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Chapter 1

Introduction

The origin of Poisson geometry is the Poisson bracket which was introduced
as an important operator in Hamiltonian mechanics on smooth manifolds.
Recently, however studies of properties and dynamical systems of Poisson
structures (Poisson brackets) themselves on smooth manifolds are done ac-
tively and Poisson geometry is one of important fields in Geometry. In
addition, geometrical objects having properties analogous to Poisson struc-
tures, for example, twisted Poisson [37], Jacobi [17], Nambu-Poisson struc-
tures [40] and so on are also studied actively. In this thesis, we deal with
quasi-Poisson and pseudo-Poisson-Nijenhuis structures, which are such geo-
metrical objects. The former structures generalize Poisson structures with
Hamiltonian-Poisson actions, i.e., Poisson actions with moment maps. We
show that a symplectic structure on a smooth manifold M is naturally de-
formable to another symplectic structure on M via the quasi-Poisson theory
[31]. The latter structures were introduced in [32] and extend the notion of
Poisson-Nijenhuis structures, defined by Magri and Morosi [25], in terms of
the relationship with Lie algebroids.

1.1 Deformations of symplectic structures by mo-
ment maps

In the context of symplectic geometry, deformation-equivalence assumptions
and conditions are often appeared, for example, in the statement of Moser’s
theorem [28], Donaldson’s four-six conjecture [35] and so on. However,
it seems that a method of constructing deformation-equivalent symplec-
tic structures specifically is not well known. In this thesis, we construct
a method of producing new symplectic structures deformation-equivalent to
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a given symplectic structure with a Hamiltonian action. Our approach to
deformations of symplectic structures is to use quasi-Poisson theory which
was introduced by Alekseev and Kosmann-Schwarzbach [1], and this ap-
proach is carried out by using the fact that a moment map for a symplectic-
Hamiltonian action o is also a moment map for a quasi-Poisson action o.
The former moment map satisfies conditions for only one symplectic struc-
ture, whereas the latter does conditions for a family of quasi-Poisson struc-
tures parametrized by elements in A%2g. From here we call these elements
twists. We regard a symplectic structure as a quasi-Poisson strucutre with
twist 0, which is denoted by mg. Then we can find different quasi-Poisson
structures m; which induce symplectic structures w’ by the choice of ”good”
twists t. The quasi-Poisson structure inducing a symplectic structure must
be a non-degenerate Poisson structure. We describe the conditions for the
quasi-Poisson structure with a twist ¢ to be a non-degenerate Poisson struc-
ture. Our method of using the family of quasi-Poisson structures is one of
interesting geometry frameworks [1].

From here, we explain briefly the difference among moment maps for
symplectic, Poisson and quasi-Poisson actions on a smooth manifold. We
will explain these theories in detail in Section 2.1, 2.2 and 2.3.

(I) Symplectic-Hamiltonian actions

In symplectic geometry, a moment map u : M — g* for a symplectic
action o of a Lie group G on a symplectic manifold (M,w) is defined with
two conditions: one is for the symplectic structure w,

dp® = 1x,w (X €g). (1.1)
Here 1% (p) := (u(p), X) and X, is a vector field on M defined by

d
ch,p = *Uexth<p) (12)

dt =0
for p in M. The other is the G-equivariance condition with respect to the
action o on M and the coadjoint action Ad* on g*,

poog=Adjopn (1.3)

for all g in G. In this thesis, we call symplectic actions with moment maps
symplectic-Hamiltonian actions to distinguish it from other actions with
moment maps.
(IT) Poisson-Hamiltonian actions

A Poisson Lie group, which was introduced by Drinfel’d [8], is a Lie group
with a Poisson structure m compatible with the group structure. Namely,
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the structure m satisfies
Tgh = Ly« + Rpsmg (1.4)

for any g and h in G, where L, and Ry, are the left and right translations in
G by g and h, respectively. Such a structure is called multiplicative. Then
the simply connected Lie group G* called the dual Poisson Lie group is
obtained uniquely from a Poisson-Lie group (G, 7) and a local action A of
G on G* is defined naturally. We call a multiplicative Poisson structure 7
on G complete if the action A is global. Then (G, ) is called a complete
Poisson-Lie group. A moment map u : M — G* for a Poisson action o of
a Poisson Lie group (G, ) on a Poisson manifold (M, mys) is defined with a
condition

Xy = =i (" (X)) (1.5)

for any X in g, where X® is the right-invariant 1-form on G* with value
X at e. In this thesis, we call Poisson actions with moment maps Poisson-
Hamiltonian actions. If (G,7) is complete, we can also consider the G-
equivariance of a moment map with respect to ¢ and A. An equivariant
moment map for a Poisson action of a complete Poisson Lie group on a
Poisson manifold is a generalization of a moment map for a symplectic-
Hamiltonian action on a symplectic manifold, which was given by Lu in
[18].
(ITT) Quasi-Poisson-Hamiltonian actions

Quasi-Poisson theory, which was originated with [1] by Alekseev and
Kosmann-Schwarzbach, is a generalization of Poisson theory with Poison
actions. More specifically, the theory gives an unified view for various mo-
ment map theories [3], [18], [21], [28]. In quasi-Poisson geometry, quasi-
triples (D, G, bh) and its infinitesimal version, Manin quasi-triples (9, g,b),
play important roles. A quasi-triple (D, G,H) defines a quasi-Poisson Lie
group G% and we can obtain the notion of a quasi-Poisson action of such a
quasi-Poisson-Lie group GhD. A moment map p for the action is a map from
M into the quotient D /G and satisfies a condition not for one quasi-Poisson
structure but for a family of quasi-Poisson structures parametrized by el-
ements in A?g. In this thesis, we call quasi-Poisson actions with moment
maps quasi-Poisson-Hamiltonian actions. An equivariant moment map for
a Poisson action in (II) is an example of a moment map for a quasi-Poisson
action if the Lie group is connected and simply connected. We use the mo-
ment map theory for quasi-Poisson actions to deform symplectic structures
on a smooth manifold.

Now we state the first our main theorem in this thesis.
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Theorem 1.1.1. Let (M, w) be a symplectic manifold on which a connected
Lie group G with the Lie algebra g acts by a symplectic-Hamiltonian action
o, b : M — g* a moment map for o and 7 the Poisson structure induced by
w. Then the following holds:

1. If a twist ¢ in A2g satisfies that [t, ]y, = 0, then ¢ deforms the Poisson

structure 7 to a Poisson structure 7, := 7 — ¢5;. Moreover, if ¢ is
an r-matrix, then o is a Poisson action of (G,7§) on (M, nh,), where
ml, = b — R,

2. For a twist ¢ in AZg, if the isotropic complement g} is admissible on
wu(M), then ¢ deforms the non-degenerate 2-vector field 7 to a non-
degenerate 2-vector field 7,. This condition is equivalent to that the
matrix A;(§) defined by (3.7) is regular for any £ in u(M).

Therefore, if a twist ¢ satisfies the assumptions of both 1 and 2, then t de-
forms w to a symplectic structure w! induced by the non-degenerate Poisson
structure 7. In other words, w and w' are deformation-equivalent.

Theorem 1.1.2. Let (M,w) be a symplectic manifold on which an n-
dimensional connected Lie group G acts by a symplectic-Hamiltonian action
o. Assume that X,Y in g satisfy [X,Y] = 0. Then the twist ¢t = %X ANY
in A%2g deforms the symplectic structure w to a symplectic structure w;. For
example, a twist ¢ in A%h, where b is a Cartan subalgebra of g, satisfies the
assumption of the theorem.

In Section 3.2, we give examples of deformations of symplectic structures
on R?",CP! and the complex Grassmannian Grc(n,r). In Section 3.3, we
study deformations on symplectic toric manifolds. Under certain assump-
tion, we show that our deformations give canonical transformations on a
symplectic toric manifold.

1.2 Pseudo-Poisson-Nijenhuis manifolds

Poisson-Nijenhuis structures were defined by Magri and Morosi [25] to study
bi-Hamiltonian systems. A pair of a Poisson structure m and a Nijenhuis
structure N on a C'*°-manifold M is said to be a Poisson-Nijenhuis structure
on M if m and N have a compatibility condition, i.e., they satisfy

Nonf =nfo N¥, (1.6)
and the (2,1)-tensor C~ given by
Cé'v(avﬁ) = [avB]Nﬂﬁ - [O‘ﬂﬁ];v* (1'7)
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for any o and 8 in Q'(M) vanishes. It is known that Poisson-Nijenhuis
manifolds (i.e., manifolds with Poisson-Nijenhuis structures) are related with
various mathematical objects [15], [16], [25].

Kosmann-Schwarzbach [15] showed that there is a one-to-one correspon-
dence between the Poisson-Nijenhuis manifolds (M, 7, N) and the Lie bialge-
broids ((T'M)n, (T*M)r), where (T'M )y is a Lie algebroid deformed by the
Nijenhuis structure N and (7% M), is the cotangent bundle equipped with
the standard Lie algebroid structure induced by the Poisson structure 7. On
the other hand, Stiénon and Xu [38] introduced the concept of a Poisson-
quasi-Nijenhuis manifold (M, 7, N,¢), and showed that a Poisson-quasi-
Nijenhuis manifold corresponds to a quasi-Lie bialgebroid ((7*M),,dy, ).
Here a Lie bialgebroid [29], [30] consists of a pair (A, A*), where A is a Lie
algebroid, and A* is the dual bundle equipped with a Lie algebroid structure,
together with the following condition: for any D; and Dj in I'(A*A),

da<[D1, Da)a = [da=D1, Do) s 4 (—1)38P1 Dy d 4« Do) 4, (1.8)

where a bracket [-, -] 4 is the Schouten bracket of the Lie bracket of A, and d 4
is the Lie algebroid differential determined from the Lie algebroid structure
of A* [22]. Since the Lie algebroid structure on A* can be recovered from
the derivation d4-, a Lie bialgebroid (A, A*) is also denoted by (A,da~).
A quasi-Lie bialgebroid [12] is a Lie algebroid (A, [, |4, a) equipped with a
degree-one derivation ¢ of the Gerstenhaber algebra (I'(A*A), A, [-,]4), i.e.,
§ satisfies (1.8), and a 3-section of A, ¢ in I'(A3A) such that 62 = [¢4,]a
and §dp4 = 0.

Some of our main purposes in Chapter 4 in this thesis are to define a
pseudo-Poisson-Nijenhuis manifold (M, w, N, ®) and to show that there is a
one-to-one correspondence between the pseudo-Poisson-Nijenhuis manifolds
(M,m,N,®) and the quasi-Lie bialgebroids ((T'M)y,dr,®). A quasi-Lie
bialgebroid ((T'M)n,dr,®) is, so to speak, “the opposite side” of a quasi-
Lie bialgebroid ((T*M ), dn, ¢). Here dx and d, are operators on Q*(M) :=
D(A*T*M) and X*(M) := I'(A*T'M) determined from a 2-vector field 7 and
a (1,1)-tensor N, respectively.

Definition 1. Let M be a C*°-manifold, 7w a 2-vector field on M, a (1,1)-
tensor N a Nijenhuis structure on M compatible with 7, and ® a 3-vector
field on M. Then a triple (7, N, ®) is a pseudo-Poisson Nijenhuis structure
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on M if the following holds:

(i) [7T, (I)] =0,
1
(ii) Stans [1,7] = Niarg®,

(iii) NigpgLx® — tapglnx® — L(LXN*)(a/\B)q) =0

for any X in X(M), e and § in Q1 (M), where t4np := tgtq and (Lx N*)(a A
B):=(LxN*)aNB+aA(LxN*)S.

Furthermore, since quasi-Lie bialgebroids (of course, Lie bialgebroids
also) construct Courant algebroids [22], [34], we can obtain a new Courant
algebroid structure on TM @ T*M from a pseudo-Poisson-Nijenhuis struc-
ture on M. Therefore a pseudo-Poisson-Nijenhuis structure on M comple-
ments the bottom left of the correspondence table below:

a Courant algebroid structure [22] on TM & T*M
a quasi-Lie bialgebroid [34] a Lie bialgebroid [29] a quasi-Lie bialgebroid [34]
(TM)x, dy, @) ((TM)y, (T*M),) (T M)z, dn, 9)
a pseudo-Poisson Nijenhuis | a Poisson Nijenhuis [25] | a Poisson quasi-Nijenhuis [38]
(m, N, ®) (m, N) (m,N, )
7 @ a 2-vector field 7 : Poisson 7 : Poisson
N : Nijenhuis N : Nijenhuis N :a (1,1)-tensor
® : a 3-vector field ¢ : a 3-form

All of the pairs (7, N) of the bottom of the correspondence table above
are compatible. The condition that a 2-vector field = and a (1, 1)-tensor
N on M are compatible is very important in studying Poisson-Nijenhuis,
pseudo-Poisson-Nijenhuis and Poisson-quasi-Nijenhuis manifolds. In Section
4.1, we prove several properties related to the compatibility under minimum
assumptions, for example, Poisson-Nijenhuis hierarchy [16], [26] and a rela-
tion with a brackets on the tangent and the cotangent bundle [15], [38] and
SO on.

In Section 4.3, under the assumption that a 2-vector field 7 is nondegen-
erate, we show that we can reduce one of the conditions for a triple (7, N, ®)
to be a pseudo-Poisson-Nijenhuis structure. In this case, since there is a
unique nondegenerate 2-form w corresponding to w, we can rewrite the def-
inition of pseudo-Poisson-Nijenhuis structures by words of the differential
forms.

Definition 2. Let M be a C*°-manifold, w a nondegenerate 2-form on M, a
(1,1)-tensor N a Nijenhuis structure on M compatible with 7 corresponding
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to w, and ¢ a closed 3-form on M. Then a triple (w, N, ¢) is a pseudo-
symplectic-Nijenhuis structure on M if

LXAydw = N*LX/\Yqb (X,Y S %(M))

Moreover we show that the above triple (w, N, ¢) induces a twisted Poisson
structure (my, ¢) [37]. Twisted Poisson structures arose from the study of
topological sigma models by Park [33]. It is known that twisted Poisson
structures on M engender certain quasi-Lie bialgebroid structures on 7% M
[34].






Chapter 2

Preliminaries

In this chapter, as preliminalies of the main theorems in Section 3 and
Section 4, we recall symplectic, Poisson, quasi-Poisson geometries and Lie
algebroid theory.

2.1 Symplectic geometry

In this section, we recall symplectic geometry and moment map theory for
a symplectic action [28], [36]. Let M be a C'*°-manifold.

Definition 3. Let w be a 2-form on M. Then the 2-form w is a symplectic
structure or symplectic form on M if w is closed and w), is nondegenerate
on T,M for all p € M. A pair (M,w) is a symplectic manifold if w is a
symplectic structure on M.

The nondegeneracy of a symplectic structure w on M means that dim M (=

dim 7}, M) must be even and that w™ :=w A o) Aw is a volume form on M.
The form ‘;’TT is called the symplectic volume form or Liouville volume form
of (M,w) and the integral

wTL

— 2.1
e (2.1)
is called the symplectic volume of (M,w), denoted by Vol(M,w).
Example 1. We consider M = R?" with linear coordinates (z1, ..., Zn, 1, . . .
The 2-form
n
wo = Zdajk A dyp (2.2)

k=1

15

7yTL)
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is a symplectic structure on R?".

Example 2. We consider M = C" with linear coordinates (z1, ..., z,). The
2-form
7: n
wo = 5 ; dzi, N\ dZ (2.3)

is a symplectic structure on C". Under the identification C* = R?", z;, =
xr, + 1Yk, this structure coincides with the structure (2.2) in Example 1.

Example 3. On the 2n-torus T?" with angle coordinates (61, ..., 02,), we
consider the 2-form

n
w = Z dBfo;—1 N dbo;.
i=1
Then w is a symplectic structure on T2".

Example 4. The complex projective space CP™ has the standard coordinate
neighborhood system {(U;, ¢;)}; consisting of n + 1 open sets U; given by

Ui:={[z1:: 2znt1] € CP"|z; # 0},
Q5 : U, — C" = RQn,

21 Zi—1 Zi+1 Zn+1
[zl:---:zn+1]»—><,..., , e

2 Zq 2 2

21 <1 Zn+1 Zn+1
— | Re—,Im—, ..., Re nt ,Im nt ,
Zi 2 2 Zi

for i = 1,...,n 4+ 1. By using this coordinate system, the 2-form wprg on
CP™ defined by setting

©; <;8810g (Z |2k]? + 1))
k

on each Uj is a symplectic structure on CP". The 2-form wrg is called the
Fubini-Study form.

In the case of n = 1, The complex projective line CP! has the standard
coordinate neighborhood system {(U1, ¢1), (U2, v2)}. The Fubini-Study form
wrpsg on CP! is

dxy A dy;

WFS = —5—5——5
BT @212

on Uy, where (x1,y1) := (Rei—f,lmi—i)_
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Definition 4. Let (M;,w;),i = 1,2, be 2n-dimensional symplectic manifolds
and ¢ : M7 — My a diffeomorphism. Then ¢ is a symplectomorphism if
Y wy = wi. We denote the symplectomorphisms of a symplectic manifold
(M,w) by Sympl(M,w), i.e.,

Sympl(M,w) = {f : M = M|f*w = w}.

Let (M,w) be symplectic manifold and f : M — R a smooth function.
For the 1-form df, there exists a unique vector field X in X(M) such that
tx,w = df by nondegeneracy of w.

Definition 5. A vector field X s on (M, w) as above is called the Hamiltonian
vector field with a function f.

If X in X(M) is Hamiltonian with a function f, we obtain
Lxw=dixw+ixdw=d>f+0=0. (2.4)
Therefore Hamiltonian vector fields on (M, w) preserve w.

Definition 6. A vector field X on (M,w) preserving w, i.e., satisfying
Lxw =0, is called a symplectic vector field.

By Definition 5 and the calculation (2.4), we can summarize the following:

{X in X(M) is symplectic < ¢xw is closed (2.5)

X in X(M) is Hamiltonian < ¢ yw is exact.

Definition 7. Let G be a Lie group. An action of G or a G-action on M is
a group homomorphism

Y : G — Diff (M), g— 1.
The evaluation map associated with an action ¢ : G — Diff (M) is
G X M — M7 (gvp) = Q/)g(p)

The action 1 is smooth if the evaluation map is smooth.

Example 5. Let X in X(M) be a complete vector field. Then
¥ : R = Diff (M), t+— 1 := ExptX

is a smooth action of R on M.
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In this thesis, we simply call a smooth action as an action. In addition,
we identify an action with the evaluation map associated with it and denote
the evaluation map associated with an action by the same symbol as the
action.

We introduce some types of actions of Lie groups.

Definition 8. Let ¢ : G x M — M be an action of a Lie group G on a
manifold M. Then,

(i) o is transitive if for any = and y in M, there exists ¢ in G such that
og(z) = y.

(ii) o is effective if for any two distinct g and h in G, there exists = in M
such that o4(z) # op(x).

Next, we define symplectic and symplectic-Hamiltonian actions, which
are actions on symplectic manifolds.

Definition 9. Let (M,w) be a symplectic manifold and G a Lie group. An
action o of G on M is symplectic if

o : G — Sympl(M,w) C Diff (M).

Definition 10. Let (M, w) be a symplectic manifold, G a Lie group, g the
Lie algebra of G, g* the dual space of g and ¢ a symplectic action of G on
M. Then the action o is a symplectic-Hamiltonian action if there exists a

map
peM—g*
satisfying the followings:
1. For each X in g,
dp = 1x,w. (2.6)

Here pX (p) := (u(p), X) and X, is the fundamental vector field of X
for 0 on M defined by

d

Xa,p = @Uexth(p) o (27)

for p in M.
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2. the G-equivariancy with respect to the action o on M and the coadjoint
action Ad* on g*,
ooy :AdZou (2.8)
for all g in G.

Then the quadruple (M,w, G, ) is called a Hamiltonian G-space and p is
called a moment map.

In the special case of G = R (resp. S!), since g = g* = R, a moment map
p: M — R for an action o on (M, w) satisfies the following:

1. For the generator X = 1 of g = R, we obtain X (p) = pu(p)-1 for any p
in M, i.e., pX = p. The fundamental vector field X, is just the vector
field generated by the 1-parameter group of transformation {o¢}icr.
Hence the condition (2.6) is

dp = tx,w;

2. Since the coadjoint action Ady for any g in G =R (or S1) is equal to
the identity map, the condition (2.8) is

Oght = p (2.9)
for all gin G =R (or St), i.e., Lx,pu=0.

Therefore o is a symplectic-Hamiltonian action of R or S on (M, w) with a
moment map p if and only if the vector field generated by the 1-parameter
group of transformation {o}4cr is Hamiltonian with a function pu.

Example 6. We consider R?" with wy := >_1_, dzy A dyx, (Example 1) and
set X = —aiyl. Let {o:}tcr be the 1-parameter group of transformation
generated by X. Since X = X, is Hamiltonian with the linear coordinate

function x1, R-action ¢ is symplectic-Hamiltonian action on R?".

Example 7. We consider R*" with wy := Y_}_; day, A dyy, (Example 1). An
additive group R™ acts on R?" by the parallel transformation:

a-(r,y) = (x+a,y) (r,y,a € R").

This action is symplectic. Then the infinitesimal action agzn of a = Yay, as, as)
in R" = Lie(R") is

" 0
aRr2n = Z a; O € %(RQTL)
i=1 ¢
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Moreover, a map
iR S R (z,y) =y
is a moment map for this action.

Example 8. We consider the case that SU(n + 1) acts on (CP", wrg) given
by

n+1 n+1
g-lz1: 0t Zpg] = Zaljzj T Zan-i-l,jzj ,
j=1 j=1
for any [z1 : -+ : zp41] in CP™ and ¢g = (a45) in SU(n + 1).
The isotropic subgroup of [1:0:---:0] is

S(U(1) x Un)) := { (“309 g) € SUn + 1)‘ hcR B U(n)} .

Therefore it follows
SU(n+1)/S(U(1) x U(n)) = CP"™.

The action of SU(n+1) on (CP", wrs) is a symplectic-Hamiltonian action
and its moment map p is defined by

1 <t(21,...,zn+1),Xt(2’1,...,Zn+1)>
Z1 2 ,X) = =Im
tlle ). X) 2 (a1, s 2nt1) (2155 20g1))
for any [z1: -+ : zp41] in CP” and X in su(n + 1).

‘We consider the case of n = 1. The matrices

(0 1 (0 i (i 0
A= 1027 o) 2 o =

form a basis of su(2). Let {¢} be the dual basis of su(2)*. We obtain

Y1 €1+ T 52+ 1—x%—y% 3
1+ 22 +y? L+ 22 +y? 2(1+ 22 +4?)

M(xhyl) =

on the standard neighborhood U;. Hence u(CP') C su(2)* = R3 is the

2-sphere with center at the origin and with radius %
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Example 9 (Coadjoint orbits). Let G be a compact Lie group, g the Lie
algebra of G and g* the dual space of g. We consider the adjoint representa-
tion Ad and the coadjoint representation Ad* of G' on g and g*, respectively.
For any £ in g*, the set

O¢ == {Adi¢ € g*| g € G}

is a submanifold of g* called a coadjoint orbit through £. Since the restriction
to O¢ of Ad™ is transitive, we obtain

O = G/Ge,
where
Ge == {g € G| Ady§ = ¢}

is stabilizer of {. Let Xy and Xy« be the fundamental vector fields of X in
g for the adjoint and coadjoint representations of GG, respectively. We show
that

Xg,Y = [Xv Y] = adx}/,
(Xg=6,Y) = (§, —adxY) = (adx{,Y).

for any Y in g and { in g*. Hence we obtain Xg- ¢ = adx & in Teg* = g*. We
define for any { in g*, a skew-symmetric bilinear form @, on g by

@5<X7Y) = <§7 [X7Y]>

Then it follows that the kernel of W is the Lie algebra g¢ of the stabilizer of
& for the coadjoint representation by the fact that

ge = {X € g| adx{ = 0}
={X eg| &[X.Y])=0(Y eg)}.

We show that we defines a nondegenerate 2-form on T¢O;. In fact, since the
map

g — T;;-Og, X — Xg*7§

is surjective and the kernel of this map is just g¢, we obtain T:O¢ = g/ge.
Since for any vector v in T:Og, there exists an element X in g such that
v = Xg« ¢, we define a skew-symmetric bilinear form we on T:O¢ as

wf(XE*:&YE*:E) = <§7 [X7 Y])(: ('DE(Xv Y))
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This definition is well-defined since ker &g = g¢ and Xg- ¢ = ad’x§ = 0 for any
X in g¢, i.e., this definition does not depend on the choice of a representative.
The nondegeneracy of we follows from the fact that ker e = ge.

For any g in G, we set

wadze(Xge adze, Yor adze) = (Adgg, [X,Y]).

Then it follows that the 2-form w on O¢ with value w, at each point 7 in
O¢ is a symplectic structure on O¢. It is obvious that w is G-invariant.
The 2-form w on O is called canonical, the Lie-Poisson or the Kirillov-
Kostant form. Then the restriction to O¢ of the coadjoint representation is
a symplectic-Hamiltonian G-action on (Og,w) with a moment map

L: 0 = g", £ &

In the case of G = SU(n + 1), it is well known that the Grassmannian
manifold Gre(n,r) is included in su(n + 1)* as a coadjoint orbit and that
the Kirillov-Kostant form on the projective space CP"™ = Grg(n, 1) coincide
with the Fubini-Study form wpg on CP"™ = Gr¢(n, 1).

We define a symplectic toric manifold, which is an example of symplectic
manifolds with symplectic Hamiltonian torus-actions.

Definition 11. A symplectic toric manifold is a 2n-dimensional compact
connected symplectic manifold (M,w) on which the n-dimensional torus
T™ acts effectively as a symplectic-Hamiltonian action with a moment map
w: M — R™(= Lie(T")).

In general, there exists no classification of symplectic manifolds. However
there exists a classification of symplectic toric manifolds, which is well known
as the Delzant theorem. The Delzant theorem is one of the applications of
the moment theory. To describe the Delzant theorem, we define Delzant
polytopes.

Definition 12. A polytope A in R™ is a Delzant polytope if A is convex and
satisfies the followings:

(i) it is simple, i.e., there exist n edges meeting at each vertex;

(ii) it is rational, i.e., the edges meeting at the vertex p are rational in the
sense that each edge is of the form p + tu; (t = 0), where u; in Z";

(iii) it is smooth, i.e., for each vertex, the corresponding uq,...,u, can be
chosen to be a Z-basis of Z".
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Theorem 2.1.1 (the Delzant Theorem [7]). Symplectic toric manifolds are
classified by Delzant polytopes. More precisely, there exists the following
one-to-one correspondence:

{symplectic toric manifolds} L {Delzant polytopes}
(M,w, T, )+ p(M).

2.2 Poisson geometry

In this section, we review Poisson geometry [27], [43]. Moreover we review
Poisson-Lie group theory, Poisson action and its moment map theory [18],
19], [21].

2.2.1 Poisson manifolds

We begin with the definition of a Poisson bracket.

Definition 13. A Poisson bracket on the C*°-functions C*>°(M) on M is
the bilinear operator {-,-} : C®°(M) x C®(M) — C*°(M) satistying the
following:

(i) (C*°(M),{-,-}) is a Lie algebra;
(i1) {-,-} is a derivation in each factor, that is, for any f, g and h in C*°(M),
{f,gh} = {f. gth + g{f,h}.

A pair (M, {-,-}) is called a Poisson manifold.

Example 10. Any manifold M has the trivial Poisson structure, which is
defined by

{f.9}:=0
for any f and g in C*°(M).

Example 11. Let (M,w) be a symplectic manifold. Then we can define a
Poisson bracket {-,-},, on M by

{f7g}w = w<Xf7 Xg)

for any f and g in C°°(M), where Xy and X, in X(M) are the Hamil-
tonian vector fields for w with functions f and g, respectively. Therefore
any symplectic manifold has the Poisson bracket induced by the symplectic
structure.
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Example 12. Let g be a Lie algebra and g* the dual space of g. Then g*
is a Poisson manifold with the Lie-Poisson bracket defined by, for any f, g
in C*°(M) and ¢ in g%,

{f,93(&) = (&, [dfe, dge]),

where we regard the differentials dfe : Teg* = g% — TR = R and dgg :
Teg* = g" — Tye)R = R as elements in (g*)* = g. A pair (g, {-,-}) is called
a Lie-Poisson space.

Example 13. Let (M;,{-,-};), ¢ = 1,2, be Poisson manifolds. Then a
Poisson bracket {-,-} on the product manifold M; x My is given by
{f, 9}, y) = {f(x,), 92, )} (y) +{F (5 w) 90 y)ha(e)

for any f,g in C°°(M; x M), x in M; and y in Ms. Here f(z,-), g(z,-) :
My — R are in C*°(Ms) and f(-,y), g(-,y) : M1 — R are in C°(Ma).
Hence (M7 x Ma,{-,-}) is a Poisson manifold.

Proposition 2.2.1. Let (M, {-,-}) be a Poisson manifold. Then for f in
C>°(M), there exists a unique vector field Xy on M such that

Xrg =19, f}

for any g in C°°(M). The vector field Xy is called the Hamiltonian vector
field of f.

Obviously, a Hamiltonian vector field for a Poisson bracket {-,-}, in-
duced by a symplectic structure w on M coincides with a Hamiltonian vector
field for the symplectic structure w on M.

Definition 14. Let (M;,{-,-};), ¢ = 1,2, be Poisson manifolds. Then a

map ¢ : My — My is Poisson map between (M, {-,-}1) and (M, {-,-}2) if
e {f 9k ={¢"f, ¥ gh

for any f and g in C*°(My).

If (M;,w;), i = 1,2 are symplectic manifolds, then a map ¢ : M; — My
is symplectomorphism if and only if ¢ is Poisson with respect to Poisson
brackets {-,-}., on My and {-, -}, on My induced by w; and wy respectively.

Let (M,{-,-}) be a Poisson manifold. Then there exists a 2-vector field
m on M such that

Wp(dfpvdgp) = {fvg}(p)
for any f,g in C*°(M) and p in M.
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Definition 15. The above 2-vector field 7 on a Poisson manifold (M, {-,-})
is called the Poisson structure induced by {-,-} on M.

Theorem 2.2.2 (Pauli-Jost Theorem). We assume that the Poisson struc-
ture 7 induced by a Poisson bracket {-,-} on M is nondegenerate, i.e., it
defines an isomorphism 7'('5 :TyM — T,M for any p in M given by

(Trf,ozp, Bp) := mp(ap, Bp)

for any o and B in Q'(M). Then 7 induces a symplectic structure on M.
The symplectic form w is defined by the formula

W(va Xg) = {f7 g}
for any locally defined Hamiltonian vector fields X; and X,.

Let (M;,{-,-}:) be Poisson manifolds, m; the Poisson structures induced
by {-,-}i, @ = 1,2. Then a map ¢ : M; — M> is Poisson if and only if, for
any p in My,

PxT1,p = T2,0(p)-

To describe a necessary and sufficient condition for a given 2-vector field
on M to a Poisson structure on M, we define the Schouten bracket on the
multi-vector fields X*(M) generalized the Lie bracket on the vector field

Theorem 2.2.3 ([27]). Let M be a manifold. Then there exists a unique
anti-symmetric bilinear operator [-, -] : X*(M) x X*(M) — X*(M), called
the Schouten bracket on X*(M), that satisfies the following properties:

(i) It is a biderivation of degree —1, that is, it is bilinear,
deg[D1, Do) = degDq + degDs — 1, (2.10)
and
[D1, Ds A D3] = [Dy, Do] A Dy
+ (~1)(degpri+)desDap) A (D) Dy (2.11)
for D; in X*(M),
(ii) It is determined on C*°(M) and X*(M) by
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(a) [f,9]=0(f,g € C=(M));
(b) [X, fl=XFf (f € C®(M),X € X(M));
(c) [X,Y] (X,Y € X(M)) is the standard Lie bracket on X(M).
(iii) [Dy, Do) = —(—1)(degDi-1)(degD—1)[p, D).
In addition, the Schouten bracket satifsies the graded Jacobi identity
(_1)(degA—1)(degC—1)[[A’ B], C] + (_1)(degB—1)(degA—1)[[B’ C], A]

+ (_1)(degC—1)(degA—1)[[C’ A],B] -0
(2.12)

for A, B and C in X*(M).

The following formulas are very useful for computing with the Schouten
bracket:

(i) LxA=[X,A] (X € X(M),A e xX*(M));

(ii) (the derivation property of the Lie derivative relative to the Schouten
bracket)
Lx[A,B]=[LxA,B]+[A LxB] (X € X(M),A,B € X*(M));

(iii) For X; in X(M) and A in X*(M),

[Xi A AXp A=) (D) XA A X AN A X
i=1

(iv) For X; and Yj in X(M),
[XiA- A Xy, YIA - AY]
= ()" (DXL YA X A AX A A X,
‘7j

~

AYiA--AYjA- A

A necessary and sufficient condition for a 2-vector field 7 on M to be
Poisson is the following.

Proposition 2.2.4. (i) For a 2-vector field 7 on M satisfying

[7T7 ﬂ—] =0,
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the bracket {f, g} given by

{f,9}x = 7(df,dg) (2.13)

for any f and g in C°°(M) is Poisson.

(ii) Let 7 be the Poisson structure induced by the Poisson bracket {-,-}
on M. Then

where the bracket of the right hand side is given by (2.13).

From here on, using 7 in X2(M) satisfying [r, 7] = 0, we denote a Poisson
manifold by (M, n) and the induced bracket by {-,-},. This is justified by
Proposition 2.2.4.

Proposition 2.2.5. We assume that the Poisson structure = on M is nonde-
generate. Then the symplectic structure w on M induced by 7 is determined

by

In general, for any 2-form w in M, the map w}b, is a homomorphism T, M —
T,y M for any p in M defined by

<%b>Xp7Yp> 1= wp(Xp, Yp)
for any X and Y in X(M).

For any 2-vector field w on M, the followings hold:

Proposition 2.2.6 ([43]). For a local coordinate (x;) around a point p in
M, we set

T = E 7sz
81‘9

Then we obtain

oIk Ot o\ 0 0 0
li b tk A — A —. (2.1
ZJ;; < o T o +7r oz ) ot " I " Ok (2.15)

We define the characteristic distributions of Poisson structures on M.
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Definition 16. Let m be a Poisson structure on M. We call a subset
78 (T*M) of TM the characteristic distribution of the Poisson structure 7.
In general, 7#(T*M) is not a subbundle of TM. The rank of the Poisson

structure 7 at a point p in M is defined as the rank of wf) cTyM — Tp,M,

i.e., the dimension of the vector space ﬂf,(T »M). A Poisson structure r is
regular if the rank of 7 is everywhere equal.

Example 14. On the n-torus T™ (n = 3) with angle coordinates (61, ..., 6,),

a 2-vector field
= 4 A i + A 4
A 00, " \ae, 06, )

where ) is in R and a, b and c are three distinct numbers, is a regular Poisson
structure with rank 2 (see [20]).

2.2.2 Poisson-Lie groups and Poisson actions

We review the definitions of Poisson-Lie groups and Poisson actions [19].

Definition 17 ([19]). Let G be a Lie group and 7 a Poisson structure on
G. Then a pair (G,m) is a Poisson-Lie group if the multiplication map
m : G x G — G is a Poisson map, where G x G is equipped with the
product Poisson structure (see Example 13). In this case, we call the Poisson
structure m on G multiplicative.

Let 7 be a Poisson structure on a Lie group G. Then 7 is multiplicative
if and only if

Tgh = Ligen + Rpsmy (2.16)

for any g and h in G, where maps Ly : G — G and Ry, : G — G are the
left and the right translations in G by g and h respectively, as well as their
differential maps extended to multi-vector fields. By the formula 2.16, we
notice that a non-zero multiplicative Poisson structure is in general neither
left nor right invariant 2-vector field.

Example 15 ([19]). The trivial 2-vector field 7 = 0 is obviously multiplica-
tive, so that any Lie group G with m = 0 is a Poisson-Lie group.

Example 16 ([19]). The direct product of two Poisson-Lie groups with the
product Poisson structure is a Poisson-Lie group again.
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Example 17 ([19]). Let G be an Abelian Lie group, g the Lie algebra of G
and 7 a 2-vector field on G. Then 7 is multiplicative if and only if

TR:G = gNg, g Ry1,my (2.17)

is a Lie group homomorphism from G to the Abelian group gAg. Lie-Poisson
space g* is a Poisson-Lie group when considered as an Abelian group. In
fact, let m be the Poisson structure on g* induced by the Lie-Poisson bracket,
{e;}; a basis of g, {e'}; the dual basis of g* and (§;) the linear coordinates
for {e'} on g*. Then by the formula

- (3)
agz 57

we identify g* with T¢g*. It follows that

0 o . o
e <a£l>n B <a€i>£+n7 Rﬁ(dfi)n = (d&i)e+y

for any £ and 7 in g*. Regarding e; as (d&;)¢, we obtain

(R (e« Tetn) ((d&i)o, (d€5)o) = ey (Repy (d&i)o, Repy (d€;)0)
= 7r§+n((d§i)£+777 (dgj)ﬂ-n)
= (€ + 1, [(d&i)e+n, (d€))etn])
= (£ +m, (e, e5])
= (& leqe5]) + (0, [, €5])
= (&, [(d&)e, (d&5)e]) + (n, [(d&i)y, (d€5)n])
= me((d&)e, (d€5)e) + mn((d&i)n, (d&5))
= me(Rg(d&i)o, R (d€;s)o)
+ mp(R;,(d&i)o, Ry (d€5)o)
= (R—g«me) ((d€i)o, (d€;)0)
+ (Reyermy) ((d&i)os (d€;)o)

for any & and 7 in g*. Therefore the map (2.17) is a Lie group homomor-
phism.

We define Poisson actions for Poisson manifolds.

Definition 18 ([19]). Let (G, 7g) be a Poisson-Lie group, (M, ms) a Pois-
son manifold and a map o : G x M — M a G-action on M. Then o is a
Poisson G-action if o is a Poisson map, where G X M is equipped with the
product Poisson structure.
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By Definition 17, the action of a Poisson-Lie group G on itself by the
left translation is a Poisson action. For a given action o : G x M — M of a
Poisson-Lie group G on a Poisson manifold M, we set

og: M — M,p— o4(p),
op: G —= M,g— o4(p)

for any g in G and p in M. Then the action ¢ is Poisson if and only if

TM,o4(p) = OgxTM,p + OpsTG g (2.18)
for any g in G and p in M.

Example 18 ([19]). Let (M,w) be a symplectic manifold, G a Lie group
and o a symplectic action of G on (M, w). Let m, be a Poisson structure on
M induced by w. Then by regarding G as a trivial Poisson-Lie group (G, 0),
the action o of (G,0) on (M, ) is Poisson.

Example 19 ([19]). Let G be a Lie group, g the Lie algebra of G and g* the
dual space of g. Then an action of the Lie-Poisson space g* on the cotangent
bundle T*G = G x g* defined by

(& (g,m) = (9. €+ 1)

for any £, in g* and g in G is a Poisson action, where T*G = G x g* is
equipped with the Lie group structure of a semi-direct product with respect
to coadjoint action Ad of G on g* and with the product Poisson structure
of the trivial Poisson structure on G and the Lie-Poisson structure on g*.

Let A be an arbitrary 2-bector in g A g, where g is the Lie algebra of a
Lie group G. We define a 2-vector field w5 on G by

TA,g := Lgs A — Rge A

for any g in G. The 2-vector field 75 satisfies (2.16). Setting a left- and a
right-invariant 2-vector fields on G by

Ay =LA,
Al = Rgu A

for any g in G, we obtain mp , = AI§ — AgR. The Schouten bracket of mp with
itself is computed as

(A, mA] = [AL — AR AL — AR
= [ALa AL] - Q[ALa AR] + [AR7 AR}
= [AL7 AL] + [AR7AR]>
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where we use the fact that the Lie bracket of a left- and a right-invariant
vector field vanishes. Furthermore, [A", A¥] is a left-invariant and [AR, AR]
is a right-invariant by a property of the Lie bracket. By setting g = h = ¢,
where e is the identity in G, in (2.16), we obtain mp . = 0. If we write

™= Z TFA 8:6I 81:3

for a local coordinate (z;) around e in G, then 7TA = 0 for any 7 and j.
Since it follows from (2.15) that
ki
lj ony kaw 0 0 0
—_— N\ — N\ —
[, mal %; < A Dl e oz ) ozt Oz Oxk’

we obtain [mp, ma]e = 0. Therefore it follows that
[AL AL, = —[AR AR,
We denote [A, AY]. in g A g A g by [A, A] and obtain
[ma, ma] = [A, AJY — [A, AJR.
Then for any g in G, we compute

[ma, mAlg = 0 <= [A, Aly — [A, Al =0
<= Lg«[A, A] = Rg«[A, A
<= Ady[A,A] = [A A
so that 7, is Poisson if and only if [A, A] is Ad-invariant. We call such an

element A an r-matriz. Using the definition of the Schouten bracket for
[A%, A%], we obtain the explicit formula for [A, A] as

(A A(Em Q) =—=2 ) (&AM, A%())

Cycl(&,n,¢)

for any &,m and ¢ in g*, where the linear map Af : g* — g is defined by
(A%, n) := A(&,n) for any € and 7 in g*. Here the symbol ZCycl(E,n ¢) means
the sum of the remaining cyclic permutations of £, n and (.

Definition 19 ([19]). We say that a 2-vector A in gA g satisfies the classical
Yang-Bazter equation if

[A,A] = 0. (2.19)
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Drinfeld proved the following theorem [8].

Theorem 2.2.7 ([8], [19]). Let G be a Lie group, g the Lie algebra of G
and A in g A g arbitrary. We define a 2-vector field my on G by

TA,g = LgeA — Rge A (2.20)

for any g in G. Then (G, my) is a Poisson-Lie group if and only if A is an r-
matrix. In particular, if A satisfies the classical Yang-Baxter equation, then
a 2-vector field mp defined by (2.20) is a multiplicative Poisson structure on

G.

Example 20 ([19]). Let G = SL(2,R) and g = s[(2,R). The matrices

_ (1 0 170 1 _1/01
‘=5l —1)%T32\l1 0% 721 o

form a basis of s[(2,R). Then it follows that
[e1, €2] = €3, [e2,e3] = €1, [e3,e1] = —ea.

Any element A in g A g is of the form A = Aje; Aes + Asea Aeg + Azes Aeq.
Since a vector space gAgAg is 1-dimensional and e Aea Aes is Ad-invariant,
[A, A] is also Ad-invariant.

Example 21 ([19]). Let G = SU(2) and g = su(2). The matrices

elzzl(i O.), 62221<O 1), 631:1(9 l)
2\0 —¢ 2\—-1 0 2\ O
form a basis of su(2). Then it follows that
[e1,ea] = es, [e2,e3] =e1, [e3,e1] = ea.
Similar to in the case of SL(2,R), any element A in g A g is an r-matrix.

We shall define the multiplicativity of general multi-vector fields.

Definition 20 ([19]). Let G be a Lie group and K a multi-vector field on
G. Then K is multiplicative if

th = Lg*Kh + Rh*Kg (2.21)

for any g and h in G.
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A (1-)vector field X is multiplicative if and only if it generates the 1-
parameter group of transformation of group automorphism of G. In fact,
let ¢; be the 1-parameter group of transformation of X. For any g and h in
G, we obtain

d
Xgh = %@t(gh)

Y

t=0

d
Lgs X + RunXg = —01(9)1(h)

t=0

Therefore the equivalence follows from existence and uniqueness of solutions
of ordinary differential equations.

In general, any Ky in A*g defines a multiplicative k-vector field K on G
by K, := Lg«Ko + Ry« Ko for any g in G. We will show later, when G is
compact or semi-simple, these are all the possible multiplicative K-vector
fields.

For any k-vector field K on G, we define a map Ky : G — AFg by
g — Ry, K, for any g in G. Then K is multiplicative if and only if Kr
satisfies the cocycle condition

Krgh = Kr,g + Adg«Kr h (2.22)
for any g and h in G.

Lemma 2.2.8 ([19]). Let G be a connected Lie group and g the Lie algebra
of G. Let p: G xV — V be a representation of G on a vector space V and
dp: g x V — V the differential representation of p. Then:

(i) If a map ¢ : G — V is a l-cocycle on G relative to p, i.e., for any g
and h in G,

o(gh) = ¢(g) + p(9)(¢(h)),

then the differential € := (d¢). : g — V at e is a 1-cocycle on g relative
to dp, i.e., for any X and Y in g,

e([X,Y]) = dp(X)(e(Y)) — dp(Y)(e(X)),
and d¢ = 0 means that ¢ = 0.

(i) When G is simply connected, any 1-cocycle € on g relative to dp can
be integrated to a 1-cocycle ¢ on G relative to p, i.e., d¢ = ¢.
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(iii) When G is semi-simple, any 1-cocycle € : g — V on g relative to dp is
a coboundary, i.e., £(X) = dp(X)(vo) for some vy in V.

(iv) When G is compact, any 1-cocycle ¢ : G — V on G relative to p is a
coboundary, i.e., ¢(g) = vo — p(g)(vo) for some vy in V.

For a k-vector fields K on G with K. = 0, we call the differential (dKR).
of Kr at e the derivative of K at e and donote by d.K. In general, for
k-vector field K on any manifold M with K, = 0 for some xg in M, we can
define the derivative d,,K of K at xy as a linear map given by

TooM — A*T, M, X — (LK )z,

where X is any vector field on M with X,, = X. From the fact that K,, = 0,
it follows that the value of (£¢K),, does not depend on the choice of X.
We call the dual map of d,,K the linearization of K at xo. It is a linear
map given by

ATEM = TE M, ar A Aoy — d(K (@, G) ) o
where &; is any 1-form on M with value a at xg.

Proposition 2.2.9 ([19]). Let G be a Lie group, e the identity in G and g
the Lie algebra of G.

(i) the derivative of a multiplicative k-vector field on G at e is a 1-cocycle
on g relative to the adjoint representation of g on A¥g.

(ii) When G is connected, a multiplicative k-vector field K on G is uniquely
determined by its derivative at e.

(ili) When G is connected and simply connected, there exists a one-to-
one correspondence between multiplicative k-vector field on G and
1-cocycle on g relative to the adjoint representation ad of g on AFg.

(iv) When G is connected and semi-simple, or compact, for any multiplica-
tive k-vector field K on G, there exists an element Ky in A¥g such that

Kg = Lg*KU + Rg*KO (223)

for any ¢ in G.
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Corollary 2.2.10 ([19]). Let G be a connected and semi-simple, or compact
Lie group and g the Lie algebra of G. Then any multiplicative Poisson
structure 7w on G is of the form

Tg = Lge A — Ry A (2.24)
for any g in G, where A in g A g is an r-matrix.

Proposition 2.2.11 ([19]). Let G be a connected Lie group, e the identity in
G and K a multi-vector field on G. The following conditions are equivalent:

(i) K is multiplicative;

(ii) K. =0 and Lx K is left-invariant for any left-invariant vector field X
in G;

(iii) K. =0 and Lx K is right-invariant for any right-invariant vector field
X in G.

By Proposition 2.2.11, we obtain the following proposition.

Proposition 2.2.12 ([19]). Let G be a connected Lie group and K and
L two multiplicative multi-vector fields on G. Then their Schouten bracket
[K, L] is multiplicative.

From now on, we recall the infinitesimal version of Poisson-Lie group,
namely Lie bialgebra. First, by Proposition 2.2.9 and Proposition 2.2.12,
the following holds.

Proposition 2.2.13 ([19]). Let G be a connected Lie group and 7 a mul-
tiplicative 2-vector field on G. We denote the linearization of m at e by
[,:]": g Ag* — g*. Tt is a skew-symmetric bilinear form given by, for any
& and 7 in g*,

(&)™ = d(m(&,7))e;

where £ and 7 are any 1-forms on G with values & and 7 at e respectively.
Then 7 is Poisson if and only if the skew-symmetric bilinear form [-,-|"
satisfies the Jacobi identity, that is, a pair (g*,[-,:]™) is a Lie algebra. we
call such a Lie algebra the linearization of the Poisson structure at e.

Example 22 ([19]). Let G be a connected Lie group, g the Lie algebra of
G and g* the dual space of g. Let A in gAg be an r-matrix. Then a 2-vector
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field mp defined by (2.20) is a multiplicative Poisson structure on G. The
Lie bracket [-,:]™ on g* defined by the linearization of 75 at e is given by

€ 7)™ = adjen — adyy, € (2.25)
for any ¢ and 7 in g*.

Definition 21 ([8], [19]). Let g be a Lie algebra and g* the dual space of
g. We assume that g* has a Lie algebra structure [-,-].. A pair (g,g*) is a
Lie bialgebra if the dual map § : g — g A g of the Lie bracket map [-, ] :
g* Ag" — g" on g is a 1-cocycle on g relative to the adjoint representation
ofgon gAg,ie.,

O([X,Y]) = adxo(Y) — adyd(X) (2.26)
for any X and Y in g. Sometimes we denote the Lie bialgebra by (g,9).
The following theorem follows immediately from Proposition 2.2.9.

Theorem 2.2.14 ([8], [19]). Let (G, m) be a Poisson-Lie group, g the Lie
algebra of G and g* the dual space of g. Then the linearization of 7 at e
defines a Lie algebra structure on g* such that (g,g*) is a Lie bialgebra,
called the tangent Lie bialgebra to (G, ). Conversely, if G is connected and
simply connected, any Lie bialgebra (g,g*) defines a unique multiplicative
Poisson structure 7 on G such that (g, g*) is the tangent Lie bialgebra to
the Poisson-Lie group (G, 7).

The following theorem is a characterization of Poisson actions of con-
nected Poisson-Lie groups on Poisson manifolds [21].

Theorem 2.2.15 ([19], [21]). Let (M, mar) be a Poisson manifold, (G, mg)
be a connected Poisson-Lie group, g the Lie algebra of G and ¢ an action
of G on M. Then the action o is a Poisson action of (G, 7g) on (M, myy) if
for each X in g,

Lx,ma = 6(X)o, (2.27)

where z, is a fundamental multi-vector field for any x in A*g. Here § is the
1-cocycle belonging to the tangential Lie bialgebra (g, g*) to (G, 7g).

Theorem 2.2.16 (Manin Theorem [8], [19]). Let g be a Lie algebra with
a bracket [, -] and g* the dual space of g with a Lie algebra structure [-, ]..
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We define the nondegenerate symmetric bilinear scalar product ((-, -)) on the
vector space g & g* given by

(X +6Y +m) = 56 V) + (0, X)) (225)

for any X, Y in g, £ and n in g*. We denote the coadjoint representations of
gon g* and of g* on g = (g*)* by adx{ and ad¢ X for any X in g and § in g*
respectively. Then there exists a unique skew-symmetric bracket operation
[-,-] on g @ g* such that

(i) it restricts to the given brackets on g and g*;
(ii) the scalar product ((-,-)) on g @ g* is invariant, i.e.,
(X+&Y +n, 2+ O+ (Y +n[X+&Z+(]) =0 (2:29)
for any X,Y,Z in g, £, and ( in g*.
This operation is given by
[X+&Y +9] = [X, Y] —ad; X +adgY + [€, 9]« +adyn — ady§ (2.30)

for any X,Y in g, £ and n in g*. Moreover, it is a Lie bracket on g & g* if
and only if (g,g*) is a Lie bialgebra.

Definition 22 ([19]). For a Lie bialgebra (g, g*), we call the space g @
g* equipped with the Lie bracket given by Theorem 2.2.16 the double Lie
algebra of the Lie bialgebra (g, g*) and denote by g > g*.

By Theorem 2.2.16, the following holds.
Corollary 2.2.17 ([19]). If (g, g") is a Lie bialgebra, then so is (g*, g).

Definition 23 ([19]). Let (G, 7g) be a Poisson-Lie group, (g, g*) the tangent
Lie bialgebra to (G,7g) and G* the connected and simply connected Lie
group with the Lie algebra g*. Then by Corollary 2.2.17, G* has a unique
multiplicative Poisson structure mwg« such that (g* g) is the tangent Lie
algebra to (G*,mg+). A pair (G*,mg+) is called the dual Poisson-Lie group
of (G,7q).

Example 23 ([19]). Let G be a Lie group equipped with the trivial Poisson
structure, g the Lie algebra of G and g* the dual space of g. Then the
dual Poisson-Lie group G* of (G,0) is the Abelian Lie group g* with the
Lie-Poisson structure. The double Lie algebra is the Lie algebra of the
cotangent bundle TG = G x g* equipped with the Lie group structure of
a semi-direct product with respect to coadjoint action Ad of G on g* (cf.
Example 19).
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Definition 24 ([19]). Let g be a Lie algebra equipped with a nondegenerate
invariant symmetric scalar product (-,-), g+ Lie subalgebras of g. Then a
triple (g, g+,9-) is Manin triple if the following conditions hold:

(i) g =g+ D g_ as vector spaces;

(ii) both g4 and g_ are isotropic with respect to the scalar product (-, ),
ie, (g+,0+) = (g-,0-) =0.

The correspondence between Lie bialgebra and Manin triple is con-
structed as follows: If (g,g*) is a Lie bialgebra, then a triple (g @ g*, g, g%)
with ((-,-)) in Theorem 2.2.16 is a Manin triple. Conversely, if (g, g+, g-) is
a Manin triple, then g_ is naturally isomorphic to g% under (-,-), that is,
the map g— — g%, &= 2 (£, ->|ng is an isomorphism. Therefore g = g ®© g%
as vector spaces, and (-,-) coincides with the natural scalar product ((-,-))
on g+ @ g% in Theorem 2.2.16. Again by Theorem 2.2.16, a pair (g, g% ) is
a Lie bialgebra.

Let (M, ) be a Poisson manifold. Then we define a Lie bracket [-, -] on
the 1-forms Q!(M) induced by 7 by

[€,0)n 1= Lopsen — Lsy& — d(m*E,m) (2.31)

for any ¢ and 7 in Q'(M). The Lie bracket has the following properties:

&, e = FIE )+ (7)), (2.32)
wH e,y = [whE, wh) (2.33)

for any & 1 in Q'(M) and f in C°°(M). Then the triple (T*M, 7% [-,-]x)
forms a Lie algebroid over M, which we will recall in Section 2.4. Let (G, )
be a Poisson-Lie group with the Lie algebra g and g* the dual space of
g, equipped with the Lie bracket [-,-]™ induced by the linearization of w
at e. Then the left- and right-invariant 1-forms Q(M)* and Q'(M)R are
closed under the above Lie bracket [-,-],. We identifies g* with Q'(M)" and
QYM)® by X +— X and X +— X! respectively. Both the above brackets
[, ']Tf|§21(M)L and [, -],r|Ql(M)R coincide with the opposite of the linearization
of 7 at e by the fact that 7. = 0. We define a map A" : g* — X(G) by

AT(&) == —m* (") (2.34)

for any £ in g*. Then A™ is a Lie algebra anti-homomorphism by the property
(2.33) and the fact [¢,7]™ = [€®, nR] ..
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Definition 25 ([19]). We call a vector field A™(§) a dressing vector field
on (G,7) and the map A" the infinitesimal dressing action of g* on G. By
integrating A\™, we obtain a local (and global if all dressing vector fields are
complete) action of G* on G. This action is called the dressing action of G*
on G, denoted by the same symbol ;.

Remark 1. In [18], [19], [21], the dressing action and its infinitesimal one
are defined by A™(¢) := —n*(¢%) instead of (2.34). However all the results on
the dressing action and its infinitesimal one hold by some correction, so that
there is no problem even if (2.34) is used. Rather, adopting the definition
given by (2.34) is more natural in terms of quasi-Poisson theory, which we
will review in next section.

Definition 26 ([19]). Let G be a Lie group and m a multiplicative Poisson
structure on G. Then 7 is complete if all dressing vector fields on (G, ) are
complete.

Example 24. The trivial Poisson structure 0 on any Lie group G is com-
plete. In fact, by a computation \°(&) = —0%(¢R) = 0 for any ¢ in g*, the
dressing action is a global action )\2 = idg for any u in G*.

The following propositions are properties for the completeness of a mul-
tiplicative Poisson structure on a Lie group.

Proposition 2.2.18 ([19], [24]). A Poisson-Lie group (G, ) is complete if
and only if the dual Poisson-Lie group G* of (G, 7) is complete.

Proposition 2.2.19 ([19]). Let (G,7) be a Poisson-Lie group with the
tangential Lie bialgebra (g,g*). Let (G, ) be the universal covering group
of G with the multiplicative Poisson structure induced by (g,g*). Then
(G, ) is complete if and only if (G, 7) is complete.

The completeness of a multiplicative Poisson structure 7 on a Lie group
G with the Lie algebra g also can be described by using the Lie group with
the Lie algebra g < g*. Let (g, g*) be a Lie bialgebra and g < g* the double
Lie algebra of (g,g*). Let G,G* and G <t G* be the connected and simply
connected Lie groups with the Lie algebras g, g* and g 0 g* respectively.
We call G >t G* the double Lie group induced by (g, g*). We set Lie group
homomorphisms obtained by integrating including maps g — g <t g* and
g* = grag” by

oc:G— GG, o¢g: G — GG,
respectively, and define ¢pg g+ : G x G* — G <1 G* by
ba,c+(g,u) = dc(g)de-(u).
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Proposition 2.2.20 ([19]). Let the notations be as above. Then a con-
nected and simply connected Poisson-Lie group (G, 7) is complete if and
only if the map ¢g g+ is a diffeomorphism.

2.2.3 Moment maps for Poisson actions

The definition of a moment map for Poisson action is the following:

Definition 27 ([19]). Let (M, mas) be a Poisson manifold, (G, 7¢g) a Poisson-
Lie group, G* the dual Poisson-Lie group of (G,7g) and 0 : G x M — M a
Poisson action of (G, mg) on (M, 7). Let X® be a right-invariant 1-form
on G* with value X at e for any X in g = (g*)* and Y, a vector field on M
generating the action geypy for any Y in g. Then a map p: M — G* is a
moment map for the Poisson action o if for any X in g,

X, = -, (u* X ™). (2.35)

Example 25 ([18], [19]). Let (G, 7) be a connected complete Poisson-Lie
group and G* the dual Poisson-Lie group of (G, 7). Then the dressing action
A™ of G* on (G, 7) is Poisson (for the detail, see [18]). Moreover, the identity
map id : G — G is a moment map for the dressing action A™. In fact, we
compute that for any £ in g* and g in G,

d
5/\",9 = % gxptf(g)

= )‘(é)g

= (—rH(R),

= (= (d"€"))g
Definition 28 ([19]). Let (M, myr) be a Poisson manifold, (G, 7g) a com-
plete Poisson-Lie group, (G*,mg+) the dual Poisson-Lie group of (G, nq),
ATe* . G x G* — G* the dressing action of (G*,7mg+) on (G,7g) and
o :Gx M — M a Poisson action of (G,ng) on (M, my) with a moment
map u: M — G*. Then p is G-equivariant if for any ¢ in G,

t=0

pooy = AS" o (2.36)
In other words, p is G-equivariant if for any ¢ in G, the diagram

M -2 M

S I [ 237
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is commutative.

Remark 2. Since the dual Poisson-Lie group G* is complete by Proposition
2.2.18, the dressing action of (G, 7g) on G* is global. Therefore the above
definition is well-defined.

Example 26 (moment maps for symplectic-Hamiltonian actions). Let (M,
w, G, 1) be a Hamiltonian G-space with a symplectic-Hamiltonian action o
and 7, the Poisson structure induced by w. By Example 18, the action o is
a Poisson action of a trivial Poisson-Lie group (G, 0) on a Poisson manifold
(M, m,). Obviously, the trivial Poisson structure is complete. By Example
23, the dual Poisson-Lie group G* of (G, 0) is the Abelian Lie group g* with
the Lie-Poisson structure mg+, where g is the Lie algebra of G and g* is
the dual space of g. By the definition of a moment map for a symplectic-
Hamiltonian action, the condition (2.6) follows for p : M — g*. Let {e;};
be a basis of g, {e'}; the dual basis of g* and (&;) the linear coordinates
for {e'} on g*. Regarding e; as (d§;)¢, for any X = Y, X'e;, we obtain
XR = > X'd¢; by Example 17. For the moment map y and any point p in
M, setting p(p) = >, pi(p)e for p; in C°(M), we compute

WX = (Z XZ'd&) =D Xl =) X'd(u&) =Y X'd(&i o p)

(2

=D Xl = X'd{,ei) = d<M7ZXi€i> = d(p, X)

= duX.

Hence it follows that the condition (2.6) is equivalent with p*X® = 1x_w.
Moreover we have

X =y 0= X=X,
= (W)X = X,
= (X = X,.

Therefore p : M — g* is a moment map for the Poisson (G, 0)-action on
(M, m,). Moreover, the dressing action A™s* of G on g* coincides with the
coadjoint representation Ad* of G on g*. In fact, for any X =", X'¢; in g

and £ = Zj 5jej in g*, regarding e; and e’ as (d&;)e and (a%j)g respectively,
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we compute

d y o
< thd Xthg

,<daog>:=<ad§s¢%>

= <§? _adXek>
= - <£7 [Xa ek:]>

- _ZX [es, ex])
- _sz [(d&i)e, (dEk)el)

t=0

= - ZX%* dé;., dép)e

- —ZX’< (d6)e. (dSi)e )

{e(ee) )

= (= (X7), (dr)e)
= (A" (X)e, (dér)e) »

so that Ad* = A™s* holds. Since u satisfies the condition (2.8), therefore we
obtain

poag= X" o (2.38)

for any g in G, and p : M — g* is a G-equivariant moment map for the
Poisson (G, 0)-action on (M, ). From the above, a G-equivariant moment
map for a Poisson action of a complete Poisson-Lie group is a generalization
of a moment map for a symplectic-Hamiltonian action of a Lie group.

The G-equivariance of a moment map for a Poisson action is described
as follows.

Theorem 2.2.21 ([19]). Let (M,m5) be a Poisson manifold, (G,7g) a
connected complete Poisson-Lie group and (G*,7wg+) the dual Poisson-Lie
group of (G, 7g). Then a moment map p : M — G* for a Poisson (G, mg)-
action on (M, mys) is G-equivariant if and only if u is a Poisson map.
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2.3 Quasi-Poisson geometry

In this section, we shall recall the quasi-Poisson theory [1]. We start with the
definition of quasi-Poisson-Lie groups, which is a generalization of Poisson-
Lie groups.

Definition 29 ([1], [13], [14]). Let G be a Lie group with the Lie algebra
g. Then a pair (7, ) is a quasi-Poisson structure on G if a multiplicative
2-vector field 7 on G and an element ¢ of A3g satisfy

1

5 [7-(7 ﬂ—] - ch - @La (239)

(76" = [r,¢"] =0, (2.40)
where the bracket [-, -] is the Schouten bracket on the multi-vector fields on

G, and o and ¢ denote the left- and right-invariant 2-vector fields on G
with value ¢ at e respectively. A triple (G, m, ) is called a quasi-Poisson-Lie

group.

Example 27. Let (G, 7g) be a Poisson-Lie group. Then by setting ¢ := 0,
a triple (G, g, ¢) is a quasi-Poisson-Lie group.

We deal with quasi-Poisson-Lie groups induced by “quasi-triples” to de-
fine quasi-Poisson actions and its moment maps. To define quasi-triples, we
need to describe its infinitesimal version, a Manin quasi-triples.

Definition 30 ([1]). Let d be a 2n-dimensional Lie algebra with an invariant
non-degenerate symmetric bilinear form of signature (n,n), which is denoted
by (-|-). Let g be an n-dimensional Lie subalgebra of d and h be an n-
dimensional vector subspace of 9. Then a pair (9,g) is a Manin pair if g
is a maximal isotropic subspace with respect to (-|-). A triple (d,g,b) is a
Manin quasi-triple if (0, g) is a Manin pair and b is an isotropic complement
subspace of g in 0.

Remark 3. For a given Manin pair (9, g), a choice of an isotropic comple-
ment subspace h of g in 0 is not unique.

A Manin quasi-triple (9, g, ) defines the decomposition @ = g@ f. Then
the linear isomorphism

jg"—=b, (j(]r) = () (€92 €9) (2.41)
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is determined by the decomposition. We denote the projections from ? =
g @b to g and h by pg and py respectively. We introduce an element ¢y in
A3g which is defined by the map from A?g* to g, denoted by the same letter,

wo(&,m) = pg([5(€): 3 (M), (2.42)

for any &,7n in g*. We introduce the cobracket. It is the linear map Fy : g —
A%g by setting

Fy(&m) =5 o ([i(€), 5(m))) (2.43)

for any £, 7 in g*, where F' : A%g* — g* is the dual map of Fj,. These ele-
ments will give important examples of quasi-Poisson structures and be used
later to define quasi-Poisson actions. The Lie algebra g with the cobracket
F and the element ¢ in A3g* is called a quasi-Lie bialgebra.

Conversely, It is well known that any Manin quasi-triple is obtained from
a quasi-Lie bialgebra [9].

Example 28 ([1]). Let g be a Lie algebra and g* the dual space of g. By
setting ¢ = 0, we obtain a Manin pair (g @ g*,g), where the Lie bracket
[,] on g & g* coincides with the bracket (2.30). Therefore by choosing the
canonical isotropic complement h = g*, a Manin quasi-triple (g & g*, g, g*)
is just a Manin triple corresponding with a Lie bialgebra (g, F'). Moreover,
in the case of F' = 0, we call a Manin pair (g @ g*, g) the standard Manin
pasr associated g.

Example 29 ([1], [39]). Let g be a Lie algebra with an invariant nonde-
generate symmetric bilinear form K. Then we can construct a Manin pair
(g g, g) as follows: The Lie bracket [-,-] on g @ g and the bilinear form (+|-)
on g & g are given by

(X1, X2), (Y1,Y2)] := ([ X1, V1], [ X2, Y2]), (2.44)
(X1, X9)|(Y1,Y2)) i= K(X1,Y1) — K(X2,Y5) (2.45)

for any X1, X5,Y; and Y5 in g. The Lie algebra g is embedded into g & g
by the diagonal map diag : X — (X, X). We can choose an isotropic com-
plement g_ := diag_(g), where diag_ : X ~— (X, —X) is the anti-diagonal
map. In general, the isotropic complement g_ is not a Lie subalgebra, so

that (g @ g,9,9-) is a Manin quasi-triple but not a Manin triple.
Let (0,9,h) be a Manin quasi-triple. Using the inverse j~! : h — g* of

the linear isomorphism (2.41), we identify 0 with g @ g*. Consider the map
rp 0" =0, E+ X =, (2.46)
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for any £ in g* and X in g. This map defines an element 7, € 9 ® ? which
we denote by the same letter. Let {e;} be a basis on g and {¢'} the dual
basis of {e;} on g*. Then it follows that

Ty = Z e; @ 7(eh). (2.47)

Definition 31 ([1]). The above element ry in @ ® ? is called the canonical
r-matriz for the Manin quasi-triple (9, g, b).

Next we define a twist between isotropic complement subspaces b and b’
of g in 0. Twists play an important role in the moment map theory for quasi-
Poisson actions defined later. Let j and j’ be the linear isomorphism (2.41)
defined by Manin quasi-triples (9, g,h) and (0, g,b’) respectively. Consider
the map

t:=5 —j:g"—=0.

It is easy to show that ¢ takes values in g and that it is anti-symmetric, so
that the map t defines an element t in A%g which we denote by the same
letter. The element ¢ is called the twist from b to h’. Fix a Manin quasi-
triple (0, g, ). For any ¢ in A2g, there exists the isotropic complement b’ of
g to which the twist from b is ¢. In fact, let {e;} be a basis on g and {¢'}
be the basis on b identified with the dual basis of {e;} on g* by j~!. We set
ti=3 doij te; A ej and

el =l 4 Z te;. (2.48)
J

Then the set {¢’ Z} spans an isotropic complement subspace of g. We can set
h’ := span{e’’}. From now on, we denote h’ by h;. Then we can represent
the canonical r-matrix ry,, the elements ¢y, and Fy, defined by a Manin
quasi-triple (9, g, h;) as follows:

The = T +t (2.49)
1

o = e+ 5[0 1+ e, (2.50)

th = Fh + Ft, (251)

where [t,t] := [t¥, Y], @i(€) = adgt and Fi(X) := adxt. Here ad denotes
the adjoint action of g on A%g and adgt denotes the projection of ad¢? onto
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A?g C A%d, where 0* including g* acts on A%d by the coadjoint action (see
[1]). Moreover components of ¢; with respect to the basis {'} on b are
written as

o =3 (e — (i) (2.52)
l

This expression is useful later.
Next we define a group pair (D, G) and a quasi-triple (D, G, b).

Definition 32 ([1]). Let D be a connected Lie group with a bi-invariant
scalar product with the Lie algebra 9 and G be a connected closed Lie
subgroup of D with the Lie algebra g. Let b be a vector subspace of 9. Then
a pair (D, G) is a group pair if (0, g) is a Manin pair. A triple (D, G, b) is a
quasi-triple if (0,g,h) is a Manin quasi-triple.

Example 30 ([1]). Let (g® g*, g) be the standard Manin pair associated a
Lie algebra g. Then a group pair corresponding to (g ® g*,g) is (T*G, G),
where the cotangent bundle T*G = G x g* is equipped with the Lie group
structure of a semi-direct product with respect to coadjoint action Ad of G
on g* (cf. Example 23). The Lie group G is embedded into T*G as the zero
section.

A method of constructing a quasi-Poisson structure by a quasi-triple is
as follows. Let (D, G,b) be a quasi-triple with a Manin quasi-triple (9, g, b)
and 7 in @ ® 0 the canonical r-matrix for (9,g,h). We set

7TbD = TfI; - th, (2.53)

where th and rbR is denoted as the left- and right-invariant 2-tensors on D
with value 7y at the identity element e in D respectively, and we can see

that it is a multiplicative 2-vector field on D. In fact, a pair (77?), ), where
the element ¢y defined by (2.42), is a quasi-Poisson structure on G.

Proposition 2.3.1 ([1]). The above ﬂ'bD and ¢y satisfy the following prop-

erties:
1
5 [ﬂ'hD,ﬂ'hD:| = gog” — 4,015, (2.54)
[ﬂhD,gOH = Tr%,goﬂ =0, (2.55)
Lyrmh = Fy(X)R (2.56)

for any X in g. Due to (2.54) and (2.55), (D,w%, ) is a quasi-Poisson-Lie
group.
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The bivector field 71?3 on D can be restricted to on a subgroup G nat-
urally. For the decomposition 9 = g & h, we obtain another decomposition
0 = g @ Adyh for any g in G by the facts that Ad,d = 0 and Adyg = g.
Then the map j, identifying b, := Adyh with g* can be written as

Jg=AdgojoAdy .. (2.57)
In fact, for any = in g and £ in g*,
(J(Adg-18)lx) = (Adg &, x)
= <§7 Adgl')
= (Jg(§)|Ady)

= (Adg-1(jg(8))|2)

by (2.41) and the invariance of (-|-). By Adg-1(jy(£)) being in Ad,-1b, =
Ad,-1Adyh = b and the isotropy of h with respect to (:|-), we have

(F(Adg1&)|z +5(n)) = (Adg-1(jg(€))]x + 5 (n)) (2.58)

for any n in g*. Hence, by the nondegeneracy of (+|-), we obtain j(Ad2_1§) =
Ady-1(jg(€)). Therefore it follows that

Adg(j(Ady-18)) = Jjg(&)- (2.59)
The canonical r-matrix 7, for the Manin quasi-triple (9, g, b,) satisfies
1y, = Adgry, (2.60)

where Ad, is the adjoint action of D on 9 ® 9. In order to show the relation
(2.60), first we prove that for any = + j(£) in 9, there exists the element z’
in g such that 2+ j(§) = 2’/ + j,(€) (this claim holds for the map j' : g* — b’
determined by any Manin quasi-triple (9,g,’)). In fact, setting = + j(£) =
z' + jg (&) for z, 2" in g, £ and & in g*, we obtain

z—a'=jy) —j) €. (2.61)

By the isotropy of g,
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for any y in g. Since y in g is arbitrary, we obtain £’ — £ = 0. Hence &' = &.
Then, by the definition, we have

ryy (2 + Go(6)) = Jg(6). (2.62)

On the other hand, we compute

(Adgry) (2’ + jg (& ( <282®9 )) @ +5@)
- Z Adge; @ Ady(ji(eN)) (z + j(€))
_ i(Adgeiaz +3(6))Adg(3(<"))
- i(Adgei 3(€)Ady(j(e")
— imdgei,gmdg(g‘(a"))
= S e Ay A4 E)
- i(AdZ1§)z‘Adg(j(5i))

— Ad, (j <Z(Ad2_1§)i£i>>

= Ady(j(Ad-.6))
= jg(f)-

Therefore we obtain the relation (2.60). Let t, be a twist corresponding to
by By (2.49), we obtain ry, = 7y +t,, so that it follows that Adgry —ry =
Thy, — Th = lg In A2%g. Setting

b b
Tl g = <7TD‘G)g (2.63)

for any g in G, we can see that

R
Tlrg = ( ‘ ) Th,g = Lgsty — Rgs7p
= Rg*Rgfl* g*'r’h — RgV*T‘h = Rg*AdgT‘b — Rg*rh
= Ry« (Adgry — )
= Ryt
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is in Rg*A2g = AQTQG. Therefore Wg is a well-defined 2-vector field on
G. Obviously 71'?; inherits the multiplicativity of 77?3. Moreover, it is clear
that W?; and ¢y defined by (2.42) also satisfy (2.39) and (2.40). Therefore
(G, wg, ¢y) is a quasi-Poisson-Lie group. We denote a Lie group with such
a structure by G%. It follows from (2.53) and (2.49) that a twist ¢ in A%g
deforms W% and 7ThG to W?)t and 7rgf respectively, by the following ways:

% =7+t — R (2.64)
7T2§ = ﬂ'hG + tb — R, (2.65)

For any group pair (D, G), since G is a closed subgroup of D, the quo-
tient space D/G is a smooth manifold, which is the range of moment maps
for quasi-Poisson actions defined later. We use this moment maps to carry
out the deformation of symplectic structures in Section 3.1. The action of
D on itself by left multiplication induces an action of D on D/G. We call
it dressing action of D on D/G and denote the corresponding infinitesimal
action by X — Xpy; for X in 9. Let ppg : D — D/G be the natural pro-
jection. By the definition, it follows that Xpg = ppe.X R The following
definition is one of the important notions to define moment maps.

Definition 33 ([1]). Let (D, G) be a group pair with a Manin pair (9,g). An
isotropic complement b of g in 0 is called admissible at a point s in D/G if the
infinitesimal dressing action restricted to h defines an isomorphism from b
onto T5(D/G), that is, the map b — Ts(D/G), € — {pjq,s is an isomorphism.
A quasi-triple (D, G, b) is complete if b is admissible everywhere on D/G.

Any isotropic complement h of g is admissible at eG in D/G. In fact, for
any § in b,

€nGec = (PDe€™) e = Ppjellt = Ppjcé (2.66)

and the projection pp; : h — 0/g(= Tec(D/G)) is an isomorphism. If the
complement b is admissible at a point s in D/G, then it is also admissible
on some open neighborhood U of s. In fact, since there exists elements
X4,..., X, in b such that {XI,D/G,w . 7Xn,D/G,S} is a basis of Ts(D/G) and
XipG: - Xy pe in X(D/G) are C*-vector fields, {X1 pe,---, Xn i}
forms a local frame on some open neighborhood U of s.

Proposition 2.3.2 ([1]). Let (D, G) be a group pair. Then at any point s
in D/G, there exists an admissible complement h of g in .
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Let (D, G, bh) be a quasi-triple such that b is admissiAble on an open subset
U of D/G. Then for any X in g, we define the 1-form Xy on U by the fomula

(Xp,épc) = (X €) (2.67)

for any £ in h. If a quasi-triple (D, G, b) is complete, then Xh is a global
1-form on D/G.

Example 31 ([1]). Let (T*G, G) be a group pair with the standard Manin
pair (g @ g*,g) associated a Lie algebra g with the dual space g*. Then
T*G/G = g* as a manifold. Let {e;}; be a basis of g, {¢‘}; the dual basis
of g* and (&) the linear coordinates for {e‘} on g*. Then the vector fields
generating the dressing action are

i 0
oG = &’ (2.68)
% 0
€ipjce = adg,§ = —CZ-Eka—g (2.69)
J

for any ¢ in g* = T,g*, where cF’s are the structure constants of g for {e;};.

ij
From the map

, , o
Y Teg, e — e :<> 2.70
g 13 e =\5g ), (2.70)
for any & in g*, it follows that a Manin quasi-triple (T*G, G, g*) is complete.
Hence we can define global 1-forms é; corresponding to the elements e; in g.
Then é; = d&; holds.

Example 32 ([1]). Let (G, m¢) be a connected and simply connected Poisson-
Lie group, G* the dual Poisson-Lie group of (G, 7g) and G <1 G* the double

Lie group of (G,7g). Then (G > G*,G, g*) is a quasi-triple. Moreover, if
(G,7g) is complete, (G <1 G*, G, g*) is complete. In fact, since 7g is com-

plete, the double Lie group G > G* is diffeomorphic to G x G* as a manifold

by Proposition 2.2.20, and G >1 G*/G = G* as a manifold holds. Then {pq

on G <1 G*/G for £ in g* is identified with the right-invariant vector field

&R on G* with value ¢ at the identity. Therefore a map

g" = T(G = G*/G) X T,G*, & Epas = EX (2.71)

for any s = (g,u)G in G =<1 G*/G is an isomorphism, and (G < G*, G, g*)
is complete. Hence a global 1-form Xy on G 1 G*/G is identifies with a
right-invariant 1-form X® on G* with value X at the identity due to (2.67).
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For any quasi-triple (D, G, b), we can define a 2-vector field on D/G as
follows: The 2-vector field 7ThD defined by (2.53) on D is projectable by the
natural projection ppi; : D — D/G, i.e., for any g and h in D, if gG = hG,
then pD/G*T(’hD79 = pD/G*ﬂ’?)jh. Hence we define

7rbD/G = pD/G*w%. (2.72)

Since all left-invariant vector fields generated by g are projected to zero, it
follows that p D/G*th vanishes. Therefore we obtain

7TK]D/G = —pD/G*ThR (2.73)
= _rb,D/G- (2.74)

From here, we consider only connected quasi-Poisson-Lie group G?D de-
fined as above by a quasi-triple (D, G,bh). For a smooth manifold M with
a 2-vector field mps, a quasi-Poisson action is defined as follows. It is a
generalization of Poisson actions of connected Poisson-Lie groups by using
Theorem 2.2.15.

Definition 34 ([1]). Let (M, mys) be a manifold with a 2-vector field myy,
G[}) = (G, ﬂg,goh) be a connected quasi-Poisson Lie group induced by a
quasi-triple (D, G, b), g the Lie algebra of G and o an action of G on M.
Then the action o is a quasi-Poisson action of GhD on (M, myr) if for each
X in g,

! (700, Tr) = (0p)os (2.75)

2
Lx,mn = Fy(X)o, (2.76)
where z, is a fundamental multi-vector field for any = in A*g. Here Fj is the
dual of the map (2.43). Then a 2-vector field )/ is called a quasi-Poisson

G%—structure on M and (M, 7yy) is called a quasi-Poisson G%—manifold or
simply a quasi-Poisson manifold.

Remark 4. A connected quasi-Poisson-Lie group G?j with the natural left
action is not a quasi-Poisson G?j—manifold. In fact, (¢y)q = gpf.

Example 33 ([1]). We consider the dressing action on D/G restricted to
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G. Then it follows that W?)/G satisfies (2.75) and (2.76). In fact,

{ﬂ-hD/G’Wllj)/G} = [PD/G*TF?;,PD/G*WH
R L
= ppje- (2 (o — @y))
=2 (Ppjes Pty — PD/G=PY)
= 2pD/G*SD£{
=2 (SOh)D/G )
b _ )
EXD/GT(D/G - |:XD/G77TD/G:|
= [pD/G*X Rpr/G*WH
= PD/G+ [XR, TFH
= pojcLxrm
= ppjeFy(X)T
= Fy(X)pe

for any X in g, where we use the formulas (2.54) and (2.56). Therefore
(D/G, W?:)/G) is a quasi-Poisson G?j—manifold.

Let (M, ﬂg/[) be a quasi-Poisson G%-manifold. We set

WR}I = 7r?\/[ —ty. (2.77)
Then (M, 77?\2) is a quasi-Poisson G?jt—manifold. This shows that we can
consider a family of quasi-Poisson G%—manifolds (M, W?\f[) A moment map
for a quasi-Poisson action is defined as a map with a condition not for one
quasi-Poisson G%—structure but for a family of quasi-Poisson G%—structure
parametrized by twists ¢ in A?g.

Definition 35 ([1]). Let G% be a connected quasi-Poisson Lie group defined
by a quasi-triple (D, G, b) and (M, WR/[) a quasi-Poisson GE’D—manifold. Then
amap u: M — D/G which is G-equivariant with respect to the G-action
o on M and the dressing action of G on D/G is a moment map for the
quasi-Poisson action o of G?j on (M, 77?\/[) if on any open subset U C M,

Xo = —(mppf(u (X)) (278)



2.3. QUASI-POISSON GEOMETRY 53

for any isotropic complement h’ admissible on pu(U) and X in g. Here
<(7r?w)ﬁa,ﬁ> = 7['?\/[(0[,,3). We call a quasi-Poisson action with a moment
map a quasi-Poisson-Hamiltonian action.

Actually we need not impose the equation (2.78) on all admissible com-
plements because we have the following proposition.

Proposition 2.3.3 ([1]). Let h and b’ be two complements admissible at a
point s in D/G, and p in M be such that p(p) = s. Then, at the point p,
conditions (2.78) for h and b’ are equivalent, namely

(T F (1 (X)) = () (" (X)) (2.79)

In particular, if there exists a isotropic complement b of g in 9 such that
a quasi-triple (D, G, h) is complete, it is sufficient that the equation holds
(2.78) for b.

Now we show important examples for moment maps for quasi-Poisson-
Hamiltonian actions.

Example 34 (Poisson manifolds [1],[4],[21]). Let (M, ) be a Poisson man-
ifold on which a connected and simply connected Poisson-Lie group (G, 7g)
acts by a Poisson action o. Then (M,7) is a quasi-Poisson (G,7g,0)-
manifold and o is a quasi-Poisson action on (M,7). In fact, the Manin
triple (g g*, g, g*) corresponding to (G, m¢) is a Manin quasi-triple and the
multiplicative 2-vector field mg on G coincides with the 2-vector field 7rgG*
defined by the corresponding quasi-triple (G < G*, G, g*) given by (2.63).
Since o is a Poisson (G, g )-action of (M, ), it follows that [7, 7] = 0 and
that for any X in g,

Lx,m=06(X)s, (2.80)

where ¢ is the 1-cocycle belonging to the tangential Lie bialgebra of (g, d).
Since the cobracket Fy« coincides with 0, the action o is a quasi-Poisson
action by Definition 34.

We assume that wg is complete and that there exists a G-equivariant
moment map i : M — G* for the Poisson action o, where G* is the dual
Poisson-Lie group of (G, 7g). Then o is a quasi-Poisson-Hamiltonian action
with a moment map u. Actually, by the definition, the map u satisfies

X, = —mt(u* (X™) (2.81)

for any X in g, where X* is a left-invariant 1-form on G* with value X at
e in G*. The quasi-triple (G <t G*, G, g*) is complete since 7 is complete
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and the global 1-form X+ on G 1 G*/G 2 G* coincides with X® (Example
32). The complement g* is admissible at any point in G > G*/G, so that
the map p: M — G* =2 G =<1 G*/G is a moment map for the quasi-Poisson
action o because of (2.81) and Proposition 2.3.3.

Example 35 (symplectic manifolds [1],[36]). Let (M,w) be a symplectic
manifold on which a connected Lie group G acts by a symplectic-Hamiltonian
action o. Since the symplectic structure w induces a Poisson structure ,
the pair (M, ) is a Poisson manifold. Then the action o is a Poisson ac-
tion of a trivial Poisson Lie group (G,0) on (M,w). The trivial Poisson
structure 0 on G is complete (Example 24) and a quasi-triple (T*G, G, g*)
corresponding to (G, 0) is also complete (Example 31). The dual group G*
of (G,0) is the Abelian group g* and the moment map p for symplectic ac-
tion o is G-equivariant with respect to o on M and the dressing action Ad*
on G* = g* by Example 26. Thus the map p: M — G* = g* is a moment
map for the Poisson action o. Therefore, similarly to Example 34, the map
w:M— g =G"=2T*G/G is a moment map for the quasi-Poisson action
o on the quasi-Poisson (G, 0,0)-manifold (M, ).

For a quasi-Poisson manifold with a quasi-Poisson-Hamiltonian action,
the following theorem holds.

Theorem 2.3.4 ([1]). Let (M, w?\/[) be a quasi-Poisson manifold on which
a quasi-Poisson Lie group G‘l’) defined by a quasi-triple (D, G,b) acts by a
quasi-Poisson-Hamiltonian action ¢ . For any p in M, if both b’ and b” are
admissible at u(p) in D/G, then

b//

Im(x},)} = Im(m}, )}

p?

where p is a moment map for o.

2.4 Lie algebroids

In this section, we recall Lie algebroid, Lie bialgebroid and quasi-Lie bialge-
broid theory. In addition, we also recall relations between Lie bialgebroids
and Poisson-Nijenhuis structures.

Definition 36. Let M be a manifold, A a vector bundle over M, [,:]4 a
Lie bracket on the space I'(A) of the global sections of A and py : A — TM
a bundle map over M. Then a triple (A, [, ]4,pa) is a Lie algebroid over
M if the followings hold:
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(i) pa([X,Y]a) = [pa(X), pa(Y)];
(i) [X, fY]a = fIX,Y]a+ (pa(X)f)Y

for any X,Y in I'(4) and f in C°°(M). We call the bundle map pa the
anchor map.

Remark 5. The condition (i) in Definition 36 is induced by a Lie bracket
[-,-]a onT'(A) and the conditions (ii) in Definition 36. In fact, for any X, Y, Z
in I'(A) and f in C*°(M), we compute that

0=1[X,Y]a, fZ]a +[[Y, fZ]a, X]a + [[fZ, X]a, Y]a
= f([X,Y]a, Z]a +[[Y, Z]a, X]a + [[Z, X]4,Y]a)
+ (pa([X, Y]a) f = pa(X)(pa(Y) f) + pa(Y)(pa(X)f))Z
=0+ (pa([X,Y]a) f — [pa(X), pa(Y)])Z
= (pa([X,Y]a) f = [pa(X), pa(Y)]f) Z.

Since Z inI'(A) and f in C°°(M) are arbitrary, the condition (i) in Definition
36 holds.

Example 36. Any finite dimensional Lie algebra g is a Lie algebroid over
a point.

Example 37. Let M be a manifold. Then the tangent bundle TM of M is
a Lie algebroid over M, where a Lie bracket is the ordinal Lie bracket [-, ]
on X(M) and an anchor map is the identity map id : TM — T'M. We call
this Lie algebroid the standard Lie algebroid and denote by the same symbol
TM.

Remark 6. It is well known that some Lie algebroids are constructed from
Lie groupoids similarly to the fact that the tangent spaces at the identities
of Lie groups has Lie algebra structures (see [23] for a detailed definition
and properties of a Lie groupoid). By regarding Lie groups as Lie groupoids
over a point, Lie algebras are Lie algebroids constructed from the groupoids.
However, any Lie algebroid is not always constructed from a Lie groupoid.
A Lie algebroid constructed from a Lie groupoid is called a integrable Lie
algebroid.

The following examples are important.

Example 38. Let F be any vector bundle over a manifold M. By setting a
bracket and an anchor map by [-,-|g := 0 and pg := 0 respectively, the triple
(E,[-,"]E, pE) is a Lie algebroid. The pair ([, |g, pg) is called the trivial Lie
algebroid structure over E.
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Example 39 (Nijenhuis structures). Let M be a manifold and N a (1,1)-
tensor on M. Then N is Nijenhuis if N satisfies Ty = 0, where the (2, 1)-
tensor Ty is called the Nijenhuis torsion of N and defined by

Tn(X,Y):=[NX,NY] - N[NX,Y] - N[X,NY] + N?[X,Y] (2.82)

for any X and Y in X(M). A bracket [-,-|n defined by, for any X and Y in
X (M),

[X,Y]y = [NX,Y] + [X,NY] - N[X,Y] (2.83)

is a Lie bracket on I'(T'M) = X(M). We set an anchor map as N : TM —
TM and the Leibniz rule

X, fYly = fIX, Y]y + (NX)f)Y (2.84)

for any X,Y in X(M) and f in C°°(M) holds. Therefore [-, -]y and N make
the tangent bundle TM of M a Lie algebroid over M. We denote the Lie
algebroid (T'M, |-, |n,N) by (TM)y.

Example 40 (Poisson structures). Let M be a manifold and 7 a Poisson
structure on M. Then a bracket [-, ], defined by (2.31) and an anchor map
7% make the cotangent bundle T*M of M a Lie algebroid over M due to
(2.32). We denote the Lie algebroid (T*M, [-, |, 7*) by (T*M).

Example 41 (twisted Poisson structures). Let M be a manifold, = a 2-
vector field on M and ¢ a closed 3-form on M. Then a pair (7, ¢) is a
twisted Poisson structure [37] if the pair satisfies

%[ﬂ', ) = 7. (2.85)

Then setting a bracket [-, ]ﬁ on QY(M) by

[O[, B]f = ﬁnﬁgn - ‘Cﬂﬁng - d<7rﬂ§7 77> + d)(ﬂ'ﬁa, Wﬁﬁ7 )
= [57 77]7r + ¢(7Tﬁa’ Wﬂﬁu )

for any a and 3 in (M), we obtain a Lie algebroid (T*M ), 4 := (T*M, [-, 12,
)
7).

We define the differential and the Lie derivative of the Lie algebroid A.



2.4. LIE ALGEBROIDS 57

Definition 37. Let M be a manifold, (A, [, ]4,pa) a Lie algebroid over M.
Then an operator dy : I'(AFA*) — T'(A*1A*) is the differential of the Lie
algebroid A if for any w in I'(A*A*) and Xy, ..., X}, in I'(A),

k
(daw)(Xo, .., Xi) = Y _(=1)pa(Xi) (w(Xo, ..., Xi, .., Xi))
=0
+ Z(—l)i+jw([Xi,Xj]A,X0, ce ,Xi, ce ,Xj, ce ,Xk)
1<j

(2.86)

For any X in T'(A), the Lie derivative L5 : T(AFA*) — T(AFA*) is defined
by the Cartan formula

ﬁﬁ =datx +txda (2.87)

and are extended on I'(A*A) in the same way as the usual Lie derivative Lx
respectively. For example, it follows that

LAY =[X,Y]a (2.88)
for any X and Y in I'(A).

Example 42. We consider the standard Lie algebroid TM = (T M, [-, -],id).
Then the differential of the Lie algebroid T'M is just the usual exterior
derivative d : QF(M) — QFFY(M). The Lie derivative is also the usual Lie

derivetive L.

Similarly to the usual exterior derivative d, we notice that d?4 = 0 for
any Lie algebroid A. Conversely, an operator 6 : I'(AFA*) — T'(AF+H1A¥)
satisfying 62 = 0 and the Leibniz rule

S(wAn) =0dwAn+ (—1)*w Aoy (2.89)

for any w in T'(A¥ A*) and 7 in T'(A*A*) constructs a Lie algebroid structure
([,-]a, pa) on A. In fact, we may define

pa(X)f = (0f, X) (2.90)
(o, [X,Y]a) i= pa(X){e, V) — pa(Y){e, X) — (62)(X,Y) (2.91)

for any a in I'(A*), X and Y in I'(A).
The Schouten bracket on I'(A*A) is defined similarly to the Schouten
bracket [-,-] on X*(M). That is, the Schouten bracket [-,-]a : T'(A¥A) x
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F(AIA) — F(Ak+l_1A) is defined as the unique extension of the Lie bracket
[,-]a on T'(A) such that

DlpDQ]A — _(_1)(degD171)(degD271)[D27Dl]A

for any f,g in C*°(M), X,Y in I'(4), D; in I'(A*A).
In addition, the Schouten bracket satisfies the graded Jacobi identity

(2.12).
The same relation between the standard Schouten bracket [-,-] and the
usual Lie derivative £ holds for the Schouten bracket [-,-]4 and the usual

Lie derivative £4 on a Lie algebroid A.

Example 43. Let (T*M ), be a Lie algebroid over M defined by a Poisson
structure m on M. We denote the differential of the Lie algebroid (7*M ),
by d.. Then it follows that

We denote by L™ the Lie derivative induced by d.

Example 44. Let (T'M)y be a Lie algebroid over M defined by a Nijenhuis
structure N on M. We denote the differential of the Lie algebroid (T'M )y
by dn. Then it follows that

dy =tyod—douy,
where ¢y is the degree 0 derivation of (Q*(M), A) defined by
(va)(X1,.. Xp) == a(Xy,...,NX;,..., Xp) (2.92)
for any o in QF(M). We denote by £V the Lie derivative induced by dy.
We define Lie bialgebroids.

Definition 38 ([34]). A Lie bialgebroid over M is a dual pair (A4, A*) of
vector bundles over M equipped with Lie algebroid structures such that the
differential d4« on I'(A*A) coming from the structure on A* is a derivation of
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the Schouten bracket [-, |4 on I'(A*A) obtained by extention of the structure
on A. That is,

da<[D1, Dol g = [da=D1, Do) g + (—1)%8P1H D) d 4 Do 4 (2.93)

for any D; in I'(A*A). Sometimes we denote the Lie bialgebroid by (A, da+)
since the Lie algebroid structure of A* is decided by the differential d 4«.

Example 45. Any Lie bialgebra (g,g*) is a Lie bialgebroid over a point.
Then the corresponding differential is a 1-cocycle on g relative to the adjoint
representation of g on g A g, i.e.,

([X,Y]) =adxdo(Y) — adyd(X) (2.94)
for any X and Y in g.

Example 46. Let TM be the tangent bundle T'M of M with the ordinal
Lie bracket [-,-] on X(M) and an anchor map id and (T*M ), the cotan-
gent bundle of M with the trivial Lie algebroid structure. Then a pair
(TM,(T*M)y) is a Lie bialgebroid over M. In fact, the differential d4- on
I'(A*TM) = X*(M) is zero, so that for any D; in X*(M),

da+[D1, Dy) = [da+ Dy, Dy] = [D1,d - Ds] = 0. (2.95)

Example 47. Let m be a Poisson structure on M. Then a pair of the
standard Lie algebroid TM and the Lie algebroid (T* M), = (T*M, [-, |, )
is a Lie bialgebroid.

Now we define Poisson-Nijenhuis structures, which was introduced by
Magri and Morosi [26] in their strudy of completely integrable systems.

Definition 39 ([16], [26]). Let = be a Poisson structure on M and N a
Nijenhuis structure on M. Then m and N are compatible if they satisfy

Nont =nfo N*, (2.96)

and the (2,1)-tensor CY given by

C;V((X,B) = [CV?ﬁ]Nwﬁ - [avﬁ]g* (2'97)
for any a and 3 in Q'(M) vanishes, where for any o and 3 in Q(M),
o, BNt = LptaB — Lygiga — d(N7ha, B), (2.98)

a, BN = [N*a, Bl + [o, N* Bl — N*[av, B (2.99)
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A pair (7, N) is a Poisson-Nijenhuis structure on M if m and N is compatible.
The triple (M, 7, N) is called a Poisson-Nijenhuis manifold. A pair (w, N),
where w is a symplectic structure on M and N is Nijenhuis, is a symplectic-
Nijenhuis structure on M if for the corresponding Poisson structure m,, a
pair (7, IV) is a Poisson-Nijenhuis structure on M. The triple (M,w, N) is
called a symplectic-Nijenhuis manifold.

Let (7, N) be a Poisson-Nijenhuis structure and set mx (c, 8) := (Nnfa, ).
Then it follows from (2.96) that my is a 2-vector field on M. Hence under
the assumption (2.96), the bracket |-, | y+ can be rewritten as [-, -]z, . More-

over, then the three brackets [+, ]z, [, -] and [,-]y~ coincide, where for
any o and 3 in Q(M),
o, Bln . = LN, B — LY g — d (e, B). (2.100)

Let (w, N) be a symplectic-Nijenhuis structure on M and set wy (X,Y) :=
(WNX,Y) for any X and Y in X(M). Then it follows from (2.96) that wy
is a 2-form on M.

The main result of the theory of Poisson-Nijenhuis structures is that
they admit the following iteration process:

Theorem 2.4.1 ([16], [26]). Let (m, N) be a Poisson-Nijenhuis structure
on M. We set myp := 7 and define a 2-vector field 7,11 by the condition
w,ﬁ g =No wi inductively. Then all pairs (7w, N?) (k,p > 0) are Poisson-
Nijenhuis structures on M. Furthermore for any k,I > 0, it follows that
[k, m] = 0. The set of Poisson-Nijenhuis structures {(m, N?)} is called the

hierarchy of Poisson-Nijenhuis structures of (M, 7, N).

The following theorem describes a relation between Poisson-Nijenhuis
structures on M and Lie bialgebroids on M.

Theorem 2.4.2 ([15]). Let 7 be a Poisson structure on M and N a Nijen-
huis structure on M. Then a pair (7, N) is a Poisson-Nijenhuis structure on
M if and only if a pair ((TM)y, (T*M),) is a Lie bialgebroid over M.

We recall the definition of Courant algebroids.

Definition 40 ([22]). A Courant algebroid is a vector bundle E — M
equipped with a nondegenerate symmetric bilinear form ((-,-)) (called the
pairing) on the bundle, a skew-symmetric bracket [-, -] on I'(E) and a bundle
map p : £ — T'M such that the following properties are satisfied: for any
e,e1, ez, es3in I'(E), any f and g in C*°(M),
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() D cyel(erenes llers 2], €3] = § 2 cyeier enes) Pllers €2l e3);
(i) p([e1,e2]) = [ple1), ple2)];
(iil) [e1, fea] = flex,e2] + (p(er)f)ez — ((e1, e2)Df;
(iv) poD =0, ie., (Df, Dg)) = 0;

(v) ple)(er, ea)) = ([e,ex] + De, e1)), ea)) + ((ex, [e, e2] + Dlfe, e2)))),
where D : C*°(M) — I'(E) is the smooth map defined by

1
(D) = Sp(e)s.
The map p and the operator [-, -] are called an anchor map and a Courant
bracket, respectively.

A Courant algebroid is not a Lie algebroid since the Jacobi identity is
not satisfied due to (i).

Definition 41 ([22]). Let (E,[-],p, (-,-)) be a Courant algebroid over
M. A subbundle L of E is isotropic if it is isotropic under the pairing ((-,-)).
A subbundle L is integrable if T'(L) is closed under the bracket [-,-]. A
subbundle L is Dirac structure or Dirac subbundle if it is maximally isotropic
and integrable.

Proposition 2.4.3 ([22]). Let (E,[-,],p,{-,-)) be a Courant algebroid
over M and a subbundle L a Dirac subbundle. Then (L, [-, ‘]|z, p|z) is a Lie
algebroid over M.

The following two theorems show that Lie bialgebroids and Courant
algebroids are a generalization of Lie bialgebras and double Lie algebra.

Theorem 2.4.4 ([22]). If (A, A*) is a Lie bialgebroid, then E := A & A*
equipped with ([-,-], p, ((*,-))) is a Courant algebroid, where

[X +&Y +9] = ([X, Yia+ L&Y - L)X - %dm((g, Y) — <n,X>)>

(e + - £+ a6 Y) - (0.

(2.101)
p(X +6) = palX) +par(€) (2102)
(X +&Y +m) = 56 V) + (0, X)) (2109

for any X,Y in I'(A4), £ and 7 in T'(A¥).
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Theorem 2.4.5 ([22]). Let (E,[-,-],p, (-,-)) be a Courant algebroid over
M, Ly and L9 Dirac subbundles transversal to each other, i.e., E = L1 &® Lo.
Then a pair (L1, L) is a Lie bialgebroid, where Ly is identified with the
dual bundle of L; under the pairing 2((-,-)).

An immediate consequence of the above theorems is the duality of Lie
bialgebroids, which is a generalization of that of Lie bialgebras.

Corollary 2.4.6 ([22]). If (A, A*) is a Lie bialgebroid, so is (A*, A).
The following example is fundamental.

Example 48 ([22]). Let (T'M,(T*M)p) be a Lie bialgebroid in Example
46. Then the direct sum T'M & T*M on a C'*°-manifold M is a Courant
algebroid by Theorem 2.4.4. Here the anchor map p, the pairing ((-,-)) and
the Courant bracket [-, -] are given by

pX+E§) =X, (2.104)

(X +6Y +m) = S(EY) + (X)), (2.105)

[X &Y 4ul = (X, Y]+ Lxn— LrE+ Sd((EY) — (1. X)) (2106)

respectively, where X and Y are in X(M), and & and 7 are in Q'(M). This
is called the standard Courant algebroid over M.

Next we shall recall the definition of quasi-Lie bialgebroids.

Definition 42 ([34]). A quasi-Lie bialgebroid is a Lie algebroid (A4, [, )4, a)
equipped with a degree-one derivation § of the Gerstenhaber algebra (I'(A*A),
A, [, -]a) and a 3-section of A, ¢4 in T'(A3A) such that

52 = [¢Aa ']Aa (2107)
Spu = 0. (2.108)

If the 3-section ¢4 is equal to 0, the quasi-Lie bialgebroid (A, d,¢4) is
just a Lie bialgebroid (A, d).

Theorem 2.4.7 ([34]). Let (A,d,¢4) be a quasi-Lie bialgebroid, where
A = (A ],]a,a), and da : T(A*A*) — T(A*T1A*) be the Lie algebroid
derivative of A. Then its double F = A & A* has naturally a Courant
algebroid structure. Namely, it is equipped with an anchor map p, a pairing
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((-,-) and a Courant bracket [-,-] given by the following: for any X,Y in
I'(A), any & and n in I'(A4*),

p(X +¢) = ()+a*(§)
(X+&Y +0n) = (< Y) + (n, X)),

[X, [ Y]a

Y] =
[€.0] = [§,n]a- + 0a(X, Y )
[X,¢] = (Ldi§+ —dy(g, X)) — (Lgd*X—i- ;d*<§,X>> ,

where the map a, : A* — T'M and the bracket |-, -] 4~ are defined by

a.(§)f = (&, d.f),
<[€777]A*7X> = a*(§)<na Y) - a*(n)<£7X> - (d*X)(fﬂl)’
respectively.

Taking ¢4 = 0, we obtain the Courant algebroid structure of a double
of a Lie bialgebroid (Theorem 2.4.4).

Example 49 ([6]). Let M be a manifold, (7, ¢) a twisted Poisson structure
on M and (T*M), 4 the corresponding Lie algebroid with (7, ¢) (Example
41). We set

do:=da— 14,9

for any f in C*°(M) and « in Q' (M). Then the triple ((T*M ), 4,d’, $) is a
quasi-Lie bialgebroid.

We obtain the definition of Poisson-quasi-Nijenhuis structures as cor-
responding structures with quasi-Lie bialgebroids by generalizing Poisson-
Nijenhuis structures corresponding with Lie bialgebroids.

Definition 43 ([38]). Let 7 be a Poisson structure on M, N a (1, 1)-tensor
on M and ¢ a closed 3-form on M. Then a triple (m, N, ¢) is a Poisson-
quasi-Nijenhuis structure on M if the following conditions hold:

(i) Nont=nfo N*;
(i) CN defined by (2.97) vanishes;
(iil) Tw(X,Y) = 7 (txay @) for any X and YV in X(M);
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(iv) tn¢ is closed,

where tx yw = w(X,Y,...) for any w in Q*(M), X and Y in X(M), and
tn is defined by (2.92). A quadruple (M, 7, N, ¢) is called Poisson-quasi-
Nijenhuis manifold.

Theorem 2.4.8 ([38]). Let 7 be a Poisson structure on M, N a (1, 1)-tensor
on M and ¢ a closed 3-form on M. Then a triple (w, N, ¢) is a Poisson-
quasi-Nijenhuis structure on M if and only if a triple ((T*M),,dn, ¢) is a
quasi-Lie bialgebroid over M, where dy is a degree 1 derivation defined by
the formula (2.86) using N : TM — T'M and [-, -]y defined by (2.83) instead
of pa and [, ] respectively.

We can generalize the definition of Poisson-quasi-Nijenhuis structures on
manifolds to on Lie algebroids.

Definition 44 ([5]). Let (A,[-,-]4, pa) be a Lie algebroid on M. Let 7 be a
Poisson structure on A, i.e., it satisfies [r,7]4 =0, N : A — A a bundle map
over M and ¢ a da-closed 3-section on A4, i.e., ¢ in T'(A3A) and da¢ = 0.
Then a quadruple (A, 7, N, ¢) is a Poisson-quasi-Nijenhuis Lie algebroid if
the following conditions hold:

(i) Nont=nto N*;

(ii) CN defined by (2.97) for [-,-]a vanishes;

(iii) Tn(X,Y) = 7¥(txay o) for any X and Y in T'(A);
)

(iv) ¢y ¢ is da-closed,

where txayw == w(X,Y,...) for any w in I'(A*A*), X and Y in I'(A4), and
vy is the degree 0 derivation of (I'(A*A*), A) defined by (2.92).
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Chapter 3

Deformations of symplectic
structures by moment maps

In this chapter, we carry out deformations of symplectic structures on a
smooth manifold. We use the moment map theory for quasi-Poisson actions
to do.

3.1 Main result

A moment map for the quasi-Poisson action on a quasi-Poisson Gg)—manifold
(M, W?w) are defined with the conditions for the family of quasi-Poisson G%—

structures {TF?\;[}W on M. For each complement b, there exists a twist

t in A2g such that h’ = b;, so that the family {7‘(’?\;[}[)/ is regarded as the

family {W?\Z}te\?g parametrized by the twists. When the quasi-Poisson G?j—

structure 77?\4 is induced by a given symplectic structure, we will give the

method of finding a quasi-Poisson G%—structure which induce a symplectic
structure in {7‘(‘?\;[ v That is, we can deform a given symplectic structure to
a new one by a twist t. This deformation can be carried out due to using
the family {w?\}}t with moment map conditions for quasi-Poisson actions.
In this regard, it is described as follows in [1]: It would be interesting to find
a geometric framework for considering the family {ﬂ?\j[ R Our deformation

is one of the answers for this proposal.
Let (M,w) be a symplectic manifold on which an n-dimensional con-
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nected Lie group G acts by symplectic-Hamiltonian action o with a moment
map p: M — g*. Let m be the non-degenerate Poisson structure on M in-
duced by w. Then p is a moment map for the quasi-Poisson-Hamiltonian
action o of (G,0,0) on (M, r) by Example 35 in Section 2.3.

Let (g g*, g,9") be the Manin triple corresponding to the trivial Poisson
Lie group (G, 0), where g @ g* has the Lie bracket

[X? Y] = [X’ Y]Q? [Xa 5] = ad;{fv [5,7]] = [6777]9* =0 (31)

for any X,Y in g and &,7 in g*. Here the bracket [,:]; and [, ]g« are
the brackets on g and g* respectively. Then the Manin (quasi-)triple (g ®
g%, 9,0%) defines F' := Fyp« = 0 and ¢ := g« = 0 (see (2.42) and (2.43)).
Since the corresponding quasi-triple (T*G, G, g*) is complete by Example 34
and 35, an isotropic complement g* is admissible at any £ in g* by Definition
33, and hence it is admissible at any & in p(M).

Let g; be an isotropic complement of g in g & g* to which the twist in
A%g from g* is t. When we deform 7 to il == m—tp by a twist ¢, the quasi-
Poisson Lie group (G, 0,0) is deformed to (G, 7, ¢qr), where T = th —th
and @g: = [t,t] + ¢ by (2.50) and (2.65). Moreover it follows from F = 0
and (2.52) that ¢ = 0. So pgr = [t 1)

On the other hand, it follows from Definition 34 that the quasi-Poisson
(G, g, pqr )-manifold (M, ;) satisfies

2 (b mhe] = (o), (32)

Lxy = Fgr(X) . (3.3)

If (pgr)m = 0, ie., [t,t];r = 0, then the 2-vector field ml; is a Poisson
structure on M by (3.2).

Assume that a twist ¢ in A%g satisfies [t,¢] is ad-invariant. Then 7l =
tL — % is a multiplicative Poisson structure (see [21]). Therefore (G,7%)
is a Poisson Lie group. Then it follows that Fyr coincides with the dual
of the bracket map [-, -]”é cg* A gt — g* on g* defined by the Poisson Lie
group (G, mf). In fact, let j; : g* — gf be the linear isomorphism (2.41)
determined by (g @ g%, g, 9f) and we obtain

i) =+t (3.4)
k

by (2.48), where {e;} is a basis on g, a set {£'} is the dual basis of {e;} on
g and t = %Z” te; A ej. By using the result of Example 22, formulas
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(3.1) and the fact that jt_l © pg; = Pg+, We compute
Fg (e',eh) =j; ! (pg: ([jt(gi)dt(ffj)]))

Dy~ ( et + Ztikek,fj +thl€l])
k l

ik 44l x J_adis ., &
Zt t [€k7el]g+adzktikek€ ads~ i, €

k,l
— adz t”“e adz t]l(Bl
= adtn i adtuej
= [5275]}

Therefore, since G is connected, the condition (3.3) means that the action
o is a Poisson action of (G, n};) on (M, nh,) under the assumption that ¢ is
an r-matrix and that [t, ], = 0.

Next, we can write by (2.48),

g; = span 5i+2tijej 1=1,...,n 5. (3.5)
J
If g; is admissible at any point in u(M), then it satisfies Imwf, = Im(w}fw)g,
for any p in M by Theorem 2.3.4. The non-degeneracy of m means that
Imwg = T,M for any p in M. Therefore, by the fact that Im(wfw)f7 =T,M
for any p in M, a quasi-Poisson structure 7%, is also non-degenerate.
Here we shall examine the condition for a isotropic complement to be
admissible at a point in g* in more detail. Let (§;) be the linear coordinates
for {¢'}. Then it follows that for i = 1,...,n,

e e a& -2t l€k8£
J

o Jsk,l
= 1 1 1 ok g 3.6
=SS g + (140 | g (36)
gk Ui jik !

where X +— X+, for X in g @ g*, is the infinitesimal action of the dressing
action on g* = T*G/G (Example 31). The isotropic complement g; is
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admissible at £ = (£;,...,&,) in g* if and only if the elements (3.6) form a
basis on T¢(g*) = g*. Hence this means that the matrix

LSt Tpptdige e Tyatiob
Zj,kt ]C1j§k 1+ Zj,k t chjfk Tt Zj,kt ]anfk
Ar(8) = : : . :
Ej,]g tnjclfjfk Z]’,k L‘”jcléj&k R Zng tnjcﬁjgk

(3.7)

is regular. Therefore g; is admissible at £ in p(M) if and only if the matrix
Ay(€) for & in pu(M) is regular. Since any non-degenerate Poisson structure
on M defines a symplectic structure on M, the following theorem holds.

Theorem 3.1.1 (Nakamura [31]). Let (M,w) be a symplectic manifold on
which a connected Lie group G with the Lie algebra g acts by a symplectic-
Hamiltonian action o, ; : M — g* a moment map for ¢ and 7 the Poisson
structure induced by w. Then the following holds:

1. If a twist ¢ in A2g satisfies that [t,¢]y; = 0, then ¢ deforms the Poisson

structure 7 to a Poisson structure ﬂfw := 7w — tpr. Moreover, if ¢ is
an r-matrix, then o is a Poisson action of (G, 7f) on (M, %), where
mt, =t — R

2. For a twist ¢ in A?g, if the isotropic complement g} is admissible on
w(M), then t deforms the non-degenerate 2-vector field = to a non-
degenerate 2-vector field 7,. This condition is equivalent to that the
matrix A;(§) defined by (3.7) is regular for any £ in u(M).

Therefore, if a twist ¢ satisfies the assumptions of both 1 and 2, then t de-
forms w to a symplectic structure w! induced by the non-degenerate Poisson
structure 7. In other words, w and w' are deformation-equivalent.

Remark 7. (i) In Section 3.2, we will show that the condition in Theorem
3.1.1 is not a necessary condition for 7}, to be a non-degenerate Poisson
structure.

(ii) If a twist ¢ satisfies the assumptions of both 4.28 and 4.29 and is an
r-matrix, then the Poisson action o of (G,7f) on a symplectic manifold
(M,w!) has a moment map (although not necessarily G-equivariant) due to
Theorem 3.16 in [19].

The following theorem gives a sufficient condition for a twist to deform
a symplectic structure in the sense of Theorem 3.1.1.
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Theorem 3.1.2 (Nakamura [31]). Let (M,w) be a symplectic manifold
on which an n-dimensional connected Lie group G acts by a symplectic-
Hamiltonian action o. Assume that X,Y in g satisfy [X,Y] = 0. Then the
twist t = %X AY in A%g deforms the symplectic structure w to a symplectic
structure w;. For example, a twist ¢ in A%h, where b is a Cartan subalgebra
of g, satisfies the assumption of the theorem.

Proof. For X and Y in g, we set
X=) Xe, V=) Y,
i J

where {e;}"; is a basis on the Lie algebra g. Thensince [X, Y] =3", ., XtyJ

cf'jek = 0, we obtain the following conditions:

ZX’YJ r=
k

for any k, where ¢j;’s are the structure constants of g with respect to the
basis {e;}. Moreover, since we have

1 1 1
[t,t] = [QX/\Y,QX/\Y] :aX/\[X,Y]/\Y:Q

the twist ¢ is an r-matrix such that [¢,¢]p; = 0 obviously. Hence 7}, is a
Poisson structure, and if 7l'§w is non-degenerate, then the twist ¢ induces the
symplectic structure wy.

We shall show the non-degeneracy of ;. Let 1 be the moment map for a
given symplectic-Hamiltonian action ¢. We must show that gf is admissible
at any point in u(M). We prove a stronger condition that the quasi-triple
(T*G, G, g;) is complete.

Let {€'} be the dual basis of {e;} on g* and (&;) be the linear coordinates
for {e'}. Since t = § Do XYie; Nej,

g, = span 5i+ZXinej i=1,---n
i?j
Then it follows that for : =1,...,n,
, o 0
e+ X'Ye; XYk ——l— 1+ XYJC —.
2]: | =22 XY g > XVt | 5

g* 7] k l#’L ,] k
(3.8)
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The quasi-triple (TG, G, g;) is complete if and only if the elements (3.8)
form a basis on T¢(g*) = g* for any £ = (&1,...,&,). Therefore we shall
prove that the matrix

1+ Zj,k Xleclfjfk Zj,k XleC%jfk s Zj,k XleiCﬁjfk
ik XQYJc’fjgk L+, XQYJclgjgk SEEED D XQYJc,’gjgk
ik X”ch’fjgk Sk X"ch’g’jgk SRR D P X"Yﬂ'c’;jgk

(3.9)

is regular. In the case of X = 0, this matrix is equal to the identity matrix,
so that it is regular. In the case of X # 0, using Z” Xincfj = 0, we
can transform the matrix to the identity matrix. Thus the matrix (3.9) is
regular. Therefore g; is admissible at any point in g*. That is, (TG, G, g})
is complete. ]

Remark 8. We try to generalize the assumption of Theorem 3.1.2 and
consider X,Y in g such that [X,Y] = aX 4+ bY (a,b € R), that is, the
subspace spanned by X,Y is also a Lie subalgebra. We set ¢t = %X ANY
in A%g. Since [t,t] = 0, the twist ¢ is an r-matrix such that [t,t]y; = 0.
Therefore the symplectic action 1 is a Poisson action of (G, w) on (M, w%,).
Then we research whether g; is admissible at each point in g*. Similarly to
the proof of Theorem 3.1.2, a matrix to check the regularity can be deformed
to

1+Y  (aX?+bYR)g 0 - 0

Therefore this matrix is regular if and only if

1+ (aX*+byF)g # 0.
k

In the case of [X,Y] = 0, by Theorem 3.1.2, the space g; is admissible at
all points in g*. In the case of [X,Y] # 0, the above condition means

Let £ be an element satisfying that ([X,Y],&’) # 0. By setting
g/
£i=-

(X, Y],¢)
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we obtain ([X,Y],£) = —1, so that g; is not admissible at . Eventually, to
make sure of the admissibility of g;, we need check whether such a point £
is included in p(M).

3.2 Examples

In this section, we compute specifically which element ¢ in A%g defines a new
symplectic structure w; from given one w on a smooth manifold.

Example 50. We consider (R?",wp) with a symplectic-Hamiltonian action
by the parallel transformation (Example 7). The Lie algebra R™ of an addi-
tive group R™ has the commutative bracket [-,:]. Hence since [a,b] = 0 for
any a and b in R™, an element ¢ := a A b in A’R" deforms wy by Theorem
3.1.2.

Next we consider the complex projective space (CP", wrg) on which the
special unitary group SU(n + 1) acts naturally as a symplectic-Hamiltonian
action with a moment map p (Example 4 and Example 8).

We use

Xk, : the (j, k)-element is 1, the (k, j)-element is —1, and the rest are 0,
Yji : the (j,k)- and (k, j)-elements are ¢, and the rest are 0,
Zy : the (I,1)—element is i, the (n + 1,n + 1)-element is —i,

and the rest are 0

forl1 <j<k<n+1landl =1,...,n, as a basis of su(n + 1) which is
defined by a Chevalley basis of the complexified Lie algebra sl(n 4+ 1,C) of
su(n+1). The subspace spanned by Z;’s is a Cartan subalgebra of su(n+1).
In the case of n = 1, denoting the dual basis of {X12, Y12, 21} by {&'},
We obtain
vy T o, l-al-g

x1, = e+ et ——5¢7,
@ y) L+a?+y}  1+al+yd  20+at+43)

i.e., p(CPY) C su(2)* is the 2-sphere with center at the origin and with
radius 3 (Example 8).

Let (&) be the linear coordinates for {¢"}. We set g := su(2). Any twist
t is an r-matrix (Example 21). Since CP! is 2-dimensional, it follows that
[t,t]cpt = 0. Therefore we can deform the Poisson structure mpg induced
by wpg to a Poisson structure mhg on CP! by t and the natural action is a

Poisson action of (SU(2), ¢t — tf).
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Let g be the space twisted g* by ¢ in A%2g. We consider what is the
condition for ¢ under which g} is admissible on u(CP1). For any twist

1
t= Z 5)\,']‘61' Nej € A2g (Aij € R),
i<j
we obtain
g7 = span{e’ + Aizea + Mizes, €2 — Aaer + Aizes, €2 — Aizer — Aagea .

Then g; is admissible at £ = (£1,&2,&3) in g* if and only if the matrix

1+ 2X1283 — 2M1382 21361 —2X 1261
A(&) = —2X2382 1+ 2X1283 + 2A2381 —2A12&2
—2X2383 2X1383 1 — 2138 + 2M23&1

is regular. By computing the determinant of the matrix, we have

det A(€) = (14 2X9381 — 2M13&2 + 2X1263)%

So the complement g; is admissible at { = (£1,&2,&3) if and only if 1 +

2X2381 — 21382 + 2M1283 # 0.
Therefore g} is admissible on p(CP?) if and only if the "non-admissible

surface” {£ = (51,62,53) € g*| 1+ 2X0381 — 2X1382 + 2A12€3 75 0} for g;k
and the image ;(CP!) have no common point. Since j(CP!) is the 2-sphere
with center at the origin and with radius %, we can see that this condition
is equivalent to the condition

Ay + ATz 4+ A33 < 1.
From the above discussion, we obtain the following theorem.
Theorem 3.2.1 (Nakamura [31]). If a twist ¢ := >, $Aijei A e satisfies
Mo+ A2+ A3, < 1, then the Fubini-Study form wgs on CP*! can be deformed
by t in the sense of Section 3.1.

We shall see an example of a concrete twists on CP!.

Example 51 ([31]). We use a twist ¢ = $X12 A Y12 in A%su(2) and a real
number A\, where —1 < A < 1. The symplectic structure wﬁ:ts deformed wrg
by At is written by

1 1 -1
Wil = {(1 T 2/\> (22 + ) + 227 + ) + (1 - 2/\>} day A dy;
(3.10)
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on Uj. Then it follows from an elementary calculation that the symplectic
volume Vol(CP!, wdl) of (CP,wil) is

Vol(CP!, wil) = {7r (A=0) (3.11)

glog‘%) (A #0).

Next, we consider a cohomology class of each wf}ts Since HAy(CP) =
R, there exists a real number k) in R such that [wﬁ\ts] = ky|wrs]. By

integrating, we obtain

1 24+ A

ky = —log|——

AT ‘ 2\

where A # 0. Since the function ky of A is smooth, even and strictly mono-
tone increasing when A\ is positive, wﬁts and wgs)‘t are cohomologous. This
means that we obtain a lot of non-trivial symplectic structures different from

original wrg and non-trivial symplectomorphisms (M, wpl) — (M, wgs)‘t).

9

In the above example, the condition —1 < A < 1 is not a necessary
condition for wpf to be a symplectic structure. In fact, it follows that wpk
is a symplectic structure for —2 < A < 2. Therefore in general, the non-
degeneracy for 7! is not equivalent to that the isotropic complement g is
admissible on p(M).

The next example is the complex Grassmannian Gre(n,r) := SU(n)/(S
(U(r) x U(n — r))) with the Kirillov-Kostant form wgk. With respect to
wKK, the natural SU(n)-action is symplectic-Hamiltonian (Example 9).

Then we consider the following r-matrix of su(n):

1
=g 2 XunY
1<i<j<n

where the r-matrix ¢ is the canonical one defined on any compact semi-
simple Lie algebra over R (for example, see [8]). This is an r-matrix such
that [t,t] # 0. We show that it satisfies [t,t]ar = 0, where M := Gr¢(n, 7).
Since t is an r-matrix, the element [t,¢] is Ad-invariant. By the definition of
the SU(n)-action on Gre(n,r), it follows that

[t tlr = put, ",

where p : SU(n) — Gre(n,r) = SU(n)/(S(U(r) x U(n —1))) is the natural
projection. Since any point m in Gre(n,r) is represented by gH, where g is
in SU(n) and H := S(U(r) x U(n — r)), we compute

[t t]arm = Delt 1]l = puRya[t, 1.
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Because of the Ad-invariance of [t,t], we obtain
PeRyu[t,t] = paLgal g1, Ryu[t, t] = paLgeAdy-1[t, ] = puLya[t, t].

Let b be the Lie algebra of H. For any X in h and g in SU(n), we compute

d d
PsLgs X = piLgs 75 OXP sX = ﬁ(gexp sX)H
s=0

= ()7
s=0

= —gH
0 dsg

S=

where we have used that exp sX is in H in the third equality. Therefore it
holds that [¢,¢]as = 0 if each term of [¢, ] includes elements in . We notice
that

h =spanp{X;;,Yij, Zp|l <i<j<rorr+1<i<j<nmn,
and k=1,...,n—1}.

If Xij,Yij € b, then
[ Xig ANYy) = Xig) AN Yy — Xy N[+, Y]

So these terms include an element in . Hence we investigate terms of the
form

[Xij A Yij, X A Y] = — [Xig, Xia) AYi A Yig — X A [Yej, Xig) A Y
— Yo N[ X, Yia] A X — X A X A [Yig, Yl

where X;;,Y;;, Xp; and Yy, are not in . In the case of i = k and j = [, we
get

[Xij, Xiz] = [Yij,Yi;] = 0,
[Xi5,Yij] = 2(Zi — Z;) € b,

where we set Z,, := 0. In the case of i = k and j < (resp. I < j), since it
follows that r + 1 < j, | < n, we obtain

(Xij, Xu] = [Yij, Y] = —Xji(resp. Xy5) € b,
[Yij, Xp] = [Yi, Xij] = —Yji(resp. Yi5) € b.

We can also show the case of i < k (resp. k < i) and j = [ in the similar
way. Therefore all terms of [t,¢] include elements in b, so that [¢,t]y =
0. Therefore F%K is Poisson by Theorem 3.1.1, where mkgk is the Poisson
structure induced by wkgk. Since Gre(n,r) is compact, for sufficiently small
|A|, the Poisson structure WI’\JK is non-degenerate. Example 51 is the special
case of this example.
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3.3 Symplectic toric manifolds

In this section, we consider deformations of symplectic toric manifolds. Then
our deformations give canonical transformations for symplecyic toric mani-
folds.

Theorem 3.3.1 (Nakamura [31]). For any 2n-dimensional symplectic toric
manifold (M,w) and any twist ¢ in A2R"™, the manifold (M,w!) deformed
by t in the sense of Section 3.1 is a symplectic toric manifold with the
same action as on (M,w). Moreover (M,w!) is isomorphic to (M,w) as a
symplectic toric manifold.
Proof. We denote the symplectic-Hamiltonian action and the moment map
for it by o and pu, respectively. Since T" is commutative, the brackets
(X, X;] vanish for all 4 and j. Hence for any A2 in R, the twist o :=
A2X1 A Xo deforms w to a symplectic structure w'? induced by a Poisson
structure 712 := 7 — (¢12),,; by Theorem 3.1.2. On the other hand it follows
Thn 1= tl — t# = 0 for any twist ¢ by the commutativity of T". Therefore,
after deformation, the multiplicative Poisson structure 0 on T" is invariant
and the action o is a symplectic action. Then this action is symplectic-
Hamiltonian with a moment map p. In fact, the map p is a moment map
for o on (M,w"?) if and only if du™ = 1x,w"2. Moreover,
dp™ = 1x, w2 = dpX = (W12) X,
PN (7Tt12)ﬁd,uX — (thZ)ﬁ(wt12)bXU
= (r"2)dpX = - X,
= X, = — (7% — (t12)8)dp™
— X, = —ﬂﬁd,uX + (tlg)gd,ux
— X, = X, + (tm)?,dux
= (t12)tdp™® =0 (3.12)
for any X in R since p satisfies (1.1) with respect to w. Then we calculate
(tlg)ﬁadu‘x = ()\12X1 A XQ)?TLXUCU
= Ma(X10 A Xo0)fw’ Xy
= Ma((X1,0, 0" Xo) Xo5 — (X005, Xo) X1,5)
= )\12(W(X1,0" XU)XQ,U - W(XQ,ay Xa)Xl,U)

Using the facts that for any Hamiltonian G-space (M,w, G, 1),
w(Ym Zcr) - :U'[YZ]
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for any Y and Z in g, and that the Lie algebra R"™ is commutative, we ob-
tain the condition (3.12). Therefore (M, w'?) is a symplectic toric manifold
on which a moment map for the symplectic-Hamiltonian action o is u. By
Delzant theorem, (M, w) and (M, w'?) are isomorphic as a symplectic toric
manifold. Similarly, for t13 = M3 X1 A Xo (M3 € R, X; € Rn), (M, wtw)
and (M, (wh2)113) = (M, w'2%113) are isomorphic as a symplectic toric man-
ifold. By repeating this operation, it follows that (M,w) and (M,w!) are
isomorphic as a symplectic toric manifold for any twist ¢t = >, _ - A\i; X; A X
O

1<J

Remark 9. In Theorem 21 in [31], the results of Theorem 3.3.1 are proved
under the assumptions that a symplectic toric manifold (M,w) is compact,
connected and satisfying a condition with respect to a symplectic structure.
However Theorem 3.3.1 states that these assumptions are not necessary.

Example 52 ([31]). A symplectic toric manifold (CP",wgg) has the torus
action o:

(6202, e , ew"“) et zpga] = e 0250 0o €i0n+12n+1]

for any 6; in R. The moment map p : CP®™ — R" for this action on
(CP™, wrg) is

. . _ 1 |22‘2 ’Zn+1|2
IL[/(I:ZI ° ° Zn+1]) T 2 < ’2‘2 L] |Z’2 9

where z = (21,...,2p4+1) in C*. We set X; := (1,0,...,0),..., X, =
(0,...,0,1). On Uy, since for any i = 1,...,n,

Xicpn = —Yig— +Tig
or Y ox; i 0y;
we obtain
0 0 0 0
X; AN X)epr = y; i N —
( )(CP =Y yja a ] - Yix ]a ayj
—x 8—1—51333'8/\i(1<i<'<n)
iYia Bu; 8 z; iLj e 8yj > J )
where z; := ReZtL Z’“ and y; := ImZ+L , it follows that
A (0 20 120 ) SR

w = W
ES TS T T g a2 2+ 1)

+ z1y2dz1 A dy2 + y1z2dyr A dxe + y1yadyn A dy2).
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By Theorem 3.3.1, (CP”,W%) is a symplectic toric manifold isomorphic to
(CP™, wpg) as a symplectic toric manifold.






Chapter 4

Pseudo-Poisson-Nijenhuis
manifolds

In this chapter, we study pseudo-Poisson-Nijenhuis manifolds.

4.1 Compatible pairs

In this section, we consider the compatibility of a 2-vector field and a (1, 1)-
tensor on a C'*°-manifold, which plays an important role to define not only a
Poisson-Nijenhuis and Poisson-quasi-Nijenhuis manifold but also a pseudo-
Poisson-Nijenhuis manifold, which is defined in Section 4.2. For that reason,
first we begin with the definitions and properties of brackets defined by a 2-
vector field and a (1, 1)-tensor. We generalize several properties of a Poisson-
Nijenhuis structure to that of a compatible pair of a 2-vector field and a
(1,1)-tensor. Moreover we show that the brackets gives a characterization
of the compatibility of a 2-vector field and a (1, 1)-tensor, which is the main
theorem of this subsection.

Let M be a C*°-manifold, = a 2-vector field and N a (1, 1)-tensor. Sim-
ilarly as in the case that m is Poisson and that N is Nijenhuis, we de-
fine brackets [, ] and [-,]y by (2.31) and (2.83) respectively. It is easy
to see that these brackets are bilinear and anti-symmetry, and satisfy the
Leibniz rule (ii) of Definition 36. From this, we obtain the derivation
de + X*(M) — X**1 (M) and dy : Q*(M) — Q*T1(M) defined by the
formula (2.86) respectively and Lie derivatives £™ and £V defined by (2.87)
respectively. Then it follows that d,D = [r, D] for any D in X¥(M), and
that

ﬁgﬂ = [O‘vﬁ]ﬂ" EQY = [X7 Y]N

79
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for any a, 8 in QY(M), X and Y in X(M).
In general, any 2-vector field on M and (1,1)-tensor on M satisfy the
followings.

Proposition 4.1.1 ([16],[42]). Let m be a 2-vector field on M. For any
a, B,y in QY(M) and X in X(M),

%La/\g[ﬂ',ﬂ'] = [ﬂ'ﬁa,ﬂ'ﬁﬂ] — Wﬁ[a,ﬂ]ﬂ, (4.1)
S (e Blele X) = 5 (Exlm,al) (@, 6,)

Cycl(a,8,7)

ts Y Il 8dh X)) (42)
Cycl(a,p7)

Proposition 4.1.2 ([41]). Let N be a (1,1)-tensor on M. For any X,Y
and Z in X(M),

Yo X YIvZn=— )., (Tn(X,Y),Z]+ Tn(X,Y], 2)).
Cycl(x,y,2) Cycl(x,y,2)
(4.3)

Remark 10. The above brackets are not Lie brackets in general. By Propo-
sition 4.1.1, if the 2-vector field 7 on M is Poisson, i.e., [r, 7] = 0, then the
bracket [, -], is a Lie bracket on Q!(M). By Proposition 4.1.2, if N is Ni-
jenhuis, i.e., the Nijenhuis torsion Ty vanishes, then the bracket [-, ]y is a
Lie bracket on X(M).

The existence and uniqueness theorem of the Schouten bracket of a Lie
bracket on the sections I'(A) of a Lie algebroid A is extended to the following
situation:

Theorem 4.1.3 ([32]). Let (A, a) be an anchored vector bundle over M,
ie, a: A— TM is a bundle map over M, and [-,-]4 an anti-symmetric
bilinear bracket on I'(A) satisfying the Leibniz rule

(X, fY]a = (a(X) )Y + fIX,Y]a (4.4)

for any X,Y in I'(A) and f in C°°(M). Then there is a unique bilinear op-
erator [-,-]4 : T'(A*A) xT'(A*A) — T'(A*A), called the generalized Schouten
bracket or simply the Schouten bracket, that satisfies the following proper-
ties:
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(i) It is a biderivation of degree —1, that is, it is bilinear,
deg[D1, Do) 4 = degD; + degDsy — 1, (4.5)
and

[D1, D2 A D34 = [D1, Da]a A\ D3
+ (—1)(degDitr)degDo ) A 1Dy Dol (4.6)
for D; in I'(A*A),
(ii) Tt is determined on C*°(M) and I'(A) by

(a) [f,9]la=0(f,g € C=(M));
(b) [X, fla=a(X)f (f € C®(M),X € I'(A));
(¢) [X,Y]a (X,Y €T'(A)) is the original bracket on I'(A).

(iii) [Dr, Do]s = —(~1)(de8P1=DdegDa=D Dy Dy,

Remark 11. In general, the Schouten bracket of a bracket [-,-]4 on I'(A4)
does not satisfy the graded Jacobi identity because [-,-]a does not satisfy
the Jacobi identity.

Since (TM, N) and (T*M,n*) are anchored vector bundles over M and
brackets [-,:]r and [, ]n satisfy the Leibniz rule (ii) of Definition 36 re-
spectively, by Theorem 4.1.3, [-,:]r and [, -]y are extended to the Schouten
bracket on Q*(M) and on X*(M) respectively.

We define the concept related to a 2-vector field and a (1,1)-tensor,
called the compatibility of these.

Definition 45 ([16], [26], [32]). The 2-vector field 7 on M and the (1,1)-
tensor N on M are compatible if they satisfy (2.96) and the (2, 1)-tensor CN
defined by (2.97) vanishes.

Let (7, N) be a compatible pair and set mx(a, 8) := (Nnfa, ). Then
it follows from (2.96) that 7y is a 2-vector field on M. Hence under the
assumption (2.96), the bracket [, -] x4+ can be rewritten as [+, -], . Moreover,
then the three brackets [+, -]z, [-,]¥" and [+, -]y~ defined by (2.100) coincide.

For any 2-vector field = and (1, 1)-tensor N satisfying (2.96), the three
brackets [, Jry, [ ]Y and [+, -]y on an anchored vector bundle (7 M, ﬂg\,)
satisfy the Leibniz rule (ii) of Definition 36 respectively. Therefore we obtain

the derivations defined by the formula (2.86) respectively. In particular, we
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denote the derivations defined by the bracket [, ]n » by dY, and obtain the
formula

dY = [r, . (4.7)

For any compatible pair (7, N), we set my := 7 and define a 2-vector field
k41 by the condition 7'('2 =N o7r,ﬁC inductively. In the case of a compatible
pair (7, N) of which N is Nijenhuis, the following proposition corresponding
to the existence theorem of the hierarchy of Poisson-Nijenhuis structures
(Theorem 2.4.1) can be shown in the same way.

Proposition 4.1.4 (Nakamura [32], the hierarchy of compatible pairs). Let
(m, N) be a compatible pair on M such that N is Nijenhuis. Then all pairs
(mg, NP) (k,p > 0) are compatible pairs on M such that NP = No---o N
(p times) are Nijenhuis. Furthermore for any k£, > 0 and @ in X*(M), it
follows that [mg, Q] ni+1 = [Tk+1, @] n1-

Proof. For any (1,1)-tensor N, the Nijenhuis torsion 7y of N can be defined
equivalently by

LXTN = ﬁNxN —No ﬁxN (4.8)
for any X in X(M). Then by induction, we obtain
p—1
ﬁprN:Npo£XN+ZNhobeN (4.9)
h=0
If N is Nijenhuis, i.e., Ty = 0, it follows that
Lnrx NP = NP o Lx NP. (4.10)
Therefore

LXTNP :EprNp—NpOEXNPZO (411)

and we see that NP is Nijenhuis.
Moreover for any (1,1)-tensors A and B satisfying AB = BA and Anf =
7t A, Brf = 7B, we have

CAB(a, B) = B*(C2 (e, B)) + CB (A%, B) + (Lpso B) A*B — (L gzt B)* B.
(4.12)
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If (4.12) is applied for A = NP and B = N, where N is Nijenhuis, then we
obtain

p—1
€ (0,8) = N (O (0, 8) + (N0, 8) + 3 (N o 15 Tw)B.
= (4.13)

Therefore we see inductively that all the pair (7, N?) is compatible.
In order to prove the first part of Proposition 4.1.4, it is sufficient to
prove that (7, N) are compatible. We obtain

O (@, 8) = CN.(a,N"B) + (1,2, Tw)" B (4.14)

for any o and 3 in Q'(M). By (4.14), CY = 0 and Ty = 0, it holds that
CYN =0. Hence (741, N) is compatible.

Tk+1
Finally, if a pair (7, V) is compatible, then [-, |y » = [+, -]y holds. Hence
the corresponding derivations dY and d,, coincide. Then dY = d,, means

[m, Qln = [7n, Q] (4.15)

for any @ in X*(M). Since (7, N*1) and (711, N') are compatible, then
we obtain

[Tk, @l vi+1 = [Tppi41, Q] (4.16)
= [Tk+1, Q) nt (4.17)
for any @ in X*(M). O

The compatibility of a 2-vector field = and a (1, 1)-tensor N is equivalent
to the following equations using the Schouten brackets of [+, ]r and [-, ]

Theorem 4.1.5 (Nakamura [32]). Let M be a C°°-manifold, 7 a 2-vector
field on M and N a (1,1)-tensor on M. Then the following conditions are
equivalent:

(i) m and N are compatible;

(ii) the operator dy is a derivation of the Schouten bracket [-, ], :
dn[€1, &2)r = [dnér, Solr + (1)1 TG, dnbal s (4.18)
(iii) the operator d is a derivation of the Schouten bracket [-,-]x :

dx[D1, D]y = [dxD1, Da]n + (—1)8P* Dy, drDs]n,  (4.19)
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where &;’s are in Q*(M) and D;’s are in X*(M).

In the case of that 7 is Poisson, Theorem 4.1.5 coincides with Lemma
3.6 in [38]. Moreover, if N is Nijenhuis, then Theorem 4.1.5 coincides with
Proposition 3.2 in [15]. However to prove Proposition 3.2 in [15], properties
for a Lie bialgebroid [22] were used since ((T'M )y, (T*M),) is a Lie bialge-
broid, and Lemma 3.6 in [38] does not mention the equivalence of (i) and
(iii) in Theorem 4.1.5. Therefore Theorem 4.1.5 is worthy in the sense that
these equivalence holds without an assumption that 7« is Poisson or N is
Nijenhuis. To prove Theorem 4.1.5, we need the following lemma.

Lemma 4.1.6 (Nakamura [32]). Let m be a 2-vector field on M and N a
(1,1)-tensor on M. Assume that 7 and N satisfy the condition (2.96). Then
the pair (7, N) is compatible if and only if for any f in C*°(M) and X in
X (M),

£5 X = ~ldef, X]n. (4.20)
Proof. For any ¢ in Q'(M), we calculate

(Lh X, €)= L5 (X, €) — (X, L5 )
= (w N*df)(X, &) — (X, [N*df, &]x)
= (whdf)(X,€) — (X, [df. 1Y)

+ (X, [df, N*€]x) — (X, N*[df, €])
= (whdf)(X,€) — (X, [df, €)Y

+ (X, Lregr(N7E)) — (NX, LosgrE)
= (whdf)(X,€) — (X, [df. 1Y)

+ <N[d7rfa X],§> - <[d7rf: NX]7§>

and

(ldrf, X]n, &) = ([Ndr f, X] + [dr f, NX] — N[dr f, X], &)
[dwavX]v§>+<[d7rf7NX} _N[dﬂﬁX]’@
[mn, £1, X1, 6) + ([dn f, NX] = Nldx f, X],6)
— X, wnd, S = [, [, XT15€)
+ ([dnf, NX] = N[dr f, X], )
= —(ldny X, £1,6) + ([7n, X f1,€)

+ ([drf, NX] = N[dr f, X], €)

o~ o~~~
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= —(dny X)(df, &) + TN (d(X f),€)
+ {[def, NX] = Nldrf, X],€)
—(mhdf) (X, €) + (nh€) (X, df)
+ (X, [df, Elmy) — (THE)(XS)
+ {[def, NX] — Nldrf, X],€)
— (A df) (X, €) + (X [df, E]my)
+ ([def, NX],€) — (Nldrf, X], ).

Therefore we find

(Lhy 1 X + [def, X]N, &) = (X, [df, ]y — df, E1N)
= (X, CN(df,€)).

Because the exact 1-forms generate locally the 1-forms as a C°°(M )-module
and Cfrv is tensorial, we obtain the equivalence to prove. ]

Proof of Theorem 4.1.5. The equivalence of (i) and (ii) can be proved simi-
larly as Proposition 3.2 in [15]. In fact, we set for any &; and & in Q*(M),

Anr(61,8) == dn[€, Eolr — A€, E]n — (=149 E dn&. (4.21)

Then for any f,g in C*°(M), o, 8 and v in Q*(M), we obtain

An(f.9) = (N7* — 7 N*)df, dg), (4.22)
An(df, 9) = CF(df, dg), (4.23)
AN(df,dg) = —d(C}(df,dg)), (4.24)
Ana(a, BAY) = Anala, B) Ay + (—1)408ede80 g A Ay (a,7),  (4.25)
Anr(a, B) = —(—1)(de8a-Ddegs—n 4 (5 o), (4.26)

so that the conclusion follows from these equations.

We shall prove the equivalence of (i) and (iii). We set for any D; and
Dy in X*(M),

Ay N(D1, Ds) := dr[D1, Do]n — [dr D1, Do]n — (—1)48P1H Dy d, Doy
(4.27)
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Then for any f and g in C*°(M), we calculate

dﬂ'[fv Q]N = 07
[dﬂ'fv Q]N = (Ndﬂ'f)g = <Ndﬂ'f’ dg>
= (—Nntdf,dg),

[f.drgly = —[drg, flny = —(—Nntdg, df) = (r*dg, N*df) = (dg, —m* N*df)
= (7' N*df,dg),

so that we obtain

Aﬂ,N(fv g) = dﬂ'[f? g]N - [dﬂ'fv g]N + [f? dﬂg]N
=0 — (—N=tdf,dg) + (—n* N*df, dg)
= ((N* — 7! N*)df, dg).

Therefore Ar n(f,g) = 0 is equivalent with the condition (2.96). For any
figin C°(M) and X in X(M), we calculate

(de[X, gln, df) = (d(NX)g), df) = (—7*d(dg, NX), df)
= (d(dg, NX), w*df)
(Wﬁd)<NX dg),
{[d X, 9In, df) = (~tangdn X, df) = —(d=X)(dng, df)
—(mtdng) (X, df) + (w*df) (X, dng) + (X, [dng, df]x)
—(wﬁN*dgxx, df) + (w*df )(X, N*dg) + (X, [N*dg, df])
—(7* N*dg)(X, df) + (v*df)(N X, dg) + (X, [N*dg, df]x),
<[X7d7rg]zv,df> (INX,drg] + [X, Ndzg] — N[X, drg], df)
(INX, [r,gll, df) + (X, —Nr*dg],df) — ([X, [, g]], N*df)
= (=[m 9, NX]] = [g, [v, NXT], df) + (Lyrzag X, df)
+ ([, 9, X)) + [g, [X, 7)), N*df)
= (dx((NX)g),df) + (tagdr(NX), df ) + Liptay (X, df)
— (X, Lvnragdf) — (dx(Xg), N*df) — (tagd- X, N*df)
= (r*df)(dg, NX) + (d=(NX))(dg,df) + (N7*dg) (X, df)
— (X, Lypsagdf) — (PN*df)(X, dg) — (d=X)(dg, N*df)
= (x*df)(dg, NX) + (n*dg)(N X, df ) — (x*df)(N X, dg)
— (N X, [dg, dflx) + (N7*dg) (X, df ) — (X, Lrragdf)
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— (7 N*df)(X,dg) — (x*dg)(X, N*df) + (x* N*df (X, dg)
+ (X, [dg, N*df])
= (z*dg)(N X, df) — (X, N*[dg, df]x) + (N7*dg)(X, df)
— (X, Lntagdf) — (n*dg) (N X, df) + (X, [dg, N*df]x)
= (X, [dg, N*df]x — N*[dg, df])
+ (Nwtdg)(X, df) = (X, Layneaqdf),

so that we obtain

(Ar n(X, 9). df) = (d=[X, g]n — [dr X, g]n — [X, drg]n, df)

= (7ldf (N X, dg) — (—(x*N*dg)(X, df) + (x*df )(N X, dg)
+ (X, [N"dg, df]x)) — ({(X, [dg, N*df]= — N*[dg, df]x)
+ (N7tdg) (X, df) — (X, Lynragdf))

= ((x*N* — N=*)dg)(X, df)
— (X, [N*dg, df]x + [dg, N*df]= — N*[dg, df])
+ (X, Lyntagdf — Lyprardg — d{Nwdg, df))
+ (X, Lgsgrdg + d{Nn*dg, df))

= (7" N* — Nw*)dg) (X, df)
+ (X, —[dg, df1Y") + (X, [dg, df | rs)
+ (X, dippsgrdg + Lygrapd’g + d(ntdg, N*df))

= (7" N* = Nw*)dg) (X, df) + (X, [dg, df | yrz — [dg, df]R ")
+ (X, d(N=*df, dg) + 0 — d(dg, 7" N*df))

= ((x*N* — Nx*)dg)(X, df) + (X, CR(dg, df))
+ (X, d((N7* — 7" N*)df, dg)).

For any X,Y in X(M), f and g in C*°(M), we calculate

(d=[X, Yn)(df, dg) = (w*df)([X,Y]n, dg)
— (*dg)([X, YN, df) — (X, Y], [df, dg]x),
A= X, YN (df,dg) = —[Y, du X]n(df, dg) = — (LY dx X)(df, dg)
= —LY ((dX)(df, dg))
+ (do X )(LY df, dg) + (d-X)(df, LY dg)
= —Ly ((w*df)(X, dg) — (v*dg)(X,df) — (X, [df, dg]x))
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+ (LY df) (X, dg)
— (w*dg)(X, LY df) — (X, [L5)df, dg]x)
+ (7fdf)(X, LY dg)
— (L3 dg) (X, df) — (X, [df, L5 dg]x)
— LY (L3 (X, dg) — L3, (X, df) — (X, [df, dg]x))
+ (LY df, d(X, dg)) — L5,(X, LY df)
— (X, (LY df, dglx) + Lip(X, L dg)
— (LY dg, dx (X, df)) — (X, [df, L3 dg]x)
= —LY L3 (X, dg) + LY LT, (X, df) + L3 (X, [df, dglx)
+ LY (df, dx (X, dg)) — (df, Ly dr (X, dg))
— (L3, X, LY df) — (X, L3 L8 df) + (X, L3, Ly df)
+ (L3 X, LY dg) + (X, L3 L3 dg)
— LY (dg, dr (X, df)) + (dg, £} dr (X, df))
— (X, L} LY dg)
= —LYLY(X, dg) + LY L3, (X, df) + (NY)(X, [df, dg]r)
+ LY L3 (X, dg) — (df, [V, dr (X, dg)]n)
— (L3, X, LY df) + (L3 X, L3 dg)
— LY L,(X, df) + (dg, [V, d= (X, df )]N)
) —
)

+ +

= (NY)(X, [df, dgl) — (df, [V, dr(X,dg)]n)
— (L3, X, LY df) + (L3 X, L3 dg)
+ (dg, [Y, d=(X, df)]N),

and similarly

(X, d-Y]n(df,dg) = —[d-Y, X|n(df, dg)
—(NX)Y, [df, dglx) + (df, [ X, d=(Y, dg)]n)
+(L3,Y, LYdf) — (LY, LK dg)
— (dg, [X, d= (Y, df)]n).

On the other hand, by the same calculations, we obtain

(dnldf, dgl=)(X,Y) = (NX)([df, dgl, Y)
- (NY)<[df, dg]mX> - <[df, dg]m [Xv Y]N)y
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[dndf, dgl(X,Y) = (w*dg){df, [X,Y]n) — (X, [dg, dn(df,Y)]x)
— (LY df, L3 X) + (LR df, LRY)
+ (Y, [dg, dn{df, X)]x),
[df, dndglx(X,Y) = —(x*df)(dg, [X, Y]n) + (X, [df, dn(dg, Y )]x)
+ (LY dg, LX) — (LN dg, LYY
— (Y, [df,dn(dg, X)]r)-
Therefore by the equation (4.25), we obtain for any X,Y in X(M), f and g
in C*>°(M),
(Ar, N (X, Y))(df,dg) = (Ar,n(X,Y))(df, dg)
+ (d(CR(df,dg)))(X,Y) — (d(CN(df, dg)))(X,Y)
= (Arn(X,Y))(df,dg) — (AN (df,dg))(X,Y)
— (d(Cx(df,dg)))(X,Y)
= (dﬂ[X’ Y}N - [dﬂX’ Y}N(dfa dg) - [X’ d,,Y]N)(dﬁ dg)
— (dnldf,dglx — [dndf,dglx — [df,dndg]z)(X,Y)
— (d(Cx(df,dg)))(X,Y)
= (7*df)([X,Y]n, dg)
— (wtdg)([X, Yn, df) — ([X, Y], [df, dg]x)
— (NY)(X, [df , dg]x) + (df,[Y, dr(X, dg)]N)
+ (L3, X, LY df) — (L3 X, L dg)
— (dg, [Y, d= (X, df)]n)
+ (NX)(Y, [df, dglx) — (df, [ X, dx(Y, dg)]n)
<£de L’%df) <£erva E%d@
(dg, [ X, d= (Y, df)]n)
(NX)([df,dg]x,Y)
(NY)([df, dglx, X) + ([df, dglx, [X, Y ]n)
(whdg){df, X, Y]n) = (X, [dg, dn {df, Y )]r)
— (LY df, L7, X) + (LXdf, LYY)
(Y, [dg, dN<df» X)]r)
— (x*df)(dg, [X, Y]n) + (X, [df, dv {dg, Y )]x)
+ (¥ dg, LX) — (LY dg, LFY)
— (Y, [df, dn{dg, X)]x)

_l’_
+
+

+
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— (d(CH(df, dg)))(X, V)
= (df,[Y, dx(X, dg)]n) — (dg, [V, dr (X, df )] n)
[, dn (Y, dg)]) + (dg, [X, de (Y, dP])
— (X, [dg, dn(df,Y)]x) + (Y, [dg, dn (df, X)]x)
+ (X, [df,dn(dg,Y)]x) — (Y. [df, dn(dg, X)]x)
— (d(CR(df,dg)))(X.Y)
= —{df, L3 (x.a9)Y + dr(X,dg),Y]n)
+{dg, L3, x.apY + [d=(X, df),Y]n)
F{df LT i X+ X, da (Y, dg)]n)
—(dg, L3 iv.anX + [X, d=(Y. df)] )
+ (X, L3, ary29) — Y L3, ar,x)29)
= (X, LG gy ) + Y L3 ag.x) )
— (d(CR(df,dg)))(X,Y)
+ (df, £dN X,dg) Y) - (dgaﬁdN<de>Y>
—{df, L3 (v.ag)X) +(dg, LG v.ap X)
= —(df, L3 (xg)Y + [dx(Xg),Y]n)
+{dg, Lg(xpY +[d=(X ), Y]n)
+{df L3y vy X + [X, dx(Yg)]n)
—(dg, L3 (v X + [X, d=(Y f)]n)
+ Loy p(Xodg) = LG (x (Y, dg)
= Lo X df) + L5 (x (Y, df)
— (d(Cx(df,dg)))(X,Y)
= —(df, L3, (xpY +dr(X9),Y]n)
+(dg, L3 x p)Y + [dn(X ), Y]n)
+{df, L3y (v X + [X,dx(Yg)]n)
— (dg. LGy )X + (X dn(Y D)
+ (FEN*A(Y ))(Xg) — (*N*d(X [))(Yg)
— (T N*d(Y 9))(X f) + (x*N*d(X9))(Y )
— (d(Cx(df,dg)))(X,Y)
9)

—{df, Ly (xg)Y +1d ( Yln)



4.1. COMPATIBLE PAIRS 91

<d97£d Xf)Y+[ (X f),Y]n)
+ (df, 'Cd X + X, d=(Yg)]n)
—{dg, Ly v X + [Xs de(Y F)IN)
{
—
—(

_l’_

(wﬁ Nw) (Xg),d(Y 1))
(TN = Nr)d(X f),d(Yg))
d(CR (dﬂdg)))(x,Y).

For any D; in X*(M), i =1,2,3, we calculate

Arx N(D1, D2 A D3) = dr[D1, Dy A D3]y — [dxD1, D2 A D3]n
_ (=1)3e8PH D G (Dy A Dyl
dx([D1, D3]n A Ds
1)(degDitndegD: p, A (D) D)
[drD1, D2]n A D3

+ (=
—(
( 1) degD1+2)degD2D2 A [d Dl, D3]N)
— (-1
+ (-1

_l’_

)degDH_l[Dl drDoy N\ D3

)degD2D2 N d=Ds|n

= d[D1, D3N A D3
(_1)degD1+degDrl[D17 Do)y A drDs
(—1)(degDi+ndegD2 g p, A Dy, Dsly
(_1)(degD1+1)degD2+degD2 Dy AN d[D1, Ds|n
[drD1, Do)y A D3
(—1)degDidegDe ) A 4. Dy, D3]y
(- 1)degD1 [D1,d-Ds]n A D3
(—1)degDi+(degDit1)(degDa+) g D, A [Dy, Ds]y
(—1)degDitdegDzp Pl A dr Dy
(_1)degD1+degD2+(degD1+1>degD2D2 A [D1,dr D3] N
= (d[D1, Do)y — [dxD1, Do]n

_ (_1)degD1+1[th7rD2]N) A Ds

+ (—1)1¢8P148D2 Dy & (A Dy, Dol — [drDs, Daly
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o (—1)degD1+1[D1, de3]N)
= AW,N(DL DQ) A Dsg

+ (—1)degDidegba )\ A\ (Dy, Ds)
and

Az N(D1,D2) = d[Dy, Do]y — [dr D1, Da]n — (—1)degD1+1[D1, dr D] N
— dﬂ-(*(*1)(degD1_1)(degD2_1)[DQ,D]_]N)
— (~1)desDidegba-p, g Dy
+ (_1)degD1+1+(degD171)degD2 [dﬂ—D27 Dl]N
— _(_1)(degD171)(degD271)(dﬂ_[DQ’DI]N
- (‘UdegDQH[Dmanl]N — [dxD2, D1]N)
_ —(—1)(degD1_1)(degD2_1)AmN(D2,Dl).

From the above, the conclusion follows from these equations and Lemma
4.1.6. O

4.2 The definition and properties of pseudo-Poisson-
Nijenhuis manifolds

In this section, we define Pseudo-Poisson-Nijenhuis manifolds and investi-
gate properties of them.

Definition 46 ([32]). Let M be a C*°-manifold, 7 a 2-vector field on M,
a (1,1)-tensor N on M a Nijenhuis structure compatible with 7, and ® a
3-vector field on M. Then a triple (w, N, ®) is a pseudo-Poisson-Nijenhuis
structure on M if the following conditions hold:

(i) [r @] =0, (4.28)
1

(ii) Jtans (1,7 = Nianp®, (4.29)

(iii) Neaaplx® — tarnsLnx® — L(LXN*)(a/\B)(I) =0, (4.30)

for any X in X(M), o and § in Q1 (M), where tonp = tgtq and (Lx N*)(aA
B) = (LxN*)aNB+aN(LxN*)B. The quadruple (M, m, N, ®) is called a
pseudo-Poisson-Nijenhuis manifold.
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9

Remark 12. The reason why we use not “quasi-” but “pseudo-" is to avoid

confusion with a quasi-Poisson manifold in Subsection 2.3.

Now we describe the main theorem in this section. This is one of the
fundamental properties of pseudo-Poisson-Nijenhuis manifolds. A similar
result for Poisson-quasi-Nijenhuis manifolds is also known [38].

Theorem 4.2.1 (Nakamura [32]). Let M be a C°°-manifold, m a 2-vector
field on M, N a Nijenhuis structure on M compatible with = and ® a 3-vector
field on M. Then a quadruple (M, w, N, ®) is a pseudo-Poisson-Nijenhuis
manifold if and only if ((TM)y,d, ®) is a quasi-Lie bialgebroid.

Proof. Since a (1, 1)-tensor NV is Nijenhuis, the Lie algebroid (T'M )y is well-
defined. A triple ((TM)yn,d, ®) is a quasi-Lie bialgebroid if and only if
the following three conditions hold: i) d, is a degree-one derivation of the
Gerstenhaber algebra (X*(M), A, [-,-]n), ii) d2 = [®, -]y and iii) d,® = 0 by
the definition.

i) means that (4.19) holds. This condition is equivalent to the compati-
bility of m and N by Theorem 4.1.5.

Next, For any f in C*°(M), any a and 3 in Q'(M), we compute

(1)@ 8) = [r. [, Fll (@, B) = 5[ . fl(as )

= S ilm (@, 8) = S, 7(d, @, 9
= %[W,w](a,ﬁ,df) = %La/\ﬂ[ﬂ-vﬂ-](df)?

where we use the graded Jacobi identity of the Schouten bracket [-,-] and
the facts that d, = [r, ] and that [D, f] = (=1)k*114 D for any D in X*(M).
On the other hand, we have

[(I)af]N(a75) - LN*df(I)(a')ﬁ) = (b(N*df?a:/B)
= ®(a, B, N*df) = 1tapngP(N*df)
= (NLaAﬁ(I))(df>

Therefore it follows that d2 = [®,-]y on C°°(M) if and only if the equality
(4.29) holds as a linear map on the exact 1-forms. By C°°(M)-linearity
of (4.29) and the fact that the exact 1-forms generate locally the 1-forms
as a C°°(M)-module, the equality (4.29) holds on Q(M) if and only if
d2 = [®, ]y holds on C*°(M).
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Next, under the assumption that the equality (4.29) holds on Q!(M),
for any X in X(M), any «, 3 and v in Q'(M), we obtain

() (@ 6,7) = [, b, X, 6,7) = 51l 7], X](,5,7)
1

= — 1%, [m, 71l (0, 8,7) = —5 (Lxlm, w]) (@ ,7)

_ _%{ﬁx([w,ﬁ](a,ﬁ,’y)) — [ 7 (Lxa, B,7)

- [Wvﬂ](avﬁXB/Y) - [ﬂ?w](avﬁ7ﬁX7)}
1 1

— Ly (LW[W 7)(y )) + 5texansm ()

+ Stanexslm7(7) + tanslm, 7l (£x7)

= —Lx (Ntang®)(7)) + (N%Xom,@q’)( )
+ (Ntancxp®)(7) + (Niansg®)(Lx7)
= —Lx (tarng®(N™Y)) + toxans®(N™)
+tancx pR(N™Y) + tang®(N*Lx7)
= —Lx (®(c, ,N"y)) + ®(Lx, B, N*7)
+ ®(a, Lx B, N*y) + (v, B, N* Lx7y)
=—Lx (®(a, B, N™y)) + ©(Lxa, B, N*y)
+ @, LxB, N™y) + (v, B, Lx (N™y) = (LxN™)7)
= —Lx (®(a, ,N*y)) + ®(Lx, B, N*y)
+ ®(a, Lx B, N*y) +
— @(a, B, (LxN7)7)
= —(Lx®) (o, B, N"y) — (e, B, (Lx N")7),

where we use the graded Jacobi identity of [-,-]. On the other hand, we
obtain

[®, X]n(a, B,7) = =[X, ®|n(a, B,7) = —(LX®) (e, B,7)
= —LY(®(e, B,7)) + ®(LY . B,7)
+®(, LYB, ) + ®(a, B, L)
= —Lnx(®(a, 8,7)) + ®(Lyxa — (LxN¥)a, B,7)
+ ®(a, Lnyx B — (LxN™)B,7)
+ ®(a, B, Lyxy — (LxN¥)7)
= —Lnx(®(a, B,7)) + ®(Lyxa, B,7)

®(a, B, Lx(N™))
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+ ®(a, LyxS,7) + P, B, Lnx7)
= Q((LxN")a, B,7) — ®(a, (LxN7)B,7)
= ®(a, B, (LxN™)7)
= —(Lnx®) (e, B,7) = ((LxN")a, B,7)
— ®(a, (LxN™)B,7) — ®(, B, (LxN™)v),

where we use the property that E%a = Lyxa — (LxN*)a for any X in
X(M) and any « in QY(M). Therefore, we obtain

(dz — [@, X]n) (e, B,7) = — (Lx®) (o, B, N*7) — ®(av, B, (Lx N*)7)
+ (Lnx®) (e, B,7) + @((Lx N¥)e, B,7)
+ @(a, (LxN7)B, ) + @(ev, B, (Lx N¥)7)
= —(Lx®) (o, B, N*y) + (Lnx®)(c, B,7)
+ Q((LxN")a, B,7) + (e, (CxN7)B,7)
= —~(NtangLx® — targlnx® — 12 N*)(ang)P)(7)-

Hence, under the assumption of (4.29), it follows that d2 = [®, ]y on X(M)
if and only if the equality (4.30) holds.

Since d2 and [®,-]y are derivatives on (I'(A*TM),A), it follows that
d2 = [®,]xy on C®(M) @ X(M) if and only if d2 = [®,:]y on X*(M).
Therefore ii) is equivalent to that (4.29) and (4.30) hold.

Finally, iii) is equivalent to (4.28) due to that d.® = [7, ®]. Therefore
the proof has been completed. O

By the theorem, we have the following result (Theorem 2.4.2) of Kosmann-
Schwarzbach [15].

Corollary 4.2.2 (Theorem 2.4.2, [32]). Under the same assumption as The-
orem 4.2.1, the triple (M, 7, N) is a Poisson-Nijenhuis manifold if and only
if ((TM)n,dr) is a Lie bialgebroid.

As in the case of Poisson-quasi-Nijenhuis Lie algebroids (Definition 44),
we can consider a straightforward generalization of pseudo-Poisson-Nijenhuis
manifolds.

Definition 47 ([32]). A pseudo-Poisson-Nijenhuis Lie algebroid (A, m, N, ®)
is a Lie algebroid A equipped with a 2-section 7 in I'(A%2A), a Nijenhuis
structure N : A — A compatible with 7 in the sense of Definition 45 and
a 3-section ® in I'(A3A) satisfying the conditions (4.28), (4.29) and (4.30)
replaced [-,-] and £ with [-,-]4 and £4, respectively.
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Theorem 4.2.3 (Nakamura [32]). If a quadruple (A4, 7, N, ®) is a pseudo-
Poisson-Nijenhuis Lie algebroid, then (Ay,d,, ®) is a quasi-Lie bialgebroid,
where Ay is a Lie algebroid deformed by the Nijenhuis structure N.

Now we show three simple and important examples of pseudo-Poisson-
Nijenhuis manifolds.

Example 53 ([32]). A triple (7, N, ®), where ® = 0, is a pseudo-Poisson-
Nijenhuis structure if (7, N) is a Poisson-Nijenhuis structure.

Example 54 ([32]). Let (M,n) be a Poisson manifold and set N = 0.
For any dr-closed 3-vector field ®, the triple (m, N, ®) is a pseudo-Poisson-
Nijenhuis structure. In fact, in this case, a pair (7, 0) is compatible obviously
and the conditions (i)-(iii) in Definition 46 are satisfied by

(i) [r, @] =d,® =0;
1
(11) §La/\lg[ﬂ', 71'] = 0 = NLa/\/[j@;
(iil) Niansglx® — tansnx® — t(£xN*)(ang) P
=0—1angLlo® — t(£0)(ans)®
=0

for any a and 3 in Q'(M). Therefore, by Theorem 4.2.1 and Example 2.4.7,
((TM)n,dr,®) is a quasi-Lie bialgebroid and ((T'M)y & (T*M )z, {(-,-),
[-,-]1%, p) is a Courant algebroid, where the Courant bracket [-,-]2 is defined
by

[X.Y]7 = [X,Y]o =0,
[[5777]];{: = [§7 ]71' + (D(gana ’)7

1,3% = (exot + 5o(e, X)) = (e X + 3rle )

= _LfdﬂX - 7dﬂ'<€7X>)

1
2
the anchor map p satisfies p(X +¢) = NX + ¢ = 8¢ and the pairing (-, -))
is given by (2.105) for any X,Y in X(M), any & and 7 in Q'(M).

Example 55 ([32]). Let M be a C*°-manifold and set N = a-idzps, where
a is a non-zero real number. For any 2-vector field 7 in X2(M), the triple
(m, N, ®), where & = ﬁ [, 7], is a pseudo-Poisson-Nijenhuis structure. In
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fact, in this case, a pair (m,a-idpas) is compatible obviously and the condi-
tions in Definition 46 are satisfied by

Q) [r®] =5 [m[m ] = 0

. 1 1
(i) Neang® = atang <2a[7r,7r]> = §LQAB[7T,7T];

(iil)  Neanplx® — tansnx® — Lz N*)(anp) P

1 1
= atapglx <2a [7T,7T]> — tangLlax <2a[7T77T]>

1
~ UL x (aridrar)*)(@nB) <2a[7ﬂ ﬂ)
1
= 5 (tansLxlm, ] = tangLx[m, 7] = wolm, 7))

=0

for any o and 3 in Q'(M). Therefore ((T'M)y,d,,®) is a quasi-Lie bial-
gebroid and (TM @© T*M, {(-,-), -, -], p) is a Courant algebroid, where the
Courant bracket [-,-] is defined by

s
[X, V]2 = [X,Y]aidp, = a[X, Y],

[enl® = (el + 5 (7] Em,),

[[Xa 5]]?1-’ = (LXda-idTM§ + %da-idTM <§7X>> - <L£d7rX + ;dw<§7X>)

—a <Lng + ;d<§,X>> - (@,rx + ;dﬂ<g,x>> ,

the anchor map p satisfies p(X + &) = aX + 7%¢ and the pairing (-, -)) is
given by (2.105) for any X,Y in X(M), £ and 7 in QY(M).

Example 55 is an example of not a Poisson-Nijenhuis manifold but a
pseudo-Poisson-Nijenhuis manifold.

The following proposition means that two given pseudo-Poisson-Nijenhuis
manifolds generate a new one.

Proposition 4.2.4 (Nakamura [32]). Let (M;, m;, N;, ®;), i = 1,2, be pseudo-
Poisson-Nijenhuis manifolds. Then the product (M; x Mg, m + 72, N1 &
Ny, &1 + ®3) is a pseudo-Poisson-Nijenhuis manifold.
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Proof. Using the fact that [X;, Xo] = 0 for any X; in X(M;), ¢ = 1,2, we
obtain

d7l'1+7l'2(-D1 + D2) = dﬂlDl + d7T2D2)
TN1€BN2(f1X1 + f2X2791Y1 + 92Y2) = flng]\h (X17 Yl) =+ f2g2TN2 <X27Y2)7
CREN2(flar + fPag, ' b1+ ¢*B2) = f19' CN (0, Br) + F2*C2 (a2, Bo)

for any 2-vector fields m; in X(M;), (1,1)-tensors N; on M;, k-vector fields
D; in X*(M), functions f?, g* in C°°(M; x M>), vector fields X, Y; in X(M),
1-forms a; and B; in QY(M;), i =1,2.

Therefore by the assumptions that (M;, m;, N;, ®;), ¢ = 1,2, are pseudo-
Poisson-Nijenhuis manifolds and straightforward calculations, we can see
that the quadruple (M; x Ma, 1 42, N1 ® Na, &1+ P3) is a pseudo-Poisson-
Nijenhuis manifold. O

4.3 Pseudo-symplectic-Nijenhuis manifolds

In this section, we always assume that a 2-vector field 7 is nondegener-
ate. Then we can reduce one of the conditions for a triple (7, N, ®) to be
a pseudo-Poisson-Nijenhuis structure. This fact is important in the sense
that we can find pseudo-Poisson-Nijenhuis structures easily. Moreover we
rewrite a pseudo-Poisson-Nijenhuis structure (7, N, ®) with the nondegen-
erate 2-vector field 7 using differential forms, and investigate properties of
the structure.

Theorem 4.3.1 (Nakamura [32]). Let 7 be a nondegenerate 2-vector field,
N a Nijenhuis structure compatible with 7, and ® a 3-vector field. If a triple
(m, N, ®) satisfies the conditions (4.28) and (4.29) in Definition 46, then
(m, N, ®) is a pseudo-Poisson-Nijenhuis structure, i.e., (m, N, ®) satisfies the
condition (4.30).

Proof. We shall prove (4.30). By the nondegeneracy of m, the map = :
T*M — TM is a bundle isomorphism. Therefore a set {mtdf| f € C>°(M)}
generates locally the vector fields X(M) as a C°°(M)-module. We have
proved in Theorem 4.2.1 that the equality (4.29) holds if and only if d2 =
[®, -] holds on C*°(M). Thus we compute, for any f in C*°(M),

da(w'df) = d2(~dr f) = —dr(d7f) = —da[®, f]n
= = ([d=®, fIn + [®, dx f]N)
= —[®,df]n = [®, 7tdf]n,
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where we use midf = —d.f in the first and the last step, the fourth equal-
ity follows from (4.19) and the fifth equality does from (4.28). Therefore
d2 = [®,] holds on the set {r'df| f € C>®(M)}. Since d2 = [®,] holds
on C®(M) @ {rtdf| f € C>(M)} and since both d2 and [®, ]y are deriva-
tives on (I'(A*T'M), A), we obtain that d2 = [®,-] holds on X(M). This is
equivalent to the condition (4.30) under the assumption of (4.29), so that
the proof has been completed. O

In general, it is easier to deal with differential forms than multi-vector
fields. Since a 2-vector field 7 is nondegenerate, there is a unique 2-form w
corresponding with 7. Hence it is convenient to translate conditions (4.28)
and (4.29) for 7 into those for w. We compute

<1LQA5[7T,7T]W> = ([r*a, 6] — 7, Blr, )

2
= ([nta, 73], 7)
— (LrzaB — Lpspo — d{r*a, B), m)
= ([wfo, 7B, 7) + Lsa (B, 7) = (B, Losa(m'y))
— Lop(o, m) + (a, wﬁg( )> (m 7)(77%47@

= ([wha, 78], ~’7hy) + (nfa) (—w'w B, 7hy)

— (—w’'m*B, [rta, wh]) — (n*B)(—w'mta, )

+ <—wb7fﬁoé [7T ﬁﬂrﬁ’YD (mhy) (e, —w'w*B)

= w([wta, 7t 6], ) — (wha)(w(n B, 7))
—w([ fa, 1), 7 B) + (nFB) (w(ntar, 7))
w([x*B, 7P, ) — (why) (w(nta, 7))

= —dw(ﬂ b, w3, mhy)
= (~trtanmtgdw, ™) (4.31)

and

(Ntapng®,7) = <La/\£‘I’ N*’Y> = ®(a, B, N™)
<I>( Wrla, —’ 7B, —W T N*)
( )(71' a, 78, Nxt v)
= (trtanmig(W'®), Nrty)
= (N*Lptqnnt g(W @), i) (4.32)
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o, and v in Q'(M), where a bundle map Wi TM — T*M is
by (W’ X,Y) := w(X,Y). Therefore setting ¢ := —w’®, we obtain

the equivalence of the condition (4.29) and

txpaydw = N*LXAy¢ (X,Y € }:(M)) (433)

due to the nondegeneracy of 7. Under the assumption of (4.33), we calculate

[ﬂ-?@] (Oél, a2, a3, ()[4)

= (d=®) (a1, a2, a3, 014)

(rhan) (®(a2, a3, ) — (7P 2) (P (1, a3, a4))
+(7Tﬁ043)(¢(041,042,044)) foa) (D( 1, 02, 43))

(m

O ([, ao)r, s, aq) + D[, as)r, a2, )

®([ar, aulx, a2, a3) — P([o2, az)r, a1, 4)
—|—<I>([042,0z4],r a1, a3) — ®([as, ayg)r, a1, az)

= (rfar)((7*) (a2, a3, o)) — (whaa) ((w*) (e, a3, u4))

+ (mfas) (7¢) (a1, 02, ) — (o) () (a1, @2, 3))

— (7 ¢) ([, ol 3, aa) + (7°¢) ([o1, 3, 2, va)

— (7' ¢)([r, aul, a2, a3) — (78¢) ([, 3, 1, va)

+ (7%¢) ([az, ulr, a1, 03) — (779) (03, e, 011, 2)
= (rfar)(—¢(rtag, hag, mhay)) — (Tfas) (—¢(tar, Thas, Tay))
+ (rfas) (—o(r ﬁal nﬁag mhay)) — (thay) (—o(rfay, Thas, mfag))
+ ¢(mton, aol, mhag, whay) — G(rt[ar, aslr, Thag, Thay)
+ ¢(mf o, aulr, T, mhaz) + o(nf o, sy, o, Thay)
— d)(ﬂﬁ[ag,oa;]mw o, ozg) + ¢(7Tﬁ[a37a4]ﬂ-,ﬂ-ﬁa1, iiag)
—(mfan ) (¢(mhag, Thas, Thag)) + (thag) (¢(rfar, Thas, Thay)

2
— (ﬂ'ﬁag)(qﬁ(ﬂ'ﬂal, Wﬁag, 7Tﬁ044)) + (ﬂﬁa4)(¢(7rﬁa1, 7TﬂO¢2, 7TﬁOJ3))

Log hao [T, ] + [ﬂ'ﬁal, 71'%@], 7Tﬁ043, 7TﬁOt4)

—_

Loy Aas [77 71'] + [71'110(1, Wﬁag], TFﬁQQ, 7TﬁO[4

Lo Aoy [T, T] 4 [Wﬁal,ﬂﬁad,ﬂﬁaz,ﬂ'ﬁag)

f #

— —laghas [T, 7] + [Wﬁag,ﬂ'ﬁag],ﬂ' a1, oy
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— < —Lomhay [T 7] + [WﬁaQ,ﬂ'ﬁad,ﬂ'ﬁal,ﬂ'ﬁag)

+ ¢ ( —Lagnay [T, 7| + [ﬂﬁag,ﬂﬁad,ﬂﬁal, 7TjjOé2>

(d(f))(’ﬂ al,ﬂﬁag, jjOég,’iT 054

+¢ (ﬂﬁwb ( Log Aas [T 7r> mhag, T )

— (Wﬁwb ( Log Aas T 7T) ,7r o, T a4>

+ ¢ <7Tﬁwb ( Loy oy |0 7r> ,mhag, a3>

+¢<7Tﬁwb< Laghas|T, 7r>,7r o, T 4)

— ¢ (ﬂuwb ( Laghay [T 7r) ,77 a1, T ag)

¢ 7w’ ( Lashay [T 7T> mhoy, a2>
(77'11041,7'(' 9, mharg, mhauy)

Lal/\ag ™, T

0 ¢ (mie) )
0 ¢ (min) )
0 (4 () )
0 ¢ (mie) )
<<§ |

- (7Tﬂ¢) <w < Lo Aoy [T ] al,ag>

(d(f))(ﬁ 061,7Tﬁ0é2, ﬁOég,’iT 054

- @ (U) NLal/\azq)a Qas, 044) +o (waLal/\ag(Pa ag, Oé4>
- (waLal/\M@, o, a3> - (waLQQ/\a3CI>, aq, a4>

+ o (waLQQ/\M(I), aq, a3> — o (waLQS/\M(D, iy, 09
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(dgf))( 051,7'(' 052,7'(' ag, T

<L013/\044¢ wNLOél/\Otz > L()Ag/\a4q)7w?\[ba1/\a3q)>

b
+ <La1/\a3¢) wN[/OzQ/\a4 > Lal/\agq)waLa3/\a4cI)>

ay)
(
<La2/\a3q> WNLal/\tu ) — <L041/\a4(1)7w?\/b042/\a3(1)>
{

(dgf))( T™an, 7T 9, T ag ™ 054)

+ WN(Lag/\(mq) Loy Aavg Q)) - wN(LOCQ/\OM(p Loy Aas CI))

+ wN(LOcQ/\OQ(I) Loy Aoy ) + wN(LOq/\Oq(b Laz/\agq))

- WN(Lal/\ag(I) Lag/\a4 ) + wn LOL1/\C¥2® La3/\054(1)>

—(do)(wtar, Tz, mhag, Thay) (4.34)
for any c; in Q' (M), where wy is given by wy(X,Y) := (W’ NX,Y) for any
X and Y in X(M) and we see that wy is a 2-form on M by (2.96). From
the above, we see that the conditions (4.28) and (4.29) are equivalent to the
condition (4.33) and the closedness of ¢ if 7 is nondegenerate. Therefore we
define as follows:

Definition 48 ([32]). Let M be a C*°-manifold, w a nondegenerate 2-
form on M, a (1,1)-tensor N a Nijenhuis structure compatible with the
nondegenerate 2-vector field 7 corresponding to w, and ¢ a closed 3-form
on M. Then a triple (w, N, ¢) is a pseudo-symplectic-Nijenhuis structure
on M if the condition (4.33) holds. The quadruple (M,w, N, ¢) is called a
pseudo-symplectic-Nijenhuis manifold.

The following corollary states that we can construct new pseudo-symplectic-
Nijenhuis structures from a symplectic-Nijenhuis structure.

Corollary 4.3.2 (Nakamura [32]). Let (M,w, N) be a symplectic-Nijenhuis
manifold and ¢ a closed 3-form satisfying tyx¢ = 0 for any X in X(M).
Then (M,w, N, ¢) is a pseudo-symplectic Nijenhuis manifold.

Proof. In this case, the condition (4.33) to prove is
NYxaygp =0 (X,Y € X(M)) (4.35)
because of dw = 0. By computing that, for any Z in X(M),
(N*ixay . Z) = (X, Y, NZ) = 6(NZ, X, Y)
= (nzd)(X,Y) =0,

where we use tyx¢ = 0, we conclude that (4.35) holds. Hence (w, N, ¢) is a
pseudo-symplectic Nijenhuis structure. O
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Example 56 ([32]). On the 6-torus T® with angle coordinates (01, 62, 03, 0.4, 05, 0),
we consider the standard symplectic structure w := dfy A dfa + dfs A dby +
dfs A dbg and a regular Poisson structure with rank 2,

T 1= 0 A i—i—)\a
AT o0, \oe, "o, )

where A is in R and a,b and ¢ are three distinct numbers (Example 3 and

Example 14). Setting N, := wg\ ow”, we obtain a symplectic-Nijenhuis struc-
ture (w, Ny) on TO (see [42] for a general theory of constructing symplectic-
Nijenhuis structures from symplectic and Poisson structures). Since the rank
of Ny is 2 at each points, the kernel of N7 is a subbundle with rank 4 of the
cotangent bundle of T®. Hence for any closed 3-form ¢ in I'(A3KerN;), a
triple (w, Ny, ¢) is a pseudo-symplectic-Nijenhuis structure on T by Corol-
lary 4.3.2.

The following simple example is of (w, N, ¢) being a pseudo-symplectic
Nijenhuis structure but not of (w, V) being a symplectic Nijenhuis structure.

Example 57 ([32]). Let (x!,2% 23, 2*) be the canonical coordinates in R*
and f(z), g(z) in C*°(R) not constants but non-vanishing functions. We set

(N =N3)?

NP 0 0
N MM 0 0
e N17N3 2 9
0 0 Ng ( le 3)
0 0 N} N3

where NJ’-"S are in R* and satisfy that N # N3,
w = flagz® + agxt)dz' A da? + glaya' + agx?)dx® A da?,

where a;’s satisfy a3 : ag = N} : (Nf — N3) and a; : az = Ni : (N} — N3),
and
¢ = (ND) 7 f(azz® + agzt)dry A dzg A (azdz® + agdzt)
+ (N7 (a1t + agx?)(arda! + agda®) A das A day.
Then (w, N, ¢) is a pseudo-symplectic Nijenhuis structure on R*. A pair
(w, N) is not symplectic-Nijenhuis by the fact that dw # 0.

Finally we describe a property of pseudo-symplectic Nijenhuis structures.
This is the main theorem in this section.
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Theorem 4.3.3 (Nakamura [32]). Let (w, N, ¢) be a pseudo-symplectic Ni-
jenhuis structure on M and 7 the nondegenerate 2-vector field corresponding
to w. Then (my, ¢) is a twisted Poisson structure, i.e., the pair satisfies

1
7[7TN7 7TN] = 7T§V¢7

2
d¢ = 0.
We need the following lemma.

Lemma 4.3.4 ([12]). Let (A, [, ]4, pa) be a Lie algebroid over M equipped
with a degree-one derivation 0 of the Gerstenhaber algebra (I'(A*A), A, [-, -] 4)-
Then there exists a 2-vector field my; on M given by

7 (df1, dfa) == —(pa(df1), df2)

for any fi and fy in C°°(M). Moreover if (A, J, ¢) is a quasi-Lie bialgebroid
over M, Then the bivector field wp; on M satisfies

1
5[7TM,7TM] = ¢,

[ﬂ-M’(bM] = 07

where ¢y, is the 3-vector field ¢y = pa(¢), and pa : T(AA) — X3(M) is
the extension of the anchor map p4 on A given by the formula

pA(X1 A Xo A X3) i= pa(X1) A pa(Xa) A pa(X3)

for any X; in I'(A).

Proof of Theorem 4.3.3. By Definition 48, we obtain d¢ = 0. By Theorem
4.2.1, ((TM)N,dy,®), where ® := 7l¢, is a quasi-Lie bialgebroid. Because
of Lemma 4.3.4, the 2-vector field induced by d, coincides with 7. In fact,
we calculate

7y (df1, df2) = —(N(dr f1), df2) = —(dx f1, N*df2)
= (W N*df2) fr = —(7hdf2)
= —(df1, 7 df) = (whdf1, dfa)
= 7 (df1, df2)
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for any f1 and fy in C°°(M). Moreover, since we obtain

(N®) (a1, an,a3) = (N*a1, N* g, N*ag)
= (7*¢)(N*a1, N*ag, N*as)
= —¢(m* N*a1, m* N*aq, ' N*a3)
= —(b(w?\[al, 7T§V042,7T§V063)

= (r40)(a1, a2, a3)

for any a1, as and ag in Q'(M), by Lemma 4.3.4 again, we have

1
E[WN, mN] = N
= W§V¢.
Therefore (my, ¢) is a twisted Poisson structure on M. O

This theorem means that we can construct twisted Poisson structures
from pseudo-symplectic Nijenhuis structures. Moreover such a twisted Pois-
son structures (my, ¢) is compatible with the Nijenhuis structure N due to
Proposition 4.1.4.






Bibliography

1]

A. Alekseev and Y. Kosmann-Schwarzbach. Manin pairs and moment
maps. J. Diff. Geom. 56 (2000) 133-165.

A. Alekseev, Y. Kosmann-Schwarzbach and E. Meinrenken. Quasi-
Poisson manifolds. Canad. J. Math. 54, no.1 (2000) 3-29.

A. Alekseev, A. Malkin and E. Meinrenken. Lie group valued moment
maps. J. Diff. Geom. 48 (1998) 445-495.

H. Bursztyn and M. Crainic. Dirac geometry, quasi-Poisson actions and
D /G-valued moment maps. J. Diff. Geom. 82 3 (2009) 501-566.

R. Caseiro, A. de Nicola and J. M. Nunes da Costa. On Poisson quasi-
Nijenhuis Lie algebroids. arXiv:0806.2467v1. (2008).

A. S. Cattaneo and P. Xu. Integration of twisted Poisson structures. J.
Geom. Phys. 49 (2004), 187-196.

T. Delzant. Hamiltoniens périodiques et images convexes de
Papplication moment. Bull. Soc. Math. France 116 (1988), 315-339.

V. G. Drinfel’d. Hamiltonian Lie groups, Lie bialgebras and the geo-
metric meaning of the classical Yang-Baxter equations. Soviet Math.
Dokl. 27 (1983) 68-71.

V. G. Drinfel’d. Quasi-Hopf algebras. Leningrad Math. J. 1 (1990)
1419-1457.

M. Gualtieri. Generalized complex geometry. Ann. of Math.(2) 174
(2011), no.1, 75-123.

J. Grabowski and P. Urbanski. Lie algebroids and Poisson-Nijenhuis
structures. Rep. Math. Phys. 40 (1997), 195-208.

107



108

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

D. Iglesias, C. Laurent-Gengoux, and P. Xu. Universal lifting theorem
and quasi-Poisson groupoids, J. Fur. Math. Soc. (JEMS) 14 (2012),
no. 3, 681-731.

Y. Kosmann-Schwarzbach. Quasi-bialgebres de Lie et groupes de Lie
quasi-Poisson. C. R. Acad. Sci. Paris 312, Ser. I (1991), 391-394.

Y. Kosmann-Schwarzbach. Jacobian quasi-bialgebras and quasi-Poisson
Lie groups. Contemporary Math. 132 (1992), 459-489.

Y. Kosmann-Schwarzbach. The Lie bialgebroid of a Poisson-Nijenhuis
manifold. Lett. Math. Phys. 38 (1996), no. 4, 421-428.

Y. Kosmann-Schwarzbach and F. Magri. Poisson-Nijenhuis structures.
Ann. Inst. H. Poincaré Phys. Théor. 53 (1990) no. 1, 35-81.

A. Lichnérowicz. Les variétés de Jacobi et leurs algebres de Lie associées.
J. Math. Pure Appl. 57 (1978) 453-488.

J. -H. Lu. Momentum mappings and reduction of Poisson actions, in
Symplectic Geometry, Groupoids and Integrable Systems, P. Dazord
and A. Weinstein, eds. Springer (1991) 209-226.

J. -H. Lu. Multiplicative and Affine Poisson structures on Lie groups.
Berkeley Thesis (1991).

R. Loja Fernandes and I. Marcut. Lectures on Poisson Geometry.
(Springer, 2015).

J. -H. Lu and A. Weinstein. Poisson-Lie groups, dressing transforma-
tions and Bruhat decompositions. J. Diff. Geom. 31 (1990) 501-526.

Z-J. Liu, A. Weinstein and P. Xu. Manin triples for Lie bialgebroids. J.
Diff. Geom. 45 (1997), no. 3 547-574.

K. Mackenzie. General Theory of Lie Groupoids and Lie Algebroids.
(Cambridge university press, 2005).

Majid S. Matched pairs of Lie groups associated to solutions of the
Yang-Baxter equations. Pacific Journal of Mathematics. 141(2) (1990),
311-332.

F. Magri and C. Morosi. On the reduction theory of the Nijenhuis op-
erators and its applications to Gel’fand-Dikii equations. Proceedings of



BIBLIOGRAPHY 109

the IUTAM-ISIMM symposium on modern developments in analytical
mechanics. 117 (1983), Vol. I, 559-626.

F. Magri and C. Morosi. A geometrical characterization of integrable
Hamiltonian systems through the theory of Poisson-Nijenhuis mani-
folds, Quaderno S19 1984 of the Department of Mathematics of the
University of Milan.

J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symme-
try, Second Edition. (Springer, 2003).

D. Mcduff and D. Salamon. Introduction to Symplectic Topology, Second
Edition. (Oxford Science Publication, 1998)

K. Mackenzie and P. Xu. Lie bialgebroids and Poisson groupoids. Duke
Math. J. 73 (1994), no.2, 415-452.

K. Mackenzie and P. Xu. Integration of Lie bialgebroids. Topology 39
(2000), no.3, 445-467.

T. Nakamura. Deformations of Symplectic Structures by Moment Maps.
J. Geom. Symmetry Phys. 47(2018) 63-84.

T. Nakamura. Pseudo-Poisson Nijenhuis Manifolds. Rep. Math. Phys.
82 (2018), no. 1, 121-135.

Park, J.-S.. Topological open p-branes. (English summary) Symplec-
tic geometry and mirror symmetry (Seoul, 2000), 311-384, World Sci.
Publ., River Edge, NJ, 2001.

D. Roytenberg. Quasi-Lie bialgebroids and twisted Poisson manifolds.
Lett. Math. Phys. 61 (2002), 123-137.

D. Salamon. Uniqueness of Symplectic Structures. Acta Math. Vietnam.
38 (2013), no. 1, 123-144.

A. C. da Silva. Lectures on Symplectic Geometry (Springer, 1998)

P. Severa and A. Weinstein. Poisson geometry with 3-form back-
ground. Noncommutative geometry and string theory. Prog. Theor.
Phys., Suppl. 144 (2001), 145-154.

M. Stiénon and P. Xu. Poisson Quasi-Nijenhuis manifolds. Comm.
Math. Phys. 50 (2007), 709-725.



110 BIBLIOGRAPHY

[39] M. A. Semenov-Tian-Shanky. Dressing transformations and Poisson
group actions. Publ. R.I.M.S. 21 (1985), 1237-1260.

[40] L. Takhtajan. On foundations of the generalized Nambu mechanics.
Commun. Math. Phys. 160 (1994), 295-315.

[41] I. Vaisman. The Poisson-Nijenhuis manifolds revisited. Rendiconti Sem.
Mat. Univ. Pol. Torino 52(4), (1994), 377-394.

[42] I. Vaisman. Complementary 2-forms of Poisson structures. Compositio
math. 101(1996), no.1, 55-75.

[43] 1. Vaisman. Lectures on the geometry of Poisson manifolds. (Birkhéuser,
1994)

[44] P. Xu. Gerstenhabar algebras and BV-algebras in Poisson geometry.
Comm. math. Phys. 200(1999) 545-560.



Index

1-cocycle Courant
—on g, 33, 34 — algebroid, 58
—onG, 33 — bracket, 58
G-action, 17
G-equivariant moment map, 40, 51 Delzant
— polytope, 22
admissible, 47, 66 — theorem, 23, 74

derivative, 34
differential of the Lie algebroid, 54
Dirac

— structure, 58

anchor map, 52, 58
anchored vector bundle, 78

canonical
— 2-form on O, 22 — subbundle, 58
double

— r-matrix, 44
— Lie algebra, 37

Cartan .
— formula, 54 — Lie group, 39, 48
— subalgebra, 67, 69 dressing

—action of D on D/G, 47
— action of G* on G, 38
— vector field, 38

dual Poisson-Lie group, 37

characteristic distribution, 28
Chevalley basis, 69

classical Yang-Baxter equation, 31
coadjoint orbit, 21

coboundary effective action, 18

—on g, 34 evaluation map, 17

—on G, 34
cobracket, 43 Fubini-Study form, 16, 22, 70
compatible, 57, 79 fundamental vector field, 18

compatible pair, 79
complete

— Poisson structure, 39

— quasi-triple, 47
complex projective

— line, 16, 69, 70

— space, 16, 20, 22, 69, 73 Hamiltonian

generalized Schouten bracket, 78
Gerstenhaber algebra, 11, 60, 91, 102
graded Jacobi identity, 26, 55
Grassmannian manifold, 22, 71
group pair, 45

111



112

— G-space, 19
— vector field for {-,-}, 24
— vector field for w, 17
hierarchy
— of compatible pairs, 80
— of Poisson-Nijenhuis structures,
57

infinitesimal dressing action, 38
integrable

— Lie algebroid, 53

— subbundle, 58
isotropic subbundle, 58

Kirillov-Kostant form, 22, 71

Lie algebroid, 38, 52
Lie bialgebra, 36, 56
Lie bialgebroid, 56
Lie derivative, 54, 77
Lie groupoid, 53
Lie-Poisson
— bracket, 24
— space, 24, 29, 30
— structure, 22, 37, 40

linearization

—of 7 at e, 35, 38

—of K at xg, 34
Liouville volume form, 15
Manin

— pair, 43

— quasi-triple, 43

— theorem, 36

— triple, 37, 43
moment map
— for a Poisson action, 40
— for a quasi-Poisson action, 50
— for a symplectic action, 19, 66
multiplicative
— multi-vector field, 32

INDEX

— Poisson structure, 28

Nijenhuis

— structures, 53

— torsion, 53
non-admissible surface, 70

Pauli-Jost Theorem, 25
Poisson

— map, 24

— action, 29, 50, 66

— bracket, 23

— manifold, 23, 50

— map, 25

— structure, 25, 54, 66
Poisson-Lie group, 28, 42, 50
Poisson-Nijenhuis

— manifold, 57

— structure, 57, 94
Poisson-quasi-Nijenhuis

— Lie algebroid, 61

— manifold, 61

— structure, 61
pseudo-Poisson-Nijenhuis

— Lie algebroid, 93

— manifold, 90

— structure, 90
pseudo-symplectic-Nijenhuis

— manifold, 100

— structure, 100

quasi-Lie bialgebra, 43
quasi-Lie bialgebroid, 60
quasi-Poisson

- G?:)—manifold, 49

- Gg)—structure, 49

— action, 49

— manifold, 49

— structure on G, 42
quasi-Poisson-Hamiltonian action, 50



INDEX 113

quasi-Poisson-Lie group, 42
quasi-triple, 45

r-matrix, 31, 66

rank of 7 at a point, 28

rational polytope, 22

regular Poisson structure, 28, 101

Schouten bracket, 25, 55, 78
simple polytope, 22
smooth
— action, 17
— polytope, 22
stabilizer, 21
standard
— Courant algebroid, 59
— Lie algebroid, 53
— Manin pair, 43, 45

symplectic
— action, 18, 30
— form, 15
—manifold, 15, 23, 30, 40, 51, 66,
67

— structure, 15

— toric manifold, 22, 73

— vector field, 17

— volume, 15, 71

— volume form, 15
symplectic-Hamiltonian action, 18, 40,

51, 66, 67

symplectic-Nijenhuis

— manifold, 57

— structure, 57
symplectomorphism, 17

tangent Lie bialgebra, 36

torus, 16, 22, 28, 73, 101

transitive action, 18

twist, 44, 66

twisted Poisson structure, 54, 60, 102



List of original papers

1. T. Nakamura. Deformations of Symplectic Structures by Moment
Maps. Journal of Geometry and Symmetry in Physics 47(2018) 63-84.

2. T. Nakamura. Pseudo-Poisson Nijenhuis Manifolds. Reports on Math-
ematical Physics 82(2018), no. 1, 121-135.

115



	Introduction
	Deformations of symplectic structures by moment maps
	Pseudo-Poisson-Nijenhuis manifolds

	Preliminaries
	Symplectic geometry
	Poisson geometry
	Poisson manifolds
	Poisson-Lie groups and Poisson actions
	Moment maps for Poisson actions

	Quasi-Poisson geometry
	Lie algebroids

	Deformations of symplectic structures by moment maps
	Main result
	Examples
	Symplectic toric manifolds

	Pseudo-Poisson-Nijenhuis manifolds
	Compatible pairs
	The definition and properties of pseudo-Poisson-Nijenhuis manifolds
	Pseudo-symplectic-Nijenhuis manifolds

	Bibliography
	List of original papers



