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Chapter 1

Introduction

Many methods for multivariate data have been developed. For example, Anderson
(2003) and Rao (2009) proposed and developed many multivariate methods based
on large i.i.d. sample approximations. Recently, Fujikoshi et al. (2011) expanded
their results to high-dimensional i.i.d. framework. Also, in time series analysis,
Taniguchi and Kakizawa (2000) and Brillinger (2001) discussed some multivariate
methods. These statistical inferences are very important, but they can not be used for
high-dimensional time series problems. This dissertation discusses some multivariate
statistics for time series models with possibly high-dimensional setting. Specifically,
we focus on statistics of discriminant analysis, cluster analysis and the analysis of
variance (ANOVA).

This doctoral dissertation is organized as follows. Chapter 2 is based on Liu,
Nagahata, Uchiyama and Taniguchi (2017). We discuss discriminant and cluster
analysis for possibly high-dimensional time series. Discriminant and cluster anal-
ysis of high-dimensional time series data have been an urgent need in more and
more academic fields. To settle the always-existing problem of bias in discriminant
statistics for high-dimensional model, we introduce a new class of disparities with
jackknife type adjustment for discriminant and cluster analysis. In numerical exper-
iments, our proposed discriminant statistics result in smaller misclassification error
rates than other existing classifiers. The performance is also verified by real data of
companies on the Tokyo Stock Exchange. We conclude that our method is suitable
for the discriminant and cluster analysis of high-dimensional dependent data.

In Chapter 3, we introduce an application of Liu et al. (2017) for real data.
Recently, discriminant and cluster analysis of high-dimensional time series data have
been developed for academic fields. This effective methods have been applied to
genetic analysis and are expected to apply to many other fields. However applications



of high-dimensional financial time series data are very poor. In this chapter, we study
clustering of companies by using some financial indicators which are large dimensional
and small observations. Specifically, we propose consistent classifiers for the problem
of clustering. By computing them, we successfully draw some dendrogram of financial
indicators. We conclude that the proposed method has a potential in applications
for rating companies.

Chapter 4 discusses ANOVA for multivariate time series. This study establishes
a new approach for ANOVA of time series. ANOVA has been sufficiently tailored for
cases with independent observations, but there has recently been substantial demand
across many fields for ANOVA in cases with dependent observations. For example,
ANOVA for dependent observations is important to analyze differences among in-
dustry averages within financial data. Despite this demand, the study of ANOVA
for dependent observations is more nascent than that of ANOVA for independent ob-
servations, and, thus, in this analysis, we study ANOVA for dependent observations.
Specifically, we show the asymptotics of classical tests proposed for independent ob-
servations and give a sufficient condition for the observations to be asymptotically
x? distributed. If this sufficient condition is not satisfied, we suggest a likelihood
ratio test based on the Whittle likelihood and derive an asymptotic x? distribution
of our test. Finally, we provide some numerical examples using simulated and real
financial data as applications of these results.

In Chapter 5, we consider ANOVA for high-dimensional time series. Recently,
there has been considerable demand for ANOVA of high-dimensional and depen-
dent observations in many fields. For example, it is important to analyze differences
among industry averages of financial data. However, ANOVA for these types of
observations has been inadequately developed. In this chapter, we thus present a
study of ANOVA for high-dimensional and dependent observations. Specifically, we
present the asymptotics of classical test statistics proposed for independent obser-
vations and provide a sufficient condition for them to be asymptotically normal.
Numerical examples for simulated and radioactive data are presented as applications
of these results.

Chapter 6 introduces higher-order approximation of classical ANOVA models un-
der high-dimensional time series setting. Now it is important to analyze differences
among big data’s averages of any areas of all over the world, for example, the finan-
cial industry, the manufacturing one, and so on. However, the numerical accuracy
of ANOVA for these types of observations has been inadequately developed. In
this chapter, we thus present a study on Edgeworth expansion of ANOVA for high-
dimensional and dependent observations. Specifically, we present the second-order
approximation of classical test statistics proposed for independent observations. We



also give numerical examples for simulated high-dimensional time series data.
Throughout this dissertation, we define some of the notation. The set of all
integers, positive integers and real numbers are denoted as Z, N, and R, respectively.
We denote the imaginary unit by i. ¢;; and 1 denote Kronecker’s delta and the
indicator function. Let A’, B*, I,, O;, and O;y; be the transpose of matrix A,
the conjugate transpose of matrix B, the p X p identity matrix, the ¢-dimensional
zero vector, and the ¢ X j zero matrix, respectively. For the sequence of random

vectors, = denotes the convergence in probability, and 2, denotes the convergence
in distribution. Let Op (a,) be an order of the probability that is, for a sequence of
random variables {X,,} and a sequence of real numbers{a,}, 0 < a, € R, {a,'X,}
is bounded in probability, and let O (-) be a p x p matrix whose elements are
probability order Op (-) with respect to all elements uniformly. In addition, let | - |
be the determinant of -, ||-|| be the Euclidean norm of -, respectively.






Chapter 2

Discriminant and cluster analysis
of possibly high-dimensional time
series data by a class of disparities

To make a statistical decision for high-dimensional time series data is a matter of
great concern nowadays. High-dimensional dependent data are observed in many
scientific fields, such as economics, finance, bioinformatics and so on. Previous re-
search for statistical analysis of high-dimensional dependent data, however, was not
sufficient. This chapter sheds light on the issue of discriminant and cluster analysis
of high dimensional dependent data. There have been a lot of fundamental results for
discriminant and cluster analysis of independent and identically distributed (i.i.d.)
data or time series data in finite dimension case. Anderson (2003) developed the
linear discriminant statistic based on the Mahalanobis distance and likelihood ratio.
Rao (2009) proposed the linear and quadratic discriminant statistics for several nor-
mal populations N,(p;,%;). Recently many results were reported in i.i.d. and high-
dimensional data with dimension p — oco. The issue originates from the fact that the
inverse matrix of the sample covariance matrix does not exist in high-dimensional,
low sample size (HDLSS) situation, where p/n — co. Dempster (1958) discussed the
multivariate two sample significance test based on Hotelling’s 72 in high-dimension
analysis. Saranadasa (1993) considered two normal populations N, (g, X) of sample
size n; for j = 1,2, and, in the case p/(n1 + ny —2) — y € (0,1), evaluated the
misclassification rate for the A-criterion, which is essentially the Euclidean classi-
fier. Bai and Saranadasa (1996) also assumed p/(n; + ny —2) — y € (0,1) and
ni/(ny +ny) — k € (0,1), and derived the asymptotic powers of the classical
Hotelling’s T test and Dempster’s nonexact test for a two-sample problem. Hall
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et al. (2005) suggested a geometric representation of the i.i.d. and HDLSS data by
using a non-standard type of asymptotics. A scale adjusted-type distance-based clas-
sifier for i.i.d. and high-dimensional data was proposed by Chan and Hall (2009) (see
also Aoshima and Yata (2014)). Yata and Aoshima (2009, 2012) developed a method
for principal component analysis in the i.i.d. and HDLSS data.

Discriminant analysis for finite dimensional stationary time series has a long his-
tory. For time domain approach, Gersch et al. (1979) developed a classifier based
on the Kullback-Leibler information measure. Applying approximation based on
the Whittle likelihood, Shumway (1982) proposed the method of discrimination for
stationary time series using frequency domain approach. Kakizawa et al. (1998) ex-
tended the Whittle likelihood to minimum discrimination information for the classi-
fication of multivariate stationary time series. More details of discriminant analysis
for time series can be found in Taniguchi and Kakizawa (2000). They mentioned
both time domain and frequency domain approaches for the discriminant analysis
and discussed the problem of discriminating linear processes.

In this chapter, we are concerned with high-dimensional stationary process { X (¢)},
which is supposed to belong to one of the two categories;

meop=pb fO)=FOWN),

mip=p? f) = FO0N),

where p and f()\) are the mean vector and spectral density matrix of the process
{X (t)}, respectively. We then consider a distance-based classifier (see Chan and
Hall (2009)). Using the multivariate analogue of the methodology of the jackknife in
the stationary observations developed by Kiinsch (1989) (see also Carlstein (1986)),
we propose a new classifier with bias adjustment in time series data. We primarily
discuss the consistency of the distance-based classifier for multivariate stationary
time series data where the dimension p is allowed to diverge, under suitable conditions
on size of samples and training samples (n,n;, ny) and dimension p. We also conduct
the cluster analysis for real financial data.

The remainder of the chapter is organized as follows. In Section 2.1, we show
the misspecification rates of our discriminant statistics converge to 0 under suitable
conditions on (p,n,ni,ns). In Section 2.2, we compare our proposed classifier with
the existing classifiers through simulation studies. In Section 2.3, we conduct the
cluster analysis for real financial data of companies on the Tokyo Stock Exchange.
Proofs of Lemmas and Theorems are placed in Appendix.

6



2.1 Discriminant statistics for possibly high di-
mensional time series data

Let {X(t) = (Xu(t),....X,(t)):t € Z} be a p-dimensional stationary process
with mean vector p and autocovariance matrix function R(t) = {R;;(t);i,j =
1,...,p}. Here the dimension p is allowed to diverge. Suppose we observe X =
{X(1),...,X(n)} from the stationary process { X (t)}, which belongs to one of the
following two categories

mop=pY  R@t)=RW(1),

o =p?,  R(t) = RP(1).

Also we have independent training samples X1 = {X®(1),..., X®(n;)} and
X®@ = {X®1), ..., X(ny)} from 7, and 7 with size n; and ny, respectively.
Write A = [|[u) — pu®]|2. Throughout this chapter, the notation £ and Var often
denote the expectation and variance with respect to a triplet of (X, X, X)), The
following sample versions for fundamental quantities are introduced:

n

1 1 &

X == X(t), XU==3 X0(@),
A (o
i 1 = i v (i i v (i)\/ .
§0 =~ DX - XN(XO() - XY, =12

t=1

To classify the time series data, we use the following discriminant statistic:

rox,x 0, x0) - (x - XXy (g g0y e

This statistic and its scale-adjusted version have been discussed by, e.g., Chan and
Hall (2009) and Aoshima and Yata (2014) for the i.i.d. and HDLSS data. For sim-
plicity, denote T'(X) = I'(X, XM, X@). First, we evaluate the expectation and
variance of I'(X).

Lemma 2.1.1 When X belongs to m;, E(T(X)) = (=1)!A/2 + B, where

no—1

1 = Ju| 1 Ju|
B=_— (1— >tR(1) - (1——)tR(2) .



Let cEffaQaB (t1,t2) and c$3a2a3a4 (t1,12,t3) denote the third and the fourth order cumu-
lants of the process {X®(¢)} in the category m; for I = 1,2 as follows:

W et t2) = cum{ XD (8), XDt + 1), X (¢ + t2)},
W e (t1, tost3) = cum{ X (), XD (¢ + 1), XUt + t2), XP(t + 1)}

Lemma 2.1.2 When X belongs to m;,

Var(D(X)) :inlnltr( ii (1- |Z|)R(’( ) iz_l (1—|;jl|>R(l)(u))

lul R(i)(u)—&—; Zl (1_T)R(%)(u)) (1 )

1 = ul\ La

=3 (1-2)RYW) )
ny u - ny

ny ny ny

p P
D AU 9 DEAUESTE

s=1 t1=112=1

1
p
471?2 ZZZZ%M 51752_51’t2_31)],

]:]_ k=1 31—1 82—1 t1= 1t2 1
where (i,1) = (1,2), (2,1).

Remark 2.1.1 Lemma 2.1.2 includes i.i.d. cases considered in Aoshima and Yata
(2014). Note that the processes considered in their chapter is non-Gaussian with all
vanishing third and fourth cumulants. In fact, if we set

)N if u=20,
R(”(u) = {0’ ifu0

forl=1,2, we see that when n =1 and X belongs to m;,

22:1; { l)E(k)}+(u(1) O (2<z>+2(”)(“<1> _ u(2))+iztr{12<2“)>2},

k=1 1 =1

Var(T'

where (i,7) = (1,2),(2,1).



Now, the classification rule is to classify X into m if I'(X) < 0 and into m
otherwise. To discuss the asymptotic property of I'(X), we impose the following
assumptions.

Assumption 2.1.1 (i) ny = cony for some constant ¢y > 0.

(11) There exists n > 0 such that c1p" < A < cop for some constants ¢; > 0 and
co > 0.

Assumption 2.1.2 (i) The autocovariance matriz function RV (u) of the station-
ary process {XW(t)} in the category m for | = 1,2 satisfies

2

PP OIS

=1 t=—o00
uniformly fori,7 =1,...,p.
(1) The third and fourth order of cumulants of the stationary process {XW(t)}

satisfy
2 00
D D et ta)] < o0,
=1 t1,ta=—00
2 [e's)
Z Z |C¢(1l1)a2asa4 (t17 ta, t3)‘ < o0
=1 t1,t2,t3=—00
uniformly for ay,as,as3,a4 =1,...,p.

Assumption 2.1.3 (I'(X)) Suppose either of the following conditions is satisfied:
(I) p is finite and ny,n — oo (n >0);
(1) p — oo, and
(i) if n > 1, then, both ny and n are finite or infinite,
(ii) if n =1, then, ny — oo and n is finite or infinite,
(i1i) if 1/2 < n < 1, then, ny — oo and n is finite or infinite, such that
p=o(n/""),
(i) if n=1/2, then, ny,n — oo, such that p = o(n?),

(v) if0 < n < 1/2, then, ny,n — 00, such that p = 0((n}/(l_”)nz/(l_zn))/(n}/(l_")+
n2/0-2m)).



Let P(i|j) be misclassification rate by the classification statistic (2.1) such that
X belonging to m; is erroneously assigned to m; (i # j). We say that the statistic
I'(X) is a consistent classifier if P(i|j) — 0 for (¢,7) = (1,2),(2,1). We obtain the
following theorem.

Theorem 2.1.1 Under Assumptions 2.1.1 — 2.1.3, T'(X) is a consistent classifier.

Condition under which I'(X') becomes a consistent discriminant statistic is rather
restrictive, due to the requirement B/A = O(p/(n1A)) = o(1). One may consider
I['(X)moa = I'(X) — B, if there were the information of R™(u) and R® (u) be-
forehand. Although this situation seems unrealistic, a spectral density of Gaussian
process with a recursive structure of autocovariances is usually considered in demon-
strative research.

For the consistency of I'( X )meq, we impose the following assumptions.

Assumption 2.1.4 (I'(X)wmoq) Suppose either of the following conditions is satis-
fied:

(1) p is finite and ny,m — 0o (n > 0);
(1I-1) {X ()} has all vanishing third and fourth cumulants, p — oo, and
(i) if n > 1/2, then, both ny and n are finite or infinite,
(ii) if n = 1/2, then, ny,n — oo,

(iii) if0 <n < 1/2, then, ny,n — 0o, such thatp = 0((nln)Q/(l_Qn)/(nf/(l_zn)—}—
n2/0=20)))

(1I-2) {X (t)} has the non-vanishing third or fourth cumulants, p — oo, and

(i) if n > 1, then, both ny and n are finite or infinite,
(ii) if n =1, then, ny — oo and n is finite or infinite,
(i1i) if 1/2 < n < 1, then, ny — oo and n is finite or infinite, such that
p = a0
(iv) if n =1/2, then, ni,n — 0o, such that p = o(n’*),

(v) if 0 <n < 1/2, then, ny,n — oo, such thatp = 0((néll/(?’_S")nQ/(l_Q"))/(nzll/(s_?’n)%—
n2/1=2Y).

)

We provide the following result for I'( X ) 04-
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Theorem 2.1.2 Under Assumptions 2.1.1, 2.1.2 and 2.1.4, I'(X )moa 1S a consistent
classifier.

We turn to the jackknife type bias adjusted classifier. The jackknife estimates
E(k)k of Var(X) = n,' szzink(l — |u|/ng)R™ (u) for k = 1,2 can be defined as
the multivariate analogue of Theorem 3.1 of Kiinsch (1989), as follows:

l—1

Zgz)ck = N - Z Vnk /Vn )R(k)(u)v
u=1-—1
ng—|ul
(kr) Z B, (t,10) (’“)(t) _ /l(’“))(X(k)(t + |u]) — (k)>

Z am, ()X B (¢

where [; is the length of the downweighted block, such that I, = l(ny) — oo as
n, — 00. Here the weight functions are defined by

ng—lg
1

A (t) = 57— (e —{ 1)t W, (t—17),
O T el

ng—lg
Bry. (1) = v, (u) Mg — L + 1)1 Z Wy, (E— F)wn, (E+ |ul — 7)),  |u| <y,
=0
le—ul
Vg (W) =y (F)on ( + Jul),
j=1

for k = 1,2, where

W (i) = h((i— ;))/@ 1<i <1y,

with kernel function h(x) satisfying (i) h : (0,1) — (0,1), (ii) symmetric about = = 3,
(iii) increasing in a wide sense. We consider the jackknife type bias adjusted statistic

1 -
7tr2§?ck’

1 -
T(X) gaac = D(X) = 580, + 5

2

under some combinations of the following four assumptions:
k
(BL) h(x) = Loy (x), and Y2, T __|ull R (w)] < o0 for ar,az = 1,....p.

11



(B2) hxh is twice continuously differentiable around zero, and 35 7% w?| R, ()| <
oo for aj,as =1,...,p.
(B3) [|Xjk)( D5 < 00, k= 1,2, j = 1,...,p for some § > 0.
(B4), Iy = ¢.ng, k = 1,2 for some constants ¢}, > 0.

Using Lemmas 2.1.1 and 2.1.2, the asymptotic properties of I'j, are readily
available as the multivariate extension of Theorem 3.2 of Kiinsch (1989), noting that

1 1
Var(Tyaq) < 3 [Var(I‘(X)) + ZVar(trEngCk) + Etrﬁgi)ck}

where, for [ =1, 2,
Var trESl) ) ZVar Zggck” )+ 22 Var Zga)ck ” Var(f]gla)ck’kk)}lp.
7>k

Lemma 2.1.3 Assumption 2.1.1 (i) holds. Assume that ny — oo and Iy = lx(ny) —
oo for k=1,2. When X belongs to m;, it holds that

(i) if (B1) holds and 1}, = o(nim) for k=12, then

(X)) = S A+ 00 ni ).

(i1) if (B2) holds and [}, = o(n,lc/?’) for k =1,2, then

(X)) = LA 002 ).

(i) if (B3) holds and ly = o(ny) for k = 1,2, then
Var(T'(X ) jaa) = Var(T'(X)) + O(l1n3p?).

For the consistency of I'j,q, we impose the following assumptions.

Assumption 2.1.5 (I'j.c) n1 — oo, and either of the following conditions is sat-
isfied:

(I) p is finite and n — oo (n > 0);
(II-B1) (B1) and (B4), hold with 0 < v < 1/2, p — 00, and

(i) if n > 1, then, n is finite or infinite,

12



i) if 1/2 < n <1, then, p = o(n" ™Y and n is finite or infinite,
n 1
iii) if n = 1/2, then, p = o(n**) and n — oo
( ) f77 / ) ) p 1 )
() if 0 <n < 1/2, then, ny,n — oo, such that p = 0((nil(a)/(l_")nz/(l_m)/(nf(a)/(l_n)+
n2/0=2)))
where v1(a) = min{(3 — ) /2,1 + a};

(II-B2-1) {X®) (1)} has all vanishing third and fourth cumulants for k = 1,2, (B2) and
(B4 ) hold with 0 < o < 1/3, p — o0, and

(i) if n > 1, then, n is finite or infinite,
(i) if 1/2 <n <1, then, p = o(n?’""Y and n is finite or infinite,
(iii) if n = 1/2, then, p = o(n>*') and n — oo,
() if 0 < n < 1/2, then, ny,n — oo, such that p = 0((n?(a)/(lfn)nw(l_%))/(nf(a)/(lw)—k
n2/0-20)),
where 12(a) = min{(3 — ) /2,1 + 2a};

(II-B2-2) {X®) ()} has the non-vanishing third or fourth cumulants for k = 1,2, (B2)
and (B4)s hold with 0 < a < 1/3, p — o0, and

(i) if n > 1, then, n is finite or infinite,
1) if 1/2 <n <1, then, p=o n# @/ =Y and n s finite or in nite,
n 1

(i1i) if n = 1/2, then, p = o(nbf’(o‘)/?’) and n — 00,

. . w3(a) /(1= — 13(a) /(1=

= ’ ) 101, ’ = K
(iv) if 0 < n < 1/2, then, ny,n — oo, such thatp 0((n13( A=) p2/(=2m)) f(a(@)/ (=)
n2/0=20)),

where 13(a) = min{4/3,1 + 2a}.

Theorem 2.1.3 Under Assumptions 2.1.1, 2.1.2 and 2.1.5, U'jacc @S a consistent
classifier.

Remark 2.1.2 The jackknife type bias adjusted classifier having consistency for
higher dimensional data is preferable. We can determine the optimal order of
by considering preferable jackknife type bias adjusted classifier. In case (II-B1),
a = 1/3 is preferable; in case (II-B2-1), o = 1/5 is preferable; in case (1I-B2-2),
1/6 < o < 1/3 is preferable.

13



Remark 2.1.3 The assumption for consistency is improved for higher dimension
when (B2) holds than when (B1) holds, if we compare Assumption 2.1.5 (I1I-B2) with
(II-B1). The difference between non-Gaussian process and Gaussian process can be
seen if we compare (1I-B2-2) with (I1I-B2-1).

Remark 2.1.4 Assumptions 2.1.3 - 2.1.5 may be very technical. Let us consider
two special cases (a) n is finite, (b) n = c'ny for some constant ¢’ > 0.

In case (a), a necessary condition for the consistency of T'(X), T'(X )moa 07 I jack
is 1 > 1/2, where 1 is the order of squared distance between mean vectors pV) and
) (see Assumption 2.1.1 (ii)). Although in the ideal case (II-1), there is not any
restriction for the dimension p, when n < 1, p must satisfy p = 0(7&/(1777))7 p =
O(n‘f/(3*37l))7 p = O(Ril(a)/(kn)), D= O(ntlz(a)/(lfn)); D= O(ntls(a)/(lfn)) in case (II),
(1I-2), (II-B1), (1I-B2-1), (II-B2-2), respectively. Note that 1 < 11(a) < 13(a) <
ta(a) < 4/3 when 0 < a < 1/6 and 1 < (o) < 3(a) = 4/3 < 1a(r) when
1/6 < a < 1/3. In consequence, if {X®(t)} has the non-vanishing third or fourth
cumulants for k = 1,2, Assumption 2.1.5 improves Assumption 2.1.3, and attains
Assumption 2.1.4 when (B2) holds and 1/6 < a < 1/3, as ny — oo. Note that
Assumption 2.1.5 attains Assumption 2.1.4 when (B1) holds only if « = 1/3. On
the other hand, if {X®)(t)} has all vanishing third and fourth cumulants for k = 1,2,
Assumption 2.1.5 does not attain Assumption 2.1.4 but always improves Assumption
2.1.8, as n; — 00.

In case (b), all three classifiers T'(X), I'(X)moa and I'jaac work for finite p.
Asp — oo and 0 < 1 < 1/2, p must satisfy p = o(n)’ "™, p = o(n?/72"), p =
O(nlll/(?)*?ﬂ?)); D= O(nbll(a)/(lfn)% p= 0<ni2(a)/(1*77))7 p= O(ntls(a)/(lfﬁ)) in case (1), (II-
1), (1I-2), (II-B1), (II-B2-1), (II-B2-2), respectively. Consequently, if {X® (t)} has
the non-vanishing third or fourth cumulants for k = 1,2, Assumption 2.1.5 improves
Assumption 2.1.8 and attains Assumption 2.1.4 when (B2) holds and 1/6 < o < 1/3,
asny — oo. Note that 15(c)/(1—m) < 2/(1—2n) for0 < a < 1/3. Assumption 2.1.5
does not attain Assumption 2.1.4 but always improves Assumption 2.1.3 if { X ®)(¢)}
has all vanishing third and fourth cumulants for k = 1,2, as n; — oco.

2.2 Simulation Studies

To investigate the performance of the statistics considered in Section 2.1, we com-
pared the misclassification rates of the following five discriminant statistics: I'(X); =
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1 1
I'(X), = I'X); — —tr 8V + —r 8@,
(X)2 (X oy r +2n2 r ;
I'X); = IN(X), — B,

1 - 1 -
N(X), = Dy — S+ -uSP 0 @) = Lo(@);

2 2
1 - 1 - 1
[X); = I'n— itrzg?ckl + itrzgi{:kzv hy(w) = 5{1 — cos(mx)}.

Chan and Hall (2009) discussed I'; and T's, where I'; =T is a statistic without bias
correction, and I'(X)y is a statistic after the bias correction in the i.i.d. case. We
consider an infeasible statistic I'(X )3 = ['0q for the stationary case, that removes
the term B. As a feasible version, we thus introduce two statistics I'( X' ), and I'( X)),
on the basis of Kiinsch (1989)’s jackknife bias adjustment.

We used moving average (MA) model, autoregressive (AR) model and autore-
gressive moving average (ARMA) model for our simulation study. Gaussian MA(1),
AR(1), and ARMA(1,1) processes are given by X () = u® 4-€,+0€,_,, XD (t)—
EXOt—-1)=(I,—-E) pY+¢€,and XV (t) —E, XD (t 1) = (I,—Z;) p' + €+
&€, 1, respectively, where pM) = 0,, while 1) is p-dimensional vector such that the
first |p*?| elements are 1 and 0 else, ©; = ((p — 1)/p) I, and B, = &, = (1/p) I,,,
where I, denotes the p x p identity matrix. The covariance matrix of the innovation
process {€;} in the category m; is 252 = 0.105F"%) for 4 = 1, 2.

categories ) corrected bias
case - - bias T, T, T,
(a) AR(1) MA(1) —0.8406  0.2861 0.2906  0.1263

(b) AR(1) ARMA(1,1) —0.0103 —0.0162 —0.0100 —0.0115

Table 2.1: Simulation settings for each case. The bias is B. Corrected bias is I'(X); —
T(X); for i = 2,4,5.

We carried out two numerical simulations (a) and (b) in finite training sample
cases. The simulations were repeated for 250 times, where (n,nq,n9) = (100, 10, 10).
The lengths of the down-weighted blocks were chosen as [y = I = 5. The bias
and corrected biases of I'( X ), I'(X )4 and I'(X)5 when p = 64 are shown in Table
2.1. The misclassification rates when p = 27, j = 1,...,6, in simulations (a) and
(b), are shown in Figure 2.1. Table 2.1 supports Lemma 2.1.3 (i) and (ii). Figure
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2.1 shows the consistency of discriminant statistics as Theorems 2.1.1 — 2.1.3. The
jackknife type adjusted discriminant statistics I'(X ), and T'(X)s performed better
than the other statistics in these simulations. Other simulation results are given in
Supplementary Material.

P21 P(112)

L L L L L log2{p} L L L L L L log2{p}
1 2 3 4 5 6 1 2 3 4 5 6

(a) P(1]2) for the statistics 1, 2, 3, 4, and 5 (a) P(2|1) for the statistics 1, 2, 3, 4, and 5

P(211) P(112)
020 025

=>=o9

5

5

log2{p}
6

f f 0 log2{p}
1 2 3 4 5 6

(b) P(1]2) for the statistics 1, 2, 3, 4, and 5 (b) P(2|1) for the statistics 1, 2, 3, 4, and 5

Figure 2.1: The misclassification rates in simulations (a) and (b).

2.3 Real data analysis

As cluster analysis, we used the financial data obtained by “NEEDS-FAME”* database.
The data set consists of 15 cell lines and 42 dimension, which are 42 pieces of ac-
counting information (balance sheet, profit and loss statement, cash flow statement,
etc.) of companies listed with first and second sections of the Tokyo Stock Ex-
change in these 15 years. Here, we summarized some of these companies in Ta-

*NEEDS-FAME is a database of financial data. Waseda University has contracted with the
company Nikkei Media Marketing, Inc. (http://www.nikkeimm.co.jp/solution/needs-fame/) to use
the data.
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ble 2.2. Our analysis is to make a dendrogram of these companies since dendro-
gram gives a visual representation of the hierarchical cluster. To classify this data

The first section S;

denso, toyota, panasonic, sharp, hitachi, sony, canon,
nissan, mazda, kyocera, ntt, nttdocomo, nikon, etc.

The second section Sy

mitani, chuogyorui, nihonseiki, maxvalutokai,
daitogyorui, kitamura, sbshd, sbshokuhin, vitec,
kansaisupermarket, etc.

Table 2.2: Companies of the first and second sections.

XUl ={Xx0)(1),...,XU(15)}, j =1,...,42, we computed the following disparity:

C(X[th X[]é]) — (X(]i) _ X(h))’(X(]i) _ X(jz)) 4 trﬁg{;g}( _ trﬁgj;c)k 7 (2'2)

where X; = X® and 3% is defined by 3%, (u) = ny~? fo;ll—lk Un, (1) [V, (0) R®) (1)
with kernel function h(z) = L(o1)(2). The lengths of the down-weighted blocks were
set as [, = 2. Clearly, the measure (2.2) satisfies the conditions (i) C'(X,X) =0
and (ii) C(X,Y) = C(Y,X). The motivation of the measure (2.2) aims at the
classification of {u trfU)(0)}, where £V is the spectral density matrix. We ob-
tained dendrograms shown in Figures 2.2 — 2.4. As can be seen from Figure 2.2, the
companies in the second section companies formed an exact crowd (red characters in
Figure 2.2). That means that our cluster method by the disparity (2.2) can classify
the first section and the second section very well. In Figure 2.3, Toyota and NTT are
far apart from other companies. This result might be natural since we think Toyota
and NTT are the most representative two companies of all Japanese big companies.
We also found Mitani corporation (“mitani” in Figure 2.4) is apart from the other

companies. Mitani corporation is the most big company in the second section.
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Figure 2.2: The cluster analysis of the first and second sections. The first section compa-
nies are in the black. The second section companies are in the red.
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Figure 2.3: The cluster analysis of companies in the first section.
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Figure 2.4: The cluster analysis of companies in the second section.
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2.4 Appendix

In Appendix, we provide the proofs of the results in Section 2.1. The details are
available in Supplementary Material.

Proof (Proof of Lemma 2.1.1) When X belongs to m;, we see that
ET(X) = EE[T(X)|XWY, X®)

XM L X@\, _
- E(u(” _ +> <X<2> _X<1>>

(=1
- A+ B.
SO+

Proof (Proof of Lemma 2.1.2) Let (,j) = (1,2),(2,1). Suppose that X belongs
to m;. Then, from the law of total variance, we have

Var(T'(X)) = E Var(['(X)| X®, X®) 4 Var(F (T'(X)| XV, X?)). (2.3)
It is easy to see that the first term in (2.3) is given by
EVar(T'(X)| XM, X®) = EVar{X'(X® — XW)| x1 x@}

= E(X® - XOyVar(X)(X® — X

ol 2 - 8 (- Ere)

The second term in (2.3) can be evaluated by
Var(E (P(X)| XY, X))
v() o X2
— var{ (- X0+ X ))’(w - x0))
2

= Var{ (Y X0} — Cov{ (uOy X0, (XOYXO) 4 var[ (X0 X0} ]

=1
oo fl e [ul\ pay (i
Sty 3 (-2

20



1 1 = Ul H )2 w' (1 = [ul\ Hay 0
(2 5 (- E)row)} e (2 S (- )
n—1 P p n ongony

—2p" <il 21: ( . ‘)R(l)( ) {;?ZZZZZCM S’trs)“;i)}
" j=1 k=1 s=1 t1=1ty=1

n omyony

i iZZZ{ ijk — 51,82 — S1, 12 — 1)

7j=1 k=1 s1=1s2=1t1=1ta=1

+2,u§€l) <c§ )k(tl — 81,52 — 81)> + 2M(l)< E,zk(SQ — 81,1y — 31)> }]

n;—1

_ (u(“—u“))'{l 3 <1 IUI>R(J>( )}(u(“—u(j))
m; u=1-n; "
(RS (- Myrow))
=1 2 w57, U
i 1 - (1 _ 2) - O o (
S D ST 3 3p BT NREAR.
1 k=1 s=1 t1=11t2=1

ZZZZ%kk 51752—81,t2—51)]

s1=1s2=1t1=1t2=1

p
p ny ny ny
1 k=1

|M~3.N

Proof (Proofs of Theorems 2.1.1 - 2.1.3) Suppose X belongs to m;. Using Lemma
2.1.1-2.1.3, it suffices to show that E[T'(X)T/A] = (=1)!/240(1) and Var[['(X)'/A] =
o(1) (hence T'(X)T/A = (—1)"/2+0,(1) ) holds if Assumption 2.1.3 holds for T(X )T =
L(X) (or if Assumption 2.1.4 holds for T(X)" = T'(X)mea or if Assumption 2.1.5
holds for T'(X)" = T'jaa), provided that Assumptions 2.1.1 and 2.1.2 hold.

2.5 Supplementary Material

In Supplementary Material, we present the basic theoretical results in Section 2.1
and the other simulation results in Sections 2.2 and 2.3.

2.5.1 Basic theoretical results

First, we give the basic theoretical results, which are listed in Lemma A.

Lemma A 1 When X belongs to m;, (i = 1,2), foranyt=1,...n
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(i) EX(t) = p".
(i) EX = p®.
(iii) Var X (¢t) = R®(0).

(v) Var X = 13200} (1= ) RO ().
Fori,j = 1,2,

(v) EX® = p®,

(vi) Cov(X®, X0) = Lyt (1- M) RO()s(i, j),

(vii) Under m; (j =1,2), Cov(X (t), X®) = L 377, RW(s — 1)6(i, j).-
(viii) E(X'(Z) —XW) = p@ — 0,

() Var(X® - XW) =372, Lyt (1= M) RO@W).

(x) Also,

B(X® 4 Xy (X - X0) = (u(” I u(z))’@(z) _ u(”)

1 ng—1 |u| 1 ni—1 |’LL|
+— (1 - —>trR(2) u) — — (1 - —>trR(1) u).
a2, UM T g (e

(xi) Further,

Var(X(l) + X*(2))/(X'(2) _ X(l))

ny ny ny

=Z ZZZZZZLM — 51,8 = 51,12 = 1)

=1 k=1 s1=1s2=1t1=11t2=1

(O]

+M(l) ]]k(tl — 81,8 — $1) + cgj)k(h —S1,l2 — tl))

+R (55— s1)RY)(t2 — 1) + RY)(ts — 51)RY)(s2 — 1)

)< ]kk 32—81,t2—81)+0(12k($2 tl,tg—t1)>

(
! (1 l l l l ! l l l
R (52— sl )+ Rt — 1)) + Bt — s + B (s — 1)}
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In Gaussian case, we can simplify the equation by

Var(X(l) + X )/ X _ X(l))
= Qg[tr{ <711 ui:l<1 |:;l|>R<z>(u))2} +2u® (m lz_ (1 _ %)R(l)(“)) (l)} ]

Cov(u(“ (X - X0y (X0 4 XOy(X@ _ X—u)))

2 1 p p o m o omng oy 0 @) 2 (')/ n;—1 |u| 0 "
S5 3 E53 5 35 3) S NEEPTERWIRECIS S (R LoD}

=1 7j=1 k=1 s=1 t1=1t2=1 u=1-—mny

In Gaussian case, the equation is equivalent to

COV@@)’@@) C XY (X0 4 X@y(x© - X“)))

2 nl—l
y (1 |u
_ E @ (— § _ N\ p® 0]
=1 u=1—ny

2.5.2 Evaluation of each term involved in Var(I'(X))
Let |RO(t)| = (|RY(#)]) for I = 1,2. Note that

ng—1

> (X (1= RO Y (1= E)ROW) = 0w,

(b= (5 (- Bhmow) (e -t) < sl (S moo) )
_ O(n—lpl/zA)_7

and similarly,

() - N(l))’(nlj > (- W)Rm(u)) (W = u) = Oy 'p2 ),



o0

2 2
1 |ul 2 : -2 2
su{( Z ( S)RO@) | < (mingmna) > e{ (30 IROW)) ]
=1 =1- =1 t=—o00
= O(ny?p).
Also, we have
1 p p 2) ng ng ny
SIS = i) YYD et — st — )|
1=1 I j=1 k=1 s=1 t1=1to=1
3 p p L
< (min(nl,ng)) Z ( )|Z nlmax Z \c]kk tl,tg
j=1 k=1 gk t1,ta=—00
i
< (min(nl,ng)) (pA) 1/22 nlmax Z ]cjkk tl,tz
k=1 Gk t1,ta=—00
— O( -2 3/2 A1/2)
and
2 p p ny ny n
> R Y S S el — s )
=1 =1 k=1 s1=1s2=1t1=112=1
2 o)
< Surt(mm S haltat)) = O
=1 ’ t1,t2,t3=—00

2.5.3 Other simulation results by the discriminants statistics
I'(X) —I'(X)s

In this section, we give other simulation results by the discriminants statistics I'( X' ),
—I'(X)5. The setting of each case (c), (d) and (e) is given in Table 2.3. AR(1) and
ARMA(1,1) are the same as what are defined in Section 2.2. MA(q) model is defined
by XO(t) = p@ + & + > ©je_j, where ©1 = @y = --- = O, = ((p— 1)/p)I,
for ¢ = 5, 10.
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categories b corrected bias
case ) o 1aS PQ F4 1—\5
(¢)

MA(5)  MA(10)  —25.2546 153793  1.55901 0.691619
(d) AR(1)  MA(5)  —10.6733 1.37466 1.38702 0.614256
(e) AR(

) ARMA(1,1) —0.824897 0.242366 0.261391 0.10194
Table 2.3: Simulation settings for each case (¢), (d) and (e). @1, E; are diagonal matrices
(1/p) I, and @1 = ((1 = /p)//p) Ip.

1
1
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Figure 2.5: The misclassification rates in three simulations (c), (d), and (e).
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Chapter 3

Classification for high-dimensional
financial time series by a class of
disparities

Altman (1968) and Altman and Brenner (1981) used discriminant analysis for a
bankruptcy prediction by financial data of companies. Specifically, they constructed
a linear discriminant model whose coefficients are estimated by scores calculated from
some financial indicators like liquidity assets, equity capital, net income, and so on.
The mathematical method as stated above is strongly required for the investigation
of credit risk in many banks. Because, if there is such a method, even amateur can
decide which bank one can loan.

In mathematical statistics, discriminant analysis is of deciding on the membership
of an observed individual to one of a given set of populations. Mainly, for independent
samples, discriminant analysis has been developed by e.g., Anderson (2003) and Rao
(2009). In addition, discriminant analysis for finite dimensional stationary time
series has a history. For example, Taniguchi and Kakizawa (2000) developed both
time domain and frequency domain approaches for the discriminant analysis and
discussed the problem of discriminating linear processes. Recently in i.i.d. high-
dimensional data with dimension p — oo, Chan and Hall (2009) and Aoshima and
Yata (2014) discussed the problem of classification, and proposed scale adjusted-type
distance-based classifier. For dependent observations Liu, Nagahata, Uchiyama and
Taniguchi (2017) are concerned with high-dimensional stationary process {X (t)},
which is supposed to belong to one of the two categories;

™= #(1), F\) = f(l)()\)7
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mp=p? fO) = FOWN),

where p and f(\) are the mean vector and spectral density matrix of the process
{X(t)}, respectively. Using the multivariate analogue of the methodology of the
jackknife in the stationary observations developed by Kiinsch (1989), Liu et al. (2017)
proposed a new classifier with bias adjustment in time series data. Primarily they
discuss the consistency of a distance-based classifier for multivariate stationary time
series data where the dimension p is allowed to diverge, under suitable conditions on
size of samples and training samples (n, nq,ny) and dimension p.

In recent years, stored big data encourages rapid development of discriminant
analysis for high-dimensional independent and dependent observations. However
applications of the method proposed by Liu et al. (2017) to high-dimensional financial
time series are unexplored.

In this chapter, we show an effectiveness of theory in Liu et al. (2017) for high-
dimensional financial data.

This chapter is organized as follows. In Section 3.1, we review the misspecification
rates of our discriminant statistics. They converge to 0 under some appropriate
conditions when p — oo. In Section 3.2, we examine the cluster analysis for real
financial data of companies in the Tokyo Stock Exchange.

3.1 Discriminant theory for high-dimensional time
series

Let {X(t) = (X1(t),...,X,(t))', t € Z} be a p-dimensional stationary process with
mean vector p, spectral density matrix f(A\) and autocovariance matrix function
R(t) ={R;(t),i,j=1,...,p}. Here the dimension p is allowed to be p — oo. Sup-
pose that we observe X = {X (1),..., X (n)} from the stationary process {X (¢)},
which belongs to one of the two categories

moop=pt fO) =fO0), R@)=RY(),

mip=p®, fO)=FO0N), R(t)=RO().

Also we have independent training samples X = {X®(1),..., XMW (n;)} and
X@ = {X®(1), ..., X®(ny)} from 7 and 7 with size n; and ns, respectively.
Write A = || — u®]|2. Throughout this chapter, the notations £ and Var are the
expectation and variance with respect to a triplet of (X, X®, X)) respectively.

28



The following sample versions for fundamental quantities are introduced:

_ 1 n o 1 ez ]
X = = (2) —— (@)
S X, XU =5 X0,
t=1 t=1
i 1 S T x (¢ i Y (¢ ;
CRE o D XD - XO)XO(t) - XOY, i=1,2
t=1

To classify the time series data X, we use the discriminant statistic:
_ XM XN\, _
N(X, XM, x®) = (X - %) <X<2> - X<1>>. (3.1)

Then, the classification rule is to classify X into 7 if I'(X) < 0 and into
otherwise. To discuss the asymptotic property of I'(X), we impose the following
assumptions.

Assumption 3.1.1 (i) ny = cony for some constant ¢y > 0.

(ii) There exists n > 0 such that c1p" < A < cop for some constants ¢; > 0 and
co > 0.

Assumption 3.1.2 (i) The autocovariance matriz function RV (u) of the station-
ary process {XW(t)} in the category m for | = 1,2 satisfies

2 [e's)

PP OIS

=1 t=—00
uniformly fori,7 =1,...,p.

(i) The third and fourth order of cumulants of the stationary process {XW(t)}

satisfy
2 00
Do D el (tito)] < oo,
=1 t1,ta=—00
2 00
Z Z ’Ct(lll)azasaz; (t17t27t3)‘ < 0
=1 t1,ta,t3=—00
uniformly for ay,as,as3,a4 =1,...,p.

Assumption 3.1.3 p — oo, and if n > 1, then, both ny and n are finite or infinite.

29



Let P(i|j) be the misclassification rate by the classification statistic (3.1) such
that X belonging to 7; is erroneously assigned to ; (i # j). We say that the statistic
I'(X) is a consistent classifier if P(i|j) — 0 for (¢,7) = (1,2),(2,1). So we introduce
the following result, which is due to Liu et al. (2017).

Theorem 3.1.1 Under Assumptions 3.1.1 — 3.1.3, I'(X)) is a consistent classifier.

Next we introduce a bias adjusted classifier of Jackknife type. The jackknife
estimator Ef] )k of Var(X) = n S (1 — Jul/ng) R® (u) for k = 1,2 can be

u=1—nyg

defined as a multivariate analogue of Theorem 3.1 of Kiinsch (1989), i.e

lp—1
Egz)ck _nkil Z Vnk /Vnk )R(k)(u>7
u=1-1j
nk—|ul
BOw = 3 Bt (X0 (0) = Xt 1 fu) - 4,

Ak = Z ()XW (1)

where [, is the length of downweighted block, such that l, = I(ny) — oo as ny — 0.
Here the weight functions are defined by

1 ng—lg
n, (1) = ———— (g — 1. + 1)~ wn, (t —
g 2
nk—lk
By (t 1) = vy, (1) (g — lp + 1) Z Wy (t— P, (E+ [u| = 5),  |u| < Iy,
j=0
U —ul
Uy (1) = Y wn, (5w, (G + [u]),
j=1

for k = 1,2, where

@), 1=

with kernel function h(z) satisfying (i) 4 : (0,1) — (0, 1), (ii) symmetric about x = 2,
(iii) increasing in a wide sense. Then the bias adjusted statistic of Jackknife type is

1
(X ) = T(X) — St W

Jacl

1 “
.+ §trz§,§>ck. (3.2)

Further we assume n; — oo, and
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Assumption 3.1.4 Fork = 1,2, E]X](k)(t)\6+5 <oo,j=1,...,p for some d > 0,
and l, = ¢,ng for some constants ¢j, > 0 and 0 < a < 1. Further, suppose p — o0,
{X® ()} is non-Gaussian with Zf:_oo|u||Ré’sz(u)| < oo for k = 1,2, aj,as =
L...,p, h(z) = do1y(x) and 1/3 < a < 1/2, and if n > 1, then, n is allowed to be
finite or infinite.

The following result is due to Liu et al. (2017).

Theorem 3.1.2 Under Assumptions 3.1.1, 3.1.2 and 3.1.4, U'jaac @S a consistent
classifier.

3.2 Application to financial time series

As cluster analysis, we use financial data obtained by “NEEDS-Financial QUEST” *.
Here, we analyze financial data of companies of the first and second sections in Table
3.1.

The data set consists of 21 cell lines and 42 dimension, i.e., 42 financial indicators
(balance sheet, profit and loss statement, cash flow statement set at Table 3.2 of
Appendix) of companies listed in the Tokyo Stock Exchange in these 21 years. Since
there exist missing values in the data set, we use the last observation carried forward
(LOCF) which carries the last existing data to the next missing value.

Our analysis is to draw a dendrogram of these companies since dendrogram pro-
vides a visual understanding of the hierarchical cluster. Hierarchical clustering is
widely used in data analysis.

Specifically, by Theorems 3.1.1 and 3.1.2, (3.1) and (3.2) are the consistent classi-
fiers, so we apply them to cluster analysis. To classify the data XU = {X0)(1),..., XU)(15)}
with dim{X Y (t)} = p, j = 1,...,14, we computed the following disparity:

C(X[jl],X[jQ]) — (X(jl) _ X(]é))’(X(]i) _ X(]é))) (33)
C(X[th X[]é]) — (X(]i) _ X(h))’(X(]i) _ X(jz)) 4 trég{;g}( _ trigj;c)k 7 (3'4)
where f)g’;)ck is defined by f)g’;)ck(u) = ny? Zif:_i% U, (1) /1, (0)R® (1) with ker-

nel function hy(x) = Ig1)(z). The lengths of the down-weighted blocks are set as
I, = 2. First, we assign two elements of minimum distance into one cluster. In the

*NEEDS-Financial QUEST is a database of financial data. Waseda University has contracted
with the company Nikkei Media Marketing, Inc. (http://finquest.nikkeidb.or.jp/ver2/ip_
waseda/) to use the data. database.
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Companies of the first section

SEKISUI HOUSE

MORINAGA

TORAY INDUSTRIES
TAKEDA PHARMACEUTICAL
SHOWA SHELL SEKIYU
BRIDGESTONE

ASAHI GLASS

NIPPON STEEL & SUMITOMO METAL
9. CITIZEN WATCH

10. KEISEI ELECTRIC RAILWAY
11. NEC

12. TOSHIBA

O N TN

Companies of the second section

13. SHARP

14. FDK

15. PIXELA

16. YONEX

17. FUJI FURUKAWA ENGINEERING & CONSTRUCTION
18. BOURBON

19. CUYEMURA

20. TOA OIL

21. MORISHITA JINTAN

22. NISHIKAWA RUBBER
23. GEOSTR

24. MAXVALU NISHINIHON

Table 3.1.
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case of Figure 3.1, the first cluster is {C.UYEMURA, GEOSTR}, and this distance is
2.13641 x 10%°. Next we can iterate this procedure and it is seen that the second clus-
ter is {MORISHITA JINTAN, PIXELA} with distance 4.00659 x 10%°. Furthermore,
we define the distance between clusters as the minimum of the distances between
each element of the clusters. For instance, the distance between {C.UYEMURA,
GEOSTR} and {MORISHITA JINTAN, PIXELA} is given by the minimum of the
{C.UYEMURA, MORISHITA JINTAN}, {C.UYEMURA, PIXELA}, {GEOSTR,
MORISHITA JINTAN} and {GEOSTR, PIXELA}, and which is 4.62408 x 10%°.
Then we iteratively define the distances between all the clusters.

By comparison of Figures 3.1 and 3.2 it is seen that the classification by (3.4)
is very good for huge companies. Figure 3.1, by the new disparity (3.4), provides
clear classification between NIPPON STEEL & SUMITOMO METAL (written by
red character in the figures) and the next cluster (TOSHIBA, NEC). (Actually, NIP-
PON STEEL & SUMITOMO METAL, TOSHIBA, and NEC are huge companies,
although recently TOSHIBA and NEC have become unstable. TOSHIBA’s rating
was downgraded to CCC* by Standard & Poor’s, and NEC went into a economic
slump and announced a lot of deficit businesses and sold their own building.) We can
understand that this result is supported by a successful reduction in bias of (3.4).

Furthermore, it is interesting to observe that Figure 3.1 shows that (3.4) could
classify almost of the first and second section companies. (The second section com-
panies are written by blue character in the figure.) This result is not true for all the
first and second section companies but shows an evidence of the good classifier for
high dimensional financial data.
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NIPPON STEEL & SUMITOMO METAL

TOSHIBA ‘

NEC ‘

SHARP

SHOWA SHELL SEKIYU

ToAoL

FOK

FUUI FURUKAIWA ENGINEERING & CONSTRUCTION

PIXELA

MORISHITA JINTAN
GEOSTR

C.UYEMURA

YONEX

NISHIKAWA RUBBER
BOURBON

MAXVALU NISHINIHON
MORINAGA -

CITIZEN WATCH -
KEISEI ELECTRIC RAILWAY
TAKEDA PHARMACEUTICAL
BRIDGESTONE
TORAY INDUSTRIES
ASAHI GLASS :'7

SEKISUIHOUSE

Figure 3.1: The cluster analysis by the new disparity (3.4)

34



NIPPON STEEL & SUMITOMO METAL

TOSHIBA ‘

NEC |
SHARP

SHOWA SHELL SEKIYU

TOAOIL

FDK

FUJI FURUKAWA ENGINEERING & CONSTRUCTION

PIXELA

MORISHITA JINTAN
GEOSTR
C.UYEMURA

YONEX

NISHIKAWA RUBBER

BOURBON
MAXVALU NISHINIHON

MORINAGA -

CITIZEN WATCH -

KEISEI ELECTRIC RAILWAY

TAKEDA PHARMACEUTICAL
BRIDGESTONE

TORAY INDUSTRIES ]
ASAHI GLASS

SEKISUIHOUSE

Figure 3.2: The cluster analysis by the disparity (3.3)
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Appendix

Financial indicator (The following * means an indicator of Cumulative Total.)

1. Current Assets

2. Cash and Deposit/Cash and Cash Equivalents

3. Notes and Accounts Receivable Trade/Accounts Receivable and Other ShortTerm Claims

4. Accounts Receivable Trade

5. Inventories

6. Raw Materials and Supplies

7. Raw Materials

8. Noncurrent Assets

9. Property, Plant and Equipment

10.Depreciable Property

11.Buildings and Structures

12.Machinery, Equipment and Vehicles

13.Vessels / Vehicles / Delivery Equipment

14.Investments and Other Assets

15.0ther Investments and Other Assets/Other Noncurrent Assets

16.Total Assets

17.Current Liabilities

18.Accounts Payable Other and Accrued Expenses

19.Accounts Payable

20.Accrued Expenses

21.Income Taxes Payable

22.Noncurrent Liabilities

23.Total Liabilities

24.Capital Stock

25.Retained Earnings Brought Forward

26.Liabilities and Net Assets (Japanese Standard)/Liabilities, Minority Interests,
Shareholders’ Equity, Total/Shareholders’ Equity and Liabilities, Total

27.Equity Capital (Japanese Standard)/Shareholders’ Equity, Total (US GAAP)/Capital
of Attributable to Owners of the Parent (IFRS)

28.Net Sales / Operating Revenue*

29.Selling, General and Administrative Expenses*

30.Operating Income*

31.NonOperating Income*

32.Interest and Dividends Income*

33.Interest Income / Discount Revenue / Interest on Securities*

34.0ther NonOperating Income*

35.NonOperating Expenses*

36.Interest Expenses / Discount on Notes™

37.0Ordinary Income/Income before Income Taxes and Others (IFRS)*

38.Net Income before Income Taxes and Others*

39.Income before Income Taxes and Others*

40.Income Taxes [Cumulative Total]

41.Income TaxesCurrent™

42.Net Income attributable to Parent Company’s Shareholders (Consolidated) / Net Income (Unconsolidated)*

Table 3.2: Financial indicators

36



Chapter 4

Analysis of variance for
multivariate time series

Analysis of variance (ANOVA) is a fundamental theory in statistics with a long
history. This method is used to test the null hypothesis that the means of three or
more populations, or the within-group means, are all equal. In other words, ANOVA
indicates whether or not the within-group means are equivalent.

Gauss laid the foundations of this theory in the late 1800s, and Markoff con-
tinued this work in the early 1900s. Since these early studies, many test statistics
for ANOVA and multivariate ANOVA (MANOVA) have been proposed, but these
statistics have mainly focused on the case of independent data. For example, Hooke
(1926) and Wishart (1938) applied these test statistics to practical cases, and Bishop
(1939) and Box (1949) obtained general theoretical results by deriving asymptotic
expansions of the null and non-null distributions of the likelihood ratio test statistic.

Recently, ANOVA has been further developed in many ways. Bai et al. (1990)
provided a new ANOVA method of adjusting for the unknown parameter. Liu and
Rao (1995) derived the asymptotic distribution of a statistic for the analysis of
quadratic entropy (ANOQE) as a generalization of ANOVA, and Rao (2010) investi-
gated some postulates and conditions for ANOQE. Fujikoshi et al. (2011) developed
general asymptotic expansions of the null and non-null distributions of the likeli-
hood ratio test, the Lawley-Hotelling test, and the Bartlett-Nanda-Pillai test in some
high-dimensional settings. In a time series analysis, Shumway (1971) discussed the
asymptotic relationship between the likelihood ratio test and the Lawley-Hotelling
test. Brillinger (1973) developed a univariate and balanced ANOVA for time series.

Multivariate time series data is commonly analyzed to solve practical problems
in such fields as economics, finance, bioinformatics, and so on, and now, in the era of
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big data, making statistical decisions with multivariate time series data has become
a matter of great concern. We are interested in identifying the within-group means of
real financial data that depend on the industry in question. However, as previously
stated, the study of ANOVA for dependent data remains nascent even though the
analysis for the second-order moments; estimation of autocovariance and spectral
density have been well developed.

In this study, we consider the one-way MANOVA model (4.1) whose disturbance
processes {€;} are generated by a stationary process. The remainder of the chapter
proceeds as follows. Section 4.1.1 describes our setting. In Section 4.1.2, we discuss
the asymptotics of the previous test statistics for dependent observations and derive
a sufficient condition for the observations to be asymptotically y2-distributed. In
Section 4.1.3, we propose a new test statistic based on the Whittle likelihood and
show that this statistic is asymptotically y2-distributed without the sufficient con-
dition. Sections 4.2.1 and 4.2.2 simulate the classical tests and the proposed test
and apply these tests to the daily log data of some stocks to confirm the theoretical
results.

4.1 Asymptotic distributions of test statistics for
dependent disturbances

4.1.1 Setting and general methods

Let X1, ... Xy, be p-dimensional stretches observed from the following the one-way
MANOVA model:

Xit:u+ai+eit7t:17"'7ni7izlw"an (41)

where p = (p1,..., ) and a; = (1, ..., @) . Here, we assume >/, o; = 0. In
what follows, we assume that the disturbance process €; = {€; = (ez(tl ), e ,egf ))’ ;
t=1,...,n; it =1,...,q} is a stationary process with mean 0; common autocovari-
ance matrix I'(:) = {I';x(-); 7,k = 1,...,p}, (Tk(h) = E(eg))egﬁh); and spectral
density matrix f(A). We also assume that the €;, ¢ = 1,...,¢ are mutually inde-
pendent. This assumption is a type of homoscedasticity assumption on {€;} that is
often applied for a typical multivariate ANOVA (e.g., see Anderson Anderson (2003)
Chapters 8 and 9).

Let {€;} be generated from

j=0 §=0
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where the p-dimensional random vectors n;(t) R (0,G) and A(j)s are pXp constant

matrices.
Then, {€;} has the autocovariance matrix

T()=) A()GA( +1)
§=0
and the spectral density matrix
1 (— g > Y *
_ 2\ ijA A\ _ijA
F) = QW{;A@)e }G{;Ame b

Generally, this matrix is a complex-valued matrix, but f(0) is a real-valued matrix.
Now, we are interested in testing the hypothesis

H:og=-=aq, (4.3)

Under hypothesis (4.3), we will obtain an asymptotic distribution of the test statis-
tics.

4.1.2 The three famous tests

In this section, we consider the likelihood ratio, Lawley-Hotelling, and Bartlett-
Nanda-Pillai tests proposed for independent observations.
To write the test statistics, we introduce

>
Il
R
(]
s
P
Il
S
N
(]
s

t=1 i=1 t=1
q
Sp=) (X — X)X - X.),
=1
. q ;g
SE == Z Z(th X’L )(th X’L )la
i=1 t=1

where n = n; + - - - + n,. These statistics are known as the within-group mean (i-th
treatment group), the grand mean, the sum of squares + products (SSP) for the
hypothesis, and the SSP for the errors, respectively. In the case where the €;'s are
mutually independent with respect to ¢, the following tests under normality have
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been proposed:

LR = —nlog{|Sg|/|Sk + Su|} (likelihood ratio test), (4.4)
LH = ntr{SyS3'} (Lawley-Hotelling test), (4.5)
BNP = ntrSy(Sp +Sy)~! (Bartlett-Nanda-Pillai test).

Now, we suppose

Assumption 4.1.1 det{f(0)} > 0.

Let & =n; " Yo €, and Z = (\/ni€y, .. ., VTq€q)-
The following lemma comes from Hannan (1970) (p.208, p.221).

Lemma 4.1.1 Under Assumption 4.1.1, as n;, © = 1,...,q, tend to oo so that
n;/n — p; >0 asn — 00, if €; is generated by generalized linear process (4.2), then

(i) & 50 fori=1,...,q,

£(0) Opo T ngp
0) ---

(ii) vec{Z} AN O,,, 27 I?Xp f( ) I?Xp

O;UXp Opo e f(())

Theorem 4.1.1 Assume that the processes {€;} in (4.2) have the fourth-order cu-
mulant and that

I'(j) =0 for all j #0. (4.7)

Then, under H and Assumption 4.1.1, it holds that the tests LR, LH, and BN P
are all asymptotically X?)(qq)-

The proof may be found in Section 4.4.

Condition (4.7) means that the {€;}’s follow an uncorrelated process. Theo-
rem 4.1.1 shows that the three test statistics proposed for independent observations
can be applied to dependent observations satisfying (4.7). Here, it may be noted
that condition (4.7) is not so severe because the following example describes a very
practical, nonlinear time series model that satisfies (4.7).
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Example 1 Engle (2002) introduced the dynamic conditional correlation generalized
autoregressive conditional heteroscedasticity (DCC-GARCH) (p,q) model defined as

ii.d.
€t = Hitl/g"?ita Nig ~ (OaIp)v

H;, = D;R;D;, D;=diag {\/ 0§t1), B \/@} )

(1)
€t 4 a N2 L
€t = : ) O-i(g) =¢ taj; Z {ngt)—l} + b Z O-z(,jt)—l’
P I=1 =1
it

R; = (diag [Qit})flp Qi (diag [Qit])flp )

£
i NG i
€it = : ; gz(i) = L‘, Qi=(1—-a—-p)Q+ & 1€, | +8Qi1,
=(p) oW
€t u
where aj,b;,cj, o, B, and j = 1,--- ,p are constants, and Q, the unconditional cor-

relation matriz, is a constant positive semidefinite matriz. Let F,_1 be the o-algebra
generated by {€;4—1,€10,---}. We assume that H; is measurable with respect to
Fi1 and that m;; L Fiq, where L signifies mutual independence. This model is
easier to compute than the usual vector-GARCH model because it has fewer unknown
parameters than does the usual vector-GARCH model.

4.1.3 Likelihood ratio test based on the Whittle likelihood

In Section 4.1.2, we saw that the classical tests LR, LH, and BN P are asymptot-
ically x2-distributed when (4.7) holds. However if we want to test H for general
disturbances, the LR, LH, and BN P tests are not available. For this case, we pro-
pose a new test based on the Whittle likelihood. In what follows, we use the same
notations as in Section 4.1.2.

It is known that Whittle’s approximation to the Gaussian likelihood function is

given by
q ni—1

) = —5 S S {LOA)FO)

=1 s=0
where \; = 27s/n; and

U ng

Ii(>‘) = 27:7%‘ {Z(th — K — ai)ei’\t} {Z(XW — - ai)ei/\u} '

t=1 u=1
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The derivation of the integral version for each i can be found in, for example, p.52-53
of Taniguchi and Kakizawa (2000).

Under H, from %‘:0) =0, %}f‘i) = 0,and % = 0, we can see that the
solutions are '

q
H = ﬂEiZZtha

o, = dlE

To solve the problem of testing H, we introduce the test statistic
WLR = 2{I(j1, &) — 1(j1,0)} .

which can be used when condition (4.7) does not hold.
Showing that

WLR =Y /mé&;{2xf(0)} " v/nic;, (4.8)

we obtain the following theorem.

Theorem 4.1.2 Under H and Assumption 4.1.1, if €, is generated by the general-
ized linear process (4.2), then the test W LR is asymptotically Xﬁ(qfl)—distributed.

The proof may be found in Section 4.4.

Thus, this new test based on the Whittle likelihood is asymptotically x2-distributed
even if condition (4.7) does not hold.

Next, to propose a practical version of W LR, we consider

f,()\) = 217r i wpe I (1 — |t|) Ci(t), (4.9)

U2
t:—(ni—l)
! (4.10)
Wy = W .
t M(TL»L) )
n;—t
1 ¢ o o
Ci(t) = - Z(Xzs - X0)(Xi st — X0,
v os=1

where w(x) is a continuous, even function, M(n;) is a sequence of integers, and X,
in C;(t) is defined as in Section 4.1.2. As in Hannan (1970), we impose the following
assumption.
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Assumption 4.1.2 (i)
Z Z Z ! klm (0, t1,ta, t3)] <00, > [T < o0, ¥ >0
ti=—0o0 tg=—00 tg=—00 t=—o00

fOTZ.:l?H' »d andjakvlvm:17"' 2

(ii) wex) in (4.10) is continuous and uniformly bounded, w(0) = 1, |w(x)| < 1,
[ w(z)dx < oo, and for some integer v > 1,

lim 1_710(@

EAC T

(111) M(n;) — oo, {M(n;)}"/n; — 0, for the same V.
Here, ) (t1,ta,t3,t4) = cum{e(]) (k) D) }forz =1,---,qandj, k,l,m=

7 gk lm ity ztz’ zt3’ zt4

1, ,p.
The following lemma is due to Hannan (1970) (p.280, p.283, and p.331).

Lemma 4.1.2 Under Assumption 4.1.2, as n;, i = 1,...,q, tend to oo, fz()\) N

f\) fori=1,--- q.

Using Lemma 4.1.2, we can replace f£(0) in (4.8) by £;(0):

a . ~1
WLR =Y Vi, {277 fi(O)} N (4.11)
i=1
The following result immediately follows from Slutsky’s theorem.

Theorem 4.1.3 Under H and Assumptions 4.1.1 and /.1.2, if €; is generated
by generalized linear process (4.2), then the test WLR* is asymptotically Xf)(qd)—
distributed.

W LR* in Theorem 4.1.3 is useful to practical applications because it can be computed
directly from observations.
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4.2 Numerical studies

4.2.1 Simulation to test the theoretical results

We conduct numerical studies of the tests LR, LH, BNP, and W LR*, which are
given by equations (4.4), (4.5), (4.6), and (4.11), respectively. In this section, our
purpose is to confirm whether or not the four tests are well-approximated by the
Xi( o—1) distribution under the null hypothesis H and to determine their powers under
the alternative hypothesis (i.e., a;, i = 1,--+ ¢ are not the same) in the cases of
both uncorrelated and dependent observations. DCC-GARCH(1,1) is an example
of an uncorrelated process (see Engle (2002)), and VAR(1) is an example process
with a high level of dependence.
First, we introduce the following six simulation process steps.

1. Generate a two-dimensional time series and three data groups with lengths
1000, 1500, and 2000, giVGH by {Xl,h ce ,X171000}, {X2,17 ceey X271500}, and
{X351,..., X520}, respectively, from one-way MANOVA model (1) with DCC-
GARCH(1,1) and VAR(1) disturbance processes.

2. Set a; = s = a3 = 0 when the null hypothesis H is valid, and set a; =
(—=0.1,-0.1), @y =0, and a3 = (0.1,0.1) or @y = (—1.0,-1.0)';, a2 = 0O,
and az = (1.0,1.0)" when the alternative hypothesis is valid.

3. Calculate Sp and Sy for (4.4), (4.5), and (4.6) as well as the smoothed peri-
odogram to estimate f(0) for (4.8).

4. Calculate the test statistics T'= LR, LH, BNP, and WLR*.
5. Repeat steps 1-3 1000 times independently, and obtain {7V, ... 70000},
6. Make a Q-Q plot using {70, ... 71000}

The data used in step 1 can be thought of as the virtual financial data of two compa-
nies for three industries. We generate the disturbance process {€;} of observations
{Xit} using DCC-GARCH(1,1) and VAR(1). The innovation terms of these pro-
cesses are set as Gaussian. Specifically, we generate the two-dimensional simulation
from one-way MANOVA model (1) with g = (1,1)". VAR(1) is defined by €;:

_ (12 0 ii.d. 1/2 1/4
€t = ( 0 1/2) ei,t—l + Wi, Uiy ~ N (07 (1/4 1/2)) .
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We introduce DCC-GARCH (1,1) in €;:

id.d.
€t = Hilt/zmt, MNie ~ N(OvIp)v

H; = DyR;Dy, Ditzdz‘ag{ oy, alﬁ?)y

( 2
€ — < i ) o =0003+02{c), " 407500,

2
0P =0.005+0.3{e?, } +0607,
Ry = (diag[Qu])™"* Qi (diag [Qu]) ™2,

~(1) ) )

& = < g > C A= Qu=oa (112 1{2) F01E 1, +08Qu .
€it o) /

where j = 1,2 (see Engle (2002)). We used Mathematica’s code “ARprocess” and
the R package “ccgarch” for these algorithms. Under the null hypothesis, the Q-Q
plot for Xf,( g—1) 18 given by Fig. 4.1. We show the powers of the four tests under the
alternative hypothesis in Tables 4.1-4.2. The cutoff points of the 10%, 5%, and 1%
significance levels are calculated using the X127(q—1) distribution, as in Theorems 4.1.1
and 4.1.3.

Under the null hypothesis, all of the tests are Xf,( qfl)—distributed for uncorrelated
observations. For dependent observations, only W LR* is Xf)(q_l)—distributed, and,
evidently, this test was more effective than the classical tests, as Fig. 4.1 shows. On
the other hand, under the alternative hypothesis, if the data are uncorrelated, the
powers of all of the tests are sufficient in all settings, as indicated by the strong
numerical evidence shown in Tables 4.1-4.2. In addition, for dependent observations,
the power of W LR* is sufficient, as shown in Tables 4.1-4.2.
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Significance level

Disturbance process Test statistic  10% 5% 1%

DCC-GARCH(1,1) LR 1.000 1.000  1.000
LH 1.000 1.000 1.000
BNP 1.000 1.000 1.000
W LR* 1.000 1.000 1.000

VAR(1) LR 0.522"  0.4107 0.1627
LH 0.5227  0.4107 0.162°
BNP 0.5227  0.4107 0.1627
W LR* 0.549 0426 0.211

Table 4.1: The powers of the test statistics under the alternative hypothesis a; =
(—0.05,—0.05)", s = 0, a3 = (0.05,0.05)" (T: we computed the cutoff point from
the empirical distributions of the classical tests because if the disturbance process is
a dependent observation, the asymptotic null distribution is quite different from a

X5(_1) distribution, as in Theorem 4.1.1 and Fig. 4.1)

Significance level

Disturbance process Test statistic ~ 10% 5% 1%

DCC-GARCH(1,1) LR 1.000 1.000 1.000
LH 1.000 1.000 1.000
BNP 1.000 1.000 1.000
W LR* 1.000 1.000  1.000

VAR(1) IR 0.9757 0.0487 0.848"
LH 0.9757 0.9487 0.848T
BNP 0.975T 0.948T 0.848T
WLR* 0.980 0.957 0.881

Table 4.2: The powers of the test statistics under the alternative hypothesis a; =
(—0.1,-0.1), a3 = 0, a3 = (0.1,0.1)" (: we computed the cutoff point from the
empirical distributions of the classical tests because if the disturbance process is a
dependent observation, the asymptotic null distribution is quite different from the

X?;(qq) distribution, as in Theorem 4.1.1 and Fig. 4.1)
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4.2.2 Application to real financial data

We apply LR, LH, BNP, and WLR* to the daily log data of some stocks in the
NEEDS-Financial QUEST database, which can be found at (http://finquest.nikkeid
b.or.jp/ver2/online/index_en.htm). This data set consists of three groups with two
dimensions and about 2500 - 5000 cell lines. We choose three groups, the electric
appliance, film, and financial industries, which have 2450 - 4911 data points from
May 22, 1997; May 22, 1997; and May 22, 2007 to May 22, 2017, respectively.
Each industry includes two companies, as shown in Table 4.3. (The time ranges
are the same for the two time series within a group, but the time ranges differ
between groups.) We assume that time series data belonging to different groups are
independent, as is the setting in Section 4.1.1. In fact, the correlations between the
data from the three groups are weak, as shown in Table 4.4.

Industry Electric appliance
Companies NEC
TOSHIBA
Industry Film
Companies TOEI
TOHO
Industry Finance
Companies SUMITOMO MITSUI FINANCIAL GROUP (SMFG)

MITSUBISHI UFJ FINANCIAL GROUP (MUFG)

Table 4.3: Names of the six selected stocks from the three industries

NEC TOSHIBA TOEI TOHO SMFG MUFG
NEC 1 0.698972 | 0.0507566 -0.0876778 | -0.147324 -0.185421
TOSHIBA 0.698972 1| 0.147726  0.0436181 | -0.157357 -0.103833
TOEI 0.0507566 0.147726 1 0.874348 0.163815  0.275132
TOHO -0.0876778  0.0436181 | 0.874348 11]-0.0160858  0.105472
SMFG -0.147324  -0.157357 | 0.163815 -0.0160858 1 0.975848
MUFG -0.185421  -0.103833 | 0.275132 0.105472 0.975848 1

Table 4.4: Correlations of the six selected stocks from the three industries
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Industry Within-group mean estimate Overall average

NEC 6.27636
TOSHIBA 6.20365
TOEI 6.26408 6.93906
TOHO 7.48471 6.68281
SMFG 8.27675
MUFG 6.36006

Table 4.5: The within-group mean estimates and the overall averages of the three
industries

To test hypothesis H, we examine whether the tests exceed the 5% significance
level using Theorems 4.1.1 and 4.1.3.

We find that all of the tests reject hypothesis H, and their P-values are all around
1.0.

However, in view of Theorem 4.1.1, the classical tests LR, LH, BNP do not
hold because these financial data do not satisfy condition (4.7). In all of these cases,
we also examine the sample autocorrelation function of these daily log data. This
function is very high, as shown in Fig. 4.2, so we cannot use the tests LR, LH, BN P,
as implied by Theorem 4.1.1. Hence, only W LR* is recommended in this case, and
it can be applied to a variety of data, as previously described in Sections 4.1.3 and
4.2.1.

4.3 Conclusion

Considering a MANOVA model where the disturbances are generated by generalized
linear processes, we provided a sufficient condition, condition (4.7), for each of the
classical tests (i.e., the likelihood ratio, Lawely-Hotelling, and Bartlett-Nanda-Pillai
tests) to have a x? asymptotic null distribution. We also introduced a new likelihood
ratio test statistic based on the Whittle likelihood, W L R*, which is asymptotically
x>-distributed even if condition (4.7) does not hold. We conducted some interesting
numerical studies to show that our test statistic W LR* is numerically stable under
the null and alternative hypotheses. Finally, we applied the four test statistics to
real financial data and found numerical evidence that our new test statistic W LR*
works well.
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Figure 4.2: The dots in the graph show the sample autocorrelations of the daily log
data of the given six stocks in the legends.

4.4 Proofs of Theorems

Proof (of Theorem 1) By the transformation X; — I‘(O)_l/QXZ-t, we observe
that the three tests, LR, LH and BN P, are invariant under linear transformation.
Hence, without loss of generality, we may assume I'(0) = I,. Then,

ng

q , _ =
:LSE = Z (%) ;;(X,-t - X)) (X — Xi.)',

=1
n

q i
= Zpi; > (X = Xi) (X — X2
i=1 !

t=1

For each i, rewriting

1 & _ _
— > (X = X)X — X,
v=1

1 & _ _
n;
1

t=
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and applying Corollary 1 (p.205 of Hannan (1970)) and Theorem 6 (p.210 of Hannan
(1970)) to (4.12), we observe that

1 4 1
ESE =1,+Op (\/?71) i (4.13)
Neat, note that
LR = nlog{]Ip—SH$§1|}, (4.14)
/1. \ 7!
L (14 14\7"

Substituting (4.13) into (4.14), (4.15), and (4.16), and noting that dlog|F| = trF~*dF
(Magnus and Neudecker (1999)), we can show that the stochastic expansion of the
three tests LR, LH, BNP(=T) is given by

, 1
T =tZQZ + Op (\/77)

where Q@ = I, — pp', with p = (\/m/n,....\/ng/n)" (for the i.i.d. case, e.g., Fu-
jgikoshi et al. (2011) (p.164-165)). Since T'(j) = 0, (5 # 0), it follows from Lemma

1 that
0 f(O) Opxp T Opxp
[0 0) - O,y
veetz) S | [ ][O T i
0 : : :
Opxp OPXP T f(O)

which leads to the conclusion that trZQZ' is asymptotically X?)(q—l) by Rao (2009).
Hence, the results follow.

Proof (of Theorem 2) Under H, we obtain

(s, 0 R TN T BN e
(a'L) - —QZ[ZW {sz—e*)DXW—me >

=1 | s=0 t=1 u=1

ng

1 it —idsu
+ 27N, t_zl(X’t —Re Z(—e )}] :

u=1

o1



Noting that

1 & ot | 1 (s=0)
nZA ‘{o (s #0),

ol(p,0)

5 =10 leads to the solution
"

we can see that

q ez
p= 35X

=1 t=1

Next,

(4.17)

olp,oq) 1 - -1 RS iAot S —idsu
Oy 2 Z FA) 2mn; Z(—e )Z(qu — B —oy)e

s=0 t=1 u=1
1 — i\t = —idsu
g e e T oo

leads to

Similarly, from o

= 0, we obtain

i=1 t=1
As a solution, we may take
1
o = ;= — (Xt — f),
4
t=1
1 qa N
r= ljl’ = E Z th
i=1 t=1



From the above, it follows that

WLR = 2{l(fr, &) — (12, 0)}

q n;—1 n; n;
=X Z“{ e DK = e S — e ()
v=1

=1 s=0 u=1

1 g . ng .
— Y (X — = &)™) (X — di)’e“““f(ks)‘l}
t=1

2mn;
u=1
n;—1
= il ZO tr [ G Z aett Zl ale f (A
i=1 s= u=
277_”120‘161)\ tz o ) —iX uf( )
u=1

Recalling (4.17), we obtain

WLR = Ztr [—azz

b D (X ;l)déf(o)l]

= Yt [~aund (20 f(0))

=1
+26m {27 £(0)} 7]

= 2 Vma{2rf(0)} Viidi. (4.18)

Notice that

g

Q=@ — — Zn,a“ where &; = Ti Z(th — ).

zl t=1
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Then, (4.18) is a mean-corrected quadratic form. Since \/n;e; N N(0,27f(0)) (see
Hannan (1970)(p.208)), we observe that W LR 4 X1
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Chapter 5

Analysis of variance for
high-dimensional time series

Analysis of variance (ANOVA) is a hypothesis testing method for the null hypothesis
of “no treatment effect”. ANOVA is employed to test the null hypothesis that the
means of three or more populations—the within-group means—are all equal.

ANOVA has a long history in statistics: its foundations were established by
Gauss in the late 1800s and later by Markoff in the early 1900s. Many test statistics
for ANOVA and multivariate analysis of variance (MANOVA) have been proposed,
primarily for independent observations. Early applications can be found in Hooke
(1926) and Wishart (1938). In addition, Bishop (1939) and Box (1949) obtained gen-
eral theoretical results. They derived asymptotic expansions of the null and non-null
distributions of likelihood ratio test statistics. Moreover, Bai et al. (1990) proposed
an ANOVA method of adjusting for the unknown parameter, whereas Liu and Rao
(1995) derived an asymptotic distribution of statistics for analysis of quadratic en-
tropy (ANOQE) as a generalization of ANOVA. In addition, Rao (2010) investigated
some ANOQE postulates and conditions. Furthermore, Fujikoshi et al. (2011) de-
veloped general asymptotic expansions of the null and non-null distributions of the
likelihood ratio test statistic, Lawley-Hotelling test statistic, and Bartlett-Nanda-
Pillai test statistic under high-dimensional settings. On the contrary, in a time-series
analysis, Shumway (1971) discussed the asymptotic relationship between the likeli-
hood ratio test statistic and Lawley-Hotelling test statistic, whereas Brillinger (1973)
developed a time-series univariate and balanced ANOVA.

The analysis of multivariate time series data is common in practical problems,
such as those in economics, finance, and bioinformatics. In the current era of big
data, the formulation of statistical decisions for high-dimensional time series data has
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become increasingly important. In the present study, our focus is on the equivalence
of the within-group means of real financial data, which are industry-dependent.

In this chapter, we consider the one-way MANOVA model (5.1), whose distur-
bance processes {€;} are generated by a high-dimensional stationary process. The
remainder of this chapter is organized as follows. Sections 5.1 and 5.3 describe the
setting of this study and the asymptotics of fundamental statistics, respectively. In
Section 5.2, we discuss the asymptotics of existing test statistics for high-dimensional
dependent observations and derive a sufficient condition for them to be asymptoti-
cally normal. Sections 5.4.1 and 5.4.2 present a simulation of classical test statistics
and the application of these test statistics to radioactive observations. The simula-
tion results confirm the theoretical results.

5.1 Problems and Preliminaries

Throughout, we consider the MANOVA model under which a g-tuple of p-dimensional

time series X1, -+, Xin,, ¢ = 1,..., g satisfies

Xit:u+ai+€it7 tzlv"':”i: Z.:L”'7Qa (51)
where the disturbances €; = {€;1, - €;,,} are kth-order stationary with mean 0,
lag u autocovariance matrix I'(u) = (Ijk(u)),<; 1<, ¢ € Z. Moreover, {€;}, i =
1,---,q are mutually independent. This is a standard assumption, which is called

the homoscedasticity (e.g., Ch. 8.9 of Anderson (2003)). Here, p is the global mean
of the model (5.1), and a; denotes the effect of the ith treatment, which measures
the deviation from p satisfying >"7 | a; = 0. Because the treatment effects sum up
to zero, we now consider the problem of testing:

H: oy=---=0a,=0vs. A: a; # 0 for some i. (5.2)
The null hypothesis H implies all the effects are zero.

For our high-dimensional dependent observations, we use the following Lawley-
Hotelling test statistic (LH), likelihood ratio test statistic (LR), and Bartlett-Nanda-
Pillai test statistic (BNP):

LH = ntrS’HSEl,
LR = —nlog\SE]/léE + SH‘;
BNP = ntrSy(Sp+Su)~!,
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where

SH—ZnZX - X)X, - X.) ,andSE—ZZ @ — X)) (X — X)), with
=1 =1 t=1
X, = nlixit and X.. ZZX,t
- i=1 t=1

Here, Sy and Sp are called the between-group sums of squares and products (SSP)
and the within-group SSP, respectively.

We derive the null asymptotic distribution of the three test statistics under the
following assumptions:

Assumption 5.1.1

2
%—>0 as n,p — oo, (5.3)
E—)pi>0asn—>oo. (5.4)
n

Here, condition (5.4) means the sample size of the ith group n;, and the total sample
size n of all the groups are asymptotically of the same order.

Assumption 5.1.2 For the p-vectors €; = (e ﬁt), e Ef)) given in (5.1), there ex-

ists an £ > 0 with

[ee]

Z {14 85 H ko (B Te1)| < 00,

t1,..tg—1=—00

forj=1,-- k—1 and anyktupleal, cyag€ {l,--- ;p} andi=1,---,q, when

k=2,3,---. Here, Cfn,m,ak (tlv sth— 1) = Cum{€1t11)’ o Ef:)}

If effml),n- ,egfmh) for any h-tuple mq,---,my € {1,--- k} are independent of
Z(»:mh“), e 761(?'”’“) for the remaining (k — h)-tuple my 1, ,my € {1,--- , k}, then
szl,- i, (tmys - s tmg—1) = 0 (Brillinger (2001), p. 19). Assumption 5.1.2 implies

()>

that, if the time points of a group of €, ""’s are well separated from the remaining

time points of e( )’s the values of cahm’ak (t1,+- ,tx_1) become small (and hence
summable) (see Brlllinger (2001, p.19)). This property is natural for stochastic pro-
cesses with short memory. Nevertheless, some readers may believe that Assumption
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2 is very restrictive, but it is not so. A sequence of polynomial processes was intro-
duced by Nisio (1960):

:Z Z aj(t—lﬂ,"'7t_uJ)W(u1)"'W<uJ)’ (55)

J=0u1,,uy

where the a;’s are absolutely summable, and {WW(u)} v N(0,1). Nisio (1960)

showed that, if a process {Y (¢)} is strictly stationary and ergodic, we can find a
sequence of polynomial processes that converges to {Y'(¢)} in law. Evidently, the
sequence of polynomial processes (5.5) satisfies Assumption 5.1.2. We also present

a very practical nonlinear time series model in (5.7) below, which satisfies Assumption
5.1.2.

Assumption 5.1.3
I'(j) =0 for all j #0. (5.6)

This assumption implies that the disturbance process {€;} is an uncorrelated process.
Here, it may be noted that the condition (5.6) is of course restrictive, but includes
some practical nonlinear time-series models, like the DCC-GARCH (q,r):

i.4.d.
€, = Hy /nzta Ny ~ ( )

H, = D;R;D;, D; = diag [ Y O-z(f):| )
) r . 2
€t = : ) Ug) =¢ ta; Z {Ez(,]t)—l} + b Z (7@(]2 B (5.7)

(p) =1

Ry = (diag [Qu))™"" Qi (diag [Q4])*,

(4)
~ ~(17 €i pot ~ ~
&= ¢ | & ="t Qu=0-a-BQ+aé& 1€, ,+Qi1,

ew) Vol

where Q, the unconditional correlation matrix, is a constant positive semidefinite
matrix, and H;,’s are measurable with respect to 11,1 t—2, - - -, (see Engle (2002))
satisfies (5.6). Owing to Giraitis et al. (2000, formula (2.3)), a typical component is

expressed as
Z z bt*jl T bjlflfjlnjl /! (58)

=0 5i<ji—1<--<ji<t

G
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where 7;’s are i.i.d. with En? < oo. It is not difficult to observe that DCC-
GARCH (p, q) satisfies Assumption 5.1.2.

Remark 5.1.1 As described above, we replaced independent disturbances in the clas-
sical ANOVA by dependent ones like white noise and GARCH type disturbances.

5.2 Main Results

In what follows, our discussion for X;; remains valid for the case when we apply a
linear transformation {I'(0)}~%/2 to X;; because the three test statistics LH, LR, and
BNP are invariant under linear transformation. Hence, without loss of generality, we
may assume I'(0) = I,, and p = 0. We can derive the stochastic expansion of the
standardized versions 17, 15, and T3 of the three test statistics LH, LR, and BNP,
respectively:

N S SIS _
T, = 2(q_1){\/ﬁt3H5E N 1)},(LH) (5.9)
= —ﬁ(qli_l){jﬁlog|$E|/|$E+sH|+@<q—1)}, (LR)  (5.10)
Ty, = \/2(;—_1){\7/%&3;[(51;4—5;1)_1—@(Q—l)}.(BNP) (5.11)

This section provides the asymptotic theory for the three test statistics, 71,75, and
T;5. Lemmas and their proofs are presented in Section 5.3.

Theorem 5.2.1 Suppose Assumptions 5.1.1-5.1.3. Then, under the null hypothesis
H, we have the stochastic expansion:

Vo {1trSH —/plg — 1)} +op(1), (i=1,2,3).

VTR

Proof From Lemma 5.3.2, it is easily observed that

T, ! {1 Sy—plg—1) +0 P (5.12)

S (s ) eon(P), o
V2(g—1) Lyp vn

whose error term becomes op (1) by Assumption 5.1.1. For Ty, first, note that

dlog|F| = tr(F~dF),
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(e.g., Magnus and Neudecker (1999)). Then, a modification of Proposition 6.1.5 of
Brockwell and Davis (1991), and Lemmas 5.3.1 and 5.3.2 show

1 1 4
Ty = m{\/ptr&q—\/ﬁ(q—l)}%—olo(l). (5.13)

For Ty, in view of Lemmas 5.53.1 and 5.3.2, we obtain

(14 14\7!
SH(8E+ H) ]
n n

~ U 1

= tr H Ip+OP %
1

Vn

= tr{AH (Ip+Og

’I”LtI"{SH(SE —+ SH)_l} = tr

which leads to

1 1 .
Ty = =T {\/ﬁtrSH — J/Blg - 1)} top(1). (5.15)

Using Lemmas 5.3.1 and 5.3.2 and Theorem 5.2.1, we derive the asymptotic distri-
bution of LH, LR, and BNP.

Theorem 5.2.2 Suppose Assumptions 5.1.1-5.1.3. Then, under the null hypothesis
H,

T, % N(0,1), (i=1,2,3).
Proof From Lemma 5.1.2, it is evident that

1 ) B p3/2
%E{trSH} =plg—1)+0O (\/ﬁ> : (5.16)

MOT@O'U@T, from (52;) and (531)7 Zt iS 71015 dllﬁcult 150 Show
cum T H, T H q +O . e;. ;
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Because p~/*t1Sy is a finite linear combination of

1
\/13
() N~ ) 21 (12) N N ()
= ZZ% el ZZ i DD G
l1 1t1=1 s1=1 lg 1ta=1 7j=1 s2=1
TL71

1“222%22@

l3=1j1=1t3=1 ja=1s3=1

Z Z Z el — 21 Z Z i Z 2 ()

l1 1t1=1s1=1 lQ 1 j=1 ta=1s2=1

Q

7”L]1 7’L72

1“2222 i (518

I13=171=1 ja=1t3=1s3=1

= B+ Cy+ Dy,

we can evaluate cum”’) {p‘1/2tr5H, e ,p_l/QtrSH} by using properties of the cu-

mulant (see Brillinger (2001, p.19)). Next, we show that the J-th order (J > 3)
cumulants of A;; tends to zero. It suffices thereby to focus on the term By;, because
Cii and Dy; can be treated similarly. Hence, we only show the J-th order (J > 3)
cumulants of By; converging to zero. In fact,

7111 nLJ nzl ’!’L»LJ

Cum(J){Bilip Bi2i2’ ce 7Bi,1i(/} = [ 2n —J Z Z Z Z Z Z

=1 lj=1t1=1 tyj=1s1=1 syj=1

) {€z1>6<h> ) ) }] (5.19)

i1t1 ~1181) Y YigtyigSy
Brillinger (2001) shows that cum){ |--.  } is expressed as the indecomposable sum
of products of cum{eg) : (i,t) € v}. A typical main-order term is
L) ) (1l ! l
Cum(J) {61113)17 6522} cum {61('223)2’ 6533%} T cum {EEJJS)J’ 651?1} ’ (5'20)

Therefore, the main-order term of (5.19) for the typical cumulant (5.20) is

77,21 TLZ] njl TLJ]

- Z Z Z Z Z Z Cl112 lo — $1 Clzl3 (t3 - 52) *CLyl, (t SJ)

=1 lj=1t1=1 ty=1s1=1 sy=1
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—p 2 Z Z chl(rl)cll(rg) ---cy(ry)  (by Assumption 5.1.3 and I'(0) = I,,)

l]_ T1

(0] (p 2+1) (by Assumption 5.1.2).

Finally, we use a method by Brillinger (2001) that under Assumption 5.1.1, all
the cumulants of order greater than 2 are shown to converge to 0; therefore, the
characteristic functions of the standardized test statistics converge to exp{—t/2}
(see Theorem 2.3.1 of Brillinger (2001, p.19); e.g., the proof of Theorem 5.10.1 of
Brillinger (2001, p.417-18).). Hence, the asymptotic normality for T; is shown.

5.3 Asymptotics of Fundamental Statistics for Main
Results

In this section, we provide lemmas and their proofs. In what follows, we use the same
linear transformation as in Section 5.2. First, the stochastic expansion of n~!Sg and
Sy can be given.

Lemma 5.3.1 Suppose Assumptions 5.1.1-5.1.3. Then, under the null hypothesis
H,

~Sp = Ip+og( ) (5.21)

L
o) cwal) e
o = P Jn)’ :
Sy = Of(1). (5.23)

Proof Write (5.21) as

z_: ;z_: it — Xy — X1). (5.24)



In what follows, for each i, rewrite:
1 & 5 A
— > (X = Xi)(Xi — Xy
tp=1

1 ; .
=— Z(th —a;to; — X)) ( Xy —a; +a; — X))
ng
1

t=

= 712 E(th az)(Xit az)’ + (az X )(a% X, ),
+71i 2 {(th a;)(oy — Xi) + (o — X)) (X — ai),}
— A1 B+C (say). (5:25)

where A = {A;r}, B ={Bj;}, and C = {Cj;}. We observe
E{A} =1, and
COU{Ajk7 Alm}
n;—1
1 X s .
— o 2 (17 ) e (s) + (S + hanl0.5.50) (520

U i
s=—n;+1
=0 (n;l) =0 (nil) uniformly in j, k, [, m by Assumption 5.1.2.

Hence, A = I,+ OY (1/y/n). Next, we observe

E(X;)=a; and
Cov{X;., X:}

- {;is_ri:lﬂ ( - ’;‘) Cjk(S)} (5.27)
o)

B=0Y (1) : (5.28)

n

Thus,

Because C' is the matriz of cross-product terms between A and B, application of
Schwarz’s inequality to each component of C yields C = OY (1/y/n). Therefore,

14 1
8 =50k (7).
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and

(o~ {prer ()} -o-sar o

It is known that -
(1M} =3 A
k=0

(see p. 169 of Magnus and Neudecker (1999)). From Assumption 5.1.1, it follows
that .
M = 0Op (n_5> H

where H is a p X p-matriz and H = OF (1). Then, we obtain

1,17 1
Next, we show Sy = OY (1). To this end, we recall
q
Su=> ni(X; - X.)(X;. — X.). (5.30)
i=1
From (5.27), we observe that X;. = a; + OF (1/y/m3), L, ai = 0 and, similarly,
X.=0Y (1/+/n). Thus, we have

Sy =0Y(1). (5.31)

Lemma 5.3.2 Suppose Assumptions 5.1.1-5.1.3. Then, under the null hypothesis
H,

R R 2
ntr{SpSy'} = trSy + Op (55)

= plg—1)+0p (5;)

Proof From Lemma 5.3.1, it follows that
(1 A\!
Su <$E) ]
n
S P s v
- H p P \/ﬁ

= trSy +tr {S‘H oY (\}ﬁ) } .
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From (5.31),

2

ntr{SyS;'} = trSy + Op (55) : (5.32)
Under H, we may assume p = 0, o; = 0, ¢ = 1,--- ,q. Consequently, recalling
(5.27) and (5.30), we obtain

2

Elntr{SuSz'} =plg—1)+ O <5ﬁ) , (5.33)

which completes the proof.

5.4 Numerical Studies

5.4.1 Simulation to verify the finite sample performance

We conduct numerical studies of the test statistics T;, i = 1, 2,3, which are given

by equations (5.9), (5.10), and (5.11), respectively. In this section, our purpose is

to confirm whether the null distributions of three test statistics are well approxi-

mated by N(0,1) and to evaluate their powers under the alternative hypothesis (i.e.,

a;, i =1,--+,q are not the same) in cases of an uncorrelated disturbance. DCC-

GARCH(1,1) is a typical example of an uncorrelated process (see Engle (2002)).
First, we introduce the following five simulation process steps.

1 Set ¢y = as = a3 = 0 when the null hypothesis H is assumed. Addi-

tionally, set (i) @y = (=0.1,---,-0.1), as = 0, a3 = (0.1,---,0.1), (ii)
ar = (—0.01,---,—0.01), as = 0 , az = (0.01,---,0.01), or (iii) @, =
(—0.001,---,—0.001), ay =0, and ag = (0.001,---,0.001)" when the alter-

native hypothesis is assumed.

2 Generate 50-dimensional {Xl,lv ceey lek}7 {XQJ, e 7X27]f}, {Xg’l, e ,Xg,k},
k =50, 100, 500, 2500, or 7500 with DCC-GARCH (1,1) disturbance.

3 Calculate the test statistics T;, ©+ = 1,2, 3.

4 Repeat steps 2 and 3 1,000 times independently and obtain {TZ»(l)7 e ’Ti(moo); 1=
1,2,3}.

5 Write the tables of the rejection rate and the power by using {Ti(l), ey Ti(looo); 1=
1,2,3}.
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The data used in step 2 can be considered virtual radioactive observations of 50
points for three regions. We generate the disturbance process {€;;} of observations
{Xi:} using DCC-GARCH(1,1). The innovation terms of these processes are as-
sumed to be Gaussian. Specifically, we generate the 50-dimensional simulation from
one-way MANOVA model (1) with a 50-dimensional vector g whose elements are all
1. The scenarios of DCC-GARCH (q,r) (see (5.7)) in €; are

p=50,i=1,23 t=1,---,2500 or 7500,
j=1,---,50,
g=r=1,
a; = 0.2, b; =0.7, ¢; = 0.002,
a=01, B=08,
Qr = 070510,

where Qy is the (k,1)-element of Q. We use the Mathematica code and the “ccgarch”
package of R for this algorithm. Under the null hypothesis, the rejection rate of
the test statistics is given by Table 5.1. We show the powers of the three test
statistics under the alternative hypothesis in Tables 5.2-5.4. The cutoff points of the
10%, 5%, and 1% significance levels are calculated using the N (0, 1) distribution, as
in Theorems 5.2.2.

Under the null hypothesis, it is evident that all the classical test statistics are ef-
fective for 2500 or more uncorrelated observations and especially BNP outperformed
the other classical test statistics and works well for 100 or more observations, as
shown in Table 5.1. On the contrary, under the alternative hypothesis, if the data
are uncorrelated, the powers of all of the test statistics are sufficient for 500 or more

observations, as indicated by the strong numerical evidence shown in Tables 5.2 and
5.3.
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Sample size Significance Level
of each group Test Statistic 10% 5% 1%

Ty (LH) 0.906 0.879 0.781
50 T, (LR) 0.615 0.493 0.313
Ts (BND) 0.089 0.037 0.010
Tr (LH) 0.564 0.460 0.286
100 T, (LR) 0.323 0212 0.098
T (BNP) 0.107 0.060 0.015
Tr (LH) 0.161 0.100 0.032
500 T, (LR) 0.134 0.082 0.022
T (BND) 0.101 0.055 0.015
Tt (LH) 0.114 0.062 0.015
2500 T, (LR) 0.108 0.058 0.014
Ts (BND) 0.100 0.057 0.014
Tt (LH) 0.109 0.058 0.012
7500 T, (LR) 0.107 0.055 0.012
T; (BND) 0.105 0.054 0.012

Table 5.1: Rejection rate of the test statistics under the null hypothesis o = g =
Q3 = 0.
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Sample size

Significance Level

of each group Test Statistic 10% 5% 1%
T, (LH) 1,000 1,000 1.000
50 75 (LR) 1.000 1.000 1.000
T, (BNP)  0.993 0.941 0.665
T, (LH) T.000 1.000 1.000
100 T, (LR) 1.000 1.000 1.000
T, (BNP)  1.000 1.000 1.000
T, (LH) 1,000 1.000 1.000
500 T> (LR) 1.000 1.000 1.000
T, (BNP)  1.000 1.000 1.000
T, (LH) 1000 1.000 1.000
2500 T5 (LR) 1.000 1.000 1.000
T3 (BNP) 1.000 1.000 1.000
T, (LH) 1000 1.000 1.000
7500 T5 (LR) 1.000 1.000 1.000
T, (BNP)  1.000 1.000 1.000

Table 5.2: Powers of the test statistics under the alternative hypothesis (i) oy

(=0.1,---,—0.1), oy =0, a5 = (0.1,---,0.1)".
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Sample size Significance Level
of each group Test Statistic 10% 5% 1%

Ty (LH) 0.960 0.939 0.890
50 T, (LR) 0.768 0.684 0.520
Ts (BND) 0.200 0.108 0.020
Tr (LH) 0.844 0.770 0.606
100 T, (LR) 0.636 0.518 0.346
T (BNP) 0.352 0.230 0.086
Tr (LH) 0.978 0.959 0.907
500 T, (LR) 0.972 0.950 0.864
T (BND) 0.958 0.934 0.821
Tt (LH) 1.000 1.000 1.000
2500 T, (LR) 1.000 1.000 1.000
Ts (BND) 1.000 1.000 1.000
Tt (LH) 1.000 1.000 1.000
7500 T, (LR) 1.000 1.000 1.000
T; (BND) 1.000 1.000 1.000

Table 5.3: Powers of the test statistics under the alternative hypothesis (ii) oy =
(—0.01,---,-0.01)", a2 =0, a3 =(0.01,---,0.01)".
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Sample size

Significance Level

of each group Test Statistic 10% 5% 1%
T, (L) 0015 0873 0.771
50 T, (LR) 0.578 0473 0.297
T5; (BNP) 0.087 0.035 0.004
T, (LH) 0565 0454 0.299
100 T, (LR) 0.325 0.243 0.091
T3 (BNP) 0.098 0.052 0.015
T, (L) 0201 0.125 0.047
500 T> (LR) 0.162 0.093 0.035
T, (BNP)  0.126 0.077 0.019
T, (LH) 0161 0.107 0.033
2500 T5 (LR) 0.158 0.103 0.028
7, (BNP)  0.152 0.098 0.025
T, (LH) 0285 0.175 0.080
7500 T, (LR) 0.282 0.175 0.077
T, (BNP)  0.280 0.174 0.076

Table 5.4: Powers of the test statistics under the alternative hypothesis (iii) o

(—0.001,--- ,—0.001), as =0, a3 = (0.001,--- ,0.001)’
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5.4.2 Application to radioactive observations

We applied T}, 7 = 1, 2, 3 to radioactive observations in Fukushima Prefecture, Japan,
which can be found at http://emdb.jaea.go.jp/emdb/en/portals/b138/. This series
of data was created based on the Air Dose Rate Measurement in Fukushima Pre-
fecture, which is publicly available on the Monitoring Information of Environmental
Radioactivity Level website of the Nuclear Regulation Authority.

We divided Fukushima Prefecture into lower, middle, and upper areas, each of
which had 50 observation points, as shown in Figure 5.1. In each area, the effective
dose was observed at hourly intervals from 12:00 a.m., April 1, 2017 to 11:50 p.m.,
May 31, 2017. In other words, this data set consisted of three groups with 50
dimensions and 7,973 cell lines. We assumed that the time series data belonging to
different groups were independent, as is the setting in Section 5.1.

In terms of the focus of our general methods, we were interested in the equality
of the within-group means. We therefore employed ANOVA for a high-dimensional
time series. To test hypothesis H, we examined whether the test statistics exceeded
the 10% significance level using Theorem 5.2.2.

We determined that all the test statistics rejected hypothesis H, and their P-
values were around 0. If our modeling was correct, this result implied that the
effective dose of the lower and middle areas (red and blue points in Figure 5.1) were
significantly higher than that of the upper area (green points in Figure 5.1).

In addition, we verified the condition (5.6). In view of the sample autocorre-
lation shown in Figure 5.2, this function is very low. Additionally, we verified the
condition (5.6) by using Q(#) (m = 20) in Ljung and Box (1978) to jointly test
for autocorrelations at multiple lags. The null hypothesis for this test was that the
autocorrelations were jointly zero. The minimum of the P-values of this test was
0.828494; thus, it is far from any significance level (0.1,0.05,0.01). This implies that
these radioactive observations satisfied the condition (5.6). Accordingly, we could
use the test statistics 13,7 = 1,2, 3, as implied by Theorem 5.2.2. Furthermore, the
power of the test statistics T;,7 = 1,2,3, was adequate. Basically, if the effect of
the ith treatment «; became large, the test statistics could detect the difference
between the within-group means, as shown in Tables 5.2-5.4. At this point, the dif-
ference between the within-group means in the radioactive observations was larger
than a; = (—0.01,---,—0.01)";, a3 =0, a3 = (0.01,---,0.01)’, as shown in Table
5.3, where the power of T;,i = 1,2, 3, is quite high.
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Figure 5.1: Map of Fukushima Prefecture, where red circles, blue stars, and green
triangles are the observation points for the effective dose in lower, middle, and upper
areas, respectively.
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Figure 5.2: Dots in the graph show the sample autocorrelations of the radioactive
observations.
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Chapter 6

Higher-order approximation of the
distribution of test statistics for
high-dimensional time-series

ANOVA models

Analysis of variance (ANOVA) is a type of hypothesis testing method for the null
hypothesis of “no treatment effect”. It is generally used to test the null hypothesis
that the means of three or more populations of within-group means are all equal.
Moreover, this method shows whether the within-group means are equal.

ANOVA has a long history in statistics. Gauss founded it in the late 1800s,
and Markoff developed it in the early 1900s. Many test statistics for ANOVA and
multivariate analysis of variance (MANOVA) have been proposed, primarily under
independent disturbances of a MANOVA model. The early applications can be found
in Hooke (1926) and Wishart (1938). In addition, Bishop (1939) and Box (1949) ob-
tained general theoretical results. They derived asymptotic expansions of the null
and non-null distributions of the likelihood ratio test-statistics. Bhattacharya and
Rao (1986) discussed higher-order approximations (Edgeworth expansions) and their
validity. Furthermore, Fujikoshi et al. (2011) developed higher-order asymptotic ex-
pansions of the null and non-null distributions of the likelihood ratio test statistic,
Lawley-Hotelling test statistic, and Bartlett-Nanda-Pillai test statistic under high-
dimensional and i.i.d. settings. Moreover, in a time-series analysis, Taniguchi and
Kakizawa (2000) discussed the Edgeworth expansions for various statistics. Recently,
under a high-dimensional time-series setting, Nagahata and Taniguchi (2018) dis-
cussed the first-order asymptotics of Lawley-Hotelling test statistic, likelihood ratio
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test statistic, and Bartlett-Nanda-Pillai test statistic.

In the current era of big data, an analysis of high-dimensional time-series data is
required in practical problems, such as those in economics, finance, and bioinformat-
ics. Especially, the accuracy of statistical decisions for high-dimensional time-series
data has become increasingly important. Many data analysts need accurate methods
for the equivalence of the within-group means of big data, because this analysis is
very basic. MANOVA will be useful for these needs. However, from the viewpoint of
the numerical accuracy of approximations, higher-order asymptotics of ANOVA test
statistics for high-dimensional data are not adequately developed. In the present
study, we focus on Edgeworth expansions of distributions of Lawley-Hotelling test
statistic, likelihood ratio test statistic, and Bartlett-Nanda-Pillai test statistic.

In this chapter, we consider a one-way MANOVA model whose disturbance pro-
cess is generated by a high-dimensional stationary process.

6.1 Problems and Preliminaries

Throughout this chapter, we consider the MANOVA model under which a g-tuple of
p-dimensional time series X1, -+, Xin,, ¢ = 1,..., g satisfies

Xitzu+ai+€it7 tzlv"')”i) izlv"'7qa (61)

where p € R? is the global mean of the model (6.1), the disturbances €; = {€;1, - - €, }
are kth-order stationary with mean 0, lag u autocovariance matrix I'(u) = (I'ji()), <, <
u € 7, and n; is the observation length of the ith group. Furthermore, the total ob-
servation length of all groups n = > "7 n; and {¢;}, i =1,--- , ¢ are mutually inde-
pendent. We impose a further standard assumption, which is called homoscedasticity
(e.g., Ch. 8.9 of Anderson (2003)). Now «; denotes the effect of the ith treatment,
which measures the deviation from p satisfying » 7, a; = 0. Because the treatment
effects sum to zero, we discuss the problem of testing:

H: oy=--=0,=0vs. A: a; # 0 for some 3. (6.2)
The null hypothesis H implies that all effects are zero.

For our high-dimensional dependent observations, we use the Lawley-Hotelling
test statistic 77, likelihood ratio test statistic 75, and Bartlett-Nanda-Pillai test
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statistic ng

Tl = ntrS’HSEl,
Ty = —nloglSg|/|Se + Sul,
T3 = ntrSH(SE—i—SH)_l,

where

SH = inl(ffz — X)(XZ — X and SE = Z Z it — , 7,t — Xz)/ with

i=1 i=1 t=1

. 1 ng . 1 q ng
X, = mt_ZIX“ and X.. = ﬁZZX,-t.

i=1 t=1

Now, we call Sy and Sg the between-group sums of squares and products (SSP)A and
the within-group SSP, respectively. To derive the stochastic expansion of n~!Sg in
Section 6.3, we introduce

Si E -1 Z it — ) Zt - Xi~)la (63)

t=1

q
n; A
V:Z,/gv;, V, = vni(S; — L). (6.4)
=1

In addition, to derive the Edgeworth expansion of distributions of the three test
statistics under H, we impose Assumptions 5.1.1, 5.1.2, and 5.1.3.

6.2 Main Results

In what follows, without loss of generality, we assume I'(0) = I, and p = 0 because
the three test statistics 71, Ty, and T} are invariant under hnear transformation,
our discussion for X;; remains valid for the case where we apply a linear transfor-
mation {I'(0)}~%/2 to X;. We derive the stochastic expansion of the standardized
versions 17, 15, and T3 of the three test statistics Tl (Lawley-Hotelling test statis-
tic), Ty (likelihood ratio test statistic), and T (Bartlett-Nanda-Pillai test statistic),
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respectively:

_ 1 LI S _

o= e {ﬁt Suds' — Jilq 1)}, (6.5)
_ 1 n A . A

I, = —m{\/ﬁlog!SE\/ISE%—SH\nL\/f)(q—1)}, (6.6)

T3 = # {}tTSH(SE + SH)_l — \/ﬁ(q — 1)} . (67)

V2(q—1) iz

This section provides their Edgeworth expansions. Lemmas and all proofs are pro-
vided in Section 6.3.

Theorem 6.2.1 Suppose Assumptions 5.1.1-5.1.3. Then, under the null hypothesis
H, we have the following Edgeworth expansions:

PTi<z) = )=o) {p - 2 -D+p S =32)}  (69)
+o (pfl) , (1=1,2,3)
where . ,
o) = [ otdn oly) = (2n) e (1),
and

o ) et )

R R RO MDA RS NN

=1

Remark 6.2.1 This asymptotic result is an extended version of Fujikoshi et al.
(2011) and Nagahata and Taniguchi (2018). Our setting in Section 6.1 shows we
can apply this result to not only high-dimensional i.i.d. data (that was discussed in
Fugikoshi et al. (2011)) but also high-dimensional time series data. Also, an approz-
imation of the three test statistics T;, i = 1,2,3 in Theorem 6.2.1 is more accurate
than one of them in Nagahata and Taniguchi (2018) because we investigated the
higher order asymptotic structure of T;, i = 1,2,3 by using Edgeworth expansion
method.
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6.3 Asymptotic theory for main results

In this section, we provide the lemmas and their proofs. In what follows, we use
the same linear transformation as in Section 6.2. First, the stochastic expansion of
n~ 1Sk and Sy is given.

Lemma 6.3.1 Suppose Assumptions 5.1.1-5.1.83. Then, under null hypothesis H,
the following (6.9)-(6.11) hold true;

1 4 1 q _
1,)7" 1 1
{nSE} = I,- %V - E(VQ +qI,) + OF (n™*?), (6.10)
Sy = 0Y(1). (6.11)
Proof (Lemma 6.3.1) By (6.4), write n”'Sg as
1. 1 <
*SE = - (n%—l)Sl
n n =1
1 & 1
== - i 1 I i
w2 (1 )
1 q 1< 1
= I,+—=V-2I,--) —V,. 12

In what follows, for each i, we will show V; = OY (1). By the null hypothesis H and
wn =0, we rewrite S; as follows:

where A =1/n;y ",

E{A} =1,

nl(n, — 1)71 <

ni(n; —1)7' (A — B) (say),
X, X!, and B = X;. X!. We observe

i XX}, — XX)
t=1

1
Tlii

(6.13)

and

COU{Ajk, Alm}

ni—l

>

1

n;

s=—n;+1

1

(

sl

)

(

) {cji(s)crm(s) + cjm(s)cr(s) + c;-klm(O, s,8)}(6.14)

1
) uniformly in j, k, [, m by Assumption 5.1.2.
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Hence, A = I,+ OY (1/\/n). Next, we observe

E(Xl) = and
COU{Xl‘., X-z}

Thus,
1
B=0g(-].
()
Therefore,
A 1
and

V,=0¢ (1).
By using (6.12) and (6.17), we can get
1 4 1 q _
wSe =Lt 2V = IL - OF (1),

and

(6.15)

(6.16)

(6.17)

(6.9)

1.)" 1 -1 ~
{nSE} = {Ip + —V - %Ip + Og (n3/2)} ={I,- M,} ! (say).

Vn

It is known that -
{1, - Mn}_l = Z Mrlf
k=0

(6.18)

(see p. 169 of Magnus and Neudecker (1999)). From Assumption 5.1.1, it follows

that
Mfl) = I,
1

M, = -V 21,4+ O (n™?),

1
M2 = V4 Of (7).

M' = Op (n—ﬁ) H, k>3,
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where H is a p x p-matriz and H = OY (1). Then, we obtain

1,7 1 1 _
{nSE} :Ip—ﬁv+ﬁ(v2+q1p)+0g (n=%?). (6.10)
Next, we show Sy = OY (1). To this end, we recall
a
Sp=Y ni(X; - X.)(X:. - X.). (6.19)
i=1

From, (6.15), we observe that X;. = a; + OY (1/v/n:), Y0, a; =0, and similarly,
X.=0Y (1//n). Thus, we have

Sy=0Y(1). (6.11)

Note that (6.9), (6.10), and (6.11) are derived for the multivariate i.i.d. case, e.g.,
(Fujikoshi et al., 2011, p.164).

Lemma 6.3.2 Suppose Assumptions 5.1.1-5.1.3. Then, under null hypothesis H, it
holds that

- 1 1 pi”/2 .
T,=U9 4+ —UW 4 = (UP 4 B;RP) + Op | — =1,2,3 6.20
+ \/ﬁ + n ( +/8 )+ P n y L ) ( )
where
U(O) = tI'SH,
UY = —tr{SyV},

U = o {Su(V? +ql,)},
R® = tr{S8%}, and

1
(517ﬂ2753) = <07_27_1) :
Proof (Lemma 6.3.2) From Lemma 6.3.1, it follows that

-1
afis ]
n

letr

. 1 1
= tr [SH {Ip - %V + ﬁ(V2 +qI,) + O (n‘g/z) H
~ 1 ~ 1 R R
= trSy — %tr{SHV} + Etr{SH(V2 +ql,)} + tr {SH -0Y (n_3/2)} )
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From (6.11),

- . 1 . 1 . 3/2
Ty = trSy — %tr{SHV} + ﬁtr{SH(VQ +qI,)} + Op (pn) : (6.20)

Next, to derive (6.20), first, note that for every matriz F and the matriz differential
operator d
dlog|F| = tr(F'dF),
dF' = —F '(dF)F,

and (6.18) (e.g., Magnus and Neudecker (1999)). Then, a modification of Proposition
6.1.5 of Brockwell and Davis (1991) and Lemma 6.5.1 shows that for

1 4 14
Ip+nSH{SE1}

n

f:=nlog

9

we have that
o0 1 .
f= ZO —d" f.
where d™’s are m-th differentials of f which are calculated by

&Lf = tr{Sy} — 21ntr{‘§?{} +Op (p-n?),

1 R 1 .
d'f = —%tr{SHV} T+ Etr{SH(VQ +qI)} +Op (p* - n7%?),

a"f = Op(p-n_Z), m > 2.

Thus, we obtain

T, = tr{Su} - jﬁtr{SHV} +2 {tr{sﬂ<v2 +al,)} - ;tr{Sz}} +0e (" n(6/22))

From Lemma 6.3.1 and (6.18), it follows that

. (1. 14170
T3 = ftr SH *SE + *SH
n n

A 1 1, 4 -1
= tr SH {Ip+\/ﬁv+n(SH_qu)+Og (n3/2)} ]
RS 1 L g U (,—3/2 *
L k=0
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From (6.11),

- R R p3/2
T3 = trSy — tr{SHV} + — [tr{SH(V2 +qI,)} — tr{S;}] + Op (n) (6.20)

Vn

(for the multivariate i.i.d. case, e.q., (Fujikoshi et al., 2011, p.164)).

Lemma 6.3.3 Suppose Assumptions 5.1.1-5.1.83. Then, under the null hypothesis
H, it holds that

K L M Mo N

N\ -~ 7 N —_——~— T

1 . 1 R 1 A q . 4 Bi &

(L — 2 18]
cum trSy, -, — tr{SgV}, -, tr{SgV~-}, .-, trSy, - -, trSg, - - -
" g SV h e S SV Jon ")
-0 (p1—J/2+N . n—2L—4M—MO—N) (6.21)
—0 (pl—J/Q—GL—12M—3MO—2N) : (6.22)

where K, L, M, My, N >0, J =K+ L+ M+ +My+ N >1 and

(61762753) = <Oa _;7 _1) .

Proof (Lemma 6.3.3) First, under p =0 and null hypothesis H, we prepare Sjy,
and Vi, as (7, k)th components of Sy and V', respectively:

ni; My Niy  MNig
k k
Sik = Z Z e = Z SIS, (6.23)
1= 1 r=1 s=1 ’L2 liz=1 t=1 u=1
LS~ i N o) NS () )
V'k = T = - 62]7" €igr zjs €; \/7(%@ 24)
Here, we can write
K L M Mo N
-~ > -\~ ~ > s — —_——N—
1 4 1 A 1 A q A B; A
(J)(i e e 2 U s G2
cum trSy, - -, tr{SyV'}, -, tr{SyV*-}, -, trSp, - - -, trSy, - -)
P Vpn Vpn VPR vpn "
_ (_1)LqMOBN L p7/2p L2 M= Mo-N
K+Mo L M N
——— — ——
x cum (trSy, - tr{Sy VY, - tr{Sy V2, - trSE, - ). (6.25)
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By (6.23) and (6.24), a typical term of the cumulant in (6.25) is

Ji,1 J1,K+My J2,1 J2,L J3,1 3, M Ja1 kaa Ja,N kan

T1,1 81,1 T1,K+Mqy S1,K+Mg 72,1 S2,1 T2,L S$2,L 73,1 $3,1 T3,M S3,M
Z Z} :} : . § :2 :2 :} :O (n—K—5L/2—4M—MO—2N)
r4,1 S4,1 ta,1 U4 T4 N S4,N L4 N Ug N

% cum(‘])[e(jl’l)e(jl’l) oo (2 G20) o Gsa) Gsa)

iry,1 481,10 ) TiTe1 182,1 ) ) Tir3;1 1831 ) ’

T N VR (6.26)

By wusing the properties of the cumulant and Theorem 2.3.2 in (Brillinger, 2001,
p.19-21), the cumulant appearing in (6.26) has a typical main-order term

—K— —4M—Mo— K+ L+M+Mo+2N
O(nKSL/Q 4M —Mpy QN) ni++ +Mo+

XZ Z Z“.ZZ”.ZZ“.chl’ljlﬁz(o).“CjLK*N[szvl(O)

J1,1 J1,K+My J2,1 J2,L J3,1 J3,M Ja,1 Ja,N

X Cjy 122 (0) © Gy s (O) Cj3 1432 (O) © Gz ardan (0) Cja1jas (0) Gy N1 (0)

p p
X Z e Z Ck?4,1k4,1(0) o Ck4,Nk4,N (O)

k4,1 ka N
= O (n KAL2TAM=MomaNy g KA LA+ Mot2l (By Assumption 5.1.3 and I'(0)
P p p
XY i (0) -+ (0) XY Yty iy (0) -+ Gy (0)
J ka1 ka, N
— O (pV. nfSL/QfSM) .

Thus, from (6.27), we rewrite a typical term of (6.25) as

K L M

A A A MO

1 A
p

N

— p /2 L2-M-M-N (p1+N .

\/pn
n—SL/2—3M)

-0 (pl—J/2+N i n—2L—4M—M0—N)

1-J/2—6L— 12M—3M0—2N)

=o(p (By Assumption 5.1.1)
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Hence, we showed (6.21) and (6.22).

Lemma 6.3.4 Suppose Assumptions 5.1.1-5.1.3. Define W; for every i =1,2,3 by

1 1 1 1
W, = ———3—U9+ —0%+ — (U® + ,R®
T T g O AR
~vila- 1)} (6.25)
1 (O B 1 ¢
= — {18y — —tr{SyV} + —tr{SyV?} + trS
T 7S g S )+ s,
/Bi 59 }
+ 82y — 1Y, 6.29
(k) — Vil ) (6.29)
1
(ﬁl?ﬁ?a 63) = (07 _57 _1) .
Then, under the null hypothesis H, the following (6.50)-(6.34) hold that
cum(W;) =0+o (p_l/Q) , (6.30)
cum(W;, W) =1+o (p_l/z) , (6.31)
5 32
cum(W;, Wi, W;) = p 12 (q—l) (6.32)
q q
n; 2 n; 3 _
ORI NCE SO SRR
=1 =1
9 \2
cum® (W, - W) =p~! <q—1> (6.33)
i\ 2 3 ni\ 4
’ {q_4+62(n) 12 (5) -2 5) pree.
i=1 i=1 i=1
cum (W, - W) =0 (p~7%), (] >5) (6.34)

where (6.34) contains K, L, M, My, N(> 0) of the first, second, third, fourth, and
fifth terms of (6.29), respectively.

Proof (Lemma 6.3.4) Now, from Lemma 6.5.3, we obtain from (6.28)

cum 4:¥ L ) _ _ o (p=1/2
() m{ﬁww] a1} }+o ().
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Here, under Assumptions 5.1.2 and 5.1.3, from (6.23), we get

EUY = Zp: E[S);]

j=1
pq T P o4, M2 1 7]
Yy Y (- ew-2x ¥ (-0
j=11i1=1s=—n; +1 j=1 ig=1 r=—ng,+1 2
= plg—1). (6.35)
Then, we can obtain
cum(W;) = 0+o(p~/?). (By Assumption 5.1.1) (6.36)

Similarly, the main-order terms of cum(W;, W;) and cum(W;, W;, W;) can be com-
puted as follows. From (6.11) and (6.15),

1
cum(W;, W;) = mcum(U(o), U +o(p™/?) (By Lemma 6.5.9)
- i i cum(Sj;, Skr) + 0 (p_l/Q)
= 1+o(p™'/?). (6.37)

In addition, we can obtain
cum (Wi, Wi, W;) = {2p(¢—1)Y 3 2eum(U®, U, UO)+o (p_l/z) . (By Lemma 6.5.9)
and

cum(U(O), U(O), U(O))

p P p
— ZZZCUTTL(Sjj,SkkaSll)
j=1 k=1 I=1
p p p
= > 2.2
j=1 k=1 I=1

TLZl TLZI n12 TL12 TLZS nls

DB D B 35 35 B0 B) ) BT C ORI e
i1=1i2=1143=1 Mis 127 s=1 =1 u=1 v=1 w1

nzl ’nﬂLl 7”L12 ’I’LZQ n7,3 Tng

149
—35222 ZZZZZZ@W{@ZZ b €l Ehys iy

i1=110=11i3=1 r=1 s=1 t=1 u=1 v=1 w=1
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Ny My Mg Miy Mig Mg

1 I 2
5D D D — YD DD cumfellell et i
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i1=112=114i3=1 r=1 s=1 t=1 u=1 v=1 w=1

]
P q

- Z{ZSCH )¢35(0)¢;5(0 32 - 8¢43(0)c;5(0)c;;(0)
j=1

+3i< “) 8¢;(0)¢j5(0)e;5(0) — i (T:;)g‘8011(0)611(0)011(0)}
+0 (p-n”)
= 8p{q—3+32( ) i<2>3}+0(p-n1). (6.38)
Therefore,
9 1\ 3/?2 N2 i\ 3
ot ) = ((25) o3 (2 0 () o)

(6.39)
Similarly, we can compute

cum® (W, - W) = {2p(g — D} Leum® U, . UO) 40 (p7?)

= {2]9((] - 1)}_1 Z Z Z Z Cum(Sjlju T 7Sj4j4) +o (p_l)

Jj1=1j2=1 js=1js=1

() e () (- (@)

o (p ). (6.40)

Hence, (6.30), (6.31), (6.32), and (6.33) were shown (from (6.56), (6.37), (6.39),
and (6.40)). Furthermore, we discuss the Jth order for J > 5 cumulant cum" (W, - -+ W;).
From Lemma 6.3.3, we obtain

cum (W;, ..., W;) = > {2(g — 1)} 772
K,L,M,Mqy,N;
K+L+M+Mo+N=J
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K,L,M,My,N;

— max O (pl—J/2+N ) n—2L—4M—M0—N)
K,L,M,My,N

=0 (p""?). (L=M=M=N=0)
Then, (6.34) was shown.

Remark 6.3.1 Nagahata and Taniguchi (2018) also evaluated the high-order cumu-
lants of T;, i = 1,2, 3 but there is a big difference between this chapter and Nagahata
and Taniguchi (2018). The order of the stochastic expansion in Lemma 6.3.2 is
higher than that in Nagahata and Taniguchi (2018), so we needed to derive asymp-
totics of W; as in Lemmas 6.5.3 and 6.3.4.

Proof (Theorem 6.2.1) The Edgeworth expansion for a multivariate time series
is derived by (Taniguchi and Kakizawa, 2000, p.168-170). We extend it to the case
of high-dimensional time series. First, by the Taylor expansion and Lemma 6.3./,
we write the characteristic function of W; (i = 1,2,3) in Lemma 6.5.4 as

Elexp{itW;}]
1 1
= e.rp{cum(Wi)(it) + §cum(VVi, W;)(it)* + gcum(Wi, Wi, Wi)(it)?

1
—|—ﬂcum(4)(VVi e ,VVi)(it)4 4. }

t? 1 1
—eap (=5 ) x { o Geum 8L W WGP 7 e 08 w0

+o (p’l/Q) )

tZ
= exp (—2) X {1 +p 2. %S(it)?’ +p ' %(it)‘l} +o(p'7?). (6.41)

Inverting (6.41) by the Fourier inverse transform, we have

PWi<z) = () —o(x) {p /- 2 =D +p7 (" =32) 40 (p7),
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where
o) = [ oty oty) = (2m) Ve (—@’2) |

Here, from Lemma 6.3.2, we observe that
Elexp{itT;}| = Elexp{itW;}] + o (1).

This implies (6.8), so we complete the proof.

6.4 Simulation to verify the finite sample perfor-
mance

We simulate the Edgeworth expansions of distributions of T}, ¢ = 1, 2,3, which are
given by Theorem 6.2.1. In this section, our purpose is to show that their Edgeworth
expansions P(7T; < z), i = 1,2,31in (6.8) are more numerically accurate than the first-
order approximation, that is, ®(z) in (6.8). Specifically, in the case of an uncorrelated
disturbance that is assumed by Assumption 5.1.3, DCC-GARCH(1,1) is a typical
example of that process (see Engle (2002)). Therefore, we introduce the following
five simulation process steps.

1 Set a; = ay = a3 = 0 for the null hypothesis H.

2 Generate 20—dimensional {Xl,h Ce ,X175000}, {Xg,l, Ce ,X275000}, {Xg,l, e ,X375000},

with DCC-GARCH(1,1) disturbance.
3 Calculate the test statistics T;, + = 1,2, 3.

4 Repeat steps 2 and 3 1,000 times independently and obtain {Ti(l), s ’Ti(looo); 1=
1,2,3}.

5 Calculate Fm(z), i = 1,2, 3, which is the empirical distribution of {Ti(l), . 7,1—;(1000); 1=

1,2,3}.

6 Write the plot of |F},(z) — ®(z)| and |E,(z) — P(T; < 2)|, i = 1,2,3, which
are plotted by dotted and thick lines, respectively, in Figures 6.1, 6.3, and 6.5.

7 Write the plot of {|Fj,(z) — ®(2)| — |Fin(z) — P(T; < 2)|}, i = 1,2,3, by a
dotted line, in Figures 6.2, 6.4, and 6.6.
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We set the 20-dimensional simulation from one-way MANOVA model (6.1) with a
20-dimensional vector g’ = (1,---,1)" and generate the disturbance process {€;} of
observations { X;;} in (6.1) by using DCC-GARCH (1, 1), whose innovation term is
assumed to be Gaussian. The scenarios of DCC-GARCH(q,r) (see (?77)) in €; are

p=20,i=1,23 t=1,--- 5000,
j=1,---,20,
g=r=1,

a; = 0.2, b; = 0.7, ¢; = 0.002,
a=01, =08,

Qu = 070+,

where le is the (k,[)-element of Q We set the observation length n; = 5000, ¢ =
1,2, 3, because Table 1 of Section 5.1 in Nagahata and Taniguchi (2018) demonstrates
that 7; are stable for n;, = 2500 or more uncorrelated observations (i = 1,2, 3). The
Mathematical code and the “ccgarch” package of R are used for this algorithm.
We compare the numerical accuracy of P(T; < z) with ®(z) based on F,(z) by
using |F},(2) — ®(2)|, |Fin(z) — P(T; < 2)| (see Figures 6.1, 6.3, and 6.5), and
{|Fin(2) = ®(2)| — |Fyn(2) — P(T} < 2)|}, i =1,2,3 (see Figures 6.2, 6.4, and 6.6).

Figures 6.2, 6.4, and 6.6 indicate that the Edgeworth expansions P(7T; < z) of T;
work better than the normal approximation ®(z) from the perspective of numerical
accuracy.
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Figure 6.1: Plot of [F},(z) — ®(z)| and |Fy,(z) — P(T} < z)| by dotted and thick
lines, respectively.
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Figure 6.2: Plot of {|F},(z) — ®(2)| — |Fi.(2) — P(Ty < z)|} by a dotted line.
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Figure 6.3: Plot of |F},,(2) — ®(2)| and |Fy,(2) — P(Ty < z)| by a dotted line and a
thick one, respectively.
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Figure 6.4: Plot of {|Fy,(z) — ®(2)| — |Fon(z) — P(Ty < 2)|} by a dotted line.
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Figure 6.5: Plot of |Fy,,(z) — ®(2)| and |F3,(2) — P(Ts < z)| by a dotted line and a
thick one, respectively.
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Figure 6.6: Plot of {|Fs,(z) — ®(2)| — |Fs.(2) — P(Ts < 2)|} by a dotted line.

91






Acknowledgment

The author would like to express his deepest appreciation to his supervisor Profes-
sor Masanobu Taniguchi of Waseda university for successive guidance, advices and
wholehearted encouragement. Professor Taniguchi supervised the author during his
master and doctoral courses, and helped the author’s life when the author was very
uneasy about his career as a researcher.

The author acknowledges Professor Yoichi Nishiyama and Yasutaka Shimizu of
Waseda University for their constructive feedback and critical reading of earlier drafts
of this dissertation.

The author wishes to express his sincere appreciation to my seniors Research
Associate Fumiya Akashi of Waseda University and Research Associate Yan Liu of
Kyoto University for many advices.

A special thanks to my family. Words can not express how grateful I am to my
father for all of supporting and encouraging. I would also like to thank to my wife.
Thank you for supporting me for everything, and especially I can not thank you
enough for encouraging me throughout this experience.

93






Bibliography

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of
corporate bankruptcy. The journal of finance, 23(4):589-609.

Altman, E. I. and Brenner, M. (1981). Information effects and stock market response
to signs of firm deterioration. Journal of Financial and Quantitative Analysis,
16(01):35-51.

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd
Edition. John Wiley & Sons, New York.

Aoshima, M. and Yata, K. (2014). A distance-based, misclassification rate adjusted
classifier for multiclass, high-dimensional data. Annals of the Institute of Statistical
Mathematics, 66(5):983-1010.

Bai, Z., Rao, C. R., and Yin, Y. (1990). Least absolute deviations analysis of variance.
Sankhya: The Indian Journal of Statistics, Series A, 52:166-177.

Bai, Z. D. and Saranadasa, H. (1996). Effect of high dimension: by an example of a
two sample problem. Statistica Sinica, 6(2):311-329.

Bhattacharya, R. N. and Rao, R. R. (1986). Normal approximation and asymptotic
expansions, volume 64. STAM.

Bishop, D. J. (1939). On a comprehensive test for the homogeneity of variances and
covariances in multivariate problems. Biometrika, 31:31-55.

Box, G. E. P. (1949). A general distribution theory for a class of likelihood criteria.
Biometrika, 36:317-346.

Brillinger, D. R. (1973). The analysis of time series collected in an experimental
design. Multivariate Analysis, 111:241-256.

95



Brillinger, D. R. (2001). Tuime Series: Data Analysis and Theory, volume 36. STAM,
San Francisco.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer
Science & Business Media, New York.

Carlstein, E. (1986). The use of subseries values for estimating the variance of a
general statistic from a stationary sequence. The Annals of Statistics, 14(3):1171—
1179.

Chan, Y.-B. and Hall, P. (2009). Scale adjustments for classifiers in high-dimensional,
low sample size settings. Biometrika, 96(2):469-478.

Dempster, A. P. (1958). A high dimensional two sample significance test. The Annals
of Mathematical Statistics, 29(4):995-1010.

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate
generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ.

Stat., 20(3):339-350.

Fujikoshi, Y., Ulyanov, V. V., and Shimizu, R. (2011). Multivariate statistics: High-
Dimensional and Large-Sample Approzimations, volume 760. John Wiley & Sons,
Hoboken, New Jersey.

Gersch, W., Martinelli, F., Yonemoto, J., Low, M., and Mc Ewan, J. (1979). Auto-
matic classification of electroencephalograms: Kullback-Leibler nearest neighbor
rules. Science, 205(4402):193-195.

Giraitis, L., Kokoszka, P., and Leipus, R. (2000). Stationary arch models: depen-
dence structure and central limit theorem. Econometric Theory, 16(1):3-22.

Hall, P., Marron, J., and Neeman, A. (2005). Geometric representation of high
dimension, low sample size data. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(3):427-444.

Hannan, E. J. (1970). Multiple Time Series, volume 38. John Wiley & Sons, New
York.

Hooke, B. G. (1926). A third study of the english skull with special reference to the
farringdon street crania. Biometrika, 18:1-55.

96



Kakizawa, Y., Shumway, R. H., and Taniguchi, M. (1998). Discrimination and clus-
tering for multivariate time series. Journal of the American Statistical Association,
93(441):328-340.

Kiinsch, H. R. (1989). The jackknife and the bootstrap for general stationary obser-
vations. The Annals of Statistics, 17(3):1217-1241.

Liu, Y., Nagahata, H., Uchiyama, H., and Taniguchi, M. (2017). Discriminant and
cluster analysis of possibly high-dimensional time series data by a class of dispari-
ties. Communications in Statistics-Simulation and Computation, 46(10):455-468.

Liu, Z. and Rao, C. R. (1995). Asymptotic distribution of statistics based on
quadratic entropy and bootstrapping. J. Statist. Plann. Inference, 43:1-18.

Ljung, G. M. and Box, G. E. (1978). On a measure of lack of fit in time series models.
Biometrika, 65(2):297-303.

Magnus, J. R. and Neudecker, H. (1999). Matriz Differential Calculus with Applica-
tions in Statistics and Econometrics. John Wiley & Sons, New York.

Nagahata, H. and Taniguchi, M. (2018). Analysis of variance for high-dimensional
time series. Statistical Inference for Stochastic Processes, 21(2):455-468.

Nisio, M. (1960). On polynomial approximation for strictly stationary processes.
Journal of the mathematical Society of Japan, 12(2):207-226.

Rao, C. R. (2009). Linear Statistical Inference and Its Applications, volume 22. John
Wiley & Sons.

Rao, C. R. (2010). Quadratic entropy and analysis of diversity. Sankhya A, 72:70-80.

Saranadasa, H. (1993). Asymptotic expansion of the misclassification probabilities
of d-and a-criteria for discrimination from two high dimensional populations using

the theory of large dimensional random matrices. Journal of multivariate analysis,
46(1):154-174.

Shumway, R. (1982). Discriminant analysis for time series. Handbook of statistics,
2:1-46.

Shumway, R. H. (1971). On detecting a signal in n stationarily correlated noise series.
Technometrics, 13:499-519.

97



Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference
for Time Series. Springer.

Wishart, J. (1938). Growth-rate determinations in nutrition studies with the bacon
pig, and their analysis. Biometrika, 30:16-28.

Yata, K. and Aoshima, M. (2009). PCA consistency for non-gaussian data in high
dimension, low sample size context. Communications in Statistics—Theory and
Methods, 38(16-17):2634-2652.

Yata, K. and Aoshima, M. (2012). Effective PCA for high-dimension, low-sample-size
data with noise reduction via geometric representations. Journal of multivariate
analysis, 105(1):193-215.

98



List of main papers

1. Nagahata, H. (-). Higher order approximation of the distribution of test statis-
tics for high-dimensional time series ANOVA models. To appear in Scientiae
Mathematicae Japonicae.

2. Nagahata, H. and Taniguchi, M. (2018). Analysis of variance for high-dimensional
time series. Statistical Inference for Stochastic Processes, 21(2):455-468.

3. Nagahata, H. and Taniguchi, M. (2018). Analysis of variance for multivariate
time series. METRON, 76(1):69-82.

4. Liu, Y., Nagahata, H., Uchiyama, H., and Taniguchi, M. (2017). Discriminant
and cluster analysis of possibly high-dimensional time series data by a class

of disparities.  Communications in Statistics-Simulation and Computation,
46(10):8014-8027.

99



List of papers

1. Nagahata, H. (2017). Classification for high-dimensional finacncial time series
by a class of disparities. Advances in Science Technology and Environmentology
Special Issue, 2017, B14:47-55.

2. Nagahata, H., Suzuki, T., Usami, Y., Yokoyama, A., Ito, J., Hasegawa, F.,
Taniguchi, M. (2012). Faces for financial time series data. Advances in Science
Technology and Environmentology Special Issue, 2012, B8:1-13.

101



