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Chapter 1

Introduction

The origin of Poisson geometry is the Poisson bracket which was introduced
as an important operator in Hamiltonian mechanics on smooth manifolds.
Recently, however studies of properties and dynamical systems of Poisson
structures (Poisson brackets) themselves on smooth manifolds are done ac-
tively and Poisson geometry is one of important fields in Geometry. In
addition, geometrical objects having properties analogous to Poisson struc-
tures, for example, twisted Poisson [37], Jacobi [17], Nambu-Poisson struc-
tures [40] and so on are also studied actively. In this thesis, we deal with
quasi-Poisson and pseudo-Poisson-Nijenhuis structures, which are such geo-
metrical objects. The former structures generalize Poisson structures with
Hamiltonian-Poisson actions, i.e., Poisson actions with moment maps. We
show that a symplectic structure on a smooth manifold M is naturally de-
formable to another symplectic structure on M via the quasi-Poisson theory
[31]. The latter structures were introduced in [32] and extend the notion of
Poisson-Nijenhuis structures, defined by Magri and Morosi [25], in terms of
the relationship with Lie algebroids.

1.1 Deformations of symplectic structures by mo-
ment maps

In the context of symplectic geometry, deformation-equivalence assumptions
and conditions are often appeared, for example, in the statement of Moser’s
theorem [28], Donaldson’s four-six conjecture [35] and so on. However,
it seems that a method of constructing deformation-equivalent symplec-
tic structures specifically is not well known. In this thesis, we construct
a method of producing new symplectic structures deformation-equivalent to
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a given symplectic structure with a Hamiltonian action. Our approach to
deformations of symplectic structures is to use quasi-Poisson theory which
was introduced by Alekseev and Kosmann-Schwarzbach [1], and this ap-
proach is carried out by using the fact that a moment map for a symplectic-
Hamiltonian action σ is also a moment map for a quasi-Poisson action σ.
The former moment map satisfies conditions for only one symplectic struc-
ture, whereas the latter does conditions for a family of quasi-Poisson struc-
tures parametrized by elements in Λ2g. From here we call these elements
twists. We regard a symplectic structure as a quasi-Poisson strucutre with
twist 0, which is denoted by π0. Then we can find different quasi-Poisson
structures πt which induce symplectic structures ωt by the choice of ”good”
twists t. The quasi-Poisson structure inducing a symplectic structure must
be a non-degenerate Poisson structure. We describe the conditions for the
quasi-Poisson structure with a twist t to be a non-degenerate Poisson struc-
ture. Our method of using the family of quasi-Poisson structures is one of
interesting geometry frameworks [1].

From here, we explain briefly the difference among moment maps for
symplectic, Poisson and quasi-Poisson actions on a smooth manifold. We
will explain these theories in detail in Section 2.1, 2.2 and 2.3.
(I) Symplectic-Hamiltonian actions

In symplectic geometry, a moment map µ : M → g∗ for a symplectic
action σ of a Lie group G on a symplectic manifold (M,ω) is defined with
two conditions: one is for the symplectic structure ω,

dµX = ιXσω (X ∈ g). (1.1)

Here µX(p) := ⟨µ(p), X⟩ and Xσ is a vector field on M defined by

Xσ,p :=
d

dt
σexp tX(p)

∣∣∣∣
t=0

(1.2)

for p in M . The other is the G-equivariance condition with respect to the
action σ on M and the coadjoint action Ad∗ on g∗,

µ ◦ σg = Ad∗g ◦ µ (1.3)

for all g in G. In this thesis, we call symplectic actions with moment maps
symplectic-Hamiltonian actions to distinguish it from other actions with
moment maps.
(II) Poisson-Hamiltonian actions

A Poisson Lie group, which was introduced by Drinfel’d [8], is a Lie group
with a Poisson structure π compatible with the group structure. Namely,
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the structure π satisfies

πgh = Lg∗πh +Rh∗πg (1.4)

for any g and h in G, where Lg and Rh are the left and right translations in
G by g and h, respectively. Such a structure is called multiplicative. Then
the simply connected Lie group G∗ called the dual Poisson Lie group is
obtained uniquely from a Poisson-Lie group (G, π) and a local action λ of
G on G∗ is defined naturally. We call a multiplicative Poisson structure π
on G complete if the action λ is global. Then (G, π) is called a complete
Poisson-Lie group. A moment map µ : M → G∗ for a Poisson action σ of
a Poisson Lie group (G, π) on a Poisson manifold (M,πM ) is defined with a
condition

Xσ = −π♯M (µ∗(XR)) (1.5)

for any X in g, where XR is the right-invariant 1-form on G∗ with value
X at e. In this thesis, we call Poisson actions with moment maps Poisson-
Hamiltonian actions. If (G, π) is complete, we can also consider the G-
equivariance of a moment map with respect to σ and λ. An equivariant
moment map for a Poisson action of a complete Poisson Lie group on a
Poisson manifold is a generalization of a moment map for a symplectic-
Hamiltonian action on a symplectic manifold, which was given by Lu in
[18].
(III) Quasi-Poisson-Hamiltonian actions

Quasi-Poisson theory, which was originated with [1] by Alekseev and
Kosmann-Schwarzbach, is a generalization of Poisson theory with Poison
actions. More specifically, the theory gives an unified view for various mo-
ment map theories [3], [18], [21], [28]. In quasi-Poisson geometry, quasi-
triples (D,G, h) and its infinitesimal version, Manin quasi-triples (d, g, h),
play important roles. A quasi-triple (D,G, h) defines a quasi-Poisson Lie
group Gh

D and we can obtain the notion of a quasi-Poisson action of such a

quasi-Poisson-Lie group Gh
D. A moment map µ for the action is a map from

M into the quotient D/G and satisfies a condition not for one quasi-Poisson
structure but for a family of quasi-Poisson structures parametrized by el-
ements in Λ2g. In this thesis, we call quasi-Poisson actions with moment
maps quasi-Poisson-Hamiltonian actions. An equivariant moment map for
a Poisson action in (II) is an example of a moment map for a quasi-Poisson
action if the Lie group is connected and simply connected. We use the mo-
ment map theory for quasi-Poisson actions to deform symplectic structures
on a smooth manifold.

Now we state the first our main theorem in this thesis.
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Theorem 1.1.1. Let (M,ω) be a symplectic manifold on which a connected
Lie group G with the Lie algebra g acts by a symplectic-Hamiltonian action
σ, µ :M → g∗ a moment map for σ and π the Poisson structure induced by
ω. Then the following holds:

1. If a twist t in Λ2g satisfies that [t, t]M = 0, then t deforms the Poisson
structure π to a Poisson structure πtM := π − tM . Moreover, if t is
an r-matrix, then σ is a Poisson action of (G, πtG) on (M,πtM ), where
πtG = tL − tR.

2. For a twist t in Λ2g, if the isotropic complement g∗t is admissible on
µ(M), then t deforms the non-degenerate 2-vector field π to a non-
degenerate 2-vector field πtM . This condition is equivalent to that the
matrix At(ξ) defined by (3.7) is regular for any ξ in µ(M).

Therefore, if a twist t satisfies the assumptions of both 1 and 2, then t de-
forms ω to a symplectic structure ωt induced by the non-degenerate Poisson
structure πtM . In other words, ω and ωt are deformation-equivalent.

Theorem 1.1.2. Let (M,ω) be a symplectic manifold on which an n-
dimensional connected Lie group G acts by a symplectic-Hamiltonian action
σ. Assume that X,Y in g satisfy [X,Y ] = 0. Then the twist t = 1

2X ∧ Y
in Λ2g deforms the symplectic structure ω to a symplectic structure ωt. For
example, a twist t in Λ2h, where h is a Cartan subalgebra of g, satisfies the
assumption of the theorem.

In Section 3.2, we give examples of deformations of symplectic structures
on R2n,CP1 and the complex Grassmannian GrC(n, r). In Section 3.3, we
study deformations on symplectic toric manifolds. Under certain assump-
tion, we show that our deformations give canonical transformations on a
symplectic toric manifold.

1.2 Pseudo-Poisson-Nijenhuis manifolds

Poisson-Nijenhuis structures were defined by Magri and Morosi [25] to study
bi-Hamiltonian systems. A pair of a Poisson structure π and a Nijenhuis
structure N on a C∞-manifoldM is said to be a Poisson-Nijenhuis structure
on M if π and N have a compatibility condition, i.e., they satisfy

N ◦ π♯ = π♯ ◦N∗, (1.6)

and the (2, 1)-tensor CN
π given by

CN
π (α, β) := [α, β]Nπ♯ − [α, β]N

∗
π (1.7)
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for any α and β in Ω1(M) vanishes. It is known that Poisson-Nijenhuis
manifolds (i.e., manifolds with Poisson-Nijenhuis structures) are related with
various mathematical objects [15], [16], [25].

Kosmann-Schwarzbach [15] showed that there is a one-to-one correspon-
dence between the Poisson-Nijenhuis manifolds (M,π,N) and the Lie bialge-
broids ((TM)N , (T

∗M)π), where (TM)N is a Lie algebroid deformed by the
Nijenhuis structure N and (T ∗M)π is the cotangent bundle equipped with
the standard Lie algebroid structure induced by the Poisson structure π. On
the other hand, Stiénon and Xu [38] introduced the concept of a Poisson-
quasi-Nijenhuis manifold (M,π,N, ϕ), and showed that a Poisson-quasi-
Nijenhuis manifold corresponds to a quasi-Lie bialgebroid ((T ∗M)π, dN , ϕ).
Here a Lie bialgebroid [29], [30] consists of a pair (A,A∗), where A is a Lie
algebroid, and A∗ is the dual bundle equipped with a Lie algebroid structure,
together with the following condition: for any D1 and D2 in Γ(Λ∗A),

dA∗ [D1, D2]A = [dA∗D1, D2]A + (−1)degD1+1[D1, dA∗D2]A, (1.8)

where a bracket [·, ·]A is the Schouten bracket of the Lie bracket of A, and dA∗

is the Lie algebroid differential determined from the Lie algebroid structure
of A∗ [22]. Since the Lie algebroid structure on A∗ can be recovered from
the derivation dA∗ , a Lie bialgebroid (A,A∗) is also denoted by (A, dA∗).
A quasi-Lie bialgebroid [12] is a Lie algebroid (A, [·, ·]A, a) equipped with a
degree-one derivation δ of the Gerstenhaber algebra (Γ(Λ∗A),∧, [·, ·]A), i.e.,
δ satisfies (1.8), and a 3-section of A, ϕA in Γ(Λ3A) such that δ2 = [ϕA, ·]A
and δϕA = 0.

Some of our main purposes in Chapter 4 in this thesis are to define a
pseudo-Poisson-Nijenhuis manifold (M,π,N,Φ) and to show that there is a
one-to-one correspondence between the pseudo-Poisson-Nijenhuis manifolds
(M,π,N,Φ) and the quasi-Lie bialgebroids ((TM)N , dπ,Φ). A quasi-Lie
bialgebroid ((TM)N , dπ,Φ) is, so to speak, “the opposite side” of a quasi-
Lie bialgebroid ((T ∗M)π, dN , ϕ). Here dN and dπ are operators on Ω∗(M) :=
Γ(Λ∗T ∗M) and X∗(M) := Γ(Λ∗TM) determined from a 2-vector field π and
a (1, 1)-tensor N , respectively.

Definition 1. Let M be a C∞-manifold, π a 2-vector field on M , a (1, 1)-
tensor N a Nijenhuis structure on M compatible with π, and Φ a 3-vector
field on M . Then a triple (π,N,Φ) is a pseudo-Poisson Nijenhuis structure
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on M if the following holds:

(i) [π,Φ] = 0,

(ii)
1

2
ια∧β [π, π] = Nια∧βΦ,

(iii) Nια∧βLXΦ− ια∧βLNXΦ− ι(LXN∗)(α∧β)Φ = 0

for any X in X(M), α and β in Ω1(M), where ια∧β := ιβια and (LXN
∗)(α∧

β) := (LXN
∗)α ∧ β + α ∧ (LXN

∗)β.

Furthermore, since quasi-Lie bialgebroids (of course, Lie bialgebroids
also) construct Courant algebroids [22], [34], we can obtain a new Courant
algebroid structure on TM ⊕ T ∗M from a pseudo-Poisson-Nijenhuis struc-
ture on M . Therefore a pseudo-Poisson-Nijenhuis structure on M comple-
ments the bottom left of the correspondence table below:

a Courant algebroid structure [22] on TM ⊕ T ∗M

a quasi-Lie bialgebroid [34] a Lie bialgebroid [29] a quasi-Lie bialgebroid [34]
((TM)N , dπ,Φ) ((TM)N , (T

∗M)π) ((T ∗M)π, dN , ϕ)
a pseudo-Poisson Nijenhuis a Poisson Nijenhuis [25] a Poisson quasi-Nijenhuis [38]

(π,N,Φ) (π,N) (π,N, ϕ)
π : a 2-vector field π : Poisson π : Poisson
N : Nijenhuis N : Nijenhuis N : a (1, 1)-tensor

Φ : a 3-vector field ϕ : a 3-form

All of the pairs (π,N) of the bottom of the correspondence table above
are compatible. The condition that a 2-vector field π and a (1, 1)-tensor
N on M are compatible is very important in studying Poisson-Nijenhuis,
pseudo-Poisson-Nijenhuis and Poisson-quasi-Nijenhuis manifolds. In Section
4.1, we prove several properties related to the compatibility under minimum
assumptions, for example, Poisson-Nijenhuis hierarchy [16], [26] and a rela-
tion with a brackets on the tangent and the cotangent bundle [15], [38] and
so on.

In Section 4.3, under the assumption that a 2-vector field π is nondegen-
erate, we show that we can reduce one of the conditions for a triple (π,N,Φ)
to be a pseudo-Poisson-Nijenhuis structure. In this case, since there is a
unique nondegenerate 2-form ω corresponding to π, we can rewrite the def-
inition of pseudo-Poisson-Nijenhuis structures by words of the differential
forms.

Definition 2. LetM be a C∞-manifold, ω a nondegenerate 2-form onM , a
(1, 1)-tensor N a Nijenhuis structure onM compatible with π corresponding
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to ω, and ϕ a closed 3-form on M . Then a triple (ω,N, ϕ) is a pseudo-
symplectic-Nijenhuis structure on M if

ιX∧Y dω = N∗ιX∧Y ϕ (X,Y ∈ X(M)).

Moreover we show that the above triple (ω,N, ϕ) induces a twisted Poisson
structure (πN , ϕ) [37]. Twisted Poisson structures arose from the study of
topological sigma models by Park [33]. It is known that twisted Poisson
structures on M engender certain quasi-Lie bialgebroid structures on T ∗M
[34].





Chapter 2

Preliminaries

In this chapter, as preliminalies of the main theorems in Section 3 and
Section 4, we recall symplectic, Poisson, quasi-Poisson geometries and Lie
algebroid theory.

2.1 Symplectic geometry

In this section, we recall symplectic geometry and moment map theory for
a symplectic action [28], [36]. Let M be a C∞-manifold.

Definition 3. Let ω be a 2-form on M . Then the 2-form ω is a symplectic
structure or symplectic form on M if ω is closed and ωp is nondegenerate
on TpM for all p ∈ M . A pair (M,ω) is a symplectic manifold if ω is a
symplectic structure on M .

The nondegeneracy of a symplectic structure ω on M means that dimM(=

dimTpM) must be even and that ωn := ω ∧
(n)
· · · ∧ ω is a volume form on M .

The form ωn

n! is called the symplectic volume form or Liouville volume form
of (M,ω) and the integral ∫

M

ωn

n!
(2.1)

is called the symplectic volume of (M,ω), denoted by Vol(M,ω).

Example 1. We considerM = R2n with linear coordinates (x1, . . . , xn, y1, . . . , yn).
The 2-form

ω0 :=

n∑
k=1

dxk ∧ dyk (2.2)

15
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is a symplectic structure on R2n.

Example 2. We considerM = Cn with linear coordinates (z1, . . . , zn). The
2-form

ω0 :=
i

2

n∑
k=1

dzk ∧ dz̄k (2.3)

is a symplectic structure on Cn. Under the identification Cn ∼= R2n, zk =
xk + iyk, this structure coincides with the structure (2.2) in Example 1.

Example 3. On the 2n-torus T2n with angle coordinates (θ1, . . . , θ2n), we
consider the 2-form

ω :=
n∑

i=1

dθ2i−1 ∧ dθ2i.

Then ω is a symplectic structure on T2n.

Example 4. The complex projective space CPn has the standard coordinate
neighborhood system {(Ui, φi)}i consisting of n+ 1 open sets Ui given by

Ui := {[z1 : · · · : zn+1] ∈ CPn|zi ̸= 0},
φi : Ui → Cn ∼= R2n,

[z1 : · · · : zn+1] 7→
(
z1
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn+1

zi

)
7→
(
Re
z1
zi
, Im

z1
zi
, . . . ,Re

zn+1

zi
, Im

zn+1

zi

)
,

for i = 1, . . . , n + 1. By using this coordinate system, the 2-form ωFS on
CPn defined by setting

φ∗
j

(
i

2
∂∂̄ log

(∑
k

|zk|2 + 1

))
on each Uj is a symplectic structure on CPn. The 2-form ωFS is called the
Fubini-Study form.

In the case of n = 1, The complex projective line CP1 has the standard
coordinate neighborhood system {(U1, φ1), (U2, φ2)}. The Fubini-Study form
ωFS on CP1 is

ωFS =
dx1 ∧ dy1

(x21 + y21 + 1)2

on U1, where (x1, y1) :=
(
Re z2z1 , Im

z2
z1

)
.
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Definition 4. Let (Mi, ωi), i = 1, 2, be 2n-dimensional symplectic manifolds
and φ : M1 → M2 a diffeomorphism. Then φ is a symplectomorphism if
φ∗ω2 = ω1. We denote the symplectomorphisms of a symplectic manifold
(M,ω) by Sympl(M,ω), i.e.,

Sympl(M,ω) := {f :M
∼=−→M |f∗ω = ω}.

Let (M,ω) be symplectic manifold and f : M → R a smooth function.
For the 1-form df , there exists a unique vector field Xf in X(M) such that
ιXf

ω = df by nondegeneracy of ω.

Definition 5. A vector fieldXf on (M,ω) as above is called the Hamiltonian
vector field with a function f .

If X in X(M) is Hamiltonian with a function f , we obtain

LXω = dιXω + ιXdω = d2f + 0 = 0. (2.4)

Therefore Hamiltonian vector fields on (M,ω) preserve ω.

Definition 6. A vector field X on (M,ω) preserving ω, i.e., satisfying
LXω = 0, is called a symplectic vector field.

By Definition 5 and the calculation (2.4), we can summarize the following:{
X in X(M) is symplectic ⇔ ιXω is closed

X in X(M) is Hamiltonian ⇔ ιXω is exact.
(2.5)

Definition 7. Let G be a Lie group. An action of G or a G-action on M is
a group homomorphism

ψ : G→ Diff(M), g 7→ ψg.

The evaluation map associated with an action ψ : G→ Diff(M) is

G×M →M, (g, p) 7→ ψg(p).

The action ψ is smooth if the evaluation map is smooth.

Example 5. Let X in X(M) be a complete vector field. Then

ψ : R → Diff(M), t 7→ ψt := ExptX

is a smooth action of R on M .
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In this thesis, we simply call a smooth action as an action. In addition,
we identify an action with the evaluation map associated with it and denote
the evaluation map associated with an action by the same symbol as the
action.

We introduce some types of actions of Lie groups.

Definition 8. Let σ : G ×M → M be an action of a Lie group G on a
manifold M . Then,

(i) σ is transitive if for any x and y in M , there exists g in G such that
σg(x) = y.

(ii) σ is effective if for any two distinct g and h in G, there exists x in M
such that σg(x) ̸= σh(x).

Next, we define symplectic and symplectic-Hamiltonian actions, which
are actions on symplectic manifolds.

Definition 9. Let (M,ω) be a symplectic manifold and G a Lie group. An
action σ of G on M is symplectic if

σ : G→ Sympl(M,ω) ⊂ Diff(M).

Definition 10. Let (M,ω) be a symplectic manifold, G a Lie group, g the
Lie algebra of G, g∗ the dual space of g and σ a symplectic action of G on
M . Then the action σ is a symplectic-Hamiltonian action if there exists a
map

µ :M → g∗

satisfying the followings:

1. For each X in g,

dµX = ιXσω. (2.6)

Here µX(p) := ⟨µ(p), X⟩ and Xσ is the fundamental vector field of X
for σ on M defined by

Xσ,p :=
d

dt
σexp tX(p)

∣∣∣∣
t=0

(2.7)

for p in M .
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2. theG-equivariancy with respect to the action σ onM and the coadjoint
action Ad∗ on g∗,

µ ◦ σg = Ad∗g ◦ µ (2.8)

for all g in G.

Then the quadruple (M,ω,G, µ) is called a Hamiltonian G-space and µ is
called a moment map.

In the special case of G ∼= R (resp. S1), since g ∼= g∗ = R, a moment map
µ :M → R for an action σ on (M,ω) satisfies the following:

1. For the generator X = 1 of g ∼= R, we obtain µX(p) = µ(p) ·1 for any p
in M , i.e., µX = µ. The fundamental vector field Xσ is just the vector
field generated by the 1-parameter group of transformation {σt}t∈R.
Hence the condition (2.6) is

dµ = ιXσω;

2. Since the coadjoint action Ad∗g for any g in G = R (or S1) is equal to
the identity map, the condition (2.8) is

σ∗gµ = µ (2.9)

for all g in G = R (or S1), i.e., LXσµ = 0.

Therefore σ is a symplectic-Hamiltonian action of R or S1 on (M,ω) with a
moment map µ if and only if the vector field generated by the 1-parameter
group of transformation {σt}t∈R is Hamiltonian with a function µ.

Example 6. We consider R2n with ω0 :=
∑n

k=1 dxk ∧ dyk (Example 1) and
set X := − ∂

∂y1
. Let {σt}t∈R be the 1-parameter group of transformation

generated by X. Since X = Xx1 is Hamiltonian with the linear coordinate
function x1, R-action σ is symplectic-Hamiltonian action on R2n.

Example 7. We consider R2n with ω0 :=
∑n

k=1 dxk ∧ dyk (Example 1). An
additive group Rn acts on R2n by the parallel transformation:

a · (x, y) := (x+ a, y) (x, y, a ∈ Rn).

This action is symplectic. Then the infinitesimal action aR2n of a = t(a1, a2, a3)
in Rn = Lie(Rn) is

aR2n =
n∑

i=1

ai
∂

∂xi
∈ X(R2n).
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Moreover, a map

µ : R2n → Rn, (x, y) 7→ y

is a moment map for this action.

Example 8. We consider the case that SU(n+1) acts on (CPn, ωFS) given
by

g · [z1 : · · · : zn+1] :=

n+1∑
j=1

a1jzj : · · · :
n+1∑
j=1

an+1,jzj

 ,
for any [z1 : · · · : zn+1] in CPn and g = (aij) in SU(n+ 1).

The isotropic subgroup of [1 : 0 : · · · : 0] is

S(U(1)×U(n)) :=

{(
eiθ O
O B

)
∈ SU(n+ 1)

∣∣∣∣ θ ∈ R, B ∈ U(n)

}
.

Therefore it follows

SU(n+ 1)/S(U(1)×U(n)) ∼= CPn.

The action of SU(n+1) on (CPn, ωFS) is a symplectic-Hamiltonian action
and its moment map µ is defined by

⟨µ([z1 : · · · : zn+1]), X⟩ := 1

2
Im

⟨t(z1, . . . , zn+1), X
t(z1, . . . , zn+1)⟩

⟨t(z1, . . . , zn+1), t(z1, . . . , zn+1)⟩

for any [z1 : · · · : zn+1] in CPn and X in su(n+ 1).

We consider the case of n = 1. The matrices

e1 :=

(
0 1
−1 0

)
, e2 :=

(
0 i
i 0

)
, e3 :=

(
i 0
0 −i

)
form a basis of su(2). Let {εi} be the dual basis of su(2)∗. We obtain

µ(x1, y1) =
y1

1 + x21 + y21
ε1 +

x1
1 + x21 + y21

ε2 +
1− x21 − y21

2(1 + x21 + y21)
ε3

on the standard neighborhood U1. Hence µ(CP1) ⊂ su(2)∗ ∼= R3 is the
2-sphere with center at the origin and with radius 1

2 .
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Example 9 (Coadjoint orbits). Let G be a compact Lie group, g the Lie
algebra of G and g∗ the dual space of g. We consider the adjoint representa-
tion Ad and the coadjoint representation Ad∗ of G on g and g∗, respectively.
For any ξ in g∗, the set

Oξ := {Ad∗gξ ∈ g∗| g ∈ G}

is a submanifold of g∗ called a coadjoint orbit through ξ. Since the restriction
to Oξ of Ad∗ is transitive, we obtain

Oξ
∼= G/Gξ,

where

Gξ := {g ∈ G| Ad∗gξ = ξ}

is stabilizer of ξ. Let Xg and Xg∗ be the fundamental vector fields of X in
g for the adjoint and coadjoint representations of G, respectively. We show
that

Xg,Y = [X,Y ] = adXY,

⟨Xg∗,ξ, Y ⟩ = ⟨ξ,−adXY ⟩ = ⟨ad∗Xξ, Y ⟩.

for any Y in g and ξ in g∗. Hence we obtain Xg∗,ξ = ad∗Xξ in Tξg
∗ ∼= g∗. We

define for any ξ in g∗, a skew-symmetric bilinear form ω̃ξ on g by

ω̃ξ(X,Y ) := ⟨ξ, [X,Y ]⟩.

Then it follows that the kernel of ω̃ξ is the Lie algebra gξ of the stabilizer of
ξ for the coadjoint representation by the fact that

gξ = {X ∈ g| ad∗Xξ = 0}
= {X ∈ g| ⟨ξ, [X,Y ]⟩ = 0 (∀Y ∈ g)}.

We show that ωξ defines a nondegenerate 2-form on TξOξ. In fact, since the
map

g → TξOξ, X 7→ Xg∗,ξ

is surjective and the kernel of this map is just gξ, we obtain TξOξ
∼= g/gξ.

Since for any vector v in TξOξ, there exists an element X in g such that
v = Xg∗,ξ, we define a skew-symmetric bilinear form ωξ on TξOξ as

ωξ(Xg∗,ξ, Yg∗,ξ) := ⟨ξ, [X,Y ]⟩(= ω̃ξ(X,Y )).
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This definition is well-defined since ker ω̃ξ = gξ andXg∗,ξ = ad∗Xξ = 0 for any
X in gξ, i.e., this definition does not depend on the choice of a representative.
The nondegeneracy of ωξ follows from the fact that ker ω̃ξ = gξ.

For any g in G, we set

ωAd∗gξ
(Xg∗,Ad∗gξ

, Yg∗,Ad∗gξ
) := ⟨Ad∗gξ, [X,Y ]⟩.

Then it follows that the 2-form ω on Oξ with value ωη at each point η in
Oξ is a symplectic structure on Oξ. It is obvious that ω is G-invariant.
The 2-form ω on Oξ is called canonical, the Lie-Poisson or the Kirillov-
Kostant form. Then the restriction to Oξ of the coadjoint representation is
a symplectic-Hamiltonian G-action on (Oξ, ω) with a moment map

ι : Oξ ↪→ g∗, ξ 7→ ξ.

In the case of G = SU(n + 1), it is well known that the Grassmannian
manifold GrC(n, r) is included in su(n + 1)∗ as a coadjoint orbit and that
the Kirillov-Kostant form on the projective space CPn = GrC(n, 1) coincide
with the Fubini-Study form ωFS on CPn = GrC(n, 1).

We define a symplectic toric manifold, which is an example of symplectic
manifolds with symplectic Hamiltonian torus-actions.

Definition 11. A symplectic toric manifold is a 2n-dimensional compact
connected symplectic manifold (M,ω) on which the n-dimensional torus
Tn acts effectively as a symplectic-Hamiltonian action with a moment map
µ :M → Rn(= Lie(Tn)).

In general, there exists no classification of symplectic manifolds. However
there exists a classification of symplectic toric manifolds, which is well known
as the Delzant theorem. The Delzant theorem is one of the applications of
the moment theory. To describe the Delzant theorem, we define Delzant
polytopes.

Definition 12. A polytope ∆ in Rn is a Delzant polytope if ∆ is convex and
satisfies the followings:

(i) it is simple, i.e., there exist n edges meeting at each vertex;

(ii) it is rational, i.e., the edges meeting at the vertex p are rational in the
sense that each edge is of the form p+ tui (t ≧ 0), where ui in Zn;

(iii) it is smooth, i.e., for each vertex, the corresponding u1, . . . , un can be
chosen to be a Z-basis of Zn.
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Theorem 2.1.1 (the Delzant Theorem [7]). Symplectic toric manifolds are
classified by Delzant polytopes. More precisely, there exists the following
one-to-one correspondence:

{symplectic toric manifolds} 1-1−−→ {Delzant polytopes}
(M,ω,Tn, µ) 7→ µ(M).

2.2 Poisson geometry

In this section, we review Poisson geometry [27], [43]. Moreover we review
Poisson-Lie group theory, Poisson action and its moment map theory [18],
[19], [21].

2.2.1 Poisson manifolds

We begin with the definition of a Poisson bracket.

Definition 13. A Poisson bracket on the C∞-functions C∞(M) on M is
the bilinear operator {·, ·} : C∞(M) × C∞(M) → C∞(M) satisfying the
following:

(i) (C∞(M), {·, ·}) is a Lie algebra;

(ii) {·, ·} is a derivation in each factor, that is, for any f, g and h in C∞(M),

{f, gh} = {f, g}h+ g{f, h}.

A pair (M, {·, ·}) is called a Poisson manifold.

Example 10. Any manifold M has the trivial Poisson structure, which is
defined by

{f, g} := 0

for any f and g in C∞(M).

Example 11. Let (M,ω) be a symplectic manifold. Then we can define a
Poisson bracket {·, ·}ω on M by

{f, g}ω := ω(Xf , Xg)

for any f and g in C∞(M), where Xf and Xg in X(M) are the Hamil-
tonian vector fields for ω with functions f and g, respectively. Therefore
any symplectic manifold has the Poisson bracket induced by the symplectic
structure.
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Example 12. Let g be a Lie algebra and g∗ the dual space of g. Then g∗

is a Poisson manifold with the Lie-Poisson bracket defined by, for any f , g
in C∞(M) and ξ in g∗,

{f, g}(ξ) := ⟨ξ, [dfξ, dgξ]⟩,

where we regard the differentials dfξ : Tξg
∗ ∼= g∗ → Tf(ξ)R ∼= R and dgξ :

Tξg
∗ ∼= g∗ → Tg(ξ)R ∼= R as elements in (g∗)∗ ∼= g. A pair (g, {·, ·}) is called

a Lie-Poisson space.

Example 13. Let (Mi, {·, ·}i), i = 1, 2, be Poisson manifolds. Then a
Poisson bracket {·, ·} on the product manifold M1 ×M2 is given by

{f, g}(x, y) := {f(x, ·), g(x, ·)}2(y) + {f(·, y), g(·, y)}1(x)

for any f, g in C∞(M1 ×M2), x in M1 and y in M2. Here f(x, ·), g(x, ·) :
M2 → R are in C∞(M2) and f(·, y), g(·, y) : M1 → R are in C∞(M2).
Hence (M1 ×M2, {·, ·}) is a Poisson manifold.

Proposition 2.2.1. Let (M, {·, ·}) be a Poisson manifold. Then for f in
C∞(M), there exists a unique vector field Xf on M such that

Xfg = {g, f}

for any g in C∞(M). The vector field Xf is called the Hamiltonian vector
field of f .

Obviously, a Hamiltonian vector field for a Poisson bracket {·, ·}ω in-
duced by a symplectic structure ω onM coincides with a Hamiltonian vector
field for the symplectic structure ω on M .

Definition 14. Let (Mi, {·, ·}i), i = 1, 2, be Poisson manifolds. Then a
map φ :M1 →M2 is Poisson map between (M1, {·, ·}1) and (M2, {·, ·}2) if

φ∗{f, g}2 = {φ∗f, φ∗g}1

for any f and g in C∞(M2).

If (Mi, ωi), i = 1, 2 are symplectic manifolds, then a map φ :M1 →M2

is symplectomorphism if and only if φ is Poisson with respect to Poisson
brackets {·, ·}ω1 onM1 and {·, ·}ω2 onM2 induced by ω1 and ω2 respectively.

Let (M, {·, ·}) be a Poisson manifold. Then there exists a 2-vector field
π on M such that

πp(dfp, dgp) = {f, g}(p)

for any f, g in C∞(M) and p in M .
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Definition 15. The above 2-vector field π on a Poisson manifold (M, {·, ·})
is called the Poisson structure induced by {·, ·} on M .

Theorem 2.2.2 (Pauli-Jost Theorem). We assume that the Poisson struc-
ture π induced by a Poisson bracket {·, ·} on M is nondegenerate, i.e., it

defines an isomorphism π♯p : T ∗
pM → TpM for any p in M given by

⟨π♯pαp, βp⟩ := πp(αp, βp)

for any α and β in Ω1(M). Then π induces a symplectic structure on M .
The symplectic form ω is defined by the formula

ω(Xf , Xg) := {f, g}

for any locally defined Hamiltonian vector fields Xf and Xg.

Let (Mi, {·, ·}i) be Poisson manifolds, πi the Poisson structures induced
by {·, ·}i, i = 1, 2. Then a map φ : M1 → M2 is Poisson if and only if, for
any p in M1,

φ∗π1,p = π2,φ(p).

To describe a necessary and sufficient condition for a given 2-vector field
on M to a Poisson structure on M , we define the Schouten bracket on the
multi-vector fields X∗(M) generalized the Lie bracket on the vector field
X(M).

Theorem 2.2.3 ([27]). Let M be a manifold. Then there exists a unique
anti-symmetric bilinear operator [·, ·] : X∗(M) × X∗(M) −→ X∗(M), called
the Schouten bracket on X∗(M), that satisfies the following properties:

(i) It is a biderivation of degree −1, that is, it is bilinear,

deg[D1, D2] = degD1 + degD2 − 1, (2.10)

and

[D1, D2 ∧D3] = [D1, D2] ∧D3

+ (−1)(degD1+1)degD2D2 ∧ [D1, D3] (2.11)

for Di in X∗(M),

(ii) It is determined on C∞(M) and X∗(M) by
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(a) [f, g] = 0 (f, g ∈ C∞(M));

(b) [X, f ] = Xf (f ∈ C∞(M), X ∈ X(M));

(c) [X,Y ] (X,Y ∈ X(M)) is the standard Lie bracket on X(M).

(iii) [D1, D2] = −(−1)(degD1−1)(degD2−1)[D2, D1].

In addition, the Schouten bracket satifsies the graded Jacobi identity

(−1)(degA−1)(degC−1)[[A,B], C] + (−1)(degB−1)(degA−1)[[B,C], A]

+ (−1)(degC−1)(degA−1)[[C,A], B] = 0
(2.12)

for A,B and C in X∗(M).

The following formulas are very useful for computing with the Schouten
bracket:

(i) LXA = [X,A] (X ∈ X(M), A ∈ X∗(M));

(ii) (the derivation property of the Lie derivative relative to the Schouten
bracket)
LX [A,B] = [LXA,B] + [A,LXB] (X ∈ X(M), A,B ∈ X∗(M));

(iii) For Xi in X(M) and A in X∗(M),

[X1 ∧ · · · ∧Xr, A] =

r∑
i=1

(−1)i+1Xi ∧ · · · ∧ [Xi, A] ∧ · · · ∧Xr;

(iv) For Xi and Yj in X(M),

[X1∧· · · ∧Xr, Y1 ∧ · · · ∧ Ys]

= (−1)r+1
∑
i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xr

∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Ys.

A necessary and sufficient condition for a 2-vector field π on M to be
Poisson is the following.

Proposition 2.2.4. (i) For a 2-vector field π on M satisfying

[π, π] = 0,
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the bracket {f, g}π given by

{f, g}π := π(df, dg) (2.13)

for any f and g in C∞(M) is Poisson.

(ii) Let π be the Poisson structure induced by the Poisson bracket {·, ·}
on M . Then

{f, g} = {f, g}π, (2.14)

where the bracket of the right hand side is given by (2.13).

From here on, using π in X2(M) satisfying [π, π] = 0, we denote a Poisson
manifold by (M,π) and the induced bracket by {·, ·}π. This is justified by
Proposition 2.2.4.

Proposition 2.2.5. We assume that the Poisson structure π onM is nonde-
generate. Then the symplectic structure ω onM induced by π is determined
by

ω♭ := −(π♯)−1.

In general, for any 2-form ω in M , the map ω♭
p is a homomorphism TpM →

T ∗
pM for any p in M defined by

⟨ω♭
pXp, Yp⟩ := ωp(Xp, Yp)

for any X and Y in X(M).

For any 2-vector field π on M , the followings hold:

Proposition 2.2.6 ([43]). For a local coordinate (xi) around a point p in
M , we set

π =
∑
i,j

πij
∂

∂xi
∧ ∂

∂xj
.

Then we obtain

[π, π] =
∑
i,j,k

∑
l

(
πli
∂πjk

∂xl
+ πlj

∂πki

∂xl
+ πlk

∂πij

∂xl

)
∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk
. (2.15)

We define the characteristic distributions of Poisson structures on M .
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Definition 16. Let π be a Poisson structure on M . We call a subset
π♯(T ∗M) of TM the characteristic distribution of the Poisson structure π.
In general, π♯(T ∗M) is not a subbundle of TM . The rank of the Poisson

structure π at a point p in M is defined as the rank of π♯p : T ∗
pM → TpM ,

i.e., the dimension of the vector space π♯p(T ∗
pM). A Poisson structure π is

regular if the rank of π is everywhere equal.

Example 14. On the n-torus Tn (n ≧ 3) with angle coordinates (θ1, . . . , θn),
a 2-vector field

πλ :=
∂

∂θa
∧
(
∂

∂θb
+ λ

∂

∂θc

)
,

where λ is in R and a, b and c are three distinct numbers, is a regular Poisson
structure with rank 2 (see [20]).

2.2.2 Poisson-Lie groups and Poisson actions

We review the definitions of Poisson-Lie groups and Poisson actions [19].

Definition 17 ([19]). Let G be a Lie group and π a Poisson structure on
G. Then a pair (G, π) is a Poisson-Lie group if the multiplication map
m : G × G → G is a Poisson map, where G × G is equipped with the
product Poisson structure (see Example 13). In this case, we call the Poisson
structure π on G multiplicative.

Let π be a Poisson structure on a Lie group G. Then π is multiplicative
if and only if

πgh = Lg∗πh +Rh∗πg (2.16)

for any g and h in G, where maps Lg : G → G and Rh : G → G are the
left and the right translations in G by g and h respectively, as well as their
differential maps extended to multi-vector fields. By the formula 2.16, we
notice that a non-zero multiplicative Poisson structure is in general neither
left nor right invariant 2-vector field.

Example 15 ([19]). The trivial 2-vector field π = 0 is obviously multiplica-
tive, so that any Lie group G with π = 0 is a Poisson-Lie group.

Example 16 ([19]). The direct product of two Poisson-Lie groups with the
product Poisson structure is a Poisson-Lie group again.
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Example 17 ([19]). Let G be an Abelian Lie group, g the Lie algebra of G
and π a 2-vector field on G. Then π is multiplicative if and only if

πR : G→ g ∧ g, g 7→ Rg−1∗πg (2.17)

is a Lie group homomorphism from G to the Abelian group g∧g. Lie-Poisson
space g∗ is a Poisson-Lie group when considered as an Abelian group. In
fact, let π be the Poisson structure on g∗ induced by the Lie-Poisson bracket,
{ei}i a basis of g, {ei}i the dual basis of g∗ and (ξi) the linear coordinates
for {ei} on g∗. Then by the formula

ei 7→
(
∂

∂ξi

)
ξ

,

we identify g∗ with Tξg
∗. It follows that

Rξ∗

(
∂

∂ξi

)
η

=

(
∂

∂ξi

)
ξ+η

, R∗
ξ(dξi)η = (dξi)ξ+η

for any ξ and η in g∗. Regarding ei as (dξi)ξ, we obtain

(R−(ξ+η)∗πξ+η)((dξi)0, (dξj)0) = πξ+η(R
∗
ξ+η(dξi)0,R

∗
ξ+η(dξj)0)

= πξ+η((dξi)ξ+η, (dξj)ξ+η)

= ⟨ξ + η, [(dξi)ξ+η, (dξj)ξ+η]⟩
= ⟨ξ + η, [ei, ej ]⟩
= ⟨ξ, [ei, ej ]⟩+ ⟨η, [ei, ej ]⟩
= ⟨ξ, [(dξi)ξ, (dξj)ξ]⟩+ ⟨η, [(dξi)η, (dξj)η]⟩
= πξ((dξi)ξ, (dξj)ξ) + πη((dξi)η, (dξj)η)

= πξ(R
∗
ξ(dξi)0,R

∗
ξ(dξj)0)

+ πη(R
∗
η(dξi)0,R

∗
η(dξj)0)

= (R−ξ∗πξ)((dξi)0, (dξj)0)

+ (R−η∗πη)((dξi)0, (dξj)0)

for any ξ and η in g∗. Therefore the map (2.17) is a Lie group homomor-
phism.

We define Poisson actions for Poisson manifolds.

Definition 18 ([19]). Let (G, πG) be a Poisson-Lie group, (M,πM ) a Pois-
son manifold and a map σ : G ×M → M a G-action on M . Then σ is a
Poisson G-action if σ is a Poisson map, where G×M is equipped with the
product Poisson structure.
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By Definition 17, the action of a Poisson-Lie group G on itself by the
left translation is a Poisson action. For a given action σ : G×M →M of a
Poisson-Lie group G on a Poisson manifold M , we set

σg :M →M,p 7→ σg(p),

σp : G→M, g 7→ σg(p)

for any g in G and p in M . Then the action σ is Poisson if and only if

πM,σg(p) = σg∗πM,p + σp∗πG,g (2.18)

for any g in G and p in M .

Example 18 ([19]). Let (M,ω) be a symplectic manifold, G a Lie group
and σ a symplectic action of G on (M,ω). Let πω be a Poisson structure on
M induced by ω. Then by regarding G as a trivial Poisson-Lie group (G, 0),
the action σ of (G, 0) on (M,πω) is Poisson.

Example 19 ([19]). Let G be a Lie group, g the Lie algebra of G and g∗ the
dual space of g. Then an action of the Lie-Poisson space g∗ on the cotangent
bundle T ∗G ∼= G× g∗ defined by

(ξ, (g, η)) 7→ (g, ξ + η)

for any ξ, η in g∗ and g in G is a Poisson action, where T ∗G ∼= G × g∗ is
equipped with the Lie group structure of a semi-direct product with respect
to coadjoint action Ad of G on g∗ and with the product Poisson structure
of the trivial Poisson structure on G and the Lie-Poisson structure on g∗.

Let Λ be an arbitrary 2-bector in g ∧ g, where g is the Lie algebra of a
Lie group G. We define a 2-vector field πΛ on G by

πΛ,g := Lg∗Λ− Rg∗Λ

for any g in G. The 2-vector field πΛ satisfies (2.16). Setting a left- and a
right-invariant 2-vector fields on G by

ΛL
g := Lg∗Λ,

ΛR
g := Rg∗Λ

for any g in G, we obtain πΛ,g = ΛL
g −ΛR

g . The Schouten bracket of πΛ with
itself is computed as

[πΛ, πΛ] = [ΛL − ΛR,ΛL − ΛR]

= [ΛL,ΛL]− 2[ΛL,ΛR] + [ΛR,ΛR]

= [ΛL,ΛL] + [ΛR,ΛR],
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where we use the fact that the Lie bracket of a left- and a right-invariant
vector field vanishes. Furthermore, [ΛL,ΛL] is a left-invariant and [ΛR,ΛR]
is a right-invariant by a property of the Lie bracket. By setting g = h = e,
where e is the identity in G, in (2.16), we obtain πΛ,e = 0. If we write

πΛ =
∑
i,j

πijΛ
∂

∂xi
∧ ∂

∂xj

for a local coordinate (xi) around e in G, then πijΛ,e = 0 for any i and j.
Since it follows from (2.15) that

[πΛ, πΛ] =
∑
i,j,k

∑
l

(
πliΛ
∂πjkΛ
∂xl

+ πljΛ
∂πkiΛ
∂xl

+ πlkΛ
∂πijΛ
∂xl

)
∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk
,

we obtain [πΛ, πΛ]e = 0. Therefore it follows that

[ΛL,ΛL]e = −[ΛR,ΛR]e.

We denote [ΛL,ΛL]e in g ∧ g ∧ g by [Λ,Λ] and obtain

[πΛ, πΛ] = [Λ,Λ]L − [Λ,Λ]R.

Then for any g in G, we compute

[πΛ, πΛ]g = 0 ⇐⇒ [Λ,Λ]Lg − [Λ,Λ]Rg = 0

⇐⇒ Lg∗[Λ,Λ] = Rg∗[Λ,Λ]

⇐⇒ Adg[Λ,Λ] = [Λ,Λ],

so that πΛ is Poisson if and only if [Λ,Λ] is Ad-invariant. We call such an
element Λ an r-matrix. Using the definition of the Schouten bracket for
[ΛL,ΛL], we obtain the explicit formula for [Λ,Λ] as

[Λ,Λ](ξ, η, ζ) = −2
∑

Cycl(ξ,η,ζ)

⟨ξ, [Λ♯η,Λ♯ζ]⟩

for any ξ, η and ζ in g∗, where the linear map Λ♯ : g∗ → g is defined by
⟨Λ♯ξ, η⟩ := Λ(ξ, η) for any ξ and η in g∗. Here the symbol

∑
Cycl(ξ,η,ζ) means

the sum of the remaining cyclic permutations of ξ, η and ζ.

Definition 19 ([19]). We say that a 2-vector Λ in g∧g satisfies the classical
Yang-Baxter equation if

[Λ,Λ] = 0. (2.19)
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Drinfeld proved the following theorem [8].

Theorem 2.2.7 ([8], [19]). Let G be a Lie group, g the Lie algebra of G
and Λ in g ∧ g arbitrary. We define a 2-vector field πΛ on G by

πΛ,g := Lg∗Λ− Rg∗Λ (2.20)

for any g in G. Then (G, πΛ) is a Poisson-Lie group if and only if Λ is an r-
matrix. In particular, if Λ satisfies the classical Yang-Baxter equation, then
a 2-vector field πΛ defined by (2.20) is a multiplicative Poisson structure on
G.

Example 20 ([19]). Let G = SL(2,R) and g = sl(2,R). The matrices

e1 :=
1

2

(
1 0
0 −1

)
, e2 :=

1

2

(
0 1
−1 0

)
, e3 :=

1

2

(
0 1
1 0

)
form a basis of sl(2,R). Then it follows that

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = −e2.

Any element Λ in g ∧ g is of the form Λ = λ1e1 ∧ e2 + λ2e2 ∧ e3 + λ3e3 ∧ e1.
Since a vector space g∧g∧g is 1-dimensional and e1∧e2∧e3 is Ad-invariant,
[Λ,Λ] is also Ad-invariant.

Example 21 ([19]). Let G = SU(2) and g = su(2). The matrices

e1 :=
1

2

(
i 0
0 −i

)
, e2 :=

1

2

(
0 1
−1 0

)
, e3 :=

1

2

(
0 i
i 0

)
form a basis of su(2). Then it follows that

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Similar to in the case of SL(2,R), any element Λ in g ∧ g is an r-matrix.

We shall define the multiplicativity of general multi-vector fields.

Definition 20 ([19]). Let G be a Lie group and K a multi-vector field on
G. Then K is multiplicative if

Kgh = Lg∗Kh +Rh∗Kg (2.21)

for any g and h in G.
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A (1-)vector field X is multiplicative if and only if it generates the 1-
parameter group of transformation of group automorphism of G. In fact,
let φt be the 1-parameter group of transformation of X. For any g and h in
G, we obtain

Xgh =
d

dt
φt(gh)

∣∣∣∣
t=0

,

Lg∗Xh +Rh∗Xg =
d

dt
φt(g)φt(h)

∣∣∣∣
t=0

.

Therefore the equivalence follows from existence and uniqueness of solutions
of ordinary differential equations.

In general, any K0 in Λkg defines a multiplicative k-vector field K on G
by Kg := Lg∗K0 + Rg∗K0 for any g in G. We will show later, when G is
compact or semi-simple, these are all the possible multiplicative K-vector
fields.

For any k-vector field K on G, we define a map KR : G → Λkg by
g 7→ Rg−1∗Kg for any g in G. Then K is multiplicative if and only if KR

satisfies the cocycle condition

KR,gh = KR,g +Adg∗KR,h (2.22)

for any g and h in G.

Lemma 2.2.8 ([19]). Let G be a connected Lie group and g the Lie algebra
of G. Let ρ : G× V → V be a representation of G on a vector space V and
dρ : g× V → V the differential representation of ρ. Then:

(i) If a map ϕ : G → V is a 1-cocycle on G relative to ρ, i.e., for any g
and h in G,

ϕ(gh) = ϕ(g) + ρ(g)(ϕ(h)),

then the differential ε := (dϕ)e : g → V at e is a 1-cocycle on g relative
to dρ, i.e., for any X and Y in g,

ε([X,Y ]) = dρ(X)(ε(Y ))− dρ(Y )(ε(X)),

and dϕ = 0 means that ϕ = 0.

(ii) When G is simply connected, any 1-cocycle ε on g relative to dρ can
be integrated to a 1-cocycle ϕ on G relative to ρ, i.e., dϕ = ε.
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(iii) When G is semi-simple, any 1-cocycle ε : g → V on g relative to dρ is
a coboundary, i.e., ε(X) = dρ(X)(v0) for some v0 in V .

(iv) When G is compact, any 1-cocycle ϕ : G → V on G relative to ρ is a
coboundary, i.e., ϕ(g) = v0 − ρ(g)(v0) for some v0 in V .

For a k-vector fields K on G with Ke = 0, we call the differential (dKR)e
of KR at e the derivative of K at e and donote by deK. In general, for
k-vector field K on any manifold M with Kx0 = 0 for some x0 in M , we can
define the derivative dx0K of K at x0 as a linear map given by

Tx0M → ΛkTx0M, X 7→ (LX̄K)x0 ,

where X̄ is any vector field onM with X̄x0 = X. From the fact thatKx0 = 0,
it follows that the value of (LX̄K)x0 does not depend on the choice of X̄.
We call the dual map of dx0K the linearization of K at x0. It is a linear
map given by

ΛkT ∗
x0
M → T ∗

x0
M, α1 ∧ · · · ∧ αk 7→ d(K(ᾱ1, . . . ᾱk))x0 ,

where ᾱi is any 1-form on M with value α at x0.

Proposition 2.2.9 ([19]). Let G be a Lie group, e the identity in G and g
the Lie algebra of G.

(i) the derivative of a multiplicative k-vector field on G at e is a 1-cocycle
on g relative to the adjoint representation of g on Λkg.

(ii) WhenG is connected, a multiplicative k-vector fieldK onG is uniquely
determined by its derivative at e.

(iii) When G is connected and simply connected, there exists a one-to-
one correspondence between multiplicative k-vector field on G and
1-cocycle on g relative to the adjoint representation ad of g on Λkg.

(iv) When G is connected and semi-simple, or compact, for any multiplica-
tive k-vector field K on G, there exists an element K0 in Λkg such that

Kg = Lg∗K0 +Rg∗K0 (2.23)

for any g in G.
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Corollary 2.2.10 ([19]). Let G be a connected and semi-simple, or compact
Lie group and g the Lie algebra of G. Then any multiplicative Poisson
structure π on G is of the form

πg = Lg∗Λ− Rg∗Λ (2.24)

for any g in G, where Λ in g ∧ g is an r-matrix.

Proposition 2.2.11 ([19]). LetG be a connected Lie group, e the identity in
G and K a multi-vector field on G. The following conditions are equivalent:

(i) K is multiplicative;

(ii) Ke = 0 and LXK is left-invariant for any left-invariant vector field X
in G;

(iii) Ke = 0 and LXK is right-invariant for any right-invariant vector field
X in G.

By Proposition 2.2.11, we obtain the following proposition.

Proposition 2.2.12 ([19]). Let G be a connected Lie group and K and
L two multiplicative multi-vector fields on G. Then their Schouten bracket
[K,L] is multiplicative.

From now on, we recall the infinitesimal version of Poisson-Lie group,
namely Lie bialgebra. First, by Proposition 2.2.9 and Proposition 2.2.12,
the following holds.

Proposition 2.2.13 ([19]). Let G be a connected Lie group and π a mul-
tiplicative 2-vector field on G. We denote the linearization of π at e by
[·, ·]π : g∗ ∧ g∗ → g∗. It is a skew-symmetric bilinear form given by, for any
ξ and η in g∗,

[ξ, η]π = d(π(ξ̄, η̄))e,

where ξ̄ and η̄ are any 1-forms on G with values ξ and η at e respectively.
Then π is Poisson if and only if the skew-symmetric bilinear form [·, ·]π
satisfies the Jacobi identity, that is, a pair (g∗, [·, ·]π) is a Lie algebra. we
call such a Lie algebra the linearization of the Poisson structure at e.

Example 22 ([19]). Let G be a connected Lie group, g the Lie algebra of
G and g∗ the dual space of g. Let Λ in g∧g be an r-matrix. Then a 2-vector
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field πΛ defined by (2.20) is a multiplicative Poisson structure on G. The
Lie bracket [·, ·]πΛ on g∗ defined by the linearization of πΛ at e is given by

[ξ, η]πΛ = ad∗Λ♯ξη − ad∗Λ♯ηξ (2.25)

for any ξ and η in g∗.

Definition 21 ([8], [19]). Let g be a Lie algebra and g∗ the dual space of
g. We assume that g∗ has a Lie algebra structure [·, ·]∗. A pair (g, g∗) is a
Lie bialgebra if the dual map δ : g → g ∧ g of the Lie bracket map [·, ·]∗ :
g∗ ∧ g∗ → g∗ on g∗ is a 1-cocycle on g relative to the adjoint representation
of g on g ∧ g, i.e.,

δ([X,Y ]) = adXδ(Y )− adY δ(X) (2.26)

for any X and Y in g. Sometimes we denote the Lie bialgebra by (g, δ).

The following theorem follows immediately from Proposition 2.2.9.

Theorem 2.2.14 ([8], [19]). Let (G, π) be a Poisson-Lie group, g the Lie
algebra of G and g∗ the dual space of g. Then the linearization of π at e
defines a Lie algebra structure on g∗ such that (g, g∗) is a Lie bialgebra,
called the tangent Lie bialgebra to (G, π). Conversely, if G is connected and
simply connected, any Lie bialgebra (g, g∗) defines a unique multiplicative
Poisson structure π on G such that (g, g∗) is the tangent Lie bialgebra to
the Poisson-Lie group (G, π).

The following theorem is a characterization of Poisson actions of con-
nected Poisson-Lie groups on Poisson manifolds [21].

Theorem 2.2.15 ([19], [21]). Let (M,πM ) be a Poisson manifold, (G, πG)
be a connected Poisson-Lie group, g the Lie algebra of G and σ an action
of G on M . Then the action σ is a Poisson action of (G, πG) on (M,πM ) if
for each X in g,

LXσπM = δ(X)σ, (2.27)

where xσ is a fundamental multi-vector field for any x in ∧∗g. Here δ is the
1-cocycle belonging to the tangential Lie bialgebra (g, g∗) to (G, πG).

Theorem 2.2.16 (Manin Theorem [8], [19]). Let g be a Lie algebra with
a bracket [·, ·] and g∗ the dual space of g with a Lie algebra structure [·, ·]∗.
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We define the nondegenerate symmetric bilinear scalar product ⟨⟨·, ·⟩⟩ on the
vector space g⊕ g∗ given by

⟨⟨X + ξ, Y + η⟩⟩ := 1

2
(⟨ξ, Y ⟩+ ⟨η,X⟩) (2.28)

for any X,Y in g, ξ and η in g∗. We denote the coadjoint representations of
g on g∗ and of g∗ on g = (g∗)∗ by ad∗Xξ and ad∗ξX for any X in g and ξ in g∗

respectively. Then there exists a unique skew-symmetric bracket operation
[[·, ·]] on g⊕ g∗ such that

(i) it restricts to the given brackets on g and g∗;

(ii) the scalar product ⟨⟨·, ·⟩⟩ on g⊕ g∗ is invariant, i.e.,

⟨⟨[[X + ξ, Y + η]], Z + ζ⟩⟩+ ⟨⟨Y + η, [[X + ξ, Z + ζ]]⟩⟩ = 0 (2.29)

for any X,Y, Z in g, ξ, η and ζ in g∗.

This operation is given by

[[X + ξ, Y + η]] := [X,Y ]− ad∗ηX + ad∗ξY + [ξ, η]∗ + ad∗Xη − ad∗Y ξ (2.30)

for any X,Y in g, ξ and η in g∗. Moreover, it is a Lie bracket on g ⊕ g∗ if
and only if (g, g∗) is a Lie bialgebra.

Definition 22 ([19]). For a Lie bialgebra (g, g∗), we call the space g ⊕
g∗ equipped with the Lie bracket given by Theorem 2.2.16 the double Lie
algebra of the Lie bialgebra (g, g∗) and denote by g ▷◁ g∗.

By Theorem 2.2.16, the following holds.

Corollary 2.2.17 ([19]). If (g, g∗) is a Lie bialgebra, then so is (g∗, g).

Definition 23 ([19]). Let (G, πG) be a Poisson-Lie group, (g, g
∗) the tangent

Lie bialgebra to (G, πG) and G∗ the connected and simply connected Lie
group with the Lie algebra g∗. Then by Corollary 2.2.17, G∗ has a unique
multiplicative Poisson structure πG∗ such that (g∗, g) is the tangent Lie
algebra to (G∗, πG∗). A pair (G∗, πG∗) is called the dual Poisson-Lie group
of (G, πG).

Example 23 ([19]). Let G be a Lie group equipped with the trivial Poisson
structure, g the Lie algebra of G and g∗ the dual space of g. Then the
dual Poisson-Lie group G∗ of (G, 0) is the Abelian Lie group g∗ with the
Lie-Poisson structure. The double Lie algebra is the Lie algebra of the
cotangent bundle T ∗G ∼= G × g∗ equipped with the Lie group structure of
a semi-direct product with respect to coadjoint action Ad of G on g∗ (cf.
Example 19).
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Definition 24 ([19]). Let g be a Lie algebra equipped with a nondegenerate
invariant symmetric scalar product ⟨·, ·⟩, g± Lie subalgebras of g. Then a
triple (g, g+, g−) is Manin triple if the following conditions hold:

(i) g = g+ ⊕ g− as vector spaces;

(ii) both g+ and g− are isotropic with respect to the scalar product ⟨·, ·⟩,
i.e., ⟨g+, g+⟩ = ⟨g−, g−⟩ = 0.

The correspondence between Lie bialgebra and Manin triple is con-
structed as follows: If (g, g∗) is a Lie bialgebra, then a triple (g ⊕ g∗, g, g∗)
with ⟨⟨·, ·⟩⟩ in Theorem 2.2.16 is a Manin triple. Conversely, if (g, g+, g−) is
a Manin triple, then g− is naturally isomorphic to g∗+ under ⟨·, ·⟩, that is,
the map g− → g∗+, ξ 7→ 2 ⟨ξ, ·⟩|g+ is an isomorphism. Therefore g ∼= g+⊕g∗+
as vector spaces, and ⟨·, ·⟩ coincides with the natural scalar product ⟨⟨·, ·⟩⟩
on g+ ⊕ g∗+ in Theorem 2.2.16. Again by Theorem 2.2.16, a pair (g+, g

∗
+) is

a Lie bialgebra.

Let (M,π) be a Poisson manifold. Then we define a Lie bracket [·, ·]π on
the 1-forms Ω1(M) induced by π by

[ξ, η]π := Lπ♯ξη − Lπ♯ηξ − d⟨π♯ξ, η⟩ (2.31)

for any ξ and η in Ω1(M). The Lie bracket has the following properties:

[ξ, fη]π = f [ξ, η]π + ((π♯ξ)f)η, (2.32)

π♯[ξ, η]π = [π♯ξ, π♯η] (2.33)

for any ξ, η in Ω1(M) and f in C∞(M). Then the triple (T ∗M,π♯, [·, ·]π)
forms a Lie algebroid over M , which we will recall in Section 2.4. Let (G, π)
be a Poisson-Lie group with the Lie algebra g and g∗ the dual space of
g, equipped with the Lie bracket [·, ·]π induced by the linearization of π
at e. Then the left- and right-invariant 1-forms Ω1(M)L and Ω1(M)R are
closed under the above Lie bracket [·, ·]π. We identifies g∗ with Ω1(M)L and
Ω1(M)R by X 7→ XL and X 7→ XR respectively. Both the above brackets
[·, ·]π|Ω1(M)L and [·, ·]π|Ω1(M)R coincide with the opposite of the linearization
of π at e by the fact that πe = 0. We define a map λπ : g∗ → X(G) by

λπ(ξ) := −π♯(ξR) (2.34)

for any ξ in g∗. Then λπ is a Lie algebra anti-homomorphism by the property
(2.33) and the fact [ξ, η]π = [ξR, ηR]π,e.
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Definition 25 ([19]). We call a vector field λπ(ξ) a dressing vector field
on (G, π) and the map λπ the infinitesimal dressing action of g∗ on G. By
integrating λπ, we obtain a local (and global if all dressing vector fields are
complete) action of G∗ on G. This action is called the dressing action of G∗

on G, denoted by the same symbol λπ.

Remark 1. In [18], [19], [21], the dressing action and its infinitesimal one
are defined by λπ(ξ) := −π♯(ξL) instead of (2.34). However all the results on
the dressing action and its infinitesimal one hold by some correction, so that
there is no problem even if (2.34) is used. Rather, adopting the definition
given by (2.34) is more natural in terms of quasi-Poisson theory, which we
will review in next section.

Definition 26 ([19]). Let G be a Lie group and π a multiplicative Poisson
structure on G. Then π is complete if all dressing vector fields on (G, π) are
complete.

Example 24. The trivial Poisson structure 0 on any Lie group G is com-
plete. In fact, by a computation λ0(ξ) = −0♯(ξR) = 0 for any ξ in g∗, the
dressing action is a global action λ0u = idG for any u in G∗.

The following propositions are properties for the completeness of a mul-
tiplicative Poisson structure on a Lie group.

Proposition 2.2.18 ([19], [24]). A Poisson-Lie group (G, π) is complete if
and only if the dual Poisson-Lie group G∗ of (G, π) is complete.

Proposition 2.2.19 ([19]). Let (G, π) be a Poisson-Lie group with the
tangential Lie bialgebra (g, g∗). Let (G̃, π̃) be the universal covering group
of G with the multiplicative Poisson structure induced by (g, g∗). Then
(G, π) is complete if and only if (G̃, π̃) is complete.

The completeness of a multiplicative Poisson structure π on a Lie group
G with the Lie algebra g also can be described by using the Lie group with
the Lie algebra g ▷◁ g∗. Let (g, g∗) be a Lie bialgebra and g ▷◁ g∗ the double
Lie algebra of (g, g∗). Let G,G∗ and G ▷◁ G∗ be the connected and simply
connected Lie groups with the Lie algebras g, g∗ and g ▷◁ g∗ respectively.
We call G ▷◁ G∗ the double Lie group induced by (g, g∗). We set Lie group
homomorphisms obtained by integrating including maps g ↪→ g ▷◁ g∗ and
g∗ ↪→ g ▷◁ g∗ by

ϕG : G→ G ▷◁ G∗, ϕG∗ : G∗ → G ▷◁ G∗,

respectively, and define ϕG,G∗ : G×G∗ → G ▷◁ G∗ by

ϕG,G∗(g, u) := ϕG(g)ϕG∗(u).
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Proposition 2.2.20 ([19]). Let the notations be as above. Then a con-
nected and simply connected Poisson-Lie group (G, π) is complete if and
only if the map ϕG,G∗ is a diffeomorphism.

2.2.3 Moment maps for Poisson actions

The definition of a moment map for Poisson action is the following:

Definition 27 ([19]). Let (M,πM ) be a Poisson manifold, (G, πG) a Poisson-
Lie group, G∗ the dual Poisson-Lie group of (G, πG) and σ : G×M →M a
Poisson action of (G, πG) on (M,πM ). Let XR be a right-invariant 1-form
on G∗ with value X at e for any X in g = (g∗)∗ and Yσ a vector field on M
generating the action σexp tY for any Y in g. Then a map µ : M → G∗ is a
moment map for the Poisson action σ if for any X in g,

Xσ = −π♯M (µ∗XR). (2.35)

Example 25 ([18], [19]). Let (G, π) be a connected complete Poisson-Lie
group and G∗ the dual Poisson-Lie group of (G, π). Then the dressing action
λπ of G∗ on (G, π) is Poisson (for the detail, see [18]). Moreover, the identity
map id : G → G is a moment map for the dressing action λπ. In fact, we
compute that for any ξ in g∗ and g in G,

ξλπ ,g =
d

dt
λπexp tξ(g)

∣∣∣∣
t=0

= λ(ξ)g

= (−π♯(ξR))g
= (−π♯(id∗ξR))g

Definition 28 ([19]). Let (M,πM ) be a Poisson manifold, (G, πG) a com-
plete Poisson-Lie group, (G∗, πG∗) the dual Poisson-Lie group of (G, πG),
λπG∗ : G × G∗ → G∗ the dressing action of (G∗, πG∗) on (G, πG) and
σ : G ×M → M a Poisson action of (G, πG) on (M,πM ) with a moment
map µ :M → G∗. Then µ is G-equivariant if for any g in G,

µ ◦ σg = λπG∗
g ◦ µ. (2.36)

In other words, µ is G-equivariant if for any g in G, the diagram

M
σg−−−−→ M

µ

y yµ

G∗ −−−−→
λ
πG∗
g

G∗

(2.37)
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is commutative.

Remark 2. Since the dual Poisson-Lie group G∗ is complete by Proposition
2.2.18, the dressing action of (G, πG) on G

∗ is global. Therefore the above
definition is well-defined.

Example 26 (moment maps for symplectic-Hamiltonian actions). Let (M,
ω,G, µ) be a Hamiltonian G-space with a symplectic-Hamiltonian action σ
and πω the Poisson structure induced by ω. By Example 18, the action σ is
a Poisson action of a trivial Poisson-Lie group (G, 0) on a Poisson manifold
(M,πω). Obviously, the trivial Poisson structure is complete. By Example
23, the dual Poisson-Lie group G∗ of (G, 0) is the Abelian Lie group g∗ with
the Lie-Poisson structure πg∗ , where g is the Lie algebra of G and g∗ is
the dual space of g. By the definition of a moment map for a symplectic-
Hamiltonian action, the condition (2.6) follows for µ : M → g∗. Let {ei}i
be a basis of g, {ei}i the dual basis of g∗ and (ξi) the linear coordinates
for {ei} on g∗. Regarding ei as (dξi)ξ, for any X =

∑
iX

iei, we obtain
XR =

∑
iX

idξi by Example 17. For the moment map µ and any point p in
M , setting µ(p) =

∑
i µi(p)e

i for µi in C
∞(M), we compute

µ∗XR = µ∗

(∑
i

Xidξi

)
=
∑
i

Xiµ∗dξi =
∑
i

Xid(µ∗ξi) =
∑
i

Xid(ξi ◦ µ)

=
∑
i

Xidµi =
∑
i

Xid⟨µ, ei⟩ = d

⟨
µ,
∑
i

Xiei

⟩
= d⟨µ,X⟩

= dµX .

Hence it follows that the condition (2.6) is equivalent with µ∗XR = ιXσω.
Moreover we have

µ∗XR = ιXσω ⇐⇒ µ∗XR = ω♭Xσ

⇐⇒ (ω♭)−1(µ∗XR) = Xσ

⇐⇒ −π♯(µ∗XR) = Xσ.

Therefore µ : M → g∗ is a moment map for the Poisson (G, 0)-action on
(M,πω). Moreover, the dressing action λπg∗ of G on g∗ coincides with the
coadjoint representation Ad∗ of G on g∗. In fact, for any X =

∑
iX

iei in g

and ξ =
∑

j ξje
j in g∗, regarding ei and e

j as (dξi)ξ and
(

∂
∂ξj

)
ξ
respectively,
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we compute⟨
d

dt
Ad∗exp tXξ

∣∣∣∣
t=0

, (dξk)ξ

⟩
= ⟨ad∗Xξ, ek⟩

= ⟨ξ,−adXek⟩
= −⟨ξ, [X, ek]⟩

= −
∑
i

Xi ⟨ξ, [ei, ek]⟩

= −
∑
i

Xi ⟨ξ, [(dξi)ξ, (dξk)ξ]⟩

= −
∑
i

Xiπg∗(dξi, dξk)ξ

= −
∑
i

Xi
⟨
π♯g∗(dξi)ξ, (dξk)ξ

⟩
= −

⟨
π♯g∗

(∑
i

Xidξi

)
ξ

, (dξk)ξ

⟩

=
⟨
−π♯g∗

(
XR
)
ξ
, (dξk)ξ

⟩
= ⟨λπg∗ (X)ξ, (dξk)ξ⟩ ,

so that Ad∗ = λπg∗ holds. Since µ satisfies the condition (2.8), therefore we
obtain

µ ◦ σg = λ
πg∗
g ◦ µ (2.38)

for any g in G, and µ : M → g∗ is a G-equivariant moment map for the
Poisson (G, 0)-action on (M,πω). From the above, a G-equivariant moment
map for a Poisson action of a complete Poisson-Lie group is a generalization
of a moment map for a symplectic-Hamiltonian action of a Lie group.

The G-equivariance of a moment map for a Poisson action is described
as follows.

Theorem 2.2.21 ([19]). Let (M,πM ) be a Poisson manifold, (G, πG) a
connected complete Poisson-Lie group and (G∗, πG∗) the dual Poisson-Lie
group of (G, πG). Then a moment map µ : M → G∗ for a Poisson (G, πG)-
action on (M,πM ) is G-equivariant if and only if µ is a Poisson map.
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2.3 Quasi-Poisson geometry

In this section, we shall recall the quasi-Poisson theory [1]. We start with the
definition of quasi-Poisson-Lie groups, which is a generalization of Poisson-
Lie groups.

Definition 29 ([1], [13], [14]). Let G be a Lie group with the Lie algebra
g. Then a pair (π, φ) is a quasi-Poisson structure on G if a multiplicative
2-vector field π on G and an element φ of Λ3g satisfy

1

2
[π, π] = φR − φL, (2.39)[
π, φL

]
=
[
π, φR

]
= 0, (2.40)

where the bracket [·, ·] is the Schouten bracket on the multi-vector fields on
G, and φL and φR denote the left- and right-invariant 2-vector fields on G
with value φ at e respectively. A triple (G, π, φ) is called a quasi-Poisson-Lie
group.

Example 27. Let (G, πG) be a Poisson-Lie group. Then by setting φ := 0,
a triple (G, πG, φ) is a quasi-Poisson-Lie group.

We deal with quasi-Poisson-Lie groups induced by “quasi-triples” to de-
fine quasi-Poisson actions and its moment maps. To define quasi-triples, we
need to describe its infinitesimal version, a Manin quasi-triples.

Definition 30 ([1]). Let d be a 2n-dimensional Lie algebra with an invariant
non-degenerate symmetric bilinear form of signature (n, n), which is denoted
by (·|·). Let g be an n-dimensional Lie subalgebra of d and h be an n-
dimensional vector subspace of d. Then a pair (d, g) is a Manin pair if g
is a maximal isotropic subspace with respect to (·|·). A triple (d, g, h) is a
Manin quasi-triple if (d, g) is a Manin pair and h is an isotropic complement
subspace of g in d.

Remark 3. For a given Manin pair (d, g), a choice of an isotropic comple-
ment subspace h of g in d is not unique.

A Manin quasi-triple (d, g, h) defines the decomposition d = g⊕ h. Then
the linear isomorphism

j : g∗ → h, (j(ξ)|x) := ⟨ξ, x⟩ (ξ ∈ g∗, x ∈ g) (2.41)
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is determined by the decomposition. We denote the projections from d =
g ⊕ h to g and h by pg and ph respectively. We introduce an element φh in
Λ3g which is defined by the map from Λ2g∗ to g, denoted by the same letter,

φh(ξ, η) := pg([j(ξ), j(η)]), (2.42)

for any ξ, η in g∗. We introduce the cobracket. It is the linear map Fh : g →
Λ2g by setting

F ∗
h (ξ, η) := j−1(ph([j(ξ), j(η)])) (2.43)

for any ξ, η in g∗, where F ∗
h : Λ2g∗ → g∗ is the dual map of Fh. These ele-

ments will give important examples of quasi-Poisson structures and be used
later to define quasi-Poisson actions. The Lie algebra g with the cobracket
F and the element φ in Λ3g∗ is called a quasi-Lie bialgebra.

Conversely, It is well known that any Manin quasi-triple is obtained from
a quasi-Lie bialgebra [9].

Example 28 ([1]). Let g be a Lie algebra and g∗ the dual space of g. By
setting φ = 0, we obtain a Manin pair (g ⊕ g∗, g), where the Lie bracket
[·, ·] on g⊕ g∗ coincides with the bracket (2.30). Therefore by choosing the
canonical isotropic complement h = g∗, a Manin quasi-triple (g ⊕ g∗, g, g∗)
is just a Manin triple corresponding with a Lie bialgebra (g, F ). Moreover,
in the case of F = 0, we call a Manin pair (g ⊕ g∗, g) the standard Manin
pair associated g.

Example 29 ([1], [39]). Let g be a Lie algebra with an invariant nonde-
generate symmetric bilinear form K. Then we can construct a Manin pair
(g⊕ g, g) as follows: The Lie bracket [·, ·] on g⊕ g and the bilinear form (·|·)
on g⊕ g are given by

[(X1, X2), (Y1, Y2)] := ([X1, Y1], [X2, Y2]), (2.44)

((X1, X2)|(Y1, Y2)) := K(X1, Y1)−K(X2, Y2) (2.45)

for any X1, X2, Y1 and Y2 in g. The Lie algebra g is embedded into g ⊕ g
by the diagonal map diag : X 7→ (X,X). We can choose an isotropic com-
plement g− := 1

2diag−(g), where diag− : X 7→ (X,−X) is the anti-diagonal
map. In general, the isotropic complement g− is not a Lie subalgebra, so
that (g⊕ g, g, g−) is a Manin quasi-triple but not a Manin triple.

Let (d, g, h) be a Manin quasi-triple. Using the inverse j−1 : h → g∗ of
the linear isomorphism (2.41), we identify d with g⊕ g∗. Consider the map

rh : d
∗ → d, ξ +X 7→ ξ, (2.46)
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for any ξ in g∗ and X in g. This map defines an element rh ∈ d ⊗ d which
we denote by the same letter. Let {ei} be a basis on g and {εi} the dual
basis of {ei} on g∗. Then it follows that

rh =
∑
i

ei ⊗ j(εi). (2.47)

Definition 31 ([1]). The above element rh in d ⊗ d is called the canonical
r-matrix for the Manin quasi-triple (d, g, h).

Next we define a twist between isotropic complement subspaces h and h′

of g in d. Twists play an important role in the moment map theory for quasi-
Poisson actions defined later. Let j and j′ be the linear isomorphism (2.41)
defined by Manin quasi-triples (d, g, h) and (d, g, h′) respectively. Consider
the map

t := j′ − j : g∗ → d.

It is easy to show that t takes values in g and that it is anti-symmetric, so
that the map t defines an element t in Λ2g which we denote by the same
letter. The element t is called the twist from h to h′. Fix a Manin quasi-
triple (d, g, h). For any t in Λ2g, there exists the isotropic complement h′ of
g to which the twist from h is t. In fact, let {ei} be a basis on g and {εi}
be the basis on h identified with the dual basis of {ei} on g∗ by j−1. We set
t := 1

2

∑
i,j t

ijei ∧ ej and

ε′
i
:= εi +

∑
j

tijej . (2.48)

Then the set {ε′i} spans an isotropic complement subspace of g. We can set
h′ := span{ε′i}. From now on, we denote h′ by ht. Then we can represent
the canonical r-matrix rht , the elements φht and Fht defined by a Manin
quasi-triple (d, g, ht) as follows:

rht = rh + t (2.49)

φht = φh +
1

2
[t, t] + φt, (2.50)

Fht = Fh + Ft, (2.51)

where [t, t] := [tL, tL]e, φt(ξ) := ad∗ξt and Ft(X) := adXt. Here ad denotes

the adjoint action of g on Λ2g and ad∗ξt denotes the projection of ad∗ξt onto
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Λ2g ⊂ Λ2d, where d∗ including g∗ acts on Λ2d by the coadjoint action (see
[1]). Moreover components of φt with respect to the basis {εi} on h are
written as

φijk
t =

∑
l

(
(Fh)

jk
l t

il − (Fh)
ik
l t

jl
)
. (2.52)

This expression is useful later.
Next we define a group pair (D,G) and a quasi-triple (D,G, h).

Definition 32 ([1]). Let D be a connected Lie group with a bi-invariant
scalar product with the Lie algebra d and G be a connected closed Lie
subgroup of D with the Lie algebra g. Let h be a vector subspace of d. Then
a pair (D,G) is a group pair if (d, g) is a Manin pair. A triple (D,G, h) is a
quasi-triple if (d, g, h) is a Manin quasi-triple.

Example 30 ([1]). Let (g⊕ g∗, g) be the standard Manin pair associated a
Lie algebra g. Then a group pair corresponding to (g ⊕ g∗, g) is (T ∗G,G),
where the cotangent bundle T ∗G ∼= G × g∗ is equipped with the Lie group
structure of a semi-direct product with respect to coadjoint action Ad of G
on g∗ (cf. Example 23). The Lie group G is embedded into T ∗G as the zero
section.

A method of constructing a quasi-Poisson structure by a quasi-triple is
as follows. Let (D,G, h) be a quasi-triple with a Manin quasi-triple (d, g, h)
and rh in d⊗ d the canonical r-matrix for (d, g, h). We set

πhD := rLh − rRh , (2.53)

where rLh and rRh is denoted as the left- and right-invariant 2-tensors on D
with value rh at the identity element e in D respectively, and we can see

that it is a multiplicative 2-vector field on D. In fact, a pair (πhD, φh), where
the element φh defined by (2.42), is a quasi-Poisson structure on G.

Proposition 2.3.1 ([1]). The above πhD and φh satisfy the following prop-
erties:

1

2

[
πhD, π

h
D

]
= φR

h − φL
h , (2.54)[

πhD, φ
L
h

]
=
[
πhD, φ

R
h

]
= 0, (2.55)

LXRπ
h
D = Fh(X)R (2.56)

for any X in g. Due to (2.54) and (2.55), (D,πhD, φh) is a quasi-Poisson-Lie
group.
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The bivector field πhD on D can be restricted to on a subgroup G nat-
urally. For the decomposition d = g ⊕ h, we obtain another decomposition
d = g ⊕ Adgh for any g in G by the facts that Adgd = d and Adgg = g.
Then the map jg identifying hg := Adgh with g∗ can be written as

jg = Adg ◦ j ◦Ad∗g−1 . (2.57)

In fact, for any x in g and ξ in g∗,

(j(Ad∗g−1ξ)|x) = ⟨Ad∗g−1ξ, x⟩
= ⟨ξ,Adgx⟩
= (jg(ξ)|Adgx)

= (Adg−1(jg(ξ))|x)

by (2.41) and the invariance of (·|·). By Adg−1(jg(ξ)) being in Adg−1hg =
Adg−1Adgh = h and the isotropy of h with respect to (·|·), we have

(j(Ad∗g−1ξ)|x+ j(η)) = (Adg−1(jg(ξ))|x+ j(η)) (2.58)

for any η in g∗. Hence, by the nondegeneracy of (·|·), we obtain j(Ad∗g−1ξ) =
Adg−1(jg(ξ)). Therefore it follows that

Adg(j(Ad∗g−1ξ)) = jg(ξ). (2.59)

The canonical r-matrix rhg for the Manin quasi-triple (d, g, hg) satisfies

rhg = Adgrh, (2.60)

where Adg is the adjoint action of D on d⊗ d. In order to show the relation
(2.60), first we prove that for any x+ j(ξ) in d, there exists the element x′

in g such that x+ j(ξ) = x′+ jg(ξ) (this claim holds for the map j′ : g∗ → h′

determined by any Manin quasi-triple (d, g, h′)). In fact, setting x+ j(ξ) =
x′ + jg(ξ

′) for x, x′ in g, ξ and ξ′ in g∗, we obtain

x− x′ = jg(ξ
′)− j(ξ) ∈ g. (2.61)

By the isotropy of g,

0 = (x− x′|y)
= (jg(ξ

′)− j(ξ)|y)
= (jg(ξ

′)|y)− (j(ξ)|y)
= ⟨ξ′, y⟩ − ⟨ξ, y⟩
= ⟨ξ′ − ξ, y⟩
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for any y in g. Since y in g is arbitrary, we obtain ξ′ − ξ = 0. Hence ξ′ = ξ.
Then, by the definition, we have

rhg(x
′ + jg(ξ)) = jg(ξ). (2.62)

On the other hand, we compute

(Adgrh)(x
′ + jg(ξ)) =

(
Adg

(∑
i

ei ⊗ j(εi)

))
(x+ j(ξ))

=
∑
i

(Adgei ⊗Adg(j(ε
i)))(x+ j(ξ))

=
∑
i

(Adgei|x+ j(ξ))Adg(j(ε
i))

=
∑
i

(Adgei|j(ξ))Adg(j(ε
i))

=
∑
i

⟨Adgei, ξ⟩Adg(j(ε
i))

=
∑
i

⟨ei,Ad∗g−1ξ⟩Adg(j(ε
i))

=
∑
i

(Ad∗g−1ξ)iAdg(j(ε
i))

= Adg

(
j

(∑
i

(Ad∗g−1ξ)iε
i

))
= Adg(j(Ad∗g−1ξ))

= jg(ξ).

Therefore we obtain the relation (2.60). Let tg be a twist corresponding to
hg. By (2.49), we obtain rhg = rh + tg, so that it follows that Adgrh − rh =
rhg − rh = tg in Λ2g. Setting

πhG,g :=
(
πhD

∣∣∣
G

)
g

(2.63)

for any g in G, we can see that

πhG,g =
(
πhD

∣∣∣
G

)
g
= rLh,g − rRh,g = Lg∗rh − Rg,∗rh

= Rg∗Rg−1∗Lg∗rh − Rg,∗rh = Rg∗Adgrh − Rg∗rh

= Rg∗(Adgrh − rh)

= Rg∗tg
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is in Rg∗Λ
2g = Λ2TgG. Therefore πhG is a well-defined 2-vector field on

G. Obviously πhG inherits the multiplicativity of πhD. Moreover, it is clear

that πhG and φh defined by (2.42) also satisfy (2.39) and (2.40). Therefore

(G, πhG, φh) is a quasi-Poisson-Lie group. We denote a Lie group with such

a structure by Gh
D. It follows from (2.53) and (2.49) that a twist t in Λ2g

deforms πhD and πhG to πhtD and πhtG respectively, by the following ways:

πhtD = πhD + tL − tR, (2.64)

πhtG = πhG + tL − tR, (2.65)

For any group pair (D,G), since G is a closed subgroup of D, the quo-
tient space D/G is a smooth manifold, which is the range of moment maps
for quasi-Poisson actions defined later. We use this moment maps to carry
out the deformation of symplectic structures in Section 3.1. The action of
D on itself by left multiplication induces an action of D on D/G. We call
it dressing action of D on D/G and denote the corresponding infinitesimal
action by X 7→ XD/G for X in d. Let pD/G : D → D/G be the natural pro-

jection. By the definition, it follows that XD/G = pD/G∗X
R. The following

definition is one of the important notions to define moment maps.

Definition 33 ([1]). Let (D,G) be a group pair with a Manin pair (d, g). An
isotropic complement h of g in d is called admissible at a point s inD/G if the
infinitesimal dressing action restricted to h defines an isomorphism from h
onto Ts(D/G), that is, the map h → Ts(D/G), ξ 7→ ξD/G,s is an isomorphism.
A quasi-triple (D,G, h) is complete if h is admissible everywhere on D/G.

Any isotropic complement h of g is admissible at eG in D/G. In fact, for
any ξ in h,

ξD/G,eG = (pD/G∗ξ
R)eG = pD/G∗ξ

R
e = pD/G∗ξ (2.66)

and the projection pD/G : h → d/g(= TeG(D/G)) is an isomorphism. If the
complement h is admissible at a point s in D/G, then it is also admissible
on some open neighborhood U of s. In fact, since there exists elements
X1, . . . , Xn in h such that

{
X1,D/G,s, . . . , Xn,D/G,s

}
is a basis of Ts(D/G) and

X1,D/G, . . . , Xn,D/G in X(D/G) are C∞-vector fields,
{
X1,D/G, . . . , Xn,D/G

}
forms a local frame on some open neighborhood U of s.

Proposition 2.3.2 ([1]). Let (D,G) be a group pair. Then at any point s
in D/G, there exists an admissible complement h of g in d.
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Let (D,G, h) be a quasi-triple such that h is admissible on an open subset
U of D/G. Then for any X in g, we define the 1-form X̂h on U by the fomula

⟨X̂h, ξD/G⟩ = (X| ξ) (2.67)

for any ξ in h. If a quasi-triple (D,G, h) is complete, then X̂h is a global
1-form on D/G.

Example 31 ([1]). Let (T ∗G,G) be a group pair with the standard Manin
pair (g ⊕ g∗, g) associated a Lie algebra g with the dual space g∗. Then
T ∗G/G ∼= g∗ as a manifold. Let {ei}i be a basis of g, {ei}i the dual basis
of g∗ and (ξi) the linear coordinates for {ei} on g∗. Then the vector fields
generating the dressing action are

eiD/G =
∂

∂ξi
, (2.68)

ei,D/G,ξ = ad∗eiξ = −ckijξk
∂

∂ξj
(2.69)

for any ξ in g∗ ∼= Tξg
∗, where ckij ’s are the structure constants of g for {ei}i.

From the map

g∗ → Tξg
∗, ei 7→ eiD/G =

(
∂

∂ξi

)
ξ

(2.70)

for any ξ in g∗, it follows that a Manin quasi-triple (T ∗G,G, g∗) is complete.
Hence we can define global 1-forms êi corresponding to the elements ei in g.
Then êi = dξi holds.

Example 32 ([1]). Let (G, πG) be a connected and simply connected Poisson-
Lie group, G∗ the dual Poisson-Lie group of (G, πG) and G ▷◁ G∗ the double
Lie group of (G, πG). Then (G ▷◁ G∗, G, g∗) is a quasi-triple. Moreover, if
(G, πG) is complete, (G ▷◁ G∗, G, g∗) is complete. In fact, since πG is com-
plete, the double Lie group G ▷◁ G∗ is diffeomorphic to G×G∗ as a manifold
by Proposition 2.2.20, and G ▷◁ G∗/G ∼= G∗ as a manifold holds. Then ξD/G
on G ▷◁ G∗/G for ξ in g∗ is identified with the right-invariant vector field
ξR on G∗ with value ξ at the identity. Therefore a map

g∗ → Ts(G ▷◁ G∗/G) ∼= TuG
∗, ξ 7→ ξD/G,s = ξRu (2.71)

for any s = (g, u)G in G ▷◁ G∗/G is an isomorphism, and (G ▷◁ G∗, G, g∗)
is complete. Hence a global 1-form X̂g∗ on G ▷◁ G∗/G is identifies with a
right-invariant 1-form XR on G∗ with value X at the identity due to (2.67).
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For any quasi-triple (D,G, h), we can define a 2-vector field on D/G as
follows: The 2-vector field πhD defined by (2.53) on D is projectable by the
natural projection pD/G : D → D/G, i.e., for any g and h in D, if gG = hG,

then pD/G∗π
h
D,g = pD/G∗π

h
D,h. Hence we define

πhD/G := pD/G∗π
h
D. (2.72)

Since all left-invariant vector fields generated by g are projected to zero, it
follows that pD/G∗r

L
h vanishes. Therefore we obtain

πhD/G = −pD/G∗r
R
h (2.73)

= −rh,D/G. (2.74)

From here, we consider only connected quasi-Poisson-Lie group Gh
D de-

fined as above by a quasi-triple (D,G, h). For a smooth manifold M with
a 2-vector field πM , a quasi-Poisson action is defined as follows. It is a
generalization of Poisson actions of connected Poisson-Lie groups by using
Theorem 2.2.15.

Definition 34 ([1]). Let (M,πM ) be a manifold with a 2-vector field πM ,
Gh

D = (G, πhG, φh) be a connected quasi-Poisson Lie group induced by a
quasi-triple (D,G, h), g the Lie algebra of G and σ an action of G on M .
Then the action σ is a quasi-Poisson action of Gh

D on (M,πM ) if for each
X in g,

1

2
[πM , πM ] = (φh)σ, (2.75)

LXσπM = Fh(X)σ, (2.76)

where xσ is a fundamental multi-vector field for any x in ∧∗g. Here Fh is the
dual of the map (2.43). Then a 2-vector field πM is called a quasi-Poisson
Gh

D-structure on M and (M,πM ) is called a quasi-Poisson Gh
D-manifold or

simply a quasi-Poisson manifold.

Remark 4. A connected quasi-Poisson-Lie group Gh
D with the natural left

action is not a quasi-Poisson Gh
D-manifold. In fact, (φh)G = φR

h .

Example 33 ([1]). We consider the dressing action on D/G restricted to



52 CHAPTER 2. PRELIMINARIES

G. Then it follows that πhD/G satisfies (2.75) and (2.76). In fact,[
πhD/G, π

h
D/G

]
=
[
pD/G∗π

h
D, pD/G∗π

h
D

]
= pD/G∗

[
πhD, π

h
D

]
= pD/G∗

(
2
(
φR
h − φL

h

))
= 2

(
pD/G∗φ

R
h − pD/G∗φ

L
h

)
= 2pD/G∗φ

R
h

= 2 (φh)D/G ,

LXD/G
πhD/G =

[
XD/G, π

h
D/G

]
=
[
pD/G∗X

R, pD/G∗π
h
D

]
= pD/G∗

[
XR, πhD

]
= pD/G∗LXRπ

h
D

= pD/G∗Fh(X)R

= Fh(X)D/G

for any X in g, where we use the formulas (2.54) and (2.56). Therefore
(D/G, πhD/G) is a quasi-Poisson Gh

D-manifold.

Let (M,πhM ) be a quasi-Poisson Gh
D-manifold. We set

πhtM := πhM − tM . (2.77)

Then (M,πhtM ) is a quasi-Poisson Ght
D-manifold. This shows that we can

consider a family of quasi-Poisson Ght
D-manifolds (M,πhtM ). A moment map

for a quasi-Poisson action is defined as a map with a condition not for one
quasi-Poisson Gh

D-structure but for a family of quasi-Poisson Ght
D-structure

parametrized by twists t in Λ2g.

Definition 35 ([1]). Let Gh
D be a connected quasi-Poisson Lie group defined

by a quasi-triple (D,G, h) and (M,πhM ) a quasi-Poisson Gh
D-manifold. Then

a map µ : M → D/G which is G-equivariant with respect to the G-action
σ on M and the dressing action of G on D/G is a moment map for the
quasi-Poisson action σ of Gh

D on (M,πhM ) if on any open subset U ⊂M ,

Xσ = −(πh
′

M )♯(µ∗(X̂h′)) (2.78)
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for any isotropic complement h′ admissible on µ(U) and X in g. Here

⟨(πh
′

M )♯α, β⟩ := πh
′

M (α, β). We call a quasi-Poisson action with a moment
map a quasi-Poisson-Hamiltonian action.

Actually we need not impose the equation (2.78) on all admissible com-
plements because we have the following proposition.

Proposition 2.3.3 ([1]). Let h and h′ be two complements admissible at a
point s in D/G, and p in M be such that µ(p) = s. Then, at the point p,
conditions (2.78) for h and h′ are equivalent, namely

(πhM )♯(µ∗(X̂h))p = (πh
′

M )♯(µ∗(X̂h′))p. (2.79)

In particular, if there exists a isotropic complement h of g in d such that
a quasi-triple (D,G, h) is complete, it is sufficient that the equation holds
(2.78) for h.

Now we show important examples for moment maps for quasi-Poisson-
Hamiltonian actions.

Example 34 (Poisson manifolds [1],[4],[21]). Let (M,π) be a Poisson man-
ifold on which a connected and simply connected Poisson-Lie group (G, πG)
acts by a Poisson action σ. Then (M,π) is a quasi-Poisson (G, πG, 0)-
manifold and σ is a quasi-Poisson action on (M,π). In fact, the Manin
triple (g⊕g∗, g, g∗) corresponding to (G, πG) is a Manin quasi-triple and the

multiplicative 2-vector field πG on G coincides with the 2-vector field πg
∗

G

defined by the corresponding quasi-triple (G ▷◁ G∗, G, g∗) given by (2.63).
Since σ is a Poisson (G, πG)-action of (M,π), it follows that [π, π] = 0 and
that for any X in g,

LXσπ = δ(X)σ, (2.80)

where δ is the 1-cocycle belonging to the tangential Lie bialgebra of (g, δ).
Since the cobracket Fg∗ coincides with δ, the action σ is a quasi-Poisson
action by Definition 34.

We assume that πG is complete and that there exists a G-equivariant
moment map µ : M → G∗ for the Poisson action σ, where G∗ is the dual
Poisson-Lie group of (G, πG). Then σ is a quasi-Poisson-Hamiltonian action
with a moment map µ. Actually, by the definition, the map µ satisfies

Xσ = −π♯(µ∗(XR)) (2.81)

for any X in g, where XL is a left-invariant 1-form on G∗ with value X at
e in G∗. The quasi-triple (G ▷◁ G∗, G, g∗) is complete since πG is complete
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and the global 1-form X̂g∗ on G ▷◁ G∗/G ∼= G∗ coincides with XR (Example
32). The complement g∗ is admissible at any point in G ▷◁ G∗/G, so that
the map µ : M → G∗ ∼= G ▷◁ G∗/G is a moment map for the quasi-Poisson
action σ because of (2.81) and Proposition 2.3.3.

Example 35 (symplectic manifolds [1],[36]). Let (M,ω) be a symplectic
manifold on which a connected Lie group G acts by a symplectic-Hamiltonian
action σ. Since the symplectic structure ω induces a Poisson structure π,
the pair (M,π) is a Poisson manifold. Then the action σ is a Poisson ac-
tion of a trivial Poisson Lie group (G, 0) on (M,π). The trivial Poisson
structure 0 on G is complete (Example 24) and a quasi-triple (T ∗G,G, g∗)
corresponding to (G, 0) is also complete (Example 31). The dual group G∗

of (G, 0) is the Abelian group g∗ and the moment map µ for symplectic ac-
tion σ is G-equivariant with respect to σ on M and the dressing action Ad∗

on G∗ = g∗ by Example 26. Thus the map µ : M → G∗ = g∗ is a moment
map for the Poisson action σ. Therefore, similarly to Example 34, the map
µ : M → g∗ = G∗ ∼= T ∗G/G is a moment map for the quasi-Poisson action
σ on the quasi-Poisson (G, 0, 0)-manifold (M,π).

For a quasi-Poisson manifold with a quasi-Poisson-Hamiltonian action,
the following theorem holds.

Theorem 2.3.4 ([1]). Let (M,πhM ) be a quasi-Poisson manifold on which

a quasi-Poisson Lie group Gh
D defined by a quasi-triple (D,G, h) acts by a

quasi-Poisson-Hamiltonian action σ . For any p in M , if both h′ and h′′ are
admissible at µ(p) in D/G, then

Im(πh
′

M )♯p = Im(πh
′′

M )♯p,

where µ is a moment map for σ.

2.4 Lie algebroids

In this section, we recall Lie algebroid, Lie bialgebroid and quasi-Lie bialge-
broid theory. In addition, we also recall relations between Lie bialgebroids
and Poisson-Nijenhuis structures.

Definition 36. Let M be a manifold, A a vector bundle over M , [·, ·]A a
Lie bracket on the space Γ(A) of the global sections of A and ρA : A→ TM
a bundle map over M . Then a triple (A, [·, ·]A, ρA) is a Lie algebroid over
M if the followings hold:
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(i) ρA([X,Y ]A) = [ρA(X), ρA(Y )];

(ii) [X, fY ]A = f [X,Y ]A + (ρA(X)f)Y

for any X,Y in Γ(A) and f in C∞(M). We call the bundle map ρA the
anchor map.

Remark 5. The condition (i) in Definition 36 is induced by a Lie bracket
[·, ·]A on Γ(A) and the conditions (ii) in Definition 36. In fact, for anyX,Y, Z
in Γ(A) and f in C∞(M), we compute that

0 = [[X,Y ]A, fZ]A + [[Y, fZ]A, X]A + [[fZ,X]A, Y ]A

= f([[X,Y ]A, Z]A + [[Y, Z]A, X]A + [[Z,X]A, Y ]A)

+ (ρA([X,Y ]A)f − ρA(X)(ρA(Y )f) + ρA(Y )(ρA(X)f))Z

= 0 + (ρA([X,Y ]A)f − [ρA(X), ρA(Y )]f)Z

= (ρA([X,Y ]A)f − [ρA(X), ρA(Y )]f)Z.

Since Z in Γ(A) and f in C∞(M) are arbitrary, the condition (i) in Definition
36 holds.

Example 36. Any finite dimensional Lie algebra g is a Lie algebroid over
a point.

Example 37. Let M be a manifold. Then the tangent bundle TM of M is
a Lie algebroid over M , where a Lie bracket is the ordinal Lie bracket [·, ·]
on X(M) and an anchor map is the identity map id : TM → TM . We call
this Lie algebroid the standard Lie algebroid and denote by the same symbol
TM .

Remark 6. It is well known that some Lie algebroids are constructed from
Lie groupoids similarly to the fact that the tangent spaces at the identities
of Lie groups has Lie algebra structures (see [23] for a detailed definition
and properties of a Lie groupoid). By regarding Lie groups as Lie groupoids
over a point, Lie algebras are Lie algebroids constructed from the groupoids.
However, any Lie algebroid is not always constructed from a Lie groupoid.
A Lie algebroid constructed from a Lie groupoid is called a integrable Lie
algebroid.

The following examples are important.

Example 38. Let E be any vector bundle over a manifold M . By setting a
bracket and an anchor map by [·, ·]E := 0 and ρE := 0 respectively, the triple
(E, [·, ·]E , ρE) is a Lie algebroid. The pair ([·, ·]E , ρE) is called the trivial Lie
algebroid structure over E.



56 CHAPTER 2. PRELIMINARIES

Example 39 (Nijenhuis structures). Let M be a manifold and N a (1, 1)-
tensor on M . Then N is Nijenhuis if N satisfies TN = 0, where the (2, 1)-
tensor TN is called the Nijenhuis torsion of N and defined by

TN (X,Y ) := [NX,NY ]−N [NX,Y ]−N [X,NY ] +N2[X,Y ] (2.82)

for any X and Y in X(M). A bracket [·, ·]N defined by, for any X and Y in
X(M),

[X,Y ]N := [NX,Y ] + [X,NY ]−N [X,Y ] (2.83)

is a Lie bracket on Γ(TM) = X(M). We set an anchor map as N : TM →
TM and the Leibniz rule

[X, fY ]N = f [X,Y ]N + ((NX)f)Y (2.84)

for any X,Y in X(M) and f in C∞(M) holds. Therefore [·, ·]N and N make
the tangent bundle TM of M a Lie algebroid over M . We denote the Lie
algebroid (TM, [·, ·]N , N) by (TM)N .

Example 40 (Poisson structures). Let M be a manifold and π a Poisson
structure on M . Then a bracket [·, ·]π defined by (2.31) and an anchor map
π♯ make the cotangent bundle T ∗M of M a Lie algebroid over M due to
(2.32). We denote the Lie algebroid (T ∗M, [·, ·]π, π♯) by (T ∗M)π.

Example 41 (twisted Poisson structures). Let M be a manifold, π a 2-
vector field on M and ϕ a closed 3-form on M . Then a pair (π, ϕ) is a
twisted Poisson structure [37] if the pair satisfies

1

2
[π, π] = π♯ϕ. (2.85)

Then setting a bracket [·, ·]ϕπ on Ω1(M) by

[α, β]ϕπ := Lπ♯ξη − Lπ♯ηξ − d⟨π♯ξ, η⟩+ ϕ(π♯α, π♯β, ·)
= [ξ, η]π + ϕ(π♯α, π♯β, ·)

for any α and β in Ω(M), we obtain a Lie algebroid (T ∗M)π,ϕ := (T ∗M, [·, ·]ϕπ,
π♯).

We define the differential and the Lie derivative of the Lie algebroid A.
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Definition 37. LetM be a manifold, (A, [·, ·]A, ρA) a Lie algebroid overM .
Then an operator dA : Γ(ΛkA∗) → Γ(Λk+1A∗) is the differential of the Lie
algebroid A if for any ω in Γ(ΛkA∗) and X0, . . . , Xk in Γ(A),

(dAω)(X0, . . . , Xk) =
k∑

i=0

(−1)iρA(Xi)(ω(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ]A, X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

(2.86)

For any X in Γ(A), the Lie derivative LA
X : Γ(ΛkA∗) → Γ(ΛkA∗) is defined

by the Cartan formula

LA
X = dAιX + ιXdA (2.87)

and are extended on Γ(Λ∗A) in the same way as the usual Lie derivative LX

respectively. For example, it follows that

LA
XY = [X,Y ]A (2.88)

for any X and Y in Γ(A).

Example 42. We consider the standard Lie algebroid TM = (TM, [·, ·], id).
Then the differential of the Lie algebroid TM is just the usual exterior
derivative d : Ωk(M) → Ωk+1(M). The Lie derivative is also the usual Lie
derivetive L.

Similarly to the usual exterior derivative d, we notice that d2A = 0 for
any Lie algebroid A. Conversely, an operator δ : Γ(∧kA∗) → Γ(∧k+1A∗)
satisfying δ2 = 0 and the Leibniz rule

δ(ω ∧ η) = δω ∧ η + (−1)kω ∧ δη (2.89)

for any ω in Γ(ΛkA∗) and η in Γ(Λ∗A∗) constructs a Lie algebroid structure
([·, ·]A, ρA) on A. In fact, we may define

ρA(X)f := ⟨δf,X⟩ (2.90)

⟨α, [X,Y ]A⟩ := ρA(X)⟨α, Y ⟩ − ρA(Y )⟨α,X⟩ − (δα)(X,Y ) (2.91)

for any α in Γ(A∗), X and Y in Γ(A).
The Schouten bracket on Γ(Λ∗A) is defined similarly to the Schouten

bracket [·, ·] on X∗(M). That is, the Schouten bracket [·, ·]A : Γ(ΛkA) ×
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Γ(ΛlA) → Γ(Λk+l−1A) is defined as the unique extension of the Lie bracket
[·, ·]A on Γ(A) such that

[f, g]A = 0;

[X, f ]A = ρA(X)f ;

[X,Y ]A is the Lie bracket on Γ(A);

[D1, D2 ∧D3] = [D1, D2] ∧D3 + (−1)(degD1+1)degD2D2 ∧ [D1, D3];

[D1, D2]A = −(−1)(degD1−1)(degD2−1)[D2, D1]A

for any f, g in C∞(M), X,Y in Γ(A), Di in Γ(Λ∗A).
In addition, the Schouten bracket satisfies the graded Jacobi identity

(2.12).
The same relation between the standard Schouten bracket [·, ·] and the

usual Lie derivative L holds for the Schouten bracket [·, ·]A and the usual
Lie derivative LA on a Lie algebroid A.

Example 43. Let (T ∗M)π be a Lie algebroid over M defined by a Poisson
structure π on M . We denote the differential of the Lie algebroid (T ∗M)π
by dπ. Then it follows that

dπ = [π, ·].

We denote by Lπ the Lie derivative induced by dπ.

Example 44. Let (TM)N be a Lie algebroid overM defined by a Nijenhuis
structure N on M . We denote the differential of the Lie algebroid (TM)N
by dN . Then it follows that

dN = ιN ◦ d− d ◦ ιN ,

where ιN is the degree 0 derivation of (Ω∗(M),∧) defined by

(ιNα)(X1, . . . , Xk) :=
∑
i

α(X1, . . . , NXi, . . . , Xk) (2.92)

for any α in Ωk(M). We denote by LN the Lie derivative induced by dN .

We define Lie bialgebroids.

Definition 38 ([34]). A Lie bialgebroid over M is a dual pair (A,A∗) of
vector bundles over M equipped with Lie algebroid structures such that the
differential dA∗ on Γ(Λ∗A) coming from the structure on A∗ is a derivation of
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the Schouten bracket [·, ·]A on Γ(Λ∗A) obtained by extention of the structure
on A. That is,

dA∗ [D1, D2]A = [dA∗D1, D2]A + (−1)degD1+1[D1, dA∗D2]A (2.93)

for any Di in Γ(Λ∗A). Sometimes we denote the Lie bialgebroid by (A, dA∗)
since the Lie algebroid structure of A∗ is decided by the differential dA∗ .

Example 45. Any Lie bialgebra (g, g∗) is a Lie bialgebroid over a point.
Then the corresponding differential is a 1-cocycle on g relative to the adjoint
representation of g on g ∧ g, i.e.,

δ([X,Y ]) = adXδ(Y )− adY δ(X) (2.94)

for any X and Y in g.

Example 46. Let TM be the tangent bundle TM of M with the ordinal
Lie bracket [·, ·] on X(M) and an anchor map id and (T ∗M)0 the cotan-
gent bundle of M with the trivial Lie algebroid structure. Then a pair
(TM, (T ∗M)0) is a Lie bialgebroid over M . In fact, the differential dA∗ on
Γ(Λ∗TM) = X∗(M) is zero, so that for any Di in X∗(M),

dA∗ [D1, D2] = [dA∗D1, D2] = [D1, dA∗D2] = 0. (2.95)

Example 47. Let π be a Poisson structure on M . Then a pair of the
standard Lie algebroid TM and the Lie algebroid (T ∗M)π = (T ∗M, [·, ·]π, π♯)
is a Lie bialgebroid.

Now we define Poisson-Nijenhuis structures, which was introduced by
Magri and Morosi [26] in their strudy of completely integrable systems.

Definition 39 ([16], [26]). Let π be a Poisson structure on M and N a
Nijenhuis structure on M . Then π and N are compatible if they satisfy

N ◦ π♯ = π♯ ◦N∗, (2.96)

and the (2, 1)-tensor CN
π given by

CN
π (α, β) := [α, β]Nπ♯ − [α, β]N

∗
π (2.97)

for any α and β in Ω1(M) vanishes, where for any α and β in Ω1(M),

[α, β]Nπ♯ := LNπ♯αβ − LNπ♯βα− d⟨Nπ♯α, β⟩, (2.98)

[α, β]N
∗

π := [N∗α, β]π + [α,N∗β]π −N∗[α, β]π. (2.99)
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A pair (π,N) is a Poisson-Nijenhuis structure onM if π andN is compatible.
The triple (M,π,N) is called a Poisson-Nijenhuis manifold. A pair (ω,N),
where ω is a symplectic structure on M and N is Nijenhuis, is a symplectic-
Nijenhuis structure on M if for the corresponding Poisson structure πω, a
pair (πω, N) is a Poisson-Nijenhuis structure on M . The triple (M,ω,N) is
called a symplectic-Nijenhuis manifold.

Let (π,N) be a Poisson-Nijenhuis structure and set πN (α, β) := ⟨Nπ♯α, β⟩.
Then it follows from (2.96) that πN is a 2-vector field on M . Hence under
the assumption (2.96), the bracket [·, ·]Nπ♯ can be rewritten as [·, ·]πN . More-
over, then the three brackets [·, ·]πN , [·, ·]N

∗
π and [·, ·]N,π coincide, where for

any α and β in Ω1(M),

[α, β]N,π := LN
π♯α

β − LN
π♯β

α− dN ⟨π♯α, β⟩. (2.100)

Let (ω,N) be a symplectic-Nijenhuis structure onM and set ωN (X,Y ) :=
⟨ω♭NX,Y ⟩ for any X and Y in X(M). Then it follows from (2.96) that ωN

is a 2-form on M .

The main result of the theory of Poisson-Nijenhuis structures is that
they admit the following iteration process:

Theorem 2.4.1 ([16], [26]). Let (π,N) be a Poisson-Nijenhuis structure
on M . We set π0 := π and define a 2-vector field πk+1 by the condition
π♯k+1 = N ◦ π♯k inductively. Then all pairs (πk, N

p) (k, p ≥ 0) are Poisson-
Nijenhuis structures on M . Furthermore for any k, l ≥ 0, it follows that
[πk, πl] = 0. The set of Poisson-Nijenhuis structures {(πk, Np)} is called the
hierarchy of Poisson-Nijenhuis structures of (M,π,N).

The following theorem describes a relation between Poisson-Nijenhuis
structures on M and Lie bialgebroids on M .

Theorem 2.4.2 ([15]). Let π be a Poisson structure on M and N a Nijen-
huis structure on M . Then a pair (π,N) is a Poisson-Nijenhuis structure on
M if and only if a pair ((TM)N , (T

∗M)π) is a Lie bialgebroid over M .

We recall the definition of Courant algebroids.

Definition 40 ([22]). A Courant algebroid is a vector bundle E −→ M
equipped with a nondegenerate symmetric bilinear form ⟨⟨·, ·⟩⟩ (called the
pairing) on the bundle, a skew-symmetric bracket [[·, ·]] on Γ(E) and a bundle
map ρ : E −→ TM such that the following properties are satisfied: for any
e, e1, e2, e3 in Γ(E), any f and g in C∞(M),
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(i)
∑

Cycl(e1,e2,e3)
[[[[e1, e2]], e3]] =

1
3

∑
Cycl(e1,e2,e3)

D⟨⟨[[e1, e2]], e3⟩⟩;

(ii) ρ([[e1, e2]]) = [ρ(e1), ρ(e2)];

(iii) [[e1, fe2]] = f [[e1, e2]] + (ρ(e1)f)e2 − ⟨⟨e1, e2⟩⟩Df ;

(iv) ρ ◦ D = 0, i.e., ⟨⟨Df,Dg⟩⟩ = 0;

(v) ρ(e)⟨⟨e1, e2⟩⟩ = ⟨⟨[[e, e1]] +D⟨⟨e, e1⟩⟩, e2⟩⟩+ ⟨⟨e1, [[e, e2]] +D⟨⟨e, e2⟩⟩⟩⟩,
where D : C∞(M) −→ Γ(E) is the smooth map defined by

⟨⟨Df, e⟩⟩ = 1

2
ρ(e)f.

The map ρ and the operator [[·, ·]] are called an anchor map and a Courant
bracket, respectively.

A Courant algebroid is not a Lie algebroid since the Jacobi identity is
not satisfied due to (i).

Definition 41 ([22]). Let (E, [[·, ·]], ρ, ⟨⟨·, ·⟩⟩) be a Courant algebroid over
M . A subbundle L of E is isotropic if it is isotropic under the pairing ⟨⟨·, ·⟩⟩.
A subbundle L is integrable if Γ(L) is closed under the bracket [[·, ·]]. A
subbundle L is Dirac structure or Dirac subbundle if it is maximally isotropic
and integrable.

Proposition 2.4.3 ([22]). Let (E, [[·, ·]], ρ, ⟨⟨·, ·⟩⟩) be a Courant algebroid
over M and a subbundle L a Dirac subbundle. Then (L, [[·, ·]]|L, ρ|L) is a Lie
algebroid over M .

The following two theorems show that Lie bialgebroids and Courant
algebroids are a generalization of Lie bialgebras and double Lie algebra.

Theorem 2.4.4 ([22]). If (A,A∗) is a Lie bialgebroid, then E := A ⊕ A∗

equipped with ([[·, ·]], ρ, ⟨⟨·, ·⟩⟩) is a Courant algebroid, where

[[X + ξ, Y + η]] :=

(
[X,Y ]A + LA∗

ξ Y − LA∗
η X − 1

2
dA∗(⟨ξ, Y ⟩ − ⟨η,X⟩)

)
+

(
[ξ, η]A∗ + LA

Xη − LA
Y ξ +

1

2
dA(⟨ξ, Y ⟩ − ⟨η,X⟩)

)
(2.101)

ρ(X + ξ) := ρA(X) + ρA∗(ξ) (2.102)

⟨⟨X + ξ, Y + η⟩⟩ := 1

2
(⟨ξ, Y ⟩+ ⟨η,X⟩) (2.103)

for any X,Y in Γ(A), ξ and η in Γ(A∗).
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Theorem 2.4.5 ([22]). Let (E, [[·, ·]], ρ, ⟨⟨·, ·⟩⟩) be a Courant algebroid over
M , L1 and L2 Dirac subbundles transversal to each other, i.e., E = L1⊕L2.
Then a pair (L1, L2) is a Lie bialgebroid, where L2 is identified with the
dual bundle of L1 under the pairing 2⟨⟨·, ·⟩⟩.

An immediate consequence of the above theorems is the duality of Lie
bialgebroids, which is a generalization of that of Lie bialgebras.

Corollary 2.4.6 ([22]). If (A,A∗) is a Lie bialgebroid, so is (A∗, A).

The following example is fundamental.

Example 48 ([22]). Let (TM, (T ∗M)0) be a Lie bialgebroid in Example
46. Then the direct sum TM ⊕ T ∗M on a C∞-manifold M is a Courant
algebroid by Theorem 2.4.4. Here the anchor map ρ, the pairing ⟨⟨·, ·⟩⟩ and
the Courant bracket [[·, ·]] are given by

ρ(X + ξ) = X, (2.104)

⟨⟨X + ξ, Y + η⟩⟩ = 1

2
(⟨ξ, Y ⟩+ ⟨η,X⟩), (2.105)

[[X + ξ, Y + η]] = [X,Y ] + LXη − LY ξ +
1

2
d(⟨ξ, Y ⟩ − ⟨η,X⟩) (2.106)

respectively, where X and Y are in X(M), and ξ and η are in Ω1(M). This
is called the standard Courant algebroid over M .

Next we shall recall the definition of quasi-Lie bialgebroids.

Definition 42 ([34]). A quasi-Lie bialgebroid is a Lie algebroid (A, [·, ·]A, a)
equipped with a degree-one derivation δ of the Gerstenhaber algebra (Γ(Λ∗A),
∧, [·, ·]A) and a 3-section of A, ϕA in Γ(Λ3A) such that

δ2 = [ϕA, ·]A, (2.107)

δϕA = 0. (2.108)

If the 3-section ϕA is equal to 0, the quasi-Lie bialgebroid (A, δ, ϕA) is
just a Lie bialgebroid (A, δ).

Theorem 2.4.7 ([34]). Let (A, δ, ϕA) be a quasi-Lie bialgebroid, where
A = (A, [·, ·]A, a), and dA : Γ(Λ∗A∗) → Γ(Λ∗+1A∗) be the Lie algebroid
derivative of A. Then its double E = A ⊕ A∗ has naturally a Courant
algebroid structure. Namely, it is equipped with an anchor map ρ, a pairing
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⟨⟨·, ·⟩⟩ and a Courant bracket [[·, ·]] given by the following: for any X,Y in
Γ(A), any ξ and η in Γ(A∗),

ρ(X + ξ) = a(X) + a∗(ξ),

⟨⟨X + ξ, Y + η⟩⟩ = 1

2
(⟨ξ, Y ⟩+ ⟨η,X⟩),

[[X,Y ]] = [X,Y ]A

[[ξ, η]] = [ξ, η]A∗ + ϕA(X,Y, ·)

[[X, ξ]] =

(
ιXdAξ +

1

2
dA⟨ξ,X⟩

)
−
(
ιξd∗X +

1

2
d∗⟨ξ,X⟩

)
,

where the map a∗ : A
∗ −→ TM and the bracket [·, ·]A∗ are defined by

a∗(ξ)f := ⟨ξ, d∗f⟩,
⟨[ξ, η]A∗ , X⟩ := a∗(ξ)⟨η, Y ⟩ − a∗(η)⟨ξ,X⟩ − (d∗X)(ξ, η),

respectively.
Taking ϕA = 0, we obtain the Courant algebroid structure of a double

of a Lie bialgebroid (Theorem 2.4.4).

Example 49 ([6]). Let M be a manifold, (π, ϕ) a twisted Poisson structure
on M and (T ∗M)π,ϕ the corresponding Lie algebroid with (π, ϕ) (Example
41). We set

d′f := df

d′α := dα− ιπ♯αϕ

for any f in C∞(M) and α in Ω1(M). Then the triple ((T ∗M)π,ϕ, d
′, ϕ) is a

quasi-Lie bialgebroid.

We obtain the definition of Poisson-quasi-Nijenhuis structures as cor-
responding structures with quasi-Lie bialgebroids by generalizing Poisson-
Nijenhuis structures corresponding with Lie bialgebroids.

Definition 43 ([38]). Let π be a Poisson structure on M , N a (1, 1)-tensor
on M and ϕ a closed 3-form on M . Then a triple (π,N, ϕ) is a Poisson-
quasi-Nijenhuis structure on M if the following conditions hold:

(i) N ◦ π♯ = π♯ ◦N∗;

(ii) CN
π defined by (2.97) vanishes;

(iii) TN (X,Y ) = π♯(ιX∧Y ϕ) for any X and Y in X(M);
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(iv) ιNϕ is closed,

where ιX∧Y ω := ω(X,Y, . . . ) for any ω in Ω∗(M), X and Y in X(M), and
ιN is defined by (2.92). A quadruple (M,π,N, ϕ) is called Poisson-quasi-
Nijenhuis manifold.

Theorem 2.4.8 ([38]). Let π be a Poisson structure onM , N a (1, 1)-tensor
on M and ϕ a closed 3-form on M . Then a triple (π,N, ϕ) is a Poisson-
quasi-Nijenhuis structure on M if and only if a triple ((T ∗M)π, dN , ϕ) is a
quasi-Lie bialgebroid over M , where dN is a degree 1 derivation defined by
the formula (2.86) using N : TM → TM and [·, ·]N defined by (2.83) instead
of ρA and [·, ·]A respectively.

We can generalize the definition of Poisson-quasi-Nijenhuis structures on
manifolds to on Lie algebroids.

Definition 44 ([5]). Let (A, [·, ·]A, ρA) be a Lie algebroid on M . Let π be a
Poisson structure on A, i.e., it satisfies [π, π]A = 0, N : A→ A a bundle map
over M and ϕ a dA-closed 3-section on A, i.e., ϕ in Γ(Λ3A) and dAϕ = 0.
Then a quadruple (A, π,N, ϕ) is a Poisson-quasi-Nijenhuis Lie algebroid if
the following conditions hold:

(i) N ◦ π♯ = π♯ ◦N∗;

(ii) CN
π defined by (2.97) for [·, ·]A vanishes;

(iii) TN (X,Y ) = π♯(ιX∧Y ϕ) for any X and Y in Γ(A);

(iv) ιNϕ is dA-closed,

where ιX∧Y ω := ω(X,Y, . . . ) for any ω in Γ(Λ∗A∗), X and Y in Γ(A), and
ιN is the degree 0 derivation of (Γ(Λ∗A∗),∧) defined by (2.92).
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Chapter 3

Deformations of symplectic
structures by moment maps

In this chapter, we carry out deformations of symplectic structures on a
smooth manifold. We use the moment map theory for quasi-Poisson actions
to do.

3.1 Main result

A moment map for the quasi-Poisson action on a quasi-Poisson Gh
D-manifold

(M,πhM ) are defined with the conditions for the family of quasi-Poisson Gh′

D-

structures
{
πh

′

M

}
h′

on M . For each complement h′, there exists a twist

t in Λ2g such that h′ = ht, so that the family
{
πh

′

M

}
h′

is regarded as the

family
{
πhtM

}
t∈Λ2g

parametrized by the twists. When the quasi-Poisson Gh
D-

structure πhM is induced by a given symplectic structure, we will give the

method of finding a quasi-Poisson Ght
D-structure which induce a symplectic

structure in
{
πhtM

}
t
. That is, we can deform a given symplectic structure to

a new one by a twist t. This deformation can be carried out due to using

the family
{
πhtM

}
t
with moment map conditions for quasi-Poisson actions.

In this regard, it is described as follows in [1]: It would be interesting to find

a geometric framework for considering the family
{
πhtM

}
t
. Our deformation

is one of the answers for this proposal.

Let (M,ω) be a symplectic manifold on which an n-dimensional con-
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nected Lie group G acts by symplectic-Hamiltonian action σ with a moment
map µ : M → g∗. Let π be the non-degenerate Poisson structure on M in-
duced by ω. Then µ is a moment map for the quasi-Poisson-Hamiltonian
action σ of (G, 0, 0) on (M,π) by Example 35 in Section 2.3.

Let (g⊕g∗, g, g∗) be the Manin triple corresponding to the trivial Poisson
Lie group (G, 0), where g⊕ g∗ has the Lie bracket

[X,Y ] = [X,Y ]g, [X, ξ] = ad∗Xξ, [ξ, η] = [ξ, η]g∗ = 0 (3.1)

for any X,Y in g and ξ, η in g∗. Here the bracket [·, ·]g and [·, ·]g∗ are
the brackets on g and g∗ respectively. Then the Manin (quasi-)triple (g ⊕
g∗, g, g∗) defines F := Fg∗ = 0 and φ := φg∗ = 0 (see (2.42) and (2.43)).
Since the corresponding quasi-triple (T ∗G,G, g∗) is complete by Example 34
and 35, an isotropic complement g∗ is admissible at any ξ in g∗ by Definition
33, and hence it is admissible at any ξ in µ(M).

Let g∗t be an isotropic complement of g in g ⊕ g∗ to which the twist in
Λ2g from g∗ is t. When we deform π to πtM := π−tM by a twist t, the quasi-
Poisson Lie group (G, 0, 0) is deformed to (G, πtG, φg∗t

), where πtG = tL − tR

and φg∗t
= 1

2 [t, t] + φt by (2.50) and (2.65). Moreover it follows from F = 0

and (2.52) that φt = 0. So φg∗t
= 1

2 [t, t].
On the other hand, it follows from Definition 34 that the quasi-Poisson

(G, πtG, φg∗t
)-manifold (M,πtM ) satisfies

1

2

[
πtM , π

t
M

]
= (φg∗t

)M , (3.2)

LXM
πtM = Fg∗t

(X)M . (3.3)

If (φg∗t
)M = 0, i.e., [t, t]M = 0, then the 2-vector field πtM is a Poisson

structure on M by (3.2).
Assume that a twist t in Λ2g satisfies [t, t] is ad-invariant. Then πtG =

tL − tR is a multiplicative Poisson structure (see [21]). Therefore (G, πtG)
is a Poisson Lie group. Then it follows that Fg∗t

coincides with the dual

of the bracket map [·, ·]πt
G : g∗ ∧ g∗ → g∗ on g∗ defined by the Poisson Lie

group (G, πtG). In fact, let jt : g∗ → g∗t be the linear isomorphism (2.41)
determined by (g⊕ g∗, g, g∗t ) and we obtain

jt(ε
i) = εi +

∑
k

tikek (3.4)

by (2.48), where {ei} is a basis on g, a set {εi} is the dual basis of {ei} on
g∗ and t = 1

2

∑
i,j t

ijei ∧ ej . By using the result of Example 22, formulas
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(3.1) and the fact that j−1
t ◦ pg∗t = pg∗ , we compute

F ∗
g∗t
(εi, εj) = j−1

t

(
pg∗t
([
jt(ε

i), jt(ε
j)
]))

= pg∗

([
εi +

∑
k

tikek, ε
j +

∑
l

tjlel

])

= pg∗

∑
k,l

tiktjl [ek, el]g + ad∗∑
k tikek

εj − ad∗∑
l t

jlel
εi


= ad∗∑

k tikek
εj − ad∗∑

l t
jlel
εi

= ad∗t♯εiε
j − ad∗t♯εjε

i

= [εi, εj ]π
t
G .

Therefore, since G is connected, the condition (3.3) means that the action
σ is a Poisson action of (G, πtG) on (M,πtM ) under the assumption that t is
an r-matrix and that [t, t]M = 0.

Next, we can write by (2.48),

g∗t = span

εi +∑
j

tijej

∣∣∣∣∣∣ i = 1, . . . , n

 . (3.5)

If g∗t is admissible at any point in µ(M), then it satisfies Imπ♯p = Im(πtM )♯p
for any p in M by Theorem 2.3.4. The non-degeneracy of π means that
Imπ♯p = TpM for any p in M . Therefore, by the fact that Im(πtM )♯p = TpM
for any p in M , a quasi-Poisson structure πtM is also non-degenerate.

Here we shall examine the condition for a isotropic complement to be
admissible at a point in g∗ in more detail. Let (ξi) be the linear coordinates
for {εi}. Then it follows that for i = 1, . . . , n,εi +∑

j

tijej


g∗

=
∂

∂ξi
−
∑
j,k,l

tijckjlξk
∂

∂ξl

=
∑
j,k

∑
l ̸=i

tijckljξk
∂

∂ξl
+

1 +
∑
j,k

tijckijξk

 ∂

∂ξi
, (3.6)

where X 7→ Xg∗ , for X in g ⊕ g∗, is the infinitesimal action of the dressing
action on g∗ ∼= T ∗G/G (Example 31). The isotropic complement g∗t is
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admissible at ξ = (ξ1, . . . , ξn) in g∗ if and only if the elements (3.6) form a
basis on Tξ(g

∗) ∼= g∗. Hence this means that the matrix

At(ξ) :=


1 +

∑
j,k t

1jck1jξk
∑

j,k t
1jck2jξk · · ·

∑
j,k t

1jcknjξk∑
j,k t

2jck1jξk 1 +
∑

j,k t
2jck2jξk · · ·

∑
j,k t

2jcknjξk
...

...
. . .

...∑
j,k t

njck1jξk
∑

j,k t
njck2jξk · · · 1 +

∑
j,k t

njcknjξk


(3.7)

is regular. Therefore g∗t is admissible at ξ in µ(M) if and only if the matrix
At(ξ) for ξ in µ(M) is regular. Since any non-degenerate Poisson structure
on M defines a symplectic structure on M , the following theorem holds.

Theorem 3.1.1 (Nakamura [31]). Let (M,ω) be a symplectic manifold on
which a connected Lie group G with the Lie algebra g acts by a symplectic-
Hamiltonian action σ, µ : M → g∗ a moment map for σ and π the Poisson
structure induced by ω. Then the following holds:

1. If a twist t in Λ2g satisfies that [t, t]M = 0, then t deforms the Poisson
structure π to a Poisson structure πtM := π − tM . Moreover, if t is
an r-matrix, then σ is a Poisson action of (G, πtG) on (M,πtM ), where
πtG = tL − tR.

2. For a twist t in Λ2g, if the isotropic complement g∗t is admissible on
µ(M), then t deforms the non-degenerate 2-vector field π to a non-
degenerate 2-vector field πtM . This condition is equivalent to that the
matrix At(ξ) defined by (3.7) is regular for any ξ in µ(M).

Therefore, if a twist t satisfies the assumptions of both 1 and 2, then t de-
forms ω to a symplectic structure ωt induced by the non-degenerate Poisson
structure πtM . In other words, ω and ωt are deformation-equivalent.

Remark 7. (i) In Section 3.2, we will show that the condition in Theorem
3.1.1 is not a necessary condition for πtM to be a non-degenerate Poisson
structure.
(ii) If a twist t satisfies the assumptions of both 4.28 and 4.29 and is an
r-matrix, then the Poisson action σ of (G, πtG) on a symplectic manifold
(M,ωt) has a moment map (although not necessarily G-equivariant) due to
Theorem 3.16 in [19].

The following theorem gives a sufficient condition for a twist to deform
a symplectic structure in the sense of Theorem 3.1.1.
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Theorem 3.1.2 (Nakamura [31]). Let (M,ω) be a symplectic manifold
on which an n-dimensional connected Lie group G acts by a symplectic-
Hamiltonian action σ. Assume that X,Y in g satisfy [X,Y ] = 0. Then the
twist t = 1

2X ∧Y in Λ2g deforms the symplectic structure ω to a symplectic
structure ωt. For example, a twist t in Λ2h, where h is a Cartan subalgebra
of g, satisfies the assumption of the theorem.

Proof. For X and Y in g, we set

X =
∑
i

Xiei, Y =
∑
j

Y jej ,

where {ei}ni=1 is a basis on the Lie algebra g. Then since [X,Y ] =
∑

i,j,kX
iY j

ckijek = 0, we obtain the following conditions:∑
i,j

XiY jckij = 0

for any k, where ckij ’s are the structure constants of g with respect to the
basis {ei}. Moreover, since we have

[t, t] =

[
1

2
X ∧ Y, 1

2
X ∧ Y

]
=

1

2
X ∧ [X,Y ] ∧ Y = 0,

the twist t is an r-matrix such that [t, t]M = 0 obviously. Hence πtM is a
Poisson structure, and if πtM is non-degenerate, then the twist t induces the
symplectic structure ωt.

We shall show the non-degeneracy of πtM . Let µ be the moment map for a
given symplectic-Hamiltonian action ψ. We must show that g∗t is admissible
at any point in µ(M). We prove a stronger condition that the quasi-triple
(T ∗G,G, g∗t ) is complete.

Let {εi} be the dual basis of {ei} on g∗ and (ξi) be the linear coordinates
for {εi}. Since t = 1

2

∑
i,j X

iY jei ∧ ej ,

g∗t = span

εi +∑
i,j

XiY jej

∣∣∣∣∣∣ i = 1, · · ·n

 .

Then it follows that for i = 1, . . . , n,εi +∑
i,j

XiY jej


g∗

=
∑
i,j,k

∑
l ̸=i

XiY jckljξk
∂

∂ξl
+

1 +
∑
i,j,k

XiY jckijξk

 ∂

∂ξi
.

(3.8)
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The quasi-triple (T ∗G,G, g∗t ) is complete if and only if the elements (3.8)
form a basis on Tξ(g

∗) ∼= g∗ for any ξ = (ξ1, . . . , ξn). Therefore we shall
prove that the matrix

1 +
∑

j,kX
1Y jck1jξk

∑
j,kX

1Y jck2jξk · · ·
∑

j,kX
1Y jcknjξk∑

j,kX
2Y jck1jξk 1 +

∑
j,kX

2Y jck2jξk · · ·
∑

j,kX
2Y jcknjξk

...
...

. . .
...∑

j,kX
nY jck1jξk

∑
j,kX

nY jck2jξk · · · 1 +
∑

j,kX
nY jcknjξk


(3.9)

is regular. In the case of X = 0, this matrix is equal to the identity matrix,
so that it is regular. In the case of X ̸= 0, using

∑
i,j X

iY jckij = 0, we
can transform the matrix to the identity matrix. Thus the matrix (3.9) is
regular. Therefore g∗t is admissible at any point in g∗. That is, (T ∗G,G, g∗t )
is complete.

Remark 8. We try to generalize the assumption of Theorem 3.1.2 and
consider X,Y in g such that [X,Y ] = aX + bY (a, b ∈ R), that is, the
subspace spanned by X,Y is also a Lie subalgebra. We set t = 1

2X ∧ Y
in Λ2g. Since [t, t] = 0, the twist t is an r-matrix such that [t, t]M = 0.
Therefore the symplectic action ψ is a Poisson action of (G, πtG) on (M,πtM ).
Then we research whether g∗t is admissible at each point in g∗. Similarly to
the proof of Theorem 3.1.2, a matrix to check the regularity can be deformed
to 

1 +
∑

k(aX
k + bY k)ξk 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Therefore this matrix is regular if and only if

1 +
∑
k

(aXk + bY k)ξk ̸= 0.

In the case of [X,Y ] = 0, by Theorem 3.1.2, the space g∗t is admissible at
all points in g∗. In the case of [X,Y ] ̸= 0, the above condition means

⟨[X,Y ], ξ⟩ ̸= −1.

Let ξ′ be an element satisfying that ⟨[X,Y ], ξ′⟩ ̸= 0. By setting

ξ := − ξ′

⟨[X,Y ], ξ′⟩
,
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we obtain ⟨[X,Y ], ξ⟩ = −1, so that g∗t is not admissible at ξ. Eventually, to
make sure of the admissibility of g∗t , we need check whether such a point ξ
is included in µ(M).

3.2 Examples

In this section, we compute specifically which element t in Λ2g defines a new
symplectic structure ωt from given one ω on a smooth manifold.

Example 50. We consider (R2n, ω0) with a symplectic-Hamiltonian action
by the parallel transformation (Example 7). The Lie algebra Rn of an addi-
tive group Rn has the commutative bracket [·, ·]. Hence since [a, b] = 0 for
any a and b in Rn, an element t := a ∧ b in Λ2Rn deforms ω0 by Theorem
3.1.2.

Next we consider the complex projective space (CPn, ωFS) on which the
special unitary group SU(n+1) acts naturally as a symplectic-Hamiltonian
action with a moment map µ (Example 4 and Example 8).

We use

Xjk : the (j, k)-element is 1, the (k, j)-element is −1, and the rest are 0,

Yjk : the (j, k)- and (k, j)-elements are i, and the rest are 0,

Zl : the (l, l)–element is i, the (n+ 1, n+ 1)-element is −i,
and the rest are 0

for 1 ≤ j < k ≤ n + 1 and l = 1, . . . , n, as a basis of su(n + 1) which is
defined by a Chevalley basis of the complexified Lie algebra sl(n + 1,C) of
su(n+1). The subspace spanned by Zl’s is a Cartan subalgebra of su(n+1).

In the case of n = 1, denoting the dual basis of {X12, Y12, Z1} by {εi},
We obtain

µ(x1, y1) =
y1

1 + x21 + y21
ε1 +

x1
1 + x21 + y21

ε2 +
1− x21 − y21

2(1 + x21 + y21)
ε3,

i.e., µ(CP1) ⊂ su(2)∗ is the 2-sphere with center at the origin and with
radius 1

2 (Example 8).
Let (ξi) be the linear coordinates for {εi}. We set g := su(2). Any twist

t is an r-matrix (Example 21). Since CP1 is 2-dimensional, it follows that
[t, t]CP1 = 0. Therefore we can deform the Poisson structure πFS induced
by ωFS to a Poisson structure πtFS on CP1 by t and the natural action is a
Poisson action of (SU(2), tL − tR).
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Let g∗t be the space twisted g∗ by t in Λ2g. We consider what is the
condition for t under which g∗t is admissible on µ(CP1). For any twist

t =
∑
i<j

1

2
λijei ∧ ej ∈ Λ2g (λij ∈ R),

we obtain

g∗t = span{ε1 + λ12e2 + λ13e3, ε
2 − λ12e1 + λ13e3, ε

3 − λ13e1 − λ23e2}.

Then g∗t is admissible at ξ = (ξ1, ξ2, ξ3) in g∗ if and only if the matrix

At(ξ) =

1 + 2λ12ξ3 − 2λ13ξ2 2λ13ξ1 −2λ12ξ1
−2λ23ξ2 1 + 2λ12ξ3 + 2λ23ξ1 −2λ12ξ2
−2λ23ξ3 2λ13ξ3 1− 2λ13ξ2 + 2λ23ξ1


is regular. By computing the determinant of the matrix, we have

detAt(ξ) = (1 + 2λ23ξ1 − 2λ13ξ2 + 2λ12ξ3)
2.

So the complement g∗t is admissible at ξ = (ξ1, ξ2, ξ3) if and only if 1 +
2λ23ξ1 − 2λ13ξ2 + 2λ12ξ3 ̸= 0.

Therefore g∗t is admissible on µ(CP1) if and only if the ”non-admissible
surface” {ξ = (ξ1, ξ2, ξ3) ∈ g∗| 1 + 2λ23ξ1 − 2λ13ξ2 + 2λ12ξ3 ̸= 0} for g∗t
and the image µ(CP1) have no common point. Since µ(CP1) is the 2-sphere
with center at the origin and with radius 1

2 , we can see that this condition
is equivalent to the condition

λ212 + λ213 + λ223 < 1.

From the above discussion, we obtain the following theorem.

Theorem 3.2.1 (Nakamura [31]). If a twist t :=
∑

i<j
1
2λijei ∧ ej satisfies

λ212+λ
2
13+λ

2
23 < 1, then the Fubini-Study form ωFS on CP1 can be deformed

by t in the sense of Section 3.1.

We shall see an example of a concrete twists on CP1.

Example 51 ([31]). We use a twist t = 1
2X12 ∧ Y12 in Λ2su(2) and a real

number λ, where −1 < λ < 1. The symplectic structure ωλt
FS deformed ωFS

by λt is written by

ωλt
FS =

{(
1 +

1

2
λ

)
(x21 + y21)

2 + 2(x21 + y21) +

(
1− 1

2
λ

)}−1

dx1 ∧ dy1

(3.10)
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on U1. Then it follows from an elementary calculation that the symplectic
volume Vol(CP1, ωλt

FS) of (CP1, ωλt
FS) is

Vol(CP1, ωλt
FS) =

{
π (λ = 0)
π
λ log

∣∣∣2+λ
2−λ

∣∣∣ (λ ̸= 0).
(3.11)

Next, we consider a cohomology class of each ωλt
FS. Since H2

DR(CP1) =
R, there exists a real number kλ in R such that

[
ωλt
FS

]
= kλ [ωFS]. By

integrating, we obtain

kλ =
1

λ
log

∣∣∣∣2 + λ

2− λ

∣∣∣∣ ,
where λ ̸= 0. Since the function kλ of λ is smooth, even and strictly mono-
tone increasing when λ is positive, ωλt

FS and ω−λt
FS are cohomologous. This

means that we obtain a lot of non-trivial symplectic structures different from
original ωFS and non-trivial symplectomorphisms (M,ωλt

FS) −→ (M,ω−λt
FS ).

In the above example, the condition −1 < λ < 1 is not a necessary
condition for ωλt

FS to be a symplectic structure. In fact, it follows that ωλt
FS

is a symplectic structure for −2 < λ < 2. Therefore in general, the non-
degeneracy for πt is not equivalent to that the isotropic complement g∗t is
admissible on µ(M).

The next example is the complex Grassmannian GrC(n, r) := SU(n)/(S
(U(r) × U(n − r))) with the Kirillov-Kostant form ωKK. With respect to
ωKK, the natural SU(n)-action is symplectic-Hamiltonian (Example 9).

Then we consider the following r-matrix of su(n):

t =
1

4n

∑
1≤i<j≤n

Xij ∧ Yij ,

where the r-matrix t is the canonical one defined on any compact semi-
simple Lie algebra over R (for example, see [8]). This is an r-matrix such
that [t, t] ̸= 0. We show that it satisfies [t, t]M = 0, where M := GrC(n, r).
Since t is an r-matrix, the element [t, t] is Ad-invariant. By the definition of
the SU(n)-action on GrC(n, r), it follows that

[t, t]M = p∗[t, t]
R,

where p : SU(n) → GrC(n, r) = SU(n)/(S(U(r) × U(n − r))) is the natural
projection. Since any point m in GrC(n, r) is represented by gH, where g is
in SU(n) and H := S(U(r)×U(n− r)), we compute

[t, t]M,m = p∗[t, t]
R
g = p∗Rg∗[t, t].
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Because of the Ad-invariance of [t, t], we obtain

p∗Rg∗[t, t] = p∗Lg∗Lg−1∗Rg∗[t, t] = p∗Lg∗Adg−1 [t, t] = p∗Lg∗[t, t].

Let h be the Lie algebra of H. For any X in h and g in SU(n), we compute

p∗Lg∗X = p∗Lg∗
d

ds
exp sX

∣∣∣∣
s=0

=
d

ds
(g exp sX)H

∣∣∣∣
s=0

=
d

ds
gH

∣∣∣∣
s=0

= 0,

where we have used that exp sX is in H in the third equality. Therefore it
holds that [t, t]M = 0 if each term of [t, t] includes elements in h. We notice
that

h = spanR{Xij , Yij , Zk|1 ≤ i < j ≤ r or r + 1 ≤ i < j ≤ n,

and k = 1, . . . , n− 1}.

If Xij , Yij ∈ h, then

[ · , Xij ∧ Yij ] = [ · , Xij ] ∧ Yij −Xij ∧ [ · , Yij ] .

So these terms include an element in h. Hence we investigate terms of the
form

[Xij ∧ Yij , Xkl ∧ Ykl] = − [Xij , Xkl] ∧ Yij ∧ Ykl −Xij ∧ [Yij , Xkl] ∧ Ykl
− Yij ∧ [Xij , Ykl] ∧Xkl −Xij ∧Xkl ∧ [Yij , Ykl] ,

where Xij , Yij , Xkl and Ykl are not in h. In the case of i = k and j = l, we
get

[Xij , Xij ] = [Yij , Yij ] = 0,

[Xij , Yij ] = 2(Zi − Zj) ∈ h,

where we set Zn := 0. In the case of i = k and j < l (resp. l < j), since it
follows that r + 1 ≤ j, l ≤ n, we obtain

[Xij , Xkl] = [Yij , Ykl] = −Xjl(resp. Xlj) ∈ h,

[Yij , Xkl] = [Ykl, Xij ] = −Yjl(resp. Ylj) ∈ h.

We can also show the case of i < k (resp. k < i) and j = l in the similar
way. Therefore all terms of [t, t] include elements in h, so that [t, t]M =
0. Therefore πtKK is Poisson by Theorem 3.1.1, where πKK is the Poisson
structure induced by ωKK. Since GrC(n, r) is compact, for sufficiently small
|λ|, the Poisson structure πλtKK is non-degenerate. Example 51 is the special
case of this example.
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3.3 Symplectic toric manifolds

In this section, we consider deformations of symplectic toric manifolds. Then
our deformations give canonical transformations for symplecyic toric mani-
folds.

Theorem 3.3.1 (Nakamura [31]). For any 2n-dimensional symplectic toric
manifold (M,ω) and any twist t in Λ2Rn, the manifold (M,ωt) deformed
by t in the sense of Section 3.1 is a symplectic toric manifold with the
same action as on (M,ω). Moreover (M,ωt) is isomorphic to (M,ω) as a
symplectic toric manifold.

Proof. We denote the symplectic-Hamiltonian action and the moment map
for it by σ and µ, respectively. Since Tn is commutative, the brackets
[Xi, Xj ] vanish for all i and j. Hence for any λ12 in R, the twist t12 :=
λ12X1 ∧X2 deforms ω to a symplectic structure ωt12 induced by a Poisson
structure πt12 := π− (t12)M by Theorem 3.1.2. On the other hand it follows
πtTn := tL − tR = 0 for any twist t by the commutativity of Tn. Therefore,
after deformation, the multiplicative Poisson structure 0 on Tn is invariant
and the action σ is a symplectic action. Then this action is symplectic-
Hamiltonian with a moment map µ. In fact, the map µ is a moment map
for σ on (M,ωt12) if and only if dµX = ιXσω

t12 . Moreover,

dµX = ιXσω
t12 ⇐⇒ dµX = (ωt12)♭Xσ

⇐⇒ (πt12)♯dµX = (πt12)♯(ωt12)♭Xσ

⇐⇒ (πt12)♯dµX = −Xσ

⇐⇒ Xσ = −(π♯ − (t12)
♯
σ)dµ

X

⇐⇒ Xσ = −π♯dµX + (t12)
♯
σdµ

X

⇐⇒ Xσ = Xσ + (t12)
♯
σdµ

X

⇐⇒ (t12)
♯
σdµ

X = 0 (3.12)

for any X in Rn since µ satisfies (1.1) with respect to ω. Then we calculate

(t12)
♯
σdµ

X = (λ12X1 ∧X2)
♯
σιXσω

= λ12(X1,σ ∧X2,σ)
♯ω♭Xσ

= λ12(⟨X1,σ, ω
♭Xσ⟩X2,σ − ⟨X2,σ, ω

♭Xσ⟩X1,σ)

= λ12(ω(X1,σ, Xσ)X2,σ − ω(X2,σ, Xσ)X1,σ)

Using the facts that for any Hamiltonian G-space (M,ω,G, µ),

ω(Yσ, Zσ) = µ[Y,Z]
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for any Y and Z in g, and that the Lie algebra Rn is commutative, we ob-
tain the condition (3.12). Therefore (M,ωt12) is a symplectic toric manifold
on which a moment map for the symplectic-Hamiltonian action σ is µ. By
Delzant theorem, (M,ω) and (M,ωt12) are isomorphic as a symplectic toric
manifold. Similarly, for t13 = λ13X1 ∧ X2 (λ13 ∈ R, Xi ∈ Rn), (M,ωt12)
and (M, (ωt12)t13) = (M,ωt12+t13) are isomorphic as a symplectic toric man-
ifold. By repeating this operation, it follows that (M,ω) and (M,ωt) are
isomorphic as a symplectic toric manifold for any twist t =

∑
i<j λijXi∧Xj .

Remark 9. In Theorem 21 in [31], the results of Theorem 3.3.1 are proved
under the assumptions that a symplectic toric manifold (M,ω) is compact,
connected and satisfying a condition with respect to a symplectic structure.
However Theorem 3.3.1 states that these assumptions are not necessary.

Example 52 ([31]). A symplectic toric manifold (CPn, ωFS) has the torus
action σ:

(eiθ2 , eiθ3 , . . . , eiθn+1) · [z1 : · · · : zn+1] := [z1 : e
iθ2z2 : · · · : eiθn+1zn+1]

for any θi in R. The moment map µ : CPn → Rn for this action on
(CPn, ωFS) is

µ([z1 : · · · : zn+1]) := −1

2

(
|z2|2

|z|2
, . . . ,

|zn+1|2

|z|2

)
,

where z = (z1, . . . , zn+1) in Cn. We set X1 := (1, 0, . . . , 0), . . . , Xn :=
(0, . . . , 0, 1). On U1, since for any i = 1, . . . , n,

Xi,CPn = −yi
∂

∂xi
+ xi

∂

∂yi

we obtain

(Xi ∧Xj)CPn = yiyj
∂

∂xi
∧ ∂

∂xj
− yixj

∂

∂xi
∧ ∂

∂yj

− xiyj
∂

∂yi
∧ ∂

∂xj
+ xixj

∂

∂yi
∧ ∂

∂yj
(1 ≤ i < j ≤ n),

where xi := Re zi+1

z1
and yi := Im zi+1

z1
, for example on CPn, it follows that

ωt12
FS = ωFS +

λ12
{
(x21 + y21)(x

2
2 + y22)− 1

}
(x21 + y21 + x22 + y22 + 1)4

(x1x2dx1 ∧ dx2

+ x1y2dx1 ∧ dy2 + y1x2dy1 ∧ dx2 + y1y2dy1 ∧ dy2).
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By Theorem 3.3.1, (CPn, ωt12
FS ) is a symplectic toric manifold isomorphic to

(CPn, ωFS) as a symplectic toric manifold.





Chapter 4

Pseudo-Poisson-Nijenhuis
manifolds

In this chapter, we study pseudo-Poisson-Nijenhuis manifolds.

4.1 Compatible pairs

In this section, we consider the compatibility of a 2-vector field and a (1, 1)-
tensor on a C∞-manifold, which plays an important role to define not only a
Poisson-Nijenhuis and Poisson-quasi-Nijenhuis manifold but also a pseudo-
Poisson-Nijenhuis manifold, which is defined in Section 4.2. For that reason,
first we begin with the definitions and properties of brackets defined by a 2-
vector field and a (1, 1)-tensor. We generalize several properties of a Poisson-
Nijenhuis structure to that of a compatible pair of a 2-vector field and a
(1, 1)-tensor. Moreover we show that the brackets gives a characterization
of the compatibility of a 2-vector field and a (1, 1)-tensor, which is the main
theorem of this subsection.

Let M be a C∞-manifold, π a 2-vector field and N a (1, 1)-tensor. Sim-
ilarly as in the case that π is Poisson and that N is Nijenhuis, we de-
fine brackets [·, ·]π and [·, ·]N by (2.31) and (2.83) respectively. It is easy
to see that these brackets are bilinear and anti-symmetry, and satisfy the
Leibniz rule (ii) of Definition 36. From this, we obtain the derivation
dπ : X∗(M) −→ X∗+1(M) and dN : Ω∗(M) −→ Ω∗+1(M) defined by the
formula (2.86) respectively and Lie derivatives Lπ and LN defined by (2.87)
respectively. Then it follows that dπD = [π,D] for any D in Xk(M), and
that

Lπ
αβ = [α, β]π, LN

XY = [X,Y ]N

79
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for any α, β in Ω1(M), X and Y in X(M).
In general, any 2-vector field on M and (1, 1)-tensor on M satisfy the

followings.

Proposition 4.1.1 ([16],[42]). Let π be a 2-vector field on M . For any
α, β, γ in Ω1(M) and X in X(M),

1

2
ια∧β [π, π] = [π♯α, π♯β]− π♯[α, β]π, (4.1)∑

Cycl(α,β,γ)

⟨[[α, β]π, γ]π, X⟩ = 1

2
(LX [π, π]) (α, β, γ)

+
1

2

∑
Cycl(α,β,γ)

[π, π](α, β, d⟨γ,X⟩). (4.2)

Proposition 4.1.2 ([41]). Let N be a (1, 1)-tensor on M . For any X,Y
and Z in X(M),∑
Cycl(X,Y,Z)

[[X,Y ]N , Z]N = −
∑

Cycl(X,Y,Z)

([TN (X,Y ), Z] + TN ([X,Y ], Z)).

(4.3)

Remark 10. The above brackets are not Lie brackets in general. By Propo-
sition 4.1.1, if the 2-vector field π on M is Poisson, i.e., [π, π] = 0, then the
bracket [·, ·]π is a Lie bracket on Ω1(M). By Proposition 4.1.2, if N is Ni-
jenhuis, i.e., the Nijenhuis torsion TN vanishes, then the bracket [·, ·]N is a
Lie bracket on X(M).

The existence and uniqueness theorem of the Schouten bracket of a Lie
bracket on the sections Γ(A) of a Lie algebroid A is extended to the following
situation:

Theorem 4.1.3 ([32]). Let (A, a) be an anchored vector bundle over M ,
i.e., a : A −→ TM is a bundle map over M , and [·, ·]A an anti-symmetric
bilinear bracket on Γ(A) satisfying the Leibniz rule

[X, fY ]A = (a(X)f)Y + f [X,Y ]A (4.4)

for any X,Y in Γ(A) and f in C∞(M). Then there is a unique bilinear op-
erator [·, ·]A : Γ(Λ∗A)×Γ(Λ∗A) −→ Γ(Λ∗A), called the generalized Schouten
bracket or simply the Schouten bracket, that satisfies the following proper-
ties:
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(i) It is a biderivation of degree −1, that is, it is bilinear,

deg[D1, D2]A = degD1 + degD2 − 1, (4.5)

and

[D1, D2 ∧D3]A = [D1, D2]A ∧D3

+ (−1)(degD1+1)degD2D2 ∧ [D1, D3]A. (4.6)

for Di in Γ(Λ∗A),

(ii) It is determined on C∞(M) and Γ(A) by

(a) [f, g]A = 0 (f, g ∈ C∞(M));

(b) [X, f ]A = a(X)f (f ∈ C∞(M), X ∈ Γ(A));

(c) [X,Y ]A (X,Y ∈ Γ(A)) is the original bracket on Γ(A).

(iii) [D1, D2]A = −(−1)(degD1−1)(degD2−1)[D2, D1]A.

Remark 11. In general, the Schouten bracket of a bracket [·, ·]A on Γ(A)
does not satisfy the graded Jacobi identity because [·, ·]A does not satisfy
the Jacobi identity.

Since (TM,N) and (T ∗M,π♯) are anchored vector bundles over M and
brackets [·, ·]π and [·, ·]N satisfy the Leibniz rule (ii) of Definition 36 re-
spectively, by Theorem 4.1.3, [·, ·]π and [·, ·]N are extended to the Schouten
bracket on Ω∗(M) and on X∗(M) respectively.

We define the concept related to a 2-vector field and a (1, 1)-tensor,
called the compatibility of these.

Definition 45 ([16], [26], [32]). The 2-vector field π on M and the (1, 1)-
tensor N onM are compatible if they satisfy (2.96) and the (2, 1)-tensor CN

π

defined by (2.97) vanishes.

Let (π,N) be a compatible pair and set πN (α, β) := ⟨Nπ♯α, β⟩. Then
it follows from (2.96) that πN is a 2-vector field on M . Hence under the
assumption (2.96), the bracket [·, ·]Nπ♯ can be rewritten as [·, ·]πN . Moreover,
then the three brackets [·, ·]πN , [·, ·]N

∗
π and [·, ·]N,π defined by (2.100) coincide.

For any 2-vector field π and (1, 1)-tensor N satisfying (2.96), the three

brackets [·, ·]πN , [·, ·]N
∗

π and [·, ·]N,π on an anchored vector bundle (T ∗M,π♯N )
satisfy the Leibniz rule (ii) of Definition 36 respectively. Therefore we obtain
the derivations defined by the formula (2.86) respectively. In particular, we



82 CHAPTER 4. PSEUDO-POISSON-NIJENHUIS MANIFOLDS

denote the derivations defined by the bracket [·, ·]N,π by dNπ , and obtain the
formula

dNπ = [π, ·]N . (4.7)

For any compatible pair (π,N), we set π0 := π and define a 2-vector field

πk+1 by the condition π♯k+1 = N ◦π♯k inductively. In the case of a compatible
pair (π,N) of which N is Nijenhuis, the following proposition corresponding
to the existence theorem of the hierarchy of Poisson-Nijenhuis structures
(Theorem 2.4.1) can be shown in the same way.

Proposition 4.1.4 (Nakamura [32], the hierarchy of compatible pairs). Let
(π,N) be a compatible pair on M such that N is Nijenhuis. Then all pairs
(πk, N

p) (k, p ≥ 0) are compatible pairs on M such that Np = N ◦ · · · ◦ N
(p times) are Nijenhuis. Furthermore for any k, l ≥ 0 and Q in X∗(M), it
follows that [πk, Q]N l+1 = [πk+1, Q]N l .

Proof. For any (1, 1)-tensor N , the Nijenhuis torsion TN of N can be defined
equivalently by

ιXTN = LNXN −N ◦ LXN (4.8)

for any X in X(M). Then by induction, we obtain

LNpXN = Np ◦ LXN +

p−1∑
h=0

Nh ◦ ιXTN (4.9)

If N is Nijenhuis, i.e., TN = 0, it follows that

LNpXN
p = Np ◦ LXN

p. (4.10)

Therefore

ιXTNp = LNpXN
p −Np ◦ LXN

p = 0 (4.11)

and we see that Np is Nijenhuis.

Moreover for any (1, 1)-tensors A and B satisfying AB = BA and Aπ♯ =
π♯A, Bπ♯ = π♯B, we have

CAB
π (α, β) = B∗(CA

π (α, β)) + CB
π (A∗α, β) + (Lπ♯αB)∗A∗β − (LAπ♯αB)∗β.

(4.12)
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If (4.12) is applied for A = Np and B = N , where N is Nijenhuis, then we
obtain

CNp+1

π (α, β) = N∗(CNp

π (α, β)) + CN
π ((Np)∗α, β) +

p−1∑
h=0

(Nh ◦ ιπ♯αTN )∗β.

(4.13)

Therefore we see inductively that all the pair (π,Np) is compatible.
In order to prove the first part of Proposition 4.1.4, it is sufficient to

prove that (πk, N) are compatible. We obtain

CN
πk+1

(α, β) = CN
πk
(α,N∗β) + (ι

π♯
kα
TN )∗β (4.14)

for any α and β in Ω1(M). By (4.14), CN
π = 0 and TN = 0, it holds that

CN
πk+1

= 0. Hence (πk+1, N) is compatible.
Finally, if a pair (π,N) is compatible, then [·, ·]N,π = [·, ·]πN holds. Hence

the corresponding derivations dNπ and dπN coincide. Then dNπ = dπN means

[π,Q]N = [πN , Q] (4.15)

for any Q in X∗(M). Since (πk, N
l+1) and (πk+1, N

l) are compatible, then
we obtain

[πk, Q]N l+1 = [πk+l+1, Q] (4.16)

= [πk+1, Q]N l (4.17)

for any Q in X∗(M).

The compatibility of a 2-vector field π and a (1, 1)-tensor N is equivalent
to the following equations using the Schouten brackets of [·, ·]π and [·, ·]N .

Theorem 4.1.5 (Nakamura [32]). Let M be a C∞-manifold, π a 2-vector
field on M and N a (1, 1)-tensor on M . Then the following conditions are
equivalent:

(i) π and N are compatible;

(ii) the operator dN is a derivation of the Schouten bracket [·, ·]π :

dN [ξ1, ξ2]π = [dNξ1, ξ2]π + (−1)degξ1+1[ξ1, dNξ2]π; (4.18)

(iii) the operator dπ is a derivation of the Schouten bracket [·, ·]N :

dπ[D1, D2]N = [dπD1, D2]N + (−1)degD1+1[D1, dπD2]N , (4.19)
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where ξi’s are in Ω∗(M) and Di’s are in X∗(M).

In the case of that π is Poisson, Theorem 4.1.5 coincides with Lemma
3.6 in [38]. Moreover, if N is Nijenhuis, then Theorem 4.1.5 coincides with
Proposition 3.2 in [15]. However to prove Proposition 3.2 in [15], properties
for a Lie bialgebroid [22] were used since ((TM)N , (T

∗M)π) is a Lie bialge-
broid, and Lemma 3.6 in [38] does not mention the equivalence of (i) and
(iii) in Theorem 4.1.5. Therefore Theorem 4.1.5 is worthy in the sense that
these equivalence holds without an assumption that π is Poisson or N is
Nijenhuis. To prove Theorem 4.1.5, we need the following lemma.

Lemma 4.1.6 (Nakamura [32]). Let π be a 2-vector field on M and N a
(1, 1)-tensor onM . Assume that π and N satisfy the condition (2.96). Then
the pair (π,N) is compatible if and only if for any f in C∞(M) and X in
X(M),

Lπ
dNfX = −[dπf,X]N . (4.20)

Proof. For any ξ in Ω1(M), we calculate

⟨Lπ
dNfX, ξ⟩ = Lπ

dNf ⟨X, ξ⟩ − ⟨X,Lπ
dNfξ⟩

= (π♯N∗df)⟨X, ξ⟩ − ⟨X, [N∗df, ξ]π⟩

= (π♯Ndf)⟨X, ξ⟩ − ⟨X, [df, ξ]N∗
π ⟩

+ ⟨X, [df,N∗ξ]π⟩ − ⟨X,N∗[df, ξ]π⟩

= (π♯Ndf)⟨X, ξ⟩ − ⟨X, [df, ξ]N∗
π ⟩

+ ⟨X,Lπ♯df (N
∗ξ)⟩ − ⟨NX,Lπ♯dfξ⟩

= (π♯Ndf)⟨X, ξ⟩ − ⟨X, [df, ξ]N∗
π ⟩

+ ⟨N [dπf,X], ξ⟩ − ⟨[dπf,NX], ξ⟩

and

⟨[dπf,X]N , ξ⟩ = ⟨[Ndπf,X] + [dπf,NX]−N [dπf,X], ξ⟩
= ⟨[dπN f,X], ξ⟩+ ⟨[dπf,NX]−N [dπf,X], ξ⟩
= ⟨[[πN , f ], X], ξ⟩+ ⟨[dπf,NX]−N [dπf,X], ξ⟩
= ⟨−[[X,πN ], f ]− [πN , [f,X]], ξ⟩

+ ⟨[dπf,NX]−N [dπf,X], ξ⟩
= −⟨[dπNX, f ], ξ⟩+ ⟨[πN , Xf ], ξ⟩

+ ⟨[dπf,NX]−N [dπf,X], ξ⟩
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= −(dπNX)(df, ξ) + πN (d(Xf), ξ)

+ ⟨[dπf,NX]−N [dπf,X], ξ⟩

= −(π♯Ndf)⟨X, ξ⟩+ (π♯Nξ)⟨X, df⟩

+ ⟨X, [df, ξ]πN ⟩ − (π♯Nξ)(Xf)

+ ⟨[dπf,NX]−N [dπf,X], ξ⟩

= −(π♯Ndf)⟨X, ξ⟩+ ⟨X, [df, ξ]πN ⟩
+ ⟨[dπf,NX], ξ⟩ − ⟨N [dπf,X], ξ⟩.

Therefore we find

⟨Lπ
dNfX + [dπf,X]N , ξ⟩ = ⟨X, [df, ξ]πN − [df, ξ]N

∗
π ⟩

= ⟨X,CN
π (df, ξ)⟩.

Because the exact 1-forms generate locally the 1-forms as a C∞(M)-module
and CN

π is tensorial, we obtain the equivalence to prove.

Proof of Theorem 4.1.5. The equivalence of (i) and (ii) can be proved simi-
larly as Proposition 3.2 in [15]. In fact, we set for any ξ1 and ξ2 in Ω∗(M),

AN,π(ξ1, ξ2) := dN [ξ1, ξ2]π − [dNξ1, ξ2]π − (−1)degξ1+1[ξ1, dNξ2]π. (4.21)

Then for any f, g in C∞(M), α, β and γ in Ω∗(M), we obtain

AN,π(f, g) = ⟨(Nπ♯ − π♯N∗)df, dg⟩, (4.22)

AN,π(df, g) = Cπ
N (df, dg), (4.23)

AN,π(df, dg) = −d(Cπ
N (df, dg)), (4.24)

AN,π(α, β ∧ γ) = AN,π(α, β) ∧ γ + (−1)degαdegββ ∧AN,π(α, γ), (4.25)

AN,π(α, β) = −(−1)(degα−1)(degβ−1)AN,π(β, α), (4.26)

so that the conclusion follows from these equations.

We shall prove the equivalence of (i) and (iii). We set for any D1 and
D2 in X∗(M),

Aπ,N (D1, D2) := dπ[D1, D2]N − [dπD1, D2]N − (−1)degD1+1[D1, dπD2]N .

(4.27)
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Then for any f and g in C∞(M), we calculate

dπ[f, g]N = 0,

[dπf, g]N = (Ndπf)g = ⟨Ndπf, dg⟩
= ⟨−Nπ♯df, dg⟩,

[f, dπg]N = −[dπg, f ]N = −⟨−Nπ♯dg, df⟩ = ⟨π♯dg,N∗df⟩ = ⟨dg,−π♯N∗df⟩
= ⟨−π♯N∗df, dg⟩,

so that we obtain

Aπ,N (f, g) = dπ[f, g]N − [dπf, g]N + [f, dπg]N

= 0− ⟨−Nπ♯df, dg⟩+ ⟨−π♯N∗df, dg⟩
= ⟨(Nπ♯ − π♯N∗)df, dg⟩.

Therefore Aπ,N (f, g) = 0 is equivalent with the condition (2.96). For any
f, g in C∞(M) and X in X(M), we calculate

⟨dπ[X, g]N , df⟩ = ⟨dπ((NX)g), df⟩ = ⟨−π♯d⟨dg,NX⟩, df⟩
= ⟨d⟨dg,NX⟩, π♯df⟩
= (π♯df)⟨NX, dg⟩,

⟨[dπX, g]N , df⟩ = ⟨−ιdNgdπX, df⟩ = −(dπX)(dNg, df)

= −(π♯dNg)⟨X, df⟩+ (π♯df)⟨X, dNg⟩+ ⟨X, [dNg, df ]π⟩
= −(π♯N∗dg)⟨X, df⟩+ (π♯df)⟨X,N∗dg⟩+ ⟨X, [N∗dg, df ]π⟩
= −(π♯N∗dg)⟨X, df⟩+ (π♯df)⟨NX, dg⟩+ ⟨X, [N∗dg, df ]π⟩,

⟨[X, dπg]N , df⟩ = ⟨[NX, dπg] + [X,Ndπg]−N [X, dπg], df⟩
= ⟨[NX, [π, g]], df⟩+ ⟨[X,−Nπ♯dg], df⟩ − ⟨[X, [π, g]], N∗df⟩
= ⟨−[π, [g,NX]]− [g, [π,NX]], df⟩+ ⟨LNπ♯dgX, df⟩

+ ⟨[π, [g,X]] + [g, [X,π]], N∗df⟩
= ⟨dπ((NX)g), df⟩+ ⟨ιdgdπ(NX), df⟩+ LNπ♯dg⟨X, df⟩

− ⟨X,LNπ♯dgdf⟩ − ⟨dπ(Xg), N∗df⟩ − ⟨ιdgdπX,N∗df⟩
= (π♯df)⟨dg,NX⟩+ (dπ(NX))(dg, df) + (Nπ♯dg)⟨X, df⟩

− ⟨X,LNπ♯dgdf⟩ − (π♯N∗df)⟨X, dg⟩ − (dπX)(dg,N∗df)

= (π♯df)⟨dg,NX⟩+ (π♯dg)⟨NX, df⟩ − (π♯df)⟨NX, dg⟩
− ⟨NX, [dg, df ]π⟩+ (Nπ♯dg)⟨X, df⟩ − ⟨X,LNπ♯dgdf⟩
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− (π♯N∗df)⟨X, dg⟩ − (π♯dg)⟨X,N∗df⟩+ (π♯N∗df)⟨X, dg⟩
+ ⟨X, [dg,N∗df ]π⟩

= (π♯dg)⟨NX, df⟩ − ⟨X,N∗[dg, df ]π⟩+ (Nπ♯dg)⟨X, df⟩
− ⟨X,LNπ♯dgdf⟩ − (π♯dg)⟨NX, df⟩+ ⟨X, [dg,N∗df ]π⟩

= ⟨X, [dg,N∗df ]π −N∗[dg, df ]π⟩
+ (Nπ♯dg)⟨X, df⟩ − ⟨X,LNπ♯dgdf⟩,

so that we obtain

⟨Aπ,N (X, g), df⟩ = ⟨dπ[X, g]N − [dπX, g]N − [X, dπg]N , df⟩
= (π♯df)⟨NX, dg⟩ − (−(π♯N∗dg)⟨X, df⟩+ (π♯df)⟨NX, dg⟩

+ ⟨X, [N∗dg, df ]π⟩)− (⟨X, [dg,N∗df ]π −N∗[dg, df ]π⟩
+ (Nπ♯dg)⟨X, df⟩ − ⟨X,LNπ♯dgdf⟩)

= ((π♯N∗ −Nπ♯)dg)⟨X, df⟩
− ⟨X, [N∗dg, df ]π + [dg,N∗df ]π −N∗[dg, df ]π⟩
+ ⟨X,LNπ♯dgdf − LNπ♯dfdg − d⟨Nπ♯dg, df⟩⟩
+ ⟨X,LNπ♯dfdg + d⟨Nπ♯dg, df⟩⟩

= ((π♯N∗ −Nπ♯)dg)⟨X, df⟩
+ ⟨X,−[dg, df ]N

∗
π ⟩+ ⟨X, [dg, df ]Nπ♯⟩

+ ⟨X, dιNπ♯dfdg + ιNπ♯dfd
2g + d⟨π♯dg,N∗df⟩⟩

= ((π♯N∗ −Nπ♯)dg)⟨X, df⟩+ ⟨X, [dg, df ]Nπ♯ − [dg, df ]N
∗

π ⟩
+ ⟨X, d⟨Nπ♯df, dg⟩+ 0− d⟨dg, π♯N∗df⟩⟩

= ((π♯N∗ −Nπ♯)dg)⟨X, df⟩+ ⟨X,Cπ
N (dg, df)⟩

+ ⟨X, d⟨(Nπ♯ − π♯N∗)df, dg⟩⟩.

For any X,Y in X(M), f and g in C∞(M), we calculate

(dπ[X,Y ]N )(df, dg) = (π♯df)⟨[X,Y ]N , dg⟩
− (π♯dg)⟨[X,Y ]N , df⟩ − ⟨[X,Y ]N , [df, dg]π⟩,

[dπX,Y ]N (df, dg) = −[Y, dπX]N (df, dg) = −(LN
Y dπX)(df, dg)

= −LN
Y ((dπX)(df, dg))

+ (dπX)(LN
Y df, dg) + (dπX)(df,LN

Y dg)

= −LN
Y ((π♯df)⟨X, dg⟩ − (π♯dg)⟨X, df⟩ − ⟨X, [df, dg]π⟩)
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+ (π♯LN
Y df)⟨X, dg⟩

− (π♯dg)⟨X,LN
Y df⟩ − ⟨X, [LN

Y df, dg]π⟩
+ (π♯df)⟨X,LN

Y dg⟩
− (π♯LN

Y dg)⟨X, df⟩ − ⟨X, [df,LN
Y dg]π⟩

= −LN
Y (Lπ

df ⟨X, dg⟩ − Lπ
dg⟨X, df⟩ − ⟨X, [df, dg]π⟩)

+ ⟨LN
Y df, dπ⟨X, dg⟩⟩ − Lπ

dg⟨X,LN
Y df⟩

− ⟨X, [LN
Y df, dg]π⟩+ Lπ

df ⟨X,LN
Y dg⟩

− ⟨LN
Y dg, dπ⟨X, df⟩⟩ − ⟨X, [df,LN

Y dg]π⟩
= −LN

Y Lπ
df ⟨X, dg⟩+ LN

Y Lπ
dg⟨X, df⟩+ LN

Y ⟨X, [df, dg]π⟩
+ LN

Y ⟨df, dπ⟨X, dg⟩⟩ − ⟨df,LN
Y dπ⟨X, dg⟩⟩

− ⟨Lπ
dgX,LN

Y df⟩ − ⟨X,Lπ
dgLN

Y df⟩+ ⟨X,Lπ
dgLN

Y df⟩
+ ⟨Lπ

dfX,LN
Y dg⟩+ ⟨X,Lπ

dfLN
Y dg⟩

− LN
Y ⟨dg, dπ⟨X, df⟩⟩+ ⟨dg,LN

Y dπ⟨X, df⟩⟩
− ⟨X,Lπ

dfLN
Y dg⟩

= −LN
Y Lπ

df ⟨X, dg⟩+ LN
Y Lπ

dg⟨X, df⟩+ (NY )⟨X, [df, dg]π⟩
+ LN

Y Lπ
df ⟨X, dg⟩ − ⟨df, [Y, dπ⟨X, dg⟩]N ⟩

− ⟨Lπ
dgX,LN

Y df⟩+ ⟨Lπ
dfX,LN

Y dg⟩
− LN

Y Lπ
dg⟨X, df⟩+ ⟨dg, [Y, dπ⟨X, df⟩]N ⟩

= (NY )⟨X, [df, dg]π⟩ − ⟨df, [Y, dπ⟨X, dg⟩]N ⟩
− ⟨Lπ

dgX,LN
Y df⟩+ ⟨Lπ

dfX,LN
Y dg⟩

+ ⟨dg, [Y, dπ⟨X, df⟩]N ⟩,

and similarly

[X, dπY ]N (df, dg) = −[dπY,X]N (df, dg)

= −(NX)⟨Y, [df, dg]π⟩+ ⟨df, [X, dπ⟨Y, dg⟩]N ⟩
+ ⟨Lπ

dgY,LN
Xdf⟩ − ⟨Lπ

dfY,LN
Xdg⟩

− ⟨dg, [X, dπ⟨Y, df⟩]N ⟩.

On the other hand, by the same calculations, we obtain

(dN [df, dg]π)(X,Y ) = (NX)⟨[df, dg]π, Y ⟩
− (NY )⟨[df, dg]π, X⟩ − ⟨[df, dg]π, [X,Y ]N ⟩,
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[dNdf, dg]π(X,Y ) = (π♯dg)⟨df, [X,Y ]N ⟩ − ⟨X, [dg, dN ⟨df, Y ⟩]π⟩
− ⟨LN

Y df,Lπ
dgX⟩+ ⟨LN

Xdf,LN
dgY ⟩

+ ⟨Y, [dg, dN ⟨df,X⟩]π⟩,
[df, dNdg]π(X,Y ) = −(π♯df)⟨dg, [X,Y ]N ⟩+ ⟨X, [df, dN ⟨dg, Y ⟩]π⟩

+ ⟨LN
Y dg,Lπ

dfX⟩ − ⟨LN
Xdg,LN

dfY ⟩
− ⟨Y, [df, dN ⟨dg,X⟩]π⟩.

Therefore by the equation (4.25), we obtain for any X,Y in X(M), f and g
in C∞(M),

(Aπ,N (X,Y ))(df, dg) = (Aπ,N (X,Y ))(df, dg)

+ (d(Cπ
N (df, dg)))(X,Y )− (d(Cπ

N (df, dg)))(X,Y )

= (Aπ,N (X,Y ))(df, dg)− (AN,π(df, dg))(X,Y )

− (d(Cπ
N (df, dg)))(X,Y )

= (dπ[X,Y ]N − [dπX,Y ]N (df, dg)− [X, dπY ]N )(df, dg)

− (dN [df, dg]π − [dNdf, dg]π − [df, dNdg]π)(X,Y )

− (d(Cπ
N (df, dg)))(X,Y )

= (π♯df)⟨[X,Y ]N , dg⟩
− (π♯dg)⟨[X,Y ]N , df⟩ − ⟨[X,Y ]N , [df, dg]π⟩
− (NY )⟨X, [df, dg]π⟩+ ⟨df, [Y, dπ⟨X, dg⟩]N ⟩
+ ⟨Lπ

dgX,LN
Y df⟩ − ⟨Lπ

dfX,LN
Y dg⟩

− ⟨dg, [Y, dπ⟨X, df⟩]N ⟩
+ (NX)⟨Y, [df, dg]π⟩ − ⟨df, [X, dπ⟨Y, dg⟩]N ⟩
− ⟨Lπ

dgY,LN
Xdf⟩+ ⟨Lπ

dfY,LN
Xdg⟩

+ ⟨dg, [X, dπ⟨Y, df⟩]N ⟩
− (NX)⟨[df, dg]π, Y ⟩
+ (NY )⟨[df, dg]π, X⟩+ ⟨[df, dg]π, [X,Y ]N ⟩
+ (π♯dg)⟨df, [X,Y ]N ⟩ − ⟨X, [dg, dN ⟨df, Y ⟩]π⟩
− ⟨LN

Y df,Lπ
dgX⟩+ ⟨LN

Xdf,LN
dgY ⟩

+ ⟨Y, [dg, dN ⟨df,X⟩]π⟩
− (π♯df)⟨dg, [X,Y ]N ⟩+ ⟨X, [df, dN ⟨dg, Y ⟩]π⟩
+ ⟨LN

Y dg,Lπ
dfX⟩ − ⟨LN

Xdg,LN
dfY ⟩

− ⟨Y, [df, dN ⟨dg,X⟩]π⟩
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− (d(Cπ
N (df, dg)))(X,Y )

= ⟨df, [Y, dπ⟨X, dg⟩]N ⟩ − ⟨dg, [Y, dπ⟨X, df⟩]N ⟩
− ⟨df, [X, dπ⟨Y, dg⟩]N ⟩+ ⟨dg, [X, dπ⟨Y, df⟩]N ⟩
− ⟨X, [dg, dN ⟨df, Y ⟩]π⟩+ ⟨Y, [dg, dN ⟨df,X⟩]π⟩
+ ⟨X, [df, dN ⟨dg, Y ⟩]π⟩ − ⟨Y, [df, dN ⟨dg,X⟩]π⟩
− (d(Cπ

N (df, dg)))(X,Y )

= −⟨df,Lπ
dN ⟨X,dg⟩Y + [dπ⟨X, dg⟩, Y ]N ⟩

+ ⟨dg,Lπ
dN ⟨X,df⟩Y + [dπ⟨X, df⟩, Y ]N ⟩

+ ⟨df,Lπ
dN ⟨Y,dg⟩X + [X, dπ⟨Y, dg⟩]N ⟩

− ⟨dg,Lπ
dN ⟨Y,df⟩X + [X, dπ⟨Y, df⟩]N ⟩

+ ⟨X,Lπ
dN ⟨df,Y ⟩dg⟩ − ⟨Y,Lπ

dN ⟨df,X⟩dg⟩

− ⟨X,Lπ
dN ⟨dg,Y ⟩df⟩+ ⟨Y,Lπ

dN ⟨dg,X⟩df⟩

− (d(Cπ
N (df, dg)))(X,Y )

+ ⟨df,Lπ
dN ⟨X,dg⟩Y ⟩ − ⟨dg,Lπ

dN ⟨X,df⟩Y ⟩

− ⟨df,Lπ
dN ⟨Y,dg⟩X⟩+ ⟨dg,Lπ

dN ⟨Y,df⟩X⟩

= −⟨df,Lπ
dN (Xg)Y + [dπ(Xg), Y ]N ⟩

+ ⟨dg,Lπ
dN (Xf)Y + [dπ(Xf), Y ]N ⟩

+ ⟨df,Lπ
dN (Y g)X + [X, dπ(Y g)]N ⟩

− ⟨dg,Lπ
dN (Y f)X + [X, dπ(Y f)]N ⟩

+ Lπ
dN (Y f)⟨X, dg⟩ − Lπ

dN (Xf)⟨Y, dg⟩

− Lπ
dN (Y g)⟨X, df⟩+ Lπ

dN (Xg)⟨Y, df⟩

− (d(Cπ
N (df, dg)))(X,Y )

= −⟨df,Lπ
dN (Xg)Y + [dπ(Xg), Y ]N ⟩

+ ⟨dg,Lπ
dN (Xf)Y + [dπ(Xf), Y ]N ⟩

+ ⟨df,Lπ
dN (Y g)X + [X, dπ(Y g)]N ⟩

− ⟨dg,Lπ
dN (Y f)X + [X, dπ(Y f)]N ⟩

+ (π♯N∗d(Y f))(Xg)− (π♯N∗d(Xf))(Y g)

− (π♯N∗d(Y g))(Xf) + (π♯N∗d(Xg))(Y f)

− (d(Cπ
N (df, dg)))(X,Y )

= −⟨df,Lπ
dN (Xg)Y + [dπ(Xg), Y ]N ⟩
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+ ⟨dg,Lπ
dN (Xf)Y + [dπ(Xf), Y ]N ⟩

+ ⟨df,Lπ
dN (Y g)X + [X, dπ(Y g)]N ⟩

− ⟨dg,Lπ
dN (Y f)X + [X, dπ(Y f)]N ⟩

+ ⟨(π♯N∗ −Nπ♯)d(Xg), d(Y f)⟩
− ⟨(π♯N∗ −Nπ♯)d(Xf), d(Y g)⟩
− (d(Cπ

N (df, dg)))(X,Y ).

For any Di in X∗(M), i = 1, 2, 3, we calculate

Aπ,N (D1, D2 ∧D3) = dπ[D1, D2 ∧D3]N − [dπD1, D2 ∧D3]N

− (−1)degD1+1[D1, dπ(D2 ∧D3)]N

= dπ([D1, D2]N ∧D3

+ (−1)(degD1+1)degD2D2 ∧ [D1, D3]N )

− ([dπD1, D2]N ∧D3

+ (−1)(degD1+2)degD2D2 ∧ [dπD1, D3]N )

− (−1)degD1+1[D1, dπD2 ∧D3

+ (−1)degD2D2 ∧ dπD3]N

= dπ[D1, D2]N ∧D3

+ (−1)degD1+degD2−1[D1, D2]N ∧ dπD3

+ (−1)(degD1+1)degD2dπD2 ∧ [D1, D3]N

+ (−1)(degD1+1)degD2+degD2D2 ∧ dπ[D1, D3]N

− [dπD1, D2]N ∧D3

− (−1)degD1degD2D2 ∧ [dπD1, D3]N

+ (−1)degD1 [D1, dπD2]N ∧D3

+ (−1)degD1+(degD1+1)(degD2+1)dπD2 ∧ [D1, D3]N

+ (−1)degD1+degD2 [D1, D2]N ∧ dπD3

+ (−1)degD1+degD2+(degD1+1)degD2D2 ∧ [D1, dπD3]N

= (dπ[D1, D2]N − [dπD1, D2]N

− (−1)degD1+1[D1, dπD2]N ) ∧D3

+ (−1)degD1degD2D2 ∧ (dπ[D1, D3]N − [dπD1, D3]N
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− (−1)degD1+1[D1, dπD3]N )

= Aπ,N (D1, D2) ∧D3

+ (−1)degD1degD2D2 ∧Aπ,N (D1, D3)

and

Aπ,N (D1, D2) = dπ[D1, D2]N − [dπD1, D2]N − (−1)degD1+1[D1, dπD2]N

= dπ(−(−1)(degD1−1)(degD2−1)[D2, D1]N )

− (−1)degD1(degD2−1)[D2, dπD1]N

+ (−1)degD1+1+(degD1−1)degD2 [dπD2, D1]N

= −(−1)(degD1−1)(degD2−1)(dπ[D2, D1]N

− (−1)degD2+1[D2, dπD1]N − [dπD2, D1]N )

= −(−1)(degD1−1)(degD2−1)Aπ,N (D2, D1).

From the above, the conclusion follows from these equations and Lemma
4.1.6.

4.2 The definition and properties of pseudo-Poisson-
Nijenhuis manifolds

In this section, we define Pseudo-Poisson-Nijenhuis manifolds and investi-
gate properties of them.

Definition 46 ([32]). Let M be a C∞-manifold, π a 2-vector field on M ,
a (1, 1)-tensor N on M a Nijenhuis structure compatible with π, and Φ a
3-vector field on M . Then a triple (π,N,Φ) is a pseudo-Poisson-Nijenhuis
structure on M if the following conditions hold:

(i) [π,Φ] = 0, (4.28)

(ii)
1

2
ια∧β [π, π] = Nια∧βΦ, (4.29)

(iii) Nια∧βLXΦ− ια∧βLNXΦ− ι(LXN∗)(α∧β)Φ = 0, (4.30)

for any X in X(M), α and β in Ω1(M), where ια∧β := ιβια and (LXN
∗)(α∧

β) := (LXN
∗)α∧ β +α∧ (LXN

∗)β. The quadruple (M,π,N,Φ) is called a
pseudo-Poisson-Nijenhuis manifold.
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Remark 12. The reason why we use not “quasi-” but “pseudo-” is to avoid
confusion with a quasi-Poisson manifold in Subsection 2.3.

Now we describe the main theorem in this section. This is one of the
fundamental properties of pseudo-Poisson-Nijenhuis manifolds. A similar
result for Poisson-quasi-Nijenhuis manifolds is also known [38].

Theorem 4.2.1 (Nakamura [32]). Let M be a C∞-manifold, π a 2-vector
field onM , N a Nijenhuis structure onM compatible with π and Φ a 3-vector
field on M . Then a quadruple (M,π,N,Φ) is a pseudo-Poisson-Nijenhuis
manifold if and only if ((TM)N , dπ,Φ) is a quasi-Lie bialgebroid.

Proof. Since a (1, 1)-tensor N is Nijenhuis, the Lie algebroid (TM)N is well-
defined. A triple ((TM)N , dπ,Φ) is a quasi-Lie bialgebroid if and only if
the following three conditions hold: i) dπ is a degree-one derivation of the
Gerstenhaber algebra (X∗(M),∧, [·, ·]N ), ii) d2π = [Φ, ·]N and iii) dπΦ = 0 by
the definition.

i) means that (4.19) holds. This condition is equivalent to the compati-
bility of π and N by Theorem 4.1.5.

Next, For any f in C∞(M), any α and β in Ω1(M), we compute

(d2πf)(α, β) = [π, [π, f ]](α, β) =
1

2
[[π, π], f ](α, β)

=
1

2
ιdf [π, π](α, β) =

1

2
[π, π](df, α, β)

=
1

2
[π, π](α, β, df) =

1

2
ια∧β [π, π](df),

where we use the graded Jacobi identity of the Schouten bracket [·, ·] and
the facts that dπ = [π, ·] and that [D, f ] = (−1)k+1ιdfD for any D in Xk(M).
On the other hand, we have

[Φ, f ]N (α, β) = ιN∗dfΦ(α, β) = Φ(N∗df, α, β)

= Φ(α, β,N∗df) = ια∧βΦ(N
∗df)

= (Nια∧βΦ)(df).

Therefore it follows that d2π = [Φ, ·]N on C∞(M) if and only if the equality
(4.29) holds as a linear map on the exact 1-forms. By C∞(M)-linearity
of (4.29) and the fact that the exact 1-forms generate locally the 1-forms
as a C∞(M)-module, the equality (4.29) holds on Ω1(M) if and only if
d2π = [Φ, ·]N holds on C∞(M).
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Next, under the assumption that the equality (4.29) holds on Ω1(M),
for any X in X(M), any α, β and γ in Ω1(M), we obtain

(d2πX)(α, β, γ) = [π, [π,X]](α, β, γ) =
1

2
[[π, π], X](α, β, γ)

= −1

2
[X, [π, π]](α, β, γ) = −1

2
(LX [π, π])(α, β, γ)

= −1

2
{LX([π, π](α, β, γ))− [π, π](LXα, β, γ)

− [π, π](α,LXβ, γ)− [π, π](α, β,LXγ)}

= −LX

(
1

2
ια∧β [π, π](γ)

)
+

1

2
ιLXα∧β [π, π](γ)

+
1

2
ια∧LXβ [π, π](γ) +

1

2
ια∧β [π, π](LXγ)

= −LX ((Nια∧βΦ)(γ)) + (NιLXα∧βΦ)(γ)

+ (Nια∧LXβΦ)(γ) + (Nια∧βΦ)(LXγ)

= −LX (ια∧βΦ(N
∗γ)) + ιLXα∧βΦ(N

∗γ)

+ ια∧LXβΦ(N
∗γ) + ια∧βΦ(N

∗LXγ)

= −LX (Φ(α, β,N∗γ)) + Φ(LXα, β,N
∗γ)

+ Φ(α,LXβ,N
∗γ) + Φ(α, β,N∗LXγ)

= −LX (Φ(α, β,N∗γ)) + Φ(LXα, β,N
∗γ)

+ Φ(α,LXβ,N
∗γ) + Φ(α, β,LX(N∗γ)− (LXN

∗)γ)

= −LX (Φ(α, β,N∗γ)) + Φ(LXα, β,N
∗γ)

+ Φ(α,LXβ,N
∗γ) + Φ(α, β,LX(N∗γ))

− Φ(α, β, (LXN
∗)γ)

= − (LXΦ) (α, β,N∗γ)− Φ(α, β, (LXN
∗)γ),

where we use the graded Jacobi identity of [·, ·]. On the other hand, we
obtain

[Φ, X]N (α, β, γ) = −[X,Φ]N (α, β, γ) = −(LN
XΦ)(α, β, γ)

= −LN
X(Φ(α, β, γ)) + Φ(LN

Xα, β, γ)

+ Φ(α,LN
Xβ, γ) + Φ(α, β,LN

Xγ)

= −LNX(Φ(α, β, γ)) + Φ(LNXα− (LXN
∗)α, β, γ)

+ Φ(α,LNXβ − (LXN
∗)β, γ)

+ Φ(α, β,LNXγ − (LXN
∗)γ)

= −LNX(Φ(α, β, γ)) + Φ(LNXα, β, γ)
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+ Φ(α,LNXβ, γ) + Φ(α, β,LNXγ)

− Φ((LXN
∗)α, β, γ)− Φ(α, (LXN

∗)β, γ)

− Φ(α, β, (LXN
∗)γ)

= −(LNXΦ)(α, β, γ)− Φ((LXN
∗)α, β, γ)

− Φ(α, (LXN
∗)β, γ)− Φ(α, β, (LXN

∗)γ),

where we use the property that LN
Xα = LNXα − (LXN

∗)α for any X in
X(M) and any α in Ω1(M). Therefore, we obtain

(d2π − [Φ, X]N )(α, β, γ) = − (LXΦ) (α, β,N∗γ)− Φ(α, β, (LXN
∗)γ)

+ (LNXΦ)(α, β, γ) + Φ((LXN
∗)α, β, γ)

+ Φ(α, (LXN
∗)β, γ) + Φ(α, β, (LXN

∗)γ)

= − (LXΦ) (α, β,N∗γ) + (LNXΦ)(α, β, γ)

+ Φ((LXN
∗)α, β, γ) + Φ(α, (LXN

∗)β, γ)

= −(Nια∧βLXΦ− ια∧βLNXΦ− ι(LXN∗)(α∧β)Φ)(γ).

Hence, under the assumption of (4.29), it follows that d2π = [Φ, ·]N on X(M)
if and only if the equality (4.30) holds.

Since d2π and [Φ, ·]N are derivatives on (Γ(Λ∗TM),∧), it follows that
d2π = [Φ, ·]N on C∞(M) ⊕ X(M) if and only if d2π = [Φ, ·]N on X∗(M).
Therefore ii) is equivalent to that (4.29) and (4.30) hold.

Finally, iii) is equivalent to (4.28) due to that dπΦ = [π,Φ]. Therefore
the proof has been completed.

By the theorem, we have the following result (Theorem 2.4.2) of Kosmann-
Schwarzbach [15].

Corollary 4.2.2 (Theorem 2.4.2, [32]). Under the same assumption as The-
orem 4.2.1, the triple (M,π,N) is a Poisson-Nijenhuis manifold if and only
if ((TM)N , dπ) is a Lie bialgebroid.

As in the case of Poisson-quasi-Nijenhuis Lie algebroids (Definition 44),
we can consider a straightforward generalization of pseudo-Poisson-Nijenhuis
manifolds.

Definition 47 ([32]). A pseudo-Poisson-Nijenhuis Lie algebroid (A, π,N,Φ)
is a Lie algebroid A equipped with a 2-section π in Γ(Λ2A), a Nijenhuis
structure N : A −→ A compatible with π in the sense of Definition 45 and
a 3-section Φ in Γ(Λ3A) satisfying the conditions (4.28), (4.29) and (4.30)
replaced [·, ·] and L with [·, ·]A and LA, respectively.
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Theorem 4.2.3 (Nakamura [32]). If a quadruple (A, π,N,Φ) is a pseudo-
Poisson-Nijenhuis Lie algebroid, then (AN , dπ,Φ) is a quasi-Lie bialgebroid,
where AN is a Lie algebroid deformed by the Nijenhuis structure N .

Now we show three simple and important examples of pseudo-Poisson-
Nijenhuis manifolds.

Example 53 ([32]). A triple (π,N,Φ), where Φ = 0, is a pseudo-Poisson-
Nijenhuis structure if (π,N) is a Poisson-Nijenhuis structure.

Example 54 ([32]). Let (M,π) be a Poisson manifold and set N = 0.
For any dπ-closed 3-vector field Φ, the triple (π,N,Φ) is a pseudo-Poisson-
Nijenhuis structure. In fact, in this case, a pair (π, 0) is compatible obviously
and the conditions (i)-(iii) in Definition 46 are satisfied by

(i) [π,Φ] = dπΦ = 0;

(ii)
1

2
ια∧β [π, π] = 0 = Nια∧βΦ;

(iii) Nια∧βLXΦ− ια∧βLNXΦ− ι(LXN∗)(α∧β)Φ

= 0− ια∧βL0Φ− ι(LX0)(α∧β)Φ

= 0

for any α and β in Ω1(M). Therefore, by Theorem 4.2.1 and Example 2.4.7,
((TM)N , dπ,Φ) is a quasi-Lie bialgebroid and ((TM)N ⊕ (T ∗M)π, ⟨⟨·, ·⟩⟩,
[[·, ·]]Φπ , ρ) is a Courant algebroid, where the Courant bracket [[·, ·]]Φπ is defined
by

[[X,Y ]]Φπ = [X,Y ]0 = 0,

[[ξ, η]]Φπ = [ξ, η]π +Φ(ξ, η, ·),

[[X, ξ]]Φπ =

(
ιXd0ξ +

1

2
d0⟨ξ,X⟩

)
−
(
ιξdπX +

1

2
dπ⟨ξ,X⟩

)
= −ιξdπX − 1

2
dπ⟨ξ,X⟩,

the anchor map ρ satisfies ρ(X+ξ) = NX+π♯ξ = π♯ξ and the pairing ⟨⟨·, ·⟩⟩
is given by (2.105) for any X,Y in X(M), any ξ and η in Ω1(M).

Example 55 ([32]). Let M be a C∞-manifold and set N = a · idTM , where
a is a non-zero real number. For any 2-vector field π in X2(M), the triple
(π,N,Φ), where Φ = 1

2a [π, π], is a pseudo-Poisson-Nijenhuis structure. In
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fact, in this case, a pair (π, a · idTM ) is compatible obviously and the condi-
tions in Definition 46 are satisfied by

(i) [π,Φ] =
1

2a
[π, [π, π]] = 0;

(ii) Nια∧βΦ = aια∧β

(
1

2a
[π, π]

)
=

1

2
ια∧β [π, π];

(iii) Nια∧βLXΦ− ια∧βLNXΦ− ι(LXN∗)(α∧β)Φ

= aια∧βLX

(
1

2a
[π, π]

)
− ια∧βLaX

(
1

2a
[π, π]

)
− ι(LX(a·idTM )∗)(α∧β)

(
1

2a
[π, π]

)
=

1

2
(ια∧βLX [π, π]− ια∧βLX [π, π]− ι0[π, π])

= 0

for any α and β in Ω1(M). Therefore ((TM)N , dπ,Φ) is a quasi-Lie bial-
gebroid and (TM ⊕ T ∗M, ⟨⟨·, ·⟩⟩, [[·, ·]]Φπ , ρ) is a Courant algebroid, where the
Courant bracket [[·, ·]]Φπ is defined by

[[X,Y ]]Φπ = [X,Y ]a·idTM = a[X,Y ],

[[ξ, η]]Φπ = [ξ, η]π +
1

2a
[π, π] (ξ, η, ·),

[[X, ξ]]Φπ =

(
ιXda·idTM ξ +

1

2
da·idTM ⟨ξ,X⟩

)
−
(
ιξdπX +

1

2
dπ⟨ξ,X⟩

)
= a

(
ιXdξ +

1

2
d⟨ξ,X⟩

)
−
(
ιξdπX +

1

2
dπ⟨ξ,X⟩

)
,

the anchor map ρ satisfies ρ(X + ξ) = aX + π♯ξ and the pairing ⟨⟨·, ·⟩⟩ is
given by (2.105) for any X,Y in X(M), ξ and η in Ω1(M).

Example 55 is an example of not a Poisson-Nijenhuis manifold but a
pseudo-Poisson-Nijenhuis manifold.

The following proposition means that two given pseudo-Poisson-Nijenhuis
manifolds generate a new one.

Proposition 4.2.4 (Nakamura [32]). Let (Mi, πi, Ni,Φi), i = 1, 2, be pseudo-
Poisson-Nijenhuis manifolds. Then the product (M1 × M2, π1 + π2, N1 ⊕
N2,Φ1 +Φ2) is a pseudo-Poisson-Nijenhuis manifold.
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Proof. Using the fact that [X1, X2] = 0 for any Xi in X(Mi), i = 1, 2, we
obtain

dπ1+π2(D1 +D2) = dπ1D1 + dπ2D2,

TN1⊕N2(f
1X1 + f2X2, g

1Y1 + g2Y2) = f1g1TN1(X1, Y1) + f2g2TN2(X2, Y2),

CN1⊕N2
π1+π2

(f1α1 + f2α2, g
1β1 + g2β2) = f1g1CN1

π1
(α1, β1) + f2g2CN2

π2
(α2, β2)

for any 2-vector fields πi in X(Mi), (1, 1)-tensors Ni on Mi, k-vector fields
Di in Xk(M), functions f i, gi in C∞(M1×M2), vector fields Xi, Yi in X(M),
1-forms αi and βi in Ω1(Mi), i = 1, 2.

Therefore by the assumptions that (Mi, πi, Ni,Φi), i = 1, 2, are pseudo-
Poisson-Nijenhuis manifolds and straightforward calculations, we can see
that the quadruple (M1×M2, π1+π2, N1⊕N2,Φ1+Φ2) is a pseudo-Poisson-
Nijenhuis manifold.

4.3 Pseudo-symplectic-Nijenhuis manifolds

In this section, we always assume that a 2-vector field π is nondegener-
ate. Then we can reduce one of the conditions for a triple (π,N,Φ) to be
a pseudo-Poisson-Nijenhuis structure. This fact is important in the sense
that we can find pseudo-Poisson-Nijenhuis structures easily. Moreover we
rewrite a pseudo-Poisson-Nijenhuis structure (π,N,Φ) with the nondegen-
erate 2-vector field π using differential forms, and investigate properties of
the structure.

Theorem 4.3.1 (Nakamura [32]). Let π be a nondegenerate 2-vector field,
N a Nijenhuis structure compatible with π, and Φ a 3-vector field. If a triple
(π,N,Φ) satisfies the conditions (4.28) and (4.29) in Definition 46, then
(π,N,Φ) is a pseudo-Poisson-Nijenhuis structure, i.e., (π,N,Φ) satisfies the
condition (4.30).

Proof. We shall prove (4.30). By the nondegeneracy of π, the map π♯ :
T ∗M −→ TM is a bundle isomorphism. Therefore a set {π♯df | f ∈ C∞(M)}
generates locally the vector fields X(M) as a C∞(M)-module. We have
proved in Theorem 4.2.1 that the equality (4.29) holds if and only if d2π =
[Φ, ·] holds on C∞(M). Thus we compute, for any f in C∞(M),

d2π(π
♯df) = d2π(−dπf) = −dπ(d2πf) = −dπ[Φ, f ]N

= − ([dπΦ, f ]N + [Φ, dπf ]N )

= −[Φ, dπf ]N = [Φ, π♯df ]N ,
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where we use π♯df = −dπf in the first and the last step, the fourth equal-
ity follows from (4.19) and the fifth equality does from (4.28). Therefore
d2π = [Φ, ·] holds on the set {π♯df | f ∈ C∞(M)}. Since d2π = [Φ, ·] holds
on C∞(M)⊕ {π♯df | f ∈ C∞(M)} and since both d2π and [Φ, ·]N are deriva-
tives on (Γ(Λ∗TM),∧), we obtain that d2π = [Φ, ·] holds on X(M). This is
equivalent to the condition (4.30) under the assumption of (4.29), so that
the proof has been completed.

In general, it is easier to deal with differential forms than multi-vector
fields. Since a 2-vector field π is nondegenerate, there is a unique 2-form ω
corresponding with π. Hence it is convenient to translate conditions (4.28)
and (4.29) for π into those for ω. We compute⟨

1

2
ια∧β [π, π], γ

⟩
= ⟨[π♯α, π♯β]− π♯[α, β]π, γ⟩

= ⟨[π♯α, π♯β], γ⟩
− ⟨Lπ♯αβ − Lπ♯βα− d⟨π♯α, β⟩, π♯γ⟩

= ⟨[π♯α, π♯β], γ⟩+ Lπ♯α⟨β, π♯γ⟩ − ⟨β,Lπ♯α(π
♯γ)⟩

− Lπ♯β⟨α, π♯γ⟩+ ⟨α,Lπ♯β(π
♯γ)⟩ − (π♯γ)⟨π♯α, β⟩

= ⟨[π♯α, π♯β],−ω♭π♯γ⟩+ (π♯α)⟨−ω♭π♯β, π♯γ⟩
− ⟨−ω♭π♯β, [π♯α, π♯γ]⟩ − (π♯β)⟨−ω♭π♯α, π♯γ⟩
+ ⟨−ω♭π♯α, [π♯β, π♯γ]⟩ − (π♯γ)⟨π♯α,−ω♭π♯β⟩

= ω([π♯α, π♯β], π♯γ)− (π♯α)(ω(π♯β, π♯γ))

− ω([π♯α, π♯γ], π♯β) + (π♯β)(ω(π♯α, π♯γ))

+ ω([π♯β, π♯γ], π♯α)− (π♯γ)(ω(π♯α, π♯β))

= −dω(π♯α, π♯β, π♯γ)
= ⟨−ιπ♯α∧π♯βdω, π

♯γ⟩ (4.31)

and

⟨Nια∧βΦ, γ⟩ = ⟨ια∧βΦ, N∗γ⟩ = Φ(α, β,N∗γ)

= Φ(−ω♭π♯α,−ω♭π♯β,−ω♭π♯N∗γ)

= (ω♭Φ)(π♯α, π♯β,Nπ♯γ)

= ⟨ιπ♯α∧π♯β(ω
♭Φ), Nπ♯γ⟩

= ⟨N∗ιπ♯α∧π♯β(ω
♭Φ), π♯γ⟩ (4.32)
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for any α, β and γ in Ω1(M), where a bundle map ω♭ : TM −→ T ∗M is
defined by ⟨ω♭X,Y ⟩ := ω(X,Y ). Therefore setting ϕ := −ω♭Φ, we obtain
the equivalence of the condition (4.29) and

ιX∧Y dω = N∗ιX∧Y ϕ (X,Y ∈ X(M)) (4.33)

due to the nondegeneracy of π. Under the assumption of (4.33), we calculate

[π,Φ](α1, α2, α3, α4)

= (dπΦ)(α1, α2, α3, α4)

= (π♯α1)(Φ(α2, α3, α4))− (π♯α2)(Φ(α1, α3, α4))

+ (π♯α3)(Φ(α1, α2, α4))− (π♯α4)(Φ(α1, α2, α3))

− Φ([α1, α2]π, α3, α4) + Φ([α1, α3]π, α2, α4)

− Φ([α1, α4]π, α2, α3)− Φ([α2, α3]π, α1, α4)

+ Φ([α2, α4]π, α1, α3)− Φ([α3, α4]π, α1, α2)

= (π♯α1)((π
♯ϕ)(α2, α3, α4))− (π♯α2)((π

♯ϕ)(α1, α3, α4))

+ (π♯α3)((π
♯ϕ)(α1, α2, α4))− (π♯α4)((π

♯ϕ)(α1, α2, α3))

− (π♯ϕ)([α1, α2]π, α3, α4) + (π♯ϕ)([α1, α3]π, α2, α4)

− (π♯ϕ)([α1, α4]π, α2, α3)− (π♯ϕ)([α2, α3]π, α1, α4)

+ (π♯ϕ)([α2, α4]π, α1, α3)− (π♯ϕ)([α3, α4]π, α1, α2)

= (π♯α1)(−ϕ(π♯α2, π
♯α3, π

♯α4))− (π♯α2)(−ϕ(π♯α1, π
♯α3, π

♯α4))

+ (π♯α3)(−ϕ(π♯α1, π
♯α2, π

♯α4))− (π♯α4)(−ϕ(π♯α1, π
♯α2, π

♯α3))

+ ϕ(π♯[α1, α2]π, π
♯α3, π

♯α4)− ϕ(π♯[α1, α3]π, π
♯α2, π

♯α4)

+ ϕ(π♯[α1, α4]π, π
♯α2, π

♯α3) + ϕ(π♯[α2, α3]π, π
♯α1, π

♯α4)

− ϕ(π♯[α2, α4]π, π
♯α1, π

♯α3) + ϕ(π♯[α3, α4]π, π
♯α1, π

♯α2)

= −(π♯α1)(ϕ(π
♯α2, π

♯α3, π
♯α4)) + (π♯α2)(ϕ(π

♯α1, π
♯α3, π

♯α4))

− (π♯α3)(ϕ(π
♯α1, π

♯α2, π
♯α4)) + (π♯α4)(ϕ(π

♯α1, π
♯α2, π

♯α3))

+ ϕ

(
1

2
ια1∧α2 [π, π] + [π♯α1, π

♯α2], π
♯α3, π

♯α4

)
− ϕ

(
−1

2
ια1∧α3 [π, π] + [π♯α1, π

♯α3], π
♯α2, π

♯α4

)
+ ϕ

(
−1

2
ια1∧α4 [π, π] + [π♯α1, π

♯α4], π
♯α2, π

♯α3

)
+ ϕ

(
−1

2
ια2∧α3 [π, π] + [π♯α2, π

♯α3], π
♯α1, π

♯α4

)
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− ϕ

(
−1

2
ια2∧α4 [π, π] + [π♯α2, π

♯α4], π
♯α1, π

♯α3

)
+ ϕ

(
−1

2
ια3∧α4 [π, π] + [π♯α3, π

♯α4], π
♯α1, π

♯α2

)
= −(dϕ)(π♯α1, π

♯α2, π
♯α3, π

♯α4)

+ ϕ

(
π♯ω♭

(
1

2
ια1∧α2 [π, π]

)
, π♯α3, π

♯α4

)
− ϕ

(
π♯ω♭

(
1

2
ια1∧α3 [π, π]

)
, π♯α2, π

♯α4

)
+ ϕ

(
π♯ω♭

(
1

2
ια1∧α4 [π, π]

)
, π♯α2, π

♯α3

)
+ ϕ

(
π♯ω♭

(
1

2
ια2∧α3 [π, π]

)
, π♯α1, π

♯α4

)
− ϕ

(
π♯ω♭

(
1

2
ια2∧α4 [π, π]

)
, π♯α1, π

♯α3

)
+ ϕ

(
π♯ω♭

(
1

2
ια3∧α4 [π, π]

)
, π♯α1, π

♯α2

)
= −(dϕ)(π♯α1, π

♯α2, π
♯α3, π

♯α4)

− (π♯ϕ)

(
ω♭

(
1

2
ια1∧α2 [π, π]

)
, α3, α4

)
+ (π♯ϕ)

(
ω♭

(
1

2
ια1∧α3 [π, π]

)
, α2, α4

)
− (π♯ϕ)

(
ω♭

(
1

2
ια1∧α4 [π, π]

)
, α2, α3

)
+ (π♯ϕ)

(
ω♭

(
1

2
ια2∧α3 [π, π]

)
, α1, α4

)
+ (π♯ϕ)

(
ω♭

(
1

2
ια2∧α4 [π, π]

)
, α1, α3

)
− (π♯ϕ)

(
ω♭

(
1

2
ια3∧α4 [π, π]

)
, α1, α2

)
= −(dϕ)(π♯α1, π

♯α2, π
♯α3, π

♯α4)

− Φ
(
ω♭Nια1∧α2Φ, α3, α4

)
+Φ

(
ω♭Nια1∧α3Φ, α2, α4

)
− Φ

(
ω♭Nια1∧α4Φ, α2, α3

)
− Φ

(
ω♭Nια2∧α3Φ, α1, α4

)
+Φ

(
ω♭Nια2∧α4Φ, α1, α3

)
− Φ

(
ω♭Nια3∧α4Φ, α1, α2

)
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= −(dϕ)(π♯α1, π
♯α2, π

♯α3, π
♯α4)

− ⟨ια3∧α4Φ, ω
♭
N ια1∧α2Φ⟩+ ⟨ια2∧α4Φ, ω

♭
N ια1∧α3Φ⟩

− ⟨ια2∧α3Φ, ω
♭
N ια1∧α4Φ⟩ − ⟨ια1∧α4Φ, ω

♭
N ια2∧α3Φ⟩

+ ⟨ια1∧α3Φ, ω
♭
N ια2∧α4Φ⟩ − ⟨ια1∧α2Φ, ω

♭
N ια3∧α4Φ⟩

= −(dϕ)(π♯α1, π
♯α2, π

♯α3, π
♯α4)

+ ωN (ια3∧α4Φ, ια1∧α2Φ)− ωN (ια2∧α4Φ, ια1∧α3Φ)

+ ωN (ια2∧α3Φ, ια1∧α4Φ) + ωN (ια1∧α4Φ, ια2∧α3Φ)

− ωN (ια1∧α3Φ, ια2∧α4Φ) + ωN (ια1∧α2Φ, ια3∧α4Φ)

= −(dϕ)(π♯α1, π
♯α2, π

♯α3, π
♯α4) (4.34)

for any αi in Ω1(M), where ωN is given by ωN (X,Y ) := ⟨ω♭NX,Y ⟩ for any
X and Y in X(M) and we see that ωN is a 2-form on M by (2.96). From
the above, we see that the conditions (4.28) and (4.29) are equivalent to the
condition (4.33) and the closedness of ϕ if π is nondegenerate. Therefore we
define as follows:

Definition 48 ([32]). Let M be a C∞-manifold, ω a nondegenerate 2-
form on M , a (1, 1)-tensor N a Nijenhuis structure compatible with the
nondegenerate 2-vector field π corresponding to ω, and ϕ a closed 3-form
on M . Then a triple (ω,N, ϕ) is a pseudo-symplectic-Nijenhuis structure
on M if the condition (4.33) holds. The quadruple (M,ω,N, ϕ) is called a
pseudo-symplectic-Nijenhuis manifold.

The following corollary states that we can construct new pseudo-symplectic-
Nijenhuis structures from a symplectic-Nijenhuis structure.

Corollary 4.3.2 (Nakamura [32]). Let (M,ω,N) be a symplectic-Nijenhuis
manifold and ϕ a closed 3-form satisfying ιNXϕ = 0 for any X in X(M).
Then (M,ω,N, ϕ) is a pseudo-symplectic Nijenhuis manifold.

Proof. In this case, the condition (4.33) to prove is

N∗ιX∧Y ϕ = 0 (X,Y ∈ X(M)) (4.35)

because of dω = 0. By computing that, for any Z in X(M),

⟨N∗ιX∧Y ϕ,Z⟩ = ϕ(X,Y,NZ) = ϕ(NZ,X, Y )

= (ιNZϕ)(X,Y ) = 0,

where we use ιNXϕ = 0, we conclude that (4.35) holds. Hence (ω,N, ϕ) is a
pseudo-symplectic Nijenhuis structure.
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Example 56 ([32]). On the 6-torus T6 with angle coordinates (θ1, θ2, θ3, θ4, θ5, θ6),
we consider the standard symplectic structure ω := dθ1 ∧ dθ2 + dθ3 ∧ dθ4 +
dθ5 ∧ dθ6 and a regular Poisson structure with rank 2,

πλ :=
∂

∂θa
∧
(
∂

∂θb
+ λ

∂

∂θc

)
,

where λ is in R and a, b and c are three distinct numbers (Example 3 and

Example 14). Setting Nλ := π♯λ ◦ω
♭, we obtain a symplectic-Nijenhuis struc-

ture (ω,Nλ) on T6 (see [42] for a general theory of constructing symplectic-
Nijenhuis structures from symplectic and Poisson structures). Since the rank
of Nλ is 2 at each points, the kernel of N∗

λ is a subbundle with rank 4 of the
cotangent bundle of T6. Hence for any closed 3-form ϕ in Γ(Λ3KerN∗

λ), a
triple (ω,Nλ, ϕ) is a pseudo-symplectic-Nijenhuis structure on T6 by Corol-
lary 4.3.2.

The following simple example is of (ω,N, ϕ) being a pseudo-symplectic
Nijenhuis structure but not of (ω,N) being a symplectic Nijenhuis structure.

Example 57 ([32]). Let (x1, x2, x3, x4) be the canonical coordinates in R4

and f(x), g(x) in C∞(R) not constants but non-vanishing functions. We set

N :=


N1

1
(N1

1−N3
3 )

2

N1
2

0 0

N1
2 N1

1 0 0

0 0 N3
3

(N1
1−N3

3 )
2

N3
4

0 0 N3
4 N3

3

 ,

where N i
j ’s are in R× and satisfy that N1

1 ̸= N3
3 ,

ω := f(a3x
3 + a4x

4)dx1 ∧ dx2 + g(a1x
1 + a2x

2)dx3 ∧ dx4,

where ai’s satisfy a3 : a4 = N3
4 : (N1

1 −N3
3 ) and a1 : a2 = N1

2 : (N1
1 −N3

3 ),
and

ϕ := (N1
1 )

−1f ′(a3x
3 + a4x

4)dx1 ∧ dx2 ∧ (a3dx
3 + a4dx

4)

+ (N3
3 )

−1g′(a1x
1 + a2x

2)(a1dx
1 + a2dx

2) ∧ dx3 ∧ dx4.

Then (ω,N, ϕ) is a pseudo-symplectic Nijenhuis structure on R4. A pair
(ω,N) is not symplectic-Nijenhuis by the fact that dω ̸= 0.

Finally we describe a property of pseudo-symplectic Nijenhuis structures.
This is the main theorem in this section.
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Theorem 4.3.3 (Nakamura [32]). Let (ω,N, ϕ) be a pseudo-symplectic Ni-
jenhuis structure onM and π the nondegenerate 2-vector field corresponding
to ω. Then (πN , ϕ) is a twisted Poisson structure, i.e., the pair satisfies

1

2
[πN , πN ] = π♯Nϕ,

dϕ = 0.

We need the following lemma.

Lemma 4.3.4 ([12]). Let (A, [·, ·]A, ρA) be a Lie algebroid overM equipped
with a degree-one derivation δ of the Gerstenhaber algebra (Γ(Λ∗A),∧, [·, ·]A).
Then there exists a 2-vector field πM on M given by

πM (df1, df2) := −⟨ρA(δf1), df2⟩

for any f1 and f2 in C∞(M). Moreover if (A, δ, ϕ) is a quasi-Lie bialgebroid
over M , Then the bivector field πM on M satisfies

1

2
[πM , πM ] = ϕM ,

[πM , ϕM ] = 0,

where ϕM is the 3-vector field ϕM = ρA(ϕ), and ρA : Γ(∧A) → X3(M) is
the extension of the anchor map ρA on A given by the formula

ρA(X1 ∧X2 ∧X3) := ρA(X1) ∧ ρA(X2) ∧ ρA(X3)

for any Xi in Γ(A).

Proof of Theorem 4.3.3. By Definition 48, we obtain dϕ = 0. By Theorem
4.2.1, ((TM)N , dπ,Φ), where Φ := π♯ϕ, is a quasi-Lie bialgebroid. Because
of Lemma 4.3.4, the 2-vector field induced by dπ coincides with πN . In fact,
we calculate

πM (df1, df2) = −⟨N(dπf1), df2⟩ = −⟨dπf1, N∗df2⟩

= −⟨(π♯N∗df2)f1 = −(π♯Ndf2)f1

= −⟨df1, π♯Ndf2⟩ = ⟨π♯Ndf1, df2⟩
= πN (df1, df2)



4.3. PSEUDO-SYMPLECTIC-NIJENHUIS MANIFOLDS 105

for any f1 and f2 in C∞(M). Moreover, since we obtain

(NΦ)(α1, α2, α3) = Φ(N∗α1, N
∗α2, N

∗α3)

= (π♯ϕ)(N∗α1, N
∗α2, N

∗α3)

= −ϕ(π♯N∗α1, π
♯N∗α2, π

♯N∗α3)

= −ϕ(π♯Nα1, π
♯
Nα2, π

♯
Nα3)

= (π♯Nϕ)(α1, α2, α3)

for any α1, α2 and α3 in Ω1(M), by Lemma 4.3.4 again, we have

1

2
[πN , πN ] = NΦ

= π♯Nϕ.

Therefore (πN , ϕ) is a twisted Poisson structure on M .

This theorem means that we can construct twisted Poisson structures
from pseudo-symplectic Nijenhuis structures. Moreover such a twisted Pois-
son structures (πN , ϕ) is compatible with the Nijenhuis structure N due to
Proposition 4.1.4.
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