pair of Fig. 6.1 is written as (Γ+, Γ−) = (4 1 3 2, 1 2 4 3).

From a sequence-pair to a floorplan of rectangles, they proposed anO(N2) algorithm
by generating the oblique grid and horizontal/vertical constraint graphs (Gh/Gv) followed
by finding longest paths in Gh and Gv in [44].

6.3.2 Ising Model
Ising model is a theoretical magnetic model in statistical mechanics, which consists of
spins, interactions between spins, and external magnetic fields on spins. An Ising model
is defined on an undirected graph M = (V, E) where V and E are sets of spins and
interactions between spins, respectively. For each pair of spins u ∈ V and v ∈ V (where
u ! v), (u, v) ∈ E denotes an interaction between spin u and v. Each spin si (i ∈ V) has
either of the two values+1/−1 (or states up/down). The energy function (or Hamiltonian)
of an Ising model is given by

H = −
∑

(i, j)∈E
Ji j sis j −

∑
i∈V

hisi, (6.1)

where Ji j is the interaction between spin si and spin sj , hi is the external magnetic field
of spin si.

98 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

Oblique Grid Longest Path on G Longest Path on G

4 1 3 2

1

2

4

3

H H H

.
.
.

...

.
.
.

Γ

Γ

w h

.
.
.

1

2

3

4

H

QUBO (Ising model)

.
.
.

...

x (s) y (t) z (u)

...

...

...

Mapping

Spin: = 0 (-1) = 1 (+1)

H

w

.
.
.

h

.
.
.

Figure 6.2: Our proposed mapping to an Ising model for the “Rectangle Packing Prob-
lem.” When the number of rectangles is N , we need three parts of N3-spin Ising models.
In total, 3N3 logical spins are required. The colored edges represent interactions between
spins, but many of them are omitted.

6.3. PROPOSED ISINGMODELMAPPINGOFRECTANGLEPACKINGPROBLEM99

6.3.3 Mapping to Ising Model and Energy Function
Figure 6.2 shows our proposed Ising model mapping. Our approach maps “Rectangle
Packing Problem” using sequence-pair to an Isingmodel. Thewhole Isingmodel consists
of three parts: (1) oblique grid, (2) horizontal constraint graph (Gh), and (3) vertical
constraint graph (Gv). Similar to [68], each of them is composed of N3 spins.

Let xi, j,k , yi, j,k , and zi, j,k be 0/1 (zero or one) binary variables. Introducing 0/1 binary
variables makes us easy to construct the energy function. The energy function using
0/1 binary variables is called a QUBO (Quadratic Unconstrained Binary Optimization)
representation.

Let us introduce the details of these three variables:

xi, j,k : In the oblique grid, xi, j,k = 1 means that rectangle rk is at the i-th order in Γ+ and
at the j-th order in Γ−.

yi, j,k : In the horizontal constraint graph (Gh), yi, j,k = 1 means that it is on the longest
path on Gh. yi, j,k = 0 means that it is not.

zi, j,k : In the vertical constraint graph (Gv), zi, j,k = 1 means that it is on the longest path
on Gv . zi, j,k = 0 means that it is not.

To map a QUBO to an Ising model, we need to convert binary variables (0/1) to spin
variables (−1/+1). Let si, j,k , ti, j,k , and ui, j,k be spin variables corresponding to the binary
variables xi, j,k , yi, j,k , and zi, j,k , respectively. A 0/1 binary values xi, j,k can be converted
to a −1/+1 spin variable by the following equation:

xi, j,k =
si, j,k + 1

2 (6.2)

Similarly, yi, j,k and zi, j,k can be converted to ti, j,k and ui, j,k , respectively.

Necessary Constraint: In Oblique Grid

In the oblique grid, every rectangle must appear only once. In other words, in our Ising
model mapping, the following constraint must be satisfied for all k:

N∑
i=1

N∑
j=1

xi, j,k = 1 (∀k). (6.3)

100 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

To express this constraint in the energy function of Ising model, we need to minimize
the following terms:

:;
<

N∑
i=1

N∑
j=1

xi, j,k − 1=>
?
2

=
:;
<

N∑
i=1

N∑
j=1

si, j,k + 1
2 − 1=>

?
2

=
⎧⎪⎨
⎪⎩
1
2

N∑
i=1

N∑
j=1

(
si, j,k + 1

)
− 1

⎫⎪⎬
⎪⎭
2

=
:;
<
1
2

N∑
i=1

N∑
j=1

si, j,k +
N2

2 − 1=>
?
2

=
1
4
:;
<

N∑
i=1

N∑
j=1

si, j,k
=>
?
2

+
N2 − 2

2

N∑
i=1

N∑
j=1

si, j,k +
(
N2 − 2

2

)2

=
1
4

N∑
i=1

N∑
j=1

N∑
i′=1

N∑
j ′=1

si, j,k si′, j ′,k +
N2 − 2

2

N∑
i=1

N∑
j=1

si, j,k + const. (6.4)

There must also exist only one rectangle for each horizontal/vertical oblique line.
Therefore, the following constraints must be satisfied for all i and for all j like Eq. (6.3):

N∑
j=1

N∑
k=1

xi, j,k = 1 (∀i), (6.5)

N∑
i=1

N∑
k=1

xi, j,k = 1 (∀ j). (6.6)

Similarly to Eq. (6.4), we convert these xi, j,k to si, j,k .
By defining constraints for all i, j, and k, we can constructHA. In Fig. 6.2, a part of

interactions related to HA are shown in green color.
These three constraints are necessary constraints. If any of these constraints are not

satisfied, the floorplan of rectangles and the area are undefined, since the sequence-pair
cannot be generated.

Supplementary Constraint 1: Between Oblique Grid and Constraint Graphs

In the Ising model representing the horizontal constraint graphs (Gh), let each spin yi, j,k
correspond to xi, j,k . If xi, j,k = 0, then yi, j,k should be zero. If xi, j,k = 1, then yi, j,k should

6.3. PROPOSED ISINGMODELMAPPINGOFRECTANGLEPACKINGPROBLEM101

be one when yi, j,k is on the longest path of Gh, or zero when yi, j,k is not on the longest
path of Gh. In this constraint, we just express duplications of xi, j,k as yi, j,k by putting
a positive interaction between two spin variables representing the oblique grid and the
spin representing the horizontal constraint graph. We set the same interactions for the
vertical constraint graph. The energy function is:

HB = −
N∑
i=1

N∑
j=1

N∑
k=1

si, j,kti, j,k −
N∑
i=1

N∑
j=1

N∑
k=1

si, j,kui, j,k . (6.7)

The first term in the right-hand side of Eq. (6.7) is minimized, when the sign of si, j,k and
the sign of ti, j,k is the same (i.e., si, j,k = ti, j,k = 1 or si, j,k = ti, j,k = −1). When the signs
are different, the energy increases. We can say similar way for the second term.

We can constructHB as described above. In Fig. 6.2, a part of interactions related to
HB are shown in blue color.

Note that this constraint is a supplementary constraint, which means that even if this
constraint is not satisfied, the solution is feasible as long as the “Necessary Constraint”
described in Section 6.3.3 is satisfied.

Supplementary Constraint 2: In Constraint Graphs

For each constraint graphs, we introduce constraints which prohibit spins to be one
simultaneously.

For the horizontal constraint graph, for each r ∈ R, any rectangles which are relatively
“above” or “below” of r must not be selected as the longest path simultaneously. To
represent this constraint in the Ising model, we construct the following energy function:

Hhorizontal
G =

N∑
i=1

N∑
j=1

N∑
k=1

∑
y′∈Ai, j,k

yi, j,k y
′ (6.8)

where Ai, j,k is the set of spins which are “above” on the Gh from a spin at the position of
(i, j, k). Similarly for Gv ,Hvertical

G is constructed.
The sum of these two energy function HG = Hhorizontal

G + Hvertical
G is the energy

function for “Supplementary Constraint 2.” In Fig. 6.2, a part of interactions related to
HG are shown in orange color.

Note that this constraint is a supplementary constraint as well as “Supplementary
Constraint 1.”

102 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

Objective Function 1: Area

The following energy function is minimized when the area of the boundary box (WH) is
minimum:

Harea = WH

=

(∑
i∈Ph

wi

) (∑
j∈Pv

hj

)

=

(
N∑
i=1

wiyi

) :;
<

N∑
j=1

hj zj
=>
?

=

N∑
i=1

N∑
j=1

(wi hj)yi z j, (6.9)

where Ph and Pv is a set of rectangles on one of the paths in Gh and Gv , respectively.

Objective Function 2: Longest Path

The energy function introduced in “Objective Function 1: Area” does not ensure that the
longest path is selected in Gh and Gv . The following energy function is minimized when
the longest path is selected in both Gh and Gv .

Hlongest =
N∑
i

(−wiyi) +
N∑
i

(−hizi) . (6.10)

Overall Energy Function

The overall energy function is the weighted sum of all energy functions calculated above:

H = αHA + βHB + γHG + δHarea + ϵHlongest (6.11)

where α, β, γ, δ, and ϵ are the user-specified (or hyper) parameters.

6.4 Experiments and Discussion
In this section, we evaluate our proposed mapping by using the Ising model simulator.

6.4.1 Experimental Results
Table 6.1 shows the summary of benchmarks used in our experiments. Note that “inst4”
is the same as in Fig. 6.1.

6.4. EXPERIMENTS AND DISCUSSION 103

Table 6.1: Summary of benchmarks.
Name N Size of each rectangles
inst1 3 {1 × 1, 1 × 1, 1 × 1}
inst2 3 {4 × 6, 4 × 4, 2 × 3}
inst3 3 {40 × 60, 40 × 40, 20 × 30}
inst4 4 {4 × 6, 4 × 4, 2 × 3, 5 × 1}
inst5 5 {4 × 6, 4 × 4, 2 × 3, 5 × 1, 1 × 1}
inst6 6 {4 × 6, 4 × 4, 2 × 3, 5 × 1, 1 × 1, 7 × 8}
inst7 7 {4 × 6, 4 × 4, 2 × 3, 5 × 1, 1 × 1, 7 × 8, 10 × 2}
inst8 8 {4 × 6, 4 × 4, 2 × 3, 5 × 1, 1 × 1, 7 × 8, 10 × 2, 3 × 9}
inst9 9 {4 × 6, 4 × 4, 2 × 3, 5 × 1, 1 × 1, 7 × 8, 10 × 2, 3 × 9, 5 × 7}
inst10 10 {4 × 6, 4 × 4, 2 × 3, 5 × 1, 1 × 1, 7 × 8, 10 × 2, 3 × 9, 5 × 7, 4 × 1}

The width and height of each rectangle are normalized since the amount of area
causes an influence to the energy value of Harea (calculated in Eq. (6.9)) and that of
Hlongest (calculated in Eq. (6.10)) if they are not. For example, if the width and height
are too small, Harea tends to be smaller than the other energy costs. If the width and
height are too large, Harea tends to be larger than the other energy costs. We need to
remove this influence. LetWsum and Hsum be the sum of the width and the height of all
the rectangles, respectively, wi and hi for all i are normalized as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′
i ← wi

Wsum + Hsum
,

h′i ← hi
Wsum + Hsum

.
(6.12)

To check the effects for this normalization, we prepare “inst2” and “inst3” as in Table 6.1.
We have implemented our proposed approach by Python and C++. The Ising model

simulator by Hitachi, Ltd. [70] was used. We tried two types of annealing machine as:

Complete: For an annealing machine which is assumed to have an Ising model topology
of a complete graph. [59] is one of such annealing machines.

[70] w/ Ch. 5: For 20k-spin CMOS annealing machine [70] with a modified version of
the embedding method proposed in Chapter 5. The proposed method in Chapter 5
determines the logical spin value by the majority vote of all the corresponding
physical spins. In this chapter for “Rectangle Packing Problem,” we determine
the logical spin value by the majority vote of the corresponding physical spins
which are connected to spins representing the oblique grid, since only spins for the
oblique grid is evaluated while the other spins are for the area calculation. We set
the strong ferromagnetic interaction value as JF = 4.

104 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

Table 6.2: Experimental results.
Name N Target #spins Prob. (%) Area (best) Area (avg.)
inst1 3 Complete 81 42.0 3 3.62 ± 0.49

[70] w/ Ch. 5 6642 0.2 4 4.00*
inst2 3 Complete 81 52.0 52 61.00 ± 6.56

[70] w/ Ch. 5 6642 0.2 60 60.00*
inst3 3 Complete 81 52.0 5200 6100.00 ± 656.07

[70] w/ Ch. 5 6642 0.2 6000 6000.00*
inst4 4 Complete 192 54.0 56 85.37 ± 17.57

[70] w/ Ch. 5 37056 0 — —
inst5 5 Complete 375 34.4 56 91.95 ± 18.35

[70] w/ Ch. 5 141000 — — —
inst6 6 Complete 648 25.4 128 186.72 ± 34.97

[70] w/ Ch. 5 420552 — — —
inst7 7 Complete 1029 12.8 169 266.86 ± 58.91

[70] w/ Ch. 5 1059870 — — —
inst8 8 Complete 1536 2.8 221 367.71 ± 91.65

[70] w/ Ch. 5 2360832 — — —
inst9 9 Complete 2187 0.8 304 375.00 ± 78.67

[70] w/ Ch. 5 4785156 — — —
inst10 10 Complete 3000 0 — —

[70] w/ Ch. 5 9003000 — — —
* Since the number of obtained solutions is one, the unbiased estimation of standard
deviation is undefined.

The parameters in the energy function Eq. (6.11) are set to be α = 2, β = 1, δ = 1,
γ = 1, and ϵ = 1. The simulation parameters are shown in Table 6.3. Since the number
of required physical spins for [70] is larger, 10,000 annealing steps for “Complete” is
enough, while more steps is needed for “ [70].” We tried 500 times for each annealing
with different random seeds.

Table 6.2 shows the results of our experiments. In Table 6.2, “Target” column means
the target annealing machine and the Ising model embedding method. “Prob. (%)”
column means the probability of obtaining the feasible solutions. “Area (best)” and
“Area (avg.)” mean the best and average value ofWH (area of boundary box) among the
feasible solutions along with the unbiased estimation of standard deviation, respectively.

We can see the following as seen in the result. The probability of obtaining the
feasible solutions tend to decrease as N increases. As for targeting “Complete,” the
proposed approach can get the solutions up to N = 9. For 20k-spin CMOS annealing

6.4. EXPERIMENTS AND DISCUSSION 105

Table 6.3: Simulation parameters.
Parameter Value
Initial spin value Random
Spin flipping probability (at the beginning) 0.9
Spin flipping probability (at the end) 0.005
Annealing steps 10,000 (for “Complete”)

or 100,000 (for “ [70]”)

Table 6.4: Optimal solutions by the brute-force search.
Name N Optimal Area CPU Time (sec.)
inst1 3 3 0.035
inst2 3 52 0.035
inst3 3 5200 0.038
inst4 4 56 0.072
inst5 5 56 1.290
inst6 6 120 61.007

machine [70] with the embedding method proposed in Chapter 5, the proposed approach
can get the solution only N = 3. The instance “inst3” contains rectangles which have the
rectangles where the width and the height is just 10 times as much as the rectangles in
“inst2.” Owing to the normalization of the rectangle size, we can get the same floorplan
results both in “inst2” and “inst3” and the area of “inst3” is just 100 times as that of
“inst2.”

6.4.2 Comparison to Brute-Force Search

To check the quality of the solution, we have also implemented a brute-force search
algorithm in Python on CentOS 6.8 and Intel Xeon CPU E5-2680 v3 2.50GHz × 40
machine with 270GB memory. The optimal solutions obtained by our brute-force search
algorithm are shown in Table 6.4. Our brute-force search algorithm can obtain the
optimal solution up to N = 6 (“inst6”) within one hour. For N ≥ 7, our brute-force
algorithm cannot obtain the solution within one hour. As seen in Table 6.2 and Table 6.4,
our solution by annealing machine successfully reaches the optimal solution up to N = 5
(“inst5”) for “Complete.” For “ [70],” the quality of solutions is not good as that of for
“Complete.”

106 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

Simulated annealing

CMOS annealing

Figure 6.3: Comparison of the required annealing time between simulated annealing and
CMOS annealing machine with the same quality of solutions (area).

6.4.3 Comparison to Simulated Annealing

We compare the SA-based approach for solving “Rectangle Packing Problem” described
in Section 4.5.4 and CMOS annealing in terms of computational complexity. Firstly, one
of the advantages of the SA is that a feasible solution is always obtained by the SA since
it is based on the sequence-pair representation. However, a computation time of O(N2)
is needed by using the method proposed in [44] to obtain an area from the sequence-pair,
which is a disadvantage of the SA. On the other hand, we only need a computation time
ofO(1) since the calculation of the cost function is included in the energy function of the
Ising model. Secondly, since the SA swaps two selected rectangles in the sequence when
performing a transition to an adjacent solution, two rectangles are always changed within
one step. However, in the CMOS annealing, the spins corresponding to the all rectangles
are updated within one step. Lastly, CMOS annealing machine can be easily parallelized
by utilizing some topological characteristics like the 20k-spin CMOS annealing machine,
while the SA is difficult to be parallelized. Therefore, CMOS annealing machine has a
good scalability against the number of rectangles N compared to the SA-based approach.

We compare computational time of the SA and the CMOS annealing for the “Rectan-
gle Packing Problem” experimentally. For the CMOS annealing machine, we performed
annealings with 10000 annealing steps as in Section 6.4.1. For the annealing with the
minimum area for each instance, we picked up all spin status for all steps and examined
the minimum step having the solution which is the same as that of the final step (required
annealing step). We also measured computational time of the SA-based algorithm to get
the same quality of solution. In the SA, when an area calculated in each step equals to

6.4. EXPERIMENTS AND DISCUSSION 107

or is smaller than the target area, SA is stopped. The other environments of SA is the
same as in Section 4.5.4. We compare these computational times. We assume that an
Ising model on the CMOS annealing machine can be mapped onto the 20k-spin CMOS
annealing machine. When an required annealing step is R on the CMOS annealing
machine, the required annealing time is calculated by R × 8 × 10 [ns]. Figure 6.3 shows
the comparison results. As seen in Fig. 6.3, we again confirm that the CMOS annealing
machine has a good scalability for the number of rectangles N against the SA-based
approach experimentally. We conclude that the solving of “Rectangle Packing Problem”
can be accelerated by using the CMOS annealing machines.

6.4.4 Discussion
We can say that an annealing machine with a fully-connected Ising model is reasonably
effective for solving “Rectangle Packing Problem.” It needs less physical spins and less
annealing steps. If it is not practical to implement a fully-connected Ising model in
the physical perspective, an annealing machine with more connections between spins is
required to solve the real problem. Increasing connections between spins is considered
to be an important task. Other tasks such as increasing physical spins and increasing
the clock period are the next. For an annealing machine without a fully-connected Ising
model, we need an embedding method with shorter length of chains while allowing
a small variation in chain length. The method proposed in Chapter 5 generates the
same chain length for every logical spins for its simplicity of the algorithm. It is worth
considering that an embedding method which ensures the difference between the longest
chain length and the shortest one becomes less than K where K is an input parameter,
for example.

Even though an annealing machine with fully-connected Ising model is assumed, we
can obtain the feasible solution with N = 9 at the maximum. This number is considered
to be small when solving the real packing problem. The approach in this chapter only
recognizes a solution when all the constraints on the oblique grid are satisfied. If we can
deal with these unsatisfactions by correcting the spins related to the oblique grid as a
post-process of the annealing, we may obtain solutions when N becomes larger. These
are ones of the future works.

Improving the mapping to reduce the number of required physical spins is another
future work. For example, the connections between the Ising model representing the
oblique grid and the Ising model representing the horizontal constraint graph is sparse
compared to other connections, since for every i, j, and k, xi, j,k is only connected to yi, j,k .
The number of connections between xi, j,k and yi, j,k is N3, which means the connection
between this two parts is sparse. Similarly, the connections between the Ising model
representing the oblique grid and the Ising model representing the horizontal constraint

108 CHAPTER 6. RECTANGLE PACKING BY ISING COMPUTERS

graph is sparse. On the other hand, the connections between the Ising model representing
the horizontal constraint graph and the vertical one is dense, since for every i, j, and k,
yi, j,k is connected to zi′, j ′,k ′ (for all i′, j′, k′). The number of connections between yi, j,k
and zi, j,k is N6, which means the connection between this two parts is dense. Creating
an embedding method which utilizes this kind of characteristics to reduce the number of
required physical spins is another future work.

6.5 Conclusion
In this chapter, we propose an Ising model mapping of “Rectangle Packing Problem”
for solving it on the annealing machines. In our proposed mapping, a sequence-pair is
represented on an Ising model and the energy function to obtain the optimal solution
of the problem is constructed. Our proposed approach maps a “Rectangle Packing
Problem” with N rectangles onto a 3N3-spin logical Ising model. Experimental results
demonstrate that through the proposed approach we can solve the problem with nine
rectangles at the maximum on a fully-connected annealing machine and the problem
with three rectangles at the maximum on 20k-spin CMOS annealing machine. We can
also expect acceleration by annealing machines against the SA-based approach to solve
the problem from the experimental results.

Corrections of spins when interpreting them to reduce the unsatisfactions of the
constraints as a post-process in the application layer, and improving the mapping to
reduce the number of required physical spins are future works. Solving the problem with
interconnection wires and/or the problem with allowing rectangle rotations by annealing
machines, and comparing the proposed approach to other metaheuristic algorithms (such
as SA) are also ones of future works.

Chapter 7

Conclusion

In this dissertation, three floorplan-aware performance-driven HLS algorithms targeting
RDR architectures are proposed to cope with the increasing of the interconnection
delays. In Chapter 2, a floorplan-aware high-level synthesis algorithm with operation
chainings based on inter-island distance is proposed. The proposed algorithm enumerates
feasible candidates of the operation chaining, and selects the best ones based on maximal
chaining distance (MCD). Experimental results demonstrate that the proposed algorithm
reduces the latency by up to 40.0% compared to the original one. In Chapter 3, a
floorplan-aware high-level synthesis algorithm with multiple-operation chainings based
on path enumeration is proposed. The proposed algorithm is an extended version of
the algorithm proposed in Chapter 2, and enumerates multiple-operation-chaining path
candidates. Experimental results demonstrate that the proposed algorithm reduces the
latency by up to 30.4% compared to a conventional algorithm, and reduces the latency
by up to 24.4% compared to the algorithm proposed in Chapter 2. In Chapter 4, a
floorplan-driven bitwidth-aware high-level synthesis algorithm using operation chainings
is proposed. The proposed algorithm optimizes bitwidths of functional units and utilizes
the vacant islands by adding some extra functional units to realize effective operation
chainings. Experimental results demonstrate that the proposed algorithm reduces the
latency by up to 47% compared to the algorithm in Chapter 2 without area overheads. In
summary, these algorithms successfully reduce the latency compared to the conventional
algorithms while coping with the increasing interconnection delays. However, the SA-
based floorplanning remains the bottleneck in both speed and scalability.

To deal with the bottleneck above, we have tried to apply the floorplanning problem
to the forthcoming Ising model-based computers. In Chapter 5, a fully-connected Ising
model embedding method for 20k-spin CMOS annealing machines is proposed. The
proposed method embeds Ising models using less physical spins compared to the de
facto standard conventional method in the practical problem size, and that the probability
of feasible solutions using the proposed method is better than those of the conventional

109

110 CHAPTER 7. CONCLUSION

method InChapter 6, a mapping of the rectangle packing problem for Ising-model based
computers is proposed. Through the proposed mapping we can solve the problem with
nine rectangles at the maximum on a fully-connected annealing machine and the problem
with three rectangles at the maximum on 20k-spin CMOS annealing machine. We can
also expect acceleration by annealingmachines against the SA-based approach to solve the
problem from the experimental results. We can see a reasonable expectation of using Ising
model-based computers for the practical problems, but have some tasks. Corrections
of spins when interpreting them to reduce the unsatisfactions of the constraints as a
post-process in the application layer, and improving the mapping to reduce the number
of required physical spins are ones of the future works. To implement and evaluate our
HLS solutions onto FPGA devices is also one of the future works.

Acknowledgment

First and foremost, I would like to give my deepest and most heartfelt thanks to Prof. No-
zomu Togawa (तڭ઒๬ށ) at the Department of Computer Science and Communica-
tions Engineering of Waseda University for his all supports on my research work for
almost seven years. He has taught me not only research-related techniques and skills but
everything about life.

I’m genuinely grateful to Prof. Masao Yanagisawa (༄ᖒ੓ੜڭत) at the Department
of Electronic and Physical Systems of Waseda University, Prof. Hayato Yamana ૣ໊ࢁ)
ਓڭत) at the Department of Computer Science and Communications Engineering of
Waseda University, Prof. Shu Tanaka (ాதफ।ڭत) at Waseda Institute for Advanced
Study of Waseda University for their strong support and advice.

I would like to express my gratitude to Prof. Youhua Shi (࢙ຢ՚ڭत) at the Depart-
ment of Electronic and Physical Systems of Waseda University for his comments and
advice on my research work. I have also received technical support from Dr. Shin-ya
Abe (Ѩ෦৾໼ࢯ) at Japan Broadcasting Corporation, Dr. Kazushi Kawamura (઒ଜ
Ұࢤॿڭ) at Waseda University, Mr. Yuta Hagio (ഡඌ༐ଠࢯ) at Japan Broadcasting
Corporation, and Dr. Masashi Tawada (ଟ࿨ాխࢣॿڭ) at Waseda University for my
research work.

I also thank Ms. Shuko Watanabe (౉෦पࢯࢠ) and all the students in the Togawa
Laboratory and the Yanagisawa Laboratory for their kindness.

Mr. Masato Hayashi (ྛਅਓࢯ) and Dr. Masanao Yamaoka (ࢯԬխ௚ࢁ) at Hitachi,
Ltd. have provided us the Ising model simulator. We have had valuable discussions.

Mr. Shusuke Yamada ,(ࢯल༞ాࢁ) a former student at the Department of Applied
Physics of Tokyo University of Science, and Dr. Yoichiro Hashizume (ڭ༸Ұ࿠ॿ௺ڮ)
at the Department of Applied Physics of Tokyo University of Science gently provided us
some helpful technical documents.

I would like to offer my special thanks to Mr. Shinichi Takayanagi (ࢯ༄৻Ұߴ) at
LINE Corporation, Mr. Tomomitsu Motohashi (ຊڮஐޫࢯ) at Sustainable Medicine,
and Mr. Kotaro Tanahashi (୨ߞڮଠ࿠ࢯ) at Recruit Communications Co., Ltd. for
their insightful discussion and great beers.

I have had a wonderful time not to mention in the research life but in leisure time with

111

112

my colleagues especiallyMr. Keita Igarashi (ࢯଠܒཛྷेޒ) at Hitachi, Ltd., Mr.Manabu
Iwasawa (ࢯᖒֶؠ) at NTT DATA Corporation, Mr. Masaru Oya (େ԰༏ࢯ) at Waseda
University, Ms. Huiqian Jiang (ঽܛ၃ࢯ) at NEC Corporation, Mr. Kengo Takeda
(஛ా݈ࢯޗ) at Panasonic Corporation, Mr. Koichi Fujiwara (ࢯҰߊݪ౻) at NEC
Corporation, and Mr. Shinnosuke Yoshida (٢ా৻೭հࢯ) at NTT Communications
Corporation.

We have encouraged each other and improved ourselves with Mr. Hayate Tanaka (ా
தᰜࢯ) at Waseda University, Mr. Hirotaka Tamura (ాଜ༟ࢯߴ) at Waseda University,
and Ms. Senami Furubayashi (ࢯͳΈͤྛݹ) at the University of Tokyo.

Mr. Kentaro Nishi (੢ݡଠ࿠ࢯ) at Yahoo Japan Corporation and Mr. Toshiya Hiro-
hata (ኍാढ़ࢯ࠸) at Tribox Inc. have told me a lot not only as a great engineer and a
great business manager but also as my good friends.

Mr. Norihiro Arita (༗ాٓࢯ߂) and Ms. Yuki Matsushita (দԼ༝ࢯق) at Yahoo
Japan Corporation, as well as Mr. Kentaro Nishi, have told me fun and importance of
fabrication, which has led me to work as a next job. We had a special time at Hack Day.

We have had a great time with Mr. Yu Nakajima (தౡ༔ࢯ) at Tribox Inc., Mr. Taka-
fumi Haseda (௕୩ాࢯ࢙و) at Bank, Inc., Mr. Yuki Kobayashi (ࢯ༞ًྛݹ) at Seiko
Watch Corporation, Mr. Shuhei Omura (େଜपฏࢯ) at JGC Corporation, and Mr. Kein
Takeda (෢ాܚӁࢯ) at Tohoku University. I am deeply impressed with their ways of
life, and various experiences with them have made me more mature.

Without encouragements and kindness byMr. FumiyaMatsui (দҪҮ໵ࢯ) atWaseda
University, Mr. Ryutaro Miyazaki (ࢯଠ࿠ོ࡚ٶ) at Tokyo Institute of Technology,
Ms. Chisaki Fujimaki (౻຀ઍ࡙ࢯ) at Tsuda University, and Ms. Eri Tachikawa (ཱ઒
ֆསࢯ) at Tsuda University, my research life would not have been so impressive.

My parents and grandparents encourage me all the time.
Finally, this dissertation has been supported partially by JSPS KAKENHI Grand-

in-Aid for JSPS Fellows and Waseda Research Institute for Science and Engineering,
Grant-in-Aid for Young Scientists (Early Bird).

References

[1] S. Abe, M. Yanagisawa, and N. Togawa, “An energy-efficient high-level synthesis
algorithm for huddle-based distributed-register architectures,” in Proc. of 2012
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 576–579,
May 2012.

[2] S.-Y. Abe, M. Yanagisawa, and N. Togawa, “Energy-efficient high-level synthesis
for HDR architectures,” IPSJ Trans. on System LSI Design Methodology, vol. 5, pp.
106–117, Aug. 2012.

[3] S.-Y. Abe, Y. Shi, M. Yanagisawa, and N. Togawa, “MH4: Multiple-supply-voltages
aware high-level synthesis for high-integrated and high-frequency circuits for HDR
architectures,” IEICE Electronics Express, vol. 9, no. 17, pp. 1414–1422, Sep.
2012.

[4] S.-Y. Abe, “Energy-efficient high-level synthesis algorithms for floorplan-driven
SoC architectures,” Ph.D. dissertation, Waseda University, Feb. 2015.

[5] AG-Monien, “Graph collection,” http://www2.cs.uni-paderborn.de/cs/ag-monien/
RESEARCH/PART/graphs.html.

[6] T. Boothby, A. D. King, and A. Roy, “Fast clique minor generation in chimera
qubit connectivity graphs,” Quantum Information Processing, vol. 15, no. 1, pp.
495–508, Jan. 2016.

[7] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J.
Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, and J. Whittaker,
“Architectural considerations in the design of a superconducting quantum annealing
processor,” IEEETrans. on Applied Superconductivity, vol. 24, no. 4, pp. 1–10, Aug.
2014.

[8] J. Cai, B. Macready, and A. Roy, “A practical heuristic for finding graph minors,”
arXiv preprint arXiv:1406.2741, 2014.

113

114 REFERENCES

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for FPGA-based pro-
cessor/accelerator systems,” inProc. of 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), pp. 33–36, 2011.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson, “LegUp: An open-source high-level synthesis tool for
FPGA-based processor/accelerator systems,” ACM Trans. on Embedded Computut-
ing Systems, vol. 13, no. 2, pp. 24:1–24:27, Sep. 2013.

[11] C.-I. Chen and J.-D. Huang, “CriAS: A performance-driven criticality-aware syn-
thesis flow for on-chip multicycle communication architecture,” in Proc. of 2009
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 67–72,
2009.

[12] C.-I. Chen and J.-D. Huang, “A hierarchical criticality-aware architectural syn-
thesis framework for multicycle communication,” IEICE Trans. on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E93-A, no. 7, pp.
1300–1308, Jul. 2010.

[13] L. Chen, M. Ebrahimi, and M. Tahoori, “Reliability-aware operation chaining in
high level synthesis,” in Proc. of 2015 20th IEEE European Test Symposium (ETS),
pp. 1–6, May 2015.

[14] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect-driven
floorplanning,” in Proc. of the 1999 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 358–363, 1999.

[15] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthesis for
on-chip multicycle communication,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23, no. 4, pp. 550–564, Apr. 2004.

[16] J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for automatic intercon-
nect pipelining,” in Proc. of 41st Annual Design Automation Conference (DAC),
pp. 602–607, 2004.

[17] J. Cong, Y. Fan, G. Han, Y. Lin, J. Xu, Z. Zhang, and X. Cheng, “Bitwidth-aware
scheduling and binding in high-level synthesis,” in Proc. of the 2005 Asia and South
Pacific Design Automation Conference (ASP-DAC), vol. 2, pp. 856–861, Jan. 2005.

[18] J. Cong, Y. Fan, and J. Xu, “Simultaneous resource binding and interconnection
optimization based on a distributed register-file microarchitecture,” ACM Trans. on
Design Automation Electronic Systems, vol. 14, no. 3, pp. 35:1–35:31, Jun. 2009.

REFERENCES 115

[19] M. R. Corazao, M. A. Khalaf, L. M. Guerra, M. Potkonjak, and J. M. Rabaey,
“Performance optimization using template mapping for datapath-intensive high-
level synthesis,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 8, pp. 877–888, Aug. 1996.

[20] P. Coussy, G. Lhairech-Lebreton, and D. Heller, “Multiple word-length high-level
synthesis,” EURASIP Journal on Embedded Systems, vol. 2008, no. 1, p. 916867,
2008.

[21] P. Coussy and A. Morawiec, High-level synthesis from algorithm to digital circuit.
Springer Netherlands, 2008.

[22] D. Domović and T. Rolich, “Solving strip-packing problem using sequence pair,”
in Proc. of 2015 38th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO), pp. 1183–1188, May
2015.

[23] W. C. Elmore, “The transient response of damped linear networks with particular
regard to wideband amplifiers,” Journal of Applied Physics, vol. 19, no. 1, pp.
55–63, Jan. 1948.

[24] D. Eppstein, “Finding large clique minors is hard,” Journal of Graph Algorithms
and Applications, vol. 13, no. 2, pp. 197–204, 2009.

[25] ExPRESS, “Express benchmarks,” http://www.ece.ucsb.edu/EXPRESS/
benchmark/.

[26] S. Gao, H. Yoshida, K. Seto, S. Komatsu, and M. Fujita, “Interconnect-aware
pipeline synthesis for array-based architectures,” IEICE Trans. on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E92-A, no. 6, pp.
1464–1475, Jun. 2009.

[27] Y. Hagio, M. Yanagisawa, and N. Togawa, “High-level synthesis with post-silicon
delay tuning for RDR architectures,” in Proc. of 2013 International SoC Design
Conference (ISOCC), pp. 194–197, Nov. 2013.

[28] J.-D. Huang, C.-I. Chen, W.-L. Hsu, Y.-T. Lin, and J.-Y. Jou, “Performance-driven
architectural synthesis for distributed register-file microarchitecture with inter-
island delay,” IEICE Trans. on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E95-A, no. 2, pp. 559–566, Feb. 2012.

[29] Y.-S. Huang, Y.-J. Hong, and J.-D. Huang, “Communication synthesis for inter-
connect minimization in multicycle communication architecture,” IEICE Trans.

116 REFERENCES

on Fundamentals of Electronics, Communications and Computer Sciences, vol.
E92-A, no. 12, pp. 3143–3150, Dec 2009.

[30] International Technology Roadmap for Semiconductors (ITRS) 2013, http://www.
itrs2.net/2013-itrs.html.

[31] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P.
Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich,
M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson,
and G. Rose, “Quantum annealing with manufactured spins,” Nature, vol. 473, no.
7346, pp. 194–198, May 2011.

[32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-
ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[33] K.-I. Kum and W. Sung, “Combined word-length optimization and high-level syn-
thesis of digital signal processing systems,” IEEETrans. onComputer-AidedDesign
of Integrated Circuits and Systems, vol. 20, no. 8, pp. 921–930, Aug. 2001.

[34] B. Landwehr, P. Marwedel, and R. Dömer, “OSCAR: Optimum simultaneous
scheduling, allocation and resource binding based on integer programming,” in
Proc. of ’94 Conference on European Design Automation (EURO-DAC), pp. 90–
95, 1994.

[35] B. Le Gal and E. Casseau, “Word-length aware DSP hardware design flow based
on high-level synthesis,” Journal of Signal Processing Systems, vol. 62, no. 3, pp.
341–357, 2011.

[36] S. Lee and K. Choi, “Critical-path-aware high-level synthesis with distributed
controller for fast timing closure,” ACMTrans. onDesign Automation of Electronics
Systems, vol. 19, no. 2, pp. 16:1–16:29, Mar. 2014.

[37] A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol. 2,
pp. 1–15, 2014.

[38] T. Ly, D. Knapp, R. Miller, and D. MacMillen, “Scheduling using behavioral
templates,” in Proc. of 32nd Conference on Design Automation (DAC), pp. 101–
106, 1995.

[39] P.Marwedel, B. Landwehr, and R. Dömer, “Built-in chaining: Introducing complex
components into architectural synthesis,” in Proc. of ’97 Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 599–605, Jan. 1997.

REFERENCES 117

[40] K. Mittal, A. Joshi, and M. Mutyam, “Timing variation-aware scheduling and re-
source binding in high-level synthesis,” ACM Trans. Design Automation Electronic
Systems, vol. 16, no. 4, pp. 40:1–40:19, Oct. 2011.

[41] T. Miyoshi, http://synthesijer.github.io/web/.

[42] M. C. Molina, J. M. Mendías, and R. Hermida, “Bit-level scheduling of hetero-
geneous behavioural specifications,” in Proc. of 2002 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 602–608, Nov. 2002.

[43] M.C.Molina, R.Ruiz-Sautua, P.García-Repetto, and J.M.Mendías, “Performance-
driven scheduling of behavioural specifications,” VLSI Journal Integration, vol. 42,
no. 3, pp. 294–303, Jun. 2009.

[44] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement
based on rectangle-packing by the sequence-pair,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 12, pp. 1518–1524, Dec.
1996.

[45] A. Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Floorplan-aware high-
level synthesis for generalized distributed-register architectures,” IEICE Trans. on
Fundamentals of Electronics, Communications and Computer Sciences, vol. E92-
A, no. 12, pp. 3169–3179, Dec. 2009.

[46] T.Okuyama, C.Yoshimura,M.Hayashi, andM.Yamaoka, “Computing architecture
to perform approximated simulated annealing for Ising models,” in Proc. of 2016
IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, Oct.
2016.

[47] S. Park and K. Choi, “Performance-driven scheduling with bit-level chaining,” in
Proc. of 36th Design Automation Conference (DAC), pp. 286–291, 1999.

[48] S. Park and K. Choi, “Performance-driven high-level synthesis with bit-level chain-
ing and clock selection,” IEEETrans. Computer-AidedDesign of IntegratedCircuits
and Systems, vol. 20, no. 2, pp. 199–212, Feb. 2001.

[49] M. Rim, R. Jain, and R. De Leone, “Optimal allocation and binding in high-level
synthesis,” in Proc. of 29th ACM/IEEE Design Automation Conference (DAC), pp.
120–123, Jun. 1992.

[50] T. Rolich, D. Domović, and M. Golub, “Bottom-left and sequence pair for solving
packing problems,” in Proc. of 2016 39th International Convention on Information

118 REFERENCES

and Communication Technology, Electronics and Microelectronics (MIPRO), pp.
1318–1323, May 2016.

[51] R. Ruiz-Sautua, M. C. Molina, J. M. Mendías, and R. Hermida, “Behavioural
transformation to improve circuit performance in high-level synthesis,” in Proc. of
2005 Design, Automation and Test in Europe (DATE), vol. 2, pp. 1252–1257, Mar.
2005.

[52] T. Sadakata and Y. Matsunaga, “A simultaneous module selection, scheduling,
and allocation method considering operation chaining with multi-functional units,”
IEICE Trans. on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E90-A, no. 4, pp. 792–799, Apr. 2007.

[53] Sinby Corporation, http://www.sinby.com/Polyphony/.

[54] S. Sinha and T. Srikanthan, “Dataflow graph partitioning for area-efficient high-
level synthesis with systems perspective,” ACM Trans. on Design Automation of
Electronic Systems, vol. 20, no. 1, pp. 5:1–5:18, Nov. 2014.

[55] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with applica-
tion to silicon compilation,” in Proc. of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI), pp. 108–120, 2000.

[56] M. Tan, S. Dai, U. Gupta, and Z. Zhang, “Mapping-aware constrained scheduling
for LUT-based FPGAs,” inProc. of the 2015ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pp. 190–199, 2015.

[57] S. Tanaka, M. Yanagisawa, T. Ohtsuki, and N. Togawa, “A fault-secure high-level
synthesis algorithm for RDR architectures,” IPSJ Trans. on System LSI Design
Methodology, vol. 4, pp. 150–165, 2011.

[58] H. Tomiyama, A. Inoue, and H. Yasuura, “Statistical performance-driven module
binding in high-level synthesis,” in Proc. of 11th International Symposium on
System Synthesis (ISSS), pp. 66–71, Dec. 1998.

[59] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura, “Accelerator architecture
for combinatorial optimization problems,” Fujitsu Scientific & Technical Journal,
vol. 53, no. 5, pp. 8–13, Sep. 2017.

[60] University of Toronto, http://legup.eecg.utoronto.ca/.

[61] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, and V. Smelyanskiy,
“Quantum optimization of fully connected spin glasses,” Physical Review X, vol. 5,
no. 3, pp. 031 040:1–031 040:8, Sep. 2015.

REFERENCES 119

[62] D. Venturelli, D. Marchand, and G. Rojo, “Job shop scheduling solver based on
quantum annealing,” in Proc. of ICAPS-16 Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling (COPLAS), pp. 25–34, Jun. 2016.

[63] Y.-H. Wu, C.-J. Yu, and S.-D. Wang, “Heuristic algorithm for the resource con-
strained scheduling problem during high-level synthesis,” IET Computers Digital
Techniques, vol. 3, no. 1, pp. 43–51, Jan. 2009.

[64] Xilinx, Inc., http://www.xilinx.com/products/design-tools/vivado/integration/
esl-design.html.

[65] Xilinx, Inc., https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.
html.

[66] Xilinx, Inc., http://www.pynq.io/.

[67] S. Xydis, I. Triantafyllou, G. Economakos, and K. Pekmestzi, “Flexible datapath
synthesis through arithmetically optimized operation chaining,” in Proc. of 2009
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 407–414,
Jul. 2009.

[68] S. Yamada, Y. Hashizume, T. Nakajima, and S. Okamura, “Solving a rectangular
packing problem using quantum annealing (in Japanese),” in Proc. IEICE-ISS
Poster Session at IEICE General Conference 2017, p. 30, Mar. 2017.

[69] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno,
“20k-spin Ising chip for combinational optimization problem with CMOS anneal-
ing,” in 2015 IEEE International Solid-State Circuits Conference (ISSCC) Digest
of Technical Papers, pp. 1–3, Feb. 2015.

[70] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno,
“A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS
annealing,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 303–309, Jan.
2016.

[71] Y. Yi, I. Nousias, M. Milward, S. Khawam, T. Arslan, and I. Lindsay, “System-
level scheduling on instruction cell based reconfigurable systems,” in Proc. of 2006
Design, Automation and Test in Europe (DATE), vol. 1, pp. 1–6, Mar. 2006.

[72] C. Yoshimura, M. Yamaoka, M. Hayashi, T. Okuyama, H. Aoki, K. Kawarabayashi,
andH.Mizuno, “Uncertain behaviours of integrated circuits improve computational
performance,” Scientific Reports, vol. 5, Nov. 2015.

120 REFERENCES

[73] C. Yoshimura, M.Hayashi, T. Okuyama, andM.Yamaoka, “FPGA-based annealing
processor for Ising model,” in Proc. of 2016 Fourth International Symposium on
Computing and Networking (CANDAR), pp. 436–442, Nov. 2016.

[74] D. C. Zaretsky, G. Mittal, R. Dick, and P. Banerjee, “Balanced scheduling and
operation chaining in high-level synthesis for FPGA designs,” in Proc. of 8th
International Symposium on Quality Electronic Design (ISQED), pp. 595–601,
Mar. 2007.

[75] R. Zhao,M. Tan, S. Dai, and Z. Zhang, “Area-efficient pipelining for FPGA-targeted
high-level synthesis,” in Proc. of 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, Jun. 2015.

List of Publications

࿦จʢֶज़ݪࢽஶ࿦จʣ

⟨1⟩ ⃝ K. Terada, M. Yanagisawa, and N. Togawa, “A bitwidth-aware high-level
synthesis algorithm using operation chainings for Tiled-DR architectures,” IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E100-A, no. 12, pp. 2911–2924, Dec. 2017.

⟨2⟩ ⃝ K. Terada, M. Yanagisawa, and N. Togawa, “A high-level synthesis algorithm
with inter-island distance based operation chainings for RDR architectures,” IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E98-A, no. 7, pp. 1366–1375, Jul. 2015.

ձٞࡍࠃ

⟨3⟩ ⃝ K. Terada, M. Yanagisawa, and N. Togawa, “A floorplan-driven high-level
synthesis algorithmwithmultiple-operation chainings based on path enumeration,”
in Proceedings of 2015 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 2129–2132, Lisbon, Portugal, May 2015.

⟨4⟩ ⃝ K. Terada, M. Yanagisawa, and N. Togawa, “A floorplan-driven high-level
synthesis algorithm with operation chainings using chaining enumeration,” in
Proceedings of 2014 IEEE Asia Pacific Conference on Circuits and Systems (APC-
CAS), pp. 248–251, Ishigaki, Japan, Nov. 2014.

಺ֶձࠃ

⟨5⟩ ,઒๬ށ,Ԭխ௚,༄ᖒ੓ੜࢁ,ଠ࿕,ాதफ,ྛਅਓߊాࣉ “20Kεϐϯ CMOS
ΞχʔϦϯάϚγϯΛର৅ͱͨ͠׬શ݁߹ΠδϯάϞσϧϚοϐϯάख๏,”
೔ຊ෺ཧֶձ 2017೥ळقେձ,੝Ԭࢢ, Sep. 2017.

⟨6⟩ (ࠪಡ͋Γ)ߊాࣉଠ࿕,ాதफ,ྛਅਓ,ࢁԬխ௚,༄ᖒ੓ੜ,ށ઒๬, “20Kε
ϐϯCMOSΞχʔϦϯάϚγϯΛର৅ͱͨ͠׬શ݁߹ΠδϯάϞσϧϚοϐ

121

122

ϯάख๏ͱධՁ,” ৘ใॲཧֶձ DAγϯϙδ΢Ϝ 2017࿦จू, pp. 163–168,
Ճլࢢ, Sep. 2017.

⟨7⟩ (ϙελʔൃද)௕୩઒݈ਓ,ੴ઒ྒྷଠ,ߊాࣉଠ࿕,઒ଜҰࢤ,ଟ࿨ాխށ,ࢣ઒
๬, “૊ࠐΈσόΠεͱ FPGAΛ༻͍ͨφϯόʔϦϯΫιϧόͷઃܭͱ࣮૷,”
৘ใॲཧֶձDAγϯϙδ΢Ϝ 2017ϙελʔൃද,Ճլࢢ, Aug. 2017.

⟨8⟩ ,ଠ࿕ߊాࣉ ༄ᖒ੓ੜ, ,઒๬ށ “ԋࢉϏοτ෯ʹͮ͘جԋࢉνΣΠχϯάΛ
༻͍ͨ RDRΞʔΩςΫνϟੑ͚޲ೳߴ޲ࢦҐ߹੒ख๏,” ৘ใ௨৴ֶձࢠి
2016೥ιαΠΤςΟେձߨԋ࿦จू, p. ,ࢢຈࡳ,71 Sep. 2016.

⟨9⟩ (ϙελʔൃද)ߊాࣉଠ࿕,௕୩઒݈ਓ,઒ଜҰࢤ,ଟ࿨ాխށ,ࢣ઒๬, ցػ“
ֶशͱ FPGAΛ༻͍ͨφϯόʔϦϯΫιϧό,”৘ใॲཧֶձDAγϯϙδ΢
Ϝ 2016ϙελʔൃද,Ճլࢢ, Sep. 2016.

⟨10⟩ ,ଠ࿕ߊాࣉ ༄ᖒ੓ੜ, ,઒๬ށ “DFGͷΫϦςΟΧϧύε࠷దԽʹͮ͘جԋ
͍ͨ༺νΣΠχϯάΛࢉ RDRΞʔΩςΫνϟର৅ߴҐ߹੒ख๏,”৴ֶٕใ,
VLD2016-05, pp. 41–46,๺۝भࢢ, May 2016.

⟨11⟩ (ϙελʔൃද)ߊాࣉଠ࿕,઒ଜҰࢤ,ଟ࿨ాխߊݪ౻,ࢣҰ,ށ઒๬, ցֶػ“
शΛ༻͍ͨφϯόʔϦϯΫιϧό,”৘ใॲཧֶձDAγϯϙδ΢Ϝ 2015ϙε
λʔൃද,Ճլࢢ, Aug. 2015.

⟨12⟩ (ࠪಡ͋Γ)ߊాࣉଠ࿕,༄ᖒ੓ੜ,ށ઒๬, “ԋࢉνΣΠχϯάͷީิྻڍɾબ
୒ΞϧΰϦζϜΛ༻͍ͨϑϩΞϓϥϯߴ޲ࢦҐ߹੒ख๏,” ৘ใॲཧֶձ DA
γϯϙδ΢Ϝ 2015࿦จू, pp. 17–22,Ճլࢢ, Aug. 2015.

⟨13⟩ (ࠪಡ͋Γ)ߊాࣉଠ࿕,༄ᖒ੓ੜ,ށ઒๬, “ଟஈԋࢉνΣΠχϯάΛར༻ͨ͠
഑ઢ஗ԆΛߴྀͨ͠ߟҐ߹੒ख๏,”৘ใॲཧֶձDAγϯϙδ΢Ϝ 2014࿦จ
ू, pp. 115–120,Լ࿊ࢢ, Aug. 2014.

⟨14⟩ (ࠪಡ͋Γ)ߊాࣉଠ࿕,༄ᖒ੓ੜ,ށ઒๬, “ԋࢉνΣΠχϯάީิྻͮجʹڍ
͘഑ઢ஗ԆΛߴྀͨ͠ߟҐ߹੒ख๏,”ୈ 27ճճ࿏ͱγεςϜϫʔΫγϣοϓ
࿦จू, pp. 440–445,୶࿏ࢢ, Aug. 2014.

੷৆౳ۀ

⟨15⟩ 2017೥ 8݄৘ใॲཧֶձ DAγϯϙδ΢Ϝ 2017ΞϧΰϦζϜσβΠϯίϯ
ςετ࠷༏ल৆ɽ

⟨16⟩ 2016೥ 9݄৘ใॲཧֶձ DAγϯϙδ΢Ϝ 2016ΞϧΰϦζϜσβΠϯίϯ
ςετ࠷༏ल৆ɽ

123

⟨17⟩ 2016೥ 9݄৘ใॲཧֶձ DAγϯϙδ΢Ϝ 2016ΞϧΰϦζϜσβΠϯίϯ
ςετಛผ৆ɽ

⟨18⟩ 2016೥ 9݄৘ใॲཧֶձୈ 176ճγεςϜͱ LSIͷઃٕܭज़ൃڀݚදձ༏
लൃදֶੜ৆ɽ

⟨19⟩ 2015೥ 8݄৘ใॲཧֶձ DAγϯϙδ΢Ϝ 2015ΞϧΰϦζϜσβΠϯίϯ
ςετ༏ल৆ (ֶੜ෦໳)ɽ

අɾॿ੒ۚڀݚ

⟨20⟩ ૣҴాେֶཧֶ޻ज़Ӄ૯߹ڀݚॴ,एखࢧऀڀݚԉۀࣄΞʔϦʔόʔυ, “௒௿
ফඅిྗΛ࣮͢ݱΔֵ৽తΞχʔϦϯάϚγϯΞϓϦέʔγϣϯٕज़,” 2017
೥ 6݄–2018೥ 3݄,૯ֹ 80ສԁ.

⟨21⟩ ೔ຊֶज़ৼڵձಛผڀݚһ঑ྭඅ, ΔϑϩΞϓ͢ݱೳ͔ͭখ໘ੵΛ࣮ੑߴ“
ϥϯΛྀͨ͠ߟ LSI্Ґઃٕܭज़,” 2016೥ 4݄–2018೥ 3݄, ૯ֹ 190ສԁ
(2016೥౓: 100ສԁ, 2017೥౓:90ສԁ).

