
Researches on TCP Throughput Prediction and

Adaptive Bitrate Control in Mobile Network

モバイルネットワークにおける TCPスループット予測と

適応レート制御に関する研究

February 2019

Waseda University
Graduate School of Fundamental Science and Engineering

Department of Computer Science and Communications Engineering
Research on Image Information

Bo WEI

魏 博

i

Abstract

The number of mobile applications is increasing rapidly, which has
resulted in massive mobile network traffic. In order to guarantee high
quality of service/experience (QoS/QoE), such as providing high quality
video without playback freezing, it is important to control bitrate
adaptively through predicting future throughput distribution with high
accuracy. An accurate throughput prediction can contribute a lot to
improving QoS/QoE. In order to solve this problem, transmission control
protocol (TCP) throughput prediction methods are proposed in this thesis.
 First, TCP throughput prediction methods using statistics and machine
learning are proposed. A novel approach is proposed which utilizes hidden
Markov model (HMM) and Gaussian mixture model (GMM) to deal with
historical time series of throughput and judge fluctuation factor with total
variance when predicting future throughput. Besides, an advanced model
which is history-based throughput prediction method utilizing time series
analysis and machine learning techniques for mobile network
communication is proposed. This method is called the hybrid prediction
with the autoregressive model and hidden Markov model (HOAH).
Different from existing methods, HOAH uses support vector machine
(SVM) to classify the throughput transition into two classes and predicts
the TCP throughput by switching between the autoregressive model (AR
Model) and the Gaussian mixture model-hidden Markov model (GMM-
HMM).
 Second, TCP throughput prediction method using neural networks for
mobile network is proposed which is named as TRUST (Throughput
prediction based on LSTM). TRUST has two stages: user movement
pattern identification and throughput prediction. In the prediction stage,
the long short-term memory (LSTM) model is employed for TCP
throughput prediction. TRUST takes all the communication quality
factors, sensor data and scenario information into consideration. Field
experiments are conducted to evaluate TRUST in various scenarios. The
results indicate that TRUST can predict future throughput with higher
accuracy than the conventional methods, which decreases the throughput
prediction error by maximum 44% under the moving bus scenario.

i

 Third, a trace-based emulation environment is established and adaptive
bitrate control method using throughput prediction is proposed. Dynamic
adaptive video streaming over HTTP (DASH) is widely studied and
adopted in modern video players for ensuring user quality of experience
(QoE) since QoE directly affects the revenue. Basically, the algorithms
need to be tested with large-scale deployment. However, it is not always
possible in academic research. We established a video transmission system
with DASH which enables replicable trace-based emulations. The
emulation enables us to compare different methods under the artificially
same condition with limited experiments. We also proposed a new
adaptive bitrate (ABR) control method which incorporating both
prediction and buffer occupancy information named decision map method
(DMM). DMM creates both aggressive and conservative mechanisms to
handle different network conditions. The emulation results demonstrate
that the DMM can achieve better performance in QoE than conventional
methods, showing the efficiency of the DMM algorithm.
 In conclusion, this thesis proposes TCP throughput prediction methods,
and experiments are conducted to evaluate the performances of these
proposals for adaptive bitrate control. The results conclude that the
proposals can predict throughput accurately and are effective for adaptive
bitrate control. Meanwhile, we propose a new ABR method incorporating
both prediction and buffer occupancy information which improves the
performance further.

ii

Acknowledgement

 This thesis has been written with the help and support of people around me. I would
like to express my gratitude to them.
 First and foremost, I would like to thank my supervisor, Professor Jiro Katto, for his
continuous guidance and enormous help in my research work at Waseda University. He
has always provided me useful suggestions and helped me to improve my research.
Professor Katto talks with me about my research each week, which broadens my
knowledge and provide me very useful ideas. Moreover, Professor Jiro Katto taught me
how to become a good researcher.
 I would like to offer my special thanks to Professor Fumiaki Maehara, I took his
course and discussed with him about research problems I met in the work which benefit
me a lot. He has provided practical and valuable advices on my study. I would
particularly like to thank Dr. Kenji Kanai for his constructive suggestions and constant
encouragement.
 I would like to thank Mr. Takeuchi and other members in Katto Laboratory, Waseda
University. They work together with me and only through the team work, I can achieve
good research results.
 Finally, I sincerely thank my family and friends for their support, encouragement and
love.

Bo Wei

25th February 2019

Table of Contents

Abstract i

Acknowledgements ii

Chapter 1 Introduction 1

1.1 Background 1

1.2 Thesis organization 4

Chapter 2 Related work 6

2.1 Wireless communication 6

2.2 User movement pattern recognition 7

2.3 Throughput prediction 7

2.4 Adaptive bitrate control 9

2.4.1 Overview 9

2.4.2 MPEG-DASH 10

2.5 QoS and QoE 12

2.6 Summary 13

Chapter 3 TCP throughput prediction using time series analysis by statistics and machine

 learning 14

3.1 Time series analysis and forecast 14

3.1.1 Time series 14

3.1.2 Time series analysis techniques 15

3.1.3 Time series forecast techniques 16

3.2 Throughput data collection and analysis 16

3.3 TCP Throughput prediction using GMM-HMM 20

3.3.1 GMM and HMM 20

3.3.2 Throughput prediction using GMM-HMM 21

3.3.2.1 Whole structure of proposal 21

3.3.2.2 Gaussian mixture model 23

3.3.2.3 Hidden Markov model 24

3.3.2.4 Fluctuation factor 25

3.3.2.5 Linear regression and locally weighted linear regression 26

3.3.3 Model validation 27

3.3.3.1 Experiment environment 27

3.3.3.2 Fluctuation identification 28

3.3.3.3 Accuracy comparison and analysis 29

3.4 TCP throughput prediction using AR and GMM-HMM 30

3.4.1 Prediction system 30

3.4.2 Data analysis 31

3.4.3 Related techniques 34

3.4.3.1 SVM 34

3.4.3.2 Basic AR model 34

3.4.3.3 Augmented Dickey-Fuller test 35

3.4.3.4 GMM and HMM 36

3.4.4 Proposed model: HOAH 37

3.4.4.1 Structure of HOAH 37

3.4.4.2 Segment classification with SVM 38

3.4.4.3 Throughput prediction 40

3.4.5 Evaluation 46

3.4.5.1 Experiment environment 46

3.4.5.2 Evaluation metric 48

3.4.5.3 Classification accuracy 49

3.4.5.4 Prediction accuracy 51

3.4.5.5 Analysis of the effect of parameters 53

3.5 Summary 56

Chapter 4 TCP throughput prediction using neural networks 57

4.1 Neural networks 57

4.2 User movement pattern recognition 57

4.2.1 Classification 58

4.2.2 Machine learning techniques 58

4.2.3 Experiment result 59

4.3 Throughput prediction using TRUST 60

4.3.1 Data acquisition and analysis 60

4.3.1.1 Data acquisition setup 60

4.3.1.2 Characteristics of the measured data 61

4.3.1.3 Preprocessing of the measured data 62

4.3.2 Throughput prediction methodology 63

4.3.2.1 The structure of TRUST 63

4.3.2.2 User movement pattern identification 63

4.3.2.3 Throughput prediction mechanism 63

4.3.3 Evaluation 68

4.3.3.1 Experiment environment 68

4.3.3.2 Evaluation metrics 69

4.3.3.3 Prediction performance 69

4.4 Summary 73

Chapter 5 Adaptive bitrate control with QoE maximization using throughput prediction

 74

5.1 Video transmission system with DASH 74

5.1.1 DASH system structure 75

5.1.2 DASH client framework 76

5.1.2.1 Basic architecture 76

5.1.2.2 Modifications and extensions 78

5.1.3 Trace-based HTTP server 85

5.1.3.1 The concept of trace-based server 85

5.1.3.2 The algorithm of the trace-based server 86

5.1.3.3 Trace-based emulation validation 88

5.2 Implementation of throughput prediction in DASH 89

5.3 Evaluation, analysis, and discussion 90

5.3.1 Setup and QoE metrics 90

5.3.2 Performance evaluation 90

5.3.3 Discussion 95

5.4 Decision map method for adaptive bitrate control 95

5.4.1 Aggressive decision 95

5.4.2 Aggressive decision with conservative mechanism 97

5.4.3 DMM performance verification in other traces 100

5.5 Summary 102

Chapter 6 Conclusions and future work 103

6.1 Conclusions 103

6.2 Future work 103

Bibliography 105

Publication Lists 113

1

1

1.1 Background
It is important to ensure high Quality of Service (QoS) and Quality of

experience (QoE) for users in wireless networks. As shown in Figure 1.1, the number of
mobile applications is increasing rapidly, which has resulted in massive mobile network
traffic. In order to guarantee high QoS/QoE (such as support higher quality video
without playback freezing), it is important to control bitrate adaptively by predicting
future throughput distribution with high accuracy. An accurate throughput prediction
can contribute a lot to improving QoS/QoE as reported in [1], [2].

Figure 1.1 The rapid increasing of mobile network traffic.

Although there have been many researches for throughput prediction, it is still
a challenging topic especially in mobile networks due to the fact that few methods have
taken user moving mode and the fluctuation characteristic of session into consideration.
For example, current methods adopt one model to predict throughput for the whole
session which is different to adaptively fit to the throughput variation during one
session. Therefore, existing prediction methods are not fit for moving user scenarios,

Introduction

Chapter 1: Introduction

2

which may lead to large prediction error. Moreover, no effective prediction model is
universally accepted by all researchers for adaptive bitrate control. To solve the problem
of lacking an accurate measurement of network parameters (e.g. received signal strength
and future number of wireless users) for many throughput prediction methods, we
propose throughput prediction models to predict the future throughput. The application
of predicted throughput for adaptive bitrate control can be categorized into two kinds: 1)
Calculating the amount of possible future data to be delivered and combining buffer
control for adaptive bitrate control, such as in [1], [3]. 2) Controlling the bitrate directly
with the predicted throughput of future time [4], [5].

The accuracy of throughput prediction is critical as depicted in [6]. Zou et al.
[2] held that the combination of throughput prediction and buffer occupancy or stability
function could perform better than the existing methods. It reduces the gap to 4%,
which indicates that cellular operators and content providers improve their video QoE
largely by the prediction of available bandwidth and shares it via application
programming interface (API). Yin et al. in [1], [7] showed that QoE decrease with the
increase of throughput prediction error when controlling the bitrate of video streaming.
Moreover, even the 0.1 prediction error difference affects the performance of bitrate
control and QoS/QoE for many applications such as Internet Protocol Television
(IPTV). Therefore, transmission control protocol (TCP) throughput must be predicted
accurately.

In order to achieve this goal, we first propose TCP throughput prediction
methods using statistics and machine learning. A novel approach utilizes hidden Markov
model (HMM) with Gaussian mixture model (GMM) to deal with historical time series
of throughput and judge fluctuation factor with total variance when predicting future
throughput. History data are separated into various groups according to the value range
as observations. Then data are clustered into different classes with multi-component
Gaussian mixture model and defined as hidden states. After obtaining state sequence
and observation sequence, we train data with hidden Markov model and calculate the
most probable state transition path. Then we judge fluctuation (stationary or non-
stationary) of current time according to the fluctuation factor calculated by former state
transition path. Finally, we predict throughput of following time with corresponding
method: linear regression for stationary process and locally weighted linear regression
for non-stationary process. Besides this, a history-based throughput prediction method
that utilizes time series analysis and machine learning techniques for mobile network
communication is proposed. This method is called the hybrid prediction with the
autoregressive model and hidden Markov model (HOAH). Different from existing

Chapter 1: Introduction

3

methods, HOAH uses support vector machine (SVM) to classify the throughput
transition into two classes, and predicts the TCP throughput by switching between the
autoregressive model (AR Model) and the Gaussian mixture model-hidden Markov
model (GMM-HMM). We conduct field experiments to evaluate the proposed method
in seven different scenarios. The results show that HOAH can predict future throughput
effectively and decreases the prediction error by a maximum of 55.95% compared with
other methods.

Second, we propose a TCP throughput prediction using neural networks which
is named TRUST. This method has two stages: user movement pattern identification
and throughput prediction. In the prediction stage, the long short-term memory (LSTM)
model is employed for TCP throughput prediction. TRUST takes all the communication
quality factors, sensor data and scenario information into consideration. Field
experiments are conducted to evaluate TRUST in various scenarios. The results indicate
that TRUST can predict future throughput with higher accuracy than the conventional
methods, which decreases the throughput prediction error by maximum 44% under the
moving bus scenario.

Third, in order to validate the prediction methods and provide reliable video
streaming with efficient wireless resource, adaptive bitrate control using throughput
prediction is explored. Meanwhile, a trace-based emulation system is established to
exam different methods using limited experiments. Dynamic adaptive video streaming
over HTTP (DASH) is widely studied and adopted in modern video players for ensuring
user QoE since QoE directly affects the revenue. In DASH, adaptive bitrate control is a
key part for achieving high quality of service and QoE when transmitting video
streaming. The ultimate goal of adaptive bitrate control is to maximize video bitrate
while minimizing rebuffering events and duration. However, this task is non-trivial
since the network condition is not always stable. The choice of higher bitrate may cause
frequent video freezing which annoying the user while choosing lower bitrate may give
worse experience. Therefore, throughput prediction plays an important role in helping
select the proper bitrate of video dynamically. We implement the proposal into DASH-
JS [8] and evaluate the performance of our approach. The DASH-JS structure is
modified and extended for flexible purposes.

Basically, the algorithms need to be tested with large-scale deployment.
However, it is not always possible in academic research. In this paper, we establish a
replicable trace-based emulation environment and we study the influence of different
prediction methods on adaptive video streaming. The emulation enables us to compare
different methods under the artificially same condition, with limited experiment. The

Chapter 1: Introduction

4

quality metrics such as average bitrate, the number of rebuffering events, the duration of
rebuffering, etc. are examined. The results indicate that a good prediction can provide
better user QoE and that predicted throughput is effective for bitrate selection, thus
provide highly-reliable mobile video streaming with high bitrate and avoid rebuffering
event.

In order to further improve the QoE, we propose a new adaptive bitrate (ABR)
control method named decision map method (DMM). In this method, the buffer
occupancy information is considered simultaneously with the prediction result. DMM
creates both aggressive and conservative mechanisms to handle different network
condition. The emulation results demonstrate that the DMM can achieve better
performance in QoE than conventional methods, showing the efficiency of the DMM
algorithm.

1.2 Thesis organization

This thesis consists of six chapters as follows.
Chapter 1 introduces the background and motivation of this research. As

throughput prediction plays a significant role for adaptive bitrate in mobile network, we
focus on this topic and construct several prediction models.

In Chapter 2, we introduce related works of TCP throughput prediction
methodology for wireless network, user movement pattern recognition, adaptive bitrate
control, MPEG-DASH, and QoS/QoE optimization.

Chapter 3 depicts the TCP throughput prediction methods using statistics and
machine learning. A novel approach is proposed utilizing HMM with GMM to deal with
historical time series of throughput and judge fluctuation factor with total variance
when predicting future throughput. Based on the model, a history-based throughput
prediction method that utilizes time series analysis and machine learning techniques for
mobile network communication is proposed. This method is called the hybrid prediction
with the autoregressive model and hidden Markov model (HOAH).

Chapter 4 presents the TCP throughput prediction using neural network. The
method uses measured throughput, received signal strength indicator (RSSI), Cell ID
and other parameters via neural network to predict future throughput. Results show the
method can predict throughput effectively.

Chapter 5 proposes a trace-based emulation system and an adaptive bitrate
control method. A replicable trace-based emulation environment is established and the
influence of different prediction methods on adaptive video streaming is studied. The

Chapter 1: Introduction

5

results indicate that a good prediction can provide better user QoE. In order to further
improve the QoE, a new ABR method is proposed in which the buffer occupancy is
considered simultaneously. The emulation results demonstrate that DMM can achieve
better performance in QoE than conventional methods.
 Chapter 6 gives overall conclusions and future work.
 Figure 1.2 shows the relationship of the research described in Chapter 3, 4 and 5.
As shown in the figure, in order to predict future TCP throughput, we construct
throughput prediction models in Chapter 3 and 4. Based on the throughput prediction
methodologies, the adaptive bitrate technique is put forward to MPEG-DASH to ensure
high QoS/QoE.

Figure 1.2 Structure and relationship of the research chapter in this thesis.

6

2

2.1 Wireless communication

Wireless communication mainly uses wireless techniques such as radio wave,
magnetic, light and sound to transmit information. It brought large convenience for
human life. One of the important applications of wireless communication is
constructing connection for wireless network.

Wireless network is the kind of computer network that uses wireless connection
to transmit information between network nodes. There are many types of wireless
network, such as wireless LAN, wireless WAN, wireless ad hoc network and mobile
network.

There are many technologies for wireless communication. Some of them are
introduced in the following.

High speed downlink packet access (HSDPA) is an enhanced version of 3rd
mobile communications protocol in the high-speed packet access family. It allows
networks based on the universal mobile telecommunications system to have higher data
speed and capacity. HSDPA decreases latency and the round trip time for applications.
In this thesis, we use the public HSDPA dataset as part of the data to construct our
proposal.

Long-term evolution (LTE) is a standard developed by 3rd Generation
Partnership Project for high speed wireless communication in mobile network. LTE can
realize higher transmission speed, lower delay and higher bandwidth efficiency.
Moreover, LTE supports various carrier bandwidths from 1.4 MHz to 20 MHz and
supports both frequency division duplexing and time-division duplexing.

Wi-Fi is a technique to realize the connection of terminals such as PC and
mobile phone to the internet base on IEEE 802.11 in wireless local area network. The
coverage area of Wi-Fi can be 20 meters indoors and larger ranges outdoors.

There are many important characteristics in wireless communication.
Throughput is the actual data being delivered in a unit time of the transmission link.
Transmission control protocol (TCP) is one of the main internet protocol. It provides a
reliable and robust communication service with the internet protocol (IP) together. As
the data we collected or utilized are mainly TCP throughput, we take these data as the

Related work

Chapter 2: Related work

7

main objective for our methods. Received signal strength indicator (RSSI) indicates the
power of received radio signal, which represents the relative signal strength. Cell ID is
the unique number of the base station used to deliver the signal in the mobile network.

2.2 User movement pattern recognition

User movement pattern recognition can contribute to the progress of many
researches. For example, it can provide the information of the situation a client is in,
thus can deliver the information of environment change to the server side which the
client is communicate with via the internet. It also has significant meaning for the topic
of human trace prediction, geography information prediction and traffic management of
urban transportation.

Many researches [9-15] have been conducted for the movement pattern
recognition of user. In [9], the author uses global positioning system (GPS)
measurements to identify the movement pattern. While based on [10], [14], [15], the
data collection of GPS information is not available in some areas such as in the subway
station which is usually located underground.

Thus the authors in [10], [11], [14] propose methods to utilize other sensor data
instead of GPS information. User movement patterns include transportation mode and
human activity. Transportation modes contain walk, travel by bus and etc. [11-16]. The
patterns of human activity consist of standing, sitting, and etc. [17-21]. In [12], different
machine learning methods, such as k-NN, SVM, RF and decision tree, are adopted to
identify transportation modes using the accelerometer and gyro sensors. In [14],
different statistical characteristics including mean, variance, and standard deviation in
frequency domain are utilized to identify various transportation modes, such as walk,
running, and traveling by bike and bus. The k-NN, SVM, and RF are adopted. The
accelerometer sensors deployed on the mobile phone and wearable equipment are
applied to identify human activity in [17-20]. Deep learning techniques such as CNN
are used to identify the human activity [20], [21].

2.3 Throughput prediction

With the increase of mobile applications, massive mobile network traffic has
been emerging. An accurate throughput prediction can contribute a lot to improving
QoS/QoE as reported in [1], [2]. Moreover, throughput prediction is an important part
for anticipatory network based on [22]. Throughput prediction is challenging especially

Chapter 2: Related work

8

in mobile networks due to the fluctuation characteristic of session [23]. It plays an
essential role in adaptive bitrate control [24-26]. The performance of bitrate control and
QoS/QoE will be influenced by even 0.1 prediction error in many applications such as
IPTV. Therefore, the accurate TCP throughput prediction is significant [27], [28].

According to [29], the existing TCP throughput prediction methods can be
divided into two types: formula-based approach and history-based approach. Formula-
based approaches employ mathematical functions to calculate the future throughput
with other observable network parameters, such as round-trip time (RTT), packet loss
rate, and TCP window size. For example, Mathis et al. [30] demonstrated a
methodology to predict the bandwidth for TCP implementations with congestion
avoidance algorithm in various situations. The model is effective in predicting shared
bandwidth, but the assumption is strict and does not consider the timeout-driven
behavior. Padhye et al. [31] proposed a model to compute the TCP flow throughput as a
function of RTT, packet loss rate, TCP congestion window size, and TCP retransmission
timeout. Although the model considers the TCP timeouts, this method is sensitive to
RTT fluctuation, which sometimes leads to large prediction errors. Floyd et al. [32]
extended Mathis’s work and proposed an equation-based congestion control for unicast
applications. Experiments verified that the method could provide better performance
over a wide range of timescales for unreliable applications. However, this approach is
not robust against network parameter estimation errors.

On the other hand, history-based approaches utilize methodologies such as
time-series analysis to predict future TCP throughput. In this approach, the observed
throughput data are treated as time-series data, and future throughput transitions are
predicted by various methodologies. For example, Vazhkudai et al. [33] mentioned
several predictors, such as average value, median value, and autoregressive integrated
moving average (ARIMA). He et al. [29] also mentioned similar linear predictors, such
as moving average (MA), exponential weighted moving average (EWMA), and Holt
Winters (HW), which has proved that history-based approaches could achieve higher
accuracy compared with formula-based approaches. Swany et al. [34] proposed a novel
method to predict the throughput with cumulative distribution functions (CDFs) of
history time series. Experiment results concluded that the method could predict future
throughput with acceptable prediction errors. Yoshida et al. [25] raised a stochastic
method combining the stationary and non-stationary Gaussian models to predict the
possible value range. The method performs remarkably well, but does not consider the
user moving scenarios.

All of the above-mentioned prediction methods fail to consider the user moving

Chapter 2: Related work

9

mode and network characteristics such as communication qualities in mobile network.
To fill these gaps, we conduct the research in this thesis.

2.4 Adaptive bitrate control
 2.4.1 Overview

It is important to provide video streaming with high QoE for user which
becomes more and more essential, since the user QoE is directly related to service
provider’s revenue [35, 36]. In order to maximize the QoE, the basic requirement is
providing contents with higher video quality (or bitrate) and fewer rebuffering duration.
Since the network condition is not always stable, transmitting contents with constant
bitrate may result in troubles. Suppose the highest streaming quality is always chosen
under an environment with inadequate bandwidth, the rebuffering events may occur
very frequently. Then, the user may be upset and quit the video session, resulting in less
chance of promoting commercial contents such as advertisement. However, if the
possible network throughput is not fully exploited, the video may be streamed with a
relatively low quality, which may also damage the user QoE and decrease the user
engagement. Therefore, the adaptive bitrate control should be involved during the video
streaming to choose proper video bitrate dynamically via trading off between video
quality and rebuffering.

There exist several adaptive streaming protocols such as Adobe HTTP
Dynamic Streaming [37], Apple HTTP Live Streaming [38], and Microsoft Smooth
Streaming [39]. Recent years, dynamic adaptive video streaming over HTTP (DASH) is
studied worldwide as a unifying standard [40]. In DASH protocol, the video contents
are divided into short chunks and encoded at different bitrate levels. Then the client
player can request the segment chunks with proper bitrate successively and dynamically
according to the network condition. The algorithm for selecting download bitrate is
called adaptive bitrate (ABR) algorithm. The ABR algorithm employs the network
condition logs (such as throughput, buffer state and etc.) which monitoring in the client
side to decide the bitrate of the latter downloading chunks. The purpose is maximizing
the video quality while reducing rebuffering. The basic ABR control method is rate-
based (RB) [41-43]. The RB algorithm selects the next downloading chunk by
estimating the future throughput. The development of ABR method is still ongoing
since it started in only recent few years. RB algorithm may perform badly if the
prediction is inaccurate.

In the ABR algorithms which involves prediction, the throughput prediction

Chapter 2: Related work

10

method is basically chosen as harmonic mean of the former several measurements. The
impacts of different throughput prediction methods are not discussed. In this thesis, we
mainly focus on the influence of different prediction methods on the RB adaptive
control algorithm. In order to evaluate the methods with limited experiments, we
established a replicable trace-based emulation environment. Since there are rarely
literatures discussing such subject, our work may give a deeper insight into the effect of
the throughput prediction. Note that, this thesis is not aiming to develop an algorithm
which can defeat other state-of-the-art ABR methods. This is a future research topic.
But we evaluate how the prediction methods will influence the performance of the
adaptive bitrate control. Then some design guidance of ABR algorithm can be achieved,
giving directions of future work. The quality metrics such as average bitrate, the number
of rebuffering events, the duration of rebuffering, initial delay, bitrate switches are
calculated and compared.

2.4.2 MPEG-DASH

MPEG-Dynamic Adaptive Streaming over HTTP (DASH) [44] is an adaptive
bitrate streaming technique which realizes the video streaming with high quality
provided to user through the internet from the HTTP server. As the technology is
developed by Moving Picture Experts Group (MPEG), it is also named MPEG-DASH.

MPEG-DASH standard is designed for HTTP streaming. In MPEG-DASH, the
media source of various resolutions is encoded at different bitrate. The media content is
divided into various segments. Media Presentation Description (MPD) contains the
information of media content components and segments such as resolution, bitrate, start
time and end time. Figure 2.1 shows the structure of MPD file. The client can choose
the proper bitrate based on the network condition. An example of dynamic bitrate
adaptation for multimedia content is shown in Figure 2.2.

Chapter 2: Related work

11

Figure 2.1 Structure of Multimedia Presentation Description (MPD) file [44].

Figure 2.2 Example of dynamic bitrate adaptiation in MEPG-DASH [44].

DASH-JS [43] is a JavaScript-based MPEG-DASH client. It achieves a DASH
client which is flexible and independent of browser by the Media Source API of
Google’s Chrome browser. It is robust in the real-world environment and has the best
performing adaption algorithms. Moreover, it realizes the best application for the
playback of media content for MPEG-DASH.

Chapter 2: Related work

12

2.5 QoS and QoE

Quality of service (QoS) represents the performance of service for computer
network, which is from the viewpoint of media provider [45]. The parameters of QoS
include throughput, bitrate, packet loss, delay and etc. QoS can be utilized as the quality
metric of a service. High QoS usually means providing high performance media with
high bitrate, low latency and low bitrate error. The QoS of mobile network is very
complicated as the communication is easily to be affected by many factors such as the
transmission mechanism and environment.

Quality of experience (QoE) is used to measure the user’s experience and
feeling of the communication service. It depicts the whole experience of the client side
to the service of the received information. The QoE generates from QoS. The difference
of them are that QoS focuses on the service parameters and much relates to the media
and the communication network, while QoE concentrates on the subjective perception
from the user’s point of view. Based on [46], the QoE factors include human influence,
system influence and context influence as shown in Table 2.1.

Table 2.1 QoE Factors [46].

Human Influence

1. Low-level processing (visual and auditory acuity, gender, age, mood)
2. Higher-level processing (cognitive processes, socio-cultural and
economic background, expectations, needs and goals, other personality
traits, etc.)

System Influence

1. Content-related
2. Media-related (encoding, resolution, sample rate, etc.)
3. Network-related (bandwidth, delay, jitter, etc.)
4. Device-related (screen resolution, display size, etc.)

Context Influence

1. Physical context (location and space)
2. Temporal context (time of day, frequency of use, etc.)
3. Social context (inter-personal relations during experience)
4. Economic context
5. Task context (multitasking, interruptions, task type)
6. Technical and information context (relationship between systems)

QoE is important for the design of a system especially for video service.
Subjective quality evaluation and objective evaluation methods are used to obtain the
QoE of the communication service. Subjective quality evaluation needs lots of
volunteers to offer their evaluation results, thus it is very time consuming. The objective
evaluation method uses a stable function and related parameters to calculate the QoE. It
can save more time and labor force, though may be not as accurate as the subjective
quality evaluation which is actually from user’s evaluation.

Chapter 2: Related work

13

The main purpose of network management is providing high QoS and QoE for
the media transmission. Adaptive bitrate control is the main technique in network
management. In this thesis, QoE is adopted as the measurement which is aimed to be
optimized for the adaptive bitrate control methods.

2.6 Summary

As mentioned in the above parts, throughput prediction plays an important role
for adaptive bitrate control in mobile network. The realization of adaptive bitrate control
can ensure high QoS/QoE for video streaming. All of these motivate the research in this
thesis. We construct TCP throughput prediction methods in this thesis, and conduct field
experiments to evaluate the methods. Meanwhile, the performances of the adaptive
bitrate control method utilizing proposed methods are evaluated.

14

3

Throughput prediction is one of the promising techniques to improve the quality of
service (QoS) and quality of experience (QoE) of mobile applications. To address the
problem of predicting future throughput distribution accurately during the whole
session, which can exhibit large throughput fluctuations in different scenarios,
especially scenarios of moving user, we propose the history-based throughput prediction
methods that utilize time series analysis and machine learning techniques for mobile
network communication. The throughput prediction method utilizing hidden Markov
model (HMM) with Gaussian mixture model (GMM) is proposed to deal with history
time series of throughput and judge fluctuation factor with total variance when
predicting future throughput. Further, a developed version of this method called the
hybrid prediction with the autoregressive model and hidden Markov model (HOAH) is
proposed. Different from existing methods, HOAH uses support vector machine (SVM)
to classify the throughput transition into two classes and predicts the transmission
control protocol (TCP) throughput by switching between the autoregressive model (AR
Model) and the Gaussian mixture model-hidden Markov model (GMM-HMM).

3.1 Time series analysis and forecast

3.1.1 Time series

A time series is a series of samples in time order. Generally a time series is a
sequence obtained continuously in stable time interval which is a series of discrete data.
Time series are widely used in statistics, pattern recognition, econometrics, signal
processing, communication engineering, weather forecasting and other areas. In the
history based method for throughput prediction in the former chapter, throughput data is
generally being considered as time series. Thus in this research, we consider the TCP
throughput measurements as time series. Figure 3.1 shows an example of time series.

*This chapter is adapted from the work published in [49], [63].

TCP throughput prediction using
time series analysis by statistics

and machine learning*

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

15

Figure 3.1 Example of time series.

3.1.2 Time series analysis techniques

Time series analysis aims at extracting the characteristics of time series data.
The analysis methods include frequency-domain methods and time-domain methods. As
the throughput data is temporal-spatial measurements which the most important
characteristic is value, thus we focus on time-domain methods.

In this research, statistical analysis includes stationarity analysis, correlation
and partial correlation, mean value and variance.

1. Stationarity analysis
Stationarity analysis plays an important role in the constructed prediction

model in this thesis. Stationarity process is one kind of stochastic process, the
unconditional joint probability distribution of which does not change with time. [47]
Thus parameters such as mean value also do not change over time.

Wide-sense stationarity is commonly used in signal processing. In this case, the
mean value keep stable, and the autocorrelation only depends on the time interval
between the two points. In this thesis, wide-sense stationary is utilized.

Unit root test tests whether a time series variable is non-stationary and whether
it shows a unit root. Augmented Dickey–Fuller test (ADF) is one of the most popular
unit root test methods. There are three models in the ADF test. In the thesis, we utilize
the three models in ADF test to identify the data stationarity situation and to predict
future data.

2. Correlation and partial correlation
Correlation is used to represent the statistical association. Commonly it is

adopted to show how close the linear relationship between two variables.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

16

Autocorrelation describes the correlation between a time series of throughput data and
the time lagged copy of itself. It can show the similarity between samples which appear
in different time periods. Partial correlation gives the partial correlation of a time series
of throughput data with its own shorter lagged values. Both of these are being used in
the throughput prediction methods.

3. Mean and variance
There are many kinds of mean values in mathematics including the arithmetic

mean (AM), geometric mean (GM), harmonic mean (HM), which all reflects the
average of samples.

Variance is the expectation of the squared standard deviation of the variables
from its mean value. It shows how far the values are distributed from the average value.

3.1.3 Time series forecast techniques

The time series forecast techniques utilize former data of the time series to
predict future data. The former data is adopted to construct a model which covers the
characteristics of the time series, then the model is used to forecast following data. The
popular methods are techniques such as regression, moving average, Kalman filtering,
linear prediction, curve fitting, machine learning etc.

3.2 Throughput data collection and analysis

First, we illustrate the throughput data collection, and analyze the
characteristics of measurements.

An Android application developed by our laboratory is utilized to collect
communication measurements. The application is developed by Java through android
studio. The measurements include throughput data, packet size, RSSI, Cell ID, global
positioning system (GPS) data, interface, battery status and other sensor data. The
collected data are saved in the cellphone and can be sent to the user through email. We
simply utilize GPS to get the location information. Figure 3.2 shows the screen when
the application is working.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

17

Figure 3.2 Screen of the application when it is working.

The throughput measurements can be visualized by google API. Figure 3.3
shows the visualization of throughput data with location information. The red color
represents the throughput value is high, while the green color represents a low value of
throughput data.

Figure 3.3 Visualization of throughput data with location information.

The throughput data are collected in different scenarios. The scenarios are
shown in Table 3.1 and 3.2. We define one scenario as the situations which share the
same scenarios properties including time, location, user moving mode and interface.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

18

Besides the data collected by ourselves, we also use a public dataset which contains logs
from TCP streaming sessions in Telenor's 3G/HSDPA mobile wireless network in
Norway. [48]

Table 3.1 Scenario properties.

Scenario Property Details
Time Morning, Afternoon, Evening

Location Lab, One stable trace, etc.
User moving mode Subway, Bus, Train, Walk, Static

Interface LTE, Wi-Fi

Table 3.2 Scenario properties of public dataset.
Scenario Property Details
Unix timestamps number of seconds since 1970-01-01

Location Lab, One stable trace, etc.
User moving mode Subway, Bus, Train, Walk, Static

Interface HSDPA

Throughput data of different scenarios in Table 3.3 are shown in Figure 3.4. In
different scenarios, throughput data show different performances. The interval of the
collection is 1 second. We have also collected the measurements with the intervals of
0.5 s, 1 s, 2 s, etc. The data are actual measurements collected by our software in Tokyo.

(a) (b)

Figure 3.4 Throughput data of static and bus scenario.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

19

Table 3.3 Scenario information of the data above.

Statistical characteristics of throughput measurements in different scenarios

show very different performances. We give a brief analysis of the characteristics of
throughput data in various scenarios. Figure 3.5 shows the characteristics of the
collected throughput data mentioned above in static and bus scenario.

 (a) (b)

 (c) (d)

Figure 3.5 The statistical characteristics of throughput data.

Scenario Interface Location Time

static LTE Nishi-waseda
campus afternoon

bus LTE Nishi-waseda to
Waseda campus afternoon

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

20

1. Autocorrelation and partial autocorrelation
The autocorrelation and partial autocorrelation of the throughput data in static

and bus scenario are shown in Figure 3.5. The autocorrelation of static data in
Figure 3.5(a) tails off and the partial autocorrelation in Figure 3.5(c) cuts off, thus the
data follow AR model. The autocorrelation of bus data in Figure 3.5(b) tails off and the
partial autocorrelation in Figure 3.5(d) tails off, thus the data follow ARMA model.

2. Mean and variance
The mean value of the static data is 11.544 Mbps, while the mean value of bus

data is 17.497 Mbps. The average throughput of bus is much higher than the static
scenario. The variance of static data is 4.368 Mbps2, and the variance of bus data is
35.820 Mbps2. We can conclude that the data of bus scenario is much more distributed
than static scenario.

3.3 TCP throughput prediction using GMM-HMM

3.3.1 GMM and HMM

A Gaussian mixture model is a probabilistic model which consists of finite
number of Gaussian distributions. All the values in the dataset are assumed to follow the
Gaussian mixture model which is a continuous probability distribution. Each Gaussian
component has its own parameters such as expectation, variance and component
efficient. The probability density function of Gaussian distribution is:

2

22

()1(| ,) exp
22

i
i i

ii

yf y 
 



 
  

 
 (3.1)

where y is variable, μi is expectation, σi is variance. The probability density function of
Gaussian distribution is:

1
(| , ,) (| ,)

m

i i i i i i
i

g y f y     


 (3.2)

where ωi (0≤i≤m) denotes a mixture weight of i-th Gaussian density component in
GMM. GMM use expectation maximization algorithm to obtain the parameters.

Hidden Markov Model (HMM) is a statistical Markov model and the system
being modeled is assumed to be a Markov process. The hidden states of HMM is not
visible, while the output dependent on the states can be observed. The output is also
called observation. Each state has a probability distribution over the possible

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

21

observations. The type of HMM being considered is like this: the hidden states are
discrete, while the observations can be discrete or continuous and generally will be
assumed follow Gaussian distribution. The parameters of HMM include transition
probability and emission probability. The transition probability decides the hidden state
at next time t+1 is chosen given the hidden state at time t.

3.3.2 Throughput prediction using GMM-HMM

3.3.2.1 Whole structure of proposal

In this part, we elaborate the proposed method: history-based throughput
prediction with hidden Markov model in [49]. The method mainly consists of two parts,
identification of throughput fluctuation and throughput prediction. As GMM can be
used to cluster data according to frequency, we use GMM to obtain clusters and define
them as different hidden states. HMM is adopted to dig out the pattern how hidden
factor decides the observations, as forward-backward algorithm can produce the most
likely model for the state and observation sequence, and Viterbi algorithm could find the
most possible state transition path of throughput instead of the real throughput value
which might contain outliers and sudden change to avoid interruption when we judge
current fluctuation. By applying GMM-HMM, the new method could separate
fluctuation of data into stationary and non-stationary accurately. Then, we use proper
means to predict future throughput in different conditions effectively. The related
notations used in HMM are shown in Table 3.4.

Table 3.4 Notations used in HMM.

Notation Meaning
m number of states in the model
M number of distinct observations of each state
T length of observation sequence

O = (O1,…,OT) observation sequence
Q = (Q1,…,QT) state sequence

A = {aij} A is state transition matrix, aij is transition probability from
state i to j

B = {bi(Ot)} B is observation emission matrix, bi(Ot) is when state is i,
probability of observing Ot

π = {πi} π is prior probability matrix, πi is the beginning probability
of being in state i

λ = (π,A,B) HMM model with parameter
Si (1 ≤ i ≤ m) Current State is i
rk (1 ≤ k ≤ M) Observation k (value range of throughput data)

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

22

The whole process of history-based throughput prediction with hidden Markov
model is shown in Figure 3.6. History data are separated into M groups according to the
value range as observations. Then data are clustered into m classes with m-component
Gaussian mixture model and defined as hidden states. After we have state sequence and
observation sequence we train data with hidden Markov model, and calculate the most
probable state transition path. Then we judge fluctuation (stationary or non-stationary)
of current time according to the fluctuation factor calculated by former state transition
path. Finally, we predict throughput of following time with corresponding means: linear
regression for stationary and locally weighted linear regression for non-stationary.

Figure 3.6 Process of throughput prediction with HMM.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

23

3.3.2.2 Gaussian mixture model

Gaussian mixture model (GMM) is a reliable classification tool in many
applications such as pattern recognition [50-52]. In the part of generating states of this
work, GMM is adopted to cluster throughput data into different classes according to
distribution of data. The parameters of GMM for the classes can be obtained by training
data with standard expectation maximization algorithm. The classes are defined as
distinct states which demonstrate that data follow different distribution structures of
different expectation and standard variance. States are value ranges in which the data
appear with largest probability. The probability density function (PDF) of GMM is a
weighted sum of m-component Gaussian densities given by the following equations:






m

i
iiiiii xgxp

1

),|(),,|( (3.3)






m

i
ii

1

1,10  (3.4)

]
2

)(exp[
2

1),|(2

2

2
i

i

i

ii
xxg








 (3.5)

where ωi (0≤i≤m) is a mixture weight of corresponding PDF of Gaussian distribution in
GMM. μi and σi are the expectation and standard variance of the i-th Gaussian density
component. ψ(x,i) is defined as the occurrence probability of throughput data x to which
the i-th Gaussian density component contributes as shown in Equation (3.6). And, the
component which contributes to the largest probability can be considered as the state(i)
that data x belongs to.

),|(),(iii xgix   (3.6)

The number of Gaussian mixture model components is decided by historical
data. Throughput with the value fluctuating slightly will be clustered by two Gaussian
mixture models while data with large fluctuation will be clustered by three or more
Gaussian mixture models.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

24

3.3.2.3 Hidden Markov model

Hidden Markov model (HMM) is a finite state machine with state transitions
and observations, which is widely applied to temporal pattern recognition such as
speech, handwriting recognition, and DNA sequence analysis [53-55]. It provides a
probabilistic approach for modelling the time series of states and observations. In this
work, HMM is proposed as a predictor being used to find the hidden law of throughput
variation, as HMM could not only construct the connection of hidden factors and
corresponding observations it decides, but also build the transition probability between
hidden factors. Thus, we could obtain the most probable state transition path, with
which we could know the real current fluctuation status. This is much more accurate
than analyzing the real change of throughput value directly which might be affected by
outliers and sudden changes. First, the forward-backward algorithm is employed to find
the proper model and parameters. Then, Viterbi algorithm is applied to find the most
probable state transition path. After this, current fluctuation factor with total variance is
calculated and the fluctuation of current time is judged. Finally, throughput is predicted
with a corresponding way based on fluctuation condition. This work meets the
assumptions of HMM.

We define the classes of GMM as hidden states Si (0≤i≤m) in HMM and divide
the throughput historical data into M ranges according to value range with definition of
M observations rk (0≤k≤M). Thus, we obtain the state sequence Q, and observation
sequence O. Then, we train state and observation sequence with the forward-backward
algorithm to generate the most probable hidden Markov model λ = (π,A,B). After
predicting next state and corresponding observation, we train the observations with
Viterbi algorithm to find the most likely sequence of hidden states for the given hidden
Markov model and observation sequence. Then, we get the state transition path and
calculate fluctuation factor of current time.

a. Forward-backward algorithm
After defining the state and observation sequence, we use forward-backward

algorithm to generate the most probable HMM parameters from given sequences.
b. Viterbi algorithm
Viterbi algorithm is used to find the most likely sequence of hidden state

sequences when given the hidden Markov model and observation sequence. It uses
backtracking array to obtain the most probable hidden state sequence. After above
process, the state path we need is the backtracking array. Thus we obtain the state
transition path.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

25

3.3.2.4 Fluctuation factor

We apply mean square of total variation [56] to judge the fluctuation of state
transition path. After obtaining the most probable state transition path by Viterbi
algorithm, we calculate the difference et between adjacent states of former N states
(including current state) and the fluctuation factor τ (standard difference) as:

N
eee N

22
2

2
1 ...

 (3.7)

Then, we compare the value of τ with parameter s, called difference threshold, which
can be assigned different value according to various situations and requirements by user.
When τ ≤ s, the state transition shows low-frequency and low-width, we define current
fluctuation as stationary, and we apply linear regression to predict future throughput
with former N1 throughput data; when τ > s, the state transition shows high-frequency
or several high-width, we define current fluctuation as non-stationary, and use locally
weighted linear regression to predict future throughput with former N2 throughput data
(N2 is usually smaller than N1). This means that for non-stationary condition, we use
local regression to smooth data by giving suitable weight to data points. Because we
think predicted value is only reflected by latest data largely without distant ones.

Figure 3.7 State transition path.

Figure 3.8 Simple example of state transition path.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

26

3.3.2.5 Linear regression and locally weighted linear regression

After judgement of above steps, if fluctuation of state transition path is
stationary, we use linear regression to predict throughput. Linear regression is a popular
method modeling the relationship between a dependent variable and one or more
independent variables, which has many practical uses [57-59]. In this work, linear
regression is applied to predict throughput when data fluctuate slightly. It fits the
predictive model with former N1 throughput values xi. After developing the model and
obtaining parameter θ0 and θi, we use the known fitted model to predict current
throughput xt as 𝑥̂𝑡. Prediction function is shown as follows:

0 1ˆ () , 1t ix h t t i N        (3.8)

1
2

0
1

(,) (())
N

i i i
i

J h t x 


  (3.9)

where θ0 is constant term, θi is the relative parameter of t, and 𝑥̂𝑡 is predicted future
throughput. We fit θ to minimize evaluation function and obtain parameters and to
predict xt.

If the fluctuation is non-stationary, we use locally weighted linear regression to
predict throughput. The method combines linear regression model in a N2-nearest-
neighbor-based one to smooth data. It addresses conditions in which the classical
procedures do not perform well or cannot be effectively applied with undue labor
caused by outliers, which disturb predicting future data accurately. The smoothed value
is determined by neighboring data points defined within the limit. We give larger weight
to nearer data, thus the predicted throughput will not be affected by the distant data at
all. The weights are calculated by following equation:

33

21 , 1
()

i
i

t tv i N
d t

 
    
 
 

 (3.10)





2

1

2
0))((),(

N

i
iiii xthvJ  (3.11)

In Equation (3.11), we fit θ to minimize evaluation function J(θ0,θi) and obtain
parameters and to predict xt, where vi is weight, 𝑥̂𝑡 is the predicted value, xi are the

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

27

nearest neighbors, and d(t) is the distance along the time axis from xt to the most
furthest value in the range.

3.3.3 Model validation

3.3.3.1 Experiment environment

We use the developed application to collect throughput history data every
second from the HTTP server via LTE offered by NTT DOCOMO. Figure 3.9 shows the
experiment environment.

Figure 3.9 Experiment Environment.

We obtain throughput history data in the afternoon and evening with various
cases of user mobility. In the static situation, a user keeps static when collecting data in
the laboratory. While in dynamic situation, a mobile user collects data when walking
from the station of Takadanobaba to Nishi-waseda campus or sitting on moving subway
between stations. We ensure same data transmission path for each case. Time and user
mobility of six cases are shown in Table 3.5. The time interval of data series is 1 s. We
train former 850-second historical data to predict next future 100-second throughput.
Then, we analyze prediction results and evaluate prediction accuracy. We compare the
accuracy of the predicted throughput with three other prediction methods: stochastic
model, linear regression and locally weighted liner regression.

Table 3.5 Experiment cases.

Cases Environment
Case 1 Afternoon, walking
Case 2 Afternoon, static
Case 3 Afternoon, subway
Case 4 Evening, static
Case 5 Evening, walking

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

28

3.3.3.2 Fluctuation identification

Figure 3.10 shows the experiment result of clustering data with GMM in case1.
Inside GMM, there are six Gaussian components used as hidden states. And they
superimpose on each other largely from 10 Mbps to 20 Mbps, which means many
throughput data distribute intensively during this value range. We can conclude from the
result that majority of data value appear between 5 Mbps to 35 Mbps. Figure 3.11 is
identification of throughput fluctuation. The upper dots represent non-stationary status
and lower ones show stationary status. Some throughput data from 910 s to 930 s are
non-stationary as they perform larger fluctuation. Figure 3.11 indicates the method
could identify different fluctuation statuses effectively.

`

Figure 3.10 Clustering data with GMM.

Figure 3.11 Identification result of throughput fluctuation.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

29

3.3.3.3 Accuracy comparison and analysis

Similar to the reference [29], we use relative prediction error Rt and root mean
squared relative error (RMSRE) with following equations to evaluate accuracy as
calculated in Equation (3.12) and (3.13), respectively. We adjust related parameters in
different situations to achieve high accuracy and meet various requirements of users.

ˆ| |t t
t

t

x xR
x


 (3.12)

2

1

1 n

t
t

RMSRE R
n 

  (3.13)

The cumulative distribution function (CDF) of Rt is shown in Figure 3.12. As
the limitation of space, we only show case 1 out of the six cases in our experiment.
Figure 3.12 shows the prediction result of case1 utilizing four methods. From the figure,
we can see that initially the value of Rt is almost the same for all methods, while they
separate when Rt equals to about 0.2. From 40%, our proposed method is better than the
linear regression prediction. The new method could divide data fluctuation into
stationary and non-stationary accurately and apply suitable prediction methods for each
condition. We can conclude that for 90% of the predicted 100 s throughput data, Rt of
the proposed method is the smallest among the four methods. The smaller Rt is, the
more accurate the predicted value is. Moreover, for 100% predicted data, our method
has the smallest Rt for all forecasting data. In other word, value of the largest Rt is the
smallest, which proves the new method is effective.

Figure 3.12 CDF of Rt for all predictions with four methods.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

30

Figure 3.13 RMSRE of throughput prediction with four methods.

Figure 3.13 shows RMSREs of forecasting with the four methods in six cases.
RMSRE represents the prediction accuracy of all cases by single figure. We can see that,
generally, the four prediction methods achieve higher accuracy when users are static
compared with moving users. The proposed method predict future throughput
effectively not only in situations of static users, but also in moving user cases. This is
because new method could identify fluctuation of throughput data into stationary and
non-stationary accurately with GMM-HMM and adopting proper means for each
condition. By assigning proper values to relative parameters, the proposed method could
predict future throughput accurately in different situations to satisfy users.

3.4 TCP throughput prediction using AR and GMM-HMM
3.4.1 Prediction system

Researchers have shown that user mobility scenario can be identified in [12],
[60-62] which means that the user’s communication scenario can be obtained for mobile
networks. These researches support the premise for constructing a prototype system to
predict throughput. Based on this premise, the non-trivial task is undertaken in this part.
We focus on throughput prediction in different situations individually for a specific
scenario and propose the TCP throughput prediction method using the hybrid prediction
with the autoregressive model and hidden Markov model (HOAH). Figure 3.14 shows
the overview of our work in [63].

To obtain a deep understanding of the throughput data variation and
characteristics, large amount of throughput measurements in various scenarios are
needed. We use the developed Android software application to collect throughput data
per second of other network interfaces such as LTE and Wi-Fi, because the public

0

0.2

0.4

0.6

0.8

1

Case1 Case2 Case3 Case4 Case5 Case6

R
M

SR
E

stochastic model

linear regression

locally weighted

proposed

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

31

dataset [48] only contains the network interface of high-speed downlink packet access
(HSDPA). According to our previous work [64], the throughput transition characteristics
drastically change when the user changes the mobility route. Therefore, when testing the
data in user mobility scenario, each scenario means one mobility route. Based on the
conclusion of [29], the tested throughput data are considered coming from the same
transmission path for each scenario.

Figure 3.14 Complete structure of the prediction system.

3.4.2 Data analysis

We collect a large volume of continuous throughput data in many video
sessions in different scenarios by one user, e.g. different network interface types, user
behaviors, location and time are shown in Table 3.6.

Table 3.6 Scenario properties.

Scenario Property Details
Time Morning, Afternoon, Evening

Location Lab, One stable trace, etc.

User moving mode Ferry, Bus, Train, Walk, Static

Interface HSDPA, LTE, Wi-Fi

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

32

After analyzing the data, we obtain three observations:
1. The throughput measurements of sessions in the same scenario tend to

perform similar throughput variation process. Figure 3.15 shows an example of two
realizations in the same walk scenario using LTE. We can easily observe that the
realizations have similar performances. Thus it is better to analyze the data and predict
throughput in each specific scenario respectively.

2. For the neighbor segments inside one session, the variation of the process
shows very large difference such as staying stable or changing very sharply between the
segments. Thus, throughput is difficult to predict by using only one method or one
model. When predicting throughput, the former situation is fit for using AR Model,
while the latter one may be better to be solved by GMM-HMM. Inside one segment, the
data have different statistical characteristics, which will show different relationships
with the variation process of the next segment with distinct probability. As shown in the
second realization of Figure 3.15, if the segment size is 50 s, the performances of the
first and second segments (period from 1 s to 50 s and period from 51 s to 100 s) are
very different, and the changes are extremely sharp and sudden. Moreover, the fifth and
sixth segments (period from 201 s to 250 s and period from 251 s to 300 s) show similar
performances, and the changes are slight.

Figure 3.15 Two realizations of one walk scenario.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

33

Therefore, it is suitable to use different methods to predict the throughput of the
next segment. It is important to decide which method to use. In this paper, the choice is
based on statistical characteristics of the current segment. The support vector machine
(SVM) classifier is utilized to separate the segment into the correct class and predict
with the corresponding method (AR or GMM-HMM).

3. The throughput of one session tends to have large fluctuation and shows
multi-cluster characteristics, especially in moving user scenarios. Figure 3.16 shows an
example of the clustering result for the mean value of a segment in the walk case. Two
states can be observed in this trial, and the data have transition behavior from one state
to another state. For other moving cases, such as bus and train, there are more state
transitions for the mean value of the segments. Thus it is reasonable and necessary to
adopt GMM-HMM for modeling state transition in HOAH.

Figure 3.16 Example of the clustering segments’ mean value for one realization in the
walk scenario.

Although the two-class classification (AR and GMM-HMM) is used in this
work, the results in the following sections demonstrate the advantage of the proposed
method compared with the conventional methods where only one method is applied all
the time. These results also show the necessity of choosing the proper model which
proves the significance of this work.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

34

3.4.3 Related techniques

3.4.3.1 SVM

In many scenarios, the data could not be divided into two classes with constant
threshold values for two or higher dimension case. Thus, we use SVM to accomplish the
classification task to assign a segment to two prediction models.

SVM is a kind of supervised learning model in machine learning, which is
effective for classification [65], [66]. Many works, such as [67-69], have verified that
SVM is more useful for time series classification than other machine learning methods.
We use statistical characteristics of the data segment to classify data for properly
choosing the prediction method. The features utilized in HOAH are shown in Table 3.7.
These features are employed to depict the variation of the throughput data. Prediction
does not work when the autocorrelation is around zero. However, note that this case
rarely happens even if SVM can be trained.

The SVM maps the features of each segment into a higher dimension space by
the Gaussian kernel function non-linearly and divides the segment into two classes.
Since the transformation is nonlinear and the transformed space is high dimensional, the
identification line is nonlinear in the original feature space.

 Table 3.7 SVM features.
Feature Meaning

Variance Depicts how far the value of the throughput
data is from the mean value.

Derivative Describes both the direction and the steepness
of data change.

Autocorrelation
Describes the correlation between a time series
of throughput data and the time lagged copy of
itself.

Partial autocorrelation
Gives the partial correlation of a time series of
throughput data with its own shorter lagged
values.

3.4.3.2 Basic AR model

In HOAH, if historical data is classified to ar class, it means that future data
will probably follow the same behavior of the former period. Thus, the autoregressive
model can be used to predict future data with short-term history samples accurately.

The autoregressive model is one of the most popular models to describe the
performance of time series changing with time [70], [71]. HOAH applies the AR Model

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

35

as part of the basic model to predict throughput. HOAH attempts to predict the
distribution of future throughput, which makes the mean value and variance important
parameters. The basic AR(p) model is given by the following equation:

1 1 2 2t t t p t p ty c a y a y a y        (3.14)

where yt is a sample of the time series, c is constant, ɑi is the corresponding coefficient
of yi, and ɛt is the white noise error term that follows N(0,1).

3.4.3.3 Augmented Dickey-Fuller test

In the AR Model of HOAH, the model is separated into three kinds based on
the restraint of the coefficient, which is introduced in the Augmented Dickey–Fuller
test. The theory of each model is given in the hypothesis test, which includes null
hypothesis and an alternative hypothesis. Among the three models, Model 1 is the most
basic autoregressive model with lag terms. And Model 2 has a drift term besides lag
terms. Model 3 has lag term, drift term and trend term, indicating it is the most
complicated one which can describe the most properties of data such as trend. Details
are shown in Equation (3.15), (3.16) and (3.17).

Model 1:

1 1 1t t t p t p ty ay b y b y       (3.15)

Null hypothesis: ɑ = 1
Alternative hypothesis: ɑ < 1

Model 2:

 1 1 1 0t t t p t p ty c ay b y b y c         (3.16)

Null hypothesis: ɑ = 1
Alternative hypothesis: ɑ < 1

Model 3:

 1 1 1 , 0t t t p t p ty c dt ay b y b y c d         (3.17)

Null hypothesis: ɑ = 1
Alternative hypothesis: ɑ < 1

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

36

where yt is the throughput time series, Δ denotes the differencing operator, Δyi is the
difference term of the adjacent data calculated as:

1i i iy y y    (3.18)

bi is the coefficient of difference of the term Δyt-i, ɑ is the coefficient of yt-1 (data of the
last second), p is the lag order of the autoregressive process. c is the drift coefficient, d
is the deterministic trend coefficient, εt is an innovation process that follows a normal
distribution with mean value of zero.

The ADF test is used to examine the stationarity for history throughput
segments [72-74]. ɑ = 1 means a unit root exists, and the data is non-stationary.
Meanwhile, ɑ < 1 denotes no unit root, and the data is stationary. Based on the ADF test,
the proper AR model is selected.

Ordinary least squares (OLS) is used to calculate the estimated value of the
coefficient for the corresponding model, and then use t statistic to evaluate the existence
of the unit root. We take the models of the ADF test with lag = 0 as example because
this is the easiest case of the ADF test. After the test, we compare the calculated value of
the t statistic in Equation (3.19) with a known value, which is being calculated by
Monte Carlo method. If t is larger than or equal to the compared value, the null
hypothesis will be accepted, meaning the process is non-stationary. If t is smaller than
the compared value, the null hypothesis will be rejected, while the alternative
hypothesis will be accepted, which means that the process is stationary.

 

ˆ 1
ˆ

a
a

t
Se


 (3.19)

3.4.3.4 GMM and HMM

If the test result shows that the data belong to the hmm class, the future
throughput may not have similar features with the short term historical data. Therefore,
HOAH adopts the Gaussian mixture model and the hidden Markov model to predict the
distribution of future throughput.

GMM and HMM are widely used in signal processing, which could analyze
and recognize information [75], [76]. In HOAH, we utilize the GMM-HMM to predict
the future throughput when future throughput may not have the similar features with the
historical segment. This combination is to find the distribution of the future throughput,

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

37

which has the largest probability to appear. HOAH constructs a model of multi-
Gaussian and Markov chain to reveal the hidden law of historical data and use the
calculated distribution with the largest probability to appear as the distribution of the
predicted throughput.

1. Gaussian mixture model
The Gaussian mixture model is a popular classification tool, which has been

applied to many areas, such as pattern recognition [77], [78].
In the proposed model, GMM is applied to generate states based on the value

features of data by training history throughput. If the historical data of throughput
shows large fluctuation, the number of Gaussian mixture components will be set at four
or more. Meanwhile, for historical data with small fluctuation, the number of the
Gaussian distribution will be two or three.

2. Hidden Markov model
The hidden Markov model is a kind of Markov model that can be employed to

model the stochastic system changing with random variables. HMM plays an important
role in temporal pattern recognition, such as speech, gesture recognition, and DNA
sequence analysis [54], [79].

In HOAH, HMM is adopted as a predictor to recognize the performance of
throughput variation with time because it could describe the relationship between time
series and its characteristics by using hidden states and observations. As a member of
the dynamic Bayesian network, HMM could connect adjacent variables, implying that it
is possible to calculate the hidden variable of the current time with internal regression
and variable of former time. In HMM, the hidden states control the appearance of
observations, and the observation at each time is visible while the states are invisible.
The hidden states represent the combination of many factors, such as the number of
users sharing the same channel and the condition of the bottleneck link.

3.4.4 Proposed model: HOAH

3.4.4.1 Structure of HOAH

Based on the AR Model and GMM-HMM, we demonstrate the hybrid
prediction model named HOAH, the hybrid prediction with the autoregressive model
and hidden Markov model. This method is a novel combination of GMM-HMM and
AR-based model by using SVM as a classifier. It can predict the distribution of future
throughput with proper method. The basic concept of HOAH is shown in Figure 3.17.
We also adopt the sliding window to refresh the training segment.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

38

We consider the data from the same scenario to be one dataset DS(v) = {data |
scenario v (time, location, interface, moving mode)}. Among the data, the HOAH
separates the dataset DS(v) into training data TRDS(v), validation data VDS(v), and test
data TDS(v). TRDS(v) and VDS(v) are used to set the parameters, such as the number of
states m in GMM-HMM and lag = p of the AR model. TRDS(v) is also used to obtain
the SVM classifier. TDS(v) is utilized to evaluate the HOAH by comparing prediction
results with other methods. The SVM classifier is trained by the training dataset of the
assumed scenario and is adopted to predict throughput of the same scenario.

After assigning a specific value to the historical segment length and prediction
segment length according to the user, the HMM and AR Model is used to predict the
data in VDS(v) by training other data in TRDS(v) separately. We adjust the parameter in
these two methods until the lowest prediction error is achieved. Thus, we determine the
number of states m in HMM and lag = p of the AR model. Then, HOAH starts to
construct the classifier.

Figure 3.17 Basic concept of HOAH.

3.4.4.2 Segment classification with SVM

In HOAH, we construct the SVM by supervised learning with the dataset
TRDS(v). It is also used to classify the segment data into ar class and hmm class to
realize the model switching strategy. We train the SVM with the statistical features of
historical segments and the prediction error of each method (AR Model and GMM-

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

39

HMM) of the historical segment. The 4-fold cross validation is applied to determine the
parameters of SVM, such as lag = h for autocorrelation. The details are as follows:

The construction of classifier includes three steps.
1. HOAH decides and calculates the features of the segment in TRDS(v). The

statistical features include autocorrelation (acf), partial autocorrelation (pacf), variance
(var), and derivative (de). We calculate the features for each segment. Thus, we obtain
the sequences of all the features. The function of each feature is calculated as follows:

Autocorrelation (lag = h):

1

2

1

()()

()
h

T h

t t h
t

T h

t
t

y

y
acf

yy y

y










 





 (3.20)

Partial autocorrelation of lag = h*, denoted by pacfh*, is the autocorrelation
between yt and yt+h* after removing the linear dependence of yt on yt+h*-1 through yt+h*

Variance:
2

1

1 1
varN

ivar

yvar
N y

 
  

 
 (3.21)

Derivative:

2 1

2 1

t ty y

t t
de





 (3.22)

2. We predict the throughput of the next segment with the current segment
using the AR model and HMM separately, and record the better model of the lower
prediction error for each segment in TRDS(v). The root mean squared relative error,
RMSRE is used which can be calculated as:

2

1

1 n
t t

t t

y yRMSRE
n y

 
  

 
 (3.23)

where yt is the actual value and ȳt is the predicted mean value at time t. For example, if
one segment has the prediction RMSRE of 0.1 by the AR Model and 0.2 by the HMM,
the segment will be classified into class ar, instead of class hmm, which means that the
proper prediction model for this segment is the autoregressive Model. Thus, we have
sequences of the prediction error of models.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

40

3. From the above processes, we obtain the sequences of features and errors.
Then, we adopt the supervised learning to develop the two-class classifier by SVM with
a Gaussian kernel. Moreover, we use the 4-fold cross validation to decide the parameter
for the classifier and choose the parameters with the lowest prediction error.

3.4.4.3 Throughput prediction

After dividing current segment into ar class or hmm class with SVM classifier,
proper prediction model is utilized by HOAH to predict the distribution of throughput
for next segment. The average processing time for one prediction is about 0.2 s using a
computer with Intel Xeon CPU E3-1226 v3 and 8 GB memory.

1. Prediction with Autoregressive Model
If the segment is classified to ar class, HOAH will apply the autoregressive

model to predict the future throughput. Inside the autoregressive model, the ADF test
which is one of the famous unit root tests is employed. The flow of stationarity test by
ADF is shown in Figure 3.18, where three models are adopted. If the history throughput
data belong to stationary process, HOAH will predict throughput with the
corresponding ADF test model. However, if the history throughput data does not belong
to any stationary process, it will be differenced and the stationarity test will be repeated
until the stationary state is achieved, and the corresponding prediction model is applied.

Figure 3.18 Stationarity test in the AR Model.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

41

In the AR Model, the predicted throughput distribution follows the Gaussian
distribution as expressed in Equation (3.24):

 
 

2()1, exp
2 ()2 ()

t t
t

tt

y E y
f y t

V yV y

 
  

  

 (3.24)

where E(yt) and V(yt) denote the expectation and variance of the throughput series yt.
The expectation and variance are calculated by corresponding model from
Equations (3.15)-(3.17) using the historical throughput data iteratively. For the situation
with lag = 0, the general formulas for the models are shown as follows:

Model 1:

  0
t

tE y a y (3.25)

 
2

21
1

t

t t
aV y
a 





 (3.26)

Model 2:

  0
1
1

t
t

t
aE y a y c
a


  


 (3.27)

 
2

21
1

t

t t
aV y
a 





 (3.28)

Model 3:

 
 
 

0 2

11 1
1 11

t t
t

t

a a aE y a y dt d c
a aa

 
      

 
 (3.29)

 
2

21
1

t

t t
aV y
a 





 (3.30)

where a, c, d and σε are the model coefficients. y0 is the last throughput of the historical
data. Finally, the maximum/minimum predicted values (Emax/min) are calculated by using
Equation (3.31):

max/min () ()t tE yE V y  (3.31)

where α can be changed to control the size of the predicted range.
2. Prediction with GMM-HMM
If the segment is categorized into hmm class, HOAH will adopt the GMM-

HMM to predict the future throughput. We introduce the GMM-HMM in this

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

42

subsection. A basic idea of this model is shown in Figure 3.19. In the model, historical
segments are used as training data. The GMM-HMM models throughput transitions
from the training data. After completing the training process, the future prediction
distribution of the throughput is calculated with the current segment. Then, the window
slides to the next segment which consists of newly collected data with a step, such as
10 s. The historical segment is expanded with a longer length, and the model is updated.

First, in the training process, all historical throughput data are clustered by the
GMM and classified into m number of Gaussian distribution expressed as Equation
(3.32). Each Gaussian component can be calculated by using the standard expectation
maximization algorithm. The Gaussian component is expressed as Equation (3.34) and
has different weights (ωi).

1
(| , ,) (| ,)

m

i i i i i i
i

g y f y     


 (3.32)

1
0 1, 1

m

i i
i

 


   (3.33)

2

22

()1(| ,) exp
22

i
i i

ii

yf y 
 



 
  

 
 (3.34)

(,) (| ,)i i iy i f y    (3.35)

where ωi (0≤i≤m) denotes a mixture weight of i-th Gaussian density component in
GMM. μi, σi, and ѱ(y,i) represent expectation, standard deviation, and the probability
that the i-th Gaussian density component provides for the existence of the throughput
data y. An example of data classification with GMM is shown in Figure 3.20.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

43

Figure 3.19 Basic concept of GMM-HMM.

Figure 3.20 An example of clustered throughput data with GMM (m = 3).

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

44

Figure 3.21 An example of throughput transition model with HMM. (si: use Gaussian
component as a hidden state, ek: historical throughput value as an observation).

Next, HOAH models the throughput transition pattern with HMM. After
defining the states with GMM, the throughput data are considered as observations. The
definition for the parameters of HMM is shown in Table 3.8, and an example of HMM
is shown in Figure 3.21. After clustering all historical data with GMM, the Gaussian
components (e.g., GM1/2/3 in Figure 3.20) are defined as hidden states (si) and the
historical throughput value is defined as an observation (ek) as shown in Figure 3.21.
The hidden states represent the whole effect of factors, such as the number of customers
sharing the same bottleneck in the channel. Then, we calculate the corresponding hidden
state for each observation using Equation (3.35). Thus, we obtain an observation
sequence and a hidden state sequence. By using these sequences, we calculate Atr and
Bem as shown in Table 3.8 and obtain hidden Markov model λ = (π, Atr, Bem).

Table 3.8 Definition of parameters for HMM.
Parameter Definition

m Number of states in HMM
O = (O1,…,OT) Observation sequence
Q = (Q1,…,QT) Hidden state sequence

Atr = {aij} Atr is a state transition matrix, aij is the
transition probability from the state i to j

Bem = {bi(ek)}
Bem is an observation emission matrix, bi(ek) is
when the state is i and the probability of
observing ek

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

45

Parameter Definition

π = {πi} Atr is a state transition matrix, aij is the
transition probability from the state i to j

λ = (π, Atr, Bem) HMM model with parameters
si (1 ≤ i ≤ m) Current hidden state is i

ek Observation ek (value inside throughput data
range)

Finally, we predict the distribution of future throughput by utilizing the state
transition probability in HMM as shown in Figure 3.22. We calculate the probability of
each hidden state at the final time of historical data using the forward algorithm and
assume that the probabilities are the initial state probability π from which we start to
predict. Then, we calculate the probability of each hidden state pt(i) in future time with
the current state probability π = p0(i) and state transition probability matrix Atr = {aij} as
shown in Equation (3.36). After obtaining each hidden state probability, the expectation
and variance are calculated by using the distribution of each hidden state (i.e. each
Gaussian component) as shown in Equation (3.37) and (3.38). Thus, the predicted
distribution can be obtained by using the calculated expectation and variance.
Furthermore, the maximum/minimum predicted values Emax/min are calculated by using
Equation (3.31).

Figure 3.22 Process of prediction with HMM.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

46

 

     

     

     

     

     

11 1

1 2

1

1 1 1 2 1

1 1 1

11 1

1 1 1

1

1 1 1 2 1

, ,

| , | , |

1 , 2 ,

...

1 , 2 ,

| , | , |

1 , 2 ,

m

m

m mm

m

m

t t t

m mm

m

t t t

a a

a a

P Q s P Q s P Q s

p p p m

a a
p p p m

a a

P Q s P Q s P Q s

p p p m

  

  

  

  

 
 

 
 
  

      

   

 
      
  

      

   

 (3.36)

 
1

()
m

t t i
i

pE y i 


  (3.37)

   2 2 2

1 1

()t t i

m

i

m

tt
i i

V p ipy i   
 

      (3.38)

where πi represents the initial state probability of the hidden state i, pt(i) represents the
probability of state i at time t, aij represents the transition probability from state i to state
j. μi is the expectation of the i-th Gaussian component. σi is the standard deviation of the
i-th Gaussian component.

3.4.5 Evaluation

3.4.5.1 Experiment environment

 Experiments are conducted to evaluate HOAH. We use the Android application
developed by our lab to collect wireless throughput data in different scenarios, and we
assume that the throughput data come from users who enjoy video streaming. In the
experiment, the application observes and records throughput by downloading a 600 KB
video segment per second from a content server. Since we assume MPEG-DASH, of
which segments consist of 2-second video contents and rate control is carried out per
segment, we calculate throughputs per second. Thus, we observe the LTE and Wi-Fi

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

47

throughput as shown in Figure 3.23. One user terminal which is Galaxy S4 (Android
4.2.2) connects with the server through LTE provided by the major public cellular
carrier in Japan, or Wi-Fi access point 1 (AP1) that adopts 5 GHz IEEE 802.11n located
in our laboratory, or Wi-Fi access point 2 (AP2) that uses 5 GHz IEEE 802.11n located
in Nishi-waseda campus. The content server performs as an HTTP streaming server and
is located in our laboratory. The DASH-JS framework is used [8]. To evaluate HOAH in
scenarios of HSDPA, we use the public dataset in [48].

Figure 3.23 Experiment environment.

 We observe wireless throughput in seven different scenarios as shown in
Table 3.9. In this table, we change the wireless interface (LTE and Wi-Fi), the user
moving mode (static, walking, and riding on a bus), and time (morning (10:20 a.m.),
afternoon (15:00 p.m.) and evening (22:30 p.m.)). In static scenarios (LTE and Wi-Fi), a
user stays static in the laboratory in the morning, afternoon and evening. In the walking
case (LTE), the user walks from Nishi-waseda station to Zoshigaya station in the
evening as shown in Figure 3.24(a). It takes approximately 23 min on a one-way trip. In
the bus case (LTE), the user travels by a bus from Nishi-waseda campus to Waseda
campus of Waseda University in the afternoon as shown in Figure 3.24(b). It takes
approximately 10 min on a one-way trip. We conducted 5 trials for each scenario. The
scenarios of HSDPA case are shown in [48].

Table 3.9 Experiment scenarios.

Scenario Interface User moving
mode Time Evaluation

time (s)
Number
of days

Static case LTE Static Afternoon
15:00 p.m. 2000 5

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

48

Scenario Interface User moving
mode Time Evaluation

time (s)
Number
of days

Walk case LTE Walking Evening
22:30 p.m. 1000 5

Bus case LTE Riding on a
train

Afternoon
15:00 p.m. 600 5

Ferry HSDPA Moving ferry unknown 1000 5
Train HSDPA Moving train unknown 1500 5

Static case Wi-Fi
(AP1) Static Evening

22:30 p.m. 2000 5

Static case Wi-Fi
(AP2) Static Morning

10:20 a.m. 2000 5

 Wireless throughput data are observed and recorded per second. We predict
distributions of future throughput with HOAH and compare the prediction accuracy of
the baseline methods demonstrated in [25] and [29].

 (a) Walking case (b) Bus case
Figure 3.24 Maps of the two moving routes.

3.4.5.2 Evaluation metric

Although HOAH predicts the throughput distribution, we focus on the
predicted mean value ȳt of the throughput because from the viewpoint of accuracy
evaluation, the comparison between the mean throughput and the actual throughput can
be straightforward and comprehensive. Therefore, same as [80] we evaluate the
accuracy of HOAH with relative prediction error Rt and RMSRE between the actual

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

49

value yt and predicted mean value ȳt at time t. RMSRE is calculated by Equation (3.23)
and Rt is calculated by:

| |t t

t
t

y yR
y


 (3.39)

The smaller RMSRE indicates the smaller prediction error a method has (i.e.
higher accuracy), and vice versa. The variance of the predicted distribution is also a
considerable parameter when applied in actual application.

For the parameter configuration of HOAH, we divide the dataset DS(v) into
training data TRDS(v), validation data VDS(v), and test data TDS(v). HOAH obtains the
model of proper parameters (e.g. number of states for HMM, order for the
Autoregressive Model) with TRDS(v) and VDS(v), which could limit problems such as
overfitting, to derive a more accurate model for HOAH. HOAH obtains the prediction
accuracy of the testing data TDS(v) and compare with other methods. Inside HOAH, the
SVM applies 4-fold cross validation to decide the value of the features such as the order
of autocorrelation and partial autocorrelation.

3.4.5.3 Classification accuracy

Before introducing the results of the prediction accuracy, we analyze the
classification result of the observed throughput by SVM in all scenarios. The
classification accuracy of SVM in Table 3.10 is the probability that the method of AR or
GMM-HMM with lower RMSRE is correctly chosen in different scenarios.

Table 3.10 Actual classification accuracy of seven scenarios.
Scenario Accuracy Number of prediction segment

Static case (LTE) 76% 25
Walk case (LTE) 93.10% 29
Bus case (LTE) 90% 10

Ferry case (HSDPA) 82.35% 17
Train case (HSDPA) 93.33% 15

Static case
Wi-Fi (AP1) 88% 25

Static case
Wi-Fi (AP2) 92% 25

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

50

Figure 3.25 RMSRE for three methods in walk scenario (LTE).

Figure 3.26 RMSRE for three methods in ferry scenario (HSDPA).

We can conclude from Table 3.10 that the actual classification accuracy of
SVM is very high for all the scenarios. We take the walk scenario (LTE) and ferry
scenario (HSDPA) as examples. Figure 3.25 shows the prediction error of different
segments using three methods in the walk scenario and Figure 3.26 shows
corresponding results in ferry scenario. We can see that the HOAH chooses the correct
methods for 93.10% of all segments in walk scenario and can choose the correct method
for 82.35% of all segments in ferry scenario.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

51

3.4.5.4 Prediction accuracy

We evaluate and compare the prediction accuracy with CDF of Rt and RMSRE
of seven methods, which are HOAH, AR, GMM-HMM, harmonic mean (HM), last
sample (LS), moving average (MA) and stochastic model (Stochastic), in seven
scenarios. Evaluation parameters are shown in Table 3.11. Moreover, the results are
calculated by the average of multi-segment prediction results of all the trials in each
scenario.

Table 3.11 Evaluation parameters.

Scenario Historical segment
length (s)

Prediction segment
length (s)

Number of prediction
segments

Static case (LTE) 30 20 25
Walk case (LTE) 30 20 29
Bus case (LTE) 30 20 10

Ferry case (HSDPA) 30 20 17
Train case (HSDPA) 30 20 15

Static case
Wi-Fi (AP1) 30 20 25

Static case
Wi-Fi (AP2) 30 20 25

Figure 3.27 CDF of Rt in walk scenario using different methods when historical
segment length is 30 s and prediction segment length is 20 s.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

52

The walk scenario of LTE is taken as an example shown in Figure 3.27. The
CDF curves show that 92% of the total predicted data with HOAH has the Rt that is
smaller than 0.5, and the percentage of which is 6% larger than other methods.
Moreover, Rt of 98.8% data is smaller than 0.783. These indicate that HOAH is more
effective than other methods.

Figure 3.28 depicts the RMSRE of prediction with all methods in various
scenarios. It can be seen that AR and GMM-HMM models outperform other
conventional methods such as HM, LS and MA in most cases, demonstrating the
feasibility of choosing these two methods for switching. Basically the AR model
performs better in static cases where the throughput is more like stationary process. In
the moving cases, GMM-HMM performs better because HMM can model the process
with sharp change as a statistical transition between states. Table 3.12 shows the
percentage of the decreased prediction error of HOAH compared with other methods.
We can conclude that HOAH is effective for both static user scenarios and moving user
scenarios. Especially for moving user scenarios, HOAH can reduce the prediction error
by maximum 55.95% in the ferry scenario using HSDPA as shown in Table 3.12.

Figure 3.28 Average RMSRE results in all scenarios.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

53

Table 3.12 Ratio of decreased prediction error when using HOAH
compared with other methods.

Scenario HM LS MA Stochastic AR GMM-HMM
Static case (LTE) 18.09% 33.12% 20.25% 16.36% 8.86% 14.71%
Walk case (LTE) 23.98% 32.72% 28.47% 26.16% 18.09% 19.98%
Bus case (LTE) 30.26% 38.54% 31.58% 40.80% 21.58% 17.65%

Ferry case
(HSDPA) 36.06% 49.78% 55.95% 55.16% 26.67% 20.40%

Train case
(HSDPA) 37.38% 29.47% 43.73% 35.85% 29.54% 24.33%

Static case
Wi-Fi
(AP1)

24.25% 39.09% 26.38% 26.70% 24.01% 10.12%

Static case
Wi-Fi (AP2) 18.43% 31.43% 14.69% 18.22% 14.38% 17.91%

3.4.5.5 Analysis of the effect of parameters

Next, we evaluate the effect of different historical segment length and
prediction segment length on the prediction accuracy. In the evaluation, we take the
walk (LTE) and ferry scenarios as examples.

1. Historical segment length
To evaluate the effect of historical segment length, we assign 20 s to the

prediction segment length and compare the prediction error of HOAH with other
baseline methods. The evaluation parameters are shown in Table 3.13, and the results
are calculated by averaging the results of 29 or 17 prediction segments.

Table 3.13 Evaluation parameters.

Scenario Historical segment
length (s)

Prediction segment
length(s)

Number of prediction
segments

Walk case (LTE) 30-100 20 29
Ferry case (HSDPA) 30-100 20 17

Figure 3.29 shows the prediction error of different methods in walk scenario
and Figure 3.30 shows the corresponding results in ferry scenario. From both figures,
we can conclude that HOAH indicates lower prediction error than other baseline
methods regardless of the historical segment length (30-100 s). Moreover, all methods
seem to be not affected by the change of historical segment length.

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

54

Figure 3.29 The influence of different historical segment length on average RMSRE in
walk scenario (LTE).

Figure 3.30 The influence of different historical segment length on average RMSRE in
ferry scenario (HSDPA).

 2. Prediction segment length
 We also evaluate the prediction error of different prediction segment length. In
the evaluation, we fix the historical segment length with 50 s and change the prediction
segment length from 10 s to 100 s as shown in Table 3.14. The average RMSRE of
different methods in the walk (LTE) scenario are shown in Figure 3.31, and the
corresponding results in ferry scenario are shown in Figure 3.32.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

30 40 50 60 70 80 90 100

R
M

SR
E

Historical segment length

Prediction segment length = 20 s

HM LS MA Stochastic AR GMM-HMM HOAH

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

30 40 50 60 70 80 90 100

R
M

SR
E

Historical segment length

Prediction segment length = 20 s

HM LS MA Stochastic AR GMM-HMM HOAH

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

55

Table 3.14 Evaluation parameters.

Scenario Historical segment
length (s)

Prediction segment
length(s)

Number of prediction
segments

Walk case (LTE) 50 10-100 5-58
Ferry case (HSDPA) 50 10-100 4-34

Figure 3.31 The influence of different prediction segment length on average RMSRE in
the walk scenario (LTE).

Figure 3.32 The influence of different prediction segment length on average RMSRE in
the ferry scenario (HSDPA).

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

10 20 30 40 50 60 70 80 90 100

R
M

SR
E

Prediction segment length

Historical segment length = 50 s

HM LS MA Stochastic AR GMM-HMM HOAH

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

R
M

SR
E

Prediction segment length

Historical segment length = 50 s

HM LS MA Stochastic AR GMM-HMM HOAH

Chapter 3: TCP throughput prediction using time series analysis by statistics and
machine learning

56

Both Figure 3.31 and Figure 3.32 imply that HOAH has lower prediction error
than baseline methods. With the increase of prediction segment length, data in future
time tend to have different performance with historical segment data. And future data
become harder to be predicted because they may have less relationship with historical
data. Therefore, all methods show larger RMSRE, which means larger prediction error
with the increase of prediction segment length.

3.5 Summary

In Chapter 3, the time series analysis by statistics and machine learning
techniques are utilized and studied for throughput prediction. A history-based
throughput prediction method utilizing hidden Markov model for real time
communication in mobile networks is proposed, which could judge data fluctuation of
current time and adopt proper methods to predict future throughput for each condition.
Then, we conduct experiment in different situations with different time and user
mobility in mobile network to evaluate the proposed method. Results show that,
compared with the conventional prediction methods, including linear regression, locally
weighted linear regression and stochastic model, our proposed approach could achieve
higher accuracy not only in static user situations but also in moving user situations.
Based on this method, an advanced model called the hybrid prediction with the
autoregressive model and hidden Markov model, HOAH is proposed. The novel model
combines the autoregressive model and hidden Markov model by SVM classifier.
HOAH could predict throughput with the proper model during the whole session by
switching between two models. Moreover, it takes user moving mode into consideration
and can decrease prediction error in various scenarios. We conduct experiments to
evaluate the method and compare it with conventional methods. Experiments showed
that HOAH could decrease the prediction error by 55.95% and achieve higher accuracy
than conventional methods.

In the future, the inclusion of human moving behaviors into the classification
step will be considered and integrated into our prediction method. We will also continue
to improve the prediction accuracy and apply HOAH to control the bitrate adaptively
for mobile network communication to guarantee the QoS/QoE for video delivery.

57

4

Throughput prediction is essential for ensuring high quality of service and quality of
experience for video streaming transmissions. However, current methods are incapable
of accurately predicting throughput in mobile networks, especially for moving user
scenarios. Therefore, we propose a TCP throughput prediction method: Throughput
prediction based on LSTM (TRUST) using machine learning for mobile networks.
TRUST has two stages: user movement pattern identification and throughput prediction.
In the prediction stage, the long short-term memory (LSTM) model is employed for TCP
throughput prediction. TRUST takes all the communication quality factors, sensor data
and scenario information into consideration. Field experiments are conducted to
evaluate TRUST in various scenarios. The results indicate that TRUST can predict
future throughput with higher accuracy than the conventional methods, which decreases
the throughput prediction error by maximum 44% under the moving bus scenario.

4.1 Neural networks
The neural networks use units to model the neurons in a biological brain and

communicate with each other by transmit real numbers. The output number of artificial
neuron is calculated by the non-linear function of the sum of its inputs and with related
adjustable weights. Generally neural networks have many layers, and different layers do
various calculation to the inputs. The output of the last layer is the final result. Neural
networks are widely used in many areas such as signal processing, computer vision,
speech recognition, and AI related products.

4.2 User movement pattern recognition
Throughput data in different scenarios have different characteristics, thus it is

important to identify and classify data of same scenario. User movement pattern is one
important factor of the scenario information, so recognize user movement pattern is an
important task.

†This chapter is adapted from the work published in [90].

TCP throughput prediction
using neural networks†

Chapter 4: TCP throughput prediction using neural networks

58

4.2.1 Classification

The basic process for movement pattern recognition is classifying the data to
the corresponding class. Thus, the problem can be generally considered as classification
problem. Classification is to find the class that an observation belongs to, which is a
topic of pattern recognition. In the area of machine learning, supervised learning is
adopted to construct the classifier, which can be used to classify the new input to the
correct category. In supervised learning, the characteristics of data are used as features
for the basis of model construction. Different kinds of methods are considered for
classification problem. Machine learning techniques are useful tools for this topic. Thus,
in the next session, we will introduce some machine learning methods that being used in
this thesis.

4.2.2 Machine learning techniques

There are many machine learning techniques can be utilized to solve the
problem of classification, such as Naïve Bayes classifier, support vector machine, k-
nearest neighbor and neural networks. In this thesis, we only try some of the methods
and give a discussion later. The machine learning techniques are k-nearest neighbors (k-
NN), support vector machine (SVM), and random forest (RF).

SVM adopts supervised learning to model and solve the problem of
classification and regression. It is popular to work as classifier not only for linear
classification, but also for nonlinear classification. By using kernel function, SVM can
map the feature data to a high-dimensional feature space, and construct a hyper-plane to
solve the nonlinear classification problem. The common kernel function utilized are:

Polynomial function:

 (,) ()d
i j i jk x x k x x  (4.1)

Gaussian radial basis function:

2

2 2
1 1(,) exp , for 0

2 2i j i jk x x x x
 

 
    

 
 (4.2)

k-NN is an algorithm that classify the new event based on similarity
measurement with the k nearest neighbors. Supervised learning is adopted to construct
the k-NN model. By calculating the vote of the nearest k neighbors, the classifier output

Chapter 4: TCP throughput prediction using neural networks

59

the class that the new event belongs to. The choice of k has a large effect on the
classification result. The cross validation can be used to help chose the best value for k.
RF is a kind of ensemble learning that can be used for classification. Supervised
learning is also adopted to generate the tree structure for classification.

4.2.3 Experiment result

In our former research [81], [82], k-NN, SVM and RF are adopted for user
movement pattern recognition. First, the data of throughput, RSSI, and Cell ID are
collected in the following scenarios: a) One user utilizes one mobile phone to collect the
data at 15:00 with different moving patterns; b) One user utilizes three mobile phones to
collect data during 5:00-23:00 with different moving patterns.

Table 4.1 Dataset definitions.
Data set Throughput RSSI Cell ID Accelerometer

1 ○
2 ○
3 ○
4 ○
5 ○ ○
6 ○ ○
7 ○ ○
8 ○ ○ ○
9 ○ ○ ○ ○

The datasets 1-9 are shown in Table 4.1, from which we can observe that the
combination of four features are developed. Scikit-learn [83] is adopted to conduct the
experiments. 75% data are used for training the model, and 25% are used as test data.
Experiment results for the two scenarios are shown in Figure 4.1 and Figure 4.2. The
results indicate that the communication quality can be adopted to identify transportation
mode and the results of the three machine learning methods show little difference.
Moreover, Cell ID is the most effective factor as the experimental area is fixed in the
evaluations for each scenario of specific movement pattern. The contribution of RSSI is
higher than throughput because the throughput is affected by many factors such as RSSI
and the condition of the base station being utilized which is complex. While the factors
which affect RSSI simply includes moving speed and distance between the user and the
signal source.

Chapter 4: TCP throughput prediction using neural networks

60

Figure 4.1 Comparison of the classification results using different datasets and methods
for scenario a. [81]

Figure 4.2 Comparison of the classification results using different datasets and methods
for scenario b. [81]

4.3 Throughput prediction using TRUST

4.3.1 Data acquisition and analysis

4.3.1.1 Data acquisition setup

We use the Android application developed by our laboratory to record the data,
which are assumed from video streaming being enjoyed by a user. In the application, the
throughput is observed by downloading video segments with the size of 500-1200 KB

0

20

40

60

80

100

1 (conv.) 2 3 4 5 6 7 8 9

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

Dataset number

SVM k-NN RF

0

20

40

60

80

100

1 (conv.) 2 3 4 5 6 7 8 9

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

Dataset number

SVM k-NN RF

Chapter 4: TCP throughput prediction using neural networks

61

to user terminal (Galaxy S4 of Android 4.2.2) from the content server located in our
laboratory via Long-term evolution (LTE) provided by the major public cellular carrier
in Japan. DASH-JS [8] is adopted and the content server serves as an HTTP streaming
server. The throughput, RSSI, Cell ID, time, and location, as well as sensor data are
collected every second.

4.3.1.2 Characteristics of the measured data

Figure 4.3 presents examples of measured actual throughput in walk scenario
and static scenario. The throughput data are derived from two days with same time
(10:00 PM) and same moving route or position. A comparison of throughputs from walk
scenario of two days elucidates that the throughputs show similar behavior in the same
scenario. By contrast, comparing throughputs from walk and static scenarios, the
throughputs show different behaviors in different scenarios.

Figure 4.4 shows the throughput and corresponding RSSI and Cell ID in walk
and static scenarios. It can be observed that the throughput, RSSI, and Cell ID in a
moving user scenario have larger fluctuation and change more frequently than those of a
static user scenario. Since the throughput behaves in a different manner in different
scenarios, the prediction should be considered separately for all scenarios. Meanwhile,
as other measured data such as RSSI have relationship with the throughput, they should
also be included in the prediction.

Figure 4.3 Throughput data of walk scenario from (a) Day 1, (b) Day 2 and static
scenario from (c) Day 1, (d) Day 2.

Chapter 4: TCP throughput prediction using neural networks

62

Figure 4.4 Communication quality factors in walk and static scenario: (a), (d)
throughput, (b), (e) RSSI, (c), (f) Cell ID.

4.3.1.3 Preprocessing of the measured data

As shown in Figure 4.4, since the orders of the measured data are different, it is
essential to process the data before applying them to the prediction method. In addition
to the data shown above, a couple of sensor data can also be captured simultaneously
during usage. To change them into similar order, the following preprocessing
procedures are carried out:

1) Throughput (TH): Normalize the data TH with the maximum value (THmax)
in the historical measurements as: THnew = TH/THmax.

2) RSSI: As the value is basically in the range (-90,-50), the values are rescaled
to (0, 1) as: RSSInew = (RSSI + 90)/40.

3) Cell ID: The ID value in this work is basically in the range (3×108, 5×108),
the values are rescaled as: Cell IDnew = (Cell ID – 3×108)/2×108.

4) The device collects position information such as latitude, longitude and
orientations, which are saved as degree. The range of latitude is from (-90, 90) and it is
rescaled by LATnew = (LAT + 90)/180. The longitude is from (-180, 180) and it is
rescaled by LONGnew = (LONG + 180)/360. The orientations are from (0, 360) and they
are rescaled by: ORInew = ORI/360.

Chapter 4: TCP throughput prediction using neural networks

63

5) The accelerations are also collected. These data are rescaled by dividing the
acceleration of gravity: ACCnew = ACC/9.8.

Besides the measured data, the mean value, minimum value, maximum value,
variance, and standard deviation of the throughput are calculated and considered as
additional inputs for TCP throughput prediction.

4.3.2 Throughput prediction methodology

4.3.2.1 The structure of TRUST

TRUST, a two-stage machine learning-based TCP throughput prediction
method is proposed in this paper. As shown in Figure 4.5, the throughput, RSSI, Cell
ID, time, and location, as well as other sensor data are collected. The data are assumed
from a user enjoying mobile services such as video streaming in various scenarios. Each
kind of data is regarded as an input feature for prediction. First, the features are used to
identify the user movement pattern. Then, prediction is performed, and finally, the
predicted throughput can be used for smart rate control.

4.3.2.2 User movement pattern identification

In [81], we proposed a user movement pattern identification method using
communication quality factors and sensor data via machine learning. Experiments were
conducted and the results demonstrated that the user movement pattern can be
recognized with high accuracy. In this paper, the movement identification is employed
as the first stage of TRUST. According to the identification results, the prediction is
conducted using the corresponding LSTM model which is trained with datasets from the
same scenario.

4.3.2.3 Throughput prediction mechanism

Recurrent neural network (RNN) is widely used for problems such as natural
language processing in which the next word is heavily dependent on the previous words
[84], [85]. As the throughput data in the future are considered to have close relationship
with the historical data, we adopt the RNN technique to deal with this time series
prediction challenge [86]. Compared with the basic RNN model, LSTM can eliminate
exploding and vanishing gradient problems [86]. Therefore, it can be used to address
both long- and short-term prediction problems. In this paper, the neural network (NN)

Chapter 4: TCP throughput prediction using neural networks

64

model based on the LSTM structure is constructed. Figure 4.6 illustrates the architecture
of the proposed model. Hl

t’ represents the hidden states of layer l at timestep t’. The
number of hidden states is defined as d and the number of layers is defined as L. d
ranges from 2 to 100 and L ranges from 1 to 3. We define the input of the network as xt’
and the output as yt. In the proposed model, the input xt’ are the historical throughput
and other features such as RSSI and Cell ID, whereas the output yt is a scalar only
containing the future throughput. The size of xt’ is N×1 where N denotes the number of
features being used. n is the input length and m is the prediction length on time
dimension. Here, n and m are not necessarily identical. m can be smaller than n. W and
U are model parameter matrices. The task is to determine a NN model that
approximates the relationship between (x1, x2,…, xn) and (y1, y2,…, ym).

Figure 4.5 Schematic diagram of TRUST.

Chapter 4: TCP throughput prediction using neural networks

65

Figure 4.6 Structure of the proposed prediction model.

The LSTM cell, whose structure is shown in Figure 4.7, forms the basic cell in
each layer. In the LSTM cell, a memory cell Ct’ is introduced to hold the information
from the past. Three gates, forget gate f, input gate i, and output gate o, are used to
manipulate the information flow. The formulas to update gates, memory cell, and
hidden states are as follows:

1

i
f
o
g

t

t

tanh











   
   

               
   
   

H
W b

x
 (4.3)

1t t  C Cf i g (4.4)

()t ttanh H Co (4.5)

where W is the weight matrix, b is the bias vector, σ is the sigmoid function, and ⊙ is
the point-wide multiplication. The sizes of the gates and memory cell are the same as
the hidden states. Therefore, W is a matrix with the size of (4d)×(d+N). The size of b is
(4d)×1. Note that Figure 4.7 is the representation of an LSTM cell in the first hidden
layer. If the LSTM cell is in the deeper layer, xt’ should be replaced with the hidden
states from the former layer and the size of W becomes (4d)×(2d).

Chapter 4: TCP throughput prediction using neural networks

66

Figure 4.7 Structure of the LSTM cell.

While updating, the forget gate f determines how much the former information
to be retained based on the input data. Meanwhile, the input gate i determines how
much new information to be added. By adding the gated former memory cell Ct’-1 and
the new information, the memory cell for the current timestep Ct’ is calculated. Then the
current memory cell and the output gate are combined to calculate the current hidden
states.

For throughput prediction, NN is used as a regression model in which the
output should be certain numbers instead of classifications. Therefore, the output y is
calculated as follows:

L
oy b  U H (4.6)

where U is the weight matrix and bo is the corresponding bias for output layer.
In the model training for LSTM, each training example is a ((x1, x2,…, xn), (y1,

y2,…, ym)) pair. The mean squared error (MSE) between the predicted output ŷt and real
output yt is used as the cost function which is written as:

 
21

1 1

1 ˆ(,..., , , ,) -
s m

L k k
o t t

k t
J b y y

s m  



W W b U (4.7)

where k is the example index and s is the number of training examples. Figure 4.8
illustrates the preparation of the training datasets. The procedure is as follows:

1) The features’ values in former n timesteps are extracted as the input (x1,

Chapter 4: TCP throughput prediction using neural networks

67

x2,…, xn) of the training example.
2) The latter m timesteps of the throughput (Feature1) are extracted as the

output (y1, y2,…,ym).
3) Putting (x1, x2,…, xn) and (y1, y2,…,ym) pair together, a training example is

completed.
4) The time window slides in m timesteps, and step 1 to step 3 are repeated

until the end of the current data file.
5) The measured data file is changed, and step 1 to step 4 are repeated.
The training examples are fed into the LSTM model and the model parameters

are optimized to minimize the prediction error defined in Equation (4.7). The
optimization method used here is Adam [87]. The learning rates range from 0.0001 to
0.001 for different networks. The maximum number of training epoch is 2000. A
patience factor P and a minimum improvement factor δ are defined to terminate the
training. δ is the improvement of J between two epochs. If there are continuous P
epochs where the improvement is less than δ, the training will be terminated. Here, P is
set as 100 and δ is set as 0.01%.

Figure 4.8 Preparation of the training datasets for the LSTM model.

Algorithm 1 briefly summarizes the entire procedure of TRUST. When the
prediction is to be carried out, the historical data in the former n seconds are
preprocessed. Then the movement pattern is identified. According to the identification
result, the throughput in the future m seconds is predicted using the corresponding
LSTM model. Note that m is the length for predicting once. The prediction is repeated
every m seconds and T is the total prediction length.

Chapter 4: TCP throughput prediction using neural networks

68

4.3.3 Evaluation

We conduct field experiments to evaluate the throughput prediction method
TRUST. We collect data under four different scenarios and predict TCP throughput
using TRUST. The results are compared with other methods.

4.3.3.1 Experiment environment

The moving routes or positions of static, walk, and bus scenarios are shown in
Figure 4.9(a), and the moving route of train is demonstrated in Figure 4.9(b). In the
static scenario, the user remains static in the laboratory located in Nishi-waseda campus
in the afternoon. Regarding the walk scenario, the user walks from Nishi-waseda
campus to Zoshigaya station in the evening, which takes approximately 21 min for a
one-way trip. As for the bus scenario, the user travels on a moving bus from Waseda
campus to Nishi-waseda campus in the afternoon, which takes about 10 min for a one-
way trip. In the train scenario, the user travels on a moving train from Shimosa-
Nakayama station to Shinjuku station in the morning. The datasets used in static, walk,
bus, and train scenarios include about 173800 s from 14 days, 29400 s from 22 days,
4260 s from 6 days, and 29500 s from 14 days, respectively. In the evaluation, 80% data
are used for model training and 20% for prediction performance test.

Chapter 4: TCP throughput prediction using neural networks

69

(a) Static/walk/bus scenario (b) Train scenario
Figure 4.9 Maps of moving routes in static, walk, bus, and train scenarios.

4.3.3.2 Evaluation metrics

Similar to [29], [88] and [89], the accuracy of the TCP throughput prediction
method is evaluated by the relative prediction error Rt and normalized root mean
squared error (NRMSE) between the predicted value ŷt and actual value yt. Rt and
NRMSE are calculated by:

ˆt t
t

t

y y
R

y


 (4.8)

 
2

1

1

ˆ
T

t t
t

T

t
t

y y T
NRMSE

y T





 
 

 


 
 
 




 (4.9)

where T is the total prediction length. The cumulative distributed function (CDF) of Rt is
employed to assess the distribution of the prediction error. The NRMSE is used to assess
the prediction error relative to the mean throughput, enabling the comparison between
data with different orders. The smaller NRMSE represents the higher accuracy.

4.3.3.3 Prediction performance

We compare the prediction results of TRUST with other seven methods in the
four scenarios, respectively. The methods are arithmetic mean (AM) [89], harmonic
mean (HM) [89], last sample (LS) [88], MA [29], HMM [88], hybrid model of

Chapter 4: TCP throughput prediction using neural networks

70

autoregressive model and HMM (Hybrid) [63] and stochastic model (Stochastic) [25].
To prove the necessity of user movement pattern identification, we conduct

prediction using different datasets and compare the NRMSE. The results are shown in
Table 4.2. In the table, “All Data” indicates that the datasets for training are the mixed
data from all scenarios and a common LSTM model is trained. The prediction is
conducted using the common model for all scenarios without movement identification.
By contrast, “Data with Same Scenario” indicates that the training dataset is derived
from the same scenario and the prediction is conducted using the corresponding LSTM
model based on the identification result. For each scenario, the prediction length m is
assigned 200 s, 100 s, 20 s, and 5 s. The input length n is set the same as m. These time
lengths are selected to assess the performance in long- and short-term prediction. The
total prediction lengths T for static, walk, bus, and train scenarios are 34000 s, 5800 s,
800 s, and 5800 s, respectively. The hidden state number d and layer number L of the
LSTM models for each scenario are tuned separately to achieve the best prediction
accuracy. It can be concluded from Table 4.2 that the prediction error NRMSE when
using corresponding dataset after identification is smaller than that when using the “All
Data”. This can be explained by use of the analysis in Section 4.3.1.2. As shown in
Figure 4.3 and Figure 4.4, the measured data from the same scenario have similar
performance, whereas those from different scenarios have different behavior. When the
prediction model is trained using mixed data, finding an optimal solution to fit for all
types of data behaviors is challenging. Therefore, it is essential to perform the first-stage
identification, and then, use the model trained with data from the same scenario for
prediction.

Table 4.2 NRMSE Comparison using different training dataset.
Prediction
Length m Training Dataset

NRMSE
Static Walk Bus Train

200 s
All Data 0.305 0.348 0.386 0.456

Data with Same
Scenario 0.188 0.304 0.264 0.355

100 s
All Data 0.251 0.372 0.308 0.376

Data with Same
Scenario 0.2 0.326 0.249 0.36

20 s
All Data 0.221 0.293 0.26 0.383

Data with Same
Scenario 0.196 0.259 0.223 0.361

5 s
All Data 0.231 0.188 0.254 0.353

Data with Same
Scenario 0.179 0.157 0.217 0.316

Chapter 4: TCP throughput prediction using neural networks

71

Figure 4.10 illustrates the CDF of Rt in the moving bus scenario, where the x-
axis represents the value of Rt and the y-axis represents the corresponding CDF of
different methods. The prediction length m is 200 s. The CDF result using TRUST with
non-preprocessed data (raw) is also shown. We can observe that the prediction accuracy
could be extremely poor if the data are not preprocessed to the same order. This result
demonstrates the importance of data preprocessing. Regarding the results, 80%
predicted data has relative error under 0.294 in TRUST. This is the best among all the
methods. Meanwhile, TRUST has 91% predicted data whose Rt is smaller than 0.4. This
data ratio is larger than other methods. Similar results can be observed in the short-term
prediction where the prediction length m is 20 s as shown in Figure 4.11. There are 80%
predicted data whose relative error is under 0.264 in TRUST, which is the best among
all the methods. Meanwhile, TRUST has 85.5% predicted data whose Rt is smaller than
0.3. This data ratio is larger than other methods.

Figure 4.10 CDF of Rt by different methods in the bus scenario when the prediction
length m is 200 s.

Chapter 4: TCP throughput prediction using neural networks

72

Figure 4.11 CDF of Rt by different methods in the bus scenario when the prediction
length m is 20 s.

Figure 4.12 shows the NRMSE results of different methods in various
scenarios. It can be concluded that, generally the prediction errors are smaller in static
scenario than those in moving scenarios since the throughput fluctuation is smaller in
static scenario. In the 200-second prediction, the commonly used LS method performs
worst in all scenarios because LS only reflects the information in the last timestep.
TRUST performs the best in the 200-second prediction because it is based on the LSTM
model that considers the effect of long-term information. Similar results can also be
observed in the 100-second prediction. In short term prediction, prediction errors are
smaller than in long-term prediction, especially under the walk scenario. Similarly,
TRUST also performs the best among all the methods. The results imply that TRUST
can achieve the lowest prediction error compared with the conventional methods, both
in long- and short-term prediction. Throughput prediction errors can be decreased by a
maximum of 44% under the moving bus scenario. For other scenarios, the prediction
errors are decreased by maximum 38%, 40%, and 34% under static, walk, and train
scenarios, respectively.

Chapter 4: TCP throughput prediction using neural networks

73

Figure 4.12 NRMSE comparison of different methods with various prediction lengths in
(a) Static scenario, (b) Walk scenario, (c) Bus scenario, and (d) Train scenario.

4.4 Summary

In chapter 4, we propose TRUST, a machine learning-based TCP throughput
prediction method to predict the future throughput for mobile networks. In this method,
the user movement pattern is first identified with communication quality factors and
sensor data. Based on the identification result, the LSTM model trained with
corresponding dataset is used for prediction. For throughput prediction, the
communication quality factors; throughput characteristics such as mean value,
minimum value, maximum value, variation, and standard deviation; together with
scenario information are jointly employed. The input data are preprocessed by a set of
data preprocessing methods. Field experiments are conducted for evaluating the
prediction method. The results indicate the importance of data preprocessing and user
movement pattern identification before prediction. Furthermore, the proposed method
effectively predict long- and short-term TCP throughput in different scenarios, and
decrease the prediction error by maximum 44% in the moving bus scenario.

For further research, we aim to collect more data of wider areas and improve
the prediction accuracy. Moreover, we intend to implement throughput prediction into
actual mobile service for video streaming by proposing a new adaptive bitrate control
strategy that considers future throughput transitions to ensure high quality of service.

74

5

Dynamic adaptive video streaming over HTTP (DASH) is widely studied and adopted in
modern video players for ensuring user quality of experience (QoE) since QoE directly
affects the revenue. In DASH, adaptive bitrate control is a key part for achieving high
quality of service and QoE when transmit video streaming. The ultimate goal of
adaptive bitrate control is to maximize video bitrate while minimize rebuffering events
and duration. However, this task is non-trivial since the network condition is not always
stable. The choice of higher bitrate may cause frequent video freezing which annoying
the user while choosing lower bitrate may give worse experience. Therefore, throughput
prediction plays an important role in helping select the proper bitrate of video
dynamically. Basically, the algorithms need to be tested with large-scale deployment.
However, it is not always possible in academic research. In this chapter, we established
a video transmission system with DASH which enables replicable trace-based
emulations. The emulation enables us to compare different methods under the
artificially same condition, with limited experiment. The quality metrics such as average
bitrate, the number of rebuffering events, the duration of rebuffering, etc. are examined.
The results indicate that a good prediction can provide better user QoE in rate-based
adaptive bitrate (ABR) method. In order to further improve the QoE, the buffer
occupancy needs to be considered simultaneously. We also proposed a new ABR
method which incorporating both prediction and buffer occupancy information named
decision map method (DMM). DMM creates both aggressive and conservative
mechanisms to handle different network conditions. The emulation results demonstrate
that the DMM can achieve better performance in QoE than conventional methods,
showing the efficiency of the DMM algorithm.

5.1 Video transmission system with DASH

There exist several adaptive streaming protocols such as Adobe HTTP

‡This chapter is adapted from the work submitted in [91].

Adaptive bitrate control with
QoE maximization using
throughput prediction‡

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

75

Dynamic Streaming [37], Apple HTTP Live Streaming [38], and Microsoft Smooth
Streaming [39]. Recent years, dynamic adaptive video streaming over HTTP (DASH) is
studied worldwide as a unifying standard [40]. In DASH protocol, the video contents
are divided into short chunks and encoded at different bitrate levels. Then the client
player can request the segment chunks with proper bitrate successively and dynamically
according to the network condition. The algorithm for selecting download bitrate is
called adaptive bitrate (ABR) algorithm. The ABR algorithm employs the network
condition logs (such as throughput, buffer occupancy and etc.) which monitoring in the
client side to decide the bitrate of the latter downloading chunks. The purpose is
maximizing the video quality while reducing rebuffering.

5.1.1 DASH system structure

As shown in Figure 5.1, the basic DASH system structure consists of a HTTP
server and a DASH client side which communicates with the content server and plays
the video. The video content is encoded at different bitrates and stored in the server
orderly. Here in the DASH context, different bitrate versions are named representations.
The contents are then divided into short chunks for example each chunk includes 2-
second video playback time. For different representations, although the video qualities
are various, the start time and end time of each chunk are aligned. Therefore, the chunks
in different representations can be concatenated and played smoothly only via the chunk
order, enabling the dynamical choice of video quality during streaming. All the
information about the video content and the representation details are written in the
Media Presentation Description (MPD) file. The MPD documents the number of
representation for the video content, the encoding bitrates, the URLs of the chunks and
etc. By parsing the MPD file, the client side can obtain full knowledge of the contents.

The DASH client side mainly consists of a MPD parser module, ABR control
module, HTTP client module, video buffer and the media player. During the streaming,
the MPD file is firstly requested and downloaded by the client and parsed to get the
information about the video contents. Then the ABR control module will determine
which representation to select for the next video chunk and tell the decision to the HTTP
client. The HTTP client then generates a request and communicates with the server to
get the corresponding video chunk. After completion of the current chunk, the content
will be stored into the video buffer and the ABR control module will repeat the
download selection for the next chunk. After enough video buffer is filled, the media
player will begin to playback the video.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

76

Figure 5.1 The DASH system structure.

5.1.2 DASH client framework

5.1.2.1 Basic architecture

A JavaScript-based DASH client is adopted in this study which is originally
developed by ITEC [8], [43]. This basic structure of the framework is shown in
Figure 5.2 [43]. The Google Chrome Media Source API is used to play the video.

Figure 5.2 The architecture of the basic DASH client framework [43].

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

77

The working flow of this structure is as follows. First, when the global object
dashPlayer is created, the download of the MPD file is triggered. When the download
is completed, the MPDparser() is called to analyze the full information of the video
contents to be downloaded. Then the bandwidth, rateBasedAdaptation and
mediaSourceBuffer are created to estimate the bandwidth, to switch the representation
which to be downloaded for the next chuck, and to store the downloaded contents. After
this, the MediaSource() object is created and attached to the HTML video element.
When the MediaSource() open event is listened, the monitoring of the buffer state will
be triggered and the downloading and streaming of the video content will start. During
the streaming, the buffer state is monitored with a preset interval, such as every 100 ms.
When the buffer state is lower than a threshold (defined as criticalLevel here), the
HTTP request will be generated and sent by the XMLHttpRequest() object. The
download request is continued until the buffer state reaches the preset maximum
(defined as bufferSize.maxseconds here). Each time the download of a certain video
segment is completed, the average downloading speed will be calculated and then the
estimation of the bandwidth for the next segment is made. Based on the estimation, the
bitrate is adaptively selected, and the next HTTP request is sent. This process is
repeated to the end of the video session.

Since the buffer of the MediaSource() class is not accessible, an
overlayBuffer object is created which keeps a record of the left play duration in the
media API, which is indicated by variable mediaElementBuffered. This object does
not store any data, and the data is stored in the object baseBuffer. The baseBuffer is
ring buffer in which two pointers, add pointer and get pointer, are used to refer the
buffer index to be extracted and to be written in, respectively. When the play duration
left in the media API is less than a threshold, the drain() function will be triggered to
extract data from the baseBuffer as shown in Figure 5.3. The data gotten from the
server is also stored in baseBuffer.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

78

Figure 5.3 The buffer structure of the framework.

5.1.2.2 Modifications and extensions

In deploying the DASH framework, we find some problems and make
modifications to original version. Besides, we also add some modules in order to extend
the functionality and analyze the results.

A) Real-time plot functions and metrics
First, we modify the plot module and add new functions to show the results

during the video session. In the original version, only the estimated bandwidth, selected
bitrate and the current playback time are shown. The relationship between the current
playback time (black bar) and the estimated bandwidth (red line) is not clear. Nor, the
time axis is not clear because the metrics and scales are not shown. As shown in
Figure 5.4, in the modification, we correct the time axis and add the scale to show the
playback time duration. The actual average download throughput is added to the plot as
the green line. The estimated bandwidth, the representation rate and the actual
throughput are plotted every segment since the video contents are divided into 2-second
chunks. The last segments in estimated bandwidth and representation rate are plotted as
dash line since this segment is not downloaded yet. This plot is updated upon the
estimation is made or the download is completed.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

79

Figure 5.4 Plot of the playback information of the video session.

Besides the plot of the playback information, we add another plot to show the
buffer occupancy and the download information in the real time. As shown in
Figure 5.5, the black line is the buffer occupancy in real time and the green squares are
the download information. The height of each square stands for the average
downloading speed of the segment and the length stands for the consumed time in
downloading. The area of the square is the size of the segment. Different from the plot
in Figure 5.4, this time axis is consistent with the real time world. Even when the video
session is rebuffered or paused, the plot is updated constantly. As can be seen in the
example in Figure 5.5, when the video session encounters the running out of buffer and
rebuffering, the lasting time of such event is recorded. After the video session, these
logs can be exploited to analyze the performance of adaptive control algorithms. This
plot is updated every time the buffer is monitored, and the download is completed.

Figure 5.5 The plot of the real-time buffer occupancy and downloading information.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

80

B) Bandwidth estimation module
Second, we add some bandwidth estimation methods to the current module. In

the original version, the bandwidth estimation for the next segment is made based on the
average download speed of the current segment and the former estimation. However,
this kind of estimation only considers the average value and the lasting time of
downloading is not considered. If the downloading time of the current segment is very
long, the influence of the former ones should not be included. Here, we propose a
method that take the downloading time into consideration. As shown in Figure 5.6, we
use the former hisSize seconds data to estimate the bandwidth as follows:

[]

[]
1

[]

[]
1

{ () []}

()

end

begin

end

begin

k t n

t n
n

pred k t n

t n
n

f t bps n
C

f t











 (5.1)

where tbegin[n] and tend[n] are the start and end timestamps of downloading the former
nth segment. k is number of the historical segments involved in calculation. Cpred stands
for predicted capacity, which is the estimated bandwidth. f(t) is a function to weight the
contribution of the historical download speed. Basically, the information in the past
should have fewer impact on the estimation.

Figure 5.6 The calculation of bandwidth estimation considering lasting time.

For the simplest case, we can choose f(t) = 1 to only consider the lasting time
as the weight as:

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

81

1

1

{([] []) []}

([] [])

k

end begin
n

pred k

end begin
n

t n t n bps n
C

t n t n





 








 (5.2)

Besides, we also add another throughput calculation and prediction mechanism
into the framework. The original download speed measurement is done by segment,
which means when the download of a certain segment is over, the calculation will be
carried out for an average throughput. However, in the former chapters, the throughput
data are measured every second and the prediction is also made in second. Therefore,
we add an additional module to calculate the throughput. This is realized by the event
handler onProgress() in the XMLHttpRequest(). During the data transferring, the
onprogress event is fired periodically and the throughput can be calculated by making
use of the data loaded and the timestamp information which contains in the onprogress
event. With the measurement of throughput in second, the prediction methods mentioned
in the former chapters can be integrated into the framework.

C) Bitrate switch logic
Third, we correct original bitrate switch logic which is problematic. In the

original version, the rate-based adaptive bitrate control method is used, which chooses
the maximum bitrate that is lower than the estimated bandwidth. When the estimated
bandwidth is smaller than the lowest encoding bitrate, no action is taken, and the
selection is not triggered. The bitrate is kept the same as the former segment. However,
since the estimated bandwidth is even lower than the lowest encoding bitrate, the former
selection may be aggressive for this time. Therefore, we correct the bitrate choice as the
lowest one in this case.

D) Buffer logic and buffer strategy
Fourth, some logics of the buffer are corrected. In the original version, the

buffer fill state only considers the data stored in the baseBuffer when the running out
is judged and the data already pushed into the Media Source Extension (MSE) is not
counted. Even though the metric of the base buffer is zero, there are still data not played
yet in the MSE. Therefore, there is sometimes false judgement of exhaustion of buffer.
This may affect the statistics of rebuffering events in the post-processing. Here, we re-
define the buffer occupancy as the summation of the buffer in the baseBuffer and MSE
to judge whether the rebuffering events occurs. Another amendment is made to the logic

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

82

of triggering the download. In the original version, when we want to keep the buffer
level in a certain degree, the critical level and maximum size is set the same. However,
the difference between maximum buffer fill state and the minimum one is duration of 2
segments. This is caused by a logic flaw that hinder the download when the buffer
occupancy drops below the critical level for the first time. After the modification, the
buffer can be kept in a certain level where the difference between maximum and
minimum buffer fill state is one segment duration.

We also extend the buffer strategy. We add a new factor Bstart which indicates
the buffer occupancy for when to start the video session in the initial stage. In the
original version, the video will start after the buffer reaches the critical level. However,
if the critical level is large, it will take a long time to start the session which will annoy
the user and may cause quit. On the other hand, the critical level cannot be set as small
value because there is danger to encounter rebuffering events. Since the initial waiting
time is a very essential factor for quality of experience (QoE), it should be able to adjust
independently. This factor is also applied when the rebuffering event occurs. Basically,
it is expected the video will start very soon in the first stage or restart in the rebuffering
event. Therefore, this factor is always set as a relatively small value.

In the original version, the buffer strategy is determined by two factors, the
maximum buffer occupancy Bmax and critical level Bcritical. These two factors can allow
the buffer acts as the “Long on-off” or “Short on-off” behavior. However, these two
strategies are not flexible enough to both ensure good QoE and memory consumption.
Assuming that in the “Long on-off” case as shown in Figure 5.7, it can be seen that
during the OFF phase, there is no data transferring between the server and client. This
will be dangerous because the communication condition is unknown. If the condition
becomes bad during OFF phase, there is a danger to choose bitrate aggressively based
on the relatively old record, which may result in rebuffering. On the other hand,
assuming that in the “Short on-off” case as shown in Figure 5.8, it can be seen the buffer
is kept in a relatively stable high level to avoid rebuffering. However, this strategy may
consume unnecessary resource, if the communication condition is quite well. There is
no need to keep the buffer in a high level.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

83

Figure 5.7 The “Long on-off” buffer strategy.

Figure 5.8 The “Short on-off” buffer strategy.

Therefore, we proposed a variable buffer strategy in which the buffer level is
adjustable based on the current communication condition. The proposed strategy is
shown in Figure 5.9. The buffer level is adjusted as a function of the ratio of predicted
throughput and bitrate. In this method, four parameters are set, Bupper, Blower, Ratioupper,
and Ratiolower, which are the buffer level upper limit, buffer lower limit, ratio upper
limit, and ratio lower limit, respectively. When the communication condition is expected
to be good enough, that is the ratio between prediction throughput and bitrate is larger
than Ratioupper, the buffer level can be set as Blower. When the condition is not good, that
is the ratio is lower than the Ratioupper, the buffer level should be set as Bupper. When the
ratio is between the upper and lower limits, the buffer level is a function of the ratio.
Bcritical = f(Cpred/Rnext). Here, we show the linear, conservative, aggressive mapping
relationships between the buffer level and the ratio in black, red, blue lines, respectively.
Figure 5.10 shows an example of the buffer occupancy dynamics using the proposed
buffer strategy. Here the linear mapping function is used and the Bupper, Blower, Ratioupper,

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

84

and Ratiolower are set as 40 s, 20 s, 8 s and 4 s, respectively. As can be seen, in the stage
of red circle, the throughput is not very large. Therefore, the buffer occupancy is
constantly increasing to the upper buffer limit. However, during the buffer increasing,
the communication condition is turning good as shown in the stage of blue circle.
Therefore, the buffer occupancy stops climbing and starts to decrease. When the
throughput keeps in a good condition as shown in the stage of black circle, the buffer
level also keeps at a low level. This figure demonstrates that using the proposed buffer
strategy, the buffer occupancy can be adjusted adaptively according to the
communication condition between the server and the client. By properly setting the
buffer mapping function, the strategy can help save resource as well as avoid
rebuffering events.

Figure 5.9 The illustration of the variable buffer strategy.

Figure 5.10 The buffer occupancy using the variable buffer strategy.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

85

E) Logs storing module
Finally, we add a new module to store all the logs for post-processing and

analysis, such as QoE. These logs include the buffer occupancy, throughput
measurement, bandwidth estimation, bitrate selection and the data transfer logs in the
onProgress event. All the logs contain the value and the corresponding time stamp.
Note that the throughput measurement has two timestamps, which are the start time and
end time of the transferring of a certain segment. By analyzing these logs, the
performance of different methods and algorithm can be compared.

5.1.3 Trace-based HTTP server

5.1.3.1 The concept of trace-based server

The development of ABR algorithms is still ongoing and a widely accepted
method is not achieved yet. Since the network in real world is always dynamic, we
cannot evaluate the algorithms under two completely same network conditions.
Therefore, to validate the actual efficiency of the algorithms, basically large-scale
deployment in real network environment is needed via video streaming providers. Then,
the data containing logs from millions of video sessions can be analyzed statistically.
However, it is not always the case for academic researchers to obtain such large-scale
data. As an alternative, the trace-based emulation is employed for evaluation. Under the
artificially same network condition, the effect of different algorithms can be compared
using limited deployment. Here, we developed the a trace-based server.

The implementation of our emulation is shown in Figure 5.11. The purpose is
to replicate the throughput between the server and client as the same as a given
throughput trace. Since the network condition in the real world cannot be fully
controlled, we build a virtual emulation environment of the network. In this
environment, the server is built on the same computer as the client using the local host
127.0.0.1. By using the local host, we can regard the delay time of the data transfer to
be small enough (< 1 ms) that can be ignored. The node.js is used to build the HTTP
server. The choice of this structure is because it gives full control of the data
transferring, such as when to respond, what to respond. In order to constrain the
throughput between the server and client, the response of the HTTP request is
manipulated and delayed intentionally. Therefore, from the viewpoint of the client side,
the throughput is changing dynamically since it doesn’t know what happens in the
server side.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

86

Figure 5.11 The implementation of the trace-based emulation.

5.1.3.2 The algorithm of the trace-based server

The procedure of the manipulation is as shown in algorithm I. The throughput
trace is prepared in the server side which can be referred freely. The trace is stored every
second. When the server catches the GET request from the client, it firstly judge
whether this request is for video contents or other contents such as html file or
JavaScript files. If the request is for other files, the data are responded back to the client
immediately. When the request for the first segment of the video content is captured, an
initial time stamp tinit is created which is regarded as a baseline for calculating the time
delay. When the requests for video contents are captured, the size of the requested
chunk is analyzed. Normally, the chunk data should be sent back to client immediately.
However, in order to shape the throughput according to the designated trace, the chunk
data is divided and transmitted as pieces with artificial delay intervals dt. After the
request is coming, the elapsed time from the initial time stamp is calculated as t = t1 -
tinit. Then the sending size is determined by Ssent = f(t)*dt, where f(t) is the throughput
value at t in the prepared trace table and dt is the delay interval. dt is chosen as 100 ms
here. After sending, the server waits for dt time (or 100 ms here) and then repeats the
elapsed time calculation t = tn-1 - tinit and sending size determination according to the
new f(t). After sending the last piece of the chunk, the delay interval dt should be
recalculated since more data can be sent within dt. The delay is calculated by

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

87

Slast/f(t), where Slast is the size of the last piece and f(t) is the throughput at the time
sending the last piece. After the last delay, the end signal of the response is triggered.
Note that the trace data are usually stored every second for many datasets. In
implementation, t is floored to integer second since the unit in the time stamps is
millisecond.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

88

5.1.3.3 Trace-based emulation validation

In order to validate whether the trace-based emulation is successfully
implemented, and the virtual network environment is reproducible, the test video
streaming is conducted. The used content is BigBuckBunny. In the test, the bitrate
adaptive bitrate switch is disabled, and the Client is set to request the content encoded in
515 kbps constantly. Figure 5.12 shows the results of the trace-based emulation. The
blue stairs plot is the throughput trace used to shape the sending sequence of the data on
server side. The red one and black one are the throughputs recorded and calculated on
the client side in two tests. As can be seen, the results of the two tests are the same. And
the shapes of the measured throughputs in the client side are the same as prepared trace
in the server side. Figure 5.13 shows the buffer occupancy logs of the two tests. As can
be seen, the buffer occupancy logs are also identical. These results demonstrate that our
trace-based emulation is successful in shaping the throughput between server and client,
and the emulated network condition can be replicated, allowing us to compare the
algorithms quantitatively with limited experiments.

Figure 5.12 The prepared trace applied on server and the corresponding measured
throughputs on client side in two tests.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

89

Figure 5.13 Buffer occupancy of the two tests.

5.2 Implementation of throughput prediction in DASH
The default throughput estimation method in the original DASH client is based

on the average throughput of one segment. However, these measurements cannot be
directly used in the prediction methods proposed in the previous chapters since these
methods assume that the throughput data are calculated every second. In the extended
version, the throughput measurements by second are available taking the advantage of
the onprogress event. In our previous work, we have proposed and implemented
several methods in prediction. The methods are arithmetic mean (AM) [89], harmonic
mean (HM) [89], last sample (LS) [88], MA [29], HMM [88], stochastic model
(Stochastic) [25], hybrid model of autoregressive model and HMM (Hybrid) [63] and
throughput prediction based on LSTM (TRUST) [90]. To incorporate the prediction
results by the aforementioned algorithms into the emulation, a new prediction trace is
applied in the client side. This prediction trace is created off-line which is related to the
throughput trace on server side. Since the network condition is reproducible with regard
to the prepared trace, we can just simply change the prediction trace on the client side
by different prediction algorithms. The rate-based (RB) adaptive bitrate control method
is employed where the bitrate selection is decided based on the prediction value. Here,
the value can be obtained from the prediction trace table applied in the client side. In
order to compare the effect of these methods, during evaluation, only the prediction
method is changed, and other settings are kept the same such as the buffer strategy.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

90

5.3 Evaluation, analysis, and discussion

5.3.1 Setup and QoE metrics

In evaluation, the video content is encoded into 14 versions from 100 kbps to
4000 kbps. Total length of the video is about 598 seconds. Each chunk contains 2-
second video. The Bupper, Blower, Ratioupper, and Ratiolower are set to 40 s, 20 s, 8 s, and
4 s, and Bstart is set to 6 second. The video streaming experiments are conducted using
different prediction methods under the same network condition shaped by the trace on
the server side. The buffer occupancy log and the choice of bitrate for each chunk are
recorded for post analysis.

In order to analyze the performance of each algorithm, some factors are
considered in the QoE calculation, which are the initial delay Tinit, number of
rebuffering Nrebuf, rebuffering duration Trebuf, the average bitrate Rave, and the switch
frequency of bitrate. Tinit, Nrebuf, and Trebuf are extracted from the buffer log. Rave and
switch frequency are extracted from the bitrate choice log. The five factors are analyzed
here as metrics for performance assessment. Additionally, the formula used in [1] is
adopted as the primary QoE metrics, which is:

1

1
1 1

() () ()
N N

n rebuf s init n n
n n

QoE q R T T q R q R 




 

      (5.3)

where q(Rn) represents the relationship between bitrate and user perceived quality. N is
the total number of chunks. Trebuf and Tinit are the total rebuffering time and initial delay.
μ and μs are the corresponding penalties. The last term on the left stands for the penalty
of bitrate switch. The linear form q(Rn) = Rn is considered here. The μ and μs are chosen
as the maximum bitrate. Note that there are also a lot of other QoE definitions which
takes the factors with different weights. Therefore, using different QoE metrics, the
performance judgement may change. Since the official QoE definition is not available
yet, we use the most widely used one. Of course, one can even give their own equation
for QoE calculation if proper explanation is provided.

5.3.2 Performance evaluation

The throughput traces implemented in server are chosen from the open dataset
Mobile dataset (HSDPA) [48]. Figure 5.14 shows a selected trace from HSDPA. This
trace is measured on the ferry. As can be seen, there is a period the network condition is

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

91

extremely bad which is almost cutoff. The results of different methods are shown in
Table 5.1. From the total QoE, the LSTM performs best among all the methods. For the
individual metric, it can be seen that LSTM makes a conservative choice in the initial
phase, resulting in a small delay. As for the average bitrate, DASH-original, LS and
Stochastic has a relatively high score. However, this aggressive choice leads to longer
rebuffering duration. DASH-original even has 5 rebuffering events. The log of buffer
occupancy using different prediction methods in Ferry Trace is shown in Figure 5.15.
As can be seen that, the buffer occupancy of the DASH-original, LS and Stochastic
methods are always at a relative low level. This causes danger of the frequent
rebuffering events. Although the number of rebuffering events is not included in
Equation (5.3), the more events may damage the user experience more with the same
rebuffering duration. On the other hand, although LSTM performs best from the
viewpoint of the total QoE, it still can be improved. During the whole session, the buffer
occupancy is sometimes at a relatively high level. For these periods, the bitrate can be
selected more aggressively.

Figure 5.14 The throughput trace of Ferry (HSDPA).

Table 5.1 The results of Ferry Trace.

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 140.7 1042.1 2.4 32.4 1
Hybrid 118.6 1044.2 5.5 32.7 2

LS 84.0 1313.4 6.2 48.7 1
MA 100.5 1050.5 6.2 40.4 2

Stochastic 104.1 1270.8 5.9 46.3 2
AM 130.2 1011.6 6.2 30.6 3
HM 75.2 844.1 5.0 31.2 2

HMM 53.5 818.7 4.9 30.7 2
Original 92.8 1458.8 5.6 68.5 5

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

92

Figure 5.15 The log of buffer occupancy using different prediction methods in Ferry.

Figure 5.16 shows another selected trace which is measured on the bus. As can
be seen, the average throughput is relatively higher than that in Ferry trace. The average
quality of the video transmission should be higher. However, there are still some sudden
degradation of network condition such as around the 150 s and 350 s. These areas need
to be handled well otherwise could cause rebuffering events. Table 5.2 shows the QoE
results of different methods. From the total QoE, it can be confirmed that LSTM still
performs best among others. The original method has the tendency to be excessively
aggressive. Therefore, this aggressive strategy gains the highest average bitrate in
sacrifice of rebuffering events and time. This situation also can be observed from the
former trace. The log of buffer occupancy using different prediction methods in Ferry
Trace is shown in Figure 5.17. As can be seen, the buffer occupancy of LSTM also at a
relatively high level. There is still space to improve the adaptive bitrate control method.

Figure 5.16 The throughput trace of Bus (HSDPA).

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

93

Table 5.2 The results of Bus Trace.

Figure 5.17 The log of buffer occupancy using different prediction methods in Bus.

Figure 5.18 shows another trace from Tram [48]. As can be seen, the average
throughput is relatively lower than that in Ferry trace. There is a period the network
condition is bad but no cutoff. The results of different methods are shown in Table 5.3.
In this case, the LSTM still has the better QoE score than other prediction methods.
However, the original performs best this time. This aggressive strategy wins in
achieving the highest average bitrate and successfully avoids rebuffering events. The
log of buffer occupancy using different prediction methods in Tram trace is shown in
Figure 5.19. As can be seen, the buffer occupancy during the streaming is at a relatively
high level, which means the bitrate selection is somehow conservative. This is
considered to be the reason that the LSTM is defeated by the original method. Since the
ABR algorithm used here is rate-based, the chosen bitrate is always below the
prediction. Therefore, the bitrate selection can be improved while reducing the buffer
occupancy by taking advantage of the buffer occupancy information.

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 612.0 2263.3 6.3 0.0 0
Hybrid 581.9 2163.1 3.7 0.0 0

LS 558.6 2364.6 6.5 0.0 0
MA 604.3 2199.2 4.0 0.0 0

Stochastic 553.9 2240.3 5.9 0.0 0
AM 599.6 2209.5 6.4 0.0 0
HM 507.7 1928.9 6.0 0.0 0

HMM 490.9 1996.9 4.1 0.0 0
Original 561.7 2648.4 14.1 34.1 4

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

94

Figure 5.18 The throughput trace of Tram.

Table 5.3 The results of Tram Trace.

Figure 5.19 The log of buffer occupancy using different methods in Tram.

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 170.9 698.4 4.2 0.0 0
Hybrid 161.9 656.4 4.5 0.0 0

LS 136.8 664.0 3.2 0.0 0
MA 159.7 639.8 4.3 0.0 0

Stochastic 154.8 692.7 5.6 0.0 0
AM 160.8 654.5 5.2 0.0 0
HM 143.7 584.9 3.7 0.0 0

HMM 132.8 594.6 3.9 0.0 0
Original 181.9 716.8 3.9 0.0 0

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

95

5.3.3 Discussion

It can be seen from Section 5.3.2, the accuracy of prediction will influence the
performance of adaptive streaming a lot. The overestimate of throughput may make the
selection too aggressive, resulting in the danger of rebuffering while underestimate of
the throughput may decrease the user perceived quality. Furthermore, a good prediction
is not enough to ensure high QoE. Since the rate-based algorithm always chooses the
bitrate lower than the prediction throughput, the buffer occupancy may stay in a high
level during the normal streaming. Figure 5.19 shows that the average buffer occupancy
is about 60%~70% of Bmax. Actually, the bitrate selection can be more aggressive if the
buffer occupancy is high. Comparing the results of the LSTM and original methods in
Tram case, it can be found that a good QoE is related to higher average bitrate and a
lower buffer occupancy under the same network condition. Therefore, an additional
term can be included in the ABR method. In the initial phase, overestimate could be a
disaster since long waiting time may annoy the user a lot and may let the user give up
the video session. This will cause a dramatic loss of the revenue of service provider.
Therefore, in the future adaptive strategy design, the selection needs to be conservative
in initial phase in order to establish the streaming as soon as possible.

5.4 Decision map method for adaptive bitrate control
5.4.1 Aggressive decision

From the evaluation results in Section 5.3.2 and the discussion in Section 5.3.3,
it is obvious that there is needs to design new adaptive bitrate control algorithm not only
based on the throughput prediction but also the buffer occupancy information since the
rate-based ABR tends to be too conservative. If the throughput is the same as the bitrate,
the buffer occupancy should keep the same because the downloaded video duration can
balance the consuming time for downloading. If the throughput is lower than the bitrate,
the buffer occupancy should decrease since it consumes more time in downloading.
When the current buffer occupancy is large, we can choose the bitrate aggressively.

We proposed a decision map method with aggressive mechanism (DMM-A)
for adaptive bitrate control incorporating both prediction and buffer occupancy
information as shown in Figure 5.20. In this map, the x axis is the current buffer
occupancy Bcur and y axis is an addition term ΔTDL named extra downloading time
(EDT). ΔTDL is calculated using the following equation:

1[() 1]DL ind pred segT R C T    (5.4)

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

96

where Cpred is the throughput prediction using LSTM, Rind+1is the bitrate one rank higher
than the rate-based choice. Tseg is the duration of one segment. This term is used to
estimate the possible extra downloading time when choosing the bitrate larger than the
throughput prediction. Bupper is the maximum buffer occupancy and Bagg is a threshold
for deciding when to be aggressive. ΔTupper is another threshold in the EDT axis to judge
the aggressive action. The area with red dots is the aggressive area and that with green
dots is the normal area. The aggressive area is where the buffer occupancy is relatively
high and the EDT is not very large.

The red dot area can be determined whether aggressively or conservatively. For
simplicity and neutrality, it is drawn as a linear relationship here. The Bagg is chosen as
20 s which is the same as the lower limit of buffer occupancy. The smaller Bagg is, the
more aggressive the map is. ΔTupper is set as 2 s here since we expect one segment time
is the largest tolerance for aggressive decision. The larger ΔTupper is, the more aggressive
the map is. The boundary between normal area and aggressive is a line from (Bagg, 0) to
(Bupper, ΔTupper). If the (ΔTDL, Bcur) falls in the aggressive area, the bitrate will be chosen
as one rank higher than the rate-based decision. By using this decision map, the choice
of bitrate can be more aggressive than rate-based method. It can be expected, a higher
average bitrate can be achieved.

Figure 5.20 The illustration of the decision map with aggressive mechanism (DMM-A).

Table 5.4 shows the results of DMM-A with LSTM and original method. The
corresponding buffer occupancy log is shown in Figure 5.21. As can be seen that, from
the point view of total QoE, there seems to be no improvement than even LSTM. The
score is almost the same. This is caused by a rebuffering event around 450 s. However,
except for the rebuffering drawback, the buffer occupancy stays relatively stable near

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

97

20 s and the average bitrate is much higher than other two methods. DMM-A is indeed
an aggressive method. But this method can be considered as a “controlled aggressive”
case since the buffer occupancy is monitored. If the drawback of rebuffering can be
solved, the performance of the DMM-A is expected to be more outstanding.

Table 5.4 The results of Tram Trace.

Figure 5.21 The log of buffer occupancy using different methods in Tram.

5.4.2 Aggressive decision with conservative mechanism

As discussed in the former section, it is necessary to deal with the possible
rebuffering event in the DMM-A since the aggressive decision is made intentionally.
Here, we extend the DMM-A with an additional conservative mechanism as shown in
Figure 5.22. We just name this extended method as DMM since it involves both
aggressive and conservative areas. In DMM, besides the division of normal and
aggressive areas, the conservative area is added which is shown as blue dots. This area
is determined by two thresholds, Bcon1 and Bcon2. When the buffer occupancy is within
the conservative area, no matter what the throughput prediction is, the conservative
action should be taken immediately to avoid rebuffering events. Bcon1 and Bcon2 are set to
indicate the emergency level of the situation. If the Bcur is lower than Bcon1 but higher
than Bcon2, the bitrate will be chosen as one rank lower than the rate-based decision. If

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 170.9 698.4 4.2 0.0 0
Original 181.9 716.8 3.9 0.0 0
DMM-A 169.0 800.0 4.6 6.4 1

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

98

the Bcur is lower than Bcon2, this is considered to be an extremely dangerous situation,
therefore the bitrate will be chosen as two rank lower than the rate-based decision. The
whole procedure of this method is shown in Algorithm II. Here, Bcon1 and Bcon2 are set as
10 s and 5 s, respectively. It can be expected that rebuffering events can be avoided
using this conservative mechanism. Meanwhile, this conservative decision will also be
applied to the initial period when the user starts the video session. It is expected this
conservative decision can help reduce initial delay since there is no buffer at the
beginning.

Figure 5.22 The illustration of the decision map method (DMM) with both aggressive
and conservative areas.

Table 5.5 shows the results of DMM with LSTM, original, and DMM-A
method. The corresponding buffer occupancy log is shown in Figure 5.23. As can be
seen that, from the viewpoint of total QoE, the DMM performs best among all the
methods. Besides the total QoE, the average bitrate is improved by 9% compared with
the original method which was the best. Furthermore, the initial delay is reduced as
expected thanks to the conservative action at the beginning. As shown in Figure 5.24(a),
the choice of bitrate is much lower than the predicted throughput at the initial stage. The
rebuffering event is also avoided during the bad network condition period. As show in
Figure 5.24(b), the choice of bitrate is also very conservative since the buffer occupancy
becomes low caused by the bad condition. This strategy helps the video session survive
and play on without rebuffering. These results demonstrate that the DMM method can
improve the QoE significantly in adaptive video transmission.

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

99

Table 5.5 The results of Tram Trace.

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 170.9 698.4 4.2 0.0 0
Original 181.9 716.8 3.9 0.0 0
DMM-A 169.0 800.0 4.6 6.4 1

DMM 195.4 779.8 3.2 0 0

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

100

Figure 5.23 The log of buffer occupancy using different methods in Tram.

Figure 5.24 The log of bitrate status using DMM in Tram. (a) Initial stage, (b) Bad

network condition period.

5.4.3 DMM performance verification in other traces

The performance of the DMM method is also verified in other traces. Table 5.6
shows the results of DMM with LSTM and original method in Ferry Trace. The
corresponding buffer occupancy log is shown in Figure 5.25. As can be seen that, from
the viewpoint of total QoE, the DMM performs best among all the methods. The
average bitrate is improved significantly compared with the LSTM rate-based method.
Meanwhile, the rebuffering time does not increase. It is expected that the DMM can also
reduce the rebuffering event. However, in the ferry trace, there is a period when the
network is suddenly cut off. Therefore, even the bitrate is chosen as the lowest one, the
rebuffering event is not avoided. In such situation, other information should be

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

101

considered for preparation of sudden network cutoff. For example, there may be no-
signal area in the ferry route. Based on the designated route, we can expect to know
when we will enter the no-signal area. Then, the contents can be downloaded more than
Bmax before the network cutoff to go through the no-signal area.

Table 5.6 The results of Ferry Trace.

Figure 5.25 The log of buffer occupancy using different methods in Ferry.

Table 5.7 shows the results of DMM with LSTM and original method in Bus
Trace. The corresponding buffer occupancy log is shown in Figure 5.26. As can be seen
that, from the viewpoint of total QoE, the DMM performs best among all the methods.
The average bitrate is improved significantly compared with the LSTM rate-based
method. The initial delay is also reduced thanks to the conservative mechanism. From
these results, it can be concluded that the DMM can significantly improve the QoE
performance in DASH compared with conventional methods.

Table 5.7 The results of Bus Trace.

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 140.7 1042.1 2.4 32.4 1
Original 92.8 1458.8 5.6 68.5 5
DMM 185.9 1225.0 2.8 32.6 1

Methods Metrics
QoE Rave (kbps) Tinit (s) Trebuf (s) Nrebuf

LSTM 612.0 2263.3 6.3 0.0 0
Original 561.7 2648.4 14.1 34.1 4
DMM 653.6 2405.8 3.5 0.0 0

Chapter 5: Adaptive bitrate control with QoE maximization using throughput prediction

102

Figure 5.26 The log of buffer occupancy using different methods in Bus.

5.5 Summary

In this chapter, a video transmission system with DASH is established. The
DASH-JS client is modified and extended for flexible usage. A trace-based server is
built and proposed. The results demonstrate this server can create reproducible
emulation environment according to the prepared trace, which allows the evaluation of
algorithms effectively with limited experiments. We evaluate throughput prediction
methods for adaptive bitrate control via trace-based emulation. The basic ABR strategy
is rate-based method. By comparison of the results, it is found that the good throughput
prediction is essential in achieving a good QoE performance. While, there are still space
to further improve the QoE by incorporating the information of the buffer occupancy.

We also propose a new ABR algorithm name decision map method (DMM).
This algorithm incorporates both throughput prediction and buffer occupancy
information to make decision whether the aggressive or conservative bitrate selection is
carried out. Through trace-based emulations in several traces, it is demonstrated that the
DMM performs significantly well than conventional methods. The average bitrate is
improved while no additional rebuffering event is encountered. Meanwhile, the initial
delay is also reduced. The total QoE can be improved by 32.1% in the Ferry trace,
showing the efficiency of the proposed ABR algorithm.

For further research, we will continue to improve the adaptive bitrate control
algorithm for better handling different circumstances such as sudden network cutoff. We
will also test the performance in more traces and deploy the DMM algorithm into real
network environment.

103

6

6.1 Conclusions

In order to provide fluent video streaming and improve the QoS and QoE for
mobile users, throughput prediction methods and adaptive bitrate control model are
proposed in this thesis.

In Chapter 3, throughput prediction methods using statistics and machine
learning are proposed. An approach is proposed which utilizes HMM and total variance
to evaluate the fluctuation of the former sequence, then uses linear prediction and
locally weighted linear prediction to predict the future throughput. Based on this
method, an advanced prediction model named the hybrid prediction with the
autoregressive model and hidden Markov model (HOAH) is developed to predict TCP
throughput. The method adopts support vector machine (SVM) as classifier, and switch
between autoregressive model (AR model) and Gaussian mixture model-hidden Markov
model (GMM-HMM) to predict future data. Evaluation shows the method can choose
the proper prediction model correctly and predict throughput effectively.

In Chapter 4, a TCP throughput prediction method using long short-term
memory (LSTM) model is proposed. The method is named throughput prediction based
on LSTM (TRUST), which apply not only throughput measurements, but also other
parameters as features to construct the neural network model. Field experiments are
conducted to evaluate the method. Results show the method can decrease the prediction
error by a maximum of 44% compared with conventional methods.

In Chapter 5, a trace-based emulation for Dynamic Adaptive Streaming over
HTTP (DASH) is established to evaluate the effect of the throughput prediction
methods on adaptive bitrate control. Results indicate a good prediction can contribute to
good QoE performance. Moreover, a new adaptive bitrate control method named
decision map method (DMM) is proposed. The evaluation results show that DMM can
increase the average bitrate and avoid extra rebuffering event at the same time.

6.2 Future work

In the future, we will apply other methodologies such as reinforcement learning

Conclusions and future work

Chapter 6: Conclusions and future work

104

to construct prediction model. Furthermore, parameters of lower layer of mobile
network will be collected by developing new software and be adopted to predict future
throughput. More measurements will be conducted to enlarge the database for
improving the accuracy of the prediction model.

Meanwhile, more experiments will be conducted to evaluate the proposed ABR
method. We will continue to improve the adaptive bitrate control algorithm for better
handling different circumstances such as sudden network cutoff. We will also deploy the
DMM algorithm into real network environment and test the performance. Based on the
real-world deployment performance, other techniques will be utilized to improve the
ABR method.

105

Bibliography

[1] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dynamic

adaptive video streaming over HTTP,” in Proc. ACM SIGCOMM 2015, pp. 325-338, 2015.

[2] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X Jin, J. Rexford, and R. K.
Sinha, “Can accurate predictions improve video streaming in cellular networks?” in Proc.
ACM HotMobile 2015, pp. 57-62, 2015.

[3] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with pensieve,” in
Proc. ACM SIGCOMM 2017, pp. 197-210, 2017.

[4] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in http-based
adaptive video streaming with festive,” IEEE/ACM Transactions on Networking, vol. 22,
no. 1, pp. 326-340, Feb. 2014.

[5] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation techniques for dynamic
adaptive streaming over http,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1842-1866, third quarter 2017.

[6] K. Miller, A. Al-Tamimi, and A. Wolisz, “QoE-based low-delay live streaming using
throughput predictions,” ACM Transactions on Multimedia Computing, Communications,
and Applications, vol. 13, no. 1, pp. 1–24, Jan. 2017.

[7] X. Yin, V. Sekar, and B. Sinopoli, “Toward a principled framework to design dynamic
adaptive streaming algorithms over http,” in Proc. ACM HotNets 2014, pp. 1-9, 2014.

[8] ITEC DASH-JS, [online]:

http://www-itec.uni-klu.ac.at/dash/?page_id=746.

[9] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W. Ma, “Understanding transportation modes based on
GPS data for web applications,” ACM Transactions on the Web, vol. 4, no. 1, Jan. 2010.

[10] V. Manzoni, D. Maniloff, K. Kloeckl, and C. Ratti, “Transportation mode identification and
real-time CO2 emission estimation using smartphones,” Massachusetts Institute of
Technology, Cambridge, MA, USA, Tech. Rep., 2010.

[11] P. Widhalm, P. Nitsche, and N. Brändie, “Transport mode detection with realistic
smartphone sensor data,” in Proc. IEEE ICPR 2012, pp. 573-576, 2012.

106

[12] A. Jahangiri and H. A. Rakha, “Applying machine learning techniques to transportation
mode recognition using mobile phone sensor data,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 5, pp. 2406-2417, Oct. 2015.

[13] B. Nham, K. Siangliulue, and S. Yeung, “Predicting mode of transport from iPhone
accelerometer data,” Stanford University, Stanford, CA, USA, Tech. Rep., 2008.

[14] H. I. Ashqar, M. H. Almannaa, M. Elhenawy, H. A. Rakha, and L. House, “Smartphone
transportation mode recognition using a hierarchical machine learning classifier and pooled
features from time and frequency domains,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 1, pp. 244-252, Jan. 2019 .

[15] X. Su, H. Caceres, H. Tong, and Q. He, “Online travel mode identification using
smartphones with battery saving considerations,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 10, pp. 2921-2934, Oct. 2016.

[16] S. Wang, C. Chen, and J. Ma, “Accelerometer based transportation mode recognition on
mobile phones,” in Proc. IEEE APWCS 2010, pp. 44-46, 2010.

[17] J. Suto, S. Oniga, C. Lung, and I. Orha, “Recognition rate difference between real-time and
offline human activity recognition,” in Proc. IEEE IoTGC 2017, pp. 1-6, 2017.

[18] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable
sensors,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, third
quarter 2013.

[19] X. Su, H. Tong, and P. Ji, “Activity recognition using smartphone sensors,” Tsinghua
Science and Technology, vol. 19, no. 3, pp. 235-249, Jun. 2014.

[20] Y. Chen and Y. Xue, “A deep learning approach to human activity recognition based on
single accelerometer,” in Proc. IEEE SMC 2015, pp. 1488-1492, 2015.

[21] M. Gochoo, T. Tan, S. Huang, S. Liu, and F. S. Alnajjar, “DCNN-based elderly activity
recognition using binary sensors,” in Proc. IEEE ICECTA, pp. 1-5, 2017.

[22] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and J. Widmer, “A survey of
anticipatory mobile networking: Context-based classification, prediction methodologies,
and optimization techniques,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1790-1821, Apr. 2017.

[23] Y. T. Lin, E. M. R. Oliveira, S. B. Jemaa, and S. E. Elayoubi, “Machine learning for
predicting QoE of video streaming in mobile networks,” in Proc. IEEE ICC 2017, pp. 1-6,

107

2017.

[24] K. Satoda, H. Yoshida, H. Ito, and K. Ozawa, “Adaptive video pacing method based on the
prediction of stochastic TCP throughput,” in Proc. IEEE GLOBECOM 2012, pp. 1944-1950
2012.

[25] H. Yoshida, K. Satoda, and T. Murase, “Constructing stochastic model of TCP throughput
on basis of stationarity analysis,” in Proc. IEEE GLOBECOM 2013, pp. 1544-1550, 2013.

[26] K. Nihei, H. Yoshida, N. Kai, D. Kanetomo, and K. Satoda, “QoE maximizing bitrate
control for live video streaming on a mobile uplink,” in Proc. IEEE ConTEL 2017, pp. 91-
98, 2017.

[27] B. Wei, M. Okano, K. Kanai, W. Kawakami, and J. Katto, “Throughput prediction using
recurrent neural network model,” in Proc. IEEE GCCE 2018, pp. 107-108, 2018.

[28] B. Wei, W. Kawakami, K. Kanai, and J. Katto, “A history-based TCP throughput prediction
incorporating communication quality features by support vector regression for mobile
networks,” in Proc. IEEE ISM 2017, pp. 374-375, 2017.

[29] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large transfer TCP
throughput,” in Proc. ACM SIGCOMM 2005, pp. 145-156, 2005.

[30] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm,” in Proc. ACM SIGCOMM 1997, pp. 67-82, 1997.

[31] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno performance: a
simple model and its empirical validation,” IEEE/ACM Transactions on Networking, vol. 8,
no. 2, pp. 133-145, Apr. 2000.

[32] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for
unicast applications,” in Proc. ACM SIGCOMM 2000, pp. 43-56, 2000.

[33] S. Vazhkudai, J. M. Schopf, and I. Foster. “Predicting the Performance of Wide Area Data
Transfers,” in Proc. IEEE IPDPS 2002, pp. 1-10, 2002.

[34] M. Swany and R. Wolski, “Multivariate resource performance forecasting in the network
weather service,” in Proc. ACM/IEEE SC 2002, pp. 1-10, 2002.

[35] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang,
“Understanding the impact of video quality on user engagement,” in Proc. ACM SIGCOMM
2011, pp. 362-373, 2011.

108

[36] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao, “Deriving and validating user experience
model for DASH video streaming,” IEEE Transactions on Broadcasting, vol. 61, no. 4, pp.
651-665, Dec. 2015.

[37] Adobe, “Adobe HTTP Dynamic Streaming (HDS),” 2016. [Online]:
https://www.adobe.com/devnet/hds.html.

[38] Apple, “Apple HTTP Live Streaming,” 2016. [Online]:
https://developer.apple.com/streaming/.

[39] Microsoft, “Microsoft Silverlight Smooth Streaming,” 2016. [Online]:
https://www.microsoft.com/silverlight/smoothstreaming/.

[40] ISO/IEC, “ISO/IEC 23009-1:2014 Information Technology: Dynamic Adaptive
Streaming over HTTP (DASH) Part 1: Media presentation description and segment
formats,” 2014. [Online]. Available: https://www.iso.org/standard/65274.html.

[41] T. Huang, R. Johari, N. McKeown, M. Trunnel, and M. Watson, “A buffer-based approach
to rate adaptation: Evidence from a large video streaming service,” in Proc. ACM
SIGCOMM 2014, pp. 187-198, 2014.

[42] K. Spiteri, R. Urgaonkar and R. K. Sitaraman, “BOLA: Near-optimal bitrate adaptation for
online videos,” in Proc. IEEE INFOCOM 2016, pp. 1-9, 2016.

[43] B. Rainer, S. Lederer, C. Muller, and C. Timmerer, “A seamless web integration of adaptive
HTTP streaming,” in Proc. IEEE EUSIPCO 2012, pp. 1519–1523, 2012.

[44] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over the internet,” IEEE
Multimedia, vol. 18, no. 4, pp. 62-67, Oct. 2011.

[45] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia
applications,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 7, pp. 1228-
1234, Sep. 1996.

[46] U. Reiter, K. Brunnström, K. D. Moor, M. C. Larabi, M. Pereira, A. Pinheiro, J. You, and
A. Zgank, “Factors Influencing Quality of Experience,” Quality of Experience, Springer,
Cham, pp. 55–74, 2014.

[47] P. A. Gagniuc, “Markov Chains: From Theory to Implementation and Experimentation,”
John Wiley & Sons, 2017.

[48] HSDPA DATASET, [online]:

109

http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/.

[49] B. Wei, K. Kanai, and J. Katto, “History-based throughput prediction with Hidden Markov
Model in mobile networks,” in Proc. IEEE ICMEW 2016, pp. 1-6, 2016.

[50] D. A. Reynolds, “Speaker identification and verification using Gaussian mixture speaker
models,” Speech communication, vol. 17, no. 1-2, pp. 91-108, Aug. 1995.

[51] Y. Huang, K. B. Englehart, B. Hudgins, and A.D.C. Chan, “A Gaussian mixture model
based classification scheme for myoelectric control of powered upper limb prostheses,”
IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1801-1811, Nov. 2005.

[52] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang, “Probabilistic elastic matching for pose
variant face verification,” in Proc. IEEE CVPR 2013, pp. 3499-3506, 2013.

[53] J. Gauvain and C. Lee, “Maximum a posteriori estimation for multivariate Gaussian
mixture observations of Markov chains,” IEEE Transaction on Speech and Audio
Processing, vol. 2, no. 2, pp. 291-298, Apr. 1994.

[54] J. Ajmera, I. McCowan, and H. Bourlard, “Speech/music segmentation using entropy and
dynamism features in a HMM classification framework,” Speech Communication, vol. 40,
no. 3, pp. 351-363, May 2003.

[55] C. E. Pertsinidou, and N. Limnios, “Viterbi algorithms for Hidden semi-Markov models
with application to DNA analysis,” RAIRO-Operations Research, vol. 49, no. 3, pp. 511-
526, Sep. 2015.

[56] C. A. Greenhall, D. A. Howe, and D. B. Percival, “Total variance, an estimator of long-term
frequency stability [standards],” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 46, no. 5, pp. 1183-1191, Sep. 1999.

[57] S. J. Rao, “Regression Modeling Strategies: With Applications to Linear Models, Logistic
Regression, and Survival Analysis,” Journal of the American Statistical Association, vol. 98,
no. 461, pp. 257-258, 2005.

[58] O. Fedotova, L. Teixeira, and H. Alvelos, “Software effort estimation with multiple linear
regression: Review and practical application,” Journal of Information Science and
Engineering, vol. 29, no. 5, pp. 925-945, 2013.

[59] I. Naseem, R. Togneri, and M. Bennamoun, “Linear regression for face recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 11, pp. 2106-2112,
Nov. 2010.

110

[60] S. Dabiri and K. Heaslip, “Inferring transportation modes from GPS trajectories using a
convolutional neural network,” Transportation Research Part C: Emerging Technologies,
vol. 86, pp. 360-371, Jan. 2018.

[61] Y. Qiao, Y. Cheng, J. Yang, J. Liu, and N. Kato, “A Mobility Analytical Framework for Big
Mobile Data in Densely Populated Area,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 2, pp. 1443-1455, Feb. 2017.

[62] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “Accuracy evaluations of human moving
pattern using communication quality based on machine learning,” in Proc. IEEE GCCE
2017, pp. 1-2, 2017.

[63] B. Wei, K. Kanai, W. Kawakami, and J. Katto, “HOAH: A hybrid TCP throughput
prediction with autoregressive model and hidden markov model for mobile networks,”
IEICE Transactions on Communications, vol. E101-B, no. 7, pp. 1612–1624, 2018.

[64] S. Takenaka, K. Kanai, J. Katto, and T. Murase, “Green Video Delivery System using
Moving Route Navigation and Playout Buffer Control,” in Proc. IEEE CCNC 2017, pp. 1-4,
2017.

[65] M. E. Ayadi, Moataz, M. S. Kamel, and F. Karray, “Survey on speech emotion recognition:
Features, classification schemes, and databases,” Pattern Recognition, vol. 44, no. 3,
pp. 572-587, 2011.

[66] M. N. Ayyaz, I. Javed, and W. Mahmood, “Handwritten Character Recognition Using
Multiclass SVM Classification with Hybrid Feature Extraction,” Pakistan Journal of
Engineering and Applied Sciences, vol. 10, pp. 57-67, 2012.

[67] U. Thissen, R. van Brakel, A.P. de Weijer, W.J. Melssen, and L.M.C. Buydens, “Using
support vector machines for time series prediction,” Chemometrics and Intelligent
Laboratory Systems, vol. 69, no. 1, pp. 35-49, Nov. 2003.

[68] N. I. Sapankevych and R. Sankar, “Time Series Prediction Using Support Vector Machines:
A Survey,” IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 24-38, May 2009.

[69] A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat Time Series Classification with
Support Vector Machines,” IEEE Transactions on Information Technology in Biomedicine,
vol. 13, no. 4, pp. 512-518, Jul. 2009.

[70] L. E. Nieto-Barajas and F. A. Quintana, “A Bayesian Non-Parametric Dynamic AR Model
for Multiple Time Series Analysis,” Journal of Time Series Analysis, vol. 37, no. 5, pp. 675-

111

689, 2016.

[71] G. Inoussa, H. Peng, and J. Wu, “Nonlinear time series modeling and prediction using
functional weights wavelet neural network-based state-dependent AR model,”
Neurocomputing, vol. 86, pp. 59-74, 2012.

[72] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time
series with a unit root,” Journal of the American Statistical Association, vol. 74, no. 366,
pp. 427-431, Jun. 1979.

[73] A. W. Gregory and B. E. Hansen, “Residual-based tests for cointegration in models with
regime shifts,” Journal of Econometrics, vol. 70, no. 1, pp. 99-126, Jan. 1996.

[74] O. P. Chimobi, “Government expenditure and national income: A causality test for
Nigeria,” European Journal of Economic and Political Studies, vol. 2, no. 2, pp. 1-11, 2009.

[75] S. V. Vaseghi, “Advanced digital signal processing and noise reduction,” John Wiley &
Sons, 2008.

[76] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal
processing using hidden Markov models,” IEEE Transactions on Signal Processing, vol. 46,
no. 4, pp. 886-902, Apr. 1998.

[77] C. L. P. Lim, W. L. Woo, S. S. Dlay, and B. Gao, “Heartrate-dependent heartwave
biometric identification with thresholding-based GMM–HMM methodology,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 1, pp. 45-53, Jan. 2019.

[78] D. Guo, W. Zhou, H. Li, and M. Wang, “Online early-late fusion based on adaptive HMM
for sign language recognition,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 14, no. 1, Jan. 2018.

[79] Z. Shi, C. Yang, M. Hao, X. Wang, R.D. Ward, and A. Zhang, “FuzzyID2: A software
package for large data set species identification via barcoding and metabarcoding using
hidden Markov models and fuzzy set methods,” Molecular ecology resources, vol. 18, no, 3,
pp. 666-675, May 2018.

[80] D. Park, L. R. Rilett, and G. Han, “Spectral basis neural networks for real-time travel time
forecasting,” Journal of Transportation Engineering, vol. 125, no. 6, pp. 515-523, Nov.
1999.

[81] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “Machine learning based transportation
modes recognition using mobile communication quality,” in Proc. IEEE ICME 2018, pp. 1-

112

6, 2018.

[82] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “A highly accurate transportation mode
recognition using mobile communication quality,” IEICE Transactions on Communications,
2019, in press.

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[84] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, “Extensions of
recurrent neural network language model,” in Proc. IEEE ICASS 2011, pp. 5528-5531,
2011.

[85] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to recurrent LSTM neural
networks for language modeling,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 23, no. 3, pp. 517-529, Mar. 2015.

[86] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, Nov. 1997.

[87] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in Proc. ICRL,
pp. 1–41, 2015.

[88] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli, “Cs2p:
Improving video bitrate selection and adaptation with data-driven throughput prediction,” in
Proc. ACM SIGCOMM 2016, pp. 272-285, 2016.

[89] Y. Liu and J.Y. B. Lee, “An empirical study of throughput prediction in mobile data
networks,” in Proc. IEEE GLOBECOM 2015, pp. 1-6, 2015.

[90] B. Wei, S. Wang, W. Kawakami, K. Kanai, and J. Katto, “TRUST: A TCP Throughput
Prediction Method in Mobile Networks,” in Proc. IEEE GLOBECOM 2018, pp. 1-6, 2018.

[91] B. Wei, H. Song, S. Wang, K. Kanai, and J. Katto, “Evaluation of Throughput Prediction
for Adaptive Bitrate Control using Trace-based Emulation,” IEEE Access, submitted.

113

Publication Lists

JOURNAL PAPERS

[1] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “A highly accurate transportation
mode recognition using mobile communication quality,” IEICE Transactions on
Communications, 2019, in press.

[2] K. Kanai, B. Wei, Z. Cheng, M. Takeuchi, and J. Katto, “Methods for adaptive
video streaming and picture quality assessment to improve QoS/QoE
performances,” IEICE Transactions on Communications, July 2019. (invited)

[3] B. Wei, K. Kanai, W. Kawakami, and J. Katto, “HOAH: A hybrid TCP
throughput prediction with autoregressive model and hidden markov model for
mobile networks,” IEICE Transactions on Communications, vol. E101-B, no. 7,
pp. 1612–1624, 2018.

[4] B. Wei, H. Song, S. Wang, K. Kanai, and J. Katto, “Evaluation of Throughput
Prediction for Adaptive Bitrate Control using Trace-based Emulation,” IEEE
Access, submitted.

INTERNATIONAL CONFERENCE PAPERS

[5] B. Wei, S. Wang, W. Kawakami, K. Kanai, and J. Katto, “TRUST: A TCP
Throughput Prediction Method in Mobile Networks,” in Proc. IEEE
GLOBECOM 2018, pp. 1-6, 2018.

[6] B. Wei, M. Okano, K. Kanai, W. Kawakami, and J. Katto, “Throughput
prediction using recurrent neural network model,” in Proc. IEEE GCCE 2018,
pp. 107-108, 2018.

[7] W. Kawakami, K. Kanai, B. Wei and J. Katto, “Machine learning based
transportation modes recognition using mobile communication quality,” in Proc.
IEEE ICME 2018, pp. 1-6, 2018.

[8] B. Wei, W. Kawakami, K. Kanai, and J. Katto, “A history-based TCP throughput
prediction incorporating communication quality features by support vector
regression for mobile networks,” in Proc. IEEE ISM 2017, pp. 374-375, 2017.

114

[9] W. Kawakami, K. Kanai, B. Wei, and Jiro Katto, “Accuracy evaluations of
human moving pattern using communication quality based on machine learning,”
in Proc. IEEE GCCE 2017, pp. 1-2, 2017.

[10] B. Wei, K. Kanai and Jiro Katto, “History-based throughput prediction with
Hidden Markov model in mobile network,” in Proc. IEEE ICMEW 2016, pp. 1-6,
2016.

DOMESTIC CONFERENCE PAPERS

[11] 川上航・金井謙治・Bo Wei・甲藤二郎:“CNN を活用したモバイルアプ
リケーション利用時のユーザ移動状態推定の精度評価,”信学ソ大、Sep.
2018.

[12] Bo Wei, Kenji Kanai, Wataru Kawakami, and Jiro Katto, “Throughput
Prediction Method based on machine learning in Mobile Networks,” IEICE Tech
Report, NS-2018-42, Jul. 2018.

[13] 川上航・金井謙治・Wei Bo・甲藤二郎:“通信品質を利用した CNN によ
るユーザ移動状態推定の精度評価,”信学会 NS 研究会, NS-2018-65,
Jul. 2018.

[14] Bo Wei, Kenji Kanai, Wataru Kawakami, and Jiro Katto, “Machine learning-
based throughput prediction using communication quality in mobile networks,”
信学会MoNA研究会, Jan.2018.

[15] 川上航・金井謙治・Wei Bo・甲藤二郎:“通信品質を用いた機械学習に基
づくユーザの移動状態推定,”信学会MoNA研究会, Jan.2018.

[16] 川上航・金井謙治・Wei Bo・甲藤二郎:“モバイルセンシングと機械学習
を用いた通信品質に基づくユーザ行動推定,”信学会 CS研究会, Jul.2017.

[17] Bo Wei, Kenji Kanai, and Jiro Katto, “Throughput prediction by combining
Autoregressive Model and Hidden Markov Model,” In IEICE General
Conference 2017, Mar. 2017.

[18] Bo Wei, Kenji Kanai, and Jiro Katto, “Performance evaluations of history-based
throughput prediction with trend analysis for mobile network,” In IEICE Society
Conference 2016, Sep. 2016. (awarded)

115

[19] Bo Wei, Kenji Kanai, and Jiro Katto, “Throughput prediction based on Hidden
Markov Model in mobile network,” In IEICE General Conference 2016,
Mar. 2016.

[20] Bo Wei, Kenji Kanai, Sakiko Takenaka, and Jiro Katto, “Throughput prediction
based on stochastic model of mobile network,” In IEICE Society Conference
2015, Sep. 2015. (awarded)

