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Chapter 1

Introduction

In this thesis we develop the theory of non-commutative crepant resolutions
(=NCCRs) of higher dimension. The notion of NCCRs is firstly introduced by
M. Van den Bergh in relation to the study of the derived category of algebraic
varieties, and now the theory of NCCRs in dimension three is quite well estab-
lished by Van den Bergh, O. Iyama, W. Donovan, M. Wemyss, and many other
researchers (both of algebraists and algebraic geometers). However, in contrast
to the three dimensional cases, it seems that there are few works on NCCRs of
higher dimension.

In this thesis, we study NCCRs that appear in the context of higher dimen-
sional simple flops.

In Chapter 2, we recall definitions of notions we deal with in this thesis. We
also recall basic properties of those notions.

In Chapter 3, we study Mukai flops from the point of view of NCCRs.
Namely, we show some results from moduli problems and derived equivalences.
In particular, we study mutations of NCCRs that was introduced by Iyama and
Wemyss in the case of Mukai flop, and show that we can interpret P-twists in
terms of mutations of NCCRs.

In Chapter 4, we study Abuaf’s five dimensional flop (which we call the
Abuaf flop) from the viewpoint of NCCRs. We show that the framework of
Toda and Uehara for constructing tilting bundles works for this setting, and
prove that we can produce a derived equivalence using those tilting bundles.
Our derived equivalence is different from the one constructed by Segal, and we
also show that the difference between our derived equivalence and Segal’s one
can be described as a spherical twist. We also study mutations of NCCR as in
the case of Mukai flops.

In Chapter 5, we study a seven dimensional flop that was found indepen-
dently by Abuaf and Ueda. Although the derived equivalence for this flop was
already proved by Ueda, we provide an alternative proof in which we use tilting
bundles. First we prove both sides of the flop admit tilting bundles and then
show that those tilting bundles give derived equivalences for the flop. In this
case, it is much more difficult to find tilting bundles explicitly than the cases of



Mukai flops or the Abuaf flop.

In Chapter 6, we study mutations of NCCRs of Gorenstein cyclic quotient
singularities. We show a similar result as in the cases of Mukai flops or the
Abuaf flop also holds for this setting.

In Chapter 7, we study deformations of derived equivalences for crepant
resolutions constructed by using tilting bundles. If a derived equivalence be-
tween two crepant resolutions is constructed by using tilting bundles, we say
that the equivalence is of tilting-type. We show that tilting-type derived equiv-
alence lift to an equivalence for deformations of resolutions under certain good
conditions. As an application, we study a relation between tilting-type derived
equivalences for stratified Mukai flops and tilting-type derived equivalences for
stratified Atiyah flops.



1.1 Notations and Conventions

Throughout this thesis, we adopt the following notations.

. Sym%M (resp. Sym’§< €) : the k-th symmetric product of an R-module
M (resp. a vector bundle £ on X).

o P(V):=V\{0}/C* : the projectivization of a vector space V.

e Tot(&) := Specy Sym¥ E* : the total space of a vector bundle € on X.
e Qcoh(X) : the category of quasi-coherent sheaves on a scheme X.

e coh(X) : the category of coherent sheaves on a Noetherian scheme X.
e mod(A) : the category of finitely generated right A-modules.

e add(M) : the additive closure of M.

e D*(A), (x =0 or - orb) : the (unbounded or bounded above or bounded)
derived category of an abelian category .A.

e D*(X) := D*(coh(X)), (x = — or b) : the (bounded above or bounded)
derived category of coh(X).

e D*(A) := D*(mod(A)), (x = — or b) : the (bounded above or bounded)
derived category of mod(A).

e FMp, FM3 ™Y : A Fourier-Mukai functor from DP(X) to DP(Y") whose
kernel is P € DP(X x Y).

e T¢ : the spherical twist around a spherical object £.
o in(M) : the left (Iyama-Wemyss) mutation of M at N.

e &y : DP(Endg(M)) — DP(Endg(un(M))) : the (Iyama-Wemyss) muta-
tion functor.

In addition, we refer to the bounded derived category DP(X) of coherent sheaves
on X as the derived category of X.

By CCR we mean commutative crepant resolution and by NCCR non-
commutative crepant resolution.
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Chapter 2

Preliminaries

2.1 Non-commutative crepant resolution

2.1.1 Non-commutative crepant resolution

Definition 2.1.1. Let R be a Cohen-Macaulay (commutative) algebra, and M
a non-zero reflexive R-module. We set A := Endg(M). We say that the R-
algebra A is a non-commutative crepant resolution (=NCCR) of R, or M gives
an NCCR of R if

gldim A, = dim R,

for all p € Spec R and A is a maximal Cohen-Macaulay R-module.
If we assume that R is Gorenstein, then we can relax the definition of NCCRs.

Lemma 2.1.2 ([IW14a]). Let us assume that R is Gorenstein and M is a non-
zero reflexive R-module. In this case, an R-algebra A := Endg(M) is an NCCR
of R if and only if gldim A < 0o and A is a mazimal Cohen-Macaulay R-module.

There is a criterion given by Iyama and Wemyss [IW14a] that does not refer
to finiteness of global dimension.

Lemma 2.1.3. Let R be a local normal Gorenstein ring. Let M be a reflexive
R-module such that A = Endr(M) is a mazimal Cohen-Macaulay R-module.
Then A is an NCCR of R if and only if

add(M) = {N € ref(R) | Homg(M, N) € CM(R)}.

Here, add(M) is the additive closure of M, that is, the category of finitely
generated R-modules that are direct summands of M®V for some integer N.

We regard NCCRs as a non-commutative analog of (commutative) crepant
resolutions (= CCR). The following conjecture is due to Bondal, Orlov, and
Van den Bergh.



Conjecture 2.1.4 ([VdB04b, Conjecture 4.6]). Let R be a reduced Gorenstein
C-algebra of finite type. Then all crepant resolutions of R and all NCCRs of
R are derived equivalent. This means that, if we have two crepant resolutions
Y and Y’ of X = Spec R and two NCCRs A and A’ of R, then we have exact
equivalences

DP(Y) ~ DP(Y’) ~ DP(A) ~ DP(A').

Van den Bergh showed that Conjecture 2.1.4 holds if R is of dimension 3 and
has only terminal singularities [VdB04a, VdB04b]. The existence of an NCCR
and a derived equivalence between crepant resolutions and NCCRs are studied
in many literatures [Boc12, BLV10, Dao10, HN17, Kal08, SV15a, SV15b, SV17,
TU10].

The following theorem due to Iyama and Wemyss indicates that NCCR is a
non-commutative analog of CCR.

Theorem 2.1.5 (Iyama-Wemyss). Let X be an affine variety and f:Y — X
be a resolution of X. Assume that there exists an algebra A which is derived
equivalent to Y. Then'Y is a CCR of X if and only if A is isomorphic to an
NCCR of X.

Example 2.1.6. If R is regular, then R gives an NCCR R = Endg(R) of R.

Example 2.1.7. Next we give a non-trivial example. Let G < SL(n,C) be a
finite subgroup and S = Clx, ..., 2] a polynomial ring. Then the group G acts
on S. We define a skew group ring S * G as follows. S*xG is S ®c CG as a
C-vector space. The multiplication is defined as

(fog) - (feg)=fef) 299"
Let S¢ be an invariant ring. Then a morphism
S+ G — Endga(S), fog— (f — fa(f))

gives an algebra isomorphism. It is known that S« G has finite global dimension
and S and Endgc (S) are maximal Cohen-Macaulay S-modules. Thus, in this
case, an S¢-module S gives an NCCR S * G of S©.

2.1.2 Tilting bundles

The notion of tilting bundles provides a geometric way to construct NCCRs.
Tilting bundles are defined as a generator with certain properties. First we
recall the definition of generators.

Definition 2.1.8. For a triangulated category D, we say that an object E € D
is a generator of D (or E generates D) if for F € D, Homx (E, F[i]) = 0 (for
all i € Z) implies F = 0. We also say that E is a classical generator of D (or
E classically generates D) if the smallest thick subcategory of D containing E
is the whole category D.
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It is easy to see that a classical generator is a generator.
In the following, a vector bundle on a scheme X means a locally free sheaf
of finite rank on X.

Definition 2.1.9. A vector bundle T on a scheme X is said to be partial tilting
if

Ext (T,T) =0
for all p > 0. A partial tilting bundle T is called a tilting bundle if T is in
addition a generator of the category D(Qcoh(X)). We say that a tilting bundle
T is good if it contains a trivial line bundle as a direct summand.

In some literatures (eg. [Kal08, TU10]), tilting bundles are defined as a par-
tial tilting bundle that is a generator of D~ (X) := D~ (coh(X)). The following
lemma resolves this ambiguity of the definition of tilting bundles.

Lemma 2.1.10. Let X be a scheme that is projective over an affine scheme
S = SpecR, and E a partial tilting bundle on X. Then the following are
equivalent.

(i) E is a classical generator of the category of perfect complexes Perf(X) of
X.

(i) E is a generator of D~ (X)
(iii) E is a generator of D~ (Qcoh(X))

(iv) E is a generator of the unbounded derived category D(Qcoh(X)) of quasi-
coherent sheaves.

Here perfect complex means a complex that is locally isomorphic to a bounded
complex of vector bundles on X.

Proof. Since D~(X) < D™ (Qcoh(X)) € D(Qcoh(X)), we only have to prove
that (ii) implies (i) and that (i) implies (iv).

According to Theorems 3.1.1 and 2.1.2 of [BVdBO03] (and also by Theorem
3.1.3 of loc. cit.), F is a classical generator of Perf(X) if and only if E is a
generator of D(Qcoh(X)).

Let us assume that F is a generator of D™ (X) and put A := Endx(FE).
Then the following Proposition 2.1.12 implies that there is an equivalence of
categories

¥ :D(X) - DP(A)

such that U(E) = A (In [TU10], Toda and Uehara proved this equivalence under
the assumption that the partial tilting bundle F is a generator of D~ (X)). Let
KP(proj(A)) be a full subcategory of DP(A) consisting of complexes that are
quasi-isomorphic to bounded complexes of projective modules. Since complexes
in Perf(X) or KP(proj(A)) are characterized as homologically finite objects (see
[Orl06, Proposition 1.11]), the equivalence above restricts to an equivalence
Perf(X) ~ KP(proj(A)). Since the category KP(proj(A)) is classically generated
by A, the smallest thick subcategory containing F should be Perf(X). 0O

11



We adopt the definition for tilting bundles in Definition 2.1.9 because in
some parts of discussions in this thesis we need to deal with complexes of quasi-
coherent sheaves.

Corollary 2.1.11. Let X be a scheme that is projective over an affine scheme
Spec R. Assume that X admits a tilting bundle E. Then the dual EY of E is
also a tilting bundle.

Proof. Tt is clear that EV is a partial tilting bundle. Since E is a tilting bundle,
E is a classical generator of Perf(X). Thus EV is also a classical generator of

Perf(X). |

If we find a tilting bundle on a projective scheme over an affine variety, we
have an equivalence between the derived category of the scheme and the derived
category of a non-commutative ring.

Proposition 2.1.12 ([TU10, Lemma 3.3]). LetY be a scheme that is projective
over an affine scheme X = Spec R. Assume that there is a tilting bundle T on
Y. Then, the functor,

¥ := RHom(T, ) : D~ (Y) = D™ (Endy (7)),

gives an equivalence of triangulated categories. Furthermore, this equivalence
restricts an equivalence between DP(Y) and DP(Endy (T)).

Remark 2.1.13. Let us assume that we work over a field k of characteristic
zero. Let X be a k-scheme and T a partial tilting bundle on X. Then the trace
map TV © T — Ox is a split surjective morphism, and hence Ox is a direct
summand of TV ® T. Therefore we have H*(X,0x) =0 fori > 0.

In particular, we have the following consequence. Let X be an affine variety,
and f Y — X a resolution of X. If the variety Y admits a partial tilting
bundle, then X has only rational singularities.

Remark 2.1.14 (The reason why tilting bundles are important rather than
tilting complexes). If there is an exact equivalence ¥ : DP(Y') — DP(A) between
the derived category of a scheme and the derived category of a non-commutative
algebra then for the object T := ¥ ~!(A) we can write ¥ := RHomy (T, —) (and
this T is a tilting complez). Indeed for an object F' € DP(Y) we have

RHomy (T, F) = RHomy (U1 (A), F) = RHom (A, U(F)) = ¥(F).
In addition, the following two conditions are equivalent.
(1) For any point y € Y we have ¥(0,) € mod(A).
(2) T is a vector bundle on Y.

To see this, we note that the first condition is equivalent to Exti, (T, 0,) =0
for any y € Y and i # 0. Then, using [TU10, Lemma 4.3], we can show that
the two conditions above are equivalent.

12



If we have an equivalence DP(Y) =~ DP(A), then as an analog of derived
McKay correspondence, it is natural to expect that we can recover the scheme
Y as a moduli space of modules over the algebra A. In particular, since we can
regard Y as a moduli space of sheaves of the form O, for y € Y, it is natural to
expect that we can choose the equivalence ¥ : DP(Y) = DP(A) such that the
equivalence W satisfies the first condition above. These facts and expectations
explain the importance of the notion of tilting bundles.

Next we recall some basic properties of tilting bundles. The following lemma
is well-known.

Lemma 2.1.15. Let X = Spec R be a normal Gorenstein affine variety and
¢:Y — X be a crepant resolution. Let F be a coherent sheaf on'Y such that

HY(Y,F)=0=Ext\(F,Oy)
for alli > 0. Then the R-module ¢ F is mazimal Cohen-Macaulay.

Proof. Put M := ¢, F. Since the resolution ¢ : Y — X = Spec R is crepant, we
have ¢'Ox ~ Oy. Thus, we have
Ext (F,Oy) ~ Exti (F,¢'Ox)
~ Exth(R¢.F, R)
~ Ext’ (M, R)
and hence we have 4
Exth(M,R) =0

for i > 0. Let p C R be a prime ideal, (ﬁ,p) the p-adic completion of (R, p),
and M the p-adic completion of M,. Put d := dim R,. Since the local algebra

R is Gorenstein, the canonical module p is isomorphic to R as an R-module.
Thus, by Grothendieck’s local duality theorem (see [BH93, Theorem 3.5.8]), we
have _ _

H;(M) = Hom, Ext{ '(M,R), E(R/p)

where E(R/p) is an injective hull of the residue field R/p. Therefore, we have
Hy (M) =0
for i < d = dim R, and hence M is a maximal Cohen-Macaulay R-module (see
[BH93, Theorem 3.5.7]). O
The following is a direct corollary of the lemma above.

Corollary 2.1.16. Let X = Spec R be a normal Gorenstein affine variety and
¢ 'Y — X a crepant resolution. Assume that Y admits a tilting bundle T'.
Then Endy (T) is Cohen-Macaulay as an R-module.

Moreover if T is a good tilting bundle, then the R-module ¢.T is Cohen-
Macaulay.

13



Proof. Since Ext'(T,T) = Ext'(TV @ T,Oy) = H (Y, TV @ T), we have the
first result. If T contains a trivial line bundle Oy as a direct summand then

H{Y,T) = Ext'(Oy,T) = 0 and Ext'(T,Oy) = 0 for i # 0. O
The following lemma is also important in relation to NCCRs.

Lemma 2.1.17. Let X = Spec R be a normal Gorenstein affine variety, and
¢ Y — X a crepant resolution. Assume that Y admits a tilting bundle T.
Then there is an algebra isomorphism Endy (T) = Endx (¢.T).

Proof. Put M := ¢, T, and let U be the smooth locus of X. Note that Endy (T)
and Endr (M) are isomorphic on U, and that Endy (T) is a reflexive R-module
by 2.1.16. Therefore we have that the R-module Endg (M) contains Endy (T) as
a direct summand, and that the quotient Endg(M)/Endy (T) is a submodule
of Endg(M) whose support is contained in Sing(X).

On the other hand, since M is torsion free, its endomorphism ring End g (M)
is also torsion free as an R-module. Thus the module Endg(M)/Endy (T)
should be zero, and hence we have

Endy (T) ~ EHdR(M)
as desired. O
The relation between tilting bundles and NCCRs is given as follows.

Lemma 2.1.18. Let X = Spec R be a normal Gorenstein affine scheme, and
¢ Y — X a crepant resolution. If T is a good tilting bundle on Y, then the
module M := ¢, T gives an NCCR Endy (T') of R.

If the resolution ¢ is small (i.e., the exceptional locus exc(¢p) does not contain
a diwvisor), then the same thing holds without the assumption that T is good.

Proof. This result follows from Lemma 2.1.2, Proposition 2.1.12, Corollary
2.1.16 and Lemma 2.1.17. O

In the rest of the present subsection, we recall some basic algebraic facts
that we use implicitly in this thesis.

Lemma 2.1.19 ([BH93], Proposition 1.4.1). Let R be a noetherian ring and M
a finitely generated R-module. Then the following are equivalent.

(1) The module M is reflexive.
(2) For each p € Spec R, one of the following happens

(a) depth(R,) <1 and M, is a reflexive R,-module, or
(b) depth(Rp) > 2 and depth(M,) > 2.

Proposition 2.1.20. Let R be a normal Cohen-Macaulay domain and M a
(mazimal) Cohen-Macaulay R-module. Then, M is reflexive.

14



Proof. Let p be a prime ideal of R. If dim R, < 1, then the ring R, is regular
and hence M, has finite projective dimension. Therefore, by the Auslander-
Buchsbaum formula ([BH93, Theorem 1.3.3)),

proj.dim(M,) + depth M, = dim R,,,
M, is projective and hence free. If dim R, > 2, we have depth(M,) > 2 by the
assumption. 0O

Proposition 2.1.21. Let R be a normal Cohen-Macaulay domain and M, N
(mazimal) Cohen-Macaulay R-modules. Then, the R-module Hompg(N, M) is
reflezive.

Proof. If dim Ry, < 1, then M, and N, are free and hence Hompg(N, M), is also
free. Next we assume that R is local and dim R > 2. Then, it is enough to show
that the depth of Hompg (N, M) is greater than or equal to 2. Let us consider

the resolution of N
RNt £ RENo 5 N 0.

By applying the functor Hompg(—, M), we have an exact sequence

0 — Homp(N, M) — M®No £ MO, coker(p*) — 0.

Then, by using Lemma 2.1.19, we have the result. O

2.1.3 Mutation of non-commutative crepant resolutions

In the present subsection, we recall some basic definitions and properties about
Iyama-Wemyss’s mutation. Flops provide a method to compare two crepant
resolutions, and Iyama-Wemyss’s mutations provide a basic tool to compare
two different NCCRs.

Definition 2.1.22. Let R be a d-singular Calabi-Yau ring® (d-sCY, for short).
A reflexive R-module M is said to be a modifying module if Endg(M) is a
maximal Cohen-Macaulay R-module.

Definition 2.1.23. Let A be a ring, M, N A-modules, and Ny € add N. A
morphism f : Ng — M is called a right (add N)-approzimation if the map

Homa (N, No) 1% Homu (N, M)
is surjective.

Let R be a normal d-sCY ring and M a modifying R-module. For 0 # N &
add M, we consider

(1) aright (add N)-approximation of M, a : Ng — M.

1We do not give the definition here but note that this is equivalent to say that R is
Gorenstein and dim Rm = d for all maximal ideal m C R [IR08].
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(2) a right (add N*)-approximation of M*, b: Nff — M*.
Let K¢ := Ker(a) and K; := Ker(b).

Definition 2.1.24. With notations as above, we define the right mutation of
M at N to be pR(M) := N @& K, and the left mutation of M at N to be
pk (M) := N @ K;.

Note that, the right mutation (or left mutation) is well-defined up to additive
closure [IW14a, Lemma 6.3].

In this thesis, we also deal with mutations of exceptional collections (see
Section 2.2.2). Thus we call this mutation a (left or right) IW mutation.

In [IW14a], Iyama and Wemyss proved the following theorem.

Theorem 2.1.25 ([IW14a]). Let R be a normal d-sCY ring and M a modifying
module. Assume that 0 # N € add M. Then

(1) R-algebras Endg(M), Endg(u&(M)), and Endg(u% (M)) are derved equiv-
alent.

(2) If M gives an NCCR of R, so do its mutations pu%(M) and p% (M).

The equivalence between Endg(M) and Endg(uk (M)) is given as follows.
Let @ := Hompg(M, N) and

C :=Image (Hompg(M, N1) — Hompg(M, K7)) .

Then, one can show that V' & @ is a tilting A := Endg(M)-module and there is
an isomorphism of R-algebras

Endg(pk (M)) ~ Enda(C @ Q).
Thus, we have an equivalence
®y :=RHom(C @ Q, -) : D*(Endg(M)) — D (Endg(uk (M))).

In this thesis, we only use left IW mutations and hence we call them simply W
mutations and write puy (M) instead of % (M). We also call the functor ®y an
IW mutation functor.

The following lemma is useful to find an approximation.

Lemma 2.1.26 ([IW14a, Lemma 6.4, (3)]). Let us consider an exact sequence
0= K5 Ny % M,

where a is a right (add N)-approzimation of M. Then, the dual of the above
sequence

0— M* 25 Np 5 K

is also exact and b* is a right (add N*)-approzimation of K*.
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2.2 Derived categories

In this section we recall some notions in relation to triangulated categories.

2.2.1 Spherical twist and P-twist
Spherical twist

In this subsection we recall the definition of spherical twists.
Definition 2.2.1. Let X be an n-dimensional smooth variety.

(1) We say that an object & € DP(X) is a spherical object if £ Dwx ~ & and

RHomx (€,&) ~ Co C[—n).

(2) Let & be a spherical object. Then a spherical twist Tg around & is defined
as

Te¢(F) := Cone(RHomx (€, F) @¢c € = F).
Example 2.2.2. The following are important examples of spherical objects.

(1) Let X be a (smooth proper) Calabi-Yau variety. Then the structure sheaf
(= trivial line bundle) Ox of X is a spherical object.

(2) Let X be a smooth projective surface that contains a (—2)-curve C. Then
the structure sheaf O¢ of C is a spherical object in DP(X). Note that this
is also an example of P-objects.

Theorem 2.2.3 ([STO1]). A spherical twist is an autoequivalence of D(X).
Spherical twists on the derived category of an algebraic variety is expected

to be a mirror of symplectic monodromies.

P-twists

In this subsection we recall the definition of P-twists and their basic properties.

Definition 2.2.4. An object E in the derived category DP(X) of a variety X
of dimension 2n is called a P-object if we have F ¢ wx ~ FE and an algebra
isomorphism

Hom*(E, E) ~ H*(P™; C).
For a P-object E, the P-twist Pg : D’(X) — DP(X) by E is defined as follows

Pg(F) := Cone (Cone(E % RHom(E, F)[-2] — E & RHom(E, F)) % F) .

See Lemma 3.5.15 for a basic example of P-objects.

Proposition 2.2.5 ([HT06]). A P-twist gives an autoequivalence of DP(X).
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The notion of P-twist was first introduced by Huybrechts and Thomas in
their paper [HT06] as an analogue of the notion of spherical twist. Spherical
twists give an important class of autoequivalences on the derived category of a
Calabi-Yau variety. In contrast, P-twists give a significant class of autoequiva-
lences on the derived category of a (holomorphic) symplectic variety. In Section
3.5.2, we study P-twists on a symplectic variety ¥ = Tot(Qp(y)) from the point
of view of NCCRs.

2.2.2 Exceptional objects

Let D be a triangulated category with finite dimensional Hom spaces. The
derived category DP(X) of a proper variety X satisfies this property.

Definition 2.2.6. (i) An object £ € D is called an exceptional object if

. C ifi=0,
Homp (&, £[i) _{ 0 ifi#0.
(ii) A sequence of exceptional objects &1,...,&, is called an exceptional col-

lection if RHomp (&,&) =0forall 1 < k<l <r.

(iii) An exceptional collection &1,...,&, is full if it classically generates the
whole category D. In such case, we write

D={(&,....5).

(iv) We say that an exceptional collection &,..., &, is strong if
Homp(&, 5k [Z]) =0
forall 1 <l <k <randi#0.

Remark 2.2.7. Let X be a smooth projective variety and assume that the
derived category DP(X) of X admits a full strong exceptional collection

DP(X) = (&1,...,&)

consisting of vector bundles £. Then their direct sum
T= @ Ek
k=1

is a tilting bundle on X. Indeed, since X is smooth projective, we have DP(X) ~
Perf(X), and hence T is a generator of D(Qcoh(X)) by Lemma 2.1.10. In
particular, we have an equivalence

RHomx (T, -) : DP(X) ~ D°(Endx (T))
between the derived category of X and the derived category of a finite dimen-

sional algebra End x (7).
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Example 2.2.8 ([Bei79], [Kuz08]). (1) Ann-dimensional projective space P™
has a full strong exceptional collection consisting of line bundles called
Beilinson collection

DP(P") = (0,0(1),0(2),...,0(n)).

(2) Let us consider n-dimensional quadric hypersurface @,,. If n is odd, there
is a full strong exceptional collection

Db(Qn) = <S,O, O(l)v o 70(” - 1)>a

where S is a spinor bundle. If n is even, spinor bundle has two indecom-
posable components ST and S~, and we have a full strong exceptional
collection

Db(Qn) = <S+,S_0,0(l),~ o ,O(TL - 1))

(3) Let V be a four dimensional symplectic vector space and LGr(V') the La-
grangian Grassmannian of V. there is a full strong exceptional collection

Db(LGI'(V)) = <8, OLGra OLGr(l)a OLGr(2)>7

where S is the universal subbundle. It is not difficult to see that LGr(V)
is isomorphic to @3, and that universal subbundle coincides with a spinor
bundle via this isomorphism.

(4) Let us consider Ga-Grassmannian Grg,. Grg, is a closed subscheme of
Gr(2,7) and hence we can consider a restriction of the universal subbundle
R of rank two. Grg, admits a full strong exceptional collection

DP(Crg,) = (R(-2),0(-2),R(-1),0(-1),R,0).
For an object £ € D, we define subcategories £+,1+E < D by
£+ :={F € D | RHomp(E, F) = 0},
L€ .= {F € D|RHomp(F,&) = 0}.
Lemma 2.2.9. Let
D={&,....&)={&,....E)

be two full exceptional collections of the same length. Let 1 < i <r and assume
that &; = 5} holds for all j # i. Then, we have

& =&
up to shift.
Proof. This lemma follows from the fact
tan-ntgingL N NE- =D"(SpecC) e &,

see [Bon90]. O
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Definition 2.2.10. Let £ € D be an exceptional object. For an object F, we
define the left mutation of F over £ as an object Lg(F) in £+ that lies in an
exact triangle

RHom(E, F) ® &€ — F — Le(F).

Similarly, for an object G, we define the right mutation of G over £ as an object
Re(G) in L& that lies in an exact triangle

Re(G) — G — RHom(G, &)Y ® &.

Lemma 2.2.11 ([Bon90]). Let &1, &> be an exceptional pair (i.e. an exceptional
collection consisting of two objects).

(i) The left (resp. right) mutated object Lg, (£2) (resp. Re, (1)) is again an
exceptional object.

(ii) The pairs of exceptional objects £1,Rg, (E2) and Lg,(&1), &2 are again ex-
ceptional pairs.

Let &1, ...,& be a full exceptional collection in D. Then
(11i) The collection
&,y &im1,Lg, (Eiv1), €, Eivay ., Er
is again full exceptional for each 1 < i <r —1. Similarly, the collection
1y y&ima, & Re, (Eim1), Eivry - -+ Er
is again full exceptional for each 2 < i <r.

(iv) Assume in addition that the category D admits the Serre functor Sp. Then
the collections

82,...,&,1,8,,,551(51) and  Sp(&.),&E1,E,...,E 1
are full exceptional collections on D.
Example 2.2.12. Let us consider the Beilinson collection
D"(P") = (0,0(1), -+, O(n)).
Then RHom (O, O(1)) ~ C"*" and hence we have an triangle
Ro1)(0) = 0 — O(1)®"+,

Thus we have Ro(l)(O) ~ Tpn[—1], and we obtain a new full exceptional collec-
tion

D*(P") = (O(1), Tpn, -~ , O(n)).

Example 2.2.13. By taking mutations, we have the following different full
exceptional collections for DP(LGr(V)):

DP(LGr(V)) = (Orar, S(1), Orar(1), OLa: (2))
= (OLar, Orae(1), S(2), OLa:(2))
= {OLar, Orar(1), Orce(2), S(3))
= (S, Orar, Ora:(1), Ora:(2))-
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2.2.3 Relative Serre functors and Calabi-Yau categories

Let R be a commutative algebra of finite type over a field k, and D an R-linear
triangulated category.

Definition 2.2.14. An R-triangulated category structure on D is a functor
RHomp, g : D°P x D — DP(mod(R))

together with a functorial isomorphism
Homp (F, G) = H°(RHomp g (G, F)).

Example 2.2.15. Let X be a smooth variety equipped with a projective mor-
phism 7 : X — Spec R. Then the functor RHomp, /g := Rm, RHomx gives a
R-triangulated category structure on D = DP(X) = DP(coh(X)).

Let Dy be the dualizing functor on the derived category DP(mod(Y)) of a
quasi-projective scheme Y. If Y is an affine scheme Spec R, we also write Dg
instead of Dy .

Definition 2.2.16. Let D be an R-triangulated category. We say that an
autoequivalence S € Auteq(D) is the R-Serre functor if there is a functorial
isomorphism

RHomp g(F,G) ~ Dr(RHomp, (G, S(F))).

An easy argument using Yoneda lemma shows that the R-Serre functor is unique
up to isomorphism if it exists.

Definition 2.2.17. An R-triangulated category D is (relative) Calabi- Yau cat-
egory if a shift functor [n] for certain n € Z gives the R-Serre functor on D.

Example 2.2.18. Let X be a smooth scheme projective over R and we regard
the derived category D = DP(X) of X as an R-triangulated category as in
Example 2.2.15. Then the functor S := — ® wx[dim X] gives a R-Serre functor
on DP(X). Indeed,

Dr(RHomp (G, S(F))) = Dr(Rm. RHomp (G, S(F)))
~ Rr.(Dx RHomp (G, S(F)))
~ Rm. RHomx (S(F),S(G))
~ RHomp /r(F,G).

Thus if X is local Calabi-Yau (i.e. wy =~ Ox) then D = D"(X) is a Calabi-Yau
category.

If an indecomposable category is relative Calabi-Yau, then it does not have
a non-trivial admissible subcategory:
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Lemma 2.2.19 ([BMRO08, Lemma 3.5.2]). Let D be a Calabi- Yau R-triangulated
category and ® : C' — D be an exact functor. Then ® gives an equivalence of
categories if the following two conditions hold.

(i) ® has a right adjoint functor ® and the adjunction morphism id — ®' o ®
is an isomorphism.

(i) D is indecomposable.
Using this result, we have the following.

Corollary 2.2.20. Let Y — X = SpecR be a crepant resolution and T a
partial tilting bundle on Y. Then T is a tilting bundle if and only if the global
dimension of Endy (T') is finite.

This corollary means that we can characterize tilting bundles on a crepant
resolution without referring to its derived category.

2.3 Nilpotent orbit closures and stratified flops

In this section, we recall some basic properties of nilpotent orbit closures. The
singularities of nilpotent orbit closures give an important class of symplectic
singularities (see [Bea00]).

2.3.1 Symplectic singularity

First we recall the notion of symplectic singularity.
Definition 2.3.1 ([Bea00]). Let X be an algebraic variety. We say that X is
a symplectic variety if

(i) X is normal.

(ii) The smooth part Xy of X admits a symplectic 2-form w.

(iii) For every resolution f :Y — X, the pull back of w to f~1(Xgy) extends
to a global holomorphic 2-form on Y.

Let X be an algebraic variety. We say that a point x € X is a symplectic
singularity if there is an open neighborhood U of x such that U is a symplectic
variety.

Symplectic singularities belong to a good class of singularities that appears
in minimal model theory.

Proposition 2.3.2 ([Bea00]). A symplectic singularity is Gorenstein canonical.

Example 2.3.3 (Du Val singularities). Since symplectic singularities are Goren-
stein canonical, a two dimensional symplectic singularity is Du Val singularity.
On the other hand, since a Du Val singularity is a quotient singularity by a finite
subgroup of SL(2, C), and since in dimension two we have SL(2,C) = Sp(2,C), a
Du Val singularity is symplectic. Thus two dimensional symplectic singularities
are precisely Du Val singularities.
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For symplectic singularities, we can consider the following reasonable class
of resolutions.

Definition 2.3.4. Let X be a symplectic variety. A resolution ¢ : Y — X of X
is called symplectic if the extended 2-form w on Y is non-degenerate. In other
words, the 2-form w defines a symplectic structure on Y.

Proposition 2.3.5. Let X be a symplectic variety and ¢ : Y — X a resolution.
Then, the following statements are equivalent

(1) ¢ is a crepant resolution,
(2) ¢ is a symplectic resolution,

(3) the canonical divisor Ky of Y is trivial.

2.3.2 Nilpotent orbit closure

Next, we recall the definition of nilpotent orbit closures and some basic proper-
ties of them. Let g be a complex Lie algebra. For u € g, we define a linear map
ad, : g — g by & — [u, z]. In the following, we assume that the Lie algebra g is
semi-simple, i.e. the bilinear form x(u,v) := trace(ad, o ad,) is non-degenerate.
An element v € g is nilpotent if the corresponding linear map ad, is nilpotent.
Let G be the adjoint algebraic group of g. Then, G acts on g via the adjoint
representation. An orbit O = G-v C g of v under this action is called a nilpotent
orbit if the element v is nilpotent.

Proposition 2.3.6 ([Pan91]). The normalization O of a nilpotent orbit closure
O in a complex semi-simple Lie algebra g has only symplectic singularities. In
particular the singularity of O is Gorenstein canonical.

For example, the following theorem by Beauville suggests that the singular-
ity of nilpotent orbit closures constitutes an important class among symplectic
singularities.

Theorem 2.3.7 ([Bea00]). Let (X,0) be a germ of isolated symplectic sin-
gularity, whose projective tangent cone is smooth. Then (X, 0) is analytically
isomorphic to the germ (Opin, 0), where Oy is a (non-zero) smallest nilpotent
orbit closure in some simple Lie algebra.

Let V = CV be a N-dimensional vector space and
B(r) := {X € Endc(V) | X? = 0,rank(X) = 1.} C sl(V) ~ sly.

This is an example of a nilpotent orbit of type A. We note that we have
B(r) = {X € Endc(V) | X* = 0,rank(X) < r} = | ] B().
k=0

If we consider nilpotent orbit closures of type A, we need not to take the
normalization to obtain symplectic singularities.
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Proposition 2.3.8 ([KF79]). Let r > 1. Then, the variety B(r) is normal,
and hence is an affine symplectic variety. In particular, the variety B(r) is
Gorenstein, and has only canonical (equivalently, rational) singularities.

Moreover, we can show that the variety B(r) has symplectic (equivalently,
crepant) resolutions. See the next section.

2.3.3 Stratified flops
Stratified Mukai flops and Stratified Atiyah flops on Gr(r, N)

Let V = CY be a N-dimensional vector space, r an integer such that 1 < r <
N —1, and Gr(r, N) the Grassmannian of r-dimensional linear subspaces of V.
For each r such that 2r < N, we consider the following three varieties

Yy := {(L, A) € Gr(r, N) x End(V) | A(V) < L, A(L) = 0},
Yy :={(L/,A") € Gr(N —r,N) x End(V) | A'(V) ¢ L', A'(L") = 0},
Xo:=B(r):=={AcEnd(V) | A2 =0,dimKer A > N - r}.

The variety Yy has two projections ¢¢ : Yo — X and 7 : Yo — Gr(r, N). Via the
second projection 7y, we can identify Yy with the total space of the cotangent
bundle on the Grassmannian Gr(r, N).

Similarly, Yy has two projections ¢, : Yy — X and nj, : Yo = Gr(N —r, N),
and the second projection allows us to identify Y with the total space of the
cotangent bundle on the Grassmannian Gr(N — r, N).

The affine variety Xy is an example of a nilpotent orbit closure of type A
that we explained in the above subsection.

It is easy to see that two morphisms ¢y : Yy — Xy and ¢} : Yy — Xj give
resolutions of Xy. Since Yy and Y{ are algebraic symplectic varieties, these two
resolutions are crepant resolutions.

If N > 3 and 2r < N, the diagram

Yo vy
w #/
Xo

is a flop and this flop is called a stratified Mukai flop on Gr(r, N).

Note that Yp, Yy, and X, have natural G,,-actions and ¢y and ¢j, are Gp,-
equivariant.

These three varieties Yy, Yy and X have natural one-parameter G,-equivariant
deformations as follows.

Y = {(L,A,t) € Gr(r, N) x End(V) x C | (A —t-id)(V) € L, (A +t-id)(L) = 0},
Y= {(L/,A',t') € Ge(N  r,N) x End(V) x C | (A" ¢ -id)(V) € L', (A’ + ¢ -id)(L')

X :={(A,t) €End(V) x C| A% = t? -id,dim Ker(A — t -id) > N —r}.
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Note that the variety Y is isomorphic to the total space of a bundle ﬁGr(r,N) on
Gr(r, N) that lies on an exact sequence

0— QGrr('r’,N) - ﬁGr(r,N) — OGr(T,N) -0
that gives a generator of
Hl(GI‘(T‘, N)7 QGrr('r’,N)) =C.
The corresponding statement holds for Y’. Put
¢:Y 2 (LAt — (At)e X and ¢ : Y 2 (LA ) — (A, —t) € X.

Then the morphisms ¢ : Y - X and ¢’ : Y’ —» X give two crepant resolutions

of X, and the diagram
Y Y’
x ¢//
X

is a flop called a stratified Atiyah flop on Gr(r, N).

In [CKL10, CKL13], Cautis, Kamnitzer, and Licata proved that there are
derived equivalences for stratified Mukai flops DP(Yg) ~ DP(Yy) (later we refer
to this equivalence as CKL’s equivalence). Their equivalence was given as a
Fourier-Mukai transform and was obtained as a corollary of their framework
of categorical sly action. In [Caul2al, Cautis studied an explicit description of
the Fourier-Mukai kernel, and as an application of it, he showed that CKL’s
equivalence for a stratified Mukai flop extends to an equivalence for a stratified
Atiyah flop.
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Chapter 3

Non-commutative crepant
resolution of minimal
nilpotent orbit closures of
type A and Mukai flops

This chapter is based on the author’s work

[H17a] W. Hara, Non-commutative crepant resolution of minimal nilpotent orbit
closures of type A and Mukai flops, Adv. Math., 318 (2017), 355—410.

3.1 Introduction

The aim of this chapter is to study non-commutative crepant resolutions (=NCCR)
of a minimal nilpotent orbit closure B(1) of type A. The notion of NCCR was
first introduced by Van den Bergh [VdB04b] in relation to the study of the
derived categories of algebraic varieties. We can regard the concept of NCCR
as a generalization of the notion of crepant resolution. Van den Bergh intro-
duced it with an expectation that all crepant resolutions, whether commutative
or not, have equivalent derived categories. This expectation is a special (and
non-commutative) version of a more general conjecture that K-equivalence im-
plies derived equivalence. We note that the study of NCCR is also motivated
by theoretical physics (see Introduction of [Leul2]).

An NCCR of a Gorenstein algebra R is defined as an endomorphism ring
Endg(M) of a (maximal) Cohen-Macaulay R-module M such that Endg (M)
is a (maximal) Cohen-Macaulay R-module and has finite global dimension. In
relation to NCCR, it is natural to ask the following questions.

(1) Construct an NCCR of R and characterize a module M that gives the
NCCR.
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(2) Construct a derived equivalence between the NCCR and a (commutative)
crepant resolution.

(3) Construct a (commutative) crepant resolution as a moduli space of mod-
ules over the NCCR.

For example, in [BLV10], Buchweitz, Leuschke, and Van den Bergh studied
about these problems for a determinantal variety. In this chapter, we deal with
the above problems for a minimal nilpotent orbit closure m of type A. We
also study about the derived equivalences for Mukai flops from the point of view

of NCCR.

3.1.1 NCCR of minimal nilpotent orbit closures of type
A

Let V = C¥ be a complex vector space of dimension N > 2. Let us consider a
subset B(1) of End¢(V) that is given by

B(1) :={X € End¢(V) | X? =0,dimKer X = N — 1}.

This is a minimal nilpotent orbit of type A. It is well known that the closure
m of the orbit B(1) is normal and has only symplectic singularities, and
thus the affine coordinate ring R of B(1) is normal and Gorenstein. Since
Codimm((‘)B(l)) > 2, we have a C-algebra isomorphism R ~ HY(B(1), Og(1)).
Let H be a subgroup of SLy such that SLy /H ~ B(1). It is easy to see that
H is isomorphic to a subgroup of SLy

c|0 00
0 A € GLy_o,
H~dA=1] , A S ceCx,
0 c? - det(A) =1
* * c

Let M, be a homogeneous line bundle on B(1) that corresponds to the character
H>Aw— c ¢ C* and we set M, := H°(B(1), M,). We prove that a direct
sum of R-modules (M,), gives an NCCR of R.

Theorem 3.1.1 (see 3.3.3 and 3.2.3).  (a) M, is a Cohen-Macaulay R-module
for —-N+1<a<N-—1.
(b) For 0 < k < N — 1, the R module @Z:7N+k+1 M, gives an NCCR
Endg (@’;}NMH Ma) of R.
The proof of Theorem 3.1.1 is based on the theory of tilting bundles on the

crepant resolutions Y and Y. We note that the two crepant resolutions Y and
Yt of B(1) are the total spaces of the cotangent bundles on P(V') and P(V*),

27



respectively. Let 7 : Y — P(V) and 7’ : Y+ — P(V*) be the projections. We
show that, for all £ € Z, the bundles

k k
Ty = @ ™ Opvy(a) and T = @ 7" Op(v+(a)
=—N+k+1 a=—N+k+1

are tilting bundles on Y and YT, respectively (Theorem 3.3.3). We also show
that there is a canonical isomorphism of R-algebras

Ay = Endy (Tk) ~ Endy+ (Th_, 1)

and that this algebra is isomorphic to the one that appears in Theorem 3.1.1 (b).
Moreover, by the theory of tilting bundles, we have an equivalence of categories
DP(Y) ~ DP(mod(Ay)) between the derived category of a crepant resolution
and of an NCCR. In Section 3.3.3, we provide another NCCR A’ of R that is
not isomorphic to Ay but is derived equivalent to Aj.

3.1.2 NCCR as the path algebra of a quiver

Next, we describe an NCCR Ay, of R as the path algebra of the double Beilinson
quiver with some relations. We note that similar results for non-commutative
resolutions of determinantal varieties are obtained by Buchweitz, Leuschke, and
Van den Bergh [BLV10], and Weyman and Zhao [WZ12].

Let S = Sym®(V @ V*) be the symmetric algebra of a vector space V ®¢ V*.
Let vy,...,vx be the standard basis of V = CV and fi,..., fx the dual basis
of V*. We regard z;; = v; ® f; € S as the variables of the affine coordinate ring
of an affine variety Endc(V) ~ V* ©c V. Since B(1) is a closed subvariety of
End¢(V), R is a quotient of S.

Theorem 3.1.2 (= Thm. 3.3.7). As an S-algebra, the non-commutative algebra

Ay is isomorphic to the path algebra ST of the double Beilinson quiver I with
N wvertices

/W\/w\ /[ \ LN

e
-2 N -1
1

\\ /\h/ \h/ NV

N

with relations

vivy = vvi,  fifj = fifis vifi = fivy =2y forall1 <i,j < N,

N N
and Zfivi =0= szf2
i=1 i=1
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Building on this theorem, we can also show that the two crepant resolutions
Y and Yt are recovered from the quiver I' as moduli spaces of representa-
tions (Theorem 3.4.1). The idea of the proof is based on the fact that crepant
resolutions Y and YT are moduli spaces that parametrizes representations of
Nakajima’s quiver of type A;. We show that there is a natural correspondence
between stable representations of Nakajima’s quiver of type A; and representa-
tions of I'. At the end of Section 3.4, we also characterize simple representations
of the quiver, namely we show that a simple representation corresponds to a
point of a crepant resolution that lies over a non-singular point of B(1) (see
Theorem 3.4.13).

We note that these relations between a crepant resolution Y (or YT) and
an NCCR Ay can be considered as a generalization of McKay correspondence.
Classical McKay correspondence states that, for a finite subgroup G < SLo,
there are many relations between the geometry of a quotient variety C2/G and
representations of the group G. In the modern context, McKay correspondence
is understood as relationships (e.g. a derived equivalence) between the crepant

resolution (62\/_6' of C%/G and a quotient stack [C2/G]. We often say that the

crepant resolution C2/G is a “geometric resolution” of C?/G. On the other
hand, since a coherent sheaf on a quotient stack [C2/G] is canonically identified
with a module over the skew group algebra C[z,y]tG, we say that a smooth
stack [C2/G] is an “algebraic resolution” of C2/G. Thus, we can interpret
McKay correspondence as a correspondence between geometric and algebraic
resolutions. In our case, a geometric resolution of B(1) is Y (or Y*) and an
algebraic resolution is the NCCR, Ag.

3.1.3 Mukai flops, P-twists and mutations

It is well-known that the diagram of two crepant resolutions

Y Y+
& :z>+/
B(1)
is a local model of a class of flops that are called Mukai flop. Let Y bea blowing-
up of Y along the zero-section j(P(V)) C Y. Then, the exceptional divisor

E C }zis naturally identified with the universal hyperplane in P(V') xP(V*). Let
Y =Y UpP(V)xP(V*) and Lj, a line bundle on Y such that Li|y = Oy (kE)

and Li|pvyxpv+) = O(—k, —k). By using a correspondence Y’ dy»n YT, we
define functors

KNy, := Rp.(LG*(—) ® L) : D*(Y) - DP(Y)
and KN}, := RG.(Lp*(—) @ Lg) : DP(YT) = DP(Y).

According to the result of Kawamata and Namikawa [Kaw02, Nam03], the func-
tors KN and KN/, give equivalences between DP(Y') and D®(Y *). On the other
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hand, by using tilting bundles 7 and ’T;(,f x—1 above, we get equivalences
T DP(Y) = DP(Ag) and ¥f ., :DP(YT) = DP(Ay).

By composing ¥, and the inverse of \I/;(hkil, we have an equivalence DP(Y) —
DP(Y'*). Although this functor seems to be different from the functor KNy of
Kawamata and Namikawa at a glance, we prove the following.

Theorem 3.1.3 (= Thm. 3.5.3). Our functor
(UX_jo1) ™ 0 W (resp. (Un—p-1)"" o T])
coincides with the Kawamata-Namikawa’s functor KNy (resp. KN}, ).

We note that our proof of Theorem 3.1.3 gives an alternative proof for the
result of Kawamata and Namikawa that states the functors KNy, and KN, give
equivalences of categories.

The R-algebras Ay and A,_; are related by the operation that we call multi-
mutation. We introduce a multi-mutation functor

1/1; : Db(Ak) — Db(Akfl)

(see Definition 3.5.6) as an analog of Iyama-Wemyss’s mutation functor [[W14a]
(we call it IW mutation, for short) that Wemyss applied to his framework of
“Homological MMP” for 3-folds (see [Wem17]). We show that a multi-mutation
functor v, gives an equivalence of categories. Moreover, we prove that our
multi-mutation functor is obtained by composing IW mutation functors N — 1
times (Theorem 3.5.9'). Dually, we introduce a multi-mutation functor v, :
DP(Ax) — DP(Ag+1) and show that a multi-mutation v is also a composition
of N — 1 IW mutation functors. Whereas, it is well-known that the derived
category DP(Y) of a crepant resolution Y has a non-trivial auto-equivalence
called P-twist (see Definition 2.2.4). We show that a composition of multi-
mutations corresponds to a P-twist on DP(Y) in the following sense:

Theorem 3.1.4 (= Thm. 3.5.18). Let
UNak Db(AN+k) — Db(AN+k_1) and
I/J-\t+k_1 : Db(AN+k_1) - Db(AN+k)
be multi-mutation functors. Then we have the following diagram of equivalence
functors commutes
D(Y) 5 DP(Ay)
Jn [

DY (V) 255 DY (A1)

| e
D (V) 2% D (A ),

1This statement is suggested by Michael Wemyss in our private communication.
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where Py : DP(Y') — DP(Y) is the P-twist defined by a PN ~'-object j, Opcv)(k).

This theorem means, under the identification Wy : DP(Y) = DP(An k),
a composition of two multi-mutation functors

I/JJ{,+,€71 OUnik € Auteq(DP(An 1))

corresponds to a P-twist P, € Auteq(D®(Y)). Donovan and Wemyss proved
that, in the case of three dimensional flops, a composition of two IW mutation
functors corresponds to a spherical-like twist [DW16]. Our theorem says, in the
case of Mukai flops, a composition of many IW mutations corresponds to a
P-twist.

As a corollary of the theorem above, we can prove the following functor
isomorphism that was first proved by Cautis [Caul2b] and later by Addington-
Donovan-Meachan [ADM15]. This result gives an example of “flop-flop=twist”
results that are widely observed [Tod07, DW16, DW15].

Corollary 3.1.5 (= 3.5.20, cf. [ADM15, Caul2b]). We have a functor isomor-
phism
KNN+k OKNLk ~ Pk

for all k € Z.

3.1.4 Plan of this chapter

In Section 3.2, we provide some basic definitions and recall some fundamental
results that we need in later sections. In Section 3.3, we construct an NCCR of
a minimal nilpotent orbit closure of type A, and interpret it as the path algebra
of a quiver. In Section 3.4, we reconstruct the crepant resolutions from the
quiver that gives the NCCR as moduli spaces of representations of the quiver.
Furthermore, we study simple representations of the quiver. In Section 3.5, we
study derived equivalences of the Mukai flop and P-twists on a crepant resolution
via an NCCR.

3.1.5 Notations.

In this chapter, we always work over the complex number field C. Moreover, we
adopt the following notations.

e V =CV : N-dimensional vector space over C (N >2).
3.2 Preliminaries

In the present chapter we study the minimal nilpotent orbit closure B(1) of type
A.
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3.2.1 The variety B(1) and its crepant resolutions Y and
y+

Let V = CV be an N-dimensional vector space and Endc(V) an endomor-
phism ring of V. Then, the SLy := SL(NV,C) acts on End¢ (V) via the adjoint
representation

Adj: SLy — GL(Endc(V)), Ars (X AXA™Y).

Let Xy be an matrix in B(1) such that

00 --- 0
Xo:= | © " | eEnde(V).
00 --- 0
10 0
Then, we have
SLy -Xo = B(1).

In the following, we consider homogeneous vector bundles on the orbit
B(1). They correspond to linear representations of the stabilizer subgroup
StabSLN (Xo) of SLy.

Lemma 3.2.1. The stabilizer subgroup Stabsr,, (Xo) is given by

c|0 --- 0]0

0 A€ GLy_o,
StabSLN (X()) = % A | cecC \ {0},
0 c?-det(4) =1

* *

Proof. Let A = (a;;) € SLy. Then, we have

ain 0 - 0 0 0 .- 0
as2 N 0 0 . :
AXo = ) . ., XoA= ‘
: : R 0 0 0
any 0 - 0 a1 G2 - GIN
Thus, if AXy = XoA, we have a11 = ayy, a12 = - = a1y = 0, and asy =
co=ay_yn =0. O

Definition 3.2.2. (1) For a € Z, we define a character m,, : Stabgy,, (Xo) —

C* as
c|O0 01]0
0
Stabsr,y (Xo) 2 | & A Dl m e
0
* * c
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(2) Let M, be a line bundle on B(1) that corresponds to the character m,,.

(3) We set M, := H°(B(1), M,). Then M, is a reflexive R-module.

Next, let us consider a resolution Y of B(1). The resolution Y is given by
Y :={(X,L) € Endc(V) xP(V) | X(V) € L, X? =0}
and a left SLy-action on Y is given by
A-(X,L):=(AXA™' AL)

for A € SLy and (X,L) € Y. Via the second projection 7 : Y — P(V), one
can see that Y is isomorphic to the total space of the cotangent bundle Qp(y
on P(V). Note that the embedding ¥ C End¢(V) x P(V) is determined by a
composition of injective bundle maps

Qpyy C V* sc Op(v)(*l) CV*2cV &¢ Opv)-
Let j : P(V) = Y be the zero-section, and then j(P(V)) is given by
J(®B(V)) = {(0, L) € Endc(V) x P(V)}.

On the other hand, the image of the first projection ¢ : Y — End¢(V) is just
B(1), and if we set U := Y \ j(P(V)), then, ¢ contracts j(P(V)) to a point
0 € B(1), and U is isomorphic to B(1) via the morphism ¢ : ¥ — B(1). Thus,
the first projection ¢ gives a resolution of B(1). Since the affine variety B(1)
is a symplectic variety, the canonical divisor of B(1) is trivial. On the other
hand, since Y is isomorphic to the total space of the cotangent bundle on a
projective space, the canonical divisor of Y is also trivial. Thus, the resolution of
singularities ¢ : Y — B(1) is a crepant resolution, and in this case, is symplectic
resolution of B(1).
Let us set Oy (a) := 7*Op(vy(a).

Lemma 3.2.3. Under the identification U ~ B(1), the homogeneous vector
bundle M, is isomorphic to Oy (a)|v.

Proof. We first note that Oy (a)|y is a homogeneous line bundle on U. Let
Lo := Xo(V), then Lg is a line in V. Let yo := (Xo, Lo) € U be a point. The
fiber of the line bundle Oy (a)|y at yo € U is canonically isomorphic to L .
Note that the action of Stabgy,, (Xo) on Ly is given by

c|0 -~ 010 0 0
0 0 0
* A ’ =
0 0
* * C an can

Therefore, the character Stabsr,, (Xo) = GL(LY™*) that determines Oy (a)|is
coincides with the one that defines M,. O
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Next, we study the other crepant resolution Y of B(1). Let P(V*) be a
dual projective space, that is

P(V*)={H C V| H is a hyperplane in V}.
The variety Yt is defined by
Y+ = {(X,H) € Ende(V) x P(V*) | X (V) C H,X(H) = 0}.

An SLy-action on Y is given by A - (X,H) = (AXA™', AH). Let ¢7 : Y —
B(1) be the first projection and 7’ : Y+ — P(V*) the second projection. As in
the case of Y, Y is isomorphic to the total space of the cotangent bundle Qpey-)
on P(V*) via the second projection 7’ : Y+ — P(V*), and the first projection
¢t : Y+ = B(1) gives a crepant resolution of B(1). The morphism ¢t : Y —
B(1) contracts the zero section j' : P(V*) = Y. Let UT := Yt \ j/(P(V*))
and Oy +(a) := (7')*Op(y+)(a).

As in the above, we can show the following.

Lemma 3.2.4. Under the identification Ut ~ B(1), the homogeneous vector
bundle M, is isomorphic to Oy+(—a)|y+.

3.3 Non-commutative crepant resolutions of B(1)

3.3.1 The existence of NCCRs of B(1) and relations be-
tween CRs

In this section, we study non-commutative crepant resolutions of a minimal
nilpotent closure B(1) € End(V) where V = CV. We always assume N > 2.
Let R be the affine coordinate ring of B(1). By Proposition 2.3.8, the C-algebra

R is Gorenstein and normal. Note that B(1) = B(1) U {0} as set and hence we
have

Codimm(B(l) \B(1))=N >2.

Thus, we have a C-algebra isomorphism
R~ H(B(1),0p)).
Lemma 3.3.1. Let £ be a vector bundle on P(V') such that
H'(P(V),E(k)) =0
forall i >0 and k > 0. Then, we have
H{(Y,7*€) =0

for all i > 0.
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Proof. Let Z be a total space of a vector bundle V* &¢c Op(y)(-1). Then, Y is
embedded in Z via the Euler sequence

0— QIF’(V) — V*Qc Op(v)(—l) — OIF’(V) — 0.

Since (V ¢ Opvy(-1))/Qpvy = Op(v), the ideal sheaf Iy, is isomorphic to
Oy. Thus, we have an exact sequence on Z

00z 0z 0Oy —0.
Let 7z : Z — P(V) be the projection. Then, we have
HY(Z,75€) ~ H(P(V),£ @ Rrz,02)
~ H(P(V),E ©7z,0z) (since 7z is affine)

~ P Sym* V @c H'(P(V),E(k))
k>0

and this is zero for i > 0 by the assumption. Thus we have

H (Z,n3E @ Oy) = H(Y,7*€) =0
for ¢ > 0. O
Definition 3.3.2. For an integer k € Z, let Tj := ®§=—N+k+1 Oy (a) be a
vector bundle on Y and Ay := Endy (7) the endomorphism ring of 7.

Note that the R-algebra structure of Ay does not depend on the choice of the
integer k. Nevertheless, we adopt this notation to emphasize that the algebra
Ay is given as the endomorphism ring of a bundle 7.

Theorem 3.3.3. The following hold.
(1) For all k € Z, the vector bundle Ty, is a tilting bundle on Y.
(2) For all —N+1<a< N —1, we have
@*OY(G) = Mav
and My is a (maximal) Cohen-Macaulay R-module.
(8) If 0 <k < N -1, then we have an isomorphism
k
Endy (T%) ~ Endg < &P Ma>
a=—N-+k+1
(4) The R-module
k
b M
a=—N+k+1
giwes an NCCR Ay of R for 0 <k <N — 1.
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(5) There is an equivalence of categories

RHomy (T, —) : DP(Y) =5 DP(Ay).

We note that (1) and (5) of Theorem 3.3.3 are also obtained by Toda and
Uehara in [TU10]. They also study the perverse heart of DP(Y) that corresponds
to mod(Ag) via the derived equivalence.

Proof. Let T = @i\[;()l Opvy(a) is a tilting bundle on P(V'). Then, we have
HY (P(V),T* ® T @ Opyy(k)) =0
for all i > 0 and k£ > 0. Thus, by Lemma 3.3.1, we have
H'(Y, T5®To) =0

and hence T is a tilting bundle on Y. Since other bundles 7} (k € Z) are
obtained from T by twisting Oy (k), T (k € Z) are also tilting bundles on Y.
This shows (1).

On the other hand, by Lemma 3.3.1, we have

H'(Y,0y(a)) =0 fori>0
if a > —N + 1. Therefore, if —N +1 < a < N — 1, we have

H'(Y,0y(a)) =0,
Ext} (Oy(a), Oy) =0

for all ¢ > 0. Thus, by Lemma 2.1.15, we have the R-module ¢.Oy(a) =
H°(Y,Oy(a)) is Cohen-Macaulay if —N +1 < a < N — 1. In particular, if
-N+1<a<N -1, ¢.0Oy(a) is a reflexive R-module by Proposition 2.1.20.
By Lemma 3.2.3, $.Oy (a) and M, are isomorphic outside the unique singular
point 0 & m Thus, we have ¢.Oy(a) ~ M, for —-N+1<a< N —1 and
hence M, is (maximal) Cohen-Macaulay as an R-module if —-N+4+1 <a < N—1.
This shows (2).

The statement of (3) follows from Lemma 2.1.17 and (1).

Finally, (4) follows from (1), (2), and (3). (5) follows from (1). O

It is easy to see that the dual statements hold for Y.
Theorem 3.3.4. Let T, := @Z:_N+k+1 Oy+(a). Then, the following hold.
(1) For all k € Z, the vector bundle T} is a tilting bundle on Y.
(2) For all —N +1<a< N —1, we have

¢*+Oy+ (a) = M_a.
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(8) If 0 <k < N -1, then we have an isomorphism

k
Endy+(T;)~EndR( &P M_a>.

a=—N+k+1

(4) For all k € Z, there is a canonical isomorphism

Endy+(T5) ~ Ay_g-1.

(5) There is an equivalence of categories
RHomy+ (75, ) : DP(YT) 5 DP(An_p_1).

Proof. We only show (4). By Lemma 3.2.3 and Lemma 3.2.4, we have A, =
Endy (T%) and Endy+ (74 _,_,) are isomorphic to each other on the smooth
locus B(1). Since both algebras are Cohen-Macaulay as R-modules and hence
are reflexive, we have an isomorphism

Ay =Endy (Ty) =~ Endy+ (T 5 _,_1)-

This is what we want. O

3.3.2 NCCRs as the path algebra of a quiver

The aim of this subsection is to describe the NCCR Ay of B(1) as the path
algebra of a quiver with relations.

As in the above subsection, let Z be the total space of a vector bundle
V* ® Opvy(—1). Let wz : Z — P(V) the projection, and we set Oz(a) :=
75 0pvy(a), Tz = @2:4\“1 Oz(a), and Az := Endz(T z). Then, the algebra
A is a quotient algebra of Az. First, we describe the non-commutative algebra
Az as the path algebra of a quiver with certain relations.

Note that Z is a crepant resolution of an affine variety Spec H%(Z,Oz). We
set R := H(Z,0y). Then, the algebra R is described as follows.

R:= HO(Z, 0z)
~ H(P(V), @ Sym* V &¢ Opv)(k))

k>0

~ @ Sym* V @¢ Sym* v*

E>0

Let S be the affine coordinate ring of End¢(V), i.e.

S = @Symk(v oc V7).

E>0
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Let vy, --- ,vn be the standard basis of V = CV and fi,..., fx € V* the dual
basis. If we set z;; := v; @ f;, the algebra S is isomorphic to the polynomial
ring with N2 variables

S ~ C[(wij)i,j=1,...N]-

The affine variety Spec R is embedded in Endc (V) = Spec S via the canonical
surjective homomorphism of algebras

S .= @ Symk(V K¢ V*) —» @ Symk V ®¢ Symk V*.

E>0 k>0
Next, we define quivers that we use later.
Definition 3.3.5. Let I be the Beilinson quiver

—fi» —fi> —fi—> —fi—>
0 1 N -2 N -1
-fn+  —fn> - fn > - N>

and T the double Beilinson quiver

NN N D

N -2 N -1

NVAYVANVARNY:

N N N N

Here, v;, f; serve as the label for N different arrows.

Next, we show that the non-commutative algebra Az has a description as
the path algebra of the double Beilinson quiver with certain relations.

Theorem 3.3.6. The non-commutative algebra Az is isomorphic to the path
algebra ST of the double Beilinson quiver I' over S with relations

vv; = vv; foralll <i,5 <N
fifi=Ffifi forall1<ij<N
vifi = fiv; =z forall1<i,j<N.

Proof. First, for a,b € Z>o we have

Homz(Oz(a), 0z (b)) =~ Homp(y(Opvy(a), (12)Oz @ Op) (b))

~ Homp(y) | Op(vy(a), | @D Sym" V @c Opvy(1) | & Opy)(b)
k>0

~ Homp(v) O]p(v)(a), @ Symk V ¢ O]P’(V)(b + k)
k>0
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Moreover, if b > a, we have

HomZ(OZ(a)> Oz(b)) ~ @ Symk V ®¢ Sym’“’b_a vV,

k>0

and if b < a, we have

Homyz(Oz(a), Oz(b)) ~ @ Sym" TPV e Sym* V.

k>0

We define the action v : Oz(a) — Oz(a — 1) of v € V on Tz as a morphism
that correspond to a morphism

O[p(v) (a) — VR O]p(v) (a) cVe O]p(v) (a) C @ Symk Vv Qe O[p(v) (a + k- 1)
k>0

via the adjunction. This morphism v : Oz(a) — Oz(a — 1) corresponds to an
element
v1eVeeCcC @SymkHV@CSymkV*
k>0

via the isomorphism

Homz(Oz(a),0z(a - 1)) ~ @ Sym* TV w¢ Sym* V*.

E>0

We also define the action f : Oz(a) - Oz(a+ 1) of f € V* on Tz as the
morphism that is the pull-back of the morphism

[ O0pvy(a) = Opiy(a+1)

by mz : Z — P(V). Note that this morphism corresponds to a morphism

O]p(v)(a) L) OP(V)(a + 1) C @ Symk V ®c¢ OP(V)(a +k+ 1)
k>0

via the adjunction, and also corresponds to an element

18 feCxcV* C PSym* V @c Sym* ' v*
k>0

via the isomorphism

Homz(oZ(a)7 OZ(G' + 1)) ~ @ Symk 174 oc Symk+l V*.
k>0

Now, it is clear that vy,...,vn and fi,..., fy generate Az as a S-algebra and
satisfy the commutative relation

V;Vj = VU4

fifi = fifi
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for any i, =1,..., N.
Next, we check that the relation

fivy =v;fi = i
is satisfied. By adjunction, the map
fiv; 1 Oz(a) = Oz(a)
corresponds to the composition

OP(V)((I) —V; X OP(V)((I) C @ Symk V Q¢ OIF’(V)(a +k— 1)
k>0

2T (Y Sym* V @ Opgry (a + k),
k>0

where the map (7z). f; is the direct sum of the maps

Sym* V @c Opy(a+k — 1) 2205 SymF V @c Opvy (a + k).

Thus, this map factors through as

id 3
O]P’(V)(a) — vj®(’)]p(v)(a) Lf> z)j§_<>(’)[p(v)(a—0—1) C @ Symk V@COP(V)((I-i-k).
k>0

Similarly, the map
Ujfi : Oz(a) — Oz(a)

corresponds to the composition

O[p:(v) (a) L) O[p:(v) (a -+ 1) C @ Symk 14 K¢ O[p:(v) (a + k + 1)
k>0

20, StV e O (a-+
k>0

by adjunction, where the map (7z).v; is the direct sum of maps

v; ®id
Symk V ®c O]p(v)(a + k)) L) SymkH V ®¢c OP(V)(CL + k)

Thus, this map factors through as

fi v; ®id
Op(v)(a) — O]p(v)(a-i-l) Lieey vj®(9ﬂ»(v)(a+1) C @Symk V®<c(’)]p(v)(a+k).
k>0

Thus, f;v; and v; f; defines the same element in Homz(Oz(a), Oz(a)), and they
correspond to an element

T =v;Rfi VeV C @Symkv,@symkv*(: R)
k>0
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via the isormorpshim

Homyz(Oz(a),0z(a)) ~ @ Sym"* V @ Sym" V*.

k>0
Thus, we have the relation
fivg = v;fi = @y

It is clear that vq,...,vx and fi,..., fnv do not have other relations. Therefore,
we have the result. g

The following is one of main theorems in this chapter.

Theorem 3.3.7. The non-commutative algebra Ay is isomorphic to the path
algebra ST of the double Beilinson quiver I' with relations

viv; = v;v; foralll <i,57 <N,
fifj=fifi foralll1<i,7 <N,
vifi = fiv; =z foralll<i,j<N,

N N
and Z fivi=0= Z'Uifi
i=1 i=1
Proof. By the exact sequence
00z -0z — Oy =0,
we have an exact sequence
OﬁAngz—)Ak—)O

Note that the map ¢« : Az — Az is given by the multiplication of Zfil Tii =
Zi]\il v; ® f; € S. Thus, the result follows from Theorem 3.3.6. O

Remark 3.3.8. If we work over the base field C instead of S, we have
Ay ~Cr/J'
and J' is an ideal that is generated by

ViVj = V;V;, fifj = fjfi7 Ujfi = fivja
frvifi = fivifr, vjfivr = v fiv;

N N
> fi =0=)"vif;.
i=1

i=1

The isomorphism Sf/J — (Cf/J’ is given by v; = v;, fi = fi, x5 = v fi.
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Example 3.3.9. Let us consider the case NV = 2. In this case, the affine surface

B(1) is given by
(2 )1

and hence has a Du Val singularity of type A; at the origin. The resolution
Y = |Qp| - B(1) is the minimal resolution, and the NCCR Ay is isomorphic
to the smash product C[z, y|#G, where G is a subgroup of SLy

{103 ) e

The quiver that gives the NCCR Ay is given by

v1

Lo

K U2~
0 1

NV

f2

and the relations (over C) are given by fiv1 + fove = 0, v1f1 + vafo = 0.

This quiver (with relations) coincides with the one that is described in Wey-
man and Zhao'’s paper [WZ12, Example 6.15]. In [WZ12, Section 6], Weyman
and Zhao studied a description of an NCCR of a (maximal) determinantal va-
riety of symmetric matrices as the path algebra of a quiver. Since the surface
B(1) is isomorphic to a (maximal) determinantal variety of symmetric matrices

W5 e tee-e=o,

they obtained the above description of Ay as a special case.

3.3.3 Remark: Alternative NCCRs of B(1)

The NCCR Ay, of B(1) that is constructed in the above subsection came from
the Beilinson collection of P(V)

DP(P(V)) = (0,0(1),--- ,O(N — 1)).

In this subsection, we construct an NCCR of R of another type from the different
Beilinson collection

DY (P(V)) = (QVH(N),QV2(N — 1), ,Q1(2),0(1)).

42



Definition 3.3.10. (1) We define a representation ny : Stabgy,, (Xo) = SLy_1

as
c|0 00
0
StabSLN (Xo) > % A —> € SLy_1.
0
* x c

For 0 < a < N — 1, we define a representation n, by

a
Ng = /\nl.

(2) Let N, be a vector bundle on B(1) that corresponds to the representation
Ng.-

(3) We set N, := H°(B(1),N,). Then N, is a reflexive R-module.
(4) We define an R-algebra A’ by

N-1
A’ := Endg (@ Na> .
a=0

As in Lemma 3.2.3, we can relate the homogeneous vector bundle N, with a
(co)tangent bundle on a projective space. We note that we have an isomorphism
between vector bundles on P(V)

/\(TIP(V)(*l)) = ()" (—a)
~ QE]}E;‘;*(N) ® O(—a)
~ Qﬁ;?_l(]\f —a).

Here, Tp(y) is the tangent bundle on P(V') and Qp(y) is the cotangent bundle
on P(V).

Lemma 3.3.11. We have W*Q;(‘})(a)‘U ~ Nn_q.

The proof is completely same as in Lemma 3.2.3.
We want to show that the algebra A’ is an NCCR of R. In order to show
this, we need the following lemma.

Lemma 3.3.12 ([BLV10], Corollary 3.24). Put
Ma(—¢) = Homp(vy (U (0), Ay (a)) (o).

Then, the cohomology H(P(V'), M5 (—c)) is not zero only in the following cases:
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(1) If d — ¢ > 0, then d = 0 and, necessarily, ¢ < 0.
(2) If d— ¢ =0, then ¢+ b € [max{a,b}, min{N,a +b— 1}].
(3) If d—c¢=—1, then ¢ — a € [max{0, N —a — b — 1}, min{N — b, N —a}].
(4) If d — ¢ < =1, then d = N — 1, and necessarily, ¢ > N.
In particular, if ¢ <0, we have HY(P(V), M%(—c)) =0 for all d > 0.
From this lemma, we can obtain the following corollaries.

Corollary 3.3.13. For 0 < a < N — 1, we have N, ~ ¢*W*Qﬁ;‘)”1(N —a)

and N, is Cohen-Macaulay.
Proof. Let k > 0 be a non-negative integer. Note that, Qﬁ;‘;fl(Nfa)@)O(k) ~
ME_ (k) and
(05 N = a))" @ O(k) =~ Qv (N) @ O(=N +a) @ O(k)
~ Qpy(a+1) @Ok 1)
= M}wl(k)-
Thus, by Lemma 3.3.12 and Lemma 3.3.1, we have

HI(Y, 705 (N = a) =0 = (Y, 7" (@05 (N — a)")

for ¢ > 0, and hence by Lemma 2.1.15, we have the R-module (ﬁ*ﬂ*Qﬁ;?_l(N—
a) is maximal Cohen-Macaulay. In particular, Q*W*Qﬁ;‘;fl(N — a) is reflexive
and hence we have the desired isomorphism. O

Corollary 3.3.14. The bundle

N
L *a—1
T =@ %y (@
a=1
is a tilting bundle on 'Y and there is an isomorphism as R-algebras
AI ~ Endy (T/)

In particular, the R-module @fl\;—ol N, gives an NCCR N’ of R.

Proof. The bundle (7')* 2 7" is the direct sum of 7*M?%(0). By Lemma 3.3.12
and Lemma 3.3.1, we have

H(Y, 7" M5 (0)) = 0
for 4 > 0 and hence we have
Exty (T, T") = H(Y,(T)* ®T') =0

for 4 > 0. It is clear that the bundle generates the category D(Qcoh(Y")).
Therefore, the bundle 7 is tilting. a
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Corollary 3.3.15. Let us assume N > 3. In this case, although the two NCCRs
Ak, A of R are not isomorphic to each other, there is an equivalence of categories

DP(Y) ~ DP(A;) ~ DP(A).

Proof. The R-rank of the first NCCR Ay is just 2N and the R-rank of the
second NCCR A’ is

N
2 Z rank Qf;,(vl) =2N,
a=1

Thus, if N > 3, Ay and A’ are not isomorphic to each other but have the
equivalent derived categories, where the equivalence is given by the composition

Db(A/) - T’ Db(Y) RHomy (T k,—) Db(Ak)

This shows the result. O

At the end of this subsection, we give another type of tilting bundles that
we use in the later section (Section 3.5.2).

Proposition 3.3.16. The vector bundle
0
P ov@o (W*Q{;M & Oy(1)>
=—N+2
and its dual vector bundle S; are tilting bundle on Y for all 0 <k < N — 1.

Proof. As in Lemma 3.3.14, the claim follows from direct computations using
Lemma 3.3.12. O
3.4 From an NCCR to crepant resolutions

3.4.1 Main theorem

In this section, we recover the crepant resolutions Y and Y+ of B(1) from the
NCCR Aj. Again, let T' be the double Beilinson quiver

e \/ \/W\ /W\

-2 -1
~7

\/Q/VV @7

N
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with relations

viv; = vjv; forall1<4,j <N,
fifj:fjfi forall 1 <i,5 <N,
vifi = fiv; = x5 foralll <4, <N,

N N
and Zfivi =0= Z’szz
i=1 i=1

For a commutative C-algebra A, let ﬁ(A) the set of representations W of
the quiver I (with the above relations)

V1

L LN /N\ Li

N~

1
1

INVANyANY RNV

such that, for each i, W; is a (constant) rank 1 projective A-module and W is
generated by W, = A.
The goal of this section is to show the following theorem.

Theorem 3.4.1 (cf. [VdBO04b], Section 6). Y is the fine moduli space of the
functor R. The universal bundle is TN_1-

Recall that the NCCR Ay is isomorphic to the path algebra Sf/J where J
is the ideal generated by the above relations. Therefore, Theorem 3.4.1 means
that we can recover a crepant resolution Y of B(1) (and a tilting bundle on Y)
from the NCCR Ay, as a moduli space of Ag-modules (and its universal bundle).
The other crepant resolution Y+ is also recovered as the fine moduli space of

another functor R (see Remark 3.4.10).

3.4.2 Projective module of rank 1

Let A be a (commutative, noetherian) C-algebra. In this subsection, we recall
some basic properties of projective A-modules of (constant) rank 1. First, we
recall the following fundamental result for projective modules. One can find the
following proposition in Chapter II, §5, 2, Theorem 1 of [Bourbaki].

Proposition 3.4.2. Let M be a finitely generated A-module. Then, the follow-
ing are equivalent.

(i) M is projective.

(ii) For all p € Spec A, there exists a non-negative integer r(p) € Zxqo such
that My, ~ A;(P).
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(i1i) There exist f1,..., fr € A such that they generate the unite ideal of A and
My, is a free Ay,-module for each i.

From this proposition, we have the following.

Corollary 3.4.3. Let M be a finitely generated A-module. Then, the following
are equivalent.

(1) The sheaf on Spec A that associates to M is an invertible sheaf.
(2) M is a projective A-module of constant rank 1.

Thus, if we consider projective modules of constant rank 1, the symmetric
product of them coincides with the tensor product.

Lemma 3.4.4. Let P be a (finitely generated) projective A-module of (constant)
rank 1. Let &y be a group of permutations of the set {1,2,...,k}. Then, for
any mi, ma,...,mi € P and any o € Sy, we have

mp & me - QM =Mg(1) @ Mg(2) @+ & Mg (k)
in P®¥ . In particular, we have
P%k ~ Symh P
as an A-module.

Proof. This is the direct consequence of Proposition 3.4.2 (iii) and the gluing
property of sheaves. O

Corollary 3.4.5. Let P be a (finitely generated) projective A-module of (con-
stant) rank 1. For any u € P = Homa(P, A) and m; ... my, € Sym% P, we
have

w(mg) -y - my e mg = u(mg) s my oM e
m Symﬁ(l P for all1 <i< j<k. In particular, the map

Symb P — Sym T P my . omy e u(myg) omy -y omy
is well-defined and does not depend on the choice of i.

_ Corollary 3.4.5 will be used in Section 3.4.4 to construct a representation of
T" from a projective module P of constant rank 1.

3.4.3 An easy case

In order to prove Theorem 3.4.1, we first study an easier functor R. For commu-
tative C-algebra A, let R(A) be the set of representation W of Beilinson quiver
r
—fi—> —fi—> —fi> —fi~>
Wo =+ Wi o ot W 0 Wi
—fn > —fv > —fn > —fn>
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with usual relations

such that each W; is rank 1 projective A-module and W is generated by W, = A.
Let us consider a rank 1 projective A-module P and split injective morphism

a: P = V &c A. For the pair (P, a), we define a representation W, of I" as

follows. Let (Wa)g := Sym” PY where PV := Hom(P, A) is the dual of P.

The action of f € V is defined by

f:Sym" PV — Symi“ PY, wl-uf s oV (fut -t
By construction, we have W, € R(A).

Proposition 3.4.6. For any W € R(A), there exists a unique pair (P, a) as
above such that W ~ W,,.

Proof. Let W € R(A). Since W is generated by the first component Wy = A,
we have a surjective morphism

7.V ®c A— Wi,

Since W is a projective A-module, the morphism 7 is split surjection. If W =
W, for some (P,«), then we have P = W} = Homu (W1, A) and o = 7¥ =
Hom 4 (a, —). This shows the uniqueness of (P, a).

For arbitrary W, since W is generated by Wy, W is a quotient of a A-module

N-1 ‘ N-1 _
@ Sym’y (V* ®&c A/ Kerm) ~ @ Sym'y PY.
i=0 i=0
However, W and @f\;_ol Symi‘ PV have the same A-rank N — 1, we have
N-1 4
W~ @ Sym'y PV.
i=0
This shows the lemma. O

Thus, we have the next result.

Corollary 3.4.7. The functor R is represented by the projective space P(V)
and the universal sheaf is @iv;()l O(a).

In the next subsection, we prove Theorem 3.4.1 by using Proposition 3.4.6.

3.4.4 Proof of Theorem 3.4.1

Let us consider a projective A-module P of rank 1 and a pair of morphisms
(a, B), where

a:P—VgeA
g:PV = V*@c A
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that satisfies 3V o o« = 0 (equivalently, @ o # = 0) and « is injective and split.
We note that the triple (P, «,3Y) is a (stable) representation of Nakajima’s
quiver of type A over the commutative algebra A. Via the basis vy,...,vy of
V', we set the matrix

(a”L]) *0‘03 VocA—=VecA.

For a triple (P, a, ) as above, we define a representation W, as follows.
We set (Wag)q := Sym% PY. The action of f € V* is given by

f:Sym% PY — Sym%™ PV, wlu® = oV (fut - ut

The action of v € V is given by

-~

v:Sym% PY — Sym% ' PV, wl--u® > ud(8Y(v) utoud -l

This map is well-defined and does not depends the choice of j by Corollary 3.4.5.
First, we need to check the following

Lemma 3.4.8. For a triple (P,a, 8) as above, we have Wos € R(A).
Proof. We need to check the following.

(1) viv; = v;v; and f; f; = f;fi.

(2) vifi = fiv; = ay;.

(3) oL, fivi =0 =21, vifi.

(4) Wep is generated by (Wag)o-

(1) and (4) trivially follows from the construction of W,s. We need to check
(2) and (3). First, we check (2). The action on fiv; on (Wap)i = Sym% PV is
given by

frvoj (- ub) = (8 (0y) - 0¥ (fo)ul -l -,
for some 1. On the other hand, v; f; acts on (Was)x by
vy filu )
:vj(av(fz)ul o)
=u (5" (vy) -0 (fiut -l -t
=fivs(ut- - ub).
We note that we also have
o filul - ub) = @Y (£)(8Y (0y) - u' -t
and oY (£;)(8Y(v;)) = fi((a 0 8Y)(v;)) = as; € A. Hence we have
(03 fi) () = (fiog) (- ub) = agy b

49



This shows (2). Next, we check (3). From the above computation, we have

N N
(Z fiv)(ut - uf) = (Z ul (B (v:)) ’@v(fz‘)) cutad b
i=1 i=1
Thus, we have to show that

N

Do (8 () - a¥(fi) = 0.

i=1

Let us consider the composition
Vv
PV L viacA o pY.

Note that 5(u') = Nl(é’(ul))(vl) fi = Zl]\il u(8Y(v;)) - f;. Hence we have

7=

Zi]\il ul(BY (v3)) - aV(f;) = (@ o 8)(u!) = 0. The same argument shows that we

have
N
Z vifi = 0.
i=1
This shows (3). a
Next, we show the next proposition.

Proposition 3.4.9. For any W € 7€(A), there exists a unique (P, ¢, 3) as above
such that W ~ W,g.

Proof. By forgetting the action of V', we can regard W as an object in R. Thus,
by Proposition 3.4.6, there exist a projective A-module P and a split injective
morphism « : P — V &®¢ A such that W ~ W,. We want to construct the
morphism 4 : PV — V* @¢ A.
The action of v; € V on W; = PV
Vit Pv — WO =A

is an element in Homy4(PY, A) ~ P. Let p; € P an element in P that corre-
sponds to v; € V via the above isomorphism. By using this, we set a morphism

v:V&ecA > P

by

(%3 & 1 DPis
and we set 3 :=~". In order to complete the proof, we need to check the next
two properties.

(1) aVo =0,
(2) The given action of V' on W coincides with the one that is determined by
s.
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First, we check (1). For u € PV, we have

N
Bu) =Y (B(w)(v) - fi-
i=1
Therefore, we have
N N N
(@ e )(u) =D (B)(vi) - a¥(f) = D fil(Bw)(v) = Y _(fivi)(u) = 0.
i=1 i=1 i=1

The last equality follows from the relation Zl]\il fivi = 0. This shows (1). Next,
we check (2). We show that the action

vt Wy = Wi_4

coincides with the desired one by induction on k. For k = 1, this is true by the
construction of 3. Let us assume k > 1. By definition, we have

(ifi) (' u®) = vi(a¥ (f)ut - u®).

On the other hand, by the relation and the induction hypothesis, we have

(vifi)(u*- —uP) =aj; - u'- Lok

=’ (f)(5" (v3) -u' - -t

Since " : V* ®@c A — PV is surjective, we can replace ¥ (f;) in the above
equation by arbitrary v € PV, and hence we have

vj(uut - uF) = w(8Y () - ut Ut

This shows (2) and the proof is completed. O
The triple (P, o, 3Y) gives a representation of the Nakajima’s quiver W over
A
PLARN
P VecA
~a T

of dimension vector (1, N), where @ is the A; quiver (i.e. a point). As it was
explained above, the variety Y is given by

Y ={(L,X) € P(V) x Endc(V) | X(V) € L, X(L) = 0}.

This is a description of Y as the Nakajima’s quiver variety of type A; with
dimension vector (1, N). From this presentation of Y, we find that ¥ represents
the functor R. Moreover, since Nakajima’s quiver varieties admit a natural sym-
plectic structure, we can say that a symplectic structure of Y can be recovered
from the NCCR as well.

For the details of Nakajima’s quiver variety and the notation that we used
above, see [Gin09].
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~+ _~
Remark 3.4.10. Let R (A) be a set consists of the representations of I" with
the relations in Theorem 3.3.7 of dimension vector (1,1,...,1) and generated
by the last component Wy _;. Then, the dual argument shows that the functor

+
R represented by the variety Y.

3.4.5 Simple representations

In the rest of this section, we determine simple representations that are con-
tained in R(C).

Lemma 3.4.11. A representation W = (Wy)y, € R(C) is simple if and only if
it 1s generated by the last component Wy _1.

Proof. If W is not generated by Wy _1, the subrepresentation W’ that is gen-
erated by W _1 defines a non-trivial subrepresentation of W, and hence W is
not simple.

On the other hand, let W’ = (W}); be a non-zero subrepresentation of .
Then, the last part of subrepresentation W]/\h1 coincides with the one Wy_1
of W. Indeed, since W’ is non-zero, there exists k such that W, = Symé P,
where P is a one-dimensional vector space over C. As the map oV : V* — P is
surjective, there exists f € V such that the image of the map

va(f)N_k_1 : Sym(Ik;P — Symg_1 P

is non-zero. Therefore, we have W};_; # 0 and hence we have W},_; = Wy_1.
Thus, if W is generated by the last component Wy _1, the subrepresentation
W' should be W itself. O

Corollary 3.4.12. A representation W = (W) € ﬁ(C) is simple if and only
if the map 3 : PV — V is injective.

Proof. Let W be a simple representation. Then, by Lemma 3.4.11, W is gener-
ated by the last part Wy _;. Thus, for at least one 4, the map v; : Wy = PV —
Wy = C is non-zero. Therefore, if we set an element p; € P that corresponds
v; via the identification P ~ Homg¢(PV,C), the map v : V — P, wv; v p; is
non-zero and hence surjective. Recall that the morphism 5 : P — V is defined
as the dual map of . Thus, we have that the map 3 is injective.

On the other hand, if g is injective, we have that the representation W is
generated by Wy _1 from the construction. O

Let W ¢ R(C) and (P,a, ) a triple that defines W. Then, a(P) C V
defines a line in V' and the composition o 8V defines an element in Endc (V).
Moreover, a pair (a(P),a o 3Y) € P(V) x Endc(V) defines a point of Y that
corresponds to W via the identification R(C) ~ Y (C).

If 3 is not injective, 4 must be zero and hence the corresponding point of Y
belongs to the zero section

J(P(V)) = {(L,0) € P(V) x Ende(V)}.
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Conversely, if the point (a(P),a o 3Y) € Y lies on the zero section, the map 3
must be zero and hence not injective.
By summarizing the above discussion, we have the following theorem.

Theorem 3.4.13. Let W be a representation that belongs to the set R(C).
Then, the following are equivalent.

(1) W is simple.
(2) W is generated by the last component Wx_1.

(3) W is corresponds to a point of Y that lies over the non-singular part of
B(1) wvia the identification R(C) = Y (C).

Of course, the corresponding argument holds for Y+ and 7€+.

3.5 Kawamata-Namikawa’s equivalence for Mukai
flops and P-twists

In this section, we always assume N > 3.

3.5.1 Kawamata-Namikawa’s equivalence

Recall that the map ¢ : Y — B(1) contracts the zero section j : P(V) <+ Y to

"
0 € B(1). This is a flopping contraction and the flop is Y+ = Tot(Qp(y+)) SN
B(1), where P(V*) is the dual projective space of P(V'). In the following, we
write P :=P(V) and PV := P(V*) for short.

P J y+ J’ P

<—>Y\ /
[ ot
B

As in the above sections, let 7 : Y — P and «’ : Y — PV be the projections,
and we set Oy (1) := 7*Op(1) and Oy +(1) := (x')*Opv(1). Then, the vector
bundles

Tk = @ Oy(a),

a=—N+k+1
k
TZ— = @ Oy+ (a)
a=—N+k+1

on Y, YT, respectively, are tilting bundles. Moreover, we have an R-algebra
isomorphism
Ay, == Endy (T%) =~ Endy+ (T§_,_1).
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by Theorem 3.3.4 (4).
By using the above tilting bundles, we have equivalences of categories

T}, := RHomy (T}, -) : D*(Y) = DP(Ay),
(W]Tf—kfl)_l = ®kk TJJ(ifkfl : Db(Ak) = Db(Y+)a
and by compositing these equivalences, we have an equivalence
nKNy, := RHomy (T%, —) @K, Th_p_1 : D?(Y) = DP(Y'1).
By construction, the inverse of the equivalence nKNy, is given by
(nKNy,) ™' ~nKNYy_,_; := RHomy+(T§_,_1, —) &K, Tw-
On the other hand, the equivalence between DP(Y") and DP(Y *) is first given
by Kawamata and Namikawa in terms of the Fourier-Makai transform. We recall
their construction of Fourier-Makai type equivalences. Let Y be a blowing-up

of Y at the zero section P. Then, Y is also a blowing-up of Yt at P¥. Since
the normal bundle of j : P <+ Y is isomorphic to Q]%», the exceptional divisor

E =Pp(Q}) C Y can be embedded in the fiber product P x PV by the Euler
sequence. We set Y :=Y Up (P xPY), and let ¢ : Y 5>Yandp:Y = YT be

projections.
Y
% &
Y Y+

Let £;, be a line bundle on Y such that Lily = Oy (kE) and Lilpxpv =
O(—k,—k). The Kawamata-Namikawa’s functors are given by

KNy := Rp.(L¢* (=) ® Lg) : DP(Y) = DP(Y™T),
KNj, := Rg.(Lp* (=) ® Ly) : DP(YT) — DP(Y).
The following result is due to Kawamata and Namikawa.

Theorem 3.5.1 ([Kaw02, Nam03]). The functors KNy, and KN}, are equiva-
lences.

Remark 3.5.2. By the definition of the functor KNy, the following diagram
commutes

DP(Y) =1k, ph(y+)
7®Oy(1)l lf®0y+(71)
DP(Y) Ty DP(Y ).
The same holds for our equivalence nKNy, :
DP(Y) 555 DP(yH)
~00v (1) |80y
b by +
D*(Y) n—>KNk+1D (Y™).
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Theorem 3.5.3. Our functor nKNy, (resp. nKN},) coincides with the Kawamata-
Namikawa’s functor KNy, (resp. KN}, ).

Note that in the proof of Theorem 3.5.3, we does not use the fact that the
functors KNy and KN}, are equivalences. Thus, our proof of Theorem 3.5.3 gives
an alternative proof for Theorem 3.5.1 in this local model of the Mukai flop.

Proof. Tt is easy to see that KNy_,_; is the left and right adjoint of KNj.
Thus, it is enough to show that the following diagram commutes.

KN/,
Db(Y) i DP(Y)

. +
m %N—k—l

D"(Ag)

We note that the composition W) o KN'y_,_; is given by
RHomy  (KNg(7%), —) : D*(Y 1) — DP(A).
Now, Theorem 3.5.3 follows from Lemma 3.5.4. O
Lemma 3.5.4. Let k € Z a fized integer. Then we have
KN (Oy (a)) ~ Oy+(—a)
for all =N +k+1<a<k and hence we have an isomorphism
KN (Tr) = T _pes -

Proof. By Remark 3.5.2, it is enough to show the isomorphism of functors for
k = 0. Recall that the correspondence Y is given by Y =Y Ug P x P¥. Hence,
we have an exact sequence on Y x Y+

OQOQ%Oy@OPXPv — O = 0.

We use this sequence to compute the Fourier-Mukai functor KNg := FMO?.
First, we have

FMo, . (Oy(a)) = RI'(P, Op(a)) © j.Opv

- jiOPv (1fa = 0)
1o (f —N+1<a<0).

The exceptional divisor £ C Y is a universal hyperplane section over P and
hence a divisor on P x PV of bi-degree (1,1). Thus, we have an exact sequence

0— Opxpv(-1,-1) = Opyxpv = O — 0.
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From the same computation as above, we have
Fl\/[oﬂ)>< Pv(,17,1)(0y(a)) = RF(P, Op(a — 1)) [ ji@pv(fl)

o (if =N +1<a<0)
JLOp (~D[-N +1] (ifa= N +1),

and hence we have

7O (if a = 0)
FM@E(Oy(a)) =40 (lf —N+1<a< 0)
JOp (~1)[-N+2] (fa=-N+1).

Furthermore, since we have
Oy (E) ~ ¢ Oy (—1) & p*Oy+(—1),
and

0 forallk=1,...,N — 2,

RpOp(kE) =
PO (kE) {j;OPV(N)[N+2] for k=N - 1,

we have
FMo., (Oy (a)) = Rp«(Op(-ak)) @ Oy+(-a)
= Oy+(-a)
for —-N +1<a<0,and FMo.,(Oy(-N + 1)) lies on the exact triangle
Oy+(N —1) - FMo_(Oy (=N + 1)) = Opv(~1)[-N +2].

From the above, we can compute KNy(Oy (a)) for —-N +1<a < 0. If a =0,
KNg(Oy) lies on the exact triangle

KNO(Oy) — Oy + @jion — jiOIP’V,

and hence we have
KNo(Oy) o~ Oy+.

If —-N+1<a<0, we have
KNo(Oy (a)) =~ Oy+(—a).
Finally, if a = =N + 1, KNg(Oy (—N + 1)) lies on the exact triangle
KNo(Oy (=N +1)) = FMo_ (Oy (=N +1)) = j.Opv(~1)[-N +2].

This triangle coincides with the above one that gives the object FMo_. (Oy (—N+
1)) and hence we have

KNQ(Oy(7N+ 1)) ~ Oy+(N — 1).

Thus, we have the isomorphism KNg(77) ~ 74 that we want. a
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3.5.2 P-twists and Mutations

‘s secti : : - +
I? this bec‘mo.n, we introduce equlyalenees Vnip and vy, between the de-
rived categories of non-commutative algebras Anxixr and Ayyr—1. We show
o, . . . + -
that a composition of multi-mutation functors vy, _; o vy, corresponds to

an autoequivalence Pj, of DP(Y) that is a P-twist defined by a PN~!-object

Definition of multi-mutation

First, we define a multi-mutation functor vy_; : DP(Ay_1) = D”(Ay_2). Re-
call that the algebras Ax_; is given by

N—1
An_1 = Endg ({B Ma> :
a=0

Let us consider the canonical surjective morphism R®Y — M_;. Note that this
morphism is given by the push-forward of the canonical surjection V &¢c Oy + —
Oy+(1) by ¢T. Then, we define a Ay_1-module C' as

N-1 N-1
C := Image (HomR(@ M,,R®N) — HomR(@ Ma,M1)> ,
a=0 a=0

and set a Ay_q1-module S as
S :=Homap, _,( M,, M,) & C.

Lemma 3.5.5. The following hold.

(i) There exists an isomorphism of Ayn_1-modules

S ~ RHomy+(Td,7T7).

(ii) The An_1-module S defined above is a tilting generator of the category
DP(AN_1).

(tii) We have an isomorphism between R-algebras

Enda, ,(S) ~ Any_a.

Proof. The (ii) and (iii) follow from (i). First, we have

0
RHomy+ (T{,71) = RHomy+ (T3, €D Oy+(a))@RHomy+(T{, Oy+(1)).
a=—N+2
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As explained above, we have
M_, = (/):OY‘*'(G’)

forall —-N+1<a< N -1, and we have

0 0
RHomy+(Ty, €D Ov+(a) =Homy+(T§, € Oy+(a)
a=—N+2 a=—N+2
N-1

N-2
= Homp (P M., P Ma).
a=0 a=0

Next, since the sheaf Homy+ (T, Oy+ (1)) on Y is a vector bundle and hence is

torsion free, the R-module Homy-+ (T, Oy+ (1)) = ¢F Homy+ (T, Oy+(1)) is

also torsion free. Since two R-modules HomR(EBflV:_Ol My, M_y) and Homy+ (T3, Oy+ (1))
are isomorphic in codimension one, the natural map

N-1
Homy+ (T, Oy+ (1)) = H0m3(® My, M_1)
a=0

is injective. Let us consider the surjective morphism V &¢c Oy+ — Oy+(1). We
note that the map

Homy+ (Ta—, Vv KRe Oy+) — HOIIly+ (Ta—, Oy+ (1))

is surjective because we have a vanishing of an extension
N-1
Exty (T¢, 7" Qpv (1)) = H (YT, @ 7 Qpv(a+ 1)) =0
a=0
from the same argument as in the proof of Corollary 3.3.13. Thus, we have the

following commutative diagram

Homy + (T3, V @c Oy+) —=— Homp(DN ' M,,V ©c Mp)

! |

Homy + (T, Oy+ (1)) «———— Hompg(@) ' M, M_,)

and hence we have RHomy + (7, Oy+ (1)) = Homy+ (T¢, Oy+ (1)) = C. O
From the above lemma, we can define the equivalence:

Definition 3.5.6. We set

vy_y = RHoma, (S, ~) : D°(Ay—1) > D"(An-2).
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We call this functor vy _, the multi-mutation functor. By Lemma 3.5.5, multi-
mutation v_; coincides with the functor

RHomy ,_, (RHomy+ (Td,77), =) : DP(An_1) => DP(An_2),

and hence the following diagram commutes

X
D (Y +) —Ly Db(A)

\Ilh J(VITI—I

D (An_2).

We also define a multi-mutation functor v, : DP(Ay) = D”(A;x_1) by using the
following commutative diagram.

b + b + b + b +
D) o D7) D) ey PO
oty w Lot [
F 1 VUN_1 FI-V—E2
Db(Ak) . e SN Db(ANfl) REELN Db(AN,Q) — Db(Akfl),
3

where the functor F} : D?(A;) — D"(A;) is given by the composition

7®A1‘T?{T—i—l RHomy(T?\',_j_l,f)
R S A

Fi:DP(A;) DP(y ) 22279, pb(yhy

J

D°(A;).

Applying the same argument for the side of Y, we can define a multi-
mutation functor ;7 : DP(Aj) — DP(Aj41). Again, by construction, we can
show that there is a commutative diagram of functors

DP(Y) —2 DP(A)

N
v

DP(Ajyq).

Connection between multi-mutations and IW mutations

In the following, we explain the multi-mutation functor vy _, is given by a com-
position of IW mutations. For definitions and basic properties of IW mutations.
Let us consider the long Euler sequence on P¥ = P(V*)

N—-2
0= Opv(-N+1) 5 V*@cOp (-N+2) > \ V@ Opv(-N+3) = -
2

— /\V®C Opv(—=1) =5 V ®c Opv — Opv (1) — 0.
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By applying the functor (¢™).o(#')* to the above sequence, we have a resolution
of the module M_; by other modules My, ..., My_1:

N-—-2

2
0= Myt = V'@My2— \ VocMy-3 == \V&cM — V&cMo — M_1 — 0.
We splice this sequence into short exact sequences

0= MNn_1 >V "@cMn_o—Ly_5—0
N-2
0—= Lny_9 — /\ VeMy_3— Ly_3—0

k
0—>Lk—>/\V®CMk_1 =Ly 1—=0

0L »>V®My—-M_1—-0

and set Ly_1:=Mpy_1, Lo :=M_1, W := @aN:OZ M,, and Ey :=W @ L. By
dualizing above morphisms, we have a map /\k V* ®&c Mj_, — Lj. Since the
module M, is reflexive, the above map is surjective. Then, applying the functor
— @ W*, we have a surjective map

k
(/\ V* ®¢ M,;‘_1> & W* —» E}.
First, we prove the following
Lemma 3.5.7. The map (A" V* Ge Mi_,) @ W* 5 Ef is a right (add W*)-
approximation.
Proof. Let us consider the exact sequence
k
0—=L;_;— /\V* Qc Mj_, = Lj — 0.

We have to show that the map

k

Homp(W*, A\ V* @c Mj_,) — Homg(W*, L)

is surjective. First, by definition, we have M| ~ M_j11 ~ (¢7).Oy+ (k- 1).
On YT, there is a canonical short exact sequence

k-1

k k
0 (7)) \ Tov@Oy+(~1) + AV*RcOy+ (k1) = (7')* \ Tpv 20y (1) — 0,
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where Tpv is the tangent bundle on Y*+. Put #i := (#)* A" Tpv © Oy (1)
and Hy := Hj*. Since the first non-trivial term of the above exact sequence
does not have higher cohomology, we have an isomorphism

Ly~ (67)x (M)

by induction on k. Furthermore, since the third non-trivial term of the above
exact sequence and its dual have no higher cohomology, it follows from Lemma
2.1.15 that the module L is (maximal) Cohen-Macaulay, and hence, the module
Homp(W*, L}) is reflexive by Proposition 2.1.21. In addition, by Proposition
2.1.20, Lemma 2.1.15, and Proposition 3.3.16, the module

N—-2
Homy -+ (@ Oy+ (a)aHZ>

a=0

is also reflexive. Therefore, we have an isomorphism

N-2
Homy + (@ Oy+ (a),?—[};) ~ Hompg(W*, L}).
a=0

On the other hand, again by Proposition 3.3.16, we have the vanishing of an
extension group

a=0

N-2
Ext, (@ Oyt (a),H;;1> —0.

This vanishing says that the map

N-—-2 k N-2
Homy + (EB Oy+(a), \V* ®c Oy (k — 1)) — Homy+ <@ 0Y+(a),7-z,§>
a=0

= a=0
is surjective. Thus, we have the morphism
k
Homp(W*, A\ V* ©c Mj_,) — Homg(W*, L)

is also surjective. O

Since the kernel of the approximation (/\k V* Q¢ M,j_l) G W* = Efis
isomorphic to L} _,, the R-module Ej_; is isomorphic to a (left) IW mutation
uﬁ,(Ek) of Fy at W. Thus, by Theorem 2.1.25, we have a derived equivalence

Oy : DP(Endg(Ey)) —> DP(Endg(Er_1)).

However, in this case, we can show directly that the functor ®y, actually gives an
equivalence of categories. As in the proof of Lemma 3.5.7, put Hy, := (71'/)*Q]’§v &
Oy+(1).
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Lemma 3.5.8. (1) We have an isomorphism of R-algebras Endg(E}) ~ Endy+(S;),
where S;° = @()_N+2 Oy+(a) @ Hy, is a tilting bundle on Y that is given
in Proposition 3.5.16.

(2) We have an isomorphism of functors
Py ~ RHomppa, (g, (RHomy+ (S, S 1), -).
(3) In particular, IW mutation functor @y gives an equivalence of categories,
and the following diagram of functors commutes

Db (Y +) —2£ s DY(Endg(Ej))

\ Jow

D" (Endgr(Ek_1)),

where Sy := RHomy+(S;7, ) : DP(Y ") — D (Endg(Ey)).

Proof. We can prove this lemma by using almost same arguments as in Lemma
3.5.5. The different point from Lemma 3.5.5 is that the vanishing of Ext- (S}, S ;)
for ¢ > 0 is non-trivial. However, this vanishing follows from direct computations
using Proposition 3.3.12. O

Now we ready to prove the following result that gives a correspondence
between multi-mutations and IW mutations.

Theorem 3.5.9. An equivalence obtained by composing N — 1 IW mutation
functors
(I)W o (I)W 0-:--0 (I)W : Db(AN_l) — Db(AN_Q)

is isomorphic to a multi-mutation functor vy _ ;.
Here, we note that Endg(En—_1) = Ax—1 and Endg(Ey) = Ay—2.

Proof. By Lemma 3.5.5 (3), we have a commutative diagram

Db Y+) So
oz T
D"(Endr(En-1)) —— D"(Endr(Ex-2)) —— -+ —— D"(Endr(Eb)),

Hence, we have @y o Pyyo--- 0 Py ~ Sp o S 1= \I/+ (\I’ )t vy . O

Remark 3.5.10. Applying the same argument, we can prove that a multi-
mutation functor

I/k_ : Db(Ak) — Db(Ak_l)
is written as a composition of IW mutation functors if 1 < k < N — 1. In other

cases, the above argument cannot be applied because we only know that the
module @§:7N+k+1 M, gives an NCCR if 0 < kK < N — 1 (see Theorem 3.3.3).
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Next, we discuss the case of multi-mutations 1/2— .

Theorem 3.5.11. A multi-mutation functor
’/1-{—7—2 : Db(AN_Q) — Db(AN_l)
can be written as a composition of N — 1 IW mutation functors.

Proof. Let us consider the long Euler sequence on P
N—2
0—)0[9(71) —V Q&c Op — /\ v ®c0}p(1) — .
2
= A\ V* @c Op(N = 3) = V* ®c Op(N — 2) = Op(N — 1) — 0.
Applying a functor ¢, o 7*, we have a long exact sequence
N-—-2
0>M1—-VeR—- \ V' ® M-
2
— /\V* ®c Mn—_3 — v ®Rc My_o2 — Mn_1 — 0.

Using completely same argument as in the proof of Theorem 3.5.9, we have an
equivalence of categories

q)W [} (I>W 0.0 (I>W : Db(AN,Q) - Db(ANfl)

and this functor is isomorphic to the functor Wy_q o \1117\,1_2 ~ uf{,_z under the
above identification of algebras. O

Remark 3.5.12. As in Remark 3.5.10, we can show that a multi-mutation
functor ;f : DP(Ag) — DP(Ag41) can be described as a composition of IW
mutation functors if 0 < k < N — 2.

Remark 3.5.13. From the proof of theorems, we notice that the object
N-1
1t (g (- (it (6P Ma))-++)),
a=0

which obtained from @iv;ol M, after taking IW mutations at W (2N — 2)-times,
coincides with the original module @i\[;()l M,:

=z

N—-1 -1
i (e (- (i (D M) -+ ) = €D M.
a=0

a

Il
=}

If the ring R is complete normal 3-sCY and M is a maximal modifying
module?, Iyama and Wemyss proved that two times mutation pk uk (M) of M
at an indecomposable summand N coincides with M [IW14a, Summary 6.25]:

p s (M) = M.

2For the definition of maximal modifying R-modules, see [[W14a, Definition 4.1]. We note
that a module that gives an NCCR is a maximal modifying module if R is a normal d-sCY
ring [IW14a, Proposition 4.5].
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Although the module W that we used for mutations is not indecomposable,
I think we can regard our equality of modules as a generalization of Iyama-
Wemyss’s one. The number of mutations we need seems to be related to the
dimension of a fiber of a crepant resolution (or Q-factorial terminalization).

Corollary 3.5.14. The equivalence from DP(Y) to D®(YT) obtained by the
composition

+
VN—ZO

<ot +y—1
DP(Y) Yo DP(Ag) =227 DAy ) 0L Doy

is the inverse of the (original) Kawamata-Namikawa’s functor KNj.

By the above remark, the functor I/K/v72 0.0 zzar can be written as the

composition of (N — 1)¥~1 IW mutation functors. On the other hand, two
tilting bundles T and ’TO+ provide projective generators of the perverse hearts
YPer(Y/An_2) and Per(Y /A% _,) respectively (see [TU10, Example 5.3]).
Please compare this corollary with [Wem17, Theorem 4.2].

Multi-mutations and P-twists

Next, we explain that a composition of two multi-mutation functors corresponds
to a P-twist on DP(Y). First, we recall that the object j.Op(k) is a PN~1-
object in DP(Y"). This fact is well-known but I give the proof here for reader’s
convenience.

Lemma 3.5.15. j.Op(k) is a PN~ -object in DP(Y).

Proof. Tt is enough to show the case if & = 0. Let us consider the spectral
sequence

Ey" = HP(Y, €t} (j.Op, jO)) = Ext}(1.0p, juOp).

Since there is an isomorphism

q
Extd (4« Op, j«Op) = ji /\Np/y ~ j.Qf,
we have
EP? = HP(P,Ql)
{C if0<p=g<N-1,

0 otherwise.
Therefore, we have

C iti=2kand k=0,...,N -1,

0 otherwise.

Ext} (. Op, j.Op) = {
This shows the lemma. O
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Definition 3.5.16. Let P, be a P-twist that is defied by the PN ~l-object
j+Op (k). More explicitly, the functor Py is given by

Py(E) = Cone ((Cone (7. 0p(k)[ 2] —+ j.Os(k)) @c RHomy (j.Os(k), E) % ).

Remark 3.5.17. By the definition of the functor Py, the following diagram
comimutes.

DP(Y) -5 Db(Y)
—®oy<—1>l l—@ow—l)
Db(Y) 24 Dh(Y)

The following is one of main results in this chapter.

Theorem 3.5.18. The following diagram of equivalence functors commutes

DP(Y) —255 DP(Ay4y)

[ Jr

DY (V) 5 DY (A1)

+
“ lVN+k—]

UN+k

DP(Y) — DP(An k).

In particular, if we fix the identification Wy : DP(Y) — DP(An41), a compo-
sition of two multi-mutation functors

VJJ\rerkfl OVnip € Auteq(D"(An1x))
corresponds to a P-twist P, € Auteq(DP(Y)).

Remark 3.5.19. If 1 < N+ k < N -1 (ie. if —-N+4+1 <k < -1), multi-
mutation functors vy Tk and I/K] | p_1 are can be written as compositions of IW
mutation functors. Thus, in the case of Mukai flops, we can interpret a P-
twist on Y as a composition of many IW mutation functors. This is a higher
dimensional generalization of the result of Donovan and Wemyss [DW16].

Proof of Theorem 8.5.18. 1t is enough to show the theorem for one k. Here, we
prove the case if kK = —1. Recall that the composition

DP(Y) 2 DY Ay 1) YL DP(Ay_s)

coincides with the functor

RHomy (S ®ay_, Tn-1, —) : DP(Y) = DP(An_»).
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By Theorem 3.5.3 and Lemma 3.5.5, we have S ®a,_, Tn—1 =~ KNi(77). On
the other hand, the equivalence that is given by the composition of functors

DP(Y) T Db (Y) TV D (Ao )
coincides with the functor that is given by
RHomy ((P_1)" " (T n—2),—) : D"(Y) = D" (An_2).
Thus, we have to show that
Py (KNo(TH)) =~ T
Recall that the tilting bundles are given by

Tn2= 6_9 Oy(a), Ti= @ Oy+(a).

a=-—1 a=—N+2
By Lemma 3.5.4, we have
KNy (Oy+(a)) ~ Oy (-a)

for ~N +2 < a < 0. Therefore, we have to compute the object KNy (Oy+(1)).
As in Lemma 3.5.4, we use the exact sequence

0—=0yp =035 &0pypy —Op = 0.
An easy computation shows that we have

FMY Y (Oy+ (1) = V ©c 4.0k,
FMY, 7Y (Oy+ (1) = . Tp( 1),
FMY =Y (Oy+ (1)) ~ Iy (1),

where Tp is the tangent bundle on P = P(V') and Ip /v the ideal sheaf of j : P C
Y. Thus, we have the following exact triangle

KNy(Oy+(1)) = Ie jy (1) @ (V @c 4. Op) — j:Tp(—1).
By combining this triangle with the split triangle
V &c j*O]p — I[p:/y(*l) [S=} (V Qc j*O]}D) — I]p/y(*l),
we have the following diagram

§.0p(—1) —————— V ®¢ j.Op ———— j.Tp(—1)

! ! |

KNy(Oy+(1)) — Ip /v (-1) & (V @c j.0p) — 5 Tp(-1)

| |

I]p/y(—l) _ Ip/y(—l)
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Hence, the object KN(,(Oy+ (1)) € DP(Y) is a sheaf, and if we set F = KN{,(Oy+ (1)),
the sheaf F lies on the exact sequence

0— j*OP(—l) - F = Oy(—l) — j*O[p(—l) — 0.

Recall that j,Op(—1) is a PV ! object that defines the P-twist P_;. In partic-
ular, Ext} (. Op(-1),5.0p( 1)) = C - h. Let C(h) be an object in D(Y) that
lies on the exact triangle

3:0p(—1)[-2] 5 j.0p(~1) = C(h).
Then, we have an exact triangle
Oy (-1)[-1] = C(h) — F.

Let e : C'(h) — F be the morphism that appears in the above triangle.
Next, we compute the objects P_;(KN(Oy+(a))) for —-N +2 < a < 1.
Recall that the P-twist P_; is given by

P_1(E) := Cone(C(h) 2c RHomy (j.Op(—1),E) — E).
Since we have

RHomy (j.Op(~1), Oy (b)) = RHomp(Op(~1), j Oy (b))
~ RT(P,Os(~N + b+ 1)[-N + 1]

by adjunction, we have
RHomy (j.+Op(—1),0y (b)) =0
for 0 < b < N — 2, and hence we have
P_1(KNy(Oy+(a))) ~ P_1(Oy(-a)) = Oy (-a)

for —-N+2 < a < 0. It is remaining to compute the object P_; (KN(Oy+(1))) =
P_1(F). From the above computation, we have

RHomy (5.0p(—1),0y(—1)) ~ RT(P,Op(— N))[- N + 1] ~ C[-2N +2].
On the other hand, by the exact triangle
§:Op(-1)[~2] % j.Op(-1) = C(h)

that defines C'(h) and the computation
RHomy (5,.0p(—1), j<Op(-1)) = C[-21],

we have

RHomy (j,Oz(—1),C(h)) = C & C[- 2N + 1].
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Hence, by the exact triangle
Oy(-1)[-1] = C(h) S F
that we obtained above, we have
RHomy (j.Op(—1), F) = C,
and thus, the object P_1(F) lies on the exact triangle
C(h) & F = P_y(F).

Since we have

Homy (C(h),F) ~C

from the above, we have the map ev : C(h) — F coincides with the map
e : C(h) — F up to non-zero scaler. Therefore, we have

P_y(F) = Oy(-1)
and hence P_; (KN{(77{)) ~ T n_2. This is what we want. O

Theorem 3.5.18 recovers the following result that was first proved by Cautis,
and later Addington-Donovan-Meachan in different ways. Our approach that
uses non-commutative crepant resolutions and their mutations gives a new al-
ternative proof for their result.

Corollary 3.5.20 ([Caul2b, ADM15]). We have a functor isomorphism
KN/_k OKNN+k ~ Pk
forall k € Z.

Proof. Let us consider the next diagram

‘I/+
DP(Y) —24% DP(Ayss) "l DP(Y)

J/Pk ll/;]-#k%i_k
D(Y) Fnih DP(AN+k-1)-

Since (UF, ) 7loWn ik ~ KNyjy and (U npp—1) to®T, ~ KN, by Theorem

3.5.3, we have KNL,C o KNn4x =~ Pg. O

We note that, in order to prove this corollary, Cautis used an elaborate
framework “categorical slp-action” that is established by Cautis, Kamnitzer,
and Licata [CKL10, CKL13]. Addington, Donovan, and Meachan provided two
different proofs. The first one uses a technique of semi-orthogonal decompo-
sition, and the second one uses the variation of GIT quotients and “window
shifts”.

68



Chapter 4

On derived equivalence for
Abuaf flop via
non-commutative crepant
resolutions

This chapter is based on the author’s work

[H17b] W. Hara, On derived equivalence for Abuaf flop: mutation of non-commautative
crepant resolutions and spherical twists, preprint, https://arxiv.org/
abs/1706.04417.

4.1 Introduction

4.1.1 Motivation

In [Segl6], Segal studied an interesting flop provided by Abuaf, which we call
the Abuaf flop. Let V be a four dimensional symplectic vector space and LGr(V)
the Lagrangian Grassmannian. Let Y be a total space of a rank 2 bundle S(-1)
on LGr(V), where S is the rank 2 subbundle and Opgyv) (- 1) := /\2 S. Then,
Y is a local Calabi-Yau 5-fold. On the other hand, let us consider a projective
space P(V) and put £ := Opgy)(-1). By using the symplectic form on V,
we have an injective bundle map £ «— £*. Let Y’ be the total space of a
bundle (£* / £)& £2. Then, Y is also a local Calabi-Yau 5-fold and we have an
isomorphism H°(Y,Oy) ~ H°(Y',0y/) =: R of C-algebras. Put X := Spec R.
Abuaf observed that the correspondence Y — X <« Y’ gives an example of
5-dimensional flops. This flop has the nice feature that the contracting loci
on either side are not isomorphic. In [Lil7], Li proved that a simple flop of
dimension at most five is one of the following
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(1) a (locally trivial deformation of) standard flop,
(2) a (locally trivial deformation of) Mukai flop,
(3) the Abuaf flop.

Standard flops and Mukai flops are well-studied. Thus it is important to study
Abuaf flop from the point of view of Li’s classification.

Based on the famous conjecture by Bondal, Orlov, and Kawamata, we expect
that Y and Y’ are derived equivalent. Segal proved that this expectation is
correct. The method of his proof is as follows. He constructed tilting bundles
Ts and T/S on Y and Y’ respectively, and proved that there is an isomorphism

Endy (Ts) =~ Endy (T%).
Then, by using a basic theorem for tilting objects, we have a derived equivalence
Seg’ : DP(Y’) = DP(Y).

On the other hand, in [TU10], Toda and Uehara provided a method to
construct a tilting bundle under some assumptions (Assumption 4.2.2 and As-
sumption 4.2.3). The difficulties to use Toda-Uehara’s method are the following:

(a) There are few examples known to satisfy their assumptions.

(b) Since Toda-Uehara’s construction consists of complicated inductive step,
it is difficult to find an explicit description of the resulting tilting bundle
in general.

However, we can show the following.

Theorem 4.1.1 (see Section 4.3.2). Y and Y’ satisfy Toda-Uehara’s assump-
tions.

Hence we obtain new tilting bundles 7 and 77 on Y and Y’ respectively.
Moreover, fortunately, we can compute the resulting tilting bundles explicitly in
this case. By using this explicit description of the tilting bundle, we can show
that there is another tilting bundle 7y on Y that satisfies

Endy (TU) ~ Ede/(T{T)

Therefore, by applying the basic theorem for tilting objects again, we have a
new derived equivalence

TU' : DP(Y’) — D"(Y).

Note that a tilting bundle constructed by using Toda-Uehara’s method is a
canonical one because it provides a projective generator of a perverse heart of
the derived category. Thus, it is quite natural to ask the following questions.

Question 4.1.2. (1) What is the relation among three tilting bundles on Y,
Ts, T, and Ty?
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(2) What is the relation between two tilting bundles on Y’, T and T/p?
(3) What is the relation between two equivalences Seg’ and TU'?

The aim of this chapter is to answer these questions.

4.1.2 NCCRs and Iyama-Wemyss’s mutations
Set

As :=Endy (Ts) = Endy/(Ty),
At :=Endy (TT),
AU = Endy (TU) = Endy/(T{r)

Then, these algebras are non-commutative crepant resolutions (=NCCRs) of
X = Spec R. The notion of NCCR was first introduced by Van den Bergh as
a non-commutative analog of crepant resolutions. An NCCR of a Gorenstein
domain R is defined as the endomorphism ring A := Endr(M) of a reflexive
R-module M such that A is Cohen-Macaulay as an R-module and its global
dimension is finite. As in the commutative case, a Gorenstein domain R may
have many different NCCRs. One of the basic ways to compare some NCCRs
is to use Iyama-Wemyss’s mutations (= IW mutations).

Let A be a d-singular Calabi-Yau algebra and M an A-module whose en-
domorphism ring End4 (M) is an NCCR of A. Let N € add M and consider a
right (add N*)-approximation of M*

a:Nj—-M*

(see Definition 2.1.23). Then IW mutation of M at N is defined as pn (M) :=
N @ Ker(a)*. In [IW14a], Iyama and Wemyss proved that the endomorphism
ring of un (M) is also an NCCR of A and there is a derived equivalence

®x : DP(mod End 4 (M)) = DP(mod End 4 (i (M)))

(see Theorem 2.1.25 for more detail).

In many cases, it is observed that important NCCRs are connected by mul-
tiple IW mutations. For example, Nakajima proved that, in the case of three
dimensional Gorenstein toric singularities associated with reflexive polygons, all
splitting NCCRs are connected by repeating IW mutations [Nak16]. In addition,
the author studied IW mutations of certain NCCRs of the minimal nilpotent
orbit closure of type A (Section 3). Also in the case of the Abuaf flop, we can
show the following.

Theorem 4.1.3 (= Theorem 4.3.13, Theorem 4.3.15). The above three NCCRs
As, Ar, and Ay are connected by multiple IW mutations.

This result provides an answer to Question 4.1.2 (1) and (2). We prove this
theorem by relating IW mutations with mutations of full exceptional collections
on DP(LGr(V)) (see Appendix 4.6).
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4.1.3 Flop-Flop=Twist result

Recall that Y and Y’ are 5-dimensional local Calabi-Yau varieties. It is known
that the derived category of a Calabi-Yau variety normally admits an interest-
ing autoequivalence called a spherical twist. Spherical twists arise naturally in
mathematical string theory and homological mirror symmetry.

On the other hand, it is widely observed that spherical twists also appear in
the context of birational geometry. For example, let us consider a threefold Z
that contains a P* whose normal bundle is Op:(-1)®2. Then, we can contract
the curve P! < Z and get a diagram of the standard flop

z7& 78 7.

Bondal and Orlov showed that the functors Rp,Lg* : DP(Z) — DP(Z’) and
Rq.Lp* : D*(Z') — DP(Z) give equivalences of categories. Furthermore, it
is known that an autoequivalence obtained by composing two equivalences
(Rq.Lp*) o (Rp«Lq*) € Auteq(D"(Z)) is isomorphic to the inverse of the spher-
ical twist associated to Op:(—1). This means that we can obtain a spherical
twist by composing two derived equivalences for a flop.

In many other cases, we can also observe “flop-flop=twist” results like the
above [ADM15, BB15, Caul2a, H17a, DW16, DW15, Tod07]. We can also show
the following “flop-flop=twist” results for the Abuaf flop:

Theorem 4.1.4 (= Theorem 4.4.3, Theorem 4.4.6). (1) Let us consider a spher-
ical twist Tspz) around a 1-term compler S[2] = S |La:[2] on the zero sec-
tion LGr C Y. Then, we have a functor isomorphism

Seg’ o TU'™! ~ Tspg € Auteq(DP(Y)).

(2) An autoequivalence TU' ™1 oSeg’ of DP(Y") is isomorphic to a spherical
twist To, . (—3) associated to a sheaf Op(—3) on the zero-section P C Y':

TU' " oSeg’ ~ To,(—3) € Auteq(D"(Y”)).

To prove the first statement of the theorem, we provide an explicit descrip-
tion of a Fourier-Mukai kernel of an equivalence TU’. Let Y be a blowing-up
of Y along the zero section LGr = LGr(V). Then, the exceptional divisor E

of Y is isomorphic to Ppg:(S(-1)). Thus we can embed E into the product
LGr(V) x P(V) via an injective bundle map S(—1) € V ®¢ Ora:(—1). Set
Y =Y Ug (LGr(V) x P(V)). We prove the following.

Theorem 4.1.5 (= Theorem 4.4.5). The Fourier-Mukai kernel of the equiva-
lence TU' is given by the structure sheaf of Y.

Note that ¥ = Y xx Y. This is very close to the case of Mukai flops
[Kaw02, Nam03].
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4.1.4 Multi-mutation=twist result.

We also study a spherical twist from the point of view of NCCRs. Namely,
we can understand a spherical twist as a composition of IW mutations in the
following way. Let us consider a bundle on Y

Tu1:=0y(-1)& 0y & 0y(1) & S(1).
We can show that this bundle is also a tilting bundle on Y. Put
M :=H(Y,Tu,),

W' := H(Y,Oy @ Oy (1) S(1)), and
Au,1 = Endy(Tu,1) ~ Endr(M).

We show that there is an isomorphism of R-modules
pw (pw (pw (pw (M)))) ~= M

(Proposition 4.4.8). Furthermore, by using Iyama-Wemyss’s theorem, we get an
autoequivalence of DP(mod Ay 1)

vy = Py o Py 0 Pyyr 0 Py € Auteq(Db(mod AU,I))-
This autoequivalence corresponds to a spherical twist in the following sense:

Theorem 4.1.6 (= Theorem 4.4.9). The autoequivalence vy of DP(mod Ay 1)
corresponds to a spherical twist

TOLGr(—l) € Auteq(Db (Y))

under the identification RHomy (T 1, —) : D?(Y) = DP(mod Ay 1).

Donovan and Wemyss proved that, in the case of 3-fold flops, a composition
of two IW mutation functors corresponds to a spherical-like twist [DW16]. In
the case of Mukai flops, the author observed that a composition of many IW
mutation functors corresponds to a P-twist [H17a].

The author expects that we can observe these “multi-mutation=twist” re-
sults for any higher dimensional crepant resolutions. The above theorem pro-
vides a “multi-mutation=twist” result for the Abuaf flop.

4.2 Preliminaries

4.2.1 Abuaf flop

First, we explain the geometry of the Abuaf flop briefly. For more details, see
[Segl6]. Let V be a four dimensional symplectic vector space. Let LGr(V)
be the Lagrangian Grassmannian of V and § C V ®¢ Org.(v) the rank two
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universal subbundle. Note that Opgvy(1) := A’ S* is the ample genera-
tor of Pic(LGr(V)), and by this polarization, we can identify the Lagrangian
Grassmannian LGr(V) with the quadric threefold Q3 < P*. We also note that
the canonical embedding LGr(V) C Gr(2,V) corresponds to a hyperplane cut
Q3 = Q4N H C Q4. Let us consider the total space Y of a vector bundle S(—1):

Y := Tot(S(—1)) = LGr(V).

Since /\2(8(—1)) ~ Oparvy(—3) =~ wrar(v), the variety Y is a five dimensional
(local) Calabi-Yau variety.

Let LGr C Y be the zero section. Then, we can contract the locus LGr and
have a flopping contraction ¢ : Y — X. Let R := ¢,Oy and then X = Spec R.

Next, let us consider the 3-dimensional projective space P(V'). By using the
symplectic form on V', we can embed the universal line bundle £ = Op(y)(-1)
into Q]%D(V)(l) ~ £+, Let us consider a vector bundle (£* / £)® £* and its total
space

Y = Tot((LE ) £) © £2) = P(V).

As in the case of Y, we can easily see that Y’ is a five dimensional (local) Calabi-
Yau variety. If we denote the zero section by P C Y, then we can contract P
and have a flopping contraction ¢’ : Y’ — X. By combining Y and Y”’, we have

a diagram of a flop
Y Y’
x y
X

Let 0 € X be the unique singular point of X. Then, in contrast to the case
of Atiyah flops or Mukai flops, two fibers ¢~ 1(0) = LGr and ¢'~!(0) = P are
not isomorphic to each other. Since this interesting flop was first provided by
Abuaf, we call this flop the Abuaf flop.

Remark 4.2.1. Note that X is Gorenstein. Indeed, since Y is Calabi-Yau, we
have
wx ~ H(wx,...) = H(Ox,.. )~ Ox.

reg reg

4.2.2 Toda-Uehara’s construction for tilting bundles and
perverse hearts

Van den Bergh showed in [VdB04a, VdB04b] that if f : Y - X is a morphism
with at most one dimensional fibers and satisfies Rf.Oy ~ Ox (e.g. 3-fold
flopping contraction), then there is a tilting bundle on Y that is a projective
generator of a perverse heart Y Per(Y/X). By generalizing his result, Toda and
Uehara provided a method to construct a tilting bundle in higher dimensional
cases with certain assumptions [TU10]. They also provided a perverse heart
O Per(Y/A,_1) that contains the tilting bundle as a projective generator. In the
present subsection, we recall the construction of Toda-Uehara’s tilting bundle.
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Let f : Y — X = SpecR be a projective morphism from a Noetherian
scheme Y to an affine scheme X of finite type. Assume that Rf.Oy ~ Ox and
dim f~1(z) < n for all x € X. Further, let us assume the following condition
holds for Y:

Assumption 4.2.2. There exists an ample and globally generated line bundle
Oy (1) such that 4
H'(Y,0y(-j)) =0

fori>2,0<j<n.

Step 1. In this setting, we inductively define partial tilting bundles £, for 0 <
k < n—1 as follows. First, set £g := Oy. Assume that 0 < k <n—1. Let ry_1
be a minimal number of generators of Exty (£_1, Oy (—k)) over Endy (4_1).
Take a 75, generators of Exty (€1, Oy (—k)) and consider an exact sequence
corresponding to the generators:

0= Oy ( k) = Ny — EF 5 0.
If we set £y, := Ep_1 DNj_1, then we can show that £}, is a partial tilting bundle
[TU10, Claim 4.4]. Finally, we obtain a partial tilting bundle &£,,_; but this is
not a generator in general.
Step 2. Put A,_1 := Endy(£,,-1) and consider the following functors
F := RHomy (£,_1,—) : D’(Y) — DP(mod 4,,_,),
G=—-a%  &n_1:D"(mod A, ;)= D"(Y).

Note that G is the left adjoint functor of F. Let us consider an object F'(Oy (—n)) :

RHomy (€,,—1,0y(-n)). Let P be a projective A,,_;-resolution of F(Oy (-n))
and o>1(P) the sigma stupid truncation of P. Then, there is a canonical mor-
phism o>1(P) — P. Further, we have a morphism
adj
G(0>1(P)) = G(P) = G(F(Oy(-n))) == Oy (-—n).
Set
Np—1 := Cone(G(a>1(P)) = Oy(-n))
and &, := £,_1 ®N,,_1. This £, is a generator of Db(Y) but we cannot conclude
that &, is tilting [TU10, Lemma 4.6].
Step 3. Under the following assumption, we can conclude that &,, is tilting.

Assumption 4.2.3. For an object K € D(Y'), if we have

RHomy (7169 Oy(i),lC) =0,

i=0
the equality
n—1
RHomy (@ Oy ( i),H’f(/C)) =0
i=0
holds for all k.
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Theorem 4.2.4 ([TU10]). Assume that the above assumption is satisfied. Then,
En is a tilting vector bundle on Y .

Remark 4.2.5 ([TU10], Remark 4.7). We can also conclude that the object
&, is a tilting bundle if we assume the vanishing

H>Y(Y,0y(-n))=0

instead of Assumption 4.2.3. In this case, the bundle N, _; lies on an exact
sequence
0= Oy(-n) = Np_1 = ETm1 50,

where 7,1 is the minimal number of generators of Exty- (£, _1, Oy (-n)) over

Apr.

Perverse heart. Set £ := &, and A := Endy(€). By using the above tilting
bundle, we have a derived equivalence

e := RHomy (€, ) : DP(Y) =5 DP(mod A).
In [TU10], Toda and Uehara also studied the perverse heart
OPer(Y/A,_1) C DP(Y)

that corresponds to mod A under the equivalence ¥g. The construction of
OPer(Y/A,_1) is as follows. First, let us consider a subcategory of D(Y))

DI(Y):={K eD() | F(K) € D’(mod A,,_1)}
and set

C:={KeD(®Y)|F(K)=0},
Cc=":=CcnD(Y)=,
=% :=cnD(Y)=".

By definition, there is an inclusion i : C <+ D(Y). The advantage to consider
the subcategory Df(Y) is that we can consider the left and right adjoint of i:

i*:DI(Y) = ¢, i':DI(Y) = C.
By using these functors, we define the perverse heart ° Per(Y/A,_1).
OPer(Y/A,_1) :={K e DI(Y) | F(K) € mod A, _1,i*K € C=°,i'K € ¢=°}.

Theorem 4.2.6 ([TU10] Theorem 5.1). Under the Assumption 4.2.3, the abelian
category Y Per(Y/A,_1) is the heart of a bounded t-structure on DP(Y), and
V(O Per(Y/A,—1)) = mod A. In particular, £ is a projective generator of ® Per(Y /A, —_1).
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4.2.3 Iyama-Wemyss’s mutation via tilting bundles

Lemma 4.2.7. Let ¢ : Y — X = Spec R be a crepant resolution of an affine
Gorenstein normal variety X. Let W be a vector bundle on 'Y and

0-K—=-E—=C—0
an exact sequence of vector bundles on'Y. Assume that
(a) € € add(W),
(b)) WO K and WD C are tilting bundles, and
(c) W contains Oy as a direct summand.
Then,

(1) The sequence
0= fik— fuif = f.C—=0

is exact and provides a right (add f. W)-approxzimation of f.C.
(2) The IW mutation functor
®;.yy : D*(mod Endy (W @ K)) = DP(mod Endy (W @ C))
coincides with the functor RHom(RHomy (W & K, W & C), —).

Proof. First, note that we have isomorphisms of R-algebras

Endy (W @ K) = Endg(f. W @ f.K)
Endy (W @ C) ~ Endr(f W @ f.C)

by Lemma 2.1.17.
By the assumption (b) and (c), we have H'(Y, K) = 0 and thus the sequence

0= f K= f€— fC—0
is exact. Moreover, as in the proof of Lemma 2.1.17, we have

Homy (W, €) ~ Hompg(f W, f+ E),
Homy (W, C) ~ Hompg(f«W, f:C).

Since Exty (W, K) = 0, we have the map
Hompg(f W, f« ) — Hompg(f. W, f.C)

is surjective. This shows (1).
Let V := Homg(f. W & f.K, fuWV) and

Q = Image(Homp(f W @ f.C, f« &) — Hompg(f W @ f.K, f.C)).
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Then, the IW mutation functor is defined as
@4y = RHom(V @ Q, —).
First we have
V := Homg(f W & f.K, f-W) ~ Homy W & K, W)

and

Homg(f W& f.K, f. ) ~ Homy(W & K, E).

Since the R-module Homy (W&, C) is torsion free and isomorphic to Hompg (f. W
f+K, f+«C) in codimension one, the natural map

Homy (W @ K,C) = Homg(f.W @ f.K, f.C)

is injective. Thus, we have the following diagram

Homy (W & K,E) == Hompg(fu W P [, fu E)

! |

Homy (W @ K,C) —— Hompg(f W& f.K, f.C).

Therefore, we have

Q = Homy W& K,C)

and hence

V& Q~RHomy( W K, WaC).
This shows (2). O

4.3 Toda-Uehara’s tilting bundles and Segal’s
tilting bundles

4.3.1 Notations
From now on, we fix the following notations.
o YV :=Tot(S(-1)) 5 LGr(V).
o V' i=Tot((L* /L) L£2) ™5 P(V).
e . :LGr— Y,/ :P<s Y’ the zero sections.

e Yo=Y \LGr=Y'\P= X,

o:Y =+ X,¢ Y — X : two crepant resolutions.
e Oy(1):= W*OLGI(V)(1)7 Oy(1) := W’*OP(V)(l).
We write S instead of 7n* S.
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4.3.2 Toda-Uehara’s assumptions for Y and Y’

In the present subsection, we check that Toda-Uehara’s assumptions (Assump-
tion 4.2.2 and Assumption 4.2.3) hold for Y and Y”.

First, we check Assumption 4.2.2 holds. This follows from Segal’s computa-
tion.

Lemma 4.3.1 ([Segl6]). We have
(1) H=X(Y, 0y (j)) =0 for j = —2.

(2) H>L(Y',0y:(5)) = 0 for j > 3. Further, we have H'(Y',Oy:(j)) = 0
for j > —2 and H' (Y, Oy+(—3)) ~ C.

In particular, pairs (Y,O0y (1)) and (Y', Oy (1)) satisfy Assumption 4.2.2.

Next, we prove the following. Note that the proof is almost same as in the
one provided in [TU10, Section 6.2].

Lemma 4.3.2. Y and Y’ satisfy Assumption 4.2.3.

Proof. First, we provide a proof for Y. By using the bundle Oy (1), we can
embed Y into P}:
h:Y —=P.

Let g : P‘}% — X = Spec R be a projection. Note that the derived category
DP(PP%) has a semi-orthogonal decomposition

D" (Pg) = (9" D"(X) © Ops(~4), g" D*(X) 9 Opa(~3), -+, ¢" D’(X) & Ops).

Let £ € D(Y) and assume that

2

RHomy <@ Oy(i),lC) =0.
i=0
Then, we have
hiKC € (9" D(X) @ Ops(—4), 9" D"(X) @ Opa(~3))
and hence there is an exact triangle
g W_32 Oy(=3) = hK = g"W_1 2 Oy (—4),

where W, € DP(X). Note that the support of H¥(h.K) is contained in Y and
the support of H*¥(W_4) 2r Ops (—4) is the inverse image of a closed subset of
X by g. Thus, the map '

HH(hK) > HNW 3) @ Opy (1)
should be zero and we have an exact sequence

0= H = (Woy) ©0p Ops (—4) = H*(W_3) ¥k Ops (—3) = H"(h.K) = 0.
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By using this sequence, we have

i=0

RHomy (@ Oy ( i),?—[’“(lC)) =0.

Next, we prove the lemma for Y. Let K’ € D(Y”) and assume that
2
RHOIny/ <@ Oy/(’i),lc) =0.
i=0
In this case, by embedding Y’ into ]P’%
WY = P,

we have

W.K' € (D*(R) ®r Ops (—3)).
Thus, we also have
HH(WK') € (DV(R) 95 Oy (-3)),
and hence we have the result. O

Corollary 4.3.3. Y (resp. Y') admits a tilting bundle that is a projective
generator of the perverse heart © Per(Y/As) (resp. O Per(Y'/AL)).

In the next subsection, we give explicit descriptions of the tilting bundles.

4.3.3 Tilting bundles on Y and Y’

In this subsection, we provide some tilting bundles on Y and Y’ explicitly.
Tilting bundles on Y.
Theorem 4.3.4. For -2 < k <1, let T} be a vector bundle
Tk =0y @ Oy (1) © Oy (-2) ® S(k).
Then, Ty is a tilting bundle on Y .

Proof. By Lemma 4.3.1 (1), the direct sum of line bundles Oy & Oy (-1) &
Oy (—2) is a partial tilting bundle on Y. Further, it is easy to see that S is also
a partial tilting bundle. Since §* ~ S(1), it is enough to show that

H'(Y',8(j)) = 0
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for j > —2. By adjunction, we have

H'(Y',8(5)) = H'(LGr(V), @ Sym' (8%(1)) © 8(4))
1>0

~ P H'(LGr(V), Sym'(S) @ S®0(2I + j))

1>0

~Pu (LGr(V), Sym't1(S)(21 + §) @ Sym! " (S)(2 + j - 1))

1>0

By using Borel-Bott-Weil theorem, we can check the vanishing of this cohomol-
ogy. O

Proposition 4.3.5. Let us consider
Tr:=T-2=0y @0y (-1)& Oy(-2)®S(-2).

Then, Tt coincides with the bundle on'Y constructed by Toda-Uehara’s method
(up to additive closure), and hence is a projective generator of the perverse heart
O Per(Y/As).

Proof. Let & (0 < k < 2) be a partial tilting constructed in Toda-Uehara’s
inductive steps. By Lemma 4.3.1, we have & = @f:o Oy (—i). Put Ay :=
Endy (€2) and

F := RHomy (€3, -) : DP(Y) — DP(mod Ay).
Since there is a semi-orthogonal decomposition
DP(LGr(V)) = (S(=2), Orar(—2), O (1), Oar),
we have an exact triangle in D?(LGr(V))
G = Onae(-3) = S(-2)*" - gl1],
where G € (OpLgr(—2), Orar(—1), OLg:). Moreover, we have a quasi-isomorphism
G ~gis (++- = 0 = Orae(—2)"'" = Orae(-1)® = Orgr =0 — --+)

(note that the degree zero term is Opq,(—2)®!!, see Lemma 4.6.1 for the proof).
Pulling back the above triangle to Y by @, we have an exact triangle

G = Oy (-3) = S(-2)%* = 7*g[1].
Now if we denote the left adjoint functor of F' by
G=-o% &:D (4) » D (Y),
we have that

TG =G (- = 0= F(Oy(-2)%" = F(Oy(-1))% = F(Oy) - 0— ).
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Since F' o G ~ id, the complex
(- =0 F(Oy(-2)%" = F(Oy(-1)% - F(Oy) = 0—--+)

is a projective resolution of a complex F(n*G[l]). On the other hand, since
F(S8(-2))®* € mod A, there is a projective resolution (P')® of F(S(-2))®*
such that (P’)* =0 for i > 1.

From now on, we construct a projective resolution of F'(Oy (—3)) explicitly.
First there is not only a morphism in DP(Y) but also a complex morphism

S(-2)% 5 (- 202 0y (-2)" 5 Oy (-1)* 5 Oy 50— --)
whose cone is Oy (—3)[1]. Applying a functor F', we have a morphism
F(S(-2)% = (-++ = 0 = F(Oy(-2))%!" — F(Oy(-1))®° = F(Oy) -0 — ---)

that is also a morphism of complexes. Therefore we have a morphism of com-
plexes

(P = (=0 F(Oy(-2)%" - F(Oy(-1))*® = F(Oy) - 0 — )

whose cone is quasi-isomorphic to F(Oy(—3))[1]. If we have a morphism of
complexes, we can compute the cone (in the derived category D(mod As) ex-
plicitly. Using that formula, we have that F(Oy(-3)) is quasi-isomorphic to a
complex P* such that

(P')¢ ifi <0
F(Oy(-2)%1 ifi=1
P'={ F(Oy(-1)® ifi=2
F(Oy) ifi=3
0 otherwise.
Since all terms of P*® are projective As-modules, P® is a projective resolution
of F(Oy(-3)), and in particular we have o>; P* ~ F(G) and hence we obtain
G(o>1P*) ~ GF(7*G)
~GFG (- — 0= F(Oy(-2))®"" = F(Oy(-1))®® = F(Oy) = 0 — -+ ) [-1]
~G (=2 0= F(Oy(-2)%" = F(Oy(-1)® = F(Oy) 20— ) [-1]
~ (7*G[1])[- 1] ~ n*G.

Thus the resulting bundle obtained by Toda-Uehara’s construction is

Oy 3 Oy (1)@ Oy (-2) ®S(-2)%.
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Definition 4.3.6. We call the bundle
Tr:=T-2=0y &0y (-1)&Oy(-2) & S(-2)
Toda-Uehara’s tilting bundle on Y. On the other hand, let us consider a bundle
Ts = (To)" ~ Oy & Oy(1) % Oy(2) & S(1).
This tilting bundle coincides with the one found by Segal [Segl6]. Thus we call
this bundle Segal’s tilting bundle on Y.
Tilting bundles on Y’.
By Lemma 4.3.1 (2), we have
HY (Y, 0y/(-3)) ~C.
Let X be a rank 2 vector bundle on Y’ that lies on an exact sequence
00y (1) =X —0y(2) >0
corresponding to a generator of
Ext} (Oy+(2), Oy (1)) = H'(Y', Oy:(~3)) ~ C.
Segal’s tilting bundle on Y” is given as follows.
Proposition 4.3.7 ([Segl6]). Put
Ts = Oy @ Oy:(-1) D Oy (-2) ® B(-1),
Then, T is a tilting bundle on DP(Y”).

On the other hand, by using Toda-Uehara’s construction, we have a new
tilting bundle.

Proposition 4.3.8. Put
T’II‘ =0y & Oy/(—l) ] Oy/(—Q) S5 E(—Q).

Then, 'Tﬁf is the Toda-Uehara’s tilting bundle on Y’, and hence is a projective
generator of the perverse heart © Per(Y'/A}), where Al is the endomorphism
ring of a vector bundle Oy & Oy (—1) § Oy (-2).

Proof. 1f k < 2, then H(Y',Oy+(~k)) = 0 for all i > 1. Furthermore, we have
HY (Y, 0y/(-3)) ~ C and H(Y',0y/(-3)) = 0 for i > 2. Recall that the
vector bundle 3(—2) lies in an exact sequence

00— 0y (-3) = 2(-2) = Oy =0
that corresponds to the generator of H!(Y’, Oy (3)). Since
Exty (Oy: & Oy/(—1) & Oy/(—2), Oy/(—3)) ~ H' (Y, Oy/(-3)),

the bundle 77 is the Toda-Uehara’s tilting bundle on Y’ and a projective gen-
erator of the perverse heart © Per(Y’/A}) by Remark 4.2.5. O
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4.3.4 Derived equivalences for Abuaf flop

In this section, we define derived equivalences induced by tilting bundles.
Put

Tu:=(T-1)" =0y 3 O0y(1) & O0y(2) ® S(2).
Lemma 4.3.9. We have the following isomorphism of tilting bundles on Y°.
(1) Tslye ~Tslye.
(2) Tulye=Trlye.
Thus, we have the following isomorphism of R-algebras.
(i) Endy (Ts) ~ Endy (7).
(ii) Endy (Tu) ~ Endy/(T7).
Proof. In [Segl6], Segal proved that
Oy (a)lye ~ Oy/|lyo and S|yo = X|yo.
The result follows from these isomorphisms. O
Remark 4.3.10. The vector bundle 7Tt |yo on Y extends to an bundle
Oy @ Oy (1) ® Oy (2) & X(2)
on Y’. Unfortunately, this bundle is not tilting.
Definition 4.3.11. We set
At :=Endy (TT),

As = Endy (Ts) = Endy(T),
Ay :=Endy (Tvu) = Endy/(T7),

and
Uy := RHomy (T, —) : D*(Y) = DP(mod Ar),
TUs := RHomy (Ts, —) : D*(Y) =5 DP(mod Asg),
Ty := RHomy (T, —) : DP(Y) = DP(mod Ay),
U, := RHomy (T, —) : DP(Y’) =5 DP(mod Ay),
T4 := RHomy (T4, ) : DP(Y") = DP(mod Asg).
Definition 4.3.12. Let us consider equivalences of categories that are given as
Seg := (¥g) 1o Wg : DP(Y) & DP(Y),
Seg’ :=Seg™! = (Vg) "1 o WL : DP(Y') = DP(Y).
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These equivalences are introduced by Segal [Segl6]. Hence we call these functors
Segal’s equivalences.
On the other hand, let us consider the following equivalences

TU == ¥;' o U4 := D*(Y') — DP(Y)
UT :=TU ! = ¥/t o Uy : DP(Y) — DP(Y).

Since we construct these equivalence by using Toda-Uehara’s tilting bundle on
Y’, we call these equivalences TU’ and UT Toda-Uehara’s equivalences.

4.3.5 Segal’s tilting vs Toda-Uehara’s tilting

In this subsection, we compare Toda-Uehara’s tilting bundles with Segal’s by
using IW mutations. First, we fix the following notations:

M, := .0y (a),
Sy = ¢« S(a).

Note that My = R. First, we compare two NCCRs At and Ag.
Theorem 4.3.13. A derived equivalence of NCCRs

g o ULt ~ RHomy, (RHomy (71, Ts), ) : DP(mod At) ~» DP(mod Ag)
can be written as a composition of nine IW mutation functors.

To prove the theorem above, we use the following lemma.

Lemma 4.3.14. Let W be a vector bundle on a smooth variety Z and

m—2 Am—1

Em1 ——Em =0

ao

058 & e .

a long exact sequence consisting of vector bundles E, (0 < k <m) on Z. Assume
that

(a) W& Ey and W E E,, are tilling bundles.
(b) Ex € addW) for 1 <k <m —1.
Then, W & Image(ax) is a tilting bundle for all 0 <k <m - 1.

Proof. Since W& is a tilting bundle, we have Extl (W, o) = Exty, (W, Image(ag)) =
0 for i > 1. Let k > 0 and assume Ext'(W,Image(ar—_1)) = 0 for ¢ > 1. Then,
by the exact sequence

0 — Image(ag—1) — £k — Image(ax) — 0,
and the assumption (b), we have Ext’, (W, Image(ax)) = 0 for i > 1. Thus, we
have Ext?; (W, Image(ay)) =0 for i > 1 and 0 <k <m — L.
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Similarly, by using the assumption that WS £, is a tilting bundle, we have
Ext(Image(ax), W) =0fori>1and 0 <k <m 1.
Next, let us assume Image(ax—1) is partial tilting. let us consider the exact
sequence
0 — Image(ag—_1) — £ — Image(ay) — 0

and apply the functor RHom(—, Image(ax—_1)):
RHomz (Image(ax ), Image(ar—1)) = RHomz (€, Image(ar—1)) — RHomz(Image(ak—1), Image(ar—1)).

By the assumption (b) and the above arguments, we have Ext%, (Ex, Image(a_1)) =
0 for ¢ > 1. Therefore, we have Ext%(Image(ay), Image(ax_1)) = 0 for i > 2.
Consider the sequence

0 — Image(ag—_1) = £ — Image(ay) — 0
again and apply the functor RHomz(Image(ay), —):
RHomy (Image(ay), Image(ax—1)) — RHomyz(Image(ay), Ex) — RHomy (Image(ay ), Image(ag)).

By the assumption (b) and the above arguments, we have Ext’(Image(az), Ex) =
0 for i > 1. Thus, from the above computation, we have Ext’, (Image(az), Image(ay,)) =
0 for i > 1.
It is clear that WepImage(ay,) is a generator. Thus, the bundle WéImage(ay,)
is tilting. O

Proof of Theorem 4.3.13. Put
vT =0y & Oy(*l) (S5 Oy(*Q) D S(l)
V2 T =0y & Oy(—l) S} Oy(l) &) 8(1)
By Theorem 4.3.4, these bundles are tilting. Set

Wi =R®M_15M_o
Wo=R®M_1 DS
W3 :=R® S & M.

We will show there are three isomorphisms

pow, powy b, (BEndy (7)) ~ Endy (v T)
pws i o, (Endy (v 7)) ~ Endy (v° T)
pws tiw s (Endy (2 7)) = Endy (Ts),
and each IW mutation functors can be written as
&}, ~ RHoma, (RHom(7r,v T),—) : D’(Ar) = D"(mod Endy (v 7))
@}y, ~ RHompya, (, 7)(RHom(v T, 2 T), —) : DP(mod Endy (v 7)) = D"(mod Endy (* T))
@}y, ~ RHompya, (2 7 (RHom(v? T, Ts), —) : D*(mod Endy (v* T)) = D"(Asg).
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First we provide the proof for mutations at Wj. Let us consider an exact
sequence

0+ 8(-2) “% Oy (—2)%* “5 0y (—1)% 2% 08* 5 S(1) - 0.

Note that the image of the map a; is S(7), and this exact sequence comes from
the right mutation of S(—2) over an (partial) exceptional collection

Orar(—2),Orar(—1), Orae
of DP(LGr(V)). By pushing this exact sequence to X, we have an exact sequence
0= S =5 MO h MO 2% MP* M 5 0.
Splicing this sequence, we have short exact sequences
08 % MB 2L 6 0.

for -2 < ¢ < 0. By Lemma 4.2.7, this morphism a;4+1 is a right (add W)-
approximation of S;y; for -2 < ¢ < 0 and

pw, (W1 ® S;) = Wi @ Siq1.
Let Q; := Homgr(W; & S;,W1) and
C; := Image(Homg (W7 & S;, Mi®4) — Homgr(W1 @ S;, Sit1)).
Then, IW mutation functor
Py, : DP(mod Endg (W, @ S;)) — DP(mod Endg(W; @ Si11))

is given by
Py, () := RHomgng,(w,es,)(Qi © Ci, —).

Again, by Lemma 4.2.7, there is an isomorphism

for —2 <4 < 0 and hence the following diagram commutes

o0 \

DP(mod Endy (W; @ S(i T DP(mod Endy (W) © S(i + 1)),

where U, := RHomy (W; & S(i), —). Therefore we have

&}y, = Uy 0 U2} ~ RHomy, (RHom(7 v T), —).
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To show the result for W5, we use an exact sequence
0= Oy(-2) 2 0y (1) 2 0211 B (1)@ 24 0y (1) — 0.

Note that this exact sequence coming from a right mutation of Opg,(—2) over
an (partial) exceptional collection

OLGr(—l)a OLGI"7 8(1)

of DP(LGr(V)) (cf. Lemma 4.6.1). Put W, := Oy(—1) ® Oy © S(1). Then,
Wy & Oy (—-2) and Wa & Oy (1) are tilting bundles by Theorem 4.3.4. Therefore,
by Lemma 4.3.14, the bundle W, @& Cok(b;) is also a tilting bundle for all 1 <
j < 4. Then the same argument as in the case of W; shows the result.

One can show for W3 by using the same argument. We note that the exact
sequence we use in this case is

0= Oy(-1) 5 0P 2 S(1)®* 2 0y (1) % 0y (2) - 0
and

Cok(ey) =~ 7 (Tpa(-1)|LGr)
Cok(cg) ~ ﬂ*(Q@(?)\LGr).

This exact sequence comes from the right mutation of O,g,(—1) over an (partial)
exceptional collection

OLar, S(1), Ora:e(1).
O

Next, we compare Ag with Ay. The IW mutation that connects Ag and Ay
is much simpler than the one that connects At and Ag.

Theorem 4.3.15. Let Wy := My & My ® My. Ay is a left IW mutation of Ag
at Wy. Furthermore, if we set the IW functor

®y, : DP(mod Ag) ~> DP(mod Ay),

then the following diagram commutes

DP(Y) —22 DP(mod Ag)

o

DP(mod Ay).
Proof. Let us consider an exact sequence

0—=5 - VoM — S5 —=0
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obtained by pushing an exact sequence
0—8(1) - V&cOy(l) »812)—=0

onY by ¢. Then, by Lemma 4.2.7, this sequence is a right (add W,)-approximation
of Sy and we have pw, (Wi d S1) = W4 & S3. The commutativity of the diagram
also follows from Lemma 4.2.7. 0O

Summarizing the above results, we have the following corollary.

Corollary 4.3.16. Let ® be an equivalence between DP(mod At) and DP(mod Ay)
obtained by composing ten IW mutation functors:

P = (I)W4 O‘I>W'3 O(‘I)W'3 O‘I>1/V3 O‘I>W'2 O‘I’m/2 O‘I>W2 O(‘I)W'1 C>‘I>m/1 O‘I>W'1 .

The equivalence between DP(Y') and DP(Y") obtained by a composition

—1

DP(Y) 22 DP(mod Ar) & DP(mod Ay) —s DP(Y")
is the inverse of the functor TU'.

Later, we show that the Fourier-Mukai kernel of the functor TU’ is the
structure sheaf of Y Ug (LGr x P), where Y is the blowing up of Y (or Y”) along
the zero section and F is the exceptional divisor. Please compare this corollary
with [Wem17, Theorem 4.2] and Corollary 3.5.14.

4.4 Flop-Flop=Twist results and Multi-mutation=Twist
result

In this section, we show “flop-flop=twist” results and “multi-mutation=twist”
results for the Abuaf flop.

4.4.1 spherical objects

First, we study spherical objects on Y and Y’. For the definition of spherical
objects and spherical twists.

Lemma 4.4.1. (1) Let ¢+ : LGr <= Y be the zero section. Then, an object
1.OLar € Db(Y) is a spherical object.

(2) The universal subbundle t, S|Lgy on LGr is also a spherical object in
DP(Y).

(3) Let // : P — Y be the zero section. Then, an object 1,Op € DP(Y') is a
spherical object.
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Proof. Here we provide the proof of (2) and (3) only, but one can show (1) by
using the same argument. First, we prove (3). The normal bundle Np /y of the

zero section is isomorphic to (£ /L) ® £2. Note that this bundle lies on the

exact sequence
0= Op(-3) = Qp(-1) = Np )y = 0.

Thus, we have
0
RF(P, /\N[p/y/) ~ C,
1
RI(P, A\ Npy/) ~0, and

2
RI(P, A\ Npv+) ~ RT(P, Op(-4)) ~ C[-3].
Let us consider a spectral sequence
EDT .= HP (Y, Eatl, (1. Op, j.Op)) = EPT1 = Ext?T9(.LOp, i, Op).

Since we have an isomorphism

q
Extd) (L Op, 1, Op) ~ 1), /\NP/Y/,

we have

Ep — C ifp=qgq=00rp=3,9=2,
0 otherwise.

Therefore, we have

C ifi=0ori=35,

0 otherwise.

Eth//(L;O[p,L;OP) = {

Since Y is Calabi-Yau, the condition :,Op & wy+ =~ /. Op is trivially satisfied.
Hence the object ¢, Op is a spherical object.
Next, we prove (2). Note that we have

Extly (1 S LG xS |nar) = Ently (1.01Gr, 1:Orar) ® S R S

(Sym2 S)(D)|rar © Orar ifi=0
(Sym®(S) & S(-1)%%) |Lar ifi=1
(Sym® 8)(—2)|rar ® Orae(—3)  if i =2
0 otherwise.

By using Borel-Bott-Weil theorem and a spectral sequence
E2Y = HP(Y, ot (1x S |rGry 1+ S |Lar)) = EPT9 = Ext2 (1, S [urs 4 S |1ar),

we have the result. O
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4.4.2 On the side of Y’

In the present subsection, we prove a “flop-flop=twist” result on the side of
Y’. The next lemma is a key of the proof of Theorem 4.4.3, which provides a
“flop-flop=twist” result.

Lemma 4.4.2. There is an exact sequence
0—X(—1) = VacOy/(—1) = X(-2) = ,Op(—3) = 0
onY’.
Proof. On Y, there is a canonical exact sequence
0—8(1) - Vc0y(l) = S812) = 0.

By restricting this sequence on Y° and then extending it to Y’, we have a left
exact sequence
0— (1) = V&e Oy (1) S 2(2).

Thus, it is enough to show that Cok(a) ~ Op(—3).
_ Let us consider two open immersions 7 :Y° <Y and j:Y° < Y. Since
7 is an affine morphism, we have an exact sequence

0= 5:3(-Dlye =+ V& jsOyr(1)|ye — juE(2)]ye — 0
and an isomorphism
RjL(Z(-1)lyo) =~ Rp.ju (- 1)y
On the other hand, we have an exact sequence
0 Oy — j.Oyo —+ H Op(dE) 0.
d=1

From this exact sequence and the projection formula, we have
lei(z(—lﬂY") =~ Rlﬁ*j*z(—l)wo

~ %(-1)p ® P R'p.Op(dE)

d>1

~ S~ o @ Sym?2(L* /L) © £
a>1

~ @ (Symd—2(£i /L)% £2d+2) @ (Symd—Q(ﬁL/c) 2 £2d—1) )

a>1

Since the sheaf Cok(a) is a subsheaf of R'j!(X(—1)|ye), the map 3(—2) —
Rj!(%(—1)|y.) factors through as

B(~2) = B(-2)[p - Cok(a) = R'jL(S(~1)|ye).
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Note that 3(—2)|p = Op & Op(—3). It is easy to observe that two sheaves (on
P)
Sym? (Lt /L) ® £2T2 and  Sym? (Lt /L) & L2

do not have global sections for all d > 1. Thus, Cok(a) is a torsion free sheaf on
P that can be written as a quotient of Op(—3). This means we have Cok(a) ~

Op(-3). O
Theorem 4.4.3. We have a functor isomorphism

UToSeg’ 2 T, 0,(—3) € Auteq(D"(Y")).
Proof. We have to show the following diagram commutes

~1
TLQOW(—Ti)
T

DP(Y") DP(Y")
TU’l l‘l’ls
DP(Y) —2 DP(mod Ag)
Note that we have
o Tl%gm(fg) ~ RHomy (T, 0,(—3)(Ts), —)
Ts o TU' ~ RHomy (TU'~!(Ts), -)
and

T 0:(-3)(Ts) = Oy © Oy (=1) & Oyr(-2) © Ty 0p(—3)(2( 1))
UT(Ts) = Oyr & Oyr(—1) @ Oyr(—2) & UT(S(—1)).

Thus, it is enough to show that
Tji0p(~3)(3(=1)) = UT(S(1)).

Applying the functor UT to the exact sequence

0—8(1) = VeecOy(l) = 812) =0,
we have an exact triangle on DP(Y”)

UT(S(1)) = V @c Oy/(—1) — X(—2) — UT(S(1))[1].

On the other hand, by using an exact sequence

0— Oy (-2) = 2(-1) = Oy/(1) = 0,
we have

RHomy (¢, Op(—3), %(~1)) =~ RHomy~ (¢, Op(—3), Oy (1))
~ RHomp(Op(—3), Oy (1) & wp)[—2]
~ C[-2].
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The non-trivial extension that corresponds to a generator of Ext$ (¢, Op(-3), 2(~1))
is the one that was given in Lemma 4.4.2. Thus the object T, o, (—3)(3( 1))
defined by a triangle

1 Op(—=3)[—2] = X(-1) — Ty 0p(—3)(B(—-1))
is quasi-isomorphic to a complex
(+=20=20=2VRc0y(-1)=%(-2)=20=>0—--)
whose degree zero part is V @c Oy (—1). Hence there is an exact triangle
Ty 0p(=3)(B(-1)) =V oc Oy (1) = E(-2) = Ty o3 (X(-1))[1].
Therefore, we have the desired isomorphism

UT(5(1)) ~ T, 0p(—3)(5(=1)).

4.4.3 The kernel of the equivalence TU’

In the same way as in Theorem 4.4.3, we can prove a “flop-flop=twist” result
on Y. However, to prove this, we need the geometric description of the equiva-
lence TU’. In the present subsection, we provide a Fourier-Mukai kernel of the
equivalence TU'.

Lemma 4.4.4. There is an exact sequence
0->0y(3) »S5(2) % 0y = OLar +0
onY.
Proof. On Y’ there is an exact sequence
0— Oy/(—3) = X(-2) - Oy, = 0.
Restricting on Y° and then extending to Y, we have a left exact sequence
0= 0y(3) = 8(2) % 0y.

Thus, it is enough to show that Cok(b) ~ Orc;-

Note that this sequence cannot be right exact. Indeed, if this is a right exact
sequence, then the sequence is locally split. This contradicts to the fact that
there is no non-trivial morphism from §(2) to O, on LGr.

Let j : Y° <= Y be an open immersion. As in the proof of Lemma 4.4.2, we
have

R'j.0y (3)|ye =~ Ova:(3) ® @) Sym?2(S(-1)) @ wiar.
i>1
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In particular, R'j.Oy (3)|]y. is a vector bundle on the zero section LGr, and
hence its subsheaf Cok(b) is a torsion free sheaf on LGr. In particular, the
surjective morphism Oy — Cok(b) factors through a morphism Op g, — Cok(b)
which is also surjective. Since the sheaf Cok(b) is torsion free sheaf on LGr, the
surjective morphism Opg, — Cok(b) should be an isomorphism. O

Let Y be a blowing up of Y along the zero section LGr (or equivalently, of
Y’ along the zero section P). Then, the exceptional divisor E is isomorphic to
PLc:(S(-1)) and can be embedded into LGr x P via an injective bundle map
S(-1) = V &c Orar(-1). Put

Y=Y uUg (LGr x P).

The aim of the present section is to prove that a Fourier-Mukai functor from
DP(Y”) to DP(Y)) whose kernel is Oy gives the equivalence TU'. Note that

Y ~Y xx Y’. This is very close to the case of Mukai flops ([Kaw02, Nam03].
See also [TU10, Example 5.3] and [H17al).

Theorem 4.4.5. The Fourier-Mukai kernel of the equivalence
TU : D*(Y') = DP(Y)
is given by the structure sheaf of Y
TU ~ FMy_Y

Proof. Let FMo,, : DP(Y') — DP(Y) be a Fourier-Mukai functor whose kernel
is Op. What we want to show is the commutativity of the following diagram

DP(Y) oy > DP(Y7)
D" (Ay)

where FM!O? is the right adjoint functor of FMe_. Since there is a functor
isomorphism

W'y o FMp, = RHomy (77, FMp,_(-))
~ RHomy (FMo_ (%), ),

it is enough to show that
FMo, (Tr) = Tu.

By computations using an exact sequence

0— 0y — Oy & Orgrxp — Op — 0,
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we have

FMO? (Oy/(fa)) ~ Oy (a)
for 0 < a <2 and

Oy(3) ifi=0
HZ(FMOQ (ny(73))) = OLGr ifi=1
0 otherwise.

Let us consider the following exact sequence
00— Oy (-3) —=>%(-2) = Oy —0.

Applying the functor FMe_, to this sequence and taking the cohomology long
exact sequence, we have that FMo_, (3(~2)) is a coherent sheaf on Y appearing
in a sequence

0— Oy(?)) - FMQ?(E(72)) — Oy — Orar — 0.

Since Exty (Ircr /v, Oy (3)) =~ Ext} (Orar, Oy (3)) ~ C, this exact sequence co-
incides with the one given in Lemma 4.4.4. Therefore, we have FMo_ (X(-2)) ~
S(2).

4.4.4 On the side of YV

Finally, we prove the “flop-flop=twist” result for Y.

Theorem 4.4.6. Let us consider a spherical twist T, (s)j2) € Auteq(DP(Y))
around a sheaf 1.(S)[2] = t«(S|Lar)[2] on LGr. Then, we have a functor iso-
morphism

Seg’ o UT ~ T, (s)12) € Auteq(D"(Y)).

Proof. By Theorem 4.4.3, it is enough to show that
TU'(Op(-3)) ~ S |rax(2]-
By the proof of Theorem 4.4.3, we have a distinguished triangle
Y(-1) = UT(8(1)) = Op(-3)[-1] = Z(-D)[1].
Applying a functor TU’ to this sequence, we have
TU(2(-1)) - 8(1) - TU'(Op(-3))[-1] = TU'(X(-1))[1].

Thus, we have to compute the object TU'(X(—-1)). Let us consider the exact
sequence
00— Oy (-2) = X(—-1) = Oy/(1) =0

on Y’. By applying the functor TU’, we have an exact triangle

Oy(2) - TU'(S(~1)) -+ TU(Oy:(1)) - Oy (2)[1].
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Then, by a computation using Theorem 4.4.5, we obtain that TU’(Oy (1)) lies
in the following triangle

TU,(Oyl(l)) — ILGr/Y(—l) D (V* Qe OLGr) — S* |LGr — TU/(OY/(l))[H
Moreover, by considering the following diagram

V ®(C OLGI‘ B Y ®C OLGY

| |

TU'(Oy: (1)) — ey (-1) @ (V* @¢ Orar) — S™ [Lar

H l !

TU (Oy (1)) ——————— Iy (1) ——— Sliac[1],

we have that TU’(Oy(1)) lies on the following sequence
TU/(OY/(l)) — ILGr/Y — S ‘LGr[l] — TUI(OY/(l))[l]

On the other hand, by Lemma 4.4.4 and the construction of morphisms, we
have the following morphism between exact triangles

Oy (2) —— TU'(X(-1)) —— TU' (Oy(1)) —— Oy (2)[1]
OYH(Q) R S(ll) EE— ILGr/£(1) E— OY(!)M-
Summarizing the above computations, we have
TU' (Op(-3)) = Cone(TU'(%(-1)) = S(1))[1]
~ Cone(TU'(Oy-(1)) = Ircr v)[1]
~ S Lae[2]

4.4.5 Another Flop-Flop=twist result

Put
Tui:=0y(-1)& Oy & Oy(1) & S(1),
Tra:=0y/(1)© 0y @ Oy(- 1)@ X( 1),
Ay :=Endy(Tuq) = Endy/('T/Tyl).

Note that 7,1 was denoted by ©2 T in Theorem 4.3.13. Let us consider derived
equivalences

Uy, = RHomy (Tu.1, —) : DP(Y) = DP(mod Ay 1),
Uh; == RHomy (77 1, —) : D*(Y’) =5 D" (mod Ay 1),
UT; := (¥p,) ' oWy, : DP(Y) 5 DP(Y),

TU, := ¥yl o Uy - DP(Y') 55 DP(Y).
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Then UTf1 ~ TU] and the following diagram commutes

DP(Y) — Dh(Y)
~20v ()| l—®oy/<—1>
DP(Y) 2% D(Y)
Theorem 4.4.7. We have a functor isomorphism
TU 0Seg ~ To, . (—1) € Auteq(D"(Y)).
Proof. We have to show the following diagram commutes:

DP(Y) —2%  Db(Y)

TOLcr(H)l l‘I”m

DP(Y) —%4 DP(mod Ay.y).
As in the proof of Theorem 4.4.3, it is enough to show that
Seg/(Oy+(1)) = To, , (—1)(Ov (-1).
First, by using an exact sequence
0 = Inaeyy(-1) - Oy(-1) = Ora:(-1) »0
and a computation
RHomy (¢4+OLgr(-1), Oy (-1)) ~ RI'(LGr, Ora:(-3))[-2] ~ C[-5],

we have
RHomY(L*OLGr(—l)aILGr/Y(—l)) =~ C[H

and hence we obtain
Tove (-1 Urar /vy (=1)) = Oy (=1).
On the other hand, by applying the functor Seg’ to the sequence
0— Oy (-2) = 2(-1) = Oy/(1) = 0,
we have a triangle
Oy(2) —+ S(1) = Seg'(Oy(1)) — Oy (2)[1],
and by Lemma 4.4.4, we have
Seg'(Oy(1)) = Ingr /v (1)

Thus we have the result.
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4.4.6 Multi-mutation=twist result
Note that Ay ; is the endomorphism ring of an R-module
M_1 @Mg EBMl ap] Sl.

Let W’ := My @ M; ® S;. This W’ was denoted by W3 in Theorem 4.3.13.
Recall that Ag is the endomorphism ring of W’/ & M.

Proposition 4.4.8. We have the following two isomorphism of R-modules:
(1) pw pow o (W' M_y) ~ W' @ Ms.
(2) pw (W' & M) ~ W' & M_;.
Moreover, the induced IW functor
®yr - DP(mod Ag) — DP(mod Ay 1)
from (2) is isomorphic to Wy; | o (Wg) ™.

Proof. (1) was proved in Theorem 4.3.13. One can show (2) by using Lemma
4.2.7. We only note that the exchange sequence for (2) is given by the dual of
the exact sequence

0—>My—>S —-M_1—0.

This sequence is obtained by taking the global section of the sequence
0— Oy/(-2) = X(-1) - Oy:(1) = 0.
a
The following is a “multi-mutation=twist” result for the Abuaf flop.

Theorem 4.4.9. By Proposition 4.4.8, we have an autoequivalence of DP(mod Ay 1)
by composing four IW mutation functors at W':

Dy 0 Pyyr 0 Pyyr o Dyyr € Auteq(Db(mod AU,I))-

This autoequivalence corresponds to a spherical twist To,  (—1) € Auteq(DP(Y))
under the identification

Py, : DP(Y) 5 DP(mod Ay ).

Proof. By Theorem 4.3.13, Theorem 4.4.7, and Proposition 4.4.8, we have the
following commutative diagram

T -1

l\I’U,l l\Ils l\l’U,l
3

DP(mod Ay 1) —5 DP(mod Asg) SLwr, DP(mod Ay 1)

o] ]

DV (V") == D"(Y"),

and the result follows from this diagram. 0O
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Remark 4.4.10. Compare this result with [H17a, Theorem 5.18 and Remark
5.19]. There, the author proved that a P-twist on the cotangent bundle 7% P"
of P™ associated to the sheaf Op(—1) on the zero section P C T* P" corresponds
to a composition of 2n IW mutations of an NCCR.

Remark 4.4.11. By Theorem 4.4.9, we notice that an autoequivalence
Dy 0 By o Dyyr 0 By € Auteq(DP(mod Ay 1))
corresponds to a spherical twist
Tz € Auteq(D"(Y”))
on Y’ around an object F := UT1(Ora:(-1)), under the identification
Ty :DP(Y') 5 DP(mod Ay ).

Note that F is also a spherical object on Y’ because Y’ has a trivial canonical
bundle. However, in contrast to the case for Y, the object F is not contained
in the subcategory /. DP(P) of D®(Y").

Indeed, we have

RHOInY/(]:, Oy & OY’(*l) D Z(*l))
~RHomy (:.Orc:(-1), Oy @ Oy (1) & S(1))
~RHomp,qr(Orar(—1), (Orar € Ora:r(1) @ S(1)) @ wiar)[—2]
=0.

Thus, if F ~ i, F for some F € DP(P), we have
1
0 = RHomy (1. F, Oy+ & Oy+(-1) & X(-1)) ~ RHomp(F, @) Op(k) 2 we)[-2].
k=—2

Since the object @2:72 Op(k) % wp spans the derived category DP(P) of the
three dimensional projective space, we have F' = 0. This is contradiction.

4.5 Borel-Bott-Weil Theorem

In this section, we explain how to compute the cohomology of a homogeneous
vector bundle on LGr(V). Since LGr(V) is a homogeneous variety of Sp(V),
we can compute cohomologies on LGr(V) by using the representation theory
of Sp(V). However, we provide a different method: we embed LGr(V) into
Gr(2,V) and use Borel-Bott-Weil theorem for GLy = GL(V).

Put A
P .= {(%’%) ‘ Al,AQ S GL2} .
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Then Gr(2,V) = Gr(2,4) = GL4/P. The category of homogeneous vector
bundles on Gr(2,V) is equivalent to the category of P-modules. Since P con-
tains GLg x GLgy (Levi subgroup), we can consider a P-module as a GLg x GLa-
module. Thus, for a homogeneous vector bundle on Gr(2,4), we can consider
its highest weight vector in the weight lattice of GLy x GLo. Let T ¢ GL(V)
be a set diagonal matrices. Then T is a maximal torus of GL4, and also pro-
vides a maximal torus of GLg x GLa. Hence GL(V) and GLy x GLo have same
weight lattice. Recall that the space of weights X (T) of GL4 is isomorphic to
74 = @?:1 Z - ¢;, where

g :T> diag(dl,d27d37d4) —d; € c*.

Example 4.5.1. Let S be the universal subbundle on Gr(2,V). The highest
weight of (Sym” S)(1) is (1,1 - k,0,0).

The Weyl group of GL4 is the symmetric group G4 and it acts on the space
of weights Z* by permutation. To state Borel-Bott-Weil theorem, we need to
define another action of &4 on Z*, called tilde-action. Put p = (3,2,1,0) and
we call it fundamental weight. For w € Z* and o € &, we set

gwi=0c-(w+p) — p
Example 4.5.2. Put 0;; = (i, j) € 4. Then

O12 - (Wi, wa, w3, wa) = (w2 — 1,wi + 1,ws,wa),
g3 - (w1, W, w3, wy) = (wi,ws — L,wa + 1, w4),

T34 - (w1, wWa, w3, wy) = (Wi, wa,ws — 1wz + 1).

For w € Z*, there is exist ¢ € G4 such that ¢ - w = (W}, wh,w},w)) is one of
the following;:

(1) The dominant weight of GLy4 i.e. w] > w) > wh > wj.
(2) There exists 4 such that w; = wj, ; — 1.
The Borel-Bott-Weil theorem is given as follows.

Theorem 4.5.3 (Borel-Bott-Weil theorem). Let £, be a homogeneous vector
bundle with highest weight w, o € &4 as above, and l(a) the length of o. Then,

(i) If - w is as in (1), then we have

(Vsw)* ifi=1(o),

0 otherwise.

HY(Gr(2,V),&,) = {

(i) If 6 - w is as in (2), then

RI(Gr(2,V),E,) = 0.

100



By using this theorem, we can compute the cohomology of a homogeneous
vector bundle on Gr(V).

Example 4.5.4. Set G := Gr(2,4).
(1) The highest weight of Og(—3) is (-3, -3,0,0). Since
0?1/20?314(737 737 070) = (747 727 717 1)7

we have

RI(G,0g(-3)) = 0.
(2) The highest weight of Og(—4) is (—4,—4,0,0). Since
O%O’BO"&J\QE;(—ZL, —47 Oa 0) = (—27 —23 —27 —2)

and the representation of GLy4 whose highest weight is (—2, —2, -2, —2) is
(det™,C). Thus we have

RI(G,Og(-4)) ~ C[-4].
To go back to LGr(V'), we use the exact sequence
0 = Oarvy(=1) = Ocrvy = Orar(vy = 0.
Example 4.5.5. By the exact sequence
0 = O¢(-4) =+ 0g(-3) = Ora:(-3) =0,

we have

RID(LGH(V), Opcr(—3)) = C[-3].
The following trivial proposition is also useful to compute the cohomologies.

Proposition 4.5.6 (cf. [FH91] Exercise 11.11). There is an isomorphism of
vector bundles on LGr

b
Sym® 5@ Sym’ S = G (Symt P2 5)(—h).
k=0

for any a >b.

4.6 Mutation of exceptional objects

In Section 4.3, we construct a resolution of a sheaf by using the mutation of
exceptional objects. In this section, we recall the definition of exceptional ob-
jects and mutation of them, and explain how to find resolutions that we used
in Section 4.3.
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4.6.1 Application for finding resolutions
Lemma 4.6.1. There is an exact sequence on LGr(V')
0 — OLar(—3) = S(—2)%* = Opa(—2)®" = Opa(—1)® — Orar — 0.
Proof. Let us consider a full exceptional collection
DP(LCr(V)) = (Ora:(—3), S(—2), Orar(—2), Oy (—1)).
Then, by Lemma 2.2.11 and Lemma 2.2.9, we have an isomorphism
Rs(-2)(Orar(-3)) > Loy, (<2) Lowe. (-1 (Orar(-3) © wrg,)

up to shift. Note that Opg,(—3) ® wgér ~ OLGr-
First, we have

RHomy g, (v)(Orar( -3), S(-2)) ~ C*

and hence the object Rg(_2)(OLar(—3))[1] lies on an exact triangle
OLGr(—g) 1> 8(—2)@4 — RS(—Q)(OLGI(—Z;))[H — OLGr(—g)[l]-

Since Opg,(—3) and S(-2)®* are vector bundles on LGr(V'), the map ev should
be injective and hence the object Rg(_2y(Ora:(—3))[1] is a sheaf on LGr(V).
Thus, we put

F = Rg(,z)(OLGr(f?)))[l].

Next, we have RHomy,gr(v)(Orar(—1), Orar) =~ C® and hence

Loy, (-1)(Orar)[-1] ~ Qpa|Lcr

Moreover, an easy computation shows that RHomy,c,(v)(Orar(—2), Qpa|rar) ~
C*! and hence the object Loy (—2) (s |Lar) lies on the exact sequence

OLa:(—2)%" =5 QlilLar — Lopa,(—2) (s lar) = Orar(—2)®M[1].

From the above computation, the object Lo, ,(—2)(@ps|Lar) should be a sheaf
on LGr(V) (up to shift) whose generic rank is equal to 7. Thus, we have the
map ev is surjective and Lo, ., (~2)(Qpa|Lar)[-1] ~ F.

Summarizing the above arguments, we have the following three exact se-
quences:

0= Opar(—3) - S(—-2)% - F >0,
0 F = Orar(—2)%" = Qpalrar — 0,
0— Q]]IS’4|LGr - OLGI(—1)®5 — OLGr — 0.

By combining these three exact sequences, we have the desired long exact se-
quence. 0O

By using similar arguments, we can obtain the long exact sequences that we
used in the proof of Theorem 4.3.13.
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Chapter 5

On the Abuaf-Ueda flop via
non-commutative crepant
resolutions

This chapter is based on the author’s work

[H18b] W. Hara, On the Abuaf-Ueda flop via non-commutative crepant resolution,
preprint (2018).

5.1 Introduction

5.1.1 The Abuaf-Ueda flop

First of all we give the construction of the flop we study in this chapter. Let
us consider the G2 Dynkin diagram (O== . Then by the classification theory
of homogeneous varieties, projective homogeneous varieties of the semi-simple
algebraic group of type G corresponds to a marked Dynkin diagram. The
one )= corresponds to the Gg-Grassmannian G = Grg,. Another one
(C==X corresponds to the 5-dimensional quadric Q C P®. The last one X=X
corresponds to the (full) flag variety F of type Ga. There are projections F — G
and F — Q, and both of them give P'-bundle structures of F.
Let us consider the Cox ring of F

C:= @D HF,Op(a,b)) =~ P Viiy),

a,b=0 a,b=0

where Op(a,b) (resp. V(\é b)) is a line bundle on F (resp. the dual of an irre-
ducible representation of Gs) that corresponds to the dominant weight (a,b).
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Put Cyp = H°(F, Or(a,b)) and

Cn = @ Cn+a,a-

a€”Z

Using them we can define a Z-grading on C' by

C=Cn.

nez

This grading corresponds to a Gp,-action on Spec C that is obtained by a map
Gm — (Gu)?,a + (&, ') and the natural (G,,)?-action on Spec C' coming
from the original bi-grading.

Then we can take the geometric invariant theory quotients

Y, :=Proj(Cy), Y_ := Proj(C-), and X := Proj Cy,

where

Cy = Cnand C_:=PC.

n>0 n<0

The projective quotients Yy and Y_ are the total spaces of rank two vector
bundles on G and Q respectively. The affinization morphism ¢4 : Y, — X
and ¢_ : Y_ — X are small resolution of the singular affine variety X and they
contract the zero-sections. Furthermore we can show that the birational map
Y, --» Y_ is a 7-dimensional simple flop with an interesting feature that the
contraction loci are not isomorphic to each other.

The author first learned this interesting flop from Abuaf. Later the author
noticed that the same flop was found by Ueda independently [Ued16]. Thus the
author would like to attribute this new flop to both of them, and would like to
call this flop the Abuaf-Ueda flop.

When there is a flop Y, --» Y_ between two smooth varieties, it is im-
portant to compare their derived categories. According to a famous conjecture
due to Bondal and Orlov [BO02], we expect that we have a derived equiva-
lence DP(Y) 2 DP(Y_). In the case of the Abuaf-Ueda flop, Ueda proved the
derived equivalence using the theory of semi-orthogonal decomposition and its
mutation. However, since there are many other methods to construct an equiv-
alence between derived categories, it is still interesting problem to prove the
derived equivalence using other methods.

5.1.2 Results in this chapter

The main purpose of this chapter to construct tilting bundles on both sides of
the flop Y4 --» Y_, and construct equivalences between the derived categories
of Y} and Y_ using those tilting bundles. A tilting bundle T, on Y, (x € {+, -})
is a vector bundle on Y, that gives an equivalence

RHomy, (T, -) : D*(Y,) - DP(Endy, (T%))
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between two derived categories. In particular, if we find tilting bundles T and
T_ with the same endomorphism ring, then we have an equivalence D (Y} ) ~
DP(Y_) as desired.

The advantage of this method is that it enables us to study a flop from the
point of view of the theory of non-commutative crepant resolutions (= NCCRs)
that is first introduced by Van den Bergh [VdB04b]. In our case, an NCCR
appears as the endomorphism algebra Endy, (T) of a tilting bundle T,. Via the
theory of NCCRs, we also study the Abuaf-Ueda flop from the moduli-theoretic
point of view.

Recall that Y, and Y_ are the total spaces of rank two vector bundles on
G and Q respectively. If there is a variety Z that gives a rational resolution
of an affine singular variety and that is the total space of a vector bundle on
a projective variety W admitting a tilting bundle T, it is natural to expect
that the pull back of T" via the projection Z — W gives a tilting bundle on Z.
Indeed, in many known examples, we can produce tilting bundles in such a way
[BLV10, H17a, WZ12].

However, in our case, we cannot obtain tilting bundles on Y, or Y_ as a
pull back of known tilting bundles on G or Q. Thus the situation is different
from previous works. Nevertheless, by modifying bundles that are obtained
from tilting bundles on the base G or Q, we can find tilting bundles on Y, and
Y_. Namely, tilting bundles we construct are the direct sum of indecomposable
bundles that are obtained by taking extensions of other bundles obtained from
G or Q. We can also check that they produce derived equivalences DP (Y ) ~
DP(Y).

5.1.3 Related works

If we apply a similar construction to Dynkin diagrams A, or Cs, then we have
the four-dimensional Mukai flop or the (five-dimensional) Abuaf flop [Segl6]
respectively. Therefore this chapter is a sequel of chapters above.

Recently, Kanemitsu [Kan18] classified simple flops of dimension up to eight,
which is a certain generalization of the theorem of Li [Lil7]. It is interesting
to prove the derived equivalence for all simple flops that appear in Kanemitsu’s
list using tilting bundles, and we can regard this chapter as a part of such a
project.

This flop is also related to certain (compact) Calabi-Yau threefolds which are
studied in [IMOU16a, IMOU16b, Kuz18]. Let us consider the (geometric) vector
bundle Y; — G over G. Then as a zero-locus of a regular section of this bundle
we have a smooth Calabi-Yau threefold V; in G. Similarly, we can construct
another Calabi-Yau threefold V_ in Q. Papers [IMOU16b, Kuz18] show that
Calabi-Yau threefolds V; and V_ are L-equivalent, derived equivalent but NOT
birationally equivalent to each other. (L-equivalence and non-birationality is
due to [IMOU16b], and derived equivalence is due to [Kuz18].) As explained in
[Ued16], we can construct a derived equivalence DP(V,) = DP(V_) for Calabi-
Yau threefolds from a derived equivalence DP(Y,) =5 DP(Y_) with a certain
nice property.
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5.1.4 Open questions

It would be interesting to compare the equivalences in this chapter and the one
constructed by Ueda. It is also interesting to find Fourier-Mukai kernels that
give equivalences. In the case of the Mukai flop or the Abuaf flop, the structure
sheaf of the fiber product Y x x Y_ over the singularity X gives a Fourier-Mukai
kernel of an equivalence (see [Kaw02, Nam03, H17b]). Thus it is interesting to
ask whether this fact remains to hold or not for the Abuaf-Ueda flop.

Another interesting topic is to study the autoequivalence group of the derived
category. Since we produce some derived equivalences that are different to
each other in this chapter, we can find some non-trivial autoequivalences by
combining them. It would be interesting to find an action of an interesting group
on the derived category of Y, (and Y_) that contains our autoequivalences.

5.2 Preliminaries

5.2.1 Tilting bundle and derived category
First we prepare some basic terminologies and facts about tilting bundles.

Definition 5.2.1. Let Y be a quasi-projective variety and T a vector bundle
(of finite rank) on Y. Then we say that T is partial tilting if Exts' (T, T) = 0.
We say that a partial tilting bundle T on Y is tilting if T is a generator of the
unbounded derived category D(Qcoh(Y')), i.e. if an object E € D(Qcoh(Y))
satisfies RHom(7T, E) ~ 0 then E ~ 0.

If we find a tilting bundle on a projective scheme (over an affine variety),
we can construct a derived equivalence between the derived category of the
scheme and the derived category of a non-commutative algebra obtained as the
endomorphism ring of the bundle.

Proposition 5.2.2. LetY be a projective scheme over an affine scheme Spec(R).
Assume that Y admits a tilting bundle T. Then we have the following derived
equivalence

RHomy (T, —) : D*(Y)) — DP(Endy (7).

These equivalences coming from tilting bundles are very useful to construct
equivalences between the derived categories of two crepant resolutions.

Lemma 5.2.3. Let X = Spec R be a normal Gorenstein affine variety of di-
mension greater than or equal to two, and let ¢ : Y — X and ¢' 1Y — X
be two crepant resolutions of X. Put U := Xgn =Y \ exc(¢) = Y’ \ exc(¢').
Assume that there are tilting bundles T and T’ on'Y and Y’', respectively, such
that

T|U ~ T/|U-

Then there is a derived equivalence

D"(Y) ~ DP(Endy (7)) ~ DP(Endy-(T")) ~ D" (Y").
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Proof. See [H18a, Lemma 3.4]. O

The existence of a tilting bundle on a crepant resolution does not hold in
general. For this fact, see [I[W14b, Theorem 4.20]. In addition, even in the case
that a tilting bundle exists, it is still non-trivial to construct a tilting bundle
explicitly. The following lemma is very useful to find a tilting bundle.

Lemma 5.2.4. Let {E;}_, be a collection of vector bundles on a quasi-projective
scheme Y. Assume that

(i) The direct sum ., E; is a generator of D(Qcoh(Y)).

(i) There is no former Ext?,l, i.e. Ext%l(Ei, E;) =0 fori < j. In particular,
this assumption implies that F; is a partial tilting bundle for any i.

(iii) There is no backward EXt%Q, i.e. Ext}Z,Q(E,-,Ej) =0 fori>j.
Then there exists a tilting bundle on Y .

Proof. We use an induction on n. If n = 1, the statement is trivial. Let n > 1.
Choose generators of Exty (Ey, Ez) as a right Endy (E;)-module, and let 7 be
the number of the generators. Then we can take the corresponding sequence

0— FEy » F— EY" —0.

Then we have Exts' (E;, F) = 0. Indeed, if we apply the functor Ext} (E1, —)
to the sequence above, we have the long exact sequence

- 5 Endy (B1)®" % Exth (By, By) — Extl(Ey, F) = ExtL (B, E®) =0 > - .
Now 4§ is surjective by construction, and hence we have
Extg!' (B, F) = 0.

Applying the derived functor Ext%,(Eg, —) to the same short exact sequence,
we have Ext=!(Ej, F) = 0 from the assumption that there is no former Ext=!,
Thus we have Ext%l(F, F) = 0. One can also show that Extlz/l(F, Ey) =0, and
therefore E1 @ F' is a partial tilting bundle.

Put Bf = E1 & F and E] = E,_; for 1 <i < n. Then it is easy to see that
the new collection {E/}""' satisfies the assumptions (i), (ii) and (iii). Note
that the condition (i) holds since the new collection { E/}"" split-generates the
original collection {E;}" ;. Thus we have the result by the assumption of the
induction. O

5.2.2 Geometry and representation theory

Next we recall the representation theory and the geometry of homogeneous
varieties we need. We also explain the geometric aspect of the Abuaf-Ueda flop
in the present subsection.
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Representation of G,

In the present subsection, we recall the representation theory of the semi-simple
algebraic group of type G3. We need the representation theory when we compute
cohomologies of homogeneous vector bundles using Borel-Bott-Weil theorem in
Section 5.3.

Let V = {(z,y,2) € R* | 2 + y + 2 = 0} be a hyperplane in R®. Then the
G root system in V is the following collection of twelve vectors in V.

A ={(0, £1,F1), (£1,0, 1), (+1, F1,0), (£2, 71, F1), (F1, £2, F1), (¥1, 1, £2)}.
The vector in A is called root. Especially,
o1 = (1,-1,0) and as = (—2,1,1)

are called simple roots, and we say that a root o« € A is a positive root if
o = aaq + bag for some a > 0 and b > 0.
By definition, the fundamental weights {m1,m} C V are the set vectors in
V such that
<O<’Z',7Tj> = 5”
Here the parting (-, —) is a usual one
((a,b,¢), (z,y,2)) := ax + by + cz.

An easy computation shows that

1 12

7'1'1—(07 1,1) a’ndﬂg—( 5, g,g)
The lattice L = Zm + Z w2 in V generated by m and my is called the weight
lattice of G2, and a vector in this lattice is called a weight. We call an weight of
the form am; +bm for a, b € Z>o a dominant weight. The set of dominant weights
plays a central role in the representation theory because they corresponds to
irreducible representations.

Let o € A be a root. Then we can consider the reflection S, defined by the
root «. That is a linear map S, : V — V defined as

The Weyl group W is defined by a subgroup of the orthogonal group O(V)
generated by S, for oo € A:

W= (Ss | ae Ay OV).

It is known that W is generated by two reflections S, and S,, defined by simple
roots. Using this generator, we define the length of an element in W as follow.
The length I(w) of an element w € W is the smallest number n so that w is a
composition of n reflections by simple roots. In the case of G5, the Weyl group

108



Table 5.1: Elements of Weyl group and their length
element | length |
1 0
S1
So
Si12
Sa1
Si21
S212
S1212
S2121
S12121
S21212
S121212 = S212121

O UL U W W NN~ =

W has twelve elements. The Table 5.1 shows all elements in W and their length.
In that table, we denote Sq,, - Sa,,Sa;, DY Siy...ini, for short.

Let p be the half of the sum of all positive weights. It is known that p also
can be written as p = m + 7o. Using this weight, we can define another action
of the Weyl group W on the weight lattice L that is called dot-action. The
dot-action is defined by

Sa v :=Su(v+p) - p.
In our G5 case, the dot-action is the following affine transform.

Sa, - (am +bm2) = (—a — 2)m1 + (3a + b+ 3) 7o,
Sa, - (am +bm2) = (a+ b+ )7y + (—b— 2)ma.

Geometry of G2-homogeneous varieties

Next we recall the geometry of G2-homogeneous varieties.

The Gy-Grassmannian G = Grg, is a 5-dimensional closed subvariety of
Gr(2,7), and has Picard rank one. The Grassmannian Gr(2,7) admits the
universal quotient bundle @ of rank 5 and G is the zero-locus of a regular
section of the bundle QV(1). Since det(QY(1)) ~ Ogy(2,7)(4) and w27y ~
Ocr(2,7)(—T7), we have wg =~ Og(—3). Thus G is a five dimensional Fano
variety of Picard rank one and of Fano index three. We denote the restriction of
the universal subbundle on Gr(2,7) to G by R. The bundle R has rank two and
det(R) =~ Og(~1). It is known that the derived category D(G) of G admits a
full strong exceptional collection

Db(G) = <R(71)> OG(fl)v R, OGv R(l)v OG(1)>
(see [Kuz06]). In particular, the variety G admits a tilting bundle
R(-1)& Og(-1)® R¢ Og ¢ R(1) 5 Og(1).
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The other G2-homogeneous variety of Picard rank one is the five dimensional
quadric variety Q = Q5. On Q there are two important vector bundles of higher
rank. One is the spinor bundle S on Q. The spinor bundle S has rank 4 and
appear in a full strong exceptional collection

D"(Q) = (Oq(~2), 0q(~1),8,0q,0q(1), Oq(2)).
Lemma 5.2.5. For the spinor bundle S on @, we have
(1) SV ~ S(1) and det S ~ Oq(-2).
(2) There exists an eract sequence

09— 08— S(1) - 0.

This lemma should be well-known but we give the proof here for convenience.

Proof. To show this lemma, we use the theory of mutations of an exceptional
collection.

First, by taking dual of the collection above, we have another exceptional
collection

D*(Q) = (Oq(-2),0q(~1),0q, 5", 0q(1),0q(2)).

On the other hand, by applying a functor (—)® Ogq(1) to the original collection,
we have

D"(Q) = (Oq(~1),0q,5(1),0q(1), 0q(2), Oq(3))-
Then by mutating Oq(3) to the left end, we have another collection
D"(Q) = (Oq(~2),0q(~1),0q. 5(1), Oq(1), 0q(2)).

Therefore we have SV ~ S(1) from a basic fact about exceptional collections.
By taking det, we have det S ~ Oq(-2).
Let us show (2). From the exceptional collections above we have

Log (5(1)) = S(d]

for some a € Z, where Lo, is the left mutation over Oq. By definition of a left
mutation, we have an exact triangle

RHomgq(Oq, S(1)) @c Oq S(1) - Log (S(1)).

Since S(1) and Lo, (S(1)) are (some shifts of) sheaves, the integer a should be
a = —1 and we have an exact triangle

0 = S = Homg(Oq, S(1)) @c Oq — S(1) — 0.

By computing the rank of bundles, we have dim¢ Homg(Oq, S(1)) = 8. a
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Another important vector bundle on Q is the Cayley bundle C. The Cayley
bundle C is a homogeneous vector bundle of rank two, and det C' ~ Og(—1).
Historically, this bundle was first studied by Ottaviani [Ott90]. Later we will
see that the variety Y_ that gives one side of the Abuaf-Ueda flop is the total
space of C(—-2).

The Go-flag variety F is a 6-dimensional variety of Picard rank two. There
is a projection p’ : F — G, and via this projection, F is isomorphic to the
projectivization of the universal subbundle R(1) (with some line bundle twist):

F ~ Pg(R(-1)) := Projg Sym*(R(-1))".
Similarly, via a projection ¢’ : F — Q, we have
F ~ Pq(C(-2)) := Projq Sym*(C(-2))".

Fix general members H € |(p')*Og(1)| and h € |(¢')*Oq(1)|. Then we can
write

Op(aH + bh) ~ Og(a) R Oq(b).

Borel-Bott-Weil theorem

For homogeneous vector bundles on homogeneous varieties, we can compute
their sheaf cohomologies using the Borel-Bott-Weil theorem.

Theorem 5.2.6 (Borel-Bott-Weil). Let E be a homogeneous vector bundle on
a projective homogeneous variety Z that corresponds to a weight m. Then one
of the following can happen.

(i) There exists an element w of the Weyl group W such that w - 7 is a
dominant weight.

(ii) There exists w € W such that w - 7w = =.
Furthermore,

(1) In the case of (i), we have

(V)Y ifi=1(w)

0 otherwise

HY(Z,E) ~ {
(II) In the case of (i), we have
RINZ,E) = 0.

Note that we use the dot-action in this theorem. We also note that the
condition (ii) is equivalent to the condition (ii’) in our case:

(ii’) 7+ p € R-a for some a € A, where R -« is a line spanned by a root «.
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On the G2-Grassmannian G, a homogeneous vector bundle corresponding to a
weight amy + by exists if and only if b > 0, and that bundle is Sym®(RY)(a). On
the five dimensional quadric Q, a homogeneous vector bundle corresponding to
a weight am; +bmy exists if and only if @ > 0, and that bundle is Sym*(CV)(a+0b).
On the flag variety F, a line bundle Og(aH + bh) corresponds to a weight
am + bre. Thus we can compute the cohomology of these bundles using the
Borel-Bott-Weil theorem.

Geometry of the Abuaf-Ueda flop

We explain the geometric description of the Abuaf-Ueda flop. First as ex-
plained in [Ued16], Y, is the total space of a vector bundle R(—1) on G. Since
det(R(-1)) ~ Og(-3) ~ wg, the variety Y, is local Calabi-Yau of dimension
seven.

The other side of the flop Y_ is also a total space of a vector bundle of rank
two on Q. The bundle is C(—2). Note that det(C(—2)) = Oq(—5) = wq.

Let Go C Y4 and Qg C Y_ be the zero-sections. Then the blowing-ups of
these zero-sections give the same variety

Blg, (Y}) ~ Blg, (Y_) = Y,

and exceptional divisors of p : ¥ — Y, and ¢ : ¥ — Y_ are same, which
we denote by E. There is a morphism Y — F, and via this morphism, Y is
isomorphic to the total space of Op(—H — h). The zero-section Fg (via this
description of Y') is the exceptional divisor F.

Thus we have the following diagram

ZANEAN

Using projections m4 : Y. - G and 7_ : Y_ — Q, we define vector bundles
Oy, (a) == 77 0g(a) and R := 7w} R

on Y, and
Oy (a) :=7*0qg(a) and S :===* S

on Y_. As for F, we define

Oy(aH + bh) = Oy+(a) X Oy (b)
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By construction a line bundle Oy (aH + bh) coincides with the pull-back of
Or(aH + bh) by the projection Y — F and thus we have

Oy (E) ~ Oy (-H - h).

5.3 Tilting bundles and derived equivalences

5.3.1 Tilting bundles on Y,

First, we construct tilting bundles on Y;. Recall that the derived category
DP(G) has an exceptional collection

R(fl)v OG(71)7R> OG7R(1)7OG(1)7

where R is the universal subbundle. Pulling back this collection, we have a
collection of vector bundles on Y, that is

R(-1),0y, (-1),R,Oy,,R(1), Oy, (1).

The direct sum of these vector bundles gives a generator of D(Qcoh(YZ)) by the
following Lemma 5.3.1. However, the following Proposition 5.3.2 shows that the
direct sum of these vector bundles is NOT a tilting bundle on Y} .

Lemma 5.3.1. Let w : Z — W be an affine morphism and E € D(Qcoh(W)) is
a generator. Then the derived pull back Lw*(E) is a generator of D(Qcoh(Z)).

Proof. Let F' € D(Qcoh(Z)) be an object with RHomy (La*(E), F) = 0. Then
since RHomy (Lx*(E), F) = RHomwy (E, Rn.(F)) and FE is a generator, we have
Rm(F) = 0. The affineness of the morphism = implies F' = 0. O

Proposition 5.3.2. We have
(1) H=' (Y}, Oy, (a)) =0 for all a > -2.
(2) H2Y(Y,,R(a)) =0 for a > 2.
(3) Extg! (R, Oy, (a)) =0 fora > -3.
(4) Ext (R,R(a)) =0 fora> 1.
(5) Ext$?(R,R(-2)) = 0 and Exty, (R, R(-2)) ~ C.

Proof. Here we prove (4) and (5) only. Other cases follow from similar (and
easier) computations.
Let a > —2 and i > 1. Since there are irreducible decompositions

RY © R(a) ~ (Sym?>RY)(a - 1) & Oy (a),
we have

Ext}, (R, R(a)) ~ H'(Yy,Sym* RY(a — 1)) & H'(Yy, Oy, (a)).
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The second term of this decomposition is zero by (1), and hence we have
Exty (R, R(a)) ~ H (Y}, Sym*RY(a - 1))
~ H' | G,(Sym® RY)(a - 1) @ @) (Sym" RY)(k)
k>0
by adjunction. To compute this cohomology, we use the following decomposition
(Sym” RY)(k) @ (Sym? RV)(a — 1) ~
(Sym* 2 RV)(k+a—1)@ (Sym*” RV)(k+a) ® (Sym" 2 RV)(k+a+1) ifk>2

(Sym?® RY)(a) ® (Sym* RY)(a + 1) ifk=1
(Sym? RV)(a - 1) if k= 0.

According to this irreducible decomposition, it is enough to compute the coho-
mology of the following vector bundles.

(i) (Sym"2RV)(k+a—1) for k> 0and a > —2.
(ii) (Sym* RY)(k+a) for k> 1 and a > —2.
(iii) (Sym* 2 RV)(k+a+1) for k>2and a > -2.

To compute the cohomology of these bundles, we use the Borel-Bott-Weil the-
orem. A bundle of type (i) corresponds to a weight (k +a — 1)m + (k + 2)ms.
This weight is dominant if and only if k +a > 1, i.e.

(k’a) ¢ {(Ov —2)3 (Ov —1)v (030)5 (17 —2)7 (17 —1)7 (27 —2)}'

In this case the bundle has no higher cohomology. If (k,a) = (0,—2), then we
have

=371+ 21+ p=—2m + 37 =(0,2,-2)+ (-1,-1,2) = (—1,1,0)
and this vector is a root. Thus we have that the corresponding bundle is acyclic,
ie.
RI(G,Sym? RY(-3)) = 0.

One can show that the same things hold for (k,a) = (0, —1),(0,0), (1, -1), (2, —2).
Let us compute the case if (k,a) = (1, -2). In this case we have

Sa, + (2w + 3m2) = 0.
Thus the Borel-Bott-Weil theorem implies
RI(G, (Sym® RY)(—2)) =~ C[-1].
Using the Borel-Bott-Weil theorem in the same way, we can show that bundles

of type (ii) and (iii) have no higher cohomology. This shows (4) and (5). a
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Definition 5.3.3. Let X be a rank 4 vector bundle on Y, that lies in the
following unique non-trivial extension

0->R(-1) >X > R(1)—0.
Now we can show that the bundle ¥ is partial tilting and that a bunde
Oy, (1) 0y, @ O0y,(1)aROR(1) DX

is a tilting bundle on Y, as in the proof of Lemma 5.2.4. We also note that the
dual ¥V of ¥ is isomorphic to $(1). Indeed, the bundle ¥V lies in the sequence

0—RY(~1) =X = RY(1)—o0.

The isomorphism RY ~ R(1) and the uniqueness of such a non-trivial extension
imply that XY ~ 3(1).
We can apply the same method to another collection

Oy, (-1), R, Oy, , R(1), Oy, (1), R(2),
and then we get another tilting bundle. As a consequence, we have the following.
Theorem 5.3.4. The following vector bundles on Y are tilting bundles.
(1) T® .= Oy, (-1) 80y, 0y,()@RE&R(1) &
(2) T* .= Oy, (1)@ Oy, © Oy, (1) ®R 2 R(1) & X(1)
(3) TV := Oy, (~1)@ Oy, @O0y,(1) ®R(-1) @R &S
(4) TY := Oy, (-1) ® Oy, @ Oy, (1) dR(1) ® R(2) ® 2(1)

Note that the pair Tf and Tf are dual to each other, and the pair Tf and
Tf are dual to each other.

5.3.2 Tilting bundles on Y_

To find explicit tilting bundles on Y_, we need to use not only the Borel-Bott-
Weil theorem but also some geometry of the flop. Recall that the derived cate-
gory DP(Q) has an exceptional collection

0q(~2),0q(~1),5,0q,0q(1), 0q(2),

where S is the rank 4 spinor bundle on the five dimensional quadric Q. Pulling
back this collection by the projection n_ : Y_ — Q, we have a collection of
vector bundles on Y_

Oy (-2),0y (-1),5,0y ,0y (1),0y_(2).

The direct sum of these vector bundles is a generator of D(Qcoh(Y')) by Lemma
5.3.1, but does NOT give a tilting bundle on Y_. First, we compute cohomolo-
gies of line bundles.
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Proposition 5.3.5. (1) HZY(Y_,0y (a)) =0 for all a > -2.
(2) H22(Y_,Oy_(a)) =0 for all a > —4.
(3) H'(Y-,Oy_(-3)) =C.

Proof. Let a > —4. We have the following isomorphism by adjunction

HY(Y_,0y_(a)) ~ @ H'(Q, (Sym* CV)(2k + a)).
k>0

A bundle (Sym* CV)(2k 4 a) corresponds to a weight km + (k 4 a)m. This
weight is dominant if and only if £ +a > 0, i.e.

(kv a‘) ¢ {(Ov —4)v (Ov —3)v (Ov —2)3 (Ov —1)v (17 —4)7 (17 —3)7 (17 —2)7 (27 —4)7 (25 —3)v (35 —4)}'

In this case, the corresponding vector bundle has no higher cohomologies. If
k = 0 and a < -1, then the corresponding bundle is an acyclic line bundle
OQ (a)

Let us consider remaining cases. If (k,a) = (1,—4),(1,-2),(2,-3),(3,—4)
then

2w — 2me = (%77%17%) if (kva) = (1774)
2 it (k,a) = (1, -2)

km+(k+a)matp = (k+1)m+(k+a+1)my =
mettaymty = (Rrme(ratm = 4 g if (kya) = (2,-3)
4y if (k,a) = (3,—4)

and the weight lies in a line spanned by a root. Thus the corresponding bundle
is acyclic in those cases. If (k,a) = (1, —3) then we have

SOA2 . (71'1 —271’2) = 0

and hence we obtain

RI(Q,CY(-1)) ~ C[-1].
If (k,a) = (2, —4) then we have
Sa, + (271 — 2m2) = m

and thus we get

RI(Q, Sym® CV) ~ V) [-1].
This shows the result. O

Definition 5.3.6. Let P be the rank 2 vector bundle on Y_ which lies in the
following unique non-trivial extension

0—+0y (-2)=>P—= 0y (1) —0.

One can show that the bundle P is partial tilting as in Lemma 5.2.4. Note
that, by the uniqueness of such a non-trivial sequence, we have P¥ ~ P(1).

116



Proposition 5.3.7. We have H=Y(Y_,P(a)) =0 for a > —2.

To prove this Proposition, we have to use the geometry of the flop. The
following two lemmas are important.

Lemma 5.3.8. On the full flag variety F, there is an exact sequence of vector
bundles
0— Op(—h) 5> p"R—> Op(—H+h) >0

Proof. See [Kuzl8]. O
Lemma 5.3.9. There is an isomorphism P ~ Rq.(p*R(-h)).

Proof. From the lemma above, we have an exact sequence on Y
0— Oy(=h) = p"R = Oy(-H+h) = 0.
Since Oy (F) = Oy (—H — h), we have an exact sequence
0 —= Oy(-2h) = p*R(-h) = Oy(h+ E) = 0.

Using projection formula and Rq.Oy (E) ~ Oy_, we have Rq.(p*R(—h)) ~
g« (p*R(—h)), and this bundle lies in the exact sequence

0= Oy (-2) = .(P*R(=h)) = Oy (1) = 0.

This sequence is not split. Indeed if it is split, the bundle g.(p*R(—h))|v_\q,)
is also split. However, under the natural identification Y_ \ Q, ~ Y4 \ Gy,
the bundle ¢.(p*R(~h))|(yv_\q,) is identified with R(1)|y,\q,)- Since the zero-
section Gg has codimension two in Yy, if the bundle R(1)|y,\q,) is split, the
bundle R (1) is also split. This is contradiction.

Thus, by Proposition 5.3.5, we have P ~ Rq.(p*R(—h)). O

Proof of Proposition 5.3.7. First, we have
H=Y(Y_,P(a)) =0 for all a > 0,

and
H=*(Y_,P(a)) =0 for all a > -2,

by the definition of P and Proposition 5.3.5. Thus the non-trivial parts are
the vanishing of H'(Y_,P(—1)) and H*(Y_,P(—2)). The first part also follows
from the definition of P using the same argument as in the proof of Lemma
5.24.

In the following, we show the vanishing of H!(Y_, P(-2)). First by Lemma
5.3.9, we have P ~ Rq.(p*R(—h)).
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Therefore we can compute the cohomology as follows.

HY(Y_,P(-2)) ~ H'(Y_, Rg.(p*R(—h)) ® Oy _(~2))
~ H'(Y_, Rq.(p*R(~3h)))
~ HY(Y,p*R(-3h))
~ HY(Y,p*R(3H + 3F))
~ H'(Y,,R(3) @ Rp.Oy (3E)).

To compute this cohomology, we use a spectral sequence
Ext = H*(Y, , R(3) ® R'p.Oy (3E)) = H*' (Y, , R(3) ® Rp,Oy (3E)).

Since p,Oy (3E) ~ Oy, , we have

EXY = H*(Y,,R(3)) =0 for k > 1.
This shows that there is an isomorphism of cohomologies

H'(Y,,R(3) ® Rp.Oy (3E)) = H*(Y,,R(3) ® R'p.Oy (3E)).
Let us consider the exact sequence
0 — Oy(2E) — Oy (3E) — Ogr(3E) = 0.

Now we have

p«(Op(3E)) =0,
R'p.Og(3E) ~ R(—1) ® det(R(—1)) ~ R(—4), and
R'p.0y(2E) ~ R'p,Op(2E) ~ det(R(-1)) ~ Og, (-3).

Hence there is an exact sequence
0 — Og,(—3) = R'p.(Oy(3E)) — R(—4) — 0.
Since
H°(Y,,R(3) ® Og,(—3)) ~ H°(G,R) =0
and
H(Y:,R(3) @ R(—4)) =~ H°(G,R® R(~1)) = Homg(R", R(—1)) = 0,
we finally have the desired vanishing

HYY_,P(-2)) ~ H (Y, ,R(3) @ R'p.Oy (3E)) = 0.
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Corollary 5.3.10. We have
(1) Ext3' (P(1),P) =0 and

(2) Extg' (P, P(1)) =0.
Proof. Let us consider the exact sequence
020y (-2) P -0y (1) =0

that defines the bundle P. Applying functors RHomy_(P(1), —) and RHomy._(—, P(1)),
we get exact triangles

RHomy_(P(1),0y_(-2)) — RHomy_(P(1), P) —+ RHomy_(P(1),0y_(1)),
RHomy (Oy_(1),P(1)) - RHomy_ (P, P(1)) - RHomy_ (Oy_(-2),P(1)).

Now the results follow from Proposition 5.3.7. 0O

Next we compute the cohomology of (the pull back of) the spinor bundle S.
For this computation, we use the geometry of the flop again.
The following lemma is due to Kuznetsov.

Lemma 5.3.11. There is an exact sequence on the flag variety F
0—p*R—=¢*S - p*R(H —h) - 0.
Proof. See [Kuzl8, Proposition 3 and Lemma 4]. O

Remark 5.3.12. Interestingly, to prove this geometric lemma, Kuznetsov used
derived categories (namely, mutations of exceptional collections).

Using this lemma, we have the following.

Lemma 5.3.13. An object Rq.(p* R(H — h)) is a sheaf on Y_ and there exists
an ezact sequence on Y_

0—P(1) > S = Rq.(p*R(H - h)) = 0.
Proof. By Kuznetsov’s lemma, there is an exact sequence on Y
0—=p"R—=>q¢"S—>p"R(Hh)—0.

Since Rq.(p* R) ~ P(1), the object Rq,(p* R(H — h)) is a sheaf on Y_ and we
have an exact sequence on Y_

0—-P(1) =S = Rg.(p*R(H - h)) = 0.

Using this exact sequence, we can do the following computations.

Lemma 5.3.14. We have
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(1) Ext3'(Oy (a),8) =0 fora <1, and
(2) Ext3' (S, 0y (b)) =0 forb> 2.

Proof. Since SY ~ S(1), it is enough to show that H='(Y_,S(a)) = 0 for
a > —1. By Lemma 5.2.5, for any a € Z, there is an exact sequence

0 +S(a) » Oy (a)® 5 S(a+1) 0.

Since HZ'(Y_, Oy _(a)) = 0 if @ > —2, it is enough to show the case if a = —1.
Let us consider the exact sequence

0—=P — S(—1) = Rg.(p" R(H — 2h)) — 0.
Now we have HZ'(Y_,P) = 0, and therefore we can compute as

HY(Y_,S( 1)) ~ H(Y_, Rq.(p* R(H — 2h)))
~ H'(Y,p* R(3H + 2E))
~ H'(Yy,R(3) @ Rp.Oy (2))

for any i > 1.
Let us consider a spectral sequence

Eyt = H*(Y, , R(3) ® R'p.Oy(2E)) = H*(Y,, R(3) ® Rp.Oy (2E)).
Now since p,Oy (2E) ~ Oy, we have
EXY = H*(Y,, R(3) & p.Oy (2E)) ~ H*(Y, R(3)) =0
for k > 1 and hence we have
H'(Yy,R(3) @ Rp.Oy (2E)) ~ H" (Y, ,R(3) © R'p.Oy (2E))

for i > 1. Now we can compute as R'p.Oy (2E) ~ Rp,.Op(2E) ~ Og,(-3)
and thus ‘ _
H7YY,, R(3) ® R'p.Oy(2E)) ~ H (G,R) =0

for all 7 > 1. This finishes the proof. O
From the lemma above, we have the following.
Theorem 5.3.15. The following hold.
(1) ExtZ'(S,P) = 0 and ExtZ' (P,S) = 0.
(2) Ext3'(S,P(1)) = 0.
(3) Ext3! (P(-1),S) = 0.

(4) S is a partial tilting bundle.
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Proof. (1). First note that Ext}. (S,P) ~ Ext}, (P,S) since PV ~ P(1) and
SY ~ 8(1). Let us consider the exact sequence

0—-0y (-2)=>P— 0y (1) —0.

Then, applying the functor RHomy (S, —) ~ RI'(Y_,S(1) ® —) we have an
exact triangle

RI(Y_,S(—1)) — RHomy (S,P) — RI(Y_,S(2)).

Now the result follows from the lemma above. The proof of (2) is similar. (3)
follows from (2). Indeed, since S ~ S(1) and (P(1))Y =~ P, we have

Exti (P(—1),S) =~ Ext} (P,S(1)) ~ Exti (S,P(1)).
Now let us prove (4). Recall that there is an exact sequence
0—P(l) =S — Rq.(p*R(H — h)) = 0.
By (2), we have
Ext} (S,S) ~ Ext} (S, Rq.(p* R(H — h))) ~ Extl(¢* S, p* R(H — h))
for ¢ > 1. Let us consider an exact sequence
0=p"R->¢S—>p"R(H-h)—0.
Then we have
Ext (p* R(H — h),p* R(H - h)) ~ Exty, (R,R) =0
for ¢ > 1 and
Ext (p* R,p* R(H — h)) ~ Ext} (p* R,p* R(2H + E)) ~ Exty, (R, R(2)) =0
for i > 1. Thus we have Ext% (¢*S,p* R(H - h)) =0 for i > 1. O
Next we show the following:
Lemma 5.3.16. We have
(1) Extg' (P(1),S) =0 and
(2) Extg' (S, P(-1)) =0.

Proof. (2) follows from (1). Let us prove (1). Recall that Rq.(p*R) ~ P(1).
Therefore by the Grothendieck duality we have

Ext (P(1),S) ~ Exth (p* R,¢* S(E)).
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Let us consider the exact sequence
0—=p"R(E) = ¢*S(E) = p"R(2H + 2E) — 0.

First we have 4 4
Ext} (p* R,p* R(E)) ~ Ext§,+ (R,R)=0

for 4 > 1. Hence it is enough to show the vanishing of
Ext (p* R,p* R(2H + 2E)) ~ Ext}, (R, R(2) ® Rp.Oy (2E)).
Let us consider a spectral sequence
By' = Exty, (R, R(2) ® R'p.Oy (2E)) = Exty™ (R, R(2) @ Rp.Oy (2E)).

Note that
Ey° = Exty (R,R(2)) =0

for kK > 1. Thus we have
Exty (R,R(2) ® Rp.Oy (2E)) = Exty (R, R(2) ® R'p.Oy (2E))
~ Exty (R, R(2) @ Og, (-3))
~ Ext (R, R(—1))
for i > 1. This is zero. O

Combining all Ext-vanishings in the present subsection, we obtain the fol-
lowing consequence.

Theorem 5.3.17. The following vector bundles on Y_ are tilting bundles.
(1) T* =0y (-1)® Oy 60y (1)@ P> P(1) D S(1)
(2) T* =0y (-1)@0y Oy 1)&POP() &S
(3) TY =0y (-1)® 0y &0y (H)@&P(1)aP2) aS()
(4) T® =0y (-1)® 0y 60y )@ P(-)aPdS

We note that these bundles are generators of D(Qcoh(Y_)) because they
split-generate another generators

Oy (-2)80y (-1)®0y_ &S(1) 2 0y_(1)2 Oy_(2),
Oy (-2)80y (-1)&S¢ Oy_ &0y (1)8 0y _(2),
Oy_( 1)@ Oy @8(1) @O0y (1) & Oy_(2) d Oy_(3), and
vy (-3)@ 0y (-2)® 0y (-1)aSa® Oy_ Oy (1)
respectively, that are obtained from tilting bundles on Q. We also note that

the pair T* and T* are dual to each other, and the pair T and T are dual
to each other.
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5.3.3 Derived equivalences

According to Lemma 5.2.3, in order to show the derived equivalence between
Y, and Y_, it is enough to show that there are tilting bundles Ty and T_ on
Y, and Y_ respectively, such that they give the same vector bundle on the
common open subset U of Y, and Y_, which is isomorphic to the smooth locus
of X. Using tilting bundles that we constructed in this chapter, we can give
four derived equivalences for the Abuaf-Ueda flop.

Lemma 5.3.18. On the common open subset U, we have the following.
(1) Oy, (a)ly ~ Oy_(—a)|y for all a € Z.
(2) Rlv = P1)u.
(3) L)y ~ Slu.

Proof. (1) follows from the fact that Oy (E) ~ Oy (—H — h) since Oy (E)|y =~
Oy. (2) follows from the isomorphism P(1) ~ Rgq.(p*R).

Let us proof (3). To see this, we show that Rp.(¢*S) ~ X(1). By Lemma
5.3.11, there is an exact sequence

0—=p"R—=>q"S—pR2H+FE)—0

on Y. Since we have Rp,Oy(E) ~ Oy,, by projection formula, we have an

exact sequence
0—+R — Rp.(¢*S) > R(2) >0

on Y,. Note that this short exact sequence is not split. Thus the uniqueness
of such a non-trivial sequence shows that the desired isomorphism Rp,(¢*S) ~
(). O

Corollary 5.3.19. The pair of bundles Ty and T give the same bundle on the
common open subset U for any = € {#, &, O, S
As a consequence, we have the following theorem.
Theorem 5.3.20. Let « € {4, &, O, &} and put
A* :=Endy, (T}) ~ Endy_(T%).

Then we have derived equivalences

®* := RHomy, (T}, -) ®%. T* : D’(Yy) = DP(Y_)

U* ;= RHomy (T, ) @%. T7 : D(Y_) = D(V4)
that are quasi-inverse to each other.

Remark 5.3.21. Composing ®* and ¥* for two different =, x € {d, &, 0,
we get some non-trivial autoequivalences on DP(Y,) (resp. DP(Y_)) that fix
line bundles Oy, (-1), Oy, and Oy, (1) (resp. Oy_(-1), Oy_ and Oy_(1)).
It would be an interesting problem to find a (sufficiently large) subgroup of
Auteq(DP(Y})) (=~ Auteq(DP(Y_))) that contains our autoequivalences.
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5.4 Moduli problem

In this section we study the Abuaf-Ueda from the point of view of non-commutative
crepant resolutions and moduli.

5.4.1 Non-commutative crepant resolution and moduli

Definition 5.4.1. Let R be a normal Gorenstein domain and M a reflexive
R-module. Then we say that M gives a non-commutative crepant resolution
(= NCCR) of R if the endomorphism ring Endg(M) of M is maximal Cohen-
Macaulay as an R-module and Endg (M) has finite global dimension. When M
gives an NCCR of R then the endomorphism ring Endg(M) is called an NCCR
of R.

In many cases, an NCCR is constructed from a tilting bundle on a (commu-
tative) crepant resolution using the following lemma.

Lemma 5.4.2. Let X = SpecR be a normal Gorenstein affine variety that
admits a (commutative) crepant resolution ¢ : Y — X. Then for a tilting
bundle T on'Y, the double-dual (¢.T)"V of the module ¢. T gives an NCCR
Endy (T) ~ Endg(¢.T) of R. If one of the following two conditions are satisfied,
then (6. T)VV is isomorphic to ¢.T, i.e. we do not have to take the double-dual.

(a) The tilting bundle T contains Oy as a direct summand.

(b) The resolution ¢ is small, i.e. the exceptional locus of ¢ does not contain
a divisor.

When we find an NCCR A = Endg(M) of an algebra R, we can consider
the moduli spaces of modules over A.

In the following we recall the result of Karmazyn [Karl7]. Let Y — X =
Spec R be a projective morphism and T a tilting bundle on Y. Assume that
T has a decomposition T' = P, E; such that (i) E; is indecomposable for
any i, (ii) E; # Ej for i # j, and (iii) Ey = Oy. Then we can regard the
endomorphism ring A := Endy (7)) as a path algebra of a quiver with relations
such that the summand E; corresponds to a vertex i.

Now we define a dimension vector dp = (dr (7)), by

dr(i) := rank E;.
Note that, since we assumed that Ey = Oy, we have dr(0) = 1. We also define

a stability condition #7 associated to the tilting bundle T' by

HT(’L) =

721’750 rank El ifi=0
1 otherwise.

Then we can consider King’s moduli space M}, , of 6-semistable (right)
Endy (T)-modules with dimension vector dr. It is easy to see that there is
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no strictly #p-semistable object with dimension vector dp (see [Karl7]), and
thus the moduli space M} ; ,, is isomorphic to a moduli space M3 , o = of
dp-stable objects.

In this setting, Karmazyn [Kar17] proved the following.

Theorem 5.4.3. Assume that a morphism Oy — O, is surjective for all closed
points y € Y in the abelian category A that corresponds to mod(A) under the
derived equivalence

RHomy (T, -) : D*(Y) — DP(A).
Then there is a monomorphism f:Y — M} 4 o .

The condition in the theorem above can be interpreted as the following
geometric condition for the bundle.

Lemma 5.4.4. The assumption in Theorem 5.4.3 is satisfied if the dual TV of
the tilting bundle T is globally generated.

Proof. Tt is enough to show that Extxz,l(T, I,) = 0 for the ideal sheaf of any
closed point y € Y. Since we assumed that 7' contains Oy as a direct summand,
Ext3!'(T,0y) = 0. Thus the vanishing Ext3*(T,I,) = 0 follows. To prove
Exty (T, 1,) = 0, we show the surjectivity of the morphism Homy (T,0Oy) —
Homy (T, O,). This morphism coincides with HO(Y,TV) — TV @ k(y).

By assumption, there is a surjective morphism O;‘?T — TV for some r. Now
we have the following commutative diagram

HO(Y, Oy)®" ——— k(y)®"

| |

HOY, TY) —— TV  k(y).
Morphisms HO(Y,Oy)®" — k(y)®" and k(y)®" — TV © k(y) are surjective.
Thus we have the desired surjectivity. O

Let us discuss the moduli when Y — Spec R is a crepant resolution. Then
there is a unique irreducible component M of MZ,dT,OT that dominates Spec R
[VdBO04b]. We call this component (with reduced scheme structure) the main
component. As a corollary of results above, we have the following.

Corollary 5.4.5. Let us assume that a crepant resolution Y of Spec R admits
a tilting bundle T such that

(a) T is a direct sum of non-isomorphic indecomposable bundles T = ", E;.
(b) Eyg = Oy.
(¢) The dual TV is globally generated.

Then the main component M of M3 4, 4, is isomorphic toY .
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Proof. Since Y and M3, ;. are projective over Spec R (see [VdB04b]), the
monomorphism Y — M3 ;4. is proper. A proper monomorphism is a closed
immersion. Since Y dominates Spec R, the image of this monomorphism is
contained in the main component M. Since Y and M are birational to Spec R,
they coincide with each other. O

5.4.2 Application to our situation
First, from the existence of tilting bundles, we have the following.

Theorem 5.4.6. The affine variety X = Spec Cy that appears in the Abuaf-
Ueda flop admits NCCRs.

Let us consider bundles
Ty =Ty ® Oy, (1) =0y, & Oy, (-1) & Oy, (-2) B R(-1) B R(-2) & 3(-1)
T :=T°% Oy (-1)=0y_ @O0y (-1)a0y_(-2)2P(-1)aP(-2)& S(-1)

These bundles satisfy the assumptions in Corollary 5.4.5. Indeed the globally-
generatedness of dual bundles follows from the following lemma.

Lemma 5.4.7. (1) A bundle 3(a) is globally generated if and only if a > 2.
(2) A bundle P(a) is globally generated if and only if a > 2.

Proof. First we note that R(a) is globally generated if and only if @ > 1. Recall
that X (a) is defined by an exact sequence

0—R(a—1)— X(a) > R(a+1) — 0.

If @ > 2 then R(a — 1) and R(a + 1) are globally generated and H!(Yy,R(a —
1)) = 0. Hence we have the following commutative diagram

0—— HO(Yt, R(a — 1)) @c Oy y — HO (Y1, £(a)) @c Oy y — HO(Yt, R(a + 1)) ®¢ Oy 4 ——0

|

0 R(a — 1) =(a) R(a 4 1)

0

Thus the five-lemma implies that the bundle X(a) is also globally generated.
Next let us assume that (a) is globally generated for some a. Then the
restriction X(a)|g, of X(a) to the zero-section Gy is also globally generated.
Since there is a splitting X(a)|g, = R(a — 1) @ R(a + 1) on Gy, we have that
R(a — 1) is also globally generated. Thus we have a > 2.
The proof for P(a) is similar. O

Corollary 5.4.8. The bundles TY and T are globally generated.

Let us regard the endomorphism ring Ay := Endy, (7% ) as a path algebra
of a quiver with relations (Q4,I4). For 0 < ¢ < 5, let E, ; be the (i 4+ 1)-th
indecomposable summand of Ty with respect to the order

Ty = Oy, @Oy, (~1) @ Oy, (-2) @ R(~1) & R(~2) @ £(—1).
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The vertex of the quiver (Q, I1) corresponding to the summand E. ; is denoted
by i € (Q4)o. We define a dimension vector d € Z° by

dy = (do,dy,do,ds,dy,ds) := (1,1,1,2,2,4).
We also define a stability condition 8, € R® by
0y = (09,01,02,03,04,05) := (—10,1,1,1,1,1).
Then we have the following as a corollary.

Corollary 5.4.9. The crepant resolution Yy of X = SpecCy gives the main
component of the moduli space M7\+’d+79+ of representations of an NCCR Ay
of X of dimension vector d4 with respect to the stability condition 04 .

Similarly we define a quiver with relations (Q—, I_) with (Q-)o = {0, 1,2,3,4,5}
whose path algebra is A_ = Endy._(7-), using the order

T_-=0y_ @0y (-1)® 0y (-2)aP(-1)®P(-2) & S(-1)
and put
d_:=(1,1,1,2,2,4) ¢ Z5
0_:=(-10,1,1,1,1,1) € RS.
Then we have

Corollary 5.4.10. The crepant resolution Y_ of X = Spec Cy gives the main
component of the moduli space My, 4 of representations of an NCCR A_
of X of dimension vector d_ with respect to the stability condition 6_.

Finally we remark that there is an isomorphism of algebras
A+ = Endy+ (T+) ~ Endy+ (T+ 24 OY+ (2)) ~ Endy_ (Tl/) ~ Endy_ (T_)Op = A(ip

Note that this isomorphism does not preserve the order of vertices of the quivers
that we used above.

127



Chapter 6

On non-commutative
crepant resolutions for
cyclic quotient singularities

This chapter is based on Appendix C of the author’s article

[H17b] W.Hara, On derived equivalence for Abuaf flop: mutation of non-commutative
crepant resolutions and spherical twists, preprint, https://arxiv.org/
abs/1706.04417.

6.1 Resolution of cyclic quotient singularities

The aim of this chapter is to provide one instance for “multi-mutation=twist”
result for Gorenstein isolated cyclic quotient singularities.

6.1.1 Summary of results in [KPS17]

Let X be a smooth quasi-projective variety with an action of a cyclic group
G = piy,. Let S :=Fix(G). S is automatically smooth. Assume:

(i) For all z € X, Stabg(z) is 1 or G.

(ii) The generator g of G' acts on the normal bundle Ny, x by multiplication
with some fixed primitive n-th root of unity ¢.

(iii) codimy (S) = n.

Then, the G-Hilbert scheme Y := Hilb®(X) gives a crepant resolution of ¥ =
X/G and the exceptional divisor Z is isomorphic to Ps(Ng/x). Under the
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assumptions above, the affine variety X/G becomes Gorenstein (see [KPS17]).
Let X := Blg(X) be the blowing up of X along S.

p

\

17/ xY

7

p

Put

® := Rp, o Lq* o triv : D*(Y) — DP([X/@))

U= (-)%0q, 0 Lp* : D*([X/G]) — DP(Y)
Lemma 6.1.1 ([KPS17], Lemma 4.10). £ = (q.(O5 @ x™1))¢ is a line
bundle on Y . Furthermore, we have L™ ~ O3 (2).

Proposition 6.1.2 ([KPS17], Corollary 4.11). ¥(Ox ®x*) =~ L* for —n+1 <
a<0and (LY) =0x x> for0 < a<n-—1.

Note that, if X is an affine variety, @Z;é LY (resp. Ox (@ ---®x" 1))
is a tilting bundle on Y (resp. [X/G]).
Theorem 6.1.3 ([KPS17]). ® and ¥ give equivalences of categories.
Lemma 6.1.4 ([KPS17], Theorem 4.26). © := i, o v* : D*(S) = D*(Y) is a
spherical functor.

Let us regard the setup of McKay correspondence as a flop of orbifolds.

Then we can regard the following functor isomorphism as the instance of an
orbifold “flop-flop=twist” principle.

Theorem 6.1.5. Vod ~Tgo(— 2 L™").

In the next subsection, we study this theorem from the point of view of
mutations of NCCRs if X = A™.
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6.1.2 The case if X = A"

Assume X = A" and the action of G on X is diagonal. Then, Y ~ Tot(Opn-1(—n))
and L is the pull-back of Opn—1(-1). S = {0} and Z ~ P" ! is the zero-section.

Set
k
Tk = @ Ea .
a=—n+k+1
Since L" ~ Oy (Z), we have L" [, , ~ Oy, ,, and hence the module
M = p. Tk

and the algebra
A :=Endy,g(M) = Endy (T)

do not depend on k. Note that the algebra A is the toric NCCR of Y and there
is a natural identification

DP(mod A) ~ D”([X/G]).

Put
My, = p LF ~p, L = My,
and
k—1
Wi= € M,
a=—n+k+1

for 0 < k <n — 1. Note that
n—1
M= My =Wy, ® My = Wi @ My_y,.

a=0
The following is a “multi-mutation=twist” result for the resolution of a cyclic
quotient singularity.

Proposition 6.1.6. Let 1 <k <n —1.
(1) We have
u%l(M) ~ M.
The IW mutation functor
@%1 € Auteq(D"(A))

coincides with the functor RHom (RHomg (Tx, Tr—1), —)-

(2) Under the identification
RHomy (T _1,—) : DP(Y) = DP(A),

the autoequivalence
@%1 € Auteq(D"(A))

corresponds to a spherical twist

To, -k € Auteq(DP(A)).
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Proof of Proposition 6.1.6 (1). Let

k—1

We:= P L.

a=—n+k+1

and consider a long exact sequence
— _ Qn— —
0— Ek ﬂ) (Ek 1)6971 ‘1_1> RN (ﬁ n+k+1)®n 1 L n+k N 0,

which we can get by taking pull back of the long Euler sequence on P! (Recall
that £ is a pull back of Opn-1(—1)). By Lemma 4.3.14, a vector bundle Wj, &
Image(a;) is a tilting bundle for 0 < j <n — 1.

Moreover, by Lemma 4.2.7, the sequence

0 - p. Image(a;—1) - M,?f;fj - p« Image(a;) =0

gives a right approximation of p, Image(a;) and the following diagram com-
mutes:

DY (Y) Db (Y)

Fy_ ll lF,»

DP(mod End(Wy, & Image(a;_1))) T DP(mod End(Wy, € Image(a;))),
k

where
F; := RHom(W;, & Image(a;), —) : DP(Y) — D" (mod End(W; ® Image(a;))).

Thus, we have
K, (M) =~ M

and
O~ F_q 0 Fy '~ RHomy (RHomy (T, Tr-1), —).

This shows the result. O

Lemma 6.1.7. Let
G, := RHom(Tj, —) : DP(Y) — DP(mod A).
Then, we have
Gyl oGro1 =~ To, (1 € Auteq(D"(Y)).
Proof. First, we have

RHomy (Oz(—k), E) ~ RHomz (Oz(—k), Li"E ® Oz(—n))[—1]
~ RHomy(Oz(—k +n), Li*E)[—1].
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Since Wy|z =~ @?:_f;j_l Oz(j), we have
RHom?(Oz(—k),Wk) =0

and thus To, (i) (Wk) = Wi.
On the other hand, since

RHom?(OZ(—k), E_n+k) ~ C[—H

and £L7"TF ~ £F ®05(—Z), we have Toz(,k)(ﬁ_”+k) ~ k.

Oz(~k)[-1] ——— L7 ——— To, () (LT"F) —— Oz(-k)

LM z[-1] —— LV 204 (- 2) y LF £k,

Thus, we have
To, (i) (Tr-1) = To,(—nWr @ LYW LF =T

On the other hand, we have (Gl;1 0 Gr—1)(Tg-1) = G;l(A) =T k. Since T p_1

is a generator, we have the result. O

Proof of Proposition 6.1.6 (2). The result follows from the following diagram:

DV(Y) 25" Dh (V) — DP(Y)
Gk,ll le Gk—]l
DP(A) == D(A) ——» D"(4)

The commutativity of this diagram follows from Proposition 6.1.6 (1) and
Lemma 6.1.7. O

Corollary 6.1.8. Let ® and ¥ be the Krug-Ploog-Sosna’s functors. Then, we
have

(Wod)™" ~To,(—nt1)°To,(—nt2)0 -0 To 1)

Proof. Under the identification D”(A) = D"([X/G]), we have ¥~! ~ G and
® ~ (G,,_1. Thus, we have

(Pod) ' =Gl oG
~ Gl o(GuopoGrly) oo (GioGrt) oGy
~ (Gl 0Grz) o (Grly oG 3) 00 (Gyt 0 Gr) o (G o Gy)
~Toz(-n+1)2Toz(—n+2)0 0 To,(-1)-

This is what we want. O

132



Lemma 6.1.9. There is a functor isomorphism
TOZ(—W+1) ° TOZ(—W+2) 00 TOZ(—l) oTo, ¥ —® L.

Proof. Note that 4 ,
To, (L) =L

if —n+k+1<j<k-—1(or, equivalently, j +1 <k <n+j— 1) and
To, (k) (L7"F) = L.
Thus, for —n < k < 0, we have
To,(-n+1) 0 Toy (=ntk-1) 0 Tos (~ntk) © Tos (~n+ks1) 0+ 0 To, ) (LF)

(
~(Toy(—nt+1)°* ° Toy(—nth-1) © Toy (nii) (L")

~(Tos(=nt1) 0 © Toz(—ntk-1) (L")
~ LNTE

Therefore, we have
(Toz(,n+1) 0---0 Toz)(To) ~ToxL".

Since T is a generator, we have the result. O

From the above propositions, we can recover Krug-Ploog-Sosna’s “flop-flop=twist”
result (Theorem 6.1.5):

Proof of Theorem 6.1.5.

To, o L7 2 (To,(-nt1) 2 Toy(—nt2) 2 -0 To, 1) "
~ Wod,
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Chapter 7

Deformation of tilting-type
derived equivalences for
crepant resolutions

This chapter is based on the author’s work

[H18a] W. Hara, Deformation of tilting-type derived equivalences for crepant res-
olutions, to appear in IMRN, https://arxiv.org/abs/1709.09948.

7.1 Introduction

7.1.1 Background

Let X = Spec R be a normal Gorenstein affine variety and assume that X admits
a crepant resolution. Although X may have some different crepant resolutions,
the following “uniqueness” is expected.

Conjecture 7.1.1 (Bondal-Orlov). Let ¢ : Y - X and ¢' : Y' - X be two
crepant resolutions of X. Then'Y and Y’ are derived equivalent to each other,
i.e. there exists an exact equivalence

@ :DP(Y) = DP(Y).

For given two crepant resolutions Y and Y’ of X, there are various methods
to construct a derived equivalence between DP(Y) and DP(Y"') (eg. Fourier-
Mukai transform, variation of GIT, or mutation of semi-orthogonal decompo-
sition). In this chapter, we deal with the one using tilting bundles. A vector
bundle F on a scheme Z is called tilting bundle if Exty,(E, E) = 0 for i # 0 and
if F is a generator of the category D~ (Qcoh(Z)). By using tilting bundles, we
can construct equivalences of categories:
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Lemma 7.1.2 (See also Proposition 2.1.12). If there are tilting bundles T and
T onY and Y’, respectively, with an R-algebra isomorphism

Endy (T) ~ Endy/(T'),
then we have equivalences of derived categories
D"(Y) ~ DP(Endy (7)) ~ DP(Endy-(T")) ~ D"(Y”).

We call a derived equivalence constructed in this way tilting-type. We say
that a tilting-type equivalence DP(Y) = DP(Y”) is strict if the tilting bundles
T and T coincide with each other on the largest common open subset U of X,
Y and Y’'. We also say that a tilting-type equivalence is good if tilting bundles
contain trivial line bundles as direct summands. Tilting-type equivalences that
are good and strict constitute an important class of derived equivalences. For
example, it is known that if X has only threefold terminal singularities, then
there is a derived equivalence between Y and Y’ that can be written as a com-
position of good and strict tilting-type equivalences. Indeed, since two crepant
resolutions are connected by iterating flops, this fact follows from the result of
Van den Bergh [VdB04a]. In addition, tilting-type equivalences for crepant res-
olutions have a strong relationship with the theory of non-commutative crepant
resolutions, which was first introduced by Van den Bergh [VdB04b].

On the other hand, taking a deformation of an algebraic variety is one of
standard methods to construct a new variety from the original one, and is stud-
ied in many branches of algebraic geometry. Taking deformations is also an
important operation in Mirror Symmetry. According to Homological Mirror
Symmetry, the derived categories of algebraic varieties are quite significant ob-
jects in the study of Mirror Symmetry. The aim of this chapter is to understand
the behavior of (good or strict) tilting-type equivalences under deformations.

7.1.2 Results

Let X, be a normal Gorenstein affine variety, and let ¢y : Yy — Xo and ¢ :
Yy = Xo be two crepant resolutions of Xy. In this chapter, we deal with three
types of deformations: infinitesimal deformation, deformation over a complete
local ring, and deformation with a G,-action.

e Infinitesimal deformation. First we study infinitesimal deformations of
small resolutions. Assume that

codimy, (exc(¢o)) > 3 and codimyy (exc(¢y)) > 3.
Then we have isomorphisms of deformation functors
Def X ~ Def Yy ~ Def Y{].
Let A be a local Artinian algebra with residue field C and choose an element,

¢ € (Def Xo)(A) = (Def Yp)(A) = (Def Y)(A).
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Let Y (resp. Y’) be the infinitesimal deformation of Y; (resp. Y{) over A
corresponding to £&. Then we show the following.

Theorem 7.1.3 (= Theorem 7.4.9). Under the notations and assumptions
above, any strict tilting-type equivalence between DP(Yy) and DP(Yy) lifts to
a strict tilting-type equivalence between DP(Y) and DP(Y”).

See Definition 7.3.7 for the precise meaning of the word lift.

e Complete local or G,,-equivariant deformation. We also study defor-
mations over a complete local ring and deformations with G,-actions. Let Xg,
Yo, Yy, ¢o and ¢} as above. (Note that we do NOT assume the condition for
the codimension of the exceptional locus here.) Consider a deformation of them

Yy — ¢ s xo ¥y
X lq%

(Spec D, d)

over a pointed affine scheme (Spec D,d), where ¢ and ¢’ are projective mor-
phisms and X = Spec R is an affine scheme. Assume that an inequality

codimx, Sing(Xg) > 3
holds and that one of the following conditions holds.
(a) D is a complete local ring and d C D is the maximal ideal.

(b) X, Y and Y’ are Gy-varieties, ¢ and ¢’ are Guy-equivariant, and the
action of G, on X is good. For a unique G,,-fixed point x € X, we have

d = q(z).

See Definition 7.6.1 for the definition of good Gy,-actions. Then we have a
similar theorem as in the case of infinitesimal deformations.

Theorem 7.1.4 (= Theorem 7.5.1, 7.6.4). Under the conditions above, any
good and strict tilting-type equivalence between DP(Yy) and DP(YY) lifts to a
good tilting-type equivalence between DP(Y) and DP(Y”).

We note that we cannot generalize this theorem directly to the case when
the codimension of the singular locus is two (see Section 7.7.2). As a direct
corollary of the theorem above, we have the following.

Corollary 7.1.5 (= Corollary 7.6.9). Under the condition (b) above, assume
that there exists a good and strict tilting-type equivalence between DP(Yy) and
DP(Y]). Then, for any closed point t € Spec D, there is a good tilting-type
equivalence between DP(p~1(t)) and DP(p'~1(t)).
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e Stratified Mukai flops and stratified Atiyah flops. As an application
of the theorems above, we study derived equivalences for stratified Mukai flops
and stratified Atiyah flops. A stratified Mukai flop on Gr(r, N) is a birational
map Yy --+ Y between the cotangent bundles Yy := T* Gr(r, N) and Yy :=
T* Gr(N —r, N) of Grassmannian varieties, where r is an integer with 2r < N-1.
It is known that they have a natural one-parameter G,,-equivariant deformation
Y --» Y called stratified Atiyah flop on Gr(r, N). Note that a stratified Atiyah
flop on Gr(r, N) is also defined in the case if 2r = N (see Section 7.7.1 for more
details). Stratified Mukai flops and stratified Atiyah flops form a fundamental
class of higher dimensional flops.

The method to construct an equivalence for stratified Mukai flops from an
equivalence for stratified Atiyah flops is well-established (eg. [Kaw02, Sze04]).
On the other hand, our theorem provides a method to construct a tilting-type
equivalence for stratified Atiyah flops from a tilting-type equivalence for strati-
fied Mukai flops. More precisely:

Corollary 7.1.6 (= Theorem 7.7.2). Any good and strict tilting-type equiva-
lence for the stratified Mukai flop on Gr(r, N) lifts to a good and strict tilting-type
equivalence for the stratified Atiyah flop on Gr(r, N).

We note that, if 2r < N — 2, we can remove the assumption that the tilting-
type equivalence is good. Since we can construct a strict tilting-type equivalence
for stratified Mukai flops using results of Kaledin [Kal08], we have the following
corollary. Although there are some previous works on the derived equivalence
for stratified Atiyah flops (eg. [Kaw05, Caul2al), the following corollary is new
to the best of the author’s knowledge.

Corollary 7.1.7. If 2r < N—2, then there exists a strict tilting-type equivalence
for the stratified Atiyah flop on Gr(r,N).

7.1.3 Notations.

In this chapter, we always work over the complex number field C. A scheme
always means a Noetherian C-scheme.

7.2 Local cohomologies and deformations

7.2.1 Local cohomologies

Let X be a topological space and F an abelian sheaf on X. For a closed subset
Y of X, we define

Iy (F)=Ty(X,F):={s e (X, F)|Supp(s) C Y}
This I'y defines a left exact functor

Ty : Sh(X) — (Ab),
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from the category of abelian sheaves on X to the category of abelian groups,
and we denote the right derived functor of T'y by Hj or HY (X, ).
Similarly, we define an abelian sheaf 'y (F) by

Ly (A)U) :=Tvynz(Flv)

for an open subset U < X. Then, the functor I'y : Sh(X) 3 F — L[y (F) €
Sh(X) is a left exact functor. We denote the right derived functor of L'y by 1.

In the rest of the present subsection, we provide some basic properties of
local cohomologies.

Lemma 7.2.1 ([Harl, Corollary 1.9]). Let X be a topological space, Z < X
a closed subset, U :== X \ Z the complement of Z, and j : U < X the open
immersion. Then, for any abelian sheaf F on X, there are exact sequences

0->Tz(X,F) »T(X,F) > T(UF) > Hy(X,F) » H'(X,F) - H' (U, F) — ---

and
0= HYF) = F = j.(Fly) = HL(F) = 0.

In addition, there are functorial isomorphisms
RYj.(Flu) = Hy ™ (F)
forp>1.

Definition 7.2.2. Let X be a locally Noetherian scheme and Y C X a closed
subset. If F is a coherent sheaf on X, then the Y -depth of F is defined by

depthy (F) := mlgf depthe,  (Fa).

Proposition 7.2.3 ([Harl, Theorem 3.8]). Let X be a locally Noetherian scheme,
Y C X a closed subset, and F a coherent sheaf on X. Let n be a non-negative
integer. Then, the following are equivalent

(i) Hi(F) =0 for alli <n.
(ii) depthy (F) > n.

Corollary 7.2.4. Let X be a locally Noetherian scheme, Y C X a closed subset,
and F a coherent sheaf on X. Assume that depthy (F) > n. Then we have
HL(X,F) =0 fori<n.

Proof. Let us consider a spectral sequence
ERY = HP(X, 1} (F)) = HY (X, F).

By assumption we have E¥? = 0 if ¢ < n. Thus we have the result. a
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Corollary 7.2.5. Let X be a locally Noetherian scheme, Y C X a closed subset,
and F a coherent sheaf on X. Put U := X\Y and assume that depthy (F) > n.
Then the canonical map

HY(X,F)— H'(U,F)
is an isomorphism for i < n — 2 and
H" YX,F)— H" YU, F)
1S 1njective.

Proof. This corollary follows from Lemma 7.2.1 and Corollary 7.2.4. O

7.2.2 Deformation of schemes and lift of coherent sheaves

Definition 7.2.6. Let X be a scheme. A deformation of Xy over a pointed
scheme (S, s) is a flat morphism p : X — (5, s) such that X ®gk(s) ~ Xy. Let
js : Xo = X the closed immersion. A deformation of Xy will be denoted by
(p: X = (S5,8),js : Xo = X). If S is the spectrum of a local ring D and s is
a closed point corresponding to the unique maximal ideal, we say that X is a
deformation over D for short.

Let us consider the category (Art) of local Artinian C-algebras with residue
field C. Note that, for any object A € (Art), A is finite dimensional as a C-vector
space.

We say that a deformation (p: X — (S,s),Js : Xo = X) of Xy is infinites-
imal if S is the spectrum of A € (Art) and s is the closed point corresponding
to a unique maximal ideal my C A.

Definition 7.2.7. For a scheme X, we define a functor
Def X : (Art)°” — (Sets)
by
(Def X)(A) := {isom class of deformation of X, over A}

for A € (Art). It is easy to see that Def X actually defines a functor. We call
this functor Def X the deformation functor of X (or the local moduli functor
of X).

Definition 7.2.8. Let X and Y, be schemes, ¢ : Xg — Yy a morphism, and
(S,s) a pointed scheme. Let (p: X — (5,s),js : Xo = X) and (v : ¥V —
(S,s),is : Yy = Y) be deformations over (S,s). We say that a morphism of
S-schemes ¢ : X — Y is a deformation of ¢q if the diagram

X - X

N

Yo —=> Y

is cartesian.
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Definition 7.2.9. Let X be a scheme and (p : X — (5,s),75 : Xo — X) a
deformation of Xy. Let Fu be a coherent sheaf on Xg. A lift of Fp to X is a
coherent sheaf F on X that is flat over S and j;F ~ Fo.

For more information on deformations of schemes and lifts of coherent sheaves,
see [Art, Har2, Ser].

7.3 Tilting-type equivalence

In this section, we provide a precise definition of (good or strict) tilting-type
equivalences and study the properties of them.

Proposition 7.3.1. Let Y and Y’ be Noetherian schemes that are projective
over an affine variety X = Spec R. If there are tilting bundle T and T' on'Y
and Y’ respectively, and an R-algebra isomorphism

Endy (T) =~ Endy/(T"),
then we have derived equivalences
DP(Y) ~ DP(Endy (7)) ~ DP(Endy- (T")) ~ DP(Y").
The following is the definition of tilting-type equivalences.

Definition 7.3.2. Let Y and Y’ are schemes that are projective over an affine
variety X = Spec R.

A tilting-type equivalence between DP(Y) and DP(Y’) is an equivalence of
derived categories constructed as in Proposition 7.3.1. To emphasize tilting
bundles that are used to construct the equivalence, we also say that the tilting-
type equivalence DP(Y) = DP(Y”) is determined by (T, T").

We say that a tilting-type equivalence between DP(Y") and DP(Y”) is good if
the tilting bundles T and 7" are good.

Assume that the morphisms ¥ — X and Y’ — X are birational and let U
be the largest common open subset of X, Y, and Y’. Under these conditions,
we say that a tilting-type equivalence between DP(Y') and DP(Y") is strict if we
have

T|U ~ T/|U.

Lemma 7.3.3. Let Y and Y’ be schemes that are projective over an affine
variety X = Spec R. Assume in addition that Y and Y’ are Cohen-Macaulay,
the morphisms Y — X and Y' — X are birational, and they have the largest
common open subscheme U such that U # @ and

codimy (Y \ U) > 2, codimy (Y’ \ U) > 2.

Suppose that there are tilting bundle T and T' on'Y and Y’, respectively, such
that
T|U >~ T/|U.

Then there is a strict tilting-type equivalence

D"(Y) ~ DP(Endy (7)) ~ DP(Endy-(T")) ~ D" (Y").
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Proof. By Proposition 2.1.12 we have equivalences
D"(Y) ~ DP(Endy (7)) and DP(Y’) ~ DP(Endy(1")).
By Corollary 7.2.5, we have R-algebra isomorphisms
Endy (T) ~ H' (Y, TV & T)~ H' (U, TV © T) ~ H'(Y', T" © T') ~ Endy(T").
Combining the above, we have the result. O

Under the following nice condition, the same thing holds if codimy (Y \U) =
1.

Lemma 7.3.4. Let X = Spec R be a normal Gorenstein affine variety of di-
mension greater than two, and let ¢ : Y — X and ¢/ :' Y' — X be two crepant
resolutions of X. Put U := Xy, =Y \exc(¢) =Y’ \ exc(¢'). Assume that there
are tilting bundles T and T' on'Y and Y’, respectively, such that

Ty ~T'y.
Then there is a strict tilting-type equivalence
D"(Y) ~ DP(Endy (7)) ~ DP(Endy(T")) ~ D" (Y").
Furthermore, if T and T’ are good, then we have an R-module isomorphism
¢.T ~ ¢, T'.

Proof. By Corollary 2.1.16, we have that Endy (T') ~ ¢.(TV & T') is a Cohen-
Macaulay R-module, and hence is a reflexive R-module. Therefore we have
Endy(T) ~ j*(T\/ & T)|U

If T and T' are good, then ¢, T and ¢,T" are Cohen-Macaulay and hence
are reflexive. Since ¢, T and ¢'T” are isomorphic in codimension one and thus
we have ¢, T ~ ¢, T". O

Remark 7.3.5. In Lemma 7.3.4, assume in addition that
codimy (Y \ U) > 2, codimy(Y'\ U) > 2.

Then the isomorphism ¢,T ~ ¢, holds without the assumption that T" and
T’ are good.

On the other hand, if codimy (Y \U) = 1, then the isomorphism ¢, T ~ ¢, T’
does not hold without the assumption that T" and T” are good. Let us give an
example. Put

R:=Clz,y, 2] /(2 + 4> + 2%).

Then X := Spec R admits an A;-singularity at the origino € X. Let ¢ : Y - X
be the minimal resolution. The exceptional locus E of ¢ is an irreducible divisor
of Y, which is a (—2)-curve. More explicitly, Y is the total space of a sheaf
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Op1(—-2) on P! and E is the zero section. If we put 7 : ¥ — P! be the projection
and Oy (1) := 7*Op1(1), then it is easy to see that

Oy(E) =~ Oy(—?).
Thus, if we put U :=Y \ E = X \ {0}, then we have there is an isomorphism
Ou ~ Oy (—2)|v.

Let T := Oy & Oy (1) and T" := Oy (1) & Oy (2). An easy computation shows
that T" and T” are tilting bundles on Y, and the discussion above shows that we
have T|y ~ T'|y. On the other hand, there is an exact sequence on Y

0= 0y(2) &0y (1) 224 0y & 0y (1) > Op — 0.
Applying the functor ¢, to this sequence, we have a short exact sequence
0— ¢TI — ¢.T — k(o) — 0,

where k(o) is the residue field at the origin 0o € X. In particular, ¢.7” is not
reflexive and hence we have ¢, T # ¢, T.

In almost all known examples, a tilting bundle (on a crepant resolution)
contains a line bundle as a direct summand. The following lemma suggests
that the assumption that a tilting-type equivalence is good is not strong if the
resolutions are small.

Lemma 7.3.6. Let X = Spec R be a normal Gorenstein affine variety and as-
sume that X admits two small resolutions ¢ : Y — X and ¢’ : Y' — X. If there
exists a strict tilting-type equivalence between DP(Y') and DP(Y"') determined by
(T,T") such that T contain a line bundle L on'Y as a direct summand, then
there is a good tilting-type equivalence between DP(Y) and DP(Y").

Proof. Put U :=Y \ exc(¢p) = Y’ \ exc(¢’) and let jx : U < Y’ be the open
immersion. Then, since ¢’ is small, L' := j/(L|y) is a divisorial sheaf. Moreover,
since Y’ is smooth, I’ is a line bundle on Y’. Since L’ is contained in 7" as a
direct summand, we have that

(T L)y~ (T L)y

and that T & LY and T" ® L'V are good tilting bundles. Then, by Lemma 7.3.4,
we have the result. O
Next we give the definition of the lift of a tilting-type equivalence.

Definition 7.3.7. Let Xy = Spec Ry be an affine scheme, and let ¢g : Yy = X
and ¢ : Yy — Xo be two projective morphisms. Let us consider deformations
of varieties and morphisms above

y 2 o x ¥ v
\l)/

(S, s
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over an pointed scheme (S, s), such that X = Spec R is affine and two morphisms
¢ and ¢’ are projective. Let ®o : DP(Yy) = DP(YY) be a tilting-type equivalence
determined by (7o, T}).

Under the set-up above, we say that a tilting-type equivalence ® : DP(Y) ™
DP(Y') is a lift of ®q if ® is determined by (7, T") such that T (resp. T") is a
lift of Ty (resp. Tj) to Y (resp. Y’), and if the algebra isomorphism Endy (T") ~
Endy (T") coincides with the algebra isomorphism Endy, (7y) ~ Endy, (T;) after
we restrict it to Xj.

The following is an easy observation on a lift of a tilting-type equivalence.

Lemma 7.3.8. Under the same condition as in Definition 7.3.7, let js : Yo — Y
and ji 1 Yy < Y’ be closed immersions associated to the deformations. Let
® : DP(Y) = DP(Y') be a tilting-type equivalence that is a lift of a tilting-type
equivalence ®q : DP(Yy) = DP(Yy). Then the following diagram of functors
commutes

DP(Yp) 225 DP(Y)

| Js

Db (vg) 25 ph(y).
Proof. By adjunction and the construction of the equivalences, we have

RHomy (", (j1).(®o(F))) ~ RHomyy (T}, $o(F))
~ RHOmYO(Tm F)
~ RHomy (T, (js)«(F))
~ RHomy (T, ®((js)«(F)))

for all F € DP(Y). Since the functor
RHomy (7’, -) : D’(Y’) — DP(Endy(T"))
gives an equivalence, we have a functorial isomorphism
(79)+(Ro(F) = ((fs)«(F))-

This shows the result. O

7.4 Infinitesimal deformation of small resolutions

Let Xy = Spec Ry be a normal Gorenstein affine variety and ¢g : Yy — Xy a
crepant resolution. Throughout this section we always assume that

codimy, exc(¢g) > 3.

Under this assumption, the deformation theory behaves very well. First, we
observe the following proposition.
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Proposition 7.4.1. Under the conditions above, there is a functor isomorphism
Def Yy ~ Def Xj.
This proposition follows immediately from the following lemma.

Lemma 7.4.2. Let Zy be a variety and j : Uy <= Zy an open subset. Assume
one of the following conditions.

(1) Zy is affine, Cohen-Macaulay, dim Zy > 3, and Uy = (Zo)sm-
(2) Zy is smooth and codimg,(Zy \ Up) > 3.

Then, the restriction
Def Z() — Def U()
gives an isomorphism of functors.
Proof. The case (1) is proved in [Art, Proposition 9.2]. Let us prove the lemma
under the condition (2). Let A be a local Artinian algebra with residue field C

and U a deformation of Uy over A. We will show that Def(Zy)(A) = Def(Up)(A)
by an induction on the dimension of A as a C-vector space. Let

e:0—> () A4 =0

be a small extension and U’ := U @4 A’. By induction hypothesis, there is the
unique deformation Z’ of Zy over A’ such that Z'|y, = U'.
By assumption, Lemma 7.2.1 and Proposition 7.2.3, we have an isomorphism

HY(Zy,0z,) = HY(U,Oy,)
and an injective map
H?*(Zy,0z2,) — H*(U, Oy,).

Note that the second map is compatible with the obstruction map by construc-
tion. Since there is a lifting U of U’ to A, the obstruction map sends e to 0,
and hence the set

{isom class of lifts of Z’ to A}

is non-empty. By deformation theory, the first cohomology group H'(Zy,0z,) =
H(U,©Oy,) acts on the sets

{isom class of lifts of Z’' to A} and {isom class of lifts of U’ to A}
transitively, and the restriction map

{isom class of lifts of Z’ to A} — {isom class of lifts of U’ to A}

is compatible with these actions. Thus, the above restriction map is bijective
and hence there is a unique lift of Z of Z’ to A, which satisfies Z|y, = U.

Let Z' and Z? be two deformation of Z, over A such that Zy, = U
(i=1,2). If weset Z" := Z' @ A, then Z'" is the extension of U’ for i = 1,2
and hence we have Z'' = Z'2. Thus, the above argument shows that we have
Z' = Z?. This shows the result. 0O
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Let A be a local Artinian algebra with residue field C. Take an element
¢ € (Def Yp)(A) = (Def Xo)(A),

and let Y and X be deformations of Yy and X, respectively, over A that
correspond to £.
It is easy to observe the following.

(1) X and Y are of finite type over A (or C).
(2) The inclusions Xy C X and Yy C Y are homeomorphisms.
For example, (1) is proved in [Art].

Lemma 7.4.3. X and Y are Cohen-Macaulay schemes. Furthermore, if the
local Artinian algebra A is Gorenstein, then so are X and Y.

Proof. Note that Artinian algebras are zero-dimensional and hence are Cohen-
Macaulay. In addition, for any point € X (resp. y € Y'), the homomorphism
A = Ox (resp. A = Oyy) is automatically local. Then, the statement follows
from [Mat, Corollary of Theorem 23.3 and Theorem 23.4]. O

Lemma 7.4.4. Let us consider the map ¢o : Y — X of topological spaces. Then
the direct image sheaf (¢0)«Oy is isomorphic to Ox as sheaves of A-algebras.
In particular, there is a morphism of A-schemes ¢ :Y — X whose pull back by
Spec C — Spec A is ¢y.

Proof. Let j: U — X and ¢ : U — Y be open immersions. Since X and Y are
Cohen-Macaulay, we have isomorphisms of sheaves of rings

(60)+Oy ~ (¢0)«1:0u ~ j.Oy ~ Ox.
It is clear that all isomorphisms are A-linear. O
Lemma 7.4.5. The morphism ¢ :Y — X is projective.

Proof. First, we note that the morphism ¢ is proper. Thus, it is enough to show
that there is a ¢-ample line bundle.
Let Ly be a ¢p-ample line bundle. Since

Exty, (Lo, Lo) = H" (Yo, Oy,) ~ RP¢o.(Oy;)

and ¢g is a rational resolution of Xy, the line bundle Ly is a partial tilting
bundle on Yj. Thus due to Proposition 7.4.6 below, L has the unique lifting L
on Y, which is invertible.

We show that this line bundle L on Y is ¢-ample. Since Xy < X is a
homeomorphism, for z € X = X, we have ¢71(z) = ¢')al(a;). Thus, we have
Llg-1(z) ~ L0|¢51(x) and hence L|4-1(,) is absolutely ample. Then, by [Laz,
Theorem 1.2.17 and Remark 1.2.18], we have that L is ¢-ample. O
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Next we discuss tilting bundles on Y. First we recall the following result
due to Karmazyn.

Proposition 7.4.6 ([Karl5, Theorem 3.4]). Let o : Zy — Spec .Sy be a projec-
tive morphisms of Noetherian schemes. Let (A,m) be a local Artinian algebra
with residue field C, Z and Spec S be deformations of Zy and Spec Sy, respec-
tively, over A. Assume that there is a A-morphism w : Z — Spec S such that
TOAA/m = 7.

Then, for any partial tilting bundle Ty on Zy, there is the unique lifting T
of Ty on Z, which is partial tilting. Moreover, if Ty is tilting, then so is T.

The following lemma is a certain variation of the proposition above.

Proposition 7.4.7. With the same condition as in Proposition 7.4.6, assume
in addition that Zy is a Cohen-Macaulay variety of dimension greater than 4.
Let Ty be a partial tilting bundle on Zy, Uy C Zy an open subscheme of Zy. Put
U :=Z|y, and assume that

codimz, (Zo \ Up) > 3.
Then, the bundle To|y, on Uy lifts uniquely to a bundle on U.
Proof. Let m be the maximal ideal of A and put

A, =Am" 2, =704 A, and U, :=U @, A,

for n > 0. Since A is Artinian, we have A = A,, for sufficiently large n. By
Proposition 7.4.6, there is the unique lifting T;, of Ty on Z,,, which is partial
tilting. The existence of a lifting of Tp|y, on U, follows from this result.
We prove the uniqueness by an induction on n. Put T, := T, |y, . Then the
set
{isom class of liftings of T}, on U, 41}

is non-empty and is a torsor under the action of H!(Uy, Endy, (T})) @cm™ /m™+L,
By adjunction, we have an isomorphism

HY(Uy, Endy, (T})) = H (Zy, Endz, (To) @z, Rj.Ou,),
where j : Uy = Zj is an open immersion. Thus, there is a spectral sequence
EY?:= H?(Zy,Endgz,(Ty) ®z, Rj.Ouv,) = HP (U, Endy, (T7)).
Since Zj is Cohen-Macaulay and Ty is partial tilting on Zy, we have
p,0 _ P _
E2 = EXtZ0 (To, TO) = 0

for p > 0. By assumption, we have R'j,Opy, = 0 and hence we have Eg’l =0
for all p. In particular, we have EY? = 0 for p,q with p+ ¢ = 1, and hence we
have

HY(Uy, Endy, (T})) = 0.

Thus, the lifting of T}, on U,4+1 is unique. 0O
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Remark 7.4.8. Put E; := Z \ Uy and assume that codimy,(Ep) = 2. In this
case, analyzing the proof above, we notice that the vanishing of H%(Zy, Endz, (Tp)@
Rj,0y,) = 0 is sufficient. If Zy and Ey are smooth, one can easily show that
there is an isomorphism

HO(Z07 gndzo (T0)®R1j*OU0) = @ HO(E07 gndEo (T|E0)®Symk NE[)/ZO®det(NE0/Z[)))7
k>0
where Ng, /7, is the normal bundle of Ey C Zj.

Theorem 7.4.9. Let X, be a Gorenstein normal affine variety, ¢o : Yo — Xo
and ¢ : Y§ — Xo two crepant resolutions of Xo. Assume that

codimy, (exc(do)) > 3 and codimyy (exc(gp)) > 3.
Then,

(1) there is a functor isomorphism Def Yy ~ Def Y.

(2) Let A be a local Artinian algebra with residue field C. Let Y and Y’
be deformations of Yy and Yy, respectively, over A that correspond to
an element £ € (DefYp)(A) ~ (DefYy)(A). Then, any strict tilting-
type equivalence DP(Yy) = DP(YY) lifts to a strict tilting-type equivalence
DP(Y) = DP(Y”).

Proof. The first assertion follows from Proposition 7.4.1.

Put Uy := Yy \ exc(go) = (Xo)sm = Yy \ exc(¢p) and set U := Y|y, = Y/|v,-
Let Ty (resp. Tj)) be a tilting bundle on Y (resp. Y{) such that Ty|u, = T5lu,,
and T (resp. T") the unique lifting of Ty (resp. T§) on Y (resp. Y”). Then, by
Proposition 7.4.7, we have T|y = T’|y. Since Y and Y’ are projective over an
affine variety, from Proposition 2.1.12, we have equivalences of categories

DP(Y) ~ DP(Endy (7)) ~ DP(Endy- (T")) ~ DP(Y").
This is what we want. O

Remark 7.4.10. Compare our result with the result of Toda [Tod09, Theorem
7.1], where he proved a similar result for an equivalence for flops given as a
Fourier-Mukai transform.

7.5 Deformation of crepant resolutions over a
complete local ring

The goal of the present section is to prove the following theorem.
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Theorem 7.5.1. Let Xy := Spec Ry be a normal Gorenstein affine variety, and
g0 : Yo = Xo and ¢ : Y] — Xo two crepant resolution of Xo. Let (D,d) be a
Cohen-Macaulay complete local Ting, and let a diagram

N1

Spec D

be a deformation of varieties and morphisms above over (D,d), where X =
Spec R is an affine scheme, and ¢ and ' are projective morphisms. Assume
that

codimx Sing(X,) > 3.

Then any good and strict tilting-type equivalence for Yy and Yy lifts to a good
tilting type equivalence for Y and )'.

In addition, if the lift is determined by tilting bundles (T,T"), then we have
o T =, T

Remark 7.5.2. The assumption codimx, Sing(Xy) > 3 is essential and there
is a counter-example of this theorem if we remove this assumption (see Section
7.7.2).

7.5.1 Preliminaries

Recall that a finitely generated S-module M is said to be rigid if Extg (M, M) =
0, and to be modifying if M is reflexive and Endg(M) is a maximal Cohen-
Macaulay S-module. By definition, if M gives an NCCR of S then M is modi-

fying.

Lemma 7.5.3. Let Z := Spec S be a Cohen-Macaulay affine variety and M is
a modifying module over S that is locally free in codimension two. Assume that
dim S > 3 and codim Sing(Spec S) > 3. Then the module M is rigid.

Proof. Since M is reflexive, it satisfies (S2) condition. In addition, since Endg (M)
is maximal Cohen-Macaulay and dim .S > 3, Endg(M) satisfies (S3) condition.
Then the result follows from [Daol0, Lemma 2.3]. O

Corollary 7.5.4. Let Z = SpecS be a normal Gorenstein affine variety of
dimension greater then three and v : W = Z be a crepant resolution. Assume
that codimy Sing(Z) > 3, and that W admits a good tilting bundle T. Then the
S-module M := T is rigid.

If the resolution v : W — Z is small, we can remove the assumption that T
is good.

Proof. Since we assumed that codimyz Sing(Z) > 3, the module M is locally
free in codimension two. In addition, since the tilting bundle T is good, the
module M is Cohen-Macaulay and hence reflexive. Note that if the resolution
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Y W — Z is small, we have that M is reflexive without the assumption that
T is good. Since Endw (T') ~ Endz(M) is Cohen-Macaulay, the module M is
modifying. Thus we have the result. O

The following proposition should be well-known, but we provide a sketch of
the proof here because the author has no reference for this proposition.

Proposition 7.5.5. Let Sy be a C-algebra and My a finitely generated Sp-
module. Let A a local Artinian algebra with residue field C and

0=J =24 =450

an extension of A such that J*> = 0. Let S be a deformation of So over A, M a
lift of My over S, and S’ a lift of S over A’. Assume that there exists a lift M’
of M over S’. Then the lift of M over S’ is a torsor of Exti%(Mo,Mo) @c J.

Proof. Let M{ and M} be two lifts of M over S’. Then there exist a free S’-
module P’ and surjective morphisms P’ — M; and P’ — M} whose restriction
to S coincide with each other. Let us consider the following diagram

i

0

!

0—>J®CNO

!

0—>J®(CPO

!

0—)J®(CMO

|

0

2+—o

v,
o

<~

C— S — W —

=
>

~
.

0

Take an element x € N and choose its lifts #} € N and x4 € Nj. Then we
can consider the difference ] — 2, in P’ and we have x| — 2, € J Q¢ Py. Let
y € J ®c My be the image of 2} — 2}, € J ©¢ Py. Then the correspondence
N3z ye JRe My gives an Sp-module homomorphism v : Ng — J Q¢ Mp.
It is easy to see that Nj = N} as submodules of P’ if and only if y = 0, and
the similar argument shows that the ambiguity of the choice of a surjective
morphism P’ — M’ is resolved by Homg, (Po,J @c Mp). Thus we have the
result. a

Under the set-up of Theorem 7.5.1, put (D, d,) := (D/d"",d/d"+1),
Xn = X®D Dnv Yn = y®D Dna Yyi = y®D Dnv

and let
¢n =0 Rp Dy Y, = X, ¢l :=¢' ®p Dy : Y, = X,

be the projections.
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Lemma 7.5.6. Let Ty be a good tilting bundle on Yy and T, the lift of Ty to
Y. Then a sheaf My, := (én)«Ty on X, is a lift of Mo := (¢o)+To to Xp.

Proof. Note that T, is also good and hence we have M, ~ R¢, T, and My ~
R, To. Then the result follows from [Karl5, Corollary 2.11]. O

7.5.2 Proof of the theorem

Proof of Theorem 7.5.1. Let Uy be the common open subscheme of X, Yy and
Yy. Let Ty and T be good tilting bundles on Y; and Y{, respectively, such that
T0|Uo =~ Té‘U()' Put Un = Xn|Uo-

There exist good tilting bundles 7, and T}, on Y,, and Y,!, respectively, such
that T, (resp. T))) is a lift of Ty (vesp. T3). Then (¢,)«T;, and (¢,).T), are two
lifts of My = H(Ty) = H°(T}) by Lemma 7.5.6. By assumptions the module
My is rigid and hence we have

(Dn)+ Ty ~ (07,)4 T,
In particular, we have
Tulv, ~ T, lu,-
Next we show that we have an algebra isomorphism
Endyn (Tn) =~ EndyT/L (T;l)
As in the proof of Lemma 7.5.6, we have that H(Y,,, T\Y ®T,,) and H(Y,,, TV @

n? n

T)) are coherent sheaves on X, that are flat over D,,. On the other hand, we
have

HY(Y,, T ©T,)®p, Dn/d, ~ H(Yy, Ty ©Ty) and
H(Y,, T @Ty) ©p, Dn/dn ~ H (Yo, Tg" © Tp)

n)'-n

are Cohen-Macaulay modules over Xy. Therefore the flat extension theorem
[Mat, Theorem 23.3] implies that H°(Y,,TY @ T;,) and H°(Y,, T)Y @ T}) are

Cohen-Macaulay modules over X,,. Thus we have algebra isomorphisms

HO(Y,, T @T,) ~ H*(U,, T ® T,)) =~ H*(U,, TN & T') ~ H'(Y, TV  T!).

n’—n

Finally unwinding Grothendieck’s existence theorem [Sta, Tag 088F] and the
result of Karmazyn [Karl5, Lemma 3.3] imply that there exist good tilting
bundles 7 and 7’ on ) and ), respectively, such that

Endy(7) ~ lim Endy, (7)) ~ lim Endy, (T},) ~ Endy(7").

Note that we have (p.T)|x, = (¢n)«Tn = (&),):T), ~ (¢, T")|x, by construc-
tion. This implies that we have an isomorphism .7 ~ ¢, T’ (see [Sta, Tag
087W]). This shows the result.

In addition, if we put M := ¢, T ~ ©. T, we also have isomorphisms

Endy(7) ~ limEndy, (7)) ~ limEndx, ((¢,,)«T) = Endg (M),
which also follow from [Sta, Tag 087W]. O
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The following corollary is a direct consequence of the proof of Theorem 7.5.1.

Corollary 7.5.7. Under the same set-up of Theorem 7.5.1, assume in addition
that

codimy (exc(¢g)) > 3.
Then any strict tilting-type equivalence for Yy and Yy lifts to a tilting type equiv-
alence for Y and ).

7.6 Deformation with an action of G,,

7.6.1 Gy-action

First of all, we recall some basic definitions and properties of actions of a group
G on schemes.

Definition 7.6.1. We say that a G,-action on an affine scheme Spec R is good
if there is a unique Gy,-fixed closed point corresponding to a maximal ideal m,
such that G, acts on m by strictly positive weights.

The advantage to consider good Gy,-actions is that we can use the following
useful theorems.

Theorem 7.6.2 ([Kal08], Theorem 1.8 (ii)). Let Y be a scheme that is projective
over an affine variety X = Spec R, and assume that X admils a good Gp,-action
that lifts to a Gy -action on'Y . Let X be a completion of X = Spec R with respect
to the mazimal ideal m C R that corresponds to a unique fized point x € X.

Then any tilting bundle on Y=Y X x X is obtained by a pull-back of a
G -equivariant tilting bundle on Y .

In relation to the theorem above, see also [Nam08, Appendix A] and [Karl5,
Proposition 5.1].

Lemma 7.6.3 ([Kal08], Lemma 5.3). Let R be a C-algebra of finite type such
that the corresponding affine scheme Spec R admits a good G, -action. Let m C
R be the mazimal ideal that corresponds to the unique fized point of Spec R, and
R the completion of R with respect to the mazximal ideal m.

Then, the m-adic completion functor gives an equivalence between the cate-
gory of finitely generated G, -equivariant R-modules and the category of com-
plete Noetherian G, -equivariant R-modules.

7.6.2 Result

Let Xg := Spec Ry be a normal Gorenstein affine variety, and ¢q : Yy — X and
96 : Yy — Xo two crepant resolutions of Xg. Let (Spec D, d) be a pointed affine
variety, and let the diagram

» X <

\l/

Spec D
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be a deformation of varieties and morphisms above over (Spec D, d) such that
the varieties Y, Y’ and X are G,,-variety and the morphisms ¢ and ¢’ are
projective and Gp,-equivariant. Assume that X = Spec R is an affine variety
and that the Gy-action on X is good whose fixed point z € X is a point over
d € Spec D.

In this subsection, we prove the following theorem.

Theorem 7.6.4. Under the set-up above, assume in addition that the inequality
codimx, Sing(Xo) > 3 holds. Then any good and strict tilting-type equivalence
between DP(Yy) and DP(YY) lifts to a tilting type equivalence for DP(Y) and
DP(Y").

In addition, if the lift is determined by tilting bundles (T,T"), then we have
¢ T ~ ¢/ T'.

Remark 7.6.5. Again we remark that the assumption codimy, Sing(Xy) > 3
is essential for this theorem (see Section 7.7.2).

Proof of Theorem 7.6.4. In the following, we provide the proof of the theorem
that consists of three steps.
Step 1. Construction of tilting bundles.

Put (D,,d,) = (D/d"*',d/d"*!), D := limD,, X = X ®p D, YV =
Y®pD,and Y ==Y’ ®p D. Let

p:Y—>Xandy Y - X

be the projection. Then we can apply Theorem 7.5.1 to the diagram

N

Spec D

and have a tilting bundle 7 (resp. 7') on Y (resp. )') such that
T =T

and

Endy(7T) =~ Endy (7).

Let x € X be the unique fixed closed point and let X = Spec ﬁ, where R :=
Ox  is the completion of Ox , with respect to the unique maximal ideal. Then

the canonical morphism X — X factors through the morphism & — X and
hence we have a diagram

YXX)A(—>JJ—>Y

i& lsa ¢

L \ \

~ '~

K

152



such that all squares are cartesian. Thus the following Lemma 7.6.7 1£nphes that
the scheme Y := Y XX X admits a tilting bundle T such that o T~ ", T.
Similarly, the scheme V' = Y’ xx X admits a tilting bundle 7" buch that
AT ~ 1*¢, T'. In particular, we have

o T =~ T

and N -
Endf, (T) ~ Endi,,(T').

Then Theorem 7.6.2 implies that there is a Gy,-equivariant tilting bundle T
(resp. T") on Y (resp. Y”) such that the pull-back of T' (resp. T") on Y (resp.
Y ) is lbOInOI‘phIC to T (resp. T’ ). In addition, Kaledin constructed G,-actions
on ¢)*T and ¢ T’ such that there are G,-equivariant isomorphisms

&f ~ k*$, T and qAbfkf/ ~ T

To show that the Gp,-equivariant structures of d;*f and (Efkf’ are same under
the isomorphism a*f cg' f’ we have to recall Kaledin’s construction of G-
equivariant structures. In the following, we provide the detail of his argument,
because there is only a sketch of the proof in [Kal08]. Put M :=¢,T

Step 2. Gy-equivariant structure of M.

Let us consider the Gy,-action Gy, — Aut(]Ai). It is well-known that we can
regard Aut(R A) as an open subscheme of the Hilbert scheme Hilb(Spec(]Ai ® }AB))
via the map taking the graph of an automorphism of Spec R. Thus the tangent
space of Aut(R) at the identity id € Aut(R) is isomorphic to

Exth <(Oa,0a) ~HH'(R) ~ Derc(R, R),

where A € X x X is the diagonal and HH (R) is the 1st Hochschild cohomology
of R. Thus, the Gy-action Gy, — Aut(R ) determines a (non-zero) derivation

{ﬁ%ﬁ

uniquely up to scalar multiplication. Let C[e] be the ring of dual numbers and
put

RY .= Rae Cle], YO .=V x Spec C|z], and V' = x Spec Clz].
By deformation theory, the derivation £ : R — R determines an automorphism
fg . ﬁf(l) Q ﬁ(l)

of RM such that Je @cf) C == idy (see [Ser, Lemma 1.2.6]), and then, by taking
pull-back, we have isomorphisms of schemes

Fe: YO % v® and Fg/ DA NS 2O}
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Via an isomorphism
Dercy (ﬁ(l), ﬁ) ~ Derc(ﬁ, ﬁi),
we have a derivation ¢ : R®M - R and then the automorphism is given by
fe(®) =7 +{F) e

Let T be the pull-back of T by the projection A}A/(l) — }A/, and we also
define a bundle 7" on Y’ in the same way. Then T(!) and Fg*T(l) are two
lifts of T to YV, Since T is tilting, we have Ext;(f, f) = 0 and hence there is
an isomorphism

g: 70 = p T

(see [Har2, Theorem 7.1 (c)]). If we put M® = HO(Y® TM) then we have
a C-linear bijective morphism

ge : MO . HO(?(1)7f(1)) o~ HO(?(l),Fg*f(l)) %) Ho(f/u)’f(l)) - MO
g adj

of M. Note that, by construction, we have g¢ @¢[;) C = id;; and
9e(Fi) = fe(7)ge (m)

for # € R and m Eﬂ(l). From the first equality, for any m € ]/\4\(1), there is
an element £;(m) € M such that

ge(m) =m + &5 () @ e.
This correspondence m f M(rh) defines a C-linear map
£ R S AT,

In addition, since we have

we have an equality 5 ~ 5
&7 (Fm) = 785 (m) + &(F)m.
Thus, restricting EM to the subgroup M~ ]/\4\®C € C ]/\4\(1), we have a C-linear

endomorphism N
&5 € Ende(M)

such that
Ei(rm) = &(r)m + r&5;(m)
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forrel?an@\me]\/i.
Let R & M be the square-zero extension, whose multiplication is given by

(r,m)(r',m') = (rr’,rm’ + 7'm).
Then one can check that the map

€:Ra& M > (r,m) s (E(r),&5;(m)) € Re M

defines a derivation of Re M. Furthermore, by taking restriction, ¢ also defines
a derivation of the algebra

(R/m"R) & (M /m™ M)

for n > 0. If n = 1, then the module M\/m]/w\ is finite dimensional, and thus
there is a representation of Gy,

7 : G — GL(M /mM)

whose differential is the restriction of £y;. Using this representation, we have
an action L L

Gm — Autc((R/mR) ® (M /mM))
of Gy, on the algebra (R/mR) @ (M /mM) such that

c- (F,m) = (7, 7(c)m)

for ¢ € Gy, and (7,m) € (R/mR) @ (M /mM).
Then by using [Kal08, Lemma 5.2] inductively on n, we have an action of
G on R M and therefore we have a G,-equivariant structure of M.

Step 3. Comparing G,-equivariant structures.
From the construction above, we notice that the Gy,-equivariant structure
of M depends on the choice of the isomorphism

g: 0 2 p FO)

such that g ®c[) C = id, and the ambiguity of the choice of such isomorphisms
is resolved by the group Endy (T) (see [Har2, Theorem 7.1 (a)]). Since we have

Endy; (T) ~ End (M) ~ Endy,, (T"),
we can choose isomorphisms
g:TM = Fg*f(l) and ¢ : T = Fé*f/(l)
such that they give the same C-linear map

ge : I s T
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after taking the global sections. This means that we can take Gp,-equivariant
tilting bundles T" and T” such that there are Gy,-equivariant isomorphisms

0T = r* T = & ¢, T = g, T,

as desired. o

By Lemma 7.6.3, the G,-equivariant isomorphism ¢, T ~ &, T’ implies that
we have

¢ T ~ ¢ T
and the isomorphism End{/(f) ~ End?,(f/) implies that we have
Endy (T) ~ Ede/(T’).

Therefore we have the result. 0O

Remark 7.6.6. We also have an equivalence between Gp,-equivariant derived
categories of Y and Y (see, for example, [Karl5, Section 4.2]).

Lemma 7.6.7. Let ¢ : Z — SpecS be a projective morphism, p € SpecS a
point, Z 1= Z Xgpecs Spec Sy, and v 1 Z — Z the canonical morphism. If T is
a tilting bundle on Z, then .*T is a tilting bundle on Z.

Proof. Since Specé; — Spec S is flat and Ext’, (T, T) ~ R4 (TV QT), it follows
from the flat base change formula that ¢*7T is a partial tilting bundle.

Next we show that +*T is a generator of D™ (Qcoh(Z)). Let F' € D~ (Qcoh(Z))
be a complex such that RHomz (¢*T, F') = 0. Since ¢ is quasi-compact and quasi-
separated, we can define a functor ¢, : Qcoh(Z) — Qcoh(Z). In addition, since
the morphism ¢ is affine, the functor ¢, is exact and hence we can consider a
functor between derived categories

ts : D7 (Qcoh(Z2)) = D™ (Qcoh(2)),
which is the right adjoint of ¢*. Thus we have an isomorphism
RHomy (T, 1. F') ~ RHomz (:*T, F) = 0,
and this shows that +,F = 0. Since ¢ is affine, ¢+, F' = 0 implies F' = 0. O

As in Corollary 7.5.7, we can relax the assumption in Theorem 7.6.4 if the
codimension of the exceptional locus is greater than or equal to three.

Corollary 7.6.8. Under the same set-up of Theorem 7.6.4, assume in addition
that
codimy (exc(¢g)) > 3.

Then any strict tilting-type equivalence for Yo and Yy lifts to a tilting type equiv-
alence for Y and Y'.

Letp:Y — Spec D, p’ : Y/ — Spec D and ¢ : X — Spec D be the morphisms
associated to the deformation.
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Corollary 7.6.9. Under the same assumption as in Theorem 7.6.4, assume
that there exists a good and strict tilting-type equivalence between DP(Yy) and
DP(Y{). Then there is a good tilting-type equivalence between DP(p~1(t)) and
DP(p'=Y(t)) for any closed point t € Spec D.

Proof. Let Ty and T} are tilting bundle that determines the good and strict
tilting-type equivalence between DP(Yy) and DP(Y{). Then by Theorem 7.6.4
we have a tilting bundle T (resp. T7”) on Y (resp. Y') such that

Endy (T) ~ Ede/(T’).

Let us consider the following diagram.

p~L(t) AN q1(t) —— SpecC

[ [ I

> X ! Spec D.

Since we have an isomorphism
(RO F)|g-1(1y = RT(p™(t), Flp-11))

for an vector bundle F' on Y applying the (derived) flat base change formula, we

have that T; := T'|,—1() is a good partial tilting bundle on p~!(¢). In addition

it is clear that T} is a generator and hence Ty is a good tilting bundle on p~1 ().
Similarly, a bundle T} := T"|,,-1(;) is a tilting bundle on p'~!(t) such that

Endp—l (t) (n) ~ Endp/q (t) (Tt/)

This shows the result. Note that we also have ¢, (1}) ~ ¢/ (T}). a

7.7 Examples

The aim of this section is to provide some applications and counter-examples of
the theorem we established in the sections above.

7.7.1 Stratified Mukai flops and stratified Atiyah flops

In the present subsection, we add some results for derived equivalences for strat-
ified Mukai flops and stratified Atiyah flops from the point of view of tilting
bundles. We use notations in Section 2.3.3.

Theorem 7.7.1. Assume that 2r < N. Then there exists a strict tilting-type
equivalence for a stratified Mukai flop on Gr(r, N).
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Proof. According to Theorem 7.8.2, it is enough to show that there is a good
Gm-action on Xy = B(r).

Let eq, ..., ex be a standard basis of V.= CY and fi,..., fx the dual basis
of VV. Weregard z;; := ¢; ® f; € V®c V" as a variable of the affine coordinate
ring of End(V) = V¥ ®V. Then the affine coordinate ring Ry of X is a quotient
of a polynomial ring C[(x;;); ;] and the maximal ideal m, corresponding to the
origin o € Xy is the ideal generated by the image of {z;;}; ;.

Let us consider an action of Gy, on Xy given by t- A :=t 1A for t € G,
and A € Xy. Clearly this action has a unique fixed point 0 € X. As a Gy-
representation, m, splits into the direct sum of lines spanned by a monomial.
Let 7 € Ry be a monomial of degree d > 1. Then, for t € G, and A € Xg, we
have

ri(A) =7t A) = r(tA) = tir(A).
Thus the action of Gy, on m, is positive weight and hence the action of Gy, on
Xy is good. O
As an application of Theorem 7.6.4, we have the following result.

Theorem 7.7.2. Assume that 2r < N—1. Then, any good and strict tilting-type
equivalence between DP(Yy) and DP (YY) lifts to a good tilting-type equivalence
between DP(Y) and DP(Y”).

In addition, if 2r < N — 2, then any strict tilting-type equivalence between
DP(Yy) and DP(YY) lifts to a good tilting-type equivalence between DP(Y) and
DP(Y").

Proof. As in Theorem 7.7.1, we can check that there exists a good Gp-action
on X which lifts to G,-actions on Y and Y’. Note that dim Xy = dim B(r) =
2r(N — r) and Sing(Xo) = B(r — 1). Thus we have

codimy, Sing(Xo) =2r(N —r) —2(r —1)(N —r+1) =2(N — 2r + 1).

Therefore codimx, Sing(Xp) > 3 if and only if 2r < N.
Furthermore, if we put

B(k) :={A€End(V) | A2 =0,dimKer A = N — k},
the fiber ¢y ' (A) of A € B(k) (k < r) is isomorphic to Gr(r — k, Ker(A)/Im(A))

and thus we have

dim gt (A) = (r — k)(N —r - k).
Therefore we have
dim ¢ ' (B(k)) = 2k(N — k) + (r — k)(N —r — k)

for 0 < k <r —1 and hence we have



and the equality holds if k = r — 1. This shows that codimy, (exc(¢g)) > 3 if
and only if 2r < N — 2.

Let T and T” be tilting bundles that give the tilting-type equivalence between
DP(Y) and D®(Y”’). Then by Theorem 7.6.4 we have ¢,T ~ ¢.T’. This means
that the tilting-type equivalence is strict. O

In conclusion, we have the following result.

Theorem 7.7.3. If 2r < N — 2, then there exists a tilting-type equivalence for
the stratified Atiyah flop on Gr(r, N).

The author expects that the same statement holds for remaining cases:

Conjecture 7.7.4. Assume that 2r = N —1 or 2r = N. There exists a tilting-
type equivalence for the stratified Atiyah flop on Gr(r,N).

This conjecture is true in the following low dimensional cases:

Example 7.7.5. If N = 2 and r = 1, the stratified Atiyah flop is the 3-fold
Atiyah flop. If N = 3 and r = 1, the stratified Atiyah flop on Gr(1,3) is the
usual standard flop of 4-folds. In these cases, the conjecture above is known to
be true.

The author also expects that CKL’s equivalence for a stratified Mukai flop
is tilting-type. Indeed, if » = 1, CKL’s equivalence for a Mukai flop is tilting-
type (see [Caul2a] and Section 3). In addition, as noted above, Cautis proved
that CKL’s equivalence extends to an equivalence for a stratified Atiyah flop
[Caul2a, Theorem 4.1] as in our Theorem 7.7.2.

Finally we note that the discussions above also show the following result.

Theorem 7.7.6. The nilpotent orbit closure Xy := B(r) (resp. its Gy, -equivariant
deformation X ) admits an NCCR for all 2r < N that is derived equivalent to
Yo and Yy (resp. Y and Y').

Proof. We can take a lift T of a tilting bundle T on Y to Y without assuming
that Ty is good or codimy, Sing(Xy) > 3. Then the result follows from Lemma
2.1.18. As noted above, the derived equivalence for Y and Y’ was proved by
Cautis. a

7.7.2 A counter-example

In the present subsection, we provide an example that suggests we cannot re-
move the assumption codimx, Sing(Xo) > 3 in Theorem 7.6.4.

Let us consider the case if N = 2 and r = 1 in the subsection above. Then
Xo = W admits a du Val singularity of type A;, and Yy = Yj is the total
space of a line bundle Op1(—2) on P'. Moreover X is a 3-fold ODP, and Y
and Y’ are isomorphic to the total space of Opi(—1)®2 as abstract varieties.
However there is no isomorphism f : Y =5 Y’ such that ¢ = ¢’ o f. A bundle
To = Oy, & Oy, (—1), where Oy, (—1) is a pull-back of Op:1(—1) to Yy, is a good
tilting bundle on Yj.
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A pair of tilting bundles (Tp,7Tp) provides a good and strict tilting type
equivalence DP(Yy) ~ DP(Yp), which is identity. Tp lifts to a good tilting bundle

= Oy @ Oy(—1) on Y, where Oy(—1) is a pull-back of Opi(—1) to Y.
Similarly, Ty lifts to a tilting bundle 77 = Oy & Oy (—1) on Y’, where Oy (—1)
is a pull-back of Op1(—1) on Y.

However we have T|yo # T"|yo, where Y is the common open subset of YV’
and Y. Indeed, we have ¢,Oy (—1) # ¢/ Oy (—1).

On the other hand, a pair of tilting bundles (75, 7}’) induces a good and
strict tilting-type equivalence DP(Yy) = DP(Yp), which is a spherical twist
around a sheaf Op1(—1) on the zero-section P! ¢ ;.

Since Ty lifts to a bundle 7"V on Y’ and one has T'|yo == T"V|y., the above
equivalence lifts to a good and strict tilting-type equivalence

RHomy (T, —) @Iﬁndy(T) TV :DP(Y) = DP(Y).

7.8 Derived equivalence for symplectic resolu-
tions

In this subsection, we discuss the derived equivalence for symplectic resolutions.
First we recall the following theorem, which is the main theorem of Kaledin’s
paper [Kal08].

Theorem 7.8.1 ([Kal08], Theorem 1.6). Let X = Spec R be an affine symplec-
tic variety, and Y and Y’ two symplectic resolutions of X. Then every point
x € X admits an étale neighborhood U, — X such that there exists a strict
tilting-type equivalence between DP(Y x x U,) and DP(Y' x x Uy).

The property that the equivalence is strict follows from his proof. Since the
construction of tilting bundles is very complicated, it is not clear whether the
tilting bundle he constructed is good or not (at least for the author).

Theorem 7.8.2. Let X = Spec R be an affine symplectic variety, and ¢ : Y —
X and ¢ 1 Y' — X two symplectic resolutions of X. Assume that X admits
a good Gy,-action. Then there exists a strict tilting-type equivalence between
DP(Y) and DP(Y").

Proof. First we note that the G,-action on X lifts to a Gy-action on Y and Y’

[Kal08, Theorem 1.8 (i)]. Let m C R be the maximal ideal that corresponds to
a unique fixed point of X. Let R be the completion of R with respect tom C R.
Put V=Y xx SpecR and Y’ := Y’ x x Spec R, and let gb Y — Spec R and
¢’ LY SpecR be the projections. Let Y C Y, Y’ be the largest common
open subscheme of Y and Y’. Put Yo=Y xy Y =Y° xy Y/

Then, by Theorem 7.8.1, there exist tilting bundles £ and & on ¥ and Y
respectively, such that g |Y° ~ E ‘Yo Thus we have an 1somorph1sm @*E cb’ E'
of R-modules and an isomorphism Ends (5 ) =~ Endy (5 ) of R-algebras.
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By Theorem 7.6.2, there exist tilting bundles £ and & on Y and Y”, respec-
tively, such that E®Rl§ ~ € and E'@Rﬁ ~ &' Since ¢*E®Rﬁ r~ (E*E and

oLE @Rﬁ ~ d:/*é’/, Lemma 7.6.3 and the similar argument as in Step 3 of the
proof of Theorem 7.6.4 imply that we have

D & = ¢l &

and hence we have € |yo =~ &' |y.. Thus we have a strict tilting-type equivalence
between DP(Y) and DP(Y”). O
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