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Chapter 1

Introduction

1.1 Background
Today, the modus operandi of cyber attackers is rapidly evolving to evade existing
attack detection systems, and consequently, new types of attacks that cannot be iden-
tified have emerged in various fields. These attacks are also called unknown security
threats. For example, cyber security attacks from unknown threats increased by 40
percent in every quarter, according to Panda Security’s latest quarterly report [1].
Trend Micro also revealed that mobile security is confronted with the rapid growth
of unknown threats [2]. An attacker usually hides the attacks from unknown threats
by camouflaging it with real-world data in a way that it is very difficult for users to
forestall and protect themselves from such attacks. For example, fake reviews posted
by attackers are very similar to genuine reviews. Users cannot distinguish between
these two kinds of reviews when selecting an app. This thesis refers to such attacks
due to unknown threats as hidden cyber attacks. Endless hidden cyber attacks cause
immense damage to users, and so detecting and preventing them in the early stages
is a crucial and highly anticipated security issue. Although many previous studies
are related to solving this problem [3–10], because of the wide variety of hidden
cyber attacks and the broad fields that are affected, there are still many hidden cyber
attacks that need to be addressed.
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1.2 Research Targets
To fill in this gap, this thesis focuses on the hidden cyber attacks in the following two
types of security fields: web security and mobile security, separately. More users
can benefit from our solutions since these two fields have a relatively large number
of users. Moreover, this thesis leverages machine-learning technology as the main
approach for predicting hidden cyber attacks. Because of the huge amount of data
in cyber space such as ratings and reviews in mobile app stores, it can be extremely
challenging for end users and security specialists to handle and discover all the
hidden cyber attacks from such large-scale data. Machine-learning technology can
help users cope with such attacks in an automated manner. This thesis applies two
topics that are also suitable and indispensable for machine-learning technology.
Hidden Cyber Attacks in Web Security. There are many types of hidden cyber
attacks that affect web security. Modern web users are well acquainted with Uniform
Resource Locator (URL) and use it to locate websites when surfing the Internet. Web
users may encounter a browser security threat called drive-by-download attacks.
Drive-by-download attacks use exploit codes hidden behind the URLs to take control
of the users’ web browser. Many web users do not consider such underlying threats
while clicking the URLs. URL blacklist is one of the practical approaches to
thwarting browser-targeted attacks. However, Malicious URLs have a very short life-
span and it is time consuming to discover newmaliciousURLs by refreshing theURL
blacklist through user feedback and proactive web space searches. Consequently,
URL blacklist cannot cope with previously unseen malicious URLs. Therefore, it is
crucial to constantly update the URLs to make a URL blacklist effective. This thesis
assumes this unsolved problem (Updating the speed of URL blacklist) as the first
research topic.
HiddenCyber Attacks inMobile Security. There are several types of hidden cyber
attacks that compromise mobile security. Ratings, reviews, and metadata of the app
are essential to mobile users as they can acquire useful information from such data
to facilitate their decision on installing the app from the mobile app store. With

2



1.3 Thesis Contributions

the rapid growth in smartphone usage, developers have developed a large number of
apps in the recent years. Mobile app stores, such as Google Play, play a vital role in
distributing such apps to end users. These mobile app stores also provide reference
data including ratings, reviews, number of installations, and the category of the apps
for end users. The ratings and reviews are user-generated content (UGC) that affect
the reputation of an app. Unfortunately, miscreants may exploit such channels to
conduct promotional attacks (PAs) that lure victims to install malicious apps using
fake ratings and reviews. Therefore, it is very important to identify PAs in the early
stages. This thesis considers this unsolved problem (PAs in Mobile App Store) as
the second research topic.

1.3 Thesis Contributions
Under these situations, the objective of this thesis is to establish an effective and
efficient countermeasure against hidden cyber attacks by leveraging approaches
based on machine learning. The countermeasure is based on the implementation of
an automatic system or framework, which can identify hidden cyber attacks from
large-scale and real-world datasets. The following is the description and evaluation
of the countermeasures proposed in this thesis.
AutoBLG. To tackle the problem in URL blacklist generation, this thesis proposes
a framework known as automatic blacklist generator (AutoBLG) that automates the
collection of new malicious URLs by starting from an existing URL blacklist. The
primary mechanism of AutoBLG is expanding the search space of web pages while
reducing the number of URLs to be analyzed by applying several pre-filters, such
as similarity search, to accelerate the process of generating blacklists. This thesis
implements similarity search using Bayesian Sets, which is an on-demand cluster-
ing machine-learning algorithm. AutoBLG consists of three primary components:
URL expansion, URL filtration, and URL verification. Through extensive analysis
using a high-performance web client honeypot, we demonstrate that AutoBLG can
successfully discover new and previously unknown drive-by-download URLs from
the vast web space. The main contribution of this countermeasure is that AutoBLG

3
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is a novel light-weight system that can effectively and efficiently discover new and
previously unknown malicious URLs that are considered as hidden cyber attacks in
web security.
PADetective. To prevent PAs in Mobile App Stores, this thesis proposes and
develops a new system called PADetective to detect miscreants who are likely to
engage in promotional attacks. This thesis tests five supervised machine-learning
algorithms and selects the most suitable Random Forest algorithm as our detection
model. Using a 1723-entry labeled dataset, we demonstrated that the true positive
rate of the detectionmodel is 90% and the false positive rate is 5.8%. We then applied
our system to an unlabeled dataset of 57 M reviews written by 20 M users for 1 M
apps to characterize the prevalence of threats in the wild. The PADetective system
identified 289 K reviewers as potential PA attackers. The potential PA attackers
posted reviews for 136 K apps, which included 21 K malicious apps. We also report
that our system can be used to identify potentially malicious apps that have not been
detected by anti-virus checkers. The major contribution of this countermeasure is
that it is the first study that aims to detect PA attackers from a large volume of
reviewers with high accuracy and low false positive rates. Our extensive analysis
revealed that the identified PAs can be used to discover potentially malicious apps
that are a type of hidden cyber attacks in mobile security.

As mentioned above, this thesis sheds new light on the use of approaches based
on machine learning as common countermeasures to two different types of hidden
cyber attacks. Because the two countermeasures can be used to discover potentially
malicious URLs and malicious apps, they can serve as an effective assistive tool for
security operators and malware analysts.

1.4 Outline
The remainder of this thesis is organized as follows. Chapter 2 presents a framework
called automatic blacklist generator (AutoBLG) that automatically identifies new
malicious URLs using an existing URL blacklist. The key idea behind AutoBLG
is expanding the search space of web pages while reducing the number of URLs to

4



1.4 Outline

be analyzed by applying several pre-filters to accelerate the process of generating
blacklists. Chapter 3 introduces a system called PADetective, which learns the
features of known promotional attackers and then automatically detects unknown
promotional attackers using machine-learning techniques. Chapter 4 discusses the
limitation and future work of this thesis. Finally, Chapter 5 presents the conclusions.
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Chapter 2

Automating URL Blacklist

Generation with Similarity Search

Approach

2.1 Introduction
Today, internet users are exposed to various web-based attacks. Kaspersky’s annual
report shows that such attacks occur 4.7 M per day globally. Of the web-based
attacks, drive-by-download attack is considered as a significant threat, accounting for
93% of web-based attacks [11]. Drive-by-download attacks can be easily triggered
by simply visiting a malicious URL. Amalicious URL infects a web user’s computer
with malware by exploiting web browser or browser plug-in vulnerabilities. Many
web users tend to click such URLs without considering the underlying threats.

Adopting a URL blacklist as a pre-filtering mechanism is one of the most efficient
countermeasures for browser-targeted threats. A URL blacklist is a database that
stores a list of URLs that have been identified as malicious. If the URL accessed
by the user is blacklisted, it will be automatically blocked by the browser. User
feedback and proactively searching web space are the general methods of building
and maintaining a URL blacklist.



Chapter 2 Automating URL Blacklist Generation with Similarity Search Approach

Several challenges are needed to generate an effective URL blacklist. First, we
must tackle the scalability of theWorldWideWeb. There are 30 trillion uniqueURLs
in the wild Internet [12]. Besides, the number of URLs is continually increasing
everyday. We must be able to identify malicious URLs among this huge population
using a dynamic analysis system such as a web client honeypot, which requires both
time and computing resources. Thus, we need mechanisms that drastically minimize
the number of URLs that must be verifiedwith the dynamic analysis system. Second,
we must address the fact that many of malicious URLs are short-lived. For instance,
fast-flux networks change their domain name system (DNS) records rapidly to evade
being blacklisted [13]. Thus, a blacklist-generating system should be lightweight.

To the best of our knowledge, although several approaches have proposed mech-
anisms to generate URL blacklists, none has addressed the above-mentioned two
issues directly and simultaneously. We aim to construct a lightweight framework
called the automatic blacklist generator (AutoBLG). AutoBLG discovers new mali-
cious URLs from web space automatically. The key idea of AutoBLG is expanding
the search space of web pages while reducing the number of URLs to be analyzed
by applying several pre-filters to accelerate the process of generating a blacklist.

AutoBLG comprises three primary primitives: URL expansion, URL filtration,
and URL verification. Each primitive combines several techniques to achieve its
functions. Through extensive analysis using a high-performance web client hon-
eypot, we demonstrate that AutoBLG successfully extracts new and previously
unknown drive-by-download URLs in a lightweight manner.

Our main contributions can be summarized as follows:

• We developed a novel light-weight system, called AutoBLG that can discover
new, previously unknown malicious URLs efficiently.

• Our experiments using various verification systems includingweb-client hon-
eypot, anti-virus checkers, and public URL reputation system demonstrated
the effectiveness of AutoBLG.

The remainder of this chapter is organized as follows. We review related work
in section 2.2. A high-level overview of AutoBLG is presented in Section 2.3.

8
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The techniques that comprise AutoBLG are detailed in Section 2.3.2 (URL expan-
sion), 2.3.3 (URL filtration), and 2.3.4 (URL verification). An evaluation of the
proposed method is given in Section 2.4. Finally, discussions and conclusions are
presented in Sections 2.5 and 2.6, respectively.

2.2 Related work
Many malicious URL detection methods have been proposed in recent years. Such
methods can be classified into two categories depending on whether machine learn-
ing is used. In this section, we review related work from these two categories.
Machine learning-based approaches

All studies mentioned below have used various types of supervised machine
learning to detect malicious URLs. We describe the features and supervisedmachine
learning algorithms proposed in these studies.

Choi et al. [3] adopted six groups of discriminative features: lexicon, link pop-
ularity, webpage content, DNS, DNS fluxiness, and network traffic. The classifiers
proposed by Ma et al. [4] were based on only URL strings and host information
features; however, they evaluated the performance of multiple classifiers. They de-
termined that a logistic regression classifier is optimal for malicious URL detection
in terms of learning time and false-positive rate. Eshete et al. [5] constructed multi-
ple classifiers that contain features such as URL strings and web content. They also
evaluated the performance of multiple classifiers. Their experimental results show
that a random tree classifier achieved the highest accuracy. Xu et al. [14] extracted
124 features from the application and network layers. They attempted to select
these features using principal component analysis, correlation feature selection, and
Ranker search method to determine whether the use of only a few features is as
powerful as using all features and to determine the features that are more indicative
of malicious websites. Canali et al. developed a perfilter called Prophiler [15] that
can reduce the load of costly dynamic analysis tools by quickly discarding likely
benign URLs. They considered features from HTML content, JavaScript code, and
URL strings. By experimenting with numerous standard models, they selected J48

9
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as a suitable classifier. Chiba et al. [16] leveraged IP addresses as a primary feature
to discriminate malicious traffic from legitimate traffic. Their assumption was that
IP addresses are more stable than other features mentioned above. Note that the
classifiers adopted in the above-mentioned methods involve batch processing. Ma
et al. [17] proposed an online classifier method that can update a classifier in real
time to address the diversity of big data.

As all these previous studies used supervised machine learning, they constructed
classifiers with training data provided in advance. To achieve high accuracy, they
prepared a large amount of “ground truth” training data; however, creating such data
was a costly process. Moreover, existing malicious URLs in URL blacklists are
short lived and cannot be used to obtain more information. The advantage of our
proposed method is that malicious URLs are identified using Bayesian sets, which
require little training data, as a search algorithm.
Non-machine learning approaches

Invernizzi et al. [6] developed EvilSeed; it can more efficiently search the web
for URLs that are likely malicious. Unlike other previous studies, Invernizzi et
al. leveraged search engines such as Google, Bing, and Yacy to find malicious
URLs from vast web space. They used malicious URLs detected by Google’s
Safe Browsing Blacklist and Wepawet as seed URLs. They extracted features
from these seed URLs to implement five gadgets: links, content dorks, search
engine optimization, domain registration, and DNS queries. Most of the gadgets
were used to collect new unknown URLs from web space using search engine
queries. However, EvilSeed cannot find malicious URLs that are not indexed by a
search engine. Our proposed approach leverages a passive DNS database to search
malicious URLs from web space. Thus, even if malicious URLs are not indexed by
a search engine, we can find them as long as they are accessed by web users at least
once.

Akiyama et al. [7] proposed a method that aim to discover new malicious URLs
in the neighborhood of a existing malicious URL by using a search engine. The
seeds fed to the search engine was different from Invernizzi et al.’s work [6]. They
created seeds by changing the structure of existing malicious URLs’ path. So their

10
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system was able to find new malicious URLs with a variety of different paths. In
contrast, our work is designed to expand URL search space by collecting different
domains associated with a given IP address.

2.3 AutoBLG framework
This section presents the architecture of the AutoBLG framework. The aim of the
AutoBLG framework is to improve the effectiveness of URL blacklists by collect-
ing new malicious URLs based on the known ones. We first present high-level
overview of the AutoBLG framework. Next, we present three core components,
URL expansion, URL filtration, and URL verification.

2.3.1 High-level overview

Here, we present the high-level overview of the AutoBLG framework. To discover
new malicious URLs efficiently, we have designed and implemented AutoBLG with
three components: URL expansion, URL filtration, and maliciousness verification
(see Fig. 3.2). In the URL expansion stage, we leverage the internet protocol (IP)
addresses of malicious URLs to gather unknownURLs. Malicious URLs are quickly
made unavailable if the attacker determines that their URLs have been blacklisted;
however, in most cases, the IP addresses are still open to communication. Therefore,
we focus on the network properties of malicious URLs, which should be more
stable than the malicious URLs themselves. In fact, this strategy enabled us to
gather new malicious URLs that were not reachable from the original URLs through
the links of Web. Next, through URL filtration extracts likely malicious URLs
from new unknown URLs as a statistical filter. As the statistical filter, we adopt
the Bayesian sets algorithm as we shall show in short. Finally, maliciousness of
extracted URLs are verified by using several systems including a high-performance
web client honeypot, anti-virus checkers, and public URL reputation system. We
have summarized both the new methodologies in our AutoBLG framework. First,
we proposed a new URL expansion method that is able to gather malicious URLs
that were not reachable through the web links which were adopted to search for new
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malicious URLs in the previous work. Second, with regard to URL filtration, we
have implemented a high performance filter by using existing algorithms (Bayesian
sets) that find similar items based on user-defined queries to improve the efficiency
of URL verification. Third, we have developed three new features that have not been
applied by previous works on feature extraction.

2.3.2 URL Expansion

To determine malicious URLs with an existing given URL blacklist, we must obtain
a set of unknown URLs that contains malicious URLs as many as possible. First,
we leverage a passive DNS database to transform existing malicious URLs to a set
of unknown fully qualified domain names (FQDN). Second, we employ a search
engine and web crawler to expand FQDNs to URLs with paths. We detail each
component of URL expansion as follows.

Pre-processing
The input of the proposed system is a URL blacklist constructed and maintained
by a client honeypot Marionette [18] and the sandbox BotnetWatcher [19] , which
can analyze online malware while preventing infection to other hosts. Our data-
gathering period was from August 02, 2011 to October 01, 2014. Our research has
focused on the IP addresses of existing malicious URLs; thus, we extract effective
IP addresses from URL blacklists. First, we obtain different IP addresses from a
URL blacklist. We then check whether the port 80 (HTTP communication) of IP
addresses is available using a tool such as Hping3 [20] or ZMap [21].

Passive DNS Database
To further enhance the information of the given set of IP addresses, we leverage the
passiveDNSdatabase [22]. For a given IP address, the passiveDNSdatabase returns
a set of FQDNs that are/were associated with. Note that this process is different from
the reverse DNS lookups. For instance, If many FQDNs are associated with a single
IP address, we cannot extract these FQDNs through reverse lookups. However, the
passive DNS database enables us to extract all the present and past associations of
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Fig. 2.1 Overview of the AutoBLG System.
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FQDNs and IP addresses, through the large-scale monitoring of DNS cache servers
that accomodate many users of several commercial ISPs. Thus, the output of the
database is a list of FQDNs that can be considered as the “neighborhood” of existing
malicious URLs in terms of IP addresses, which are often stable due to the existence
of rogue hosting companies. In order to confirm whether these FQDNs are still in
service of DNS, we use Unbound [23] as a local DNS resolver to accomplish such
DNS lookups parallelly.

Even if we obtain a list of FQDNs, it is not sufficient because an attacker will
likely place malicious webpages deep in the directory structure of a server or in the
root directory with a name other than ʠindex.html.ʡTo further locate malicious
webpageswithURLs of deep paths, FQDNs should be expanded toURLswith paths.
As we shall show in short, search engines and web crawler are used to accomplish
this task.

Search Engine
To search URLs that are associated with a given set of FQDNs, we made use of
search APIs of several commercial search engines. We used site search using the
technique such as adding the stringʠsite:ʡ in front of the FQDNs to create search
queries, e.g., “site:example.com”. For a given query, we used the top 50 responses,
which we empirically determined as follows. First, it is likely that search engines
disposemalicious URLs in the top 20 search results. In addition, attackers may apply
cloaking technology to theirmaliciousURLs to evade detection by a honeypot. Thus,
there may be fewer malicious URLs in the top 20 search results. However, since
adversaries may want a malicious URL to be reachable from victims, they may put
such URLs in a place that are discoverable by search engines. Therefore, we obtain
the top 50 search results to increase the toxicity of our data in URL expansion.
Commonly, search results contain various URLs used to download specific file
types, such as PDF, SWF, and DOC files. AutoBLG is designed to find new and
previously unknown drive-by-download URLs; therefore, we delete such file-related
URLs from the search results before submitting data to the web crawler.
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2.3 AutoBLG framework

Web Crawler
We adopt Apache Nutch [24] as the web crawler and MySQL [25] as the database.
Two tasks are assigned to the web crawler. The first expands FQDNs obtained from
the passive DNS database to URLs with paths to complement the search engine.
Unlike a search engine, a web crawler can extract hyperlinks from HTML content.
These hyperlinks are probably not indexed by a search engine. The other task crawls
HTML content and stores it to a database for feature extraction. The seeds for
crawling are FQDNs obtained from the passive DNS database and URLs returned
by the search engine. The output of URL expansion is URLs with HTML content,
which are then used to extract HTML features.

2.3.3 URL filtration

To further reduce the amount of obtained URLs, we leverage a machine-learning-
based approach. We aim to consider URLs that have characteristics similar to the
existing malicious URLs. This filtration enables us to drastically reduce the amount
of URLs to be verified. To this end, we adopt Bayesian sets algorithm that finds
similar items based on user-defined queries, which specify a set of items that have
similar features; e.g., URLs that used the same exploit kit. In the sections below,
we first present an overview of Bayesian sets. Next, we describe how we extract
features from URLs for applying the Bayesian sets algorithm to our problem.

Bayesian sets
Inspired by Google Sets [26], Ghahramani et al. developed a search algorithm called
Bayesian Sets [27]. Google Sets*1 is a useful service that provides a very small set of
queries by the user and will output other items with high relevance to these queries
from web data. For example, given a set of queries by a user:ʠToyota,ʡʠNissan,ʡ
ʠHonda,ʡGoogle Sets will output top items such asʠBMW,ʡʠFord,ʡʠAudi,ʡ
ʠMitsubishi,ʡʠMazda,ʡʠVolkswagenʡ ranked by relevance to the queries.

Ghahramani et al. formulated the input and output of Google Sets as clustering on

*1 The service of Google Sets including Google Sheets is unavailable since August 2014.
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demand. More precisely, the queries given by a user can be considered as the subset
of some unknown cluster with common features. The output of this algorithm is to
complete such a cluster by elements that are highly relevant to queries. Interestingly,
the user can form any cluster using different query patterns. We present additional
details of the Bayesian sets algorithm as follows.

Let D be an entire set of URL, x ∈ D be an element belong to this set. The user
provides relatively small subset of URL Q ⊂ D as query.

Under the condition of query setQ given by the user, the following score formula
S is created as metrics of measuring the relevance between Q and x.

S(x;Q) = P(x,Q)
P(x)P(Q) =

P(x|Q)
P(x)

Bayesian Sets Algorithm computes each x ∈ D’s score using Q and then outputs x
in the descending order of score.

Let xi = {xi1, . . . , xim} be i-th URL’s feature vectorɽwhere m is the number of
feature in each item.

The elements of feature vector are xi j ∈ {0, 1} (1 ≤ j ≤ m) binary variable. After
modeling by paramter θ j of Bernoulli distribution:

P(xi j |θ j) = θ
xi j
j (1 − θ j)1−xi j .

Score can be computed as follows.

S(xi;Q) = P(xi |Q)
P(xi)

=

∫
P(xi |θ)P(θ |Q)dθ∫
P(xi |θ)P(θ)dθ

The conjugate prior for the parameter θ of a Bernoulli distribution is the Beta
distribution B(α, β), so finally score formula can be dramatically simplified to the
following one using hyperparameters α, β [27].

S(xi;Q) = P(xi |Q, α, β)
P(xi |α, β)

=

m∏
j=1

αj + βj
αj + βj + N

(
α̃j
αj

)xi j ( β̃j
βj

)1−xi j
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where N = |Q| and

α̃j = αj +
∑
xi ∈Q

xi j

β̃j = βj +
∑
xi ∈Q

(1 − xi j)

It is convenient to compute score in the form of logarithm log S(xi;Q). Hyper-
parameters α, β are defined experiencely depending on datasets. For example, they
utilized entire data xi j’s average,

mj =
∑
xi ∈D

xi j
|D|

to define αj = cmj , βj = c(1 − mj). Because the average of the Beta distribution
which is αj/(αj + βj) is in accordance with mj . Our work [27] adopted customary
value of paramter c = 2.

Bayesian Sets Algorithm computes α, β using an entire set of URLD beforehand,
and then computes α̃, β̃ according to query set Q, finally computes score by means
of α, β, α̃, β̃.

Feature Extraction
With regard to feature extraction, we focus on using static features to implement
lightweight URL filtration; thus, we only extract 19 static features from landing
page contents, including HTML tags and JavaScript codes, in reference of Canali et
al.’s HTML and JavaScript features [15]. We will increase the number of features
by acquiring JavaScript files that are loaded by landing page in future.

Because Bayesian sets algorithm assumes the elements of feature vector as
Bernoulli distribution, we binarized the feature vector considering 0 as the threshold
value. We set the element whose value is larger than threshold value to 1. Fur-
thermore, to select effective features for data collected by our system, we computed
the odds ratio of each feature and then eliminated the feature whose ratio was less
than 1. Finally, we selected 10 effective features: the number of iframe and frame
tags, the number of hidden elements, the number of meta refresh tags, the number
of elements with a small area, the number of out-of-place elements, the number of
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embed and object tags, the presence of unescape behavior, the number of suspicious
words in the script, the number of setTimeout functions, and the number of URLs
with a different domain. The features that have some differences from previous
studies are as follows.
The number of elements with a small area: redirection behavior in landing page
by setting very small values of the height and width of redirection tags. A previous
study [15] proposed a small area feature that the areas of div, iframe, and object tags
are smaller than 30 square pixels or each side of the three tags is smaller than 2 pixels.
Our study not only uses the previous study’s definition about this feature but also
considers frameset tags whose attribute value (border, frameborder, framespacing)
is equivalent to 0.
The number of suspicious word in the script’s content: Through studying existing
malicious URL content, we find that sometimes attackers assign special names such
as shellcode or shcode to variables in the script; wemark such variables as suspicious
words.
The number of URLs with a different domain: A previous study [15] counts the
number of URLs located in specified tags such as script, iframe, embed, form, and
object. Our study only considers URLs whose domains are different from landing
page URLʟs domain because the landing page URL’s domain can more possibly be
a redirection to a malicious website.

2.3.4 URL Verification

We use three tools to verify the URLs extracted by URL filtration: the Marionette
web client honeypot [18] , antivirus software, and VirusTotal [28]. The Marionette
client can trace the redirection generated by drive-by-download attacks and identify
the malware distribution URL. If an executable file is downloaded from the malware
distribution URL, the Marionette web client honeypot will identify such URLs as
malicious. Antivirus software analyzes HTML and JavaScript content statically.
For example, if there is a hidden attribute in an iframe tag, the antivirus software
will identify such content as malicious. VirusTotal is a free URL scanning service.
Users submit suspicious URLs to VirusTotal website. VirusTotal compares the
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URLs submitted by users to URL blacklists and cyber-attack detection systems and
then forwards the result of the comparison to users.

2.4 Evaluation
In this section, we evaluate the performance of the AutoBLG framework and present
the results of the evaluation.

2.4.1 Preliminary Experiment

The preliminary experiment aimed to select optimal query patterns for URL fil-
tration. An appropriate query pattern is crucial to the effective performance of a
URL filtration algorithm (Bayesian sets). To this end, we used the ground-truth
data so that we can confirm the accuracy of the approach. We collected datasets
using the proposed system’s URL expansion component and verified the datasets
using the Marionette honeypot as the ground truth. The datasets for the preliminary
experiment contained 10,000 benign URLs, which were verified as benign with our
manual inspection, and six malicious URLs, which were verified as landing pages of
the drive-by download attack usingMarionette. Note that both benign and malicious
URLs were generated from the URL expansion of AutoBLG.

We compiled two query patterns from the observations of an existing blacklist
to determine if the Bayesian sets algorithm can extract the malicious URLs from
the benign URLs. Each query pattern includes |Q| = N = 3 queries; i.e., six
URLs were broadly classified into two groups.The queries were determined with a
manual inspection that whether there are or not common features in each query’s
landing pages. To narrow down the range of manual inspection, we leveraged cluster
algorithm such as Kmeans and DBSCAN that can divide existing malicious URLs
into several clusters based on the similarity of HTML content. We can achieve low
frequency of creating query patterns, because our query patterns are depending on
HTML content’s feature which is more stable than the feature of exploit URL. We
adopted all the effective features of HTML contents so that we need to create new
query patterns only when new trick about the redirection to exploit URL is used by
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Fig. 2.2 The Malicious hit ratio of queries

adversary. We tested several combinations of possible query patterns and confirmed
that the succeeding results are not sensitive. Concrete examples of query patterns
are described in the Appendix section.

Figure 2.2 presents the number of malicious URLs in the Top-K URLs extracted
by the Bayesian Sets given the two queries mentioned above. The two query patterns
identify different three malicious URLs in top 300 scores respectively and extract
all the six malicious URLs totally; i.e., all the six malicious URLs were in the
2 × 300 = 600 of extracted URLs. The result demonstrates that the filtration
mechanism with the Bayesian Sets successfully filtered out 94% of benign URLs
without missing any malicious URLs.

All the URLs extracted by the Bayesian sets algorithm will be forwarded to the
verification systems including the Marionette web client honeypot. Although the
Marionette honeypot can achieve low rate of false-positive results, we need to avoid
verifying benign URLs as much as possible because the dynamic analysis with
web-client honeypot is time-consuming task. Based on the results of preliminary
analysis, we considered the top 300 scores as the threshold for URL filtration. The
query patterns and threshold determined in the preliminary experiment were utilized
in the formal experiment.
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Table 2.1 The data flow of AutoBLG

Step Items Number Time

URLs(blacklist) 26 0
IP addresses(seed) 15 30s

URL Expansion FQDNs(Passive DNS database) 33,041 12m
URLs(Search Engine) 42,736 3h
URLs(Web crawler) 59,394 1.5h
query patterns(Bayesian Sets) 2

URL Filtration Threshold(Bayesian Sets) 300 <2s
candidate URLs(Bayesian Sets) 600
Web Client Honeypot 600

URL Verification Antivirus Software 600 1h
VirusTotal 600

2.4.2 Performance of the AutoBLG framework

The data flow of the proposed system is shown in Table 2.1. First, from an existing
URLblacklist, 26most recentURLs, whichwere landing pages of drive-by download
attacks, were selected. These URLs were then forwarded to the URL Expansion
component for pre-processing. In the pre-processing step, the 26URLswere reduced
to 15 effective IP addresses. We obtained 33,041 FQDNs from the passive DNS
database using the 15 IP addresses as the query. Next, we leveraged a search engine
and web crawler to expand the FQDNs to URLs with paths. First, using a search
engine, we queried 33,041 FQDNs to acquire 42,736 URLs with paths. Then, we
crawled 33,041 FQDNs and 42,736 URLs with paths to identify the HTML content
of the landing page. Finally, we expanded the original 26 URLs to 59,394 URLs
with landing page HTML content using the URL expansion component. With the
URL filtration component, we extracted a static feature from the HTML content
and searched for malicious URLs in the 59,394 URLs using the two query patterns
used in the preliminary experiment. Only the top 300 URLs were submitted to the
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three proposed tools in the malicious verification step. Therefore, the proposed filter
reduced 99% of the URLs expanded in URL expansion.

In the table, we also present the amount of time needed for each step. Overall,
AutoBLG spent approximately 6 hours processing all the data mentioned above.
Because we assume that creation of blacklist is daily basis, the amount of time
processing is affordable for actual operation. Note that the filtration mechanism of
AutoBLG was quite effective in compressing the processing time. If we verified all
the 59,394 URLs extracted, it could take more than 100 hours to complete our task.
Thus, AutoBLG enables us to accelerate the process of generating blacklist URLs.

Table 2.2 shows the number of malicious URLs verified by the three proposed
tools. We do not count duplicate URLs from the two query pattern results; however,
duplicate URLs are found in the results for each verification tool. Because some
URLs are identified by multiple tools. After eliminating duplications, of the 600
of extracted URLs, 106 URLs were detected as malicious or suspicious as follows.
Seven URLs detected by the web client honeypot are definitely malicious because
it contained redirecting to the exploit web pages. 23 URLs detected by the multiple
antivirus softwares are highly suspicious because they contained several HTTP
objects that were detected by the antivirus checkers; e.g., malicious JavaScript or
executable malware. 99 URLs detected by VirusTotal are also suspicious URLs that
need further manual inspection.

Overall, the AutoBLG framework successfully discovered seven malicious URLs,
23 highly suspicious URLs, and 99 suspicious URLs. Of the discovered 106 URLs,
seven URLs are completely new URLs that have not been listed in the VirusTotal,
which is built on top of outcomes of several commercial anti-virus products (see
Fig. 2.3). Thus, AutoBLGwas able to find unknownmalicious URLs. We also found
thatmost of themaliciousURLs identified by theweb-client honeypotwere attributed
to the ones exploiting a relatively new vulnerability (i.e., MS13-037) compared with
the malicious URLs used to extract the effective IP addresses. This result clearly
supports our assumption that IP addresses used for distributing malicious web pages
are more stable than URLs, which actually carry malicious content.

Figure 2.3 shows the correlation of three verification tools’ result. As we men-
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Fig. 2.3 The correlation of three verification tools’ result

Table 2.2 The result of AutoBLG

Web Client Honeypot Antivirus Software VirusTotal

Query Pattern 1 4 21 83
Query Pattern 2 3 2 16
Total 7 23 99

tioned above, seven malicious URLs found by the honeypot are not included in
VirusTotal’s blacklist. This proves that the proposed method can further enhance
VirusTotal’s blacklist, which is widely used as a popular URL verification service.
In addition, 19 of 23 malicious URLs detected by multiple antivirus programs were
not identified by the honeypot. The web client honeypot likely did not detect some
malicious URLs for several reasons, e.g., installation of particular browser plug-ins
etc. We will discuss the limitation of the existing web-client honeypot approaches
in section 3.6.

In summary, the experiments demonstrate that AutoBLG is a light-weight black-
list generating system and it can discover new and previously unknown drive-by-
download URLs and other suspicious URLs that need for further analysis.

2.4.3 Comparsion with previous work

The previous work’s system is not available as a service for public use, so it is
difficult to leverage the previous work’s system to implement an actual comparison
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Table 2.3 Comparsion with previous work
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test. Therefore, we have referred to the result presented in the previous works and
compared it with AutoBLG from the viewpoints of noise filtration and toxicity.
Noise filtration is the fraction of benign URLs reduced from expansion URLs that
are collected from web space initially. A higher noise filtration indicates that the
verified tools in the final stage only need to inspect few suspicious URLs. Toxicity is
the fraction of malicious URLs submitted to verified tools. As shown in Table 2.3,
previousworks (crawler-based [15] and EvilSeed systems [6]) expandURLs by using
web crawlers and search engines, respectively. Our AutoBLG framework’s URLs
expansion is based on a PassiveDNSdatabase. In comparisonwith the crawler-based
system, both our framework’s noise filtration of 99% and toxicity of 1.17% are higher
than those of crawler-based systems (85.7% and 0.14%, respectively). Compared
with the EvilSeed system, our framework achieved much higher noise filtration but
a slightly lower toxicity (5% and 1.34%, respectively). There is a tradeoff between
noise filtration and toxicity. To improve the efficiency of URL verification, we have
maximized the noise filtration and optimized the toxicity, which is a little lower than
that of the previous work. It proves that our pre-filter adopted by AutoBLG improves
the performance of noise filtration without sacrificing the toxicity.

2.5 Discussion
In this section, we discuss some limitations of AutoBLG and future research direc-
tions derived from them.

2.5.1 URL Expansion

Search Engine
As mentioned in section 2.3.2, we adopt top-50 URLs from search results. Our
experiments shows approximately half of malicious URLs detected by AutoBLG are
originated from search engine’s result. Thus, web search engine played a crucial
role in collecting malicious URLs. While we empirically derived that top-50 search
results works for collecting malicious URLs, we still have a room to improve this
criteria; e.g, top-100 search results or bottom-100 search results. Main challenge
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here is to accelerate the process of web search. As shown in Table 2.1, the search
engine step was the dominant factor for entire processing time. We will address the
issue of accelerating web search engine process in our future work.

Web Crawler
It is known that some malicious web sites make use of “cloaking techniques” to
evade the detection of anti-malware systems [4]. Although we have not discovered
the existence of cloaking from our experiments, it is possible that our system could
suffer from the cloaking mechanism in collecting malicious URLs. As a simple
solution to the problem, we configured the user-agent of our web crawler as Internet
explorer 8. For our future work, we will develop more sophisticated tools that can
emulate the behavior of browsers/plug-ins, which are targeted frommalicious URLs.

2.5.2 Query Patterns

Using the Bayesian Sets algorithm, a set of malicious URLs that is similar to query
patterns was extracted successfully from a large number of unknown URLs. A
good feature of adopting the Bayesian Sets algorithm is that queries are flexible
and customizable based on user demand. If we find a new pattern, we can reflect
the pattern to compile a new query. In our experiments, we tested only the search
capability of two different query patterns. Although AutoBLG may miss several
malicious URLs that are completely different to the query patterns provided by
users, finding more new malicious URLs is possible by increasing the number of
query patterns. Because Bayesian sets is a fast algorithm that can output each query
pattern’s result in less than one second, increasing the number of query patterns will
not affect the performance of AutoBLG.

2.5.3 URL Verification

In URL verification, we used three tools to assess suspicious URLs detected by
the Bayesian sets algorithm. Marionette [18] is a high-interaction honeypot that
analyzes suspicious URLs dynamically in a virtual machine’s browser. Generally,
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only one version of a browser or plug-in is applied to the high-interaction honeypot
to assure efficient analysis. We configured Marionette with Internet Explorer 6 and
Internet Explorer 8, which are targeted by most malicious URLs. Marionette suffers
from false negatives because of browser and plug-in version limitations. To improve
the effectiveness of URL verification, we can increase the diversity of browsers and
plug-ins or adopt a low-interaction honeypot that can emulate different browsers to
complement the high-interaction honeypot.

2.5.4 Online operation

Currently, the process of AutoBLG is not fully online due to the fact that two data
collection processes, search engine and web crawler, are not configured to work
online. Pipelining these processes will enable AutoBLG system work online. Such
online operation will enable us to generate and distribute the new blacklists in real
time. We will also leave the issue of pipelining URL expansion step for our future
work.

2.6 Conclusion
In this chapter, we have proposed theAutoBLG framework. Our experiments demon-
strated that AutoBLG is a light-weight blacklist generating system and it can discover
new and previously unknown drive-by-download URLs and other suspicious URLs
that need for further analysis. Notably, it reduced number of URLs to be investi-
gated with the dynamic analysis systems by 99% (reduced from 60K to 600), while
successfully finding new URLs that have not been listed in the widely used popular
URL reputation system. There are many vendors or service providers that deploy
URL blacklists in the real world. For example, security vendors such as Symantec
and Trend Micro have built their own URL blacklist database to prevent users from
accessing malicious URLs. Public services such as URLBlacklist.com provide URL
blacklists for users and researchers to download. A company’s operations center can
also create a local URL blacklist for their own private network security. The poten-
tial application of our AutoBLG framework is that vendors or service providers can
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make any existing URL blacklist they possess more effective. Vendors input their
URL blacklist into the AutoBLG framework, which then quickly expands it with new
malicious URLs. There are several types of malicious URL throughout the Internet
such as drive-by-download URLs and phishing URLs. All these types leverage the
URL as a trigger method, so it is possible for them to have similar characteristics.
For example, attackers may change the URL’s domain or path to evade detection by
URL-phishing blacklists as a countermeasure to drive-by-download URL blacklists.
In addition, the output of our AutoBLG framework (URL blacklist) can be applied
not as only client-side protection, such as browser plugins, but also as a middlebox,
such as a web proxy. In future, we plan to adopt other types of URL blacklists, such
as phishing blacklists, as input and evaluate whether the proposed framework can
determine new and previously unknown phishing URLs.

2.7 Appendix
We present examples of patterns for the queries and detected malicious URLs. Some
parts such as hostnames are masked for security reasons. Figures 2.4 and 2.5 show
a part of HTML content of two query URLs for pattern 1. Clearly, we can see that
some obfuscation JavaScript code is included in these cases. Together with other
features, we compiled these URLs as a pattern 1 queries. As shown in Fig. 2.6,
the HTML content of the detected malicious URL looks quite similar to the queries
used above. Similarly, Figs 2.7 and 2.8 show a part of HTML content of two query
URLs for pattern 2. Here, we can see that some intrinsic embed and object tags are
included, which also reflect a typical pattern of landing pages used for the drive-
by-download attacks. Again, as shown in Fig. 2.9, the detected malicious URL has
HTML content that look similar to those for the two queries.

28



2.7 Appendix

	

Fig. 2.4 HTML content of query URL 1 (pattern 1)

	

Fig. 2.5 HTML content of query URL 2 (pattern 1)
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Fig. 2.6 HTML content of detected URL (pattern 1)

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	
	 	

	 	
	

	 	 	 	 	
	 	 	
	 	 	 	

	 	 	 	 	
	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	

Fig. 2.7 HTML content of query URL 1 (pattern 2)
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Fig. 2.8 HTML content of query URL 2 (pattern 2)

	

Fig. 2.9 HTML content of detected URL (pattern 2)
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Chapter 3

Automatically Detecting

Promotional Attacks in Mobile

App Store

3.1 Introduction
With more than four million apps [29], mobile app markets, such as Google Play and
Apple App Store, play a vital role in distributing apps to customers. To help users
look for apps and for developers to promote their apps, mobile app markets provide
various information about the apps, such as descriptions, screenshots, and number
of installations. In addition, most markets involve reputation systems, through which
users can rate the apps andwrite down reviews, to facilitate other users to select apps.
Since apps with higher ratings usually get more downloads [30], recent studies report
that some developers adopt unfair approaches to manipulate their apps’ ratings and
reviews [9,31], even if such behaviors are prohibited by FTC [32] and app markets.
Note that attackers also employ such approach to promote malicious apps and lure
victims to install them. We call such malicious apps campaign as promotional
attacks (PAs).

Although a few recent studies have revealed the paid reviews [9] and colluded
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reviewers [31], there have been no systematic examinations on the promotional
attacks in mobile app stores. To fill in the gaps, we conducted the first large-scale
investigation on PAs with the aim of answering the following two questions: (1)
How can we detect PAs systematically? and (2) How prevalent are PAs in the wild?.

It is non-trivial to address these two questions because the solution should be
accurate to capture PA attackers with low false positive rate, scalable to quickly
handle millions of apps and reviews in app stores, and robust to raise the bar for
sophisticated attackers to evade the detection. Existing studies cannot achieve these
goals. For example, high computational complexity limits the scalability of [9],
and requiring the similar reviews in keyword level affects the accuracy of [33, 34].
Moreover, to our best knowledge, none of the existing studies have examinedmarket-
scale apps.

To tackle these challenges, we propose and develop a novel system, named PADe-
tective, to identify PA attackers accurately and efficiently. PADetective adopts
supervised learning to characterize PA attackers according to 15 features (e.g., day
intervals, semantic similarity), and then applies the trained model to detect other
PA attackers. It is worth noting that these new and effective features are carefully
selected from not only UGC but also metadata in order to enhance the robustness of
PADetective. In particular, features from metadata have not been used by existing
works, and they could contribute to the robustness of PADetective because it is easier
for attackers to manipulate UGC than metadata. We employ the information en-
tropy and the coefficient of variation for quantifying the features from metadata, and
leverage the state-of-the-art NLP technique (i.e., Paragraph vector [35]) to extract
features fromUGC because it can extract similar reviews at semantic level and there-
fore increase the accuracy. Moreover, we employ the TRUE-REPUTATION [36]
algorithm to calculate the true reputation scores for detecting abnormal ratings.
These algorithms are lightweight, and we only need to recompute the true reputa-
tion scores and similarity word weight vectors for new UGC and metadata. This
feature extraction approach empowers PADetective to handle large-scale dataset. In
our evaluation, PADetective processed 57 million reviews in one day. We evaluate
PADetective using real PA data, and the result shows that PADetective’ĂŹs true

34



3.1 Introduction

positive rate is up to 90% with a low false positive rate of 5.8%.
Moreover, we conduct the first large-scale investigation on PA by applying PADe-

tective to 1 million apps in Google Play, which has 57 million reviews posted by
14 million users. PADetective flagged 289 K reviewers as suspicious promotional
attackers. These reviewers posted reviews to 136 K apps, which included 21 Kmali-
cious apps. Among the top 1K reviewers who were flagged as promotional attackers
with high probability score, 136 reviewers posted reviews only for malicious apps,
and another 113 reviewers posted reviews for apps where more than half of the apps
were detected as malicious. It is worth noting that PAs detected by PADetective can
contribute to the detection of potentially malicious apps.

Our major contributions can be summarized as follows:

• We developed a novel system, named PADetective, which aims to detect PA
attackers from a large volume of reviewers with high accuracy and low false
positive rates. The extensive experiments demonstrated that PADetective can
achieve 90% true positive rate with low false positive rate of 5.8%.

• Using the PADetective, we conducted the first large-scale measurement study
on PAs by examining 57 million reviews, posted by 14 million users for
1 million apps in Google Play, and obtained interesting observations and
insights.

• Our extensive analyses revealed that the detected PAs can be used to discover
potentially malicious apps, which have not been detected by popular anti-
virus scanners.

Webelieve that this research sheds a new light on the analysis ofUGCandmetadata
of app stores as a complementary channel to find malicious apps for enhancing the
widely used anti-malware tools or for market operators and malware analysts.

The remainder of this chapter is organized as follows. We specify our problem in
Section 3.2 We describe the high-level overview and details of the PADetective in
Section 3.3. A performance evaluation of the PADetective is given in Section 3.4. In
Section 3.5, we study the promotional attackers in the wild, by applying PADetective
to a market-scale measurement data. Section 3.6 discusses the limitation and future
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Fig. 3.1 High-level overview of the problem.

work of our system . Section 3.7 summarizes the related work and compare them
with ours. Finally, conclusions are presented in Section 3.8.

3.2 Problem Statement
This section aims to specify the problem we are addressing in this chapter. We first
present the high-level overview of our problem using a model that represents the
user feedback system commonly adopted in the mobile app distribution platforms.
We then define our problem in the mathematical way.

Figure 3.1 presents the high-level overview of the problem. We note that although
this work targets Google Play as an example of mobile app distribution platforms,
the model is applicable to other platforms as well. In the model, a reviewer posts
review comments and rating scores for several apps published in the app store.
For the apps commented/rated by the reviewer, we can extract the UGC and the
metadata associated with the apps. The UGC includes comment posting time,
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review comment, and rating score; these are generated by the reviewer. The app
metadata includes the number of installs, a set of developers of the app, and a set
of the categories of the app; these are the data of the apps commented/rated by the
reviewer.

We now turn our attention to the problem we are addressing in this chapter. For
a given reviewer, we first compile the UGC and app metadata; we then extract a
feature vector from the compiled data. Our goal is to classify the reviewer into two
classes: a legitimate reviewer and a promotional attacker. To this end, we apply a
supervised machine learning algorithm to the extracted feature vector. In summary,
our problem is to determine whether a given reviewer is a promotional attacker or
not by analyzing the UGC and the metadata associated with apps commented on or
rated by the reviewer.

To formulate the problem in a mathematical way, we introduce the variables
summarized in Table 3.1. We note that we only examine the reviewers with mi ≥ 3
because it takes time and efforts for promotional attackers to create zombie accounts
for commenting apps and therefore they often reuse these accounts for posting
reviews. We discuss how to relax this restriction in Section 3.6. Of the valuables
shown in Table 3.1, ci j, si j , and ti j are UGC data and ni j, di j , and ki j are the
metadata. Using these six values for all the apps in A(ri), we compute a feature
vector F(ri) = { f i1 , f

i
2 , . . . f

i
15} for a given reviewer ri . Our goal is to build an

accurate classifier g(F(ri)) that determines whether ri is promotional attacker or
not. The details of computing a feature vector from the observed variables will be
described in the next section.

3.3 PADetective system
In this section, we first provide an overview of PADetective, and then detail its
four core components: data collection, data preprocessing, feature extraction, and
detection.
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Fig. 3.2 Overview of PADetective.
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Fig. 3.3 Percentage of review numbers with different rating

Fig. 3.4 Histogram for the number of reviews in each app
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Table 3.1 Notations used for our problem.

Symbol Definition

ri the i-th reviewer (i = 1, 2, . . .)
A(ri) a set of apps reviewed by the reviewer ri .

mi
number of apps reviewed by the reviewer ri .
mi = |A(ri)|.

ci j
review comment posted by the reviewer ri for
the j-th app. j = 1, 2, . . . ,mi .

si j
rating score posted by the reviewer ri for the
j-th app. j = 1, 2, . . . ,mi .

ti j
time at whch the reviewer ri posted a comment
for the j-th app. j = 1, 2, . . . ,mi .

ni j
number of installs for the j-th app reviewed by
the reviewer ri . j = 1, 2, . . . ,mi .

di j
developer of the j-th app reviewed by the re-
viewer ri . j = 1, 2, . . . ,mi .

ki j
category of the j-th app reviewed by the re-
viewer ri . j = 1, 2, . . . ,mi .

3.3.1 Overview

Figure 3.2 presents an overview of PADetective, which consists of four core com-
ponents. First, the data collection component has a crawler to collect data from the
Google Play Store. Second, the data pre-processing component involves 8 steps in
removing noisy data. Third, the feature extraction component obtains the values for
the 15 new features from the pre-processed data. Fourth, the detection component
selects the most suitable detection model to predict promotional attackers and to
determine the correlation between promotional attackers and malicious apps.
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Table 3.2 Description of UGC and metadata

Type Item Description

Reviewer name The name ID of each reviewer
User-generated content Rating The score attached to each app by re-

viewer. The range of score is from 1 to
5

Post time The date of review creation
Review The comment text written by reviewer
Number of installs The count of app downloaded by mobile

user, i.e. 1,000-5,000, 10,000+
Metadata Category The cluster name of apps with similar

function, i.e. Entertainment, Commu-
nication,Sports

Developer The name of an individual or a company
who create the app

3.3.2 Data Collection

We first create a list of apps to be downloaded by using the list of package names
provided with PlayDrone [37]. Then, we collect metadata for each app by accessing
its description page according to its package name and employing our HTML parser
to extract all metadata in the page. The UGC cannot be obtained from the page
directly because listing them involves asynchronous communication with the server.
To address this issue, we developed a UGC crawler based on the review collection
API [38] provided byGoogle Play Store. More precisely, our crawler sends an HTTP
request, which contains the package name and the page index as parameters, to the
server and then parses the JSON file in the HTTP response. Figure 3.4 shows the
statistics of the number of reviews in each app. We note that the Google Play review
collection service only allows 4, 500most recent reviews to be crawled for each app.
We could fetch the reviews continuously for circumventing this limitation, thanks to
our automated process of data collection. To follow the acceptable use policy of the
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API, we deployed our crawler on 100 servers around the world to collect UGC for a
large number of apps.

We used the crawler to collect UGC and metadata for 1,058,259 apps from the
Google Play app store in November 2015. The data set involved 57,868,301 reviews
from 20,211,517 unique users. The statistics for the collected UGC and metadata
are presented in Table 3.2.

Figure 3.3 shows the statistics for the collected rating data. The rating scale in the
Google Play Store ranges from 1 to 5. We can see that over 55% of ratings are 5 stars.
It may be due to either the users’ tendency to give high ratings or PAs. Therefore,
it is a challenge to distinguish promotional attackers from legitimate reviewers who
are actually satisfied with the apps.

3.3.3 Data Preprocessing

Before creating the feature vector for the classifier, we develop a 8-step process to
remove the noisy and meaningless data.
Step 1: Remove all reviews under the default reviewer name “A Google User”,
because we cannot extract the string features from the default reviewer name. We
discuss how to tackle this limitation in Section 3.6.
Step 2: Extract the reviewers who have commented on at least three apps. The
limitation introduced by this step is discussed in Section 3.6.
Step 3: Remove reviews written in languages other than English as PADetective
currently only handles English.
Step 4: Split all sentences into words.
Step 5: Transform all letters into lowercase.
Step 6: Remove all stop words such as “is”, “am”, “the”.
Step 7: Consolidate variant forms of a word into a common form (i.e., word
stemming), for example, convert “running” to “run”.
Step 8: Correct the misspelling English words for all the reviews.

For Steps 3-8, we implement the natural language processing based on NLTK [39]
and TextBlob [40]. NLTK is a widely used Python library for natural language
processing, and TextBlob was developed on the basis of NLTK for simplifying text
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processing. TextBlob enables us to realize language detection and spelling correction
in the data preprocessing stage as well as sentiment analysis during the feature
extraction stage. After data preprocessing, our dataset for feature extraction includes
2, 606, 791 reviewers. After the 8 steps, 23,255,180 reviews are removed from our
dataset. The unique users are only reduced in first 3 steps. The remaining steps are
used to preprocess each review by using the natural language processing techniques.
In the steps 1, 2, 3, the number of distinct users are reduced to 14,191,879, 2,678,217,
2,606,791, respectively.

3.3.4 Feature Extraction

We profile each reviewer ri by using 15 features extracted from the UGC and
metadata. These features form a feature vector F(ri) = { f i1 , f

i
2 , . . . f

i
15}, and we

classify them into 6 categories, which are detailed in Section 3.3.4-Section 3.3.4.

Posting Time
f i1 : Day intervals. Promotional attackers are likely to launch a rating promotion

attack within a short day intervals. For example, Xie and Zhu found that reviewers
hired by app promotion web services tend to complete their review promotion
missions within 120 days [31]. Therefore, we calculated the day intervals between
the earliest and the latest post time max(Ti) − min(Ti), where Ti = {ti1, . . . , timi },
and defined f i1 = max(Ti) −min(Ti).
f i2 : Day entropy. Promotional attackers are likely to write reviews within the same

day, because they may use automated posting process or want to get paid as quickly
as possible. To measure the proportion of same-day reviews, we defined f i2 using
the information entropy as follows:

f i2 = H(X) = −
mi∑
j=1

P(ti j) log P(ti j)

, where P(ti j) is the frequency of same-day reviews: ti j
sum and sum =

∑mi

j=1 ti j is
the sum of days reviewed by reviewer ri . We note that H (Greek capital letter eta)
expresses Shannon entropy. If all the reviews are posted on the same day, the entropy
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of the post time will be 0.

Reviews
f i3 : Bi-gram matching. Promotional attackers often post similar reviews. Detect-

ing similar reviews is important due to the presence of made-up words that are
used to express strong feelings, such as “goooooood” and “coooooool”. Made-up
words cannot be reformed by existing spelling correction algorithms because they
are designed to correct misspelled words instead of intentionally created words. To
address this problem, we converted each word into a bi-gram and then used bag of
bi-gram to build a feature vector for each ci j . Finally we calculated the average of
the cosine similarity score of each pair of reviews by the reviewer ri . In other words,

f i3 =

∑mi

j=1
∑mi

k=1 cosim(ci j, cik)
m2
i

, where cosim is cosine similarity score. We set the threshold of cosine similarity
as 0.9
f i4 : Semantic similarity. Since reviewers may use different words and expressions

to express the same feeling, we identify similar words and expressions using the the
Paragraph Vector (PV) algorithm [35], because it performs a semantic analysis in
discovering similar words and expressions. More precisely, the PV algorithm has
each document represented by a dense vector, which is trained by stochastic gradient
descent and back-propagation, to predict the similarity of words in the different
documents. The PV algorithm is designed in a distributed way such that it can train
a large amount of unlabeled data in a very short period of time. For example, by
applying the PV algorithm realized in the Python library gensim [41] to 57, 868, 301
reviews in our dataset, we get the predicted model after around 1 hour. We defined
f i4 as the average of the similarity scores predicted from the trained model for each
pair of reviews.

f i4 =

∑mi

j=1
∑mi

k=1 D(ci j, cik)
m2
i

Where D is the distance of two different documents computed by PV algorithm.
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Table 3.3 Examples of similarity score computed with the trained Paragraph vector model.

word1 word2 similarity score

adware malware 0.88
ads spam 0.64
camera permission 0.74
hack access 0.71
internet location 0.62
good nice 0.60

Table 3.3 presents some examples of the similarity scores computed by the trained
PV model. It is clear that the model can infer the correlations between not only
different words with the same purpose but also security-related similarity words
without using the labeled data. Note that although we used words to demonstrate the
effectiveness of the approach, we actually apply the algorithm to the entire review
texts.
f i5 : Sentiment analysis. Promotional attackers usually post positive reviews to

promote apps for monetary benefit and/or luring more victims to install malicious
apps. Sentiment analysis is an approach used to classify the feeling of a given text
into three categories: negative, neutral, positive. By using the sentiment analysis,
we can extract potential promotional attackers who has posted only positive reviews
to the apps.

We use TextBlob [40] to conduct the sentiment analysis of all the reviews. The
sentiment analysis in TextBlob was implemented by a supervised learning naive
Bayes classifier that is trained on the labeled movie reviews provided by NLTK.
The bag-of-words approach is used for feature vector creation. The accuracy of
the sentiment analysis classifier is between 80% and 90%. In our case, both the
training data (movie reviews) and predicted data (android app store reviews) were
different types of reviews with similar characteristics. Therefore, the sentiment
analysis classifier could achieve a high prediction accuracy of 90% for our review
data. We defined f i5 as the average score for each pair of reviews predicted by the
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Table 3.4 Example of score predicted by sentiment analysis classifier

Sentence The score of sentiment analysis

That is my opinion 0.0
Awesome game. 0.3
Nice graphics and I love it. 0.55
Very bad game. -0.65
I hate all the covers I’m
here to look for the songs
made by the artist not covers. -0.8

sentiment analysis classifier. Table 3.4 shows an example of the scores predicted
by the sentiment analysis classifier. If the score is zero, it means the sentiment of
the review is neutral. We found that our classifier had identified the sentiment of the
reviews correctly.
f i6 : The average length of the reviews. Fake reviews injected by promotional at-

tackers are likely to be short, because they may use an automated posting process or
want to get income as quickly as possible. Therefore, we defined f i6 as the average
length of the reviews written by the reviewer ri .

Ratings
f i7 : True Reputation Score. Users often rely on the average ratings of the apps,

computed by the app stores, in selecting the apps. Unfortunately, promotional
attackers can easily manipulate the average ratings by giving high ratings to their
target apps. We defined f i7 as the average of the margin between the app’s rating
and the reviewer’s rating based on the true reputation score of each app instead of
the average rating. This score is calculated according to the TRUE-REPUTATION
algorithm [36], which takes into account the user confidence in terms of user activity,
user objectivity, and user consistency.

User activity, objectivity, and consistency are in the range of [0, 1]. If the activity
score of a user vr is 1.0, the user is the most active user and posts many app ratings.
The user objectivity or indicates the aggregated objectivity of the ratings posted by
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a user, with a value of 1.0 indicating the most objective user. The user consistency
is is used to detect abnormal ratings by applying box-plot analysis. A reviewer with
legitimate behavior is given a high user consistency score. After computing these
three scores, the confidence of a rating s, us , can be calculated as

us = vr × or × is, s ∈ Sr,

where r is a reviewer and Sr is set of ratings posted by reviewer, r . Finally the true
reputation score is defined as

ua =

∑
s∈Sa

(s × us)∑
s∈Sa

us
,

where a is an app and Sa is the set of ratings for app a. Based on ua, f i7 is computed
as:

f i7 =

∑mi

i=1(si j − uaj)
mi

,

where mi is the number of apps reviewed by reviewer ri .
f i8 : Average ratings. Since promotional attackers will give high ratings to ma-

licious apps for attracting more downloads, we defined f i8 as the average ratings
posted by reviewer ri .
f i9 : Coefficient of variation of ratings. We defined f i9 as the coefficient of vari-

ation of all the ratings posted by each reviewer to measure their distribution. The
coefficient of variation is the ratio of the standard deviation to the mean.

f i9 =
σ(Si)∑mi

j=1 si j
,

where σ is standard deviation and Si = {si1, . . . , simi }. If a reviewer posts identical
ratings, the coefficient of variation will be 0.

Number of installs
f i10: Average number of installs. Since the number of installs is an important

metric affecting users’ selection of apps, we defined f i10 as the average number of
installs for reviewer ri .

f i10 =

∑mi

j=1 ni j
mi

,
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f i11: Coefficient of variation of the number of installs. To measure the distribu-
tion of the number of installs, we define f i11 as the coefficient of variation of the
number of installs for reviewer ri . The computation of f i11 can be referred to the
equation defined by f i10. If a reviewer posts reviews to apps with the same number
of installs, the coefficient of variation will be 0.

Developer and Category
f i12: Developer Entropy. Promotional attackers are more likely to promote apps

produced by the same developer because the targeted malicious apps should be
associated with each other. Therefore, we defined f i12 as the entropy of developer
for reviewer ri . The computation of f i12 can be referred to the equation defined by
f i2 . If a reviewer only posts reviews for apps from the same developer, the entropy
of the developers related to reviewer ri will be 0.
f i13: Category Entropy. Promotional attackers tend to promote apps having a

small number of distinct categories, possibly due to the automated posting process.
Similar with f i12, we defined f i13 as the entropy of category for reviewer ri . The
computation of f i13 can also be referred to the equation defined by f i2 . If a reviewer
only posts reviews for apps having a small number of distinct categories, the entropy
of the categories related to reviewer ri will be 0.

Reviewer names
f i14: Length of reviewer name. Legitimate reviewers usually use their own name

as the reviewer name, whereas the reviewer names selected by promotional attackers
are likely to be unusually short or long. Hence, we defined f i14 as the length of the
reviewer name.
f i15: Number of digits and symbols in reviewer name. The reviewer names of

promotional attackers are often randomly generated, and therefore they are likely to
contain digits and symbols such as “!”, “*”, “@.” According to this observation, we
defined f i15 as the number of digits and symbols in the reviewer names.
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Fig. 3.5 f i1 :Day Intervals.

Fig. 3.6 f i10:Average number of installs.
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Fig. 3.7 f i12:Developer Entropy

3.3.5 Effectiveness of feature

In the followings, we demonstrate how our features work in detecting promotional
attackers. In particular, we picked the top-3 feature that contributed most to the
classification. The top-3 features are f i1 :Day intervals, f i10:Average number of
installs, and f i12:Developer Entropy. f i1 :Day intervals is the most influential one in
these features. We extracted these three features by using tree-based feature selection
method [42], which uses forests of trees to evaluate the importance of features .

Figure 3.5 shows the Cumulative Distribution Function (CDF) of the day intervals
of promotional attackers and those of normal reviewers. We can see that promotional
attackers usually have shorter day intervals than normal reviewers. It is likely that
promotional attackers want to get revenue quickly or are required by their employers
to do so. Figure 3.6 shows the CDF of the number of installs of promotional attackers
and those of normal reviewers. We can figure out that promotional attackers tend to
promote apps whose number of installs is not very large due to the prohibition of
promotion activity by Google Play [43]. Figure 3.7 shows the CDF of the developer
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entropy of promotional attackers and those of normal reviewers. We can see that
promotional attackers tend to promote apps produced by the same developer. because
promotional attackers are probably hired by the same developer.

We note that these three features are informative for identifying promotional
attackers from normal reviewers. We also found that the features extracted from
metadata are more effective than those from UGC in PA detection, because it is
not easy for attackers to manipulate the metadata such as developer and number of
installs.

3.3.6 Detection

Webuilt our detectionmodel based on themachine-learning algorithms implemented
in the Python library scikit-learn [44] because this library is efficient. Considering
the performance of each machine learning method, we adopted standard supervised
learning methods, i.e., support vector machine (SVM), k-nearest neighbor (KNN),
random forest, decision tree, and adaBoost. To determine the best machine-learning
algorithm and parameters, we leveraged our labeled dataset to test all the selected
models using classifiers and parameters. The detailed model selection process and
its results are presented in Section 3.4. Finally, we applied the best detection model
to perform a large-scale analysis of our real-world dataset.

3.4 Performance Evaluation
This section presents the evaluation result of PADetective. We first introduce howwe
prepare the labeled dataset (i.e., the ground truth), and then describe the evaluation
method and the result, respectively.

3.4.1 Training Dataset

We first generate the training dataset with the ground truth. Considering that
there may be legitimate reviewers who comment on a bad app or posts reviews to
malicious apps by mistake, we define a promotional attacker as a reviewer who posts
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reviews only to malicious apps, and the number of malicious apps is at least three
apps because it is likely that promotional attackers promote more malicious apps
to increase infected devices or monetary benefits quickly. In contrast, legitimate
reviewers post reviews only to benign apps.

We determine whether an app was malicious by submitting the app to VirusTo-
tal [45] and making the decision based on the results from a set of antivirus systems.
Note that we did not verify all the apps in our dataset to generate the training dataset
because of the limitation of time and computer resources. The number of apps we
used for collecting UGC and metadata is 1,058,259. After the data preprocessing,
234,139 apps are left for the large-scale analysis. We also note that VirusTotal usu-
ally classifies malicious apps into two categories: malware and adware. VirusTotal
provides several detection names of a given malware or adware. We can use the
names to distinguish between malware and adware. If we observe the names for
both malware and adware, we adopt the most frequent types as our choice. We
did not distinguish between these categories because PAs would likely be used to
promote both malware and adware apps. With this approach and additional manual
inspection, we identified 723 promotional attackers. Aside from this, we randomly
selected 1,000 legitimate users to create the training dataset. The reason why we
randomly sampled legitimate users was to achieve a good balance between the two
classes when we trained our classifiers.

3.4.2 Evaluation Method

Figure 3.8 shows the flow of performance evaluation. We randomly divided the
labeled data into two sets. Containing 70% of labeled data, the first dataset is the
training dataset used to optimize each machine learning model and select the best
model. For optimizing the machine learning algorithms, we specify a set of carefully
chosen values for each parameter in machine learning algorithms. i.e. for random
forest, we set parameter “n_estimators” to a set of values: 50, 100, 150, 200, 250.
Then we evaluated machine learning algorithms with different parameters by using
10-fold cross-validation. Finally we selected best result in consideration of accuracy,
false positive and false negative. Having 30% of labeled data, the second dataset is
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Fig. 3.8 A flow of evaluating the accuracy of PADetective.

the test dataset utilized to evaluate PADetective’s performance after the best model
is selected. Given that we did not use this test set for optimizing/selecting the model,
the pfiction results for it can be thought as test for the unknown data.

To measure the accuracy of various supervised learning algorithms, we use three
metrics: false positive rate (FPR), false negative rate (FNR) and accuracy (ACC),
where FPR = FP

FP+TN , FNR = FN
TP+FN , and ACC = TP+TN

TP+TN+FP+FN , respectively.
TP is true positive, FP is false positive, TN is true negative and FN is false negative.
We also show the performance of the best detection model through the ROC curve,
which can be used to determine the best combination of true and false positive rates.

3.4.3 Evalutaion Result

Table 3.5 lists the accuracy of different machine learning algorithms used by PADe-
tective. Most of these algorithms predicted the promotional attackers with high
accuracy and low false negative or false positive rate. Among the five machine-
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learning algorithms we tested, RandomForest achieved the highest accuracy (i.e.,
93.3%) with the lowest false positive (i.e., 0.083) and false negative (i.e., 0.053)
rates. Moreover, its standard deviations of the accuracy, false positive rate, and
false negative rate of RandomForest are also low, indicating that RandomForest can
identify promotional attackers effectively. We use the grid search to determine the
best parameter for RandomForest, and find that 50 is the optimal number of trees.
Based on these results, we select RandomForest as our detection model. With regard
to metrics we used, F-measure is also one of the useful metrics that can capture the
trade-offs between the accuracy and error. In this work, we adopted another metrics
(ACC, FPR, FNR) that can capture this trade-off. As we showed in the table 3.5, the
random forest algorithm achieved the highest accuracy while achieving the lowest
FPR. It also achieved the second lowest FNR. Although kNN achieved the lowest
FNR, its accuracy and FPR are not better than random forest. Given these observa-
tions, we can conclude that Random Forest works the best for our problem. In this
work, we optimize all the machine learning algorithms we used. Generally, it is not
a straightforward task to identify the reason why one machine learning algorithm
works the best. Although not conclusive, we conjecture that the reason why Random
Forest works the best in our study might come from the fact that it tends to have less
variances. [46]

To better understand the root causes of false negative rate and false positive rate
in our system, we conduct error analysis with manual inspection. It turns out that
PADetective failed to detect the promotional attackers who had posted reviews for a
period of two years or longer. On the other hand, PADetective wrongly flagged the
legitimate reviewers whose behaviors were similar to a promotional attacker (e.g.,
their reviews seemed to be fake, but the apps reviewed were not detected by the
VirusTotal). It is worth noting that advanced malware may evade the online virus
checkers.

Finally, using the optimized RandomForest algorithm, we test PADetective’s
accuracy using the test dataset. Figure 3.9 shows that it can achieve 90% true
positive rate with low false positive rate of 5.8%. We can claim that such accuracy
is good for the unknown set, indicating that the classification scheme is robust. In
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Fig. 3.9 Evaluation of detection model using test set. Note that we did not use
test set to train the classifier.

the next section, we will use this classification model to investigate the PAs in the
large-scale data.

3.5 Promotional attacks in the wild

3.5.1 Large-scale Measurement

Using PADetective, we conducted a large-scale analysis of real-world data collected
from the Google Play Store, and found 289, 000 of potential promotional attackers
from 2,605,068 reviewers. In Section 3.4.1, we used a 1723-entry labeled dataset
(a small portion of all the dataset) to build and test our classifier. In Section 3.5.1,
we conducted a large-scale analysis on the remaining “unlabeled” data by using the
classifier we built in Section 3.4.1. Table 3.6 summarizes the number of review-
ers/apps detected by PADetective. The number of unique malicious apps reviewed
by the potential promotional attackers was 20,906, accounting for approximately
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Table 3.5 Classification accuracy. The means and standard deviations are cal-
culated using 10-times 10-fold cross-validation tests for each machine learning
algorithm.

Machine learning 
Algorithm�

ACC� FPR� FNR�
mean std mean std mean std 

SVM 0.661 0.041 0.059 0.072 0.372 0.048 
RandomForest 0.933 0.014 0.083 0.033 0.053 0.036 

KNN 0.894 0.020 0.162 0.027 0.050 0.022 
DecisionTrees 0.902 0.020 0.091 0.035 0.100 0.033 

AdaBoost 0.918 0.022 0.100 0.030 0.066 0.034 

65% of the malicious apps reviewed by all observed reviewers. It is worth noting
that many malicious apps having reviews were associated with the potential promo-
tional attackers. Note that the majority of malicious apps detected by VirusTotal had
no user reviews. It is likely that malicious apps are detected and deleted by mobile
app stores in the early stage of distribution, so there are no users to use and comment
on such malicious apps. Another possibility is that mobile app stores deleted both
malicious apps and their information including reviews simultaneously, so we can
not collect the reviews from mobile app store.

Then, we ranked the reviewers in descending order according to the probability
of being a promotional attacker, and investigated top 1,000 reviewers detected as
promotional attackers. The top 1,000 reviewers posted reviews for 2, 904 of apps,
which include 486 of malicious apps and 148 of apps deleted by the app store for
some reasons, e.g., malware or potentially harmful apps. Among the 486 malicious
apps, approximately 66% of malicious apps are labeled as adware. We present
the top 10 types of malicious apps that are reviewed by the detected promotional
attackers in Table 3.7. Most of them are also labeled as adware. Promotional
attackers tend to promote adware so that they can make more profiles and collect
users’ information.

Among the 1,000 promotional attackers, 136 reviewers (13.6%) posted reviews
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Table 3.6 Statistics of detected promotional attackers and apps. “–” indicates
that we were not able to perform the evaluation due to the lack of resources.
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Fig. 3.10 Top 10 categories of apps reviewed by the detected promotional attackers.

Fig. 3.11 Top 10 number of installs for apps reviewed by the detected promotional
attackers.
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Table 3.7 Top-10 types of malicious apps reviewed by the detected PAs.

Type of malicious app The number of type

Android.RevMobAD.A (AdWare) 18.5%
Adware.Android.Gen 8.4%
Android.Airpush.G (AdWare) 4.7%
Android.Leadbolt.A (AdWare) 3.5%
Trojan.AndroidOS.Generic.A 2.9%
Android.Airpush.H (AdWare) 2.9%
Adware/ANDR.StartApp.A.Gen 2.7%
Adware.AndroidOS.Startapp 2.1%
Riskware.Android.Leadbolt.dkzuxh 1.9%
Adware/ANDR.Leadbolt.B.Gen 1.6%

only for malicious apps or the deleted apps. We found that other detected reviewers
posted reviews for not only malicious apps, but also for apps that were not regarded
as malware/adware by VirusTotal. We note that using the online virus checkers
could be one of the sources of false detection. We leave the checking of the code of
those undetected apps for our future work.

Figure 3.10 shows the top 10 categories of the apps reviewed by promotional
attackers. Three categories (approximately 15% in total) are related to games,
which was the primary target of the PAs. To study the impact of apps promoted by
the promotional attackers, Figure 3.11 illustrates the top 10 number of installs of the
apps reviewed by promotional attackers. We can see that the majority of such apps
do not have many installs. This observation indicates that PAs are used when the
app is not so popular. There may be other reasons that the data was captured when
the PA was just launched (i.e., not yet finished),

We also investigate whether the detected promotional attackers can be used to
discovermalicious apps. More precisely, we compare the timewhen the promotional
attackers posted reviews on malicious apps and the time when the malicious app
was first submitted to VirusTotal. If all the posting times are earlier than the first
submission time, then our PA detection scheme has the potential to identify new,
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Table 3.8 A set of apps reviewed by a detected promotional attacker.
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Table 3.9 A set of unknown malicious apps reviewed by a detected promotional attacker.
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previously unknown malicious apps soon after publication.
We examine the top 241 detected promotional attackers who only reviewed mali-

cious apps, and find that 72 of them reviewed malicious apps before these malicious
apps were detected by VirusTotal. Among all the apps reviewed by these 72 pro-
motional attackers, 217 apps were labeled as malicious app by VirusTotal. It is
worth noting that other apps reviewed by the promotional attackers might also be
suspicious.

In summary, PADetective discovered 289 K reviewers as potential promotional
attackers. They posted reviews for 136 K apps, which included 21 K malicious apps.
Among the top 1000 reviewers who were flagged as promotional attackers with high
confidence, 136 reviewers posted reviews only for malicious apps, and another 113
reviewers posted reviews for apps, most of which were detected as malicious apps.
The result also suggests that PADetective could be used to detect malicious apps in
the early stage of distribution.

3.5.2 Case Studies

Herein, we detail two PAs to demonstrate the effectiveness of our PADetective
system.
promotional attackers in the wild Table 3.8 lists a set of apps reviewed by a
promotional attacker. This promotional attacker gave high ratings and posted similar
positive reviews for seven malicious apps on the same day. These malicious apps
belonged to different category, were not very popular, and were created by the same
developer. Moreover, the average of the difference between the true reputation scores
and ratings was larger than 1.0, indicating that the reviewer attempted to promote all
the malicious apps using high ratings. This example illustrates the common features
of promotional attackers in the wild.
Detecting previously unknown malicious apps As shown in table 3.9, this pro-
motional attacker gave high ratings and wrote very short positive reviews for three
malicious apps on the same day. Moreover, all the posting times are earlier than the
first submission time in VirusTotal. The apps reviewed by this promotional attacker
would be more likely to be malicious. The security expert and market operator can
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therefore discover new, previously unknown malicious apps by analyzing the apps
related to this promotional attacker detected by PADetective.

3.6 Discussion
This section discusses some limitations of PADetective and future research direc-
tions.
Evasion. Advanced attackers may evade the PADetective system by employing lots
of user accounts with different names and/or mimicking the reviewing behaviors
of normal users. It is worth noting that such evasion strategies require much more
resources and efforts. For example, attackers may acquire lots of fake user accounts
and use each account to just post one comment in order to degrade the detection
accuracy of PADetective. However, since mobile app stores (e.g., Google Play)
usually adopt advanced techniques [47] to deter automated account registration, it
will cost the attackers lots of resources and efforts to createmany accounts and it does
not benefit the attackers if these accounts are just used to post one comment. Note
that the primary goal of the attackers is to increase the success rate of attacks with
lower costs [48]. Even if an attacker affords to adopt such an expensive approach,
the stakeholders of mobile app stores can enhance PADetective with additional
information about each account, such as IP address which could be correlated with
user accounts to detect malicious users [49]. The attackers may also mimic the
reviewing behaviors of normal users by writing short/long reviews, reviewing both
legitimate and malicious apps, adjusting the posting time, and etc. It will also
significantly increase the cost of attacks. We leave the challenge of differentiating
such advanced attacks and human reviewers in future work.
Number of apps reviewed by each reviewer. PADetective does not consider
reviewers who posted comments for only one or two apps. This constraint originates
from the fact that computing some features such as entropy or coefficient variants
require more than two samples. In this work, we empirically set the number as
3 because increasing the number was not sensitive to the final outcomes. Since
attackers usually employ the accounts to post a number of comments as we discussed
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above, we believe that this number is reasonable to capture promotional attackers.
As the number of apps reviewed by a reviewer may exceed the threshold, 3, over
time, PADetective could identify them by continuously collecting and analyzing
the comments. We will construct a real-time detection system for fetching and
examining UGC and the metadata continuously in future work.
Maximum number of reviews We only crawled 4,500 most recent reviews due to
the constraint of Google Play review collection API. This may lead to false negative
that our system miss to discover the PAs who exhibit their malicious behavior at
very early time such as five year ago. We aim to identify the newest promotional
attackers who can be used to find our potentially malicious apps before they were
submitted to public online virus checkers. To keep our collection data up to date,
we need to build a real-time collection system mentioned above.
Scalability The detection model of PADetective is based on static features. The
Paragraph vector and TRUE-REPUTATION are lightweight and can compute the
similarity word weight vectors and the true reputation scores of our large-scale
dataset within approximately 1 hour. We use the true reputation scores and similarity
word weight vectors calculated in advance every time we extract a feature from each
reviewer. We only need to recompute the true reputation scores and similarity word
weight vectors when refreshing the UGC and metadata. This feature extraction
approach makes PADetective highly suitable for large-scale evaluation. In our
large-scale evaluation, PADetective completed the prediction of all the reviewers
within one day.
Countermeasures against the threat of PAs One possible approach is to let users
know the existence of PAs. For instance, if a promotional attacker is detected with
high confidence, an app store can mark the promotional attacker and apps reviewed
by the promotional attacker to let other mobile users aware of the potential threat.
We can also change the review display order such that other mobile users will not
read the reviewswritten by promotional attackers first. Presenting the true reputation
scores rather than row average scores is also promising to inform users a signal of
the threat.
Application to other app stores. While this work used the data collected from the
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official app store, we will extend the investigation on other app stores in future work.
It is worth noting that the UGC and metadata in other app stores are very similar
to those on the Google Play Store. Since the features used by PADetective depend
only on UGC and metadata, it is easy to apply PADetective to other app stores such
as the iOS App Store or Android third-party app stores.

3.7 Related work
This section introduces mostly related work in three categories.

3.7.1 UGC analysis

Review Analysis. Kong et al. [8] designed AutoREB to automatically identify
usersʟ concerns on the security and privacy of mobile apps. They applied the
relevance feedback technique for the semantic analysis of user reviews and then
associated the results of the user review analysis to the apps’ behaviors by using
the crowd-sourcing technique. Mukherjee et al. [33, 34] proposed new approaches
to detect fake reviewer groups from Amazon product reviews. They first used a
frequent itemset mining method to identify a set of candidate groups, and then
adopted several behavioral models based on the relationships among groups such as
the review posting time and similarities. Fu et al. [50] proposed WisCom to provide
important insights for end-users, developers, and potentially the entire mobile app
ecosystem. They leveraged sentiment analysis, topic model analysis, and time-series
analysis to examine over 13M user reviews. Gomez et al. [10] analyzed user reviews
and permissions using an unsupervised learning approach to detect apps that contain
bugs and errors.
Rating Analysis. Xie et al. [9] proposed a new method for discovering colluded
reviewers in app stores. They built a relation graph based on the ratings and the
deviations of the ratings, and applied a graph cluster algorithm to detect collusion
groups. Oh et al. [36] developed an algorithm that calculates the confidence score
of each app. Market operators can replace the average rating of each app with
the confidence score to defend against rating promotion/demotion attacks. Lim et
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al. [51] devised an approach to measure the degree of spam for each reviewer based
on the rating behaviors, and evaluated them using an Amazon review dataset.

Previous works [9, 33, 34] are closely related to our work. The major differences
between PADetective and Xie et al. [9] is the scalability. More precisely, their
system is not scalable because it is not possible to build a tie graph of large-scale
dataset in physical memory. Moreover, they performed the evaluation on a small
and local dataset (200 apps collected from the china apple store). In contrast, since
our detection model uses static features, our system can conduct large-scale analysis.
Moreover, we investigate the prevalence of PAs in the official Android app store by
collecting information on more than 1 M apps.

The method of review analysis is the main difference between PADetective and
[33,34]. Since they aimed to identify copy reviews used by spammers, their method
only extracts the similar reviews in keyword level, e.g.,ʠgood appʡandʠgood appsʡ.
Since users can express the same opinion using different words and expressions, e.g.,
ʠnice appʡandʠgood appʡ, we leveraged the state-of-the-art NLP technique called
Paragraph vector [35] to extract similar reviews at the semantic level for better
accuracy.

3.7.2 Metadata Analysis

Xie et al. [31] studied the mobile app reviews traded on the underground market.
They analyzed the metadata of the promoted apps collected from the underground
market, including average ratings, total number of reviewers, category distributions,
and developers. WHYPER [52] was the first system that analyzes text descriptions
semantically to perform risk assessments of mobile apps. Qu et al. [53] developed
AutoCog for measuring description-to-permission fidelity in Android applications.
Peng et al. [54] designed an app risk scoring and ranking system based on proba-
bilistic generative models in order to improve risk communication mechanism for
Android apps . The system was trained on the metadata including the developer
name, the category, and the set of permissions requested by the app. Yu et al. [55]
proposed a novel approach to automate the detection of incomplete, incorrect and
inconsistent privay policy by combining description and code analysis. Unlike these
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systems, PADetective can extract features from not only the metadata mentioned
above but also UGC in a more comprehensive way.

3.7.3 App analysis

Several studies [56–65] have analyzed the permission, API call, and runtime be-
havior derived from code to detect malicious apps or prevent system and application
vulnerabilities from being abused by attacker.

Kirin [56] is a lightweight system that can flag potential malware applications at
the time of installation using a set of security rules that match malware characteris-
tics. DroidScope [57] rebuilds both theOS-level and Java-level semantics simultane-
ously and seamlessly to unveil malicious intent and the inner workings of a malware
application quickly. DroidRanger [58] applies a heuristics-based filtering scheme
to discover unknown malicious apps from real-world datasets. RiskRanker [59]
can automatically identify zero-day Android malware by examining apps’ runtime
behaviors. Unlike DroidRanger, it does not require malware specimens to detect
zero-day malware. DREBIN [60] is a lightweight and automatic Android malware
detection system. DroidMiner [62] can automatically mine malicious program logic
from known Android malware using behavioral graph and machine-learning tech-
niques. PADetective complements to these studies by investigating the relationships
among UGC, metadata, and malicious apps to detect promotional attackers and
reveal malicious apps.

3.8 Conclusion
In this chapter, we propose and develop PADetective, which can identify unknown
promotional attackers in mobile app stores, using UGC and metadata as well as
machine-learning techniques. We extracted 15 features from the UGC and metadata
and selected the most suitable machine-learning methods for our detection model.
The extensive experiment results demonstrate that our detection scheme can achieve
a high true positive rate of up to 90% and a low false positive rate (i.e., 5.8%).
We also applied PADetective to a large-scale analysis of unlabeled reviewer data; it
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detected 289K reviewers as potential promotional attackers, who posted reviews to
136K apps, including 21K malicious apps. Moreover, the large-scale evaluation and
case study analysis illustrate that PADetective can effectively and efficiently discover
previous unknown malicious apps.
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Chapter 4

Discussion

This chapter discusses some limitations and the scope of future research of this
thesis.
Coverage. Because of the wide variety and broad field involved, hidden cyber
attacks are weak points of conventional security research. There are still plenty of
hidden cyber attacks that need to be resolved. For example, Internet of Things (IoT)
devices are targeted by newmalware and ransomware. This thesis only designed and
implemented two countermeasures against hidden cyber attacks in various fields.
Although it does not provide a solution for all hidden cyber attacks in the security
field, the methodology proposed in this thesis can be applied to the countermeasures
of other types of hidden cyber attacks. This thesis leaves the challenge of dealing
with other types of hidden cyber attacks for future work.
Evasion and Poison. Advanced attackers may evade or poison the system or
framework proposed in this thesis by evolving their attack signatures or leveraging
other new vulnerabilities. The features used in the proposed system or framework
can be updated to solve this problem. In future work, this thesis will add new features
to enhance the robustness of the countermeasures.
Online Operation. The two proposed systems are not entirely suitable for online
operation because of issues concerning the data collection mechanism in each sys-
tem. The data collection mechanism is designed to handle large-scale datasets. This
thesis applies multiple tools and technologies to address issues concerning the data
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collection mechanism, such as web crawler and search engine. Because of the scale
of the data and the required collection times of each tool, this thesis presents a
challenge in pipelining the data collection mechanism in future work. Implementing
full online operation can improve the usability of our systems for security operators
and malware analysts.
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Chapter 5

Conclusion

To address the two types of hidden cyber attacks mentioned in Chapter 1, this thesis
used approaches based on machine learning to design and implement countermea-
sures in the following chapters.

In Chapter 2, this thesis proposed the AutoBLG framework, which is a light-
weight blacklist generating system that can discover new and previously unknown
drive-by-download URLs and other suspicious URLs that need further analysis.
The experimental evaluation demonstrated that AutoBLG can reduce the number of
URLs to be investigated by the dynamic analysis systems by 99% (reduced 60 K to
600), while successfully finding new URLs that have not been listed in the widely
used popular URL reputation system. In the future, this thesis plans to adopt other
types ofURLblacklists, such as phishing blacklists, as input and evaluatewhether the
proposed framework can determine new and previously unknown phishing URLs.

In Chapter 3, this thesis proposed the PADetective system, which uses UGC and
metadata, including machine-learning techniques, to detect unknown promotional
attackers in app stores. We created 15 novel features from theUGC andmetadata and
selected the most suitable machine-learning methods for our detection model. Our
performance evaluation demonstrated that our detection scheme can achieve a high
accuracy (95.4%) and low false positive rate (8%). We also conducted a large-scale
analysis of unlabeled reviewer data using PADetective. The PADetective system
identified 289 K reviewers as potential PAs. The identified potential PAs posted
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reviews to 136 K apps, including 21 K malicious apps. The large-scale evaluation
and case study analyzes illustrated that PADetective can effectively and efficiently
predict previously unknown malicious apps and detect fake reviewer groups. In the
future study, we plan to design the PADetective system for real-time operation.

As remarked above, this thesis provided two solutions for hidden cyber attacks
in various fields. The experimental evaluations demonstrated the effectiveness and
efficiency of the two solutions. The ideas and methods contributed by this thesis
will promote further development in this research area.
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