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1. INTRODUCTION

1.1 Individuals and the Society: Two Viewpoints

It has long been a central theme in many disciplines like philosophy!, general so-
cial science?, and economics® to explore the relationship between individuals and
the society they belong to, which is also the very purpose of von Neumann and
Morgenstern to develop game theory. In the preface of their seminal work [134],
von Neumann and Morgenstern claimed that their main interest is on the prob-
lems “in the economic and sociological direction”, while since those problems
are too complicated to analyze directly, they developed “a mathematical theory
of games” and hoped that those problems can be approached by it. Comparing
economic and sociological problems with parlor games, it is not difficult to dis-
cover the structural similarity between them on the individual-society (the whole
“situation” in a parlor game) relationship. That is, an individual participant has
preferences over the outcomes, while his choices only partially determine the
outcomes. Further, when an individual has bounded cognitive ability, that is,
bounded ability of perception, memory, judgement, and reasoning, what kind of
structures his dicision-making process has and how his decision-making process
is affected by the society are of interest. To approach and explore it from different
viewpoints is the purpose of this research project.

There are two viewpoints to see the relationship between an individual (with
or without cognitive ability) and the whole society: the viewpoint of an outsider
and that of an insider.

An outsider is an observer who views and tries to understand the situation
from the outside, for example, a researcher, or a policy maker. Facing a sociolog-
ical situation, an outsider focuses on some specific issues, abstracts relevant fac-
tors while eliminates irrelevant ones, and constructs a model (i.e., a game) which
contains all information that the issue concerns. Based on that model, the outsider
considers what a participant within the model may (positively) or should (nor-
matively) behave, and defines some solution concepts, for example, Nash equi-
librium (Nash [95], [96]), e-equilibrium (Radner [117], [118]),* proper equilibrium
(Selten [126]), and perfect equilibrium (Myerson [94]). The main stream game

IThe most well-known example is Plato’s Republic and a seies of research (see [35]) in the
relationship between Greek city-states and its citizens.

2Gee Martin [87] for a detailed historical discussion.

3See Bowles [25], Bowles and Gintis [26] for detailed introductions and historical discussions.

4¢-equilibrium is called e-Nash equilibrium in Chapter 3 of this dissertation. In Chapter 3.4 we
will explain the reason for the naming.
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theory literature until the mid-1970s can be regarded as taking this approach.

An insider is an individual decision maker within the social situation, who is
the subject and may be abstracted into a player by an outsider. Taking the view-
point of an insider means to study the decision-making process of such an indi-
vidual. This approach interests in topics such as what a player knows/believes
about the situation and about other participants, what is his decision-making cri-
teria, how he does reasonings based on his knowledge/beliefs, and what is the
structure of his epistemic situation. Since the early 1980s various researches had
been developed to deal with those problems, and they are now forming a field
called epistemic game theory (Perea [110], [112], Dekel and Siniscalchi [42], Pacuit
and Roy [102], Battigalli, Friedenberg and Siniscalchi [13]).° In epistemic game
theory, various concepts have been developed to describe a player’s choices un-
der a belief structure satisfying some specific conditions, for example, rationaliz-
ability (Bernheim [15], Pearce [105]), permissibility (Brandenburger [28]), proper
rationalizability (Schuhmacher [124], Asheim [5]), and assumption of the oppo-
nents’ rationality (Brandenburger et al. [31]).

Those two viewpoints reach the same outcomes under some conditions, that
is, a solution concept in the viewpoint of an outsider can be realized when the be-
lief structures of insider players satisfy some corresponding specific conditions.
For example, Brandenburger and Dekel [30], Aumann and Brandenburger [7],
and Polak [115] studied epistemic conditions for Nash equilibrium; also, per-
missibility (Brandenburger [28]) and proper rationalizability (Schuhmacher [124],
Asheim [5]) correspond to perfect equilibrium (Selten [126]) and proper equilib-
rium (Myerson [94]) respectively. Nevertheless, the two viewpoints are basically
independent and each has its own focus, problems, and methods. Further, when
considering players with bounded cognitive abilities, the gap between “ideal” so-
lution concepts from an outsider’s viewpoint and the behavior of insiders is even
bigger. Those cases account for a large proportion and are more significant in real
lives and henceforth deserve a detailed investigation.

There is still a third field called algorithmic game theory (Nisan et al. [99]).
By its nature it can be said that algorithmic game theory is nearer to the insider’s
viewpoint since the science of algorithm was originally intended to capture the
logical reasoning processes of an ideal mathematician (Hilbert and Ackermann
[55], Turing [131], [132], Kleene [71]). Nevertheless, since the main purpose of al-
gorithm is to develop specified substantive methods to solve classes of problems,
it can be neutral and facilitate investigations from both viewpoints by providing
constructive method to find strategies satisfying specific conditions and make the
process analytical and tractable.

In this dissertation, we study the relationship between individuals with bounded
cognitive abilities and the society. The structure of the investigation is shown in
Figure 1-1. We start from the viewpoint of an outsider and study his abstraction

5For a historical overview of the transition from classical to epistemic game theory, see Perea
[111].
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process. We take an algorithm called iterated elimination of dominated strategies
and inessential players as an example of such process and study its structure.
Then, we take the viewpoint of an insider and study how he abstracts from the
whole society and construct his individual world. We introduce a concept called
influence structure and use it to study how each player’s behavior with respect
to his individual world affects the outcome of the whole society, and what would
happen if each player has only bounded cognitive ability. Influence structure also
provides an algorithm to find pure-strategy Nash equilibrium. Finally, we turn to
each player’s epistemic situation when doing reasoning in his individual world.
We consider how to connect two possible epistemic situations of a player, that is,
having complete and incomplete information, and show under what conditions
the two situations correspond to the same behavioral outcomes.

The whole society
N N A

The viewpoint of
an outsider:
: 2. Influence structure find Abstraction

1
1
1 the approximation of ghe 1 jiEs _:j_ I_ S _f_ =
:the society from : 1 1. lterated elimination o

1

1

1
I
| dominated strategies and i
l

:_inessential players
_______________ 4

{|Player i's individual world I}iEN Research subject

:’3. A player’s reasoning: Rationality '.
1and incomplete infermation. :
\

Figure 1-1  Structure of this dissertation

In summary, we start from the whole social situation, taking an outsider’s
viewpoint and abstracting it into small games; then we take an insider’s view-
point and show how to restore and approximate a social situation from the col-
lection of individual worlds. These two researches show that the two viewpoints
are parallel in some sense and can be connected. In contrast, we finally study
the epistemic aspect of each insider’s decision-making process, showing that the
same outcome can arise from different epistemic situations, which points out the
structural gap between the two viewpoints and implies that both sides are impor-
tant; the relationship between individuals with bounded cognitive abilities and
the society cannot be completely understood through studying only one side.
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1.2 The Organization of the Dissertation

Based on the outline of the research project, in this section we describe the orga-
nization of the rest of the dissertation and give a brief summary for each chapter.

Chapter 2 studies the iterated elimination of strictly dominated strategies and
inessential players (IEDI) as an example of an outsider’s abstraction process.
Such a process may reduce the size of a game considerably, for example, from
a game with a large number of players and strategies to one with a few of each.
We extend two existing results to our context: the preservation of Nash equilibria
(NE) and order independence. These results also provide a way of computing the
set of NE’s for the initial situation from the abstracted endgame. Finally, we re-
verse our perspective to study what initial situations end up at a given final game.
We assess what situations underlie an endgame and give conditions for the pat-
tern of player sets required for a sequence of the IEDI process to an endgame.
This chapter is based on Kaneko and Liu [65].

Chapter 3 considers the directed graphical structure of a game, called influ-
ence structure, where a directed edge from player i to player j indicates that
player i may be able to affect j’s payoff via his unilateral change of strategies. We
give a necessary and sufficient condition for the existence of pure-strategy NE of
games having a directed graph in terms of the structure of that graph. We also
discuss the relationship between the structure of graphs and potential games. Fi-
nally, we introduce ¢-I-structure which concerns only salient influencers of each
player, that is, a directed edge from player i to player j indicates that player i
is able to change j’s payoff more than ¢ via his unilateral change of strategies,
and define e-approximation of the original game. We show that each NE of an
g-approximation is an approximated NE of the original game, and connect e-I-
structure with those approximated NE’s. Since an e-I-structure can be interpreted
by players’ bounded cognitive abilities, these results relate subjective individual
worlds with resulting outcomes in a social game. This chapter is based on Liu
[78], [?], and [80].

Chapter 4 discusses how to characterize in incomplete information framework
two concepts in epistemic game theory called permissibility and proper rational-
izability which were originally defined in the context of complete information.
We define the lexicographic epistemic model for a game with incomplete infor-
mation, and show that a choice is permissible (properly rationalizable) within a
complete information framework if and only if it is optimal for a belief hierar-
chy within the corresponding incomplete information framework that expresses
common full belief in caution, primary belief in the opponent’s utilities nearest
to the original utilities (the opponent’s utilities are centered around the original
utilities), and a best (better) choice is supported by utilities nearest (nearer) to the
original ones. This chapter is based on Liu [81] and [82].

Chapter 5 gives some concluding remarks on my future research plan about
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using epistemic logic to analyze the structure of an individual’s reasoning pro-
cesses. There, two researches in process will be introduced briefly. One is the
semantic structure of lexicographic beliefs which is a key concept in Chapter 4,
the other is an epistemic foundation for cooperative game theory. This chapter is
based on Liu [83] and [84].

THE ORGANIZATION OF THE DISSERTATION 13
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2. ELIMINATION OF DOMINATED STRATE-
GIES AND INESSENTIAL PLAYERS

2.1 Introduction

Elimination of dominated strategies is a basic notion in game theory, and its rela-
tionships to solution concepts such as Nash equilibrium and correlated equilib-
rium have been extensively discussed (see, for example, Osborne and Rubinstein
[101], Maschler et al. [88]). A salient nature of it is that it suggests negatively
what would/should not be played, while solution concepts suggest/predict what
would/should be chosen in games. In this chapter, we also consider elimina-
tions of inessential players whose unilateral changes of strategies do not affect
any player’s payoffs including their own. Those two types of eliminations are
interactive with each other. Hence the process differs from that of eliminations
of only dominated strategies. As an illustration, we consider the following three
examples.

Example 2.1.1 (The battle of the sexes with the second boy). Consider a “battle
of the sexes” situation including boy 1, girl 2, and boy, 3. Each boy i = 1, 3 has two
strategies, s;1, 5j», and girl 2 has four strategies, sy1, ..., Sp4. Boy 1 and girl 2 can date
at a boxing arena (s1; = sp1) or a cinema (512 = Sp2), but make decisions inde-
pendently. Also, girl 2 can date with boy 3 in a different boxing arena (s»3 = s31)
or a different cinema (sp4 = s32). When 1 and 2 consider their date, they would
be happy even if they fail to meet; boy 3’s choice does not affect their payoffs at
all. Also, we assume that when boy 3 thinks about the case that 2 chooses dating
with boy 1, boy 3 is indifferent between his arena and cinema. The same indiffer-
ence is assumed for boy 1 when 2 chooses dating with 3. Due to this assumption,
their payoffs can be described as in the following two tables. The numbers in the
parentheses in the left-hand side table are boy 3’s payoffs. The dating situation
for 3 and 2, described in the right-hand side table, is parallel to that for 1 and
2, only that girl 2 is much less happy when dating with boy 2 than with boy 1.
Therefore, girl 2’s two strategies sp3 and sp4 are dominated by sp; and sp,.

1\2(3) | sz 52 3\2(1) | s23 S4
s11 1510 (—10) | 55(-5) | [sn 151 (—10) | 50 (-5)
s, |55(=5) | 1015(=10)| [s»  [50(=5) |102(=10)

We eliminate those dominated strategies, and the resulting game is still a 3-person
game. However, now boy 3 is inessential in the sense that 3’s choice now does
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not affect any player since the girl does not consider dating with him anymore.
Therefore, we can eliminate boy 3 and obtain the battle of the sexes between 1
and 2.

In the literature of game theory, it is standard to start with a given game, and
analyze it with some solution concepts. Some abstraction process is assumed im-
plicitly behind it. In the above case, eliminations of the dominated strategies for
girl 2 and of boy 3 as an inessential player is an abstraction process to obtain the
2-person battle of the sexes. In Example 2.1.1, elimination of dominated strate-
gies generates inessential players. In general, the possible interactions between
elimination of dominated strategies and of inessential players can be summa-
rized as follows: (a) elimination of dominated strategies may generate both new
dominated strategies and new inessential players; (b) elimination of inessential
players can only generate new inessential players but no dominated strategies.
Hence, the process of iterated elimination of dominated strategies and of inessen-
tial players, called IEDI process, is an extension of the standard iterated elimina-
tion of dominated strategies. An IEDI process may reduce a large game into a
smaller one with regard to the sizes of the player set and strategy sets.

The following examples show that there are social situations different from
Exanple 2.1.1 behind the same battle of the sexes.

Example 2.1.2 (A game with many players quickly reduced to a small game).
We add 99 boys to the game of Example 2.1.1, who are the same as player 3. This
situation has 102 essential players, but only the second player has dominated
strategies. If we eliminate all his dominated strategies, then all players except
1 and 2 become inessential, and simultaneous elimination of them in one step
reduces the game to a 2-person one.

Example 2.1.2 only needs two steps to reach the final game. It is also possible
that many steps are required to reach an endgame. In the following example, the
resulting endgame is the same battle of the sexes but the process is intrinsically
longer.

Example 2.1.3 (Reduction takes many steps). Again, we add 99 boys to the game
of Example 2.1.1. But here they are onlookers rather than replicas of boy 3, that
is, for k = 3,..,,101, player k + 1 is a friend of k and k + 1’s opinion affects k’s
payoffs. Once k disappeared from the game, player k 4+ 1 becomes inessential,
that is, if player 3 is eliminated as in Example 2.1.1, player 4 becomes inessential,
and eliminating 4 makes 5 inessential, etc. After 100 steps of eliminations of those
players, the endgame is again the battle of the sexes.

We can construct elimination sequence games satisfying the conditions de-
scribed above. Nevertheless, rather than constructing specific games, it would
be more informative to consider what are the general conditions that an elimi-
nation sequence is able to satisfy. For that purpose, we take a closer look at the
elimination sequences.

The three elimination processes above are different while they share the same

16 ELIMINATION OF DOMINATED STRATEGIES AND INESSENTIAL PLAYERS



endgames, which suggests that we should carefully study the possible combi-
nations of eliminations of dominated strategies and inessential players. Among
various ways of combinations we choose the order of first eliminating dominated
strategies and then inessential players. Its advantage will be explained in Section
2.2.

Two results in the literature can be extended in our context. One is the preser-
vation theorem (see, for example, Theorem 4.35 in Maschler et al. [88]) stating
that Nash equilibria are preserved in the elimination process. We show that the
preservation theorem also holds for IEDI process. Further, its converse also holds
here, that is, Nash equilibria of the original game can be restored from those of
the reduced game, which provides a simple way to calculate Nash equilibrium
of the original game. The second result is known in the literature as the order
independence theorem: the elimination processes result in the same endgame re-
gardless of the order of eliminations of dominated strategies (Gilboa et al. [47],
Apt [4]). It also holds with the introduction of eliminations of inessential play-
ers. Those results show that the strict IEDI sequence, i.e., all dominated strategies
and then all inessential players are eliminated at each step, is a benchmark since
it leads to the same endgame as other IEDI sequences do while it is the shortest
and smallest.

Our main result, called the characterization theorem (Theorem 2.4.1), describes
possible initial situations for a given endgame. We focus on a sequence of pairs of
sets of players, which we call an evolving player configuration (EPC) sequence.
An EPC sequence specifies, at each step in the elimination, the player sets and the
set of players with dominated strategies to be eliminated. We give necessary and
sufficient conditions for an EPC sequence to have an IEDI sequence based on it.
These conditions allow us to construct IEDI sequences for properties mentioned
in Examples 2.1.2, 2.1.3 and other underlying situations which lead to the same
endgame.

The rest of this chapter is organized as follows: Section 2.2 gives basic defi-
nitions and show the preservation theorem. Section 2.3 defines the IEDI process
and IEDI sequences, and proves the order independence theorem in our context.
Section 2.4 gives and proves the characterization theorem. Section 2.5 gives some
concluding remarks.

2.2 Eliminations of Dominated Strategies and Inessen-
tial Players

In this section, we define inessential player and introduce three ways of reducing
a game by eliminating dominated strategies and inessential players. We show

ELIMINATIONS OF DOMINATED STRATEGIES AND INESSENTIAL PLAYERS 17



that one way among the three is more effective than the other two. We also show
that Nash equilibria are faithfully preserved in the reductions.

2.2.1 Basic definitions

Let G = (N, {S;}ien, {ui}ien) be a finite strategic form game, where N is the fi-
nite set of players, and S; is the finite nonempty set of strategies and u; : [1jeNS; —
R is a payoff function for player i € N. We allow N to be empty, in which case the
game is the empty game and is denoted by Gy. For each I € N, we may denote
s € SN = I1jenSj as (s;;sn—1), where s; = (sj)jer and sy—1 = (sj)jen-1- When
I = {i}, wewrite S_; for Sy_g;y and (s;;s_;) for (sgjy;sy_yiy). For each s;, s} € S;,
we say that s} dominates s; in G iff u;(s};s_;) > u;(si;s_;) foralls_; € S_;. Whens;
is dominated by some s’, we simply say that s; is dominated in G.
We say that i is an inessential player in G iff forall j € N,

M]'(Sl'; S,i) = uj(S;,' S,i) for all s;, S; € S;ands_; €5 ;. (2.1)

That is, player i’s unilateral changes of strategies does not affect any player’s pay-
offs including i’s own provided the others’ strategies are arbitrarily fixed. Note
that if |S;| = 1, player i is inessential.!

There is a weaker version of this concept in Moulin [91], where j is required
only to be i in (2.1). From player i’s viewpoint, once he became inessential in this
weak sense, he may stop thinking about his choice. However, his choice may still
affect the others’ payoffs; in this case, i’s choice is still relevant to the situation.
(2.1) may also be weakened by letting it hold for players in a subset of N. We will
discuss such a partial inessentialitiy in Chapter 3.

Although inessentiality is an attribute of a single player, in the following state-
ment, we generalize it to a group of players.

Lemma 2.2.1 (Inessential subsets of players). Let [ be a subset of N. Then each
player i € I is an inessential player if and only if forall j € N,

Llj(S[;SN_I) = uj(S,I;SN_I) for all SI,S/I € Srand sy_1 € Sy—]. (2.2)

Proof. (Only-if) Let I = {iy,...,ix}, I = {i1,..., it} fort = 1,..,k,and s,s’ € Sy
be arbitrarily fixed. We prove u;(sy;sn-1,) = uj(s’lt;sN,It) by induction on ¢.
The base case, i.e., u(si;s-;) = u]-(sgl;s_il), is obtained from (2.1). Suppose
that Mj(S[t,'SN_[t) = uj<sllt;sN-It>‘ Since s = <SIt;SN—It> = (Slt+1;sN'It+1)’ we

!The concept of inessential player may seem related to the concept of a “dummy player” in
cooperative game theory (see, for example, Osborne and Rubinstein [101], p.280), but they are
logically independent. Using the maxmin definition of a characteristic function game, we can
transform a strategic form game into a TU game, and we have examples to show the logical
independence of those two concepts.
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have u;(sy,. ;sN-1,.,) = uj(s;sn-1,). Applying (2.1) to Mj(S/It)SN—It)/ we have
uj<S/It;SN-It> = uj(s’IHl;sN_IM),and consequently u;(sy,, ;SN-1,,,) = Uj(S1;5N-1,) =
uj(sh SN-1,) = (S}, 7 SN=1s)-

(If) Suppose that some i € I is not inessential, that is, there is some si,s; €S,
s_i € S_j,and j € N such that M]'(Si;S_i) # uj(sg;s_i). Lets; = (Si;sl—{i})/ S/I =
(st s1_{iy), it can be seen that (2.2) does not hold for j. [J

Let I be a set of inessential players in G, N’ = N — I, and i € N’. The restriction
u; of uj on Ie v S; where @ # S C S; for each j € N' is defined by

uj(sn') = ui(sp;sn) forall sy € Sy and sj € S. (2.3)

Lemma 2.2.1 guarantees that u] is well defined. Thus, (N’, {S/}iens, {u}}ien') is
the game obtained from G = (N, {S;}icn, {ui}icn) by eliminating players in I
and some strategies from S;,i € N'.

LetG = (N, {Si}ien, {ui}ien) and G' = (N, {Si}ienr, {1l }icn') be two games.
We say that G’ is a D-reduction of G iff
DR1. N’ C Nand any i € N — N’ is an inessential player in G;
DR2. foralli € N/, S/ C S;and each s; € S; — S} is a dominated strategy in G;
DR3. u; is the restriction of u; on HjeN'S;"

Let G’ be a D-reduction of G. Some dominated strategies and inessential play-
ers in G may not be eliminated from G to G'. The following lemma states that the
remaining dominated strategies and inessential players are still dominated and
inessential in G’.

Lemma 2.2.2 (Interactions of eliminations). Let G’ = (N', {S/};cnr, {u!}ienr) be

a D-reduction of G. Then,

(1 ifs; € S! (i € N’) is dominated in G, so it is in G/;

(2) if i € N’ is an inessential player in G, so it is in G';

(3) suppose that S} = S; foralli € N’ and leti € N’ and s; € S;, then, s; is domi-

nated in G if and only if it is dominated in G'.

Proof. (1) Suppose that s; is dominated by s} in G. Then, u;(s}; sn—-;) > 1;(s;;Sn i)

for all sy_; € Sy-;. We can assume without loss of generality that s} is not a

dominated strategy in G, so s; € S!. We have, by (2.3), for all sy_n' € Sy_n,

ul(shsnr—i) = ui(shsnr—isSn—nv) > wi(si; Snr—is sSN—n7) = ui(si;sn—i) forall sy €
;- Thus, s; is dominated by s/ in G’. (2) can be proved in a similar manner.

(3) The only-if part follows immediately from (1). For the if part, suppose that s;

is dominated by s/ in G’. Then u}(s/; s\, ;) > ui(s;; sy, ;) forallsy, , € Sy, ..By

assumption, we have Sy, ; = Sys_;. Let s}, ; be an arbitrary element in S}, , =

Snr—i- We have, by (2.3), for all sy_ Ny € Sn_nr, Ui(sh Shi_ i SN-Nr) = (S5 Sh_;)

> u}(si;shy_;) = ui(si;Shy i SN—nv)- Thus, s; is dominated by s} in G. O
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In literature, Lemma 2.2.2 (1) is called hereditarity for the case with only elimi-

nations of dominated strategies (see Apt [4]). Lemma 2.2.2 (3) states that elimina-
tion of inessential players does not generate new dominated strategies. Indeed, as
we will see in the following example (also in Example 2.1.3), eliminating inessen-
tial players only generates new inessential players.
Example 2.2.1 (Elimination of Inessential Players only). The leftmost 2-person
game has no dominated strategy but an inessential player, that is, player 1. By
eliminating him, we have the 1-person game in the middle, and, by eliminating
player 2, we have the empty game Gy on the rightmost.

1\2 S21 S
s |46 26 ] — 2 Sél Séz — Go.
sp | 4626 F P

A D-reduction allows simultaneous eliminations of dominated strategies and
inessential players. It would be desirable to separate the two eliminations. First,
let N’ = N hold in DRI, i.e., G’ results from G by eliminating only some domi-
nated strategies. In this case, G’ is called a ds-reduction of G, denoted as G — 45 G'.
When all dominated strategies are eliminated, G —4; G’ is called the strict ds-
reduction. Second, let S} = S; for all i € N’ in DR2, i.e., G’ results from G by
eliminating some inessential players; in this case, G’ is called an ip-reduction of G,
denoted by G —;, G’. When all inessential players are eliminated, G —;, G’ is
called the strict ip-reduction .

We then considering the order of ds-reduction and ip-reduction. We say that
G’ is a DI-reduction of G iff there is an interpolating game G such that G — 4 G
and G —p G’. Tt follows from Lemma 2.2.2 that G is uniquely determined once
G and G’ are given. We say that G’ is the strict DI-reduction of G iff both G — 45 G
and G —;, G’ are strict.

For comparison, we consider another compound reduction: G’ is an ID-reduction
of Giff G =) G —ys G’ for some G. We can define strict ID-reduction in a similar
way.

The following statement shows that DI-reduction is more efficient than ID-
reduction.

Lemma 2.2.3 (The order of elimination). (1) G’ is a D-reduction of G if and only
if G’ is an ID-reduction of G.

(2) If G’ is a D-reduction of G, then G’ is a DI-reduction of G.

(3) If G’ is a DI-reduction of G, then there is G” such that G” is a D-reduction of
G and G’ is a D-reduction of G”.

Proof. (1) (Only-If) Let G’ be a D-reduction of G. Lemma 2.2.2.(1) implies that
we can postpone and separate eliminations of dominated strategies from elimi-
nations of inessential players. Hence, G’ can be an ID-reduction.

(If) Let G’ be an ID-reduction of G, i.e., G —;, G —4; G’ for some G. Lemma
2.2.2.(3) implies that G has the same set of dominated strategies as G. Hence, we
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can combine these two reductions to one, which yields the D-reduction G'.

(2) Since D is a set of dominated strategies in G, we can eliminate them from G,
and we have G, i.e,, G —4; G. By Lemma 2.2.2.(2), the inessential players in G re-
main inessential. Hence, we eliminate N — N from N in G, where N is the player
set of G. This game is the same as G’ and G —;, G’. Hence, G is a DI-reduction.
(3) We define G” = (N”,{S/ }ienw, {u! }ienn) as follows. Let N = N—{i € N : i
is an inessential player in Gand i ¢ N'}, S/ = S; — S/ and u/’ be the restriction
on IT;c N/;S]’.’ for each i € N”. It is clear that G” is a D-reduction of G and G’ is a
D-reduction of G”. [

Lemma 2.2.3.(1) states that ID-reductions are equivalent to D-reductions, and
(2) states that a DI-reduction allows more possibilities. The converse of (2) does
not hold. Indeed, in Example 2.1.1, player 2 became inessential only after elimi-
nation of player 3’s dominated strategies. (3) states that each DI-reduction can be
achieved by two D-reductions. Lemma 2.2.3. implies that DI-reduction is more
efficient than ID-reduction.

2.2.2  Preservation of Nash equilibria

D-reduction eliminates irrelevant players as well as irrelevant actions from a
game. It is desirable to require that such a reduction should lose no essential
features, for example, some solution concepts, of the original game. This cor-
responds to Merterns [89]’s small world axiom. Here, we show that D-reduction
fulfills that requirement. Further, the converse also holds here. Indeed, since the
eliminated players are inessential in our problem, we can restore Nash equilibria
from the reduced game by adding any strategies.

We say that s € S is a (pure-strategy) Nash equilibrium (NE) in a nonempty
game G iff for all i € N, u;(s) > u;(s;;s_;) for all s} € S;. Let 8 be the null symbol.
For any s € S, we stipulate that (8;s) = s and the restriction of s to the empty
game Gg is 8. Also, we stipulate that 8 is the NE in Gg.

We have the following theorem, where (1) corresponds to the small world
axiom. In the case of elimination of only dominated strategies, the theorem is
reduced to Theorem 4.35 in Maschler et al. [88].

Theorem 2.2.1 (Preservation of Nash equilibria). Let G’ be a D-reduction of G.
Then,

(1) if sy isa NE in G, then s)y isa NE in G'.
(2) if spr isaNE in G, then (sn/;sy_n) isaNE in G for any sy € HjeN_N/Sj.Z
Proof. (1) Let s be aNE in G. Forany i € N, u;(si;5-;) > u;(s};s_;) holds for any

2Tt is well known that if we consider weak dominance rather than strict dominance, preserva-
tion does not hold. See, for example, Gilboa et al. [47].
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s; € S;. Leti € N'. Then, s; is not dominated in G, and thus, s; € S’. Let s} €
Si. Since G’ is a D-reduction, we have u(s;;sn/—i) = ui(si;sn—i) > ui(si;s_;) =
ui(si;sn—i). Thus, sy isa NE in G'.

(2) Let sy bea NE in G'. We choose any sy_nv € Sy_nr- Welet G° = (N, {S?}ien,
{u;}ien), where SHES S; ifj € N and S =5; if j € N — N'. The restriction of u;
to IT;c NS;«’ is denoted by u; itself. First, we show that (sy7;sy_n) is a NE in G°.

Let i € N'. We have u}(s\,) = u;(sh;sn-—n) for any sy, € Sy, by Lemma
2.2.1, since players in N — N’ are inessential in G. Since syy is a NE in G/, we
have u;(si;snr—i;Sn—nv) = Ui(sizsnr—i) > wh(shsnr—i) = ui(si;snr—i; sy ) for all
s € Sj.Leti € N — N'. Then since i is inessential, we have u{(s;;snr—i; SN-N7) =
u(si;snr—i;sn—nv) for all s; € S¢. Hence, (snv;sy—nv) is a NE in G°.

Now, we show that (sy/;sy_n7) isaNEin G. Leti € N'. Suppose that i € N’
has a strategy s} in G so that 1;(s};sn—;) > u;(s;;sn-i). We can choose such an s/
giving the maximum u;(s}’; sn—;). Then, this s}’ is not dominated in G. Hence, s/
remains in G’, which contradicts the fact that s is a NE in G'. [J

Let NE(G) and NE(G’) be the sets of Nash equilibria for a game G and its
D-reduction G'. It follows from Theorem 2.2.1 that NE(G) and NE(G’) are con-
nected by:

NE(G) = My nrSj x NE(G'). (2.4)

When G’ is the empty game Gg, the Nash equilibrium for Gg is the null sym-
bol 0, and Theorem 2.2.1.(2) states that any strategy profile s = (6;s) is a Nash
equilibrium in G.

The above theorem also holds for mixed strategy Nash equilibrium, rational-
izability, and correlated equilibrium. So far, we have only positive results as far
as pure non-cooperative solution concepts are concerned.’

2.3 |IEDI Processes and Generated Sequences

This section considers the process of iterated elimination of dominated strategies
and inessential players (IEDI process). In Section 2.3.1, we present an extension
of the order independence theorem. In Section 2.3.2, we give a theorem which
separates eliminations of inessential players from those of dominated strategies.

3Theorem 2.2.1 may be related to the consistency property in Peleg and Sudhéter [108]'s axiom-
atization of Nash equilibria, where the term “reduced game” means to restrict a strategy profile
to a subset of the player set by fixing the other players’ strategies specified. There, as the sets of
strategies vary, the reduced games are different.
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2.3.1 |EDI sequences and order-independence

Let GO be a given finite game. We say that T(G°) = (G% G!,...,G") is an IEDI
sequence from G iff the following two conditions are satisfied:

I1. G'*1 is a DI-reduction of Gf and G!*! # G! foreacht =0,...,0 - 1;
12.G has no dominated strategies and no inessential players.

We call ¢ the length of T(G®) and G' the endgame or the final game of T'(G°). We
say that I'(G) is the strict IEDI sequence iff G'*1 is the strict DI-reduction of G' for
t =0,..., ¢ — 1. The strict IEDI sequence is uniquely determined by G°.

Example 2.3.1. Consider the game G in Example 2.1.1. The strict IEDI sequence
is given as follows. Player 2’s strategies sp3 and sp4 are dominated by sp; and sp;
by eliminating sp3 and sp4, we get the 3-person game in the middle, where player
3 is inessential. By eliminating him, we get the 2-person battle of the sexes. The
rightmost game is a DI-reduction of the G. Hence, this IEDI sequence has length
1. There are two other IEDI sequences; sy3 and sy, are eliminated separately, and
then player 3 is eliminated as an inessential player. Each sequence has length 2.

1\2\3 | sy 20 1\2 | sy 522
G —| s 15,10,-10 | 5,-5,5 |—|[sy; |1510] 5,5
% s 1y 5,55 10,—10,15 | ¥ [ sy» | 5,5 | 10,15

The order independence theorem (Gilboa et al. [47], Apt [4]) states that when
we only eliminate dominated strategies, all elimination sequences have the same
endgame. Here, we extend this result to IEDI sequences. Also, we compare the
“size” of different sequences. To do that, we introduce the concept of a subgame.
Wessay that G’ = (N, {S}ienr, {u!}ient) isasubgame of G = (N, {S;}ien, {Ui}ien)
iff i) N’ € N; (ii) S! € S; for all i € N’; and (iii) for i € N, u} : HjeN'S} — R
is given by (2.3). Of course, if G’ is a D-reduction of G, then G’ is a subgame of
G. Also, the subgame relation is a partial ordering among games. For an IEDI
sequence I'(G%) = (G%, G1,...,G"),if t <k, then GFis a subgame of G'.

We have the following statement, whose proof will be presented in the end of
this subsection.

Theorem 2.3.1 (The strict IEDI sequence is a benchmark). Let G° be a finite
game, and I'*(G?) = (G*°,G*1,...,G*"") the strict IEDI sequence from G° = G*°.
Then, for any IEDI sequence r'(G% = (G%GH,..., G* ) from G°,

M G =G

) r < ¢;

(3) for each t < ¢*, G'! is a subgame of G'.

(1) is the extension of the order independence theorem. (2) and (3) mean that
the strict IEDI sequence has the shortest length and is smallest with respect to the
subgame relation for the component games of IEDI’s in the corresponding steps.
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In Example 2.1.2, the strict IEDI sequence has length 1,i.e., ['*(G?) = (G*0,G*1).
In contrast, there are many non-strict IEDI sequences with much bigger lengths.
In this example, girl 2 should have many dating choices, e.g., 2 (choices)x101
(boys) = 202 choices. Hence, a longest IEDI sequence consists of eliminations of
200 dominated strategies and 100 inessential players; the length is 300. Actually,
there are many IEDI sequences with length 300, since the orders of those elimina-
tions can be arbitrary.

Example 2.1.3 does not require player 2 to have more strategies. Here, the
strict IEDI has the length 100, and the longest IEDI sequence has length 101, since
it takes two steps to eliminate the two strategies sy3 and sy4 and then each player
from 3 to 102 is eliminated sequentially.

The salient differences among those examples are caused by eliminations of
inessential players. If we restrict our focus only on eliminations of dominated
strategies, then the 100 players remain in the game as inessential. By eliminating
those inessential players the games are reduced considerably.

We have other elimination processes by adopting different reductions such as
D- and ID-reductions. Because of Lemma 2.2.3, the strict IEDI sequence I'*(G?)
based on DI-reductions is shorter and smaller than the sequences based on D- or
ID-reductions.

It would be possible to apply only ds-reductions up to step m where there is
no dominated strategy to eliminate, and then apply ip-reductions, which is also
an IEDI sequence. That sequence keeps the original set of players up to m,. As far
as we count each of those reductions as one DI-reduction, the strict IEDI sequence
is shorter than (or equal to) this sequence. However, this might be shorter if we
count each DI-reduction consisting of nontrivial subreductions as two steps, in
which case the original set of players is kept up to the step to start eliminating
inessential players. This is a reason for our choice of DI-reductions as well as the
strict DI-reductions for our process*.

Finally, we look at some implications of Theorem 2.3.1 to the preservation
of Nash equilibrium. By repeatedly applying (2.4) to I*(G%) = (G*0,...,G*""),
we have the recovering result that if G**" has a Nash equilibrium, then so does
G*0 = GU. This holds even if G*'" is the empty game. Moreover, this recovering
result does not depend on the choice of an IEDI sequence from G°.

We also can look at Moulin’s [91] d(dominance)-solvability from this view-
point. A game G is d-solvable iff there is a sequence (GY, ..., G) with G*=1 — 4, G!
fort = 1,..,¢ — 1 such that in G, each i € N’ has constant payoffs for the oth-
ers’ strategies fixed. It can be observed that if G° has an IEDI sequence I'(G%) =
<GO,G1,. . .,Gé) with G = Gg, then GY is d-solvable. The converse does not
necessarily hold.

Now we give the proof of Theorem 2.3.1. First, we refer to Newman’s lemma

“We adopt strict dominance for Theorem 2.3.1 since the order independence theorem does not
hold for weak dominance. See Apt [4] for comprehensive discussions on order-independence
theorems for various types of dominance relations.
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(Newman [98]. See also Apt [4]). An abstract reduction system is a pair (X, —),
where X is an arbitrary nonempty set and — is a binary relation on X. We say
that {x, : v = 0,..} is a — sequence in (X, —) iff forall v > 0, x, € X and
Xy — Xy11 (as far x,11 is defined). We use —* to denote the transitive reflexive
closure of — . We say that (X, —) is weakly confluent iff for each x,y,z € X with
x — yand x — z, there is some x’ € X such thaty —* x’ and z —* «'.

Lemma 2.3.1 (Newman’s lemma) Let (X, —) be an abstract reduction system sat-
isfying the following two conditions:

N1. each — sequence in X is finite; and
N2. (X, —) is weakly confluent.
Then, for any x € X, there is a unique endpoint y with x —* .

Proof of Theorem 2.3.1. (1) Let G be the set of all finite strategic games. Then
(G, —pj) is an abstract reduction system, where we write G —p; G’ for G — 4 G
and G —;; G’ for some interpolating G and G # G’. Each —pjsequence s finite,
i.e., N1. Also, it can be seen that N2 holds. Let G,G’,G"” € G with G —p; G’
and G —p; G”. Now, let G* be the strict DI-reduction of G. Then, G* is a DI-
reduction of both G’ and G”. Hence, G’ —p; G* and G” —p; G*. Then it follows
from Lemma 2.3.1 that for any G° € G, there is a unique endpoint G*. Hence, the
strict IEDI sequence F*(GO) = <G*O, G ... G*E*) has the the same endgame,
ie., G = G*.

(2) Let T(G%) = (G%G,...,G") be any IEDI sequence. By (1), G*" = G'. If
¢ < 0*, then G** # G*(+1) by I1, which is a contradiction to 12 for G = G".

(3) We prove by induction on f that G*! is a subgame of G foreach t = 0,..., (*.
When t = 0, this holds by definition. Suppose that it holds for t < ¢*. Let
G -4 G* iy GMland Gf 4 G —j, G'FL Then, if a strategy s; in G*f
is dominated in G, it is also dominated in G*! by Lemma 2.2.2.(1). By Lemma
2.2.2.(2), if a player i in G*! is inessential in G/, then i is also inessential in G*'.
We obtain G**1 by eliminating all the dominated strategies in G*! and all the
inessential players in G*!. Hence G*!*1 is a subgame of G/*1. (]

2.3.2 Elimination divide

An IEDI sequence can be partitioned into two segments, G%, G, ..., G~ and
G™, ..., G! so that in the first segment, dominated strategies and/or inessential
players are eliminated, and in the second, only inessential players are eliminated.
We have the following statement.

Proposition 2.3.1 (Partition of an IEDI sequence). Let I'(G%) = (G°,G,...,G")
be an IEDI sequence from GY. There is exactly one m, (0 < m, < () satisfying the
following two conditions:
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Figure 2-1  Start with the final game

P1. at least one dominated strategy is eliminated from G™0~! to G";

P2. for each t (m, < t < { —1), no dominated strategies are eliminated but at
least one inessential player is eliminated from G to G'*1.

Proof. Suppose that G! has no dominated strategies. Then, G!*! is obtained from
G' by eliminating inessential players. It follows from Lemma 2.2.2.(3) that G!*1
has no dominated strategies. Thus, forany t' > t, G! has no dominated strategies.
We choose the smallest number among such #’s for m,. [

We call the m, in Proposition 2.3.1 the elimination divide. In Example 2.2.1,
m, = 0, and the segment after my may have a length greater than 1. Elimination
divide plays an important role in Section 2.4.

2.4 Characterization of IEDI Sequences

We have studied IEDI sequences generated from a given initial game G°, and
have seen that there are many different initial situations as well as many IEDI
sequences that lead to the same endgame G. Here, we explore the class of those
initial situations that lead to a given endgame G. That is, we reverse our question
from the top of Figure 2-1 to the bottom. We characterize what social situations
can lie behind the same endgame G by giving conditions for a given pattern of
player sets corresponding to a sequence of the IEDI process that leads to it.
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2.4.1 Evolving player configurations and generated strict IEDI sequences

We start with a given sequence # = [(NO, TO),. .., (NE, Té)] of pairs of sets of
players satisfying the following three conditions:

PCO. T" C N'fort =0,...,. (;and N° D ... D N® with |N*| # 1;
PC1. forany t < ¢, if T" = @, then N* D N**1;
PC2. for some 11, (0 < my, < £), T"~1 £ @ and T' = @ for any t > m,.

This sequence is called an evolving player configuration (EPC) sequence. It is in-
tended to mean that N?, ..., N’ are the player sets of some IEDI sequence I'(G%) =
<G0, GL,...,G* ). PCO is basic; the player sets are decreasing with eliminations of
inessential players, thatis, N — N’*1 are the inessential players being eliminated;
and T is a set of players in N* with dominated strategies being eliminated. It also
requires the changes not to stop with a single player. PC1 corresponds to the non-
triviality requirement G! # G'*! in I1. The number m, in PC2 is the elimination
divide discussed in Section 2.3.2. When m, = 0, the requirement Tmo—1 # @ is
vacuous.

We consider the restorability of a strict IEDI sequence from an EPC sequence.
For this, we need one additional condition on 3. We say that an EPC sequence
n=[(NO,T9),..., (N T%)] is strict iff
PC3. fort =1,...,m,, if [T =1, then TN T! = @.

This is a restriction on players with dominated strategies. With PC3, it is enough
to guarantee the existence of a strict IEDI sequence.

An EPC sequence does not specify the structures of games, but describes only
player configurations. To have an explicit connection between EPC and IEDI
sequences, we define the concept of the D-group. Let G’ be a DI-reduction of G
with G —4; G —j, G'. Wesay that T = {i € N : S; # S;} is the D-group from
G to G’. When G/ is the strict DI-reduction of G, T is the set of all players having
dominated strategies in G. Using this concept, we have the following lemma.
Lemma 2.4.1 (Necessity for an EPC sequence). Let T(G%) = (G° Gl,...,G")
be an IEDI sequence with its elimination divide m,, N* the player set of G for
t =0,..,¢ and T the D-group form G to G"*!for t = 0,..,¢ — 1. Then, 5 =
[(NO,T9),..., (N’ T")] satisfies PCO-PC2.If T'(GY) is the strict IEDI sequence, then
PC3 also holds.

Proof. Let G' = (N', {S!};cnt, {uf}ient) for t = 0, ..., £. PCO follows from I1 and
12. PC1 follows from G!*! # G! in I1. PC2 follows from the definition of the
elimination divide m,. For PC3, let T'(G°) be the strict IEDS sequence from G. Let
Tl = {i}. 1fi ¢ N, theni & T', soa fortiori, T" "' N T* = @. Suppose i € N*. Let
Gl -, G —p G'. Then, all dominated strategies for i in G ! are eliminated

in G'"!. By Lemma 2.2.2.(3), player i has no dominated strategies in G'. Hence,
TINT' =@.0
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We say that 7 = [(N?, T9),..., (N, T%)] given in this lemma is called the as-
sociated EPC sequence of T'(G%) = (G?,G!,...,G"). The converse of Lemma 2.4.1
is our main concern. Here, the strictness requirement for an IEDI sequence is
crucial. If T'(GP) is an IEDI sequence, the associated EPC sequence is uniquely
determined. However, there are multiple IEDI sequences from a given initial
game G'. Thus, there are multiple EPC sequences compatible with the same GP.
This does not allow us to estimate initial situations from a given EPC sequence.
By strictness, we can avoid this difficulty.

We have the following theorem, which is proved in Section 2.4.2.

Theorem 2.4.1 (Characterization). Let G = (N,{S;}ien, {Ui}icn) be a game
(maybe the empty game) with no dominated strategies and no inessential players.
Lety = [(N?,T9),..., (N, T%)] be any strict EPC sequence with N = N. Then
there exists a game G° and the strict IEDI sequence I'(G°) = (G%, G,..., G") such
that G* = G and 7 is the associated EPC sequence of T'(G?).

This theorem can be interpreted as follows. There are a great multitude of
possible underlying situations leading to the same endgame G. Since an EPC se-
quence 7 = [(N°,T9),..., (N%, T%)] has no information about strategy sets or
their cardinalities, Theorem 2.4.1 has some indeterminacy of an strict IEDI se-
quence T'(G%) = (GO, G!,...,G") relative to 5. In fact, the strict IEDI sequence
constructed in the proof of Theorem 2.4.1 is the smallest, with respect to the car-
dinalities of strategies, among the possible IEDI sequences.

Consider Example 2.1.2. Tt has the strict IEDI sequence (G, G') with its as-
sociated EPC sequence: [(N°, T°), (N?,TY)] = [({1,2,..,102},{2}), ({1,2}, @)].
Conversely, Theorem 2.4.1 gives the strict IEDI sequence with its EPC sequence
[(NO, T9), (N?, T%)]. The actual construction in the proof of Theorem 2.4.1 gives a
slightly simpler game from Example 2.1.2 in that player 2 has only 3 strategies,
while in Example 2.1.2 itself, player 2 has 2 4 2 x 100 = 202 strategies.

In Example 2.1.3, the strict IEDI sequence has length 100. The associated EPC
sequence is given as 7 = [(N?, T?), (N, 1), ..., (N1, T100)]

N'={1,2} U{3+t,..,102} for t = 0, ..., 100; (2.5)

T° = {2} and T = @ for t = 1, ..., 100, (2.6)

where N1 = {1,2}. Theorem 2.4.1 gives the strict IEDI sequence I'*(G’), in
which player 2 has only three strategies, again, while in Example 2.1.3, player 2
has four strategies.

In fact, the above # given in (2.5) and (2.6) is the associated EPC sequence of
a (non-strict) IEDI sequence in Example 2.1.2. This IEDI sequence differs from
either the strict IEDI sequence for Example 2.1.3 or that given by Theorem 2.4.1.

In order to see the multitude of initial situations suggested by Theorem 2.4.1,
we consider one more EPC sequence. We change (2.5) to

Nf = {1,2} U (U}_o {10k + 3+ t), ..., 10k + 12}) for t =0, ..., 10, 2.7)
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and T° = {2} and T = @ fort = 1,...,10. At step 0, players 3, 13,23, ..., 93 become
inessential and are eliminated, and step 1, players 4,14, ..., 94 become inessential
and are eliminated, and so on. The resulting game after 10 steps is the same as the
2-person battle of the sexes. However, the initial underlying game G* given by
Theorem 2.4.1 is very different from Example 2.1.2 as well as Example 2.1.3. The
game G* has a complicated network of friendships. We can think about more
complicated networks described in terms of EPC sequences: As far as PC0-PC3
are satisfied by a given EPC sequence #, Theorem 2.4.1 suggests a game situation
with such a network.

Condition PC3 is not explicitly used in those examples. We can extend Exam-
ple 2.4.2 with [(N?, T%), (N, T!)] to a situation including more steps. Now, sup-
pose that after eliminating all the boys from 3 to 102, 1 and 2 find more strategies
relevant for themselves. Then, there is a longer EPC sequence [(N' 0,1%, (N, Th,..
(N¢, TY)] with N' = ... = N’ = {1,2}. Here, 1 and 2 should have sets of strategies
greater than ¢ in G°. When {G?,G',...,G") is a strict IEDI sequence, PC3 implies
that for some k, (2 < k, < ¥),

T'={1,2} fort (2 <t <k,); and |T'| =1fort (ko <t < ). (2.8)

Up to some step k,, they agree to eliminate their dominated strategies together,
but after k,, T'NTH = @, i.e., they alternatively eliminate dominated strategies.

2.4.2 Proof of Theorem 2.4.1

Consider an EPC sequence 1 = [(N9,T9),...,(N?,T)] and G = (N, {S;}ien,
{u;};en) in the theorem with N = N*. We construct a sequence G/,G/71,..., GO
from G’ = G in the induction from (N, T*) to (N°, T?), and show that for each
t=0-1,..0,G"1is a DI-reduction of G'; thus, <GO, .., Gt ) is an IEDI generated
from G°.

G = G = Gt

Lemmas 2.4.4,2.4.3 Lemma 2.4.2 (2.9)

Lemma 2.4.2 is for the construction of the interpolating G’ from G'*!. Here,
we can restrict ourselves to the strict ip-reduction, i.e., Qt is obtained from G!*!
by eliminating all inessential players in G*1. Also, since G’ = G has no inessen-
tial players, we can assume |S;| > 2 for all i € N. In the following lemmas, we
use the same symbol G = (N, {S;}ien, {ui }ien) for a generic game, which should
not be confused with the given game G in Theorem 2.4.1. Also, we consider the
reverse direction from G = G!*1 to G’ = G'.

Lemma 2.4.2. Let G = (N, {S;}ien, {Ui}ien) be a game with |S;| > 2 for all
i € N, and let I' be a nonempty set of new players. Then, there is a G’ =
(N, {Si}ient, {ul}iens) such that (1) N’ = NUI; (2) |S)| > 2foralli € N;
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and (3) G is the strict ip-reduction of G'.

Proof. We choose the strategy sets S;,i € N’ so that S/ = S; forall i € N and
S = {a, B} foralli € I', where &, B are new symbols not in G. Then, we define
the payoff functions {u};cnv so that the players in I’ are inessential in G’ but no
players in N are inessential in G’. Let I be the set of inessential players in G.
For each i € I, we choose an arbitrary strategy, say s;; from S;. Then, we define
{1} ienr as follows:

(@) foranyje I', u}(sN/) =|{iel:s;=sp}|forsy € Syi;
(b) forany j € N, u}(sN/) = uj(sn) for sy € Sy, where sy is the restriction of sy
to N.

Forany j € I', j’s strategy s; does not appear substantively in u; forany i € NUI".
Thus, the players in I are all inessential in G’. On the other hand, each i € I, as
far as such a player exists in G, affects j’s payoffs for j € I’ because of (a) and
|Si| > 2. This means that any i € I is not inessential in G'. Also, any i € N — [ is
not inessential in G’ by (b). Thus, only the players in I’ are inessential. In sum, G
is the strict ip-reduction of G’. O

Now, we consider the construction from G to G! in (2.9). For this, first we
show the following lemma, and then show Lemma 2.4.4. In the following, we
write s; domg s; when s; dominates s; in G.

Lemma 2.4.3. Let G = (N, {S;}ien, {ui}ien) be an n-person game, and j € N a
fixed player. There are real numbers {77(s;) }5;es; such that

if s; domg s/, then 7;(s;) < 71;(s}). (2.10)

Proof. The relation domg is transitive and asymmetric. We call a sequence
{5]1., . s]m} a descending chain from s} to s;” iff s;( domg s;(H fork=1,..,m—1.

We say that s; is maximal in (S;, domg) iff there is no s;- € S; such that s;- domg
s;. Let S?, e s;? be the list of maximal elements in (Sj,domc). Then, we define the
sets A(S?), v A(s;‘ ) inductively by

A(s})) = {s?} U{s;€S;: s? dom s;}; (2.11)

A(sh) = {si} U {sj € S; — U_}A(s}) : sl domg s} for [ < k. (2.12)

That is, we classify each s; € §; — {S?, s s;‘} to the first A(s]t«) with s§ domg sj,
which implies
if s§ domg s;and s; € A(sf), then t' < t. (2.13)

Thus, these sets A(s})), v A(s}‘ ) form a partition of S;.
Now, we define {71(s;) }5;cs; as follows: for s; € A(s?) andt=0,...,k,

mi(s;) = —t|S;| + L, (2.14)
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where I;; is the maximum length of a descending chain from s]t tos; # s]t, and is 0
if s; = s§. When k = 0, I;; may be equal to |S;
1Si] -

Now, we show (2.10). Let sj,s;- € Sjand s; domg s}. Also, let s; € A(s]t«) and

,but when k > 0, ls]- is smaller than

s;- € A(s]t«/). Since sj« domg sj, we have s;. domg s;-, which implies ' < t by (2.13).
Now, we consider two cases: ' = t and t' < t. First, suppose t = t'. Let lsj,lS; be,
respectively, the maximal lengths of descending chains from s to s; and s;. Since
sj dom s;, we have I;; < ls;. Thus, 7j(s;) = —t|S;j| + Is; < nj(s;) = —t[S;]| + ls;.
For the other case, suppose ¢’ < t. Since |S j| > ls]., ls;_ as remarked above, we have
7T](S;) — 7T](S]) = |S]| + ls]/ - (—t |S]| + lsj) = (t— t’) |S]| + (ls; - ls]v) > 0.0

Now, we go to the step from G! to G! in (2.9); in the lemma, G and G’ are
supposed to be G' and G respectively.

Lemma 2.4.4. Let G = (N, {S;}ien, {1i}icn) be a game, and let T be a nonempty
subset of N.

(1) Then, there is a game G’ = (N, {S;}ien, {t4i}ien) such that G is a ds-reduction
of G’ and T is the D-group from G’ to G.

(2) If the following condition is satisfied,
if T = {i}, then there are no s;, s} € S; with s; domg s.. (2.15)

then G is the strict ds-reduction of the game G’ given by (1).
Proof. (1) First, let B; be a new strategy symbol for each j € T. We define {S;} jeN

as follows: SUBY if
U{B;} ifjeT
T = ] ]
5 { 5; ifjEN-T (2.16)
Then we extend /; to h;« : ITjenS! — R for each j € N so that the restriction of h;.

to ILieNS; is hj itself and G is the strict ds-reduction of G/, as follows: Let j € N.
First, I} is the same as hj over ITicnS;, i.e., hi(s) = hj(s) if s € ITjenS;. Now, let
s€S —S,ifj€ N—T,then

h;«(s) = 7j(sj); where 7(s;) is given for G in Lemma 2.4.4, (2.17)

and if j € T, then

, i (s;) ifs; # B
h(5> = { mm{r[;(t]]) : t]' S S]} -1 1]f Sj :]ﬁ] (2.18)

First, let j € N — T, and let s}, s; €S = S]’~. Suppose that s; domg s; in G.
Then, consider s,s" € S — S so that the j-th components of s and s’ are sj and s}.
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By (2.17), we get h}(s) = mi(s;) < nj(s}) = h;(s’). Hence, s; does not dominate s}
in G’, which implies that j has no dominated strategies in G'.

Second, let j € T. We choose an s; € Sj with s]’f # ﬁj. By (2.18), we have, for
anys_; €S_j,

h;(ﬁ],s_]) = mm{ﬂ](t]) : t]' € 5]} —1< 7'(1(51*) = h;(S;,S_])

This does not depend upon s_j; thus, s; dominates f8; in G’. From the analysis of

,j,'
the two cases, we can conclude that T is the D-group in G'.

(2) Tt remains to show that under (2.15), s; does not dominate s; in G’ for any
sj,;s; € Sj = Si—{B;} and j € T. If not s; domg s/, then not s; domg: ;. Now,
suppose s; domg s;.. By (2.15), we have | T| > 1. This guarantees that the existences
of s,s" € §' — S such that their j-th components are s; and s}. Then, by (2.18), we
have h}(s) = 1(sj) < Hj(s;.) = h;.(s’). Hence, not s; dom s;.. From these, we
conclude that G is the strict ds-reduction of G'. [J

Proof of Theorem 2.4.1. Let G’ = G. Since G has no dominated strategies and no
inessential players, condition I2 holds. Also, Sf ‘ >2foralli € N.

Suppose that G'*1 is already defined with )Sf*l‘ > 2foralli € N1 By
Lemma 2.4.2, we find an interpolating game G' so that G'*! is the strict ip-reduction
of G' with its player set N’ and [S}| > 2 for all i € N'. By Lemma 2.4.4.(1), we
find another game G' so that G' is a ds-reduction of G' with its D-group T* and
satisfying |Sf| > 2 foralli € N.

Now, we have an IEDIT(G?) = (G, ..., G€> such that [(N?, T9),..., (N’, T%)]
is the EPC sequence of I'(G?). When PC3 is assumed, we have (2.15) for Lemma
2.44. Then, G' is the strict ds-reduction of G! by Lemma 2.4.4.(2). O

2.5 Concluding Remarks

We have considered the process of iterated elimination of dominated strategies
and inessential players. Elimination of inessential players is newly introduced
here, and is interactive with elimination of dominated strategies. This introduc-
tion changes the situations considerably. We gave some modifications of existing
results: Theorem 2.2.2 (preservation) and Theorem 2.3.1 (smallest and shortest).
Finally, we presented Theorem 2.4.1 (characterization).

The preservation theorem is a direct extension of the result in Maschler et al.
[88], and leads to the recovering result (2.4) on Nash equilibria. The second theo-
rem is an extension of the order independence theorem and states that any IEDI
sequence generated from a given game ends up with the same game and that

32 ELIMINATION OF DOMINATED STRATEGIES AND INESSENTIAL PLAYERS



the strict IEDI sequence is the smallest and shortest among the IEDI sequences.
Examples 2.1.1-2.1.3 together with this theorem show that the introduction of
inessential players gives new perspectives about underlying social situations be-
hind a given game.

The third result gives necessary and sufficient conditions for possible shapes
of IEDI sequences as well as initial situations to go to a given game. They provide
some specific structural information on the shapes of generated sequences, and
imply a vast variety of initial situations to a given endgame. This theorem enables
us to estimate a lot of original social situations leading to the same game.

There are important problems we have not touched upon. One problem is
to relax the concept of inessential players: the definition of an inessential player
here is too stringent in that his unilateral changes have no effect at all on any
player’s payoffs. One possible relaxation is to introduce e-inessential players. An
e-inessential player j may affect each player’s payoff within e-magnitude for a
given ¢ > 0 by his unilateral changes in strategies. An other possibility is to
introduce a “partial” inessential player whose unilateral changes only influence
some players. We will discuss partial inessential players in Chapter 3.

We did not consider the computational complexity in preference comparisons
required to calculate an IEDI sequence. In particular, it may be guessed that the
strict IEDI sequence requires less than any other IEDI sequences. Given a strategy
si € S, it requires O(ILjcn|S;|) checks to determine whether it is dominated.
Indeed, for a strategy s; # s;, it requires at most IT;;|S;| checks to make sure
whether s; is dominated by s!. And this process may need to be done for every
s/ € S; — {s;i}. To make sure whether a player i € N is inessential, we need
O(n|Si|*I1;4;|Sj|) checks. The reason is that we may have to compare payoffs
generated by each pair {s;, s/} with s;,s; € S; and s; # s} againsteverys_; € S_;
for each player. If we assume that each player is “influenced” by at most k players
(k < |N|, the concept “influence” will be defined in Chapter 3), which is sensible
in a society with a large number of players, then the computational complexity
may be lower.

Given a game G, we can compare the computational complexities between
different IEDI sequences from G. If we use the straightforward definition of com-
plexity for preference comparisons, we have an example of a game where some
IEDI sequence can be calculated by a smaller number of preference comparisons
than the strict IEDI sequence. A detailed study is expected in that direction. On
the other hand, computational complexity is an important issue when we take
the viewpoint of an insider. We will discuss this problem in the end of Chapters
3.3 and 3.5.

It may also be wondered that whether our results hold for infinite IEDI se-
quences. Formally, let G be a game with a finite set of players but infinite sets of
strategies for some players. An IEDI sequence I'(G) = (G, G, ...) can be defined
similarly as in Chapter 2.3, and the final game is a “limit” of this sequence (like the
final game in a Cournot game). It can be seen that the infinite processes still pre-

CONCLUDING REMARKS 33



serve NE’s (among other solution concepts) and are order independence. Also,
a strict IEDI sequence can be defined and is still the smallest one among all IEDI
sequences from G. Nevertheless, in countably infinite cases we cannot discuss
about “shortest”. Theorem 2.4.1 needs some modification since for an infinite se-
quence we cannot start from the final game and go back to the initial game step
by step. Nevertheless, EPC sequence (now also infinite) can be defined, and, after
some modification, the three (four) modified conditions still characterize (strict)
IEDI sequences.

Another interesting question is whether any players other than inessential
ones can be eliminated without hurting essential properties of the game. A can-
didate answer is a player who influences at most himself. Formally, playeri € N
is called a semi-inessential player iff for each j # i, uj(s;;s ;) = uj(si;s;) for
all s;, sf € S;and s_; € 5_;. Semi-inessential players is a dual to the concept in
Moulin [91] which requires that i’s unilateral changes of strategies does not influ-
ence his own strategy but may influence some other’s, as mentioned in Section
2.2. An inessential player is semi-inessential, while the converse does not hold.
Nevertheless, since a semi-inessential player’s choices does not affect any other
players, he can be eliminated from the game. We can define (iterated) elimina-
tions of dominated strategies and semi-inessential players (IEDSI) in a similar
manner as we did for IEDI. Theorems Theorem 2.2.1 (1), 2.3.1, and 2.4.1 still hold
under IEDSI. For Theorem 2.2.1 (2), if sy is a NE in the reduction, (sy/; Sy _n')
is a NE of the original game if and only if for eachi € N — N’ (i.e., i is a semi-
inessential player), s; is a dominant strategy for i.
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3. DIRECTED GRAPHICAL STRUCTURE
OF GAMES

3.1 Introduction

A recurrent theme in game theory is the study of properties of games — and,
in particular, of their equilibria — that can be extracted from partial information
about the players’ strategies and payoff functions (for example, Rosenthal [120],
Monderer and Shapley [90]) . Since a basic assumption in game theory is that
each player has certain preferences among the outcomes while his payoff may be
influenced by the choices of his own as well as the opponents’ (Luce and Raiffa
[86], p.1), a simple and natural example of such information is that who is in-
fluenced by whom. This chapter introduces the directed graphical structure of a
game, called influence structure (I-structure), where a directed edge from player i
to player j indicates that player /i may be able to affect j’s payoff via his unilateral
change of strategies. We study the relationship between the structure of the di-
rected graph and properties of games, especially pure-strategy Nash equilibrium
(NE). Our basic idea is illustrated in the following example.

Example 3.1.1 Consider the game below. The story behind it is that three players
are considering the locations for their new stores in a town. Each has two strate-
gies: to locate in front of the train station (s;1), or in the residential area (s;).
Player 1 is a department store for whom s;; is always more profitable, player 2's
is a middle-sized super market for whom a location different from player 1's is
better, and player 3’s is a small convenient store for whom when players 1 and
2 locate at the same place, the other location is more profitable, and when they
choose differently, following player 1 is better.

1\2(s31) | sa1 $22 1\2(s3) | s 522
s11 | 40,50 | 40,102 s11 | 4053 | 40,101
S12 20,10,1 | 20,5,3 S12 20,10,2 | 20,5,0

The I-structure of this game is shown in Figure 3-1, where an arrow indicates the
direction of influence. Especially, a self-loop around a player means he influences
himself, i.e., he is reflexive.

Does this game have a NE? By looking at payoffs we can see (s11,822,831)
is a NE. A faster way is to look at the I-structure. First, since player 1 is only
influenced by himself, he has some dominant strategy s]. Second, since player 2
is influenced by player 1 and himself, he has some best response s; to s7. Finally,
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Figure 3-1 The I-structure in Example 1.1.

player 3 has some best response s3 to (s],s;). It can be seen that (s],s3,s3) is a
NE for this game. Further, it should be noted that the latter approach can be
applied to any game having that I-structure, that is, a NE exists for any game
with I-structure in Figure 3-1.

Example 3.1.1 suggests some relationship between I-structure and existence of
NE. We show in Theorem 3.3.1 that, for an I-structure, each game corresponding
to it has a NE if and only if it does not contain any reflexive cycle. Here a reflex-
ive cycle is a set of more than one reflexive players among whom the influence
relations form a cycle. We require that a reflexive cycle consists of more than one
player, that is, a reflexive player does not form a reflexive cycle. By this definition,
the I-structure in Figure 1.3-1 has no reflexive cycle, and each game correspond-
ing to it has a NE. On the other hand, when a reflexive cycle exists, there is some
game with that I-structure having no NE. This result connects NE with a group of
games sharing the same directed graphical structure rather than with one game
having specific payoff functions. It can be regarded as a non-cooperative counter-
part of Theorem 2.7 in Kaneko and Wooders [67], which connects the nonempti-
ness of the core with the structure of the basic coalitions of an cooperative game.

Graphical structures and their relationship with properties of games have
long been studied (see Jackson [57], Jackson and Zenou [58]). The seminal pa-
per Kearns et al. [70] introduced graphical games to describe direct influences
between players in games and investigated its relationship with equilibria and
their algorithms. Based on it, various studies have been done on how to search
for (pure- or mixed-strategy) Nash equilibria on graphs and their computational
complexity (Ortiz and Kearns [100], Littleman et al. [77], Elkind et al. [44], Kearns
[69], Candogan et al. [32]). Though graphical games are assumed to have an
underlying undirected graph (a few exceptions, e.g., Vickery and Koller [133],
treated the graph as directed), it does not necessarily mean that the influences are
symmetric. The interpretation can be that for two players connected by an edge,
only one of them influences the payoffs of the other. Nevertheless, by adopt-
ing directed graph, the asymmetric influence structure can be treated more ex-
plicitly. Also, directed graphical structure helps to study nodes (players) of the
graph (game) that has (or lacks) self-loops, that is, players who can (or cannot)
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ever influence his own payoff by switching to a different strategy. Those help to
study the structure and computational properties of equilibria of games. Asym-
metry and self-loops play important roles in the results of this chapter. Further, it
will provide insights on important topics such as asymmetric follow on Facebook
and Twitter (see James Governor [59], Levin [74], Porter [116]) and learned help-
lessness (Seligman [125]) and atomization (Riesman [119]) in social psychology,
which deeply affect people’s thinking and behavior in the information age.

Jiang et al. [60] provided a directed graphical representation of games called
action-graph games (AGGs). An AGG compactly expresses utility functions with
structures via relationships between choices rather than those between players.
There is no overlap between the results of Jiang et al. [60] and those of this chap-
ter. Nevertheless, AGG provides an approach to refine I-structure. We will dis-
cuss it briefly in Section 3.5.1.

Also, the idea of relating the influence of players’ choices with the properties
of a game is not entirely new. In the literature of social choice theory, a concept
called effectitivity function (EFF) was developed to describe players” power on
the outcomes of a game form (Abdou [1], Moulin and Peleg [93], Moulin [92], Pe-
leg [106], Abdou [2], Abdou and Keiding [3], Peleg [107]). In terms of EFFs, Dutta
[43] characterized acceptability (the existence of NE for any preference profile
for a game form and every corresponding outcome is Pareto efficient) and domi-
nance solvability of game forms, and Gurvich [49] characterized the existence of
NE in 2-person game forms. The difference is that EFF is defined by the power of
a group of players on the outcome rather than on a player’s payoff, which makes
it more suitable to capture groups’ blocking and dominating in social choice sit-
uations than to do with an individual’s decision making. Also, an EFF depends
on the decision rule of the game form which assigns to each strategy profile an
outcome, while an influence structure is defined within a general framework di-
rectly based on players’ payoffs. Those differences lead to different subjects and
focuses of EFF and influence structure.

Theorem 3.3.1 also suggests I-structure may be related to potential games
(Monderer and Shapley [90]). In Section 3.3.2 we show that I-structure with-
out reflexive cycle implies generalized ordinal potential games, but is logically
independent from ordinal potential ones.

The problem of Theorem 3.3.1 is that its only-if part is weak; it states that
the existence of a stable behavior pattern is guaranteed only if the I-structure
is hierarchical In other words, even a pair of reflexive and mutual influenced
individuals, which is ubiquitous, may expose the whole society to the risk of
having no NE. Especially, it fails to capture almost all non-trivial 2-person games.

To overcome this problem, we relax the requirement for I-structure and de-
fine the e-I-structure of a game. I-structure requires that for each player, every
player having influence on him should be considered no matter that influence
is salient or subtle. In an e-I-structure only those having salient influence are
considered. Based on it, we define an e-approximation of the original game. The-
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orem 3.4.1 shows that each NE of an e-approximation is a ¢-NE (i.e., an approx-
imated NE) of the original game. Theorem 3.4.2 connects e-I-structure and exis-
tence of e-NE in the original game. Since an e-I-structure is intended to be simpler
than the I-structure, it is more probably of having no reflexive cycles, and the &-
approximation based on it has a NE. Hence, Theorems 3.4.1 and 3.4.2 imply that
even if a game has no NE, it may have an approximated one by ignoring some
subtle influence among players.

This chapter is organized as follows. Section 3.2 gives basic definitions and
show that for each arbitrary directed graph, there is some game having this graph
as its smallest I-structure. Also, we discusses the relationship between I-structure
and dominated strategies and the effects of elimination of dominated strategies
on the configuration of an I-structure. Section 3.3 gives the necessary and sulffi-
cient condition in terms of I-structure for the existence of NE, and studies the rela-
tionship between I-structure and potential games. Section 3.4 defines ¢-I-structure
and s-approximation of a game, and study their relationship with the e-NE in the
original game. Section 3.5 gives some concluding remarks.

3.2 Influence Structure and Games

3.2.1 Preliminaries

Let G = (N,{S;}ien, {ui}ticn) be a finite strategic form game, where N is the
finite set of players, S; the strategy set, and u; : [1jcnS; — R the payoff function
foreachi € N. An Influence structure (I-structure) of G is a directed graph 7 : N —
2N satisfying that for each i € N and Sx(i) € Sn(i)s

!

ui(sn(i)/'s—ﬂ(i)) = Mi(Sﬂ(i),'S_ﬂ(i)) for all s_ﬂ(i),s/_ﬂ(i) (S S—TT(i)' (31)

7(i) is called the neighborhood of i (w.r.t 7). (3.1) means that i’s payoff is influ-
enced only by the choices of players in (7). When (i) = @, we stipulate that
(Sr(i);S—n(i)) = S—n(i) = s for each s € S, and (3.1) becomes u;(s) = u;(s’) for all
s,s' € S. When 71(i) = @, it means that i is not influenced by any players, that is,
his payoff is constant.

A game G may have multiple I-structures. A trivial one is 77(i) = N for each
i € N. The following proposition states that there is a unique smallest I-strcuture.

Observation 3.2.1 (The smallest I-structure). There exists a unique I-structure 77*
of G satisfying that for each I-structure 77 of G, 7*(i) C 7(i) for each i € N.

Proof. The uniqueness follows the existence directly . For the existence, it is suf-
ficient to show the that for two I-structures 7t and 7¢/, 7t N 7’ is also an I-structure
of G. Here N 7’ is defined by (rt N 7’)(i) = (i) N /(i) for each i € N.

38 DIRECTED GRAPHICAL STRUCTURE OF GAMES



Let i € N. For simplicity we write 77(i) N 7/(i) as Np. Let Ny = N — 7(i) and
No = (N — 7/(i)) N m(i). Since N — Ng = Ny UN; and Ny N N, = @, each sy_;,
can be written as (sn;;sn;,). Let sy, € Sy, and SN,NO,SII\FNO € Sn-n,- Since 7
is an I-structure of G, u;(sny;Sn,;5N,) = ui(sNO;s’Nl;sNz). Also, since 7’ is an I-
structure of G, ui(sNO;s’Nl;sNz) = ui(sNO;s’I\,l;s’I\,z). Hence 7% = u;(sny; Sny;5N,) =
Ui (SNy; S, Sy, )- It follows that 7t N 7’ is also an I-structure of G.

Let T1(G) be the set of all I-structures of G. I1(G) # @ since it contains the
trivial I-structure mentioned above. Hence M ¢yy(G)7 is the unique smallest I-

structure of G.! [J
The following statement characterizes the smallest I-structure.

Observation 3.2.2 (Characterization of the smallest I-structure). Let 77 be the
smallest I-structure of G. For eachi € N, 77*(i) = {j € N : u;(sj;s_) # ui(s},‘s_j)
for some sj,s§ €Sjands ;€S j}.

Proof. For (D) part, it can be easily seen that for each j € N with u;(s;;s_;) #
ui(s;-;s_j) for some sj,s;- € Sjands_j € S_j,j € n*(i), otherwise 7* is even not an
I-structure. For (C) part, suppose that there is i € N such that for some j € 7*(i),
ui(sjs—j) = ui(s;;s,j) for all sj,s;« € Sjands_; € S_;. Define 7 : N — 2N by
letting 7t(k) = 7* (k) for k # i and 71(i) = N — {j}. It can be seen that 7 is also an
I-structure. Since the smallest I-structure 77* is the intersection of all I-structures
of G, it follows that j ¢ 77*(i), which is a contradiction. O

Each j € 7*(i) can be said as a substantive influencer of i since j’s unilateral
change of strategy substantively influences i’s payoffs. Observations 3.2.1 and
3.2.2 imply that for each I-structure 7t of G, 7(i) contains all substantive influ-
encers of i and, perhaps, some idle players.

Observations 3.2.1 and 3.2.2 also show the relationship between concepts in
Chapters 2 and 3. A player j € N — 77*(i) is inessential to player i. Hence, j
can be called a “partial” inessential player. It is clear that an inessential player
is partially inessential to every player, while a partial player is not necessarily
inessential to the whole game. The proof of Observation 3.2.1 implies that partial
inessentiality is an attribute of a player as well as of a set of players. Hence it is
parallel to Lemma 2.2.1.

In this chapter, our discussion is not limited to smallest I-structure since we
consider the viewpoint of an insider (a player) and calculating influence is de-
manding on a player’s cognitive ability. Nevertheless, since the smallest I-structure
is more restrictive and efficient, its configuration may reflect some basic proper-
ties of a game. It is then natural to wonder that, to be the smallest I-structure of a
game, whether a directed graph needs to satisfy some special conditions. We will
show in Proposition 3.2.1 that the answer is no.

For a directed graph 7w : N — 2N and a strategy set S; for each i € N, we

1t can also be seen easily that I1(G) is closed under U. Hence I1(G) is an algebra.
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use G(7,{S;}icn) to denote the set of games with 7 as one of its I-structure
and {S;}ien as strategy sets, and let G*(77, {S;}ien) = {G € G(7, {Si}ien) = 7T
is the smallest I-structure of G}. It is clear that G*(7, {S;}icn) is a subset of
G(7,{Si}ien)- Also, G(71,{Si}ien) # © for each 7 and {S;}ien since a game
with u;(s) = 0foralli € N and s € S belongs to it. For the smallest I-structure,
we have the following statement.

Proposition 3.2.1 (Directed graph and the smallest I-structure). For each 7 :
N — 2N and |S;| > 2 foreachi € N, G*(7, {S; }ien) # @.

Proof. Without loss of generality, we assume that |S;| = 2 for each i € N. We
show the statement by induction on the cardinality of N. When N = {1}, there
are only two possibilities for 7, i.e., 77(1) = @ or 7(1) = {1}. For the former we
let u1(s11) = u1(s12) = 0 and for the latter u1(s11) = 0 and u;1(s12) = 1. Suppose
that we have shown the statement for |[N| = n for some n € IN. Now we show
that it also holds for |[N| = n + 1.

LetN = {1,..,n+1}and 7w : N — 2N be an arbitrary directed graph on N. Let
N° = {1,...,n} and 7rno the restriction of 77 on N?, i.e., for each i € N, 7tpno (i) =
(i) N N°. By the inductive hypothesis, there is some G° = (N?, {S; }ieno, {1 }icne)
€ G*(7mtno, {Si}ieno). Now we construct a game G = (N, {S;}ien, {Ui}ien) €
G*(71,{S;}ien) based on G° as follows:

(1) For each i € N° with 77(i) = 7tne (i), let u;(s) = uf(sno) for each s € IT;cnS;.

(2) For each i € N° with 7(i) # 7ine(i), ie., 7t(i) = 7tno(i) U {n + 1}, for each
s € S, we define

wi(s) = { WNo) i suin = suin
! l/l;«) (SN") +1 if Sn+1 = Sn+1,2 '

(3) For player n +1,if t(n+1) = @, we let u,11(s) = O foralls € S. If (n +
1) = {i1,...,it}, we define u, 1 as follows: First, we define a sequence of uﬁ

41
S{i1,---,ik} — R (k =1, ..., t) by induction as follows:
U0. Let u,11+1(si1,1) =0and u711+1(si1,2) =1,
Ul. Suppose that we have done this for ¢ (¢ < ). Foreachs € S¢; ;. 1, define
010y “'fm (Sgiy i) ifspi1=sp111
i1 (8) = uy 1 (sgi 1) +1if = '
n+1\S{iy,.ig} LSpp1 = Spt1,2
In this manner, we can define u; +1S (it} = R.
Now for each s € S, we let u,;1(s) = uf1+l(s{i1 ..... ir})- So far we have de-

fined u; for each i € N. It is clear that 7t is the smallest I-structure for G =
(N, {Si}ien, {ti}ien). Hence G € G*(71,{S;}ien), and G* (71, {Si}ien) # @. O
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3.2.2 Dominated strategy and reduction of influence structure

The construction above has a problem: the constructed game may have some
dominated strategy (DS).2 To see this, consider the directed graph 7 : {1,2,3} —
21123} with 7(1) = {1,3}, m(2) = {1,2}, and 7(3) = {2}. Following the ap-
proach in the proof of Proposition 3.2.1, the constructed game is

1\2, 831 | s 522 1\2, 83 | s 522
S11 0,0,0(0,1,1 S11 1,0,0 |1,1,1
s 1,1,0 1,21 [ s, 2,1,0 2,21

Here, sj; dominates s1; and sy dominates sp;. By eliminating DS’s we obtain
an I-structure where only player 1 is influenced by player 3. It is then natural to
wonder (1) given an arbitrary 77, whether there is any G with 7 as its I-structure
having no DS, and (2) what is the effect on the configuration of I-structure if we
eliminate DS. In the following we will answer them respectively.

First, we have the following statement.

Proposition 3.2.2 (I-structure and dominated strategy). Let 7t : N — 2N and
|Si| > 2 for eachi € N. Then,

(1) for each i € N with (i) = {i}, i has some dominated strategy in each G €
G™(7,{Sitien);
(2) there exists G € G*(7, {S; }icn) satisfying the following condition:

for eachi € N with 77(i) # {i},i hasno DS in G. (3.2)

Proof. (1) Let G = (N, {S;}ien, {ui}tien) € G*(71,{Si}ien)- By Observation 3.2.1,
m(i) = {i} implies that u;(s;s_;) > u;(s};s_;) for some s;,s; € S;and s_; €
S_i. Also, m(i) = {i} implies that for any s_;,s" ;, u;j(s;;s-;) = u;(s;;s”_;) and
ui(si;s_;) = ui(s;;s" ;). Therefore, s; dominates s’.

(2) Without loss of generality, we assume that |S;| = 2; for each i € N with
(i) = {i}, we assume that s;, dominates s;;. We show this statement by in-
duction on the cardinality of N. When N = {1}, the statement holds straight-
forwardly. Now suppose that we have shown the statement for |[N| = n. Let
N ={1,..,n+1},and 7t : N — 2N satisfy that thereisno i € N with 7 (i) = {i}.
Here we still let N° = {1, ..., n} and 7tne the restriction of 7 on N°. By the induc-
tive hypothesis, there exists G° = (N°, {S;}ieno, {4 }ieno) € G*(7Tno, {Si}tien)
satisfying condition (3.2). Now we constructa game G = (N, {S; }ien, {Ui}ien) €
G*(7,{S;}ien) satisfying (3.2) based on G° as follows:

(1) For each i € N° with 7(i) = 7tno (i), let u;(s) = uf(sno) for each s € IT;eNS;.
(2) For each i € N° with 71(i) # 7tno(i), that is, 71(i) = 7tno(i) U {n + 1}, we

2As in Chapter 2, here we mean strict pure-strategic domination, i.e., s; dominates s! iff for all
5.1 €S g uisi;s_;) > ui(s;s_;).
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consider two cases:
(2.1) o (i) # {i}. For each s € S, we define

u{(s) _ { M?(SNO) if 811 =8n411 ]
! uf(sne) +1  ifspy1 =sp412
(2.2) o (i) = {i}, ie., m(i) = {i,n + 1}. Let Au; = uf(spp;5—;) — uf(si1;5—;) for
some s_; € ITicno_(yS;. Since (i) = {i}, Au; is well-defined. Also, since we
have assumed that s;; dominates s;;, Au; > 0. For each s € S, we define
u?(SNo) if 811 =8n411
ui(s) = ¢ uf(sne) +Au; ifs, 1 =s,10ands; = s
uf(sne) — Au;  if sy =spp10ands; = spp

(3) For player n +1,if n +1 ¢ m(n + 1), then we define u,,1 as we did in the
proof of Proposition 3.2.1. When n + 1 € 7t(n + 1), we discuss two cases:
(B1) t(n+1) ={n+1}. Wejustlet u,,1(s) =0ifs,11 = spy11and u,41(s) =1
if Spy1 = Sut1,2-
B2){n+1} n(n+1).Letni(n+1)={n+1,iy,..10} (t > 1), we define u,
as follows: First, we define a sequence u’éﬂ CS{natiyiy — R(k=0,1,..t) by
induction as follows:
DO. Let M2+1<Sn+1,1> = 0and u2+1(sn+112> =1;

D1. For eachs € S¢;,1), define

0 : _
1 (Sn+1) if s, = siy,1
ul ((s)=¢ 1 if = ds; =s;
n+1 - Sp+1 = Sp41,1 and S, = 84,2 .«
0 if Sp+1 = Sn+1,2 and Sip = 8i1,2

D2. Define uf 41 (k=2,...,t) and then u,, ;1 as we did in the proof of Proposition
3.2.1.

It can be seen that G = (N, {S;}ien, {ti}ien) € G*(71,{S;}ien), and for each
i € N with 7(i) # {i}, i has no dominated strategy in G.

Proposition 3.2.2 implies that if 77(i) # {i} for each i € N, there is G €
G*(7,{S;}ien) without DS. Consider the I-structure 77 in the beginning of this
section. There, 77(i) # {i} for i = 1,2,3. By using the method above, we obtain
the following game which has no DS.

1\2, 53 = 831 | s21 522 1\2,53 =83 | 821 522
S11 0,0,0 0,1,1 S11 1,0,0 1, 1,1
$12 1,1,01,0,1 S12 0,1,0]0,0,1

An implication of Proposition 3.2.2 is that, after iterated elimination of DS,
the neighborhood of each i € N is either empty or contain some other player.

42 DIRECTED GRAPHICAL STRUCTURE OF GAMES



Formally, we have

Corollary 3.2.1 (I-structure and iterated elimination of dominated strategies).
Let G’ be the final game obtained from some G through iterated elimination of
DS’s, and 77’ be the smallest I-structure of G. Then 7t(i) # {i} for eachi € N.

In this sense, iterated elimination of DS’s can be seen as an eraser of iso-
lated reflexive player. Corollary 3.2.1 suggests that we can define reduction of
I-structures with respect to elimination of DS’s. Formally, let 7, 7’ be two di-
rected graphs. We say that 7’ is a ds-reduction of 7, denoted by m —pg 7', iff for
some G with 7t as its smallest I-structure, a game obtained from G by eliminating
some DS’s has 7’ as its smallest I-structure. We use —,¢ to denote the transitive
reflexive closure of —pg . Then Corollary 3.2.1 can be rephrased as that for any
m, w with T =g 7/, /(i) # {i} for each i.

In general, an I-structure 77 may have multiple reductions. When 7 satisfies
some special condition, we can discuss common properties of its reductions. Here
we give an example. Let 7 : N — 2.7 € N is called reflexive iff i € 7(i). A cycle in
7 : N — 2N is a finite sequence iy, ..., iy (k > 0) in N satisfying the following two
conditions:

CO0: i € 7(iyyq1) and iy # iyyq foreacht =0, ..., k;

Cl: i € ﬂ(io).

Since “one-player cycle” is not allowed, a cycle and reflexivity are distinguished.
A cycle ig, ..., i is called r iff each i; t=0,..., k. We have

les and reductions). If 77 : N — 2N has no reflex-
ive cycle, then for some 71’ with 1 —pg 77/, {i e N :i ¢ 7/'(i)} # @.
Proof. We consider two cases:
Casel. {i e N:i ¢ 7n(i)} # @.Itcanbeseenthat {i € N :i ¢ n(i)} C {i €
N :i ¢ 7'(i)} since an irreflexive player is always irreflexive no matter which
strategies are eliminated for others. Hence the statement holds.

Case2. {i € N:i ¢ n(i)} = @, thatis, i € (i) for each i € N. It follows
that 7z has no cycle. Then it follows from Lemma 3.3.1 in the following that
{i e N:n(i) = {i}} # @, thatis, N; # @. By Proposition 3.2.1, a player i with
7(i) = {i} has some dominated strategy to eliminate; and after eliminating of
all dominated strategies, such a player i’s payoff will be constant, i.e., 7/ (i) = @.
Hence {i € N: (i) = {i}} C {i € N:i ¢ 7'(i)}, and the statement holds. [J

I-structures without reflexive cycle play an important role in Section 3.3. There,
we will show that if 77 : N — 2N has no reflexive cycle, N can be stratified into
a partition Np, Ny, ..., Ni. Though in general Ny may be empty, Proposition 3.2.3
shows that Ny # @ after eliminating DS’s, that is, elimination of DS’s “cleave”
each cycle in 7 and transfers 7t into a “forest”.

If we also allow further restrictions on {S; };cn, we can obtain stronger results.
For example, if 71 : N — 2N has no cycle and satisfies that i € 7(i) and |S;| = 2
for eachi € N, then for each game in G*(7, {S; }icN), after iterated elimination of
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Figure 3-2 Three I-structures

DS'’s, the smallest I-structure of the final game contains only isolated irreflexive
points, i.e., let G’ be obtained from some G € G* (7, {S; };cn) by iterated elimina-
tion of DS’s and 77’ the smallest I-structure of G’. Then for each i € N, /(i) = @.

3.3 Influence Structure, Nash Equilibrium, and Po-
tential Games

3.3.1 Influence structure and Nash equilibrium

The following theorem gives a necessary and sufficient condition on a directed
graph 7 for the existence of pure-strategy Nash equilibrium (NE) in all games
having 7t as an I-structure.

Theorem 3.3.1 (I-Structure and existence of pure-strategy Nash equilibrium).
Let 1 : N — 2N and |S;| > 2 foralli € N. Then each G € G(7, {S;};en) hasa NE
if and only if st contains no reflexive cycle.

As mentioned in Section 3.1, in the extant literature of graphical game theory,
tree and tree-like structures are mostly related to algorithms of searching Nash
equilibria (Littleman et al. [77], Elkind et al. [44]). The problem is that since
they adopt undirected graph, reflexivity and symmetry are taken for granted,
and consequently it is difficult to discuss the relation between existence of NE
and the configuration of graph. It is in terms of directed graph that we are able to
give a condition for the existence of NE.

The following examples gave an outline of the proof. Figure 3-2 gives three I-
structures 711, 712 and 3. 711 has no cycle. In 715, (1,2, 3) is a cycle but not reflexive
since player 3 is not reflexive. 713 has a reflexive cycle (1,2,3).
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First, we show that each game having 7 as its I-structure has a NE. Let G €
G(71, {Si}tien)- As in Example 2.1.1, player 1 has a dominant strategy s;, player
2 is has a best response s} to s7, and player 3 has some best response s} to (s7,s3).
(ST, s;,sé) is a NE for G. Here, the point is that we stratified N into a hierarchy,
along which a NE can be constructed. The following result in graph theory (cf.
Harary [51], p.200) implies that such a stratification can always be done if 77 has
no cycle.

Lemma 3.3.1. Let 1 : N — 2N and B(r) = {i € N : «(i) € {i}}. If 7z has no
cycle, then

(@) B(m) # Q;

(b) 7t has no cycle for each N' C N.

Let Ny = B(m), N = B(nin—n,), N3 = B(7tn—n,uN, ), etc. Since 77 has no cycle,
N; # @by Lemma 3.3.1(a) and, if N — N; # @, N, # @ since 75—y, has no cycle
by (b), etc. Since N is finite, finally such a stratification will stop at somewhere
and every player will be included in some stratum?. Since each player in Nj has
either dominant strategies (i.e., 7t(i) = {i}) or a constant payoff (i.e., (i) = @),
and each player in Ni (k > 1) is influenced only those in the previous strata and
(perhaps) himself, we can choose a best response for all i € N — Nj inductively.
In this manner, we have constructed a NE.

This stratification does not work for 71,. Since (1,2,3) is a cycle, B(7rp) = @.
Nevertheless, since that cycle is not reflexive, we can start from the irreflexive
player 3. Let s3 be an arbitrary strategy of him. Since 77(; 51 has no cycle, and we
can stratify {1,2} as before and choose best response s; and sj. Since 3’s choice
does not affect his own payoff, (s3, s3,s3) is a NE.

In general, for 7t without reflexive cycle, we can first move away all irreflexive
players and then stratify the remaining sub-I-structure since it has no cycle, and
construct a NE along the strata. This is the basic idea in our proof of the If-part of
Theorem 3.3.1.

Proof of Theorem 3.3.1 (If). Let 77 : N — 2N having no reflexive cycle. We define
Nt by induction as follows:

NO:LetNg={ie N:i¢ n(i)};

N1: Suppose N; has been defined for all + < k for some k > 0. Let Ny 1 =
B(7TN U, ,N,)-

Np is the set of all irreflexive players. Since 77 has no reflexive cycle, each cycle (if
any) has some player in Ny, and 77y _n;, hasno cycle. By Lemma 3.3.1,if N — Ny #
@, then Nj # @;if N — Ng U Nj # @, Np # @, etc. This process will stop at some
¢, and each player will be included in a unique Nj (0 < k < /). In this manner, we
have stratified N into a partition Ny, ..., Ny.

3This statement does not hold if N is infinite. For example, if N = N and (1) = {1,3,5,...},
then even 7t has no cycle, 1 cannot be included in any stratum. This suggests that our result
cannot be directly extended to infinite games.
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Let G = (N, {Si}ien, {tti}ien). We construct s* € S along Ny, ..., Ny as follows:
S0: For each i € Ny, let s7 be an arbitrary strategy in S;;
S1: Suppose we have defined s;‘ for all j € U;<xNj for some k < /, i.e., for each
i € Ngypandj € m(i) — {i}, s7 has been defined. Then for each i € Ny 1, let s} be
a best response to S:‘T(i% (i) A
For each i € Ny, since i ¢ 7(i), his unilateral change of strategies does not alter
his payoff. Fori € Ni (0 < k < /), s} is a best response to Sjr(i)—{i}‘ Hence s* is a
NE for G. O

On the other hand, when there is some reflexive cycle in 77, we can always

construct a game without NE. Consider 713 in Figure 3.3.1 and the following game
G with S; = {a,b},i=1,2,3:

WO =11 iz W =g e (=29
G is a Matching-Pennies style game: player 1 gets a higher payoff when his choice
is different from his influencer’s (i.e., player 3’s), while other players get a higher
payoff when their choices coincide with their influencers’. It can be seen that G
has 773 as an I-structure; also, G has no NE since for any s € S, if 51 = s3, then
player 1 can deviate; if s # s3, then player 2 or 3 can deviate. Actually, for more
complicated 7 and/or larger S; (i € N), still we can construct such a game . This
is the basic idea in our proof of the only-if part of Theorem 3.3.1.

Proof of Theorem 3.3.1 (Only-if). We show its contrapositive. Let iy, ..., ix be a
minimal reflexive cycle in 7z.° Since |S;| > 2, for simplicity, we denote s;; by a and
si» by b for each i = iy, ..., ix. We define u[" : Sﬂ(i) — R for eachi € N by

G1. For i = ip, since i, ix € 7(io), for each s;(;) € Sx(;,), let
1 if (si,,si.) = (a,b) or (b, a)
0 if (si,,si.) = (a,a) or (b, b)
ui (Sx(ip)) = 4 —1 if (s, s;,) € {a,b} x (S;, —{a,b})U  (3.3)
(Siy —{a,b}) x {a, b}
-2 otherwise

G2.Fori =i, t=1,..,k, since {i;_1,i;} € (i), for each Sa(ir) € Sn(in) let

1 if (s;,,si, ,) = (a,a) or (b,b)
0 if (sy,, s, ,) = (a,b) or (b,a)
u;;((sﬂ(it)> = -1 if (Sitlsi,,l) € {Ll, b} X (Sl},l - {a,b})U (3.4)
(Si, -~ {a,b}) x {a, b}
-2 otherwise

#1t is possible that for some i € Ny, 77(i) = {i}. Then s} is just a dominant strategy for .
SFor two cycles ¢, c’, ¢’ is said to be a subcycle of ciff each element of ¢ is also an element of c.
A reflexive cycle is said to be minimal iff it has no proper reflexive subcycle.
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5 a Sit a b
lo
a a 1 0
b 1 -1 b -1
1 0 0 1

u" i, (Sn(iy)) u™; (Spp)h t =1 ... k.

Figure 3-3 7 and ujf (t=1,..k)

G3. Fori € N —{ig, ..., i}, let u[* (s ;) = O for each s(;) € S(3)-

G1 and G2 are illustrated in Figure 3-3. It can be seen that for each i = iy, ..., i,
(1) any s; € S; — {a, b} is dominated by 4; (2) on the {a, b}-block, player iy gets a
higher payoff when his choice is different from his influencer’s (i.e., player i;’s),
while other players get a higher payoff when their choices coincide with their
influencers’.

Now let u;(s) = uf*(s,(;)) for eachi € Nand G = (N, {S;}ien, {#i}ien)- By
definition, G € G(7, {S;}icn). We show that G has no NE. Let s € S. Consider
the following four cases for (s, s;, ):

Case 1. (s, s;,) € (Si, — {a,b}) x ;. Since s;, is dominated by g, s is not a NE.
Case 2. (s, s;,) € {a,b} x (S;, — {a,b}).Sinces; is dominated by g, s is not a NE.
Case 3. (s;,,5;,) = (a,a) or (b,b). Since player 1 can improve his payoff by choos-
ing bif (s, s; ) = (a,a) and a when (s;,s; ) = (b,b), s isnot a NE.

Case 4. (s;,,5;,) = (a,b) or (b,a). For (s;,s; ) = (a,b), consider the set A = {t €
{1,..,k} :s;, # a}.Sinces; #a,k € Aand A # @. Let t* be the smallest element
of A, that s, Sipe_, = 4, and Si # a. Then by (3.4), iy can deviate to a to improve
his payoff from 0 to 1. Similarly, we can find such player when (s;,s; ) = (b,a).
Therefore, s is not a NE. Since cases 1-4 exhaust all possibilities for (sio,sik), we
have shown that G has no NE. [

Theorem 3.3.1 is related to computational topics such as searching a NE and
counting the number of NE’s in a game. The former can be done by the stratifi-
cation shown above. For the later, we only need to consider for each sy, € Sy,
how many best responses sy, € Sy, to it exist, and for each (s, sn, ) where sy,
is a best response vector to sy,, how many best best responses sy, € Sy, exist.
Continuing this process, finally we get the number of NE’s in G. In this sense,
I-structure without reflexive cycle plays a role similar to tree and tree-like struc-
tures does in graphical game theory.
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On the other hand, since we start from a game rather than an I-structure,
the problem here seems to be the computational complexity of determining the
(smallest) I-structure of a game and checking whether there is a reflexive cycle in
it. It can be shown that both are P problems. For the former, it can be seen that
checking whether a player i has influence on j requires O(|S;[*IT; 4;|Sy|) checks.
For the latter, by running a topological sort algorithm (Kahn [61], see Section 22.4
in Cormen et al. [36]), we can check whether the I-structure has a cycle or not,
and the complexity is O(|N| + Zjen|7t(i)|) (it can be seen that |N| is the number
of nodes and e n|7t(i)| is the number of edges in 77).° Searching and counting
NE are in general difficult (cf. Gottlob et al. [48], Conitzer and Sandholm [34]).
I-structures without reflexive cycle helps to save much labor even if computing
I-structures is taken into account.

3.3.2 Influence structure and potential games

Theorem 3.3.1 suggests that I-structure may be related to potential games (Mon-
derer and Shapley [90]) since both ordinal potential games and I-structures with-
out reflexive cycle guarantee the existence of a pure NE. Also, the concept “in-
fluence” is defined by the change of payoffs via someone’s unilateral change
of strategies, which looks similar to the potential function. In this section, we
show that an I-structure without any reflexive cycle implies generalized potential
games, while it is independent from ordinal potential games.

Let G = (N,{S;}ien,{uitien). G is called an exact potential game iff there
exists @ : S — R such that foralli € N, s;,s € S;jand s_; € S_;, uj(si;s_;) —
ui(si;s_ij) = ®(si;s-;) — D(sj;5-). G is called an ordinal potential game iff there
exists ® : S — R such that for each i € N, s;,s7 € S;and s_; € S_;, u;(si;s_;) —
ui(sh;s_;) > 01if and only if ®;(s;;5_;) — P;i(s};s-;) > 0. G is called a generalized
ordinal potential game iff there exists ® : S — R such that for all i € N, si,s§ € S;
ands_; € S_;, if uj(si;s—;) — ui(s};s_;) > 0, then ®;(s;;s_;) — ;(sl;s_;) > 0.

We have the following statement.

Theorem 3.3.2 (I-structure and generalized ordinal potential games). Given 7 :
N — 2N and S; # @ for each i € N. If 7 contains no reflexive cycle, then each
G € G(71,{S;}ien) is a generalized ordinal potential game.

Theorem 3.3.1 follows directly from Lemmas 3.3.2 and 3. Let G = (N, {S; }icn,

{u;}ien). A pathin G is a sequence v = (s’,s!,...) in S such that for each t =

0,1, ..., there is one and only one it € N such that sft + sffl. A path y = (s0,s!,...)

is called an improvement path iff for each t = 0,1, ..., u;,(s'™1) > u;,(s'), that is,

®In a previous manuscript I mistakingly claimed that searching for a cycle in 7 is a NP problem.
I owe Professor Makoto Yokoo for pointing out this mistake to me and telling me the topological
sort algorithm.
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at each step t, the strategy changer i; gains a higher payoff through that change.
We say that G satisfies the finite improvement property (FIP) iff every improvement
path in G is finite.

Monderer and Shapley [90] showed the following statement.

Lemma 3.3.2 (FIP < generalized ordinal potential). G has the FIP if and only if
G is a generalized ordinal potential game.

Lemma 3.3.3 (No reflexive cycle — FIP). Given 7t : N — 2N and S; # @ for each
i € N. If 7 contains no reflexive cycle, then each G € G(7,{S;}icn) satisfies FIP.

Proof. We show the contrapositive. Suppose that some G € G(7,{S;}icn) does
not satisfy FIP, that is, there is an infinite improvement path 7 in G. Then each
player in v is reflexive, and some iy € N changes his strategy to gain a higher pay-
off for infinitely many times in «. This could not happen if there is no other play-
ers in y who brings down iy’s payoff by unilateral change of strategies. Hence,
there is some i1 € 77(ip) different from iy which also appears infinitely many times
in <. Similarly, there must be some i, € 7(i7) with i, # i; in 1y, etc. Since G is a
finite game, there must be some cycle iy, iy, ..., iy in y. Hence we obtain a reflexive
cyclein rr. OJ

It is easy to see that reflexivity, i.e., one’s influence to herself, can be related
directly to a potential function. Indeed, i is reflexive if and only if there are s;, s} €
Siands_; € S_; such that ®(s;;5_;) — ®(s/;5_;) > 0. On the other hand, whether
influence caused by others can be discussed in terms of a potential function is not
clear. Lemma 3.3.2 shows that the answer is yes if there is an infinite improvement
path; such a influencer-influencee relation cannot be implied from a finite one.

The following examples show I-structure without reflexive cycle and ordinal
potential games are logically independent.

Example 3.3.1 (No reflexive cycle - Ordinal Potentiality). Consider the follow-
ing game:

1\2 S21 | S22
S11 1,121
S12 2,1 1, 1

The smallest I-structure of this game has no reflexive cycle since player 2 has no
influence on any player. However, it is not an ordinal potential game. To see
this, suppose that G has an ordinal potential ®. It can be seen that ®(s11,821) —
®(s11,822) = 0 since up(s11,821) — u2(s11,822) = 0, ®(s11,52) — P(s12,822) >
0 since M1(5111522) — M1(512r522) =1>0, @(512,522) — CD(Su, 521) = 0 since
ua(s12,822) — U2(s12,821) = 0,and D(s11, 521) — D(s12,821) < 0since uq(s11,821) —
up(s12,821) = —1 < 0. However, the first three inequalities imply that ®(s11,5p1) —
d(s12,521) > 0, a contradiction to the last inequality. Hence there does not exist
such a ®, and G is not an ordinal potential game.

Example 3.3.2 (Ordinal Potentiality -~ No reflexive cycle). Consider the pris-
oner’s dilemma as follows:
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1\2 S21 | S22
S11 5 , 5|1 P 6
S12 6,133
It can be seen that this game is a exact potential (hence ordinal potential) game
since we can define ® as follows

1\2 | sy | 522
S11 5 6
S12 6 8

However, G contains a reflexive cycle (1,2). It should be noted that since the ex-
istence of ordinal potential implies generalized ordinal potentiality, this example
also shows that the reverse of Theorem 3.3.2 does not hold.

3.4 e-|-Structure and Approximated Nash Equilib-
rium

Our purpose is to apply I-structure to study the influence relation in a social game
and its effect on players” behavior pattern. Theorem 3.3.1 states that the existence
of a stable behavior pattern, i.e., a pure-strategy NE, is guaranteed only if the I-
structure is hierarchical, i.e., either it has no cycle or has a irreflexive person in
each cycle, both of which seems unrealistic in a social situation. In most social
situations, people influence each other (i.e., cycles exist) and each individual in-
fluences his own payoff (i.e., reflexive). Hence, the application of Theorem 3.3.1
seems limited.

To solve this problem, in this section we provide an approach where an I-
structures is used as an approximation rather than a precise description of the
situation. To do that, we relax the requirement in I-structure that each influencer
should be contained in 77(7), and define an e-I-structure of a game where players
whose influence on i is subtle are excluded from his neighborhood. Based on it,
we define an e-approximation of the original game, and show that the NE of the
g-approximation is an e-NE of the original game.” Finally, as a parallel to Theorem
3.3.1, we connect ¢-I-structure with the existence of e-NE of the original game.

Let G = (N,{S;}ien, {tti}ien) and e > 0. 7 : N — 2N is called an e-I-structure
of G iff foreachi € N and s, (;y € S;(;),

|4 (S(i)3 5 (i) — Ui(S(i); 8- ()| < € forall s,ﬂ(i),s’_ﬂ(i) S (3.5)

"t is called e-equilibrium in the literature (see Rubinstein [121]). Here we call it e-NE since
we want to emphasize its conceptual similarity with NE and differentiate it from another e-
equilibrium in the literature of market equilibrium theory (Starr [130]).
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When ¢ = 0, (3.5) coincides with (3.1). e-I-structure extends I-structure by allow-
ing exclusion of players having subtle influence (less than ¢) on i. This can be
interpreted from players’ bounded cognitive ability, that is, each player fails to or
ignores those whose influence on him is small. The following Lemma shows that
7 is an e-I-structure of G if and only if each player i has an approximated payoff
function on 7(i).

Lemma 3.4.1 (e-I-structure and approximated utility function). A directed graph
7 is an e-I-structure of G if and only if for each i € N, thereis u[ : S;; — R
satisfying

|7 (s(s)) — ui(s)| < % foralls € S. (3.6)
Proof. (Only-if) For each i € N, we define u[" : 5;;) — Rby
T 1 .
ui* (i) = 51, max i(Sn(iy;S—n(i) £, MmN Ui(Sr(i);S_r(i))]

S_n(i)e 7[(1') 777(1')657“”

for each s, (i) € S (i) Since 7t satisfies (3.5), for each s € S,

ui(s) —ul (sp) < max uilsg);s (i) = Uf' (Sx(i))
*7(1)&577_((14)
1 .
= —| max  Ui(Sy();S—n(i min  u;(S,;(1); S— (i
2[5,7(1)65 (i) 0 ) S m()ES_ ;) 0 ())]
13
< =
- 2
and
ul(s)_ulﬂ(sﬂ’(l)) > s min Mi(sﬂ(l)ls—ﬂ(z))_M?(Sﬂ(z))
—n(z)tsin(l)
1
= gl i o n) —, max i(oxisio)
> L
- 2

That s, [u;(s) — uf (s(;))| < 5. Hence (3.6) is satisfied.
(If) Suppose that for each i € N, thereis ul : S, ;) — R satisfying satisfying
(3.6). Leti € N and s;(j) € Sx(i), s,n(i),sin(i) E S_x(i)- Then

|14 (S52(1)5 5 — (i) — Ui (S(i)i 5 (i)
= ui(Sn(i);5—n(i) — U7 (Sn(i)) + U7 (Sn(i)) — iSn(iy; L )]
< iy S (i) = w5 i) + (Ui (S (st (i) — U7 (Sx(3))]
£ £
S E + § €.
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Therefore, 7 is an ¢-I-structure of G. [

Lemma 3.4.1 can be explained from two viewpoints. The only-if part is from
an outsider’s viewpoint, stating that given an e-I-structure, some approximated
payoff function can be constructed for each player. The if part gives substantial
meaning to an e-I-structure from the viewpoint of players. In contrast to the ob-
jective u;, a player has an subjective 1 built on ignorance of subtle influences.
It is probable when G represents a situation with many players and complicated
objective I-structure while each individual has only bounded cognitive ability. In
this sense, for each player i € N, (7(i), {S; }]th (i 4]*) can be called his individual
world, and T' = {(7t(7), {S;} jen(i) u]') bienisa collectlon of subjective individual
worlds approximating the ob]ectwe world G. We call I" an e-approximation of G.

The following theorem shows that the NE of an s-approximation is an approx-
imated NE for the original game.

Theorem 3.4.1 (e-Approximation and approximated Nash equilibrium). Let
I' = {(7(i), {S;}jen(i), w) tien be an e-approximation of G. If s* is a NE for I,
then it is an e-NE for G.

Here, an e-NE (e-Nash equilibrium) for G is a strategy profile s € S satisfying
that for eachi € N, u;(si;s_;) +¢ > u;(s};s_;) for all s} € S;.
Proof of Theorem 3.4.1. Let s* be a NE in I'. We show that s* is an e-NE in G, that
is, foreachi € N, u;(s};s* ;) + & > u;(s;;s* ;) forall's; € S;. Let i € N. We consider
the following cases:
(1) i € (7). Then for each s € S, s;(;y = (8i; S (i)—;)- It follows from (3.6) that

€ *, ok *, Lk €
= < ui(si;sty) —uf (si5 855y -i) < 5 (3.7)
and for each s; € S;,
£ . . £
_E S uf(si;sn(i)_i) — ui(si;sfi) S E (38)
Combine (3.7) and (3.8), we have
—e < uy(si;s%) —ui(si;sty) + [uf (s 5;(1‘)4) - “?(5??52(1')4)] <e (3-9)

Sinces*isaNEin T, u7 (s;; sn(l ) —ul(s; S;‘_[(l.)il.) < 0. Then it follows from (3.9)

that —e < u;(s;s* ;) — ui(si;s* ;) +[“§7(5i}52(i),i) - M?(S?;S;(i)—i)] <uj(st;s*;) —
u;(si;s*;), thatis, u;(s7;s* ;) + & > ui(si;s™ ;).

(2) i ¢ 7i(i). Then for each s; € S;, (s7;5% ) 7(i) = (557 )|ty = Sy(i)- Hence

s1557) =65 )| = 6755 ) =07 (5 ) + o S) = i)
< w55t y) — uF (st + (k) — il s )|
o ELE L
- 2 2
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Therefore, we have —e& < u;(s;s*;) —u;(s;;s* ;), thatis, u;(sf;s* ;) +& > u(s;;s* ;).
Here we have shown that s* is an ¢-NE for G. [

An ¢-I-structure is intended to be smaller than an I-structure,® and therefore
is more probable to contain no reflexive cycle, that is, an e-approximation based
on it is more probable to have some NE. Theorem 3.4.1 states that this NE is an
approximated one, i.e., an approximated stable behavior pattern, in the original
game.

Using Lemma 3.4.1 and Theorem 3.4.1, we can connect ¢-influence structure
with ¢-NE of G. This is a parallel to Theorem 3.3.1. Given 7t and S; with |S;| > 2
foreachi € N, we use G¢(7, {S;}icn) to denote the set of all games with 7 as their
e-I-structure, and I'(7, {S;}icn) to denote the set of collections I' = {(7(i), {S;}
jen(i) U) tien- Then we have the following statement.

Theorem 3.4.2 (¢-I-structure and ¢-Nash equilibrium). Let 7 and S; with |S;| > 2
for eachi € N. Each G € G.(77,{S;}icn) has an ¢-NE if and only if 77 contains no
reflexive cycle.

Proof. The only-if part can be proved in a similar manner as the only-if part of
Theorem 3.3.1. Here we only show the if-part. Let G € G.(7,{S;}ien). Since
7T is an e-I-structure of G, it follows from Lemma 3.4.1 that there is some I' €
I'(7t,{Si}ien) which is an e-approximation of G. Since 7 contains no reflexive
cycle, it follows from Theorem 3.3.1 that I has a NE s*. By Lemma 3.4.1, s* is an
e-NE of G. J

Theorems 3.4.1 and 3.4.2 connect objective social situation with subjective in-
dividual worlds, showing that even if some behavior pattern is not stable objec-
tively, it is approximately stable from the viewpoint of individuals with bounded
cognitive ability. Here, e-I-structure and e-approximation can be interpreted from
players” bounded cognitive ability and help to study a social game with such
players. It is different from approximation model approach (Rubinstein [121])
which, as pointed out by Kline [72], takes bounded rationality only as a numeri-
cal approximation of the full rationality and does not explore the structural differ-
ence between them. ¢-I-structure fills this gap by players’ failure to deceive subtle
influencers, parallel to literature interpreting e from bounded computational abil-
ity of players (e.g., Kalai [68], Ben-Porath [14]).

In game theory, e-NE has long been used to describe players” bounded ratio-
nalities in repeated games (cf. Radner [118]). Since any unilateral change from
an ¢-NE generates a profit less than ¢, a player with bounded rationality may
not bother to do it. Here, we use it in a different sense: an e-NE results from each
player’s bounded cognitive ability, i.e., he fails to perceive or ignores those whose
influence on him is subtle.

8Be careful that this is our intention. Mathematically it is possible that an e-I-structure is
smaller than the corresponding I-structure.
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3.5 Concluding Remarks

3.5.1 On Theorem 3.3.1 and the e-approximation approach

Since the only-if part of Theorem 3.3.1 is weaker, it is wondered whether there
is a stronger condition on I-structures which characterizes the existence of a NE.
Though it is still an open problem, we are somehow pessimistic since I-structure
seems too “coarse” to capture possibilities of deviation from some specific strat-
egy profile. Some refinement may be needed. One idea is, as mentioned in Sec-
tion 3.1, to using action-graph games (AGGs) introduced in Jiang et al. [60]. An
AGG focuses on the effect of combinations of choices on utility functions by intro-
ducing a concept called the neighborhood of each choice. Jiang et al. [60] showed
how to use an AGG to represent a graphical game: for each i,j € N, {i,j} is an
edge if and only if for each s; € S; and s; € §j, s} is in the neighborhood of s; (p.
146). Through some modification, this approach can be applied into an I-structure
to indicate accurately both influence between players and choices. Based on this
modification, we may give a stronger condition for the only-if part of Theorem
3.3.1. More researches are expected in this direction.

It is also wondered whether I-structure can be related to other solution con-
cepts. The literature of graphical game theory has related undirected graphs
with correlated equilibrium (Kakade et al. [62], Papadimitriou and Roughgarden
[104], Papadimitriou [103]). It is expected that something else could be found by
using directed graph. Also, it may be possible to connect I-structure and effec-
tivity functions (EFF) in social choice theory, for example, to see whether some
topological structure of EFFs (e.g., Boros et al. [24]) can be transformed into the
context of I-structure, and what is the relationship between I-structures and prop-
erties of voting games. It is also possible to relate I-structure to cognitive hierar-
chy theory (Cramer et al. [37]).

A critical problem of e-I-structure is how large € should be. Every game has an
g-approximation without reflexive cycle if ¢ is large enough, while the larger ¢ is,
the more information in the payoffs would be nullified. Without a solid criterion
to determine the appropriate value(s) of ¢, this approach may not be so appealing.
Future works are expected in that direction.

Another problem is the incompatibility between the computational complex-
ity for e-I-structure and players’ bounded cognitive ability. An e-I-structure is
intended to be smaller than a (the smallest) I-structure. However, a smaller struc-
ture may need more computations, let along checking whether the influence of
players outside is smaller than e. Hence, an e-I-structure may be even more de-
manding on players’ cognitive ability, which seems contradictory to our assump-
tion that each player’s cognitive ability is bounded.

One solution is to separate the viewpoint of an insider from that of an out-
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Figure 3-4 Decomposition of strongly connected components

sider more explicitly. To be specific, an [-structure (and an e-I-structure) is defined
“negatively”, that is, from those who have no influence on a player. This repre-
sents an outsider’s viewpoint. For an insider, the boundary has to be defined
“positively”, that is, an insider starts from who influence him, not from those
who do not. Within the framework here, this is only a difference in interpreta-
tion. Further study in this direction is needed.

3.5.2 Pure Nash equilibria and I-structures with reflexive cycles

For a game whose (smallest) I-structure has some reflexive cycle, Theorem 3.3.1
provides no clue for searching for NE nor assessing the computational complexity
to determine the existence of NE. Here we sketch an idea called component games
approach which helps to solve the problem.

This approach is based on the notion called decomposition of strongly con-
nected components for a directed graph (Cunningham [39]). Let 7t : N — 2N be
a directed graph. A strongly connected component is a set of nodes (here players)
that are reachable via directed edges with each other. A strongly connected com-
ponent N’ is called maximal iff there isnoi € N — N’ such that N' U {i} is also
a strongly connected component. By partitioning the nodes in 77 into maximal
strongly connected components and representing each component by a node, we
can generate a directed graph 7t° from the original st. It can be seen that 7° has
no cycle, i.e., 71 is a directed acyclic graph. See Figure 3-4 for an example.

In this manner, we have decomposed the original game into several smaller
component games. Each component N’ is influenced only by components in 77°(N’).
Then searching for NE in the original game boils to searching for NEs in the com-
ponents from the initial ones to the leafs. Therefore, this approach may reduce the
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computational complexity of searching for NE. A detailed study in this direction
is expected in the future.
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4. CHARACTERIZING RATIONALIZABIL-
ITIES BY INCOMPLETE INFORMATION

4.1 Introduction

In this chapter we consider the epistemic aspect of an individual’s decision mak-
ing in an interactive situation. Since in such a situation one’s payoff is not com-
pletely determined by his own choice, to make a decision he needs to form a
belief about every other participant’s choice, about every other participant’s be-
lief about every other’s choice, and so on. Studying the structure of those belief
hierarchies and choices supported by a belief hierarchy satisfying some particu-
lar conditions opened up a field called epistemic game theory. See Perea [110] for a
textbook on this field.

In epistemic game theory, various concepts have been developed to describe
some specific belief structures. One is lexicographic belief (Blume et al. [16], [17]).
A lexicographic belief describes a player’s subjective conjecture about the oppo-
nents’ behavior by a sequence of probability distributions over other participants’
choices and types, which is different from the adoption of a single probability dis-
tribution in a standard probabilistic belief. The interpretation of a lexicographic
belief is that every choice-type pair in the sequence is considered to be possible,
while a pair occurring ahead in the sequence is deemed infinitely more likely than
one occurring later. Several concepts have been developed by putting various
conditions on lexicographic beliefs intended to capture different types of reason-
ing about the opponents’ behavior. Permissibility and proper rationalizability are
two important and interrelated concepts among these.

Permissibility originated from Selten [126]'s perfect equilibrium. It is defined
and studied from the epistemic viewpoint by using lexicographic belief in Bran-
denburger [28]'. Permissibility is based on two notions: caution and primary belief
in the opponents’ rationality. A lexicographic belief is said to be cautious if it does
not exclude any choice of the opponents; it is said to primarily believe in the op-
ponents’ rationality (Perea [110]) if its first level belief only deems possible those
choice-type pairs where the choice is optimal under the belief of the paired type.

Proper rationalizability originated from Myerson [94]’s proper equilibrium which
is intended to be a refinement of perfect equilibrium. It is defined and studied in
Schuhmacher [124] and Asheim [5] as an epistemic concept. Proper rationaliz-
ability shares with permissibility the notion of caution while, instead of primary

! An alternative approach without using lexicographic belief is given by Borgers [22].
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belief in the opponents’ rationality, it is based on a stronger notion called respect-
ing the opponents’ preferences which means that a “better” choice always occurs in
front of a “worse” choice in the lexicographic belief.

We explain these two concepts by an example. Consider a game where player
1 has strategies A and B and player 2 has strategies C, D, and E. Player 2’s utility
function u, is as follows:

up |C | D | E
A3 (2|1
B |3|2 |1

Consider a lexicographic belief of player 1 about player 2’s choices. Caution re-
quires that all three choices of player 2 occur in that belief. Since C is player 2’s
most preferred choice, primarily believing in player 2’s rationality requires that
only choice C can be put in the first level of that belief. On the other hand, since
C is preferred to D and D is preferred to E for player 2, a lexicographic belief of
player 1 respecting 2’s preferences should deem C infinitely more likely than D
and D infinitely more likely than E, that is, put C before D and D before E in the
lexicographic belief.

One motivation for the development of a lexicographic belief is to alleviate
the tension between caution and rationality (Blume et al. [16], Brandenburger
[28], Borgers [22], Samuelson [123], Bérgers and Samuelson [23]). Permissibility
and proper rationalizability tried to solve that tension by sacrificing rationality in
different senses. That is, though permissibility requires that the first level belief
contains only rational choices and proper rationalizability requires that choices
should be ordered according to the “level” of rationality, both allow occurrences
of irrational choices because of caution. This sacrifice of rationality brought some
conceptual inconvenience since rationality is a basic assumption in game theory
and is reasonable to be adopted as a criterion for each player’s belief.

Actually, there is an approach which solves the tension without sacrificing
rationality: using an incomplete information framework. That is, instead of con-
sidering the uncertainty about opponents’ rationality within a complete informa-
tion framework, we take the uncertainty about the opponents’ utility functions
and consider types within the incomplete information framework. Then the oc-
currence of a irrational choice can be explained as that the “real” utility function
of an opponent is different from the original one. Both permissibility and proper
rationalizability can be characterized within an incomplete information frame-
work. This is the basic idea of this chapter.

We use the above example to explain this idea. As mentioned there, though
only choice C is rational for player 2, caution requires all three choices C, D, and
E to occur in player 1’s belief. In a complete information framework, the occur-
rences of D and E are explained by player 2’s irrationality (i.e., “trembling hand”).
In contrast, within an incomplete information framework they are explained by
the possibility that the “real” utility function of player 2 is not u; but v, or v} as
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follows:

v, | C|D|E v, |C|D|E
Al2 |3 |1, ]|A|2]1 |3
B |23 |1 B |21 13

Choice D is optimal in v, and E is optimal in v5. In this way, uncertainty about the
opponent’s rationality within a complete information framework is transformed
into uncertainty about the opponent’s real utility function within an incomplete
information framework. It can be seen that primary belief in the opponent’s ra-
tionality in complete information framework is equivalent to the condition that
one deems u; or a utility function “very similar” to u, infinitely more likely to be
the real utility function of player 2 than v, and v}, and respecting the opponent’s
preferences is equivalent to the condition that those alternative utility functions
should be ordered by their “similarity” to u,.

In this chapter, we study these equivalences formally for 2-person strategic
form games and provide a characterization of permissibility and proper ratio-
nalizability within an incomplete information framework. First, we define the
lexicographic epistemic model of a game with incomplete information. Then we
show that a choice is permissible (properly rationalizable) within a complete in-
formation framework if and only if it is optimal for a belief hierarchy within the
corresponding incomplete information framework that expresses common full
belief in caution, primary belief in the opponent’s utilities nearest to the original
utilities (the opponent’s utilities are centered around the original utilities), and a
best (better) choice is supported by utilities nearest (nearer) to the original ones.

Within the complete information framework, permissibility is weaker than
proper rationalizability. This is reflected in our characterization of them within
the incomplete information framework: permissibility shares caution with proper
rationalizability while the other two conditions of the former are weaker versions
of those of the latter.

It should be noted that rationality does not appear in the condition of charac-
terizations. Nevertheless, in our proof we will construct incomplete information
models with types satisfying all the conditions as well as rationality. In Section
4.4.3 we will also give a model with types which satisfies all conditions but does
not satisfy rationality. These show that, in contrast to the inconsistency of caution
and rationality within the complete information framework, in the incomplete in-
formation one the two are logically independent and consistent; we do not need
to sacrifice one to save the other. Further, in Section 4.4.5 we will provide an alter-
native way to characterize permissibility by using rationality and weak caution.

Results in this chapter are not the first ones characterizing concepts in epis-
temic game theory within an incomplete information framework. Perea and Roy
[114] characterized e-proper rationalizability in this approach by using a standard
epistemic model without lexicographic beliefs. They showed that a type in a stan-
dard epistemic model with complete information expresses common full belief in
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caution and e-trembling condition if and only if there is a type in the correspond-
ing model with incomplete information sharing the same belief hierarchy with it
which expresses common belief in caution, e-centered belief around the original
utilities u, and belief in rationality under the closest utility function. Since each
properly rationalizable choice is the limit of a sequence of e-proper rationalizable
ones, the conditions adopted in their characterizations are very useful for us. Two
conditions in our characterization of proper rationalizability, that is, caution and
u-centered belief, are faithful translations of their conditions into lexicographic
model. However, the most critical condition in their characterization, that is, be-
lief in rationality under the closest utility function, is impossible to be adopted
here. The reason is, as will be shown in Section 4.2.2, that a nearest utility func-
tion making a choice optimal does not always exist in lexicographic models. This
is a salient difference between standard probabilistic beliefs and lexicographic
ones. We define a weaker condition called “a better choice is supported by utili-
ties nearer to the original one” and show that it can be used to characterize proper
rationalizability.

Another essential difference between Perea and Roy [114] and this chapter
is in the way of proof. Equivalence of belief hierarchies generated by types in
models with complete and incomplete informations and type morphisms (Boge
and Eisele [18], Heifetz and Samet [54], Perea and Kets [113]) play an important
role in Perea and Roy [114]’s proof. In contrast, our proofs are based on con-
structing a specific correspondence between the two models. We show that con-
ditions in a type of one model implies that appropriate conditions are satisfied
in the corresponding type in the constructed model. Equivalence of hierarchies
follows directly by construction. Our construction can also be used in proving
Perea and Roy [114]'s Theorem 6.1. Further, as will be discussed in Section 4.4.3,
our construction shows that rationality is separable from other conditions in char-
acterizing proper rationalizability. This confirms the consistency of caution and
rationality within an incomplete information framework.

Our results, as well as Perea and Roy [114]’s, also provide insights in deci-
sion theory and general epistemology. They imply that any choice permissible or
properly rationalizable within a complete information framework is also optimal
for a belief satisfying some reasonable conditions within an incomplete informa-
tion framework, and vice versa. In other words, by just looking at the outcome, it
is impossible to know the accurate epistemic situation behind the choice, that is,
whether it is because of players’ uncertainty about the opponents’ rationality or
uncertainty about what are the real utilities of the opponents.

This chapter is organized as follows. Section 4.2 defines permissibility and
proper rationalizability in epistemic models with complete information and in-
troduces the lexicographic epistemic model with incomplete information. Section
4.3 gives the two characterization results and their proofs. Section 4.4 gives some
concluding remarks.
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4.2 Models

4.2.1 Complete information model

In this subsection, we give a survey of lexicographic epistemic model with com-
plete information. Our definitions follow Perea [110], Chapters 5-6.

Consider a finite 2-person strategic form game G = (N, {S;}ien, {Ui}ien)
where N = {1,2} is the set of players, S; is the finite set of strategies and u; :
51 X S — R is the utility function for player i € N. In the following sometimes
we denote S; x Sy by S. We assume that each player has a lexicographic belief
about the opponent’s strategies, a lexicographic belief about the opponent’s lex-
icographic belief about his, and so on. This belief hierarchy is described by a
lexicographic epistemic model with types.

Definition 4.2.1 (Epistemic model with complete information). Consider a finite
2-person strategic form game G = (N, {S;}ien, {Ui}ien). A finite lexicographic
epistemic model for G is a tuple M = (Tj, b;);en Where

(a) T; is a finite set of types, and

(b) b; is a mapping that assigns to each t; € T; a lexicographic belief over A(S; x T;),
ie., bi<ti> = (bilr by, ..., biK) where b € A(S] X T]) fork=1,..., K.

Consider t; € T; with bi(ti) = (bilr by, ..., biK)- Each by (k=1,...,K)is called t;’s
level-k belief. For each (s, t;) € S; x Tj, we say t; deems (s;, t;) possible iff by (s;, t;) >
0 for somek € {1,..., K}. We say t; deems t; € T; possible iff t; deems (s;, t;) possible
forsomes; € S;. For each t; € T;, we denote by Tj(ti) the set of types in T; deemed
possible by t;.

A type t; € T; is cautious iff for each s; € S; and each t; € Tj(t;), t; deems
(sj, tj) possible. That is, t; takes into account each choice of player j for every
belief hierarchy of j deemed possible by t;.

For each s; € S;, let u;(s;, t;) = (ui(si, bir)., .., ui(si, bix)) where for each k =
1,..K, ui(si, bik) = Z(sj,tj)ESjXijik(sj' t]'>ul'<5i, Sj), that is, each Mi(Sl’, bik) is the ex-
pected utility for s; over by and u;(s;, t;) is a vector of expected utilities. For each
si,s; € Sj, we say that t; prefers s; to s}, denoted by u;(s;, t;) > u;(s}, t;), iff there is
k € {0, ..., K — 1} such that the following two conditions are satisfied:

(a) Mi(Si, bi/) = ui(s;, bi/) for ¢ = o,.. k, and
(b) ui(si, big1) > wi(s}, biky1)-

We say that t; is indifferent between s; and s!, denoted by u;(s;, t;) = u;(s,t;),
iff u;(s;, bix) = ui(s}, bjx) for each k = 1,.., K. It can be seen that the preference
relation on S; under each type t; is a linear order. s; is rational (or optimal) for t; iff t;

does not prefer any strategy to s;. A type t; € T; primarily believes in the opponent’s
rationality iff t;’s level-1 belief only assigns positive probability to those (s;, ;)
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where s; is rational for ;. That is, at least in the primary belief ¢; is convinced that
j behaves rationally given his belief.

For (s tj), (s}, 1)) € Sj x Tj, we say that t; deems (s;, t;) infinitely more likely than
(s;., t;) iff there is k € {0,...,, K — 1} such that the following two conditions are
satisfied:

(@) big(sj tj) = big(s;, t;) =0forl{=1,..k and

(b) bi,k+1(sjr t]) > (0 and bi,k+1(5;‘/ t;) =0.

A cautious type t; € T; respects the opponent’s preferences iff for each t; € T;(t;) and
sj,s; € Cjwhere t; prefers s; to s}, t; deems (s;, ¢;) infinitely more likely than (s}, ¢;).
That is, t; arranges j’s choices from the most to the least preferred for each belief
hierarchy of j deemed possible by ¢;. It can be seen that respect of the opponent’s
preferences implies primary belief in the opponent’s rationality, since the former
requires that each type of the opponent deemed possible in the primary belief
should only pair with choices most preferred under that type.

Let P be an arbitrary property of lexicographic beliefs. We define that
(a) A type t; € T; expresses 0-fold full belief in P iff t; satisfies P;

(b) For each n € N, t; € T; expresses (n + 1)-fold full belief in P iff t; only deems
possible j’s types that express n-fold full belief in P.

A type t; expresses common full belief in P iff it expresses n-fold full belief in P

for eachn € IN.
Definition 4.2.2 (Permissibility and proper rationalizability). Consider a lexico-
graphic epistemic model M® = (T;, b;);cs for a game G = (N, {S;}ien, {tti}ien)-
A strategy s; € S; is permissible iff it is rational for some #; € T; which expresses
common full belief in caution and primary belief in rationality. s; is properly ratio-
nalizable iff it is rational for some ¢; € T; which expresses common full belief in
caution and respect of preferences.

Since respect of the opponent’s preferences implies primary belief in the oppo-

nent’s rationality, proper rationalizability implies permissibility, while the reverse
does not hold.

4.2.2 Incomplete information model

In this subsection, we define the lexicographic epistemic model with incomplete
information which is the counterpart of the probabilistic epistemic model with
incomplete information introduced by Battigalli [10] and further developed in
Battigalli and Siniscalchi [11], [12], and Dekel and Siniscalchi [42]. We also define
some conditions on types in such a model.

Definition 4.2.2 (Lexicographic epistemic model with incomplete information).
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Consider a finite 2-person strategic game form I' = (N, {S;};cn). For eachi € N,
let V; be the set of utility functions v; : S1 x Sp — R. A finite lexicographic epistemic
model for T with incomplete information is a tuple M'"* = (0;, w;, f;)icNy Where

(a) ©; is a finite set of types,

(b) w; is a mapping that assigns to each 6; € ©; a utility function w;(6;) € V;, and
(c) B; is a mapping that assigns to each 6; € ©; a lexicographic belief over A(S; x
Qj), i-e., B;(0;) = (B, Bios - Bix) where B € A(S; x ®;) fork =1,..., K.

Concepts such as “0; deems (s}, ;) possible” and “8; deems (s}, 0;) infinitely
more likely than (s;-, 9})" can be defined in a similar way as in Section 4.2.1. For
each 9, € O;, we use ®]~(9i) to denote the set of types in ®; deemed possible
by 6;. For each 8; € ©; and v; € V;, 8" is the auxiliary type satisfying that
B:(67) = B;(6;) and w;(6]") = v;.

For each s; € S;,v; € V;, and 0; € ©; with ,(0;) = (B, Bips - Bix), let
vi(si,0;) = (vi(si,Bj1), - vi(si, Bix)) Where for each k = 1,.., K, v;(s;, Bjx) =
Z(sj,ﬁj)eij®jﬁik(sj/ 0;)vi(s;,sj). For each s;,s; € S; and 8; € ®;, we say that
prefers c; to ¢} iff w;(6;)(c;, 0;) > w;(6;)(s],6;). As in Section 4.2.1, this is also the
lexicographic comparison between two vectors. s; is rational (or optimal) for 6; ift
8; does not prefer any strategy to s;.

Definition 4.2.3 (Caution). A type 0; € ©; is cautious iff for each s; € S; and
each §; € ©;(0;), there is some utility function v; € V; such that 6; deems (s, 6? )
possible.

This is a faithful translation of Perea and Roy [114]’s definition of caution
in probabilistic model (p.312) into lexicographic model. It is the counterpart of
caution defined within the complete information framework in Section 4.2.1; the
only difference is that in incomplete information models we allow different util-
ity functions since ¢; will be required to be rational for the paired type.

Definition 4.2.4 (Belief in rationality). A type 8; € ©; believes in j’s rationality iff
0; deems (s, 0;) possible only if s; is rational for 6.

In an incomplete information model, since each type is assigned with a be-
lief about the opponent’s choice-type pairs as well as a payoff function, caution
and a full belief of rationality can be satisfied simultaneously. The consistency of
caution and (full) rationality is the essential difference of models with incomplete
information from those with complete information. Rationality does not appear
in the conditions for our characterizations. Nevertheless, in the proofs we will
construct incomplete information models whose types satisfies all the conditions
(including caution) as well as common full belief in rationality. We will discuss
more about this consistency between caution and rationality in Sections 4.4.3 and
4.45.

For each u;, v; € V;, we define the distance d(u;, v;) between u;, v; by d(u;, v;) =
[Zoes(u;(s) — vi(s))?]'/2. This is the Euclidean distance on RC. We choose it is just
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out of simplicity. Any distance satisfying the three conditions in Section 3.3 of
Perea and Roy [114] also works in our characterization.

A problem here is that utility functions are numerical representations of pref-
erences, yet the Euclidean distance measures cardinal similarity between utility
functions rather than the similarity between preferences they represent. For ex-
ample, though multiplying u; with a positive number leads to the same prefer-
ences represented by u;, its Euclidean distance from u; may be large. In Section
4.4.4 we will define an ordinal distance on V; and show that the characterizations
still hold under that distance.

Definition 4.2.5 (Primary belief in utilities nearest to u and u-centered belief).
Consider a strategic game form I' = (N, {S;}cn), a lexicographic epistemic model
M" = (0;,wj, B;)icn for I' with incomplete information, and a pair u = (u;);en
of utility functions.

(5.1) A type 6; € ©; primarily believes in utilities nearest to u iff 8;’s level-1 be-
lief only assigns positive probability to (s;, 8;) which satisfies that d(w;(8;), u;) <
(5.2) A type 9; € ©; has u-centered belief iff for any Sj s;. S Sj, any Gj € G)j, and any

vj, v;- € Vjsuch that (s, 9? ) and (s;-, 9? ) are deemed possible by 8;, it holds that 8;
deems (s;, G;j ) infinitely more likely than (s;., Q;j ) whenever d(vj, u;) <d (v;, uj).

Definition 4.2.5 gives restrictions on the order of types in a lexicographic be-
lief. (5.1) requires that 6; primarily believes in type 6; only if 6;’s utility function
is the nearest to #; among all types sharing the same belief with 8;. (5.2) requires
that the types of j sharing the same belief deemed possible by 8; are arranged
according to the distance of their assigned utility functions from u; : the farther
a type ;’s utility function is from u;, the later 8; occurs in the lexicographic be-
lief of 8;. (5.2) is a faithful translation of Perea and Roy [114]’s Definition 3.2 into
lexicographic model and (5.1) is a weaker version of (5.2).

The essential difference between our conditions and Perea and Roy [114]’s for
characterization lies in the following definition.

Definition 4.2.6 (A best (better) choice is supported by utilities nearest (nearer)
to u). Consider a strategic game form I' = (N, {S;}icn), a lexicographic epis-
temic model M = (®;, w;, B;)ien for I with incomplete information, and a pair
u = (u;);en of utility functions.

(6.1) A type 80; € ©; believes in that a best choice of j is supported by utilities nearest
to u iff for any (s;,9;), (s;, 9;) deemed possible by 6; with §;(6;) = ﬁj(G;), if s is
optimal for /5].(9]-) in u; but s;- is not, then d(w;(8;), u;) < d(w]-(G;«), uj).

(6.2) A type 8; € ©; believes in that a better choice of j is supported by utilities nearer
to u iff for any (s;,9;), (s}, 9;) deemed possible by 6; with ﬂj(ﬂj) = B].(G;«), if
uj(sj, 0;) > uj(s, 07), then d(w;(6;), u;) < d(w;(65),u;).
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Definition 4.2.6 gives restriction on the relation between paired type and choice.
(6.1) requires that for each belief of player j, a choice optimal for that belief should
be supported by the nearest utility function to u;. (6.2) requires that for each be-
lief of player j, a utility function supporting a “better” choice (i.e., s;) should be
nearer to #; than one supporting a “worse” choice (i.e., s;). It can be seen that (6.2)
is stronger than (6.1).

(6.2) is similar to Perea and Roy [114]’s Definition 3.3 which requires that for
each (s;,0;) deemed possible by 0;, w;(0;) is the nearest utility function in V; to
uj among those at which s; is rational under ,Bj(G ;). It can be shown by Lemmas
5.4 and 5.5 in Perea and Roy [114] that Definition 4.2.6 is weaker than Perea and
Roy [114]’s Definition 3.3. We adopt it here since a nearest utility function does
not in general exist for lexicographic beliefs. That is, given u; € V;, s; € Cj, and a
lexicographic belief f;, there may not exist v; € V; satisfying that (1) s; is rational
at v; under B, and (2) there is no v} € V] such that s; is rational at v;. for B; and
d (U}, uj) < d(vj,uj). See the following example.

Example 4.2.1 (No nearest utility function). Consider a game G where player
1 has strategies A, B, and C and player 2 has strategies D, E, and F. The payoff
function u; of player 1 is as follows:

up |D | E|F
Al |11
B|1|1]0
cC|1]0/1

Let B, = (D,E,F), that is, player 1 deems player 2’s choice D infinitely more
likely than E and E infinitely more likely than F. In 1y, A is rational for g, but B
is not. Now we show that there is no nearest utility function to u; at which B is
rational under f,. Suppose there is such a function v; € Vj. Letd = d(vq,uq). It
can be seen that d > 0. Consider the following v :

D [E[F
A1l 11
Bl1+4[1]0
Cc |1 01

B is also rational at v} under 8, while d(v},u;) = 4 < d = d(v1,u1), a contra-
diction. Also, even though B is preferred to C in u; under g, it can be seen that
for each utility function v? in which B is rational under f,, there is some v{ € V;
satisfying (1) C is optimal in v$ under B, and (2) d(v$,u1) < d(v?,u1). Indeed,
this can be done by letting v$(C, D) = 1+ d(v%,u1)/2 and v$ (s, 52) = uy(s1,52)
for all other (s1,s2) € S1 X Sp.

Example 4.2.1 shows that the relationship between preferences among choices
and the distance of utility functions from the original one is more complicated for
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lexicographic beliefs. That is why we adopt Definition 4.2.6 here. The follow-
ing lemma guarantees the existence of utility functions satisfying the condition
in Definition 4.2.6. It shows that, given a utility function u; and a lexicographic
belief 8;, corresponding to the sequence s;q, ..., s;p Of i’s strategies arranged from
the most to the least preferred at u; under p,, there is a sequence v;y, ..., vjp of
utility functions arranged from the nearest to the farthest to u; such that for each
m=1,.., M, s, is rational at v;,, under §,. This lemma plays a similar role in our
characterizations as Lemmas 5.4 and 5.5 in Perea and Roy [114].

Lemma 4.2.1 (Existence of utilities satisfying Definition 4.2.6). Consider a strate-
gic game form I' = (N, {S;}ien), u; € Vi, and B; = (Bi1, Bjos - Bix) such that
Bi € A(S)) foreach k = 1,..., K. Let IT;(8;) = (Si1, Si, -+, Sir) be a partition of S;
satisfying that (1) for each ¢ = 1, ..., L and each s, s}, € Sig, u;i(si, B;) = ui(siy, B;),
and (2) for each ¢ = 1,...,L — 1, each sjy € Siy and s;p11 € Sipr1, Ui(sie, B;) >
u;(si 41, B;)- Thatis, IT;(B;) is the sequence of equivalence classes of strategies in
S; arranged from the most preferred to the least preferred under §,.

Then there are vjy, ..., v;;, € V; satisfying
(@) vin = u;,
(b) Foreach / =1, .., L and each s; € S, s is rational at v;, under j;, and
(c)Foreach ¢ =1,..,L —1,d(vis, u;) < d(vjes1,ui).
Proof. We construct a sequence satisfying (a)-(c) by induction. First, let v;; = u;.
Suppose that for some ¢ € {1,...,L — 1} we have defined v, ..., v satisfying (a)-
(c). Now we show how to define v; ;. It can be seen that there exists Ey, 1 > 0
such that vié<5i,€+1r ﬁz’l) -+ Eg+1 > Z)ig(sig, ﬂﬂ) for all Sip € Sig and Sit+1 € Si,é+1-
We define v; ¢, 1 as follows: for each (s;,s;) € S,

vi(si,8j) + Egy1 if s; € Sjp41 and s; € suppp;
vie(8i, ;) otherwise

Ui,EJrl(Si/Sj) = {

It can be seen that each s; .1 € S;/41 is rational at v; .1 under ;. Also, since
d(vi 011, 0i¢) = (E2,.1 X |Sips1] x [suppBy[)/? > 0, d(v; 41, 1;) = d(vig41,0i¢) +
d(viy, u;j) > d(viy, u;). By induction, we can obtain a sequence v;1,...,v;;, € V;
satisfying (a)-(c). U

It should be noted that, given u; and g;, the sequence v;1, ..., v;;, satisfying (a)-
(c) is not unique. The basic idea behind this inductive construction is depicted as
follows. Suppose that u;(s;1, 8;) > ui(sio, B;) > ... > ui(sin, B;), thatis, I1;(B;) =

({sin}, {si2}, .., {sin}), then
(i1, 5i2,5i3, -/ SiN) Vip (Si2,5i1,5i3, -/ SiNs )+ Vi (SiN,Si;N=1, -/ Si1)
—= —
Informally speaking, we take equivalent classes of choices one by one to the fore-

most location of the sequence according to the order of preference in u; under §,.
The following example shows how this construction works.
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Example 4.2.1. Consider u; in Example 4.2.1. Under the lexicographic belief
B, = (D,E,F), Ais preferred to B and B is preferred to C in uy, thatis, I1; () =
({A},{B},{C}). We can define v11, v12, v13 as follows:

U = 011 D|E|F 012 D|E|F 013 D|E|F
A 1111 . A1 |1]1 . A1 |1]1
B 11110 B |2 1|0 B |2 1|0
C 11011 C |11]0]1 C |3 |01

S

At v11, the order of preferences is (
v13itis (C,B, A).

,B,C) under B, at v1y itis (B, A,C), and at

4.3 Characterizations

So far we have introduced two different groups of concepts for strategic games:
one includes permissibility and proper rationalizability within a complete infor-
mation framework, the other contains various conditions on types within an in-
complete information framework. In this section we will show that there are
correspondences between them.

4.3.1 Statements and an example

This subsection gives two characterization results and an illustrative example.

Theorem 4.3.1 (Characterization of permissibility). Consider a finite 2-person
strategic game G = (N, {S;}ien, {ui}ien) and the corresponding game form I’ =
(N, {Si}ien)-

Then, s} € S; is permissible if and only if there is some finite lexicographic
epistemic model M = (@;,w;, B;)icy With incomplete information for T and
some 0] € ©; with w;(0;) = u; such that
(a) s} is rational for 6}, and,

(b) 8] expresses common full belief in caution, primary belief in utilities nearest
to u, and that a best choice is supported by utilities nearest to u.

Theorem 4.3.2 (Characterization of proper rationalizability). Consider a finite
2-person strategic game G = (N, {S;}ien, {#i}ien) and the corresponding game
formT = (N, {Si}iEN)'

Then, s} € §; is properly rationalizable if and only if there is some finite lex-
icographic epistemic model M = (©;, w;, B,)ien for T and some 6] € ©; with
w;(07) = u; such that
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(a) s} is rational for 6}, and
(b) 67 expresses common full belief in caution, u-centered belief, and that a better
choice is supported by utilities nearer to u.

To show these statements, we will construct a correspondence between com-
plete information models and incomplete ones and show that conditions on a
type in one model can be transformed into a proper condition on the correspond-
ing type in the constructed model. Before the formal proofs, we use the following
example to show the intuition.

Example 4.3.1. Consider the following game G (Perea [110], p.190):

ul\uz D E F

A 0,3|11,2|1,1
B 1,310,211
C 1,311,201

and the lexicographic model M® = (T}, b;);en for G where Ty = {t1}, T» = {2},
and

bi(t1) = (D, t2), (E, t2), (F, t2)), ba(t2) = ((C, 1), (B, t1), (A, t1)).

It can be seen that D is properly rationalizable (and therefore permissible) since
it is rational for #, which expresses common full belief in caution and respect of
preferences. Consider the lexicographic epistemic model M = (®;,w;, B;)ieN
with incomplete information for the corresponding game form where @; = {61,

012,013}, ©2 = {021, 022,623}, and

w1(011) = w1, B1(611) = ((D,021), (E,022), (F,023)),
w1(012) = 01, B1(012) = ((D,021), (E, 022), (F,023)),
w1(013) = vy, B(013) = ((D,021), (E, 022), (F,023)),
wy(021) = ua, By(821) = ((C,011),(B,012)), (4, 613)),
wa(b2) = vz, By(022) = ((C,011), (B, 612)), (A, 613)),
w(623) vy, By(023) = ((C,011), (B,612)), (A, 613)).
where
leEFvllDEszDEF U/ZDEF
A0 |11 A3 (|11 Al3 (21 A3 (21
Bl|2|0|1(|B |2 |0]1 B |3 |2|1(|B |3 |2]1
cl|11]110 cl|11]1]0 C |3 141 C|3 1|4 |5

Foreachi € N, 61, 05, and ;3 have the same belief; the only difference lies in their
assigned utility functions since each should support some choice. The relation
between M" and M can be seen clearly here: for each i € N, 8;1, 85, and ;3
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correspond to t; in the sense that the belief of the former is obtained by replacing
every occurrence of ¢; in the belief of ¢; by the type corresponding to ¢; in M
at which the paired choice is optimal. It can be seen that 8,1 expresses common
full belief in caution, u-centered belief, and that a better choice is supported by
utilities nearer to u (therefore primary belief in utilities nearest to u and that a
best choice is supported by utilities nearest to u). Also, since the assigned utility
function of 647 is uy, C is rational for 7.

This example can be used to show the difference between Theorems 4.3.1 and
2. Consider the lexicographic epistemic model (T/, b});cr for G where T} = {#]},
T; = {tb}, and

bi(t1) = (D, ta), (F, 1), (E, t3)), by(tz) = (B, 11), (C, 11), (A, 1)).

It can be seen that t] is expresses common full belief in caution and primary be-
lief in rationality. We can construct the corresponding lexicographic epistemic
model M = (&}, w!, B})ien for the correspondmg ‘game form with incomplete
information where @ = {011,015, 015}, @ = {0,065, 053}, and

wy(611) uy, ﬁ1(911) ((D,61), (F,85), (E,633)),
wy(612) = 1y, 51( 12) = ((D,6%), (F,0%), (E, 923)),
wy(013) = vy, 51(9/13) = ((D,6y), (F, 922)1( ,623)),
wy(0y) = u, :32(9/21> = ((B, 911),( 12)), (A, 913))
wh(0) = 5 By(022) = ((B,611), (C,012)), (A, 013)),
wh(033) = 02, Py(03) = ((B,611),(C,012)), (A, 613)).

It can be seen that #7; expresses common full belief in caution, primary belief in
utilities nearest to u, and that a best choice is supported by utilities nearest to u.
On the other hand, it can be seen that #] does not respect player 2’s preferences,
since E is always preferred to F, while t] deems F infinitely more likely than E.
In M'™", this can be seen in the violation of u-centered belief in 8/;, that is, though
By(6h) = B (03) and d(w)(85,),1u2) = d(0h,uz) = V10 > d(wh(By), u2) —
d(vy, up) =1, 81 deems (F, 85,) infinitely more likely than (E, 853).

4.3.2 Proof of Theorem 4.3.1

To show the only-if part of Theorem 4.3.1, we construct the following mapping
from finite lexicographic epistemic models with complete information to those
with incomplete information. Consider G = (N, {S;}ien, {Ui}ien) and a finite
lexicographic epistemic model M® = (Tj, b;);cn with complete information for
G. We first define types in a model with incomplete information in the following
two steps:
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Step 1. Foreachi € N and t; € T;, let I;(t;) = (Si1, ..., Si) be the partition of
S; defined in Lemma 4.2.1, that is, I'l;(¢;) is the sequence of equivalence classes
of strategies in S; arranged from the most preferred to the least preferred under
t;. By Lemma 4.2.1, for each S, there is some v;(t;) € V; such that each choice
in S;/ is rational at v;/(t;) under t;, and 0 = d(vi1(t;), u;) < d(vip(t),u;) < ... <
d(viL (i), u;)-

Step 2. We define O;(t;) = {01(t;), ..., 0;.(t;) } where for each ¢ =1, ..., L, the type
Bi¢(t;) satisfies that (1) w;(8;(t;)) = vie(t;), and (2) B;(0;¢(t;)) is obtained from
bi(t;) by replacing every (s;, t;) withs; € S;, € I1;(t;) for some r with (s, 6;) where
0, = 0),(t;), that is, w;(#;) is the utility function among those corresponding to
I1;(t;) in which s; is the rational for ;.

Foreachi € N, let ®; = U;e1.0;(t;). Here we have constructed a finite lex-
icographic epistemic model M = (®;,w;, B;)icN for the corresponding game
formI' = (N, {S;}icn) with incomplete information. In the following example
we show how this construction goes.

Example 4.3.2. Consider the following game G (Perea [110], p.188):

u\up | C | D
A 1,0 0,1
B 0,0]0,1

and the lexicographic epistemic model M = (Tj, b;)icny of I where Ty = {1},
T, = {tg}, and

bl(tl) = ((D/ t2)/ (C/ tZ))/ b2(t2) = ((A/tl)/ (B/ tl))‘

We show how to construct a corresponding model M" = (®;,wj, B;)ien- First,
by Step 1 it can be seen that IT;(t1) = ({A},{B}) and I1x(t2) = ({D},{C}). We
let v11(t1) = u1 where A is rational for #; and v1,(t1) where B is rational for t; as
follows. Similarly, we let vy (t2) = up where D is rational under t; and vy (t2)
where C is rational under t, as follows:

UlZ(tl) C|D Z)zz(tZ) C|D
A 1|0 A 211
B 011 B 011

Then we go to Step 2. It can be seen that @1 (t1) = {611(t1), 612(t1) }, where

wy(011(t1)) = on(t), B1(01(t)) = ((D,021(t2)), (C, 022(t2))),
wi(012(t1)) = v12(t1), B1(012(t1)) = ((D,021(t2)), (C,022(t2))).

Also, @2(t2) = {921<f2>, 922(t2)}, where

wy(021(t2)) = v2a(f2), Byr(021(t2)) = ((A,011(t1)), (B, 012(t1))),
wa(0(t2)) = wvan(ta), Br(022(t2)) = ((A,011(t1)), (B, 012(t1)))-

70 CHARACTERIZING RATIONALIZABILITIES BY INCOMPLETE INFORMATION



Let M® = (T;,b;)jen and M = (©;,w;, B;)ien be constructed from M by
the two steps above. We have the following observations.
Observation 4.3.1 (Redundancy). For each t; € T; and each 6;,8; € O;(t;),
Bi(6:) = B;(67).
Observation 4.3.2 (Rationality). Each 6; € ©;(f;) believes in j’s rationality.
Observation 4.3.3 (A better choice is supported by utilities nearer to u). Each
f; € ©;(t;) believes that a better choice is supported by utilities nearer to u.

The observations are true by construction. Observation 4.3.1 means that the
difference between any two types in a ®;(t;) is in the utility functions assigned
to them. Observation 4.3.2 means that in an incomplete information model con-
structed from one with complete information, each type has (full) belief in the
opponent’s rationality. This is because in the construction, we requires that for
each pair (s s tj) occurring in a belief, its counterpart in the incomplete informa-
tion replaces t; by the type in ©;(t;) with the utility function in which s; is optimal
for t;. It follows from Observation 4.3.2 that each 6; € ®;(t;) expresses common
full belief in rationality. Observation 4.3.3 implies that the best choice is sup-
ported by utilities nearest to u. It follows that each 6; € ®;(t;) expresses common
full belief in that a best (better) choice is supported by utilities nearest (nearer) to
u.

By construction, each t; shares the same belief about j’s choices at each level
with each 6; € ©;(t;); also, for each t; € Tj, the utility function assigned to 6 (t;)
is u;. It is clear that any ¢; rational for t; is also rational for 6;;(t;). Therefore, to
show the only-if part of Theorem 4.3.1, we show that if {; expresses common full
belief in caution and primary belief in rationality, then 6;;(t;) expresses common
belief in caution, primary belief in utilities nearest to 1, and that a best choice is
supported by utilities nearest to u.

Lemma 4.3.1 (Caution® — Caution™). Let M = (T}, b;);cy and M = (®;,w;, B,)ieN
be constructed from M by the two steps above. If t; € T; expresses common full
belief in caution, so does each 8; € ®;(t;).

Proof. We show this statement by induction. First we show that if ¢; is cautious,
then each 6; € @;(f;) is also cautious. Let s; € S;and §; € ®@;(8;). By construction,

it can be seen that the type t; € T; satisfying the condition that 6; € ®;(t;) is in
Ti(t;). Since t; is cautious, t; deems (s;, t;) possible. Consider the pair (s;, 9;) in
B;(8;) corresponding to (s, t;). Since both ¢; and 9;« are in @;(t;), it follows from

Observation 4.3.1 that ﬁj(Qj) = ,Bj(é);). Hence (s, 9;0’ N )) is deemed possible by ;.
Here we have shown that 6; is cautious.

Suppose we have shown that, for each i € N, if t; expresses n-fold full belief in
caution then so does each 6; € ©;(t;). Now suppose that t; expresses (n + 1)-fold
full belief in caution, i.e., each t; € T;(t;) expresses n-fold full belief in caution.
By construction, for each 0; € @;(t;) and each 8; € ®;(8;) there is some t; € T;(t;)
such that 8; € ©(t;), and, by inductive assumption, each t; € ©;(6;) expresses

CHARACTERIZATIONS 71



n-fold full belief in caution. Therefore, each 0; € ®;(t;) expresses (n + 1)-fold full
belief in caution. [

Lemma 4.3.2 (Primary belief in rationality — primary belief in utilities nearest
to u). Let M = (T;, b;);cny and M™ = (®;, w;, B;)icn be constructed from M by
the two steps above. If t; € T; expresses common full belief in primary belief in
rationality, then each 6; € ®;(t;) expresses common full belief in primary belief
in utilities nearest to u.

Proof. We show this statement by induction. First we show that if ¢; primarily
believes in j’s rationality, then each 6; € ®;(t;) primarily believes in utilities near-
est to u. Let (s;,0;) be a pair deemed possible in the level-1 belief of 6;. Consider
its correspondence (s, t;) in level-1 belief of t;. Since t; primarily believes in j’s
rationality, s; is rational for t;. It follows that s; € S;; € II;(t;). By Lemma 4.2.1
and construction, it follows that w;(#;) = u;. Since u; is the nearest function to
itself among all utility functions in Vj, we have shown that 8; primarily believes
in utilities nearest to u.

Suppose we have shown that, for each i € N, if t; expresses n-fold full belief
in primary belief in rationality then each 6; € ®;(t;) expresses n-fold full belief in
primary belief in utilities nearest to 1. Now suppose that t; expresses (n + 1)-fold
full belief in primary belief in rationality, i.e., each t; € T;(t;) expresses n-fold full
belief in primary belief in rationality. Since, by construction, for each ¢; € ©;(t;)
and each 8; € @;(0;) there is some t; € T;(t;) such that 8; € @;(t;), it follows that,
by inductive assumption, each 8; € @;(8;) expresses n-fold full belief in primary
belief in utilities nearest to u. Therefore, each 0; € ©;(t;) expresses (n + 1)-fold
full belief in primary belief in utilities nearest to . [

Proof of the only-if part of Theorem 4.3.1. Let M = (T}, b;)ien, s; € S; be
a permissible choice, t; € T; be a type expressing common full belief in cau-
tion and primary belief in rationality such that s! is rational for ;, and M =
(®j, wj, B;)icN be constructed from M by the two steps above. Let 8] = 6;1(t}).
By definition, w;(6;) = u; and B;(6;) has the same distribution on j’s choices at
each level as b;(t7). Hence s is rational for 8;. Also, it follows from Observation
4.3.3, Lemmas 4.3.1, and 4.3.2 that 87 expresses common full belief in caution, pri-
mary belief in utilities nearest to u, and that a best choice is supported by utilities
nearest to u. O

To show the if part, we need a mapping from models with incomplete infor-
mation to those with complete information. Consider a finite 2-person strategic
game G = (N, {S;}ien, {1i }ieN), the corresponding game form I' = (N, {S;}ien),
and a finite epistemic model M = (®;, w;, B,);cn for I with incomplete informa-
tion. We construct a model M® = (T;, b;);cn for G with complete information as
follows. For each 8; € ©;, we define E;(8;) = {0; € ©; : B,(6;) = B(6;)}. In this
way ©; is partitioned into some equivalence classes E; = {E;y, ..., Ej. } where for
each { = 1,.,L, Ejy = E;(6;) for some 6; € ©;. To each E; € E; we use t;(E;)
to represent a type. We define b;(t;(E;)) to be a lexicographic belief which is ob-
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tained from B;(6;) by replacing each occurrence of (s;,8;) by (s;,t;(E;(6;))); in
other words, b;(t;(E;)) has the same distribution on choices at each level as §;(6;)
for each ¢; € E;, while each §; € ©;(6;) is replaced by ¢;(E;(8;)). For eachi € N,
let T; = {t;(E;)},ek,. We have constructed from M™ a finite epistemic model
M = (T}, b;)jcn with complete information for G.

It can be seen that this is the reversion of the previous construction. That is, let
M = (T;, b;)ien satisfying that b;(t;) # b;(t}) for each t;, t; € T; with t; # t/, and
M = (©j, w;, B;)ic N be constructed from M by the previous two steps. Then
E; = {@i(ti)}tieTi and ti(®i(ti)) = t; foreachi € N.

In the following example we show how this construction goes.

Example 4.3.3. Consider the game G in Example 4.3.2 and the model M"" =
(®;,w;, B;)ien for the corresponding game form where ©; = {611,612}, @ =
{021,022}, and

w1 (611) u, B1(011) = ((D,021), (C,02)),
w1(612) = 01, B1(612) = ((D,021),(C,022)),
wy(01) = up, By(021) = ((A,611),(B,012)),
wy(822) = w2, Br(022) = ((A,611),(B,612))
where v1 = v15(t1) and vy = vy(t2) in Example 4.3.2. It can be seen that

Eq = {{011,012}} since B,(611) = B(012) and By = {{621,022}} since B, (21) =
B,(622). Corresponding to those equivalence classes we have t1({f11,612}) and

t2({621,622}), and

bi(t1({011,012})) = ((D,ta({021,022})), (C, t2({621,622}))),
ba(t2({021,0221)) = ((A t1({011,012})), (B, t1({f11,012})))-

To show the if part of Theorem 4.3.1, we need the following lemmas.

Lemma 4.3.3 (Caution” — Caution®). Let M = (©;,w;, B;)ien and M =
(T;, b;)ien be constructed from M by the above approach. If 8; € @; expresses
common full belief in caution, so does t;(E;(6;)).

Proof. We show this statement by induction. First we show that if §; is cautious,
then t;(E;(6;)) is also cautious. Lets; € S;and t; € T;(t;(E;(6;))). By construction,
t; = tj(E;) for some E; € [}, and there is some 6; € E; which is deemed possible
by ;. Since ; is cautious, there is some 9; with 5j(9 ) ﬁ]( ), ie., 0 € Ej, such
that (s;, 8;) is deemed possible by 8;. By construction, (sj, t;) is deemed p0551b1e
by ti(Ei(6;))-

Suppose we have shown that, for each i € N, if 8; expresses n-fold full belief
in caution then so does t;(E;(8;)). Now suppose that 0; expresses (1 + 1)-fold full
belief in caution, i.e., each 6 i € O (8;) expresses n-fold full belief in caution. Since,
by construction, for each t; € T;(t;(E;(8;))), there is some ¢; € ®;(6;) such that
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t; = t;(E;j(9;)), by inductive assumption ¢; expresses n-fold full belief in caution.
Therefore, t;(E;(6;)) expresses (n + 1)-fold full belief in caution. O

Lemma 4.3.4 (Caution” + primary belief in utilities nearest to u + a best choice
is supported by utilities nearest to # — Primary belief in rationality). Let
M = (©;,w;, B;)icn and M® = (T;, b;)icn be constructed from M™ by the above
approach. If 8; € ®; expresses common full belief in caution, primary belief in
utilities nearest to 1, and that a best choice is supported by utilities nearest to u,
then t;(E;(6;)) expresses common full belief in primary belief in rationality.

Proof. We show this statement by induction. First we show that if §; is cautious,
primarily believes in utilities nearest to #, and believes in that a best choice is sup-
ported by utilities nearest to u, then t;(E;(6;)) primarily believes in j’s rationality.
Let (sj, t;) be a choice-type pair which is deemed possible in t;(E;(9;))’s level-1
belief. By construction t; = t;(E;) for some E; € |E;, and for some 6; € Ej, (s;,0;)
is deemed possible in §;’s level-1 belief. Since 8; primarily believes in utilities
nearest to u, it follows that

Suppose that s; is not optimal for ¢;. Let s} be a strategy optimal to ¢;. Since 6;

is cautious, there is some G;j € E; such that (sj, 9?) is deemed possible by 8;.

Then since §; believes in that a best choice is supported by utilities nearest to u,
it follows that d(@;j LU ]-) <d (w]-(G j), uj), which is contradictory to (4.1). Therefore
s; is optimal for t;. Here we have shown that t;(E;(#;)) primarily believes in j’s
rationality.

Suppose we have shown that, for each i € N, if 6; expresses n-fold full belief in
caution, primary belief in utilities nearest to #, and that a best choice is supported
by utilities nearest to u, then t;(E;(6;)) expresses n-fold belief in primary belief
in rationality. Now suppose that ¢; expresses (1 + 1)-fold full belief in caution,
primary belief in utilities nearest to u, and that a best choice is supported by
utilities nearest to u, i.e., each b € ®j(6i) expresses n-fold full belief in caution,
primary belief in utilities nearest to u, and that a best choice is supported by
utilities nearest to u. Since, by construction, for each t; € Tj(t;(E;(6;))), there is
some §; € ©;(8;) such that t; = t;(E;(6;)), by inductive assumption ¢; expresses
n-fold full belief in primary belief in rationality. Therefore, t;(E;(6;)) expresses
(n + 1)-fold full belief in primary belief in rationality. [J
Proof of the if part of Theorem 4.3.1. Let M = (©;, w;, B;)ien,s; € S;berational
for some 6] with w;(6]) = u; which expresses common full belief in caution,
primary belief in utilities nearest to #, and that a best choice is supported by
utilities nearest to u, and M = (T}, b;);=n be constructed from Min by the above
approach. Consider t;(E;(67)). Since w;(8;) = u; and b;(t;(E;(67))) has the same
distribution on j’s choices at each level as j;(6}), s is rational for t;(E;(67)). Also,
by Lemmas 4.3.3 and 4.3.4, t;(E;(6;)) expresses common full belief in caution and
primary belief in rationality. Hence s is permissible in I'. [
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4.3.3 Proof of Theorem 4.3.2

To show the only-if part of Theorem 4.3.2, we need the following lemmas.

Lemma 4.3.5 (Respect of preferences — u-centered belief). Let M = (T, b;)ien
and M" = (®;,w;, B;)icn be constructed from M by the two steps in Section
4.3.2. If t; € T; expresses common full belief in caution and respect of preferences,
then each 6; € ©;(t;) expresses full belief in u-centered belief.

Proof. We show this statement by induction. First we show that if ¢; is caution and
respects j’s preferences, then each 6; € ©;(t;) expresses u-centered belief. It can
be seen that if ¢; is cautious and respects j’s preferences, then we can combine all
types deemed possible by t; with the same belief into one type without hurting
the caution and respect of j’s preference, and every choice optimal for ¢; is still
optimal for this new type and vice versa. Therefore, without loss of generality
we can assume that for each ¢;, t} € T;, bj(t;) # b]-(t}). Let sj,s;- € 5;,0; € ©,and
‘ v
vj, v} € Vjsuch that (s, 9;}’) and (s;«, 9].’) are deemed possible by 8; with d(v), u;) <
d (U}, u;). Since each type in T; has a distinct lexicographic belief, it follows that

9? ,9? € Oj(t;) for some t; € T;. By construction it follows that (1) ¢; deems
both (s;,t;) and (S;, t;) possible, and (2) u;(sj, t;) > u]-(s;-, t;). Since t; respects j's
preferences, t; deems (sj, t;) infinitely more likely than (s}, t;), which corresponds
to that 6; deems (s}, 9? ) infinitely more likely than (s;., 9? ). Here we have shown
that ; expresses u-centered belief.

Suppose we have shown that, for each i € N, if ¢; expresses n-fold full belief
in respect of preferences then each 8; € ©;(t;) expresses n-fold full belief in u-
centered belief. Now suppose that t; expresses (1 + 1)-fold full belief in respect
of preferences, i.e., each tj € Tj(ti) expresses n-fold full belief respect of prefer-
ences. Since, by construction, for each 6; € ®;(t;) and each §; € ©;(0;) there is
some t; € T;(t;) such that §; € ©j(t;), by inductive assumption it follows that
each 0; € ©;(6;) expresses n-fold full belief in u-centered belief. Therefore, each
8; € O;(t;) expresses (n + 1)-fold full belief in u-centered belief. [

Proof of the only-if part of Theorem 4.3.2. Let M = (T}, b;)jcn, 57 € S; be prop-
erly rationalizable, t; € T; be a type which expresses common full belief in cau-
tion and respect of preferences such that c; is rational for ¢}, M = (®;, wi, B;)ieN
be constructed from M by the two steps in Section 4.3.2. Let 8; = 8;;(t;). Since
w;(07) = u; and B;(9;) has the same distribution on j’s choices as b;(t}), s} is ra-
tional for 67. Also, it follows from Observations 4.3.3 and Lemmas 4.3.1 and 4.3.5
that 6] expresses common belief in caution, u-centered belief, and that a better
choice is supported by utilities nearer to u. [

To show the if part, we still use the construction from M to M defined in
Section 4.3.2. We need the following lemma.
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Lemma 4.3.6 (Caution + u-centered belief + a better choice is supported by
utilities nearer to u — respect of preferences). Let M = (®;,wj, B;)ien and
M = (T;,b;)ien be constructed from M by the approach in Section 4.3.2. If
9; € O; expresses common full belief in caution, u-centered belief, and that a bet-
ter choice is supported by utilities nearer to u, then t;(E;(6;)) expresses common
full belief in respect of preferences.

Proof. We show this statement by induction. First we show that if 6; is cautious,
has a u-centered belief, and believes that a better choice is supported by utilities
nearer to u, then t;(E;(6;)) respects j's preferences. First, since ¢; is cautious, By
Lemma 4.3.3, t;(E;(8;)) is also cautious. Let s;, s;- € Sjand t; € Ti(t;(E;(9;))) with
t; prefers s; to s}. By construction t; = t;(E;) for some E; € E;, and, since 8; is
cautious, there are 6,6 € E; such that §; deems (s}, §;) and (s;, 0;) possible. Since
Bi (6)) = B](G;) and 6; has the same probability distribution over S; at each level as
t;, it follows that u;(s;, 6;) > uj(s;, 8;). Since 0; believes that a better choice is sup-
ported by utilities nearer to u, it follows that d(w;(6;),u;) < d(w]-(();«), u;). Since
0; has a u-centered belief, it follows that 6; deems (s}, 0;) infinitely more likely
than (s}, 9}), which implies that ;(E;(6;)) deems (sj, t;) infinitely more likely than
(s}, t;). Therefore, t;(E;(6;)) respects j’s preferences.

Suppose we have shown that, for each i € N, if 6; expresses n-fold full belief in
caution, u-centered belief, and that a better choice is supported by utilities nearer
to u, then t;(E;(6;)) expresses n-fold full belief in respect of preferences. Now sup-
pose that 8; expresses (1 + 1)-fold full belief in caution, u-centered belief, and that
a better choice is supported by utilities nearer to u, i.e., each §; € @;(8;) expresses
n-fold full belief in caution, u-centered belief, and that a better choice is supported
by utilities nearer to u. Since, by construction, for each t; € T;(t;(E;(6;))), there is
some 0; € ©;(6;) such that t; = t;(E;(0;)), by inductive assumption ¢; expresses
n-fold full belief in respect of preferences. Therefore, t;(E;(6;)) expresses (n + 1)-
fold full belief in respect of preferences. [

Proof of the if part of Theorem 4.3.2. Let M'" = (©;, w;, B;)ien,s; € S;berational
for some 6] with w;(8;) = u; which expresses common belief in caution, ratio-
nality, u-centered belief, and that a better choice is supported by utilities nearer
to u, and M = (T;, b;);eN be constructed from Mn by the approach in Section
4.3.2. Consider t;(E;(;)). Since w;(0;) = u; and t;(E;(6])) and 8] have the same
distribution on j’s choices in each level, s is rational for t;(E;(6;)). Also, it fol-
lows from Lemmas 4.3.3 and 4.3.6 that t;(E;(6;)) expresses common full belief in
caution and respect of preferences. Hence s} is properly rationalizable in I'. []
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4.4 Concluding Remarks

4.4.1 Relationship with Perea and Roy [114]'s Theorem 6.1

Theorems 4.3.1 and 4.3.2 can be rephrased as faithful parallels to Perea and Roy
[114]'s Theorem 6.1, focusing on equivalence between belief hierarchies in com-
plete and incomplete information models. We adopt the forms here because the
coincidence of belief hierarchies holds by construction, and we think it is unnec-
essary to mention it independently.

Also, our proofs are based on constructing a specific correspondence between
two models. It can be seen that this correspondence can be translated directly
into probabilistic models and be used to show Perea and Roy [114]’s Theorem 6.1.
Further, it can be seen that, by using our Lemma 4.2.1, belief in rationality under
closest utility function in Perea and Roy [114] can be replaced by the weaker one
(Definition 4.2.6 (6.2)) here.

4.4.2 Extending to n-person cases

Both Perea and Roy [114] and this chapter focus on 2-person games. To extend
those results to n-person cases, the problem is how to define the distance between
utility functions and how to relate the distance with the locations of choice-type
pairs. In a 2-person game, a type of i only needs to consider distributions on
A(S; x ©;). Hence a “cell” in ,(0;) is just a pair (s}, 6;), and its location in 8,(6;)
can be related directly to the distance d(w;(8;), ;). In contrast, in an n-person
case a “cell” of a lexicographic belief contains n — 1 pairs like

<(51, 91)/ eeey (Sifll 91’71)/ (Si+1/ 91+l)/ weey (SH/ 9n)> 7

and consequently there are n — 1 distances, that is,

d(w1(01),u1), - d(wi—1(0i-1), ui-1), d(Wit1(8i11), Uit1), -, d(Wn (On), Un).

Then the problem is how to connect the location of this cell and those distances.
We believe that the results of Perea and Roy [114] and this chapter can be ex-
tended to n-person games with a proper definition of the distances and their re-
lation with locations of “cells” in lexicographic beliefs. Further work is expected
in that direction.
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4.4.3 The role of rationality

Rationality has not been used in our characterizations even though in the proofs
we construct epistemic models with incomplete information in which each type
has a common full belief in rationality. On the other hand, there are also epistemic
models with types satisfying all conditions in Theorems 4.3.1 and 4.3.2 but not
believing in rationality, as the following example shows.

Example 4.4.1 (Rationality is not needed). Consider the game G in Example 4.3.1
and the lexicographic epistemic model M = (®;,w;, B;)icn With incomplete
information for the corresponding game form where ®; = {611, 012,613}, @2 =
{921, 922, 023}, and

wy (611) u1, B1(011) = ((D,621), (F,02), (E, 023)),
wy(612) = ©v1, B1(012) = ((D,02), (F,022), (E, 023)),
wi(613) = 01, B1(613) = ((D,621), (F,62), (E, 623)),
wy(021) = 02, By(021) = ((C,011), (B, 012)), (A, 013)),
wa(02) = vy, By(622) = ((C,611), (B, 612)), (A, 613)),
wy(623) vy, By(623) = ((C,011), (B, 612)), (A, 613)).
where vy, 7], v2, v}, are the same as in Example 4.3.1 and ¢/ are as follows:

JID[E|F

A3 1211

B |3 (2|1

C |6 4|5

It can be seen that 817 expresses common full belief in caution, u-centered belief
and that a better choice is supported by utilities nearer to u (therefore primary
belief in utilities nearest to u and that a best choice is supported by utilities nearest
to u are also satisfied) but not rationality, since, for example, D is not rational
for 6,1. However, consider the model M® = (T}, b;);cn for G constructed from
M. Indeed, since By = {{f11,6012,013}} and By = {{01,02,623}}, by letting
t1 = t1({611,6012,013}) and tp = £2({021, 022, 623}), we obtain M = (T, b;);e; for
G where Ty = {1}, T» = {{»}, and

bl(tl) = ((D/ tZ)’ (F, tZ)/ (E, t2))/ bZ(tZ) = ((C/ tl)’ (B/ tl)/ (A/ tl))‘

It can be seen that t; expresses caution and common full belief in respect of pref-
erences (therefore primary belief in rationality). Further, C is optimal for both 81,
and £.

On the other hand, rationality can be contained in the characterization. In
Section 4.4.5 we will provide an alternative way to characterize permissibility by
using rationality and weak caution.

78 CHARACTERIZING RATIONALIZABILITIES BY INCOMPLETE INFORMATION



4.4.4  An ordinal distance on V;

In this note, we use the Euclidean distance to measure similarity between utility
functions. As mentioned in Section 4.2.2, the Euclidean distance is cardinal. We
can define an ordinal distance as follows to replace it. Let j; be a lexicographic
belief on A(S; x ;). For each v, u; € V;, define dfi(v;, u;) = [{{s;,s]} : si,5; € S
and the preference between s; and s; under f8; at v; are different from that at u;}|.
It can be seen that dPi is a variation of Hamming distance (Hamming [50]). It
measures similarity between preferences under j; represented by v; and that by
u;, i.e., it measures the ordinal difference between v; and u;. This does not belong
to the group of distances characterized in Section 3.3 of Perea and Roy [114] since
there is no norm on V; to support dfi. Lemma 4.2.1 still holds under d? since
even if we replace d by dfi in Lemma 4.2.1 (c), the constructed utility function
sequence in the proof still satisfies it. Hence d in Definition 4.2.5 can be replaced
by dPi with appropriate ; and the characterization results still hold. Also, by
replacing rationality under closest utility function by our Definition 4.2.6, Perea
and Roy [114]’s Theorem 6.1 still holds under dbi.

4.45 Characterizing permissibility by rationality and weak caution

In this subsection we provide an alternative characterization of permissibility by
using rationality and a condition weaker than caution in Definition 4.2.3.

Definition 4.4.1 (Weak caution). Consider a game form I' = (N, {S;};cn) and a
lexicographic epistemic model M = (®;,w;, B;)ien for I’ with incomplete infor-
mation. A type 8; € ©; is weakly cautious iff for each s; € S;, there is some 0; € ©;
such that 8; deems (s}, 8;) possible.

Definition 4.4.1 is weaker than Definition 4.2.3 since it only requires that each
choice should appear in the belief of 8; but does not require that it should be
paired with each belief of j deemed possible by 8;. Nevertheless, we will show
in Lemma 4.4.2 that in with other conditions in this characterization it leads to
caution.

Definition 4.4.2 (Primary belief in u). Consider a strategic game form I' =
(N, {Si}ien), a lexicographic epistemic model M = (@;, w;, B;)ien for I with
incomplete information, and a pair u = (u;);en of utility functions. A type
8; € O; primarily believes in u iff 8;’s level-1 belief only assigns positive proba-
bility to (s;, ;) with w;(8;) = u;.

Primary belief in u is stronger than Definition 4.2.5 (5.2). (5.2) allows the oc-
currence of a type with a utility function which is “very similar” (but not equal)
to u; in the level-1 belief of 8;, while primary belief in u only allows types with
utility function u; there.
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The characterization result is as follows.

Proposition 4.4.1 (An alternative characterization of permissibility). Consider a
finite 2-person strategic game G = (N, {S;}ien, {1 }ien) and the corresponding
game formI' = (N, {S;}ien)-

Then, sf € §; is permissible if and only if there is some finite lexicographic
epistemic model M = (®;, wj, B;)ien With incomplete information for I' and
some 0] € ©; with w;(0;) = u; such that

(a) s} is rational for 67, and,

(b) 8 expresses common full belief in caution, rationality, and primary belief in
u.

The only-if part follows directly from Observation 4.3.2, Lemma 4.3.1, and the
following lemma.

Lemma 4.4.1 (Primary belief in rationality — Primary belief in u). Let M =
(T;, bi)ien and M = (®;,w;, B;)icn be constructed from M by the two steps
above. Then if t; € T; expresses common full belief in primary belief in rational-
ity, then each 6; € ©;(t;) expresses common full belief in primary belief in u.

Proof. We show this statement by induction. First we show that if t; primarily
believes in j’s rationality, then each 8; € ®;(t;) primarily believes in u. Let (s}, 0;)
be a pair deemed possible in the level-1 belief of §;. Consider its corresponding
(sj,t;) in level-1 belief of t;. Since t; primarily believes in j’s rationality, s; is ra-
tional for ¢;. It follows that s; € Sj; € ITj(t;). By construction, it follows that
w;j(0;) = u;j. Here we have shown that 6; primarily believes in u.

Suppose we have shown that, for each i € N, if t; expresses n-fold full belief
in primary belief in rationality then each 6; € ©;(t;) expresses n-fold full belief
in primary belief in u. Now suppose that t; expresses (n + 1)-fold full belief in
primary belief in rationality, i.e., each t; € T;(t;) expresses n-fold full belief in
primary belief in rationality. Since, by construction, for each §; € ®;(t;) and each
0, € ©;(0;) there is some t; € T;(t;) such that ; € ®;(t;), it follows that, by
inductive assumption, each 8; € ©;(9;) expresses n-fold full belief in primary
belief in rationality. Therefore, each 8; € ©;(t;) expresses (n + 1)-fold full belief
in primary belief in u. [

To show the if part, we need first to show that weak caution is enough for
the characterization. Here, we show that the corresponding concept in complete
information model can replace caution and characterize permissibility. Then we
can use the mapping between complete and incomplete information models con-
structed in Section 4.3.2. Let M = (T;, b;)ien be a lexicographic model for
G = (N, {Si}ien, {ui}ien) with complete information. ¢; € T; is weakly cautious iff
for each s; € S;, there is some t; € T; such that {; deems (s;, t;) possible. We have
the following lemma.

Lemma 4.4.2 (Characterizing permissibility by weak caution). Consider a lexi-
cographic epistemic model M® = (T, b;);ien foragame G = (N, {S;}ien, {Ui}tien).
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A choice s} € §; is permissible if and only if it is rational to some t; € T; which
expresses common full belief in weak caution and primary belief in rationality.

Proof. To show the if part, we need first to show that each weak cautious type
can be extended into a cautious one without changing the set of choices rational
for it. It is done by an interpolation method as follows. Let t; be a type satis-
fying weak caution with b;(t;) = (b1, ..., bix), sj € Sj, and t; € Ti(t;). Suppose
that (s;, ¢;) is not deemed possible by ¢;. Since t; is weakly cautious, there is some
t} € T; such that for some k € {1, ..., K}, bi(s;, t;) > 0. Now we extend (b1, ..., bix)
into (b}y, ..., b} ., 1) by letting (1) b, = b;; for each t < k, (2) b}, = b; ;1 for each
t > k+1,and (3) b;,, , is obtained by replacing every occurrence of (s;, t;) by
(sj,t;) in the distribution of by We call b}, | a doppelganger of by. It can be seen
that for each s; € S;, and a doppelganger b;,k+1 of by, u;(s;, b;,k+1) = u;(s;, bix). By
repeatedly interpolating doppelgangers into b;(t;) for each missed choice-type
pairs, finally we obtain a lexicographic belief (b}, ..., bl;,) that satisfies caution.
We use t; to denote the type with belief (b}, ..., biy.). t; is called a cautious exten-
sion of t;. We have the following lemma.

Observation 4.4.1 (Extended type preserves rational choices). Let f; be a weakly
cautious type and f; a cautious extension of ¢;. Then s; € S; is rational for #; if and
only if it is rational for ;.

Proof. (Only-if) Suppose that s; is not rational for f;. Then there is some s} &
S; which is preferred s; under b;(t;) = (b}, ..., bly,), that is, there is some k" €
{0,...,K'} such that u;(s;, b},) = u;(cs},bl,) for each £ < k" and u;(s;, bip41) <
ui(s, bip1). Let bjjq be the entry in b;(t;) such that bg’k, 41 is its doppelganger.
It follows that in the original b;(t;) = (bj1, ..., bix), ui(si, bi¢) = u;(s, bj;) for each
¢ < kand u;(s;, bjjy1) < ui(s,bir+1). Hence s; is not rational for ¢;.

(If) Suppose that s; is not rational for t;. Then there is some s, € S; which is
preferred s; under b;(t;) = (bj, ..., bik), that is, there is some k € {0, ..., K} such
that u;(ss;, b)) = ui(S;, bi¢) for each ¢ < k and u;(s;, bi’k+l) < Mi(S;, bi,k+l)‘ Let
b;,k’ 41 be the corresponding doppelganger in bi(t;) to bj j41. It follows that in the
original u;(s;, bj,) = u;(s],bj,) for each £ < K and u;(s;, b}, 1) < wi(s}, b} p0,q)-
Hence c; is not rational for ¢;. [J
Proof of Lemma 4.4.2 (Continued) Since caution implies weak caution, the only-
if part holds automatically. For the if part, suppose that s} is rational for some
t7 € T; which expresses common full belief in weak caution and primary belief
in rationality. Consider an epistemic model (Ti/Ei)ie 1 such that for each i € N,
T; = {t; : t; € T;} and b;(;) is a cautious extension of b;(t;) with replacing each
occurrence of t; by t;. By Lemma 4.4.1, since s; is rational for t7, it is also rational
for £7. Also, it can be seen by construction that ; expresses common full belief in
caution. Also, since the interpolation always put doppelgangers after the original
one, it does not change the level-1 belief, and consequently ¢ expresses common
full belief in primary belief in rationality. Therefore, s} is permissible. []
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Also, we need the following lemmas.
Lemma 4.4.3 (Weak caution”” — weak caution®). Let M = (©;, w;, B;)ien and
M = (T;,b;)ien be constructed from M. If 9; € ©; expresses common full
belief in weak caution, so does t;(E;(6;)).

We omit the proof of Lemma 4.4.3 since it can be shown similarly to Lemma
4.3.3.

Lemma 4.4.4 (Rationality + primary belief in u — Primary belief in rational-
ity). Let M = (®;,w;, B;)ien and M® = (T, b;);cn be constructed from M™. If
9; € ©; expresses common full belief in rationality and primary belief in u, then
t;(E;(6;)) expresses common full belief in primary belief in rationality.

Proof. We show this statement by induction. First we show that if 8; believesin j’s
rationality and primarily believes in u, then t;(E;(6;)) primarily believes in j’s ra-
tionality. Let (sj, ;) be a choice-type pair which is deemed possible in t;(E;(6;))’s
level-1 belief. By construction t; = t;(E;) for some E; € E;, and for some 6; € E;,
(sj,0;) is deemed possible in 6;’s level-1 belief. Since 8; primarily believes in u, it
follows that w;(0;) = u;. Also, since §; believes j’s rationality, it follows that s; is
rational at u; under ﬁj(ﬂj), i.e., bi(t;). Therefore s; is rational for ;. Here we have
shown that t;(E;(6;)) primarily believes in j’s rationality.

Suppose we have shown that, for each i € N, if 8; expresses n-fold full be-
lief in rationality and primary belief in u, then t;(E;(6;)) expresses n-fold belief
in primary belief in rationality. Now suppose that 6; expresses (n + 1)-fold full
belief in rationality and primary belief in u, i.e., each 6; € ©;(6;) expresses n-fold
full belief in rationality and primary belief in u. Since, by construction, for each
t;i € Ti(t:(Ei(6;))), there is some 0; € ®;(6;) such that t; = t;(E;(6;)), by inductive
assumption t; expresses n-fold full belief in primary belief in rationality. There-
fore, t;(E;(0;)) expresses (n + 1)-fold full belief in primary belief in rationality. [J
Proof of the if part of Proposition 4.4.1. Let M = (©;,w;, Bi)ien, M =
(T;, b;)ien be constructed from M, and sf € S; be rational for some 6} with
w;(07) = u; which expresses common full belief in caution, rationality, and pri-
mary belief in u. Consider t;(E;(9;)). Since w;(8;) = u; and b;(¢;(E;(8;))) has the
same distribution on j’s choices at each level as 8;(6; ), s is rational for t;(E;(6})).
By Lemmas 4.4.3 and 4.4.4, t;(E;(8;])) expresses common full belief in weak cau-
tion and primary belief in rationality. Also, by Lemma 4.4.2 t;(E;(6})) expresses
common full belief in caution. Hence s} is permissible in I'. []

It should be noted that caution cannot be weakened in the characterization of
Theorems 4.3.1 and 4.3.2. For Theorem 4.3.1, caution plays an important role in
the proof of the if part; without it, primary belief in utilities nearest to u and that
a best choice is supported by utilities nearest to u cannot imply primary belief
in rationality. For Theorem 4.3.2, the interpolation method used in the proof of
Lemma 4.4.2 may not work since different types may have different orders there.

An open question is that whether we can characterize proper rationalizability
by using rationality. More work needs to be done on it.
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5. CONCLUDING REMARKS: EPISTEMIC
LOGIC AND GAME THEORY

In this dissertation, we have studied the relationship between an individual with
bounded cognitive ability and the whole society from the viewpoints of an out-
sider and an insider. In Chapter 2, we took an outsider’s viewpoint and explored
the structure of the process of abstraction. In Chapter 3, we started from an in-
sider’s viewpoint and ended with approaching/approximating the objective so-
ciety by the collection of individual worlds. In Chapter 4, we studied the epis-
temic reasoning structure in the mind of an insider by showing that the same
behavioral outcome may be generated by different epistemic situations, which
implies that the two viewpoints are not complete substitutes and should be in-
vestigated independently.

My pursuit does not end here. The world we are facing up to at present is
unprecedentedly diversified and pluralistic; many conflicts showed that it is no
longer as easy as before to find out a foundation or principle (both philosophi-
cally and/or ethnically) that can be unanimously accepted. Therefore, instead of
taking a deductive approach which starts from some abstract principles and leads
to normative concepts and conclusions (see Kaneko and Matsui [66], Kaneko and
Kline [64]), it is more urgent to take an insider’s viewpoint, to study his/her
decision-making process, and to analyze it in the social context.

To do that, first we need to make it clear what is the nature of the decison-
making process in the mind of an individual. Basically, decison-making is carried
out through a process of logical inferences based on one’s knowledge and/or be-
lief. In a dynamic situation, a decision may be updated according to the changes
of information through communications and observations. The society as a whole
has influence on this process (for example, through institutions like laws and so-
cial customs. See Heath [53]) and, at the same time, is the outcome of the choices
taken through such processes. This structure is shown in Figure 5-1. Since every
component there is carried out symbolically, it is then a natural research strategy
to use logic to study the decision-making process and its relationship with the
society.

Researches on the decision-making process and related topics by using epis-
temic logic had flourished since the beginning of 1980s (see Fagin et al. [46],
Kaneko [63], and Bonanno [20] for detailed bibliographies). It is now an impor-
tant field for game theory, general social science, philosophy, computer science,
and artificial intelligence. This approach is strongly connected with (or can be
even said to have been deeply and substantively twisted with or penetrated into)
epistemic game theory since it started with “logicalizing” some concepts in epis-
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(1) Form knowiedge/beliefs about the situation, 2o Flisaos

do inferences, and make decisions. C— el Soaey
' (a social game)

(2) Update knowledge/beliefs through '.'.'.'.'.'.'.'.'.':;

interpersonal communications/obtaining new form

knowledge/beliefs.

Figure 5-1 Individual decision-making process in the social context

temic game theory (that is, to formulize common knowledge in the sense of Au-
mann [6]. See Barcharach [8], Barwise [9], Samet [122], and Brandenburger [29]).
On the other hand, compared with the set-theoretical approach which tradition-
ally dominates researches in epistemic game theory, epistemic logic has different
characters and is able to facilitate the exploration on some problems which are
difficult to be tackled with only by using set-theoretical method.

A good example is the reasoning process. Though the intrapersonal infer-
ence of “I think you think I think...” has long been focused (Aumann [6]),! set-
theoretical approach can only attack it implicitly while Kripke model and proof
theory can describe the process explicitly and analyze the structure of the process
(see, for example, Fagin et al. [45], Lismont and Mongin [76], Kaneko [63]).

I would like to explore the logic and epistemic game theory. In this chapter I
will sketch my plan by introducing two of my researches on process: the semantic
structure of lexicographic beliefs which is a key concept in Chapter 4, and an
epistemic foundation for cooperative game theory.

5.1 Ordered Kripke Model and Lexicographic Belief
Hierarchy

Classical probabilistic belief has a corresponding epistemic logical structure within
the classical probabilistic Kripke model, while lexicographic belief system, which
was introduced in Chapter 4 as a central concept in epistemic game theory, has

Many researchers had discussed this problem informally before Aumann [6]. For example,
Luce and Raiffa [86] (p. 109) noticed that iterated elimination of dominated strategies cannot be
realized without a hierarcht of assumption of players’ rationality, that is, a player’s abandon of
some dominated strategies is based on his belief that other player would not use some dominated
strategies, etc. More famous examples are philosophical discussions by Hintikka [56] and Lewis
[75]. For a historical overview, see Perea [111].
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not. In this section, we first give a survey of the classical probabilistic Kripke
model for games, and then define a modification of it, called the ordered Kripke
model, by introducing a linear order on the set of accessible states. Finally, we
show this model can be used to describe the lexicographic belief hierarchy and
permissibility can be characterized within this model.

5.1.1 Probabilistic Kripke model for games

In this subsection we give a survey of the probabilistic Kripke model for games
which is a generalization of the standard Kripke model and is able to capture
both pure and mixed strategies. For details, see Bonanno [19], [20].

Let G = (N, {Si}ien, {ui}ien) be a 2-person strategic form game. A probabilis-
tic Kripke model of G is a tuple M = (W,{R;}ien, {pi}ien, {0i}ien) where
(1) W # @ is the set of states (or possible worlds), sometimes called the domain of
M and is denoted by D(M);

(2) For eachi € N, R; C S x S is the accessibility relation for player i. For each
w € W, we use R;(w) to denote the set of all accessible states from w, i.e., R;j(w) =
{w' € W:wRw'};

(3) For each i € N, p; is a mapping from W to A(W) satisfying (a) foreachw € W,
supp pi(w) C Ri(w), and (b) for each w’ € R;(w), p;(w') = pi(w);

(4) For each i € N, 0; is a mapping from W to S; such that for each w’ € R;(w),
gi(w') = oi(w).

We call (W, {R;}ien, {¢i}ien) astandard Kripke model of G. M° = (W, {R;}ieN)
is called the Kripke frame of M. Here we follow the literature and assume that AM°
is a KD45 frame, i.e., each R; is serial, transitive, and Euclidean. For eachi € N, a
semantic belief operator is a function B; : 2"V — 2W such that for each E C W,

B;(E) = {w € W: R;(w) C E}. (5.1)

A semantic common belief operator is a function CB : 2" — 2W such that for each
ECW,

CB(E) = {w € W: UjenR;(w) C E}. (5.2)
It can be seen that B; and CB correspond to Aumann [6]’s definition of “knowl-
edge” and “common knowledge”.

At w € W a strategy s; € S; is at least as preferred to s iff u;(s;, Zyyer,(w)
pi(w) (W )oj(w')) > ui(s), Zuer,w)Pi(w) (@' )oj(w')). We say that s; is preferred
to s} at w iff the strict inequality holds, and s; is optimal at w iff there is no strategy
preferred to s; at w. A state w is rational for i iff o;(w) is optimal at w. We use RAT;
to denote the set of all rational states for player i, and define RAT = N;eyRAT;.

The following statement connects iterated elimination of dominated strategies
to rationality. Its proof can be found in Bonanno [20], p.452.
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Theorem 5.1.1 (Iterated elimination of dominated strategies and Kripke model).
Let G = (N, {S;}ien, {ti }ien) and STEPS be the set of strategy profiles surviving
iterated elimination of dominated strategies. Then,

(1) given an arbitrary probabilistic Kripke model of G, if w € CB(RAT), then
o(w) € STEDS;

(2) for each s € S'EDPS, there is a probabilistic Kripke model of G and a state w
such that o(w) = s and w € CB(RAT).

5.1.2 Ordered Kripke Model of Games and Permissibility

In this subsection we define the ordered Kripke model as a modification of the
standard one and show how it can be used to capture the lexicographic reasoning
in game theory.

Definition 5.1.1 (Ordered epistemic model) Let G = (N, {S;}icn, {ui}ien) be

a 2-person strategic form game. An ordered Kripke model of G is a tuple M =
(W, {Ri}ien, {oitien, {Aitien) where
(1) (W, {Ri}ien, {ci}ien) is a standard Kripke model of G, and

(2) For each i € N, A; assigns to each w € W an injection from a cut {1, ..., K} of
natural numbers to the set of probability distributions (with finite supports) over
Ri(w), i.e., Aj(w) : {1,..,K} — A(R;j(w)). Aj(w) can be interpreted as a linear
order on a finite subset of A(R;(w)). We use D(A;(w)) and R(A;(w)) to denote
the domain and the range of A;(w), i.e, D(Aj(w)) = {1,..., K} and R(Aj(w)) =
{Ai(w) (1), ..., i(w)(K)}-

Definition 5.1.2 (Caution). Let G = (N, {S;}ien, {ui}ien) be a strategic form
game and M = (W, {R;}ien, {0i}ien, {Ai}ien) an ordered Kripke model for G.
R; is cautious at w € W iff for any s; € S; (j # i), there exists w’ which is assigned
a positive probability by some element in R (A;(w)) such that o;(w') = s;. We say
M is cautious iff for each i € N, R; is cautious at every w € W.

The difference between the ordered Kripke model and the standard one is
that the former assigns a linear order A;(w) on R;(w) for each state w. This order
is used to define the preferences in the model. We have the following definition.

Definition 5.1.3 (Lexicographic preferences) Let G = (N, {S;}ien, {ui}ticn) be a
strategic form game and M = (W, {R;}icn, {0i}icn, {Ai}ien) an ordered Kripke
model for G. At w € W the strategy s; € S; is at least as lexicographically preferred to
s, denoted by s; = s}, iff Ik € {0, ..., |D(A;(w))|} such that

(@) u;(si, oj(Ai(w)(t))) = ui(s], oi(Ai(w)(t))) forall t <k;
() ui(si, aj(Ai(w) (k +1))) > ui(si, oi(Ai(w) (k+1))).
Here by ;(A;(w)(t)) we mean the mixture of strategies in ¢;(A;(w)(t)). There-
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fore
ui(si, A (W) (1)) = Zyer,w)Ai(w) () (w)ui(s;, oi(w')).

It can be seen that when k = |D(A;(w))|, s; and s generates the same payoff for
player i along A;(w). This case is denoted by s; ~, 5. When k # |D(A;(w))|, we
say that s; is lexicographically preferred to s: at w, denoted by s; > s.. s; is optimal
at w iff there is no s} € S; such that s/ >, s;. We say a state w is lexicographically
rational for i iff the choice o;(w) is optimal for i. For each i € N, let LRAT; be the
set of rational states for player i and LRAT = N;eNLRAT;.

Example 5.1.1. Consider the following game G:

u\up | C | D
A 1,110,0
B 0,010,0

and an ordered Kripke model M in Figure 5-2. It can be seen that M is cautious.

A,C
1 2 1 2 — R;
e I
= AD BD o
Yoo W gt
ot e ~_.
2 L 2

Figure 5-2  An ordered Kripke model for G

Also, A and C are optimal at each state, w; and w, are rational for player 1, and
wi and w3 are rational for player 2. Therefore, LRAT; = {wy,wp}, LRAT, =
{wy, w3}, and LRAT = {w1}. On the other hand, since both ¢1(w;) = A and
o2(wp) = D are permissible strategies, lexicographic rationality in the ordered
Kripke model here captures the concept of “a strategy is rational under a lex-
icographic belief” in the first order. Now the problem is how to define belief
hierarchy and common belief in this model. It can be seen that we cannot adopt
B; and CB in standard approach. Indeed, here B;(LART) = CB(LART) = @,
which is incompatible with our intention to preserve w,. Here we provide one
approach. For eachi € Nand w € W, let R} (w) = {w' € W : A;(w)(1)(w') > 0}
and R! = UjenRl. A semantic level-1 belief operator for player i is a mapping
B! : 2V — 2W such that for each E C W,

B} (E) = {w € W : R}(w) C E}. (5.3)
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Similarly, a semantic common level-1 belief operator is a mapping CB! : 2V — 2W
such that foreach E C W,

CBYE) = {w € W : UjeNyR} (w) C E}. (5.4)

It can be seen that B} (LRAT) = CB'(LRAT) = {w;} in Example 5.1.1. In gen-
eral, we have the following result, whose proof can be seen in Liu [83].

Theorem 5.1.2 (Permissibility and semantic common level-1 belief). Let G =
(N, {Si}ien, {ui}ien) be a strategic form game and SPER C S be the set of per-
missible strategy profiles. Then,

(1) given an arbitrary cautious ordered Kripke model of G, if w € CB!(LRAT),
then o(w) € SPER, and

(2) for each s € SPER, there exists a cautious ordered Kripke model of G such that
o(w) = sand w € CB!(LRAT).

5.1.3 Remark

It is desirable to characterize other rationalizability concepts, for example, proper
rationalizability in the ordered Kripke model as we did within the incomplete in-
formation framework in Chapter 4. However, we are somehow pessimistic. The
reason is that within this framework, the difference between permissibility and
proper rationalizabilities is at what kind of order A;(w) gives on R;(w), which
more relies on the interpretation than on the structure. In other words, by chang-
ing the order on accessible states we can characterize proper rationalizability, but
that is attributed to the interpretation we give to each state, not to any structural
properties of the Kripke frame (W, {R;};cn) like seriality or transitivity.

It is also wondered whether there is a syntax corresponding to that seman-
tic framework, like the one developed in Bonanno [19] for the standard Kripke
model for games. A critical property of that syntactic system, if exists, is that the
change from the first order to higher orders in the hierarchy, that is, in the first
order we need (at most) to check every accessible state, while in the second order
B} we need only to check the first level states, etc. I am planing to work on this
problem in the future.
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5.2 Toward An Epistemic Foundation for Coopera-
tive Game Theory

5.2.1 The role of players in a cooperative game

Cooperative game has not yet been seriously explored from the epistemic view-
point. This is in contrast to the prosperous researches of epistemic structure of
non-cooperative game theory (see Perea [110], Dekel and Siniscalchi [42], Bo-
nanno [19]), which cooperative game theory matches in either length of history,
richness of literature, and insightfulness of results (see, for example, Peleg and
Sudholter [109]). The reason seems to be on the vagueness of the role of an indi-
vidual in cooperative game theory.

The research on epistemic part of a theory is desirable and necessary only if
there is individuals playing initiative roles within the framework of that theory.
In a non-cooperative game, each player has to make a decision in an interactive
situation, for which he needs to form some knowledge /belief about the situation
as well as the choice and knowledge/belief of the opponents. That leads to the
study of the epistemic aspect of non-cooperative games. In contrast, cooperative
game theory does not seem to have such a part explicitly; whether a player plays
an initiative role there is obscure.

To be specific, let us look more closely at the structure of cooperative game
theory. Cooperative game theory has two parts: description of the game situa-
tion and solution concepts. A game situation is described by a pair (N, v), where
N is the set of players and v is the characteristic function which assigns to each coali-
tion (i.e., a subset of N) a real number as its payoff (in a TU game, i.e., a game
with side payment) or a set of payoff vectors (in an NTU game, i.e., a game with-
out side payment) which can be achieved by collective activities of players in
that coalition. Here, even though the payoff(s) is obtained by players’ choices, it
is not stated explicitly within the framework what choice a player is allowed to
take and how the choices of players in a coalition compile together and generate
a payoff (or payoffs).2 On the other hand, given a cooperative game, a solution
concept is mathematically a set of payoff vectors satisfying some specified con-
ditions. Though those conditions are usually intended to capture some criterion
like justice or fairness among players, there is no explicit way to connect those
conditions with a player’s initiative decision-making.

2The original intented meaning of v(S) (S € N) of von Neuman and Morgenstern [134] is to
describe the highest sum of payoffs of players in S that can be guaranteed. In literatures of market
games (e.g., Debreu and Scarf [40], Shapley and Shubik [128], Crawford and Knoer [38]), v(S) is
the highest surplus that can be achieved by exchange among players in S. However, in general
v(S) only means Pareto frontier (for a TU game) or feasible payoffs (for an NTU games) and has
no implication on choices of players in S.

TOWARD AN EPISTEMIC FOUNDATION FOR COOPERATIVE GAME THEORY 89



Therefore, if we take cooperative game theory as a passive science and an-
ticipate to use it to study the cooperative or coalitional behavior of players as
intended by its founders von Neumann and Morgenstern [134], we need to con-
sider a player’s initiative role in it and his knowledge/belief and reasoning.

A solution for this problem is provided by Nash program (initiated by Nash
[97]. See Serrano [127]) which is intended to provide each solution concept in co-
operative game theory a non-cooperative implementation. Since a non-cooperative
game has explicit epistemic aspect, the epistemic foundation behind a solution
concept of cooperative games can be studied from that of a non-cooperative game
implementing it. This approach has two problems. First, despite the coincidence
of the outcomes, it is difficult to define the relationship between a cooperative
game and its non-cooperative implementations. To be specific, a solution concept
usually has multiple implementations, each of which has distinct properties and,
consequently, a distinct epistemic structure. Hence it is difficult to argue which is
a better epistemic foundation for that solution concept. Second, even if a unique
non-cooperative implementation can be selected for each solution concept in co-
operative game theory, it is still not clear whether the epistemic structure behind
the implementation is only for the solution in the non-cooperative game, or it can
also be applied to the coincident one in the cooperative game.

5.2.2 Initiative role of players and unanimous acceptance of the core

Here, we show a different approach. We first transform a cooperative game into
a decision problem by giving a role for an individual to make decisions, that is,
to accept or reject a payoff vector. Based on it, we describe a player’s knowl-
edge, decision-making criterion, and reasoning process by using KD-system in
epistemic logic. Within this framework, we characterize the epistemic structure
of some solution concepts, for example, the core, in terms of players” knowledge.
This approach is illustrated in the following example.

Example 5.2.1 (A cooperative game as a decision problem). Consider a 2-person
TU game (N, v) with v({1}) = v({2}) = 10 and v({1,2}) = 30. The core of this
game is {(x,30 — x) : 10 < x < 20}. We take player 1’s viewpoint. Consider a
payoff vector (9,21). To reject it, player 1 needs at least to know v({1}), i.e., the
highest payoff he can guarantee by herself. Also, consider another payoff vector
(10,10). To reject it, player 1 needs to know v({1,2}), i.e., the highest payoff he
can guarantee by cooperating with player 2. Actually, it can be seen that for each
payoff in the core to be accepted by both player and each payoff outside the core
to be rejected by at least one player, each player i needs to know v({i}), and at
least one player has to know v({1,2}).

This discussion can be generalized. In Liu [84], we showed that, to unani-
mously accept only core payoff vectors, the feasible payoffs of every coalition is
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needed to be known by at least one player contained in it. This result implies
that for a society to unanimously accept only core payoff vectors, each coalition
is only needed to be known to one player in it. On the other hand, each coali-
tion S should be known at least to one player in it, otherwise some players (in
S) may be explored. This can be understood from two sides. On one side, if we
take core payoff vectors as just allocations and regard unanimous acceptance of
only just allocations as a social justice, then the realization of the social justice
has requirement on players’ knowledge; at least each player should know the
payoff generated by herself, and the payoff of each coalition should be known to
some member of that coalition. On the other side, given that each player has the
same voting weight on accepting or rejecting a payoff vector, the realization of an
unjust allocation is originated from the lack of knowledge about some coalitions
(because of, say, ignorance, unawareness, or manipulation of information). Lack
of information may lead to social injustice.

Further, this result provides insight for understanding some results in coop-
erative game theory, for example, the Theorem shown by Debreu and Scarf [40]
stating that as the number of replicas of players in a market game increases un-
boundedly, the cores converge to competitive equilibrium. By our result, as the
number of players increases, to unanimously accept only the core payoffs re-
quires at least one player’s knowledge to grow accordingly; consequently, in the
limit some player’s knowledge should be unbounded. On the other hand, it has
long been noticed that the epistemic requirement for a competitive equilibrium
is rather limited (Hayek [52], Bowles et al. [27]). This shows a epistemic incom-
patibility behind the mathematical convergence. Or, to see it in a positive way,
competitive market is a mechanism that fits the bounded cognitive ability of hu-
man beings.
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