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Chapter 1

Introduction

1.1 Background
Over the past decade, malware threats have become a serious Internet problem.
Malicious Internet activities such as massive spam emailing and denial-of-service
attacks have arisen from botnets comprising a large number of malware-infected
machines. Botnets are used as an infrastructure for malicious activities and can be
rented by the hour in black markets to anyone who wants to perform these kinds of
activities. In addition, crypto-mining malware has recently appeared. It implicitly
abuses computer resources such asmemory orCPUpower for cryptocurrencymining
without being explicitly permitted by the user of the computer. Owners of crypto-
mining malware can make money directly through this cryptocurrency mining. This
money becomes a source of revenue for criminal organizations. Similar to the
above, there is an ecosystem on the Internet between malware authors, malicious
service providers, and service users with various black markets to connect them.
Malware plays the central role in this unwanted Internet ecosystem. Due to this,
many malware-defense experts spend their resources on fighting malware. A very
effective and straight-forward approach is analyzing malware. By analyzing the
malware, these defenders can clarify the hidden behaviors or intentions of malware
and then develop effective countermeasures against it. Thus, malware analysis
techniques are a key factor in fighting threats on the Internet.
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There are mainly two types of malware analysis techniques: dynamic analysis and
static analysis. Dynamic analysis is a technique that executes malware in an isolated
environment in which tools for monitoring have been installed in advance. More
specifically, there are several types of dynamic analysis techniques such as system
call monitoring, user-land application programming interface (API) monitoring,
or instruction tracing. Among these, API monitoring is a very popular technique
because APIs have high-context, and are sufficiently well-documented and human-
readable for analysts to understand quickly malware activities and intentions.
The other line of research for malware analysis is static analysis. Static analysis

is a technique that analyzes the code of malware without executing it. Since static
analysis does not execute malicious code of malware, there is no risk of damaging
the environment. It also has an advantage in its completeness, which is a serious
weakness of dynamic analysis. That is, we can theoretically analyze all codes of
malware and extract all potential behaviors including those that may be unseen using
dynamic analysis. However, static analysis has a problem in its scalability. That
is, it is time-consuming and may not be practical when analyzing a long code. An
approach tomitigating this weakness is to focus onAPIs imported bymalware. Since
APIs contain much information, as mentioned above, they become an essential data
source in the efficient progress of static analysis. In short, APIs are a key factor in
both dynamic and static malware analysis techniques. We call these dynamic and
static analyses focusing on APIs API-oriented analyses in this thesis.
Since malware developers are also familiar with malware analysis techniques and

recognize the importance of APIs in the analysis process, they embed anti-analysis
functions into their malware to evade API monitoring in dynamic analysis or hide its
imported APIs in static analysis [1][2][3][4][5][6][7][8][9]. Various techniques that
evade API-oriented analyses have currently been adopted in real-world malware.
These techniques are mainly classified into four types: target evasion, hook evasion,
code obfuscation, and resolution evasion. Target evasion is used to obfuscate the
API caller instance by, for example, invoking APIs from the code injected into a
benign process. Hook evasion is a technique that evades hooks added to the entry
of APIs for monitoring. Code obfuscation is a technique that encodes the code and

2
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data of a malware executable to avoid pattern-matching based detections. Resolution
evasion is a technique that obfuscates the relationship between code or data, and
their symbol names.
As far aswe have considered, a reasonwhymalware has a chance to evade analyses

is the target-gap problem, which is a common design problem existing in analysis
tools. The target-gap problem is a gap between what we really want to analyze and
what we actually analyze. That is, existing analysis techniques for specific target
codes are built on indicators of the target codes that express the existence of the
target codes, even though they should target the codes themselves. An example is
when we analyze malware using dynamic analysis techniques, we mostly identify
the executions of the target codes based on the process identifier (PID) or thread
identifier (TID) of an instance of the malware, even though what we really want to
analyze is the code of the malware. Another example is that when we capture the
executions of a specific API, we identify the execution of the API based on that of
the address where the API should be loaded, even though what we really want to
capture is the executions of the code of the API. In this way, there is a gap between
what we really want to analyze and what we actually analyze using existing analysis
tools. Malware takes advantage of this gap to evade analyses.

1.2 Thesis Contributions
The goal of this thesis is to establish malware analysis techniques that are sufficiently
practical for fighting evasive malware. To this end, this thesis focuses on the target-
gap problem and extends the capabilities of existing dynamic and static malware
analysis techniques with taint tracking to solve the problem. In particular, this thesis
first presents one new evasion technique that shows clearly the target-gap problem
by actually exploiting it using a proof-of-concept code. Next, we propose two
new analysis techniques for dynamic and static analyses that provide a definitive
collection of practical datasets. We argue that the effectiveness of the proposed
techniques using real-world large-scale datasets and then discuss issues that should
be addressed in the future.

3
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Problem Description is presented in Chapter 2. In this chapter, we first explain
basic malware analysis procedures, especially those focusing on APIs, i.e., API-
oriented analyses. Next, we classify existing evasion techniques often used in real-
world malware into four groups: hook evasion, target evasion, code obfuscation,
and resolution evasion. Then, we separately overview the literature on dynamic and
static malware analyses. Finally, we discuss the target-gap problem that exists in
both dynamic and static analysis techniques.
A New Threat: Trace-Free Program Loader is presented in Chapter 3. The

goal of this chapter is to show the target-gap problem. To this end, we present
Stealth Loader, which is a program loader that bypasses all existing API-oriented
analysis techniques. The core idea of Stealth Loader is to load a dynamic link library
(DLL) to memory and resolve its dependency without leaving any detectable trace
in the memory. We show the effectiveness of Stealth Loader by analyzing a set
of Windows executables and malware protected with Stealth Loader using several
tools in which major dynamic and static analysis techniques are implemented. The
results indicate that among the other considered evasion tools only Stealth Loader
successfully bypasses all analysis tools.
Taint-Assisted Dynamic Malware Analysis is discussed in Chapter 4. The

goal of this chapter is to present a solution for the target-gap problem in dynamic
analysis. To achieve this goal, we introduce the design and implementation of an
API monitoring system called API Chaser, which is resistant to evasive malware.
The core technique in API Chaser is code tainting, which enables us to identify
precisely the execution of monitored instructions by propagating three types of taint
tags added to the codes of API, malware, and benign executables. Additionally, we
introduce taint-based control transfer interception, which is a technique that captures
preciselyAPI calls invoked from evasivemalware. We evaluate API Chaser based on
several real-world and synthetic malware to show the accuracy of our API hooking
technique. We also perform a large-scale malware experiment by analyzing 8,897
malware samples to show the practical capability of API Chaser. These experimental
results show that 571 of 8,897 malware samples employ hook evasion techniques to
hide specific API calls, while 344 malware samples use target evasion techniques to

4
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hide the source of API calls.
Taint-Assisted Static Malware Analysis is introduced in Chapter 5. The goal

of this chapter is to present a solution for the target-gap problem in static analysis.
For that purpose, we introduce taint-based API name resolution, which is an API
name resolution technique in import address table (IAT) reconstruction based on
taint analysis to defeat semantic evasion techniques, which are among the group of
resolution evasion techniques. The key idea behind the proposed technique is that
we add rich semantics information to the machine code using taint tags. Specifically,
we make instructions recognizable using taint tags that were set to the instructions
of each API before starting the analysis. To accomplish this, we first define taint tags
where each tag has a unique value for each API and then apply the taint of the API
to each of its instructions. Next, we track the movement of the API instructions by
propagating the tags and then resolve API names from the propagated tags for IAT
reconstruction after acquiring amemory dump of the process under analysis. Finally,
we experimentally show that a system in which taint-based API name resolution has
been implemented enables us to identify correctly importedAPIs evenwhenmalware
authors apply various evasion techniques to their malware.
Finally, Chapter 6 presents the conclusions of this thesis.

5





Chapter 2

Problem Description

2.1 Introduction
In this chapter, we introduce the target-gap problem, which is a design problem that
commonly exists in current dynamic and static analysis techniques. To explain this
problem, we first review the procedures of basic API-oriented dynamic and static
analysis techniques. Then, we introduce a taxonomy of evasion techniques that mal-
ware often use to defeat analysis techniques, and describe the details of each evasion
technique. Next, we show literature related to dynamic and static malware analyses
and qualitatively evaluate their resistance capabilities against evasion techniques.
Finally, we discuss the target-gap problem by giving several examples of situations
in which difficulties could arise in analyzing malware using current techniques.

2.2 API-oriented Analysis
In this section, we explain basic API-oriented analyses. API-oriented analyses
represent an analysis approach that primarily focuses on APIs in dynamic and static
analyses to enable these analyses to progress efficiently. APIs are high-context,
well-documented, and human-friendly. They become important hints for analysts to
help them quickly understand the code under analysis. On the other hand, machine
instructions such as x86 are low-context and machine-friendly. It is difficult for
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humans to grasp the meaning or intention of the code from only those machine
instructions. So, APIs are a key factor in determining the precision and efficiency of
malware analyses including when we manually perform analysis. In this section, we
first discuss API monitoring as a representative of dynamic analysis techniques and
then describe IAT reconstruction as a representative of static analysis techniques.

2.2.1 API Monitoring

API monitoring is a technique that analyzes malware by executing it in an isolated
environment and monitoring API calls invoked from it. To perform API monitoring,
we need to consider the following three phases: target, hook, and resolution. The
target phase distinguishes the target instances from others since many instances may
be running in the same analysis environment when performing API monitoring. To
accomplish this, we are likely to rely on a process identifier (PID), control register
3 (CR3), which is an equivalent to PID, or thread identifier (TID). Specifically, we
first make a list of PIDs as monitoring targets and provide the list to an analysis
environment to identify targets. Then, we manage the list by adding or removing the
PID of the newly-created process or terminated processes, respectively, at runtime.
Whenweperforman analysis at the process-level, e.g., using a process-level sandbox,
the target phase is not required because we have already identified the target process.
Therefore, we can skip this phase in such a case.
The hook phase captures executions of specific API instructions. To accomplish

this, there are several techniques such as those involving data modifications or
code modifications, address matching, and DLL hijacking. The first technique
involves data modifications. We hook the API executions by modifying the entry
of the API in a function table, which contains pointers to each API. In a Windows
environment, an IAT and export address table (EAT) represent two major targets for
hooking modifications. These two tables contain virtual addresses or offsets to each
imported or exported API, respectively. By replacing the entry to a specific API in
one of these tables with a pointer to a prepared handler, we can hook the calls to
the API and transfer the executions to the prepared handler. A traditional technique
involving code modifications is to set a breakpoint, i.e., software breakpoint, at a
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specific memory address, which internally replaces the instruction at the address
with 0xcc, and then capture an exception generated when the 0xcc instruction is
executed at the CPU. Another technique with code modifications is an inline-hook,
which replaces the instruction at the address with a jmp instruction. This jmp
instruction transfers the execution to a prepared hook handler. Then, the execution
returns to the instruction immediately after the jmp instruction after the handler has
completed its task.
A technique that does not involve any modification is address matching. With

address matching, we capture the executions of target instructions based on a com-
parison of the instruction addresses to the expected addresses. More specifically,
address matching works as follows. It first calculates the addresses where target API
instructions are expected to be loaded into memory in advance, monitors the execu-
tions of the addresses with one of any instrumentation techniques during dynamic
analysis, and compares each executed address to the calculated one. If the addresses
match, this fact indicates that one of the target APIs is being executed. Address
matching is often used in a malware analysis environment with virtual machine
(VM) introspection techniques [10][11][12][13][14] because this technique does
not require modification of any malware code or data. These modifications often
expose the existence of analysis modules to malware, and results in malware stop-
ping or changing malware behavior. Address matching has a low risk of detection
by malware due to modified parts of code or data for hooking.
One more technique that should be mentioned here is DLL hijacking [15]. DLL

hijacking injects a fake DLL into a target process by manipulating the order of the
search strategy for a DLL to be loaded by a Windows program loader. The fake
DLL should export the APIs in the same manner as those of the legitimate DLL.
The APIs exported from the legitimate DLL are called via the injected fake DLL.
This technique does not directly modify the code of a target process, i.e., malware.
However, a suspicious DLL, i.e., a fake DLL, must be located in the same process
memory space as running malware. So, the existence of the fake DLL may become
a trigger for malware to find analysis instances.
The resolution phase adds semantics, i.e., symbols, to a memory address that is
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captured in the hook phase. To accomplish this, we first generate a correspondent
table of API names and their loaded addresses. To calculate the loaded addresses of
eachAPI, we add the base address of a loadedDLLwith the relative virtual addresses
(RVAs) of each API exported from the DLL. The base address of a loaded DLL is
acquired from OS-managed data areas such as the process environment block (PEB)
or virtual address descriptor (VAD). Another approach for acquiring the base address
of loaded DLLs is to make use of OS-provided functions with dynamic analysis. For
example, Windows OSs have a callback mechanism that invokes registered handlers
whenever a specific type of event happens such as DLL loading or unloading. This
callbackmechanism allows us to collect the base address of a loaded DLL. Onemore
example is to monitor API calls related to DLL management such as LoadLibrary
or LoadLibraryEx. By hooking the calls of these two APIs and investigating their
arguments before and after the invocations, we can collect the name of a loading
DLL, which is passed to an API call as an argument, and its loaded address, which is
returned as a result of the API call. Regarding the RVAs of each API, they are mostly
acquired from the portable executable (PE) header of a DLL. After completing the
corresponding table, we can search the table for the memory address captured in the
hook phase. If the entry is found in the table, it reruns the correspondent API name
as the symbol of the address.

2.2.2 IAT Reconstruction

IAT reconstruction is a technique that clarifies the APIs imported by a specific target
instance as a preprocess for static analysis. A PE executable usually has IATs and
import name tables (INTs) tomanage the importedAPIs from eachDLL; these tables
are pointed to from the PE header. Malware often removes the list of imported APIs
from its PE header to disturb analyses. Specifically, it deletes INTs and de-links
these tables from the PE header. Therefore, we must repair the destroyed parts of the
PE header to know the imported APIs. IAT reconstruction is a necessary step for
efficient static analysis because imported APIs add semantics to inorganic machine
codes or byte sequences, which are difficult to read as they are. The procedure for
IAT reconstruction also comprises three phases: target, find table, and resolution.
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The target phase is necessary only when we analyze the code that exists in a
memory dump such as a raw memory dump, which is a snapshot of the physical
memory at a particular execution point during dynamic analysis. When we examine
a memory dump, we first need to identify the target code regions in the memory
dump because a memory dump is likely to contain the processes of many executable
files that are not directly related to the target one. To identify the code regions, we
often use the process name or PID to identify the specific instances to analyze.
For example, if we provide a process name or PID to a forensics tool such as The
Volatility Framework (Volatility) [16], we could know where the code regions of
the process are in a memory dump. On the other hand, when we analyze the code
of an executable file, we have already identified our targets, i.e., the code regions of
the executable file. So, we can skip this phase.
The find-table phase identifies function tables, i.e., IATs, in the target code or data

regions. These tables are used to import APIs exported from other parts of regions,
i.e., DLLs mapped to other memory regions. To find tables, a basic technique that
is adopted by many tools such as impscan (a plugin for Volatility) and Scylla [17]
is described hereafter. First the code regions of a target process are disassembled
to search for indirect call instructions such as call [0x1001000]. Next memory
addresses that are referred to by the found indirect call instructions are collected.
In the above case, 0x1001000 is the address to collect. If the collected addresses
are gathered into a cluster within a specific memory address range, we define the
memory area within the range as a function table.
The resolution phase in IAT reconstruction is the same as that in dynamic analysis.

We resolve the destination address of a pointer in a found IAT to the corresponding
API name by following the same process as described in the previous subsection.

2.3 Taxonomy of Evasion Techniques
The main purpose of this section is to classify existing evasion techniques into four
categories by considering the target phase of each technique. However, before diving
into individual evasion techniques, we first consider an outline for anti-analysis
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Anti-analysis Techniques

Conditionally-protected Execution

Evasion Techniques

Target Evasion

Hook Evasion

Code Obfuscation

Resolution Evasion

…

…

…

Fig. 2.1 Anti-analysis Overview

techniques.

2.3.1 Overview of Anti-Analysis

Anti-analysis techniques are used to hinder efficient analyses or reverse engineering.
Malware often employs some of these techniques to bypass detection and analysis.
In this thesis, we first classify them into the following two categories as shown in
Fig. 2.1: conditionally-protected execution and evasion techniques. Conditionally-
protected execution imposes several conditions on environments where malware is
running for the malware to behave normally. Examples of techniques belonging to
this category are VM detections [18][19], debugger detections [2], or time bombs
[20]. Additionally, conditions are not limited to those that are computer related.
They include those related to external environments such as the connectivity to a
specific server on the Internet, or those related to humans such as the frequency
of clicks on the screen. There is a large volume of research on techniques in this
category and many great results have been obtained. Therefore, we simply use these
research results in this thesis and consider that this type of anti-analysis technique
is outside the scope of this thesis as a research subject.
Evasion techniques are used to hide the execution of instructions of an API from

analysis instances even though they were actually executed. With these techniques,
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Table 2.1 Taxonomy of Evasion Techniques

Phase API Monitoring IAT Reconstruction

Target Code Injection, File Infection, (Name Confusion)

Hook
Stolen Code, Sliding Call, Copied API
Obfuscation

N/A

Find-Table N/A Code Obfuscation
Semantics Name Confusion, DLL Unlinking, Static Linking

Resolution
Control-flow N/A

API Redirection, (Stolen Code, Sliding
Call, Copied API Obfuscation)

malware could conduct malicious activities without being detected and analyzed on
an infected computer. Evasion techniques do not stop the execution of malware,
while conditionally-protected execution possibly stops malware execution when the
conditions are not satisfied. That is, users of analysis tools are likely not to recognize
that they fail to analyze the malware and may miss capturing a part of a malicious
behavior from the malware. This oversight may lead to more severe damage than
simply failing to analyze malware.
Table 2.1 shows a taxonomy of evasion techniques. We classify evasion tech-

niques into four groups based on the phase of each API-oriented analyses. There
are three groups to mimic API monitoring, target evasion, hook evasion, and reso-
lution evasion, and three groups to bypass IAT reconstruction, target evasion, code
obfuscation, and resolution evasion. Moreover, we divide resolution evasion tech-
niques into two sub-groups based on the steps for resolution: semantic evasion and
control-flow obfuscation.

2.3.2 Target Evasion

Target evasion is a technique that enables an instance, such as process or thread, to
evade being the target of analysis. We describe two target evasion techniques: code
injection and file infection.
Code injection injects a piece of malicious code into another process and en-

ables that code to be executed in that process. If an API monitor distinguishes its
monitoring target based on a PID, which is very common in most existing systems
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[21][14][22][23][24], that API monitor must find the behaviors for the injection and
add the injected process to the monitoring targets. If it does not find the code injec-
tion behaviors, it fails to monitor correctly the API calls invoked from the malicious
code in the injected process. That is, API monitoring is evaded.
File infection is another target evasion technique. It adds a piece of code to an

executable file and modifies pointers in its PE header to cause the added code to
execute after the program begins to run. Similar to code injection, it is difficult
to distinguish between API calls from malicious code and those from the original
benign code if the API monitor tries to identify its target using PIDs.

2.3.3 Hook Evasion

Hook evasion is a technique that causes executions of specific instructions, which
may bemonitored by an analysis instance, to be skipped or avoided in order to prevent
triggering a hook. A basic hook evasion technique is dynamic API resolution, which
is a technique used to evade IAT hooking. When attackers create malware, they drop
imported API information from the PE header of the malware executable file and
let it resolve its API dependencies at runtime by itself using the LoadLibrary and
GetProcAddress APIs. Using this technique, malware is not required to go through
any IAT to call external APIs. Thus, malware could bypass monitoring hooks set in
the IAT, i.e., IAT hooking, using this technique.
Another basic technique is self API resolution, which is a technique used to

evade analysis that monitors the LoadLibrary API calls to install hooks on the
loading DLL. This technique acquires the base address of a loaded DLL from a
PEB instead of calling the LoadLibrary API and then parses the PE header of the
DLL to find the offset of a specific API exported by the DLL without depending
on the GetProcAddress API. This technique is often seen in a shellcode [25][26]
since a shellcode must resolve API dependencies by itself to run in a situation
where it can use neither the LoadLibrary nor GetProcAddress API. Malware applies
this technique to avoid analysis. Since malware does not call the LoadLibrary and
GetProcAddress APIs, they can bypass analysis instances that monitor the calls of
the two APIs that trigger install hooks on newly loading DLLs.
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Fig. 2.2 Stolen Code and Sliding Call Mechanism

In addition to the above two basic techniques, we describe three advanced hook
evasion techniques: stolen code, sliding call, and copied API obfuscation. Fig.
2.2(a) shows the behavior of stolen code. Stolen code copies some instructions from
the entry of an API to allocated memory areas in the malware process at runtime.
When malware attempts to call the API, it first executes the copied instructions
and then jumps to the address of the instruction in the API following the copied
instructions. Some existing API monitors [14][22][21][24] identify their target API
calls using the address-matching technique. The expected addresses for matching
are computed from the base address of the loaded module containing these APIs
and the offsets to them, which are written in the PE header of the module. If
the instructions of these APIs are copied to addresses different than the originals,
existing API monitors may miss capturing the execution of these APIs because the
calculated addresses, i.e., the ones where target APIs should reside, are not executed.
Fig. 2.2(b) shows the behavior of sliding call. Sliding call behaves almost in

the same manner as stolen code. The difference is that malware originally has a
few instructions of the entry of a specific API in its body and calls the API after
executing those instructions. Almost all existing API monitors focus on the entry
of each API [27][21][14][22][24] as a place to add a hook. This approach toward
hooking can be evaded because the instruction at the head of the API is not executed
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nor even touched by malware using sliding call.
Copied API obfuscation [1] is an evolved version of stolen code. It copies all

instructions of anAPI to an allocatedmemory area in themalware process at runtime.
Unlike stolen code, copied API obfuscation does not transfer the execution to the
instructions of the copied API, i.e., it does not execute them at all. So, if analysis
tools add a hook to the entry of an API, they fail to capture the API calls since no
instruction of the API is executed at all.

2.3.4 Code Obfuscation

Code obfuscation is a technique that hides the existence of specific types of instruc-
tion and data from static analysis by encoding them [28]. It destroys the appearances
and patterns of code and data by encoding those of a malware executable. When the
encoded executable begins to run, it decodes the encoded code and data, and then
writes them to a buffer to execute and reference, respectively.
We do not consider this evasion technique in this thesis because of the following

two reasons. First, the primary purpose of code obfuscation is to evade only static
detections such as pattern matching. So, dynamic analysis approaches, e.g., API
monitoring, are not affected by this type of evasion. Second, there is much-related
research on this technique such as unpacking or de-obfuscation [29][30][31][32].
Therefore, we use the existing research findings and results to extract the decoded
code and data of malware for this research in static analysis, i.e., for IAT reconstruc-
tion.

2.3.5 Resolution Evasion

Resolution evasion is a technique that breaks the relationship between bytes in a
computer, e.g., data in the memory, and their symbol names for hiding imported or
invokedAPIs from static or dynamic analysis tools, respectively. There are two types
of resolution evasion techniques: control-flow obfuscation and semantic evasion.
Control-flow obfuscation is a technique that inserts junk code between an API

call site, i.e., an indirect call instruction, and the API code. Usually, the control flow
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of an API call site directly points to the code of the API or it is directed via an IAT.
However, malware authors inject junk code between them andmodify the destination
of the API call sites to point to the junk code. Since the call site results in pointing
to the junk code, it does not appear as an API call site. It simply appears as a local
function call site. API monitoring and IAT reconstruction are not concerned with
local function calls. Therefore, these analyses could be evaded using this technique.
We present API redirection as a technique belonging to this type. Also, we explain
hook evasion techniques here because they could indirectly affect control flow as a
result of taking actions for hook evasion.
API redirection [2] is a technique that attacks static analyses by obfuscating API

references. As Fig. 2.3(a) shows, it modifies call instructions in the original code.
Otherwise, as Fig. 2.3(b) shows, it modifies the IAT entry. With thesemodifications,
it forces control flows to APIs to circumvent a stub, which executes junk instructions
and finally jumps to the APIs. By inserting a stub between an IAT entry or call
instruction and API code, malware breaks the direct connection between the caller
and callee of an API. Since API call instructions are expected to refer directly to
the API code or at least be directed via an IAT entry in many analysis tools, this
technique can confuse their expectations regarding the relationship between the API
caller and callee. Additionally, advanced API redirection, as shown in Fig. 2.3(c),
is involved with stolen code [2]. At the same time, when API redirection is applied,
it copies some instructions at the entry of an API, i.e., mov edi, edi, and push
ebp, to a position before the jmp instruction in the allocated buffer for a stub. An
execution performed after running these instructions in the buffer is transferred to
the instruction after the copied ones in the API code, i.e., mov ebp, esp.
Hook evasion techniques such as stolen code, sliding call, and copied API ob-

fuscation also disturb control flow recovery in static analysis for resolution. The
primary effect of these techniques is to avoid the monitored instruction, while a
secondary effect is to change the control flow, which is started at an API call site
and reaches to the corresponding API code. As a result of this change, the call
destination of the API call site becomes a local buffer and not the memory area
where the API code resides. Under this memory layout, when we perform address
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Fig. 2.3 Three patterns of API redirection. Top is a normal Windows executable
before applying API redirection. (a) Pattern in which the reference of the call
instruction is modified, (b) that in which the entry of the IAT is modified, and (c)
that in which API redirection is conducted with stolen code.

comparison to identify the existence of a specific API, the address of the local buffer
does not match that where the API is expected to reside. As a result, API name
resolution fails.
Semantic evasion is a technique that hides the location information of specific data

that store important system objects. In this thesis, semantics means the same thing
as the positions, i.e., the virtual memory address, of specific targets, such as APIs
exported from each loaded system DLL. Analysis tools construct the semantics
of an analysis environment by collecting information from an OS by querying
it via APIs or system calls, parsing specific data structures, or finding variables
that are managed by the OS. However, when malware successfully interferes with
collection by hiding the data structures or modifying returned values from the OS
with semantic evasion, malware can control the view of semantics to be read by
analysis tools. Thus, this makes analysis tools incorrectly understand the current
OS situation. Semantic evasion affects dynamic and static analyses. There are
kernel-land and user-land approaches to evade semantics. Here, we focus on only
user-land approaches because kernel-land approaches are difficult to apply to recent
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Fig. 2.4 DLL Unlinking

Windows OSs since recent Windows OSs have advanced kernel protection such as
patchguard [33]. Therefore, we explain DLL unlinking, name confusion, and static
linking as user-land techniques belonging to semantic evasion.
DLL unlinking [16] is a technique that interferes with static analysis by hiding

the data structure that is used for managing loaded DLLs in a PEB, as shown in
Fig. 2.4. DLL unlinking hides the metadata of loaded DLLs that could become the
destination of the flows so that control flows from call instructions cannot reach any
API. Since a control flow of an external function call cannot reach any memory area
where a Windows-system DLL is mapped, analysis tools fail to recognize this flow
as an API call reference. This technique achieves this by removing the registered
metadata of the DLL from the lists of the PEB, which is a Windows data structure
for managing loaded DLLs and their status in a process. Since some Windows
APIs, e.g., EnumProcessModules, depend on the PEB to extract loaded DLL lists,
unlinked DLLs can avoid being listed by these APIs.
Name confusion involves copying a system DLL to another file path while chang-

ing its file name. The copied DLL exports the same functions as the original DLL, so
the malware loading the copied DLL can still call the same functions as those in the
original DLL. If the name has been changed, some analysis systems [14][23][22][24]
that depend on the names of the module to identify their target can be evaded. Also,
name confusion is often used in target evasion, e.g., malware changes its name to that
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of a system executable file installed as default such as svchost.exe or winlogon.exe.
Static linking is a technique that links Windows-system DLLs statically with an

executable and then removes imported API information from the PE header of the
linked DLL to prevent analysis tools from identifying the calls of the functions
exported from the linked DLL as API calls. Since imported API information has
already been removed from the linked DLLs, we cannot obtain information related
to the APIs exported from the statically-linked DLL such as the name of the API.
Therefore, even if we acquire an executed address in the hook phase and identify the
virtual memory address in the memory area where the executable file linked with
the DLL is mapped, we cannot resolve the virtual address with the corresponding
API name. As a result, we fail to recognize the execution as an API call. However,
statically-linked DLLs may have some troubles. They probably lose the portability
as a PE executable since system DLLs tend to depend heavily on specific Windows
versions. For example, it may be difficult to generate an executable with static links
with kernel32.dll in one environment and run it in a different environment. Also,
the size of malware linked with system DLLs is likely to become large since the size
of a system DLL is not so small. Therefore, we do not consider this technique as
being a real-world threat in this thesis.

2.4 Literature
In this section, we present literature related to dynamic analysis and static analysis
techniques by focusing on their API-oriented analysis components such as how to
identify its targets, how to hook API calls, and how to resolve the API names.

2.4.1 Dynamic Analysis: API Monitoring

API monitoring is a fundamental technique for malware analysis. Several systems
have been proposed that precisely monitor malware activities based on API mon-
itoring. We divide these systems into five categories from the viewpoint of API
hooking techniques: binary rewriting, address matching, control transfer intercep-
tion, simulation, and DLL hijacking. Additionally, we mention other related studies
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that do not API calls, but monitor system calls or instruction executions to compare
their architectures in the next subsection.

Binary Rewriting
CWSandbox [27] and Cuckoo Sandbox [24] employ the inline-hooking technique
that replaces instructions at the entry of an API with a jmp instruction pointed
to a prepared API handler, which is a function for collecting information for fur-
ther investigations and then transferring the control back to the original API code.
CWSandbox also set hooks on LoadLibrary and LoadLibraryEx to handle dynamic
API resolution, while Cuckoo Sandbox derives the base address of a loaded DLL
with a callback mechanism provided by a Windows OS. JoeBox [34] hooks APIs
using a data rewriting technique, i.e., EAT hooking, that replaces a function pointer
in the EAT of the PE header with the address to a preparedAPI handler. APIMonitor
[35] modifies the entries in the IAT in the PE header for hooking, i.e., IAT hooking,
with the pointer to a prepared API handler. It also hooks the GetProcAddress API
calls so that it sets hooks on its newly resolved API code to handle dynamic API
resolution.
DRAKVUF [11] is an analysis environment built onXen hypervisor [36]. It hooks

executions of a process running in a guest OSwith the breakpoint injection technique
proposed in [37]. It starts analysis of a malware sample by injecting a code snippet
into a process running in a guest OS from the virtual machine monitor (VMM) layer
and identifies its target instance based on CR3. It acquires the semantics of a guest
OS using memory forensics techniques. More specifically, it uses Rekall [38] to do
that.

Address Matching
VAMPiRE [39] actualizes stealth breakpoints by making use of the virtual memory
trap mechanism, i.e., disabling the present bit in a page table entry, and an original
page fault handler in a kernel driver. SPiKE [40] is a framework built on VAMPiRE
for performing code instrumentation. SPiKE rewrites the EAT of a DLL to redirect
the execution to a prepared API handler when an API exported by the DLL is
invoked. It loads analysis modules into a target process by monitoring a process or

21



Chapter 2 Problem Description

thread creation APIs such as CreateProcess, OpenProcess, Suspend/ResumeThread.
egg [41] is also a framework for binary instrumentation, and it is implemented
as a kernel module. It hooks API calls with the same mechanism as VAMPiRE.
A feature of egg is a taint analysis capability. egg actualizes coarse-grained taint
analysis, which can track the data flow of files, virtual memory, and threats with its
kernel-level instrumentation.
TTAnalyze [14] (ancestor of Anubis [12]) monitors APIs and system calls invoked

from malware in the VMM layer using address matching. TTAnalyze is built on
QEMU, which is a whole system emulator [42]. TTAnalyze determines target
processes using CR3 that are passed from a probe module running on the guest
OS and then it retrieves semantics information of a guest OS by relying on a
callback mechanism that the guest OS provides. Panorama [23] is a malware
analysis environment established on a whole-system emulator, TEMU [22], which
is an extended version of QEMU with a taint analysis capability. Panorama is
designed to analyze and detect malware based on taint tracking. Panorama, actually
TEMU, hooks APIs based on address matching while capturing DLL loading events
based on the callback mechanism and parsing the EAT of the load DLL for the RVA
of each API exported from the DLL. It identifies its target processes based on CR3.

Control Transfer Interception
IntroLib [43] and CXPInspector [44] define API calls as control transfers from
memory regions for malicious code and for API code. To intercept a control
transfer, they use a similar technique to VAMPiRE. The difference between IntroLib
and CXPInspector is that IntroLib relies on shadow page tables for interception,
while CXPInspector relies on a hardware-assisted virtualization support feature
such as Extended Page Tables or Nested Page Tables. IntroLib parses the headers of
a DLL file to acquire the API names and RVAs of each API exported from the DLL
and then calculates the virtual addresses of the APIs by adding the base address
acquired from the memory layout to the RVA. CXPInspector uses VADs to obtain
the base address of a loaded DLL and it either uses symbol information (if available)
or parses the DLL PE header to acquire the RVA of each DLL API.
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Simulation
Norman Sandbox [45] and Zero Wine [46] simulate Windows APIs. For that
purpose, they must prepare almost the same number of API call handlers as that for
Windows APIs. The handlers simulate the behaviors of a corresponding API and
are used for logging. That is, when a handler is invoked, it simulates the behaviors
of the API and collects the arguments passed to an API call, writes them into a log
file, and returns an appropriate value to the API caller.

DLL Hijacking
BinUnpack [47] is a tool for unpacking based on the IAT rebuilt-then-called tech-
nique. It reconstructs the IAT of a packed malware based on stack tracing with API
monitoring, which is the same technique as QuietRIATT [48]. API monitoring is
designed to hook API calls invoked from the packed malware with kernel-level DLL
hijacking. Kernel-level DLL hijacking hooks system calls that are used to load or
map a DLL file into memory such as NtMapViewOfSection and replaces the map-
ping executable file with a fake one, while traditional DLL hijacking manipulates
the order in which DLLs are searched [15].

Others
Ether [30] is a malware analysis system built on Xen hypervisor [36]. Ether monitors
only system calls, and not user-land API calls with the same mechanism applied in
VAMPiRE. However, it actualizes this monitoring with Intel virtualization technol-
ogy. That is, it turns off the present bit of a target virtual memory page and captures
page fault exceptions at the VMM layer to actualize instrumentation. Ether identifies
its target process using the process name and process page directory entry. Also, it
acquires the semantics of a guest OS through a series of memory reads.
Alkanet [49] is a system call monitor built on BitVisor, which is a thin hypervisor

[50]. Alkanet hooks system calls by setting hardware breakpoints at the entrances
and exits of system calls. It performs system call monitoring with thread-level
granularity, i.e., identifies its targets based on a TID, and acquires OS semantics
such as the system call number using techniques such as memory forensics.
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Tartarus [51] is an analysis environment using taint analysis to track its target
codes, and it is implemented on DECAF [52]. Tartarus does not monitor API calls,
but it mainly monitors instruction traces. Its taint tracking capability allows Tartarus
to be independent of the ways of code injections so that they can handle various types
of code injections. In [51], a method was also proposed for tracking the executions
of a program constructed with a return-oriented-programming (ROP) chain, which
is partially used in new code injection techniques such as PowerLoaderEx [7] and
AtomBombing [5].
BareBox [53] is a malware analysis system built on bare metal, i.e., it does not

use any virtualization technology. BareBox runs two OSs on the same hardware.
One analyzes malware within the OS and the other, Meta-OS, manages the analysis
environment by taking a snapshot and restoring the state of the analysis environment
after the analysis is completed. BareBox hooks system calls with system service
descriptor table (SSDT) hooking in the analysis environment.

2.4.2 Static Analysis: IAT Reconstruction

There are also several tools for IAT reconstruction in static analysis. We classified
them into two categories: forensics and hybrid. Forensics are tools used in a
situation where there is only a memory dump of an infected computer. That is, there
is no information collected using dynamic analysis techniques. The hybrid category
represents tools that are used in a situation where there is an executable file. So,
we can run the file to collect information using dynamic analysis techniques and
then perform IAT reconstruction using the information collected during the dynamic
analysis.

Forensics
Volatility [54] is a memory forensic framework that includes a set of plugins, each
of which is designed to do a specific analytical job. Volatility reads a memory dump
file and analyzes it while invoking some of the plugins. impscan is a plugin that is
used for IAT reconstruction. It identifies IATs by collecting the reference address of
indirect call instructions in code regions of its target process. Then, it resolves the
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API name of each entry in the identified IAT by acquiring the base address of each
loaded DLL from a PEB and the offset of each API exported from the DLL. Rekall
[38] is a memory forensics framework cloned from Volatility. Rekall incorporates
extended features such as a disk analysis capability and the ability to identify loaded
DLLs based on a global unique identifier (GUID) in the PE header of an executable
found in a memory dump.

Hybrid
Eureka [55] is a framework for malware unpacking and reverse engineering. It takes
several techniques to identify API references from target codes using both dynamic
and static analyses. When aDLL is loaded at its standard virtual address, it calculates
the positions of each API exported from the DLL whose position is calculated from
the image base address in the DLL PE header and the RVA stored in the EAT in
the header. When a DLL is loaded at a non-standard virtual address, it identifies
the base addresses of each loaded DLL by monitoring the NtOpenSection and
NtMapViewOfSection system service calls during dynamic analysis. Additionally,
it performs in-depth static analysis such as control flow graph recovery and a partial
data-flow analysis to identify the targets of call sites found in code regions in static
analysis.
RePEconstruct [56] is a tool built on DynamoRIO [57]. It collects instruction

traces, especially focusing on the branch and indirect reference instructions. With the
trace information collected during dynamic analysis and exported function informa-
tion, which may be obtained from someOS-managed data structures, RePEconstruct
performs IAT reconstruction. QuietRIATT [48] focuses on API monitoring for IAT
reconstruction. It monitors API calls and collects the return address of each API
call. After API monitoring is completed, it identifies the instruction immediately
before the collected return addresses. The instructions should be API call sites and
are expected to be an indirect call instruction. By collecting the reference addresses
of these indirect call instructions, QuietRIATT identifies the IAT. Quist et al. [58]
proposed an unpacking system that is built on Ether [30]. This system mainly fo-
cuses on the phase for finding the original entry point and repairing the PE header
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of malware under analysis after extracting the original code of a packed executable.
Their technique for finding the IAT is the same as that of other IAT reconstruction
tools such as impscan, while that for API resolution relies on VADs to extract the file
name of mapped DLLs in the target memory area. BinUnpack, which was described
in the previous subsection, performs IAT reconstruction with API monitoring. The
employed technique for reconstructing IAT is the same as that for QuietRIATT. It
also uses rebuilt IATs to identify the original entry point of an obfuscated executable.

2.5 Problem Analysis
We introduce the target-gap problem in this section. We first summarize the archi-
tecture of existing malware analysis systems and tools that were presented in the
previous section. Then we qualitatively evaluate the capability of the systems and
tools to evade detection (resistance capabilities). Next, we describe the target-gap
problem which represents the root cause of why malware can evade most current
analysis systems and tools.
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Table 2.4 Evaluation Viewpoint Summary

Symbol Description

T1 Track target codes injected with an unknown technique.
T2 Distinguish API calls invoked from inserted codes, not benign ones.
H1 Capture the calls of an API even when the first few instructions of the API are skipped.
H2 Identify the API code without depending on their located addresses.
H3 Capture the calls of an API even when malware does not reference any IAT.
R1 Understand the current semantics of the analysis environment without depending on the OS.
R2 Analyze control-flow even when junk codes exist between an API call site and the code of the API.

2.5.1 Architecture Comparison

We summarize the architecture of each dynamic analysis system in Table 2.2 and
that of each static analysis tool or system in Table 2.3. We qualitatively evaluate their
resistance capabilities as explained in Section 2.3. First, we present the evaluation
viewpoints, as shown in Table 2.4, and then explain the evaluation results in dynamic
and static analyses separately.

Dynamic Analysis
The resistance capabilities are qualitatively evaluated by surveying relevant papers
or source codes if they are available on the Internet. We present the viewpoints of
resistance capabilities against target, hook, and resolution evasions hereafter.
Viewpoint. The resistance capability against target evasion is considered from

the two aspects. The first aspect is if the system can handle a new code injection
technique (T1). This aspect comes from the following considerations. Most of
the existing analysis systems have some capability for handling code injections.
However, they mainly assume heuristic approaches toward handling them such as
hooking specific API calls, e.g., CreateRemoteThread or WriteProcessMemory.
With heuristic approaches, we could adequately handle known code injections, but
we could not deal with unknown ones. Because new code injection techniques
emerge every year, it is essential to have the capability to handle code injections
without depending on heuristics. The second aspect is if the system has the capability
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to distinguish correctly API calls invoked from the same process space in which both
benign and malicious codes reside (T2). This situation occurs when code is injected
into a benign process or a file is infected in an executable. If the system does not have
this capability, it aggressively collects API calls invoked from even a code region
belonging to a benign program. Then, these collected APIs result in false positives
and confuse system users.
The hook resistance capability is measured based on three aspects. The first is

if the system has a capability for capturing the calls of an API even when the first
few instructions of the API are not executed by malware (H1). This aspect comes
from the property of stolen code and sliding call. Most existing analysis systems
set hooks for monitoring on the first instruction of each API. Even when we employ
the address-matching technique for hooking, we also monitor the executions of the
address of the first instruction of each API. Malware authors, of course already know
this fact, so they avoid the hooks by not executing the first instruction of each API
when their malware calls an API. The second aspect is if the system has a capability
of identifying the code of APIs without depending on their located addresses (H2).
This aspect comes from the property of stolen code and copied API obfuscation. If
a hook mechanism strongly depends on the virtual memory address to identify the
API codes, malware can easily avoid this hook bymoving their target code to another
location. The last is if the system has a capability for capturing the calls of an API
even when malware does not call API via any IAT (H3), i.e., malware directly jumps
to the API code to call the API. This aspect comes from the property of dynamic API
resolution. When malware dynamically resolve APIs by itself without depending
on a program loader, malware directly jumps to the API code from its call site. If
the system sets hooks on IATs for hooking, it could be evaded.
The resolution resistance capability is considered from the two aspects: control-

flow and semantic validity. These aspects come from the fact that API name
resolution is performed based on the comparison between the destination address of
a call instruction in malware code and the addresses where target APIs are expected
to be loaded. That is, to make the resolution failure, an attacker should retarget
the call instruction to the different address from the API one, i.e., control-flow

30



2.5 Problem Analysis

obfuscation, or disturb the calculation of the address where an API is loaded for
comparison, i.e., semantic evasion. We explain only semantic evasion resistance
here because control-flow obfuscation does not affect the dynamic analysis.
Semantic evasion resistance, which is a part of resolution evasion, is dependent on

OS semantics. That is, semantic evasion resistance depends on how much a system
correctly understands the current situation and if it can keep track of changes in the
situation even when the underlying OS is compromised and unreliable (R1). This
represents the degree of independence from the OS. Analysis instances are likely
to trust the OS, which is installed in an analysis environment or running under the
analysis instances. Thus, the instances construct their analysis logics based on the
information provided by the OS. For example, when we want to collect the base
address of a loaded DLL, we acquire that information from a PEB or VAD, which is
a data structure that the OS manages. However, this hypothesis, i.e., that the OS is
reliable, is not always true. Whenmalware intrudes into the kernel layer, it can easily
modify any data in the OS. Even when malware does not go into the kernel layer,
it could modify some system data stored in the user-land, such as PEB. Therefore,
whether or not analysis instances can understand the current semantics without any
help from the OS is a metric when we consider semantic evasion resistance.
Result. Table 2.2 shows the results of qualitative evaluations considering the

resistance capability viewpoint. Regarding target evasion, all systems except for
Tartarus are vulnerable to new code injection techniques. In addition, they do
not distinguish API calls invoked from a process memory space where benign and
malicious codes reside together. This is because these systems identify their targets
based on a PID, while Tartarus identifies targets based on target codes marked with
taint analysis. When we try to track the movement of an injected code with PID-
based targeting, we need to know the PID of the process to which the code is injected.
To accomplish this, we have to know the injection methodology and prepare hook
points in advance to monitor the behavior. However, it is difficult to predict a new
emerging code-injection technique before the malware is used. Therefore, PID-
based targeting is vulnerable to new code injections. Furthermore, the granularity
of PID-based and TID-based targeting approaches is too rough to distinguish API
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calls from benign parts or malicious parts of code in a running process. If these
codes are mixed and placed in the same memory region, a single thread may execute
both codes. Therefore, even TID-based targeting is insufficient to distinguish them.
Thus, PID- and TID-based targeting are neither robust against code injections nor
file infections.
Regarding hook evasion resistance, IAT hooking is not robust against dynamic

API resolution because malware directly dumps to the API code without referencing
any IAT.Whether IAT hooking is effective against the other hook evasion techniques
depends on how malware identifies the positions of target API codes. If malware
identifies it from the corresponding entry of an IAT, the hook set on the entry is
still active even after stolen code or copied API obfuscation are applied. However,
if malware identifies it from other sources, e.g., the EAT of the DLL, and directly
jump to theAPI codewithout referencing any IAT,malware can bypass IAT hooking.
EAT hooking is also effective if malware identifies the addresses of APIs from the
EAT. Since EAT hooking replaces the entries of the EAT of a DLL with the address
of a hook handler, when malware acquires the address of a target API for applying
evasion techniques from the EAT of the DLL, malware wrongly recognizes the
address of the hook handler as the one of the API. Even if some instructions of
the hook handler are stolen or copied, the functionality of the hook handler is not
lost because the code of the hook handler is executed. However, we need to care
about the sliding call cases. If the first few instructions of the handler for an API are
different from the ones of the API, the execution context could be destroyed when
malware skips the few instructions for sliding call. This may lead a program crash.
Code rewriting techniques are robust against stolen code and copied API obfus-

cation, but they are not robust against sliding call. This is because when the first
instruction of an API is copied with stolen code or copied API obfuscation, the in-
serted instruction for hooking such as int3 or jmp is also copied to a newly-allocated
buffer. If the copied instruction is executed in the buffer, this execution generates
an exception in the case of int3 or transfers the execution to a hook handler in the
case of jmp. However, if the first instruction is skipped with sliding call, the inserted
instruction is never executed. Then, this situation fails to hook the API calls.
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On the other hand, control transfer interception is resistant to stolen code and
sliding call, but not to copied API obfuscation. This is because there are control
transfers from malicious code to any API code in the cases of stolen code and
sliding call, but there are no control transfers from malicious code to any API code
in the case of copied API obfuscation. In copied API obfuscation, since all API
instructions are copied to a local buffer in a malware process, no control transfer to
API codes occurs. Thus, there are only transfers between malicious codes.
Addressmatching is vulnerable against all hook evasion techniques since it focuses

on only the single virtual memory address to hook a specific API call. It is sufficient
for malware to evade this technique by simply moving the code of an API to a
different location or skipping the address. So, all hook evasion techniques can
evade address matching. In short, there is no hooking technique that satisfies both
properties of binary rewriting and transfer interception, i.e., a technique that can track
the movement of a target code and capture the control transfers between different
purposed memory regions, respectively.
DLL hijacking, which is used in BinUnpack, is resistant against stolen code

and copied API obfuscation because actual API codes reside behind the fake DLL
injected into malware under analysis. When the malware tries to steal some of
the code of an API, what it steals is the code of a function exported from the fake
injected DLL. So, the hook set on the first instruction of the API in the real DLL is
still active and works toward capturing the executions of the API. However, when
malware uses the sliding call technique, BinUnpack may crash in the following case.
The first instruction of a function exported from the fake DLL is not the same as that
of the corresponding API exported from the real DLL. This difference may cause
the context of the execution to break because the malware is designed to perform
sliding call with the expectation that the skipped instruction exists at the entrance of
the API.
It is worth mentioning that hook techniques involving anymodification, especially

code modifications, such as inline hooking or software breakpoints, are not suitable
for malware analyses because they may expose the existence of analysis modules to
malware. That is, malware could easily detect evidences for hooking in the analysis
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environment and may stops its execution or changes its behaviors. For the same
reason, DLL hijacking, IAT hooking, and EAT hooking also expose the existence of
analysis modules to malware. So, they possibly affect the execution of malware.
Regarding resolution evasion resistance, most of systems and tools are vulnerable

to incorrect OS semantics. If an underlying OS is compromised and returns an
incorrect view of its semantics, malware can evade the analysis tools built on the
semantics. The authors of the BinUnpack paper argue that BinUnpack is sufficiently
strong against state-of-the-art resolution evasion techniques. However, theoretically
speaking, if an underlying OS is compromised, BinUnpack also does not collect
accurate OS semantics. Then, it may fail to resolve the APIs of the process running
on the OS.

Static Analysis
We surveyed papers or source codes of static analysis tools to evaluate their resistance
capabilities against each evasion technique. We present viewpoints of the evaluation
and results.
Viewpoint. For static analysis, we qualitatively evaluate the resistance capability

of static analysis tools from two viewpoints: semantic evasion and control flow
obfuscation in resolution. We do not explain the resistance capabilities against target
evasion and code obfuscation techniques. This is because the capabilities against
target evasion techniques, i.e., T1 and T2, are already explained in the dynamic
analysis part in this subsection and code obfuscation techniques are outside the
scope of this thesis. So, we first explain the two viewpoints of resistance capabilities
against resolution evasion and then describe the evaluation results.
Resolution evasion resistance against semantic evasion is the same as that men-

tioned in the dynamic analysis part, i.e., (R1). That is, it represents the degree of
dependency on OS semantics. If IAT reconstruction tools strongly depend on OS
semantics and the OS is already compromised, the semantics collected from the OS
may be incorrect. More specifically, if IAT reconstruction tools are designed to
collect the positions of each API based on the OS-provided information, they are
likely to fail to reconstruct the correct IAT.
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Resolution evasion resistance against control-flow obfuscation handled cases
where junk code exists between API call instructions and their API code (R2).
IAT reconstruction tools are designed to resolve the API of each entry in an IAT
from the code directly pointed to by the entry. If the entry points to a junk code that
does not contain any API code, analysis tools are likely to fail to resolve the API
from the entry.
Result. Table 2.3 shows the results of this evaluation. Regarding semantic

evasion, all tools can be evaded using this type of evasion. The tools reconstruct
a view of OS semantics, i.e., the API locations, based on some OS-managed data
structures such as a PEB or VAD. Even the tools with API monitoring rely on the
underlying OS mechanism, e.g., callbacks or API monitoring, to identify the API
names they capture. So, these tools are vulnerable to semantic evasion if the OS is
unreliable.
Regarding control-flow obfuscation, IAT reconstruction tools without API mon-

itoring can be evaded, while those with API monitoring cannot. This is because
dynamic analysis techniques are not affected by control-flow obfuscation. There-
fore, these tools can overcome this type of evasion technique by combining with
dynamic analysis techniques. However, as we mentioned in the previous subsec-
tion, it is not easy to perform precisely API monitoring. Precise API monitoring
itself is a challenging task. Additionally, Eureka has a capability of performing
control-flow analysis to relate a call instruction to any API. It probably analyzes
the control-flow containing junk codes if junk code does not have complicated
conditionally-protected execution parts.
Eventually, as discussed above, there are no existing analysis tools that are suffi-

ciently designed against the various evasion techniques. We considered the reason
why these many analysis tools can be evaded and have reached a conclusion. We
explain the reason in the next subsection.

2.5.2 The Target-Gap Problem

Weconsider the reasonwhymalware can evade existing analysis techniques, and then
present our one conclusion, i.e., the target-gap problem. The target-gap problem
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is a design problem that commonly exists in current dynamic and static analysis
techniques. In short, we consider that there is a gap between what we really want to
analyze and what we actually analyze.
We illustrate three example situations in which we can address the target-gap

problem. The first example is when we analyze malware with a dynamic analysis
technique, we identify the target instances in an analysis environment based on
PIDs. Then, we handle the executions of the instances with the target PID as to-be-
analyzed executions, even though what we really want to analyze is the executions
of the code of the malware under analysis. The PID is an identifier of a process that
is an instance of a malware executable, which possibly includes our target codes.
However, the process of malware is not always equal to the code of the malware.
Given a case that malware injects a part of its code into another process, the injected
process becomes an instance executing a part of the malicious code, but the PID of
the code-injected process is not the original malware instance. Existing dynamic
analysis environments set hooks on specific APIs, as previously explained, to acquire
the PID of the process to which the code is injected. However, this approach does
not work for unknown code injection techniques.
We consider that the main reason for this inability is the gap problem. That is,

although what we really want to analyze is the malware code, what we actually
analyze is a process that may contain the malware code. Since there is a gap, we
have to fill the gap with heuristics when the malware code is moved to another
process. To accomplish this, we must know the path for the injection in advance;
however, as previously explained, it is impossible to know code injection techniques
before they appear. If we focus on the code, we do not need to consider what process
is executing the code. Thus, it is not necessary to know the injection methodology
beforehand.
The second example is when we try to capture the execution of a specific API,

we monitor the executions of the address where the API is expected to be loaded,
even though what we really want to capture is the execution of the API code. The
existence of the API code and its address calculated from other data sources are
usually equivalent. However, most codes can be executed anywhere in the memory
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since they are not bound to their addresses or at least with a small re-calculation of
its address. So, malware can easily move the API code to another buffer and execute
them there. When malware moves the code of an API to another location, some of
the existing API monitors fail to identify the API execution. We consider that the
main reason why malware can do this is the gap problem. That is, we do not directly
capture the execution of the API code. Instead, we assume the execution of the API
code based on the execution of the memory address where the API code is expected
to be located. There is a gap between the two. Malware takes advantage of this gap
to evade existing analysis techniques.
The third example is when we try to identify the memory layout at a particular

execution point after starting an analysis, what we actually identify is the memory
layout that the OS recognizes at that time even though what we really want to
identify is the real memory layout of the current execution environment. More
specifically, we identify the positions of the APIs exported from loaded DLLs, and
this is accomplished by communicating with the underlying OS using API calls or
directly parsing the data structures of the OS to emulate the communication. We
trust the semantics that the OS provides as an oracle for analysis. However, OSs can
also be evaded. One example is a case where a rootkit has been installed. When
malware succeeds in gaining administrator privileges and intrudes into the kernel
layer, malware commonly modifies the value of specific variables in certain data
structures to hide malicious activities and artifacts from analysis instances such as
anti-virus software. Despite this, we trust the OS and build analysis logic on the
data that the OS provides. We consider that this failure also comes from the gap
problem. Analysis tools implicitly have a strong dependency on the OS and trust
the veracity of the provided OS semantics. This is a cause that malware can evade
analysis tools and systems.
In summary, the reason why existing analysis systems and tools are insufficient

against evasion techniques is the target-gap problem. We presented three situations
that may have occurred in the past. In the rest of this thesis, we address the target-gap
problem. To accomplish this, we first demonstrate the target-gap problem with a
new semantic evasion technique and then propose taint-based dynamic and static
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analysis techniques to address the problem.
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Chapter 3

A New Threat: Trace-Free

Program Loader

3.1 Introduction
In this chapter, we demonstrate a threat of the target-gap problem by introducing
a new semantic evasion technique. The reason why we focus on semantic evasion
is that we can attack both dynamic and static analysis techniques at the same time
with one technique and semantic evasion techniques have not been well-studied
compared to other evasion techniques. Specifically, we present Stealth Loader, a
program loader to evade all existing API-oriented analysis techniques. The design
principle of Stealth Loader is that it loads a DLL without leaving any traces in
Windows-managed data structures. To achieve this, we take two approaches. The
first is that we redesign each phase of program loading to become trace-free. The
second is that we add two new features to a program loader; one is for removing
some fields of the portable executable (PE) header of a loaded DLL from memory
after it has been loaded, and the other is for removing the behavioral characteristics
of Stealth Loader.
One effect of Stealth Loader is that a stealth-loaded DLL*1 is not recognized as

*1 a DLL loaded by Stealth Loader
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a loaded DLL by analysis tools and even by the Windows OS because there is no
evidence in Windows-managed data structures to recognize it. Due to this effect,
calls of the functions exported from stealth-loaded Windows-system DLLs, such as
kernel32.dll and ntdll.dll, are not recognized as API calls because the DLLs are not
recognized as loaded, i.e., analysis tools fail API name resolution.
Themain challenge of this chapter is to design a trace-free program loader without

destroying the runtime environment for running programs. A program loader is one
of the core functions of an OS. Therefore, simply changing the behavior of a program
loader is likely to affect the runtime environment, and that change sometimes leads
to a program crash. In addition, changes excessively specific to a certain runtime
environment lose generality as a program loader. We need to carefully redesign each
step of the program loading procedure while considering the side effects on runtime
environments that our changes may cause.
To demonstrate the effectiveness of Stealth Loader against existing API-oriented

analysis techniques, we embedded Stealth Loader into several Windows executables
and analyzed them with major malware analysis tools. The results indicated that
all of these tools failed to analyze the invoked or imported APIs of stealth-loaded
DLLs.
In addition, to show that the current implementation of Stealth Loader is practical

enough for hiding malware’s fundamental behaviors, we protected five real pieces of
malware with Stealth Loader and then analyzed them using a popular dynamic anal-
ysis sandbox, Cuckoo Sandbox [24]. The results of this experiment indicated that
pieces of malware whose malicious activities were obviously identified before ap-
plying Stealth Loader successfully hid most of their malicious activities after Stealth
Loader was applied. Consequently, they could make Cuckoo Sandbox produce false
negatives.

3.2 Design
In this section, we present Stealth Loader, which is a program loader that does not
leave any traces of loaded DLLs in Windows-managed data structures. First, we
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give an overview of Stealth Loader and then introduce its design.

3.2.1 Overview

PE	Header

.code

(a) File layout
(original) 

Loaded by Windows
Loaded by Stealth Loader

Original headers
Original code
Stealth Loader

PE	Header

.code

Stealth	Loader

(b) File layout
(Stealth Loader embedded) 

PE	Header

.code

Stealth	Loader

(c) Process memory layout
( Stealth Loader works) 

ntdll.dll
kernel32.dll

ntdll.dll
kernel32.dll
advapi32.dll

a

.data
exPEB

.export
sLdrLoadDll

sLdrGetProcAddress

.code
Bootstrap

Fig. 3.1 How Stealth Loader works and its components. (a) The file layout of
an executable before Stealth Loader is embedded, (b) that after Stealth Loader is
embedded and the components of Stealth Loader are also described, and (c) the
process memory layout after Bootstrap resolves the dependencies of an executable
and stealth-loaded DLLs.

Figure 5.1 shows the components of Stealth Loader and how it works. Stealth
Loader is composed of exPEB, sLdrLoadDll, sLdrGetProcAddress, and Bootstrap.
exPEB is the data structure to manage the metadata of stealth-loaded DLLs, sLdr-
LoadDll and sLdrGetProcAddress are exported functions and the main components
of Stealth Loader, sLdrLoadDll is used for loading a specified DLL in the manner we
explain in this Section, and sLdrGetProcAddress is used for retrieving the address of
an exported function or variable from a specified stealth-loaded DLL. Bootstrap is a
code snippet for resolving the API dependencies of an executable and stealth-loaded
DLLs by using the two exported functions.

The workflow for applying Stealth Loader to a PE executable we want to protect,
called a target executable, is as follows. We first parse the PE header of a target
executable for enumerating the imported APIs. We next embed Stealth Loader into
a target executable with the information of the enumerated APIs, and then generate
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a new executable, called a protected executable. At that time, we drop the INTs and
remove the links from the PE header to the INTs and IATs of a target program for
obfuscation.
After generating a protected executable and when it begins to run, the embedded

Stealth Loader works as follows. First, Bootstrap code is executed, it identifies
necessary DLLs for a target executable, and then loads them using sLdrLoadDll.
In this process, it does not rely on Windows-loaded DLLs*2 at all to resolve the
dependency of stealth-loadedDLLs. After loading all necessary DLLs and resolving
APIs, the execution is transferred from Bootstrap to the code of a target executable.
Our intention behind Stealth Loader is to attack API name resolution as other

evasion techniques do. We achieve this by hiding the existences of loadedWindows-
system DLLs. This is the same intention as DLL unlinking, but Stealth Loader
is more robust against API oriented analyses. We tackle this from two different
directions. The first is that we redesign the procedure of program loading to be
trace-free. The second is that we add two new features to a program loader; one is
for removing traces left on memory after completing DLL loading, and the other is
for removing the characteristic behaviors of Stealth Loader.

3.2.2 Program Loader Redesign

We first break the procedure of a program loader into three phases: code mapping,
dependency resolution, and initialization & registration. Then, we observe what
traces may be left at each phase for loading a DLL. On the basis of observation, we
redesign each phase. In addition, we consider that the side effects caused by the
redesigns are reasonable as an execution environment.

Code Mapping
■Observation The purpose of this phase is to map a system DLL that resides on
disk into memory. Windows loader conducts this using a file-map function, such
as CreateFileMapping. The content of a mapped file is not loaded immediately. It

*2 DLLs loaded by Windows
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is loaded when it becomes necessary. This mechanism is called “on-demand page
loading.” Thanks to this, the OS is able to consume memory efficiently. That is,
it does not always need to keep all the contents of a file on memory. Instead, it
needs to manage the correspondence between memory areas allocated for a mapped
file and its file path on a disk. Windows manages this correspondence using the
VAD data structure. A field in a VAD indicates the path for a mapped file when
the corresponding memory area is used for file mapping. This path of a mapped
file in a VAD becomes a trace for analysis tools to detect the existence of a loaded
system DLL on memory. In fact, ldrmodules [16] acquires the list of loaded DLLs
on memory by parsing VADs and extracting the file path of each mapped file.

■Design Instead of using file-map functions, we map a system DLL using file
and memory operational functions such as CreateFile, ReadFile, and VirtualAlloc,
to avoid leaving path information in VADs. The area allocated by VirtualAlloc is
not file-mapped memory. Therefore, the VAD for the area does not indicate any
relationship to a file. The concrete flow in this phase is as follows.

1. Open a DLL file with CreateFile and calculate the necessary size for locating
it onto memory.

2. Allocate continuous virtual memory with VirtualAlloc for the DLL on the
basis of the size.

3. Read the content of an opened DLL file with ReadFile and store the headers
and each section of it to proper locations in the allocated memory.

■Side Effect Avoiding file-map functions for locating a DLL on memory imposes
two side effects. The first is that we have to allocate a certain amount of memory
immediately for loading all sections of a DLL when we load the DLL. This means
that we cannot use on-demand page loading. The second is that we cannot share a
part of the code or some of the data of a stealth-loaded DLL with other processes
because memory buffers allocated with VirtualAlloc are not shareable, while those
where files are mapped are sharable. Regarding these side effects, we argue that
they are not significant limitations of Stealth Loader because recent computers have
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sufficient memory; thus, this does not become a critical issue.

Dependency Resolution
■Observation The purpose of this phase is to resolve the dependency of a loading
DLL. Most DLLs somehow depend on APIs exported from other DLLs. Therefore,
a program loader has to resolve the dependency of a loading DLL to make the DLL
ready to execute. When the Windows loader finds a dependency, and if a dependent
DLL is already loaded into memory, it is common to use already loaded DLLs to
resolve the dependency, as shown in Figure 3.2-(b).
However, this dependency becomes a trace for analysis tools, i.e., behavioral

traces. For example, if a stealth-loaded advapi32.dll has a dependency on a
Windows-loaded ntdll.dll, the APIs of ntdll.dll indirectly called from advapi32.dll
may be monitored by analysis tools. In other words, we can hide a call of RegCre-
ateKeyExA but cannot hide that of NtCreateKey. Analysis tools can obtain sim-
ilar behavior information from NtCreateKey as that from RegCreateKeyEx since
RegCreateKeyEx internally calls NtCreateKey while passing almost the same argu-
ments.

■Design To avoid this, Stealth Loader loads dependent DLLs to resolve the de-
pendency of a loading DLL. In the case in Figure 3.2, it loads ntdll.dll to resolve
the dependency of advapi32.dll. As a result, after advapi32.dll has been loaded
and its dependency has been resolved, the memory layout is like that shown in
Figure 3.2-(c). On the basis of this layout, when an original code calls RegCre-
ateKeyExA, RegCreateKeyExA internally calls the NtCreateKey of stealth-loaded
ntdll.dll. Therefore, this call is invisible to analysis tools, even if a Windows-loaded
kernel32.dll and ntdll.dll are monitored by them.

■Side Effect The side effect caused by this design is reduced memory efficiency.
That is, Stealth Loader consumes approximately twice as much memory for DLLs
as the Windows loader since it newly loads a dependent DLL even if the DLL is
already located on memory. We consider this side effect as not being that significant
because recent computers have sufficient memory, as we previously mentioned.
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kernel32.dll
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NtCreateKey

kernel32.dll
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Fig. 3.2 Example of resolving dependency with Stealth Loader. (a) The layout
before Stealth Loader starts, (b) the stealth-loaded advapi32.dll does not create
a dependency on the Windows-loaded ntdll.dll, and (c) the stealth-loaded ad-
vapi32.dll creates a dependency on the stealth-loaded ntdll.dll.

Initialization & Registration
■Observation Windows loader initializes a loadingDLLby executing the initialize
function exported from a DLL, such as DllMain. At the same time, it registers a
loaded DLL to the PEB. In the PEB, the metadata of loaded DLLs is managed by
linked lists. Many analysis tools often check the PEB to acquire a list of loaded
DLLs and their loaded memory addresses.

■Design StealthLoader also initializes a loadingDLL in the sameway asWindows
loader does. However, it does not register the metadata of loaded DLLs to the PEB
to avoid being detected by analysis tools through the PEB.

■Side Effect The side effect of this design is that stealth-loaded DLLs cannot
receive events such as process-creation or process-termination. This is because
these events are delivered to DLLs listed in the PEB. We consider this effect as not
being very significant becausemost systemDLLs do not depend on these events at all
as far as we have investigated. Most are implemented to handle only create-process
and -thread events, which are executed mainly when the DLL is first loaded.
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3.2.3 Stealthiness Enhancement

Apart from finding traces in Windows-managed data structures, there are other
techniques of identifying the existence of a loaded DLL. In this subsection, we
present the possibility of detecting loaded DLLs from characteristic strings in the
PE header of a certain DLL or behaviors of Stealth Loader. Then, we introduce our
techniques to hiding the string patterns and behaviors.

PE Header Removal
Stealth Loader deletes some fields of the PE header on memory after it has loaded a
DLL and resolved its dependency. This is because some of the fields may become a
hint for analysis tools to infer a DLL loaded on memory. For example, GUID may
be included in the debug section of the PE header of a system DLL and becomes
an identifier of a specific DLL. Another example is that the tables of exported and
imported API names of a system DLL, which are pointed from the PE header,
also provide sufficient information for analysis tools to identify a DLL. Like these
examples, the PE header contains a large amount of information for identifying a
DLL.
To avoid being identified through characteristic fields in the PE header, we delete

the debug section, timestamp, version information, INTs, and export name table
(ENT) in the PE header. Basically, the debug section, timestamp, and version
header, are not used by the original code in a process under normal behavior; they
are only used for debugging purposes or providing extra information of a DLL. Thus,
we can delete them without any concern as this deletion degrades the feasibility of
execution. However, we need to pay attention to the timing of deleting INTs. An
INT is necessary to resolve dependencies only when a DLL is being loaded. After
it is completed, this table is not referenced from the code and data. Therefore, we
can delete them after a DLL has been loaded.
Unlike the above-mentioned fields, we cannot simply delete the ENT since it is

accessed after a DLL has been loaded to retrieve the address of an exported API of
the loaded DLL at runtime. This is called “dynamic API resolution”. Therefore, we
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prepared an interface, sLdrGetProcAddress, to resolve APIs exported from stealth-
loadedDLLs. We also prepared a data structure, exPEB, in Stealth Loader tomanage
the exported API names and corresponding addresses of each stealth-loaded DLL.
Therefore, we can also delete the ENT without losing the dynamic API resolution
capability in a protected executable.
There are publically available tools for removing fields unnecessary for execution

from the PE header after compilation, such as PE explorer [59] or strip command.
However, they basically do not remove fields necessary for running programs, such
as INTs or ENT. On the other hand, Stealth Loader can do this because it runs inside
of a protected executable and performs deletion by determining the context of the
execution.

Reflective Loading

kernel32.dllDLL loaded 
by Windows

(a) Normal Stealth Loader

DLL loaded 
by Stealth Loader a

kernel32.dll

kernel32.dll

(b) Stealth Loader with Reflective Loading

a

kernel32.dllkernel32.dll kernel32.dll

Open & Read Copy

Process Memory Disk Process Memory Disk

Fig. 3.3 Behaviors of normal Stealth Loader and Reflective Loading. (a) Stealth
Loader loads kernel32.dll from a disk, and (b) Stealth Loader with Reflective
Loading loads kernel32.dll from the memory, i.e., the Windows-loaded one.

Reflective Loading is used for hiding the API calls invoked from Stealth Loader.
While the calls invoked from original code are successfully hidden by Stealth Loader,
API calls invoked from Stealth Loader are still visible to analysis tools because
Stealth Loader basically uses APIs exported from Windows-loaded DLLs (Figure
3.3-(a)). These exposed API calls enable analysis tools to detect the existence of
Stealth Loader because some of the behaviors of Stealth Loader are not often seen in
normal programs. For example, CreateFile(“kernel32.dll”) is very character-
istic since programs normally load a DLL with LoadLibrary(“kernel32.dll”)
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and do not open a Windows-system DLL as a file with CreateFile.
To avoid this, we use Reflective Loading. The core idea of Reflective Loading is

to copy all sections of an already loaded DLL to allocated buffers during the code
mapping phase instead of opening a file and reading data from it (Figure 3.3-(b)).
This idea is inspired by Reflective DLL injection, introduced by Fewer [60], as a
technique of stealthily injecting a DLL into another process. We leveraged this to
load aDLLas a part of Stealth Loaderwithout opening the file of eachDLL. If a target
DLL is not loaded at that time, we use the APIs of the stealth-loaded kernel32.dll to
open a file, allocate memory, and conduct the other steps. kernel32.dll and ntdll.dll
are always loaded before Stealth Loader because these DLLs are loaded byWindows
as a part of process initialization. Thus, we can completely hide all API calls invoked
by Stealth Loader from analysis tools monitoring API calls.

3.3 Implementation
We have implemented Stealth Loader on Windows 7 Service Pack 1. In this section,
we explain the dynamic API resolution of Stealth Loader, stealth-loadable APIs, and
Console Subsystem Cheating.

3.3.1 Dynamic API Resolution

Stealth Loader supports dynamic API resolution with sLdrLoadDll and sLdrGetP-
rocAddress. When Stealth Loader loads a DLL depending on the LdrLoadDll or
LdrGetProcedureAddress of ntdll.dll, e.g., kernel32.dll, it replaces the entries in the
IAT for ntdll.dll to the two functions in the loading DLL with pointers to sLdr-
LoadDll or sLdrGetProcAddress, respectively. In this situation, when the original
code attempts to dynamically load a DLL, for example, using LoadLibrary, which
internally calls LdrLoadDll, the API call to LoadLibrary redirects to sLdrLoadDll,
and then Stealth Loader loads a specified DLL.
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3.3.2 Stealth-loadable APIs

In Stealth Loader, we support 12 DLLs: ntdll.dll, kernel32.dll, kernelbase.dll,
gdi32.dll, user32.dll, shell32.dll, shlwapi.dll, ws2_32.dll, wininet.dll, winsock.dll,
crypt32.dll, and msvcrt.dll. This means that we support in total 7,764 APIs exported
from these 12 DLLs. The number of unsupported APIs is 1,633. The reasons we
cannot support them are described in Appendix 3.3.2. Since these reasons are very
detailed and specific to theWindows 7 environment, we put them into this appendix.
We can support more DLLs with no or at least little cost. However, we consider
the current number of supported APIs to be enough for the purpose of this paper
because we have already covered 99% (1018/1026) of APIs on which IDAScope,
a popular static malware analysis tool [61], focuses as important APIs. We also
covered 75% (273/364) of the APIs on which Cuckoo Sandbox, a popular sandbox
whose target APIs are selected by malware analysts [24], sets hooks for dynamic
analysis. Regarding the remaining 25% of APIs, they separately reside in several
DLLs in a small group.

The Reasons for Unsupported API
In this Appendix, we explain the reasons we cannot support several APIs with Stealth
Loader on the Windows 7 platform.

■ntdll Initialization ntdll.dll does not export the initialize function, i.e., DllMain
does not exist in ntdll.dll, and LdrInitializeThunk, which is the entry point of ntdll.dll
for a newly created thread, is also not exported. This inability of initialization leads
to many uninitialized global variables, causing a program crash. As a workaround
to this, we classified the APIs of ntdll.dll as whether they are dependent on global
variables by using static analysis. We then defined the APIs dependent on global
variables as unsupported. As a result, the number of supported APIs for ntdll.dll is
776, while that of unsupported APIs is 1,992.

■Callback APIs triggering callback are difficult to apply Stealth Loader to because
these APIs do not work properly unless we register callback handlers in the PEB.
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Therefore, we exclude some of the APIs of user32.dll and gdi32.dll, which become
a trigger callback from our supported APIs. To distinguish whether APIs are related
to callbacks, we developed an IDA script to make a call flow graph and analyzed
win32k.sys, user32.dll, and gdi32.dll using the script. We then identified 203 APIs
out of 839 exported from user32.dll and 202 out of 728 exported from gdi32.dll.

■Local Heap Memory Supporting APIs to operate local heap objects is difficult
because these objects are possibly shared between DLLs. The reason is as follows.
When a local heap object is assigned, this object is managed under the stealth-
loaded kernelbase.dll. However, when the object is used, the object is checked
under the Windows-loaded kernelbase.dll. This inconsistency leads to failure in the
execution of some APIs related to the local heap object operation. To avoid this
situation, we exclude the APIs for operating local heap objects from our supported
API. As a result of static analysis, we found that local heap objects are managed in
BaseHeapHandleTable, located in the data section of kernelbase.dll. Therefore, we
do not support six APIs depending on this table in the current Stealth Loader.

3.3.3 Console Subsystem Cheating

A console application with stealth-loaded kernel32.dll does not work properly or
sometimes crashes on Windows 7 or later environments. The reason for the crash
is as follows. To begin with, a Windows console application must establish a
connection to a console server, i.e., conhost.exe, to create a console window and
activate the standard output, input, and error. This connection is established while
kernel32.dll is being initialized, i.e., while DllMain is being executed. A console
application with stealth-loaded kernel32.dll fails to establish the connection since
the Windows-loaded kernel32.dll has already established the connection when it
was initialized. This connection failure causes the program to crash.
To overcome this, we introduce Console Subsystem Cheating to properly run

a console application with Stealth Loader. Console Subsystem Cheating makes
Windows recognize a console application with Stealth Loader as a GUI application
while the real kernel32.dll is being initialized. Additionally, it also make Windows
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recognize a command line interface (CUI) one while the stealth-loaded kernel32.dll
is being initialized. More concretely, before executing a protected executable, we
modify the subsystem entry of the PE header with value "2", which indicates a
Windows GUI application. After starting its execution, while the real kernel32.dll
is being initialized, the connection to a console server is not established because
the Windows loader recognizes this application as a GUI. Then, before initializing
the stealth-loaded kernel32.dll, we replace the value with value "3", which means a
Windows CUI application. The stealth-loaded kernel32.dll can successfully connect
to a console server because this is the first time a request for connection to the server
is made in the process. With this trick, we successfully apply Stealth Loader to
console applications as well as GUI.

3.4 Experiments
To show the feasibility of Stealth Loader, we conducted three experiments: one for
comparing its resistance capability against current analysis tools to other evasion
techniques, another for confirming its effectiveness with real malware, and the other
for measuring the impact of the increase in memory consumption caused by Stealth
Loader.

3.4.1 Analysis Resistance

To show the resistance capability of Stealth Loader against current API-oriented
analysis tools, such as API monitoring and IAT reconstruction, we prepared test
executables and analyzed them with seven major static and dynamic analysis tools
that are primarily used in the practical malware analysis field. These tools are
publicly available and cover the various techniques we mentioned in Chapter 2.
Regarding the other techniques which are not covered by these tools, we qualitatively
discuss the resistance capability of Stealth Loader against them in Subsection 3.5.3
because they are not publicly available.
The test executables were prepared by applying Stealth Loader for eight Win-

dows executables, calc.exe, winmine.exe, notepad.exe, cmd.exe, wmplayer.exe,
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taskmgr.exe, wscript.exe, and ftp.exe. After applying Stealth Loader to them, we
verified if the executables were runnable without any disruptions and as functional
as they had been before applying Stealth Loader by interacting with running test ex-
ecutables, such as clicking buttons, inputting keystrokes, writing and reading files,
and connecting to the Internet. For clarification, we refer to an executable after
applying Stealth Loader as a protected executable and an executable before applying
Stealth Loader as a vanilla executable.
For comparison, we prepared tools using different evasion techniques, i.e., IAT

obfuscation, API redirection, which is the pattern explained in Figure 2.3-(c), and
DLL unlinking. Using these tools, we applied these techniques to the same eight
Windows executables. We analyzed themwith the same analysis tools and compared
the results.

Static Analysis

Table 3.1 Results of Static and Dynamic Analysis Resistance Experiment

Evasion Techniques
Static Analysis Dynamic Analysis

IDA Scylla impscan ldrmodules Cuckoo traceapi mapitracer
Stealth Loader ✓ ✓ ✓ ✓ ✓ ✓ ✓

IAT Obfuscation ✓ N/A 1

API Redirection ✓ 2 ✓ N/A 1 ✓ ✓ ✓

DLL Unlinking ✓ ✓

✓indicates that the evasion technique successfully evaded the tool. Stealth Loader evaded all the
tools.

1 IAT Obfuscation and API Redirection are techniques for API evasion while ldrmodules is a tool
for extracting loaded DLLs.

2 When we manually gave the correct original entry point of a protected executable to Scylla, it
could identify imported APIs correctly. When we did not, it failed.

In this experiment, we analyzed each protected executable with four major static
analysis tools, IDA [62], Scylla [17], impscan (The Volatility Framework [16]),
and ldrmodules (The Volatility Framework [16]). IDA is a de-facto standard dis-
assembler for reverse engineering. Scylla is a tool that reconstructs the destroyed
IATs of an obfuscated executable. impscan and ldrmodules are plugins of The
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Volatility Framework for reconstructing IATs andmaking a list of all loadedmodules
on memory, respectively.
We explain how each analysis tool, except for IDA, resolves APIs. Scylla acquires

the base addresses of loaded DLLs from the EnumProcessModules API, which
internally references the PEB and resolves API addresses with GetProcAddress. In
addition, it heuristically overcomes API redirection. impscan also acquires the base
addresses from the PEB and resolves API addresses from the export address table
(EAT) of each loaded DLL. ldrmodules acquires the base addresses from VADs.

■Procedure We first statically analyzed each protected executable using each
analysis tool and then identified imported APIs. In the case of ldrmodules, we
identified loaded DLLs. We then manually compared the identified imported APIs
or loaded DLLs with those we had acquired from the same vanilla executables.

■Results The left part of Table 3.1 shows the results of this experiment. Stealth
Loader successfully defeated all static analysis tools, while the others were analyzed
with some of them. This is because there were no hints for the analysis tools to
acquiring the base addresses of loadedDLLs. IAT obfuscation failed to defeat Scylla
and impscan because these two toolswere originally designed for reconstructing IATs
in the manner we explained in Chapter 2. API redirection failed to evade Scylla
because Scylla is designed for heuristically overcoming API redirection. DLL
unlinking failed to evade ldrmodules because ldrmodules identified loaded DLLs
through VADs, not the PEB.

Dynamic Analysis
In this experiment, we analyzed each protected executable with three dynamic
analysis tools, Cuckoo Sandbox [24], traceapi [63], and mini_apitracer [64]. All
are designed to monitor API calls. Cuckoo Sandbox is an open-source, dynamic
malware analysis sandbox. traceapi is a sample tool of Detours, which is a library
released from Microsoft Research for hooking API calls. mini_apitracer, shown
as mapitracer in Table 3.1, is a plugin of DECAF [52], which is a binary analysis
framework built on QEMU [42].
Each analysis tool relates API names and memory addresses as follows. Cuckoo

53



Chapter 3 A New Threat: Trace-Free Program Loader

acquires the base address of loadedDLLs from callback functions registered with the
LdrRegisterDllNotification API and resolves API addresses with GetProcAddress.
traceapi acquires the base address of loaded DLLs with LoadLibrary and resolves
API addresses with GetProcAddress. mini_apitracer acquires the base addresses of
loaded DLLs from the PEB and resolves API addresses by parsing the EAT of each
DLL.

■Procedure We first ran each protected executable on each dynamic analysis
environment and monitored the API calls. We then compared the monitored API
calls with those we had collected from the same vanilla executable.

■Results The right part of Table 3.1 shows the results of this experiment. Stealth
Loader successfully evaded all dynamic analysis tools, while the others were cap-
tured by some of them. IAT obfuscation totally failed because the dynamic analysis
tools did not depend on the IATs to identify the locations of APIs. API redirection
successfully defeated all of them. This is because even though the dynamic anal-
ysis tools set hooks on the first instruction of each API for API monitoring, API
redirection avoided executing them. As we explained in Chapter 2, when an API is
called API redirection transfers an execution to the code at a few instructions after
the entry of the API. DLL unlinking also failed because the analysis tools calculated
the locations of each API from the addresses of loaded DLLs and set hooks on each
API before DLL unlinking had hidden DLLs.

3.4.2 Real-world Malware Experiment

The purpose of this experiment was to demonstrate that the current Stealth Loader
implementation is practical enough for hiding the major characteristic behaviors of
malware even though it has unsupported APIs.

Procedure
First, we collected 117 pieces of malware from VirusTotal [65] that were detected
by several anti-virus products. At that time, we selected four (DownloadAdmin,
Win32.ZBot, Eorezo, and CheatEngine) because they were not obfuscated. We
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Table 3.2 Results of Real-world Malware Experiment

without Stealth Loader with Stealth Loader
Malware Name Score Signatures Events # of Calls Score Signatures Events # of Calls

DownloadAdmin 3.6 11 16 9,581 1.8 5 12 224
Win32.ZBot 5.0 11 46 1,350 1.4 4 10 183
Eorezo 5.6 15 192 20,661 0.8 3 10 64
CheatEngine 4.8 12 209 126,086 1.6 5 10 120
ICLoader 4.0 11 33 3,321 4.0 11 38 1,661

Score is calculated as hit signatures, which are scored depending on the severity of each behavior; score of less than 1.0 is
benign, 1.0 - 2.0 is warning, 2.0 - 5.0 is malicious, and higher than 5.0 means danger. Signatures means number of hit
signatures, Events indicates number of captured events, and # of Calls is the number of API calls captured by Cuckoo
Sandbox.

also selected one piece of malware (ICLoader) from 113 obfuscated ones as a
representative case of obfuscated ones. Next, we applied Stealth Loader to the five
pieces of malware. Then, using Cuckoo Sandbox, we analyzed both the malware
before and after Stealth Loader was applied. Finally, we compared the results of the
analyses in terms of the malicious score, number of detected events, hit signatures,
and monitored API calls. The malicious scores were calculated from observed
behaviors matched with pre-defined malicious behavioral signatures [24].
To achieve the purpose of this experiment, we believe that the variety of malware’s

behaviors is more important than the number of malware. We also consider that the
behaviors of the four pieces of malware (DownloadAdmin, Win32.ZBot, Eorezo,
and CheatEngine) can cover the majority of behaviors, such as modifying a specific
registry key or injecting code into another process, exhibited in all of the pieces
of malware we collected for this experiment. This is because the signatures hit by
analyzing those four contributed to detecting 637 out of 792 events generated by
analyzing the 117 pieces of malware.
To ensure that the protected pieces of malware actually ran and conducted ma-

licious activities, we configured Cuckoo Sandbox to write a memory dump file
after each analysis had been done and then manually analyzed it with The Volatility
Framework. This is for confirming the traces that had been seen before applying
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Stealth Loader, such as created files or modified registries, were actually found.

Results
Table 3.2 shows the results of this experiment. Regarding DownloadAdmin,
Win32.ZBot, Eorezo, and CheatEngine, Stealth Loader successfully hid the
malicious behaviors, then the scores dropped from malicious or danger levels to
warning or benign levels. Regarding ICLoader, Stealth Loader did not obfuscate its
malicious behaviors, and the scores before and after applying Stealth Loader were
the same.
In the cases of DownloadAdmin, Win32.ZBot, Eorezo, and CheatEngine, the

scores dropped, but did not become zero. The reason of this was that some signatures
were likely to increase the score with non-standard file format. For example, if a
malware has a section in its PE header, which does not look complier-generated one,
the score is increased. Stealth Loader is the case. That is, since it embeds itself
into an executable by adding a section, the score of an executable protected with
Stealth Loader does not become zero. We do not consider that this is a significant
issue of Stealth Loader because we can easily avoid this detection by embedding
Stealth Loader into an existing section or giving a name like compiler-generated to
the section where Stealth Loader is stored when we add a new section.
DownloadAdmin is a type of information-stealing malware. It accesses a registry

to steal or check a browser configuration. Also, it checks foreground windows
constantly to check if it is running on any analysis environment because analysis
environments tend to have no windows during analysis. These two behaviors were
the main reasons for increasing the score of this malware when we analyzed it before
Stealth Loader was applied to it. After applying Stealth Loader, it successfully
hid these two behaviors; consequently, Cuckoo Sandbox failed to identify these
behaviors. As a result, the score dropped to 1.8 (warning) from 3.6 (malicious).
Win32.ZBot registers itself as a startup process bymodifying certain registries and

injects a part of its code into a child process. Stealth Loader made them invisible to
Cuckoo Sandbox, even though they were visible to Cuckoo Sandbox before applying
Stealth Loader to this malware. Consequently, the score dropped to 1.4 (warning)
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from 5.0 (danger).
Eorezo writes down an executable file from its body and executes it as a child

process. This created child process conducts malicious activities, such as checking
the existence of antivirus products or creating suspicious power shell scripts. On the
other hand, the process of Eorezo, i.e., the process that created the child process, did
not conduct malicious activities except for creating a child process. Stealth Loader
hid the API calls invoked from Eorezo including those related to process creation.
Therefore, Cuckoo Sandbox failed to make the parent and child relationship of
Eorezo and its child process and it did not recognize the child process as a to-be-
analyzed process. As a result, it failed to capture all API calls invoked from the
child process even though the activities of the child process mostly contributed to
the increase of the score. Also, this was the reason the number of captured APIs was
significantly different before and after Stealth Loader was applied. Consequently,
the score dropped to 0.8 (benign) from 5.6 (danger)
Regarding CheatEngine, Cuckoo Sandbox mainly detected four behaviors: cre-

ating a new process, searching for a web-browser process, creating mutex, which a
Banker Trojan is known to use, and creating known malicious files. This malware
also created some child processes, which mainly performed malicious activities.
Like the Eorezo case, Cuckoo Sandbox failed to track the child processes as to-be-
analyzed because Stealth Loader hid the behavior of the CheatEngine process for
child process creation. As a result, Cuckoo Sandbox missed capturing the malicious
activities done by the child processes and gave this malware a lower score, i.e.,1.6
(warning), than it should be.
Regarding ICLoader, the score was the same before and after applying Stealth

Loader because the same behaviors were observed. The reason is that this piece of
malware acquires the base address of kernel32.dll without depending on Windows
APIs. That is, it directly accesses the PEB, parses a list in the PEB to find an entry
of kernel32.dll, then acquires the base address of kernel32.dll from the entry. From
this base address, the malware acquires the addresses of LoadLibrary and GetPro-
cAddress of the Windows-loaded kernel32.dll and then resolves the dependencies of
the other APIs by using these two APIs. Since this malware did not use LoadLibrary
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or the equivalent APIs of the stealth-loaded kernel32.dll for dynamic API resolution,
Stealth Loader did not have a chance to obfuscate the calls of dynamically resolved
APIs invoked from this malware. We consider this as not being a limitation because
our expected use case of Stealth Loader is to directly obfuscate compiler-generated
executables, not already-obfuscated executables.

3.4.3 Memory Consumption

Table 3.3 Results of Memory Consumption Comparison

without Stealth Loader with Stealth Loader
% of Increase

Program Image Private Others Total Size Image Private Others Total Size

calc 24,252 596 32,744 57,592 12,920 18,424 41,104 72,448 125.80
winmine 24,200 604 22,108 46,912 12,220 18,432 30,492 61,144 130.34
notepad 25,024 596 22,404 48,024 25,640 18,424 30,828 74,892 155.95
cmd 7,640 92 20,080 27,812 8,900 4,336 26,232 39,468 141.91
wmplayer 71,420 13,876 74,008 159,304 71,860 19,132 75,756 166,748 104.67
wscript 24,748 662 34,754 60,164 26,008 5,552 41,672 73,232 121.72
taskmgr 28,872 784 60,568 90,224 30,140 18,612 70,268 119,020 131.92
ftp 8,320 88 22,608 31,016 8,936 5,428 30,736 45,100 145.41

The unit of Image, Private, Others, and Total Size is kilobyte (KB). We measured the memory consumption of each
executable with VMMap [66]. The standard Windows program loader locates DLLs in Image memory, while Stealth Loader
does it in Private memory. Others includes Mapped File, Shareable, Heap, Managed Heap, Stack, Page Table and
Unusable. % of Increase is calculated from (Total Size of with Stealth Loader / Total Size of without Stealth
Loader ) * 100.

As we mentioned in Section 3.2, Stealth Loader affects the efficiency of memory
consumption, but we argue that this does not become a significant problem. To
demonstrate this, in this experiment, we measured how much Stealth Loader affects
memory usage on its running environment before and after being applied.

Procedure
Weused the same dataset for this experiment as for the first experiment, i.e., protected
and vanilla Windows executables. We measured the memory consumptions of the
same executable two times, before and after applying Stealth Loader, and then
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compared them. We used VMMap[66] for measuring the memory consumption of
each executable and focused on Image and Private memories. This is because a
protected Windows executable uses Private memory for allocating DLLs, while a
vanilla Windows executable uses Image memory for mapping DLLs.

Results
Table 3.3 shows thememory consumption of each executable before or after applying
Stealth Loader. Overall, every executable had a tendency of increasing the Total
Size and Private after Stealth Loader was applied. There are two reasons for
these increases. The first is that Stealth Loader embeds its code and data into an
executable. Therefore, the size of a protected executable becomes larger than that of
the vanilla one. The second is that Stealth Loader does not use memory efficiently
since it newly loads DLLs even if they are already loaded and existed on memory.
Regarding Image memory, the consumptions of calc and winmine decreased

after applying Stealth Loader. In the two cases, the total number of Windows-loaded
DLLs in protected ones was less than that in the vanilla ones because some DLLs
were loaded in Private memory with Stealth Loader, instead of mapping them in
Imagememory. On the other hand, for the other executables, the size of Image of a
protected executable was almost same as that of its vanilla one or slightly increased.
The same number of DLLs were mapped on Image memory between protected and
vanilla executables. This is because when one of the non-target DLLs loaded in a
protected executable was dependent on a target DLL, the standard program loader
loaded the DLL in Imagememory even though the same DLL was loaded by Stealth
Loader in Private memory. As a result, the number of Windows-loaded DLLs
becomes the same between a protected and a vanilla executable.

3.5 Discussion
In this section, we discuss the platform dependency of Stealth Loader, other de-
obfuscation techniques, and possible countermeasures against Stealth Loader.
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3.5.1 Platform Dependency

As we mentioned in Section 3.3, the current Stealth Loader is implemented to run
on the Windows 7 environment. However, we believe that the design explained in
Section 3.2 is also applicable to other Windows platforms including Windows 8
and 10. Of course, since Windows 8 and 10 have different implementations from
Windows 7, we need to make Stealth Loader runnable on these platforms without
any issues. More concretely, we have to resolve some corner cases, as we mentioned
in Subsection 3.3.2. In other words, the other part of this paper, i.e., all sections
except for Subsection 3.3.2 is applicable to other Windows platforms.
Regarding applying Stealth Loader to Linux, we consider that the designs of

Stealth Loader are applicable to Linux platforms. Since Linux OS and libraries are
less dependent on each other than Windows libraries, an implementation of Stealth
Loader for Linux may become simpler than that of Windows. We argue that Stealth
Loader on Linux could make library calls invisible to library-call-monitoring tools
such as ltrace.

3.5.2 Other API-oriented Analysis Techniques

Eureka [55] relates the base address of a loaded DLL with a DLL file by monitoring
NtMapViewOfSection API calls and extracting the specified file name and return
address. Since Stealth Loader does not use file-map functions, this API is not called
when Stealth Loader loads a DLL. As a result, Eureka fails API name resolution,
even though it overcomes stolen code orAPI redirection by performing deep program
analyses.

3.5.3 Countermeasures

Monitoring at Kernel Layer
One countermeasure against Stealth Loader is monitoring at the kernel layer. Stealth
Loader has to depend on Windows-system-service calls, while it is independent of
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userland API code. Even though much useful information has already been lost
when the executions of some APIs, e.g., network-related APIs, reach the kernel
layer, a series of service system calls possibly provides a part of the whole picture
regarding the behaviors of the executable protected with Stealth Loader.

Specialized Analysis Environment
Another countermeasure is to install hooks on system DLLs in an analysis environ-
ment before starting an analysis by modifying a file of each DLL on disk. This type
of modification is likely to be detected and warned by Windows. However, since
modified DLLs are loaded by not only benign processes but also processes protected
with Stealth Loader, analysis tools probably identify the executions of APIs by the
installed hooks when they are executed.
Instrumentation tools, such as Intel PIN [67], could possibly become a solution

against Stealth Loader because they may be able to identify the locations of stealth-
loaded DLLs by tracking all memory reads and writes related to the DLLs. However,
a major drawback of these tools is that they are easily detectable by malware.
Therefore, if malware analysts use these tools for analyzing protected malware in
practice, they need to further consider hiding these tools from malware.

Detecting System DLLs from Memory Patterns
Scanning memory and finding specific patterns for a DLL may be effective. By
preparing the patterns of each DLL in advance and scanning memory with these
patterns, it could be possible to identify the modules loaded on memory. Also,
comparing binaries using a different tool, such as BinDiff [68], is also effective.
By comparing the control flow of a Windows-system DLL with that on memory,
we could be able to identify the existence of specific DLLs. However, since there
are several binary- or assembly-level obfuscation techniques, such as that proposed
by Moser et al. [69], we need different counter-approaches to solve this type of
problem.
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Inferring DLLs from Visible Traces
Since the current Stealth Loader avoids supporting some APIs, as we explain in
Subsection 3.3.2, this fact may give static analysis tools a hint to infer a DLL.
For example, if analysis tools identify the position of the IATs of a stealth-loaded
DLL using the approach we explained in Chapter 2, they can probably specify the
DLL from only visible imported APIs in the IATs. To solve this, we could take
advantage of API redirection explained in Figure 2.3-(c) in Chapter 2. This type
of API redirection modifies indirect API call instructions in the original code with
direct instructions that make the execution jump to a stub for each API. Therefore,
since there are no indirect API call instructions in the original code, analysis tools
are likely to fail in identifying the IATs.

Detecting Stealth Loader Itself
Detecting Stealth Loader may become another direction to fight against it. One
approach is detecting specific byte patterns of Stealth Loader. While Stealth Loader
hides its behaviors, as we explained in Subsection 3.2.3, its code or data may likely
have specific patterns available to be detected. However, as we discussed above,
several techniques, such as that proposed by Moser et al. [69], have been proposed
to avoid byte-pattern-based detection. If we apply one of them to Stealth Loader,
we can avoid being detected.
Focusing on the increase in private-memory consumption is one possibility for

detecting the existence of Stealth Loader. As Table 3.3 shows, when we apply
Stealth Loader to an executable, the private-memory consumption of the executable
increases. However, we argue that while this side effect of Stealth Loader may
provide some information to detect Stealth Loader, it is difficult to have confidence
with only this information. This is because the amount of memory usage is totally
dependent on programs, and it is difficult to predict it before executing the programs.
Without knowledge of the normal amount of private-memory usage of a target
program, we cannot determine if the private memory of a running program is larger
than or same as normal.
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Restricting Untrusted Code
One more direction is to prevent Stealth Loader from working at each phase. Policy
enforcement, which is mentioned in safe loading [70], may be partially effective for
that purpose. If there is a policy to restrict opening a systemDLL for reading, Stealth
Loader cannot map the code of a DLL on memory if it is not loaded byWindows yet.
On the other hand, if the DLLs are already loaded by Windows, Reflective loading
allows us to load them with Stealth Loader.
In addition, safe loading has a restriction to giving executable permissions. No

other instances, except for the trusted components of safe loading, give executable
permission to a certain memory area. Safe loader supports only the Linux platform;
however, if it would support Windows, safe loading may be able to prevent Stealth
Loader from providing the executable permission to the code read from a DLL file.
Another line of research in this category is to restrict jumping to untrusted func-

tions, such as control flow integrity (CFI) [71]. In case of Control Flow Guard
[72], which is an implementation of CFI in Windows, trusted functions are managed
and registered in ntdll.dll. Since Stealth Loader has its own ntdll.dll, stealth-loaded
ntdll.dll, it may be able to register the functions in stealth-loaded DLLs in its ntdll.dll
and make stealth-loaded DLLs query the ntdll.dll if the jump destination is trustable.
As a result, the functions in stealth-loaded DLLs become trustable with the ntdll.dll
and executable.

3.6 Conclusion
We presented Stealth Loader as a proof-of-concept implementation to demonstrate
the target-gap problem. That is, existing analysis techniques are vulnerable to
new evasion techniques. We showed that Stealth Loader actually evaded all major
analysis tools. We also qualitatively showed that Stealth Loader can evade previously
proposed API-oriented analysis techniques in academic studies. The reason why
these evasions happen is that all existing tools depend on OS and establish their
analysis logics on OS recognitions. However, OS is not always reliable. As we
showed, even from user-land, attackers can evade OS, and then this evasion leads to
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evade analysis tools.
To make analysis tools more robust against evasive malware, we need to recognize

that OS is evadable and not always reliable, and then be independent from OS.
From the next Chapter, we will introduce our taint-based approaches as an evasion-
resistance-inclusive design for analysis tools.
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Chapter 4

Taint-Assisted Dynamic Malware

Analysis

4.1 Introduction
In this chapter, we present a practical API monitor called API Chaser, which is
resistant to various evasion techniques. API Chaser is built on a whole system
emulator, QEMU[42] (actually Argos[73]), and executes monitored malware in a
guest operating system (OS) running on it. In API Chaser, we use a code tainting
technique to identify precisely the execution of monitored instructions. The core
idea of code tainting is that we identify our target code based on taint tags. To
this end, we first prepare a taint tag targeted for a specific analysis purpose and
add the tag to the target instructions before executing them. Then, we begin to run
the executable file containing the monitored instructions. At the virtual CPU of
an emulator, we confirm whether or not a fetched instruction contains the taint tag
targeted for analysis. If it does, it is executed under analysis. If not, it is executed
normally, i.e., it is outside the scope of the monitoring.
We apply the code tainting technique to API monitoring. We call this technique

taint-based control transfer interception. This technique works as follows. We use
three types of taint tags for three different types of instructions: the instructions for
APIs, those for malware, and those for benign programs. First, we add the three
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types of taint tags to the respective target instructions. Then, when the CPU fetches
an instruction and it has a taint tag for the API, it confirms which type of taint tag the
caller instruction has. There are three cases: a taint tag for malware, one for benign,
and one for API. Each case respectively corresponds to the following situations: an
API call from malware, that for a benign process, and that for another API (nested
call). Our monitoring target is the call only frommalware and we exclude the others.
Taint-based control transfer interception is resistant to evasion techniques because

it is able to distinguish between the target instructions and others at byte granularity
even when they exist in the same process memory space. In addition, this technique
is able to track the movement of monitored instructions by propagating taint tags
attached to them when malware injects a malicious code into another process. This
technique is independent of OS semantic information such as virtual addresses,
Process ID (PID) or Thread ID (TID), and file names. Therefore, it is no longer
influenced by the changes in these types of information by malware for evading
analysis systems.
In API Chaser, there are also several unique implementations for enhancing the

resistance against evasion techniques, i.e., pre-boot disk tainting and code taint
propagation, and for improving the practical capability for large-scale analysis, i.e.,
hot-boot and one-time disk image. These techniques contribute to achieving precise
API monitoring and a practical malware analysis sandbox, respectively. In the
proposed API Chaser implementations, we use 32-bit Windows XP and 7 as the
guest OS. However, we do not limit API Chaser to only these two platforms. We
believe that the API Chaser design is neutral and we can apply it to other platforms
such as a 64-bit Windows 8 or 10 as the guest OS while following the same design.
To show the effectiveness of API Chaser, we conducted several experiments using

real-world malware with a wide range of evasion techniques. We evaluated the API
monitoring accuracy by analyzing some malware on API Chaser and in comparative
environments in which APIs are monitored using existing techniques. Then we
compared the logs output by each environment. These experimental results indicate
that API Chaser is able to capture precisely the API calls from all sample malware
without being evaded. We also evaluatedAPIChaserwith several syntheticmalware,
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Fig. 4.1 Taint-based Control Transfer Interception

in which state-of-the-art evasive techniques were implemented. The experimental
results show that API Chaser is sufficiently robust against new emerging techniques
such as Process Hollowing [3], AtomBombing [5], PowerLoaderEx [7], Shim-based
DLL Injection [8], and Stealth Loader [9].
Moreover, we analyzed 8,879 malware samples collected from the Internet for

a large-scale experiment. The samples were classified into 421 malware families
with AVClass [74]. Through the analyses, we found 701 hook-evasive ones*1, which
belonged to 36 families, while we found 344 target-evasive malware samples*2,
which belonged to 84 families. We consider that these numbers allow us to argue
that hook evasion and target evasion techniques are actually major techniques and
widely used among real-world malware.

4.2 Our Approach
To address the target-gap problem that existing API monitors have, we propose the
taint-based control transfer interception API monitoring technique that uses code
tainting to identify precisely the execution of APIs. First, we define some terms
and the scope of this paper. Second, we present code tainting. Third, we describe
the types of monitored instructions. Fourth, we present taint-based control transfer

*1 malware uses hook evasion techniques
*2 malware uses target evasion techniuques
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interception, i.e., how to capture API calls invoked from malware and exclude the
ones invoked from benign processes and nested API calls.

4.2.1 Definitions and Scope

We define three important terms used in this chapter: API, API call, and API
monitoring.

• API is a function comprising more than one instruction to conduct a specific
purpose and we use it interchangeably with a user-land Windows API, which
is a function provided from the Windows operating system and libraries.

• API call is a control transfer with valid arguments from an instruction outside
of an API to an instruction within the API.

• API monitoring is a technique to detect the first execution of an instruction of
monitoredAPIs immediately after control has been passed from an instruction
outside of the API.

We explain the scope of this chapter. The evasion techniques in the scope are
those that were mentioned in Section 2.3, i.e., those used for hiding API calls that
malware has actually invoked. We exclude conditionally-protected executions, e.g.,
trigger-based ones [20] and stalling code [75], from the scope of this chapter. We also
exclude the case that malware invokes functions of modules, e.g., DLLs, statically
linked to the malware, which do not execute any instructions of system modules that
we prepared in our analysis environment.

4.2.2 Code Tainting

Code tainting is a taint analysis application and a technique used to identify the
execution of monitored instructions based on taint tags attached to them. It adds
taint tags to the target instructions before executing them. Then, when the CPU
fetches an instruction, it confirms if the instruction (actually the opcode of the
instruction) has a taint tag. If the instruction has a taint tag targeted for analysis,
it will be executed under analysis. If not, it will be executed normally. When
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monitored instructions are operated as data, taint tags added to the instructions are
propagated in the same way as data tainting. That is, we can track the movement of
monitored instructions based on the taint tags.
There are three advantages of code tainting for monitoring malware activities.

First, it becomes possible to conduct fine-grained monitoring. This property is
effective against malware using target evasion techniques. Code tainting can distin-
guish the target instructions and others at byte granularity based on taint tags, even
though there are both injectedmalicious instructions and benign onesmixed together
in the same process space or the same executable file. Second, it allows us to track
the movement of the target instruction by propagating taint tags attached to them.
This property is effective against both target evasion and hook evasion techniques.
For example, when malware injects its malicious code into other processes or other
executable files, code tainting can track the injection by propagating taint tags added
to the malicious code. Third, it is no longer influenced by changing the semantic
information of an OS, e.g., virtual addresses, PID or TID, and file names. This
property is also effective against both target evasion and hook evasion techniques
such as name confusion or Stealth Loader because it does not depend on these types
of semantic information at all for monitoring API calls, and depends solely on taint
tags.
A similar technique to code tainting has been used in previous research [73][76]

to detect attacks by tainting received data from the Internet and then monitoring a
control transfer to the tainted data. We leverage the technique for malware analysis
on API monitoring. The difference is that code tainting adds taint tags to the code
with the obvious intention ofmonitoring its execution, whereas the previous research
taints all received data to detect a control transfer to it.

4.2.3 Tag Types and Monitored Instructions

We use the following three types of taint tags to identify the execution of three types
of instructions for API monitoring.

• Api-tags target instructions in each API
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Fig. 4.2 Taint-based Control Transfer Interception Against Evasion Techniques

• Malware-tag targets instructions in malware
• Benign-tag targets instructions in benign programs

We taint all instructions in each API with api-tags. We use this type of tag to detect
the execution of APIs at the CPU. Moreover, we embed API-identifier information
in each api-tag which we can use to distinguish the execution of each type of
API. Regarding malware-tag, we taint all bytes in a malware executable file and
dynamically generated code with malware-tags. We use malware-tags to identify
the caller instruction of APIs and detect the execution of malware instructions. On
the other hand, we taint all bytes in benign programs with benign-tags. By benign
programs, we mean all files that have been installed on Windows by default, or in
other words, all instructions except for those in malware and APIs. We mainly use
this type of taint tag to identify the caller instruction of APIs and then exclude the
API calls from the monitoring target.

4.2.4 Taint-Based Control Transfer Interception

We use code tainting with the three types of taint tags to monitor APIs invoked
from malware. We call this API-call-hooking technique taint-based control transfer
interception. When a CPU fetches an instruction and the instruction has an api-tag,
it confirms the taint tag attached to the caller instruction. There are three cases as
shown in Fig.4.1: the API is called from malware, a benign process, and the internal
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of other APIs (nested call). As for the first case, shown in Fig.4.1 (1), if the caller
instruction has a malware-tag, it determines that the API call is frommalware. Thus,
it captures the API call and collects the information related to the API call such as
its arguments. With regard to the second, shown in Fig.4.1 (2), if caller one has
a benign-tag, it determines that the API call is from a benign process. Thus, it is
outside the target monitoring and does not need to capture this API call. As for the
third, shown in Fig.4.1 (3), if the caller has an api-tag, it is a nested API call. Nested
API calls are also excluded from the monitoring target, so that we can focus only
on API calls directly invoked from malware. This makes the behaviors of malware
clearer and easier to understand.
In Fig.4.2, as a running example, we explain the behaviors of taint-based control

transfer interception against the two evasion techniques: code injection and stolen
code. Fig.4.2(a) shows the behavior against code injection. When malware injects
code from malware.exe to benign.exe, the taint tags of the code are propagated.
The API call from the injected code is a control transfer from an instruction with a
malware-tag to an instruction with an api-tag. Then, we can identify it as our target
API call. On the other hand, Fig.4.2(b) shows the behavior of calling a stolen API.
When few instructions at the entry of the API are copied to the allocated memory
area in malware.exe, the taint tags added to the instructions are also propagated. The
call instruction, call stolen_API, has a malware-tag and the copied instruction,
mov edi, edi, has an api-tag, so we detect the API call and include it in the
monitoring target.

4.3 System Description
In this section, we present an overview of API Chaser, which uses taint-based
control transfer interception for monitoring API calls. First, we briefly explain the
main components of API Chaser. Second, we illustrate its malware analysis process.
Third, we present the enabling techniques used in API Chaser: pre-boot disk tainting
and code taint propagation.
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4.3.1 Components

API Chaser is built on a whole system emulator, QEMU (actually on Argos). API
Chaser has the following components: virtual CPU for API monitoring and taint
propagation, shadow memory to store taint tags for virtual physical memory (here-
after “physical memory"), and shadow disk to store taint tags for a virtual disk
(hereafter “disk").
A virtual CPU is the core component of API Chaser. It is a dynamic binary

translator that translates a guest instruction to host native instructions. With dynamic
binary translation, it conducts API monitoring as mentioned in the previous section
and taint propagation based on our propagation policy, which is explained in a later
subsection. The shadow memory is a data structure for storing taint tags added to
data on physical memory. When the virtual CPU fetches an instruction, it retrieves
the taint tag added to the instruction from the shadow memory. The shadow disk
is also a data structure for storing taint tags added to data on a disk. When data
with taint tags are written to a disk, the taint tags are transferred from the shadow
memory to the shadow disk and stored in the corresponding entries of the shadow
disk. When transferring data with taint tags from a disk to physical memory, the
taint tags are also transferred from the shadow disk to the shadow memory.

4.3.2 Analysis Process

Fig.4.3 shows the analysis process for API Chaser. There are two steps for API
Chaser to analyze malware: taint setting and analysis.

Taint Setting Step
In the taint setting step, API Chaser conducts pre-boot disk tainting, which adds
taint tags to all the target instructions in a disk image file before booting a guest OS.
The details of pre-boot disk tainting are given in the following subsection.
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Fig. 4.3 Analysis Process for API Chaser

Analysis Step
In the analysis step, API Chaser first boots the guest OS installed on the disk image
file. During the boot, target files containing target instructions are loaded onto
physical memory. At the same time, the taint tags added to the target instructions
are also transferred from the shadow disk to the shadow memory. After completing
the boot, API Chaser executes malware and initiates analysis. During the analysis,
API Chaser conducts API monitoring and taint propagation based on our policy.

4.3.3 Enabling Techniques

We explain the enabling techniques used in API Chaser to support the API monitor-
ing: pre-boot disk tainting and code taint propagation.

Pre-boot Disk Tainting
Pre-boot disk tainting is a technique that adds taint tags to target instructions on a
disk image file before booting a guest OS. Properly adding taint tags to all target
instructions is not an easy task because they may be copied and widespread over the
system after a guest OS has booted. For example, after booting a guest OS, an API
instruction may be on a disk, loaded onto memory, swapped out to disk, or swapped
into memory. When we add taint tags to a target instruction, we must identify all the
locations of widespread instructions and add tags to all of them. If we miss adding
a tag to any one of them, it may allow malware to evade the API monitoring.
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mov [edi], eax

if eax is tainted:
set the tag of eax on [edi];

else:
if ‘mov’ has a malware-tag

set a malware-tag on [edi];

call CryptEncrypt(,,, pbData, pdwDataLen,,,); 

if ‘call’ has a malware-tag:
for(i = 0; i < *pdwDataLen; i++) {

set a malware-tag on pbData[i];
}

Target 
Instruction

Code Taint
Propagation
Handling Code

Rule1 and Rule2 Rule3

Fig. 4.4 Code Taint Propagation Example

To avoid this troublesome task, we use pre-boot disk tainting. The procedure is
given hereafter. First, it parses a disk image file containing target instructions and
identifies the location where the target instructions are stored. We use disk forensic
tools [77] to identify files containing target instructions, and then, if necessary, we
acquire the offsets of the target instructions from the PE header of the files and
identify the locations of each API using disassemble tools [78][62]. Second, it adds
taint tags to the corresponding entries of a shadow disk based on the calculated
location. Before launching a guest OS, all instructions surely reside on a disk
and they are not widespread yet. Pre-boot disk tainting simplifies the tainting task
because only target instructions on a disk require attention. We no longer need to
care whether or not target instructions have been loaded.

Our Taint Propagation Policy
API Chaser conducts taint propagation based on pre-defined rules. The pre-defined
rules are mainly composed of two types: basic rules and rules for code taint propa-
gation.
Basic rules are defined based on each instruction type, such as data-move, unary

arithmetic, or binary arithmetic operations. We basically use the rules of Argos [73]
for API Chaser as they are. More concretely, when API Chaser handles a data-move
operation, such as mov, it propagates its taint tag to the destination if the source
operand is tainted. When it handles an unary arithmetic operation, such as inc, it
preserves the same tag of the operand if the operand has a taint tag. When it handles a
binary arithmetic operation, such as add, it propagates the tag of the source operand
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to the destination if any one of the source operands is tainted. If both operands are
tainted, it propagates the tag of the first operand. However, this propagation rule
may cause it to disconnect a taint propagation with the tag of the second operand
because we have to discard the tag of the second operand even when the tag plays an
important role for tracking a specific data-flow. Regarding this problem, we discuss
it in Subsection 4.6.2.
In addition to the above rules, we use our original taint propagation rules for

memory-write operations called code taint propagation to prevent malware from
avoiding code tainting by generating a code using implicit-flow-like code extraction.
Implicit flow is a process where a value with a taint tag affects the decision making
of the following code flow. However, there is no direct dependency between the
value and other values operated in the following code. Thus, a taint tag is not
propagated over the implicit flow, even though they are semantically dependent
on each other. It is reported that taint tags are not properly propagated in some
Windows APIs that use implicit-flow-like processing [23]. Actually, we observed
some cases in whichmalware-tags added to the code ofmalware were not propagated
to its dynamically generated code. This is because most obfuscated malware has
encrypted or compressed original code in its data section and it uses implicit-
flow-like data-processing to unfold compressed or encrypted code and extract its
original code. If we fail to propagate malware-tags properly, we miss identifying
the execution of malware instructions.
To address this, we use code taint propagation for code dynamically generated by

malware. Code taint propagation has the following rules.

• Rule1: If an executed instruction is tainted with a malware-tag and its source
operand is not tainted, the taint tag of the instruction, i.e., malware-tag, is
added to the destination operand.

• Rule2: If an executed instruction is not tainted or tainted with the other tags,
it does not propagate the taint tag of the instruction to its destination.

• Rule3: If an instruction calling an API is tainted with a malware-tag, the
taint tag of the instruction, i.e., malware-tag, is added to the written data by
the API.

75



Chapter 4 Taint-Assisted Dynamic Malware Analysis

The bottom-left pseudocode in Fig.4.4 is an example of Rule1 and Rule2, illus-
trating the case of mov [edi], eax. If the source operand of the target instruction,
eax, does not have any taint tags and the opcode, mov, has a malware-tag, we add
malware-tags to the destination operand, [edi]. Consequently, it appears as if
it propagates taint tags of opcode to the destination operand of the opcode. The
bottom-right pseudocode in Fig.4.4 is an example of Rule3, illustrating the case of
call CryptEncrypt whose prototype is shown below. The call instruction has
a malware-tag and it calls CryptEncrypt API, which is a function that encrypts the
passed data and writes its output to the memory area pointed to by the argument,
pbData. The argument, pdwDataLen, indicates the size of the output data.

BOOL WINAPI

CryptEncrypt(

_In_ HCRYPTKEY hKey,

_In_ HCRYPTHASH hHash,

_In_ BOOL Final,

_In_ DWORD dwFlags,

_Inout_ BYTE *pbData,

_Inout_ DWORD *pdwDataLen,

_In_ DWORD dwBufLen);

We detect the moment when execution is returned from the API by monitoring a
control transfer from an instruction with the api-tag to one with the malware-tag, and
then add malware-tags to the written bytes by acquiring the location of the written
bytes from pbData. It seems as if the taint tag of the call instruction is propagated
to the written bytes of the API called from the instruction. Owing to code taint
propagation, we can taint all generated codes with malware-tags and identify the
execution of the code based on its taint tags. We will discuss the side-effects of code
taint propagation in Subsection 4.6.3.
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4.4 Implementation
In this section, we explain the details of the API Chaser implementation focusing
on extensions from Argos [73] and techniques for making API Chaser practical for
industrial use-cases. We present the taint tag format, virtual CPU, shadow mem-
ory, shadow disk, virtual direct memory access (DMA) controller, API argument
handlers, hot-boot, and one-time disk image.

4.4.1 Taint Tag Format

We introduce the format of a taint tag stored in the shadow memory and shadow
disk. The size of a taint tag is eight bytes. There are three format types, as shown
in Fig.4.5: immediate format type for malware-tags and benign-tags, pointer format
type for api-tags, and not-tainted type. The format is chosen depending on the type
of taint tag. We distinguish the format type based on the highest bit of a tag. In
the case of the immediate type, we distinguish malware tags from benign tags based
on the second highest bit. API Chaser uses only the highest two bits, and the other
bits are unused. On the other hand, in the case of the pointer type, a taint tag is a
pointer to an API tag data structure. An API tag structure is a data structure that
stores information related to an API such as the API name, DLL name, and API
argument handling functions. We create an API tag data structure for each API, and
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all instructions in each API have a taint tag with a pointer to the same API tag data
structure.

4.4.2 Virtual CPU

The virtual CPU of QEMU (Argos) achieves virtualization with dynamic binary
translation. It translates instructions from a guest OS to instructions for a host OS
to emulate consistently the guest OS on the host OS. Argos adds a taint tracking
mechanism to the dynamic binary translation. That is, it propagates taint tags
from source operands to the destination based on its taint propagation policy after
executing each instruction. In API Chaser, we added two new functions to the virtual
CPU: an API monitoring mechanism and code taint propagation.
Fig.4.6(a) shows the API monitoring mechanism of API Chaser in the virtual

CPU. When an API call is invoked from malware, i.e., the execution transferring the
instruction with a malware-tag to that with an api-tag, the virtual CPU retrieves the
information related to the API through its API tag data structure pointed to by the
taint tag, and generates host native instructions for handling the API, i.e., invoking
the API handler function. An API handler outputs the API name and DLL name,
and internally invokes argument handling functions.
As for code taint propagation, Figs.4.6(b) and 4.6(c) show the difference in the

behaviors between Argos and API Chaser. In the case of Argos, when it reads a
guest OS instruction for writing memory, it generates a taint handling function as
host native code. The function propagates taint tags from source operands to the
destination if the source has any taint tags. In the case of API Chaser, it generates
its original taint handling function for code taint propagation. The function adds
malware-tags to the writing destination if the source operand does not have any taint
tags and the opcode has a malware-tag.

4.4.3 Shadow Memory, Disk, and Virtual DMA Controller

Shadow memory is an array of eight-byte entries where each entry corresponds to
a byte on physical memory. Argos originally has shadow memory, but it has only a
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one-byte taint tag space for one byte on the physical memory, which is only used for
determining the taint state. We extend it to an eight-byte taint tag space for one byte
to store a pointer to the API tag data structure. Therefore, we need memory space
eight times as large as the physical memory for the shadow memory. For example,
if the size of the physical memory is 256 Mbytes, the size of the shadow memory
is 2 Gbytes. Considering large-scale analysis, we design the shadow memory to be
dynamically allocatable at the time when it becomes necessary in order to suppress
the increase in simultaneous memory consumption when running multiple API
Chaser instances at the same time.
The shadow disk is a binary-tree data structure for storing taint tags added to

data on a disk. The entries for the structure contain information related to tainted
data on a disk such as the sector number, offset, size, taint tag buffer, and pointers
represented by the nodes of the binary tree. A taint tag entry for one-byte data on
a disk takes eight bytes of space, so we need eight times as large a memory space
as a disk for the shadow disk. However, the size of the disk is much larger than that
of the physical memory, so it is difficult to allocate sufficient memory space to store
the taint tags of all data on a disk beforehand. Thus, we design the memory space
for the shadow disk to be dynamically allocated as needed. Argos does not have a
shadow disk, so we newly implemented it for API Chaser.
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In API Chaser, the virtual DMA controller transfers taint tags between the shadow
memory and a shadow disk. API Chaser monitors DMA commands at the virtual
DMA controller, and when it finds a request for transferring data, it acquires the
data location from the request and confirms whether or not the transferred data has
taint tags. If it does, the virtual DMA controller transfers the taint tags between the
shadow memory and shadow disk. Argos does not have this mechanism either, so
we newly implemented it for API Chaser as well.

4.4.4 API Argument Handler

To obtain more detailed information of API calls, we extract argument information
passed to them when they are called and when the execution is returned from them.
To do this, we prepare an API argument handler for each API. We extract the
argument information such as the number of arguments, variable types, size, and
whether it is an input or output argument from theWindows header files provided by
the Windows software development kit (SDK). For undocumented APIs, we extract
their information from the web site [79] and source code of React OS [80]. We
register an API argument handler to an API tag data structure when we create the
data structure for adding api-tags to the instructions of each API. The handler is
invoked from the virtual CPU when it detects an API call invoked from malware
and outputs detailed argument information related to the API into a log file.

4.4.5 Hot-boot

We use the snapshot capability of QEMU for hot-boot, which skips the boot process
of a guest OS and enables quick initialization of analysis. Taint analysis provides
deep insight into malware behavior by adding data-flow analysis. However, one
drawback to taint analysis is performance degradation as measured in Subsection
4.5.5. In our brief experiment, it took more than 10 mins to boot a guest OS on API
Chaser from the cold disk image, i.e., cold-boot, and be ready for analysis. This
performance penalty may become a bottleneck for API Chaser for use in industrial
use-cases considering that an anti-virus company reportedly collects a plethora of

80



4.4 Implementation

large-scale malware samples per day from the Internet or their customers.
To compensate for such a performance penalty, we implemented a hot-boot capa-

bility using savevm and loadvmQEMUMonitor Protocol (QMP) commands, which
save the state of a guest OS running on QEMU and restore that state, respectively.
We extended these two commands with a capability for handling shadow memory.
That is, the hot-boot capability stores the state of the shadow memory when savevm
is executed by taking a snapshot and restores the state when loadvm is issued for a
guest OS to restart running from the taken snapshot. With the extended savevm and
loadvm commands, we achieve hot-boot in API Chaser. This capability allows us to
initiate an analysis immediately after launching API Chaser and makes it practical
when analyzing large-scale malware.
We can use hot-boot and pre-boot tainting at the same time without compromising

any advantages from pre-boot disk tainting. When the savevm command is issued
after a guest OS has been booted and ready for analysis, the API code, which
is tainted with api-tags, may exist in both the memory and disk. To handle this
situation, when we take a snapshot, we can save the status of the shadow memory
using the extended savevm. When we load the taken snapshot, we can restore the
status of the shadow memory with the extended loadvm command for the API code
on memory and perform pre-boot disk tainting to taint the API code on the disk.

4.4.6 Parallel Analyses

To analyze large-scale malware samples, it is natural to run multiple instances in
parallel. For that purpose, wemust reduce the simultaneous consumption ofmemory
and disks because the physical resources such as memory or disks are limited on
a machine. To reduce the memory consumption, we developed dynamic shadow
memory and disk allocations as explained in Subsection 4.4.3. Additionally, to
reduce disk space consumption, we developed a one-time disk image. We explain
this in this subsection.
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One-time Disk Image
Disk space is a physically-limited resource. So, one requirement for API Chaser as
a practical analysis environment is to reduce the consumption of disk space to run
multiple API Chaser instances concurrently. Another requirement for API Chaser
is that it must have a capability for returning to a clean state after one analysis
has completed because the environment may be destroyed or compromised by the
malware under analysis. One option for this requirement with QEMU is to use a
-snapshot option, which keeps the original disk read-only and redirects all disk-
writes to a temporal disk. However, unfortunately, QEMU version 1.1.50 on which
Argos was built does not support this -snapshot option for a guest OS booted with
loadvm [81].
To satisfy these two requirements at the same time, we developed a one-time disk

image for API Chaser. The one-time disk image is an extended qcow2 image file
format[82]. We leverage the backing_file capability of the qcow2 image format to
retain the clean state. The one-time disk image works as follows. First, we cold-boot
a guest OS with the -snapshot option and take a snapshot with savevm after the
booting has completed and is ready for analysis. Due to the snapshot option,
QEMU creates a temporal disk image in the tmp directory. Second, we configure
the backing_file option of the temporal disk image with the original disk image.
This configuration allows read-access to the data that do not exist in the temporal
disk image to be redirected to the original disk image. In addition, this configuration
allows write-access to be routed to the temporal disk image.
Using this capability, we retain the read-only nature of the original disk image and

redirect all write access to the temporal disk image even after a guest OS is restarted
with the loadvm command. When we begin analysis, we simply copy the configured
temporal disk image, rename it, and boot a guest OS from the copied temporal disk
image as an analysis environment of API Chaser. After analysis is complete, we
simply discard the copied temporal disk image and restart a new analysis by copying
a new temporal disk image from its original. This approach allows us to prepare only
one original disk image and multiple copies of the temporal disk image for multiple
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analysis environments. Since the size of a temporal disk image is much less than
that of the original disk image, we can reduce the consumption of disk space for
preparing multiple disks for multiple instances. Additionally, we can retain the clean
environment state for each analysis.

4.5 Experiments
To show the effectiveness of API Chaser, we conducted four experiments to evalu-
ate the accuracy, the analysis capability for new emerging evasion techniques, the
capability for large-scale analysis, and the performance of API Chaser.

4.5.1 Experimental Environment

All experiments were conducted on a computer with Intel Xeon CPUE5-1650 v4 3.6
GHz, 64 G memory and 360 G SSD. API Chaser runs on Ubuntu Linux 14.14, and
the guest OS was Windows XP Service Pack 3 (WinXPsp3) or Windows 7 Service
Pack 1 (Win7sp1). The guest OS was allocated 256 Mbytes for its physical memory
in the case of WinXPsp3 and 1 Gbyte in that of Win7sp1. We targeted 6,862 APIs
in major Windows system DLLs for monitoring.

4.5.2 Accuracy Experiments

We evaluated API Chaser from the viewpoint of its resistance against hook evasion
and target evasion. We prepared several malware executable files that have various
evasive functions and we used them to evaluate the resistance of API Chaser against
hook evasion and target evasion. As a comparative environment, we prepared two
different implementations of API Chaser that respectively use existing techniques
to detect API calls (Type I) or identify target code (Type II). In each experiment, we
executed some malware on API Chaser and one of these comparative environments
for five minutes, acquired API logs that were respectively output by the two envi-
ronments, and then compared them. When there were some differences between the
logs, we revealed the causes of the differences by manually analyzing malware and
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Table 4.1 Results of Hook Evasion Resistance Experiment

Virus Name API Chaser Type I Unmatched Reason Evasion Technique

Win32.Virut.B 6,361 4,852 1,509 F.N. of Type I API Hook
Themida 43,994 41,028 2,966 F.N. of Type I Stolen Code
Infostealer.Gampass 38,382 1,397 37,485 F.N. of Type I Sliding Call
Packed.Mystic!gen2 97,364 97,363 1 F.N. of Type I Sliding Call

investigating the infected environment using IDA [62] and The Volatility Frame-
work [54] to determine whether the fault was in API Chaser or in the comparative
environments. We usedWinXPsp3 as a guest OS of API Chaser for the experiments.

Hook Evasion Resistance Experiment
We used four real-world malware samples which have hook evasion functions with
stolen code, sliding call, or API hooking. We include malware using API hooking
into the samples for this experiment because the behavior of API hooking is similar
with the one of stolen code and it is also able to evade API monitoring as stolen
code does. Regarding the other two hook evasion techniques introduced in Chapter
2, i.e., name confusion and copied API obfuscation, we could not find any malware
sample using them in the wild. So, we qualitatively discuss the resistance capability
of API Chaser against these two techniques in Chapter 2.
With the four malware samples, we executed them on both API Chaser and a

comparative environment (Type I). Type I is another implementation of API Chaser
with a different technique to detect API calls. It detects API calls by comparing an
address pointed to by an instruction pointer to addresses where APIs should reside,
which is a common existing technique. The other components of Type I are the same
as API Chaser.

■Results Table 4.1 lists the results of this experiment. We manually investigated
the causes of the differences in captured API calls and revealed that all of them were
caused by false negatives of Type I. We explain the details of the two cases, Themida
and Mystic!gen2, although the others also had the same reason for their differences.
In the case of Themida, API Chaser captured 2,966 more API calls than Type I. All
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the unmatched API calls were detected in the dynamically allocated and writable
memory area. On the other hand, all the matched API calls were detected in the
memory area where system DLLs were mapped. We manually confirmed that all
API calls, except for API calls with no arguments that API Chaser detected, had valid
argument information. Thus, these were not false positives of API Chaser, but false
negatives of Type I. As we mentioned, API Chaser can detect the stolen API call by
propagating taint tags added to an API to the stolen instructions, while Type I cannot
because it does not track the movement of the stolen instructions. This capability
contributes to the resistance of API Chaser against hook evasion techniques. In the
case of Packed.Mystic!gen2, we confirmed that it used the sliding call technique.
The following code snippet is from a sliding call in this malware.

0x00408175 push ebp

0x00408176 mov ebp, esp

0x00408178 sub esp, 20h

0x0040817B cmp dword ptr [eax], 8B55FF8Bh

0x00408181 jnz loc_40818C

0x00408187 add eax, 2

0x0040818C add eax, 6

0x00408191 jmp eax ;to API+2 or API+6

The cmp instruction at 0x0040817B confirms the existence of the following four
bytes, 0x8B, 0xFF, 0x55, and 0x8B at the address stored in eax, which points to the
head of an API. These four bytes may indicate the assembler instructions, mov edi,
edi; push ebp; mov ebp, esp;, which is a prologue for a hotpatch-enabled
API, which has sufficient space for hooking before the first instruction of the API.
In fact, the total size of the three assembler instructions is a total of six bytes. If the
malware finds these four bytes at the entry of the API, it jumps to a location at six
bytes after the entry of the API to avoid monitoring. API Chaser adds taint tags to
all instructions in each API, so it was able to detect the execution of the instruction
at API entry + 0x6 and identified it as an API call from malware.
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Table 4.2 Results of Target Evasion Resistance Experiment (Tracking)

Virus Name Description of Evasion Technique Result

Win32.Virut.B
Infecting files with CreateFileMapping ✓

Injecting code with WriteProcessMemory ✓

Trojan.FakeAV
Injecting code with WriteProcessMemory ✓

Changing the name of rundll32.exe to jahjah06.exe ✓

Infostealer.Gampass
Injecting code with WriteProcessMemory

✓
and the injected code loads a dropped DLL

Changing its name to svchost.exe ✓

Spyware.perfect Injecting a dropped DLL with SetWindowsHookEx ✓

Trojan.Gen Injecting a dropped DLL via AppInit_DLLs registry key ✓

Backdoor.Sdbot Executing a dropped EXE as a service ✓

Target Evasion Resistance Experiment
We prepared six real-world malware with target evasion functions. Using these
malware, we evaluated the following two capabilities of API Chaser: tracking the
movement of target code and identifying the target code in a code-injected process
or executable file. As for the tracking capability, we confirmed that API Chaser can
capture API calls from a process or executable code-injected file by the six malware.
In regard to the identifying capability, we prepared another comparative environment
(Type II). The Type II environment is different from API Chaser in identifying target
code and tracking code injection. It identifies its target depending on the PID and
tracks code-injection based on invocation of specific API calls and DLL loading
events. For example, Type II hooks the invocations of WriteProcessMemory API
calls and extracts the PID of the destination process of thewriting from its arguments.
Then, it includes the PID into its monitoring targets. The Type II components except
for those for identifying and tracking target code are the same as API Chaser.

■Results Table 4.2 lists the results of the tracking experiment. API Chaser suc-
cessfully tracked all the behaviors of the injected code without being evaded. We
consider that Type II can also track them if it knows how target malware evades mon-
itoring and it prepares mechanisms for tracking the behaviors beforehand. However,
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it is practically difficult to know all code injection methods and prepare for them
before executing target malware because there are many unpublished functions in
Windows and third party software. On the other hand, API Chaser can track code
injection by propagating taint tags added to target malware. Since API Chaser does
not depend on individual code injection mechanisms, we can say that it is more
generic than the existing approach depending on each injection method for tracking
them.
Table 4.3 lists the results of the identifying experiment. We manually investigated

the causes of the unmatched API calls and revealed that all the unmatched API
calls were caused from false positives of Type II. That is, API Chaser successfully
identified all API calls invoked from an injected code in a benign process and
eliminated API calls invoked from the benign part of code in the process. We
explain the details of the two specific cases, Trojan.FakeAVand Infostealer.Gampass,
although the others also yield the same results. In the case of Trojan.FakeAV, all
the matched API calls were invoked from the dynamically allocated memory area
which was allocated and written by Trojan.FakeAV, while unmatched API calls were
invoked from the memory area where explorer.exe was mapped. This indicates that
API Chaser captured the API calls invoked from the code injected by Trojan.FakeAV
and Type II additionally captured API calls invoked from original code in the code-
injected benign process. In the case of Trojan.Gen, all the matched API calls were
invoked from tzdfjhm.dll, while all the unmatched calls were from the memory area
where notepad.exe was mapped. Library tzdfjhm.dll was registered to the registry
key, AppInit_DLLs, which is used by malware for injecting a registered DLL into a
process. The DLL was dropped and registered to the key by Trojan.Gen.

4.5.3 Synthetic Malware Experiment

The purpose of this experiment is to show the feasibility of API Chaser against
state-of-the-art evasion techniques including those introduced in academic stud-
ies. For that purpose, we collected proof-of-concept (PoC) codes of the follow-
ing techniques, Process Hollowing[3][4], AtomBombing[5][6], PowerLoaderEx[7],
Shim-based DLL Injection[8], and Stealth Loader[9]. Then, we generated synthetic
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Table 4.3 Results of Target Evasion Resistance Experiment (Code identification)

Virus Name Injected Process API Chaser Type II Unmatched Reason

Win32.Virut.B notepad.exe 315 3,020 2,705 F.P. of Type II
Win32.Virut.B winlogon.exe 184 783 599 F.P. of Type II
Trojan.FakeAV explorer.exe 20 1,782 1,762 F.P. of Type II
Infostealer.Gampass explorer.exe 147,646 149,408 1,762 F.P. of Type II
Spyware.perfect notepad.exe 4,792 7,511 2,719 F.P. of Type II
Trojan.Gen notepad.exe 230 3,222 2,992 F.P. of Type II

malware samples based on the PoC codes and analyzed them with API Chaser. We
used Win7sp1 as a guest OS of API Chaser for this experiment. The reason why we
focus on these five techniques is that they appeared or became major after our paper
was first published in 2013 [83]. So, these techniques represent new techniques for
API Chaser and if we can precisely analyze the malware with these techniques with
API Chaser, we can demonstrate that the design of API Chaser is possibly strong
enough for analyzing future-emerging techniques.

Process Hollowing
Process Hollowing is a technique that hides the presence of a malware process. First,
it creates a benign executable file process that is suspended. Next, it overwrites the
contents of the suspended process with those of a malicious executable file, and then
resumes execution of the process after overwriting is completed. The PoC code for
this technique, [4] creates a process of svchost.exe that is suspended and overwrites
its contents with that of the specified (malicious) executable file.

■Result API Chaser successfully captured the APIs invoked from the specified
executable file overwritten in the process of svchost.exe. API Chaser kept tracking
themovement of the overwritten code of the specified executable code by propagating
tags added to the code so that APIs invoked from the code were the control transfers
from tainted code to API code.
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AtomBombing
AtomBombing is a technique that injects a (malicious) code snippet into explorer.exe
and executes it without using the APIs commonly used for code injection: WritePro-
cessMemory, VirtualAllocEx, and CreateRemoteThread. AtomBombing takes ad-
vantage of the atom table which is a shared data structure already mapped into
explorer.exe. AtomBombing maps a code snippet into the virtual memory space of
explorer.exe by writing it in the atom table. After the code mapping is completed,
AtomBombing invokes the NtQueueApcThread API to hijack a thread with sleeping
status in explorer.exe. Then, when the sleeping thread wakes up, the thread starts
executing the mapped code. AtomBombing uses the return-oriented-programing
(ROP) technique to avoid the issue in which the memory areas of the atom table do
not have the executable permission.

■Result API Chaser successfully captured the API calls invoked from the code
injected into explorer.exe since the caller instructions of these APIs were written
by this synthetic malware, i.e., they were tainted. However, API Chaser missed
capturing the API calls invoked from the ROP gadgets. The reason for this was that
the caller instructions of these API calls in the ROP gadgets belonged to a benign
code. So, these caller instructions have the benign-tag and control transfer of this
API call is from benign-tag to api-tag. We discuss this issue in more depth in
Subsection 4.6.3.

PowerLoaderEx
PowerLoaderEx is an evolved version of PowerLoader[7]. This is also a technique
that injects a code snippet into a benign process and executes it without using the
three APIs. PowerLoaderEx first writes code in a desktop heap memory, which is
a shared area among GUI applications. Second, it overwrites the function pointer
that handles a specific type of window message using the SetWindowLongPtr API.
Then, it intentionally generates the window message to kick the handler with the
SendNotifyMessage API. Since the desktop heap is basically not executable, Power-
LoaderEx employs the ROP technique to add executable permission to the injected
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code in a manner similar to AtomBombing.

■Result Similar to the AtomBombing case, API Chaser could capture the API
calls invoked from the injected code, while it failed to capture the ones from ROP
gadgets. This is also discussed more in Subsection 4.6.3.

Shim-Based DLL Injection
Shim-based DLL Injection is a technique that injects a DLL into a benign process by
taking advantage of the application compatibilitymechanism ofWindows;Microsoft
officially prepares a mechanism that ensures backward compatibility in most of
their products. This is currently implemented by the Application Compatibility
Framework (ACF). The ACF is capable of intercepting API calls, controlling the
loading process of DLLs, and patching memory. The PoC code for this technique
[84] generates an sdb file while configuring its inject-target program, an injecting
DLL installs the sdb file with the sdbinst command, and the PoC code kicks the
target program. When the target program is executed, the ACF injects the configured
DLL into the process of the target program.

■Result API Chaser can track the injection of the DLL if the DLL is tainted. Taint
analysis allows API Chaser to track the movement of its target code with taint tags
without being affected by the injection manner. In real-world malware, since an
injecting DLL is downloaded or dropped by the malware, the DLL becomes tainted
on API Chaser. So, we do not miss capturing API calls invoked from the DLL
injected into a process.

Stealth Loader
Stealth Loader is a program loader that loads Windows system DLLs such as ker-
nel32.dll and ntdll.dll without leaving any trace to be detected. By loading a system
DLL with Stealth Loader, the loaded DLL is not recognized as being ’loaded’ by
the Windows OS or even analysis tools. Since analysis tools fail to recognize the
existence of the loaded DLL, they also fail to capture API calls of the functions
exported from the unrecognized system DLL.

90



4.5 Experiments

■Result API Chaser recognizes the calls of the function exported from stealth-
loaded system DLLs as ’API calls’. This is because API Chaser identifies an API
call based on taint tags added to the API before initiating an analysis (pre-boot disk
tainting), and it does not rely on any metadata managed by the Windows OS, which
is the portion Stealth Loader attacks. So, if Stealth Loader deceives the Windows
OS by not leaving any trace identifying the existence of loaded DLLs, API Chaser
is not affected by that.

4.5.4 Large-Scale Malware Analysis Experiment
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Fig. 4.7 Top 30 malware families in 6,722 samples. X-axis is malware family,
while y-axis is the number of samples in each family with logarithmic scale.

The goal of this experiment is to show how much major hook and target evasion
techniques are among real-world malware samples. To achieve this goal, we col-
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lected a certain number of malware from various sources and analyzed them with
API Chaser to find malware using these techniques. We call malware using hook
evasion techniques hook-evasive malware, whereas we call malware using target
evasion techniques target-evasive one in this experiment.

Dataset
As the dataset for this experiment, we totally collected 8,979 malware samples from
various data sources including malware exchange with an industrial vendor and our
own honeypots. Then, we filtered out 100 samples whose hash value was duplicated.
We used the 8,879 samples for this experiment. Next, we downloaded the anti-virus
scan reports of 6,722 samples from VirusTotal [65] because we needed them for
classification with AVClass [74]. The other 2,157 samples did not have any report in
VirusTotal, whichmeans they had never been uploaded for scanning ontoVirusTotal,
so we made None family for them. As a result, we classified the 6,722 samples into
420 families with AVClass and thus we classified 8,879 samples into 421 families
including None.
Figure 4.7 shows the major top 30 malware families in the samples. Sality is the

most major family in them and it has 3,131 samples, which occupies about 28%
of the dataset. None is the second major family and it has 2,157 samples, which
occupies about 24%. Since with only the two families, we can occupy about 60% of
the total dataset. So, this dataset has a certain amount of bias. Thus, when we show
the results of this experiment, we show not only the number of samples, but also the
number of the families to mitigate this bias.

Procedure
As an analysis environment, we prepared three API Chaser instances to analyze the
samples in parallel and we configured the analysis time to be 5 mins per analysis.
After 5 mins elapsed, we forcibly terminated the API Chaser process even though
the malware under analysis was still running. We used Win7sp1 as the guest OS of
API Chaser for this experiment.
After all analyses had been done, we found malware samples using hook evasion

or target evasion techniques by parsing each analysis log. We found hook-evasive
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malware samples from API call logs as follows. We first calculated the virtual
addresses of each API from the base address of a loaded DLL and its export function
table. Next, we compared the address logged in a log file as an API call destination
to the calculated address, and then if the addresses were not matched, we identified
the malware as hook-evasive.
We also found target-evasive malware samples as follows. We first created a

list of processes which were in parent-child relationship with monitored malware
based on specific API calls, such as CreateProcessA/W. When we found an API call
invoked from a process which was not on the list, we identified the malware sample
as target-evasive because the API call possibly came from a injected code with target
evasion.

Result
We found 701 hook-evasive malware samples in the dataset. 476 samples out of 701
belonged to miuref malware family and this was the most popular one in the dataset.
104 samples belonged to None family and this is the second popular one. The others
belonged to any one of 34 families. The top 5 families were miuref(476), None(104),
ramnit(66), sality(3), and dynamer(3) whose numbers in the parentheses express the
number of samples belonging to these families. Regarding target-evasive malware,
we found 344 target-evasive malware samples. 56 samples out of 344 belonged
to None family and this was the most popular one in the dataset, while the others
belonged to any one of 83 families. The top 5 families were None(56), bayrob(32),
sality(31), gamarue(21), and parite(19). Since hook evasion techniques were used in
8.5% families of all dataset families and target evasion techniques are used in 19.9%,
we argue that these evasion techniques are major and often used among malware to
intensionally hide API calls.
Through these analyses, we collected a total of 5,133,292,748 API call logs.

4,771,863 out of 5,133,292,748 API calls, which were about 0.09% of the total API
calls, were intentionally hidden with hook evasion techniques, while 172,859,468
API calls, which were about 30% of the total API calls, came from a injected
code with target evasion techniques. As we showed in the accuracy experiments,
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API Chaser was able to capture these API calls without being evaded and then
we could collect the arguments passed to these API calls correctly, which possibly
contain useful information as an indicator for detecting malware, i.e., indicator of
compromise (IOC). However, if you analyze these evasive malware with an analysis
environment whose architecture for API monitoring is based on the ones of Type I or
Type II, you may miss capturing some of these API calls or excessively capture them,
respectively, if the analysis environment does not care about evasion techniques at
all. These inaccuracies of API call monitoring possibly lead to both false negatives
and positives.
Lastly, regarding analysis times, we started the analysis at 2017/2/7 19:50:59 and

finished at 2017/2/23 1:35:33. We spent approximately 382 hours to analyze the
8,879 samples. On average, we spent 7.75 minutes (= (382*60)/(8879/3)) to analyze
one sample with one API Chaser instance, even though we configured the analysis
time to be set to 5 mins for the analysis. This time difference comes from the time
for preparing the analysis environment before initializing the analysis and that for
compressing logs after analysis.

4.5.5 Performance Experiment
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Fig. 4.8 Results of performance experiment: Number of captured API calls
during the execution of each command is as follows: compact is 28,464, xcopy is
1,222, reg is 44,059, tasklist is 8,271, and netstat is 103.

The goals of this experiment are to show how much of performance degradation
API Chaser has, compared to a vanilla QEMU, and where the degradation mainly
comes from. This is becausewe put a higher priority on precision for APImonitoring
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rather than performance as the fundamental design of API Chaser. This design
choice may impose on performance penalties. To know the impact of the penalties,
we conduct this experiment and clarify the most influential part in API Chaser.
We used five Windows standard commands for this experiment. With these

commands, we could cover APIs of major behaviors which we should focus on, such
as file, registry, network, process, or memory-related behaviors.
As comparative environments, we prepared three environments: vanilla QEMU

(QEMU), API Chaser without API monitoring (w/o API monitoring), and API
Chaser without argument handlers (w/o argument hander). The reason why we
prepared these comparative environments was to clarify which functionality of API
Chaser mainly causes performance degradation. As we explained, we added several
functionalities to QEMU to implement API Chaser; we could roughly classify the
added functionalities into three groups: functionality related to taint analysis, API
hooking (API monitoring), or argument handling. API Chaser, of course, has the
three functionalities, i.e., taint analysis, API monitoring, and argument handling.
The w/o argument handler environment has taint analysis and API monitoring
but it does not have argument handing. The w/o API monitoring environment
has only taint analysis and it does not have both API monitoring and argument
handling. QEMU does not have any of them. By comparing the performances of
them, we could identify the most influential functionality in the three ones to the
performance of API Chaser. In addition, we used WinXPsp3 as the guest OS of API
Chaser for this experiment.

Result
Figure 4.8 shows the relative run duration of these five commands on each envi-
ronment compared to relative QEMU, which is set to 1. The results show that
the degradation in performance of API Chaser was approximately 3 to 10 fold
compared to that for QEMU. As you can see, the performance degradation mainly
came from the taint analysis functionality because the difference between QEMU
and w/o API monitoring was larger than the others, i.e., difference between w/o
argument handler and w/o API monitoring or one between API Chaser and
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w/o argument hander.
We consider that the degradation is not a severe limitation to API Chaser because

the current version of API Chaser has not been optimized to reduce its overhead. We
consider that there is much room for improvement, for example, applying the work
done in [85] to API Chaser. In addition, we discuss in Subsection 4.6.3 an issue
that arises from the performance degradation when we analyze malware in terms of
checking the delay of execution.

4.6 Discussion
In this section, we discuss the resistance capability of API Chaser against hook
evasion techniques which we did not have experiments in Subsection 4.5.2, multiple
operands handing for taint propagation, and the limitations of API Chaser.

4.6.1 Other Hook Evasions

In the accuracy experiment in Subsection 4.5.2, API Chaser was not affected by
hook evasion techniques used in real-world malware. However, we could not find
any malware in the wild using name confusion or copied API obfuscation. So,
we qualitatively discuss the resistance capability of API Chaser against these two
techniques.
We consider that API Chaser is not affected by name confusion because of the

following considerations. When a DLL is copied, the taint tags set on the DLL are
propagated to the copied DLL. Even if the name of the DLL is changed, it does
not affect taint propagation at all because taint propagation is conducted at (virtual)
hardware layer without depending on the semantics of an OS or a file system and the
change of file names is a matter of OS or file system layers. Thus, when API code
in the copied DLL is executed, we can capture the execution of the API correctly
because the propagated taint tag has existed on the code of the API.
We also consider that API Chaser is not affected by copied API obfuscation.

As we explained in Chapter 2, copied API obfuscation is similar with stolen code.
Copied API obfuscation copies all instructions of an API, while stolen code does
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the first few instructions of the API. Considering a case that a copied or stolen API
is invoked from a malicious code, there is no difference in control transfers between
them. That is, an execution control is transferred from the malicious code to the
first instruction of the copied or stolen API. Since we have already demonstrated
that API Chaser handles stolen code properly, we believe that it could do copied API
obfuscation as well.

4.6.2 Multiple Operands for Taint Propagation

When API Chaser handles an instruction which has more than two operands and
both of them have different taint tags, a taint propagation depending on one of the
tags is disconnected. This is because, in our implementation of API Chaser, we
simply propagate the taint tag of the first operand and discard the one of the second
operand when we encounter this situation.
To mitigate this issue, an approach is to make a priority based on the types of taint

tags for propagation. When we encounter this situation, we decide which tag should
be propagated to the destination operand based on the priority. Another one is to
generate a new tag and make a relationship between the new tag and the tags of each
operand to construct the data-flow with them in an offline analysis. In either case,
we need to add a code to the handlers for these types of instructions, i.e., instructions
with multiple operands. Since these instructions often appear during an analysis, the
impact of the additional code is not so small. We need to achieve a balance between
performance and precision when we adopt one of these approaches to API Chaser.

4.6.3 Limitation

We discuss limitations of API Chaser from viewpoints of detection-type anti-
analyses, scripts, return-oriented-programming, and implicit flow.

QEMU Detection and Timing Attack
With the exception of evasion techniques, malware often uses QEMU detection and
timing attacks [2] to detect analysis environments. API Chaser is also possibly
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affected by these two techniques. So, we discuss the two techniques below.
Several methods for detecting QEMU have been studied and proposed

[18][86][87][88]. To avoid these detections, we individually managed to let
QEMU-specific artifacts become invisible to malware. For example, we changed
the product names of virtual hardware in QEMU for detection techniques that
depends on these names. We also changed the behaviors of specific instructions
by finding the execution of these instructions and dynamically patching them at
runtime.
Timing attacks are a technique that checks the delay in executing a specific code

block. We designed API Chaser to focus on accuracy rather than performance;
therefore, it takes several more seconds to execute part of a code block than in real
hardware environments. As for this technique, we can overcome this with the same
approach as that used in our previous study [29], which controls the clock in a guest
OS on API Chaser by adjusting the tick counts in the emulator to remove the delay.

Scripts
API Chaser has a limitation for analyzing script-type malware, e.g., a visual basic
script or a command script. These scripts are executed on some platforms such as
an interpreter or a virtual machine. Although these scripts have the taint tags of
malware, API Chaser cannot detect their execution because the instructions executed
on the virtual CPU are those of their platform and not those of the tainted script. To
address this problem, we are currently considering a way to identify the target code
with both taint tags and semantic information such as PID and TID.

Return Oriented Programming
API Chaser faces a limitation when an API is called in a manner similar to ROP
[89]. For example, when an attacker constructs a ROP chain by pushing the address
of a specific API and executing the ret instruction in a benign code region to jump
to the API, the control transfer in this case is from a benign-tag to an api-tag. So,
API Chaser fails to identify this control transfer as a monitoring target.
We may be able to handle this case by extending taint-based control transfer

interception using the approach that Korczynski et al. [51] proposed. That is,
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when a control transfer instruction such as ret, call, or jmp is executed and the
destination address of the instruction is tainted, we identify such a control transfer
and the first basic block at the destination address as a part of malicious code.
Another option is to detect the ROP code. If we can detect the ROP code, we

may be able to identify the execution of APIs called from malware via the detected
ROP code. Detection of ROP is outside the scope of this paper and we leave it for
other studies. Many studies leverage the unique behavioral characteristics of the
ROP code such as its use of many ret instructions, jumps to the middle of an API,
or jumps to an instruction of non-exported functions.

Implicit Flow
Another limitation of API Chaser is due to feasibility issues of taint propagation,
e.g., implicit flow. If malware authors know the internal architecture of API Chaser,
especially code taint propagation, it may be possible to cause intentionally API
Chaser to yield false positives or false negatives using implicit flow. For example,
malware reads a piece of code in a benign program and processes the code through
implicit flow which does not change its value. Then it writes the code back to the
same position. As a result, the taint tags on the code are changed from benign to
malware. Due to this, if malware executes the written code, API Chaser identifies the
execution as the one of malware, even though the code is truly equivalent to benign
code. On the other hand, if malware reads a piece of code in an API and conducts
the same process, it overwrites the taint tags for API with those for malware. Thus,
API Chaser deals with the execution of the code as one of malware. To address
this problem, we must improve the strength of the taint propagation, for example, as
done in [90][91]. We consider this as our future work.

4.7 Conclusion
Analyzing evasive malware in a dynamic manner is a challenging problem for anti-
malware research especially in developing practical malware analysis environments.
In this chapter, we provided a solution by using API Chaser, which is a prototype
systemof ourAPImonitoring technique. APIChaserwas designed and implemented
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to prevent malware from evading API monitoring. We conducted experiments using
actual malicious code with various types of evasion techniques to show that API
Chaser correctly works according to its design of being difficult to evade. We
believe that API Chaser will be able to assist malware analysts in understanding
malware activities more correctly without spending a large amount of effort in
reverse engineering and contribute to improving the effectiveness of anti-malware
research based on API monitoring.
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Chapter 5

Taint-Assisted Static Malware

Analysis

5.1 Introduction
In this chapter, we introduce a new API name resolution technique based on taint
analysis to fight against semantic evasion techniques in static analysis. The key
idea is that we assign a unique taint tag to each API and resolve the API name
from the assigned taint tag. To this end, we first define taint tags, each of which
has a unique value for each API. We then apply the taint of the API to each of its
instructions. Next, we run a malware under analysis in an isolated environment
while performing taint analysis using the tags. In particular, we propagate them by
following pre-defined rules when the malware under analysis moves or makes a copy
of API code. Then, we acquire the dump files of taint tags as well as that of (virtual)
physical memory when dynamic analysis has completed. Finally, we perform IAT
reconstruction on the basis of the dump files. In the IAT reconstruction, we resolve
the API names of each address in an IAT from the taint tags of the code pointed to
from each address in the IAT.
This technique has two advantages for countering semantic evasion techniques.

First, we can conduct fine-grained tracking for API code and identify it correctly
even when it is wholly or partly placed out of the memory range where a DLL has
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been mapped. This is because we can track the movement of the instructions of each
API at instruction-level granularity with taint analysis. Second, we can identify the
positions of each DLL or API without depending on specific data structures that
the OS manages. This is because we manage them with the tags used for tainting
API code and propagated independently from OS’s behaviors. These advantages
allow our API name resolution to be independent of the OS semantics and realize
reliable API name resolution on the unreliable OS without being evaded by semantic
evasions.
We have implemented this technique in a system, which is composed of prepro-

cessing, dynamic analysis, and dump analysis phases. In the preprocessing phase,
we correctly identify the position of each target DLL in a disk image by using a
disk forensics tool, The Sleuth Kit (TSK) [77], and then set taint tags on them. For
dynamic analysis, we use API Chaser [83], which is a sandbox with taint analysis
capability. We have extended API Chaser to generate dump files at any arbitrary
time during the execution of the malware. For dump analysis, we have extended
The Volatility Framework (Volatility) [16] with capabilities of reading taint tags and
disk forensics. We call this extended Volatility TaintVolatility. We have developed a
plugin running on TaintVolatility on the basis of impscan[16]. We call this plugin
tf_impscan. Using tf_impscan with TaintVolatility, we identify the IATs and resolve
the API names from taint tags for IAT reconstruction. Finally, for an output of
this system, we generate an IDC (IDA script) for adding resolved API names to the
disassembled code of IDA.
To assess the effectiveness of our system, we have conducted three types of

experiments. The first one is for evaluating whether our technique is more resistant
to semantic evasion techniques than existing IAT reconstruction tools. For that
purpose, we prepared several Windows executables and obfuscated their APIs by
using the five semantic evasion techniques mentioned in Chapter 2 with Stealth
Loader. Then, we analyzed themusing our system and three other IAT reconstruction
tools: impscan, impscan++*1, and Scylla[17]. The results show that only our
system could correctly identify all imported APIs, whereas the others could not

*1 A tool we developed for this experiment.
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because of semantic evasion techniques. The second one is for showing the effects
of disk forensics integration. For that purpose, we analyzed several Windows
executables with differently configured TaintVolatility, i.e., with or without disk
forensics integration. The results of this experiment show that the disk forensics
capability of TaintVolatility works correctly and contributes to generating better
results for IAT reconstruction. The third one is for measuring the performance
degradation of TaintVolatility, compared to impscan. The results of this experiment
show the degradations are within practical range and do not impose serious impacts
on the effectiveness of TaintVolatility.

5.2 Our Approach
In this section, we introduce a taint-based API name resolution technique, which
is resistance against semantic evasions. First, we define the goal and scope of this
chapter. Second, we introduce a taint-based API name resolution. Finally, we
explain a system for IAT reconstruction using our taint-based API name resolution.

5.2.1 Goal and Scope

Our goal in this chapter is to present the first generic technique against semantic
evasion techniques and to ensure a system in which the approach implemented works
well in practice. ’Generic’ in this context means a technique commonly applicable
for all types of semantic evasion technique, which is explained in Chapter 2, without
heuristics or adjustments depending on targets.
The scope of this chapter is to solve the problem of API name resolution, i.e.,

the existing API name resolution is vulnerable to semantic evasion techniques. In
other words, we focus on a technique for realizing an API name resolution that is
robust enough against all types of semantic evasion technique mentioned in Chapter
2. We exclude two types of resolution evasion techniques from our scope in this
chapter: static lining and control-flow obfuscation. We will qualitatively discuss
the feasibility of our system against the two types of evasion techniques in Section
5.4. Other attack techniques targeting the other steps in the IAT reconstruction,
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such as memory dump acquisition or IAT identification, are beyond the scope of this
chapter.

5.2.2 Taint-based API Name Resolution

We introduce a new API name resolution technique for IAT reconstruction, taint-
based API name resolution, which is generic and resistant to semantic evasion
techniques. Our technique resolves the API name of a pointer stored in an IAT by
taking advantage of taint tags that are used to taint the API code before starting
the analysis and propagated during the analysis. In particular, we first identify the
positions of each API code in a disk and then taint their codes with the unique taint
tags. Next, we begin to run the malware. When the malware under analysis operates
the codes of the APIs on which taint tags have been set, we track the movement
of the code by propagating the taint tags. After running the malware for a certain
amount of time, we generate a memory dump as well as dumps of taint tags and
then analyze them for IAT reconstruction. In the API name resolution phase in IAT
reconstruction, we resolve the API names from taint tags that have a unique value to
distinguish one API from the others.
A taint tag is a piece of data structure related to target data and is used in taint

analysis for tracking the flow of the data in the host. Taint analysis itself is not new
and has been used in much security research, such as for detecting zero-day attacks
[73] or identifying sensitive information leaking [92]. A new aspect in this chapter
is that we use taint analysis for assisting static analysis. In other words, we use
taint analysis for bridging the semantic gap between dynamic and static analysis. In
particular, we relate a taint-tag with the symbol of code, manage the taint-tag in the
virtual machine monitor (VMM) layer independently from an OS during dynamic
analysis, and access the symbol of the code from the tag for static analysis. IAT
reconstruction is an application of this approach. We believe that this approach is
reasonable for malware analysis because the symbols that a tag possesses are not
affected or modified by malware, unlike those of OS-managed data structures. That
means that even when a malware intrudes the OS layer and successfully gains the
root privilege, the malware cannot access and modify the taint tags because they
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are managed in the VMM layer and the VMM is isolated from the malware running
environment.

5.2.3 Taint-assisted IAT Reconstruction System

We have developed a system for IAT reconstruction whose API name resolution is
realized with our taint-based technique. Figure 5.1 shows the overview of the system
and its workflow. The workflow is mainly composed of three phases: preprocessing,
dynamic analysis, and dump analysis. We explain the details of each phase and their
implementations below.

Preprocessing
In the preprocessing phase, we first define taint tags, each of which has a unique
value for each API and taint the instructions of each target API in a disk with the
tag. For an input for this phase, we receive a disk image file on which a guest OS
has been installed. For an output, we generate a configuration file for setting up a
shadow disk, which is a data structure for storing taint tags related to data on a disk.
To do that, we first parse the received disk image by using a forensics tool, analyze
the file system installed on it, and then identify the positions of each target API in
a disk. After that, we set a unique taint tag on each API. Specifically, we store the
taint tag to the corresponding entry in a shadow disk.
This design (i.e., tainting data on a disk, not memory, before starting an analysis)
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has two advantages. First, we do not need to care about when the target code in a
DLL is loaded onto a physical memory. It is not easy to correctly capture this timing
because of on-demand loading. The timing depends on the behaviors of a running
process on the OS and is difficult to predict correctly. In contrast, our technique
allows us to focus on only taint propagation after setting taint tags. This design
could make the implementation simpler. Second, we can comprehensively set taint
tags on targets. It is also not easy to correctly identify all locations of specific data
originally contained in a file after an OS has been booted because an OS may copy
or cache the data in a temporal buffer or its own data structures on the memory.
However, before booting an OS, we can easily identify the location of a target file
on a disk, and we can say that the data has not been copied to other locations yet by
an OS.

■Implementation We use The Sleuth Kit (TSK) to identify the positions of target
DLLs in a disk image in which a guest OS has been installed. TSK is a disk forensics
tool for parsing a disk image and analyzing various file systems. Using TSK, we
acquire the sector number, offset, and size of a target DLL and then extract the DLL
file. After that, we acquire the Relative Virtual Address (RVA) of each target API
from the PE header of the extracted DLL and then calculate the position of each
target API in a disk by adding the RVA to the base address of DLL. Finally, we set
the taint tags on each API code. This process has to be completed before starting
the dynamic analysis.
We define 22 Windows system DLLs and 7,222 APIs exported from the 22

DLLs as our target for our system. These 22 DLLs include kernel32.dll, ntdll.dll,
advapi32.dll and the ones that export APIs often used in a malware. The target DLLs
are selected by referencing IDA scope [61], which is an open-sourced IDA script
for accelerating static analysis. Using these 22 DLLs, we have covered most APIs
defined in IDA scope as remarkable ones, which means we should pay attention to
them in static analysis. Thus, we consider that the current numbers of target DLLs
and APIs are enough for our purpose. If we need to add support DLLs in the future,
we can easily increase the number for a small cost, i.e., simply add one line to a
source code.
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Dynamic Analysis
In the dynamic analysis phase, we boot an analysis environment as a guest OS from a
disk image, run the malware on the booted environment, and perform taint analysis.
For an input, we receive the configuration file for setting up a shadow disk. For an
output, we generate a set of dumps after executing the malware for a certain amount
of time. These dumps contain the (virtual) physical memory, the shadow memory,
the shadow disk, and the disk image.

■Implementation For a dynamic analysis engine, we use API Chaser [83], which
is an API monitoring system with taint analysis capability. API Chaser is built
on QEMU [42] (Argos[73]) and performs API monitoring and taint analysis in the
VMM layer. API Chaser leverages taint analysis for API monitoring. In particular,
there are two applications of taint analysis for precise API monitoring. The first is
code tainting, which is a technique to identify the executions of target code on the
basis of taint tags set on the code. The second is to capture the events of API call
invocations on the basis of taint tags. That is, we set taint tags on each API code
before starting analyses and then recognize as an API call the execution transfer
from an instruction that has the taint tags expressing a target code to one that has the
taint tags indicating API code.
We have extended API Chaser to enable it to generate dump files on various types

of events that have happened in a guest OS. These events include API calls, process
creation or termination, module load or unload, or system shutdown. API Chaser
provides call-back mechanisms that invoke registered handlers whenever specific
hardware or software events happen. Therefore, to generate dump files at specific
timings, we have simply developed a small piece of code for calling the function for
generating dump files and register the code to appropriate call-backs as a handler.

Dump Analysis
In the dump analysis phase, we conduct IAT reconstruction as a preparation for static
analysis. For IAT identification, we first manually select a target process and then
identify the positions of the IATs in the virtual memory space of the process using
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the IdentifyIAT function, in which the find-pointer phase explained in Chapter 2
is implemented. For API name resolution, we resolve the API names of each entry
in the identified IATs using TaintResolveName, which we explained in Subsection
5.2.2. This function allows us to resolveAPI nameswithout being evaded by position
obfuscation techniques, as we have already explained.

■Implementation We have developed TaintVolatility and tf_impscan for dump
analysis. TaintVolatility is an extended version of The Volatility Framework (Volatil-
ity) with two new features: a capability for reading dumps of taint tags and disk
forensics integration. For the capability of taint tag analysis, we have added op-
tions to parse a shadow memory dump and then extract necessary information for
API name resolution from taint tags. We have implemented this capability as an
extension of the Address Space module of Volatility. This design comes from
the consideration that when we provide this capability as a function of a frame-
work, we can allow any plugin to use this capability. Specifically, we provide
the taint_resolver(vaddr) interface for plugins, and this function returns the
information related to the taint tags set on the virtual address specified with vaddr.
In addition, we have extended Volatility to integrate with TSK, i.e., disk forensics

capability. This capability is essential for our system because we have often faced
cases in which necessary data has not been loaded to physical memory due to on-
demand loading when we generate a memory dump. To solve this, when we parse
a memory dump with TaintVolatility and find a memory page that is not mapped
on memory, we first find the VAD(s) related to the page and then extract the path
of the file containing the memory page from the found VAD(s). After that, we use
TSK to parse the disk image and then obtain the location of the page in the disk
image. Then, we acquire the taint tags related to the page in a disk from a shadow
disk dump. We use pytsk[93], which is a python wrapper for TSK to invoke TSK
functions from TaintVolatility.
tf_impscan is a plugin designed to run on TaintVolatility and perform IAT recon-

struction by using the taint_resolver interface. tf_impscan is built on impscan,
which is a plugin for IAT reconstruction. An extension of tf_impscan over impscan is
API name resolution. tf_impscan resolves theAPI name using the taint_resolver
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of TaintVolatility, whereas impscan does this by reading themetadata of loadedDLLs
from the PEB. For the other steps of the IAT reconstruction procedure, i.e., IAT
identification and PE header restoration, we reuse the code of impscan with small
adjustments.

5.3 Experiments
In this section, we describe the experiments we conducted to evaluate the effective-
ness of our system. Specifically, we conducted three types of experiments. The
first is for showing the resistant capability against semantic evasion techniques.
The second is for showing the effectiveness of the integration of TaintVolatility
with a disk forensics tool. The third is for measuring performance degradation of
TaintVolatility, compared to vanilla impscan, and then showing the degradation is
within acceptable range.

5.3.1 Semantic Evasion Resistance

The goal of this experiment is to determine whether our system is effective enough
to resolve APIs obfuscated with the known semantic evasion techniques better than
current common IAT reconstruction tools.

Procedure
We prepared several Windows executables whose imported APIs were already
known. Then, we obfuscated the APIs imported by these executables using se-
mantic evasion techniques which we explained in Chapter 2 with Stealth Loader.
We used these obfuscated executables as a dataset for evaluating our system. For
simplicity, we did not apply any obfuscation to the code of these executables. In
this experiment, we focus on only imported APIs exported from our target DLLs.
Moreover, we set out of scope the cases in which an ordinal number, instead of an
address, is stored in an entry in IATs.
For comparison, we prepared 3 other IAT reconstruction tools, such as impscan,

impscan++, and Scylla. impscan and impscan++ are plugins for Volatility. imp-
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Table 5.1 Results of Resistant Capability Experiment

- Stolen Code Sliding Call Copied API DLL Unlinking Name Confusion Stealth Loader
tf_impscan ✓ ✓ ✓ ✓ ✓ ✓

impscan - - - - ✓ -
impscan++ - - - ✓ ✓ -
Scylla ✓* - - - ✓ -

!means that the tool successfully identified all APIs without being affected by position obfuscation techniques.
On the other hand, - means that it failed because it was affected by them. !* means when we gave the address
of the original entry point, it could successfully identify imported APIs.

scan++ is our developed plugin, which resolves API names using VADs, whereas the
original impscan does this using PEB. Scylla is an open-sourced IAT reconstruction
tool popular among malware analysts.

Results
Table 5.1 shows the results of this experiment. Our system successfully defeated all
semantic evasion techniques, whereas the others were evaded with some of them.
This is because these tools are designed to resolve API names by comparing the
addresses in an IAT with ones calculated from the base address of a loaded DLL
and RVA acquired from the EAT of the loaded DLL. To resolve the API name, these
addresses need to exactly match. However, due to Stolen Code, Sliding Call, and
Copied API Obfuscation, the addresses filled in the IATs point to buffers prepared
for the stolen, sliding or copied code, not the positions where APIs were originally
placed by a program loader. Thus, they did not match the calculated ones. As a result
of this, the comparison tools failed to resolve API names. The reason impscan++
can defeat DLL Unlinking is that it acquires the base addresses of loaded DLLs from
VADs, whereas DLL Unlinking hides them from the PEB. All tools are not affected
by Name Confusion because they do not filter any DLLs by their name. When name
confusion changes the name of a DLL, e.g., lernel32.dll from kernel32.dll, all tools
simply identify the IAT of the DLL, e.g., the IAT of lernel32.dll.
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5.3.2 Disk Forensics Integration

The goal of this experiment is to measure howmuch the integration of disk forensics
capability with TaintVolatility contributes to a better result of IAT reconstruction.

Procedure
We first prepared several Windows executables and executed them on our system.
When we analyzed their memory dumps, we resolved API names using TaintVolatil-
ity without disk forensics capability. Then, we enabled the capability and resolved
API names again. Lastly, we compared the results of each resolution, i.e., resolutions
with or without disk forensics capability.

Results
Table 5.2 shows the results of this experiment. These results shows that disk
forensics capability is essential for our system. Without it, our system failed to
resolve some APIs. Whether an API stays on a memory or not is totally dependent
on the behaviors of each running process. If an API has been already called by a
process during dynamic analysis, the API is loaded on a memory and is likely to be
still on the memory when we generate a memory dump. However, if it is not, it may
not be loaded on a memory when we make a memory dump.
As we have explained, our technique can handle both cases properly. When the

code of API stays on memory, we simply extract the information of the API from
shadowmemory. Additionally, when the code is on a disk, we do this from a shadow
disk using disk forensics capability.

5.3.3 Performance Measurement

The goal of this experiment is to measure performance degradation of TaintVolatil-
ity, compared to vanilla impscan and show that the degradation does not impose
significant impact on the effectiveness of tf_impscan.

111



Chapter 5 Taint-Assisted Static Malware Analysis

Table 5.2 Results of Disk Forensics Integration Experiment

- calc notepad taskmgr services iexplore lsass cmd
# of Imported APIs 380 242 363 300 143 91 233
# of Target APIs 215 173 275 168 95 52 161
# of Resolved APIs w/o DF 193 144 249 164 91 50 107
# of Resolved APIs w/ DF 215(22) 173(29) 275(26) 168(4) 95(4) 52(2) 161(54)

# of Imported APIs is the number of APIs imported by each executable. # of Target APIs is the number
of APIs exported from our target DLLs, which are defined in Subsection 5.2.3. # of Resolved APIs
w/o DF and # of Resolved APIs w/ DF are APIs that our system could resolve without and with disk
forensics capability. The numbers in parentheses are the APIs resolved from the shadow disk. DF
means Disk Forensics capability.

Procedure
We used the same memory dumps as the second experiment (Subsection 5.3.2) to
do this experiment. When we analyzed the memory dumps with the three tools,
impscan, tf_impscan without disk forensics capability, and tf_impscan with disk
forensics capability, we measured the elapsed seconds to complete their task, i.e.,
IAT reconstruction, with the time command. We used the sum of user and system
times as an indicator for comparison.
We conducted this experiment on a virtual machine on which Ubuntu Linux 14.04

was installed. We assigned 2 CPU cores and 2 GB memory for the virtual machine.
This virtual machine ran on MacBook Pro, which had 3.1 GHz Intel Core i7, 16 GB
memory, and 1TB flush storage.

Results
Table 5.3 shows the results of this experiment. The degradation rates of tf_impscan
w/o DF were from x1.2 to x1.4, while the ones of tf_impscan w/ DF were from
x1.4 to x2.0. These overheads mainly come from taint_resolver. Especially, when
it needs to access a shadow disk, i.e., when a memory page containing the target
virtual address is not loaded onto a physical memory yet, it takes more overhead
because it has to take more steps for the resolution, such as identifying the mapped
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Table 5.3 Results of Performance Experiment

- calc notepad taskmgr services iexplore lsass cmd
impscan 11.6 8.5 10.4 8.5 13.8 8.3 7.5
tf_impscan w/o DF 14.4 11.8 13.3 11.2 16.3 11.0 10.1
tf_impscan w/ DF 19.9 15.9 20.0 15.4 20.3 14.3 13.7

The unit of the numbers is seconds. We measured the performance with time command.
These numbers are the sum of user and system times of time command.

file and the position where the file is stored on a disk, and calculating the offset
of the corresponding address in the disk. Nevertheless, since even the maximum
degradation in this experimentwas less than x2.0, we consider that these performance
degradations are not a serious limitation of TaintVolatility and may be accepted in
practical fields.

5.4 Discussion
In this section, we discuss the limitations of our technique, the validity of our
experiments and platform dependency.

5.4.1 Limitation

We explain some limitations of our technique and then show our considerations for
each of them.

Control-flow Obfuscation
Our technique fails when code snippets are inserted in the control flow between
each entry in an IAT and the corresponding API code. This technique is called
control-flow obfuscation and used in API redirection [2]. In this situation, an entry
in an IAT points to the inserted code, not any API code, and the code does not have
any taint tags. Thus, we cannot resolve the API name simply by looking at the taint
tag of the instruction directly referenced from the IAT entry. To overcome this,
we are considering extending our technique by applying CFG analysis, as used in
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Eureka [55]. When an entry in an IAT points to the code that has no taint tags, we
begin analyzing the control flow starting at the entry and proceeding until it reaches
an instruction that has taint tags related to any API.

DLL Static Linking
When a system DLL is statically linked to a malware executable, we cannot identify
the APIs exported from theDLL [95]. This is because the codes of the APIs exported
from the DLL do not have any taint tags, even though we need taint tags to resolve
the API names. However, we consider that it is not easy to link a system DLL to a
malware executable in practice because there are several technical challenges. One
example is that doing so may cause a dependency problem between incompatible
DLL versions. Another is that the statically linked system DLL loses its portability
because the file is enlarged. We consider that these difficulties probably reduce the
attractiveness of static linking for malware in practical fields.

Incomplete Dynamic Analysis
If the execution of a malware does not reach the code for API name resolution during
the dynamic analysis, our system cannot resolve the API names of IAT entries. This
is because the addresses in IAT are not filled in when we generate a memory dump.
As you know, there are several anti-analysis techniques to detect the existence of
VMM or analysis environments [18][88], i.e., conditionally-protected executions.
Thus, if our analysis environment is detected with some of these techniques, the
execution is possibly stopped in the middle. We consider that this is a different
problem from the target of our paper, so we set it as beyond the scope because there
have been several studies for tackling this problem [30][94].

Implicit Flow
The implicit flow problem is a general limitation of taint analysis. Taint propagation
fails when tainted data is processed with implicit flow [96]. If malware processes
API codewith an implicit flowwithout changing its value before performing position
obfuscation techniques, the taint tags set on the API code are cleared, i.e., malware
can wash the taint tags set on the data. As a result, we lose the relationship between
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API code and the API name that we make in the preprocessing phase. To overcome
this, we will adapt the results of existing research [90][91] to our system.

5.4.2 Validity of Experiments

We consider that the experiments we had are reasonable for achieving our goal in this
chapter, even though we did not have any experiment using real-world malware. Our
goal is to propose a technique and develop a system resistant to semantic evasion.
To measure its resistance capability against semantic evasion, a malware in the
wild is not appropriate because we do not know its correct answers and a malware
is basically a complex of many anti-analyses and functions, i.e., it is difficult to
identify the causes when we fail to get expected results from real-world malware.
On the other hand, we used Windows executables in our experiments because we
can download the symbols for these executables and get the correct answers, i.e.,
which APIs are imported by an executable. Considering this fact, answer-known
Windows executables are more appropriate and reasonable than real-world malware
in terms of evaluating our system.

5.4.3 Platform Dependency

We have developed our system with targeting for 32bit-Windows 7 platform as an
analysis environment (guest OS). However, our technique is not limited to a specific
environment. That is, taint-based name resolution is independent of platforms and
architectures. We believe that we could also apply our techiniqeu to an Executable
and Linkable Format (ELF)-format executable. In ELF-format executable, it has
the Global Offset Table (GOT) to store the addresses of each external function.
Theoretically speaking, we can use the taint-based name resolution technique to
resolve the names of the addresses in GOT.
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5.5 Conclusion
In this chapter, we proposed a new Application Programming Interface (API) name
resolution based on taint analysis to solve the target-gap problem in static analysis.
We also described system components for IAT reconstruction whose API name
resolution is realized with our technique. Additionally, we demonstrated that this
system is generically effective for various types of semantic evasion techniques
through experiments.
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Conclusion

Malware analysis is time-consuming, error-prone, and requires in-depth domain
knowledge. Considering the amount of work required to analyze malware and the
number of newly emerging malware, it is natural to want to automate the malware
analysis process as much as possible. Security industry responses to this demand
have produced many automated malware analysis tools such as sandboxes or disas-
semblers. However, most of those automated tools are not capable of keeping pace
with malware evolution. Notably, the speed of emerging new evasion techniques is
faster than the security industry expectations. As a result, existing automated anal-
ysis tools lack resistance capabilities against evasion techniques. That is, malware
can evade these tools.
A reason whymalware can evade these analysis tools is that there is a gap between

what we really want to analyze and what we actually analyze. We call this gap the
target-gap problem. The target-gap problem is a design problem that commonly
exists in many analysis tools. One example of this problem is that we identify
our targets for analyses based on a PID of a malware process in cases of dynamic
analysis, even though what we really want to analyze is the malware code. Another
example is when we capture the executions of a specific API call, what we really
capture is the executions of the virtual memory address where the API should be
located. Similar to these examples, most existing analysis tools are designed to focus
on objects slightly different from what we really want to analyze. We presume the
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executions of our targets based on their indicators. This gap gives malware a chance
to evade those analysis techniques.
To make matters worse, users of these tools do not recognize the fact that they

fail to capture the essential behavior of malware under analysis. This is because the
users tend not to pay sufficient attention to false negatives. For example, when an
anti-virus product detects a legitimate program as malware by mistake, this false
positive gathers public attention [97][98]. On the other hand, when an anti-virus fails
to identify a single malware by mistake, this false negative is not given attention
because people rarely notice that it generates a false negative. Evasive malware
causes analysis tools to generate false negatives and, as mentioned earlier, users of
the tools are not likely to find these false negatives. Thus, evasion problems have
been left unsolved for a long time.
This thesis sheds light on the problem and proposes two new analysis techniques

based on taint tracking to solve the problem. We re-designed malware analysis
systems such as a sandbox and IAT reconstruction tool by considering the resistance
capability against evasion techniques as an inclusive-by-design property. Then,
we developed our tools with the new design. These tools are not only patching
a problem that exists in current systems but is sufficiently strong against evasion
techniques because they do not have the root cause of the problem. Due to this
design, our techniques are effective for existing evasion techniques and will be for
future-emerging ones as we proved in Subsections 4.5.2 and 4.5.3.
We summarize what we have achieved through this thesis as follows. In Chapter 2,

we discussed the target-gap problem, which is a design problem that commonly ex-
ists in API-oriented analysis techniques. We first explained both dynamic and
static techniques, i.e., API monitoring and IAT reconstruction, respectively. Next,
we mentioned evasion techniques for bypassing API-oriented analysis techniques.
Then, we described literature pertaining to both dynamic and static malware analysis
systems. Last, we described the target-gap problem and showed several situations
that malware analysts may face with existing analysis tools. In Chapter 3, we pre-
sented Stealth Loader as a proof-of-concept implementation that takes advantage of
the target-gap problem. We then experimentally showed that Stealth Loader evaded
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all primary analysis tools. We also qualitatively showed that Stealth Loader could
evade previously proposed API-oriented analysis techniques in academic studies. In
Chapter 4, we introduced an API monitoring capability based on taint analysis to
solve the target-gap problem in dynamic analysis using API Chaser. API Chaser was
designed and implemented to prevent malware from evading API monitoring. We
conducted experiments using actualmalicious codeswith various evasion techniques
to show that API Chaser correctly works according to its intended design of being
difficult to evade. In Chapter 5, we proposed an API name resolution capability
based on taint analysis to solve the target-gap problem in static analysis. We also
described system components for IAT reconstruction whose API name resolution is
achieved using our approach. Additionally, we showed based on experimental results
that this system is generically effective for various resolution evasion techniques.
Through the research for this thesis, we have solved many technical problems.

However, there are still two more unsolved subjects to establish a comprehensive
countermeasure against evasion techniques: implicit flow and performance. Implicit
flow is a challenging problem commonly implemented in all systems with a taint
analysis capability. Unfortunately, this problem has not been solved yet even though
there are several studies that investigated this problem [90][91][99]. API Chaser is
also affected by implicit flow similar to the way other taint-analysis-based systems
are affected. This means that malware authors are intentionally able to disturb taint
propagation if they embed a taint cleaning function that contains an implicit flow
logic in their malware, and the malware calls the function between every two data-
dependent functions of the malware. To make our systems more effective and robust
against real-world malware, we plan to investigate this problem and hope to develop
a solution in the near future.
The other remaining subject is performance degradation. Taint analysis increases

the performance penalty as a side-effect of executing a single machine instruction,
i.e., when an instruction is being executed, a taint-analysis-based system must check
the taint tags of the instruction and its operands, and then propagate one of them
to the destination operand by following pre-defined propagation rules. The impact
of these side-effects accumulates to a tremendous level considering the number of
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executed instructions while running malware on a VM for analysis. To mitigate this
performance degradation, several approaches [100][101] have been proposed so far,
including separation of the taint propagation module from the original executions
or pushing a part of the taint analysis to a hardware unit. We have already achieved
reasonable performance with API Chaser, as we evaluated in Subsection 4.5.5. Here,
reasonable means that API Chaser could execute malware without being detected
using a timing attack, as we discussed in Subsection 4.6.3. However, to prepare for
cases in which malware narrows the time slot for detection, we must improve the
performance of API Chaser, for example, by applying existing research results to
our systems.
In conclusion, this thesis brings evasion techniques involving target code exe-

cutions to an end. In other words, as far as malware executes its codes, we can
capture the executions and monitor its behaviors without being evaded in dynamic
analysis. Most existing evasion techniques involve code executions. For example,
target-evasive malware changes the instance, i.e., process, to execute its malicious
codes, but the code itself is executed. Another example is that hook-evasive malware
moves a part of the code of a specific API to a different address from its original
position, but the code of the API is executed. Similar to these examples, as far as
malware performs malicious actions involving its code executions, we can capture
the malware behaviors even if malware uses evasion techniques.
As future directions for this research, we describe two possible future topics:

the generalization of taint-based approaches and evasion techniques without code
executions. The generalization of taint-based approaches means that we would
explore new applications for taint analysis in security and non-security fields. Taint
analysis was previously used only for data-flow analysis, but we showed that it could
be used to capture the execution of target codes with code tainting. If we take a
different viewpoint to this new application of taint analysis, this approach can add
meaning to inorganic bytes in data storage such as memory or disks as we regularly
do with symbols or debug headers for analyses or forensics. We call the symbols or
debug headers static symbols for convenience. A static symbol comprises position
information such as a virtual address or offset and semantic information such as
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the names of functions or variables. We can add semantic information to a byte in
memory or a disk if the address of the byte matches the position of a static symbol.
However, since malware intentionally removes symbols and debug headers from its
executable to disrupt analyses, we cannot make use of static symbols for malware
analysis in many cases. Furthermore, malware can evade the position of specific
data or code by copying them from its original location to dynamically allocated
memory as we showed in Chapter 2. As a result, static symbols are not sufficiently
practical for malware analysis in many cases.
We showed that taint analysis is useful in adding the meaning to inorganic bytes

in an analysis environment, even if malware drops static symbols. We relate an API
to a taint tag to which a unique value is assigned and then set it to the code of the
API. This results in complementing the lack of static symbols for precise analyses
since we acquire the semantics of code or data from the taint tag set to it. We
call these taint tags taint symbols. Taint symbols have two advantages over static
symbols for malware analysis. The first advantage is that we can safely manage taint
symbols without being compromised or disturbed by malware running in a guest OS
since taint analysis is performed in the VM layer, which is not directly affected by
malware running in a guest OS. The second is that we can track the movement of
the target code and data by propagating the respective taint tags set to the code and
data. So, if malware dynamically defines a data structure by collecting variables
defined in some known data structure, we can identify each variable in the malware
data structure with the taint tags propagated from their source data structures. This
property allows us to accelerate the analysis of unknown data structures.
We believe that taint symbols can be applied to other analysis tools, not only

for malware analysis purposes but also to cases that require precise analyses such
as program testing or debugging in software engineering fields. So, we have two
future directions for this research. The first is that we will extend other malware
analysis tools except for sandboxes or forensics with taint analysis as we showed in
this thesis. Taint symbols are generic and can be applied in many security situations
such as vulnerability research or disassemblers. The second is that we will apply
taint symbols to debugging or software engineering. Taint symbols may be useful
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in analyzing dynamically generated code or data with a just-in-time compiler, even
though the code for analysis may not have malicious intent unlike malware.
Another avenue of research for our work that we wish to pursue is to address a

new type of evasion technique that does not involve code executions. An example of
this type of evasion technique is full ROP malware. When a malware author writes
his/her entire malware using the ROP technique, the malware possibly does not have
any code inside of it to perform a malicious action. Specifically, this malware has
only a set of return addresses for jumping to each gadget and arguments for them. So,
it has no code to execute inside. Since our taint-based approaches require executions
of target codes for monitoring, they are not effective with respect to ROP malware.
To cover ROP malware, we must extend our target identification logic to be finer

grained. ROPmalware does not involve malicious code executions, but its behaviors
have characteristics. That is, there are many features when using the ROP technique.
These features allow us to identify the behaviors triggered by ROP. For example, we
first taint the entire ROP malware with a taint tag, and then we monitor a control
transfer whose destination address is tainted, but the instruction itself is not tainted.
This situation indicates that the control transfer destination is determined by tainted
data, which are controlled by malware. So, we should monitor the behaviors that
occur after this control transfer is observed.
Another new type of evasion technique that does not involve code executions

is side effect malware. We consider that it may be possible to take advantage of
the side effects of some behaviors to achieve a different purpose. An example is
Meltdown and Spectre [102]. A characteristic feature of these attacks is that they
take advantage of side effects of modern processor out-of-order executions. Recent
CPUs have many functionalities and have become so complicated that there are few
people who understand the entire CPU architecture in detail. Moreover, when we
consider software running on hardware such as an OS, drivers, middleware, and
applications, the complexity of the entire architecture to perform one action on a
computer exceeds the limit that one person can recognize. So, when we execute
one action on a computer, a hundred or thousand side effects occur along with
performing that action. When malware authors conduct in-depth investigations on
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side effects and find a useful combination of them to achieve their goal, they can
accomplish the goal with only side effects without executing malicious code. Again,
since our taint-based approaches require executions of target codes for monitoring,
it is no longer effective against this type of evasion technique.
To cover side effect malware, we must extend the definition of taint propagation.

We now propagate taint tags from one data set to another only when there is a direct
relationship such as data movement or arithmetic computations between the two data
sets. However, to create a relationship between more sensitive data, we propagate
taint tags when there is an indirect relationship as well such as in cases of code
dependency. This approach may currently lead to over tainting, but it also has the
possibility of finding more sensitive relationships between data, which may contain
semantic relationships or side effects. We will investigate an approach to achieve
them without losing practicality as a malware analysis system for solving real-world
problems.
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