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Chapter 1

Introduction

Let X be a set, F be an algebra of subsets of X. A set function µ : F → [−∞,∞] is
called a finitely additive measure or charge if it satisfies the following conditions.

(1) µ(∅) = 0,
(2) µ(A ∪ B) = µ(A) + µ(B) for every A,B ∈ F with A ∩B = ∅.

Namely, it is a generalization of the ordinary notion of measure by replacing countable
additivity with finitely additivity. The triple (X,F, µ) is called a finitely additive mea-
sure space or charge space. In what follows, we will use the term‘ charge’exclusively
for the sake of simplicity. A charge µ is called bounded if supA∈F |µ(A)| <∞ and called
nonnegative if µ(A) ≥ 0 for every A ∈ F. If µ is positive and µ(X) = 1 holds then µ
is called a probability charge.

Charges arise quite naturally in many areas of mathematics and there exist a large
number of studies over the past decades. In particular, based on researches which had
been done before, K. P. S Bhaskara Rao and M. Bhaskara Rao developed a theory of
charge spaces systematically in [3], in which various generalizations of notions and re-
sults in measure theory to charges are obtained. For example, the notion of measurable
functions for charge spaces and their integrability, the construction of Lp spaces over
charges and Hölder’s inequality for them and a generalization of Lebesgue’s dominated
convergence theorem. In this thesis, we discuss a certain class of charges on the basis
of this theory and it can be viewed as an application of the theory of charges. In
particular, our main objectives are the notions of absolutely continuity and singularity
(Chapter 4) and the additive property (Chapter 5).

We denote the set of natural numbers by N, and the family of all subsets of N by
P(N). For a set A ∈ P(N), |A| stands for the cardinality of A. In particular, we use
the symbol |A ∩ n| = |A ∩ [1, n]| for each n ∈ N. Recall that the asymptotic density
d(A) of a set A ∈ P(N) is defined as

d(A) = lim
n

|A ∩ n|
n
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if this limit exists. The asymptotic density d is obviously finitely additive on the class
D of all subsets of N having the asymptotic density. This notion is one of the sim-
plest examples of finitely additive set functions on a countable space and of particular
importance for number theory.

Since D itself is not an algebra, we get a charge space by restricting d to some
subclass of D which forms an algebra of subsets of N. One of such examples is the
class A generated by all arithmetic progressions A = {an + b : n ≥ 0}, where a, b
are nonnegative integers. The charge space (N,A, d) is particularly important for
probabilistic number theory, which is based on the analogy between (N,A, d) and a
probability space (as discussed in [9, 10]). Another way of constructing a charge space
from the asymptotic density is extending d to some algebra of subsets of N containing
the class D. This leads to the notion of density measures.

A charge defined on P(N) extending the asymptotic density is called a density
measure. Density measures have been studied by several authors from various points
of view (see for instance [4, 5, 11, 12, 15, 17]). Our main interest is the density
measures constructed from ultrafilters on N. Recall that for a bounded function f
on N and an ultrafilter U on N, the limit of f along U is a number α such that
{n ∈ N : |f(n) − α| < ε} ∈ U holds for every ε > 0 and denoted by U - limn f(n) (see
[5] for details). In particular, we say that an ultrafilter U on N is free if ∩A∈UA ̸= ∅
holds. Then for a free ultrafilter U on N, we define the density measure νU by

νU(A) = U - lim
n

|A ∩ n|
n

, A ∈ P(N).

We denote the set of all such density measures by C̃. Remark that there are distinct
free ultrafilters U and U ′ which give the same element of C̃, thus C̃ is isomorphic as
a set to some quotient space of the set of free ultrafilters on N. We show that each
density measure in C̃ is equal to some νU for a certain kind of ultrafilter U , which has
a form convenient to investigate the associated density measure (Theorem 3.2.1).

Sometimes it is convenient to consider density measures as linear functionals on
l∞ of the Banach space of all real-valued bounded functions on N. In general, the
probability charges on P(N) and the normalized positive linear functionals on l∞ can
be identified in a natural way; namely, if a probability charge µ on P(N) is given, one
can obtain a normalized positive linear functional φ on l∞ by the integral with respect
to µ. Conversely, if a normalized positive linear functional φ on l∞ is given, we get a
probability charge µ on P(N) by µ(A) = φ(IA), where IA is the characteristic function
of A ∈ P(N). In this way, C̃ can be identified with a subset of (l∞)∗ of the conjugate
space of l∞ and thus we can consider C̃ to be a topological space endowed with the
relative topology of the weak* topology of (l∞)∗. From now on we consider such a
topology on C̃.

Observe that C̃ is a compact set and it is clear that for any Borel probability measure
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µ on C̃, the charge ν on P(N) defined as follows is also a density measure:

ν(A) =

∫
C̃
νU(A)dµ, A ∈ P(N).

We denote the set of all such density measures by C. The relation between C̃ and C can
be understood simply in view of the theory of linear topological spaces, that is, it is
shown that C̃ is precisely the set of extreme points ex(C) of C. Also we show that each
element of C can be expressed as an integral with respect to some unique probability
measure supported by its extreme points. It seems to be an interesting example on
Choquet’s theory.

The thesis is organized as follows: Chapter 2 deals with preliminary results and
notions which will be used throughout the paper. In Chapter 3, we investigate the
space C̃ and C in detail. We show in Section 3.1 that the space C̃ is homeomorphic to
a certain compact space Ω∗ on which a continuous flow τ s : Ω∗ → Ω∗, s ∈ R is defined
in a natural way. This flow (Ω∗, {τ s}s∈R), which is defined in the following chapter,
plays a very important role in studying density measures in C̃ throughout the paper.
In Section 3.2, we show the result that C̃ = ex(C). Although the fact that ex(C) ⊆ C̃
followed from the Krein-Milman theorem with relative ease, it is rather difficult to
prove that C̃ is exactly ex(C) and we have to prepare some amount of machinery. After
that we show the representation theorem for general elements of C.

In Chapter 4, we deal with absolute continuity and singularity. Such notions are
well known for measures, we can define those notions for charges. In Section 4.1 we
give definitions of absolutely continuity and singularity for charges in general setting.
The relation between the existing notions of absolute continuity and singularity for
measures and those of charges are also discussed.

In Section 4.2, we study absolute continuity and singularity for density measures in
C̃. For a given pair µ, ν in C̃, we can regard them as elements ω, ω′ in Ω∗ through the
above homeomorphism and give complete descriptions on absolute continuity and weak
absolute continuity of the pair in terms of the continuous flow (Ω∗, {τ s}s∈R) (Theorems
4.2.1 and 4.2.4). Also we give characterizations of singularity and strongly singularity
of the pair by means of the continuous flow as well (Theorems 4.2.3 and 4.2.5).

In Chapter 5, we deal with the property of charges which is concerned with a weak-
ening of countable additivity. One of the problems of developing the theory of charges
is that some of the main theorems in measure theory, including the completeness of
Lp-spaces and the Radon-Nikodym theorem, do not hold. This fact leads us to study
the condition of charges under which these theorems hold. This condition is known as
the additive property, whose definition is as follows: Let (X,F , µ) be a charge space
where µ is nonnegative and F is a σ-algebra. We say that µ has the additive property
if for any increasing sequence {Ai}∞i=1 of F , there exists a set B ∈ F such that

(1) µ(B) = limi→∞ µ(Ai),
(2) µ(Ai \B) = 0 for every i = 1, 2, · · · .
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This notion is studied systematically in [1]. In first three sections of Chapter 5, we
discuss the general theory of the additive property. In Section 5.1 we introduce several
conditions which are equivalent to the additive property. In Section 5.2 we show the
condition of finite number of charges under which the sum of these charges has the
additive property. This result is extended to the case of countable sums of charges
in Section 5.3, which is used to prove the main result of the following section. In
Section 5.4 we study the additive property of density measures in C̃. It was shown in
[4, Theorem 1] that there exists a density measure with the additive property; for a
free ultrafilter U on N containing a set {nk}∞k=1 such that

lim
k→∞

nk+1

nk

= ∞,

the density measure νU has the additive property. We shall generalize the result and
prove a necessary and sufficient condition for density measures in C̃ to have the additive
property. We will also deal with the additive property of a more general form of density
measures ν ∈ C for a certain class of Borel probability measures µ on C̃ = ex(C) in
Section 5.5.
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Chapter 2

Preliminaries

We consider C̃ as a topological space endowed with the relative topology of the weak*
topology of (l∞)∗. From this point of view, it is convenient to use the notion of
the Stone-Čech compactification βN of N. The Stone-Čech compactification of N is a
compactification of N characterized by the following property: any continuous mapping
of N into a compact space X can be extended continuously to βN. Also it is noted that
βN is unique in the following sense: If a compactification N∞ of N satisfies the above
condition, then there exists a homeomorphism of βN onto N∞ that leaves N pointwise
fixed.

Remark that βN can be identified with the set of all ultrafilters on N in which the
topology is given by defining a basis of open sets by Â = {U : A ∈ U}, where A ∈ P(N).
Recall that for any set A ∈ P(N), Â = clβNA holds and these subsets are exactly the
clopen subsets of βN. In particular, let us denote by N∗ = βN \ N the set of all free
ultrafilters on N. Then the sets of the form A∗ = Â ∩ N∗ gives the clopen subsets of
N∗ and these also form a topological basis of N∗. In the sequel we identify a point of
βN with a ultrafilter on N. From this point of view, for any mapping ι : N → X of
N into a compact space X, the continuous extension ι of ι is given by the limit along
an ultrafilter: for any U ∈ βN, one can define the limit of ι along U as a point x ∈ X
such that for every neighborhood U of x, it holds that {n ∈ N : ι(n) ∈ U} ∈ U . In this
case, we write U - limn ι(n) = x and then we have

ι(U) = U - lim
n
ι(n).

Of particular importance is the case that ι is in l∞. Notice that for any f ∈ l∞, by
the above mentioned property of βN, we can extend f to a continuous function f on
βN. This correspondence f 7→ f gives an isomorphism between the Banach algebras
l∞ and C(βN), the space of all real-valued continuous functions on βN. In particular,
this leads to the fact that βN is homeomorphic to the maximal ideal space of l∞. As
mentioned above, for each f ∈ l∞, the isomorphic image f in C(βN) is given by the
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formula:
f(U) = U - lim

n
f(n)

for every ultrafilter U on N.
Another notion pertaining to N∗ which is important for our study is an extension of

right translation on N. We define a mapping τ0 : N → N by τ0(n) = n+ 1. Regarding
it as a mapping from N to βN, we can extend it to a continuous mapping on βN. We
denote this extension by τ . The restriction of τ to N∗ is a homeomorphism of N∗ onto
itself and we denote it by the same symbol τ as well. Then (N∗, τ) is a topological
dynamical system.

We use the following notations for the orbits of η in N∗ under the action of
{τn}∞n=−∞:

o+(η) = {τnη : n = 0, 1, 2, . . . .},
o−(η) = {τ−nη : n = 0, 1, 2, . . . .},

o(η) = {τnη : n ∈ Z}.
Furthermore we denote the closures in N∗ of these orbits by o+(η), o−(η) and o(η),
respectively.

Recall that a point η ∈ N∗ is called wandering if there is an open neighborhood U
of η such that the sets τnU , n is any integers, are mutually disjoint. Let Wd be the set
of all wandering points.

We denote by Dd,− the subset of N∗ consisting of all points that does not return
arbitrarily close to the initial point under negative iteration by τ (i.e., η ∈ N∗ is in Dd if
and only if there exists an open neighborhood U of η such that U∩{τ−nη : n ≥ 1} = ∅).
This is equivalent to the condition that the orbit {τ−nη : n ≥ 0} is a discrete space in
its relative topology. Wd ⊆ Dd,− is clear by the definitions.

We denote by Ad the set of all almost periodic points for the topological dynamical
system (N∗, τ). Namely, the set of those points whose orbit closures are minimal closed
invariant sets.

Further, we consider the continuous flow (Ω∗, {τ s}s∈R) of the suspension of the
discrete flow (N∗, τ), whose construction is well known in topological dynamics (for
example see [18, Chapter 2]) and is given as follows. Let us consider a product space
βN×[0, 1] and construct the compact space Ω by identifying all the pairs of points (η, 1)
and (τη, 0) for all η ∈ βN. Also we denote by Ω∗ the closed subspace of Ω consisting of
all elements (η, t) in Ω with η ∈ N∗. Then we define a continuous flow on Ω∗ extending
(N∗, τ) as follows; for each s ∈ R, we define the homeomorphism τ s : Ω∗ → Ω∗ by

τ s(η, t) = (τ [t+s]η, t+ s− [t+ s]),

where [x] denotes the largest integer not exceeding x for a real number x.
Also we use similar notations for the orbits of ω in Ω∗ under the action of {τ s}s∈R:

o+(ω) = {τ sω : s ≥ 0},
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o−(ω) = {τ−sω : s ≥ 0},

o(ω) = {τ sω : s ∈ R},

and also o+(ω), o−(ω) and o(ω) represent their closures in Ω∗, respectively.
For a point ω ∈ Ω∗, ω is called wandering if there are open neighborhood U of ω

and V of 0 ∈ R such that U ∩ τ sU = ∅ for every s in R \ V . We denote the set of all
wandering points by W .

We denote by D all the points ω in Ω∗ whose negative semi-orbit o−(ω) is not
recurrent. This means that there exist a neighborhood U of ω and a real number
L > 0 such that τ−sω does not enter U for every s > L. Note that this is equivalent
to the condition that the orbit {τ−sω : s ≥ 0} is homeomorphic to R+ in its relative
topology. In particular W ⊆ D− is obvious.

We denote by A the set of all almost periodic points in the flow (Ω∗, {τ s}s∈R).
Recall that we say that a point ω in Ω∗ is almost periodic if the orbit closure o(ω) is a
minimal closed invariant set.

It is easy by the definitions to check that ω = (η, t) ∈ W if and only if η ∈ Wd,
ω = (η, t) ∈ D− if and only if η ∈ Dd,− and ω = (η, t) ∈ A if and only if η ∈ Ad.
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Chapter 3

Basic properties of the space C

3.1 Density measures and functionals by Cesàro mean

Recall that the Cesàro mean of a function f ∈ l∞ is defined by

C(f) = lim
n→∞

1

n

n∑
i=1

f(i)

if this limit exists. When f is the characteristic function IA of a set A ∈ P(N), its
Cesàro mean C(IA) = limn→∞

1
n

∑n
i=1 IA(i) coincides with the asymptotic density d(A)

of A. The relation between asymptotic density and Cesàro mean is analogous to that
of measure and integral. As we have mentioned above, to each charge on P(N), there
corresponds a normalized positive linear functional on l∞. One can readily verify that
the class of normalized positive linear functionals on l∞ which corresponds to C is the
linear functionals φ on l∞ satisfying the following condition:

φ(f) ≤ C(f) = lim sup
n→∞

1

n

n∑
i=1

f(i)

for each f ∈ l∞. We denote such functionals by the same symbol C as corresponding
charges. It is remarked that such a functional φ is an extension of Cesàro mean, that
is, φ(f) = C(f) provided the limit exists. Since C is a compact convex set in the weak*
topology, the Krein-Milman theorem shows that the set of extreme points ex(C) of C
is not an empty set. An example of such a functional is given by

φU(f) = U - lim
n

1

n

n∑
i=1

f(i),

where f ∈ l∞, which is obviously obtained by integration with respect to νU ∈ C̃:

φU(f) =

∫
N
f(n)dνU(n).

9



Now let us consider the relation between C and the class of density measures. It
is shown in [10] that functionals corresponding to density measures are precisely the
positive functionals extending Cesàro mean. Let P be the set of all such functionals.
Then P is a weak* compact convex subset of (l∞)∗ and the following result is known
[11, Proposition 5.5]:

P (f) = sup
φ∈P

φ(f) = lim
θ→1−

lim sup
n→∞

∑
i∈[θn,n] f(i)

n− θn

for each f ∈ l∞. This functional P is an extension of Pólya density for bounded
sequences.

Since C(f) ≤ P (f) for every f ∈ l∞, we see that C ⊆ P . And it is known that
there exists an element f of l∞ such that C(f) < P (f) (for example, see [6, P. 572]),
so we have that C & P .

3.2 Topological structure on the space C̃
In this section we will investigate details of the compact Hausdorff space C̃. The
main purpose of this section is to prove the following result, which was suggested by
arguments in the proof of [5, Lemma 5]. In what follows, we denote a general element
of βN by η and those of Ω by ω.

Theorem 3.2.1. Each element of C̃ can be expressed uniquely in the form

φω(f) = η- lim
n

1

θ · 2n

[θ·2n]∑
i=1

f(i)

for some ω = (η, t) in Ω∗, where θ = 2t. Also this correspondence of Ω∗ to C̃ is
continuous, that is, C̃ is homeomorphic to Ω∗.

This result plays an important role in proving our theorems in Chapters 4 and 5
and is interesting in its own right. It is helpful to introduce the notion of the image of
an ultrafilter to understand the above limit. Let X and Y be arbitrary sets, and let
f : X → Y . For any ultrafilter U on X, one can define the ultrafilter on Y, denoted by
f(U) consisting of those A ⊆ Y for which f−1(A) ∈ U . Then it is easy to see that

f(U)- lim
y
g(y) = U - lim

x
g ◦ f(x),

where g is any bounded function on Y .
Let us R+ = [0,∞) and R×

+ = [1,∞). We particularly consider the following three
maps:

R+ ∋ x 7→ 2x ∈ R×
+,
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R×
+ ∋ x 7→ [x] ∈ N,

R×
+ ∋ x 7→ θx ∈ R×

+ (θ ≥ 1).

The images of an ultrafilter U under the induced mappings defined above are denoted
by 2U , [U ], θU , respectively. Notice that 2U is a ultrafilter on R×

+ which does not contain
any bounded set of R×

+ if and only if U is a ultrafilter on R+ of the same kind, and
those can be considered to be equal, then the map U → 2U is a bijection of the set
of all such ultrafilters on R×

+ onto itself. Notice that with the notation above we can
write φω = φ[2ω ] = φ[θ2η ].

We will need some more preparation to prove the theorem. Let Cub(R×
+) be the

space of all real-valued uniformly continuous bounded functions on R×
+. Its maximal

ideal space, denoted here by M, is a compact Hausdorff space and the space C(M) of
all real-valued continuous functions on M is isometric to Cub(R×

+) as a Banach algebra.
The following lemma is a consequence of [16, Lemma 2.1], but provides a proof, for the
sake of completeness:

Lemma 3.2.1. M is homeomorphic to Ω.

Proof. It is sufficient to show the algebraic isomorphism Cub(R×
+) ∼= C(Ω). If we

regard the points (n, t) in Ω with n ∈ N as the points n + t in R×
+ we can consider

that Ω contains R×
+ as a dense subspace, so that Ω is a compactification of R×

+. Now
given any f ∈ Cub(R×

+), put fn(s) = f(n+ s), s ∈ [0, 1], n = 1, 2, · · · . Then we have a
sequence {fn}∞n=1 of C([0, 1]). Since f is bounded and uniformly continuous on R×

+, it
follows that this sequence is uniformly bounded and equicontinuous. Hence by Arzelà-
Ascoli’s theorem, {fn}∞n=1 is relatively compact in C([0, 1]) in its uniform topology.
Therefore when we put

Φf : N −→ C([0, 1]), Φf (n) = fn, n = 1, 2, · · · ,

then we can extend it continuously to βN. Then we define a continuous function f on
Ω by

f(ω) = (Φf (η))(t), ω = (η, t).

We denote this mapping f 7→ f by Φ : Cub(R×
+) → C(Ω). Notice that f = f on R×

+,
so that f is a continuous extension of f to Ω. In particular, it is obvious that Φ is
injective. We shall show that Φ is a algebraic isomorphism. It is trivial that Φ is a
algebraic homomorphism. To show that Φ is surjective, it is sufficient to show that for
every continuous function g on Ω its restriction to R×

+ is uniformly continuous on R×
+.

Now we regard g as a mapping from βN to C([0, 1]) with uniform topology:

Φg : βN −→ C([0, 1]), Φg(ω) = g(ω, t),

then Φg is continuous. Since Φg(βN) is a compact subset of C([0, 1]), Φg(N) is relatively
compact in C([0, 1]). Hence {Φg(n)}∞n=1 = {g(n + t)}∞n=1 is equicontinuous. Thus g is
uniformly continuous on R×

+.
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Thus we can identify M with Ω, so that in the sequel we will use only the symbol
Ω. Notice that Ω is the compactification of R×

+ to which any uniformly continuous
bounded function f(x) on R×

+ can be extended continuously. In particular, we can see
from the above proof that, for any f ∈ Cub(R×

+) and ω = (η, t) ∈ Ω, its continuous
extension f(ω) is given by the formula

f(ω) = ω- lim
s
f(s),

where ω is regarded as an ultrafilter on R×
+ generated by the basis {A + t : A ∈ η}.

From now on, we often identify a point ω = (η, t) ∈ Ω with the above ultrafilter. An
immediate consequence of these facts which will be used in the next section is that
for any cluster point α of the set {f(x)}x∈R×

+
, there exists a point ω ∈ Ω such that

f(ω) = α. Since we are mainly interested in the extended values of f(x) ∈ Cub(R×
+),

that is, cluster points of {f(x)}x≥1 as x → ∞, we may often ignore the difference
in values on bounded sets of R×

+ among members in Cub(R×
+); namely, we consider a

member of Cub(R×
+) modulo C0(R×

+), where C0(R×
+) is the ideal of Cub(R×

+) consisting
of all those members f(x) which converges to zero as x tends to ∞. Then it holds that

C(Ω∗) = Cub(R×
+)/C0(R×

+),

where C(Ω∗) is the space of all real-valued continuous functions on Ω∗.
L∞(R×

+) be the Banach space of all real-valued essentially bounded measurable
functions on R×

+ = [1,∞). Now it is useful to introduce an integral analogy M of C
which is a class of normalized positive linear functionals on L∞(R×

+) defined by using
the sublinear functional M on L∞(R×

+) which adopts the integral with respect to the
Haar measure of real line R in place of the summation: namely, M is the set of linear
functionals ψ on L∞(R×

+) for which

ψ(f) ≤M(f) = lim sup
x→∞

1

x

∫ x

1

f(t)dt

holds for every f ∈ L∞(R×
+). Similarly we define a subclass M̃ of M consisting of

those ψU defined by

ψU(f) = U - lim
x

1

x

∫ x

1

f(t)dt,

where f ∈ L∞(R×
+) and again the limit means the limit along an ultrafilter U on

R×
+ which contains no bounded set of R×

+. In fact, it turns out that C and M are
isomorphic as a compact convex sets and that definitions and results obtained in the
integral setting can be transferred to the summation setting with ease. Therefore in
the rest of this chapter, where we study the structure of the convex set C, we mainly
work with the integral setting since arguments are simpler. In what follows, we shall
show an affine homeomorphism between C and M and then introduce a version of
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Theorem 3.2.1 which is formulated in the integral setting. For each f ∈ l∞, we define a
function f̃ ∈ L∞(R×

+) by f̃(x) = f([x]). Then we define an affine continuous mapping
V as follows:

V : M −→ C, (V ψ)(f) = ψ(f̃).

Theorem 3.2.2. V is an affine homeomorphism between C and M.

Proof. First we show that V is surjective. It is noted that for each f ∈ l∞

1

n

n∑
i=1

f(i) =
1

n

∫ n+1

1

f̃(t)dt.

Let l̃∞ = {f̃(x) ∈ L∞(R+) : f ∈ l∞}. Given any φ ∈ C, we define a functional ψ0 on
l̃∞ by ψ0(f̃) = φ(f) for every f ∈ l∞. Since

ψ0(f̃) = φ(f) ≤ lim sup
n

1

n

n∑
i=1

f(i) = lim sup
x

1

x

∫ x

1

f̃(t)dt

holds from above, we can extend ψ0 to ψ ∈ M by the Hahn-Banach theorem. Then
we have obviously that V (ψ) = φ, which shows that V is surjective. Next we show
that V is injective. It is sufficient to show that for any f ∈ L∞(R×

+), there exists a
function g ∈ l∞ such that ψ(f) = ψ(g̃) for every ψ ∈ M. In fact, suppose that this
holds and let ψ, ψ1 be two distinct elements of M̃ with V ψ = V ψ1. Then there is some
f ∈ L∞(R×

+) such that ψ(f) ̸= ψ1(f). On the other hand, there exists some g ∈ l∞

such that ψ(f) = ψ(g̃) = (V ψ)(g), ψ1(f) = ψ1(g̃) = (V ψ1)(g), i.e., ψ(f) = ψ1(f),
which is a contradiction. We can get such a function g(n) simply by putting g(n) =∫ n+1

n
f(t)dt, n = 1, 2, · · · . Thus we obtain the desired result.

For any ω ∈ Ω∗ we define ψω = ψ2ω , i.e.,

ψω(f) = 2ω- lim
x

1

x

∫ x

1

f(t)dt = ω- lim
x

1

2x

∫ 2x

1

f(t)dt.

We denote by Ψ this mapping of Ω∗ to M̃, ω 7→ ψω. The following lemma is obvious.

Lemma 3.2.2. V maps M̃ onto C̃ and V ψω = φω holds for every ω ∈ Ω∗.

From this lemma, Theorem 3.2.1 is equivalent to the assertion that Ψ is a homeo-
morphism, which we will prove sequentially. For the sake of simplicity, we will use a
linear operator U : L∞(R×

+) −→ L∞(R×
+) defined as

Uf(x) =
1

x

∫ x

1

f(t)dt, x ≥ 1.

13



Then we can write ψU(f) = U - limx(Uf)(x). Also let us define the linear operator W
as follows:

W : L∞(R×
+) −→ L∞(R+), (Wf)(x) = f(2x).

First, we will need the following elementary lemma.

Lemma 3.2.3. If f ∈ L∞(R×
+), then WUf ∈ Cub(R×

+).

Proof. Let f be in L∞(R×
+), and let h be a positive real number, then we have

(Uf)(x+ h)− (Uf)(x) = − h

x+ h
(Uf)(x) +

1

x+ h

∫ x+h

x

f(t)dt.

Hence we get that

|(Uf)(x+ h)− (Uf)(x)| ≤ 2h∥f∥∞
x+ h

.

Let s, θ ∈ R+ and put x = 2s, h = 2s+θ − 2s. Applying above results, we have

|(Uf)(2s+θ)− (Uf)(2s)| ≤ 2 · 2s(2θ − 1)∥f∥∞
2s+θ

= 2∥f∥∞
(
1− 1

2θ

)
.

The right hand side of the equation tends to 0 monotonically as θ → 0, and that
does not depend on s. Then (WUf)(s) is uniformly continuous on R×

+, so the proof is
complete.

Notice that by the above result it can be written as follows:

ψω(f) = ω- lim
x
(WUf)(x) = (WUf)(ω).

Lemma 3.2.4. Ψ is continuous.

Proof. Let {ωα}α∈Λ be a net in Ω∗ which converges to ω. We will show that

lim
α
ψωα(f) = ψω(f)

for every f ∈ L∞(R×
+). It follows from the assumption that for any g ∈ C(Ω∗)

lim
α
g(ωα) = g(ω).

Notice that WUf is in C(Ω∗) and then we have

lim
α
WUf(ωα) = WUf(ω),

which implies that
lim
α
ψωα(f) = ψω(f).

The proof is complete.

14



Lemma 3.2.5. Ψ is surjective.

Proof. We take any ψU ∈ M̃. Then we shall show that there exists a point ω =
(η, t) ∈ Ω∗ such that ψω = ψU . As we have mentioned before, since the mapping
U 7→ 2U is a bijection of the set of ultrafilters on R×

+ not containing any bounded set of
R×

+ onto itself, we can get the inverse image U0 of U , that is, U = 2U0 . Then it follows
that

ψU(f) = U - lim
x
(Uf)(x) = 2U0- lim

x
(Uf)(x) = U0- lim

x
(WUf)(x)

for every f ∈ L∞(R×
+). Since (WUf)(x) ∈ Cub(R×

+), U0 can be replaced by some
ω = (η, t) ∈ Ω∗. Therefore we have that

ψU(f) = ω- lim
x
(WUf)(x) = 2ω- lim

x
(Uf)(x) = ψω(f).

The proof is complete.

Lemma 3.2.6. Ψ is injective.

Proof. It is sufficient to show that for any pair ω, ω′ of distinct elements of Ω∗, there
exists a set X ∈ B(R×

+) such that ψω(IX) ̸= ψω′(IX), where B(R×
+) denotes the set of

Borel subsets of R×
+ and IX denotes the characteristic function of X. We divide the

proof into two cases according to whether one is contained in the orbit of the other or
not. Let us denote o(ω) = {τ sω : s ∈ R}, the orbit of ω under {τ s}s∈R.
Case 1. ω′ ∈ o(ω).
Without loss of generality, we can assume that ω′ = τ sω(s > 0). Let ω = (η, t). We
take a set A ∈ η such that |n−m| ≥ [s]+2 whenever n,m ∈ A, n ̸= m. Then we define
a set X ∈ B(R×

+) as X = ∪n∈A(2
t+n−1, 2t+n]. We will show that ψω(IX) ̸= ψω′(IX).

Now assume oppositely that ψω(IX) = ψω′(IX) = α. Let ε be a positive number with
ε < 1−2−s

1+2−sα. Then there exists a set B ∈ η such that B ⊆ A and

∣∣∣ 1

2t+x

∫ 2t+x

1

IX(y)dy − α
∣∣∣ < ε and

∣∣∣ 1

2s+t+x

∫ 2s+t+x

1

IX(y)dy − α
∣∣∣ < ε

whenever x ∈ B. Observing that by the assumption of A, X ∩ (2t+n, 2s+t+n] = ∅ for
any n ∈ A. We have then that if x ∈ B,∫ 2t+x

1

IX(y)dy < 2t+x(α + ε) =⇒
∫ 2s+t+x

1

IX(y)dy < 2t+x(α + ε)

⇐⇒ 1

2s+t+x

∫ 2s+t+x

1

IX(y)dy ≤ 2−s(α + ε) < α− ε,

which is a contradiction.
Case2. ω′ /∈ o(ω).
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Let us ω = (η, t) and ω′ = (η′, t′). We take A ∈ η such that τ−1A∪A∪ τA∪ τ 2A /∈ η′.
We set X = ∪n∈A(2

t+n−1, 2t+n], then it is obvious that

ψω(IX) = ω- lim
x

1

2t+x

∫ 2t+x

1

IX(y)dy

≥ lim inf
x∈A

1

2t+x

∫ 2t+x

1

IX(y)dy

≥ 2t+x − 2t+x−1

2t+x
=

1

2
.

Hence in order to show that ψω(IX) ̸= ψω′(IX), it is sufficient to show that ψω′(IX) <
1
2
.

Now we choose B ∈ η′ such that (τ−1A∪A∪ τA∪ τ 2A)∩B = ∅. Then for any x′ ∈ B
we have (2t

′+x′−2, 2t
′+x′

] ∩X = ∅. Then we obtain

ψω′(IX) ≤ lim sup
x′∈B

1

2t′+x′

∫ 2t
′+x′

1

IX(y)dy

≤ 2t
′+x′−2

2t′+x′ =
1

4
,

which proves the theorem.

Therefore, since Ψ is a continuous bijective mapping from Ω∗ to M̃, it is a homeo-
morphism. We have completed the proof of Theorem 3.2.1.

Furthermore, in the integral setting, we can naturally consider the continuous flow
on M̃ induced by the action of the positive part of the multiplicative group R× = (0,∞)
of the real field R on R×

+ defined as follows: let us consider a semiflow on R×
+ as follows

ρs : R×
+ −→ R×

+, ρsx = 2sx, s ≥ 0.

Then define linear operators Ps as

Ps : L
∞(R×

+) −→ L∞(R×
+), (Psf)(x) = f(ρsx), s ≥ 0.

Let P ∗
s be the adjoint operators of Ps, then

P ∗
s : M̃ −→ M̃, s ≥ 0

are homeomorphisms and (M̃, {P ∗
s }s∈R) is a continuous flow. Now we explain that the

mapping Ψ : Ω∗ → M̃ carries over the structure of continuous flow on Ω∗ defined in
Chapter 2 into the continuous flow on M̃ defined above; for any r = 2s with s ≥ 0 we
have that
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(P ∗
s ψω)(f) = ψω(Psf) = 2ω- lim

x

1

x

∫ x

1

f(rt)dt

= 2ω- lim
x

1

rx

∫ rx

r

f(t)dt

= r · 2ω- lim
x

1

x

∫ x

1

f(t)dt

= 2τ
sω- lim

x

1

x

∫ x

1

f(t)dt.

= ψτsω(f).

Therefore, we have obtained the following result, which asserts that the two continuous
flows (Ω∗, {τ s}s∈R) and (M̃, {P ∗

s }s∈R) are isomorphic via Ψ.

Theorem 3.2.3. Ψ ◦ τ s = P ∗
s ◦Ψ holds for each s ∈ R.

3.3 Extreme points of C
In this section we investigate the algebraic structure of C as a compact convex set.
Since C is affinely homeomorphic to M by Theorem 3.2.2, we work with M. We begin
with showing an elementary result.

Theorem 3.3.1. Let ex(M) be the set of all extreme points of M. Then M̃ is weak*
compact, and ex(M) ⊆ M̃ holds.

Proof. The compactness of M̃ follows from Lemma 3.2.4. By the Krein-Milman
theorem and Lemma 3.2.5, it is sufficient to show that

sup
ω∈Ω∗

ψω(f) =M(f)

for every f ∈ L∞(R×
+). We have

M(f) = lim sup
x→∞

(Uf)(x) = lim sup
x→∞

(WUf)(x) = (WUf)(ω)

= 2ω- lim
x

1

x

∫ x

1

f(t)dt = ψω(f).

for some ω ∈ Ω∗. This completes the proof.

Let P (Ω∗) be the set of all probability Borel measures on Ω∗. Given any µ ∈ P (Ω∗),
the following integral yields a member ψ of M;

ψ(f) =

∫
Ω∗
ψω(f)dµ(ω).
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Since for any ω ∈ Ω∗ the measure δω ∈ P (Ω∗), the probability measure equals 1 on
any Borel subset of Ω∗ which contains ω and equals 0 otherwise, induces ψω ∈ M, we
can regard this mapping of P (Ω∗) to M as an extension of Ψ and we denote it by the
symbol Ψ. Together with the Krein-Milman theorem, Theorem 3.3.1 asserts that this
mapping Ψ is surjective ([14, Section 1]):

Corollary 3.3.1. Every member ψ of M can be expressed in the form

ψ(f) =

∫
Ω∗
ψω(f)dµ(ω).

for some probability measure µ on Ω∗.

In connection with the linear operator U , we introduce a subspace U of Cub(R×
+) as

follows:
U = {f(x) ∈ Cub(R×

+) : (xf(x))
′ ∈ L∞(R×

+)}.
In other words, f(x) ∈ Cub(R×

+) is in U if and only if derivative (xf(x))′ exists almost
everywhere on R×

+ and also it is an essentially bounded measurable function.

Lemma 3.3.1. U is a subalgebra of Cub(R×
+).

Proof. We show that it is closed under multiplication. For f(x) ∈ U, notice that
(xf(x))′ = f(x) + xf ′(x) ∈ L∞(R×

+) and which implies that xf ′(x) ∈ L∞(R×
+) since

f(x) is bounded on R×
+. Now let us given arbitrary pair of elements f, g of U. Then

we get by the product rule,

(x(fg)(x))′ = f(x)g(x) + xf ′(x)g(x) + xg′(x)f(x)

exists almost everywhere on R×
+ and it is essentially bounded since as mentioned above,

xf ′(x) and xg′(x) are essentially bounded. Hence fg is in U.

Now we take up the relation between U and the range UL∞ of the operator U . A
hat placed above the symbol for a subalgebra of Cub(R×

+) will be used to indicate its

quotient algebra modulo the ideal C0(R×
+); for example, Û = U/(U ∩ C0(R×

+)). Let us
take any f(x) in U and put (xf(x))′ = ξf (x). Then

xf(x)− f(1) =

∫ x

1

ξf (t)dt, x ≥ 1

⇐⇒ f(x) =
1

x

∫ x

1

ξf (t)dt+
f(1)

x
= (Uξf )(x) +

f(1)

x
, x ≥ 1.

Hence,
f(x) ≡ (Uξf )(x) (mod C0(R×

+)).

Conversely, for any f ∈ L∞(R×
+) it is obvious that Uf ∈ U. This leads to the following

lemma.
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Lemma 3.3.2. Û = (̂UL∞).

The next result is essential to prove our main theorem.

Lemma 3.3.3. ̂(WUL∞) is uniformly dense in C(Ω∗).

Proof. It is easy to see that ̂(WUL∞) contains constants and separates the points

in Ω∗. It follows from Lemma 3.3.1 and 3.3.2 that (̂UL∞) is an algebra and hence
̂(WUL∞) is also an algebra. Applying the Stone-Weierstrass theorem, we obtain the

desired result.

With the aid of these results, we now prove our main theorem.

Theorem 3.3.2. M̃ = ex(M).

Proof. Since we have already shown that ex(M) ⊆ M̃ in Theorem 3.3.1, we have to
prove only that M̃ ⊆ ex(M). Assume that for an ω ∈ Ω∗ and some ψ1, ψ2 ∈ M,

ψω = αψ1 + (1− α)ψ2, 0 < α < 1.

By Corollary 3.3.1, there exist probability measures µ, ν on Ω∗ such that

ψ1(f) =

∫
Ω∗
ψω′(f)dµ(ω′), ψ2(f) =

∫
Ω∗
ψω′(f)dν(ω′)

for every f ∈ L∞(R×
+). Then if we put λ = αµ+ (1− α)ν ∈ P (Ω∗), we have that

ψω(f) = αψ1 + (1− α)ψ2 =

∫
Ω∗
ψω′(f)dλ(ω′) for every f ∈ L∞(R×

+)

⇐⇒ (WUf)(ω) =

∫
Ω∗

(WUf)(ω′)dλ(ω′) for every f ∈ L∞(R×
+)

⇐⇒ g(ω) =

∫
Ω∗
g(ω′)dλ(ω′) for every g ∈ WUL∞

⇐⇒ h(ω) =

∫
Ω∗
h(ω′)dλ(ω′) for every h ∈ C(Ω∗).

Therefore, λ = δω holds. Thus the support sets of µ and ν are {ω} and we conclude
that µ = ν = δω, that is, ψ1 = ψ2 = ψω. This completes the proof.

Next theorem is an immediate consequence of the proof of Theorem 3.3.2.
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Theorem 3.3.3. For any ψ ∈ M, a probability measure µ on Ω∗ which represents ψ
is unique. Namely, ψ is uniquely expressed in the form

ψ(f) =

∫
Ω∗
ψω(f)dµ(ω).

for some µ ∈ P (Ω∗).

A consequence of Theorem 3.3.3 is that Ψ : P (Ω∗) → M is an affine homeomor-
phism. Also the isomorphism Ψ between the two flows (Ω∗, {τ s}s∈R) and (M̃, {P ∗

s }s∈R)
established in Section 3.2 can be extended to an isomorphism between their closed con-
vex hulls; we define linear operators Ts in a similar way as Ps for each s ≥ 0.

Ts : Cub(R×
+) −→ Cub(R×

+), (Tsf)(x) = f(x+ s), s ≥ 0.

Let T ∗
s be their adjoint operators. Then we have that the two continuous flows

(P (Ω∗), {T ∗
s }s∈R) and (M, {P ∗

s }s∈R) are isomorphic via Ψ:

Theorem 3.3.4. Ψ ◦ T ∗
s = P ∗

s ◦Ψ holds for each s ∈ R.

We give below our main results of this section formulated in the summation setting.

Corollary 3.3.2. ex(C) = C̃.

Corollary 3.3.3. For any φ ∈ C, there is a unique probability measure µ on Ω∗ such
that

φ(f) =

∫
Ω∗
φω(f)dµ(ω)

holds for every f ∈ l∞.
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Chapter 4

Absolute continuity and singularity

4.1 Definitions

Following [3, Chapter 6] we introduce the notions of absolute continuity and singularity
for charges. In the following, let µ and ν be any two nonnegative charges on (X,F).

Definition 4.1.1. We say that ν is absolutely continuous with respect to µ if for any
ε > 0, there exists δ > 0 such that ν(A) < ε whenever µ(A) < δ, where A ∈ F. In this
case, we write ν ≪ µ.

We can consider a weak version of absolute continuity in a natural way as follows:

Definition 4.1.2. We say that ν is weakly absolutely continuous with respect to µ if
ν(A) = 0 whenever µ(A) = 0, where A ∈ F. In this case, we write ν ≺ µ.

Next we define the notion of singularity.

Definition 4.1.3. We say that µ and ν are singular if for every ε > 0, there exists a
set D ∈ F such that µ(D) < ε and ν(Dc) < ε. In this case, we write µ ⊥ ν.

Also we can define a strong version of singularity in a way that seems to be natural.

Definition 4.1.4. We say that µ and ν are strongly singular if there exists a set D ∈ F

such that µ(D) = 0 and ν(Dc) = 0. In this case, we write µ ⊨ ν.

The distinctions between absolute continuity and weak absolute continuity, singu-
larity and strong singularity are essential, as the following theorems show, when µ and
ν are charges which are not countably additive. We refer to [3] for the proofs.

Theorem 4.1.1. Let F be a σ-algebra of subsets of X, and µ and ν are nonnegative
measures on (X,F) such that ν is bounded. Then ν ≺ µ if and only if ν ≪ µ.
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Theorem 4.1.2. Let F be a σ-algebra of subsets of X, and µ and ν are nonnegative
measures on (X,F). Then ν ⊥ µ if and only if µ ⊨ ν.

Now for a given charge space (X,F, µ), we introduce an extension of µ to the Borel
measure of the stone space of F. This method plays an important role for formulating
various notions concerning charges.

Let (X,F, µ) be a charge space with µ is bounded and nonnegative. By the Stone
representation theorem, For an algebra F, there exists a compact space F and a natural
Boolean isomorphism ϕ : F → C, where C is the algebra of the clopen subsets of F .

Now define a charge µ̂ on C by µ̂(ϕ(A)) = µ(A) and we get a charge space (F,C, µ̂).
Since any union of infinite disjoint family of clopen subsets can not be a clopen subset,
µ̂ is countably additive on C and thus by the E. Hopf extension theorem, we can extend
it to a countable additive measure on the σ-algebra generated by C, that is, the Baire
σ-algebra of F . This can also be extended to the Borel σ-algebra B(F ) of S as a
countable additive measure in a unique way that µ̂ is regular. We still denote it by µ̂.
We denote by supp µ the support of µ̂ in F .

In particular, for a charge space (N,P(N), µ) where µ is a bounded nonnegative
charge, the Stone space of P(N) is βN and Boolean isomorphism of P(N) onto the
clopen algebra of βN is given by A 7→ Â for every A ∈ P(N). Thus µ can be extended
to a Borel measure µ̂ on βN.

Now we can formulate these notions by extended measures. Below we use familiar
notions of absolute continuity and singularity of countably additive measures.

Theorem 4.1.3. Let µ and ν be bounded nonnegative charges on (X,F). Then the
following statements hold:

1. ν ≪ µ if and only if ν̂ ≪ µ̂.

2. ν ≺ µ if and only if supp ν ⊆ supp µ.

3. ν ⊥ µ if and only if ν̂ ⊥ µ̂.

4. ν ⊨ µ if and only if supp ν ∩ supp µ = ∅.

Proof . (1) (1) Let us assume that ν ≪ µ. Given ε > 0, take δ > 0 as above.
Let E ∈ B(F ) with µ̂(E) = 0. Since µ̂ is regular, for any δ > δ′ > 0, one can
choose A ∈ F such that µ̂(ϕ(A)△E) < δ′ and ν̂(ϕ(A)△E) < δ′. Thus we have
µ(A) = µ̂(ϕ(A)) ≤ µ̂(ϕ(A)△E) + µ̂(E) = µ̂(ϕ(A)△E) < δ′. On the other hand,
ν̂(E) ≤ ν̂(ϕ(A)△E)+ ν̂(ϕ(A)) ≤ δ′+ ε. Since δ′ and ε can be arbitrary small, we have
ν̂(E) = 0. Hence we have ν̂ ≪ µ̂ in the sense of measure theory.

Conversely, suppose that ν̂ ≪ µ̂. This can be written as ν̂ ≺ µ̂ in the terms defined
above. Since B(F ) is a σ-algebra and µ̂ and ν̂ are measures, ν̂ ≪ µ̂ if and only if ν̂ ≺ µ̂
by Theorem 4.1.1. Thus through ϕ−1 we have ν ≪ µ.

(2) is obvious.
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(3) Let us assume that ν ⊥ µ. Let ε1 > 0 and Dε1,i ∈ F, i ≥ 1 be such that
µ(Dε1,i) <

ε1
2i

and ν(Dc
ε1,i

) < ε1
2i
. Notice that ν(Dε1,i) > 1 − ε1

2i
for every i ≥ 1. Hence

we have ν̂(∪i≥1ϕ(Dε1,i)) = 1. On the other hand, µ̂(∪i≥1ϕ(Dε1,i)) ≤
∑∞

i=1
ε1
2i

= ε1. Now
we choose a decreasing sequence {εj}j≥1 of positive numbers such that limj→∞ εj = 0.
Then we put E = ∩j≥1 ∪i≥1 ϕ(Dεj ,i) and we get ν̂(Ec) = 0 and µ̂(E) = 0, which means
that ν̂ ⊥ µ̂ in the sense of measure theory.

Now suppose that ν̂ ⊥ µ̂. Then there exists a set D in B(F ) such that µ̂(D) = 0
and ν̂(Dc) = 0. By the regularity of µ̂ and ν̂, there exists a set C in F such that
µ̂(ϕ(C)△D) < ε and ν̂(ϕ(C)△D) < ε. Thus we have µ(C) = µ̂(ϕ(C)) ≤ µ̂(ϕ(C)△D)+
µ̂(D) < ε and ν(Cc) = ν̂(ϕ(Cc)) ≤ ν̂(ϕ(Cc)△Dc) + ν̂(Dc) = ν̂(ϕ(C)△D) + ν̂(Dc) < ε.
This shows that ν ⊥ µ.

(4) is obvious.

Finally, concerning these notions, we denote a generalization of the Lebesgue de-
composition theorem to charges.

Theorem 4.1.4. For given bounded nonnegative charges µ and ν, there exist nonneg-
ative charges ν1 and ν2 on (X,F) such that

1. ν = ν1 + ν2.

2. ν1 ≪ µ.

3. ν2 ⊥ µ.

Furthermore, a decomposition of ν satisfying (2) and (3) is unique.

Recall that by Theorem 3.2.1, each density measure νU in C̃ is equal to νω for some
ω = (η, t) ∈ Ω∗ defined as follows:

νω(A) = η- lim
n

|A ∩ [θ · 2n]|
θ · 2n

, A ∈ P(N),

where θ = 2t. Arguments in the following sections are developed by using this result.

4.2 Absolute continuity and singularity of density

measures in C̃
Observe that by the above remark for a pair µ, ν in C̃, there are points ω = (η, t) and
ω′ = (η′, t′) in Ω∗ such that µ = νω and ν = νω′ . Without loss of generality, we assume
t, t′ ∈ [0, 1). Now we begin with absolute continuity.

Theorem 4.2.1. νω′ ≪ νω if and only if ω′ ∈ o−(ω).
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Proof. (Sufficiency) By the assumption, η′ = τ−mη holds for some nonnegative integer
m. Fix any positive number δ > 0 and let A be a set with νω(A) < δ. We take X ∈ η
such that

|A ∩ [θ · 2n]|
θ · 2n

< 2δ

whenever n ∈ X. Remark that τ−mX = {n−m : n ∈ X} ∈ η′. We have that for any
n ∈ X (notice that in the case of m = 0, θ′ ≤ θ holds),

|A ∩ [θ′ · 2n−m]|
θ′ · 2n−m

≤ 2m · θ
θ′

· |A ∩ [θ′ · 2n−m]|
θ · 2n

≤ 2m · θ
θ′

· |A ∩ [θ · 2n]|
θ · 2n

< 2m+1 · θ
θ′

· δ

then

νω′(A) = η′- lim
n

|A ∩ [θ′ · 2n]|
θ′ · 2n

≤ lim sup
n∈τ−mX

|A ∩ [θ′ · 2n]|
θ′ · 2n

≤ 2m+1 · θ
θ′

· δ.

Hence for any given ε > 0, put δ < 1
2m+1

θ′

θ
ε, then for any A ∈ P(N) we have

νω(A) < δ =⇒ νω′(A) < ε.

The proof is complete.
(Necessity) We shall show the contraposition. Now we assume that ω′ ̸∈ o−(ω) and

then either (1) η′ ̸∈ o−(η) or (2) η = η′ and t′ > t holds.
(1) For any positive integer m, we can take A ∈ η,B ∈ η′ such that (B ∪ τB ∪ · · · ∪

τm−1B) ∩ A = ∅. Now we put Im = ∪n∈B([θ · 2n−1], 2n], then we have

νω′(Im) = η′- lim
n

|Im ∩ [θ′ · 2n]|
θ′ · 2n

≥ lim inf
n∈B

|Im ∩ [θ′ · 2n]|
θ′ · 2n

≥ 2n − θ · 2n−1

θ′ · 2n
≥ 1

θ′

(
1− θ

2

)
.

On the other hand, notice that n ∈ A implies that B ∩ [n−m+ 1, n] = ∅, then

νω(Im) = η- lim
n

|Im ∩ [θ · 2n]|
θ · 2n

≤ lim sup
n∈A

|Im ∩ [θ · 2n]|
θ · 2n

≤ 2n−m

θ · 2n
=

1

θ · 2m
.
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Hence for any δ > 0, Choose any positive integer m with 1
θ2m

< δ, we have

νω(Im) < δ and νω′(Im) ≥
1

θ′

(
1− θ

2

)
.

Thus we conclude that νω′ ̸≪ νω.
(2) In this case, for m ≥ 1, take B ∈ η such that B ∩ τ kB = ∅, k = 1, 2 . . . ,m. Put

Im = ∪n∈B([2
n · θ], [2n · θ′]] and we have

νω′(Im) = η′- lim
n

|Im ∩ [θ′ · 2n]|
θ′ · 2n

≥ lim inf
n∈B

|Im ∩ [θ′ · 2n]|
θ′ · 2n

≥ θ′ · 2n − θ · 2n

θ′ · 2n
= 1− θ

θ′
.

On the other hand,

νω(Im) = η- lim
n

|Im ∩ [θ · 2n]|
θ · 2n

≤ lim sup
n∈B

|Im ∩ [θ · 2n]|
θ · 2n

≤ 2n−m

θ · 2n
=

1

θ · 2m
.

Hence for any δ > 0, Choose any positive integer m with 1
θ2m

< δ, we have

νω(Im) < δ and νω′(Im) ≥ 1− θ

θ′
.

Thus we have νω′ ̸≪ νω.

Theorem 4.2.2. If µ and ν are elements of C̃ and mutually absolutely continuous,
that is, ν ≪ µ and µ≪ ν, then µ = ν.

Proof. Let µ = νω and ν = νω′ for some ω, ω′ ∈ Ω∗. From the assumption of the
theorem and Theorem 4.2.1, we can write ω′ = τ−sω and ω = τ−tω′ for some s, t ≥ 0.
Thus we have that ω = τ−(s+t)ω. As is well known, there are no periodic points in the
discrete flow (N∗, τ), which fact implies immediately that there are no periodic points
in the continuous flow (Ω∗, {τ s}s∈R). Thus we get s + t = 0, i.e., s = t = 0. Hence
ω = ω′. We obtain the result.

Remark 4.2.1. Let ω, ω′ be any two elements of Ω∗, then we define a partial order ≤
on Ω∗ as follows:

ω′ ≤ ω ⇐⇒ ω′ ∈ o−(ω).

Building on Theorem 4.2.1 one can check that Φ is also an isomorphism between the
partially ordered sets (Ω∗,≤) and (C̃,≪).
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Next we prove the result of singularity.

Theorem 4.2.3. νω and νω′ are singular if and only if o(ω)∩o(ω′) = ∅, i.e., ω′ ̸∈ o(ω).

Proof. Necessity is obvious by Theorem 4.2.1. Hence we shall prove sufficiency. By
the assumption, o(η) ∩ o(η′) = ∅ also holds in N∗. For any positive integer m, take a
set B in η′ such that {τ−(m−1)η, · · · , τ−1η, η, τη, · · · , τmη} ∩ B∗ = ∅. Thus we have

η /∈
m−1∪
i=−m

τ iB∗.

Then take A in η such that (∪m−1
i=−mτ

iB) ∩ A = ∅. Then we define Jm = ∪n∈B([θ
′ ·

2n−m], [θ′ · 2n]], m ≥ 1. Hence

νω′(Jm) = η′- lim
n

|Jm ∩ [θ′ · 2n]|
θ′ · 2n

≥ lim inf
n∈B

|Jm ∩ [θ′ · 2n|]
θ′ · 2n

≥ lim inf
n∈B

θ′ · 2n − θ′ · 2n−m

θ′ · 2n
= 1− 1

2m
.

On the other hand, since if n ∈ A, then [n−m+ 1, n+m] ∩ B = ∅, we have

νω(Jm) = η- lim
n

|Jm ∩ [θ · 2n]|
θ · 2n

≤ lim sup
n∈A

|Jm ∩ [θ · 2n]|
θ · 2n

≤ θ′ · 2n−m

θ · 2n
=
θ′

θ
· 1

2m
.

Therefore for any ε > 0, take any positive integer m with θ′

θ
1

2m−1 < ε, we get

νω(Jm) ≤ ε, and νω′(Jm
c) ≤ ε.

Thus we conclude that νω ⊥ νω′ .

Next we concerned with weakly absolutely continuity and strong singularity.

Theorem 4.2.4. νω′ ≺ νω if and only if ω′ ∈ o−(ω).

Proof. (Sufficiency) Remark that it suffices to show that

νω′(A) > 0 =⇒ νω(A) > 0.
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By the assumption, η′ ∈ o−(η) holds in N∗. For any X ′ in η′, there exists an integer
m ≥ 0 such that τ−mη ∈ X ′∗, i.e., τmX ′ ∈ η. Now we take any A ∈ P(N) such that

νω′(A) = η′- lim
n

|A ∩ [θ′ · 2n]|
θ′ · 2n

= δ > 0

and then take X ′ ∈ η′ such that

n ∈ X ′ =⇒ |A ∩ [θ′ · 2n]|
θ′ · 2n

>
δ

2
.

Then we have

|A ∩ [θ · 2n+m]|
θ · 2n+m

=
1

2m
· θ

′

θ
· |A ∩ [θ · 2n+m]|

θ′ · 2n

≥ 1

2m
· θ

′

θ
· |A ∩ [θ′ · 2n]|

θ′ · 2n

>
1

2m+1
· θ

′

θ
· δ

for any n ∈ X. Hence

νω(A) = η- lim
n

|A ∩ [θ · 2n]|
θ · 2n

≥ lim inf
n∈τmX′

|A ∩ [θ · 2n]|
θ · 2n

≥ 1

2m+1
· θ

′

θ
· δ > 0.

This completes the proof.
(Necessity) We shall show the contraposition. Assume that ω′ ̸∈ o−(ω) and it

implies that either (1) η′ ̸∈ o−(η) or (2) η = η′, t′ > t holds.
(1) There exists a set X ′ ∈ η′ such that X ′∗ ∩ o−(η) = ∅, i.e., η ̸∈ ∪i≥0τ

iX ′∗.
Hence for any fixed positive integer m, there is a set Am ∈ η with Am ∩ (X ′ ∪ τX ′ ∪
· · · ∪ τm−1X ′) = ∅. Now we define I = ∪n∈X([θ · 2n−1], 2n]. For any n ∈ Am, since
X ′ ∩ [n−m+ 1, n] = ∅ we have

νω(I) = η- lim
n

|I ∩ [θ · 2n]|
θ · 2n

≤ lim sup
n∈Am

|I ∩ [θ · 2n]|
θ · 2n

≤ 2n−m

θ · 2n
=

1

θ · 2m
.
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Thus since m ≥ 1 can be arbitrary, we have νω(I) = 0. On the other hand,

νω′(I) = η′- lim
n

|I ∩ [θ′ · 2n]|
θ′ · 2n

≥ lim inf
n∈X

|I ∩ [θ′ · 2n]|
θ′ · 2n

≥ 2n − θ · 2n−1

θ′ · 2n
≥ 1

θ′

(
1− θ

2

)
.

Hence we have shown that I ⊆ N satisfies νω(I) = 0 and νω′(I) > 0. Thus νω′ ̸≺ νω.
We get the result.

(2) We take X ∈ η as o−(η) \ {η} ̸∈ X∗. Put I = ∪n∈X([θ · 2n], [θ′ · 2n]]. For any
m ≥ 1, take Am ∈ η such that Am ∩ (τX ∪ τ 2X ∪ . . . ∪ τm−1X) = ∅ and notice that
n ∈ Am implies X ∩ [n−m+ 1, n− 1] = ∅, we have

νω(I) = η- lim
n

|I ∩ [θ · 2n]|
θ · 2n

≤ lim sup
n∈Am

|I ∩ [θ · 2n]|
θ · 2n

≤ θ′ · 2n−m

θ · 2n
=
θ′

θ
· 1

2m
,

which shows that νω′(I) = 0. On the other hand, we have

νω′(I) = η′- lim
n

|I ∩ [θ′ · 2n]|
θ′ · 2n

≥ lim inf
n∈X

|I ∩ [θ′ · 2n]|
θ′ · 2n

≥ θ′ · 2n − θ · 2n

θ′ · 2n
= 1− θ

θ′
.

Hence we get νω(I) = 0 and νω′(I) > 0 and thus νω′ ̸≺ νω holds.

Remark 4.2.2. Let ω, ω′ be any two elements of Ω∗, then we define a preorder ⊑ on
Ω∗ as follows:

ω′ ⊑ ω ⇐⇒ ω′ ∈ o−(ω).

Building on Theorem 4.2.4 one can check that Φ is an isomorphism between the pre-
ordered sets (Ω∗,⊑) and (C̃,≺).

Finally, we shall show the following result about strong singularity.

Theorem 4.2.5. νω and νω′ are strongly singular if and only if ω′ /∈ o−(ω) and ω /∈
o−(ω

′).
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Proof. Necessity is obvious by Theorem 4.2.4. Hence we will show sufficiency. First,
by the assumption, we can take disjoint sets X ∈ η and X ′ ∈ η′ such that X∗∩o−(η′) =
∅, X ′∗ ∩ o−(η) = ∅, i.e., ∪i≥0τ

iX∗ ̸∋ η′ and ∪i≥0τ
iX ′∗ ̸∋ η. Now we take decreasing

sequences {Xi}i≥0, {Xi
′}i≥0 of η, η′ with X0 ⊆ X and X ′

0 ⊆ X ′ such that for every
m ≥ 0,

(X ∪ τX ∪ . . . τm+1X) ∩X ′
m = ∅

and
(X ′ ∪ τX ′ . . . τm+1X ′) ∩Xm = ∅

holds. For every k ≥ 0 we define

Ik =
∪

n∈τ−kXk

([θ · 2n−1], [θ · 2n]], Jk =
∪

n∈τ−kX′
k

([θ′ · 2n−1], [θ′ · 2n]].

Let us Y = ∪∞
k=0τ

−kXk and Y
′ = ∪∞

k=0τ
−kX ′

k and put I = ∪∞
k=0Ik = ∪n∈Y ([θ ·2n−1], [θ ·

2n]] and J = ∪∞
k=0Jk = ∪n∈Y ′([θ′ · 2n−1], [θ′ · 2n]]. First we show that I ∩ J = ∅. In

fact, assume that I ∩ J ̸= ∅ and there exists a pair m,m′ such that Im ∩ Im′ ̸= ∅.
This means that at least one of the sets τ−mXm ∩ τ−m′

Xm′ , τ−(m−1)Xm ∩ τ−m′
Xm′ or

τ−mXm ∩ τ−(m′−1)Xm′ is not empty. But since we have assumed that Xm ⊆ X and
Xm′ ⊆ X ′, this contradicts the assumption above.

For every m ≥ 1, n ∈ Xm−1 implies that n−m+ 1, · · · , n ∈ Y . Hence

n ∈ Xm−1 =⇒ ([θ · 2n−m], [θ · 2n]] ⊆ I.

Then we have

νω(I) = η- lim
n

|I ∩ [θ · 2n]|
θ · 2n

≥ lim inf
n∈Xm−1

|I ∩ [θ · 2n]|
θ · 2n

≥ θ · 2n − θ · 2n−m

θ · 2n
= 1− 1

2m
.

Since m ≥ 1 is arbitrary, we get νω(I) = 1. In a similar way, we also have νω′(J) = 1.
Thus we obtain νω ⊨ νω′ .

We remark that Theorem 4.2.5 is equivalent to the following.

Theorem 4.2.6. νω and νω′ are strongly singular if and only if o−(ω) ∩ o−(ω′) = ∅.

Proof. Sufficiency is obvious. However it seems that the necessity is seemingly stronger
than the claim in Theorem 4.2.5. Assume that νω ⊨ νω′ and o−(ω)∩ o−(ω′) ̸= ∅. Then
there exists a ω′′ ∈ N∗ such that ω′′ ∈ o−(ω) and ω

′′ ∈ o−(ω
′). But from Theorem 4.2.4

we have that νω′′ ≺ νω and νω′′ ≺ νω′ . This implies that supp νω′′ ⊆ supp νω ∩ supp
νω′ ̸= ∅, which contradicts the assumption.
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4.3 Miscellany

In this section we shall give some consequences of the results of the previous section.
First, by Theorem 4.2.1 and Theorem 4.2.3 we obtain immediately the following result:

Theorem 4.3.1. For any two elements in C̃, one is absolutely continuous with respect
to the other or they are singular.

Similarly, combining Theorem 4.2.4 and Theorem 3.2.5, we obtain the following
result.

Theorem 4.3.2. For any two elements in C̃, one is weakly absolutely continuous with
respect to the other or they are strongly singular.

As we have seen in the previous section, properties of the orbit of ω under {τ s}s∈R
give rise to properties of the density measure νω in C̃. In what follows, we particularly
pay attention to recurrence of the orbit of a point ω in Ω∗, and see how it affects
properties of the density measure νω.

Theorem 4.3.3. (1) If ω ∈ D, then supp νω′ ⊊ supp νω for any ω′ ∈ o−(ω) \ {ω}.
(2) If ω /∈ D then supp νω′ ⊆ supp νω for any ω′ ∈ o(ω). In particular, supp νω′ =

supp νω for any ω′ ∈ o(ω).
(3) If ω ∈ A, then supp νω′ = supp νω for any ω′ ∈ o(ω).

Proof. (1) By Theorem 4.2.4 for any ω′ ∈ o−(ω), supp νω′ ⊆ supp νω. Also ω /∈ o−(ω
′)

since ω is not recurrent. Then again by Theorem 4.2.4 supp νω ⊊ supp νω′ . Hence
supp νω′ ⊊ supp νω.

(2) Observe that if ω ∈ D then o−(ω) = o(ω). Then first half of the claim follows
immediately by Theorem 4.2.4. Without loss of generality, we can assume that ω′ ∈
o−(ω). By Theorem 4.2.1 we get that supp νω′ ⊆ supp νω. On the other hand,
ω ∈ o−(ω

′) since ω /∈ D. That is, by Theorem 4.2.4, supp νω ⊆ supp νω′ . Hence supp
νω = supp νω′ .

(3) Let ω ∈ A, then notice that for any ω′ ∈ o(ω) = o−(ω), the negative semi-orbit
o−(ω

′) is dense in o(ω), that is, ω ∈ o−(ω
′) i.e., supp νω ⊆ supp νω′ by Theorem 4.2.4.

Then we get the result immediately.
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Chapter 5

Additive property

5.1 Equivalent conditions to additive property

In this section, we introduce some equivalent assertions to the additive property. As we
have mentioned in Chapter 1, one can generalize some of the main theorems in measure
theory to charges having the additive property. In fact, conversely, the validity of these
theorems are also sufficient conditions for charges to have the additive property. We
begin with the completeness of Lp spaces over charges, which is the original motive of
introducing the notion of the additive property.

Theorem 5.1.1. For a nonnegative charge µ on (X,F), µ has the additive property if
and only if Lp(µ) is complete.

The next result is a generalization of the Radon-Nikodym theorem to charges.

Theorem 5.1.2. For a bounded nonnegative charge µ on (X,F), µ has the additive
property if and only if for every charge ν on (X,F) with ν ≪ µ there exists some
f ∈ L1(µ) such that ν(A) =

∫
A
fdµ holds for every A ∈ F.

The Hahn decomposition theorem can be generalized to charges as follows.

Theorem 5.1.3. For a bounded nonnegative charge µ on (X,F) where F is a σ-algebra,
µ has the additive property if and only if for every charge ν on (X,F) such that ν ≪ µ,
there exists some A ∈ F satisfying the following property; for each B ∈ F with B ⊆ A,
ν(B) ≥ 0 holds, and each B ∈ F with B ⊆ Ac, ν(B) ≤ 0 holds.

The additive property of µ can be characterized by the extended measure µ̂. As
we have seen in Section 4.1, we extend a charge space (X,F, µ) to (F,B(F ), µ̂). We
will need the following formulation of the additive property, which is a version of [2,
Theorem 2].

Theorem 5.1.4. A bounded nonnegative charge µ has the additive property if and only
if µ̂(U) = µ̂(U) for every open sets U of supp µ, where U denotes the closure of U in
supp µ.
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5.2 Additive property of finite sums of charges

In this section, we consider a necessary and sufficient condition that charges which are
expressed by finite sums of charges have the additive property. Generally, if charges µ
and ν on (X,F) have the additive property, the sum µ+ ν need not have the additive
property. First we have the following result.

Theorem 5.2.1. Let µ, ν be bounded nonnegative charges on (X,F) such that ν ≪ µ.
If µ has the additive property, then ν also has the additive property.

From this result together with the Lebesgue decomposition theorem, It is sufficient
to consider the condition for pairs of charges µ, ν which are mutually singular. It is
given by the following.

Theorem 5.2.2. For any nonnegative and mutually singular charges µ, ν on (X,F)
with F is a σ-algebra, µ+ ν has the additive property if and only if both µ and ν have
the additive property and µ and ν are strongly singular.

This result can be extended to the case of finite sums of charges immediately:

Theorem 5.2.3. Let µ1, µ2, . . . , µn be nonnegative charges on (X,F) with F is a σ-
algebra and they are mutually singular one another. Then µ1 + µ2 + . . . + µn has the
additive property if and only if every µi, 1 ≤ i ≤ n, has the additive property and they
are mutually strongly singular.

5.3 Additive property of countable sums of charges

Now we consider an extension of Theorem 5.2.3. In the previous section, we considered
finite sums and here we deal with the additive property of countable sums of charges.

Theorem 5.3.1. Let {µi}i≥1 be a countable family of bounded nonnegative charges
on (X,F) such that they are mutually singular and µ =

∑
i≥1 µi exists. Let Si be the

support of µi and S be the support of µ. Then µ has the additive property if and only
if each µi has the additive property and they are mutually strongly singular and(

lim sup
i

Si

) ∩ ∪
i≥1

Si = ∅

holds, where lim supi Si = ∩i≥1∪j≥iSj.

Proof . (Sufficiency) We prove the condition in Theorem 5.1.4. By the definition of µ,
it holds that µ̂ =

∑
i≥1 µ̂i and thus µ̂ is on ∪i≥1Si. Also since µ̂i are mutually strongly

singular, µ̂(A) = µ̂(A ∩ ∪i≥1Si) =
∑

i≥1 µ̂(A ∩ Si) holds.
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In what follows, For any Borel set X of F we denote the closure of B ⊆ X in

X by B
X
. In the case of X = F , we omit the superscript. Take any A ∈ B(F ).

By the assumption, notice that S = ∪i≥1Si ∩ lim supi Si and lim supi Si ∩ ∪i≥1Si = ∅.
Since each µi has the additive property, from Theorem 5.1.4 and the fact that charges

µi are mutually strongly singular, we have µ̂(A ∩ Si) = µ̂i(A ∩ Si) = µ̂i(A ∩ Si
Si
) =

µ̂i(A ∩ Si) = µ̂(A ∩ Si).
On the other hand, it holds that A ∩ S = A ∩ (∪i≥1Si ∪ lim supi Si) = ∪i≥1(A ∩ Si)∪

A ∩ lim supi Si = ∪i≥1A ∩ Si∪A ∩ lim supi Si. Together with the fact that µ̂(lim supi Si) =
0, we have

µ̂(A ∩ SS
) = µ̂(A ∩ S) = µ̂(∪i≥1A ∩ Si) + µ̂(A ∩ lim sup

i
Si)

=
∑
i≥1

µ̂(A ∩ Si) =
∑
i≥1

µ̂(A ∩ Si) = µ̂(A ∩ S).

Hence by Theorem 5.1.4 we see that µ has the additive property.
(Necessity) Suppose that {µi}i≥1 are singular and µ =

∑
i≥1 µi has the additive

property. Let µn and µm be any pair of distinct charges. Put µ′ =
∑

i≥1,i ̸=n µi and
since µ′ ⊥ µn and µ = µ′ + µn, we have that by Theorem 5.2.2 µ′ and µn have the
additive property and they are strongly singular. Next assume to the contrary that
lim supi Si ∩ ∪i≥1Si ̸= ∅. Fix some n ≥ 1 with lim supi Si ∩ Sn ̸= ∅ and consider the
charge µ′ =

∑
i≥1,i ̸=n µi. Since the support S

′ of µ′ is ∪i≥1,i ̸=nSi∪lim supi Si, S
′∩Sn ̸= ∅

holds and thus µ′ and µn are not strongly singular. But this contradicts Theorem 5.2.2
by the same arguments above, which completes the proof.

5.4 Additive property of density measures in C̃
In this section we study the additive property of elements of C̃. Recall that we say that
µ ∈ C̃ has the additive property if for any increasing sequence A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂
· · · of P(N), there exists a set B ⊆ N such that

(1) µ(B) = limk µ(Ak),
(2) µ(Ak \B) = 0 for every k ∈ N.

Now we have the following theorem.

Theorem 5.4.1. νω has the additive property if and only if ω ∈ D−.

Proof. First we introduce the following auxiliary charges; let ω = (η, t) ∈ Ω∗ and
m = 0, 1, . . ..

νω,m(A) = η- lim
n

|A ∩ ([θ · 2n−m−1], [θ · 2n−m]]|
θ · 2n−m−1

, A ∈ P(N).
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Then it is obvious that

νω =
∞∑

m=0

1

2m
νω,m.

First we show that every νω,m satisfy the additive property. Given an increasing se-
quence A1 ⊆ A2 ⊆ . . . ⊆ Ai ⊆ . . . of P(N). Put limi→∞ νω,m(Ai) = α. We take a
decreasing sequence {Xi}i≥1 of η such that∣∣∣∣ |Ai ∩ ([θ · 2n−m−1], [θ · 2n−m]]|

θ · 2n−m−1
− νω,m(Ai)

∣∣∣∣ < 1

i

whenever n ∈ Xi. Then we define B ⊆ N as B ∩ ([θ · 2n−m−1], [θ · 2n−m]] = Ai ∩ ([θ ·
2n−m−1], [θ ·2n−m]] if n ∈ Xi \Xi+1 and B∩ ([θ ·2n−m−1], [θ ·2n−m]] = ∅ otherwise. First
we show that νω,m(B) = α. For any ε > 0, take i ∈ N with ε > 1

i
and νω,m(Ai)−α < ε.

Then for n ∈ Xi, there exists some j ≥ i such that n ∈ Xj \Xj+1. Hence

|νω,m(B)− α| ≤ lim sup
n∈Xi

∣∣∣∣ |B ∩ ([θ · 2n−m−1], [θ · 2n−m]]|
θ · 2n−m−1

− νω,m(Aj)

∣∣∣∣+ |νω,m(Aj)− α|

≤ lim sup
n∈Xi

∣∣∣∣ |Aj ∩ ([θ · 2n−m−1], [θ · 2n−m]]|
θ · 2n−m−1

− νω,m(Aj)

∣∣∣∣+ |νω,m(Aj)− α|

≤ 1

j
+ ε ≤ 1

i
+ ε < 2ε.

Since Xi ∈ η, we have νω,m(B) = α. Next we show that νω,m(Ai \ B) = 0 for every
i ≥ 1. For any n ∈ Xi, there exists some j ≥ i such that n ∈ Xj \Xj+1. Hence we have

νω,m(Ai \B) ≤ lim sup
n∈Xi

∣∣∣∣ |(Ai \B) ∩ ([θ · 2n−m−1], [θ · 2n−m]]|
θ · 2n−m−1

∣∣∣∣ = 0

since B ∩ ([θ · 2n−m−1], [θ · 2n−m]] = Aj ∩ ([θ · 2n−m−1], [θ · 2n−m]] and Ai ⊆ Aj. So we
have the result.

Let Sm = supp νω,m and S = supp νω. By Theorem 6.3.1, it is sufficient to show
that lim supm Sm∩∪i≥1Si = ∅ if and only if ω ∈ D−. Assume that ω = (η, t) ∈ D− and
thus η ∈ Dd,−. This means that there exists some X ∈ η such that X∗ ∩ o−(η) \ {η}.
Put I0 = ∪n∈X([θ · 2n−1], [θ · 2n]] and it is obvious that νω,0(I0) = 1, which means that
S0 ⊆ I∗0 . Now we show that I∗0 ∩ Sm = ∅ for every m ≥ 1. In fact, take Xm ∈ η
such that τ−mXm ∩X = ∅ and put Im = ∪n∈τ−mXm([θ · 2n−1], [θ · 2n]]. Then we have
νω,m(Im) = 1 and I∗0 ∩ I∗m = ∅. Hence we have that I∗0 ∩ Sm = ∅ for all m ≥ 1 and
then lim supm Sm ∩ S0 = ∅. In a similar way, we can show that lim supm Sm ∩ Si = ∅
for every i ≥ 1 and thus we have lim supm Sm ∩ ∪i≥1Si = ∅.

On the other hand, assume that ω /∈ D−, i.e., η ∈ o−(η). Notice that for any
X ∈ η and positive integer N > 0 there exists some n ≥ N such that τ−nη ∈ X∗.
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We show that for any neighborhood I∗ of S0 and positive integer N , there is some
n ≥ N such that I∗ ∩ Sn ̸= ∅, which obviously implies lim supm Sm ∩ ∪i≥0Si ̸= ∅. Let
f(m) ∈ l∞ be the function |I ∩ ([θ · 2m−1], [θ · 2m]]|/θ · 2m−1. Then νω,0(I) = f(η) holds.
Since f(η) = νω,0(N) > 0, there exists a neighborhood X of η such that η′ ∈ X implies
f(η′) > 0. Let n ≥ N be any integer such that τ−nη ∈ X. Then νω,n(I) = f(τ−nη) > 0,
that is, Sn ∩ I∗ ̸= ∅. We completes the proof.

In the remainder of the section, we consider the existence of a density measure in C̃
with the additive property. As we have seen in Theorem 5.4.1, there is a close relation
between the additive property of density measures in C̃ and the topological dynamical
system (N∗, τ) or the flow (Ω∗, {τ s}s∈R). Following Chou [7], we say a set A ⊆ N is thin
if A∩ τnA is a finite set for each positive integer n. It is obvious that a point η ∈ N∗ is
in Wd if and only if ω is contained in the closure of a thin set A, that is, η contains a
thin set A. Chou proved Wd is dense in N∗ [7, Proposition 1.2]. In particular, together
with our result of Theorem 5.4.1, the existence of a density measure νω having the
additive property follows immediately.

Lemma 5.4.1. For a set A = {nk}∞k=1, A is a thin set if and only if

lim inf
k→∞

(nk − nk−1) = ∞.

Proof. Sufficiency is obvious. Suppose that A is thin and

lim inf
k→∞

(nk − nk−1) = lA <∞

then A ∩ τ lAA is an infinite set. It contradicts the assumption that A is thin.

We give the following characterization of a density measure νω with ω in W . Recall
that νω = ν [2

ω ] for ω in Ω∗.

Theorem 5.4.2. For ω = (η, t) in Ω∗, νω has the additive property and the associated
free ultrafilter U = [2ω] contains a set X = {nk}∞k=1 such that

lim
k→∞

nk+1

nk

= ∞

if and only if ω ∈ W.

Proof. Note that a free ultrafilter U = [2ω] = [θ2η] is generated by the basis {[θ · 2A] :
A ∈ η}, where θ = 2t and [θ · 2A] = {[θ · 2n] : n ∈ A} for each A ∈ η. First we prove
sufficiency. Since ω ∈ W ⊆ D−, νω has the additive property by Theorem 5.4.1. Take
any thin set A = {nk}∞k=1 contained in η, put X = [θ · 2A] = {mk}∞k=1, then X ∈ U . By
Lemma 5.4.1 we have that

lim inf
k→∞

mk+1

mk

= lim inf
k→∞

[θ · 2nk+1 ]

[θ · 2nk ]
= 2lim infk→∞(nk+1−nk) = ∞.
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Conversely, assume that U = [2ω] contains a set X = {mk}∞k=1 with limk→∞
mk+1

mk
=

∞. Since there is a set A = {nk}∞k=1 in η such that [θ · 2A] ⊆ X, then

2lim infk→∞(nk+1−nk) = lim inf
k→∞

[θ · 2nk+1 ]

[θ · 2nk ]
≥ lim inf

k→∞

mk+1

mk

= ∞.

Hence lim infk→∞(nk+1 − nk) = ∞, that is, by Lemma 5.4.1 A is a thin set. Then
ω ∈ W .

In particular, this result is contained in [4, Theorem 1], which we remarked at
Section 1. Then it is natural to ask that whether there exists a density measure νω ∈ C̃
with the additive property and the associated ultrafilter does not contain a set {nk}∞k=1

with limk→∞
nk+1

nk
= ∞. The answer to this question is affirmative. Notice that from

the above theorem, it is equivalent to W ⊊ D− or, equivalently, Wd ⊊ Dd,−.

Theorem 5.4.3. We have Wd ⊊ Dd,−.

Proof. We put Γ = N∗ \Wd. Since Wd is an open invariant set, Γ is a closed invariant
subset. For any A ⊆ N, we denote A∗∩Γ by Â. Then it is sufficient to show that there
exists a set X ⊆ N such that

X̂ ⊊ ∪l
i=1τ

iX̂

for every l ≥ 1. Indeed, if it is true, it follows that by the compactness of X̂, X̂ \
(∪∞

i=1τ
iX̂) ̸= ∅, and obviously any point in the set is contained in Dd,− \Wd.

Take a set X ⊆ N and write X = {nk}∞k=1. We put

YX = {m ∈ N : |{k ≥ 2 : nk − nk−1 = m}| = ∞}

and observe that
X \ (∪l

i=1τ
iX) = {ni ∈ X : nk − nk−1 > l}

and

X̂ \ (∪l
i=1τ

iX̂) ̸= ∅ ⇐⇒ (X \ ∪l
i=1τ

iX)̂ ̸= ∅
⇐⇒ X \ ∪l

i=1τ
iX ̸⊆ Wτ

⇐⇒ X \ ∪l
i=1τ

iX is not a thin set.

Hence we obtain that X̂ ⊊ ∪l
i=1τ

iX̂ for any l ≥ 1 if and only if {nk ∈ X : nk−nk−1 > l}
is not a thin set for any l ≥ 1, i.e., YX is an infinite set. We can see easily that such a
set X exists. For example, put X = {2n + 2k : n ≥ 0, 0 ≤ k < n}.

Therefore for any point ω ∈ D−\W , the density measure νω gives an example having
the additive property but does not satisfy the sufficient condition of [4, Theorem 1].
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5.5 Additive property of density measures of a more

general form

From Theorems 4.2.1 and Theorem 5.4.1 we get the following result.

Theorem 5.5.1. Let ω ∈ D− and µ be a countably additive probability measure on
the space R+ = [0,∞) of nonnegative real numbers. Then the density measure ν in C
defined by

ν(A) =

∫ ∞

0

ντ−sω(A)dµ(s), A ∈ P(N)

has the additive property.

Proof. Let {Ai}∞i=1 be an increasing sequence of P(N). By Theorem 5.4.1 νω has the
additive property. Then there is a set B ∈ P(N) such that limi νω(Ai) = νω(B) and
νω(Ai \B) = 0 for every i ≥ 1. Notice that the latter condition yields that Âi∩ supp νω
⊆ B̂∩ supp νω for each i ≥ 1, then we have that

lim
i
νω(Ai) = νω(B) ⇐⇒ ν̂ω(∪∞

i=1Âi) = ν̂ω(B̂)

⇐⇒ ν̂ω(B̂ \ (∪∞
i=1Âi)) = 0.

For any ω′ ∈ o−(ω) since νω′ ≪ νω, it follows that

ν̂ω′(B̂ \ (∪∞
i=1Âi)) = 0 ⇐⇒ lim

i
νω′(Ai) = νω′(B).

Also νω′(Ai \B) = 0 holds for each i ≥ 1. Then it follows that

ν(Ai \B) =

∫ ∞

0

ντ−sω(Ai \B)dµ(s) = 0

for each i ≥ 1. Also we have that

ν(B) =

∫ ∞

0

ντ−sω(B)dµ(s)

=

∫ ∞

0

lim
i
ντ−sω(Ai)dµ(s)

= lim
i

∫ ∞

0

ντ−sω(Ai)dµ(s) = lim
i
ν(Ai).

Hence ν has the additive property.

Next from Theorems 4.2.6, 5.2.2 and 5.4.1 we obtain the following result.
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Theorem 5.5.2. For any mutually singular finite number of density measures νω1 , νω2 , · · · , νωm,
their finite convex combinations

ν =
m∑
i=1

ciνωi

has the additive property if and only if ωi ∈ D−, i = 1, 2, · · · ,m and orbit closures
o−(ωi), i = 1, 2, · · · ,m, are pairwise disjoint.

Combining Theorems 5.5.1 and 5.5.2, we have that

Theorem 5.5.3. Take a finite number of points ω1, ω2, · · · , ωm in D− such that orbit
closures o−(ω1), o−(ω2), · · · , o−(ωm) are pairwise disjoint, and let µi, i = 1, 2, · · · ,m,
be countably additive probability measures on R+ = [0,∞). Then the density measure
ν in C defined by

ν(A) =
m∑
i=1

ci

∫ ∞

0

νφ−sωi
(A)dµi(s), A ∈ P(N)

has the additive property, where 0 ≤ ci ≤ 1, i = 1, 2, · · · ,m with
∑m

i=1 ci = 1.
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