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Abstract

Natural language is the most powerful tool for expressing our requests to other

agents. Therefore, service robots must be able to understand natural language

to flexibly work by responding to human requirements or to effectively work to-

gether with humans. Here, it is not enough for robots to communicate with us

in a purely verbal manner (e.g., chat or question answering). Robots in the real

world must work with their own bodies to have some effects on the environment

by understanding humans’ instructions, while also being able to explain current

situations, occurring events, or their own behavior using linguistic expressions.

In other words, they must have the capability to use language in a form that

is grounded in the real world. To arbitrarily design mapping between language,

which is a discrete system, and the referents in the real world, which is a continu-

ous and dynamical system, for intelligent machines is notoriously difficult, stated

as the symbol grounding problem.

The objective of this thesis is to build a computational framework that at-

tains the following two capabilities related to the language grounding: (a) gen-

eration of robot behavioral sequences in response to linguistic instructions and

(b) generation of linguistic descriptions given robot behavioral sequences. The

first capability is clearly a requirement of service robots. The second capability

is also required in order to interpret service robot behavior. Because robots make

physical interaction with humans, there is a risk of injury. To easily investigate

the cause of accidents when they occur, robotic system behavior should be easily

understandable.

To ground linguistic expressions in robot behavior, we focus on three im-

portant issues: (1) solving the context dependency of the meanings of linguistic
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expressions, (2) understanding both content words (e.g., nouns, verbs, adjectives,

and adverbs) and function words (e.g., conjunctions and prepositions), and (3)

bidirectional conversion between language and behavior.

First, the meanings of linguistic expressions depend on the current context

that an agent is situated. For instance, to respond to the instruction “grasp the

red ball,” a robot is required to generate different trajectories of joint angles in

accordance with the position of the red ball. Thus, the robot must solve such

context dependency of the meaning of the language instruction by observing the

current context.

Secondly, linguistic expressions consist of not only content words but also

function words. In general, the content words have their own meaning grounded

in the world. In contrast, function words have no explicit referents or clearly

grounded meanings; they contribute to the meaning of a phrase or a sentence by

being combined with content words together. Humans naturally build sentences

that include both content and function words. Therefore, intelligent systems must

understand expressions consisting of both.

The third requirement is to build a system that can convert language and

behavior bidirectionally. The bidirectionality or symmetric bias on inference is a

distinctive characteristic of humans’ usage of symbols. Because we communicate

with each other on the premise of this bidirectionality, it is also a requirement

for robots to have such a bidirectional conversion capability to achieve efficient

interaction.

To address the aforementioned issues, we propose a machine learning frame-

work that employs a recurrent neural network (RNN). An RNN is a type of neural

network extended to handle sequential or temporal data. RNNs learn a mapping

from one sequence to another through its context feature space. Our approaches

are summarized as follows: (1) bottom-up learning of conversion between language

and behavior by an RNN-based encoder–decoder model (EDM), (2) integration

of multimodal information, and (3) representation sharing between language and

robot behavior.

First, we use an RNN-based EDM, which is a learning framework originally

proposed in the field of natural language processing for applications such as ma-
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chine translation and question answering. An encoder RNN projects a source

sentence into a fixed-dimensional vector. Then, a decoder RNN produces a sen-

tence in the target domain by decoding the representation. The current study

applies this framework to convert between language and behavior. Because the

relations between sequences are totally learned from data, we do not have to

manually design rules and knowledge for language grounding.

As the second approach, our model integrates multimodal information to-

gether. By this extension, we address the first issue: the context dependent

relations between language and behavior. The model learns to generate appro-

priate behavior by integrating a word sequence with visual and proprioceptive

information. Moreover, the second issue of understanding both content words

and function words is also addressed. The encoder RNN embeds a word sequence

into a fixed-dimensional representation in accordance with its meaning. Here,

content words are embedded in a form that is integrated with the current visual

and proprioceptive context. On the other hand, function words are embedded in

a way integrated with other content words and reflecting their own function as

logical operators.

As the third approach, we propose an extension of the framework to a two-

coupled EDM architecture in order to accomplish the bidirectional conversion

between language and behavior. More precisely, we use two recurrent autoencoder

(RAE)-type EDMs. One EDM learns to embed behavioral sequences as fixed-

dimensional representations in a way that allows the sequences to be regenerated

from the representations. The other EDM embeds linguistic sequences in a similar

manner. Here, we introduce a loss function whereby the representations of a

behavior and its corresponding description approach each other in the latent vector

space. This loss allows the two EDMs’ internal representation spaces to be shared.

Through this shared representation, robot behaviors and linguistic expressions are

bidirectionally converted, conditioned on visual context.

We evaluate these proposed approaches through the following three robot ex-

periments: (1) unidirectional conversion from sentences including only content

words to robot behavior, (2) unidirectional conversion from sentences including

both content and function words to robot behavior, and (3) bidirectional conver-
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sion between language and robot behavior. These three evaluation experiments

correspond to the aforementioned three issues.

This thesis is organized into seven chapters. Chapter 1 provides the back-

ground, the research objective, and an overview of our approaches as an introduc-

tion of the current study.

Chapter 2 reviews existing studies in related fields. First, we review the artifi-

cial intelligence research in the earliest days, where intelligence was considered to

be a purely symbolic process and rule-based systems were designed on the basis

of such a philosophy. After referring to the difficulties researchers have been faced

with, we review learning-based approaches. Specifically, we introduce existing

works in the field of cognitive developmental robotics. Then, we review the recent

trend in grounding learning, namely deep learning methods. Finally, we provide

a brief survey of these existing works, indicate untouched issues, and clarify our

study’s position on them.

In Chapter 3, to address the first two issues, we propose an RNN-based EDM

extended by multimodal input. It learns to unidirectionally convert language

(resp., behavior) into behavior (resp., language). It first encodes a linguistic in-

struction (resp., behavioral sequence) into a fixed dimensional space and then

decodes the latent representation as a corresponding behavioral sequence (resp.,

linguistic description). By encoding multimodal information together, namely vi-

sion and proprioception, our model solves the context dependency of the meanings

of sentences.

In Chapter 4, we perform a learning experiment using a humanoid robot to

evaluate the proposed framework on the first requirement — the context depen-

dency of language. The task is the unidirectional conversion from linguistic in-

structions including only content words into robot behavioral sequences. The

proposed model successfully learns to convert three- or four-word instructions

into robot behavior by encoding visual information together. Moreover, we inves-

tigate how the model internally represents the grounding relations. This analysis

shows that the links of instructions and behaviors are embedded in the middle of

the RNN’s attractor dynamics.

Chapter 5 evaluates the proposed framework in terms of the second require-
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ment — understanding of both content and function words. We add some logic

words, such as “not”, “and”, and “or” to instruction sentences as examples of

function words, and the model successfully learns the task. The analysis shows

that the content words are encoded in a form integrated together with the cur-

rent visual and proprioceptive information. The logic words are simultaneously

represented together with content words by the model in accordance with their

own function as a logical operator.

In Chapter 6, we extend the proposed framework in two-coupled EDM ar-

chitecture to achieve the third requirement — bidirectional conversion between

language and behavior. The proposed system consists of two different EDMs —

one for behavior and the other for language — and trains them so that their inter-

nal representation spaces are shared. This binding learning enables the model to

convert language and behavior bidirectionally, conditioned on visual context. We

evaluate this extended framework in a robot experiment. After learning, the model

successfully produces a description given a robot behavioral sequence through the

shared representation. The model can also execute an appropriate behavior in re-

sponse to a language command, conditioned on the visual context. Analysis of the

latent representation spaces shows that the behavioral sequences are embedded

in a semantic manner by being learned jointly with linguistic descriptions.

Chapter 7 concludes this thesis by summarizing the accomplishments of our

study in terms of language grounding in robot behavior and reviewing remaining

issues and future research directions.
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Chapter 1

Introduction

1.1 Background and Research Objective

Natural language is the most powerful tool for expressing our requests to other

agents. Therefore, service robots must be able to understand natural language to

flexibly work by responding to human requirements or to effectively work together

with humans. Here, it is not enough for robots to be able to communicate with

humans in a purely verbal manner; for instance, to engage in enjoyable chat or to

answer our queries by using knowledge stored in some database. Robots in the real

world must work with their own bodies to have some effects on the environment

by understanding humans’ instructions, while also being able to explain current

situations, occurring events, or their own behavior using linguistic expressions

to convey helpful information to humans. In other words, they must have the

capability to use language in a form that is “grounded” or “embodied” in their

own sensorimotor experience in the real world. To arbitrarily design mapping

between language, which is a discrete system, and the referents in the real world,

which is a continuous and dynamical system, for intelligent machines is notoriously

difficult, stated as the symbol grounding problem [1].

Given such a background, the objective of this study is to build a computa-

tional framework that attains language use grounded in the real world. Specifi-

cally, this study focuses on two capabilities that require language grounding: (a)

the capability to generate robot behavioral sequences in response to linguistic

instructions and (b) the capability to generate linguistic descriptions of robot be-
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havioral sequences. The first capability — to behave appropriately in response to

human instructions — is clearly required for service robots. Language is the most

powerful tool to convey our requests to other agents. We can express a vast range

of our own wants by flexibly constructing novel phrases or sentences. The second

capability — to describe the robot’s own behavior — is also required for inter-

pretability and explainability of robot behavior. Because robots have the ability

to physically interact with humans, there is a risk of injury. To easily investigate

causes of accidents when they occur, we should design robotic systems in a way

that makes their behavior intelligible1.

To make a system that uses language in a manner grounded in the real world,

one of the most fundamental problems is the context dependency of meanings

of linguistic expressions (Requirement 1). The same sentence can refer

very different things depending on the current context. As an example, imagine a

simple instruction “pass me the salt” in our daily lives. To achieve this instruction,

a robot has to generate much different trajectories of joint angles in accordance

with the position of the salt shaker. In contrast, even if the joint angle trajectory

is perfectly the same, the linguistic description could be different depending on

the context (e.g. object properties, robot’s intent). Any grounding methods for

robots have to solve such many-to-many relations between language and behavior

caused by context dependency of meanings of language by observing the current

context.

Here, if we could write down all the possible situations in a specific environment

and make a set of finite rigid rules that assign a linguistic expression to each of

these situations in advance, there would be no problem. In fact, some robots

situated in a factory can work very well under this strategy because workspaces

in factories are well structured and controlled environments. It is possible to

enumerate most situations that can occur, although the system would still have a

possibility of encountering exceptional cases. However, unlike most situations in

industrial factories, our living environment is highly changeable and open-ended;

new situations almost always differ from the previous ones. It is almost impossible

1Although more generally the capability to describe details such as a partner’s behavior or
the present status of the external environment may be also required, this study does not focus
on this. In fact, there have already been studies that focus on these requirements [2, 3].
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to make explicit rules that can handle all possible situations in advance.

There have also been many studies that have attempted to build robots that

learn the grounding relationships from their own experiences given small or no

a-priori knowledge [4, 5]. In fact, humans can learn the relationships between real

world matters and their linguistic expressions from our finite number of personal

experiences in a form that can generalize to unexperienced situations. In the

field of cognitive developmental robotics [4, 6], researchers have modeled humans

on the basis of the neuroscientific, psychological, or morphological knowledge and

implemented the models in robots to make them learn from their own experiences.

Again, they emphasize the importance of “embodiment.” The concept of “embodied

cognition” argues that intelligence, which includes the use of language, emerges

only from dynamical interaction between an agent’s internal cognitive system and

their external environment mediated by the sensorimotor organization specific to

the agent’s body [7]. With this philosophy, experiments have been performed in

which robots interact with the physical world and other agents to develop their

own embodied intelligent skills [8].

In this study, because we consider situations in which instructions are given

in the form of natural language, we have to build a system that is able to

understand expressions that consist of both content words and function

words (Requirement 2). When we consider the basic structure of natural

language expressions, in most situations, instructions to robots and descriptions

of robot behavior are expressed as phrases or sentences, which consist of multiple

words. In a phrase/sentence, each word itself is grounded in some matter in the

world. For example, nouns correspond to some entity or category that an entity

belongs to. Adjectives refer to the characteristics of entities. Verbs express some

action or its effect. By composing these grounded words, the context-dependent

meaning of a sentence is constructed. These words are called content words. On

the other hand, there are words that have no explicit referents or clearly grounded

meanings; these are called function words, and examples include conjunctions

and prepositions. Function words are more related to syntactic structure. Thus,

they contribute to constructing the meaning of a phrase or a sentence by being

combined with content words.
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Existing studies aimed at addressing symbol grounding in robots have mainly

focused on content words [9, 10, 11]. However, humans always build sentences

that include both content and function words unconsciously. In fact, the function

words are very important elements because they are strongly involved in the

compositionality of language. In the field of formal semantics, the principle of

compositionality (also referred to as Frege’s principle) models language systems

as follows: the meaning of a phrase or a sentence is given as a function of the

meanings of its parts (e.g., words) [12]. We can express an infinite number of

events that occur in this continuous world by compositionally combining a finite

number of words. Specifically, function words extend the linguistically explainable

space dramatically. Therefore, we must build a system that deals with both

content and function words2.

The other requirement that robots must satisfy to achieve language grounding

is the capability to convert language and their behavior bidirectionally

(Requirement 3). The bidirectionality or symmetric bias on inference is a

distinctive characteristic of humans’ usage of symbols, which other primates do

not have [13, 14]. Once we humans learn that an apple has the name “apple,”

we also obtain the knowledge that the word “apple” refers to apples. Because

humans communicate with each other on the premise of this bidirectionality, it

is also required that robots have the same bidirectional conversion capability to

achieve efficient interaction. In recent times, many deep learning models that learn

to map linguistic instructions into agent action sequences (e.g., in 2D-grid worlds

and simulated 3D environments) have been proposed [15, 16, 17, 18, 19]. However,

there are very few existing studies that have addressed bidirectional mapping. On

the other hand, some studies have applied deep neural networks (NNs) to cross-

modal retrieval tasks [20, 21, 22]. In these studies, representations of paired

data in different modalities (video, sound, and text) are bound with each other

2In fact, words can be further divided into characters. Moreover, in the case of speech, a
sequence of characters can also be represented as phonemes, which are finally generated as audio
waveforms. If we wish to deal with humans’ developmental process, emotion recognition from
verbal utterances, or continuously changing variants of Internet slang words (e.g., “amazing”,
“amaazing”, and “amaaaazing”), we may have to consider these kinds of lower-level structures
simultaneously. However, this study tackles the grounding problem at the word- and sentence-
levels, which in practice is the main part of semantic grounding. Although morphological division
is also important, we will consider it in future work.

4



to organize semantically similar representation spaces among modalities. Given

a sample in one modality, data in the other modalities are retrieved through

the shared representation space. However, these models can only be utilized for

retrieval tasks, and thus are not be able to produce novel samples.

Taken together, we focus on the following three issues that are essentially

necessary to achieve grounded language use:

• Requirement 1 (R1): Solving context dependency of meanings of linguis-

tic expressions.

• Requirement 2 (R2): Understanding both content words and function

words.

• Requirement 3 (R3): Bidirectional conversion between language and be-

havior.

1.2 Overview of Our Approaches

To address our three requirements, we propose a machine learning framework that

employs a recurrent neural network (RNN). An RNN is a type of NN extended to

handle time-series data (and other sequential data) [23, 24]. RNNs can learn to

encode variable lengths of sequential data into fixed-dimensional feature vectors,

to decode feature vectors as sequential data, and to map a sequence to another

sequence through the feature space. This study uses RNN-based models to handle

the conversion between linguistic expressions and robot behavioral sequences. Our

approaches are summarized as follows:

• Approach 1 (A1): Bottom-up learning of conversion between behav-

ioral sequences and linguistic expressions by an RNN-based encoder–decoder

model (EDM).

Solution: Acquisition of relations between language and behavior with-

out a-priori knowledge or arbitrary rules in an end-to-end manner.

• Approach 2 (A2): Integration of multimodal information.
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Solution: Understanding of context-dependent linguistic expressions that

include both content and function words.

• Approach 3 (A3): Representation sharing between robot behavior and

linguistic expressions.

Solution: Bidirectional conversion ability.

First, we use RNN-based EDM as a basic framework to convert between lin-

guistic expressions and robot behavioral sequences. The EDM, which is also

called a sequence to sequence learning model, is a learning model originally pro-

posed in the field of natural language processing for applications, such as machine

translation [25, 26, 27] and question answering [28], and has overwhelmingly out-

performed conventional methods, such as rule-based [29] and phrase-based meth-

ods [30]. Designing rules for translation manually is much difficult and time-

consuming. In contrast, the EDMs can learn the relationships between source

domain and target domain in an end-to-end manner from parallel corpus. In

their working, an encoder RNN non-linearly projects a source sentence into a

fixed-dimensional vector, and then a decoder RNN produces a target sentence

by decoding the vector representation. The current study applies this framework

to conversion between language and behavior. In a similar to that of machine

translation, since the relationships between sequences are learned entirely from

the dataset, we do not have to design explicit a-priori knowledge.

As the second approach, our model integrates multimodal information. Through

this extension, we address R1. The model learns to generate appropriate behavior

conditioned on not only word sequences but also visual and proprioceptive input.

Moreover, by combining these two approaches, R2 is also addressed. The encoder

of the EDM projects a variable-length word sequence onto a fixed-dimensional

space in accordance with the meaning. Here, content words can be embedded in

a form that is integrated together with multimodal input. Function words can be

simultaneously embedded in a manner integrated with other content words. For

example, “don’t”, which expresses negation, works as a non-linear operation of the

internal state of the RNN and then makes the RNN generate opposite behavior.

An actual example is demonstrated in Chapter 5.
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As the third approach, we propose to extend the framework to the two-coupled

EDM architecture — one for behavior and the other for language — and train

these EDMs so that their representation spaces are shared. This binding learning

allows the model to convert language and behavior bidirectionally. More precisely,

we use two coupled recurrent autoencoder (RAE)-type EDMs. One EDM learns

to embed behavioral sequences into fixed-dimensional latent representations in a

way that allows the original sequences to be regenerated from the representations

by the decoder. The other EDM embeds linguistic sequences in a similar manner.

Here, we introduce a loss function whereby the representations of a behavior and

its description become close in the latent space. Thanks to this loss function, the

representation spaces of behavior and language are gradually shared in the learn-

ing process. Through the shared representation space, robot behavioral sequences

and linguistic descriptions can be bidirectionally converted, conditioned on visual

context.

We evaluate the conversion capability of our proposed framework through the

following three robot experiments.

• Evaluation 1: Unidirectional conversion from language to robot behavior

(only content wordsʣ

• Evaluation 2: Unidirectional conversion from language to robot behavior

(both content and function words)

• Evaluation 3: Bidirectional conversion between language and robot be-

havior

These three evaluation experiments correspond to the aforementioned R1, R2,

and R3, respectively. The first experiment evaluates the framework on the issue

of context dependency of language. We build a learning system that combines our

first and second approaches, namely an EDM extended with multimodal input,

and we evaluate it with a unidirectional mapping task from word sequences to

robot behavioral sequences. This experiment includes three- and four-word sen-

tences that consist of only content words. The behavior to be generated depends

on visual context. The model achieves the learning of the semantic relationships
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among language, vision, and behavior by experiencing only one-third of the pos-

sible situations. Hence, it succeeds in generating appropriate behavior even in

unexperienced situations by generalizing the acquired knowledge.

In the second evaluation experiment, although we design a unidirectional task

from language to behavior again, the task includes not only content words but also

logic words such as “and”, “or”, and “not” as examples of function words. The

model succeeds in appropriately learning a given task. The analysis of internal

representations reveals that content words are grounded in the visual and proprio-

ceptive contexts and that the logic words are encoded together with other content

words in accordance with their functions as logical operators. For example, the

word “not” works as a non-linear transformation to embed orthogonal phrases

into the same area in the latent representation space. “Or,” which requires be-

havior execution that looks apparently random, is represented as unstable areas

of the RNN’s dynamical system.

The third experiment evaluates the proposed method on the third require-

ment, the bidirectional conversion between language and behavior. We extend

the proposed EDM to the two-coupled form. The task imposed on the model

is to learn to convert linguistic instructions (descriptions) and robot behavioral

sequences bidirectionally conditioned on visual context from parallel data. After

training, through the shared latent space, the model successfully generates a de-

scription sentence given a robot behavioral sequence. The model also succeeds

in generating an appropriate behavior in response to an instruction, depending

on the current visual context. Visualization of the latent representations reveals

that by being learned jointly with linguistic descriptions, the robot behavioral

sequences are encoded in a semantically compositional manner.

1.3 Thesis Organization

This thesis is organized into seven chapters as described in Figure 1.1. Chapter 2

reviews existing studies in related fields and clarifies the position of the current

study among them. First, we review the background of artificial intelligence in

its earliest days. Intelligence was thought of as a purely symbolic process and
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computational systems were designed on the basis of such a philosophy. After

referring to the difficulties researchers have been faced with, we review learning-

based approaches. Machine learning approaches extract the relationships between

language and other modalities from data, and therefore they have no need to ar-

bitrarily design grounding rules. Specifically, we introduce existing works in the

field of cognitive developmental robotics, which attempt to understand human

cognitive skills in a constructive manner by performing embodied robot experi-

ments. Next, we review the recent trend in grounding learning, namely the deep

learning method. Finally, we clarify our study’s position on these existing studies.

In Chapter 3, we propose our method to address the first two issues, namely R1

and R2. The proposed learning model is an RNN-based EDM extended by mul-

timodal input, which corresponds to our first and second approaches. It learns to

unidirectionally convert language (resp., behavior) into behavior (resp., language).

It first encodes a linguistic instruction (resp., behavioral sequence) into a fixed

dimensional space and then decodes the latent representation as a corresponding

behavioral sequence (resp., linguistic description). By integrating multimodal in-

formation together, our model solves the context dependency of the meanings of

sentences.

In Chapter 4, we perform the first evaluation experiments using a real hu-

manoid robot. For this experiment, which focuses on R1, we design a unidirec-

tional conversion task from linguistic instructions into robot behavioral sequences.

The task includes only content words. The proposed RNN successfully learns to

convert linguistic instructions that include at least a verb, an object, and an ad-

verb into robot behavior by encoding visual information together. Moreover, we

analyze how the trained RNN represents the grounding relationships as its inter-

nal states. The analysis shows that the link between instructions and behavioral

sequences is embedded in the middle of the RNN’s attractor dynamics.

Chapter 5 evaluates our proposed model on R2. We design a unidirectional

task from language into robot behavior again, but the task includes both content

words and function words. More precisely, we add some logic words, such as “not”,

“and”, and “or”. The model succeeds in learning the given task. The analysis

shows that the grounded content words are encoded in a form integrated together
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with the visual information and robot’s own joint states. The logic words are

represented together with other content words by the model in accordance with

their functions as logical operators.

In Chapter 6, we extend the framework to the two-coupled EDM architecture

for R3. The proposed system consists of two different EDMs — one for behavior

and the other for language — and train them so that their internal representation

spaces are shared with each other. This binding learning enables the model to

convert language and behavior bidirectionally, conditioned on visual input. We

evaluate the method on a robot experiment. After training, through the shared

latent representation space, the model successfully produces a description sen-

tence given a behavioral sequence. It also succeeds in generating an appropriate

behavior by receiving a linguistic command, conditioned on the visual context.

Visualization of the representation spaces reveals that by being learned jointly

with linguistic descriptions, the robot behavioral sequences are encoded in a se-

mantically compositional manner.

In Chapter 7, we conclude this thesis by summarizing the accomplishments

of our study in terms of language grounding in robot behavior and reviewing

remaining issues and future research directions.
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Chapter 2

Literature Review

2.1 Old-fasioned Artificial Intelligence and Sym-

bol Grounding Problem

At the dawn of “artificial intelligence” in the 1950s, intelligence was considered

as a solely symbolic process. Advocated as “physical symbol systems” by Newel

and Simon [31, 32], researchers at the earliest stage hypothesized that any kinds

of cognitive process can be materialized as manipulations of symbols, which are

themselves physical entities and substitute for their referents. This hypothesis

seems to have been strongly inspired by the behavior of computers. Given a

problem to solve, once a procedure to solve it is modeled as an algorithm and

implement it as a program code, the solution can be obtained as the computation

ends. It was believed that our intelligence is also such a computational process of

physical symbols in a brain and that it can be replicated by modeling the process

on another physical substrate. In fact, various kinds of systems were developed

based on this idea. These systems calculate an answer in response to a query by

using manually designed rules (inference engine) and knowledge base. Examples

include ELIZA [33], which is a dialog system driven by simple pattern matching

rules, and SHRDLU [34], which manipulates different-shaped/-colored blocks in

response to human instructions in a virtual environment. Moreover, beyond the

earliest programs that could solve relatively simple tasks (e.g., toy problems) only,

studies in the 1980s could provide more powerful tools by focusing on specific
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tasks and massively extending the number of rules and size of knowledge that are

given by professionals. They were called expert systems and applied to diagnosis,

financial system, manufacturing industry, etc. [35]. For another example, Deep

Blue [36], which is the first computer that defeated a human professional player in

chess, also had many evaluation functions designed by humans to evaluate board

states and utilized them to search for better moves.

However, this hypothesis and design methodology have a serious problem. It

assumed that the target can be perfectly replaced and manipulated as symbolic

representations without any discrepancies from the original or elimination of requi-

site information. In general, this assumption is not possible when we are situated

in the real world. Symbolization always run the risk of creating a gap between

the symbol system and its referent. In the case of the chess field and SHRDLU’s

virtual environment, the referential world is closed and finite, so all the states

can be described accurately. However, when we deal with the real world, it is in-

evitable for gaps to be created. We cannot establish mapping between a discrete

symbolic system and the continuous open-ended real world in a one-to-one way.

Therefore, symbol systems only work as approximations. This is involved in the

so called symbol grounding problem [1]. The symbol grounding problem is ex-

plained as follows: how can the symbols that intelligent systems internally possess

and manipulate be grounded in the real world? This problem was also pointed

out by Searle [37] in his popular thought experiment “Chinese room.” In fact, the

symbols in such systems that are arbitrarily designed by humans are intrinsically

not grounded in real-world matters. The real-world environment in which service

robots work is highly changeable in terms of positions of objects and obstacles,

light condition, robot’s own state, etc. If we attempted to consider all of them,

the number of required rules would be infinitely large. It is almost impossible to

make explicit rules that can handle all possible situations in advance.
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2.2 Cognitive Robotics and Learning-based Ap-

proach

In the previous section, we reviewed that arbitrarily designing rules that define

relations between symbols and referents in the real world in a top-down manner

is too difficult and costly. On the other hand, there have been many attempts

to make machines learn grounding relationships from their own experiences in a

bottom-up manner. Broadly speaking, they include learning of image recognition

and captioning [38, 39], learning of vision and language navigation [17], concept

learning from multimodal experience [40], and learning of robot action generation

in response to linguistic instructions [41, 11]. Although in general this approach

requires much data to acquire generalizable knowledge, it has an advantage that

there is no need for humans to arbitrarily design grounding form, which is costly1.

Here, the problem is replaced by how to design the learning system. As one

of the references, we can obtain hints from our own cognitive systems. In fact,

humans develop various kinds of cognitive skills from their own experiences. Im-

itating or modeling our learning process has brought much progress in intelligent

machines [43]. Specifically, in the field of cognitive robotics or cognitive devel-

opmental robotics, researchers have been implementing human-like intelligence in

robots that have their own body and performing experiments in which the robots

interact physically with the world and socially with other agents to develop their

cognitive capabilities [6, 8, 5]. This approach has two purposes. One is to un-

derstand human intelligence in a constructive manner by actually building the

models and observing their workings in experiments. The other is to practically

apply the acquired knowledge to industrial products.

Obviously, humans’ language development has also been investigated in this

research line [4]. As one example, by using a child-size humanoid robot called

iCub, Morse et al. [44] demonstrated that the strength of the association be-

1Specifically, in these tasks, it is not only time-consuming but also difficult from the beginning
to make explicit rules that express knowledge to link symbols with referents in the real world.
Some kinds of our inference process cannot be decomposed to explicit sub-rules. For example,
what is the necessary and sufficient definition of “cat”? These kinds of knowledge are called
“tacit knowledge [42].”
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tween a word utterance by a caregiver and sensorimotor information that changes

depending on the body orientation influences word learning. Moreover, in the

cognitive robotics approach, some researchers describe the problem as “symbol

emergence” instead of symbol grounding [5]. They think that the symbol systems

to be grounded are not given a-priori; instead, they emerge from the raw “self-

enclosed” experiences in the real world through social interaction. On the basis

of such a philosophy, there have been many studies in which agents have no direct

contact with external symbol systems and they must develop symbolic concepts

or intelligence from the experience of multimodal stream [45, 5, 46].

The cognitive robotics approach for language development stands on the same

thought as the usage-based theory in the field of cognitive linguistics [47]. The

usage-based theory does not think that language is based on some competence

that is specialized to language and unique to humans (e.g., nature), advocated

by Chomsky as the universal grammar [48], but it does think that linguistic skills

are developed through daily observation and use in the basis of more general

cognitive competence (e.g., nurture). In analytic philosophy, Wittgenstein also

said in his latter writing [49] that “the meaning of a word is its use.” He argued

that language systems do not have explicit rules and words have no definitions that

we refer to when we use them. The meaning of a word is only based on the fact

that the word works appropriately to achieve some purpose in the given situation.

He called this viewpoint on language the “language game.” In this game, even if

there are no rigid definitions of a word, its effect gives its meaning only if it works

in an appropriate manner in a given situation. From this viewpoint, the meanings

of words are highly context-dependent and dynamically changing. The strong

relationships between linguistic skills and other sensorimotor skills have also been

reported in the field of neuroscience. Hauk et al. [50] reported that passively

reading action words referring to different body parts (e.g., kick, pick, and lick)

activated different brain regions that were activated by actual movements of the

feet, fingers, and tongue.

The following subsections review existing studies that consider the learning

of grounding relationships between language and behavior of robots or simulated

agents.
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2.2.1 Probabilistic Modeling

One way to model the relationships between language and other modalities is

to model them as probabilistic relationships [51, 52, 53, 54, 55, 56, 57, 40, 58].

For example, Inamura et al. [51] utilized hidden Markov models (HMMs) to rec-

ognize and generate human motions. In their framework, proto-symbols, which

represent a specific motion pattern, emerge in the learning process. Takano et

al. [59] proposed the application of canonical correlation analysis (CCA) to ex-

tract relationships between word labels and human body motions. Their exper-

iment showed that the trained model could recognize human body motions and

conversely retrieve appropriate motions given a set of labels. Takano and Naka-

mura [52] proposed a stochastic model that combines a natural language model

and motion language model. The model learned to interpret motion patterns as

sentences and also to generate motions from sentences. Nishihara et al. [40] uti-

lized a multimodal latent Dirichlet model (MLDA) to learn object concepts that

connect multimodal information consisting of co-occurring word, auditory, visual,

and tactile data. Taniguchi et al. [58] also proposed a nonparametric Bayesian

model that learned location concepts, which probabilistically tied human speech

with self-location of a mobile robot. Through the acquired location concepts, the

performance of self-location estimation and speech recognition were improved.

Tellex et al. [54] also proposed a framework called generalized grounding graphs,

which dynamically instantiate a graphical model depending on semantic structure

of linguistic commands, and then they inferred appropriate plans for navigation

and manipulation in the graph.

One advantage of probabilistic models is high intelligibility. In the case of

graphical models, each node in the graph is designed as a meaningful element.

Therefore, it is easy to understand what kind of inference is performed by the

model. Simultaneously, the probabilistic models have the capability to explic-

itly model the ambiguity between language expressions and their referents as the

shapes of probabilistic density functions. Whiling maintaining an explicit rep-

resentation of the ambiguity or uncertainty, the model can gradually reduce it

during interaction with the environment and other agents. However, some prob-

abilistic models have to assume constraints (e.g., Gaussian distribution for the
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prior) to make the problem tractable. Another disadvantage is that a model that

has the capability to deal with long-time dependencies sufficiently has not been

developed yet.

2.2.2 Deterministic Modeling

In the previous subsection, we reviewed the probabilistic modeling of grounding

relationships. Alternatively, methods that model them deterministically also exist.

One popular method is NNs [9, 60, 41, 61, 62, 10, 63, 11]. Sugita and Tani [9]

proposed a trainable architecture that consists of two RNNs — one of which is

for language and the other is for robot behavior — with a small number of shared

nodes called parametric bias (PB). The model learned to embed the relationships

between language and behavior as topological organization in the PB space. Ogata

et al. [41] employed a similar architecture to learn the bidirectional mapping

between language and robot behavior. Heinrich et al. [64] proposed a model that

connected three RNNs. Each RNN was specialized for vision, proprioception, and

language, respectively, but they connected with each other. After learning, the

model could generate sentences that described robot motions as a sequence of

characters. Stramandinoli et al. [11] utilized a Jordan-type RNN [24] to ground

abstract words (e.g., use and make) in robots’ sensorimotor experiences. The

abstract words were learned by recalling the meanings of previously learned basic

words and combining them. Hinaut et al. [63] used an echo state network [65]

to learn bidirectional mapping between sentences and their predicate–argument

representations through human–robot interactions.

NNs are deterministic system, but there are some ways for them to deal with

the ambiguity of language. One way is to shape the output in a certain layer into

a form of probability distribution. For example, in the case of image classifica-

tion, by activating the output layer by the softmax function, the model predicts

the posterior distribution on the classes. Also, in the case of image captioning,

although RNN models generate captions deterministically by the greedy method,

they can also generate different sentences in a probabilistic manner by sampling

from the predicted probability distribution. Moreover, there is a way to replicate

probabilistic processes by perfectly deterministic NNs. For example, Tani and
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Fukumura [66] demonstrated that a deterministic RNN can regenerate a sym-

bol sequence that follows a simple probabilistic rule by self-organizing a chaotic

dynamical system. Namikawa et al. [67] also showed that an RNN can learn to

replicate pseudo-stochastic transitions between multiple robot motion primitives

by a similar chaotic structure.

An advantage of NNs is that by introducing recurrent connections and some

gating mechanism such as long short-term memory (LSTM) [68, 69], it can achieve

much higher performance in learning temporal structure with long-term depen-

dency without a-priori knowledge. One disadvantage of NNs is that it is difficult

to understand their behavior since their representations in hidden layers are in

a distributed form. Therefore, they are sometimes called black-boxes. Recently,

there have been many studies that propose methods to visualize the internal be-

havior of NNs [70, 71] and to make their representations more intelligible [72, 73].

2.3 Recent Trend: Methods of Deep Learning

A recent trend in grounding learning is methods that employ deep learning.

Started by the brilliant success in the ILSVRC2012 [38], which is an international

competition for visual recognition, deep learning has been applied to various fields

including speech recognition [74, 75] and synthesis [76, 77], NLP applications [78],

and robotics [79, 80] and they outperform conventional methods. Thanks to

their deeply stacked non-linear transformation, deep learning models have a much

stronger capability to (1) extract important features from raw data, (2) recognize

patterns using the extracted features, and (3) generate new samples from their

latent representations. Their training has been successfully performed owing to

the large size of datasets, sophisticated optimization techniques for gradient de-

scent [81, 82], and the great computational power provided by GPU machines.

Most recently, deep learning has also been used for learning grounding relation-

ships between language and behavior of intelligent agents [15, 16, 17, 83, 84].

Hermann et al. [15] and Chaplot et al. [16] trained their deep neural network

models by reinforcement learning so that an agent in a simulated environment

navigates to objects indicated by linguistic instructions. Anderson et al. [17] also
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trained a deep neural network model that combined a convolutional neural net-

work (CNN) and an LSTM-RNN to learn a navigation task in an environment

that traced real-world indoor scenes. Hughes et al. [85] also applied deep reinforce-

ment learning to a task that rearranged objects in a cell-grid world in response to

linguistic instructions. Tung et al. [83] learned the relationships between linguistic

instructions and goal states for a robot to execute tabletop tasks. Their model

learned action policy by utilizing the acquired relationships between instructions

and goal states as rewards. Suzuki et al. [84] used a CNN-RNN model for a shirt-

folding task conducted by a robot. The model learned the relationships between

word signals and the order of folding operations in a supervised manner.

Many of these systems adopted EDM or similar kinds of architecture, but they

have mainly dealt with a unidirectional translation, i.e., only from language or to

language.

2.4 Position of this Thesis in Terms of Related

Works

This chapter has reviewed existing studies from the following points of view.

• How the earliest artificial intelligence (i.e., rule-based) modeled the cognitive

tasks computationally and how it failed.

• What kinds of learning-based model have been proposed to ground language

in robot behavior in the field of cognitive developmental robotics.

• How recent deep learning methods are applied to grounding learning.

The contribution of this study is three-fold. The first one is to apply an

EDM architecture to end-to-end learning of the mapping between language and

behavioral sequence. The EDM was firstly introduced in the field of NLP for

the machine translation, question answering, and chat system etc., and scored

outstanding performance on these tasks thanks to its capability to learn long-

term dependency. We propose to apply the EDM to conversion between language

to robot behavior by extending it to integrate multimodal information together
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to solve the context dependency of the meanings of sentences. By this framework,

the semantic relationships between language and robot behavior conditioned on

the current context are learned from data without a-priori knowledge or arbitrary

rules.

Secondly, the proposed EDM is able to deal with not only grounded content

words but also function words. In the field of cognitive robotics, existing studies

that attempted to ground language in robot behavior by neural networks [9, 10, 11]

mainly focused on content words. Although probabilistic models are also able

to learn the stochastic co-occurrence relationships between content words and

multimodal features, it is difficult for them to learn to model how function words

combine the grounded meanings of other content words. This study deals with

logic words, such as “not”, “and”, and “or”, as examples of function words and

shows that the proposed framework appropriately maps sentences that include

both content words and logic words into corresponding robot behavioral sequences.

Our analysis also shows that the function words are represented by an RNN in

accordance with their functions as logical operators.

The third contribution is the building of a computational model that bidirec-

tionally converts between language and behavior by extending the EDM to a two-

coupled form. Most of the conventional studies on learning between language and

robot behavior have mainly dealt with only unidirectional conversion. Recently,

deep learning methods have been used for language grounding tasks in simulated

environments [15, 16] and have achieved outstanding performances. However, in

general, they are also optimized for a unidirectional task from input to output,

i.e., from language instructions to action sequences. There have also been studies

on cross-modal retrieval, where the paired representations of different modalities

(e.g., video, sound, and text) in deep NNs were bound with each other to or-

ganize semantically similar representation spaces among modalities [20, 21, 22].

Through such shared representations, data samples in each modality can be re-

trieved from ones in the other modalities. However, they dealt with retrieval only,

so they did not generate novel tokens from the representations. On the other

hand, most recently, there have been studies on bidirectional mapping between

different modalities using deep variational autoencoders (VAEs) [86, 87]. A VAE
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is a neural generative model that can generate data samples conditioned on latent

representations (x ∼ p(x|z)) and also infer the posterior distribution of the latent

representation q(z|x) given a data sample by variational approximation. By ex-

tending a VAE in a multimodal architecture, mutual inference between modalities

can be achieved. However, these studies focused only on mapping between static

modalities (e.g., images, binary attributes, and categories), not on temporal data

such as video or motions. In the current study, by combining two RNN-based

EDMs and binding their representations, we achieve bidirectional conversion be-

tween temporal data, i.e., from linguistic expressions to robot behavioral sequences

and vice versa, through the shared representation.
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Chapter 3

RNN-based Encoder–decoder

Model to Ground Language in

Robot Behavior

3.1 Introduction

In this chapter, we propose a method that unidirectionally converts linguistic

expressions (resp., robot behavioral sequences) into robot behavioral sequences

(resp., linguistic expressions). As mentioned in Chapter 1, this study addresses

the following three requirements:

• Requirement 1 (R1): Solving the context dependency of meanings of

linguistic expressions.

• Requirement 2 (R2): Understanding both content words and function

words.

• Requirement 3 (R3): Bidirectional conversion between language and be-

havior.

The system proposed in this chapter addresses R1 and R2. We will address R3

in Chapter 6. The method described here combines the earlier mentioned A1 and

A2. We propose the utilization of an RNN-based EDM (A1) that converts

linguistic instructions into robot behavioral sequences (and vice versa) through
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a fixed-dimensional latent representation space. The model learns to solve the

context dependency of language(R1) by receiving a multimodal input

stream (A2). Moreover, RNNs have the capability to transform their internal

state non-linearly depending on an external input and to self-organize internal dy-

namics that reflect highly structured temporal patterns of data. Thanks to these

capabilities, function words are also encoded by the model together with

content words (R2) in accordance with their specific functions. For example,

“don’t,” which directs a robot to generate behavior in an opposite manner, works

as a non-linear transformation to embed orthogonal sentences into the same area

in the latent representation space. “Or,” which requires behavior production that

looks apparently random, is represented as unstable areas of the RNN’s dynamical

system.

The next section describes the general form of time series data processing by

RNNs. We also review the original EDM used in the field of natural language

processing for machine translation, question answering, etc. After the review, we

present our method in Section 3.3 and 3.4.

3.2 Time Series Data Processing by Recurrent

Neural Networks

This section describes the working of a general type of RNN. An RNN (Figure 3.1

[B]) is a model that adds recurrent connections to the hidden layer of a feed for-

ward NN (FNN; Figure. 3.1 [A]). FNNs transform an input vector into an output

vector through one or multiple hidden layers, each of which consisting of a train-

able affine transformation and non-linear activation function (e.g., tanh, softmax,

or ReLU). In general, FNNs simply map an input data point into another data

point1. Therefore, they cannot deal with data that have sequential or temporal

patterns2. In contrast, context layers of RNNs receive their own previous output

through recurrent connections (orange arrow in Figure 3.1 [B]). The input history

1The dimension of an output vector can be different to that of an input vector.
2There are several ways to deal with temporal patterns in the FNN architecture. For example,

time delay neural networks [88] have a FNN structure and are able to capture temporal patterns
of data by receiving a concatenation of multiple vectors in a fixed-length time window at once.
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Figure 3.1. (A) FNN with one hidden layer. (B) RNN with one context layer. The orange line
represents the recurrent connection. (C) RNN. Time is represented in the horizontal direction
by unfolding the recurrent connection. There are cases that output vectors are recursively fed
into the input layer at the subsequent time step, as shown by the blue lines.

is encoded together with the current input into the fixed-dimensional space of the

context layer. Thanks to such an architecture, they can learn the temporal struc-

ture of data. Figure 3.1 [C] visualizes the same RNN by unfolding the recurrent

loop horizontally.

Now, let sequential data (x1,x2, ...,xT ) be fed into an RNN one by one. At

each time step, the output of the context layer of the RNN ht is calculated as

follows:

ht = RNNCell(xt,ht−1). (3.1)

24



In general, RNNCell is a non-linear function. In the case of a normal RNNCell,

the update is calculated as follows:

ct = Winxt +Wcht−1 + b, (3.2)

ht = f(ct). (3.3)

Here, Win and Wc are trainable matrices, b is a trainable bias term, and f is an

activation function. ct is called an internal state, a cell state, or a context state.

In addition, some sophisticated cells, such as gated recurrent units (GRU) [89]

and LSTMs [69], have a gating mechanism. Therefore, they can explicitly filter

out unnecessary input, maintain or forget contextual information, and control

whether the current cell state is fed into the output. The output is recursively fed

into the layer itself at the next time step. If a following layer exists, the output

is also fed into it at the current time step.

By sequentially embedding a series of data (x1,x2, ...,xT ), the RNN attains

a fixed-dimensional representation of the data as hT (or cT ). In other words, the

RNN can work as an encoder of sequential data. On the other hand, the RNN

can also work as a decoder that generates sequential data from fixed-dimensional

representations. Given a meaningful initial context state h0, by incrementally

decoding it, the RNN generates a series of vectors on the output layer. The

output vectors can also be fed into the input layer in the next time step, as shown

by the blue lines in in Figure 3.1 [C]. Therefore, the RNN can produce a sequence

by itself without any external input.

By combining these functions, RNNs can be applied to translation between

different languages [25, 26]. As shown in Figure 3.2, the encoder RNN embeds an

English sentence as a fixed-dimensional representation vector. Then, the decoder

RNN generates a corresponding French sentence by decoding the representation.

The learning of all the learnable parameters in the encoder and the decoder is

achieved based on the gradient descent method. The loss function L is defined on

the output layer of the decoder as the distance between the output and the ground

truth. In general, RNNs are designed so that derivatives of L at all the learnable

parameters can be calculated. This framework for translation between sequences,
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<BOS >     je         suis    étudiantI           am          a        student  <EOS>

   je         suis    étudiant  <EOS>

Decoder

Figure 3.2. Architecture of a normal EDM. During the encoding phase, the encoder RNN
incrementally encodes a source sequence by receiving an element (e.g., word) at each time step.
The source sequence is projected onto the fixed-dimensional space of the context layer (indicated
as a green circle). After that, the decoder RNN receives this embedding and then generates a
corresponding sequence in the target domain by incrementally decoding the representation.

which consists of an RNN encoder and an RNN decoder, is called the EDM. This

study applies it to the conversion learning between language and robot behavior.

3.3 Converting Linguistic Instructions into Robot

Behaviors

This section describes our proposed method to convert language into robot be-

havior. We propose two different EDMs. The first one is directly based on the

normal EDM [25], which has two separated RNNs: an encoder and a decoder.

The other one does not have clear separation of an encoder and decoder. Instead,

it has a single RNN that learns to internally functionalize encoding and decoding.

In this case, encoding the current input and decoding the internal representation

are constantly performed at each time step. Whenever an instruction is received,

the information is encoded together with the current multimodal input. After the

instruction reception, its representation is immediately decoded as a trajectory of

joint angles.

3.3.1 Model 1: Structural EDM

First, we introduce a model that has clear separation of an encoder and a de-

coder. We call this model structural EDM (S-EDM). Fig. 3.3 shows a schematic

diagram of S-EDM. The S-EDM consists of an encoder RNN and a decoder

RNN. The encoder RNN embeds a linguistic instruction, namely a word sequence
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 “Hit”         “green”     “slowly”     <EOS>             

Context

Input

Encoder Decoder

Output

Figure 3.3. The overview of S-EDM to convert linguistic instructions into robot behavioral
sequences. First, the encoder RNN embeds an instruction into a fixed-dimensional vector. The
cell state after receiving <EOS> is copied to set as the initial recurrent input of the decoder.
From this state, the decoder produces a behavioral sequence corresponding to the instruction.
Here, the appropriate trajectory depends on the current context. The decoder solves this issue
by receiving visual and proprioceptive input.

(w1,w2, ...,wTl
), into a fixed-dimensional feature vector. At each time step, the

output of the context layer is calculated as follows:

henc
t = EncRNNCell(wt,h

enc
t−1) (1 ≤ t ≤ Tl). (3.4)

wt and ht are a word input and the context layer output at time step t, respec-

tively. EncRNNCell is a learnable recurrent cell, although the detail of the update

calculation depends on the type of the cell (i.e., normal, GRU, LSTM, etc.) Given

an input word sequence, its embedding by the encoder RNN is attained as henc
Tl

by

incrementally calculating Eq. 3.4. Next, the initial recurrent input of the decoder

hdec
0 is set by copying the final output of the encoder henc

Tl
:

hdec
0 = henc

Tl
. (3.5)

Finally, the decoder RNN generates a behavioral sequence by recursively de-

coding the representation as follows:

hdec
t = DecRNNCell(vt, jt,h

dec
t−1) (1 ≤ t ≤ Tb − 1), (3.6)

jt+1 = g(Whdec
t + b) (1 ≤ t ≤ Tb − 1), (3.7)

where vt and jt are visual input and joint angle input at time step t, respectively.
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DecRNNCell is a learnable recurrent cell. jt+1 is obtained by applying an affine

transformation to hdec
t and then activating it by g. The parameters of the affine

transformation — W and b — are also learnable. The decoder’s own output jt+1

is recursively fed into the input layer at each step.

In this way, by receiving the current visual and proprioceptive information

together, the decoder generates a behavioral sequence depending not only on

the instruction embedding but also the current context. Learning is performed

as minimization of the error between an output sequence and a target sequence

(ĵ1, ĵ2, ..., ĵTb
). In other words, the following loss function L is minimized:

L =
1

Tb − 1

Tb−1∑

t=1

||jt+1 − ĵt+1||22. (3.8)

Although here we defined the loss as mean squared error (MSE) between the

output and the target, we can choose other types of loss in accordance with

tasks3. As mentioned above, derivatives of L at all the learnable parameters can be

calculated by applying the back propagation through time (BPTT) algorithm [90].

Thus, the parameters can be iteratively optimized by the gradient descent method.

3.3.2 Model 2: Functional EDM

Secondly, we propose a model that does not have clear separation between the en-

coder and the decoder. We call this model functional EDM (F-EDM; Figure 3.4).

In the case of the S-EDM, we assume that we have an explicit paired dataset of

language and behavior (accompanied by a vision stream). However, we presup-

pose that we have only sequential data that are recorded as directly representing

temporal flows of interaction, where instructions and behavioral responses are in-

cluded (Figure. 4.3 is an example). To learn this form of data, the F-EDM does

not have a separate encoder and decoder nor does it explicitly separate the en-

coding and decoding phases; it has only one RNN module. At each time step,

this RNN constantly receives words wt, vision vt, and joint angle inputs jt and

generates the joint angles jt+1 at next time step.

3For example, in the case of generating word sequences, the cross-entropy loss would be
appropriate.

28
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Figure 3.4. Overview of F-EDM. The F-EDM does not have a separate encoder and decoder;
instead, it has only one RNN. Encoding and decoding themselves are learned as functions from
the experience of predictive learning.

In this predictive learning, the F-EDM learns not only the grounding relation-

ships between language and behavior but also the progress pattern of interaction.

For example, in the case of the data shown in Figure 4.3, the imposed task con-

sists of a stand-by phase, instruction reception phase, and behavior generation

phase. Therefore, the model must learn to maintain the initial pose during the

stand-by phase and instruction reception phase by generating the joint angle val-

ues corresponding to the initial pose. After receiving the instruction, the model

must generate appropriate behavior immediately. Here, even while generating a

behavioral sequence, the input nodes for words receive a zero vector representing

that no word is currently given. After the behavior generation, the model must

wait for a subsequent instruction again. In this way, the model must learn not

only the relationships between instructions and behavioral responses but also the

task progress pattern. After training, if only the model calculates its forward

propagation, it can continue the interaction as if it flexibly switched between the

instruction reception, behavior generation, and stand-by phases in appropriate

contexts.

3.3.3 Comparison of S-EDM and F-EDM

Figure 3.5 compares the workings of S-EDM and F-EDM by focusing on their

internal representations. In the case of S-EDM, the encoder first embeds an in-

struction as the final output of the context layer. After that, the decoder generates
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a corresponding behavioral sequence by decoding the embedding, conditioned on

visual and proprioceptive information. The switch between the encoding and de-

coding phases is externally given. Because of this architecture, S-EDM can be used

when a parallel dataset of behavioral sequences and their corresponding linguistic

sequences exists and the separation of the encoding and decoding phases can be

given externally. In the S-EDM, the encoder and decoder are clearly separated,

so each module is optimized in accordance with its specific function.

In contrast, in the case of the F-EDM, the interaction flow that consists of

instruction reception and behavior generation is directly represented as the tran-

sition of the context state of the single RNN. First, while an instruction is input

to the model, the context state moves in a fixed-dimensional space in accordance

with the meaning conditioned on the visual and proprioceptive context (repre-

sented as colored solid lines in Figure 3.5 [B]). After receiving the instruction, the

RNN generates a behavioral sequence while its context state further moves from

the activation corresponding to the instruction embedding (represented as colored

broken lines in Figure 3.5 [B]). Finally, the context state converges back into the

state that represents a waiting posture, and then waits it for a subsequent instruc-

tion. In this way, the F-EDM learns to represent the repetition of instructions

and behavior responses as cyclic transitions of the context state. The explicit

separation between the encoding and decoding phases does not exist; instead, the

task progress pattern that is implicitly included in the target data is also learned

as the RNN’s internal dynamics.

In practice, task progress patterns that are different from simple repetition

of instruction, behavior, and waiting also occur in real interaction with humans.

For example, the robot state during waiting could be different every time. There

might also be cases in which the robot must refer to the previous episodes (e.g.,

demonstrative pronouns). Moreover, it should be possible that a human utters an

additional instruction during the robot’s behavior generation. Manually modeling

all of these interaction progress patterns is as difficult as the grounding problem

itself. Although we do not deal with all of these examples in the current study,

F-EDMs have the potential to learn such varying kinds of task progress patterns

that are implicitly included in training data.

30



“Hit green.”

“Hit red.”

“Point green.”

Encoder Decoder

Vision

“Hit green.” “Hit red.”“Point green.”

[A]  S-EDM 

[B]  F-EDM 

Encoding

Decoding

Represen-
tation
space

Represen-
tation
space

Time

Out

In

Figure 3.5. [A] In the case of the S-EDM, the encoder first projects an instruction onto the
representation space. After that, the decoder generates a corresponding behavioral sequence
by decoding the representation, conditioned on visual and proprioceptive information. The
switch between the encoding and decoding phases is externally given. [B] In the case of the
F-EDM, the interaction flow that consists of instruction reception and behavior generation is
directly represented as the transition of the context state. First, while an instruction is input
to the model, the context state moves in accordance with the meaning (colored solid lines).
After receiving the instruction, the RNN generates a behavioral sequence while its context state
further moves from the activation corresponding to the instruction embedding (colored broken
lines). Finally, the context state converges back again into the state that represents a waiting
posture, and then it waits for a subsequent instruction. An explicit separation between the
encoding and decoding phases does not exist; instead the F-EDM learns to represent the task
progress pattern, namely repetition of instruction receptions and behavior responses, as cyclic
transitions of the context state.

3.3.4 How the System Solves the Problems

The method proposed here integrates A1 and A2, i.e., an EDM from language

to robot behavior (A1) that also learns to merge multimodal information (A2).

This method learns the grounding relationships between language and behavior
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without a-priori knowledge from target data that include (explicit or implicit)

pairs of them by embedding the grounding relationships as fixed-dimensional space

of the context layer. Although the relationships between language and behavior

depend on the current situation, by receiving visual and proprioceptive input and

integrating it together with word input, an appropriate behavioral sequence can

be generated (R1). Moreover, this framework can deal with both content words

and function words. In the field of formal semantics, a meaning of a sentence is

given as a function of its element words. How to combine meanings of words to

build a meaning of a sentence is theorized by human in a top-down manner. In

contrast, in the case of RNN learning, the function to build a representation of

a sentence is learned from data in a bottom-up manner. For example, content

words are semantically encoded together with multimodal information depending

on the current situation. On the other hand, function words can contribute to

build the meaning of a sentence by further transforming the representations of the

content words. For example, as shown later in Chapter 5, “don’t,” which directs

a robot to generate the inverse behavior, works as a non-linear transformation of

the context state.

3.4 Converting Robot Behaviors into Descrip-

tive Sentences

The previous section described the EDM, which unidirectionally converts lan-

guage into robot behavior. In the opposite direction, we can build another EDM

to convert robot behavioral sequences into descriptive sentences in a similar man-

ner, as shown in Figure 3.6. Here, we describe only the S-EDM. The encoder

first encodes a behavioral sequence that consists of a series of joint angles and

accompanying visual information. Then, the final output of the encoder is copied

to set as the initial recurrent input of the decoder. Finally, the decoder generates

a descriptive sentence by decoding the representation.
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Figure 3.6. Overview of the S-EDM, which converts robot behavioral sequences into linguistic
descriptions.

3.5 Summary

In this chapter, we proposed RNN-based EDMs that learn to convert linguistic

expressions (resp., robot behavioral sequences) into robot behavioral sequences

(resp., linguistic expressions) depending on the current context given as multi-

modal input. We introduced two model variations — S-EDM and F-EDM. The

S-EDM is trained by explicit paired data of language and behavior. The ground-

ing is achieved through fixed-dimensional latent representation. On the other

hand, the F-EDM is trained with sequential data that directly represent an in-

teraction flow and implicitly include pairs of language and behavior. From the

experience of predictive learning, the F-EDM learns to represent the interaction

flow as its internal dynamics and the grounding is also achieved in the middle of

the dynamics. The topics discussed in this chapter are summarized in Figure 3.7.
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Figure 3.7. The main targets discussed in Chapter 3.
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Chapter 4

Grounding Context Dependent

Instructions in Robot Behaviors

4.1 Introduction

Chapter 3 proposed EDMs that are based on the RNN architecture to unidi-

rectionally convert language to robot behavior or behavior to language. In this

chapter, to evaluate the conversion capability of the proposed system, we perform

an experiment using a real robot. The main target that we focus on here is the

context dependency of the relationships between language and behav-

ior (R1). The experiment performed here evaluates the conversion performance

of the F-EDM from multi-word instructions to robot behavioral sequences. The

instructions consist of three or four content words including at least one verb,

object, and adverb. The meanings of instructions are determined by the com-

bination of these element words and also depend on the current context that is

given as visual input.

In conventional methods in general, to convert language instructions into robot

behavior, one must manually separate the problem into several sub-problems, such

as parsing a sentence, identifying the target object, planning a motion, etc, which

is a costly task. In contrast, our proposed framework learns the context-dependent

relations between linguistic instructions and behavioral responses from data in

an end-to-end manner. This chapter demonstrates that the F-EDM can learn

to convert linguistic instructions into behavioral sequences by compositionally
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encoding element words in a way that is integrated with the visual information

and by appropriately decoding the representation. Note that we do not deal with

function words but only content words in this chapter.

The remainder of this chapter is organized as follows. In Section 4.2, we

explain the detailed architecture of the model employed. Section 4.3 describes the

experimental design, such as the details of the task imposed on the robot and the

target data for training. After that, we report the learning results. In Section 4.4,

we report the achieved task performance. In Section 4.5, we analyze how the RNN

learns to internally represent grounding relationships. In Section 4.6, we state the

pros and cons of the proposed method in terms of our experimental results and

present directions for future work. Section 4.7 concludes this chapter.

4.2 Learning Model Details: F-EDM Based on

Multiple Timescale RNN

Here, we describe the details of learning model employed. As shown in Figure 4.3,

the dataset employed here is not explicitly separated pairs of instructions and

behavioral sequences, but it directly represents episodic flows of an instruction

followed by a behavioral response. To learn this form of target data, we use the

F-EDM. As mentioned in Chapter 3, the F-EDM has no explicit separation of

an encoder and decoder and is instead built as a single RNN architecture. The

model constantly receives the current word, vision, and joint angle input and then

predicts the joint angles for the future time step.

In this experiment, we employ an NN called a multiple timescale RNN (MTRNN).

It stacks a couple of context layers that work with different time constants (Fig-

ure 4.1). Thanks to this constraint, MTRNNs acquire functions that work in

different time scales on different layers in a hierarchical manner ([91, 92]). For

example, Yamashita and Tani [91] demonstrated that an MTRNN stacking two

context layers successfully learned robot arm motion sequences that were com-

prised of multiple reusable motor primitives. One context layer worked with a

small time constant and the other worked with a large time constant. Through

learning, the model organized its dynamical system that coupled with the mo-
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Figure 4.1. Two-layer MTRNN. The I/O and slow layers do not have direct connection, but
input signals are fed into the slow layer through the fast layer, and the slow layer activation also
controls the output through the oppositely directed connection.

tions to be generated in a temporally hierarchical manner. The layer with the

small time constant organized dynamics that worked synchronously with the mo-

tor primitives, and the layer with the large time constant represented the orders

of primitives.

In the current task, a two-layered MTRNN enables the robot to cope with

both the global context of interaction and the current complicated I/O flow. The

grounding relationships between sentences and behaviors and the global context

of the interaction are represented in the slow layer, which works with a large time

constant. On the other hand, the fast layer, which works with a small time con-

stant, organizes representations that more directly correspond to the details of the

current I/O flows. To be more precise, the fast layer facilitates the two-way trans-

formation between the I/O flow and the abstract representation of global context

of the task progress in the slow layer. While a language command is given, the fast

layer simultaneously receives visual features, integrates them with word informa-

tion, and then feeds the encoding into the slow layer. The slow layer receives the

integrated information and obtains appropriate activation in accordance with the

meaning of the instruction in the current context. This is a bottom-up process.

On the other hand, during behavior generation, the representation in the slow

layer is decoded as various joint angle sequences on the output layer through the
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fast layer. This is a top-down process. By being functionalized hierarchically, the

model enables the robot to execute this interactive grounding task. The details

of the MTRNN formulation are described in Appendix A.1.

To train the MTRNN-based F-EDM, we apply two learning techniques. One is

to learn to predict not only joint angles but also other modalities together. Some

studies have empirically reported that by predicting multiple modalities that are

not mandatory for the task accomplishment together as an auxiliary task, the

performance on the main task can be improved [15, 93]. The other technique is

learning to predict not only the next target state but also its uncertainty. This

technique was proposed independently in both [94] and [95]. Murata et al. [95]

reported that when target data include unpredictable noise, learning to explicitly

predict the target state in the form of its mean and variance can improve the

learning stability. The loss function defined in this learning scheme is described

in Appendix A.2.

4.3 Experimental Setup

4.3.1 Task Design

This subsection describes a grounding task that the model learns to execute.

First, we put two bells whose color is red, green, or blue in front of the robot

to its left and right. After that, we give the robot a three-word instruction that

is comprised of a verb, a position word, and an adverb (e.g., “ring right fast”;

referred to as P-type) or a verb, a color word, and an adverb (e.g., “point green

slowly”; referred to as C-type). Here, the object words indicate one of the colored

bells. Adverbs direct the speed of the motion. In the cases where the two bells

are painted in the same color, the robot cannot recognize which bell is referred

to by a C-type sentence. Thus, a four-word instruction that is comprised of a

verb, a color word, a position word, and an adverb (e.g., “ring red left slowly”;

referred to as C′-type) is used instead. After receiving an instruction, the robot

immediately begins to produce a behavioral sequence that corresponds to the

instruction. After generating a behavioral sequence, the robot waits for the next

instruction. We refer to this chunk consisting of instruction reception, behavior
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Figure 4.2. Illustration of behavioral sequences. Each of them can be produced at both FAST
and SLOW speed. For each behavior, we plotted only the five joints on the moving arm.

generation, and stand-by as an “episode.” This task includes nine possible bell

combinations (R,G,B) ʷ (R,G,B), eight possible behavioral patterns (POINT1,

RING) ʷ (LEFT, RIGHT) ʷ (SLOW, FAST), and two possible instruction types

(P, C or C′), which means there is a total of 9 ʷ 8 ʷ 2 = 144 possible episode

patterns.

4.3.2 Target Data

We next describe the target sequential data that represent this grounding task.

The target data were collected through the following process. First, we collected

behavioral sequences using a real robot (Figure 4.2). We recorded the behavioral

sequences as a sequence of 10-dimensional vectors, whose elements correspond

to different robot arm joints, by running programs that control the robot arm

joints along predesigned trajectories. The sampling interval was 240 ms. FAST

and SLOW behavioral sequences took approximately 30 and 45 time steps, re-

spectively. After recording, we scaled the movable range of each joint into [-0.8,

0.8]. At the same time, we recorded images from a built-in camera on the robot

1In this thesis, we denote specific behaviors that the robot executes and their elements with
capital letters.
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Figure 4.3. An episode example. In this episode, we give the instruction “point red slowly”
to the robot in a context in which the red and green bells are located on the left and right
side, respectively. In response to the instruction, the robot executes the POINT-LEFT-SLOW
behavior. We plotted only the five joints of the left arm.

head. We then converted the recorded images into four-dimensional vectors that

represent bell colors. More precisely, four elements correspond to the sine and

cosine of the hues of bell colors.

After recording and preprocessing all the possible combinations of behaviors

and bell arrangements, we prefixed instruction sentences to them on a computer.

Sentences were constructed as a succession of nine-dimensional vectors. Each

element is assigned to one word (“point”, “ring”, “left”, “right”, “red”, “green”,

“blue”, “slowly”, and “fast”). An instruction consists of a series of words, each

of which represented as a triangle activation that reaches the top — 0.8 — in six

time steps and returns to 0.0 in six time steps2.

In this procedure, we made all the 144 possible episode patterns as sequences

of 23-dimensional vectors. Figure 4.3 illustrates an example of an episode.

2Here, the joint angles and vision during the instruction phase took the same values as those
at the first step of the following behavior phase. Thus, the robot rests in the initial posture
while receiving an instruction, and the bells are not relocated through an episode, although
some fluctuation and noise could be added during data recording.
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4.4 Learning Results

4.4.1 Evaluation Method

To train the model, we made sequences that concatenate multiple episodes in a

random order3. Intervals between episodes were randomly set to at least 3 and at

most 25 time steps4. The model extracts the task progress pattern implicitly in-

cluded in the sequential data and attains the skill to switch phases autonomously.

We prepared three training datasets and one test dataset as follows:

• Train 1: includes 72 sequences. Each of them is a concatenation of 20

episodes; all 144 possible episode patterns are included at least once (144/144).

• Train 2: includes 72 sequences. Each of them is a concatenation of 20

episodes; only half of the possible episode patterns are included in this

dataset. The other patterns were used to evaluate generalization ability

(Table 4.1; 72/144).

• Train 3: includes 72 sequences. Each of them is a concatenation of 20

episodes; two-thirds of the possible patterns were excluded (Table 4.2; 48/144).

• Test: includes 72 sequences. Each of them is a concatenation of 20 episodes;

all possible episode patterns were included; the order of episodes is different

from that in the above sets.

We carried out training and evaluated the resulting performances indepen-

dently for each training dataset. In the test, only instructions and vision are

given to the model externally. In contrast, the input nodes for joints receive val-

ues predicted by the corresponding output nodes d steps before5. In this forward

3By experiencing repetitions of multiple episodes, the capability to sustainably continue to
interact multiple times is acquired. In fact, in a preliminary experiment, trained with a dataset
to which such concatenation was not applied, the model could not achieve the capability of
moving back to the stand-by state after behavior generation despite succeeding in learning the
relationships between language and behavior.

4By doing this, a fixed-point attractor that enables the robot to wait for subsequent instruc-
tions is organized.

5In Chapter 3, we described the basic model with d = 1; in other words, the joint angle
output is fed into the input nodes on the next time step. In fact, d can be a hyperparameter
that should be controlled depending on resolution of recording frames.
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Table 4.1. Episodes included in the Train 2 dataset. To direct the robot to execute a specific
behavior (row) in a specific bell combination (column), two instructions are possible: P-type and
C- or C′-type. In the Train 2 dataset, the model experiences one of them for each combination
of behavior and bell arrangement. For instance, when green and red bells are put in the left
and right side, respectively (G-R), the model experiences only the P-type sentence to execute
POINT-LEFT-FAST behavior (6nd row, 4th column); when the bell combination is Red-Blue,
the model experiences only the C-type sentence to execute RING-LEFT-SLOW (1th row, 3rd
column).

Behavior \ Bell colors R-R R-G R-B G-R G-G G-B B-R B-G B-B

RING-L-SLOW C′ P C P C′ P C P C′

RING-L-FAST P C P C P C P C P
RING-R-SLOW P C P C P C P C P
RING-R-FAST C′ P C P C′ P C P C′

POINT-L-SLOW P C P C P C P C P
POINT-L-FAST C′ P C P C′ P C P C′

POINT-R-SLOW C′ P C P C′ P C P C′

POINT-R-FAST P C P C P C P C P

propagation, the sequence generated by joint angle output nodes is understood as

the model’s autonomous behavior.

We evaluate the resulting performance by numerical simulation on a computer

without using the real robot but with the Test dataset. The evaluation is per-

formed by calculating the root MSE (RMSE) between the generated joint angle

values and the ground truth values per joint per time step. In the Test dataset,

the episodes are ordered differently from the datasets for training. If the model

can learn the temporal patterns as a systematic grounding of sentences in robot

behaviors rather than by rote memorization of whole sequences that are a succes-

sion of multiple episodes, it will be capable of generating appropriate behavioral

sequences even in situations with differently ordered episodes.

4.4.2 Model Hyperparameters

The hyperparameters employed in the current experiment are listed in Table 4.3.

At the beginning of learning, we set the learning rate α to 0.1 and updated it

adaptively along the learning progress using an algorithm proposed in Namikawa

and Tani [96].

With respect to each training dataset, learning was carried out 10 times from
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Table 4.2. Episodes included in the Train 3 dataset (48/144). The model experienced neither
P-type nor C-type instruction in the black-filled situations.

Behavior \ Bell colors R-R R-G R-B G-R G-G G-B B-R B-G B-B

RING-L-SLOW C′ C P C P C′

RING-L-FAST P C P C C P
RING-R-SLOW C P C C P P
RING-R-FAST P C C′ P C P
POINT-L-SLOW C P P C P C
POINT-L-FAST C′ P C C′ P C′

POINT-R-SLOW C′ P C′ P C C′

POINT-R-FAST P C C P C P

Table 4.3. Hyperparameters of the employed model.

Hyperparameter Value

Number of nodes in the fast layer NB 80

Number of nodes in the slow layer NT 30

Time constant of the fast layer τB 2

Time constant of the slow layer τT 12

Prediction constant d 4

Learning rate α 0.1

Momentum term for gradient descent η 0.9

Learning iterations 100,000

randomly initialized trainable parameters by different seeds. We evaluated the

resulting performance every 5,000 iterations. The learning progress with respect

to each of the datasets is shown in Figure 4.4. Each line is an error curve corre-

sponding to one random seed. Although learning tends to develop in an unstable

manner, we can observe the tendency of error decrease with respect to both ex-

perienced and unexperienced patterns. The following reports the results of the

models that achieved the best performance among all the random seeds and learn-

ing epochs (orange circles in Figure 4.4). We refer to the best model trained with

the Train N dataset as “Model N.”
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Figure 4.4. The error curves with respect to each of the datasets. Each line shows a learning
development that started from differently initialized parameters. The orange circles indicate the
models that achieved the best result among all the learning trials and epochs.

4.4.3 Task Performance

Behavior Generation

Table 4.4 quantitatively shows the performance results of the behavior generation.

All the models succeeded in generating an appropriate behavioral sequence in all

the experienced episode patterns. The overall RMSEs of Models 1, 2, and 3 dur-

ing behavior generation were 7.06e-03, 6.91e-03, and 6.24e-03, respectively. Even

in the worst episode, the RMSE was only 1.17e-02. Models 2 and 3 did not expe-

Table 4.4. Behavior generation performance. “Mean” indicates the overall RMSE during the
test. “Worst” indicates the RMSE in the worst episode. “StdDev” indicates the standard
deviation of the RMSE over all episodes.

Experienced Unexperienced

Mean Worst StdDev Mean Worst StdDev

Model 1 (144/144) 7.06e-03 1.17e-02 1.76e-03 – – –

Model 2 (72/144) 6.91e-03 9.83e-03 1.50e-03 9.08e-03 2.03e-02 3.08e-03

Model 3 (48/144) 6.24e-03 7.90e-03 8.4e-04 1.19e-02 5.43e-02 7.03e-03
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Figure 4.5. [Left] Joint angle trajectory predicted by Model 2 in the worst unexperienced episode
that scored the largest RMSE (2.03e-02). The solid lines indicate predicted joint angle values,
and the dashed lines are the correct ones. [Right] The worst unexperienced episode by Model
3. The RMSE was 5.43e-02. We plotted only the five joints on the left arm because in these
episodes the correct behavior is the POINT-LEFT-FAST one.

rience a number of episode patterns during training. The errors in unexperienced

patterns were a little larger than those in experienced patterns. However, the

visual comparison confirmed that the produced behavioral sequences were rather

similar to the ground truth even in the episode that scored the largest RMSE,

as shown in Figure 4.5. These results demonstrate that the model achieved the

generalization ability to ground instructions appropriately in behavioral responses

even in the unexperienced situations by learning systematic relationships among

language, vision, and behavior.

Waiting Ability

One attractive point of the F-EDM is its capability to learn the task progress

pattern together with grounding. The current task contains multiple repetitions

of instruction reception, behavior generation, and stand-by. If the model ap-

propriately learned this task progress pattern, it could achieve the capability of

waiting for a subsequent instruction after every behavior execution. In fact, we

evaluated this capability and confirmed that after every behavior execution, both

arms returned to the initial posture and stayed in that posture until the next

sentence was given. The RMSE by Models 1, 2, and 3 during the stand-by phase

were 5.81e-03, 3.76e-03, and 3.24e-03, respectively. We also confirmed that even

when we gave an instruction after an unexperienced long time of up to 100 steps,
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the robot successfully produced an appropriate behavioral sequence. In brief, the

model has achieved the capability of stably waiting for instructions. In other

words, the model learned not only the grounding relationships between language

and behavior but also the interaction progress pattern of repetitions of instruction

reception, behavior generation, and waiting for a subsequent instruction.

As demonstrated by these results, the model could continue this interactive

task by reusing learned grounding relationships in appropriate contexts.

4.5 Analysis of Internal Representations

In the previous section, we exhibited that the models learned to behave appro-

priately in the current task. We next investigate how the RNN has learned to

internally represent grounding relationships in its dynamics.

4.5.1 Slow Layer Dynamics

To investigate how the model internally represents this grounding task, we visual-

ized the context states6 in the both layers during the test by principal component

analysis (PCA), which projects the original high-dimensional vectors into a low-

dimensional subspace. In the following, we explore the representations by Model

1. In Figure 4.6, the top-left panel visualizes the time development of the context

state of the slow layer during episodes in the PC1 direction. Respective lines

show the representative development of one of eight different behaviors7. The

context state of the slow layer bifurcates in accordance with the given words.

Different words (e.g., point or ring) lead it to different branches. After three bi-

furcations (POINT–RING, LEFT–RIGHT, and SLOW–FAST), the context state

reaches one of eight different embeddings that correspond to the respective behav-

iors. From the state that represents grounding of a sentence in a corresponding

behavior, the model immediately starts to generate a behavioral sequence.

6Here, we visualized the vector space before applying the activation function.
7More precisely, respective lines are the average development over all the episodes in which

one specific behavior was executed. For instance, the red solid line indicates the average over
all the episodes in which POINT-LEFT-SLOW was executed. However, the episodes in which
a four-word instruction (i.e., C′-type instruction) was used were excluded.
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Figure 4.6. [Top-left] The time development of the context state of the slow layer in the PC1 di-
rection. The contribution ratio was 28.3%. Respective lines show the representative development
of one of eight different behaviors. The context state develops along one branch in accordance
with the meaning of the given words. [Top-right] The same development in the PC1–PC2 sub-
space. This space clearly shows the cyclic attractors that directly represent the task progress
pattern, which is multiple repetitions of instruction reception and behavior response.

The top-right panel of Figure 4.6 also visualizes the same time development by

projecting it into the PC1–PC2 subspace and by hiding the time step axis instead.

This visualization clearly shows that cyclic attractors that directly represent the

task progress pattern — namely repetition of instruction reception and behavior

generation — as cycles were organized in the model’s forward dynamical system.

After behavior generation, the context state reaches the vicinity of the initial

state (indicated by an asterisk) again. We also confirmed that the initial state

was organized as a fixed-point attractor, thereby enabling the robot to stably

wait for a subsequent instruction. Thanks to such cyclic attractive dynamics, the

model successfully continued the current interactive task. The autonomous phase-

switching from instruction reception through behavior generation to stand-by was

achieved by a simple series of forward propagations without any external cues.

It should be noted that when the instruction was C-type, a branch that the

context state develops along differs in accordance with the current bell arrange-

ment. For instance,ʠ blueʡmeans either LEFT or RIGHT depending on which

side the blue bell is. Even in these contexts, the model successfully chose the

correct branch by having learned the relationships of the color words and the

bell colors. Here, the bifurcating structure is realized by the model’s dynami-
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Figure 4.7. [From left to right] The context states of the slow layer after receiving a verb,
object, and adverb, respectively, in the PC1–PC3 subspace (their respective contribution ratios
were 52.2, 40.0, 8.5%, and we extracted PCs only from the states just after the instruction
phase). Each plot corresponds to a different episode. The panels show the doubling of clusters
according to the given words. The dashed arrows in the right panel roughly illustrate the vectors
connecting representative grounding points for two behaviors that differ in only the verb element
(for instance, POINT-RIGHT-SLOW and RING-RIGHT-SLOW), namely the POINT–RING
axis. The cosine similarities between two out of four vectors in the original space were 0.972 at
minimum, in other words, they were all almost parallel. In the cases of the LEFT-RIGHT and
SLOW-FAST axes, the minimum cosine similarities were 0.938 and 0.977, respectively.

cal system. Therefore, the state development is not completely identical among

different episodes, having variance from the average development. This variance

is caused by the visual fluctuation or the influence of previous episodes. This

fact is shown in Figure 4.7. The panels in Figure 4.7 show the context states

after receiving a verb, object, and adverb by projecting them onto the PC1–PC3

space. Each plot corresponds to a different episode. The point colors and shapes

differ in accordance with the behavior to be executed in each episode. The panels

show that each word input leads to a doubling of clusters. Finally, after adverbs,

the eight clusters corresponding to the eight behaviors appear. In this way, the

sentences are grounded in robot behaviors as cluster structures in the middle of

cyclic attractive dynamics.

Furthermore, we can see that the topology of these clusters reflects the se-

mantic structure of given sentences. More precisely, Each of these clusters was

arranged on a vertex of a parallelepiped, whose axes corresponded to POINT–

RING, LEFT–RIGHT, and SLOW–FAST pairs. In the rightmost panel of Fig-

ure 4.7, the four dashed arrows roughly illustrate the vectors connecting repre-

sentative grounding points for two behaviors that differ in only the verb element
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(e.g., POINT-RIGHT-SLOW and RING-RIGHT-SLOW), namely the POINT–

RING axis. The cosine similarities between two out of four vectors in the original

space were 0.972 at minimum, in other words, they were all almost parallel. In the

cases of the LEFT-RIGHT and SLOW-FAST axes, the minimum cosine similari-

ties were 0.938 and 0.977, respectively. On the other hand, the cosine similarities

between the POINT-RING and LEFT-RIGHT axes, between the LEFT–RIGHT

and SLOW–FAST axes, and between the SLOW–FAST and the POINT–RING

axes were 0.079, 0.035, and 0.075, respectively, meaning that these axes were close

to orthogonal. By non-linearly encoding the input words, which were orthogonal

to each other, the model organized this parallelepiped representation space.

Taken together, the slow layer learned to self-organize the dynamical system

that worked synchronously with the progress of the current interactive task. The

instruction reception, behavior generation, and stand-by phases were represented

as different parts of the cyclic attractors. The grounding of linguistic instructions

in behavioral sequences was encoded as a topologically organized cluster structure

that was developed by bifurcations in accordance with the input words.

4.5.2 Fast Layer Dynamics

We also applied PCA to the internal states of the fast layer to visualize its self-

organizing dynamics. Figure 4.8 shows that the fast layer does not maintain

memory in the long term, rather its state flexibly changes in accordance with the

current input and output. While receiving a verb, the context state of the fast

layer develops differently in accordance with the given verb. After shifting into the

object input phase, the context state immediately forgets the information about

the verb. Instead, the context state develops in accordance with the currently

given object. The same is true in the case of a shift from the object phase to the

adverb phase. Instead, the information vanished from the fast layer is fed into the

slow layer and maintained as described in the previous subsection. On the other

hand, during behavior generation, the information maintained in the slow layer is

fed back to the fast layer. Getting information from the slow layer, the context

state of the fast layer develops differently in accordance with the behavior to be
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Figure 4.8. The time development of the context state of the fast layer in the PC8 direction (the
contribution ratio was 3.0%). Each line shows the development during one episode. The lines
are colored differently in the verb, object, adverb, and behavior phases. The context state of
the fast layer develops very differently in accordance with the current I/O flow; it immediately
forgets past information.

executed8.

4.5.3 Comprehensive Summary of the Model Mechanism

We describe the mechanism of the whole of the model by considering all analysis

results together. The global representation of the context in task progress was

organized in the slow layer in the form of cyclic attractors. The grounding of

language in behavior was represented as relay points in the middle of the cyclic

attractive dynamics. However, the actual multimodal I/O flows are more com-

plicated than the global representation by the slow layer. Thus, the fast layer,

whose state changes more drastically, transforms between the current I/O states

and the slow layer representations. While receiving an instruction, the fast layer

integrates the word input with visual input and feeds the integrated information

to the slow layer. By receiving such information, the slow layer reaches an ap-

propriate activation in accordance with the behavior to be executed. This is a

8The reason why we plotted the time development in the PC8 direction is that this component
included the information about each part of speech and joints relatively evenly, meaning this
fact could be seen readily. Although other principal components had a similar tendency, they
simultaneously tended to primarily correspond to a specific modality. For instance, PC1-4 were
primarily used to represent the current joint angle values.
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bottom-up mechanism. On the other hand, during behavior generation, the model

works in a top-down manner. The transition along the second half of the cyclic

attractor is transformed into a detailed joint angle trajectory thanks to a non-

linear transformation through the high-dimensional space of the fast layer. By

hierarchically self-organizing the functions that work on different timescales on

its different layers, the model allowed the robot to continue to execute the current

interactive grounding task.

4.6 Discussion

In this chapter, we performed a robot experiment to evaluate whether the pro-

posed method can learn the conversion task from language to robot behavior

depending on the visual context. The model could continue the given interactive

task by learning to ground linguistic instructions in robot behavioral sequences

conditioned on the current visual context and by utilizing the acquired relation-

ships in appropriate interaction contexts.

During task execution, the latent representation of grounding was achieved

by bifurcating in accordance with the linguistic command and the visual con-

text. From the grounding point, the model produced an appropriate behavioral

sequence in the subsequent forward propagation, while the context state moves

along the second half of the attractor. Furthermore, by organizing a fixed-point

attractor at the initial point, the model could wait for a subsequent instruction

stably in the stand-by posture. Thanks to this structure, which represented both

grounding relations and the task progress pattern, the robot successfully contin-

ued the current interactive task by autonomously switching between instruction

reception, behavior generation, and stand-by phases.

In the following subsections, we discuss the characteristics of the current model

in comparison with other existing grounding methods and indicate its advantages

and disadvantages.
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4.6.1 Encoding Grounding Structure as Fixed-dimensional

Representations

Encoding grounding as fixed-dimensional latent representations is an effective way

to cope with the “linear nature” of language indicated by Saussure [97]. Natural

language expressions are restricted in the sense that they are able to express

their referent only as a linear series of words that correspond to certain features

of the referent and that compositionally build the whole meaning, whereas the

word order is uncorrelated to the actual temporal structure of the referent. In

the current task, the RING-LEFT-FAST behavioral sequence is not able to be

temporally reduced to primitives corresponding to “ring,” “left,” and “fast.” These

words express a certain feature that relates to the whole of the behavioral sequence

and compose the meaning by being arranged in accordance with syntactic rules.

The combinatorial structure of language is intrinsically different from that of the

real world.

Considering this restrictive fact that a language system has combinatorial

structure different from behavior and that both still have a temporal context,

a method that learns to embed their relationships in a fixed-dimensional latent

representation can achieve their grounding in a unified manner. In the current

task, instruction understanding was represented as a branching structure that

developed a cluster structure corresponding to the behavior to be executed (from

language to behavior). Heinrich and Wermter [98] performed a robot experiment

in which an MTRNN learned to generate various descriptions of robot vision

and proprioception sequences through the fixed-dimensional representations (from

behavior to language). Ogata et al. [41] showed that two RNNs compounded by

a PB module, which has a small number of neural nodes to connect two RNNs,

could bidirectionally convert between linguistic expressions and robot behavioral

sequences through the fixed-dimensional PB space (both directions). As in these

cases, grounding that consists of recognition and generation of variable-length

sequences of language and behavior can be accomplised through fixed-dimensional

representations by RNNs. This structure is totally learned from data without

manually designed encoding and decoding rules.
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4.6.2 Topologically Organized Representation Space

The analysis of the fixed-dimensional latent representations in the slow layer re-

vealed that the grounding of language in behavior was represented in a topo-

logically organized cluster structure. This sort of structure, which reflects the

compositional nature of language, was also seen in a work by Sugita and Tani [9].

To ground two-word instructions in a set of robot behaviors, they employed two

RNN modules — one dealt with language and the other with behavior — and a

PB module. Training that constrained PB values for generating a behavior and

its paired sentence to be close to each other resulted in a topological structure

that represented meanings of words and their compositionality in the PB space.

In this framework, to search an optimal PB vector (grounding point) to convert

an instruction to a behavioral response, the repetitive back-propagation and up-

dates of PB values were required. In contrast, our experiment in this chapter

demonstrated that a similar structure for representing language grounding can

be achieved by the forward-path only. This is an advantage because using only

forward-propagation requires less calculation. Moreover, a topologically organized

structure has the potential of generalization to novel sentences. We must evalu-

ate such a generalization capability; this is more difficult than the combinatorial

generalization between instructions and visual input demonstrated in the current

experiment.

A topologically organized structure in NN’s state space has also be reported in

the field of NLP. Mikolov et al. [99] demonstrated that training an RNN using a

language modeling task with a large corpus resulted in effective distributed repre-

sentations of word meanings. In the embedding space, some algebraic operations

could be performed (e.g., “Madrid” − “Spain” + “France” = “Paris”). It was

also reported that such an algebraic operation can be performed on representation

spaces of vision [100, 101]. For example, an image of a woman with sun-glasses

can be generated by a manipulation of [man with sun-glasses] −[man without

sun-glasses] + [woman without sun-glass] in a latent space. If it is revealed in

future that such algebraic operations can also be performed on the representation

space of grounding, it will be of much practical use.
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4.6.3 Characteristics of F-EDM Compared to those of S-

EDM

This chapter performed an evaluation experiment for an F-EDM that has no

explicit separation of the instruction reception and behavior generation phases.

This model is trained with predictive learning where it constantly receives current

word, vision, and joint input and generates joint angles for the future time step.

In this learning, the model learns not only the relationships between language

and behavior but also task progress patterns implicitly. In the case of the normal

EDM, i.e., S-EDM, the phase switch of recognition and generation is externally

given. However, in the case of F-EDM, the model after training can execute

the task by autonomously switching between instruction reception, behavior gen-

eration, and stand-by phases just in forward calculation. In the current task,

the task progress pattern is relatively simple, so the benefits of F-EDM may be

not so abundant. However, in the case that the contextual information in pre-

vious episodes is required to achieve the current episode or that an additional

instruction is given during behavior generation, the F-EDM would bring about

great benefits. In such cases in which the required grounding is not presented

as simple successive pairs of instruction and behavior, to manually design task

progress patterns becomes difficult. F-EDMs have the potential to flexibly deal

with such situations by implicitly learning the various task progress patterns if

experiences include these situations. In future work, we must evaluate whether

F-EDMs actually learn such tasks.

4.6.4 Stability and Safety of Model Behavior

We must also consider the stability of the acquired dynamics. In the current ex-

periment, the model successfully responded to instructions by generalization, even

in the unexperienced cases. We also confirmed that the stand-by state to wait

for an instruction was represented as a fixed-point attractor that was stable to a

certain extent. However, we cannot ensure that the model’s working is globally

stable even in unexpected situations or in very noisy environments. It is extremely

difficult to globally analyze the characteristics of a high-dimensional dynamical
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system. The current framework works by executing the forward-propagation only;

thus, there would be a risk that the model’s behavior suddenly becomes unstable

when an unexpected event occurs. To ensure safety for practical use, some pro-

tective module that controls output joint torques or that monitors error values

should be implemented.

4.6.5 Scalability of the Proposed Method

We must also evaluate the model’s scalability. Recently, existing studies have

performed experiments in which S-EDMs with deep architecture were trained on

natural-language-instructed navigation tasks [15, 16, 17] that imposed an agent

to navigate in a virtual environment in a highly context-dependent manner. Most

studies trained the models in a reinforcement manner, and the output form is of-

ten discretized, such as STRAIGHT, TURN-LEFT, TURN-RIGHT etc. Although

existing studies have these differences from the current study, they reported that

the models could understand relatively long instruction sentences. We must ver-

ify whether F-EDMs can also achieve similar levels of grounding capability and

whether both types of EDMs successfully scale up to real-world problems, which

include more noise and fluctuation than simulated problems and require the robot

to execute behavior in a continuous space.

4.7 Summary

In this chapter, we evaluated our proposed framework on the context depen-

dency of meanings of language (R1). We designed a task that required the

model to unidirectionally convert language instructions into robot behavioral re-

sponses by considering the current visual context. The experiment demonstrated

that the model organized the forward dynamics that represented the task progress

patterns from learning in an end-to-end manner. Also, the model embedded the

context-dependent relationships between language and behavior in the middle of

the forward dynamics by encoding visual information together with word input.

Thanks to such a structure, the model successfully generated robot behaviors

appropriate for the visual context in response to given instructions. Figure 4.9
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summarizes the topics discussed in this chapter.

Research

Objective

Language grounding in robot behavior

Approaches

 End-to-end learning of
 encoder--decoder 
 model
(Chapter 3)

 Coupled EDMs and 
 representation
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(Chapter 6) 

 Integration of 
 multimodal information
(Chapter 3)
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Context dependency of

linguistic expressions
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conversion ability

Understanding of 
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Evaluation

 Linguistic instructions

 into robot behaviors:
 only content words

(Chapter 4)

 Bidirectional conversion 

 between language

 and behavior 

(Chapter 6) 

 Linguistic instructions

 into robot behaviors:

 content & function words 

(Chapter 5)

Figure 4.9. The main targets discussed in Chapter 4.
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Chapter 5

Understanding Both Content

Words and Function Words

5.1 Introduction

The previous chapter performed an evaluation experiment and confirmed that

the F-EDM could learn to convert context-dependent instructions into robot be-

havioral responses. In the experiment, the meanings of instruction sentences de-

pended on visual context but the sentences included only content words. Next,

this chapter evaluates our proposed framework on the understanding of both

content and function words (R2). Specifically, as an example of function

words, we perform an experiment with some logic words, e.g., “not”, “and”, and

“or”. Although logic words do not have direct grounding in the real-world matters,

they contribute to the construction of meanings of natural language expressions

by working as logical operators. For instance, immediately after someone has

opened a window, the instructions “close the window” and “don’t open the win-

dow” would be requests to produce the same behavior of CLOSE-WINDOW. As

another example, an instruction “pick the box or the ball” would accept both

PICK-BOX and PICK-BALL as appropriate responses.

In the field of cognitive robotics, existing studies on integrative learning of lan-

guage and behavior have rarely focused on such logic words. Probabilistic models

generally learn the stochastic co-occurence relations between content words and

multimodal features, so they have not investigated how function words combine
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the meanings of content words [40, 55]. NN models have the potential to encode in-

structions that consist of both content and function words as distributed represen-

tations. However, previous studies using NN models have also mainly dealt with

grounding learning of sentences that consisted of content words only [9, 41, 10].

In this chapter, we demonstrate that the proposed RNN-based EDM actually has

the capability of learning to convert linguistic instructions consisting of both con-

tent words and logic words into behavioral sequences. We also investigate how

the model internally represents these function words together with other content

words.

The remainder of this chapter is organized as follows. In Section 5.2, we explain

the detailed architecture of the model employed. In Section 5.3, we describe the

experimental design. In Section 5.4, we report the task performance. Section 5.5

performs analyses of how the model internally represents both grounded words

and function words. Section 5.6 also investigates the internal representation of

logic words in more detail by performing an additional learning experiment. In

Section 5.7, we discuss the acquired results. Section 5.8 concludes this chapter.

5.2 Learning Model Details: F-EDM Based on

LSTM-RNN

Similar to the experiment in Chapter 4, we formulate the conversion task from

language instructions to behavioral sequences as a problem to learn to produce

a robot’s joint angle trajectory appropriate for the current context. Therefore,

we employ the F-EDM. However, we use an LSTM-RNN instead of an MTRNN.

Recently, a great deal of studies have reported that RNNs with LSTM units have

strong capability to deal with temporal patterns of data. LSTM units have a

cell to memorize contextual information and three types of gates that explicitly

control information flow that goes in and out of the cell. Input gates control the

information to be drawn into the cell. Forget gates determine whether the current

cell state can be refreshed or not. Output gates determine whether the current

state should be output or not. By introducing these learnable gates, LSTM-

RNNs can memorize much longer temporal patterns and also ease the vanishing
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gradient problem during training. For details of the cell update calculation, refer

to Appendix A.3. Moreover, in the case of MTRNNs, we must tune the time

constant in each layer as a hyperparameter. In contrast, the LSTM does not

require it.

Although the task learned in this chapter is actually not required to memorize

extremely long temporal structure, it still requires the model to solve complex

problems such as grounding perfectly orthogonal sentences in the same behavior.

Utilization of an LSTM-RNN that can flexibly embed input stream thanks to its

high non-linearity is an advantageous choice to address the current task1.

5.3 Experimental Setup

5.3.1 Task Design

This section describes the task design for the learning experiment. Although

we completely perform the experiment as a numerical simulation on a computer,

we describe the task as though a robot executed it for readers to be able to

understand intuitively. First, the robot holds two out of three flags whose colors

are red, green, and blue; it holds one with the left arm and the other with the right

arm. The robot then receives a multi-word instruction. The instruction consists

of a truth value (“do”, “don’t”), a verb (“raise”, “lower”), and an object (“red”,

“green”, and “blue”) in reverse order2. An object word refers to an arm holding

the flag of the stated color. A verb specifies if the robot must lift or lower the flag.

Eventually, “do” directs the robot to behave by following the verb. In contrast,

“don’t” directs the robot to produce the inverse behavior. For instance, when the

robot is holding the blue flag in its left arm receives the instruction “don’t raise

blue,” the robot must lower the left arm (LEFT-DOWN)3.

1In fact, we evaluated the performance of MTRNNs with some hyperparameter sets on the
current task as a preliminary experiment. However, they could not achieve learning.

2We give the words in reverse order to common English because we designed the current task
by extending a famous game in Japan and Japanese is an SOV language.

3In this task, “not” is always given as a form of “don’t.” We treat each of “do” and “don’t”
as one word as if they were paired truth values. On the other hand, in the additional experiment
in Section 5.6, we design another task in which “not” is given as an independent word.
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Figure 5.1. The possible transitions among the robot postures in the flag task.

We also make instructions that concatenate two object words by “and.” We

refer to them as AND-concat instructions. For instance, when the robot is holding

blue and green flags and receives the sentence “do lower blue and green,” both

arms must be lowered. Furthermore, we make instructions that concatenate color

words by “or.” We refer to them as OR-concat instructions. For instance, when

the robot is holding the green and red flags and receives the sentence “do raise

red or green,” the appropriate behavior is lifting up either arm. Thus, the current

task includes six goal-oriented behavioral patterns: LEFT-UP, LEFT-DOWN,

RIGHT-UP, RIGHT-DOWN, BOTH-UP, and BOTH-DOWN. Note that even if

the same goal-oriented behavior is directed, the actual joint angle trajectory that

the robot must generate varies in accordance with the current arm posture (illus-

trated in Figure 5.1). There are even situations in which neither arm moves.

Taken together, this task includes all combinations of flag colors (6 patterns),

robot’s own postures (4 patterns), and language commands (24 patterns), which

means there are 576 (6 ʷ 4 ʷ 24) possible situations. We never give sentences

that are inconsistent with the flag colors. For instance, when blue and green flags

are held, we never give the sentence “red up true.” Moreover, two grasped flags

always have different colors from each other.
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This task imposes the following requirements on the model. First, an arm

that an object word indicates depends on which arm the flag of the stated color is

held. The task requires grounding in a current visual context similar to the task in

the previous chapter. Secondly, an actual motion trajectory that the robot must

generates also depends on the robot’s own arm posture. For instance, when an

instruction directs the robot to produce RIGHT-UP behavior, if the right arm is

currently in the DOWN posture, it must be lifted up. In contrast, if the right arm

is currently in the UP posture, the robot must maintain the UP posture. Finally,

the model must cope with both content words (e.g., verbs and objects) and logic

words, namely “do”, “don’t”, “and”, and “or”. The logic words are examples

of function words that we concentrate on in this experiment. Due to the design

of the current task, in extreme situations, instructions completely orthogonal to

each other refer to the same behavior (for instance, “don’t lower green” with the

green flag in the right hand and “do raise red” with the red flag in the right hand).

On the other hand, OR-concat instructions are ambiguous because they accept

multiple types of behavior as correct even in the perfectly same context.

5.3.2 Target Data

The current task is represented as a succession of 14-dimensional vectors. Table 5.1

describes what each element represents. We assign nine dimensions for words.

Instructions are given as a series of one-hot vectors. We assign three elements to

vision. These three elements are assigned to the red, green, and blue channels.

When the color is held in the left arm, the element takes a value of 0.8; when the

right arm holds it, the element takes a value of −0.8; and if neither arm holds it,

the element is set to 0.0. We use only the shoulder pitch on both arms, so we

assign two elements for proprioception. The UP and DOWN postures correspond

to values of 0.8 and −0.8, respectively. Posture changes from DOWN (UP) to UP

(DOWN) after receiving a sentence are executed over 6 time steps. Figure 5.2

shows a data example. We added a small amount of Gaussian noise to the joint

angle values4.

4In the preliminary experiment, the model learned without noise obtained much poorer
results. By adding noise, we could improve the resulting performance. This effect is discussed

61



Table 5.1. Data representation of the flag up–down task.

Elements Descriptions

w0 “do”
w1 “don’t”
w2 “raise”
w3 “lower”
w4 “red”
w5 “green”
w6 “blue”
w7 “and”
w8 “or”
vr With which arm the red flag is grasped
vg With which arm the green flag is grasped
vb With which arm the blue flag is grasped
jl The shoulder pitch of the left arm
jr The shoulder pitch of the right arm

5.4 Learning Results

5.4.1 Evaluation Method and Model Hyperparameters

We made a training dataset that consists of 2048 sequences, each including ten

episodes. We randomly ordered the situation patterns in each data sequence.

The dataset included all the 576 possible situation patterns at least once. We

constructed five models whose recurrent cell is a 1-layer LSTM with 50, 70, 100,

150, and 300 nodes. For each model, we performed training ten times with differ-

ent random seeds. Moreover, we also trained the 100-node network using data to

which Gaussian noise was not added on the joint angle values. As an optimizer,

we used the Adam [82] algorithm with a learning rate of 0.001. The parameter

update was performed 10,000 times.

After training, we made a test dataset. In the test dataset, all the possible

situation patterns were included ten times. The episode order was random and

different from the training dataset. When the absolute distance between the

predicted joint angle on both arms six steps after the command reception and

in Section 5.7.
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Figure 5.2. An example target of the flag task. Vertical dashed lines indicate ends of episodes.
[Top] We give sentences as sequences of multiple words. The words are each represented in the
one-hot form. During stand-by and behavior production, zero vectors are given. [Middle] Vision
is given as a succession of three dimensional (red, green, and blue) vectors. The colors of flags
randomly change after every behavior phase. We perform this experiment as a numerical simu-
lation on a computer, so the flag colors instantaneously change. The grasped flags occasionally
do not change (e.g., the case between the first and second episodes in this figure). [Bottom] A
behavior execution follows a command reception immediately.

the target one was smaller than 0.04, we judged that the model had successfully

generated appropriate behavior. Here, some OR-concat instructions allow two

kinds of behaviors as appropriate. In these situations, if the model has successfully

generated one of the appropriate behaviors, we judged the episode as a success.

We regarded the situational patterns in which the model successfully generated

appropriate behavior at least seven times out of ten trails as “successfully learned.”

5.4.2 Task Performance

We classified situation patterns into four types. (1) Situations that give a sentence

with one color word (192 patterns). (2) Situations that give an AND-concat

instruction (192 patterns). (3) Situations giving an OR-concat instruction that

allows only one correct behavior (144 patterns). For instance, when the model

whose arms are both already in the UP posture receives the sentence “do raise

blue or green,” the only correct answer is to keep the current UP-UP posture. (4)

Situations giving an OR-concat instruction that allows two correct behaviors (48

patterns). We evaluated the resulting performances by counting the number of

situation patterns that the models learned successfully with respect to each of the
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Figure 5.3. The results of behavior generation. We scored the resulting performance by counting
the number of situation patterns the models successfully learned with respect to each of the
four situation types: (1) single-object instructions, (2) AND-concat instructions, (3) OR-concat
instructions, which allow only one correct behavior, and (4) OR-concat instructions, which allow
two correct behaviors. The annotated scores are mean values of 10 trials with different random
seeds. The error bars represent standard deviations.

four situation types.

We illustrate the performance results in Figure 5.3. The score on each bar is

the mean of ten trials with different random seeds. All the models successfully

learned most of the situations of types (1), (2), and (3), which have only one

correct behavior. The only exception was the 100-node model that learned with
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Figure 5.4. An example of the resulting interaction by the 300-node model. It successfully
generated appropriate behavior in almost all episodes.

noiseless joint angle data. This model was not able to learn these types suffi-

ciently well. In situations of type (4), which allow multiple correct behaviors, a

clear difference was seen among models: increase in the number of LSTM nodes

improved performance. Figure 5.4 shows an example generated by the 300-node

model. The model successfully generated appropriate behavior immediately after

every instruction reception.

After that, we counted which arm the model actually moved in the type (4)

situations. If the models learned to respond to ambiguous OR-concat instructions

just as left arm behavior or just as right arm behavior, which still fulfill the

aforementioned evaluation criteria, we cannot regard the meaning of “or” as being

truly learned. We checked the result by the 300-node model. In 52.5% of the test

trials, the model moved the right arm. In 45.4%, the model moved the left arm.

In 2.1%, neither correct behavior was successfully executed. Overall, the model

moved both arms relatively evenly in the type (4) situations. This task includes

48 patterns of type (4) situations, and we carried out tests ten times for each

of these patterns. For all patterns, the model sometimes moved the right arm

and other times moved the left arm. These results show that the model learned

the meaning of OR-concat sentences appropriately as “or.” Taken together, the

models successfully learned to perform the current task.
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5.4.3 Generalization Capability

The previous subsection reported that the model trained with all the possible

situations could behave appropriately in most cases. To investigate the model’s

generalization capability, this subsection trained the models again using only 50%

or 75% of the possible situation patterns. Situations included in the training

dataset were regularly chosen as shown in Table 5.2. Therefore, each word, flag

order, and arm posture would be experienced uniformly. We trained 100-, 150-

and 300-node models only. Figure 5.5 shows the resulting performances.

First, we describe the results of the models that learned with 50% of the pos-

sible situation patterns. In many of the type (2)–(4) unexperienced situations,

the models successfully generated appropriate behavior. On the other hand, the

models successfully dealt with only approximately one-third of the type (1) situ-

ations with a single-object instruction. This score is almost the same as random

chance. To clarify why the models failed to execute behaviors appropriately, we

sampled some failure episodes executed by the 100-node network (Figure 5.6).

In one failed case (enclosed by the yellow box), although the arm reached the

goal posture, the generated trajectory was unstable. Therefore, the criterion that

the absolute distance between prediction and target must be less than 0.04 was

not satisfied. In the other failed case (blue box), the model generated a wrong

behavior. The second failure suggests that although the model roughly under-

stood to execute some possible behavior after receiving an instruction, it had not

attained comprehension of the relations between object words and visually given

flag colors.

One possible reason that the models failed to behave appropriately in response

to one-object instructions is that only this type of instruction truly depends on

visual context. For instance, when an AND-concat instruction is given, the model

has no need to take visual context into account. The reason is because whenever

a sentence is AND-concat, the model has to move both arms, regardless of the

colors of the held flags. In fact, when we gave the model holding the blue and red

flags the instruction “do raise blue and green” that was contradictory to the flag

colors as a trial, the model lifted both arms. This suggests that the model ignores
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Table 5.2. To investigate the model’s generalization capability, we performed training again
using only (a) 50% or (b) 75% of the possible situations. (a) In the former case, only the
situations indicated by double check marks were included in the training data. (b) In the latter
case, situations indicated not only by double-check marks but also by single-check marks were
included in the training data. The situations denoted as an empty cell were not included in the
training data in either case. In this table, instruction patterns are abbreviated as follows. T: do;
F: don’t; U: raise (up); D: lower (down); L: left flag color; R: right flag color; A: AND-concat
objects; O: OR-concat objects. For instance, the cell referred to as DOWN-DOWN, R-G, TUR
is indicated by a double-check mark. This means that it is possible that the robot waiting in a
DOWN-DOWN posture and grasping R-G flags receives an instruction “do raise green” during
training in both cases of (a) and (b). As another example, the cell referred to as UP-UP, R-B,
TUO is indicated by a single-check mark. This means that it is possible that the robot waiting
in an UP-UP posture and grasping R-B flags receives an instruction “do raise red or blue” and
“do raise blue or red” during training in only the case of (b). As another example, the cell
referred to as DOWN-UP, B-R, TUL is denoted as empty. This means that the robot grasping
B-R flags and waiting in an DOWN-UP posture does not receive an instruction “do raise blue”
during training in either case.

Posture Colors Instructions

TUL FUL TDL FDL TUR FUR TDR FDR TUA FUA TDA FDA TUO FUO TDO FDO

DOWN-DOWN R-G ! !! !! !! !! ! ! !! !! !! !! !

G-R !! !! ! !! ! !! !! ! !! !! ! !!

G-B ! !! !! ! !! !! !! ! !! !! !! !

B-G !! ! !! !! ! !! ! !! !! ! !! !!

B-R ! !! !! !! !! ! !! ! !! !! ! !!

R-B !! !! ! ! !! !! !! !! ! !! ! !!

DOWN-UP R-G ! !! !! !! !! ! !! ! !! !! ! !!

G-R !! !! ! ! !! !! !! !! ! ! !! !!

G-B ! !! !! !! !! ! ! !! !! !! !! !

B-G !! ! !! ! !! !! !! ! !! !! ! !!

B-R !! !! ! !! !! ! !! ! !! !! !! !

R-B !! ! !! !! ! !! !! !! ! ! !! !!

UP-DOWN R-G ! !! !! ! !! !! !! ! !! ! !! !!

G-R !! ! !! !! ! !! ! !! !! !! ! !!

G-B ! !! !! !! !! ! !! ! !! !! !! !

B-G !! !! ! ! !! !! !! !! ! ! !! !!

B-R !! ! !! !! ! !! ! !! !! !! !! !

R-B !! ! !! !! ! !! !! !! ! !! ! !!

UP-UP R-G !! !! ! ! !! !! !! !! ! !! !! !

G-R ! !! !! !! !! ! !! ! !! !! ! !!

G-B !! ! !! !! ! !! !! !! ! ! !! !!

B-G !! !! ! ! !! !! !! ! !! !! !! !

B-R !! !! ! !! ! !! !! ! !! ! !! !!

R-B ! !! !! !! !! ! ! !! !! ! !! !!
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Figure 5.5. To investigate the generalization capability on the current task, we trained the
models again using only (a) 50% or (b) 75% of the possible situation patterns. We scored
the performances by counting the number of unexperienced situation patterns that the models
successfully executed appropriate behavior for. We scored the performances with respect to
each of the four situation types, similarly to Figure 5.3.

visual information in the cases of AND-concat instructions. The results were

similar in other contradictory cases. In the cases of type (3) and (4) OR-concat

instructions, regardless of the flag colors, the model must move only one arm.

In that sense, one-object instructions are more difficult than the other types of
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Figure 5.6. In unexperienced situations of the flag task, some different patterns of failure could
be seen. [Yellow box] One failed pattern was that although the arm correctly reached the
goal posture, the generated trajectory was unstable. Therefore, the model failed to satisfy the
criterion that the absolute distance between prediction and target must be less than 0.04. [Blue
box] The other pattern was that the model generated a wrong behavior. For instance, in the
episode indicated by the blue box, the model had to lift the right arm. However, it kept the
arm in the DOWN posture.

instructions. Training with 50% of the possible situations might not have been

sufficient to achieve generalization covering the whole of the task space. Actually,

the models that learned with 75% of the possible situations successfully dealt with

more than 80% of unexperienced type (1) situations.

5.5 Analysis of Internal Representations

The previous subsection demonstrated that the F-EDM has the capability of

learning to execute the flag up–down task by dealing with both content words

and logic words. In the generalization test, although half of the possible patterns

were insufficient, the model could generalize its experiences into most unexperi-

enced patterns from three quarters of possible episodes. To investigate how the

model internally represented the relationships between sentences, visual context,

and joint angles, we applied PCA to the context states during the task execution.
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5.5.1 Representations of Color Words

First, Figure 5.7 shows the context states after receiving the sentence “do raise

(word indicating the left flag color)” or “do raise (word indicating the right flag

color)”. Here, although we fixed the robot’s waiting posture to DOWN-DOWN,

the situations were different depending on the colors of held flags. Thus, the

model must choose which arm it lifts up by integrating the object word input

and the visual context. The PC2–PC3 space directly reflects the current visual

context. In contrast, PC1 represents which arm has been referred to by an object

word. This suggests that by learning to predict appropriate behavior in response

to instructions on the given visual contexts, the model achieved representations

that corresponded to the concepts of “left” and “right”.

5.5.2 Representations of Logic Words: “Do” and “Don’t”

Next, we investigate how the model internally represented logic words. Figure 5.8

visualizes the context states after giving eight different single-object instructions

to the model that was holding the red and blue flags in the left and right arms,

respectively, and waiting in the DOWN-DOWN posture. PC1, PC2, and PC3

directly correspond to the three parts of speech, i.e., the PC3, PC1, and PC2

axes represent “do”/“don’t”, “raise”/“lower”, and “red”/“blue” pairs, respec-

tively. Here, the model must solve an X-OR problem caused by the “do”/“don’t”

and “raise”/“lower” pairs. By solving it, the model must ground its interpreta-

tion in UP or DOWN behavior. In fact, exploration of the lower-rank components

revealed that the instructions that were embedded on the diagonal of the paral-

lelogram in the PC1–PC3 subspace were embedded in the same side in the PC4

direction. In the right panel, “do raise” and “don’t lower”, which share the same

meaning of UP but are orthogonal to each other, were embedded in the lower

area. Similarly, “do lower” and “don’t raise” were embedded in the upper area.

In other words, the X-OR problem was resolved in the PC4. Taken together, the

model has extracted the X-OR problem that was implicitly included in the train-

ing data and learned to ground the orthogonal sentences in the same behavior

thanks to its capability to embed input sequences non-linearly while maintaining
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Figure 5.7. [Top left] The context states after receiving the sentenceʠdo raise (word indicating
the left flag color)ʡ orʠ do raise (word indicating the right flag color)ʡ projected onto the
space spanned by PC1 to PC3. We fixed the robot’s waiting posture to DOWN-DOWN, but
the situations were different depending on the colors of held flags. For instance, the filled red
triangle is the context state after giving the sentenceʠ do raise redʡ to the model that was
holding a red flag in the left arm and a green flag in the right arm (referred to as R-G). In the
current task, which arm the robot must move was not determined by a given object word alone.
Nevertheless, the PC1 represents which arm was referred to by the object word. This means
that the model learned to encode an object word input and the visual context in an integrated
manner and then achieved representations that correspond to a meaningful pair of “left” and
“right”. By decoding these representations, the model successfully chose an appropriate arm
in every trial. [Others] The context states after receiving these sentences projected onto the
space spanned by from PC1 to PC6. In these panels, all the situations not only about flag
colors but also the waiting posture are included. Although point colors and shapes are as in the
top-left panel, the frame lines vary in accordance with the arm posture. This visualization shows
that the context state strongly reflected the current posture, so the PC1–2 space dominantly
represented it. The representation of the “left–rightʡpair was still seen in the PC3–4 space.
The visual context was also represented in the PC5–6 space, though the hexagonal shape was
less clear.

the information that the given instructions were much different from each other

in the other principal components.
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“Do raise blue.”     “Don’t raise blue.”    “Do lower blue.”     “Don’t lower blue.”

“Do raise red.”       “Don’t raise red.”     “Do lower red.”       “Don’t lower red.”
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PC4
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“Do raise” 
(UP)

UP

DOWN

“Don’t lower”
            (UP)

“Do lower”
(DOWN)

“Don’t raise”
(DOWN)

Figure 5.8. The context states after giving eight different single-object instructions to the model
that was holding the red and blue flags in the left and right arms, respectively, and waiting
in the DOWN-DOWN posture. The left panel shows the context states projected onto the
PC1–3 subspace. The right one shows the context states projected onto the PC2–4 subspace.
PC1, PC2, and PC3 directly correspond to the three parts of speech, i.e., the PC3, PC1, and
PC2 axes represent the “do”/“don’t”, “raise”/“lower”, and “red”/“blue” pairs, respectively.
However, exploration of lower-rank components revealed that an X-OR problem caused by the
“do”/“don’t” and “raise”/“lower” pairs was resolved in the PC4 direction thanks to the model’s
capability to non-linearly transform the word inputs.

5.5.3 Representations of Logic Words: “And” and “Or”

Figure 5.9 illustrates the context states after giving the model that was holding

the red and blue flags in the left and right arms, respectively, some different

sentences whose form was “do raise (object part).” The object part was a single

word, AND-concat, or OR-concat. AND-concat sentences that instructed the

model to lift both arms up were embedded away from the representations of other

sentences in the PC1 direction. The PC2 direction corresponds to the pair of “red”

and “blue”. Here, “or” that instructed the model to lift either arm was encoded

in the middle area between representations of these two. This suggests that the

representation of “or” was organized as an unstable area in the model’s dynamical

system and that as a result of these organized dynamics, behavior generation that

apparently looked random every trial has been realized.

To verify this, we performed the following analysis. We gave the sentence

“do raise green or blue” to the model with 2,048 different histories5. The top-

5More precisely, we gave this sentence to the model waiting in the DOWN-DOWN posture
and holding green and blue flags in the left and right arms, respectively. However, in each of these
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“Do raise red.”

“Do raise blue.” 

“Do raise red and blue.”

“Do raise blue and red.”

“Do raise red or blue.”

“Do raise blue or red.”

PC1 (72.6 %)

PC2

(22.6 %)

Figure 5.9. The context states after giving the model that was holding R-B flags some different
sentences whose form was “do raise (object part).” The object part was a single word, AND-
concat, or OR-concat. AND-concat sentences that instructed the model to lift both arms up
were embedded away from the representations of other sentences in the PC1 direction. The PC2
direction corresponds to the pair of “red” and “blue”. “Or,” which instructed the model to lift
either arm, was encoded in the middle area between representations of these two.

left panel of Figure 5.10 visualizes that the context states just after receiving

the instruction were arranged in an arched area. Each point corresponds to a

specific history. When the model encoded the instruction on the right side of

the arch, it executed RIGHT-UP behavior. On the other hand, by encoding on

the left side, the model executed LEFT-UP behavior. When the instruction was

embedded in the middle area, unstable trajectory was produced. Nevertheless, in

all trials, the context state finally converged to either a fixed-point attractor that

represented the UP-DOWN or DOWN-UP posture, as shown in the bottom-right

panel of Figure 5.10. Taken together, the model learned to respond to OR-concat

instructions by representing them as the convergence from an unstable area to

either one of multiple stable points.

2048 trials, the model had randomly different histories of the preceding episodes. Therefore, the
context state also takes different values depending on different histories.
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Figure 5.10. We gave the sentence “do raise green or blue” to the model that had 2,048 different
histories of preceding episodes. The waiting posture and the flag colors were fixed in the DOWN-
DOWN posture and G–B, respectively. The context states immediately after receiving the
sentence were arranged in an arched area (top-left). Each point corresponds to a different history.
When the model encoded the instruction on the right side of the arch, it executed RIGHT-UP
behavior, and the context state converged in the fixed-point attractor that represented the
DOWN-UP posture. On the other hand, by encoding on the left side, the model executed
LEFT-UP behavior, and the context state converged in the fixed-point attractor representing
the UP-DOWN posture. When the instruction was encoded in the middle area, an unstable
trajectory was produced. Even in such cases, the context state finally converged to either
fixed-point, as shown in the bottom-right panel.

5.5.4 Dynamical Representation of the Task Execution

Finally, we investigated how the model’s internal dynamical system represented

the task execution. Figure 5.11 visualizes the transition of the cell state while the

model executed four successive episodes. The robot arms moved in the following

order: DOWN–DOWN UP–DOWN, UP–UP, DOWN–UP, and DOWN–DOWN.

The transitions from one posture to another one were internally represented as

transitions between two different fixed-points (indicated by colored circles). Given

a sentence, the cell state was activated and then reached a point marked by a cross
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Figure 5.11. The context state transition while the model executed four successive episodes. The
arm posture moved in the following order: DOWN-DOWN UP-DOWN, UP-UP, DOWN-UP,
and DOWN-DOWN. Each transition from one posture to another one was internally represented
as a transition between two different fixed-points (circle marks). Given a sentence, the cell state
was activated and then reached a point indicated by a cross mark. By converging into another
fixed-point from the activation, the model produced a behavior that would reach a posture
corresponding to the fixed-point. After that, the model waited for a following instruction again.

mark6. From the marked state, by being attracted to one fixed-point again, the

model produced a behavior that would reach a posture corresponding to the fixed-

point. After that, the model waited for a following instruction. The same is true

in cases in which the appropriate behavior was to maintain the current posture.

While the produced joint trajectory was remaining stationary, the context state

internally represented it as convergence into the original fixed-point after being

activated in the PC3 direction.

6In fact, the model achieved these activations by integrating the current visual context with
given content and logic words in the abovementioned manner, but it was difficult to visualize
all of them together in one figure.
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5.5.5 Comprehensive Summary of the Model Working

Taken together, the models learned to encode the instruction sentences into fixed-

dimensional representations on the context layer in a form where the content

words are grounded in the visual context and the robot’s arm posture and where

the logic words were encoded together with other content words in accordance

with their own function as a logical operator. For instance, the words “do” and

“don’t”, which indicate behaviors contrary to each other, transformed the model’s

cell state non-linearly to encode orthogonal sentences in the same area in a lower

rank subspace. “Or,” which requires the robot to execute behavior that appears

random, was represented as an unstable area in the model’s dynamics. Similarly

to the experiment in the previous chapter, the task progress pattern, i.e., repe-

titions of instruction reception, behavior generation, and stand-by with multiple

waiting postures, was also organized as the RNN’s dynamical system together

with grounding structure.

5.6 Further Analysis of Logic Words

In this chapter, we performed a learning experiment to evaluate whether the pro-

posed framework can learn to convert instructions including both content words

and logic words into behavioral sequences. We confirmed that the model suc-

cessfully learned the given task, and we investigated how the model internally

represented the content words and logic words together. However, in the task,

when the instruction was in AND-concat or OR-concat form, the model did not

need to consider the visual context. This is not natural in realistic situations.

Therefore, in this section, we perform another learning experiment by design-

ing a different task. In this task, the meanings of all the linguistic commands

that include a logic word depend on the current visual context. We investigate

whether the model organizes internal representations of logic words in a manner

that reflects their own function even in such a realistic situation.
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Figure 5.12. Illustration of behavioral sequences. All of these examples can be executed at
SLOW and FAST speed.

5.6.1 Task Overview

This subsection describes the task design. First, we place three bells in front of the

robot. They are differently colored as red, green, or blue and ordered randomly

from the left to right. Next, we give an instruction that consists of a verb (“point”,

“ring”), an object (“red”, “green”, “blue”), and an adverb (“slowly”, “fast”) to

the robot. When the object word indicates the left or right bell, the robot acts on

it with the closer arm. When the object word indicates the center bell, the robot

responds by acting on it with either arm. Figure 5.12 illustrates actual examples

of arm motions.

Similarly to the flag up–down task, there are cases in which “and” concatenates

two objects. In these situations, the robot responds by simultaneously ringing

(pointing at) both bells. We also include OR-concat instructions in which the

robot responds by ringing (pointing at) either one of the indicated bells. As

another logic word, we sometimes prefix “not” to an object word. We refer to

this type of instructions as NOT-prefixed. In these situations, the robot must

respond by ringing (pointing at) two bells that are not indicated by the object.
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For instance, when the robot receives the instruction “point not green fast,” it

must point at red and blue bells simultaneously at a fast speed.

5.6.2 Acquired Representations

The purpose of this additional experiment is to investigate how the model inter-

nally represents the logic words. Therefore, we report the details of the learning,

such as model architecture and task performance, in Appendix B. This subsection

directly describes the resulting representations after learning.

Representation of “Or”

We visualized the organized representations by PCA. First, the left panel of Fig-

ure 5.13 visualizes the internal states after receiving an instruction in the form of

“ring (single-object) slowly” or “ring (OR-concat) slowly”. We can see that the

states after receiving an OR-concat instruction are located between the states af-

ter receiving a single-object instruction. For instance, “ring green or blue slowly”

and “ring blue or green slowly” were encoded in the middle area between the

embeddings of “ring green slowly” and “ring blue slowly.” This suggests that the

model represented “or” as unstable areas on the model’s dynamical system, simi-

lar to in the flag up–down task. Actually, the right panel of Figure 5.13 visualizes

that an arch-shaped encoding space was organized as in the flag up–down task,

though the shape was less clean. It is notable that in contrast to the flag up–down

task, where “or” always meant “left or right” regardless of the visual contexts,

in the bell task, the meanings of OR-concat instructions depended on the given

object words and the visual context. Even in such a grounded task, the functional

meaning of “or” was successfully attained in a manner that was integrated with

the object words and visual information.

Representations of “And” and “Not”

Figure 5.14 visualizes the internal states after receiving an instruction in the form

of “ring (AND-concat) slowly” or “ring (NOT-prefixed) slowly”. The bells were

arranged in the fixed order of red, green, and blue from left to right. In the current
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RING-R-SLOWLY (RMSE < 0.008)

RING-L-SLOWLY (RMSE < 0.008)
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Figure 5.13. [Left] The cell states after receiving an instruction in the form of “ring (single-
object) slowly” or “ring (OR-concat) slowly”. The states after receiving an OR-concat instruc-
tion are located between the states after receiving a single-object instruction. For instance,
“ring green or blue slowly” and “ring blue or green slowly” were encoded in the middle area
between the embeddings of “ring green slowly” and “ring blue slowly”. [Right] To the model
that was waiting with bells placed in the order of red, green, and blue from left to right after
2,048 different contexts, we gave the sentence “ring red or blue slowly.” The encodings of the
sentence were arranged in an arch-shaped space. When the sentence was embedded on the left
side of the arch, the model executed the RING-L-SLOW behavior. When encoding it on the
right side, the model executed RING-R-SLOW behavior. When encoding in the middle area,
the model produced an unstable behavior.

task, “not” refers to the complementary set of the stated color. For instance,

“not blue” refers to the same bell set as “red and green.” Although these two

instructions have completely orthogonal object parts, they were embedded close

to each other in the PC4–PC5 subspace. As a result, sentences that indicated

the same behavior formed clusters, i.e., “red and green”, “green and blue”, and

“blue and red” formed clusters. In contrast to the flag task, the instructions

including “and” also required the model to take visual context into account. In

such a grounded situation, the model successfully learned the function of “and”

by encoding it in a way integrated with the object word and visual information.

Taken together, even in the task that simultaneously required both grounding

in the current context and processing of logic words, the functional meanings of

logic words were successfully represented in a manner that was integrated with

other content words.
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not blue not red not green

red and green green and blue blue and red

green and red blue and green red and blue

Figure 5.14. The cell states after receiving an instruction in the form of “ring (AND-concat)
slowly” or “ring (NOT-prefixed) slowly”. The bells were arranged in the fixed order of red,
green, and blue from left to right. In the current task, “not” refers to the complementary set
of the stated color. For instance, “not blue” refers to the same bell set as “red and green.”
Although these instructions have completely orthogonal object parts, they were embedded close
to each other in the PC4–PC5 subspace. As a result, sentences that indicated the same behavior
formed clusters, i.e., “red and green”, “green and blue”, and “blue and red” formed clusters.

5.7 Discussion

This chapter demonstrated that the proposed EDM is able to learn to convert lin-

guistic instructions consisting of both content words and logic words into behav-

ioral sequences. We also investigated what kind of compositional representations

of content words and logic words emerged from the experience of the interactive

task. In the case of content words, an object word was encoded by being inte-

grated with visual context. A verb was grounded in different joint trajectories

depending on the robot’s current arm state. Simultaneously, the model also suc-

cessfully dealt with the logic words “do”, “don’t”, “and”, and “or”. By encoding

logic words together with other content words in a manner that reflected their

functions as logical operators, the model successfully executed appropriate be-

haviors. This section discusses three types of logic words employed in the current

task.
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5.7.1 NOT: as Nonlinear Transformation of Internal States

In the flag up–down task, the model understood “raise” and “lower” as the goal-

oriented behaviors UP and DOWN, respectively, by combining them with “do”

and “don’t” in an X-OR manner. The model encoded these orthogonal phrases

as sharing the same meaning in a relatively low rank component thanks to its

ability to non-linearly transform input. In the same way, “not” in the bell task

worked as an operation to choose a complementary set. In the field of NLP, Li et

al. [102] performed a similar kind of analysis on a deep NN model. They demon-

strated that a deep NN optimized for sentiment analysis drastically changes its

latent representation by receiving a negation word. For instance, “not good” was

embedded closer to “bad” than to “good.” However, our analysis demonstrated

that even though the combined meaningful representation corresponding to the

goal-oriented behavior is achieved in a low rank component, the information that

input sentences were perfectly different was still maintained in most principal

components. In other words, not only were meaningful representations gained by

integrating element words and sensorimotor information but also information of

element words was still stored in the memory cells.

This aspect seems to be important. For instance, imagine a case of the bell

task in Chapter 4 where the model embeds both the instructions “point green

slowly” for a B–G arrangement and “point red slowly” for a G–R arrangement as

composed representations corresponding to the POINT-RIGHT-SLOW behavior

by losing the information about element words. In this case, the robot could

not adaptively behave in response to changes, e.g., a sudden relocation of bells

during behavior execution, because the model has already lost information about

the given object word. By remembering given element words, adaptive response

to such fluctuations would be achieved, although it is not certain that the model

trained in the current task is able to deal with such situations because training

data did not include such situations.

Recently, EDM models with attention mechanisms that store the representa-

tions acquired by the encoder on a memory and refer them during the decoding

phase have been used more often than the normal type of sequence to sequence

model and have achieved better results ([26, 27]). In comparison with question
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answering or translation tasks with no noise, an attention mechanism that can

explicitly maintain information about compositional elements seems to be essen-

tially required in robot learning tasks in which the model is always exposed to

noise and fluctuations during behavior generation. In future work, we should

therefore evaluate the effectiveness of attention mechanisms in robot tasks that

require language understanding.

5.7.2 AND: as a Universal Quantifier

In the flag up–down task, “and” itself worked as a sort of universal quantifier

without grounding in color words. When the model holding the blue and red

flags received “do raise blue and green,” it raised both arms. The results were

similar in other contradictory situations. In other words, when the instruction is

AND-concat, the model ignored object words. In these cases, only a verb (and a

truth value) is grounded in the behavior to be generated. In that sense, the model

represented “and” as a concept one step higher. Before the experiment, we did

not expect such interpretation of “and” by the model. This is not our common

usage of “and”, however it seems to be a rational and reasonable solution in the

frame of the flag up–down task.

However, in practical situations, we use “and” in different manners to combine

not only multiple words but also phrases and sentences. Future works must in-

vestigate how RNNs can handle and represent such higher order or general types

of “and.” Most recently, a series of studies has reported that the straightforward

end-to-end learning of RNNs with the gradient descent method did not give them

hierarchically generalizable understanding of function words or syntactic compo-

sitionality [103, 104, 105] although they trained RNNs purely with sequences of

symbols. In fact, we might have to improve the model architecture or learning al-

gorithm to achieve such systematic level generalization. However, we also believe

that to achieve generalizable understanding of function words, embodied expe-

riences are essentially required beyond purely symbolic experiences. Forster et

al. [106] demonstrated that small humanoid robot called iCub acquired the uti-

lization of a negative word such as “no” from interaction with a human caregiver.

This was done by the caregiver uttering negative sentences while observing iCub’s
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rejection of objects or while prohibiting iCub from reaching objects. Although

this experiment is an example specialized to negation, we think that such embod-

ied experiences help robots to achieve a generalizable understanding of function

words.

5.7.3 OR: as Unstable States in RNN’s Dynamical System

In the flag up–down task, the model trained with noiseless joint angle data re-

sulted in worse performance than with noise. In a preliminary experiment in

which OR-concat sentences were not included, this difference was not observed.

This suggests that the inclusion of ambiguous OR-concat sentences, which gave

either of two answers as correct randomly every episode, made the learning by the

back-propagation algorithm unstable. This reminds us of the famous thought ex-

periment of Buridan’s donkey. In this experiment, a human places a stack of hay

on a donkey’s left and right sides at precisely the same distance away. Confronting

the dilemma, the donkey was not able to choose which side to go and eventually

died of hunger. The current analysis suggests that the model successfully resolved

this dilemma, which the donkey confronted too honestly, by making use of the

small noise on target joint angles as a clue to decide which arm to move and by

self-organizing an unstable area in the dynamical system, which converges into

either of two fixed-points.

In future work, we must perform a more detailed investigation of the char-

acteristics of the model’s dynamical system. In existing studies, Tani and Fuku-

mura [66] demonstrated that a deterministic RNN has the capability of regen-

erating symbol sequences that follow simple stochastic rules by self-organizing a

chaotic dynamical system. In Namikawa et al. [67], an MTRNN had the capa-

bility of replicating pseudo-stochastic transitions among multiple robot motion

primitives. The current experiment demonstrated that similar functions to ex-

ecute behaviors as though they were executed in a probabilistic manner can be

acquired from the experience of a language grounding task. The current result also

demonstrated that the increase of LSTM nodes improves the capability to respond

to OR-concat instructions. We think that the increase of the number of nodes

improves the model’s representation ability and leads the model into learning to
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forcibly embed the stochastic experience in a chaotic dynamical system.

5.7.4 Encoding Both Content Words and Function Words

as Fixed-dimensional Representations

The experiment in this chapter included not only content words but also logic

words as examples of function words. Content words were understood in an in-

tegrated manner together with visual and proprioceptive information. On the

other hand, the logic words were encoded as operations on the representations of

content words. In this way, a meaning of a sentence was encoded together with

the current context. RNNs that learn to encode all words and multimodal in-

formation into a fixed-dimensional distributed representation in a unified manner

have an advantage over probabilistic modeling methods. Although probabilistic

models [55, 57, 40] are also able to learn the stochastic co-occurrence relation-

ships between content words and multimodal features, it is difficult for them to

learn to model how logic words combine the grounded meanings of other content

words. The most typical examples are negative expressions, such as “no” and

“not”. The functions of these words cannot be captured as simple co-occurrence

relationships. In contrast, RNNs can learn to model their function as a non-linear

transformation of their context state.

In this chapter, we focused only on some logic words as examples of function

words. However, our language systems include many other kinds of function

words, such as prepositions, pronouns, and articles. We must investigate how our

proposed model can learn these other types of function words as well in future

work.

5.8 Summary

This chapter performed experiments to evaluate whether the proposed system

can learn to convert linguistic instructions, including both content words and

function words, into behavioral sequences. The learning results showed that the

proposed method is actually able to ground sentences that consist of both types
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of words in a behavioral sequence with a certain level of generalization. We also

investigated what kind of compositional structures for such grounding emerged

from the experiences of an interactive task. Content words were encoded in a

way grounded in the visual context and the robot’s current posture. The logic

words were represented together with other content words in accordance with

their own functions as logical operators. The words “do” and “don’t”, which

indicate behaviors contrary to each other, worked as non-linear transformations

of context states to encode orthogonal sentences into the same area in a low-rank

component. In the flag up–down task, “and” eliminated grounding in the vision in

a reasonable manner and worked as if it was a universal quantifier. The function

of “or,” which instructed the model to generate behavior that looked apparently

random, was represented as unstable areas of the model’s internal dynamical

system. Figure 5.15 summarizes the main targets discussed in this chapter.
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Figure 5.15. The main targets discussed in Chapter 5.
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Chapter 6

Bidirectional Conversion between

Language and Behavior

6.1 Introduction

In the previous two chapters, through simple robot experiments, we confirmed that

EDMs extended with multimodal input can convert linguistic instructions

into robot behavioral sequences appropriate for the current context

(R1). Specifically, the experiment in Chapter 5 demonstrated that sentences

consisting of both content words and logic words (R2) could be success-

fully grounded in behavior. This chapter proposes to extend the framework to

address the remaining issue we have not touched on yet, namely bidirectional

conversion capability (R3).

Most conventional studies on learning between language and robot behavior

have dealt predominantly with only unidirectional conversion. Most recently, deep

learning methods have been used for language grounding tasks in a simulated en-

vironment [15, 16] and have achieved outstanding performances. However, in

general, NNs (including ones with deep architecture) are optimized for a unidi-

rectional task from input to output, i.e., from language instructions to action

sequences. In this chapter, to achieve bidirectional mapping between language

and robot behavior, we extend our proposed EDM to a two-coupled form and

train these two EDMs so that their representation spaces are shared. In this ex-

tended framework, language and robot behavioral sequences can be bidirectionally
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converted through the shared latent space.

The remainder of this chapter is organized as follows. In Section 6.2, we pro-

pose a learning framework to bidirectionally map between linguistic expressions

and robot behavior. In Section 6.3, we describe the setup of an evaluation robot

experiment, namely task details and target data configuration. Section 6.4 shows

task performance results after learning. In Section 6.5, we analyze the model’s

internal representations that link language and robot behavior. Section 6.6 com-

pares the proposed method with existing bidirectional methods and considers

future directions for the model improvement. Section 6.7 concludes this chapter.

6.2 Bidirectional Conversion by Coupled EDMs

and Representation Sharing

6.2.1 Overview of the System

This section proposes an NN architecture and learning algorithm that allows a

robot to generate both (i) behavioral sequences responding to multi-word instruc-

tions and (ii) multi-word descriptions given its own behavioral sequence. Here,

we assume that we have a paired dataset of language and behavior. Therefore,

the method proposed here is based on the S-EDM.

As shown in Figure 6.1, the model is comprised of coupled recurrent autoen-

coders (RAEs) [107]: one is for language, and the other is for behavior. The RAE

is an EDM, so it consists of an encoder network and a decoder network. In the

learning process, RAEs learn to minimize the error between a generated sequence

and the original sequence (referred to as reconstruction loss). In other words, they

learn to embed sequential data into fixed-dimensional latent representations (zlng

or zbhv) in a manner that enables the embedded sequences to be regenerated from

the representations by utilizing their decoder.

If we train two EDMs independently, the organized space that efficiently em-

beds behavioral sequences may differ from the space for their descriptions, as

described as “arbitrariness” of language by Saussure [97]. Thus, to make these

spaces organize the shared structure, we introduce another loss term, which binds

88



Language encoder RNN

Behavior encoder RNN

Visual
feature

extractor

Binding
loss

   BOS     “Hit”  “green” “slowly”  EOS

Binding
layer

Binding

   BOS     “Hit”   “green” “slowly” 

“Hit”   “green” “slowly” EOS

Behavior EDM (b-EDM)

Language EDM (l-EDM)

Language decoder RNN

Behavior decoder RNN

Figure 6.1. Overview of the coupled EDM framework to convert language and behavior bidirec-
tionally.

representations of a behavioral sequence and its paired sentence to be mutually

close in the latent space. By minimizing both reconstruction loss and repre-

sentation distance together, we expect the model to achieve the capability of

bidirectionally converting between language and behavior. Generating behavioral

sequences responding to instructions is performed by utilizing the encoder of the

language EDM (l-EDM) to embed an instruction and utilizing the decoder of the

behavior EDM (b-EDM) to decode the representation. On the other hand, the

model generates a linguistic description for a behavioral sequence by utilizing the

encoder of the b-EDM to embed a behavioral sequence and then utilizing the

decoder of the l-EDM to decode the representation.

6.2.2 EDM for Language

To encode word sequences, we use an l-EDM (the lower part of Figure 6.1). The

l-EDM is comprised of an encoder and a decoder; both of which are RNNs. The

encoder network encodes a word sequence of length Tl, (x1,x2, ...,xTl
) as a fixed-

dimensional representation zlng as follows:

henc
t = EncRNNCell(xt,henc

t−1) (1 ≤ t ≤ Tl), (6.1)

zlng = W enchTl
+ benc. (6.2)
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Here, the EncRNNCell function denotes a learnable recurrent cell and henc
t is

the output of EncRNNCell at time step t. The final cell output hTl
is projected

into the shared space by a learnable weight W enc and a learnable bias benc. We

initialize h0 with a zero-filled vector.

After that, the decoder network produces a sequence by recursively decoding

the latent vector zlng as follows:

hdec
0 = W deczlng + bdec, (6.3)

hdec
t = DecRNNCell(yt−1,hdec

t−1) (1 ≤ t ≤ Tl − 1), (6.4)

yt = f(W outhdec
t + bout) (1 ≤ t ≤ Tl − 1). (6.5)

Here, DecRNNCell denotes a learnable recurrent cell, and hdec
t is the output of

DecCell at time step t. W dec and bdec denote a learnable weight and a bias, respec-

tively, to transform the latent vector zlng into the initial context of the decoder

hdec
0 . Similarly, W out and bout are a learnable weight and a bias, respectively, to

transform the output of DecRNNCell into the vocabulary size vector. f denotes

an activation function. This study represents words in the one-hot form. Thus,

the softmax function is used as f . The decoder receives a vector that represents

the beginning of sequence (BOS) signal in place of y0.

The learning target for the l-EDM is to reconstruct an original word sequence

given to the encoder from the latent representation. Therefore, the loss function

to be minimized is defined as the cross entropy between the input and the output:

Llng =
1

Tl − 1

Tl−1∑

t=1

(
−

W∑

w

xt+1(w) log yt(w)
)
, (6.6)

where W denotes the vocabulary size. Similarly to the case of EDMs proposed

in Chapter 3, which unidirectionally convert language to behavior, all the learn-

able parameters are optimized by gradient descent algorithm. This unsupervised

framework trains the model to organize a latent feature space in which a given

sentence dataset is efficiently embedded.
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6.2.3 EDM for Behavior

To encode behavioral sequences, we employ a b-EDM (the upper part of Fig-

ure 6.1). Similarly to the l-EDM, the b-EDM is comprised of an encoder module

and a decoder module. A behavioral sequence is represented as a series of length

Tb, (j1, j2, ..., jTb
) of joint angles and a vision sequence (v1,v2, ...,vTb

) that accom-

panies it. Here, we apply a visual feature extractor that compresses raw images

into low-dimensional feature vectors before feeding them into the b-EDM (Fig-

ure 6.1). The appropriate extractor would depend on the tasks. For instance, we

employ a convolutional NN in Section 6.3.

The encoder of the b-EDM embeds a sequence ((j1;v1), (j2;v2), ..., (jTb
;vTb

)),

which is a concatenation of joint angle vector and visual feature vector, as a

latent representation zbhv. The model structure and the forward propagation of

the encoder are similar:

henc
t = EncRNNCell(vt, jt,henc

t−1) (1 ≤ t ≤ Tb), (6.7)

zbhv = W enchenc
Tb

+ benc. (6.8)

On the other hand, the input and output of the decoder are different:

hdec
0 = W deczbhv + bdec, (6.9)

hdec
t = DecRNNCell(vt, ĵt,hdec

t−1) (1 ≤ t ≤ Tb − 1), (6.10)

ĵt+1 = f(W outhdec
t + bout) (1 ≤ t ≤ Tb − 1). (6.11)

Equations (6.10) and (6.11) express that the decoder predicts only joint angle

values at the next time step jt+1 by producing ĵt+1. At every time step, the model

receives the visual features as external input (e.g., teacher forcing). In contrast,

the joint input nodes receive joint angle values predicted by the decoder itself at

the previous time step (i.e., free running)1. We defined the loss term to train the

b-EDM as the MSE between the predicted joint angles and the ground truth:

Lbhv =
1

Tb − 1

Tb−1∑

t=1

||jt+1 − ĵt+1||22. (6.12)

1At the initial step, the initial robot posture j1 was set instead of the previous prediction ĵ1.
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The reason we built the b-EDM to generate joint angles only is that we want

the model to learn to solve context dependency of language grounding in be-

havior. Similarly to the unidirectional model proposed in Chapter 3, the context

dependency between language and behavior will be solved by receiving visual con-

text externally. The following describes the models mechanism in the form of a

concrete example. Actual joint trajectories that realize the instruction “pick the

green box” vary from each of the other tokens depending on the position of the

green box. These various behavioral trajectories are compressed by the encoder

of the b-EDM and bound with the unique representation of the sentence “pick the

green box” compressed by the encoder of the l-EDM. Consequently, these diverse

behavioral trajectories are not encoded as ones that differ from each other but

are embedded close to each other as sequences that are semantically the same,

namely “pick the green box”. Thus, the b-EDM decoder generates an appropriate

trajectory by integrating such a semantic encoding and the current visual context.

6.2.4 Representation Sharing

To bind the representations of behavioral sequences and their corresponding sen-

tences, we introduce another loss term Lshr in addition to the reconstruction

losses Llng and Lbhv. We denote a batch of latent representations of behavioral

sequences as {zbhv
i |1 ≤ i ≤ N} and the representations of their paired sentences

as {zlng
i |1 ≤ i ≤ N}. Here, N denotes the batch size. We introduce the following

loss to bind representations:

Lshr =
N∑

i

ψ(zbhv
i , zlng

i )+

N∑

i

∑

j ̸=i

max{0,∆+ ψ(zbhv
i , zlng

i )− ψ(zbhv
i , zlng

j )}, (13)

where ψ computes a distance (or dissimilarity) between vectors. The first term

forces representations of a behavioral sequence and its corresponding sentence to

be close to each other. On the other hand, the second term forces the representa-

tion of a behavior (resp., sentence) to be far from that of its unpaired sentences
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(resp., behaviors) when the distance between them is smaller than that from the

paired sentence (resp., behavior). ∆ is a scalar value that denotes a margin added

to the distance between paired representations to enhance the loss.

6.2.5 Learning Procedure

We optimize the trainable parameters by stochastic gradient descent algorithm.

Algorithm 1 describes the whole learning process. α, β, and γ are hyperparameters

that control the importance of each loss function. A denotes the learning rate,

which is constant or adaptive to the learning progress (e.g., Adam [82]).

Algorithm 1 Learning of coupled RAEs

Require: X lng, Xbhv: paired dataset
Require: α, β, γ, A: hyperparameters
initialize trainable parameters randomly: θ
while not done do
Sample a batch {xlng

i , xbhv
i } randomly from X lng, Xbhv

Calculate Llng, Lbhv, Lshr by forward path
Compute total loss: Lall ⇐ αLlng + βLbhv + γLshr

Compute gradients ∇θLall by backward path
Apply the gradients θ ⇐ θ − A∇θLall

end while

6.3 Experimental Setup

6.3.1 Task Design

We carried out a learning experiment using a real robot to evaluate the bidirec-

tional conversion performance of our proposed framework. First, we put two out

of three boxes — each of which colored red, green, or yellow — in front of the

robot in fixed positions (Figure 6.2). Thus, 3P2 = 6 box arrangement patterns

are possible. In each situation, the robot could execute the 12 behaviors listed

in Table 6.1. We determined a sentence corresponding to each behavior in ac-

cordance with the box arrangement. More precisely, each sentence is comprised

of a verb (“push”, “pull”, “slide”), an object (“red”, “green”, “yellow”), and an
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Table 6.1. List of behaviors

Behavior name Details

PUSH-L-SLOW Push a left box toward the front slowly
PUSH-L-FAST Push a left box toward the front fast
PUSH-R-SLOW Push a right box toward the front slowly
PUSH-R-FAST Push a right box toward the front fast
PULL-L-SLOW Pull a left box slowly
PULL-L-FAST Pull a left box fast
PULL-R-SLOW Pull a right box slowly
PULL-R-FAST Pull a right box fast
SLIDE-L-SLOW Slide a left box to the right slowly
SLIDE-L-FAST Slide a left box to the right fast
SLIDE-R-SLOW Slide a right box to the left slowly
SLIDE-R-FAST Slide a right box to the left fast

adverb (“slowly”, “fast”). Thus, 3 × 3 × 2 = 18 sentences are possible. A verb

and an adverb are assigned only depending on behavior type, regardless of the

box colors. On the other hand, an object word is determined depending on the

box colors. We assign the color subject to the behavior to the object word. For

instance, when a yellow box and a red box are put on the left and right, respec-

tively, the sentence describing PULL-L-FAST behavior is “pull yellow fast” and

that describing PUSH-R-SLOW behavior is “push red slowly”. Due to such task

design, the number of possible behavior types and that of possible descriptions

are different.

6.3.2 Target Data

In advance of data recording, we preprogrammed the 12 behavioral trajectories by

computer. For each of the six box combinations, we made the robot execute these

12 behaviors while recording 10-DOF joint angle values on both arms together

with images (width: 160, height: 120, channels: RGB) from a built-in camera every

300 ms. SLOW and FAST behaviors were recorded as a sequence of approximately

39 and 26 frames, respectively. We recorded the possible 72 patterns (12 behaviors

with six box combinations each) six times.

After data collection, we built a convolutional autoencoder (CAE) [108], trained
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Figure 6.2. Examples of behavioral sequences (only left-arm joints are plotted).

Table 6.2. Model configuration of the CAE employed.

Layer type Layers

Input (height, width, num channels) (120, 160, 3)

Convolution2D
(num channels, kernel size, stride)

- (8, 4, 2) - (16, 4, 2)
- (32, 4, 2) - (64, 8, 5)

Full connection (n units) - (384) - (192) - (10) - (192) - (384)

Deconvolution2D
(num channels, kernel size, stride)

- (32, 8, 5) - (16, 4, 2)
- (8, 4, 2) - output (3, 4, 2)

it from scratch using the collected images, and employed it as a visual feature ex-

tractor. The CAE compressed the images into 10-dimensional feature vectors on

its center layer. We used them as visual inputs for the b-RAE. Table 6.2 reports

the details of the employed CAE architecture.

The descriptions were formed as a sequence of one-hot vectors. Every de-

scription includes <BOS> and <EOS> signals at the beginning and the end,

respectively.
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Table 6.3. Hyperparameters of the model and learning

Hyperparameter Value

l-RAE encoder single-layer LSTM (100 nodes)
l-RAE decoder single-layer LSTM (100 nodes)
b-RAE encoder double-layer LSTM (100 nodes per layer)
b-RAE decoder double-layer LSTM (100 nodes per layer)
Shared nodes 100 nodes

Distance function ψ Euclidean distance
Margin ∆ 1.0

Loss mixing rates α, β, γ all 1.0
Optimizer Adam (learning rate: 0.001)
Batch size 50

, Learning iteration 20,000

6.4 Learning Results

6.4.1 Training Details

We separated the 72 possible episode patterns into two parts: 54 for training

and 18 for testing2. The hyperparameters of the model and learning are listed in

Table 6.3.

6.4.2 Task Performance

Conversion from Behavior to Language

First, we evaluated the model’s capability to generate descriptions of given behav-

ioral sequences. As stated in Section 6.2, this conversion is carried out by utilizing

the b-EDM to embed a behavioral sequence and then utilizing the decoder of the

l-EDM to decode the representation. The l-EDM predicts the probability distri-

bution over the vocabulary every time step. At each time step, we accepted a word

corresponding to the node that has taken the maximum value as the model’s pre-

diction. When the predicted description was completely the same as the ground

2Here, we separated patterns regularly for each behavior, description, and box arrangement
to appear uniformly in the training split. Thus, the model experienced all possible behaviors, de-
scriptions, and box arrangements during training, but there were still 18 unexperienced episode
patterns, which were “an unexperienced combination” of them.
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truth, we judged it as correct. For this criterion, the model correctly described

all 54 experienced patterns and the 18 unexperienced patterns.

Conversion from Language to Behavior

We next evaluated the model’s capability to generate appropriate robot behav-

iors in response to an instruction depending on the current visual context. This

conversion is carried out by utilizing the encoder of the l-EDM to embed an in-

structive sentence and then utilizing the decoder of the b-EDM to generate a

behavioral sequence from the representation. First, we evaluated the performance

based on the task execution by the real robot. When the robot moved the in-

dicated box in the instructed direction more than 3 cm at the instructed speed,

we judged the behavior generation to have been successful. Here, we regarded a

generated behavior as SLOW if the robot took more than 30 time steps to return

to the neighborhood of its initial posture; otherwise, we regarded it as FAST.

For this criterion, the model successfully generated a behavioral sequence for

36 out of the 54 experienced situations and for 12 out of the 18 unexperienced

situations. Figure 6.3 visualizes examples of generated joint angle trajectories in

failed cases. In these failed episodes, because the robot generated a trajectory

slightly different from the target trajectory and it could not touch the correct side

of the box, the robot failed in moving the box in the indicated direction. How-

ever, even in the failed cases, the model seems to have generated a trajectory that

was rather similar to the predesigned target trajectory. Therefore, to evaluate

the generated trajectories in more detail, we applied the dynamic time warping

(DTW) [109] that measures similarities between temporal sequences. DTW anal-

ysis showed that even in failed cases, the generated joint angle sequence was most

similar to the correct one of the 12 reference sequences. This indicates that the

model at least learned the visually-conditioned relationships between linguistic

expressions and corresponding robot behavioral sequences.
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Instruction ”push yellow fast.” Objects L: Yellow, R: Red

Time steps

ShoulderPitch             ShoulderRoll ElbowYaw            ElbowRoll WristYaw

Instruction ”slide red fast.” Object L: Yellow, R: Red

PUSH-L-FAST 

Joint 
angles

Time steps

SLIDE-R-FAST  

Figure 6.3. Examples in which the model failed to generate an appropriate behavior. The solid
lines show the generated joint angles; the dashed lines represent the preprogrammed reference
trajectories. We plotted only five joints on the moving arm. Even in the failed episodes, the
model seems to have generated a joint angle sequence that was rather similar to the reference
trajectory. In fact, DTW analysis demonstrated that in all the failed episodes, the generated
sequence was most similar to the correct one among the 12 reference sequences.

6.5 Analysis of Shared Representations

Lastly, we investigated how the trained model internally represented the behav-

ioral sequences and their corresponding sentences using PCA. The left panel in

Figure 6.4 visualizes the embeddings of 18 possible descriptions. The plot shape,

color, and fill represent the verb, object, and adverb, respectively. We can see

that three parts of speech (namely verb, object, and adverb) were systematically

embedded, i.e., the compositional structure of the descriptions was strongly rep-

resented in the PC1–PC2 plane.

The center panel of Figure 6.4 shows the representations of the behavioral

sequences in the same PC1–2 plane. We can see that the behavioral sequences

were actually bound with their paired sentences. Here, it is worth noting that the

model could bind the same type of joint angle trajectory with different sentences

depending on the current context. For instance, the point indicated as (A) is a

representation of PUSH-R-SLOW in a context in which a yellow box and a red

box were placed on the left and right, respectively; thus, the behavioral trajectory

was bound with the sentence “push red slowly.” On the other hand, the point

indicated as (B) is also a representation of PUSH-R-SLOW in a context in which

there were a green box and a yellow box on the left and right, respectively, and

the behavior was hence bound with the sentence “push yellow slowly.” Even
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Figure 6.4. [Left] Representations of descriptions on the binding layer. [Center] Representations
of behavioral sequences that were jointly learned with descriptions. They were bound with
their descriptions, so they are represented in a semantic and compositional manner. [Right]
Representations of behavioral sequences that were learned alone. In such a case, they were not
organized in a semantic manner.

though points (A) and (B) encoded the same joint angle trajectory, they were

far from each other because their meanings were different depending on the box

combinations. On the other hand, different joint trajectories can be bound with

the same sentence.

To verify that such semantic representations of behavior actually resulted from

the joint learning with their paired sentences, we carried out another learning ex-

periment in which we trained the b-EDM alone (i.e., the b-EDM was optimized by

using the reconstruction loss only). This learning condition resulted in organizing

the 12 clustered representations of the behavioral sequences that mainly encoded

the joint angle information, as shown in the right panel of Figure 6.4. The visual

context (i.e., box arrangement) was almost ignored, so it had almost no influ-

ence on the latent representations. This comparison suggests that the loss term

to bind representations substantially influences the representations of behavioral

sequences to be semantically grounded in their paired sentences.
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6.6 Discussion

6.6.1 Comparison with Existing Bidirectional and Cross-

modal Methods

This chapter proposed the two-coupled EDM architecture that bidirectionally con-

verts between robot behavioral sequences and their descriptions. Existing studies

have utilized EDMs mainly to convert sequences from a source domain to a target

domain in a unidirectional and uni-modal (or cross-modal) manner. In contrast,

the coupled EDM model proposed here learns to convert between behaviors and

their descriptions bidirectionally from a paired language–behavior dataset. Fur-

thermore, the proposed model has the potential capability of converting a behav-

ioral sequence directly to another behavioral sequence that is semantically the

same through the latent representation space, although we did not perform an

evaluation of this capability. For instance, the PULL-R-SLOW behavior when a

green box is put on the right side would be encoded as the semantic represen-

tation “pull green slowly”. After that, if the green box was to be relocated on

the left in the decoding phase, the model would decode the representation as the

PULL-L-SLOW behavior.

Ogata et al. [41] proposed an NN architecture to bidirectionally convert be-

tween robot arm motions and their paired sentences. Their framework must iter-

atively run the BPTT algorithm to search an optimal latent vector with which to

generate a sentence given a motion or vice versa. This takes a longer time and the

convergence might not be stable. On the other hand, our proposed model only

needs to run one forward-propagation to obtain a latent representation.

Plappert et al. [110] also built a framework to bidirectionally map human

bodily motions into natural language descriptions and vice versa. Their frame-

work was comprised of two independent unidirectional EDMs that were separately

trained. This framework always requires a parallel dataset of bodily motions and

textual annotations to train the model. On the other hand, the advantage of our

method is that we can pretrain two RAEs separately using a uni-modal dataset

and then retrain them with a parallel dataset by utilizing binding loss.

Noda et al. [111] proposed a time delay autoencoder model that learned to
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extract low-dimensional features from a high-dimensional multimodal stream con-

sisting of robot vision, audition, and proprioception. After learning, through the

latent representation, the model could retrieve a lost modality from other modal-

ities. For example, given only audition and proprioception streams, i.e., a blind

situation, the model could imagine a visual situation accompanying them. How-

ever, their model has a limitation in terms of the capability to deal with temporal

patterns because the length of time window is fixed. Therefore, temporal patterns

longer than the window cannot be managed well.

6.6.2 Modeling Ambiguity Between Language and Behav-

ior

The most important limitation of the current method is that it grounds a behav-

ioral sequence in a sentence in a point-to-point manner. Essentially, we humans

are able to express the same behavioral sequence in various ways as well as use

the same expression for various behaviors. Even if the current context is appar-

ently the same, the relations between language and behavior are still many-to-

many depending on the participant’s intent, the history of the discource, and so

on. One promising way to cope with the intrinsic ambiguity of language would

be the introduction of the Bayesian framework, similarly to the VAE [112]. By

grounding language in behavior as a probabilistic distribution, we could explicitly

model such many-to-many relationships. For example, there are some existing

studies that proposed multimodal VAEs [87, 86]. These methods learn to model

the probabilistic relationships between modalities in a generative form. Through

the latent variable space, these models bidirectionally infer a data sample in one

modality from the other modality. To date, these models have been focused on

static data, such as images and binary attributes. In future work, by integrating

such Bayesian schema into our RNN-based EDM framework, we could reasonably

model the intrinsic ambiguity between language and behavior.
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6.6.3 End-to-end Learning with Visual Feature Extractor

In the current experiment, we extracted visual features from the raw images using

the pre-trained CAE in advance of the learning of the RAEs. This leads to the risk

that the visual feature vectors achieved by the CAE are not optimal to the task

because the CAE was trained with the objective function to reconstruct original

images. In fact, we investigated the visual features extracted by the pre-trained

CAE as a preliminary check. The analysis revealed that the lighting condition

during data recording had a large influence on the visual feature space, although

it did not have serious effects on the performance in the current task. One of the

advantages of systems that wholly consist of NN architecture is that all modules

are trained to be optimal to the imposed task in an end-to-end manner. In future

work, to obtain more effective and noise-robust representations, learning should

be carried out in an entirely end-to-end manner from raw image input to robot

control output.

6.7 Summary

In this chapter, to attain bidirectional mapping between linguistic expressions

and robot behavioral sequences, we proposed a two-coupled EDM framework in

which the latent representations of behavioral sequences and their descriptions

were bound with each other. The experiment demonstrated that this representa-

tion binding actually allows the model to convert behavioral sequences and their

descriptions bidirectionally, conditioned on a visual context. The analysis of the

latent representations revealed that behavioral sequences were represented in a se-

mantic and compositional manner in the shared space by being learned together

with their corresponding sentences. Future work will include an evaluation of the

model’s potential to learn more complicated tasks. We will also consider how to

cope with the intrinsic ambiguity of language. Figure 6.5 summarizes the main

targets discussed in this chapter.
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Language grounding in robot behavior
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 Integration of 
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 into robot behaviors:
 only content words
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 Bidirectional conversion 

 between language

 and behavior 
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 Linguistic instructions

 into robot behaviors:

 content & function words 

(Chapter 5)

Figure 6.5. The main targets discussed in Chapter 6.
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Chapter 7

Conclusion

7.1 Overall Summary of the Current Research

This study proposed a novel machine learning framework to ground language in

robot behavior. We focused on three important issues: context dependency of

mapping between language and behavior (R1), understanding of both content

words and function words (R2), and bidirectional conversion ability (R3). To ad-

dress R1 and R2, we proposed an RNN-based EDM that integrated multimodal

information as input. It learned to ground linguistic instructions into robot be-

havioral sequences by integrating the instructions together with visual and pro-

prioceptive information into the fixed-dimensional representation of its context

state. R3 was addressed by combining two EDMs and introducing an additional

loss function that binds the latent representations of language and behavior.

We evaluated the grounding capability of our proposed method with three

robot experiments. In Chapter 4, we evaluated our framework on the first re-

quirement. The task was to convert linguistic instructions that consist of only

content words into robot behavioral sequences in an appropriate manner for the

current visual context. The model successfully learned the given task. Specifically,

the combinatorial relationships between color words and visual information were

systematically learned, so the model could execute appropriate behavior even in

unexperienced situations. The analysis of the internal representations actually re-

vealed that the meanings of sentences were embedded in a way that was integrated

with visual information. Moreover, the model represents not only grounding rela-
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tionships but also the interaction progress pattern, which consists of instruction

reception, behavior generation, and waiting as a cyclic attractor structure.

In Chapter 5, we evaluated the model on R2 by performing an experiment in

which logic words were also included as examples of function words. Similarly

to the first experiment, the F-EDM was able to learn the relationships between

instructions and behavioral sequences with a certain level of compositional gen-

eralization. Color words were embedded by being integrated with visual informa-

tion, and then they were grounded in left and right arm behaviors. Logic words

were represented in accordance with their functions as logical operators. “Do”

and “don’t”, which determine whether the model behaves as directed by a verb

or in an inverse way, required the model to solve the X-OR problem implicitly in-

cluded in the target data. The model actually extracted the problem and learned

to resolve it in the relatively low-rank principal components by transforming in-

put sentences non-linearly. The function of “or” that requires the robot to lift

up either arm was organized as unstable areas of the RNN’s internal dynamical

system.

Chapter 6 performed the third experiment to evaluate the capability of bidi-

rectionally converting between robot behavioral sequences and their linguistic ex-

pressions. By combining two EDMs and introducing the additional loss function

that makes representations of language and corresponding behavior approach to

each other, the paired sequences were actually embedded close to each other in

the shared space. Through the shared representation, the bidirectional conversion

was achieved, appropriately conditioned on the visual context.

7.2 Future Work

7.2.1 Scalability of the Proposed Framework

In future work, we should evaluate the scalability of the proposed learning frame-

work. Although we performed robot experiments on a tabletop with some simple

objects, practical situations are less constrained. Instructions given to robots

also have much more various and complicated syntactic structure with a large

vocabulary.
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Recently, various types of deep NNs have achieved outstanding performance

on mapping linguistic instructions to navigation command sequences in virtual

environments [15, 17]. With great success in other kinds of grounding tasks, these

examples lead us to expect the scalability of deep EDMs on language grounding

in robot behavior. To scale up, improvements in model architecture and learning

procedure would be required. Although this study adopted a supervised learning

framework, this is not necessarily always suitable for target tasks. For example, in

tasks that impose some goal-oriented behavior on a robot, even if all the collected

supervising data succeeded in reaching the goal, there is a risk that the process

or trajectory to reach the goal will be arbitrarily determined by a supervisor and

is therefore not optimal. Also, these manually collected trajectories would not

necessarily reflect the robot’s body structure and dynamics.

In contrast, the successful cases of navigation in virtual environments often

adopt a reinforcement learning framework. In reinforcement learning, robot be-

havior is explicitly optimized in relation to accomplishment of given tasks. In this

sense, robots can autonomously develop their skills and achieve optimal behavior

in the specific constraint of their own body. However, reinforcement learning has

some issues when implemented in robots. First, rewards to be given to robots

are not always clear. Secondly, reinforcement learning on robots takes much more

time than supervised learning because it requires exhaustive exploration of a wide

continuous space. The latter issue is serious because real robots can be broken

and they can only work in real-time. To overcome these issues, some learning

frameworks that combine supervised learning and reinforcement learning (and

unsupervised learning) have been proposed [113]. There have also been methods

that first pretrain a network in a simulated environment and then transfer the

acquired knowledge to the real world [114]. We should evaluate the effectiveness

of applying these methods to our framework.

7.2.2 Intrinsic Ambiguity of Language

In this study, we dealt with the context dependency, which is a highly important

issue in language grounding. In the experiments performed here, the proposed

model succeeded in appropriately converting between linguistic instructions and
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robot behavioral sequences by perceiving the current context as a multimodal

input stream. However, in practical situations, the mapping between natural lan-

guage and the real world is more complicated. Beyond the context dependent

change of relations between language and its referents, even if the current obser-

vation is apparently the same, there are infinite possible linguistic expressions for

it. This would depend on the participant’s intent, the history of the discourse,

cultural background, etc. In contrast, there are also cases in which the mean-

ing of an utterance cannot be uniquely determined only from the given context.

Such intrinsic ambiguity of language cannot be completely solved. The symbol

grounding problem is somewhat ill-posed. In fact, humans often make mistakes,

but they are able to continue interaction by attempting to resolve them during

interaction.

One way to address this inevitable ambiguity is to model the ambiguity be-

tween language and behavior explicitly. For instance, the VAE infers the posterior

distribution of the latent variables given a data observation, in contrast to our

proposed framework, which modeled the grounding relationships as points in a

fixed-dimensional space. As another example, Brazinskas et al. [115] proposed

a framework to embed words as probabilistic densities to model their potential

meanings (e.g., “kiwi” could refer to either a bird or a fruit).

When we explicitly model the ambiguity or uncertainty of grounding relation-

ships, we must also consider how to make a decision, which has been suspended

once, from candidates. The first way is to ask the human partner for further

clarity. Hatori et al. [116] built a deep learning system that inferred which object

was referred to by natural language instructions from a human. If the human

instruction had ambiguity, their model asked the human for clarification.

The other way is to start some actions with a tentative interpretation and to

change the behavior whenever the tentative interpretation is wrong. For instance,

Chen et al. [117] performed an experiment in which two humanoid robots con-

trolled by an RNN interact with each other using a ball. Two robots knew several

ball-playing patterns and these patterns were encoded as PB vectors. Here, PB

vectors can be interpreted as a robot’s intention that determines what kind of

ball-playing pattern is generated. In this experiment, if a discrepancy between
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two robot’s intentions emerges during interaction, the generated behavioral se-

quences also become incompatible with each other. From the robots’ view, this

incompatibility is observed as an error between an RNN’s own prediction and

the perceived current state. In these situations, their model corrects PB values

to minimize observed errors, i.e., to make the robot’s intention compatible with

the partner’s intention through the current observation. By this function, the

robots could continue interaction by flexibly changing their behavior among sev-

eral ball-playing patterns. Implementing such an algorithm, robots would be able

to dynamically understand language like humans. More precisely, they tentatively

determine their plan in response to a linguistic instruction while simultaneously

keeping its uncertainty or ambiguity, and then they adaptively change their be-

havior when they notice that they have misunderstood the instruction.

7.2.3 Social Aspects of Language

This study does not deal with social aspects of language. In practice, our lan-

guage systems are used in situations of mutual intertwined communication. One

person’s utterance or behavior influences their partner’s responding utterance or

behavior and vice versa. This can be further expanded situations with more peo-

ple involved. Explicitly modeling other agents’ internal state or intention during

interaction (e.g., refer to Rabinowitz et al. [118]) would be required to correctly

infer the current social context. Also, the grounding relationships would be more

or less different among various communities (e.g., families, regions, generations,

and cultures). Moreover, in such interaction, the relationships between linguistic

expressions and their referents would be dynamically changing. Therefore, the

skill to promptly adapt language use online is also required [119].

It has also been reported that social cognition is important during the lan-

guage acquisition process. Infants can efficiently acquire their first language

scaffolded from their caregivers’ support [47]. Recently, the importance of cur-

riculum learning has also been demonstrated in some machine learning experi-

ments [120, 121, 15]. By adopting these techniques, more efficient learning of

language grounding in robot behavior can be achieved.
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7.3 Significance of the Current Study in Embod-

iment Informatics

Creating service robots that work by understand natural language is a highly

important theme nowadays. Up to now, language has been mainly dealt with

in the field of informatics, but robots have been developed in the field of me-

chanical engineering. Because the mathematical methods that express them have

been different from each other, we must consider how to bridge the gap between

language and robots. As the symbol grounding problem states, it is difficult to

manually design a good interface between high-level intelligence that processes

abstract symbolic representations and low-level intelligence that deals with raw

sensorimotor flow coupled with the dynamic continuous world.

In contrast to the top-down method in which humans arbitrarily design in-

terfaces, learning-based approaches in which grounding relations are learned from

systems’ own experiences in a bottom-up manner is becoming a major concept,

as seen in the recent trend of deep learning. It has been reported that NNs can

gradually connect from raw-level sensorimotor features to their abstract symbolic

representations through deeply stacked layers. The current study also demon-

strated that an RNN-based system can learn to encode the different modalities

of language, vision, and robot proprioception together into an integrated repre-

sentation and bidirectionally convert language and robot behavior through such

a representation.

When we attempt to build robot intelligence by learning, one of the key con-

cepts is “embodiment.” The idea of embodied intelligence hypothesizes that our

intelligent cognition, including symbol use, is developed from our own embodied

experiences of the world. Based on this philosophy, robots can also develop their

own cognitive functions from their own experiences in a manner specific to their

own body structure and dynamics. Specifically, functions that are closely coupled

with their physical characteristics, such as locomotion, reaching, and grasping,

can benefit greatly from the concept of embodiment.

Here, the problem is whether linguistic skill is also acquired sufficiently from

only bottom-up learning. The point is that language is a tool for communica-
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tion with other agents, and robots must also communicate with humans using

language. In the case of communication between humans, we have rather similar

bodies and a shared structure of experiences; therefore, we develop relatively simi-

lar grounding structure. However, the grounding form developed by robots, which

have much different experiences from humans, might be very different from ours.

In fact, Mordatch and Abbeel [122] focused on symbol emergence between multi-

agents in a virtual environment and performed an experiment in which agents

learned to execute a task in a collaborative manner by communicating with each

other using symbolic signals. They reported that the agents sometimes developed

a symbol system that could not be easily understood by humans, but they were

still effective to achieve their goal. Besides the example of a multi-agent system,

it has also been reported that deep NNs can outperform humans in image classi-

fication tasks, but they can make mistakes for images that humans never fail to

recognize1. As pointed out, NNs are basically black boxes; even if they seemingly

have the same function as humans, the internal representation and process can be

different.

Considering these facts, although learning-based approaches make a signifi-

cant contribution to robot intelligence, robots must achieve language skills in a

manner that is not only embodied in their experiences but also able to be shared

with humans. Therefore, although we do not have to perfectly replicate our own

cognitive process to implement it on robots, it is important to investigate how

robots internally represent relations between language and their own behavior,

as in the current study. In future, to design fields in which humans and robots,

which are different entities, richly interact with each other, we must consider how

the whole process of interaction dynamically continues. In Peircian terminology,

it is not enough to model the static relations between input (sign) and output

(object); we must consider how the robot (interpretant) internally understands

the sign by dynamically grounding it in every given context and how different

agents build a dynamical process of mutual communication and understanding.

The investigation we performed in the current study to understand the in-

ternal representation of the link between language and robot behavior in NNs

1There have also been studies that attempted to make such adversarial examples [123].
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contributes the construction of novel styles of interaction between heterogeneous

agents (human–human, human–robot, and robot–robot) beyond forcing our naive

perspective on conventional language use. In that sense, we believe that the

current study makes a meaningful contribution to the field of embodiment infor-

matics.

7.4 Significance of the Current Study in Inter-

media Art and Science

With the development of sensing techniques and communication technology, it is

important to consider how to integrate and utilize sensed multimodal information.

We think that the objective of the intermedia art and science research is roughly

divided into (1) developing scientific knowledge on integration of multimodal in-

formation, (2) applying the knowledge into engineering products, and (3) creating

novel values or perspectives, which would be impossible only with conventional

technology, as art. The first two objectives overlap with the embodiment infor-

matics. The research on robots, which consist of densely arranged sensorimotor

modules and intelligent modules to integrate multimodal information, is on the

cutting-edge of the engineering side of the intermedia art and science. We have

already explained the importance of the methodology that investigates how the

intelligent systems internally represent multimodal information.

However, we think that this methodology can also be applied to the art side.

Creation of a new style of expressions is inseparable with building a novel repre-

sentation of the world. In recent, generative NNs, such as VAEs and generative

adversarial networks [100], have been used to model various kinds of data dis-

tributions including images, videos, pieces of music, and so on. By exploring

the latent representations of them, we can produce novel pieces. Because these

frameworks can be applied to multimodal data, we can expect that in literal,

novel “intermedia arts” are produced. Utilization of different bodies (e.g., robots)

would make novel representation spaces, which origin from experiences embodied

differently from us, therefore lead to artistic expressions that make us be aware of

new perspective of the world. Moreover, the integration of linguistic knowledge
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would give a useful interface to a wide range of creators and make opportunities

of collaborative work between humans and systems.

Considering these future directions, we believe that our methodology, which

build integrated representations of multimodal information on robots in a con-

structive manner, is one of fundamental approaches of intermedia art and science

research.
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Appendix A

Details of Neural Networks

A.1 Multi Timescale Recurrent Neural Network

Here, we describe the forward dynamics of an L-layers MTRNN. The internal

state vector of the lth context layer at time step t, namely c(l)t , is computed by

the following equation:

c(l)t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− 1

τl

)
c(l)t−1 +

1

τl

(
W inxt +W (l,l)h(l)

t−1 +W (l+1,l)h(l+1)
t−1 + b(l)

)
(l = 1),

(
1− 1

τl

)
c(l)t−1 +

1

τl

(
W (l−1,l)h(l−1)

t−1 +W (l,l)h(l)
t−1 + b(l)

)
(l = L),

(
1− 1

τl

)
c(l)t−1 +

1

τl

(
W (l−1,l)h(l−1)

t−1 +W (l,l)h(l)
t−1 +W (l+1,l)h(l+1)

t−1 + b(l)
)

(otherwise),

(A.1)

where τl is a time constant that controls the response speed of the nodes in the

lth layer, W in is a weight matrix from the input layer to the 1st layer, W (i,j) is

a weight matrix from the ith layer to the jth layer, and b(l) is a bias term on the

lth layer. h(l)
t is calculated by applying an activation function tanh to c(l)t . After

these calculations, the activation of the first layer h(1)
t is projected to the output

layer as follows:

yt = tanh(W outh(1)
t + bout). (A.2)
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A.2 Stochastic Modeling of Temporal Data for

Stable Learning

One of most commonly used loss functions to train neural networks by the gradient

descent is MSE. This is equivalent to maximizing the likelihood by assuming that

data points are always given noise from the same Gaussian distribution. However,

the actual magnitude of variance or uncertainty in real time-series data can depend

on the context. In these cases, i.e., when some parts of data have larger noise or

unpredictability than other parts, usage of MSE as the loss function might make

learning unstable because the RNN struggles to learn these parts.

To avoid this issue, Murata et al. [95] introduced another loss function. This

loss function assumes that each data point is added Gaussian noise whose variance

depends on the history. With this loss function, the RNN learns to predict not

only the external state in the future but also its uncertainty as variance. Thanks

to such a loss, which presumes the context dependent unpredictability in target

data, the errors back-propagated to the trainable parameters decrease with respect

to such unpredictable parts by correctly predicting their uncertainty. Therefore,

the RNN can stably learn temporal patterns included in target data. To predict

variance, the variance layer is added as follows:

vt = exp(W varh(1)
t + bvar). (A.3)

Since variance must be positive, the exp function is used for activation. Here,

target data is denoted as ŷt, and the likelihood function Lt is expressed as follows:

Lt =
∏

i

1√
2πvt,i

exp

(
−(ŷt,i − yt,i)

2

2vt,i

)
, (A.4)

where i is the index for output and variance nodes. The network is trained by

maximizing this function. To formulate the problem as a minimization problem

and to simplify the problem, we instead use the negative log likelihood function

− logL.
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A.3 Long Short-Term Memory Unit

The behavior of an LSTM layer at time step t is calculated as follows:

at = tanh(WINxt +RINht−1 + bIN), (A.5)

it = σ(WIGxt +RIGht−1 + pIG ⊙ ct−1 + bIG), (A.6)

ft = σ(WFGxt +RFGht−1 + pFG ⊙ ct−1 + bFG), (A.7)

ct = it ⊙ at + ft ⊙ ct−1, (A.8)

ot = σ(WOGxt +ROGht−1 + pOG ⊙ ct + bOG), (A.9)

ht = ot ⊙ tanh(ct), (A.10)

where xt and ht are external input and output from the layer at time step t,

respectively. at is the input to the layer calculated by external input xt and

recurrent input ht−1. itɼftɼand ot are the input gate, forget gate, and output

gate, respectively. The input gate controls how much at is fed into the memory-

cell. The forget gate determines how much of the previous state of memory-cell

ct−1 should be maintained. Finally, the output gate controls how the updated

cell state can flow as the output of the layer. σ is the sigmoid function. Here,

as long as the forget gate keeps the value close to 1, the memory cell state is not

attenuated. Therefore, LSTM units can deal with longer temporal patterns than

normal recurrent units. The propagation process is fully differentiable, so all the

learnable parameters, i.e., external input connections Wɼrecurrent connections

Rɼpeep-hole connections pɼand biases b, can be optimized by the gradient

descent algorithm.
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Appendix B

Learning Details of Bell Task in

Section 5.6

This appendix describes the details of the learning experiment that we performed

in Section 5.6.

B.1 Data Representation

The task execution was represented as a series of 26 dimensional vectors. Table B.1

describes what each element represents. We assigned ten elements for words. Each

sentence was represented as a series of one-hot vectors. To represent the robot

arm joints, we also assigned ten elements. We recorded behavioral sequences

by running programs that controlled the robot arm joints along predetermined

trajectories. They take approximately 25 time steps in the case of SLOW behavior

and 16 time steps in the case of FAST behavior. We assigned six elements to

encode visual information. For instance, the pair of vl0 and vl1 represented the

color of the left bell. In the current task, we assumed that the red, green, and

blue bells corresponded to 0, 2π/3, and 4π/3 rad on the hue circle, respectively.

The element vl0 took the cosine of the hue angle of the left bell, and vl1 was its

sine. Similarly, the pairs vc0, vc1 and vr0, vr1 encoded the color of the center and

right bells, respectively. We concatenated instructions and behavioral responses

on a computer in a similar manner to the experiment in Chapter 4.
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Table B.1. Data representation of the bell task.

Elements Descriptions

w0 “point”
w1 “hit”
w2 “red”
w3 “green”
w4 “blue”
w5 “slowly”
w6 “fast”
w7 “and”
w8 “or”
w9 “not”

vl0 cosine of the hue of the left bell
vl1 sine of the hue of the left bell
vc0 cosine of the hue of the center bell
vc1 sine of the hue of the center bell
vr0 cosine of the hue of the right bell
vr1 sine of the hue of the right bell

jl0 the shoulder pitch of the left arm
jl1 the shoulder roll of the left arm
jl2 the elbow roll of the left arm
jl3 the elbow yaw of the left arm
jl4 the wrist yaw of the left arm
jr0 the shoulder pitch of the right arm
jr1 the shoulder roll of the right arm
jr2 the elbow roll of the right arm
jr3 the elbow yaw of the right arm
jr4 the wrist yaw of the right arm

B.2 Learning Setting and Evaluation Method

To train models, we made a dataset that consisted of 512 sequences. Each se-

quence included eight successive episodes. The dataset included all the possible

episodes, which were defined as a combination of the bell arrangement, instruction,

and behavioral response, at least once. We trained each of the single-context-layer

models with 100, 300, 500, and 700 LSTM nodes ten times with different random

seeds. The optimizer was Adam, whose learning rate was 0.001. The number of
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learning iterations was 10,000.

We made another dataset to evaluate the model performance. It included

all possible situations ten times. When the RMSE between the outputs and the

ground truth per joint per time step during the behavior execution was less than

0.04, we judged that the model had successfully generated appropriate behavior.

We regarded the situation patterns in which the model successfully generated

appropriate behavior seven trials or more out of ten as “successfully learned.”

B.3 Task Performance

We classified the episodes into four types: episodes in which an instruction with

a single object word was given (72 situations); an AND-concatenated instruction

was given (144 situations); an OR-concatenated instruction was given (144 situ-

ations); and a NOT-prefixed instruction was given (72 situations). We evaluated

the models’ performances by counting the number of situational patterns that the

models successfully learned with respect to each of four types. Figure B.1 sum-

marizes the resulting performance. An increase in the number of LSTM nodes

improved the performance, but the 500- and 700-node models gave no significant

difference in performance.

We also investigated which behavior the model chose for instructions that

accept multiple behavior patterns as correct. The situations that have a plural

number of correct behaviors are classified into three types: (a) When an instruc-

tion directs the model to act to the center bell, the model can act with either

arm. Therefore, two different behaviors are accepted as correct. (b) When an

instruction directs the model to act to the “left or right” bell, two answers exist.

(c) When an instruction directs the model to act to the “left or center” or to the

“right or center,” three solutions exist: acting (1) to the left (right) bell with the

left (right) arm, (2) to the center bell with the left arm, and (3) to the center bell

with the right arm. Table B.2 summarizes the results for these three situational

types. Here, we counted the result of the 500-node model. The model chose each

of the different solutions evenly. Situation types (a), (b), and (c) include 24, 48,

and 96 variations of situations, respectively, and we performed ten trials for each
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Figure B.1. Behavior execution performance. The performance was scored as the number of
situation patterns the models successfully learned with respect to each of the four episode types:
single-object instruction; AND-concat instruction; OR-concat instruction; and NOT-prefixed
instruction. The values on the bars are the means of ten trials in which training was performed
with different random seeds. Error bars visualize the standard deviations.

of these situations. In most of these ambiguous situations, the model chose all of

the possible solutions at least once. In other words, the model successfully learned

to behave appropriately in ambiguous situations, as in the flag task.

134



Table B.2. Ratios of chosen solutions for ambiguous instructions, which accept a plural number
of solutions. The details of each situation type are described in the body text.

Situation Choice 1(%) Choice 2 (%) Choice 3 Failure (%)

(a) 49.2 42.9 - 7.9
(b) 50.0 44.4 - 5.6
(c) 29.1 29.4 36.6 5.0
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