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Abstract 
 

The number of mobile applications is increasing rapidly, which has 
resulted in massive mobile network traffic. In order to guarantee high 
quality of service/experience (QoS/QoE), such as providing high quality 
video without playback freezing, it is important to control bitrate 
adaptively through predicting future throughput distribution with high 
accuracy. An accurate throughput prediction can contribute a lot to 
improving QoS/QoE. In order to solve this problem, transmission control 
protocol (TCP) throughput prediction methods are proposed in this thesis. 
   First, TCP throughput prediction methods using statistics and machine 
learning are proposed. A novel approach is proposed which utilizes hidden 
Markov model (HMM) and Gaussian mixture model (GMM) to deal with 
historical time series of throughput and judge fluctuation factor with total 
variance when predicting future throughput. Besides, an advanced model 
which is history-based throughput prediction method utilizing time series 
analysis and machine learning techniques for mobile network 
communication is proposed. This method is called the hybrid prediction 
with the autoregressive model and hidden Markov model (HOAH). 
Different from existing methods, HOAH uses support vector machine 
(SVM) to classify the throughput transition into two classes and predicts 
the TCP throughput by switching between the autoregressive model (AR 
Model) and the Gaussian mixture model-hidden Markov model (GMM-
HMM). 
    Second, TCP throughput prediction method using neural networks for 
mobile network is proposed which is named as TRUST (Throughput 
prediction based on LSTM). TRUST has two stages: user movement 
pattern identification and throughput prediction. In the prediction stage, 
the long short-term memory (LSTM) model is employed for TCP 
throughput prediction. TRUST takes all the communication quality 
factors, sensor data and scenario information into consideration. Field 
experiments are conducted to evaluate TRUST in various scenarios. The 
results indicate that TRUST can predict future throughput with higher 
accuracy than the conventional methods, which decreases the throughput 
prediction error by maximum 44% under the moving bus scenario. 
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    Third, a trace-based emulation environment is established and adaptive 
bitrate control method using throughput prediction is proposed. Dynamic 
adaptive video streaming over HTTP (DASH) is widely studied and 
adopted in modern video players for ensuring user quality of experience 
(QoE) since QoE directly affects the revenue. Basically, the algorithms 
need to be tested with large-scale deployment. However, it is not always 
possible in academic research. We established a video transmission system 
with DASH which enables replicable trace-based emulations. The 
emulation enables us to compare different methods under the artificially 
same condition with limited experiments. We also proposed a new 
adaptive bitrate (ABR) control method which incorporating both 
prediction and buffer occupancy information named decision map method 
(DMM). DMM creates both aggressive and conservative mechanisms to 
handle different network conditions. The emulation results demonstrate 
that the DMM can achieve better performance in QoE than conventional 
methods, showing the efficiency of the DMM algorithm. 
    In conclusion, this thesis proposes TCP throughput prediction methods, 
and experiments are conducted to evaluate the performances of these 
proposals for adaptive bitrate control. The results conclude that the 
proposals can predict throughput accurately and are effective for adaptive 
bitrate control. Meanwhile, we propose a new ABR method incorporating 
both prediction and buffer occupancy information which improves the 
performance further. 
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1.1    Background 
It is important to ensure high Quality of Service (QoS) and Quality of 

experience (QoE) for users in wireless networks. As shown in Figure 1.1, the number of 
mobile applications is increasing rapidly, which has resulted in massive mobile network 
traffic. In order to guarantee high QoS/QoE (such as support higher quality video 
without playback freezing), it is important to control bitrate adaptively by predicting 
future throughput distribution with high accuracy. An accurate throughput prediction 
can contribute a lot to improving QoS/QoE as reported in [1], [2]. 

 

 
Figure 1.1  The rapid increasing of mobile network traffic. 

  

Although there have been many researches for throughput prediction, it is still 
a challenging topic especially in mobile networks due to the fact that few methods have 
taken user moving mode and the fluctuation characteristic of session into consideration. 
For example, current methods adopt one model to predict throughput for the whole 
session which is different to adaptively fit to the throughput variation during one 
session. Therefore, existing prediction methods are not fit for moving user scenarios, 
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which may lead to large prediction error. Moreover, no effective prediction model is 
universally accepted by all researchers for adaptive bitrate control. To solve the problem 
of lacking an accurate measurement of network parameters (e.g. received signal strength 
and future number of wireless users) for many throughput prediction methods, we 
propose throughput prediction models to predict the future throughput. The application 
of predicted throughput for adaptive bitrate control can be categorized into two kinds: 1) 
Calculating the amount of possible future data to be delivered and combining buffer 
control for adaptive bitrate control, such as in [1], [3]. 2) Controlling the bitrate directly 
with the predicted throughput of future time [4], [5].  

The accuracy of throughput prediction is critical as depicted in [6]. Zou et al. 
[2] held that the combination of throughput prediction and buffer occupancy or stability 
function could perform better than the existing methods. It reduces the gap to 4%, 
which indicates that cellular operators and content providers improve their video QoE 
largely by the prediction of available bandwidth and shares it via application 
programming interface (API). Yin et al. in [1], [7] showed that QoE decrease with the 
increase of throughput prediction error when controlling the bitrate of video streaming. 
Moreover, even the 0.1 prediction error difference affects the performance of bitrate 
control and QoS/QoE for many applications such as Internet Protocol Television 
(IPTV). Therefore, transmission control protocol (TCP) throughput must be predicted 
accurately. 

In order to achieve this goal, we first propose TCP throughput prediction 
methods using statistics and machine learning. A novel approach utilizes hidden Markov 
model (HMM) with Gaussian mixture model (GMM) to deal with historical time series 
of throughput and judge fluctuation factor with total variance when predicting future 
throughput. History data are separated into various groups according to the value range 
as observations. Then data are clustered into different classes with multi-component 
Gaussian mixture model and defined as hidden states. After obtaining state sequence 
and observation sequence, we train data with hidden Markov model and calculate the 
most probable state transition path. Then we judge fluctuation (stationary or non-
stationary) of current time according to the fluctuation factor calculated by former state 
transition path. Finally, we predict throughput of following time with corresponding 
method: linear regression for stationary process and locally weighted linear regression 
for non-stationary process. Besides this, a history-based throughput prediction method 
that utilizes time series analysis and machine learning techniques for mobile network 
communication is proposed. This method is called the hybrid prediction with the 
autoregressive model and hidden Markov model (HOAH). Different from existing 
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methods, HOAH uses support vector machine (SVM) to classify the throughput 
transition into two classes, and predicts the TCP throughput by switching between the 
autoregressive model (AR Model) and the Gaussian mixture model-hidden Markov 
model (GMM-HMM). We conduct field experiments to evaluate the proposed method 
in seven different scenarios. The results show that HOAH can predict future throughput 
effectively and decreases the prediction error by a maximum of 55.95% compared with 
other methods. 

Second, we propose a TCP throughput prediction using neural networks which 
is named TRUST. This method has two stages: user movement pattern identification 
and throughput prediction. In the prediction stage, the long short-term memory (LSTM) 
model is employed for TCP throughput prediction. TRUST takes all the communication 
quality factors, sensor data and scenario information into consideration. Field 
experiments are conducted to evaluate TRUST in various scenarios. The results indicate 
that TRUST can predict future throughput with higher accuracy than the conventional 
methods, which decreases the throughput prediction error by maximum 44% under the 
moving bus scenario. 

Third, in order to validate the prediction methods and provide reliable video 
streaming with efficient wireless resource, adaptive bitrate control using throughput 
prediction is explored. Meanwhile, a trace-based emulation system is established to 
exam different methods using limited experiments. Dynamic adaptive video streaming 
over HTTP (DASH) is widely studied and adopted in modern video players for ensuring 
user QoE since QoE directly affects the revenue. In DASH, adaptive bitrate control is a 
key part for achieving high quality of service and QoE when transmitting video 
streaming. The ultimate goal of adaptive bitrate control is to maximize video bitrate 
while minimizing rebuffering events and duration. However, this task is non-trivial 
since the network condition is not always stable. The choice of higher bitrate may cause 
frequent video freezing which annoying the user while choosing lower bitrate may give 
worse experience. Therefore, throughput prediction plays an important role in helping 
select the proper bitrate of video dynamically. We implement the proposal into DASH-
JS [8] and evaluate the performance of our approach. The DASH-JS structure is 
modified and extended for flexible purposes. 

Basically, the algorithms need to be tested with large-scale deployment. 
However, it is not always possible in academic research. In this paper, we establish a 
replicable trace-based emulation environment and we study the influence of different 
prediction methods on adaptive video streaming. The emulation enables us to compare 
different methods under the artificially same condition, with limited experiment. The 
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quality metrics such as average bitrate, the number of rebuffering events, the duration of 
rebuffering, etc. are examined. The results indicate that a good prediction can provide 
better user QoE and that predicted throughput is effective for bitrate selection, thus 
provide highly-reliable mobile video streaming with high bitrate and avoid rebuffering 
event. 

In order to further improve the QoE, we propose a new adaptive bitrate (ABR) 
control method named decision map method (DMM). In this method, the buffer 
occupancy information is considered simultaneously with the prediction result. DMM 
creates both aggressive and conservative mechanisms to handle different network 
condition. The emulation results demonstrate that the DMM can achieve better 
performance in QoE than conventional methods, showing the efficiency of the DMM 
algorithm.  

 

1.2    Thesis organization 

This thesis consists of six chapters as follows.  
Chapter 1 introduces the background and motivation of this research. As 

throughput prediction plays a significant role for adaptive bitrate in mobile network, we 
focus on this topic and construct several prediction models. 

In Chapter 2, we introduce related works of TCP throughput prediction 
methodology for wireless network, user movement pattern recognition, adaptive bitrate 
control, MPEG-DASH, and QoS/QoE optimization. 

Chapter 3 depicts the TCP throughput prediction methods using statistics and 
machine learning. A novel approach is proposed utilizing HMM with GMM to deal with 
historical time series of throughput and judge fluctuation factor with total variance 
when predicting future throughput. Based on the model, a history-based throughput 
prediction method that utilizes time series analysis and machine learning techniques for 
mobile network communication is proposed. This method is called the hybrid prediction 
with the autoregressive model and hidden Markov model (HOAH). 

Chapter 4 presents the TCP throughput prediction using neural network. The 
method uses measured throughput, received signal strength indicator (RSSI), Cell ID 
and other parameters via neural network to predict future throughput. Results show the 
method can predict throughput effectively.  

Chapter 5 proposes a trace-based emulation system and an adaptive bitrate 
control method. A replicable trace-based emulation environment is established and the 
influence of different prediction methods on adaptive video streaming is studied. The 
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results indicate that a good prediction can provide better user QoE. In order to further 
improve the QoE, a new ABR method is proposed in which the buffer occupancy is 
considered simultaneously. The emulation results demonstrate that DMM can achieve 
better performance in QoE than conventional methods. 
 Chapter 6 gives overall conclusions and future work. 
 Figure 1.2 shows the relationship of the research described in Chapter 3, 4 and 5. 
As shown in the figure, in order to predict future TCP throughput, we construct 
throughput prediction models in Chapter 3 and 4. Based on the throughput prediction 
methodologies, the adaptive bitrate technique is put forward to MPEG-DASH to ensure 
high QoS/QoE. 
 

 
Figure 1.2  Structure and relationship of the research chapter in this thesis. 
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2.1    Wireless communication 

Wireless communication mainly uses wireless techniques such as radio wave, 
magnetic, light and sound to transmit information. It brought large convenience for 
human life. One of the important applications of wireless communication is 
constructing connection for wireless network. 

Wireless network is the kind of computer network that uses wireless connection 
to transmit information between network nodes. There are many types of wireless 
network, such as wireless LAN, wireless WAN, wireless ad hoc network and mobile 
network. 

There are many technologies for wireless communication. Some of them are 
introduced in the following.  

High speed downlink packet access (HSDPA) is an enhanced version of 3rd 
mobile communications protocol in the high-speed packet access family. It allows 
networks based on the universal mobile telecommunications system to have higher data 
speed and capacity. HSDPA decreases latency and the round trip time for applications. 
In this thesis, we use the public HSDPA dataset as part of the data to construct our 
proposal. 

Long-term evolution (LTE) is a standard developed by 3rd Generation 
Partnership Project for high speed wireless communication in mobile network. LTE can 
realize higher transmission speed, lower delay and higher bandwidth efficiency. 
Moreover, LTE supports various carrier bandwidths from 1.4 MHz to 20 MHz and 
supports both frequency division duplexing and time-division duplexing. 

Wi-Fi is a technique to realize the connection of terminals such as PC and 
mobile phone to the internet base on IEEE 802.11 in wireless local area network. The 
coverage area of Wi-Fi can be 20 meters indoors and larger ranges outdoors.  

There are many important characteristics in wireless communication. 
Throughput is the actual data being delivered in a unit time of the transmission link. 
Transmission control protocol (TCP) is one of the main internet protocol. It provides a 
reliable and robust communication service with the internet protocol (IP) together. As 
the data we collected or utilized are mainly TCP throughput, we take these data as the 

Related work 



Chapter 2: Related work 
 

 

7 

 

main objective for our methods. Received signal strength indicator (RSSI) indicates the 
power of received radio signal, which represents the relative signal strength. Cell ID is 
the unique number of the base station used to deliver the signal in the mobile network. 

 

2.2    User movement pattern recognition 

User movement pattern recognition can contribute to the progress of many 
researches. For example, it can provide the information of the situation a client is in, 
thus can deliver the information of environment change to the server side which the 
client is communicate with via the internet. It also has significant meaning for the topic 
of human trace prediction, geography information prediction and traffic management of 
urban transportation. 

Many researches [9-15] have been conducted for the movement pattern 
recognition of user. In [9], the author uses global positioning system (GPS) 
measurements to identify the movement pattern.  While based on [10], [14], [15], the 
data collection of GPS information is not available in some areas such as in the subway 
station which is usually located underground.  

Thus the authors in [10], [11], [14] propose methods to utilize other sensor data 
instead of GPS information. User movement patterns include transportation mode and 
human activity. Transportation modes contain walk, travel by bus and etc. [11-16]. The 
patterns of human activity consist of standing, sitting, and etc. [17-21]. In [12], different 
machine learning methods, such as k-NN, SVM, RF and decision tree, are adopted to 
identify transportation modes using the accelerometer and gyro sensors. In [14], 
different statistical characteristics including mean, variance, and standard deviation in 
frequency domain are utilized to identify various transportation modes, such as walk, 
running, and traveling by bike and bus. The k-NN, SVM, and RF are adopted. The 
accelerometer sensors deployed on the mobile phone and wearable equipment are 
applied to identify human activity in [17-20]. Deep learning techniques such as CNN 
are used to identify the human activity [20], [21].  
 

2.3    Throughput prediction 

With the increase of mobile applications, massive mobile network traffic has 
been emerging. An accurate throughput prediction can contribute a lot to improving 
QoS/QoE as reported in [1], [2]. Moreover, throughput prediction is an important part 
for anticipatory network based on [22]. Throughput prediction is challenging especially 
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in mobile networks due to the fluctuation characteristic of session [23]. It plays an 
essential role in adaptive bitrate control [24-26]. The performance of bitrate control and 
QoS/QoE will be influenced by even 0.1 prediction error in many applications such as 
IPTV. Therefore, the accurate TCP throughput prediction is significant [27], [28].  

According to [29], the existing TCP throughput prediction methods can be 
divided into two types: formula-based approach and history-based approach. Formula-
based approaches employ mathematical functions to calculate the future throughput 
with other observable network parameters, such as round-trip time (RTT), packet loss 
rate, and TCP window size. For example, Mathis et al. [30] demonstrated a 
methodology to predict the bandwidth for TCP implementations with congestion 
avoidance algorithm in various situations. The model is effective in predicting shared 
bandwidth, but the assumption is strict and does not consider the timeout-driven 
behavior. Padhye et al. [31] proposed a model to compute the TCP flow throughput as a 
function of RTT, packet loss rate, TCP congestion window size, and TCP retransmission 
timeout. Although the model considers the TCP timeouts, this method is sensitive to 
RTT fluctuation, which sometimes leads to large prediction errors. Floyd et al. [32] 
extended Mathis’s work and proposed an equation-based congestion control for unicast 
applications. Experiments verified that the method could provide better performance 
over a wide range of timescales for unreliable applications. However, this approach is 
not robust against network parameter estimation errors. 

On the other hand, history-based approaches utilize methodologies such as 
time-series analysis to predict future TCP throughput. In this approach, the observed 
throughput data are treated as time-series data, and future throughput transitions are 
predicted by various methodologies. For example, Vazhkudai et al. [33] mentioned 
several predictors, such as average value, median value, and autoregressive integrated 
moving average (ARIMA). He et al. [29] also mentioned similar linear predictors, such 
as moving average (MA), exponential weighted moving average (EWMA), and Holt 
Winters (HW), which has proved that history-based approaches could achieve higher 
accuracy compared with formula-based approaches. Swany et al. [34] proposed a novel 
method to predict the throughput with cumulative distribution functions (CDFs) of 
history time series. Experiment results concluded that the method could predict future 
throughput with acceptable prediction errors. Yoshida et al. [25] raised a stochastic 
method combining the stationary and non-stationary Gaussian models to predict the 
possible value range. The method performs remarkably well, but does not consider the 
user moving scenarios. 

All of the above-mentioned prediction methods fail to consider the user moving 
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mode and network characteristics such as communication qualities in mobile network. 
To fill these gaps, we conduct the research in this thesis.  
 

2.4    Adaptive bitrate control 
 2.4.1   Overview 

It is important to provide video streaming with high QoE for user which 
becomes more and more essential, since the user QoE is directly related to service 
provider’s revenue [35, 36]. In order to maximize the QoE, the basic requirement is 
providing contents with higher video quality (or bitrate) and fewer rebuffering duration. 
Since the network condition is not always stable, transmitting contents with constant 
bitrate may result in troubles. Suppose the highest streaming quality is always chosen 
under an environment with inadequate bandwidth, the rebuffering events may occur 
very frequently. Then, the user may be upset and quit the video session, resulting in less 
chance of promoting commercial contents such as advertisement. However, if the 
possible network throughput is not fully exploited, the video may be streamed with a 
relatively low quality, which may also damage the user QoE and decrease the user 
engagement. Therefore, the adaptive bitrate control should be involved during the video 
streaming to choose proper video bitrate dynamically via trading off between video 
quality and rebuffering.  

There exist several adaptive streaming protocols such as Adobe HTTP 
Dynamic Streaming [37], Apple HTTP Live Streaming [38], and Microsoft Smooth 
Streaming [39]. Recent years, dynamic adaptive video streaming over HTTP (DASH) is 
studied worldwide as a unifying standard [40]. In DASH protocol, the video contents 
are divided into short chunks and encoded at different bitrate levels. Then the client 
player can request the segment chunks with proper bitrate successively and dynamically 
according to the network condition. The algorithm for selecting download bitrate is 
called adaptive bitrate (ABR) algorithm. The ABR algorithm employs the network 
condition logs (such as throughput, buffer state and etc.) which monitoring in the client 
side to decide the bitrate of the latter downloading chunks. The purpose is maximizing 
the video quality while reducing rebuffering. The basic ABR control method is rate-
based (RB) [41-43]. The RB algorithm selects the next downloading chunk by 
estimating the future throughput. The development of ABR method is still ongoing 
since it started in only recent few years. RB algorithm may perform badly if the 
prediction is inaccurate. 

In the ABR algorithms which involves prediction, the throughput prediction 
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method is basically chosen as harmonic mean of the former several measurements. The 
impacts of different throughput prediction methods are not discussed. In this thesis, we 
mainly focus on the influence of different prediction methods on the RB adaptive 
control algorithm. In order to evaluate the methods with limited experiments, we 
established a replicable trace-based emulation environment. Since there are rarely 
literatures discussing such subject, our work may give a deeper insight into the effect of 
the throughput prediction. Note that, this thesis is not aiming to develop an algorithm 
which can defeat other state-of-the-art ABR methods. This is a future research topic. 
But we evaluate how the prediction methods will influence the performance of the 
adaptive bitrate control. Then some design guidance of ABR algorithm can be achieved, 
giving directions of future work. The quality metrics such as average bitrate, the number 
of rebuffering events, the duration of rebuffering, initial delay, bitrate switches are 
calculated and compared. 
 

2.4.2   MPEG-DASH 

MPEG-Dynamic Adaptive Streaming over HTTP (DASH) [44] is an adaptive 
bitrate streaming technique which realizes the video streaming with high quality 
provided to user through the internet from the HTTP server. As the technology is 
developed by Moving Picture Experts Group (MPEG), it is also named MPEG-DASH.  

MPEG-DASH standard is designed for HTTP streaming. In MPEG-DASH, the 
media source of various resolutions is encoded at different bitrate. The media content is 
divided into various segments. Media Presentation Description (MPD) contains the 
information of media content components and segments such as resolution, bitrate, start 
time and end time. Figure 2.1 shows the structure of MPD file. The client can choose 
the proper bitrate based on the network condition. An example of dynamic bitrate 
adaptation for multimedia content is shown in Figure 2.2. 
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Figure 2.1  Structure of Multimedia Presentation Description (MPD) file [44]. 
 
 

 

Figure 2.2  Example of dynamic bitrate adaptiation in MEPG-DASH [44]. 
 

DASH-JS [43] is a JavaScript-based MPEG-DASH client. It achieves a DASH 
client which is flexible and independent of browser by the Media Source API of 
Google’s Chrome browser. It is robust in the real-world environment and has the best 
performing adaption algorithms. Moreover, it realizes the best application for the 
playback of media content for MPEG-DASH.  
 



Chapter 2: Related work 
 

 

12 

 

2.5    QoS and QoE 

Quality of service (QoS) represents the performance of service for computer 
network, which is from the viewpoint of media provider [45]. The parameters of QoS 
include throughput, bitrate, packet loss, delay and etc. QoS can be utilized as the quality 
metric of a service. High QoS usually means providing high performance media with 
high bitrate, low latency and low bitrate error. The QoS of mobile network is very 
complicated as the communication is easily to be affected by many factors such as the 
transmission mechanism and environment. 

Quality of experience (QoE) is used to measure the user’s experience and 
feeling of the communication service. It depicts the whole experience of the client side 
to the service of the received information. The QoE generates from QoS. The difference 
of them are that QoS focuses on the service parameters and much relates to the media 
and the communication network, while QoE concentrates on the subjective perception  
from the user’s point of view. Based on [46], the QoE factors include human influence, 
system influence and context influence as shown in Table 2.1. 
 

Table 2.1  QoE Factors [46]. 

Human Influence 

1. Low-level processing (visual and auditory acuity, gender, age, mood) 
2. Higher-level processing (cognitive processes, socio-cultural and 
economic background, expectations, needs and goals, other personality 
traits, etc.) 

System Influence 

1. Content-related 
2. Media-related (encoding, resolution, sample rate, etc.) 
3. Network-related (bandwidth, delay, jitter, etc.) 
4. Device-related (screen resolution, display size, etc.) 

Context Influence 

1. Physical context (location and space) 
2. Temporal context (time of day, frequency of use, etc.) 
3. Social context (inter-personal relations during experience) 
4. Economic context 
5. Task context (multitasking, interruptions, task type) 
6. Technical and information context (relationship between systems) 

 

 

QoE is important for the design of a system especially for video service. 
Subjective quality evaluation and objective evaluation methods are used to obtain the 
QoE of the communication service. Subjective quality evaluation needs lots of 
volunteers to offer their evaluation results, thus it is very time consuming. The objective 
evaluation method uses a stable function and related parameters to calculate the QoE. It 
can save more time and labor force, though may be not as accurate as the subjective 
quality evaluation which is actually from user’s evaluation. 
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The main purpose of network management is providing high QoS and QoE for 
the media transmission. Adaptive bitrate control is the main technique in network 
management. In this thesis, QoE is adopted as the measurement which is aimed to be 
optimized for the adaptive bitrate control methods. 
 

2.6    Summary 

As mentioned in the above parts, throughput prediction plays an important role 
for adaptive bitrate control in mobile network. The realization of adaptive bitrate control 
can ensure high QoS/QoE for video streaming. All of these motivate the research in this 
thesis. We construct TCP throughput prediction methods in this thesis, and conduct field 
experiments to evaluate the methods. Meanwhile, the performances of the adaptive 
bitrate control method utilizing proposed methods are evaluated. 
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3 
 
 
 
Throughput prediction is one of the promising techniques to improve the quality of 
service (QoS) and quality of experience (QoE) of mobile applications. To address the 
problem of predicting future throughput distribution accurately during the whole 
session, which can exhibit large throughput fluctuations in different scenarios, 
especially scenarios of moving user, we propose the history-based throughput prediction 
methods that utilize time series analysis and machine learning techniques for mobile 
network communication. The throughput prediction method utilizing hidden Markov 
model (HMM) with Gaussian mixture model (GMM) is proposed to deal with history 
time series of throughput and judge fluctuation factor with total variance when 
predicting future throughput. Further, a developed version of this method called the 
hybrid prediction with the autoregressive model and hidden Markov model (HOAH) is 
proposed. Different from existing methods, HOAH uses support vector machine (SVM) 
to classify the throughput transition into two classes and predicts the transmission 
control protocol (TCP) throughput by switching between the autoregressive model (AR 
Model) and the Gaussian mixture model-hidden Markov model (GMM-HMM).  
 
 

3.1    Time series analysis and forecast 

3.1.1   Time series  

A time series is a series of samples in time order. Generally a time series is a 
sequence obtained continuously in stable time interval which is a series of discrete data. 
Time series are widely used in statistics, pattern recognition, econometrics, signal 
processing, communication engineering, weather forecasting and other areas. In the 
history based method for throughput prediction in the former chapter, throughput data is 
generally being considered as time series. Thus in this research, we consider the TCP 
throughput measurements as time series. Figure 3.1 shows an example of time series. 

*This chapter is adapted from the work published in [49], [63]. 

TCP throughput prediction using 
time series analysis by statistics 

and machine learning* 
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Figure 3.1  Example of time series. 

 

3.1.2   Time series analysis techniques  

Time series analysis aims at extracting the characteristics of time series data. 
The analysis methods include frequency-domain methods and time-domain methods. As 
the throughput data is temporal-spatial measurements which the most important 
characteristic is value, thus we focus on time-domain methods.  

In this research, statistical analysis includes stationarity analysis, correlation 
and partial correlation, mean value and variance. 

1. Stationarity analysis  
Stationarity analysis plays an important role in the constructed prediction 

model in this thesis. Stationarity process is one kind of stochastic process, the 
unconditional joint probability distribution of which does not change with time. [47] 
Thus parameters such as mean value also do not change over time. 

Wide-sense stationarity is commonly used in signal processing. In this case, the 
mean value keep stable, and the autocorrelation only depends on the time interval 
between the two points. In this thesis, wide-sense stationary is utilized.  

Unit root test tests whether a time series variable is non-stationary and whether 
it shows a unit root. Augmented Dickey–Fuller test (ADF) is one of the most popular 
unit root test methods. There are three models in the ADF test. In the thesis, we utilize 
the three models in ADF test to identify the data stationarity situation and to predict 
future data. 

2. Correlation and partial correlation 
Correlation is used to represent the statistical association. Commonly it is 

adopted to show how close the linear relationship between two variables. 
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Autocorrelation describes the correlation between a time series of throughput data and 
the time lagged copy of itself. It can show the similarity between samples which appear 
in different time periods. Partial correlation gives the partial correlation of a time series 
of throughput data with its own shorter lagged values. Both of these are being used in 
the throughput prediction methods. 

3. Mean and variance 
There are many kinds of mean values in mathematics including the arithmetic 

mean (AM), geometric mean (GM), harmonic mean (HM), which all reflects the 
average of samples. 

Variance is the expectation of the squared standard deviation of the variables 
from its mean value. It shows how far the values are distributed from the average value. 
 

3.1.3   Time series forecast techniques 

The time series forecast techniques utilize former data of the time series to 
predict future data. The former data is adopted to construct a model which covers the 
characteristics of the time series, then the model is used to forecast following data. The 
popular methods are techniques such as regression, moving average, Kalman filtering, 
linear prediction, curve fitting, machine learning etc.  
 

3.2    Throughput data collection and analysis 

First, we illustrate the throughput data collection, and analyze the 
characteristics of measurements. 

An Android application developed by our laboratory is utilized to collect 
communication measurements. The application is developed by Java through android 
studio. The measurements include throughput data, packet size, RSSI, Cell ID, global 
positioning system (GPS) data, interface, battery status and other sensor data. The 
collected data are saved in the cellphone and can be sent to the user through email. We 
simply utilize GPS to get the location information. Figure 3.2 shows the screen when 
the application is working. 
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Figure 3.2  Screen of the application when it is working. 

 

The throughput measurements can be visualized by google API. Figure 3.3 
shows the visualization of throughput data with location information. The red color 
represents the throughput value is high, while the green color represents a low value of 
throughput data.  
 

 

Figure 3.3  Visualization of throughput data with location information. 
 

The throughput data are collected in different scenarios. The scenarios are 
shown in Table 3.1 and 3.2. We define one scenario as the situations which share the 
same scenarios properties including time, location, user moving mode and interface. 
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Besides the data collected by ourselves, we also use a public dataset which contains logs 
from TCP streaming sessions in Telenor's 3G/HSDPA mobile wireless network in 
Norway. [48] 

 
Table 3.1  Scenario properties. 

Scenario Property Details 
Time Morning, Afternoon, Evening 

Location Lab, One stable trace, etc. 
User moving mode Subway, Bus, Train, Walk, Static 

Interface LTE, Wi-Fi 
 
 

Table 3.2  Scenario properties of public dataset. 
Scenario Property Details 
Unix timestamps number of seconds since 1970-01-01 

Location Lab, One stable trace, etc. 
User moving mode Subway, Bus, Train, Walk, Static 

Interface HSDPA 
 

 

Throughput data of different scenarios in Table 3.3 are shown in Figure 3.4. In 
different scenarios, throughput data show different performances. The interval of the 
collection is 1 second. We have also collected the measurements with the intervals of 
0.5 s, 1 s, 2 s, etc. The data are actual measurements collected by our software in Tokyo. 

 

 
(a)                                                                (b) 

Figure 3.4  Throughput data of static and bus scenario. 
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Table 3.3  Scenario information of the data above. 
 

 

 

 

 

 
Statistical characteristics of throughput measurements in different scenarios 

show very different performances. We give a brief analysis of the characteristics of 
throughput data in various scenarios. Figure 3.5 shows the characteristics of the 
collected throughput data mentioned above in static and bus scenario. 
 

 
 (a)                                                                (b) 

 

 
 (c)                                                                 (d) 

Figure 3.5  The statistical characteristics of throughput data. 
 
 

Scenario Interface Location Time 

static LTE Nishi-waseda 
campus afternoon 

bus LTE Nishi-waseda to 
Waseda campus afternoon 
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1. Autocorrelation and partial autocorrelation  
The autocorrelation and partial autocorrelation of the throughput data in static 

and bus scenario are shown in Figure 3.5. The autocorrelation of static data in 
Figure 3.5(a) tails off and the partial autocorrelation in Figure 3.5(c) cuts off, thus the 
data follow AR model. The autocorrelation of bus data in Figure 3.5(b) tails off and the 
partial autocorrelation in Figure 3.5(d) tails off, thus the data follow ARMA model.  

2. Mean and variance 
The mean value of the static data is 11.544 Mbps, while the mean value of bus 

data is 17.497 Mbps. The average throughput of bus is much higher than the static 
scenario. The variance of static data is 4.368 Mbps2, and the variance of bus data is 
35.820 Mbps2. We can conclude that the data of bus scenario is much more distributed 
than static scenario. 
 

3.3    TCP throughput prediction using GMM-HMM 

3.3.1   GMM and HMM 

A Gaussian mixture model is a probabilistic model which consists of finite 
number of Gaussian distributions. All the values in the dataset are assumed to follow the 
Gaussian mixture model which is a continuous probability distribution. Each Gaussian 
component has its own parameters such as expectation, variance and component 
efficient. The probability density function of Gaussian distribution is: 
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where y is variable, μi is expectation, σi is variance. The probability density function of 
Gaussian distribution is: 
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where ωi (0≤i≤m) denotes a mixture weight of i-th Gaussian density component in 
GMM. GMM use expectation maximization algorithm to obtain the parameters. 

Hidden Markov Model (HMM) is a statistical Markov model and the system 
being modeled is assumed to be a Markov process. The hidden states of HMM is not 
visible, while the output dependent on the states can be observed. The output is also 
called observation. Each state has a probability distribution over the possible 
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observations. The type of HMM being considered is like this: the hidden states are 
discrete, while the observations can be discrete or continuous and generally will be 
assumed follow Gaussian distribution. The parameters of HMM include transition 
probability and emission probability. The transition probability decides the hidden state 
at next time t+1 is chosen given the hidden state at time t. 
 

3.3.2   Throughput prediction using GMM-HMM  

3.3.2.1   Whole structure of proposal 

In this part, we elaborate the proposed method: history-based throughput 
prediction with hidden Markov model in [49]. The method mainly consists of two parts, 
identification of throughput fluctuation and throughput prediction. As GMM can be 
used to cluster data according to frequency, we use GMM to obtain clusters and define 
them as different hidden states. HMM is adopted to dig out the pattern how hidden 
factor decides the observations, as forward-backward algorithm can produce the most 
likely model for the state and observation sequence, and Viterbi algorithm could find the 
most possible state transition path of throughput instead of the real throughput value 
which might contain outliers and sudden change to avoid interruption when we judge 
current fluctuation. By applying GMM-HMM, the new method could separate 
fluctuation of data into stationary and non-stationary accurately. Then, we use proper 
means to predict future throughput in different conditions effectively. The related 
notations used in HMM are shown in Table 3.4. 

 
Table 3.4  Notations used in HMM. 

Notation Meaning 
m number of states in the model 
M number of distinct observations of each state 
T length of observation sequence 

O = (O1,…,OT) observation sequence 
Q = (Q1,…,QT) state sequence 

A = {aij} A is state transition matrix, aij is transition probability from 
state i to j 

B = {bi(Ot)} B is observation emission matrix, bi(Ot) is when state is i, 
probability of observing Ot 

π = {πi} π is prior probability matrix, πi is the beginning probability 
of being in state i  

λ = (π,A,B) HMM model with parameter 
Si (1 ≤ i ≤ m) Current State is i 
rk (1 ≤ k ≤ M)  Observation k (value range of throughput data) 
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The whole process of history-based throughput prediction with hidden Markov 
model is shown in Figure 3.6. History data are separated into M groups according to the 
value range as observations. Then data are clustered into m classes with m-component 
Gaussian mixture model and defined as hidden states. After we have state sequence and 
observation sequence we train data with hidden Markov model, and calculate the most 
probable state transition path. Then we judge fluctuation (stationary or non-stationary) 
of current time according to the fluctuation factor calculated by former state transition 
path. Finally, we predict throughput of following time with corresponding means: linear 
regression for stationary and locally weighted linear regression for non-stationary. 
 

 
Figure 3.6  Process of throughput prediction with HMM. 
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3.3.2.2   Gaussian mixture model 

Gaussian mixture model (GMM) is a reliable classification tool in many 
applications such as pattern recognition [50-52]. In the part of generating states of this 
work, GMM is adopted to cluster throughput data into different classes according to 
distribution of data. The parameters of GMM for the classes can be obtained by training 
data with standard expectation maximization algorithm. The classes are defined as 
distinct states which demonstrate that data follow different distribution structures of 
different expectation and standard variance. States are value ranges in which the data 
appear with largest probability. The probability density function (PDF) of GMM is a 
weighted sum of m-component Gaussian densities given by the following equations: 
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where ωi (0≤i≤m) is a mixture weight of corresponding PDF of Gaussian distribution in 
GMM. μi and σi are the expectation and standard variance of the i-th Gaussian density 
component. ψ(x,i) is defined as the occurrence probability of throughput data x to which 
the i-th Gaussian density component contributes as shown in Equation (3.6). And, the 
component which contributes to the largest probability can be considered as the state(i) 
that data x belongs to. 

),|(),( iii xgix                                                   (3.6) 

The number of Gaussian mixture model components is decided by historical 
data. Throughput with the value fluctuating slightly will be clustered by two Gaussian 
mixture models while data with large fluctuation will be clustered by three or more 
Gaussian mixture models. 
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3.3.2.3   Hidden Markov model 

Hidden Markov model (HMM) is a finite state machine with state transitions 
and observations, which is widely applied to temporal pattern recognition such as 
speech, handwriting recognition, and DNA sequence analysis [53-55]. It provides a 
probabilistic approach for modelling the time series of states and observations. In this 
work, HMM is proposed as a predictor being used to find the hidden law of throughput 
variation, as HMM could not only construct the connection of hidden factors and 
corresponding observations it decides, but also build the transition probability between 
hidden factors. Thus, we could obtain the most probable state transition path, with 
which we could know the real current fluctuation status. This is much more accurate 
than analyzing the real change of throughput value directly which might be affected by 
outliers and sudden changes. First, the forward-backward algorithm is employed to find 
the proper model and parameters. Then, Viterbi algorithm is applied to find the most 
probable state transition path. After this, current fluctuation factor with total variance is 
calculated and the fluctuation of current time is judged. Finally, throughput is predicted 
with a corresponding way based on fluctuation condition. This work meets the 
assumptions of HMM. 

We define the classes of GMM as hidden states Si (0≤i≤m) in HMM and divide 
the throughput historical data into M ranges according to value range with definition of 
M observations rk (0≤k≤M). Thus, we obtain the state sequence Q, and observation 
sequence O. Then, we train state and observation sequence with the forward-backward 
algorithm to generate the most probable hidden Markov model λ = (π,A,B). After 
predicting next state and corresponding observation, we train the observations with 
Viterbi algorithm to find the most likely sequence of hidden states for the given hidden 
Markov model and observation sequence. Then, we get the state transition path and 
calculate fluctuation factor of current time. 

a. Forward-backward algorithm 
After defining the state and observation sequence, we use forward-backward 

algorithm to generate the most probable HMM parameters from given sequences.  
b. Viterbi algorithm 
Viterbi algorithm is used to find the most likely sequence of hidden state 

sequences when given the hidden Markov model and observation sequence. It uses 
backtracking array to obtain the most probable hidden state sequence. After above 
process, the state path we need is the backtracking array. Thus we obtain the state 
transition path. 
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3.3.2.4   Fluctuation factor 

We apply mean square of total variation [56] to judge the fluctuation of state 
transition path. After obtaining the most probable state transition path by Viterbi 
algorithm, we calculate the difference et between adjacent states of former N states 
(including current state) and the fluctuation factor τ (standard difference) as:  
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                                                           (3.7) 

Then, we compare the value of τ with parameter s, called difference threshold, which 
can be assigned different value according to various situations and requirements by user. 
When τ ≤ s, the state transition shows low-frequency and low-width, we define current 
fluctuation as stationary, and we apply linear regression to predict future throughput 
with former N1 throughput data; when τ > s, the state transition shows high-frequency 
or several high-width, we define current fluctuation as non-stationary, and use locally 
weighted linear regression to predict future throughput with former N2 throughput data 
(N2 is usually smaller than N1). This means that for non-stationary condition, we use 
local regression to smooth data by giving suitable weight to data points. Because we 
think predicted value is only reflected by latest data largely without distant ones. 
 

 

Figure 3.7  State transition path. 
 

 
Figure 3.8  Simple example of state transition path. 
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3.3.2.5   Linear regression and locally weighted linear regression 

After judgement of above steps, if fluctuation of state transition path is 
stationary, we use linear regression to predict throughput. Linear regression is a popular 
method modeling the relationship between a dependent variable and one or more 
independent variables, which has many practical uses [57-59]. In this work, linear 
regression is applied to predict throughput when data fluctuate slightly. It fits the 
predictive model with former N1 throughput values xi. After developing the model and 
obtaining parameter θ0 and θi, we use the known fitted model to predict current 
throughput xt  as 𝑥̂𝑡. Prediction function is shown as follows: 
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where θ0 is constant term, θi is the relative parameter of t, and 𝑥̂𝑡 is predicted future 
throughput. We fit θ to minimize evaluation function and obtain parameters and to 
predict xt.  

If the fluctuation is non-stationary, we use locally weighted linear regression to 
predict throughput. The method combines linear regression model in a N2-nearest-
neighbor-based one to smooth data. It addresses conditions in which the classical 
procedures do not perform well or cannot be effectively applied with undue labor 
caused by outliers, which disturb predicting future data accurately. The smoothed value 
is determined by neighboring data points defined within the limit. We give larger weight 
to nearer data, thus the predicted throughput will not be affected by the distant data at 
all. The weights are calculated by following equation: 

33

21 , 1
( )

i
i

t tv i N
d t

 
    
 
 

                                         (3.10) 





2

1

2
0 ))((),(

N

i
iiii xthvJ                                         (3.11) 

In Equation (3.11), we fit θ to minimize evaluation function J(θ0,θi) and obtain 
parameters and to predict xt, where vi is weight, 𝑥̂𝑡  is the predicted value, xi are the 
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nearest neighbors, and d(t) is the distance along the time axis from xt to the most 
furthest value in the range. 
 

3.3.3   Model validation 

3.3.3.1   Experiment environment 

We use the developed application to collect throughput history data every 
second from the HTTP server via LTE offered by NTT DOCOMO. Figure 3.9 shows the 
experiment environment. 

 

 

Figure 3.9  Experiment Environment. 
 

We obtain throughput history data in the afternoon and evening with various 
cases of user mobility. In the static situation, a user keeps static when collecting data in 
the laboratory. While in dynamic situation, a mobile user collects data when walking 
from the station of Takadanobaba to Nishi-waseda campus or sitting on moving subway 
between stations. We ensure same data transmission path for each case. Time and user 
mobility of six cases are shown in Table 3.5. The time interval of data series is 1 s. We 
train former 850-second historical data to predict next future 100-second throughput. 
Then, we analyze prediction results and evaluate prediction accuracy. We compare the 
accuracy of the predicted throughput with three other prediction methods: stochastic 
model, linear regression and locally weighted liner regression. 

 
Table 3.5  Experiment cases. 

Cases Environment 
Case 1 Afternoon, walking 
Case 2 Afternoon, static 
Case 3 Afternoon, subway 
Case 4 Evening, static 
Case 5 Evening, walking 
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3.3.3.2   Fluctuation identification 

Figure 3.10 shows the experiment result of clustering data with GMM in case1. 
Inside GMM, there are six Gaussian components used as hidden states. And they 
superimpose on each other largely from 10 Mbps to 20 Mbps, which means many 
throughput data distribute intensively during this value range. We can conclude from the 
result that majority of data value appear between 5 Mbps to 35 Mbps. Figure 3.11 is 
identification of throughput fluctuation. The upper dots represent non-stationary status 
and lower ones show stationary status. Some throughput data from 910 s to 930 s are 
non-stationary as they perform larger fluctuation. Figure 3.11 indicates the method 
could identify different fluctuation statuses effectively. 

 

`  

Figure 3.10  Clustering data with GMM. 
 
 

 
Figure 3.11  Identification result of throughput fluctuation. 
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3.3.3.3   Accuracy comparison and analysis 

Similar to the reference [29], we use relative prediction error Rt and root mean 
squared relative error (RMSRE) with following equations to evaluate accuracy as 
calculated in Equation (3.12) and (3.13), respectively. We adjust related parameters in 
different situations to achieve high accuracy and meet various requirements of users.         

ˆ| |t t
t

t

x xR
x


                                                                  (3.12) 

2

1

1 n

t
t

RMSRE R
n 

                                                         (3.13) 

The cumulative distribution function (CDF) of Rt is shown in Figure 3.12. As 
the limitation of space, we only show case 1 out of the six cases in our experiment. 
Figure 3.12 shows the prediction result of case1 utilizing four methods. From the figure, 
we can see that initially the value of Rt is almost the same for all methods, while they 
separate when Rt equals to about 0.2. From 40%, our proposed method is better than the 
linear regression prediction. The new method could divide data fluctuation into 
stationary and non-stationary accurately and apply suitable prediction methods for each 
condition. We can conclude that for 90% of the predicted 100 s throughput data, Rt of 
the proposed method is the smallest among the four methods. The smaller Rt is, the 
more accurate the predicted value is. Moreover, for 100% predicted data, our method 
has the smallest Rt for all forecasting data. In other word, value of the largest Rt is the 
smallest, which proves the new method is effective. 
 

 
Figure 3.12  CDF of Rt for all predictions with four methods. 
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Figure 3.13  RMSRE of throughput prediction with four methods. 

 

Figure 3.13 shows RMSREs of forecasting with the four methods in six cases. 
RMSRE represents the prediction accuracy of all cases by single figure. We can see that, 
generally, the four prediction methods achieve higher accuracy when users are static 
compared with moving users. The proposed method predict future throughput 
effectively not only in situations of static users, but also in moving user cases. This is 
because new method could identify fluctuation of throughput data into stationary and 
non-stationary accurately with GMM-HMM and adopting proper means for each 
condition. By assigning proper values to relative parameters, the proposed method could 
predict future throughput accurately in different situations to satisfy users. 

 

3.4    TCP throughput prediction using AR and GMM-HMM  
3.4.1   Prediction system 

Researchers have shown that user mobility scenario can be identified in [12], 
[60-62] which means that the user’s communication scenario can be obtained for mobile 
networks. These researches support the premise for constructing a prototype system to 
predict throughput. Based on this premise, the non-trivial task is undertaken in this part. 
We focus on throughput prediction in different situations individually for a specific 
scenario and propose the TCP throughput prediction method using the hybrid prediction 
with the autoregressive model and hidden Markov model (HOAH). Figure 3.14 shows 
the overview of our work in [63]. 

To obtain a deep understanding of the throughput data variation and 
characteristics, large amount of throughput measurements in various scenarios are 
needed. We use the developed Android software application to collect throughput data 
per second of other network interfaces such as LTE and Wi-Fi, because the public 
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dataset [48] only contains the network interface of high-speed downlink packet access 
(HSDPA). According to our previous work [64], the throughput transition characteristics 
drastically change when the user changes the mobility route. Therefore, when testing the 
data in user mobility scenario, each scenario means one mobility route. Based on the 
conclusion of [29], the tested throughput data are considered coming from the same 
transmission path for each scenario. 

 

 

Figure 3.14  Complete structure of the prediction system. 
 

3.4.2   Data analysis 

We collect a large volume of continuous throughput data in many video 
sessions in different scenarios by one user, e.g. different network interface types, user 
behaviors, location and time are shown in Table 3.6. 

 
Table 3.6  Scenario properties. 

Scenario Property Details 
Time Morning, Afternoon, Evening 

Location Lab, One stable trace, etc. 

User moving mode Ferry, Bus, Train, Walk, Static 

Interface HSDPA, LTE, Wi-Fi 
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After analyzing the data, we obtain three observations:  
1. The throughput measurements of sessions in the same scenario tend to 

perform similar throughput variation process. Figure 3.15 shows an example of two 
realizations in the same walk scenario using LTE. We can easily observe that the 
realizations have similar performances. Thus it is better to analyze the data and predict 
throughput in each specific scenario respectively. 

2. For the neighbor segments inside one session, the variation of the process 
shows very large difference such as staying stable or changing very sharply between the 
segments. Thus, throughput is difficult to predict by using only one method or one 
model. When predicting throughput, the former situation is fit for using AR Model, 
while the latter one may be better to be solved by GMM-HMM. Inside one segment, the 
data have different statistical characteristics, which will show different relationships 
with the variation process of the next segment with distinct probability. As shown in the 
second realization of Figure 3.15, if the segment size is 50 s, the performances of the 
first and second segments (period from 1 s to 50 s and period from 51 s to 100 s) are 
very different, and the changes are extremely sharp and sudden. Moreover, the fifth and 
sixth segments (period from 201 s to 250 s and period from 251 s to 300 s) show similar 
performances, and the changes are slight. 

 

 
Figure 3.15  Two realizations of one walk scenario. 
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Therefore, it is suitable to use different methods to predict the throughput of the 
next segment. It is important to decide which method to use. In this paper, the choice is 
based on statistical characteristics of the current segment. The support vector machine 
(SVM) classifier is utilized to separate the segment into the correct class and predict 
with the corresponding method (AR or GMM-HMM). 

3. The throughput of one session tends to have large fluctuation and shows 
multi-cluster characteristics, especially in moving user scenarios. Figure 3.16 shows an 
example of the clustering result for the mean value of a segment in the walk case. Two 
states can be observed in this trial, and the data have transition behavior from one state 
to another state. For other moving cases, such as bus and train, there are more state 
transitions for the mean value of the segments. Thus it is reasonable and necessary to 
adopt GMM-HMM for modeling state transition in HOAH. 

 

 

Figure 3.16  Example of the clustering segments’ mean value for one realization in the 
walk scenario. 
        

Although the two-class classification (AR and GMM-HMM) is used in this 
work, the results in the following sections demonstrate the advantage of the proposed 
method compared with the conventional methods where only one method is applied all 
the time. These results also show the necessity of choosing the proper model which 
proves the significance of this work. 
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3.4.3   Related techniques 

3.4.3.1   SVM 

In many scenarios, the data could not be divided into two classes with constant 
threshold values for two or higher dimension case. Thus, we use SVM to accomplish the 
classification task to assign a segment to two prediction models. 

SVM is a kind of supervised learning model in machine learning, which is 
effective for classification [65], [66]. Many works, such as [67-69], have verified that 
SVM is more useful for time series classification than other machine learning methods. 
We use statistical characteristics of the data segment to classify data for properly 
choosing the prediction method. The features utilized in HOAH are shown in Table 3.7. 
These features are employed to depict the variation of the throughput data. Prediction 
does not work when the autocorrelation is around zero. However, note that this case 
rarely happens even if SVM can be trained.  

The SVM maps the features of each segment into a higher dimension space by 
the Gaussian kernel function non-linearly and divides the segment into two classes. 
Since the transformation is nonlinear and the transformed space is high dimensional, the 
identification line is nonlinear in the original feature space. 
 

 Table 3.7  SVM features. 
Feature Meaning 

Variance Depicts how far the value of the throughput 
data is from the mean value. 

Derivative Describes both the direction and the steepness 
of data change. 

Autocorrelation 
Describes the correlation between a time series 
of throughput data and the time lagged copy of 
itself. 

Partial autocorrelation 
Gives the partial correlation of a time series of 
throughput data with its own shorter lagged 
values. 

 
 

3.4.3.2   Basic AR model 

In HOAH, if historical data is classified to ar class, it means that future data 
will probably follow the same behavior of the former period. Thus, the autoregressive 
model can be used to predict future data with short-term history samples accurately. 

The autoregressive model is one of the most popular models to describe the 
performance of time series changing with time [70], [71]. HOAH applies the AR Model 
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as part of the basic model to predict throughput. HOAH attempts to predict the 
distribution of future throughput, which makes the mean value and variance important 
parameters. The basic AR(p) model is given by the following equation: 

1 1 2 2t t t p t p ty c a y a y a y                                   (3.14) 

where yt is a sample of the time series, c is constant, ɑi is the corresponding coefficient 
of yi, and ɛt is the white noise error term that follows N(0,1). 
 

3.4.3.3   Augmented Dickey-Fuller test 

In the AR Model of HOAH, the model is separated into three kinds based on 
the restraint of the coefficient, which is introduced in the Augmented Dickey–Fuller 
test. The theory of each model is given in the hypothesis test, which includes null 
hypothesis and an alternative hypothesis. Among the three models, Model 1 is the most 
basic autoregressive model with lag terms. And Model 2 has a drift term besides lag 
terms. Model 3 has lag term, drift term and trend term, indicating it is the most 
complicated one which can describe the most properties of data such as trend. Details 
are shown in Equation (3.15), (3.16) and (3.17). 

Model 1: 

1 1 1t t t p t p ty ay b y b y                                      (3.15) 

Null hypothesis: ɑ = 1 
Alternative hypothesis: ɑ < 1 

 
Model 2: 

 1 1 1 0t t t p t p ty c ay b y b y c                                (3.16) 

Null hypothesis: ɑ = 1 
Alternative hypothesis: ɑ < 1 

 
Model 3: 

 1 1 1 , 0t t t p t p ty c dt ay b y b y c d                     (3.17) 

Null hypothesis: ɑ = 1 
Alternative hypothesis: ɑ < 1 
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where yt is the throughput time series, Δ denotes the differencing operator, Δyi is the 
difference term of the adjacent data calculated as: 

1i i iy y y                                                            (3.18) 

bi is the coefficient of difference of the term Δyt-i, ɑ is the coefficient of yt-1 (data of the 
last second), p is the lag order of the autoregressive process. c is the drift coefficient, d 
is the deterministic trend coefficient, εt is an innovation process that follows a normal 
distribution with mean value of zero. 

The ADF test is used to examine the stationarity for history throughput 
segments [72-74]. ɑ = 1 means a unit root exists, and the data is non-stationary. 
Meanwhile, ɑ < 1 denotes no unit root, and the data is stationary. Based on the ADF test, 
the proper AR model is selected. 

Ordinary least squares (OLS) is used to calculate the estimated value of the 
coefficient for the corresponding model, and then use t statistic to evaluate the existence 
of the unit root. We take the models of the ADF test with lag = 0 as example because 
this is the easiest case of the ADF test. After the test, we compare the calculated value of 
the t statistic in Equation (3.19) with a known value, which is being calculated by 
Monte Carlo method. If t is larger than or equal to the compared value, the null 
hypothesis will be accepted, meaning the process is non-stationary. If t is smaller than 
the compared value, the null hypothesis will be rejected, while the alternative 
hypothesis will be accepted, which means that the process is stationary. 

 

ˆ 1
ˆ
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t
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

                                                                   (3.19) 

 
3.4.3.4   GMM and HMM 

If the test result shows that the data belong to the hmm class, the future 
throughput may not have similar features with the short term historical data. Therefore, 
HOAH adopts the Gaussian mixture model and the hidden Markov model to predict the 
distribution of future throughput. 

GMM and HMM are widely used in signal processing, which could analyze 
and recognize information [75], [76]. In HOAH, we utilize the GMM-HMM to predict 
the future throughput when future throughput may not have the similar features with the 
historical segment. This combination is to find the distribution of the future throughput, 
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which has the largest probability to appear. HOAH constructs a model of multi-
Gaussian and Markov chain to reveal the hidden law of historical data and use the 
calculated distribution with the largest probability to appear as the distribution of the 
predicted throughput. 

1. Gaussian mixture model 
The Gaussian mixture model is a popular classification tool, which has been 

applied to many areas, such as pattern recognition [77], [78].  
In the proposed model, GMM is applied to generate states based on the value 

features of data by training history throughput. If the historical data of throughput 
shows large fluctuation, the number of Gaussian mixture components will be set at four 
or more. Meanwhile, for historical data with small fluctuation, the number of the 
Gaussian distribution will be two or three. 

2. Hidden Markov model 
The hidden Markov model is a kind of Markov model that can be employed to 

model the stochastic system changing with random variables. HMM plays an important 
role in temporal pattern recognition, such as speech, gesture recognition, and DNA 
sequence analysis [54], [79].  

In HOAH, HMM is adopted as a predictor to recognize the performance of 
throughput variation with time because it could describe the relationship between time 
series and its characteristics by using hidden states and observations. As a member of 
the dynamic Bayesian network, HMM could connect adjacent variables, implying that it 
is possible to calculate the hidden variable of the current time with internal regression 
and variable of former time. In HMM, the hidden states control the appearance of 
observations, and the observation at each time is visible while the states are invisible. 
The hidden states represent the combination of many factors, such as the number of 
users sharing the same channel and the condition of the bottleneck link. 
 

3.4.4   Proposed model: HOAH 

3.4.4.1   Structure of HOAH 

Based on the AR Model and GMM-HMM, we demonstrate the hybrid 
prediction model named HOAH, the hybrid prediction with the autoregressive model 
and hidden Markov model. This method is a novel combination of GMM-HMM and 
AR-based model by using SVM as a classifier. It can predict the distribution of future 
throughput with proper method. The basic concept of HOAH is shown in Figure 3.17. 
We also adopt the sliding window to refresh the training segment.  
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We consider the data from the same scenario to be one dataset DS(v) = {data | 
scenario v (time, location, interface, moving mode)}. Among the data, the HOAH 
separates the dataset DS(v) into training data TRDS(v), validation data VDS(v), and test 
data TDS(v). TRDS(v) and VDS(v) are used to set the parameters, such as the number of 
states m in GMM-HMM and lag = p of the AR model. TRDS(v) is also used to obtain 
the SVM classifier. TDS(v) is utilized to evaluate the HOAH by comparing prediction 
results with other methods. The SVM classifier is trained by the training dataset of the 
assumed scenario and is adopted to predict throughput of the same scenario. 

After assigning a specific value to the historical segment length and prediction 
segment length according to the user, the HMM and AR Model is used to predict the 
data in VDS(v) by training other data in TRDS(v) separately. We adjust the parameter in 
these two methods until the lowest prediction error is achieved. Thus, we determine the 
number of states m in HMM and lag = p of the AR model. Then, HOAH starts to 
construct the classifier. 
 

 
Figure 3.17  Basic concept of HOAH. 

 

3.4.4.2   Segment classification with SVM 

In HOAH, we construct the SVM by supervised learning with the dataset 
TRDS(v). It is also used to classify the segment data into ar class and hmm class to 
realize the model switching strategy. We train the SVM with the statistical features of 
historical segments and the prediction error of each method (AR Model and GMM-
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HMM) of the historical segment. The 4-fold cross validation is applied to determine the 
parameters of SVM, such as lag = h for autocorrelation. The details are as follows: 

The construction of classifier includes three steps. 
1. HOAH decides and calculates the features of the segment in TRDS(v). The 

statistical features include autocorrelation (acf), partial autocorrelation (pacf), variance 
(var), and derivative (de). We calculate the features for each segment. Thus, we obtain 
the sequences of all the features. The function of each feature is calculated as follows: 

Autocorrelation (lag = h): 
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Partial autocorrelation of lag = h*, denoted by pacfh*, is the autocorrelation 
between yt and yt+h* after removing the linear dependence of yt on yt+h*-1 through yt+h* 

Variance: 
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Derivative: 
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2. We predict the throughput of the next segment with the current segment 
using the AR model and HMM separately, and record the better model of the lower 
prediction error for each segment in TRDS(v). The root mean squared relative error, 
RMSRE is used which can be calculated as: 
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where yt is the actual value and ȳt is the predicted mean value at time t. For example, if 
one segment has the prediction RMSRE of 0.1 by the AR Model and 0.2 by the HMM, 
the segment will be classified into class ar, instead of class hmm, which means that the 
proper prediction model for this segment is the autoregressive Model. Thus, we have 
sequences of the prediction error of models. 
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3. From the above processes, we obtain the sequences of features and errors. 
Then, we adopt the supervised learning to develop the two-class classifier by SVM with 
a Gaussian kernel. Moreover, we use the 4-fold cross validation to decide the parameter 
for the classifier and choose the parameters with the lowest prediction error. 
 

3.4.4.3   Throughput prediction 

After dividing current segment into ar class or hmm class with SVM classifier, 
proper prediction model is utilized by HOAH to predict the distribution of throughput 
for next segment. The average processing time for one prediction is about 0.2 s using a 
computer with Intel Xeon CPU E3-1226 v3 and 8 GB memory. 

1. Prediction with Autoregressive Model 
If the segment is classified to ar class, HOAH will apply the autoregressive 

model to predict the future throughput. Inside the autoregressive model, the ADF test 
which is one of the famous unit root tests is employed. The flow of stationarity test by 
ADF is shown in Figure 3.18, where three models are adopted. If the history throughput 
data belong to stationary process, HOAH will predict throughput with the 
corresponding ADF test model. However, if the history throughput data does not belong 
to any stationary process, it will be differenced and the stationarity test will be repeated 
until the stationary state is achieved, and the corresponding prediction model is applied. 
 

                 

Figure 3.18  Stationarity test in the AR Model. 
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In the AR Model, the predicted throughput distribution follows the Gaussian 
distribution as expressed in Equation (3.24): 
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where E(yt) and V(yt) denote the expectation and variance of the throughput series yt. 
The expectation and variance are calculated by corresponding model from 
Equations (3.15)-(3.17) using the historical throughput data iteratively. For the situation 
with lag = 0, the general formulas for the models are shown as follows: 

Model 1: 
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Model 3: 
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where a, c, d and σε are the model coefficients. y0 is the last throughput of the historical 
data. Finally, the maximum/minimum predicted values (Emax/min) are calculated by using 
Equation (3.31): 

max/min ( ) ( )t tE yE V y                                                     (3.31) 

where α can be changed to control the size of the predicted range. 
2. Prediction with GMM-HMM 
If the segment is categorized into hmm class, HOAH will adopt the GMM-

HMM to predict the future throughput. We introduce the GMM-HMM in this 
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subsection. A basic idea of this model is shown in Figure 3.19. In the model, historical 
segments are used as training data. The GMM-HMM models throughput transitions 
from the training data. After completing the training process, the future prediction 
distribution of the throughput is calculated with the current segment. Then, the window 
slides to the next segment which consists of newly collected data with a step, such as 
10 s. The historical segment is expanded with a longer length, and the model is updated. 

First, in the training process, all historical throughput data are clustered by the 
GMM and classified into m number of Gaussian distribution expressed as Equation 
(3.32). Each Gaussian component can be calculated by using the standard expectation 
maximization algorithm. The Gaussian component is expressed as Equation (3.34) and 
has different weights (ωi). 
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where ωi (0≤i≤m) denotes a mixture weight of i-th Gaussian density component in 
GMM. μi, σi, and ѱ(y,i) represent expectation, standard deviation, and the probability 
that the i-th Gaussian density component provides for the existence of the throughput 
data y. An example of data classification with GMM is shown in Figure 3.20. 
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Figure 3.19  Basic concept of GMM-HMM. 
 
 

 

Figure 3.20  An example of clustered throughput data with GMM (m = 3). 
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Figure 3.21  An example of throughput transition model with HMM. (si: use Gaussian 
component as a hidden state, ek: historical throughput value as an observation). 
 

Next, HOAH models the throughput transition pattern with HMM. After 
defining the states with GMM, the throughput data are considered as observations. The 
definition for the parameters of HMM is shown in Table 3.8, and an example of HMM 
is shown in Figure 3.21. After clustering all historical data with GMM, the Gaussian 
components (e.g., GM1/2/3 in Figure 3.20) are defined as hidden states (si) and the 
historical throughput value is defined as an observation (ek) as shown in Figure 3.21. 
The hidden states represent the whole effect of factors, such as the number of customers 
sharing the same bottleneck in the channel. Then, we calculate the corresponding hidden 
state for each observation using Equation (3.35). Thus, we obtain an observation 
sequence and a hidden state sequence. By using these sequences, we calculate Atr and 
Bem as shown in Table 3.8 and obtain hidden Markov model λ = (π, Atr, Bem). 
 

Table 3.8  Definition of parameters for HMM. 
Parameter Definition 

m Number of states in HMM 
O = (O1,…,OT) Observation sequence 
Q = (Q1,…,QT) Hidden state sequence 

Atr = {aij} Atr is a state transition matrix, aij is the 
transition probability from the state i to j 

Bem = {bi(ek)} 
Bem is an observation emission matrix, bi(ek) is 
when the state is i and the probability of 
observing ek 
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Parameter Definition 

π = {πi} Atr is a state transition matrix, aij is the 
transition probability from the state i to j 

λ = (π, Atr, Bem) HMM model with parameters 
si (1 ≤ i ≤ m)  Current hidden state is i 

ek Observation ek (value inside throughput data 
range) 

 
 

Finally, we predict the distribution of future throughput by utilizing the state 
transition probability in HMM as shown in Figure 3.22. We calculate the probability of 
each hidden state at the final time of historical data using the forward algorithm and 
assume that the probabilities are the initial state probability π from which we start to 
predict. Then, we calculate the probability of each hidden state pt(i) in future time with 
the current state probability π = p0(i) and state transition probability matrix Atr = {aij} as 
shown in Equation (3.36). After obtaining each hidden state probability, the expectation 
and variance are calculated by using the distribution of each hidden state (i.e. each 
Gaussian component) as shown in Equation (3.37) and (3.38). Thus, the predicted 
distribution can be obtained by using the calculated expectation and variance. 
Furthermore, the maximum/minimum predicted values Emax/min are calculated by using 
Equation (3.31). 
 

 

Figure 3.22  Process of prediction with HMM. 
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where πi represents the initial state probability of the hidden state i, pt(i) represents the 
probability of state i at time t, aij represents the transition probability from state i to state 
j. μi is the expectation of the i-th Gaussian component. σi is the standard deviation of the 
i-th Gaussian component. 
 

3.4.5   Evaluation 

3.4.5.1   Experiment environment 

 Experiments are conducted to evaluate HOAH. We use the Android application 
developed by our lab to collect wireless throughput data in different scenarios, and we 
assume that the throughput data come from users who enjoy video streaming. In the 
experiment, the application observes and records throughput by downloading a 600 KB 
video segment per second from a content server.  Since we assume MPEG-DASH, of 
which segments consist of 2-second video contents and rate control is carried out per 
segment, we calculate throughputs per second. Thus, we observe the LTE and Wi-Fi 
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throughput as shown in Figure 3.23. One user terminal which is Galaxy S4 (Android 
4.2.2) connects with the server through LTE provided by the major public cellular 
carrier in Japan, or Wi-Fi access point 1 (AP1) that adopts 5 GHz IEEE 802.11n located 
in our laboratory, or Wi-Fi access point 2 (AP2) that uses 5 GHz IEEE 802.11n located 
in Nishi-waseda campus. The content server performs as an HTTP streaming server and 
is located in our laboratory. The DASH-JS framework is used [8]. To evaluate HOAH in 
scenarios of HSDPA, we use the public dataset in [48]. 
 

 
Figure 3.23  Experiment environment. 

 

 We observe wireless throughput in seven different scenarios as shown in 
Table 3.9. In this table, we change the wireless interface (LTE and Wi-Fi), the user 
moving mode (static, walking, and riding on a bus), and time (morning (10:20 a.m.), 
afternoon (15:00 p.m.) and evening (22:30 p.m.)). In static scenarios (LTE and Wi-Fi), a 
user stays static in the laboratory in the morning, afternoon and evening. In the walking 
case (LTE), the user walks from Nishi-waseda station to Zoshigaya station in the 
evening as shown in Figure 3.24(a). It takes approximately 23 min on a one-way trip. In 
the bus case (LTE), the user travels by a bus from Nishi-waseda campus to Waseda 
campus of Waseda University in the afternoon as shown in Figure 3.24(b). It takes 
approximately 10 min on a one-way trip. We conducted 5 trials for each scenario. The 
scenarios of HSDPA case are shown in [48]. 
 

Table 3.9  Experiment scenarios. 

Scenario Interface User moving 
mode Time Evaluation 

time (s) 
Number 
of days 

Static case LTE Static Afternoon 
15:00 p.m. 2000 5 
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Scenario Interface User moving 
mode Time Evaluation 

time (s) 
Number 
of days 

Walk case LTE Walking Evening 
22:30 p.m. 1000 5 

Bus case LTE Riding on a 
train 

Afternoon 
15:00 p.m. 600 5 

Ferry HSDPA Moving ferry unknown 1000 5 
Train HSDPA Moving train unknown 1500 5 

Static case Wi-Fi 
(AP1) Static Evening 

22:30 p.m. 2000 5 

Static case Wi-Fi 
(AP2) Static Morning 

10:20 a.m. 2000 5 

 
 
 Wireless throughput data are observed and recorded per second. We predict 
distributions of future throughput with HOAH and compare the prediction accuracy of 
the baseline methods demonstrated in [25] and [29]. 
 

 

              (a) Walking case                                         (b) Bus case 
Figure 3.24  Maps of the two moving routes. 

 

3.4.5.2   Evaluation metric 

Although HOAH predicts the throughput distribution, we focus on the 
predicted mean value ȳt of the throughput because from the viewpoint of accuracy 
evaluation, the comparison between the mean throughput and the actual throughput can 
be straightforward and comprehensive. Therefore, same as [80] we evaluate the 
accuracy of HOAH with relative prediction error Rt and RMSRE between the actual 
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value yt and predicted mean value ȳt at time t. RMSRE is calculated by Equation (3.23) 
and Rt is calculated by: 

  
| |t t

t
t

y yR
y


                                                              (3.39) 

The smaller RMSRE indicates the smaller prediction error a method has (i.e. 
higher accuracy), and vice versa. The variance of the predicted distribution is also a 
considerable parameter when applied in actual application.  

For the parameter configuration of HOAH, we divide the dataset DS(v) into 
training data TRDS(v), validation data VDS(v), and test data TDS(v). HOAH obtains the 
model of proper parameters (e.g. number of states for HMM, order for the 
Autoregressive Model) with TRDS(v) and VDS(v), which could limit problems such as 
overfitting, to derive a more accurate model for HOAH. HOAH obtains the prediction 
accuracy of the testing data TDS(v) and compare with other methods. Inside HOAH, the 
SVM applies 4-fold cross validation to decide the value of the features such as the order 
of autocorrelation and partial autocorrelation. 
 

3.4.5.3   Classification accuracy 

Before introducing the results of the prediction accuracy, we analyze the 
classification result of the observed throughput by SVM in all scenarios. The 
classification accuracy of SVM in Table 3.10 is the probability that the method of AR or 
GMM-HMM with lower RMSRE is correctly chosen in different scenarios. 
 

Table 3.10  Actual classification accuracy of seven scenarios. 
Scenario Accuracy Number of prediction segment 

Static case (LTE) 76% 25 
Walk case (LTE) 93.10% 29 
Bus case (LTE) 90% 10 

Ferry case (HSDPA) 82.35% 17 
Train case (HSDPA) 93.33% 15 

Static case 
Wi-Fi (AP1) 88% 25 

Static case 
Wi-Fi (AP2) 92% 25 
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Figure 3.25  RMSRE for three methods in walk scenario (LTE). 

 
 

 
Figure 3.26  RMSRE for three methods in ferry scenario (HSDPA). 

 

We can conclude from Table 3.10 that the actual classification accuracy of 
SVM is very high for all the scenarios. We take the walk scenario (LTE) and ferry 
scenario (HSDPA) as examples. Figure 3.25 shows the prediction error of different 
segments using three methods in the walk scenario and Figure 3.26 shows 
corresponding results in ferry scenario. We can see that the HOAH chooses the correct 
methods for 93.10% of all segments in walk scenario and can choose the correct method 
for 82.35% of all segments in ferry scenario. 
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3.4.5.4   Prediction accuracy 

We evaluate and compare the prediction accuracy with CDF of Rt and RMSRE 
of seven methods, which are HOAH, AR, GMM-HMM, harmonic mean (HM), last 
sample (LS), moving average (MA) and stochastic model (Stochastic), in seven 
scenarios. Evaluation parameters are shown in Table 3.11. Moreover, the results are 
calculated by the average of multi-segment prediction results of all the trials in each 
scenario. 
 

Table 3.11  Evaluation parameters. 

Scenario Historical segment 
length (s) 

Prediction segment 
length (s) 

Number of prediction 
segments 

Static case (LTE) 30 20 25 
Walk case (LTE) 30 20 29 
Bus case (LTE) 30 20 10 

Ferry case (HSDPA) 30 20 17 
Train case (HSDPA) 30 20 15 

Static case 
Wi-Fi (AP1) 30 20 25 

Static case 
Wi-Fi (AP2) 30 20 25 

 
 

 
Figure 3.27  CDF of Rt in walk scenario using different methods when historical 
segment length is 30 s and prediction segment length is 20 s. 
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The walk scenario of LTE is taken as an example shown in Figure 3.27. The 
CDF curves show that 92% of the total predicted data with HOAH has the Rt that is 
smaller than 0.5, and the percentage of which is 6% larger than other methods. 
Moreover, Rt of 98.8% data is smaller than 0.783. These indicate that HOAH is more 
effective than other methods. 

Figure 3.28 depicts the RMSRE of prediction with all methods in various 
scenarios. It can be seen that AR and GMM-HMM models outperform other 
conventional methods such as HM, LS and MA in most cases, demonstrating the 
feasibility of choosing these two methods for switching. Basically the AR model 
performs better in static cases where the throughput is more like stationary process. In 
the moving cases, GMM-HMM performs better because HMM can model the process 
with sharp change as a statistical transition between states. Table 3.12 shows the 
percentage of the decreased prediction error of HOAH compared with other methods. 
We can conclude that HOAH is effective for both static user scenarios and moving user 
scenarios. Especially for moving user scenarios, HOAH can reduce the prediction error 
by maximum 55.95% in the ferry scenario using HSDPA as shown in Table 3.12. 
 

 
Figure 3.28  Average RMSRE results in all scenarios. 
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Table 3.12  Ratio of decreased prediction error when using HOAH 
compared with other methods. 

Scenario HM LS MA Stochastic AR GMM-HMM 
Static case (LTE) 18.09% 33.12% 20.25% 16.36% 8.86% 14.71% 
Walk case (LTE) 23.98% 32.72% 28.47% 26.16% 18.09% 19.98% 
Bus case (LTE) 30.26% 38.54% 31.58% 40.80% 21.58% 17.65% 

Ferry case 
(HSDPA) 36.06% 49.78% 55.95% 55.16% 26.67% 20.40% 

Train case 
(HSDPA) 37.38% 29.47% 43.73% 35.85% 29.54% 24.33% 

Static case 
Wi-Fi 
(AP1) 

24.25% 39.09% 26.38% 26.70% 24.01% 10.12% 

Static case 
Wi-Fi (AP2) 18.43% 31.43% 14.69% 18.22% 14.38% 17.91% 

 
 

3.4.5.5   Analysis of the effect of parameters 

Next, we evaluate the effect of different historical segment length and 
prediction segment length on the prediction accuracy. In the evaluation, we take the 
walk (LTE) and ferry scenarios as examples. 

1. Historical segment length 
To evaluate the effect of historical segment length, we assign 20 s to the 

prediction segment length and compare the prediction error of HOAH with other 
baseline methods. The evaluation parameters are shown in Table 3.13, and the results 
are calculated by averaging the results of 29 or 17 prediction segments. 
 

Table 3.13  Evaluation parameters. 

Scenario Historical segment 
length (s) 

Prediction segment 
length(s) 

Number of prediction 
segments 

Walk case (LTE) 30-100 20 29 
Ferry case (HSDPA) 30-100 20 17 

 
 

Figure 3.29 shows the prediction error of different methods in walk scenario 
and Figure 3.30 shows the corresponding results in ferry scenario. From both figures, 
we can conclude that HOAH indicates lower prediction error than other baseline 
methods regardless of the historical segment length (30-100 s). Moreover, all methods 
seem to be not affected by the change of historical segment length. 
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Figure 3.29  The influence of different historical segment length on average RMSRE in 
walk scenario (LTE). 
 

 
Figure 3.30  The influence of different historical segment length on average RMSRE in  
ferry scenario (HSDPA). 
 

 2. Prediction segment length 
 We also evaluate the prediction error of different prediction segment length. In 
the evaluation, we fix the historical segment length with 50 s and change the prediction 
segment length from 10 s to 100 s as shown in Table 3.14. The average RMSRE of 
different methods in the walk (LTE) scenario are shown in Figure 3.31, and the 
corresponding results in ferry scenario are shown in Figure 3.32. 
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Table 3.14  Evaluation parameters. 

Scenario Historical segment 
length (s) 

Prediction segment 
length(s) 

Number of prediction 
segments 

Walk case (LTE) 50 10-100 5-58 
Ferry case (HSDPA) 50 10-100 4-34 

 
 

 
Figure 3.31  The influence of different prediction segment length on average RMSRE  in 
the walk scenario (LTE). 
 

 
Figure 3.32 The influence of different prediction segment length on average RMSRE in 
the ferry scenario (HSDPA). 
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Both Figure 3.31 and Figure 3.32 imply that HOAH has lower prediction error 
than baseline methods. With the increase of prediction segment length, data in future 
time tend to have different performance with historical segment data. And future data 
become harder to be predicted because they may have less relationship with historical 
data. Therefore, all methods show larger RMSRE, which means larger prediction error 
with the increase of prediction segment length. 
 

3.5    Summary 

In Chapter 3, the time series analysis by statistics and machine learning 
techniques are utilized and studied for throughput prediction. A history-based 
throughput prediction method utilizing hidden Markov model for real time 
communication in mobile networks is proposed, which could judge data fluctuation of 
current time and adopt proper methods to predict future throughput for each condition. 
Then, we conduct experiment in different situations with different time and user 
mobility in mobile network to evaluate the proposed method. Results show that, 
compared with the conventional prediction methods, including linear regression, locally 
weighted linear regression and stochastic model, our proposed approach could achieve 
higher accuracy not only in static user situations but also in moving user situations. 
Based on this method, an advanced model called the hybrid prediction with the 
autoregressive model and hidden Markov model, HOAH is proposed. The novel model 
combines the autoregressive model and hidden Markov model by SVM classifier. 
HOAH could predict throughput with the proper model during the whole session by 
switching between two models. Moreover, it takes user moving mode into consideration 
and can decrease prediction error in various scenarios. We conduct experiments to 
evaluate the method and compare it with conventional methods. Experiments showed 
that HOAH could decrease the prediction error by 55.95% and achieve higher accuracy 
than conventional methods.  

In the future, the inclusion of human moving behaviors into the classification 
step will be considered and integrated into our prediction method. We will also continue 
to improve the prediction accuracy and apply HOAH to control the bitrate adaptively 
for mobile network communication to guarantee the QoS/QoE for video delivery. 
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4   
 
Throughput prediction is essential for ensuring high quality of service and quality of 
experience for video streaming transmissions. However, current methods are incapable 
of accurately predicting throughput in mobile networks, especially for moving user 
scenarios. Therefore, we propose a TCP throughput prediction method: Throughput 
prediction based on LSTM (TRUST) using machine learning for mobile networks. 
TRUST has two stages: user movement pattern identification and throughput prediction. 
In the prediction stage, the long short-term memory (LSTM) model is employed for TCP 
throughput prediction. TRUST takes all the communication quality factors, sensor data 
and scenario information into consideration. Field experiments are conducted to 
evaluate TRUST in various scenarios. The results indicate that TRUST can predict 
future throughput with higher accuracy than the conventional methods, which decreases 
the throughput prediction error by maximum 44% under the moving bus scenario. 
 

 

4.1    Neural networks 
The neural networks use units to model the neurons in a biological brain and 

communicate with each other by transmit real numbers. The output number of artificial 
neuron is calculated by the non-linear function of the sum of its inputs and with related 
adjustable weights. Generally neural networks have many layers, and different layers do 
various calculation to the inputs. The output of the last layer is the final result. Neural 
networks are widely used in many areas such as signal processing, computer vision, 
speech recognition, and AI related products.  
 

4.2    User movement pattern recognition 
Throughput data in different scenarios have different characteristics, thus it is 

important to identify and classify data of same scenario. User movement pattern is one 
important factor of the scenario information, so recognize user movement pattern is an 
important task. 

†This chapter is adapted from the work published in [90]. 

TCP throughput prediction 
using neural networks† 
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4.2.1   Classification 

The basic process for movement pattern recognition is classifying the data to 
the corresponding class. Thus, the problem can be generally considered as classification 
problem. Classification is to find the class that an observation belongs to, which is a 
topic of pattern recognition. In the area of machine learning, supervised learning is 
adopted to construct the classifier, which can be used to classify the new input to the 
correct category. In supervised learning, the characteristics of data are used as features 
for the basis of model construction. Different kinds of methods are considered for 
classification problem. Machine learning techniques are useful tools for this topic. Thus, 
in the next session, we will introduce some machine learning methods that being used in 
this thesis. 
 

4.2.2   Machine learning techniques 

There are many machine learning techniques can be utilized to solve the 
problem of classification, such as Naïve Bayes classifier, support vector machine, k-
nearest neighbor and neural networks. In this thesis, we only try some of the methods 
and give a discussion later. The machine learning techniques are k-nearest neighbors (k-
NN), support vector machine (SVM), and random forest (RF). 

SVM adopts supervised learning to model and solve the problem of 
classification and regression. It is popular to work as classifier not only for linear 
classification, but also for nonlinear classification. By using kernel function, SVM can 
map the feature data to a high-dimensional feature space, and construct a hyper-plane to 
solve the nonlinear classification problem. The common kernel function utilized are: 

Polynomial function: 

  ( , ) ( )d
i j i jk x x k x x                                             (4.1) 

Gaussian radial basis function: 

2

2 2
1 1( , ) exp , for 0

2 2i j i jk x x x x
 

 
    

 
                    (4.2) 

k-NN is an algorithm that classify the new event based on similarity 
measurement with the k nearest neighbors. Supervised learning is adopted to construct 
the k-NN model. By calculating the vote of the nearest k neighbors, the classifier output 
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the class that the new event belongs to. The choice of k has a large effect on the 
classification result. The cross validation can be used to help chose the best value for k. 
RF is a kind of ensemble learning that can be used for classification. Supervised 
learning is also adopted to generate the tree structure for classification.  
 

4.2.3   Experiment result 

In our former research [81], [82], k-NN, SVM and RF are adopted for user 
movement pattern recognition. First, the data of throughput, RSSI, and Cell ID are 
collected in the following scenarios: a) One user utilizes one mobile phone to collect the 
data at 15:00 with different moving patterns; b) One user utilizes three mobile phones to 
collect data during 5:00-23:00 with different moving patterns. 
 

Table 4.1  Dataset definitions. 
Data set Throughput RSSI Cell ID Accelerometer 

1    ○ 
2 ○    
3  ○   
4   ○  
5 ○ ○   
6  ○ ○  
7 ○  ○  
8 ○ ○ ○  
9 ○ ○ ○ ○ 

 
 

The datasets 1-9 are shown in Table 4.1, from which we can observe that the 
combination of four features are developed. Scikit-learn [83] is adopted to conduct the 
experiments. 75% data are used for training the model, and 25% are used as test data. 
Experiment results for the two scenarios are shown in Figure 4.1 and Figure 4.2. The 
results indicate that the communication quality can be adopted to identify transportation 
mode and the results of the three machine learning methods show little difference. 
Moreover, Cell ID is the most effective factor as the experimental area is fixed in the 
evaluations for each scenario of specific movement pattern. The contribution of RSSI is 
higher than throughput because the throughput is affected by many factors such as RSSI 
and the condition of the base station being utilized which is complex. While the factors 
which affect RSSI simply includes moving speed and distance between the user and the 
signal source. 
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Figure 4.1  Comparison of the classification results using different datasets and methods 
for scenario a. [81] 

 
 

 
Figure 4.2  Comparison of the classification results using different datasets and methods 
for scenario b. [81] 

 

4.3    Throughput prediction using TRUST 

4.3.1   Data acquisition and analysis 

4.3.1.1   Data acquisition setup 

We use the Android application developed by our laboratory to record the data, 
which are assumed from video streaming being enjoyed by a user. In the application, the 
throughput is observed by downloading video segments with the size of 500-1200 KB 
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to user terminal (Galaxy S4 of Android 4.2.2) from the content server located in our 
laboratory via Long-term evolution (LTE) provided by the major public cellular carrier 
in Japan. DASH-JS [8] is adopted and the content server serves as an HTTP streaming 
server. The throughput, RSSI, Cell ID, time, and location, as well as sensor data are 
collected every second. 

 

4.3.1.2   Characteristics of the measured data 

Figure 4.3 presents examples of measured actual throughput in walk scenario 
and static scenario. The throughput data are derived from two days with same time 
(10:00 PM) and same moving route or position. A comparison of throughputs from walk 
scenario of two days elucidates that the throughputs show similar behavior in the same 
scenario. By contrast, comparing throughputs from walk and static scenarios, the 
throughputs show different behaviors in different scenarios. 

Figure 4.4 shows the throughput and corresponding RSSI and Cell ID in walk 
and static scenarios. It can be observed that the throughput, RSSI, and Cell ID in a 
moving user scenario have larger fluctuation and change more frequently than those of a 
static user scenario. Since the throughput behaves in a different manner in different 
scenarios, the prediction should be considered separately for all scenarios. Meanwhile, 
as other measured data such as RSSI have relationship with the throughput, they should 
also be included in the prediction. 
 

 

Figure 4.3  Throughput data of walk scenario from (a) Day 1, (b) Day 2 and static 
scenario from (c) Day 1, (d) Day 2. 
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Figure 4.4  Communication quality factors in walk and static scenario: (a), (d) 
throughput, (b), (e) RSSI, (c), (f) Cell ID. 
 

4.3.1.3   Preprocessing of the measured data 

As shown in Figure 4.4, since the orders of the measured data are different, it is 
essential to process the data before applying them to the prediction method. In addition 
to the data shown above, a couple of sensor data can also be captured simultaneously 
during usage. To change them into similar order, the following preprocessing 
procedures are carried out: 

1) Throughput (TH): Normalize the data TH with the maximum value (THmax) 
in the historical measurements as: THnew = TH/THmax. 

2) RSSI: As the value is basically in the range (-90,-50), the values are rescaled 
to (0, 1) as: RSSInew = (RSSI + 90)/40. 

3) Cell ID: The ID value in this work is basically in the range (3×108, 5×108), 
the values are rescaled as: Cell IDnew = (Cell ID – 3×108)/2×108. 

4) The device collects position information such as latitude, longitude and 
orientations, which are saved as degree. The range of latitude is from (-90, 90) and it is 
rescaled by LATnew = (LAT + 90)/180. The longitude is from (-180, 180) and it is 
rescaled by LONGnew = (LONG + 180)/360. The orientations are from (0, 360) and they 
are rescaled by: ORInew = ORI/360. 
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5) The accelerations are also collected. These data are rescaled by dividing the 
acceleration of gravity: ACCnew = ACC/9.8. 

Besides the measured data, the mean value, minimum value, maximum value, 
variance, and standard deviation of the throughput are calculated and considered as 
additional inputs for TCP throughput prediction. 

 

4.3.2   Throughput prediction methodology 

4.3.2.1   The structure of TRUST 

TRUST, a two-stage machine learning-based TCP throughput prediction 
method is proposed in this paper. As shown in Figure 4.5, the throughput, RSSI, Cell 
ID, time, and location, as well as other sensor data are collected. The data are assumed 
from a user enjoying mobile services such as video streaming in various scenarios. Each 
kind of data is regarded as an input feature for prediction. First, the features are used to 
identify the user movement pattern. Then, prediction is performed, and finally, the 
predicted throughput can be used for smart rate control. 
 

4.3.2.2   User movement pattern identification 

In [81], we proposed a user movement pattern identification method using 
communication quality factors and sensor data via machine learning. Experiments were 
conducted and the results demonstrated that the user movement pattern can be 
recognized with high accuracy. In this paper, the movement identification is employed 
as the first stage of TRUST. According to the identification results, the prediction is 
conducted using the corresponding LSTM model which is trained with datasets from the 
same scenario. 
 

4.3.2.3   Throughput prediction mechanism 

Recurrent neural network (RNN) is widely used for problems such as natural 
language processing in which the next word is heavily dependent on the previous words 
[84], [85]. As the throughput data in the future are considered to have close relationship 
with the historical data, we adopt the RNN technique to deal with this time series 
prediction challenge [86]. Compared with the basic RNN model, LSTM can eliminate 
exploding and vanishing gradient problems [86]. Therefore, it can be used to address 
both long- and short-term prediction problems. In this paper, the neural network (NN) 
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model based on the LSTM structure is constructed. Figure 4.6 illustrates the architecture 
of the proposed model. Hl

t’ represents the hidden states of layer l at timestep t’. The 
number of hidden states is defined as d and the number of layers is defined as L. d 
ranges from 2 to 100 and L ranges from 1 to 3. We define the input of the network as xt’ 
and the output as yt. In the proposed model, the input xt’ are the historical throughput 
and other features such as RSSI and Cell ID, whereas the output yt is a scalar only 
containing the future throughput. The size of xt’ is N×1 where N denotes the number of 
features being used. n is the input length and m is the prediction length on time 
dimension. Here, n and m are not necessarily identical. m can be smaller than n. W and 
U are model parameter matrices. The task is to determine a NN model that 
approximates the relationship between (x1, x2,…, xn) and (y1, y2,…, ym). 
 
 

 
 

Figure 4.5  Schematic diagram of TRUST. 
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Figure 4.6  Structure of the proposed prediction model. 
 

The LSTM cell, whose structure is shown in Figure 4.7, forms the basic cell in 
each layer. In the LSTM cell, a memory cell Ct’ is introduced to hold the information 
from the past. Three gates, forget gate f, input gate i, and output gate o, are used to 
manipulate the information flow. The formulas to update gates, memory cell, and 
hidden states are as follows: 
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where W is the weight matrix, b is the bias vector, σ is the sigmoid function, and ⊙ is 
the point-wide multiplication. The sizes of the gates and memory cell are the same as 
the hidden states. Therefore, W is a matrix with the size of (4d)×(d+N). The size of b is 
(4d)×1. Note that Figure 4.7 is the representation of an LSTM cell in the first hidden 
layer. If the LSTM cell is in the deeper layer, xt’ should be replaced with the hidden 
states from the former layer and the size of W becomes (4d)×(2d). 
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Figure 4.7  Structure of the LSTM cell. 
 

While updating, the forget gate f determines how much the former information 
to be retained based on the input data. Meanwhile, the input gate i determines how 
much new information to be added. By adding the gated former memory cell Ct’-1 and 
the new information, the memory cell for the current timestep Ct’ is calculated. Then the 
current memory cell and the output gate are combined to calculate the current hidden 
states.  

For throughput prediction, NN is used as a regression model in which the 
output should be certain numbers instead of classifications. Therefore, the output y is 
calculated as follows: 

L
oy b  U H                                                   (4.6) 

where U is the weight matrix and bo is the corresponding bias for output layer. 
In the model training for LSTM, each training example is a ((x1, x2,…, xn), (y1, 

y2,…, ym)) pair. The mean squared error (MSE) between the predicted output ŷt and real 
output yt is used as the cost function which is written as: 
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where k is the example index and s is the number of training examples. Figure 4.8 
illustrates the preparation of the training datasets. The procedure is as follows: 

1) The features’ values in former n timesteps are extracted as the input (x1, 
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x2,…, xn) of the training example. 
2) The latter m timesteps of the throughput (Feature1) are extracted as the 

output (y1, y2,…,ym). 
3) Putting (x1, x2,…, xn) and (y1, y2,…,ym) pair together, a training example is 

completed. 
4) The time window slides in m timesteps, and step 1 to step 3 are repeated 

until the end of the current data file. 
5) The measured data file is changed, and step 1 to step 4 are repeated. 
The training examples are fed into the LSTM model and the model parameters 

are optimized to minimize the prediction error defined in Equation (4.7). The 
optimization method used here is Adam [87]. The learning rates range from 0.0001 to 
0.001 for different networks. The maximum number of training epoch is 2000. A 
patience factor P and a minimum improvement factor δ are defined to terminate the 
training. δ is the improvement of J between two epochs. If there are continuous P 
epochs where the improvement is less than δ, the training will be terminated. Here, P is 
set as 100 and δ is set as 0.01%. 

 

Figure 4.8  Preparation of the training datasets for the LSTM model. 
  

Algorithm 1 briefly summarizes the entire procedure of TRUST. When the 
prediction is to be carried out, the historical data in the former n seconds are 
preprocessed. Then the movement pattern is identified. According to the identification 
result, the throughput in the future m seconds is predicted using the corresponding 
LSTM model. Note that m is the length for predicting once. The prediction is repeated 
every m seconds and T is the total prediction length. 
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4.3.3   Evaluation 

We conduct field experiments to evaluate the throughput prediction method 
TRUST. We collect data under four different scenarios and predict TCP throughput 
using TRUST. The results are compared with other methods. 

 

4.3.3.1   Experiment environment 

The moving routes or positions of static, walk, and bus scenarios are shown in 
Figure 4.9(a), and the moving route of train is demonstrated in Figure 4.9(b). In the 
static scenario, the user remains static in the laboratory located in Nishi-waseda campus 
in the afternoon. Regarding the walk scenario, the user walks from Nishi-waseda 
campus to Zoshigaya station in the evening, which takes approximately 21 min for a 
one-way trip. As for the bus scenario, the user travels on a moving bus from Waseda 
campus to Nishi-waseda campus in the afternoon, which takes about 10 min for a one-
way trip. In the train scenario, the user travels on a moving train from Shimosa-
Nakayama station to Shinjuku station in the morning. The datasets used in static, walk, 
bus, and train scenarios include about 173800 s from 14 days, 29400 s from 22 days, 
4260 s from 6 days, and 29500 s from 14 days, respectively. In the evaluation, 80% data 
are used for model training and 20% for prediction performance test. 
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(a) Static/walk/bus scenario                              (b) Train scenario 
Figure 4.9  Maps of moving routes in static, walk, bus, and train scenarios. 

 

4.3.3.2   Evaluation metrics 

Similar to [29], [88] and [89], the accuracy of the TCP throughput prediction 
method is evaluated by the relative prediction error Rt and normalized root mean 
squared error (NRMSE) between the predicted value ŷt and actual value yt. Rt and 
NRMSE are calculated by: 
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where T is the total prediction length. The cumulative distributed function (CDF) of Rt is 
employed to assess the distribution of the prediction error. The NRMSE is used to assess 
the prediction error relative to the mean throughput, enabling the comparison between 
data with different orders. The smaller NRMSE represents the higher accuracy. 
 

4.3.3.3   Prediction performance 

We compare the prediction results of TRUST with other seven methods in the 
four scenarios, respectively. The methods are arithmetic mean (AM) [89], harmonic 
mean (HM) [89], last sample (LS) [88], MA [29], HMM [88], hybrid model of 
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autoregressive model and HMM (Hybrid) [63] and stochastic model (Stochastic) [25]. 
To prove the necessity of user movement pattern identification, we conduct 

prediction using different datasets and compare the NRMSE. The results are shown in 
Table 4.2. In the table, “All Data” indicates that the datasets for training are the mixed 
data from all scenarios and a common LSTM model is trained. The prediction is 
conducted using the common model for all scenarios without movement identification. 
By contrast, “Data with Same Scenario” indicates that the training dataset is derived 
from the same scenario and the prediction is conducted using the corresponding LSTM 
model based on the identification result. For each scenario, the prediction length m is 
assigned 200 s, 100 s, 20 s, and 5 s. The input length n is set the same as m. These time 
lengths are selected to assess the performance in long- and short-term prediction. The 
total prediction lengths T for static, walk, bus, and train scenarios are 34000 s, 5800 s, 
800 s, and 5800 s, respectively. The hidden state number d and layer number L of the 
LSTM models for each scenario are tuned separately to achieve the best prediction 
accuracy. It can be concluded from Table 4.2 that the prediction error NRMSE when 
using corresponding dataset after identification is smaller than that when using the “All 
Data”. This can be explained by use of the analysis in Section 4.3.1.2. As shown in 
Figure 4.3 and Figure 4.4, the measured data from the same scenario have similar 
performance, whereas those from different scenarios have different behavior. When the 
prediction model is trained using mixed data, finding an optimal solution to fit for all 
types of data behaviors is challenging. Therefore, it is essential to perform the first-stage 
identification, and then, use the model trained with data from the same scenario for 
prediction. 
 

Table 4.2  NRMSE Comparison using different training dataset. 
Prediction 
Length m Training Dataset 

NRMSE 
Static Walk Bus Train 

200 s 
All Data 0.305 0.348 0.386 0.456 

Data with Same 
Scenario 0.188 0.304 0.264 0.355 

100 s 
All Data 0.251 0.372 0.308 0.376 

Data with Same 
Scenario 0.2 0.326 0.249 0.36 

20 s 
All Data 0.221 0.293 0.26 0.383 

Data with Same 
Scenario 0.196 0.259 0.223 0.361 

5 s 
All Data 0.231 0.188 0.254 0.353 

Data with Same 
Scenario 0.179 0.157 0.217 0.316 
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Figure 4.10 illustrates the CDF of Rt in the moving bus scenario, where the x-
axis represents the value of Rt and the y-axis represents the corresponding CDF of 
different methods. The prediction length m is 200 s. The CDF result using TRUST with 
non-preprocessed data (raw) is also shown. We can observe that the prediction accuracy 
could be extremely poor if the data are not preprocessed to the same order. This result 
demonstrates the importance of data preprocessing. Regarding the results, 80% 
predicted data has relative error under 0.294 in TRUST. This is the best among all the 
methods. Meanwhile, TRUST has 91% predicted data whose Rt is smaller than 0.4. This 
data ratio is larger than other methods. Similar results can be observed in the short-term 
prediction where the prediction length m is 20 s as shown in Figure 4.11. There are 80% 
predicted data whose relative error is under 0.264 in TRUST, which is the best among 
all the methods. Meanwhile, TRUST has 85.5% predicted data whose Rt is smaller than 
0.3. This data ratio is larger than other methods. 

 

 
Figure 4.10  CDF of Rt by different methods in the bus scenario when the prediction 
length m is 200 s. 
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Figure 4.11  CDF of Rt by different methods in the bus scenario when the prediction 
length m is 20 s. 
 

Figure 4.12 shows the NRMSE results of different methods in various 
scenarios. It can be concluded that, generally the prediction errors are smaller in static 
scenario than those in moving scenarios since the throughput fluctuation is smaller in 
static scenario. In the 200-second prediction, the commonly used LS method performs 
worst in all scenarios because LS only reflects the information in the last timestep. 
TRUST performs the best in the 200-second prediction because it is based on the LSTM 
model that considers the effect of long-term information. Similar results can also be 
observed in the 100-second prediction. In short term prediction, prediction errors are 
smaller than in long-term prediction, especially under the walk scenario. Similarly, 
TRUST also performs the best among all the methods. The results imply that TRUST 
can achieve the lowest prediction error compared with the conventional methods, both 
in long- and short-term prediction. Throughput prediction errors can be decreased by a 
maximum of 44% under the moving bus scenario. For other scenarios, the prediction 
errors are decreased by maximum 38%, 40%, and 34% under static, walk, and train 
scenarios, respectively. 
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Figure 4.12  NRMSE comparison of different methods with various prediction lengths in 
(a) Static scenario, (b) Walk scenario, (c) Bus scenario, and (d) Train scenario. 
 

4.4    Summary 

In chapter 4, we propose TRUST, a machine learning-based TCP throughput 
prediction method to predict the future throughput for mobile networks. In this method, 
the user movement pattern is first identified with communication quality factors and 
sensor data. Based on the identification result, the LSTM model trained with 
corresponding dataset is used for prediction. For throughput prediction, the 
communication quality factors; throughput characteristics such as mean value, 
minimum value, maximum value, variation, and standard deviation; together with 
scenario information are jointly employed. The input data are preprocessed by a set of 
data preprocessing methods. Field experiments are conducted for evaluating the 
prediction method. The results indicate the importance of data preprocessing and user 
movement pattern identification before prediction. Furthermore, the proposed method 
effectively predict long- and short-term TCP throughput in different scenarios, and 
decrease the prediction error by maximum 44% in the moving bus scenario.  

For further research, we aim to collect more data of wider areas and improve 
the prediction accuracy. Moreover, we intend to implement throughput prediction into 
actual mobile service for video streaming by proposing a new adaptive bitrate control 
strategy that considers future throughput transitions to ensure high quality of service. 
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5   
 
 
 
Dynamic adaptive video streaming over HTTP (DASH) is widely studied and adopted in 
modern video players for ensuring user quality of experience (QoE) since QoE directly 
affects the revenue. In DASH, adaptive bitrate control is a key part for achieving high 
quality of service and QoE when transmit video streaming. The ultimate goal of 
adaptive bitrate control is to maximize video bitrate while minimize rebuffering events 
and duration. However, this task is non-trivial since the network condition is not always 
stable. The choice of higher bitrate may cause frequent video freezing which annoying 
the user while choosing lower bitrate may give worse experience. Therefore, throughput 
prediction plays an important role in helping select the proper bitrate of video 
dynamically. Basically, the algorithms need to be tested with large-scale deployment. 
However, it is not always possible in academic research. In this chapter, we established 
a video transmission system with DASH which enables replicable trace-based 
emulations. The emulation enables us to compare different methods under the 
artificially same condition, with limited experiment. The quality metrics such as average 
bitrate, the number of rebuffering events, the duration of rebuffering, etc. are examined. 
The results indicate that a good prediction can provide better user QoE in rate-based 
adaptive bitrate (ABR) method. In order to further improve the QoE, the buffer 
occupancy needs to be considered simultaneously. We also proposed a new ABR 
method which incorporating both prediction and buffer occupancy information named 
decision map method (DMM). DMM creates both aggressive and conservative 
mechanisms to handle different network conditions. The emulation results demonstrate 
that the DMM can achieve better performance in QoE than conventional methods, 
showing the efficiency of the DMM algorithm. 
 

 

5.1    Video transmission system with DASH 

There exist several adaptive streaming protocols such as Adobe HTTP 

‡This chapter is adapted from the work submitted in [91]. 

Adaptive bitrate control with  
QoE maximization using  
throughput prediction‡ 
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Dynamic Streaming [37], Apple HTTP Live Streaming [38], and Microsoft Smooth 
Streaming [39]. Recent years, dynamic adaptive video streaming over HTTP (DASH) is 
studied worldwide as a unifying standard [40]. In DASH protocol, the video contents 
are divided into short chunks and encoded at different bitrate levels. Then the client 
player can request the segment chunks with proper bitrate successively and dynamically 
according to the network condition. The algorithm for selecting download bitrate is 
called adaptive bitrate (ABR) algorithm. The ABR algorithm employs the network 
condition logs (such as throughput, buffer occupancy and etc.) which monitoring in the 
client side to decide the bitrate of the latter downloading chunks. The purpose is 
maximizing the video quality while reducing rebuffering. 
 

5.1.1   DASH system structure 

As shown in Figure 5.1, the basic DASH system structure consists of a HTTP 
server and a DASH client side which communicates with the content server and plays 
the video. The video content is encoded at different bitrates and stored in the server 
orderly. Here in the DASH context, different bitrate versions are named representations. 
The contents are then divided into short chunks for example each chunk includes 2-
second video playback time. For different representations, although the video qualities 
are various, the start time and end time of each chunk are aligned. Therefore, the chunks 
in different representations can be concatenated and played smoothly only via the chunk 
order, enabling the dynamical choice of video quality during streaming. All the 
information about the video content and the representation details are written in the 
Media Presentation Description (MPD) file. The MPD documents the number of 
representation for the video content, the encoding bitrates, the URLs of the chunks and 
etc. By parsing the MPD file, the client side can obtain full knowledge of the contents.  

The DASH client side mainly consists of a MPD parser module, ABR control 
module, HTTP client module, video buffer and the media player. During the streaming, 
the MPD file is firstly requested and downloaded by the client and parsed to get the 
information about the video contents. Then the ABR control module will determine 
which representation to select for the next video chunk and tell the decision to the HTTP 
client. The HTTP client then generates a request and communicates with the server to 
get the corresponding video chunk. After completion of the current chunk, the content 
will be stored into the video buffer and the ABR control module will repeat the 
download selection for the next chunk. After enough video buffer is filled, the media 
player will begin to playback the video.  
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Figure 5.1  The DASH system structure. 

 

5.1.2   DASH client framework 

5.1.2.1   Basic architecture 

A JavaScript-based DASH client is adopted in this study which is originally 
developed by ITEC [8], [43]. This basic structure of the framework is shown in 
Figure 5.2 [43]. The Google Chrome Media Source API is used to play the video.  

 

 
Figure 5.2  The architecture of the basic DASH client framework [43]. 
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The working flow of this structure is as follows. First, when the global object 
dashPlayer is created, the download of the MPD file is triggered. When the download 
is completed, the MPDparser() is called to analyze the full information of the video 
contents to be downloaded. Then the bandwidth, rateBasedAdaptation and 
mediaSourceBuffer are created to estimate the bandwidth, to switch the representation 
which to be downloaded for the next chuck, and to store the downloaded contents. After 
this, the MediaSource() object is created and attached to the HTML video element. 
When the MediaSource() open event is listened, the monitoring of the buffer state will 
be triggered and the downloading and streaming of the video content will start. During 
the streaming, the buffer state is monitored with a preset interval, such as every 100 ms. 
When the buffer state is lower than a threshold (defined as criticalLevel here), the 
HTTP request will be generated and sent by the XMLHttpRequest() object. The 
download request is continued until the buffer state reaches the preset maximum 
(defined as bufferSize.maxseconds here). Each time the download of a certain video 
segment is completed, the average downloading speed will be calculated and then the 
estimation of the bandwidth for the next segment is made. Based on the estimation, the 
bitrate is adaptively selected, and the next HTTP request is sent. This process is 
repeated to the end of the video session. 

Since the buffer of the MediaSource() class is not accessible, an 
overlayBuffer object is created which keeps a record of the left play duration in the 
media API, which is indicated by variable mediaElementBuffered. This object does 
not store any data, and the data is stored in the object baseBuffer. The baseBuffer is 
ring buffer in which two pointers, add pointer and get pointer, are used to refer the 
buffer index to be extracted and to be written in, respectively. When the play duration 
left in the media API is less than a threshold, the drain() function will be triggered to 
extract data from the baseBuffer as shown in Figure 5.3. The data gotten from the 
server is also stored in baseBuffer. 
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Figure 5.3  The buffer structure of the framework. 

 

5.1.2.2   Modifications and extensions 

In deploying the DASH framework, we find some problems and make 
modifications to original version. Besides, we also add some modules in order to extend 
the functionality and analyze the results.  
 

A) Real-time plot functions and metrics 
First, we modify the plot module and add new functions to show the results 

during the video session. In the original version, only the estimated bandwidth, selected 
bitrate and the current playback time are shown. The relationship between the current 
playback time (black bar) and the estimated bandwidth (red line) is not clear. Nor, the 
time axis is not clear because the metrics and scales are not shown. As shown in 
Figure 5.4, in the modification, we correct the time axis and add the scale to show the 
playback time duration. The actual average download throughput is added to the plot as 
the green line. The estimated bandwidth, the representation rate and the actual 
throughput are plotted every segment since the video contents are divided into 2-second 
chunks. The last segments in estimated bandwidth and representation rate are plotted as 
dash line since this segment is not downloaded yet. This plot is updated upon the 
estimation is made or the download is completed. 
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Figure 5.4  Plot of the playback information of the video session. 
 

Besides the plot of the playback information, we add another plot to show the 
buffer occupancy and the download information in the real time. As shown in 
Figure 5.5, the black line is the buffer occupancy in real time and the green squares are 
the download information. The height of each square stands for the average 
downloading speed of the segment and the length stands for the consumed time in 
downloading. The area of the square is the size of the segment. Different from the plot 
in Figure 5.4, this time axis is consistent with the real time world. Even when the video 
session is rebuffered or paused, the plot is updated constantly. As can be seen in the 
example in Figure 5.5, when the video session encounters the running out of buffer and 
rebuffering, the lasting time of such event is recorded. After the video session, these 
logs can be exploited to analyze the performance of adaptive control algorithms. This 
plot is updated every time the buffer is monitored, and the download is completed. 
 

 

Figure 5.5  The plot of the real-time buffer occupancy and downloading information. 
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B) Bandwidth estimation module 
Second, we add some bandwidth estimation methods to the current module. In 

the original version, the bandwidth estimation for the next segment is made based on the 
average download speed of the current segment and the former estimation. However, 
this kind of estimation only considers the average value and the lasting time of 
downloading is not considered. If the downloading time of the current segment is very 
long, the influence of the former ones should not be included. Here, we propose a 
method that take the downloading time into consideration. As shown in Figure 5.6, we 
use the former hisSize seconds data to estimate the bandwidth as follows: 
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where tbegin[n] and tend[n] are the start and end timestamps of downloading the former 
nth segment. k is number of the historical segments involved in calculation. Cpred stands 
for predicted capacity, which is the estimated bandwidth. f(t) is a function to weight the 
contribution of the historical download speed. Basically, the information in the past 
should have fewer impact on the estimation.  
  

 
Figure 5.6  The calculation of bandwidth estimation considering lasting time. 

 

For the simplest case, we can choose f(t) = 1 to only consider the lasting time 
as the weight as:  
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Besides, we also add another throughput calculation and prediction mechanism 
into the framework. The original download speed measurement is done by segment, 
which means when the download of a certain segment is over, the calculation will be 
carried out for an average throughput. However, in the former chapters, the throughput 
data are measured every second and the prediction is also made in second. Therefore, 
we add an additional module to calculate the throughput. This is realized by the event 
handler onProgress() in the XMLHttpRequest(). During the data transferring, the 
onprogress event is fired periodically and the throughput can be calculated by making 
use of the data loaded and the timestamp information which contains in the onprogress 
event. With the measurement of throughput in second, the prediction methods mentioned 
in the former chapters can be integrated into the framework. 

 
C) Bitrate switch logic 
Third, we correct original bitrate switch logic which is problematic. In the 

original version, the rate-based adaptive bitrate control method is used, which chooses 
the maximum bitrate that is lower than the estimated bandwidth. When the estimated 
bandwidth is smaller than the lowest encoding bitrate, no action is taken, and the 
selection is not triggered. The bitrate is kept the same as the former segment. However, 
since the estimated bandwidth is even lower than the lowest encoding bitrate, the former 
selection may be aggressive for this time. Therefore, we correct the bitrate choice as the 
lowest one in this case. 

 
D) Buffer logic and buffer strategy 
Fourth, some logics of the buffer are corrected. In the original version, the 

buffer fill state only considers the data stored in the baseBuffer when the running out 
is judged and the data already pushed into the Media Source Extension (MSE) is not 
counted. Even though the metric of the base buffer is zero, there are still data not played 
yet in the MSE. Therefore, there is sometimes false judgement of exhaustion of buffer. 
This may affect the statistics of rebuffering events in the post-processing. Here, we re-
define the buffer occupancy as the summation of the buffer in the baseBuffer and MSE 
to judge whether the rebuffering events occurs. Another amendment is made to the logic 
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of triggering the download. In the original version, when we want to keep the buffer 
level in a certain degree, the critical level and maximum size is set the same. However, 
the difference between maximum buffer fill state and the minimum one is duration of 2 
segments. This is caused by a logic flaw that hinder the download when the buffer 
occupancy drops below the critical level for the first time. After the modification, the 
buffer can be kept in a certain level where the difference between maximum and 
minimum buffer fill state is one segment duration. 

We also extend the buffer strategy. We add a new factor Bstart which indicates 
the buffer occupancy for when to start the video session in the initial stage. In the 
original version, the video will start after the buffer reaches the critical level. However, 
if the critical level is large, it will take a long time to start the session which will annoy 
the user and may cause quit. On the other hand, the critical level cannot be set as small 
value because there is danger to encounter rebuffering events. Since the initial waiting 
time is a very essential factor for quality of experience (QoE), it should be able to adjust 
independently. This factor is also applied when the rebuffering event occurs. Basically, 
it is expected the video will start very soon in the first stage or restart in the rebuffering 
event. Therefore, this factor is always set as a relatively small value. 

In the original version, the buffer strategy is determined by two factors, the 
maximum buffer occupancy Bmax and critical level Bcritical. These two factors can allow 
the buffer acts as the “Long on-off” or “Short on-off” behavior. However, these two 
strategies are not flexible enough to both ensure good QoE and memory consumption. 
Assuming that in the “Long on-off” case as shown in Figure 5.7, it can be seen that 
during the OFF phase, there is no data transferring between the server and client. This 
will be dangerous because the communication condition is unknown. If the condition 
becomes bad during OFF phase, there is a danger to choose bitrate aggressively based 
on the relatively old record, which may result in rebuffering. On the other hand, 
assuming that in the “Short on-off” case as shown in Figure 5.8, it can be seen the buffer 
is kept in a relatively stable high level to avoid rebuffering. However, this strategy may 
consume unnecessary resource, if the communication condition is quite well. There is 
no need to keep the buffer in a high level.  
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Figure 5.7  The “Long on-off” buffer strategy. 

 
 

 

Figure 5.8  The “Short on-off” buffer strategy. 
 

Therefore, we proposed a variable buffer strategy in which the buffer level is 
adjustable based on the current communication condition. The proposed strategy is 
shown in Figure 5.9. The buffer level is adjusted as a function of the ratio of predicted 
throughput and bitrate. In this method, four parameters are set, Bupper, Blower, Ratioupper, 
and Ratiolower, which are the buffer level upper limit, buffer lower limit, ratio upper 
limit, and ratio lower limit, respectively. When the communication condition is expected 
to be good enough, that is the ratio between prediction throughput and bitrate is larger 
than Ratioupper, the buffer level can be set as Blower. When the condition is not good, that 
is the ratio is lower than the Ratioupper, the buffer level should be set as Bupper. When the 
ratio is between the upper and lower limits, the buffer level is a function of the ratio. 
Bcritical = f(Cpred/Rnext). Here, we show the linear, conservative, aggressive mapping 
relationships between the buffer level and the ratio in black, red, blue lines, respectively. 
Figure 5.10 shows an example of the buffer occupancy dynamics using the proposed 
buffer strategy. Here the linear mapping function is used and the Bupper, Blower, Ratioupper, 
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and Ratiolower are set as 40 s, 20 s, 8 s and 4 s, respectively. As can be seen, in the stage 
of red circle, the throughput is not very large. Therefore, the buffer occupancy is 
constantly increasing to the upper buffer limit. However, during the buffer increasing, 
the communication condition is turning good as shown in the stage of blue circle. 
Therefore, the buffer occupancy stops climbing and starts to decrease. When the 
throughput keeps in a good condition as shown in the stage of black circle, the buffer 
level also keeps at a low level. This figure demonstrates that using the proposed buffer 
strategy, the buffer occupancy can be adjusted adaptively according to the 
communication condition between the server and the client. By properly setting the 
buffer mapping function, the strategy can help save resource as well as avoid 
rebuffering events.  

 

       
Figure 5.9  The illustration of the variable buffer strategy. 

 
 

 
Figure 5.10  The buffer occupancy using the variable buffer strategy. 
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E)  Logs storing module 
Finally, we add a new module to store all the logs for post-processing and 

analysis, such as QoE. These logs include the buffer occupancy, throughput 
measurement, bandwidth estimation, bitrate selection and the data transfer logs in the 
onProgress event. All the logs contain the value and the corresponding time stamp. 
Note that the throughput measurement has two timestamps, which are the start time and 
end time of the transferring of a certain segment. By analyzing these logs, the 
performance of different methods and algorithm can be compared. 

 

5.1.3   Trace-based HTTP server 

5.1.3.1   The concept of trace-based server 

The development of ABR algorithms is still ongoing and a widely accepted 
method is not achieved yet. Since the network in real world is always dynamic, we 
cannot evaluate the algorithms under two completely same network conditions. 
Therefore, to validate the actual efficiency of the algorithms, basically large-scale 
deployment in real network environment is needed via video streaming providers. Then, 
the data containing logs from millions of video sessions can be analyzed statistically. 
However, it is not always the case for academic researchers to obtain such large-scale 
data. As an alternative, the trace-based emulation is employed for evaluation. Under the 
artificially same network condition, the effect of different algorithms can be compared 
using limited deployment. Here, we developed the a trace-based server.  

The implementation of our emulation is shown in Figure 5.11. The purpose is 
to replicate the throughput between the server and client as the same as a given 
throughput trace. Since the network condition in the real world cannot be fully 
controlled, we build a virtual emulation environment of the network. In this 
environment, the server is built on the same computer as the client using the local host 
127.0.0.1. By using the local host, we can regard the delay time of the data transfer to 
be small enough (< 1 ms) that can be ignored. The node.js is used to build the HTTP 
server. The choice of this structure is because it gives full control of the data 
transferring, such as when to respond, what to respond. In order to constrain the 
throughput between the server and client, the response of the HTTP request is 
manipulated and delayed intentionally. Therefore, from the viewpoint of the client side, 
the throughput is changing dynamically since it doesn’t know what happens in the 
server side. 

 



Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction  

86 

 

 
Figure 5.11  The implementation of the trace-based emulation. 

 

5.1.3.2   The algorithm of the trace-based server 

The procedure of the manipulation is as shown in algorithm I. The throughput 
trace is prepared in the server side which can be referred freely. The trace is stored every 
second. When the server catches the GET request from the client, it firstly judge 
whether this request is for video contents or other contents such as html file or 
JavaScript files. If the request is for other files, the data are responded back to the client 
immediately. When the request for the first segment of the video content is captured, an 
initial time stamp tinit is created which is regarded as a baseline for calculating the time 
delay. When the requests for video contents are captured, the size of the requested 
chunk is analyzed. Normally, the chunk data should be sent back to client immediately. 
However, in order to shape the throughput according to the designated trace, the chunk 
data is divided and transmitted as pieces with artificial delay intervals dt. After the 
request is coming, the elapsed time from the initial time stamp is calculated as t = t1 -
tinit. Then the sending size is determined by Ssent = f(t)*dt, where f(t) is the throughput 
value at t in the prepared trace table and dt is the delay interval. dt is chosen as 100 ms 
here. After sending, the server waits for dt time (or 100 ms here) and then repeats the 
elapsed time calculation t = tn-1 - tinit and sending size determination according to the 
new f(t). After sending the last piece of the chunk, the delay interval dt should be 
recalculated since more data can be sent within dt. The delay is calculated by      
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Slast/f(t), where Slast is the size of the last piece and f(t) is the throughput at the time 
sending the last piece. After the last delay, the end signal of the response is triggered. 
Note that the trace data are usually stored every second for many datasets. In 
implementation, t is floored to integer second since the unit in the time stamps is 
millisecond. 
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5.1.3.3   Trace-based emulation validation 

In order to validate whether the trace-based emulation is successfully 
implemented, and the virtual network environment is reproducible, the test video 
streaming is conducted. The used content is BigBuckBunny. In the test, the bitrate 
adaptive bitrate switch is disabled, and the Client is set to request the content encoded in 
515 kbps constantly. Figure 5.12 shows the results of the trace-based emulation. The 
blue stairs plot is the throughput trace used to shape the sending sequence of the data on 
server side. The red one and black one are the throughputs recorded and calculated on 
the client side in two tests. As can be seen, the results of the two tests are the same. And 
the shapes of the measured throughputs in the client side are the same as prepared trace 
in the server side. Figure 5.13 shows the buffer occupancy logs of the two tests. As can 
be seen, the buffer occupancy logs are also identical. These results demonstrate that our 
trace-based emulation is successful in shaping the throughput between server and client, 
and the emulated network condition can be replicated, allowing us to compare the 
algorithms quantitatively with limited experiments. 

 

 
Figure 5.12  The prepared trace applied on server and the corresponding measured 
throughputs on client side in two tests. 
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Figure 5.13  Buffer occupancy of the two tests. 
 

5.2    Implementation of throughput prediction in DASH  
The default throughput estimation method in the original DASH client is based 

on the average throughput of one segment. However, these measurements cannot be 
directly used in the prediction methods proposed in the previous chapters since these 
methods assume that the throughput data are calculated every second. In the extended 
version, the throughput measurements by second are available taking the advantage of 
the onprogress event. In our previous work, we have proposed and implemented 
several methods in prediction. The methods are arithmetic mean (AM) [89], harmonic 
mean (HM) [89], last sample (LS) [88], MA [29], HMM [88], stochastic model 
(Stochastic) [25], hybrid model of autoregressive model and HMM (Hybrid) [63] and 
throughput prediction based on LSTM (TRUST) [90]. To incorporate the prediction 
results by the aforementioned algorithms into the emulation, a new prediction trace is 
applied in the client side. This prediction trace is created off-line which is related to the 
throughput trace on server side. Since the network condition is reproducible with regard 
to the prepared trace, we can just simply change the prediction trace on the client side 
by different prediction algorithms. The rate-based (RB) adaptive bitrate control method 
is employed where the bitrate selection is decided based on the prediction value. Here, 
the value can be obtained from the prediction trace table applied in the client side. In 
order to compare the effect of these methods, during evaluation, only the prediction 
method is changed, and other settings are kept the same such as the buffer strategy.  
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5.3    Evaluation, analysis, and discussion 

5.3.1   Setup and QoE metrics 

In evaluation, the video content is encoded into 14 versions from 100 kbps to 
4000 kbps. Total length of the video is about 598 seconds. Each chunk contains 2-
second video. The Bupper, Blower, Ratioupper, and Ratiolower are set to 40 s, 20 s, 8 s, and 
4 s, and Bstart is set to 6 second. The video streaming experiments are conducted using 
different prediction methods under the same network condition shaped by the trace on 
the server side. The buffer occupancy log and the choice of bitrate for each chunk are 
recorded for post analysis.  

In order to analyze the performance of each algorithm, some factors are 
considered in the QoE calculation, which are the initial delay Tinit, number of 
rebuffering Nrebuf, rebuffering duration Trebuf, the average bitrate Rave, and the switch 
frequency of bitrate. Tinit, Nrebuf, and Trebuf are extracted from the buffer log. Rave and 
switch frequency are extracted from the bitrate choice log. The five factors are analyzed 
here as metrics for performance assessment. Additionally, the formula used in [1] is 
adopted as the primary QoE metrics, which is: 

1

1
1 1
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 

                        (5.3) 

where q(Rn) represents the relationship between bitrate and user perceived quality. N is 
the total number of chunks. Trebuf and Tinit are the total rebuffering time and initial delay. 
μ and μs are the corresponding penalties. The last term on the left stands for the penalty 
of bitrate switch. The linear form q(Rn) = Rn is considered here. The μ and μs are chosen 
as the maximum bitrate. Note that there are also a lot of other QoE definitions which 
takes the factors with different weights. Therefore, using different QoE metrics, the 
performance judgement may change. Since the official QoE definition is not available 
yet, we use the most widely used one. Of course, one can even give their own equation 
for QoE calculation if proper explanation is provided. 

 

5.3.2   Performance evaluation 

The throughput traces implemented in server are chosen from the open dataset 
Mobile dataset (HSDPA) [48]. Figure 5.14 shows a selected trace from HSDPA. This 
trace is measured on the ferry. As can be seen, there is a period the network condition is 
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extremely bad which is almost cutoff. The results of different methods are shown in 
Table 5.1. From the total QoE, the LSTM performs best among all the methods. For the 
individual metric, it can be seen that LSTM makes a conservative choice in the initial 
phase, resulting in a small delay. As for the average bitrate, DASH-original, LS and 
Stochastic has a relatively high score. However, this aggressive choice leads to longer 
rebuffering duration. DASH-original even has 5 rebuffering events. The log of buffer 
occupancy using different prediction methods in Ferry Trace is shown in Figure 5.15. 
As can be seen that, the buffer occupancy of the DASH-original, LS and Stochastic 
methods are always at a relative low level. This causes danger of the frequent 
rebuffering events. Although the number of rebuffering events is not included in 
Equation (5.3), the more events may damage the user experience more with the same 
rebuffering duration. On the other hand, although LSTM performs best from the 
viewpoint of the total QoE, it still can be improved. During the whole session, the buffer 
occupancy is sometimes at a relatively high level. For these periods, the bitrate can be 
selected more aggressively.  

 

 
Figure 5.14  The throughput trace of Ferry (HSDPA). 

 
 

Table 5.1  The results of Ferry Trace. 
 
 
 
 
 
 
 
 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 140.7 1042.1 2.4 32.4 1 
Hybrid 118.6 1044.2 5.5 32.7 2 

LS 84.0 1313.4 6.2 48.7 1 
MA 100.5 1050.5 6.2 40.4 2 

Stochastic 104.1 1270.8 5.9 46.3 2 
AM 130.2 1011.6 6.2 30.6 3 
HM 75.2 844.1 5.0 31.2 2 

HMM 53.5 818.7 4.9 30.7 2 
Original 92.8 1458.8 5.6 68.5 5 
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Figure 5.15  The log of buffer occupancy using different prediction methods in Ferry. 

 

Figure 5.16 shows another selected trace which is measured on the bus. As can 
be seen, the average throughput is relatively higher than that in Ferry trace. The average 
quality of the video transmission should be higher. However, there are still some sudden 
degradation of network condition such as around the 150 s and 350 s. These areas need 
to be handled well otherwise could cause rebuffering events. Table 5.2 shows the QoE 
results of different methods. From the total QoE, it can be confirmed that LSTM still 
performs best among others. The original method has the tendency to be excessively 
aggressive. Therefore, this aggressive strategy gains the highest average bitrate in 
sacrifice of rebuffering events and time. This situation also can be observed from the 
former trace. The log of buffer occupancy using different prediction methods in Ferry 
Trace is shown in Figure 5.17. As can be seen, the buffer occupancy of LSTM also at a 
relatively high level. There is still space to improve the adaptive bitrate control method. 

 

 
Figure 5.16  The throughput trace of Bus (HSDPA). 
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Table 5.2  The results of Bus Trace. 
 
 
 
 
 
 
 
 

 
 

 
Figure 5.17  The log of buffer occupancy using different prediction methods in Bus. 

 

Figure 5.18 shows another trace from Tram [48]. As can be seen, the average 
throughput is relatively lower than that in Ferry trace. There is a period the network 
condition is bad but no cutoff. The results of different methods are shown in Table 5.3. 
In this case, the LSTM still has the better QoE score than other prediction methods. 
However, the original performs best this time. This aggressive strategy wins in 
achieving the highest average bitrate and successfully avoids rebuffering events. The 
log of buffer occupancy using different prediction methods in Tram trace is shown in 
Figure 5.19. As can be seen, the buffer occupancy during the streaming is at a relatively 
high level, which means the bitrate selection is somehow conservative. This is 
considered to be the reason that the LSTM is defeated by the original method. Since the 
ABR algorithm used here is rate-based, the chosen bitrate is always below the 
prediction. Therefore, the bitrate selection can be improved while reducing the buffer 
occupancy by taking advantage of the buffer occupancy information. 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 612.0 2263.3 6.3 0.0 0 
Hybrid 581.9 2163.1 3.7 0.0 0 

LS 558.6 2364.6 6.5 0.0 0 
MA 604.3 2199.2 4.0 0.0 0 

Stochastic 553.9 2240.3 5.9 0.0 0 
AM 599.6 2209.5 6.4 0.0 0 
HM 507.7 1928.9 6.0 0.0 0 

HMM 490.9 1996.9 4.1 0.0 0 
Original 561.7 2648.4 14.1 34.1 4 
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Figure 5.18  The throughput trace of Tram. 
 
 

Table 5.3  The results of Tram Trace. 
 
 

 
 
 
 
 
 
 
 

 
Figure 5.19  The log of buffer occupancy using different methods in Tram. 

 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 170.9 698.4 4.2 0.0 0 
Hybrid 161.9 656.4 4.5 0.0 0 

LS 136.8 664.0 3.2 0.0 0 
MA 159.7 639.8 4.3 0.0 0 

Stochastic 154.8 692.7 5.6 0.0 0 
AM 160.8 654.5 5.2 0.0 0 
HM 143.7 584.9 3.7 0.0 0 

HMM 132.8 594.6 3.9 0.0 0 
Original 181.9 716.8 3.9 0.0 0 
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5.3.3   Discussion 

It can be seen from Section 5.3.2, the accuracy of prediction will influence the 
performance of adaptive streaming a lot. The overestimate of throughput may make the 
selection too aggressive, resulting in the danger of rebuffering while underestimate of 
the throughput may decrease the user perceived quality. Furthermore, a good prediction 
is not enough to ensure high QoE. Since the rate-based algorithm always chooses the 
bitrate lower than the prediction throughput, the buffer occupancy may stay in a high 
level during the normal streaming. Figure 5.19 shows that the average buffer occupancy 
is about 60%~70% of Bmax. Actually, the bitrate selection can be more aggressive if the 
buffer occupancy is high. Comparing the results of the LSTM and original methods in 
Tram case, it can be found that a good QoE is related to higher average bitrate and a 
lower buffer occupancy under the same network condition. Therefore, an additional 
term can be included in the ABR method. In the initial phase, overestimate could be a 
disaster since long waiting time may annoy the user a lot and may let the user give up 
the video session. This will cause a dramatic loss of the revenue of service provider. 
Therefore, in the future adaptive strategy design, the selection needs to be conservative 
in initial phase in order to establish the streaming as soon as possible.  

 

5.4    Decision map method for adaptive bitrate control 
5.4.1   Aggressive decision  

From the evaluation results in Section 5.3.2 and the discussion in Section 5.3.3, 
it is obvious that there is needs to design new adaptive bitrate control algorithm not only 
based on the throughput prediction but also the buffer occupancy information since the 
rate-based ABR tends to be too conservative. If the throughput is the same as the bitrate, 
the buffer occupancy should keep the same because the downloaded video duration can 
balance the consuming time for downloading. If the throughput is lower than the bitrate, 
the buffer occupancy should decrease since it consumes more time in downloading. 
When the current buffer occupancy is large, we can choose the bitrate aggressively. 

We proposed a decision map method with aggressive mechanism (DMM-A) 
for adaptive bitrate control incorporating both prediction and buffer occupancy 
information as shown in Figure 5.20. In this map, the x axis is the current buffer 
occupancy Bcur and y axis is an addition term ΔTDL named extra downloading time 
(EDT). ΔTDL is calculated using the following equation: 

1[( ) 1]DL ind pred segT R C T                                   (5.4) 



Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction  

96 

 

where Cpred is the throughput prediction using LSTM, Rind+1is the bitrate one rank higher 
than the rate-based choice. Tseg is the duration of one segment. This term is used to 
estimate the possible extra downloading time when choosing the bitrate larger than the 
throughput prediction. Bupper is the maximum buffer occupancy and Bagg is a threshold 
for deciding when to be aggressive. ΔTupper is another threshold in the EDT axis to judge 
the aggressive action. The area with red dots is the aggressive area and that with green 
dots is the normal area. The aggressive area is where the buffer occupancy is relatively 
high and the EDT is not very large.  

The red dot area can be determined whether aggressively or conservatively. For 
simplicity and neutrality, it is drawn as a linear relationship here. The Bagg is chosen as 
20 s which is the same as the lower limit of buffer occupancy. The smaller Bagg is, the 
more aggressive the map is. ΔTupper is set as 2 s here since we expect one segment time 
is the largest tolerance for aggressive decision. The larger ΔTupper is, the more aggressive 
the map is. The boundary between normal area and aggressive is a line from (Bagg, 0) to 
(Bupper, ΔTupper). If the (ΔTDL, Bcur) falls in the aggressive area, the bitrate will be chosen 
as one rank higher than the rate-based decision. By using this decision map, the choice 
of bitrate can be more aggressive than rate-based method. It can be expected, a higher 
average bitrate can be achieved. 

 

         
Figure 5.20  The illustration of the decision map with aggressive mechanism (DMM-A). 
 

Table 5.4 shows the results of DMM-A with LSTM and original method. The 
corresponding buffer occupancy log is shown in Figure 5.21. As can be seen that, from 
the point view of total QoE, there seems to be no improvement than even LSTM. The 
score is almost the same. This is caused by a rebuffering event around 450 s. However, 
except for the rebuffering drawback, the buffer occupancy stays relatively stable near 
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20 s and the average bitrate is much higher than other two methods. DMM-A is indeed 
an aggressive method. But this method can be considered as a “controlled aggressive” 
case since the buffer occupancy is monitored. If the drawback of rebuffering can be 
solved, the performance of the DMM-A is expected to be more outstanding. 

 
Table 5.4  The results of Tram Trace. 

 
 
 
 

 
 

 

Figure 5.21  The log of buffer occupancy using different methods in Tram. 
 

5.4.2   Aggressive decision with conservative mechanism  

As discussed in the former section, it is necessary to deal with the possible 
rebuffering event in the DMM-A since the aggressive decision is made intentionally. 
Here, we extend the DMM-A with an additional conservative mechanism as shown in 
Figure 5.22. We just name this extended method as DMM since it involves both 
aggressive and conservative areas. In DMM, besides the division of normal and 
aggressive areas, the conservative area is added which is shown as blue dots. This area 
is determined by two thresholds, Bcon1 and Bcon2. When the buffer occupancy is within 
the conservative area, no matter what the throughput prediction is, the conservative 
action should be taken immediately to avoid rebuffering events. Bcon1 and Bcon2 are set to 
indicate the emergency level of the situation. If the Bcur is lower than Bcon1 but higher 
than Bcon2, the bitrate will be chosen as one rank lower than the rate-based decision. If 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 170.9 698.4 4.2 0.0 0 
Original 181.9 716.8 3.9 0.0 0 
DMM-A 169.0 800.0 4.6 6.4 1 
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the Bcur is lower than Bcon2, this is considered to be an extremely dangerous situation, 
therefore the bitrate will be chosen as two rank lower than the rate-based decision. The 
whole procedure of this method is shown in Algorithm II. Here, Bcon1 and Bcon2 are set as 
10 s and 5 s, respectively. It can be expected that rebuffering events can be avoided 
using this conservative mechanism. Meanwhile, this conservative decision will also be 
applied to the initial period when the user starts the video session. It is expected this 
conservative decision can help reduce initial delay since there is no buffer at the 
beginning. 

 

 
Figure 5.22  The illustration of the decision map method (DMM) with both aggressive 
and conservative areas. 

  

Table 5.5 shows the results of DMM with LSTM, original, and DMM-A 
method. The corresponding buffer occupancy log is shown in Figure 5.23. As can be 
seen that, from the viewpoint of total QoE, the DMM performs best among all the 
methods. Besides the total QoE, the average bitrate is improved by 9% compared with 
the original method which was the best. Furthermore, the initial delay is reduced as 
expected thanks to the conservative action at the beginning. As shown in Figure 5.24(a), 
the choice of bitrate is much lower than the predicted throughput at the initial stage. The 
rebuffering event is also avoided during the bad network condition period. As show in 
Figure 5.24(b), the choice of bitrate is also very conservative since the buffer occupancy 
becomes low caused by the bad condition. This strategy helps the video session survive 
and play on without rebuffering. These results demonstrate that the DMM method can 
improve the QoE significantly in adaptive video transmission. 
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Table 5.5  The results of Tram Trace. 
 
 
 
 
 

 
 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 170.9 698.4 4.2 0.0 0 
Original 181.9 716.8 3.9 0.0 0 
DMM-A 169.0 800.0 4.6 6.4 1 

DMM 195.4 779.8 3.2 0 0 
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Figure 5.23  The log of buffer occupancy using different methods in Tram. 
 
 

 
Figure 5.24  The log of bitrate status using DMM in Tram. (a) Initial stage, (b) Bad 

network condition period. 
 

5.4.3   DMM performance verification in other traces  

The performance of the DMM method is also verified in other traces. Table 5.6 
shows the results of DMM with LSTM and original method in Ferry Trace. The 
corresponding buffer occupancy log is shown in Figure 5.25. As can be seen that, from 
the viewpoint of total QoE, the DMM performs best among all the methods. The 
average bitrate is improved significantly compared with the LSTM rate-based method. 
Meanwhile, the rebuffering time does not increase. It is expected that the DMM can also 
reduce the rebuffering event. However, in the ferry trace, there is a period when the 
network is suddenly cut off. Therefore, even the bitrate is chosen as the lowest one, the 
rebuffering event is not avoided. In such situation, other information should be 
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considered for preparation of sudden network cutoff. For example, there may be no-
signal area in the ferry route. Based on the designated route, we can expect to know 
when we will enter the no-signal area. Then, the contents can be downloaded more than 
Bmax before the network cutoff to go through the no-signal area. 

 
Table 5.6  The results of Ferry Trace. 

 
 
 

 
 
 

 
Figure 5.25  The log of buffer occupancy using different methods in Ferry. 

 

Table 5.7 shows the results of DMM with LSTM and original method in Bus 
Trace. The corresponding buffer occupancy log is shown in Figure 5.26. As can be seen 
that, from the viewpoint of total QoE, the DMM performs best among all the methods. 
The average bitrate is improved significantly compared with the LSTM rate-based 
method. The initial delay is also reduced thanks to the conservative mechanism. From 
these results, it can be concluded that the DMM can significantly improve the QoE 
performance in DASH compared with conventional methods. 

 
Table 5.7  The results of Bus Trace. 

 
 
 
 

 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 140.7 1042.1 2.4 32.4 1 
Original 92.8 1458.8 5.6 68.5 5 
DMM 185.9 1225.0 2.8 32.6 1 

Methods Metrics 
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf 

LSTM 612.0 2263.3 6.3 0.0 0 
Original 561.7 2648.4 14.1 34.1 4 
DMM 653.6 2405.8 3.5 0.0 0 
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Figure 5.26  The log of buffer occupancy using different methods in Bus. 

 

5.5    Summary 

In this chapter, a video transmission system with DASH is established. The 
DASH-JS client is modified and extended for flexible usage. A trace-based server is 
built and proposed. The results demonstrate this server can create reproducible 
emulation environment according to the prepared trace, which allows the evaluation of 
algorithms effectively with limited experiments. We evaluate throughput prediction 
methods for adaptive bitrate control via trace-based emulation. The basic ABR strategy 
is rate-based method. By comparison of the results, it is found that the good throughput 
prediction is essential in achieving a good QoE performance. While, there are still space 
to further improve the QoE by incorporating the information of the buffer occupancy.  

We also propose a new ABR algorithm name decision map method (DMM). 
This algorithm incorporates both throughput prediction and buffer occupancy 
information to make decision whether the aggressive or conservative bitrate selection is 
carried out. Through trace-based emulations in several traces, it is demonstrated that the 
DMM performs significantly well than conventional methods. The average bitrate is 
improved while no additional rebuffering event is encountered. Meanwhile, the initial 
delay is also reduced. The total QoE can be improved by 32.1% in the Ferry trace, 
showing the efficiency of the proposed ABR algorithm.  

For further research, we will continue to improve the adaptive bitrate control 
algorithm for better handling different circumstances such as sudden network cutoff. We 
will also test the performance in more traces and deploy the DMM algorithm into real 
network environment. 
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6   
 

6.1    Conclusions 

In order to provide fluent video streaming and improve the QoS and QoE for 
mobile users, throughput prediction methods and adaptive bitrate control model are 
proposed in this thesis. 

In Chapter 3, throughput prediction methods using statistics and machine 
learning are proposed. An approach is proposed which utilizes HMM and total variance 
to evaluate the fluctuation of the former sequence, then uses linear prediction and 
locally weighted linear prediction to predict the future throughput. Based on this 
method, an advanced prediction model named the hybrid prediction with the 
autoregressive model and hidden Markov model (HOAH) is developed to predict TCP 
throughput. The method adopts support vector machine (SVM) as classifier, and switch 
between autoregressive model (AR model) and Gaussian mixture model-hidden Markov 
model (GMM-HMM) to predict future data.  Evaluation shows the method can choose 
the proper prediction model correctly and predict throughput effectively. 

In Chapter 4, a TCP throughput prediction method using long short-term 
memory (LSTM) model is proposed. The method is named throughput prediction based 
on LSTM (TRUST), which apply not only throughput measurements, but also other 
parameters as features to construct the neural network model. Field experiments are 
conducted to evaluate the method. Results show the method can decrease the prediction 
error by a maximum of 44% compared with conventional methods. 

In Chapter 5, a trace-based emulation for Dynamic Adaptive Streaming over 
HTTP (DASH) is established to evaluate the effect of the throughput prediction 
methods on adaptive bitrate control. Results indicate a good prediction can contribute to 
good QoE performance. Moreover, a new adaptive bitrate control method named 
decision map method (DMM) is proposed. The evaluation results show that DMM can 
increase the average bitrate and avoid extra rebuffering event at the same time.  
 

6.2    Future work 

In the future, we will apply other methodologies such as reinforcement learning 

Conclusions and future work 
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to construct prediction model. Furthermore, parameters of lower layer of mobile 
network will be collected by developing new software and be adopted to predict future 
throughput. More measurements will be conducted to enlarge the database for 
improving the accuracy of the prediction model. 

Meanwhile, more experiments will be conducted to evaluate the proposed ABR 
method. We will continue to improve the adaptive bitrate control algorithm for better 
handling different circumstances such as sudden network cutoff. We will also deploy the 
DMM algorithm into real network environment and test the performance. Based on the 
real-world deployment performance, other techniques will be utilized to improve the 
ABR method. 
 
 



 

 

 

105 

 

Bibliography 
 
[1] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dynamic 

adaptive video streaming over HTTP,” in Proc. ACM SIGCOMM 2015, pp. 325-338, 2015. 

[2] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X Jin, J. Rexford, and R. K. 
Sinha, “Can accurate predictions improve video streaming in cellular networks?” in Proc. 
ACM HotMobile 2015, pp. 57-62, 2015. 

[3] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with pensieve,” in 
Proc. ACM SIGCOMM 2017, pp. 197-210, 2017. 

[4] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in http-based 
adaptive video streaming with festive,” IEEE/ACM Transactions on Networking, vol. 22, 
no. 1, pp. 326-340, Feb. 2014. 

[5] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation techniques for dynamic 
adaptive streaming over http,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, 
pp. 1842-1866, third quarter 2017. 

[6] K. Miller, A. Al-Tamimi, and A. Wolisz, “QoE-based low-delay live streaming using 
throughput predictions,” ACM Transactions on Multimedia Computing, Communications, 
and Applications, vol. 13, no. 1, pp. 1–24, Jan. 2017. 

[7] X. Yin, V. Sekar, and B. Sinopoli, “Toward a principled framework to design dynamic 
adaptive streaming algorithms over http,” in Proc. ACM HotNets 2014, pp. 1-9, 2014. 

[8] ITEC DASH-JS, [online]:  

http://www-itec.uni-klu.ac.at/dash/?page_id=746. 

[9] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W. Ma, “Understanding transportation modes based on 
GPS data for web applications,” ACM Transactions on the Web, vol. 4, no. 1, Jan. 2010. 

[10] V. Manzoni, D. Maniloff, K. Kloeckl, and C. Ratti, “Transportation mode identification and 
real-time CO2 emission estimation using smartphones,” Massachusetts Institute of 
Technology, Cambridge, MA, USA, Tech. Rep., 2010. 

[11] P. Widhalm, P. Nitsche, and N. Brändie, “Transport mode detection with realistic 
smartphone sensor data,” in Proc. IEEE ICPR 2012, pp. 573-576, 2012. 



 

106 

 

[12] A. Jahangiri and H. A. Rakha, “Applying machine learning techniques to transportation 
mode recognition using mobile phone sensor data,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 16, no. 5, pp. 2406-2417, Oct. 2015. 

[13] B. Nham, K. Siangliulue, and S. Yeung, “Predicting mode of transport from iPhone 
accelerometer data,” Stanford University, Stanford, CA, USA, Tech. Rep., 2008.  

[14] H. I. Ashqar, M. H. Almannaa, M. Elhenawy, H. A. Rakha, and L. House, “Smartphone 
transportation mode recognition using a hierarchical machine learning classifier and pooled 
features from time and frequency domains,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 20, no. 1, pp. 244-252, Jan. 2019 . 

[15] X. Su, H. Caceres, H. Tong, and Q. He, “Online travel mode identification using 
smartphones with battery saving considerations,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 17, no. 10, pp. 2921-2934, Oct. 2016. 

[16] S. Wang, C. Chen, and J. Ma, “Accelerometer based transportation mode recognition on 
mobile phones,” in Proc. IEEE APWCS 2010, pp. 44-46, 2010. 

[17] J. Suto, S. Oniga, C. Lung, and I. Orha, “Recognition rate difference between real-time and 
offline human activity recognition,” in Proc. IEEE IoTGC 2017, pp. 1-6, 2017. 

[18] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable 
sensors,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, third 
quarter 2013. 

[19] X. Su, H. Tong, and P. Ji, “Activity recognition using smartphone sensors,” Tsinghua 
Science and Technology, vol. 19, no. 3, pp. 235-249, Jun. 2014. 

[20] Y. Chen and Y. Xue, “A deep learning approach to human activity recognition based on 
single accelerometer,” in Proc. IEEE SMC 2015, pp. 1488-1492, 2015. 

[21] M. Gochoo, T. Tan, S. Huang, S. Liu, and F. S. Alnajjar, “DCNN-based elderly activity 
recognition using binary sensors,” in Proc. IEEE ICECTA, pp. 1-5, 2017. 

[22] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and J. Widmer, “A survey of 
anticipatory mobile networking: Context-based classification, prediction methodologies, 
and optimization techniques,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, 
pp. 1790-1821, Apr. 2017. 

[23] Y. T. Lin, E. M. R. Oliveira, S. B. Jemaa, and S. E. Elayoubi, “Machine learning for 
predicting QoE of video streaming in mobile networks,” in Proc. IEEE ICC 2017, pp. 1-6, 



 

107 

 

2017. 

[24] K. Satoda, H. Yoshida, H. Ito, and K. Ozawa, “Adaptive video pacing method based on the 
prediction of stochastic TCP throughput,” in Proc. IEEE GLOBECOM 2012, pp. 1944-1950 
2012. 

[25] H. Yoshida, K. Satoda, and T. Murase, “Constructing stochastic model of TCP throughput 
on basis of stationarity analysis,” in Proc. IEEE GLOBECOM 2013, pp. 1544-1550, 2013. 

[26] K. Nihei, H. Yoshida, N. Kai, D. Kanetomo, and K. Satoda, “QoE maximizing bitrate 
control for live video streaming on a mobile uplink,” in Proc. IEEE ConTEL 2017, pp. 91-
98, 2017. 

[27] B. Wei, M. Okano, K. Kanai, W. Kawakami, and J. Katto, “Throughput prediction using 
recurrent neural network model,” in Proc. IEEE GCCE 2018, pp. 107-108, 2018. 

[28] B. Wei, W. Kawakami, K. Kanai, and J. Katto, “A history-based TCP throughput prediction 
incorporating communication quality features by support vector regression for mobile 
networks,” in Proc. IEEE ISM 2017, pp. 374-375, 2017. 

[29] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large transfer TCP 
throughput,” in Proc. ACM SIGCOMM 2005, pp. 145-156, 2005. 

[30] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP 
congestion avoidance algorithm,” in Proc. ACM SIGCOMM 1997, pp. 67-82, 1997. 

[31] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno performance: a 
simple model and its empirical validation,” IEEE/ACM Transactions on Networking, vol. 8, 
no. 2, pp. 133-145, Apr. 2000. 

[32] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for 
unicast applications,” in Proc. ACM SIGCOMM 2000, pp. 43-56, 2000. 

[33] S. Vazhkudai, J. M. Schopf, and I. Foster. “Predicting the Performance of Wide Area Data 
Transfers,” in Proc. IEEE IPDPS 2002, pp. 1-10, 2002. 

[34] M. Swany and R. Wolski, “Multivariate resource performance forecasting in the network 
weather service,” in Proc. ACM/IEEE SC 2002, pp. 1-10, 2002. 

[35] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang, 
“Understanding the impact of video quality on user engagement,” in Proc. ACM SIGCOMM 
2011, pp. 362-373, 2011. 



 

108 

 

[36] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao, “Deriving and validating user experience 
model for DASH video streaming,” IEEE Transactions on Broadcasting, vol. 61, no. 4, pp. 
651-665, Dec. 2015. 

[37] Adobe, “Adobe HTTP Dynamic Streaming (HDS),” 2016. [Online]: 
https://www.adobe.com/devnet/hds.html. 

[38] Apple, “Apple HTTP Live Streaming,” 2016. [Online]: 
https://developer.apple.com/streaming/. 

[39] Microsoft, “Microsoft Silverlight Smooth Streaming,” 2016. [Online]: 
https://www.microsoft.com/silverlight/smoothstreaming/. 

[40] ISO/IEC, “ISO/IEC 23009-1:2014 Information Technology: Dynamic Adaptive 
Streaming over HTTP (DASH) Part 1: Media presentation description and segment 
formats,” 2014. [Online]. Available: https://www.iso.org/standard/65274.html. 

[41] T. Huang, R. Johari, N. McKeown, M. Trunnel, and M. Watson, “A buffer-based approach 
to rate adaptation: Evidence from a large video streaming service,” in Proc. ACM 
SIGCOMM 2014, pp. 187-198, 2014. 

[42] K. Spiteri, R. Urgaonkar and R. K. Sitaraman, “BOLA: Near-optimal bitrate adaptation for 
online videos,” in Proc. IEEE INFOCOM 2016, pp. 1-9, 2016. 

[43] B. Rainer, S. Lederer, C. Muller, and C. Timmerer, “A seamless web integration of adaptive 
HTTP streaming,” in Proc. IEEE EUSIPCO 2012, pp. 1519–1523, 2012. 

[44] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over the internet,” IEEE 
Multimedia, vol. 18, no. 4, pp. 62-67, Oct. 2011. 

[45] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia 
applications,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 7, pp. 1228-
1234, Sep. 1996. 

[46] U. Reiter, K. Brunnström, K. D. Moor, M. C. Larabi, M. Pereira, A. Pinheiro, J. You, and 
A. Zgank, “Factors Influencing Quality of Experience,” Quality of Experience, Springer, 
Cham, pp. 55–74, 2014. 

[47] P. A. Gagniuc, “Markov Chains: From Theory to Implementation and Experimentation,” 
John Wiley & Sons, 2017.  

[48] HSDPA DATASET, [online]: 



 

109 

 

http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/. 

[49] B. Wei, K. Kanai, and J. Katto, “History-based throughput prediction with Hidden Markov 
Model in mobile networks,” in Proc. IEEE ICMEW 2016, pp. 1-6, 2016. 

[50] D. A. Reynolds, “Speaker identification and verification using Gaussian mixture speaker 
models,” Speech communication, vol. 17, no. 1-2, pp. 91-108, Aug. 1995. 

[51] Y. Huang, K. B. Englehart, B. Hudgins, and A.D.C. Chan, “A Gaussian mixture model 
based classification scheme for myoelectric control of powered upper limb prostheses,” 
IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1801-1811, Nov. 2005. 

[52] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang, “Probabilistic elastic matching for pose 
variant face verification,” in Proc. IEEE CVPR 2013, pp. 3499-3506, 2013. 

[53] J. Gauvain and C. Lee, “Maximum a posteriori estimation for multivariate Gaussian 
mixture observations of Markov chains,” IEEE Transaction on Speech and Audio 
Processing, vol. 2, no. 2, pp. 291-298, Apr. 1994. 

[54] J. Ajmera, I. McCowan, and H. Bourlard, “Speech/music segmentation using entropy and 
dynamism features in a HMM classification framework,” Speech Communication, vol. 40, 
no. 3, pp. 351-363, May 2003. 

[55] C. E. Pertsinidou, and N. Limnios, “Viterbi algorithms for Hidden semi-Markov models 
with application to DNA analysis,” RAIRO-Operations Research, vol. 49, no. 3, pp. 511-
526, Sep. 2015. 

[56] C. A. Greenhall, D. A. Howe, and D. B. Percival, “Total variance, an estimator of long-term 
frequency stability [standards],” IEEE Transactions on Ultrasonics, Ferroelectrics, and 
Frequency Control, vol. 46, no. 5, pp. 1183-1191, Sep. 1999.  

[57] S. J. Rao, “Regression Modeling Strategies: With Applications to Linear Models, Logistic 
Regression, and Survival Analysis,” Journal of the American Statistical Association, vol. 98, 
no. 461, pp. 257-258, 2005. 

[58] O. Fedotova, L. Teixeira, and H. Alvelos, “Software effort estimation with multiple linear 
regression: Review and practical application,” Journal of Information Science and 
Engineering, vol. 29, no. 5, pp. 925-945, 2013. 

[59] I. Naseem, R. Togneri, and M. Bennamoun, “Linear regression for face recognition,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 11, pp. 2106-2112, 
Nov. 2010. 



 

110 

 

[60] S. Dabiri and K. Heaslip, “Inferring transportation modes from GPS trajectories using a 
convolutional neural network,” Transportation Research Part C: Emerging Technologies, 
vol. 86, pp. 360-371, Jan. 2018.  

[61] Y. Qiao, Y. Cheng, J. Yang, J. Liu, and N. Kato, “A Mobility Analytical Framework for Big 
Mobile Data in Densely Populated Area,” IEEE Transactions on Vehicular Technology, 
vol. 66, no. 2, pp. 1443-1455, Feb. 2017.  

[62] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “Accuracy evaluations of human moving 
pattern using communication quality based on machine learning,” in Proc. IEEE GCCE 
2017, pp. 1-2, 2017. 

[63] B. Wei, K. Kanai, W. Kawakami, and J. Katto, “HOAH: A hybrid TCP throughput 
prediction with autoregressive model and hidden markov model for mobile networks,” 
IEICE Transactions on Communications, vol. E101-B, no. 7, pp. 1612–1624, 2018. 

[64] S. Takenaka, K. Kanai, J. Katto, and T. Murase, “Green Video Delivery System using 
Moving Route Navigation and Playout Buffer Control,” in Proc. IEEE CCNC 2017, pp. 1-4, 
2017. 

[65] M. E. Ayadi, Moataz, M. S. Kamel, and F. Karray, “Survey on speech emotion recognition: 
Features, classification schemes, and databases,” Pattern Recognition, vol. 44, no. 3, 
pp. 572-587, 2011. 

[66] M. N. Ayyaz, I. Javed, and W. Mahmood, “Handwritten Character Recognition Using 
Multiclass SVM Classification with Hybrid Feature Extraction,” Pakistan Journal of 
Engineering and Applied Sciences, vol. 10, pp. 57-67, 2012. 

[67] U. Thissen, R. van Brakel, A.P. de Weijer, W.J. Melssen, and L.M.C. Buydens, “Using 
support vector machines for time series prediction,” Chemometrics and Intelligent 
Laboratory Systems, vol. 69, no. 1, pp. 35-49, Nov. 2003. 

[68] N. I. Sapankevych and R. Sankar, “Time Series Prediction Using Support Vector Machines: 
A Survey,” IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 24-38, May 2009.  

[69] A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat Time Series Classification with 
Support Vector Machines,” IEEE Transactions on Information Technology in Biomedicine, 
vol. 13, no. 4, pp. 512-518, Jul. 2009.  

[70] L. E. Nieto-Barajas and F. A. Quintana, “A Bayesian Non-Parametric Dynamic AR Model 
for Multiple Time Series Analysis,” Journal of Time Series Analysis, vol. 37, no. 5, pp. 675-



 

111 

 

689, 2016. 

[71] G. Inoussa, H. Peng, and J. Wu, “Nonlinear time series modeling and prediction using 
functional weights wavelet neural network-based state-dependent AR model,” 
Neurocomputing, vol. 86, pp. 59-74, 2012. 

[72] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time 
series with a unit root,” Journal of the American Statistical Association, vol. 74, no. 366, 
pp. 427-431, Jun. 1979. 

[73] A. W. Gregory and B. E. Hansen, “Residual-based tests for cointegration in models with 
regime shifts,” Journal of Econometrics, vol. 70, no. 1, pp. 99-126, Jan. 1996. 

[74] O. P. Chimobi, “Government expenditure and national income: A causality test for 
Nigeria,” European Journal of Economic and Political Studies, vol. 2, no. 2, pp. 1-11, 2009. 

[75] S. V. Vaseghi, “Advanced digital signal processing and noise reduction,” John Wiley & 
Sons, 2008. 

[76] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal 
processing using hidden Markov models,” IEEE Transactions on Signal Processing, vol. 46, 
no. 4, pp. 886-902, Apr. 1998.  

[77] C. L. P. Lim, W. L. Woo, S. S. Dlay, and B. Gao, “Heartrate-dependent heartwave 
biometric identification with thresholding-based GMM–HMM methodology,” IEEE 
Transactions on Industrial Informatics, vol. 15, no. 1, pp. 45-53, Jan. 2019.  

[78] D. Guo, W. Zhou, H. Li, and M. Wang, “Online early-late fusion based on adaptive HMM 
for sign language recognition,” ACM Transactions on Multimedia Computing, 
Communications, and Applications, vol. 14, no. 1, Jan. 2018. 

[79] Z. Shi, C. Yang, M. Hao, X. Wang, R.D. Ward, and A. Zhang, “FuzzyID2: A software 
package for large data set species identification via barcoding and metabarcoding using 
hidden Markov models and fuzzy set methods,” Molecular ecology resources, vol. 18, no, 3, 
pp. 666-675, May 2018. 

[80] D. Park, L. R. Rilett, and G. Han, “Spectral basis neural networks for real-time travel time 
forecasting,” Journal of Transportation Engineering, vol. 125, no. 6, pp. 515-523, Nov. 
1999. 

[81] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “Machine learning based transportation 
modes recognition using mobile communication quality,” in Proc. IEEE ICME 2018, pp. 1-



 

112 

 

6, 2018. 

[82] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “A highly accurate transportation mode 
recognition using mobile communication quality,” IEICE Transactions on Communications, 
2019, in press. 

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, 
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. 
Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal 
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.  

[84] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, “Extensions of 
recurrent neural network language model,” in Proc. IEEE ICASS 2011, pp. 5528-5531, 
2011. 

[85] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to recurrent LSTM neural 
networks for language modeling,” IEEE Transactions on Audio, Speech, and Language 
Processing, vol. 23, no. 3, pp. 517-529, Mar. 2015. 

[86] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, 
no. 8, pp. 1735–1780, Nov. 1997. 

[87] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in Proc. ICRL, 
pp. 1–41, 2015.  

[88] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli, “Cs2p: 
Improving video bitrate selection and adaptation with data-driven throughput prediction,” in 
Proc. ACM SIGCOMM 2016, pp. 272-285, 2016. 

[89] Y. Liu and J.Y. B. Lee, “An empirical study of throughput prediction in mobile data 
networks,” in Proc. IEEE GLOBECOM 2015, pp. 1-6, 2015. 

[90] B. Wei, S. Wang, W. Kawakami, K. Kanai, and J. Katto, “TRUST: A TCP Throughput 
Prediction Method in Mobile Networks,” in Proc. IEEE GLOBECOM 2018, pp. 1-6, 2018. 

[91] B. Wei, H. Song, S. Wang, K. Kanai, and J. Katto, “Evaluation of Throughput Prediction 
for Adaptive Bitrate Control using Trace-based Emulation,” IEEE Access, submitted. 



 

 

 

113 

 

Publication Lists 
 
JOURNAL PAPERS 
 

[1] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “A highly accurate transportation 
mode recognition using mobile communication quality,” IEICE Transactions on 
Communications, 2019, in press. 

[2] K. Kanai, B. Wei, Z. Cheng, M. Takeuchi, and J. Katto, “Methods for adaptive 
video streaming and picture quality assessment to improve QoS/QoE 
performances,” IEICE Transactions on Communications, July 2019. (invited) 

[3] B. Wei, K. Kanai, W. Kawakami, and J. Katto, “HOAH: A hybrid TCP 
throughput prediction with autoregressive model and hidden markov model for 
mobile networks,” IEICE Transactions on Communications, vol. E101-B, no. 7, 
pp. 1612–1624, 2018. 

[4] B. Wei, H. Song, S. Wang, K. Kanai, and J. Katto, “Evaluation of Throughput 
Prediction for Adaptive Bitrate Control using Trace-based Emulation,” IEEE 
Access, submitted. 

 
INTERNATIONAL CONFERENCE PAPERS  
 

[5] B. Wei, S. Wang, W. Kawakami, K. Kanai, and J. Katto, “TRUST: A TCP 
Throughput Prediction Method in Mobile Networks,” in Proc. IEEE 
GLOBECOM 2018, pp. 1-6, 2018. 

[6] B. Wei, M. Okano, K. Kanai, W. Kawakami, and J. Katto, “Throughput 
prediction using recurrent neural network model,” in Proc. IEEE GCCE 2018, 
pp. 107-108, 2018. 

[7] W. Kawakami, K. Kanai, B. Wei and J. Katto, “Machine learning based 
transportation modes recognition using mobile communication quality,” in Proc. 
IEEE ICME 2018, pp. 1-6, 2018. 

[8] B. Wei, W. Kawakami, K. Kanai, and J. Katto, “A history-based TCP throughput 
prediction incorporating communication quality features by support vector 
regression for mobile networks,” in Proc. IEEE ISM 2017, pp. 374-375, 2017. 



 

114 

 

[9] W. Kawakami, K. Kanai, B. Wei, and Jiro Katto, “Accuracy evaluations of 
human moving pattern using communication quality based on machine learning,” 
in Proc. IEEE GCCE 2017, pp. 1-2, 2017. 

[10] B. Wei, K. Kanai and Jiro Katto, “History-based throughput prediction with 
Hidden Markov model in mobile network,” in Proc. IEEE ICMEW 2016, pp. 1-6, 
2016. 

 
DOMESTIC CONFERENCE PAPERS 
 

[11] 川上航・金井謙治・Bo Wei・甲藤二郎:“CNN を活用したモバイルアプ
リケーション利用時のユーザ移動状態推定の精度評価,”信学ソ大、Sep. 
2018. 

[12] Bo Wei, Kenji Kanai, Wataru Kawakami, and Jiro Katto, “Throughput 
Prediction Method based on machine learning in Mobile Networks,” IEICE Tech 
Report, NS-2018-42, Jul. 2018. 

[13] 川上航・金井謙治・Wei Bo・甲藤二郎:“通信品質を利用した CNN によ
るユーザ移動状態推定の精度評価,”信学会 NS 研究会, NS-2018-65, 
Jul. 2018. 

[14] Bo Wei, Kenji Kanai, Wataru Kawakami, and Jiro Katto, “Machine learning-
based throughput prediction using communication quality in mobile networks,”
信学会MoNA研究会, Jan.2018. 

[15] 川上航・金井謙治・Wei Bo・甲藤二郎:“通信品質を用いた機械学習に基
づくユーザの移動状態推定,”信学会MoNA研究会, Jan.2018. 

[16] 川上航・金井謙治・Wei Bo・甲藤二郎:“モバイルセンシングと機械学習
を用いた通信品質に基づくユーザ行動推定,”信学会 CS研究会, Jul.2017. 

[17] Bo Wei, Kenji Kanai, and Jiro Katto, “Throughput prediction by combining 
Autoregressive Model and Hidden Markov Model,” In IEICE General 
Conference 2017, Mar. 2017. 

[18] Bo Wei, Kenji Kanai, and Jiro Katto, “Performance evaluations of history-based 
throughput prediction with trend analysis for mobile network,” In IEICE Society 
Conference 2016, Sep. 2016. (awarded) 



 

115 

 

[19]  Bo Wei, Kenji Kanai, and Jiro Katto, “Throughput prediction based on Hidden 
Markov Model in mobile network,” In IEICE General Conference 2016, 
Mar. 2016. 

[20] Bo Wei, Kenji Kanai, Sakiko Takenaka, and Jiro Katto, “Throughput prediction 
based on stochastic model of mobile network,” In IEICE Society Conference 
2015, Sep. 2015. (awarded) 


