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Abstract

The Dantzig selector, which was proposed by Candés and Tao in 2007, is an es-
timation procedure for regression models in high-dimensional and sparse settings.
The Dantzig selectors for some statistical models of stochastic processes are stud-
ied in this thesis. We apply this procedure to Cox’s proportional hazards model
and some specific models of diffusion processes and prove the lq consistencies for
every q ∈ [1,∞] and the variable selection consistencies of the estimators. Based
on partial likelihood and quasi-likelihood methods which were studied intensively in
low-dimensional settings, we study these statistical models of stochastic processes
in high-dimensional and sparse settings, which need some mathematically challeng-
ing tasks to prove the asymptotic properties of the estimators. The consistencies
in the sense of the lq norm for every q ∈ [1,∞] of the estimators are derived from
the stochastic maximal inequalities to deal the curse of dimension and some ma-
trix factors and conditions on Hessian matrices of likelihood functions to deal with
the sparsities. We use Bernstein’s inequalities for martingales and the maximal in-
equalities using Orlicz norm for the former problem and matrix conditions using
restricted eigenvalue, compatibility factor and weak cone invertibility factor for the
latter problem, which are known to be weaker conditions than others. We prove
that lq consistency of the estimator implies the variable selection consistency which
enables us to reduce the dimension. Using the dimension reduction, asymptotically
normal estimators can be constructed.
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Chapter 1

Introduction

Recently, data with much more measurements than number of observations are
paid more and more attentions in statistical applications. We call this kind of
data “high-dimensional” data. We need much more parameters than sample size
in order to construct models for these high-dimensional data. To estimate high-
dimensional parameters, classical estimation procedures may not work well because
the parameter spaces are too large and rich. Therefore, many researchers have been
proposed new estimation procedures. Most of them are constructed by adding some
penalty functions of parameters, which induce the sparsity of parameters, i.e., most
of components in parameters are zero, to score functions.

For instance, let us consider the following linear regression model:

Y = Zβ + ϵ,

where Y ∈ Rn is a response vector, Z is a n×p design matrix, β ∈ Rp is an unknown
parameter, and ϵ = (ϵ1, . . . , ϵn) ∈ Rn is an error vector such that ϵi ∼ N(0, σ2),
i = 1, . . . , n, are independent and identically distributed. We consider the estimation
problem of β in a high-dimensional and sparse setting, i.e., p ≫ n and the number
S of nonzero components of the true value β0 is smaller than n. One of the most
famous estimation procedures for this problem is l1 penalized method called Lasso
(Least absolute shrinkage and selection operator) which was proposed by Tibshirani
(1996):

β̂L := arg min
β∈Rp

{
1

n
∥Y − Zβ∥22 + λ∥β∥1

}
,

where λ is a tuning parameter. Lasso estimator β̂L is a least square estimator
penalized by l1 norm of parameter. It is well known that Lasso estimator has good
asymptotic properties such as consistency under some regularity conditions.
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On the other hand, Candés and Tao (2007) proposed a relatively new method
called the Dantzig selector which is defined as follows:

β̂D := arg min
β∈C

∥β∥1, C :=

{
β ∈ Rp : sup

1≤j≤p
|Zj⊤(Y − Zβ)| ≤ λ

}
,

where λ ≥ 0 is a tuning parameter. When λ = 0, the Dantzig selector returns to
the LSE (least square estimator) in general settings or MLE (maximum likelihood
estimator) in Gaussian settings. For λ > 0, the Dantzig selector searches for the
sparsest β within the given distance of the classical estimators such as LSE or MLE.
Notice that this method has a good potential to be applied to other models. We can
see that the Dantzig selectors have also good asymptotic properties. In particular,
Bickel et al. (2009) proved that Lasso estimator and the Dantzig selector exhibit
similar behaviors for the linear regression model and the nonparametric regression
model. Based on their results, we prove the consistency of the Dantzig selector for a
linear regression model in Chapter 2 of this thesis. The Dantzig selector’s advantages
are not only consistency but also the variable selection consistency. We can construct
an consistent estimator for the support index set of the true value which enables
us to reduce the dimension and define an asymptotically normal estimator after
the selection as in Chapter 2 of this thesis. In addition, the Dantzig selector has a
computational advantage because it can be solved by a linear programming. We can
easily verify the finite sample performance of the Dantzig selector for linear model
numerically as presented in Chapter 6.

Lasso and the Dantzig selector have been studied for various models including
models of stochastic processes. Especially, there are many existing literatures deal-
ing with Cox’s proportional hazards model. The proportional hazards model, which
was proposed by Cox (1972), is one of the most commonly used models for survival
analysis. In a fixed dimensional setting, i.e., the case where the number of covari-
ates p is fixed, Andersen and Gill (1982) proved that the maximum partial likelihood
estimator for the regression parameter has the consistency and the asymptotic nor-
mality. Besides, they discussed the asymptotic property of the Breslow estimator for
the cumulative baseline hazard function. In a high-dimensional and sparse setting,
Huang et al. (2013) proved lq consistency for every q ∈ [1,∞) of Lasso estimator,
which is proposed by Tibshirani (1997), under some appropriate conditions. On
the other hand, Antoniadis et al. (2010) proposed the Survival Dantzig selector
which is an application of the Dantzig selector for the proportional hazards model
and proved the l2 consistency of the estimator. In Chapter 3 of this thesis, we will
prove the lq consistency of the Dantzig selector for the proportional hazards model
for all q ∈ [1,∞] under some conditions which are similar to those of Huang et al.
(2013). Moreover, based on the lq consistency result, we prove the variable selection
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consistency of the Dantzig selector. The selection result enables us to reduce the
dimension and construct asymptotically normal estimators for regression parameter
and cumulative baseline hazards function.

We can also consider the estimation problems in a high-dimensional and sparse
setting for some models of diffusion processes. In Chapter 4, we will consider the
one-dimensional stochastic process which is a solution to the stochastic differential
equation given by

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

exp(θ⊤Zs)dWs, (1.1)

where {Wt}t≥0 is a standard Brownian motion, b(·) is a drift function, which is
treated as a nuisance parameter, {Zt}t≥0 = {(Z1

t , Z
2
t , . . . , Z

p
t )}t≥0 is a uniformly

bounded p-dimensional continuous process, which is regarded as a covariate vector,
and θ is an unknown parameter of interest. We observe the process {Xt}t≥0 at
n + 1 equidistant time points 0 =: tn0 < tn1 < . . . < tnn, where tnk = ktnn/n for
k = 0, 1, . . . , n. Assume that p = pn ≫ n and the number of non-zero components S
in the true value θ0 is relatively small. In this high-dimensional and sparse setting,
we will consider the estimation problem of θ0. The covariate processes {Zi

t}t≥0,
i = 1, 2, . . . , pn, are, for example, some functionals {ϕi(X

i
t)}t≥0 of solutions to other

stochastic differential equations {X i
t}t≥0, where ϕi’s are uniformly bounded smooth

functions or random variables which do not depend on t. Using these discretely
observed data, we will apply the Dantzig selector in order to estimate θ and prove
the lq consistency of the estimator for all q ∈ [1,∞] in Chapter 4 of this thesis.
Our estimation procedure is based on the quasi-likelihood method for discretely
observed data which has been studied intensively in low-dimensional cases. The
study on this subject started at early 90s by the works of, for instance, Yoshida
(1992), Genon-Catalot and Jacod (1993) and Kessler (1997) among others. For
recent developments on this subject, see Yoshida (2011) and Uchida and Yoshida
(2012). Estimation problems for models of stochastic processes in high or fixed
dimensional and sparse settings have been studied by many authors. De Gregorio
and Iacus (2012), Masuda and Shimizu (2017) dealt with some penalized estimators
in discretely observed multi-dimensional models of diffusion processes under fixed
dimensional settings. In high-dimensional setting, there are some researches on
the estimation problems for diffusion coefficients or volatility matrices of models of
diffusion processes. For example, Wang and Zou (2010) proposed the estimator for
the sparse volatility matrix in high-dimensional settings by the thresholding, and
derived the rate of convergence of the estimator in the sense of Lβ-norm for β ≥ 2.

The statistical inference for high-dimensional linear diffusion processes was es-
pecially discussed by some researchers. Periera and Ibrahimi (2014) studied vari-
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ous models of multi-dimensional diffusion processes observed continuously in high-
dimensional settings including the following p-dimensional linear model:

Xt = X0 +

∫ t

0

Θ⊤Xsds+Wt, t ∈ [0, T ]. (1.2)

This model may be useful for various fields such as statistical physics, chemical re-
actions, finances and network systems. They proposed a Lasso type estimator for
the true value Θ0 of Θ and discussed the support recovery of the estimator when
the dimension of the process p and the time interval T tends to ∞ independently.
Similarly, Gaiffas and Matulewicz (2017) studied the drift estimation based on the
Lasso-type estimators for the high-dimensional Ornstein-Uhlenbeck processes de-
scribed by the SDE like (1.2). They derived the oracle properties of the estimator
for the sparse drift matrix and showed some applications for financial data. How-
ever, there are few previous researches dealing with the estimation problems for
these linear models based on discrete observations. In Chapter 5, we will consider
the process {Xt}t≥0 which is a solution to the following linear stochastic differential
equation which is more general than (1.2):

Xt = X0 +

∫ t

0

ΘXsds+ σWt, (1.3)

where {Xt}t≥0 = {(X1
t , . . . , X

p
t )}t≥0 is a p-dimensional process, Θ is an unknown p×p

drift matrix, and σ = diag(σ1, . . . , σp) is an unknown p×p diagonal matrix. We will
consider the estimation problems for Θ and σ based on the discrete time observation
in a high-dimensional and sparse setting for Θ and prove the consistency and the
variable selection consistency of the estimators similar to those in other chapters.

The consistency of Lasso estimator and the Dantzig selector depends on some
matrix conditions for the Hessian matrices of the log likelihood functions. Candés
and Tao (2007) and Antoniadis et al. (2010) proved the consistency of the Dantzig
selector under the condition called UUP condition (Uniform Uncertainty Principle
condition). On the other hand, Bickel et al. (2009) showed the consistency of Lasso
estimator and the Dantzig selectors for the linear regression model and nonparamet-
ric regression model using the factor called restricted eigenvalue and the conditions
for this factor. Huang et al. (2013) proved the consistency of Lasso estimator for
the proportional hazards model using restricted eigenvalue and related factors called
compatibility factor and weak cone invertibility factors. In this paper, we will use
restricted eigenvalue type conditions to prove the consistency of the Dantzig selec-
tors for statistical models of stochastic processes because it is known that these type
of conditions are weaker than UUP condition. In Chapter 2 of this paper, we will
discuss these matrix conditions using linear regression models.
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It is well-known that the variable selection consistency is generally almost equiv-
alent to the, so called, Irrepresentable condition which is implied from the condition
for existing the unique solution to the optimization problem determining the esti-
mator such as Lasso and the Dantzig selector (See for example, Fan et al. (2016)).
For Lasso type problem, Irrepresentable condition is relatively simple. However, for
the Dantzig selector, this condition becomes very complicated and hard to present
explicitly even for simple linear regression models. Since it is hard to consider this
condition for models of stochastic processes, we propose another method to prove
the variable selection consistency by using thresholding methods.

This thesis is organized as follows. First, we introduce an overview of the asymp-
totic theory for the Dantzig selector by using linear regression models in Chapter
2. The techniques to prove the consistency and the variable selection consistency in
this chapter are very similar to those in other chapters. In Chapter 3, the Dantzig
selector for Cox’s proportional hazards model is presented. This part is based on the
paper Fujimori and Nishiyama (2017a) and Fujimori (2017). The proportional haz-
ards model includes regression parameters and baseline hazards function as unknown
parameters. We propose asymptotically normal estimators for both parameters in
a high-dimensional and sparse setting by using the variable selection consistency of
the Dantzig selector for the proportional hazards model. Chapters 4 and 5 concern
the Dantzig selector for models of diffusion processes. In Chapter 4, we consider
the model of diffusion process including a high-dimensional and sparse parameter
in diffusion coefficient which is the regression coefficient for the high-dimensional
covariate process. We propose the Dantzig selector for the parameter based on
the quasi-likelihood method and prove the lq consistency and the variable selection
consistency of the estimator. In addition, we propose an asymptotically normal esti-
mator by dimension reduction under an ergodic assumption on the covariate process.
The lq consistency of the Dantzig selector for the model can be seen in Fujimori and
Nishiyama (2017b). Chapter 5, which is based on the paper Fujimori (2018), deals
with a linear model of diffusion processes which has an unknown high-dimensional
and sparse matrix in the drift coefficient and unknown high-dimensional diagonal
matrix in the diffusion coefficient. We estimate the diffusion matrix by maximum
quasi likelihood estimator and the drift matrix by the Dantzig selector which are
proved to satisfy the consistency. Similar to other chapters, we also discuss the
variable selection consistency and the construction of the asymptotically normal es-
timator for the drift matrix in this chapter. Finally, we provide numerical studies
for a linear regression model and Cox’s proportional hazards model in Chapter 6.
We discuss the way to choose the tuning parameter and verify the l1 consistency
and the variable selection consistency numerically for finite sample.
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Throughout this paper, we denote by ∥ · ∥q the lq norm of vector for every
q ∈ [1,∞], i.e., for v = (v1, v2, . . . , vp)

⊤ ∈ Rp, we define:

∥v∥q =

(
p∑

j=1

|vj|q
) 1

q

, q <∞;

∥v∥∞ = sup
1≤j≤p

|vj|.

In addition, for a m× n matrix A, where m, n ∈ N, we define ∥A∥∞ by

∥A∥∞ := sup
1≤i≤m

sup
1≤j≤n

|Aj
i |,

where Aj
i denotes the (i, j)-component of the matrix A. For a vector v ∈ Rp, and an

index set T ⊂ {1, 2, . . . , p}, we denote the |T |-dimensional sub-vector of v restricted
by the index set T by vT , where |T | is the number of elements of the set T . Similarly,
for a p × p matrix A and index sets T, T ′ ⊂ {1, 2, . . . , p}, we define the |T | × |T ′|
sub-matrix AT,T ′ by

AT,T ′ := (Aj
i )i∈T,j∈T ′ .

For an R-valued random variable X on a probability space (Ω,F , P ), we define
the Lq norm of X by

∥X∥Lq := (E[|X|q])
1
q ,

where E[·] denotes the expectation with respect to the probability measure P .
For a nondecreasing, convex R-valued function Φ with Φ(0) = 0 and X a random

variable, we introduce Orlicz norm of X with respect to Φ by

∥X∥Φ := inf

{
C > 0 : E

[
Φ

(
|X|
C

)]
≤ 1

}
.

We will use this norm with respect to the function Φq(X) = ex
q − 1 for q ≥ 1.
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Chapter 2

An overview of the Dantzig
selector for linear regression
models

In this chapter, we will introduce the asymptotic properties of the Dantzig selec-
tor for the following p-dimensional linear regression model on a probability space
(Ω,F , P ):

Yi = Z⊤
i β + ϵi, i = 1, 2, . . . , n, (2.1)

where Yi’s are R-valued response variables, {Zi}’s are Rp-valued independent random
variables whose components are bounded P -almost surely, β ∈ Rp is an unknown
parameter of interest and {ϵi}ni=1 is an independent zero mean random sequence. In
high-dimensional and sparse setting, that is, p = pn → ∞ as n→ ∞ and the number
S of nonzero components in the true value β0 of the unknown parameter β is smaller
than n, we will show the consistency and the variable selection consistency of the
Dantzig selector in Sections 2.3 and 2.4. Moreover, we will show that the variable
selection consistency enables us to construct an asymptotically normal estimator for
β0 by dimension reduction in Section 2.5. The main concept of asymptotic theory
in this chapter can be seen in other chapters which deal with models of stochastic
processes.
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2.1 Model setups and preliminaries

2.1.1 Model setups

We use the matrix form of the model (2.1) as follows:

Y = Zβ + ϵ,

where Y = (Y1, . . . , Yn)
⊤ is an Rn-valued response vector, Z = (Z⊤

1 , . . . , Z
⊤
n )

⊤ is a
n×p random design matrix and ϵ = (ϵ1, . . . , ϵn)

⊤ is an Rn-valued zero-mean random
variable whose components are mutually independent. We write T0 for the support
index set of the true value β0 and S for the number of indices in T0 which means a
sparsity of the parameter, i.e.,

T0 := {j : βj
0 ̸= 0}, S = |T0|.

We assume the following conditions for the sample size n, the dimension p = pn,
sparsity S.

Assumption 2.1. The following (i) and (ii) are satisfied.

(i) The dimension p = pn allows to tends to ∞ as n→ ∞. Moreover, it holds that

log pn
n

→ 0, n→ ∞.

(ii) S is a fixed constant independent of n.

Moreover, we assume that the random variable Z and ϵ satisfy the following
conditions.

Assumption 2.2. (i) The sequence {Zi}i∈N is an i.i.d. sequence of random vec-
tors. For every i = 1, 2, . . . , n, Zj

i , j = 1, . . . , pn are mutually independent.
Moreover, there exists a positive constant M such that

sup
i,j∈N

|Zj
i | ≤M, a.s.

(ii) The sequence {ϵi}i∈N is an independent sub-Gaussian random sequence with zero
mean, i.e., there exist positive constants C and ν such that

P (|ϵi| > t) ≤ C exp
(
−νt2

)
, t > 0, i ∈ N.

Moreover, {ϵi}i∈N is independent of {Zi}i∈N.
Note that it is well-known that bounded and centered random variables are sub-

Gaussian. Under Assumption 2.2, we can deal with the curse of dimension by using
maximal inequalities described in the next subsection.
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2.1.2 Maximal inequalities for sub-Gaussian random vari-
ables

To prove the consistency of high-dimensional estimators, we will use Orlicz norm
introduced as follows.

Definition 2.3. Let Φ be a nondecreasing, convex function with Φ(0) = 0 and X a
random variable. Orlicz norm of X with respect to Φ is defined by

∥X∥Φ := inf

{
C > 0 : E

[
Φ

(
|X|
C

)]
≤ 1

}
.

We will use this norm with respect to the function Φp(X) = ex
p − 1 for p ≥ 1.

For example, we can easily show that Φ2-Orlicz norm is bounded if and only if X is
sub-Gaussian. Especially, when X is a standard normal random variable, it holds
that

∥X∥Φ2 =

√
8

3
,

which will be used in the proof of Theorem 5.4. It is well-known that Φp-Orlicz
norm∥ · ∥Φp and Lp-norm ∥ · ∥p satisfies the following inequalities.

∥X∥Φp ≤ ∥X∥Φq(log 2)
1
q
− 1

p , p ≤ q.

∥X∥p ≤ p!∥X∥Φ1 .

Moreover, we have the following maximal inequality for Orlicz norm.

Lemma 2.4. Let Φ be a nondecreasing, convex, nonzero function with Φ(0) = 0
and

lim sup
x,y→∞

Φ(x)Φ(y)

Φ(cxy)
<∞

for some constant c > 0. It holds for any random variables X1, . . . , Xm that∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
Φ

≤ KΦ−1(m) max
1≤i≤m

∥Xi∥Φ,

where K is a positive constant depending only on the function Φ.

Note that if we put Φ = Φp, then we have that

Φ−1
p (m) = (log(1 +m))

1
p .

In addition, combining the Bernstein’s inequality and Orlicz norm, we have the
another type of maximal inequality as follows.

11



Lemma 2.5. If random variables X1, . . . , Xm satisfy the following tail bound

P (|Xi| > x) ≤ 2 exp

(
− x2

2(b+ ax)

)
, i = 1, . . . ,m

for all x and fixed a, b > 0, then it holds that∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
Φ1

≤ K
{
a log(1 +m) +

√
b
√

log(1 +m)
}
,

where K is a universal constant.

See e.g. van der Vaart and Wellner (1996) for the details of Orlicz norm and
maximal inequalities.

2.2 The Dantzig selector for linear regression mod-

els

Now, we define the estimator for β0 by the Dantzig selector proposed by Candés
and Tao (2007) defined as follows:

β̂n := arg min
β∈Cn

∥β∥1, Cn := {β ∈ Rp : ∥ψn(β)∥∞ ≤ λn} , (2.2)

where

ψn(β) :=
1

n
Z⊤(Y − Zβ)

and λn ≥ 0 is a tuning parameter which satisfies the following condition.

Assumption 2.6. The tuning parameter λn tends to 0 as n → ∞. Moreover, it
holds that

λn√
n−1 log pn

→ ∞, n→ ∞.

Some remarks on the choice of the tuning parameter are presented in Chapter 6.
In this chapter, we prove the consistency of this estimator in the sense of lq norm for
every q ∈ [1,∞] and the variable selection consistency. The proof of lq consistency
of the Dantzig selector for the linear regression model is similar to that in Bickel
et al. (2009). It is well-known that the variable selection consistency of the Lasso
type and Dantzig selector type estimator is equivalent to “Irrepresentable condition”
which is obtained from KKT conditions for the optimization problems (see e.g. Fan
et al. (2016)). However, Irrepresentable condition for the Dantzig selector is very
complicated compared with that for Lasso type problems even in a linear regression
models. We therefore provide another proof of the variable selection consistency by
using the thresholding method.
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2.3 The lq-consistency of the Dantzig selector

First, we prove that the true value β0 belongs to the constrain set Cn with probability
tending to 1.

Lemma 2.7. Under Assumptions 2.1, 2.2 and 2.6, it holds that

lim
n→∞

P (∥ψn(β0)∥ > λn) = 0.

Proof. Noting that

∥ψn(β0)∥∞ =

∥∥∥∥ 1nZ⊤ϵ

∥∥∥∥
∞
,

we first evaluate the tail probability;

P

(
1

n

∣∣∣∣∣
n∑

i=1

Zj
i ϵi

∣∣∣∣∣ > x

)

for every x ∈ R and j ∈ {1, . . . , pn}. Since Zj
i ’s are [−M,M ]-valued P.-a.s. and ϵi’s

are independent sub-Gaussian random variables, it holds for every s > 0 and some
positive constant σ that

P

(
1

n

n∑
i=1

Zj
i ϵi > x

)
≤ P

(
exp

(
s

n

n∑
i=1

Zj
i ϵi

)
> esx

)

≤ e−sx

n∏
i=1

E

[
exp

(
Ms

n
ϵi

)]
≤ e−sx

n∏
i=1

exp

(
σ2(Ms)2

2n2

)
≤ exp

(
− nx2

2Mσ2

)
.

We therefore obtain that

P

(
1

n

∣∣∣∣∣
n∑

i=1

Zj
i ϵi

∣∣∣∣∣ > x

)
≤ 2 exp

(
− nx2

2Mσ2

)
.

From Lemma 2.5, it holds for a universal constant K > 0 that∥∥∥∥∥ sup
1≤j≤pn

∣∣∣∣∣ 1n
n∑

i=1

Zj
i ϵi

∣∣∣∣∣
∥∥∥∥∥
Φ1

≤ K

√
Mσ2 log(1 + pn)

n
.

13



It follows from Markov’s inequality that

P (∥ψn(β0)∥∞ ≥ λn) = P ( sup
1≤j≤pn

|ψj
n(β0)| ≥ λn)

≤ P

Φ1

(
sup1≤j≤pn |ψj

n(β0)|
∥ sup1≤j≤pn |ψ

j
n(β0)|∥Φ1

)
≥ Φ1

 λn

∥ sup
1≤j≤pn

|ψj
n(β0)|∥Φ1




≤ Φ1

 λn

∥ sup
1≤j≤pn

|ψj
n(β0)|∥Φ1


−1

≤ Φ1

 λn(
K
√

Mσ2 log(1+pn)
n

)


−1

.

The right-hand side of this inequality converges to 0 if the tuning parameter λn
satisfies that

λn√
n−1 log pn

→ ∞,

which is verified under Assumption 2.6. We thus obtain the conclusion. 2

Next, we prove that the pn×pn Hessian matrices Jn := 1/nZ⊤Z can be approximated
by the deterministic matrix In := E[Z⊤Z].

Lemma 2.8. Under Assumption 2.2, the random sequence en defined by

en := ∥Jn − In∥∞

converges to 0 in probability as n→ ∞.

Proof. Since {Zi}ni=1 is i.i.d. random sequence, (k, l) component of the matrix Jn−
In for each k, l ∈ {1, 2, . . . , pn} is

(Jn − In)k.l =
1

n

n∑
i=1

Zk
i Z

l
i − E[Zk

1Z
l
1].

It follows from the weak law of large numbers that

1

n

n∑
i=1

Zk
i Z

l
i − E[Zk

1Z
l
1] →p 0, n→ ∞
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for every k, l ∈ {1, 2, . . . , pn}. Moreover, as mentioned in earlier, bounded and
centered random variables {(Jn − In)}k,l are sub-Gaussian. We therefore can show
that

∥Jn − In∥∞ →p 0

by the similar way to the proof of Lemma 2.7. 2

The asymptotic properties of classical estimators such as LSE and MLE are follows
from non-singularities of Hessian matrices or Fisher information matrices. However,
in high-dimensional settings, such conditions cannot be generally verified. To deal
with such phenomena, we introduce the following factors for the high-dimensional
matrix In which can be seen in, for example, Bickel et al. (2009) and van de Geer
and Bühlmann (2009).

Definition 2.9. For every index set T ⊂ {1, 2, · · · , pn} and h ∈ Rpn, hT is
a R|T | dimensional sub-vector of h constructed by extracting the components of h
corresponding to the indices in T . Define the set CT by

CT := {h ∈ Rpn : ∥hT c∥1 ≤ ∥hT∥1}.

We introduce the following three factors.

(A) Compatibility factor

κ(T0; In) := inf
0̸=h∈CT0

S
1
2 (h⊤Inh)

1
2

∥hT0∥1
.

(B) Weak cone invertibility factor

Fq(T0; In(β0)) := inf
0̸=h∈CT0

S
1
qh⊤Inh

∥hT0∥1∥h∥q
, q ∈ [1,∞),

F∞(T0; In) := inf
0̸=h∈CT0

(h⊤Inh)
1
2

∥h∥∞
.

(C) Restricted eigenvalue

RE(T0; In) := inf
0̸=h∈CT0

(h⊤Inh)
1
2

∥h∥2
.

These factors are similar to the minimal eigenvalue of matrix In, which cannot
expect to be positive. However, since we can show that the restriction set CT0 satisfy
that β̂n − β0 ∈ CT0 , it is sufficient to prove the consistency of the estimator that
these three factors are positive. We thus assume that the compatibility factor is
asymptotically positive instead of the non-singularity of In.
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Assumption 2.10. It holds that

lim inf
n→∞

κ(T0; In) > 0.

Noting also that ∥hT0∥
q
1 ≥ ∥hT0∥qq for all q ∈ [1,∞), and ∥h∥∞ ≤ ∥h∥1, we

can see that κ(T0; In) ≤ 2
√
SRE(T0; In), κ(T0; In) ≤ Fq(T0; In) and κ(T0; In) ≤

2
√
SF∞(T0; In). We therefore have that (B) and (C) are also asymptotically positive

under Assumption 2.10. There exist other matrix conditions for Dantzig selector
such as the Uniform Uncertainty Principle (UUP) condition, which is used in Candés
and Tao (2007) and Antoniadis et al. (2010). To discuss the relationship between
the UUP condition and our conditions, let us introduce some objects.

Note that there exists a matrix A such that A⊤A = In, because In is a non-
negative definite matrix. Given a index set T ⊂ {1, 2, . . . , pn}, we write AT for the
pn × |T | matrix constructed by extracting the columns of A corresponding to the
indices in T . The restricted isometry constant δN(In) is the smallest quantity such
that

(1− δN(In))∥h∥22 ≤ ∥ATh∥22 ≤ (1 + δN(In))∥h∥22,

for all T ⊂ {1, 2, . . . , pn} with |T | ≤ N , where N ≤ pn is an integer, and all h ∈ R|T |.
The restricted orthogonality constant θS,S′(In) is the smallest quantity such that

|(ATh)
⊤AT ′h′| ≤ θS,S′(In)∥h∥2∥h′∥2

for all disjoint sets T, T ′ ⊂ {1, 2, . . . , pn} with |T | ≤ S, |T ′| ≤ S ′, where S+S ′ ≤ pn
and all vectors h ∈ R|T | and h′ ∈ R|T ′|. For δ2S(In) and θS,2S(In), the UUP condition
is described that 0 < 1− δ2S(In)− θS,2S(In).

In addition, we introduce another factor ϕ2S(T0; In) by

ϕ2S(T0; In) := inf
T⊃T0, |T |≤2S, h∈DT0,T

(h⊤Inh)
1
2

∥hT∥2
,

where

DT0,T :=

{
h ∈ CT0 : ∥hT c∥∞ ≤ min

j∈T\T0

|hj|
}
, T ⊃ T0.

Define that minj∈T\T0 |hj| = ∞ when T = T0. The next lemma provides the asymp-
totic relationship between the UUP condition and a condition for ϕ2S(T0; In). The
proof is an adaptation of that in van de Geer and Bühlmann (2009), so it is omitted.

Lemma 2.11. The UUP condition that

lim inf
n→∞

{1− δ2S(In)− θS,2S(In)} > 0
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implies the following condition;

lim inf
n→∞

ϕ2S(T0; In) > 0.

Noting that ∥hT0∥21 ≤ S∥hT0∥22, we have that

κ(T0; In) ≥ ϕ2S(T0; In),

which implies that

lim inf
n→∞

κ(T0; In) ≥ lim inf
n→∞

ϕ2S(T0; In) > 0.

Therefore, Assumption 2.10 is weaker than other conditions described above. More-
over, we can easily observe that Assumption 2.10 is satisfied when, for example,
S × S sub-matrix InT0,T0 is positive definite.

Now, we are ready to prove the lq consistency of the Dantzig selector.

Theorem 2.12. Under Assumptions 2.1, 2.2, 2.6 and 2.10, the following (i)-(iv)
hold true.

(i) It holds that

lim
n→∞

P

(
∥β̂n − β0∥22 ≥

4∥β0∥21en + 4∥β0∥1λn
RE2(T0; In)

)
= 0, (2.3)

where en = ∥Jn − In∥∞ = op(1) as stated in Lemma 2.8. In particular, ∥β̂n −
β0∥2 →p 0.

(ii) It holds that

lim
n→∞

P

(
∥β̂n − β0∥2∞ ≥ 4∥β0∥21en + 4∥β0∥1λn

F 2
∞(T0; In)

)
= 0. (2.4)

In particular, ∥β̂n − β0∥∞ →p 0.

(iii) It holds that

lim
n→∞

P

(
∥β̂n − β0∥1 ≥

2Sλn
κ2(T0; In)− 2Sen

)
= 0. (2.5)

In particular, ∥β̂n − β0∥1 →p 0.
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(iv) It holds for any q ∈ (1,∞) that

lim
n→∞

P
(
∥β̂n − β0∥q ≥ ξn,q

)
= 0, (2.6)

where

ξn,q =
2S

1
q en

Fq(T0; In)
· 2Sλn
κ2(T0; In)− 2Sen

+
2S

1
qλn

Fq(T0; In)
.

In particular, ∥β̂n − β0∥q →p 0.

Proof. Put h = β̂n − β0. It is sufficient to prove that

∥ψn(β0)∥∞ ≤ λn

implies the inequality (2.3)-(2.6).

(i) and (ii) It is obvious that

|h⊤Jnh| = |h⊤(ψn(β̂n)− ψn(β0))|.

Noting that β̂n ∈ Cn and ∥β̂n∥1 ≤ ∥β0∥1 by the definition of the Dantzig
selector, we have that

|h⊤Jnh| ≤ ∥h∥1∥ψn(β̂n)− ψn(β0)∥∞
≤ 2∥β0∥12λn
= 4∥β0∥1λn.

We therefore obtain that

|h⊤Inh| ≤ |h⊤(Jn − In)h|+ |h⊤Jnh|
≤ ∥h∥21en + 4∥β0∥1λn
≤ 4∥β0∥21en + 4∥β0∥1λn.

Moreover, we can prove that h = β̂n − β0 ∈ CT0 as follows:

0 ≥ ∥β0 + h∥1 − ∥β0∥1 =
∑
j∈T c

0

|hT c
0j
|+
∑
j∈T0

(|β0j + hT0j
| − |β0j|)

≥
∑
j∈T c

0

|hT c
0 j
| −
∑
j∈T0

|hT0j
|

= ∥hT c
0
∥1 − ∥hT0∥1.
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It follows from the definition of RE(T0; In) that

RE2(T0; In) ≤ h⊤Inh

∥h∥22

≤ 4∥β0∥21en + 4∥β0∥1λn
∥h∥22

,

which implies the conclusion in (i). Using F∞(T0; In) instead of RE(T0; In) in
the above inequality, we obtain the conclusion in (ii).

(iii) and (iv) Similarly to the proof of (i), we have that

|h⊤Inh| ≤ ∥h∥21en + 2∥h∥1λn.

From the definition of κ(T0; In), we have that

κ2(T0; In) ≤
S{∥h∥21en + 2∥h∥1λn}

∥hT0∥21
.

Noting that
∥h∥1 ≤ 2∥hT0∥1,

We obtain that

∥h∥1 ≤
2Sλn

κ2(T0; In)− 2Sen
,

which implies the conclusion in (iii). Moreover, it follows from the definition
of Fq(T0; In) for every q ∈ (1,∞) that

Fq(T0; In) ≤
S

1
q {∥h∥21en + 2∥h∥1λn}

∥hT0∥1∥h∥q
,

which implies the conclusion in (iv). 2

2.4 The variable selection consistency

In this subsection, we will show that β̂n satisfies the variable selection consistency.
To do this, we construct an estimator for the support index set T0 of the true value
β0 as follows:

T̂n := {j : |β̂j
n| > λn}. (2.7)

The next theorem states that T̂n = T0 with probability tending to 1, which means
the variable selection consistency of the Dantzig selector.
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Theorem 2.13. Under Assumptions 2.1, 2.2, 2.6 and 2.10, it holds that

lim
n→∞

P
(
T̂n = T0

)
= 1.

Proof. Note that ∥β̂n − β0∥∞ ≤ ∥β̂n − β0∥1 and that the sparsity S is assumed to
be fixed. We have that

lim
n→∞

P
(
∥β̂n − β0∥∞ > λn

)
= 0

by the l1 bound from Theorem 2.6 (i). Therefore, it is sufficient to show that the
next inequality

∥β̂n − β0∥∞ ≤ λn

implies that
T̂n = T0.

For every j ∈ T0, it follows from the triangle inequality that

|βj
0| − |β̂j

n| ≤ |β̂j
n − βj

0| ≤ λn.

We have that
|β̂j

n| ≥ |βj
0| − γn,pn > λn

for sufficiently large n, which implies that T0 ⊂ T̂n. On the other hand, for every
j ∈ T c

0 , we have that
|β̂j

n − βj
0| = |β̂j

n| ≤ λn

since it holds that βj
0 = 0. From this fact, we can see that j ∈ T̂ c

n which implies that
T̂n ⊂ T0. We thus obtain the conclusion. 2

2.5 An asymptotically normal estimator post vari-

able selection

Using the estimator T̂n for T0, we can reduce the dimension which enables us to con-
struct an asymptotically normal estimator. We construct an asymptotically normal
estimator β̂

(2)
n by the solution to the next equation:

ψn(β)T̂n
= 0, βT̂ c

n
= 0. (2.8)

In this section, we prove the asymptotic normality under the next condition.

Assumption 2.14. The S × S sub-matrix InT0,T0 is positive definite.
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Using the central limit theorem and Slutsky’s lemma, we can prove the following
theorem.

Theorem 2.15. Under Assumptions 2.1, 2.2, 2.6, 2.10 and 2.14, it holds that

√
n
(
β̂
(2)

nT̂n
− β0T0

)
1{T̂n=T0} →

d N
(
0, I−1

nT0,T0

)
, n→ ∞.

Proof. Since we have already proved that

∥Jn − In∥∞ →p 0

as n → ∞, we have the corresponding result for S × S sub-matrices. We therefore
obtain that

√
n
(
β̂
(2)

nT̂n
− β0T0

)
1{T̂n=T0} = I−1

n

1√
n
Z⊤

T̂n
ϵ1{T̂n=T0} + op(1).

Noting that it follows from Lemma 2.13 that

1{T̂n=T0} →
p 1, n→ ∞,

we obtain the conclusion by using the central limit theorem for independent random
sequences and Slutsky’s lemma. 2

2.6 Concluding remarks

2.6.1 Remarks on the tuning parameter

Our results strongly depends on the tuning parameter λn. To ensure our lq con-
sistency results, it is sufficient that λn satisfies Assumption 2.6. We therefore can
choose λn, for example, by

λn = c0λ̃n,

where c0 > 0 is a positive constant and

λ̃n =

(
log pn
n

)α

, α ∈
(
0,

1

2

)
.

The exponent α can be chosen close to 1/2 and constant c0 can be chosen arbitrary
for asymptotic results. However, to ensure the finite sample performance for the
variable selection, how to choose c0 is an important point. We will discuss this
problem in Chapter 6, Numerical studies.
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2.6.2 Summary

The Dantzig selector can be defined by the following form for general parametric
models with unknown parameter θ:

θ̂n := argmin
θ∈Cn

∥θ∥1, Cn = {θ ∈ Rpn : ∥Ψn(θ)∥∞ ≤ γn},

where γn ≥ 0 is a tuning parameter and Ψn(·) is the normalized score function for
the model. To verify the lq consistency of this estimator,we need the following two
properties:

Proposition 2.16. It holds that

lim
n→∞

P (∥Ψn(θ0)∥∞ ≥ γ̃n) = 0,

where θ0 is a true value of θ and γ̃n → 0 as n→ ∞.

Assumption 2.17. Let −Mn(θ) be Hessian matrix of the model. For every ϵ > 0,
there exist δ > 0 and n0 ∈ N such that for all n ≥ n0

P (κ(T0;Mn(θ0)) > δ) ≥ 1− ϵ.

where T0 = {j : θj0 ̸= 0} is the support index set of θ0 and κ(T0;Mn(θ0)) is defined
by the same way as in Definition 2.9.

In this chapter, we prove the first property for linear regression model (2.1) by
using the maximal inequality for Orlicz norm under sub-Gaussian settings to deal
with high-dimensional settings. For other models of stochastic processes in this
paper, we can prove the corresponding property by using stochastic inequalities for
martingales instead of sub-Gaussian properties and maximal inequality for Orlicz
norm. The second property for Hessian matrices is assumed in various models, since
this is not so strong assumption as we mentioned in this chapter if the true value
has sparse structure.

Moreover, if the tuning parameter has the same asymptotic rate as the rate of
convergence of ∥Ψn(θ0)∥∞, we can prove that the rate of convergence of the lq error
for every q ∈ [1,∞] can be written by the tuning parameter γn. Using this fact, we
can construct an consistent estimator T̂n for T0 by the thresholding method using the
tuning parameter. We therefore can construct an asymptotically normal estimator
β̂
(2)
n by using T̂n.
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Chapter 3

Cox’s proportional hazards model

The proportional hazards model, which was proposed by Cox (1972), is one of the
most commonly used models for survival analysis. In a fixed dimensional setting, i.e.,
the case where the number of covariates p is fixed, Andersen and Gill (1982) proved
that the maximum partial likelihood estimator for the regression parameter has the
consistency and the asymptotic normality. Besides, they discussed the asymptotic
property of the Breslow estimator for the cumulative baseline hazard function.

Recently, many researchers are interested in a high-dimensional and sparse set-
ting for a regression parameter, that is, the case where p = pn → ∞ as n → ∞
and the number S of nonzero components in the true value is relatively small. In
this setting, several kinds of estimation methods have been proposed for various
regression-type models. Especially, the penalized methods such as Lasso (Tibshi-
rani (1997), Huang et al. (2013), Bradic et al. (2011) and others) have been well
studied. In particular, Huang et al. (2013) derived oracle inequalities of the Lasso
estimator for the proportional hazards model, which means the Lasso estimator
satisfies the consistency even in a high-dimensional setting. Bradic et al. (2011)
considered the general penalized estimators including Lasso, SCAD and others and
proved that the estimators satisfy the consistency and the asymptotic normality. On
the other hand, the Dantzig selector, which was proposed by Candés and Tao (2007)
for the linear regression model, is also applied to the proportional hazards model
by Antoniadis et al. (2010), who dealt with the l2 consistency of the estimator.
However, the asymptotic normalities of the Dantzig selector for high-dimensional
regression parameter and the Breslow estimator have not yet been studied up to our
knowledge.

We will extend the consistency results by Antoniadis et al. (2010) to the lq consis-
tency for every q ∈ [1,∞] by a method similar to that of Huang et al. (2013). More-
over, we will establish the asymptotic normalities of estimators in a high-dimensional
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and sparse setting based on the consistency results as in the previous chapter. To
discuss this problem, we need to consider the dimension reduction of the regression
parameter, which is nearly equivalent to consider the variable selection for a high-
dimensional and sparse regression parameter of the proportional hazards model. The
variable selection methods for the proportional hazards model in high-dimensional
and sparse settings are also discussed by some researchers. For example, Honda and
Härdle (2013) studied the group SCAD-type and adaptive group Lasso estimators
for time varying coefficients in the proportional hazards model and proved that these
estimators achieve the variable selection. On the other hand, we will show that the
Dantzig selector has a variable selection consistency, which enables us to reduce the
dimension. Next, we will construct a new maximum partial likelihood estimator
by using the variable selection consistency result and show that this estimator has
the asymptotic normality. In addition, we will prove that a Breslow type estimator,
which is obtained by using the maximum partial likelihood estimator after dimension
reduction, satisfies the asymptotic normality. In addition, we will observe whether
our selection criterion works well for simple models numerically and compare the
estimators to the classical maximum partial likelihood estimator.

This chapter is organized as follows. The model setup, some regularity condi-
tions and matrix conditions to deal with a high-dimensional and sparse setting are
introduced in Section 3.1. In Section 3.2, we prove the lq consistency of the estima-
tors for the regression parameter. The variable selection consistency of the Dantzig
selector is proved in Section 3.3 and the asymptotic normality of the maximum par-
tial likelihood estimator after dimension reduction in Section 3.4. The asymptotic
property of the Breslow estimator is established in Section 3.5. Summary and an
example which satisfies our matrix condition are presented in Section 3.6.

3.1 Model setups

Let Ti be a survival time and Ci a censoring time of i-th individual for every
i = 1, 2, . . . , n, which are positive real valued random variables on a probability
space (Ω,F , P ). Assume that each i-th individual has an Rp-valued covariate pro-
cess {Zi(t)}t∈[0,1], and that the survival time Ti is conditionally independent of the
censoring time Ci given Zi(t). Moreover, we assume that Ti’s never occur simul-
taneously. For every n ∈ N and t ∈ [0, 1], we observe {(Xi, Di, Zi(t))}ni=1, where
Xi := Ti ∧ Ci and Di := 1{Ti≤Ci}. We define the counting process {Ni(t)}t∈[0,1] and
{Yi(t)}t∈[0,1] for every i = 1, 2, . . . , n as follows:

Ni(t) := 1{t≥Xi,Di=1}, Yi(t) := 1{Xi≥t}, t ∈ [0, 1].
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Let {Ft}t∈[0,1] be the filtration defined as follows:

Ft := σ{Ni(u), Yi(u), Zi(u); 0 ≤ u ≤ t, i = 1, 2, . . . , n}.

Suppose that {Zi(t)}t∈[0,1], i = 1, 2, . . . , n are predictable and bounded processes.
In Cox’s proportional hazards model, it is assumed that each {Ni(t)}t∈[0,1] for every
i = 1, 2, . . . , n has the following intensity:

λi(t) := Yi(t)λ(t) exp(β
⊤Zi(t)), t ∈ [0, 1],

where λ(·) ∈ L1[0, 1] is the unknown deterministic baseline hazard function and
β ∈ Rp is the unknown regression parameter. We have that the following process
{Mi(t)}t∈[0,1] for every i = 1, 2, . . . , n is a square integrable martingale:

Mi(t) := Ni(t)−
∫ t

0

λi(s)ds, t ∈ [0, 1].

Note that predictable variation process of {Mi(t)}t∈[0,1] is given by:

⟨Mi,Mi⟩(t) =
∫ t

0

λi(s)ds, t ∈ [0, 1]

and
⟨Mi,Mj⟩(t) = 0, i ̸= j, t ∈ [0, 1].

Hereafter, we write Λ(·) for the cumulative baseline hazard function, i.e.,

Λ(t) :=

∫ t

0

λ(s)ds, t ∈ [0, 1].

The aim of this chapter is to estimate the true value β0 of the regression parameter
β and the true function Λ0(·) of the cumulative baseline hazard function Λ(·) with
respect to the true baseline function λ0(·) in a high-dimensional and sparse setting
for β0, i.e., p = pn → ∞ as n → ∞ and S := |T0| is a fixed constant which is
independent of n, where T0 := {j; βj

0 ̸= 0} is the support index set of the true value.
To estimate β0, we use Cox’s log-partial likelihood which is given by;

Cn(β) :=
n∑

i=1

∫ 1

0

{β⊤Zi(t)− log S(0)
n (β, t)}dNi(t),

where

S(0)
n (β, t) :=

n∑
i=1

Yi(t) exp(β
⊤Zi(t)).
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Put ln(β) = Cn(β)/n. We write Un(β) for the gradient of ln(β) and Jn(β) for the
Hessian of −ln(β), i.e.,

Un(β) =
1

n

n∑
i=1

∫ 1

0

{
Zi(t)−

S
(1)
n

S
(0)
n

(β, t)

}
dNi(t)

and

Jn(β) =
1

n

n∑
i=1

∫ 1

0

S(2)
n

S
(0)
n

(β, t)−

(
S
(1)
n

S
(0)
n

)⊗2

(β, t)

 dNi(t),

where

S(1)
n (β, t) :=

n∑
i=1

Zi(t)Yi(t) exp(β
⊤Zi(t))

and

S(2)
n (β, t) :=

n∑
i=1

Zi(t)
⊗2Yi(t) exp(β

⊤Zi(t)).

Note that Un(β0) is a terminal value of the following square integrable martingale:

Un(β0, t) :=
1

n

n∑
i=1

∫ t

0

{
Zi(s)−

S
(1)
n

S
(0)
n

(β, s)

}
dMi(s).

3.1.1 Regularity conditions and matrix conditions

We assume the following conditions.

Assumption 3.1. (i) The covariate processes {Zi(t)}t∈[0,1], i = 1, 2, . . . , n, are uni-
formly bounded, i.e., there exists global constant K1 > 0 such that

sup
t∈[0,1]

sup
i

∥Zi(t)∥∞ < K1 a.s.

(ii) The baseline hazard function λ0 is integrable, i.e.,∫ 1

0

λ0(t)dt <∞.

(iii) For every n ∈ N, there exist deterministic R-valued function s
(0)
n (β, t), Rpn

valued function s
(1)
n (β, t) and Rpn×pn- valued function s

(2)
n (β, t) which satisfy

the following conditions:

sup
β

sup
t∈[0,1]

∥∥∥∥ 1nS(l)
n (β, t)− s(l)n (β, t)

∥∥∥∥
∞

→p 0, l = 0, 1, 2

as n→ ∞.
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(iv) The functions s
(l)
n (β, t), l = 0, 1, 2, satisfy the following conditions:

lim sup
n→∞

sup
β

sup
t∈[0,1]

∥s(l)n (β, t)∥∞ <∞, l = 0, 1, 2,

lim inf
n→∞

inf
β

inf
t∈[0,1]

s(l)n (β, t) > 0.

(v) For every β, the following pn × pn matrix In(β) is nonnegative definite:

In(β) :=

∫ 1

0

s(2)n

s
(0)
n

(β, t)−

(
s
(1)
n

s
(0)
n

)⊗2

(β, t)

 s(0)n (β0, t)λ0(t)dt.

(vi) For every ϵ > 0, it holds that

n∑
i=1

∫ 1

0

∥ξnT0,i∥
2
2 1{∥ξnT0,i

∥22>ϵ}Yi(t) exp(β
⊤
0 Zi(t))λ0(t)dt→p 0,

where

ξnT0,i :=
1√
n

{
ZiT0(t)−

S
(1)
nT0

S
(0)
n

(β0T0 , t)

}
.

We define the estimator β̂n of β0 as

β̂n := arg min
β∈Bn

∥β∥1, (3.1)

where Bn := {β ∈ Rpn : ∥Un(β)∥∞ ≤ γ}, and γ ≥ 0 is a suitable constant. We
call the estimator β̂n the Dantzig Selector for Proportional Hazards model (DSfPH).
Note that this estimator is called the Survival Dantzig Selector (SDS) by Antoniadis
et al. (2010).

Now, we introduce some matrix conditions to derive the theoretical results for
DSfPH β̂n. Hereafter, we write T0 for the support of β0, i.e.,

T0 := {j : βj
0 ̸= 0}.

To begin with, we introduce the following three factors (A), (B) and (C), all of
which are used by Huang et al. (2013) for Lasso in Cox’s proportional hazards
model.
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Definition 3.2. For every index set T ⊂ {1, 2, · · · , pn} and h ∈ Rpn, hT is
a R|T | dimensional sub-vector of h constructed by extracting the components of h
corresponding to the indices in T . Define the set CT by

CT := {h ∈ Rpn : ∥hT c∥1 ≤ ∥hT∥1}.

We introduce the following three factors.

(A) Compatibility factor

κ(T0; In(β0)) := inf
0̸=h∈CT0

S
1
2 (h⊤In(β0)h)

1
2

∥hT0∥1
.

(B) Weak cone invertibility factor

Fq(T0; In(β0)) := inf
0̸=h∈CT0

S
1
qh⊤In(β0)h

∥hT0∥1∥h∥q
, q ∈ [1,∞),

F∞(T0; In(β0)) := inf
0̸=h∈CT0

(h⊤In(β0)h)
1
2

∥h∥∞
.

(C) Restricted eigenvalue

RE(T0; In(β0)) := inf
0̸=h∈CT0

(h⊤In(β0)h)
1
2

∥h∥2
.

Huang et al. (2013) defined these factors for the random matrix Jn(β0), and
derived some conditions to treat them as deterministic constants. On the other hand,
we define them not for Jn(β0), but for the deterministic matrix In(β0), since we will
prove that ∥In(β0) − Jn(β0)∥∞ = op(1) later. Noting that ∥hT0∥

q
1 ≥ ∥hT0∥qq for all

q ∈ [1,∞), and ∥h∥∞ ≤ ∥h∥1, we can see that κ(T0; In(β0)) ≤ 2
√
SRE(T0; In(β0)),

κ(T0; In(β0)) ≤ Fq(T0; In(β0)) and κ(T0; In(β0)) ≤ 2
√
SF∞(T0; In(β0)). We therefore

assume in our main theorems that c factors are “asymptotically positive”.

Assumption 3.3. It holds that

lim inf
n→∞

κ(T0; In(β0)) > 0.

An example for this matrix condition is provided in Section 3.6.
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3.2 Consistency

In this section, we will prove the consistency of DSfPH β̂n. To do this, we will
prepare three lemmas. The next lemma states that the true parameter β0 is an
element of Bn appearing in (3.1) with large probability when the sample size n is
large.

Lemma 3.4. Put γ = γn,pn = K2 log(1 + pn)/n
α, where 0 < α ≤ 1/2 and K2 > 0

are constants. If log pn = O(nζ) for some 0 < ζ < α, then it holds that

lim
n→∞

P (∥Un(β0)∥∞ ≥ γn,pn) = 0

and that γn,pn → 0 as n→ ∞.

Proof. Recall that

U j
n(β0, u) =

1

n

n∑
i=1

∫ u

0

[
n∑

k=1

{Zj
i (u)− Zj

k(u)}wk(β0, u)

]
dMi(u),

where u ∈ [0, 1] and

wk(β0, u) =
exp(Z⊤

k (u)β0)Yk(u)
n∑

l=1

exp(Z⊤
l (u)β0)Yl(u)

.

We use Lemma 2.1 from van de Geer (1995). To do this, we shall evaluate ∆U j
n(β0, u), u ∈

[0, 1], and ⟨U j
n(β0, ·), U j

n(β0, ·)⟩1. Since the jumps ofMi do not occur at the same time
and are all of magnitude 1, it holds that

|∆U j
n(β0, u)| =

∣∣∣∣∣ 1n
n∑

i=1

∫ u

u−

[
n∑

k=1

{Zj
i (s)− Zj

k(s)}wk(β0, s)

]
dMi(s)

∣∣∣∣∣
≤ 1

n
sup
i,j,k,s

|Zj
i (s)− Zj

i (s)|
n∑

k=1

wk(β0, u)

≤ 2K1

n
.
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On the other hand, we have

⟨U j
n(β0, ·), U j

n(β0, ·)⟩1 =
1

n2

n∑
i=1

∫ 1

0

[
n∑

k=1

{Zj
i (u)− Zj

k(u)}wk(β0, u)

]2
d⟨Mi⟩u

=
1

n2

n∑
i=1

∫ τ

0

[
n∑

k=1

{Zj
i (u)− Zj

k(u)}wk(β0, u)

]2
exp(Z⊤

i (u)β0)Yi(u)λ0(u)du

≤ 1

n2
sup
i,j,k,u

|Zj
i (u)− Zj

k(u)|
2

n∑
i=1

∫ 1

0

exp(Z⊤
i (u)β0)Yi(u)λ0(u)du

≤ 4K2
1

n2
n exp(S sup

i,j,u
|Zj

i (u)|∥β0∥∞|)
∫ 1

0

λ0(u)du

≤ K3

n
,

where K3 is a positive constant. We now use the Lemma 2.1 from van de Geer
(1995):

P (|U j
n(β0)| ≥ γn,pn) = P

(
|U j

n(β0)| ≥ γn,pn , ⟨U j
n(β0, ·), U j

n(β0, ·)⟩1 ≤
K3

n

)
≤ 2 exp

(
−

γ2n,pn
2
(
2K1

n
γn,pn + K3

n

)) .
Write ∥ · ∥Φ1 for the Orlicz norm with respect to Φ1(x) = ex − 1. We apply Lemma
2.5 to deduce that there exists a constant L > 0 depending only on Φ1 such that∥∥∥∥ max

1≤j≤pn
|U j

n(β0)|
∥∥∥∥
Φ1

≤ L

(
2K1

n
log(1 + pn) +

√
K3

n
log(1 + pn)

)
.
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Using Markov’s inequality, we have that

P (∥Un(β)∥∞ ≥ γn,pn) = P ( max
1≤j≤pn

|U j
n(β0)| ≥ γn,pn)

≤ P

Φ1

 max
≤j≤pn

|U j
n(β0)|

∥ max
1≤j≤pn

|U j
n(β0)|∥Φ1

 ≥ Φ1

 γn,pn
∥ max

1≤j≤pn
|U j

n(β0)|∥Φ1


≤ ψ

 γn,pn
∥ max

1≤j≤pn
|U j

n(β0)|∥Φ1

−1

≤ Φ1

 γn,pn

L
(

2K1

n
log(1 + pn) +

√
K3

n
log(1 + pn)

)


−1

In our settings, the right-hand side of this inequality converges to 0. 2

Next we will show that Jn(β0) is approximated by In(β0).

Lemma 3.5. The random sequence ϵn defined by

ϵn := ∥Jn(β0)− In(β0)∥∞

converges in probability to 0.

Proof. Define the pn × pn matrices hn(β0, t) and Hn(β0, t) for t ∈ [0, τ ] by

hn(β0, t) :=
s
(2)
n

s
(0)
n

(β0, t)−

(
s
(1)
n

s
(0)
n

)⊗2

(β0, t),

Hn(β0, t) :=
S
(2)
n

S
(0)
n

(β0, t)−

(
S
(1)
n

S
(0)
n

)⊗2

(β0, t).

Note that the matrices In(β0) and Jn(β0) can be written in this form:

In(β0) =

∫ τ

0

hn(β0, u)s
(0)
n (β0, u)λ0(u)du,

Jn(β0) =

∫ τ

0

Hn(β0, u)
dN̄(u)

n
.
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Put M̄(u) =
∑n

i=1Mi(u). Then, it holds that ∥Jn(β0)−In(β0)∥∞ ≤ (I)+(II)+(III),
where

(I) =

∫ τ

0

∥Hn(β0, u)− hn(β0, u)∥∞
dN̄(u)

n
,

(II) =

∫ τ

0

∥∥∥∥∥hn(β0, u)
{
S
(0)
n (β0, u)

n
− s(0)n (β0, u)

}∥∥∥∥∥
∞

λ0(u)du,

(III) =

∥∥∥∥ 1n
∫ τ

0

hn(β0, u)dM̄(u)

∥∥∥∥
∞
.

Since the process t ; N̄(t)/n has bounded variation uniformly in n, Assumption
2.1 implies that (I) = op(1) and (II) = op(1). Moreover, it follows from Assumption
2.1 that hn(β0, u) is uniformly bounded. So we obtain that (III) = op(1) by the
same way as the proof of Lemma 3.4. 2

The next lemma is used to control Un(β̂n) − Un(β0) and Jn(β0). See Huang et al.
(2013) and Hjort and Pollard (1993) for the proofs.

Lemma 3.6. Define that ηh = maxi,j,s |h⊤Zi(s)− h⊤Zj(s)|, for h ∈ Rpn. Then for
all β ∈ Rpn, it holds that

e−ηhh⊤Jn(β)h ≤ h⊤[Un(β + h)− Un(β)] ≤ eηhh⊤Jn(β)h.

Now, we are ready to prove the main result of this paper. The theorem below
provides the l2 consistency and l∞ consistency of DSfPH.

Theorem 3.7. Under Assumptions 3.1 and 3.3, the following (i)-(iv) hold true.

(i) It holds that

lim
n→∞

P

(
∥β̂n − β0∥22 ≥

K4γn,pn +K5ϵn
RE2(T0; In(β0))

)
= 0,

where K4, K5 is a positive constant and ϵn = ∥In(β0)− Jn(β0)∥∞ = op(1). In

particular, ∥β̂n − β0∥2 →p 0.

(ii) It holds that

lim
n→∞

P

(
∥β̂n − β0∥2∞ ≥ K4γn,pn +K5ϵn

F 2
∞(T0; In(β0))

)
= 0.

In particular, ∥β̂n − β0∥∞ →p 0.
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(iii) It holds that

lim
n→∞

P

(
∥β̂n − β0∥1 ≥

4K6Sγn,pn
κ2(T0; In(β0))− 4Sϵn

)
= 0,

where K6 is a positive constant. In particular, ∥β̂n − β0∥1 →p 0.

(iv) It holds for any q ∈ (1,∞) that

lim
n→∞

P
(
∥β̂n − β0∥q ≥ ξn,q

)
= 0,

where

ξn,q =
2S

1
q ϵn

Fq(T0; In(β0))
· 2K6Sγn,pn
κ2(T0; In(β0))− 2Sϵn

+
2K6S

1
q γn,pn

Fq(T0; In(β0))
.

In particular, ∥β̂n − β0∥q →p 0.

Proof. (i) and (ii) It is sufficient to prove that ∥Un(β0)∥∞ ≤ γn,pn implies

∥β̂n − β0∥22 ≤
K4γn,pn +K5ϵn
RE2(T0; In(β0))

.

By the construction of the estimator, we have ∥U(β̂n)∥∞ ≤ γn,pn , which implies
that

∥Un(β̂n)− Un(β0)∥∞ ≤ ∥Un(β̂n)∥∞ + ∥Un(β0)∥∞ ≤ 2γn,pn .

Note that h := β̂ − β0 ∈ CT0 , since it holds that

0 ≥ ∥β0 + h∥1 − ∥β0∥1 =
∑
j∈T c

0

|hT c
0j
|+
∑
j∈T0

(|β0j + hT0j
| − |β0j|)

≥
∑
j∈T c

0

|hT c
0 j
| −
∑
j∈T0

|hT0j
|

= ∥hT c
0
∥1 − ∥hT0∥1.

Notice moreover that ∥h∥1 ≤ ∥β̂n∥1 + ∥β0∥1 ≤ 2∥β0∥1 by the definition of β̂n.
Now, we use Lemma 3.6 for h to deduce that

h⊤Jn(β0)h ≤ eηhh⊤[Un(β̂n)− Un(β0)]

≤ exp(max
i,j,u

|h⊤Zi(u)− h⊤Zj(u)|) · 2γn,pn∥h∥1

≤ exp(4K1∥β0∥1) · 4γn,pn∥β0∥1
=: K4γn,pn .
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Thus it holds that

h⊤In(β0)h ≤ |h⊤(In(β0)− Jn(β0))h|+ h⊤Jn(β0)h

≤ ϵn∥h∥21 +K4γn,pn
≤ 4ϵn∥β0∥21 +K4γn,pn
≤ K4γn,pn +K5ϵn.

By the definition of the restricted eigenvalue, we have that

RE2(T0; In(β0)) ≤
hT In(β0)h

∥β̂n − β0∥22
≤ K4γn,pn +K5ϵn

∥β̂n − β0∥22
.

Noting that RE2(T0; In(β0)) > 0, we obtain that

∥β̂n − β0∥22 ≤
K4γn,pn +K5ϵn
RE2(T0; In(β0))

,

which is the conclusion in (i).

By the definition of F∞(T0; In(β0)), we have also that

F 2
∞(T0; In(β0)) ≤

K4γn,pn +K5ϵn

∥β̂n − β0∥2∞
,

which yields the conclusion in (ii).

(iii) and (iv) It follows from the proof of (i) that

hTJn(β0)h ≤ K6γn,pn∥β̂n − β0∥1.

We have also that

hT In(β0)h ≤ ϵn∥β̂n − β0∥21 +K6γn,pn∥β̂n − β0∥1.

The definition of κ(T0; In(β0)) implies that

κ2(T0; In(β0)) ≤
ShT In(β0)h

∥hT0∥21

≤ Sϵn∥h∥21 +K6Sγn,pn∥h∥1
∥hT0∥21

.
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Since ∥h∥1 ≤ 2∥hT0∥1, this yields the conclusion in (iii).

On the other hand, using the weak cone invertibility factor for every q ≥ 1,
we have that

Fq(T0; In(β0)) ≤
S

1
q ϵn∥h∥21 + S

1
qK6γn,pn∥h∥1

∥hT0∥1∥h∥q
,

which implies that

∥β̂n − β0∥q ≤
2S

1
q ϵn∥β̂ − β0∥1 + 2S

1
qK6γn,pn

Fq(T0; In(β0))
.

Using the l1 bound derived above, we obtain the conclusion in (iv). 2

3.3 The variable selection consistency of the Dantzig

selector

The aim of this subsection is to show that β̂n selects non-zero components of β0
correctly. To do this, we define the following estimator for the support index set T0
of the true value β0:

T̂n := {j; |β̂j
n| > γn,pn}. (3.2)

The following theorem states that β̂n has a variable selection consistency.

Theorem 3.8. Under Assumptions 3.1 and 3.3, it holds that

lim
n→∞

P (T̂n = T0) = 1.

Proof. Note that ∥β̂n − β0∥∞ ≤ ∥β̂n − β0∥1 and that the sparsity S is assumed to
be fixed. We have that

lim
n→∞

P
(
∥β̂n − β0∥∞ > γn,pn

)
= 0

by the l1 bound from Theorem 3.7 (iii). Therefore, it is sufficient to show that the
next inequality

∥β̂n − β0∥∞ ≤ γn,pn

implies that
T̂n = T0.
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For every j ∈ T0, it follows from the triangle inequality that

|βj
0| − |β̂j

n| ≤ |β̂j
n − βj

0| ≤ γn,pn .

We have that
|β̂j

n| ≥ |βj
0| − γn,pn > γn,pn

for sufficiently large n, which implies that T0 ⊂ T̂n. On the other hand, for every
j ∈ T c

0 , we have that
|β̂j

n − βj
0| = |β̂j

n| ≤ γn,pn

since it holds that βj
0 = 0. From this fact, we can see that j ∈ T̂ c

n which implies that
T̂n ⊂ T0. We thus obtain the conclusion. 2

3.4 The maximum partial likelihood estimator for

the regression parameter after dimension re-

duction

Using the set T̂n, we construct a new estimator β̂
(2)
n by the solution to the next

equation:
Un(βT̂n

) = 0, βT̂ c
n
= 0. (3.3)

We prove the asymptotic normality of β̂
(2)
n .

Assumption 3.9. In this subsection, we assume that the following S × S matrix I
is positive definite:

I :=

∫ 1

0

[
s(2)

s(0)
(β0T0 , s)−

(
s(1)

s(0)

)⊗2

(β0T0 , s)

]
λ0(s)s

(0)(β0T0 , s)ds,

where
s(0)(β0T0 , t) := s(0)n (β0T0 , t),

s(1)(β0T0 , t) := s
(1)
nT0

(β0T0 , t)

and
s(2)(β0T0 , t) := s

(2)
nT0,T0

(β0T0 , t).

The following theorem states that this estimator β̂
(2)
n satisfies l1 consistency.
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Theorem 3.10. Under Assumptions 3.1, 3.3 and 3.9, it holds that

∥β̂(2)
n − β0∥1 →p 0

as n→ ∞.

Proof. We have that

∥β̂(2)
n − β0∥1 = ∥β̂(2)

nT0
− β0T0∥1 + ∥β̂(2)

nT c
0
∥1.

It follows from Lemma 3.1 of Andersen and Gill (1982) that the first term of right-
hand side is op(1) since the sparsity S is assumed to be fixed. Moreover, we have
that

∥β̂(2)
nT c

0
∥11{T̂n=T0} = 0

by the definition of β̂
(2)
n . Noting that 1{T̂n=T0} →p 1, we obtain the conclusion by

using Slutsky’s theorem. 2

To show the asymptotic normality of β̂
(2)
n , we need to prove the next lemma.

Lemma 3.11. Under Assumptions 3.1, 3.3 and 3.9, it holds that

∥Jn(β∗
n)− In(β0)∥∞ = op(1)

for every random sequence {β∗
n}n∈N which satisfies that

∥β∗
n − β0∥1 →p 0

as n→ ∞.

Proof. Define

Vn(β, t) :=
S
(2)
n

S
(0)
n

(β, t)−

(
S
(1)
n

S
(0)
n

)⊗2

(β, t)

and

vn(β, t) :=
s
(2)
n

s
(0)
n

(β, t)−

(
s
(1)
n

s
(0)
n

)⊗2

(β, t).

We have that

Jn(β
∗
n) =

∫ 1

0

Vn(β
∗
n, t)dt

and that

In(β0) =

∫ 1

0

vn(β0, t)ds.
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Therefore it holds that ∥Jn(β∗
n)− In(β0)∥∞ ≤ (I) + (II) + (III) + (IV ), where

(I) =

∥∥∥∥∫ 1

0

{Vn(β∗
n, t)− Vn(β0, t)}

dN̄(t)

n

∥∥∥∥
∞
,

(II) =

∥∥∥∥∫ 1

0

{Vn(β0, t)− vn(β0, t)}
dN̄(t)

n

∥∥∥∥
∞
,

(III) =

∥∥∥∥∫ 1

0

vn(β0, t)

{
1

n
S(0)
n (β0, t)− s(0)n (β0, t)

}
λ0(t)dt}

∥∥∥∥
∞

and

(IV ) =

∥∥∥∥∫ 1

0

vn(β0, t)
dM̄(t)

n

∥∥∥∥
∞
.

Since the process t ; N̄(t)/n has bounded variation, Assumption 3.1 implies that
(II) and (III) are op(1). In addition, we have for every l = 0, 1, 2 and t ∈ [0, 1] that

1

n
∥S(l)

n (β∗
n, t)− S(l)

n (β0, t)∥∞

≤ 1

n

∥∥∥∥∥
n∑

i=1

Yi(t)Zi(t)
⊗l(t) exp(β⊤

0 Zi(t)) {exp[∥Zi(t)∥∞∥β∗
n − β0∥1]− 1}

∥∥∥∥∥
∞

≤ K1 exp(K1∥β0∥1)| exp(K1∥β∗
n − β0∥1)− 1|.

We have that the right-hand side of this inequality converges to 0 in probability
when ∥β∗

n − β0∥1 →p 0 as n → ∞. This fact and the continuous mapping theorem
imply that ∥Vn(β∗

n, t) − Vn(β0, t)∥∞ →p 0 as n → ∞. Therefore, we obtain that
(I) = op(1). Finally, we can see that (IV ) = op(1) by using Bernstein’s inequality
for martingales (see e.g. van de Geer (1995)). 2

Now, we can prove the asymptotic normality in the following sense by a similar way
to that in Andersen and Gill (1982).

Theorem 3.12. Under Assumptions 3.1, 3.3 and 3.9, it holds that
√
n(β̂

(2)

nT̂n
− β0T0)1{T̂n=T0} →

d N(0, I−1).

Proof. It follows from the Taylor expansion that{
UnT̂n

(β̂
(2)

nT̂n
)− UnT0(β0T0)

}
1{T̂n=T0} = −JnT0,T0(β

∗
nT0

)(β̂
(2)

nT̂n
− β0T0)1{T̂n=T0},

where β∗
n is the point between β̂

(2)
n and β0. We therefore have that

√
nUnT0(β0T0)T01{T̂n=T0} = JnT0,T0(β

∗
nT0

)
√
n(β̂

(2)

T̂n
− β0T0)1{T̂n=T0}.
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We can see that
√
nUnT0(β0T0) is the terminal value of the S-dimensional martingale

{M̃n(t)}t∈[0,1] defined by

M̃n(t) :=
n∑

i=1

1√
n

∫ t

0

{
ZiT0(s)−

S
(1)
nT0

S
(0)
n

(β0T0 , s)

}
dMi(s).

It holds that

⟨M̃n, M̃n⟩(1) =
1

n

∫ 1

0

VnT0,T0(β0T0,t)S
(0)
n (β0T0 , t)λ0(t)dt

→p I

as n → ∞, where Vn(β0, t) is defined in proof of Lemma 3.11. By this fact and
Lindeberg’s condition assumed in Assumption 3.1, we can apply the martingale
central limit theorem to M̃n(t) to deduce that

√
nUn(β0T0) →d N(0, I)

as n → ∞. It follows from Theorem 3.10 and Lemma 3.11 that ∥JnT0,T0(β
∗
nT0

) −
I∥∞ = op(1). We therefore have that

√
n(β̂

(2)

nT̂n
− β0T0)1{T̂n=T0} = I−1

√
nUnT0(β0T0)1{T̂n=T0} + op(1).

Since Theorem 3.8 implies that 1{T̂n=T0} →
p 1 as n → ∞, we obtain the conclusion

by using Slutsky’s theorem. 2

3.5 The estimator for the cumulative baseline haz-

ard function

We define the estimator for Λ0(t) by the following Breslow type estimator:

Λ̂(t) :=

∫ t

0

dN̄(s)∑n
i=1 Yi(s) exp(β̂

(2)T
n Zi(s))

, t ∈ [0, 1], (3.4)

where β̂
(2)
n is defined by the equation (3.3). We discuss the asymptotic property of

Λ̂ in this section. For every t ∈ [0, 1], we have that

√
n{Λ̂(t)− Λ0(t)} = (I) + (II) + (III),
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where

(I) =
√
n

∫ t

0

{
1

S
(0)
n (β̂

(2)
n , s)

− 1

S
(0)
n (β0, s)

}
dN̄(s),

(II) =
√
n

{∫ t

0

dN̄(s)

S
(0)
n (β0, s)

−
∫ t

0

λ0(s)1{∑n
i=1 Yi(s)>0}

}
and

(III) =
√
n

{∫ t

0

λ0(s)1{∑n
i=1 Yi(s)>0} − Λ0(t)

}
.

The third term (III) is asymptotically negligible because it follows from Assumption
3.1 that

lim
n→∞

P

({∫ t

0

λ0(s)1{∑n
i=1 Yi(s)>0} − Λ0(t)

}
= 0

)
= 1.

Moreover, we have that (II) equals to the following process {Wn(t)}t∈[0,1]:

Wn(t) =
√
n

∫ t

0

dM̄(s)

S
(0)
n (β0, s)

,

which is a square integrable martingale. Using the Taylor expansion, we have that

(I) = Hn(β
∗
n, t)

⊤(β̂(2)
n − β0),

where

Hn(β
∗
n, t) := −

∫ t

0

S
(1)
n

{S(0)
n }2

(β∗
n, s)dN̄(s)

and β∗
n lies between β̂

(2)
n and β0. Since it holds that ∥β∗

n − β0∥1 = op(1) by Theorem
3.10, we can see that

sup
t∈[0,1]

∥∥∥∥∥Hn(β
∗
n, t) +

∫ t

0

s
(1)
n

s
(0)
n

(β0, s)λ0(s)ds

∥∥∥∥∥
∞

= op(1) (3.5)

by a similar way to the proof of Lemma 3.11. Therefore, we obtain the following
theorem, which is proved by using Slutsky’s theorem and a similar way to that in
Andersen and Gill (1982).

Theorem 3.13. Under Assumptions 3.1, 3.3 and 3.9, it holds that
√
n(β̂

(2)

nT̂n
−

β0T0)1{T̂n=T0} and the process equal in the point t to[√
n{Λ̂(t)− Λ0(t)}+

√
n

∫ t

0

(β̂
(2)

nT̂n
− β0T0)

⊤ s
(1)

s(0)
(β0T0 , s)λ0(s)ds

]
1{T̂n=T0}
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are asymptotically independent. The latter process is asymptotically distributed as a
Gaussian martingale with the variance function∫ t

0

λ0(s)

s(0)(β0T0 , s)
ds.

Proof. We have that
√
n{Λ̂(t)− Λ0(t)}1{T̂n=T0}

=
[
HnT0(β

∗
nT0
, t)⊤

√
n(β̂

(2)

nT̂n
− β0T0) +

√
nWn(t)

]
1{T̂n=T0} + op(1).

We can use the fact (3.5) to deduce that
√
n{Λ̂(t)− Λ0(t)}1{T̂n=T0}

+
√
n

∫ t

0

(β̂
(2)

nT̂n
− β0T0)

⊤ s
(1)

s(0)
(β0T0 , s)λ0(s)ds1{T̂n=T0}

=
√
nWn(t)1{T̂n=T0} + op(1).

We apply the martingale central limit theorem to the process {
√
nWn(t)}t∈[0,1]. It

holds that

⟨
√
nWn(·),

√
nWn(·)⟩(t) =

∫ t

0

λ0(s)

n−1Sn(β0, s)(0)
ds

→p

∫ t

0

λ0(s)

s(0)(β0T0 , s)
ds

as n→ ∞. Moreover, we can see Lindeberg’s condition, i.e., it holds for every ϵ > 0
that, ∫ t

0

1

n−2{S(0)
n (β0, s)}2

1{n−1S
(0)
n (β0,s)>ϵ}S

(0)
n (β0, s)λ0(s)ds <

ϵ

n

∫ t

0

λ0(s)ds

→ 0.

Therefore, we have that {
√
nWn(t)}t∈[0,1] is asymptotically distributed as a Gaussian

martingale with variance function∫ t

0

λ0(s)

s(0)(β0T0 , s)
ds

by using the martingale central limit theorem. Next, we check the asymptotic
orthogonality. It follows from a direct calculation that

⟨U j
nT0

(β0T0 , ·),Wn(·)⟩(t) = 0, t ∈ [0, 1], j ∈ T0
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where

UnT0(β0T0 , t) :=
1

n

n∑
i=1

∫ t

0

{
ZiT0(s)−

S
(1)
nT0

S
(0)
nT0

(β0T0 , s)dMi(s)

}
.

Since β̂nT0 − β0T0 is the linear combination of UnT0(β0T0), we have that
√
n(β̂

(2)

nT̂n
−

β0T0)1{T̂n=T0} and[√
n{Λ̂(t)− Λ0(t)}+

√
n

∫ t

0

(β̂
(2)

nT̂n
− β0T0)

⊤ s
(1)

s(0)
(β0T0 , s)λ0(s)ds

]
1{T̂n=T0}

are asymptotically orthogonal for every t ∈ [0, 1]. This fact implies that they are
asymptotically independent because both are asymptotically normal distributed.
Noting that 1{T̂n=T0} →p 1 as n → ∞, we obtain the conclusion by using Slutsky’s
theorem. 2

3.6 Concluding remarks

3.6.1 An example for matrix conditions

In this subsection, we provide an example which satisfies the high level matrix
condition Assumption 3.3 in a high-dimensional setting.

Let covariates {Zi}ni=1 be Rp-valued i.i.d. random vectors which are independent
of the time t ∈ [0, 1]. For each i ∈ {1, . . . , n}, we assume that {Zj

i }
p
j=1 are inde-

pendent and bounded random variables. Moreover, we suppose that the censoring
time Ci is independent of Ti for every i = 1, . . . , n, the baseline hazard function λ(·)
is integrable and the true value β0 = (β1

0 , β
2
0 , . . . , β

S
0 , 0, . . . , 0) ∈ Rp. Under these

assumptions, Ti and Yi are independent of Z
l
i for every l = S+1, . . . , p. In this case,

we have that

S0
n(β0, t) =

n∑
i=1

Yi(t) exp(β
⊤
0 Zi),

S1
n(β0, t) =

n∑
i=1

ZiYi(t) exp(β
⊤
0 Zi)

and

S2
n(β0, t) =

n∑
i=1

ZiZ
⊤
i Yi(t) exp(β

⊤
0 Zi).
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By using the weak law of large numbers for each component of vector or matrix, we
obtain that

s(0)n (β0, t) = E[Y1(t) exp(β
⊤
0 Zi)] =

S∏
l=1

E[Y1(t) exp(β
l
0Z

l
1)],

s
(1)
nj (β0, t) = E[Zj

1Y1(t) exp(β
⊤
0 Z1)], j ∈ {1, 2, . . . , p}

and
s
(2)
njk(β0, t) = E[Zj

1Z
k
1Y1(t) exp(β

⊤
0 Z1)], j, k ∈ {1, 2, . . . , p}.

For s
(0)
n (β0, t), it holds that

s(0)n (β, t) = E[exp(β⊤
0 Z1)E[1{X1≥t}|Z1]]

= E

[
S∏
l=1

exp(βl
0Z

l
1)πZ(t)

]
,

where πZ(·) is the survival function of X1 = T1 ∧ C1, which is independent of Z l
1

for every S < l ≤ p. We can also calculate s
(1)
nj (β0, t) and s

(2)
njk(β0, t) for every

j, k ∈ {1, 2, . . . , p} as follows:

s
(1)
nj (β0, t) = E[Zj

1 exp(β
⊤
0 Z1)πZ(t)]

=

{
E
[
Zj

1

∏S
l=1 exp(β

⊤
0 Z1)πZ(t)

]
(1 ≤ j ≤ S)

E[Zj
1 ]s

(0)
n (β0, t) (S < j ≤ p);

s
(2)
njk(β0, t) = E[Zj

1Z
k
1 exp(β

⊤
0 Z1)πZ(t)]

=


E
[
Zj

1Z
k
1

∏S
l=1 exp(β

⊤
0 Z1)πZ(t)

]
(1 ≤ j, k ≤ p)

E[Zk
1 ]s

(1)
nj (β0, t) (1 ≤ j ≤ p, S < k ≤ p)

E[Zj
1 ]E[Z

k
1 ]s

(0)
n (β0, t) (S < j, k ≤ p).

We therefore obtain the matrix In(β0) as follows:

In(β0) =

(
I(β0) 0

0 diag(V ar[Zj
1 ]
∫ 1

0
s
(0)
n (β0, t)λ0(t)dt)

)
,

where I(β0) is a S × S matrix which can be proved to be a positive definite (see
e.g. Fleming and Harrington (1991)). Therefore, we have that the model satisfies
Assumption 3.3.
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3.6.2 Summary

In summary, we have been able to construct the asymptotically normal estimators
for the proportional hazards model in high-dimensional settings if the sparsity of
the regression parameter is fixed. This results are based on the selection result
Theorem 3.8 which is obtained from l1 consistency proved in Theorem 3.7. If the
sparsity is not fixed, we may not reduce the dimension of the parameter since we
cannot prove Theorem 3.8. In such cases, the asymptotically normal estimators
cannot be constructed by (3.3) and (3.4).

It is well known that Lasso and the Dantzig selector exhibit similar behaviors
for linear regression models. We can see the same phenomena in the proportional
hazards model in the sense of lq consistency for every q ∈ [1,∞] since the error
bounds for the Dantzig selector in Antoniadis et al. (2010) and this thesis are sim-
ilar to those for Lasso in Huang et al. (2013). On the other hand, the differences
between two procedures may occur in the sense of the variable selection consistency.
According to Fan et al. (2016), the variable selection consistency, in particular, sign
consistencies for estimators are equivalent to the irrepresentable conditions, which
are obtained from KKT conditions of the optimization problems. Since the KKT
conditions of Lasso type optimization problems are relatively simple, we can prove
the sign consistency of the Lasso estimator for the proportional hazards model by
using the irrepresentable condition (see e.g. Yu (2010)). However, the KKT condi-
tions of the Dantzig selector becomes quite complicated. Although it is possible to
derive the sign consistency of the Dantzig selector from the irrepresentable condition
for a linear model, it may be difficult to construct the selection results of the Dantzig
selector for nonlinear models such as the proportional hazards model by the similar
way to that for Lasso. In contrast, we have proved that l1 consistency implies the
variable selection consistency when the sparsity S is fixed in this paper. This type
of theoretical results for various regression models may be proved for Lasso type
estimators because the l1 consistency results are nearly equivalent to that for the
Dantzig selector.

44



Chapter 4

Diffusion processes with covariates

The purpose of this chapter is to discuss a parametric estimation problem in a high-
dimensional and sparse setting for a special parametric model of diffusion processes.
We consider the stochastic process {Xt}t≥0 which is a solution to the stochastic
differential equation given by

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

exp(θ⊤Zs)dWs, (4.1)

where {Wt}t≥0 is a standard Brownian motion, b(·) is a nuisance drift function,
{Zt}t≥0 = {(Z1

t , Z
2
t , . . . , Z

p
t )}t≥0 is a uniformly bounded p dimensional continuous

process, which is regarded as a covariate vector, and θ is an unknown parameter of
interest. We observe the processes {Xt}t≥0 and {Zt}t≥0 at n + 1 equidistant time
points 0 =: tn0 < tn1 < . . . < tnn, where t

n
k = ktnn/n for k = 0, 1, . . . , n. Assume

that p = pn ≫ n and the number of non-zero components S in the true value θ0 of
θ is relatively small. In this high-dimensional and sparse setting, we consider the
estimation problem of θ0. The covariate processes {Zi

t}t≥0, i = 1, 2, . . . , pn, are, for
example, some functionals {ϕi(X

i
t)}t≥0 of solutions to other stochastic differential

equations {X i
t}t≥0, where ϕi’s are uniformly bounded smooth functions or random

variables which do not depend on t.
This chapter is organized as follows. The settings for the model, some regularity

conditions, and the estimation procedure are given in Section 4.1. In Section 4.2,
we state our lq consistency results for every q ∈ [1,∞]. Our methods of proofs are
similar to Huang et al. (2013) who proved the consistency of Lasso estimator for
Cox’s proportional hazards model and to Chapter 3 of this thesis which dealt with
the Dantzig selector for the proportional hazards model. Based on the l1 consistency
result, we discuss the variable selection consistency of the Dantzig selector in Section
4.3. Moreover, we construct an asymptotically normal estimator for θ0 in Section 4.4
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under the ergodic assumption on the covariate process {Zt}t≥0. Finally, in Section
4.5, we will present some concluding remarks concerning with the rate of convergence
appearing in our main results.

4.1 Model set up and matrix conditions

Let {Wt}t≥0 be a standard Brownian motion defined on a probability space (Ω,F , P ),
and {Zt}t≥0 := {(Z1

t , Z
2
t , . . . , Z

p
t )}t≥0 be a uniformly bounded p dimensional contin-

uous process. We introduce the filtration {Ft}t≥0 defined by

Ft := F0 ∨ σ(Ws, Zs : s ∈ [0, t]), t ≥ 0,

where F0 is a σ-field independent of {Wt}t≥0, and {Zt}t≥0. Let us consider the 1
dimensional stochastic differential equation (5.1):

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

exp(θ⊤Zs)dWs,

where x 7→ b(x) is a nuisance drift function which satisfies appropriate regularity
conditions presented later, and θ ∈ Rp is an unknown parameter of interest. We
observe the process {Xt}t≥0 at n+ 1 discrete time points 0 =: tn0 < tn1 < tn2 < · · · <
tnn, where t

n
k := n−1ktnn. Assume that p = pn ≫ n and the number of non-zero

components S in the true value θ0 is a fixed constant. In this high dimensional and
sparse setting, we consider the estimation problem of θ0 with finite l1 norm. The
quasi-likelihood function Ln(b; θ) is given by

Ln(b; θ) =
n∏

k=1

1√
2π exp(2θTZtnk−1

)∆n

exp

(
−
|Xtnk

−Xtnk−1
− b(Xtnk−1

)∆n|2

2 exp(2θTZtnk−1
)∆n

)
,

where ∆n := tnk − tnk−1 = tnn/n. Put ln(b; θ) := logLn(b; θ), and define the Rpn-valued
function ψn(b; θ) = (ψ1

n(b; θ), ψ
2
n(b; θ), . . . , ψ

pn
n (b; θ)) by

ψn(b; θ) :=
1

n
l̇n(b; θ)

=
1

n∆n

n∑
k=1

Ztnk−1
exp(−2θTZtnk−1

)|Xtnk
−Xtnk−1

− b(Xtnk−1
)∆n|2

−Ztnk−1
∆n.
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Moreover, we define the pn × pn matrix-valued function Vn(b; θ) by

Vn(b; θ) := − 1

n
l̈n(b; θ)

=
2

n∆n

n∑
k=1

Ztnk−1
Z⊤

tnk−1
exp(−2θTZtnk−1

)|Xtnk
−Xtnk−1

− b(Xtnk−1
)∆n|2.

Note that Vn(b; θ) is a nonnegative definite matrix. Hereafter, we assume the fol-
lowing conditions.

Assumption 4.1. (i) The terminal value tnn of the time interval [0, tnn] satisfies the
either condition;

Case 1. It holds that tnn is a fixed constant. Without loss of generality, we put
tnn = 1.

Case 2. It holds that
tnn = n∆n → ∞, n∆2

n → 0

as n→ ∞.

(ii) There exists a constant L̃ > 0 such that for all x, y ∈ R,

|b(x)− b(y)| ≤ L̃|x− y|.

(iii) There exists a constant C > 0 such that

sup
t∈[0,∞)

sup
1≤i≤∞

|Zi
t | ≤ C a.s.

(iv) For every r ≥ 1, it holds that

sup
t∈[0,∞)

E [|Xt|r] <∞.

(v) For every r ∈ N, there exists a constant C̃r such that for every n ∈ N, i ∈
{1, 2, . . . , pn} and k = 1, 2, . . . , n,

E

[
sup

s∈[tnk−1,t
n
k ]

|Xs −Xtnk−1
|r
]
≤ C̃r∆

r
2
n ,

E

[
sup

s∈[tnk−1,t
n
k ]

|Zi
s − Zi

tnk−1
|r
]
≤ C̃r∆

r
2
n .
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Assumption (iv) is satisfied if Zi
t , i = 1, 2, . . . , pn, are appropriate transformation

of stochastic processes which are solutions to other SDEs as mentioned in Introduc-
tion. In Section 4.2, we will show that b(·) can be ignored under Assumption 4.1.
We thus define the estimator θ̂n by the Dantzig selector as

θ̂n := arg min
θ∈Cn

∥θ∥1, Cn := {θ ∈ Rpn : ∥ψn(0; θ)∥∞ ≤ γ},

where γ is a tuning parameter by setting b = 0.
Define the pn × pn matrix Jn by

Jn :=
2

n

n∑
k=1

Ztnk−1
Z⊤

tnk−1
,

which will be proved to approximate Vn(0; θ0) in Section 4.2. We introduce the
following factors (A), (B) and (C) in order to prove the consistency of the estimator
θ̂n.

Definition 4.2. For every index set T ⊂ {1, 2, · · · , pn} and h ∈ Rpn, hT is
a R|T | dimensional sub-vector of h constructed by extracting the components of h
corresponding to the indices in T . Define the set CT by

CT := {h ∈ Rpn : ∥hT c∥1 ≤ ∥hT∥1}.

We introduce the following factors.

(A) Compatibility factor

κ(T0; Jn) := inf
0̸=h∈CT0

S
1
2 (hTJnh)

1
2

∥hT0∥1
.

(B) Weak cone invertibility factor

Fq(T0; Jn) := inf
0̸=h∈CT0

S
1
qhTJnh

∥hT0∥1∥h∥q
, q ∈ [1,∞),

F∞(T0; Jn) := inf
0̸=h∈CT0

(hTJnh)
1
2

∥h∥∞
.

(C) Restricted eigenvalue

RE(T0; Jn) := inf
0̸=h∈CT0

(hTJnh)
1
2

∥h∥2
.
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We assume the next condition to derive our main results.

Assumption 4.3. For every ϵ > 0, there exist δ > 0 and n0 ∈ N such that for all
n ≥ n0

P (κ(T0; Jn) > δ) ≥ 1− ϵ.

Noting that ∥hT0∥
q
1 ≥ ∥hT0∥qq for all q ≥ 1, we can see that κ(T0; Jn) ≤ 2

√
SRE(T0; Jn),

and κ(T0; Jn) ≤ Fq(T0; Jn). So under Assumption 4.3, RE(T0; Jn) and Fq(T0; Jn) also
satisfy the corresponding conditions.

4.2 The lqconsistency of the Dantzig selector

In this section, we will prove the lq consistency of the estimator θ̂n. For Case 1, i.e.,
the case where tnn = 1, the consistency result can be seen in Fujimori and Nishiyama
(2017b). In addition, we can prove the consistency in Case 2 by the same way as
that in Case 1. To do this, we will evaluate the gradient of quasi-likelihood at the
true value and show that Vn(0; θ0) is approximated by Jn. The following theorems
are our main results. Hereafter, we assume that γn and pn satisfy that

γn = K0∆
1
2
−α

n , (4.2)

log(1 + pn) = O(nζ), (4.3)

where K0 > 0, 0 < α < 1/2, 0 < ζ < 2α are some constants.
First of all, we will show that under Assumption 4.1,

lim
n→∞

P (∥ψn(0; θ0)∥∞ ≥ γn) = 0.

Let us decompose ψi
n(0; θ0) = Ai

n +Bi
n + C i

n, where

Ai
n :=

1

n∆n

n∑
k=1

Zi
tnk−1

exp(−2θT0 Ztnk−1
)

∣∣∣∣∣
∫ tnk

tnk−1

b(Xs)ds

∣∣∣∣∣
2

,

Bi
n :=

2

n∆n

n∑
k=1

Zi
tnk−1

exp(−2θT0 Ztnk−1
)

(∫ tnk

tnk−1

b(Xs)ds

)

×

(∫ tnk

tnk−1

exp(θT0 Zs)dWs

)
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and

C i
n :=

1

n∆n

n∑
k=1

Zi
tnk−1

exp(−2θT0 Ztnk−1
)

∣∣∣∣∣
∫ tnk

tnk−1

exp(θT0 Zs)dWs

∣∣∣∣∣
2

− Zi
tnk−1

∆n.

We further decompose C i
n = Di

n + Ei
n, where

Di
n :=

1

n∆n

n∑
k=1

Zi
tnk−1

exp(−2θT0 Ztnk−1
)

∣∣∣∣∣
∫ tnk

tnk−1

exp(θT0 Zs)dWs

∣∣∣∣∣
2

−Zi
tnk−1

(Wtnk
−Wtnk−1

)2

and

Ei
n :=

1

n∆n

n∑
k=1

Zi
tnk−1

{(Wtnk
−Wtnk−1

)2 −∆n}.

Lemma 4.4. Suppose that γn satisfies (4.2). Under Assumption 4.1, it holds in
both of the Cases 1 and 2 that

lim
n→∞

P

(
sup

1≤i≤pn

|Ai
n| ≥ γn

)
= 0.

Proof. It follows from Markov’s inequality and Schwartz’s inequality and Assump-
tion 4.1 that

P

(
sup

1≤i≤pn

|Ai
n| ≥ γn

)
≤ C exp(2C∥θ0∥1)

n∆nγn

n∑
k=1

E

∣∣∣∣∣
∫ tnk

tnk−1

b(Xs)ds

∣∣∣∣∣
2


≤ C exp(2C∥θ0∥1)
n∆nγn

n∑
k=1

E

[
∆n

∫ tnk

tnk−1

|b(Xs)|2ds

]

≤ C exp(2C∥θ0∥1)
nγn

n∑
k=1

∫ tnk

tnk−1

E[|b(Xs)|2]ds

≤ C exp(2C∥θ0∥1)
γn

C̃∆n.

Noting that ∆n → 0 and γn = K0∆
1
2
−α

n , we obtain the conclusion. 2
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Lemma 4.5. Under Assumption 4.1, it holds for both of the Cases 1 and 2 that

lim
n→∞

P

(
sup

1≤i≤pn

|Bi
n| ≥ γn

)
= 0.

Proof. Using Markov’s inequality and Schwartz’s inequality, we have that

P

(
sup

1≤i≤pn

|Bi
n| ≥ γn

)

≤ 2C exp(2C∥θ0∥1)
n∆nγn

n∑
k=1

E
∣∣∣∣∣
∫ tnk

tnk−1

b(Xs)ds

∣∣∣∣∣
2
 1

2

×

E
∣∣∣∣∣
∫ tnk

tnk−1

exp(θT0 Zs)dWs

∣∣∣∣∣
2
 1

2

≤ 2C exp(2C∥θ0∥1)
n∆nγn

n∑
k=1

(
E

[
∆n

∫ tnk

tnk−1

|b(Xs)|2ds

]) 1
2

×

(
E

[∫ tnk

tnk−1

exp(2θT0 Zs)ds

]) 1
2

≤ 2C exp(2C∥θ0∥1)
n∆nγn

n
(
C̃∆2

n

) 1
2
(exp(2C∥θ0∥1)∆n)

1
2

≤ CC̃
1
2∆

1
2
n exp(3C∥θ0∥1)

γn
.

The right-hand side of this inequality tends to 0 as n→ ∞. 2

Lemma 4.4, and Lemma 4.5 imply that we can ignore the effect of b(·). So we may
take b(x) = 0 when we define the estimator θ̂n. The following lemmas give some
inequalities about Di

n and Ei
n.

Lemma 4.6. Under Assumption 4.1, it holds for both of the Cases 1 and 2 that

lim
n→∞

P

(
sup

1≤i≤pn

|Di
n| ≥ γn

)
= 0.
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Proof. It follows from Markov’s inequality and Schwartz’s inequality that

P

(
sup

1≤i≤pn

|Di
n| ≥ γn

)
≤ C

n∆nγn

n∑
k=1

E [|D1| · |D2|]

≤ C

n∆nγn

n∑
k=1

(E[|D1|2])
1
2 (E[|D2|2])

1
2 ,

where D1 and D2 are defined as follows

D1 :=

∫ tnk

tnk−1

{exp(θT0 [Zs − Ztnk−1
]) + 1}dWs,

D2 :=

∫ tnk

tnk−1

{exp(θT0 [Zs − Ztnk−1
])− 1}dWs.

We can see that

(E[|D1|2])
1
2 =

(
E

[∫ tnk

tnk−1

{exp(θT0 [Zs − Ztnk−1
]) + 1}2ds

]) 1
2

≤ (exp(2C∥θ0∥1) + 1)∆
1
2
n .

Noting that there exists a positive constant C1 such that

| exp(θT0 [Zs − Ztnk−1
])− 1| ≤ C1|θT0 [Zs − Ztnk−1

]|
≤ C1∥θ0∥1 max

i∈T0

|Zi
s − Zi

tnk−1
|,

where T0 := {i : θi0 ̸= 0}, we have that

(E[|D2|2])
1
2 =

(
E

[∫ tnk

tnk−1

{exp(θT0 [Zs − Ztnk−1
])− 1}2ds

]) 1
2

≤

(
E

[∫ tnk

tnk−1

C2
1∥θ0∥21 max

i∈T0

|Zi
s − Zi

tnk−1
|2ds

]) 1
2

≤ C1C̃2∥θ0∥1∆n.

Consequently, it holds that

P

(
sup

1≤i≤pn

|Di
n| ≥ γn

)
≤ CC1C̃2∥θ0∥1(exp(2C∥θ0∥1) + 1)∆

1
2
n

γn
→ 0.

We thus obtain the conclusion. 2
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Lemma 4.7. Suppose that γn and pn satisfy (4.2) and (4.3) respectively. Under
Assumption 4.1, it holds for both of the Cases 1 and 2 that

lim
n→∞

P

(
sup

1≤i≤pn

|Ei
n| ≥ 3γn

)
= 0.

Proof. Put Utnk
:= |Wtnk

−Wtnk−1
|2 −∆n and η := ∆

1/2+α−β
n , where 0 < β < 2α − ζ

is a constant. Then, we have that

Ei
n =

1

n∆n

n∑
k=1

Zi
tnk−1

Utnk
1{|Utn

k
|≤η} +

1

n∆n

n∑
k=1

Zi
tnk−1

Utnk
1{|Utn

k
|>η}

=: F i
n +Gi

n.

It is sufficient to prove that P (supi |F i
n| ≥ 2γn) → 0 and P (supi |Gi

n| ≥ γn) → 0.
Note that

F i
n =

1

n∆n

n∑
k=1

Zi
tnk−1

{Utnk
1{|Utn

k
|≤η} − E[Utnk

1{|Utn
k
|≤η}|Ftnk−1

]}

+Zi
tnk−1

E[Utnk
1{|Utn

k
|≤η}|Ftnk−1

]

=: H i
n + I in.

We can see that for all k and i,

|Zi
tnk−1

{Utnk
1{|Utn

k
|≤η} − E[Utnk

1{|Utn
k
|≤η}]}| ≤ 2Cη

E[|Zi
tnk−1

|2{Utnk
1{|Utn

k
|≤η} − E[Utnk

1{|Utn
k
|≤η}]|Ftnk−1

]}2|Ftnk−1
] ≤ C2∆2

n.

Now, it follows from Bernstein’s inequality for martingales (See Theorem 1.6 from
Freedman (1975).) that

P
(
|H i

n| ≥ γn
)
≤ 2 exp

(
− γ2n
2(2Cηγn + C2∆2

n)

)
.

Write ∥ · ∥Φ1 for Orlicz norm with respect to Φ1(x) := ex − 1. Lemma 2.5 implies
that there exists a constant L > 0 depending only on Φ1 such that∥∥∥∥ sup

1≤i≤pn

|H i
n|
∥∥∥∥
Φ1

≤ L
{
2Cη log(1 + pn) +

√
C2∆2

n log(1 + pn)
}
.
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Using Markov’s inequality, we have that

P

(
sup

1≤i≤pn

|H i
n| ≥ γn

)
= P

(
Φ1

(
supi |H i

n|
∥supi |H i

n|∥Φ1

)
≥ Φ1

(
γn

∥supi |H i
n|∥Φ1

))
≤ Φ1

(
γn

∥supi |H i
n|∥Φ1

)−1

≤ Φ1

 γn

L
{
2Cη log(1 + pn) +

√
C2∆2

n log(1 + pn)
}
−1

→ 0.

On the other hand, it holds that

I in =
1

n∆n

n∑
k=1

Zi
tnk−1

{
E[Utnk

− Utnk
1{|Utn

k
|>η}|Ftnk−1

]
}

=
1

n∆n

n∑
k=1

Zi
tnk−1

E[−Utnk
1{|Utn

k
|>η}|Ftnk−1

].

So we thus obtain that

P

(
sup

1≤i≤pn

|I in| ≥ γn

)
≤ 1

γn
E

[
sup

1≤i≤pn

∣∣∣∣∣ 1

n∆n

n∑
k=1

Zi
tnk−1

E[Utnk
1{|Utn

k
|>η}|Ftnk−1

]

∣∣∣∣∣
]

≤ C

n∆nγn

n∑
k=1

E

[
E

[ |Utnk
|2

η
|Ftnk−1

]]
=

2C∆n

γnη

→ 0.

A similar calculation leads us that

P

(
sup

1≤i≤pn

|Gi
n| ≥ γn

)
→ 0.

This yields the conclusion. 2

After all, we obtain the next lemma.

Lemma 4.8. Suppose that γn and pn satisfy (4.2) and (4.3) respectively. Under
Assumption 4.1, it holds for both of the Cases 1 and 2 that

lim
n→∞

P (∥ψn(0; θ0)∥∞ ≥ 6γn) = 0.
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This lemma states that the true value θ0 belongs to the constraint set Cn with
large probability when the sample size n is large. Then, we prepare two lemmas for
Vn(0; θ0). The next lemma states that Vn(0; θ0) is approximated by Jn.

Lemma 4.9. The random sequence ϵn defined by

ϵn := ∥Vn(0; θ0)− Jn∥∞

converges in probability to 0.

Proof. It holds that

Vn(0; θ0) =
2

n∆n

n∑
k=1

Ztnk−1
Z⊤

tnk−1
exp(−2θT0 Ztnk−1

)

∣∣∣∣∣
∫ tnk

tnk−1

exp(θT0 Zs)dWs

∣∣∣∣∣
2

= (I) + (II) + (III),

where

(I) =
2

n∆n

n∑
k=1

Ztnk−1
Z⊤

tnk−1

∣∣∣∣∣
∫ tnk

tnk−1

exp(θT0 [Zs − Ztnk−1
])dWs

∣∣∣∣∣
2

−Ztnk−1
Z⊤

tnk−1
|Wtnk

−Wtnk−1
|2,

(II) =
2

n∆n

n∑
k=1

Ztnk−1
Z⊤

tnk−1

{
|Wtnk

−Wtnk−1
|2 −∆n

}
,

and

(III) =
2

n∆n

n∑
k=1

Ztnk−1
Z⊤

tnk−1
∆n = Jn.

Using triangle inequality, we have that

∥Vn(0; θ0)− Jn∥∞ ≤ ∥(I)∥∞ + ∥(II)∥∞.

As well as the proof of Lemma 4.6 and Lemma 4.7, we can prove that ∥(I)∥∞ and
∥(II)∥∞ are op(1). 2

The relationship between ψn(0; θ̂n) − ψn(0; θ0) and Vn(0; θ0) are provided by the
lemma below.
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Lemma 4.10. Define that I := [−2C∥θ0∥1, 2C∥θ0∥1],

g(x) :=

{
e2x−1

x
(x ̸= 0)

2 (x = 0)

and ν := minx∈I g(x). Then, it holds for h := θ0 − θ̂n that

ν

2
hTVn(0; θ0)h ≤ hT [ψn(0; θ̂n)− ψn(0; θ0)].

Proof. We have that

hT [ψn(0; θ̂n)− ψn(0; θ0)] =
1

n∆n

n∑
k=1

hTZtnk−1
exp(−2θT0 Ztnk−1

)|Xtnk
−Xtnk−1

|2

×{exp(2hTZtnk−1
)− 1}

Note that hTZtnk−1
∈ I for all k = 1, 2, . . . , n. Noting moreover that x(e2x−1) ≥ νx2,

we can see that

hT [ψn(0; θ̂n)− ψn(0; θ0)] ≥
1

n∆n

n∑
k=1

exp(−2θT0 Ztnk−1
)|Xtnk

−Xtnk−1
|2(νhTZtnk−1

)2

=
ν

2
hTVn(0; θ0)h.

We thus obtain the conclusion. 2

Now, we are ready to prove our main results. The next theorem states the lq
consistency of the estimator θ̂n.

Theorem 4.11. Suppose that γn and pn satisfy (4.2) and (4.3) respectively. Under
Assumptions 4.1 and 4.3, the following (i)-(iv) hold true for some positive constants
K2 and K3 in both of Cases 1 and 2.

(i) It holds that

lim
n→∞

P

(
∥θ̂n − θ0∥22 ≥

K2γn +K3ϵn
RE2(T0; Jn)

)
= 0.

In particular, it holds that ∥θ̂n − θ0∥2 →p 0.

(ii) It holds that

lim
n→∞

P

(
∥θ̂n − θ0∥2∞ ≥ K2γn +K3ϵn

F 2
∞(T0; Jn)

)
= 0.

In particular, it holds that ∥θ̂n − θ0∥∞ →p 0.

56



(iii) It holds that

lim
n→∞

P

(
∥θ̂n − θ0∥1 ≥

4K4Sγn
κ2(T0; Jn)− 4Sϵn

)
= 0.

In particular, it holds that ∥θ̂n − θ0∥1 →p 0.

(iv) It holds for every q ∈ (1,∞) that

lim
n→∞

P
(
∥θ̂n − θ0∥q ≥ ξn,q

)
= 0,

where

ξn,q :=
2S

1
q ϵn

Fq(T0; Jn)
· 2K4Sγn
κ2(T0; Jn)− 2Sϵn

+
2K4S

1
q γn

Fq(T0; Jn)
.

In particular, it holds for all q ∈ (1,∞) that ∥θ̂n − θ0∥q →p 0.

Proof. It is sufficient to prove that ∥ψn(0; θ0)∥∞ ≤ γn implies that

∥θ̂n − θ0∥22 ≤
K2γn +K3ϵn
RE2(T0; Jn)

.

By the construction of the estimator θ̂n, we have ∥ψn(0; θ̂n)∥∞ ≤ γn, which implies
that

∥ψn(0; θ̂n)− ψn(0; θ0)∥∞ ≤ ∥ψn(0; θ̂n)∥∞ + ∥ψn(0; θ0)∥∞ ≤ 2γn.

Put h := θ0 − θ̂n, then we have that h ∈ CT0 since it holds that

0 ≥ ∥θ0 − h∥1 − ∥θ0∥1 =
∑
j∈T c

0

|hT c
0j
|+
∑
j∈T0

(|θ0j − hT0j
| − |θ0j|)

≥
∑
j∈T c

0

|hT c
0j
| −
∑
j∈T0

|hT0j
|

= ∥hT c
0
∥1 − ∥hT0∥1.

Notice moreover that ∥h∥1 ≤ ∥θ̂n∥1 + ∥θ0∥1 ≤ 2∥θ0∥1 by the definition of θ̂n. Now,
we use Lemma 4.10 for h to deduce that

hTVn(0; θ0)h ≤ 2

ν
hT [ψn(0; θ̂n)− ψn(0; θ0)]

≤ 4

ν
γn∥h∥1

≤ 8

ν
γn∥θ0∥1

=: K2γn.
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Thus it holds that

hTJnh ≤ |hT (Jn − Vn(0; θ0))h|+ hTVn(0; θ0)h

≤ ϵn∥h∥21 +K2γn

≤ ϵn · 4∥θ0∥21 +K2γn

=: K3ϵn +K2γn.

By the definition of the restricted eigenvalue, we have that

RE2(T0; Jn) ≤
hTJnh

∥θ̂n − θ0∥22
≤ K2γn +K3ϵn

∥θ̂n − θ0∥22
.

Noting that RE2(T0; Jn) > 0 with large probability when n is sufficiently large, we
obtain that

∥θ̂n − θ0∥22 ≤
K2γn +K3ϵn
RE2(T0; Jn)

,

which yields the conclusion in (i). Using the factor F∞(T0; Jn), we obtain the con-
clusion in (ii) by the similar way.

It follows from the proof of (i) that

hTVn(0; θ0)h ≤ K4γn∥θ̂n − θ0∥1.

Noting that ∥b∥22 ≤ ∥b∥21 for all b ∈ Rpn , we have that

hTJnh ≤ ϵn∥θ̂n − θ0∥21 +K4γn∥θ̂n − θ0∥1.

The definition of κ(T0; Jn) implies that

κ2(T0; Jn) ≤
ShTJnh

∥hT0∥21

≤ Sϵn∥h∥21 +K4Sγn∥h∥1
∥hT0∥21

.

Since ∥h∥1 ≤ 2∥hT0∥1, this yields the conclusion in (iii).
On the other hand, using the weak cone invertibility factor for every q ≥ 1, we

have that

Fq(T0; Jn) ≤
S

1
q ϵn∥h∥21 + S

1
qK4γn∥h∥1

∥hT0∥1∥h∥q
,

58



which implies that

∥θ̂n − θ0∥q ≤
2S

1
q ϵn∥θ̂n − θ0∥1 + 2S

1
qK4γn

Fq(T0; Jn)
.

Using the l1 bound derived above, we obtain the conclusion in (iv). 2

4.3 The variable selection consistency of the Dantzig

selector

As in the previous chapters, we construct the estimator T̂n for the support index set
T0 by

T̂n = {j : |θ̂n| > γn}.
The variable section consistency can be derived from Theorem 4.11 as follows.

Theorem 4.12. Under Assumptions 4.1 and 4.3, it holds that

lim
n→∞

P
(
T̂n = T0

)
= 1.

Proof. Note that ∥θ̂n − θ0∥∞ ≤ ∥θ̂n − θ0∥1 and that the sparsity S is assumed to
be fixed. We have that

lim
n→∞

P
(
∥θ̂n − θ0∥∞ > γn

)
= 0

by the l1 bound from Theorem 4.11 (iii). Therefore, it is sufficient to show that the
next inequality

∥θ̂n − θ0∥∞ ≤ γn

implies that
T̂n = T0.

For every j ∈ T0, it follows from the triangle inequality that

|θj0| − |θ̂jn| ≤ |θ̂jn − θj0| ≤ γn.

We have that
|θ̂jn| ≥ |θj0| − γn,pn > γn

for sufficiently large n, which implies that T0 ⊂ T̂n. On the other hand, for every
j ∈ T c

0 , we have that
|θ̂jn − θj0| = |θ̂jn| ≤ γn

since it holds that θj0 = 0. From this fact, we can see that j ∈ T̂ c
n which implies that

T̂n ⊂ T0. We thus obtain the conclusion. 2
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4.4 After variable selection

In this section, we deal with Case 2, i.e., the case where tnn → ∞. Hereafter, we
assume the following ergodic condition.

Assumption 4.13. The sub-vector of the covariate process {ZtT0}t≥0 is ergodic with
an invariant measure µ0, i.e., for every µ0-integrable function g, it holds that

1

T

∫ T

0

g(ZtT0)dt→p

∫
RS

g(z)µ0(dz)

as T → ∞.

The next lemma is immediately derived from Assumption 4.13.

Lemma 4.14. Under Assumptions 4.1 and 4.13, it holds that

∥JnT0,T0 − I∥∞ →p 0, n→ ∞,

where

I = 2

∫
RS

zz⊤µ0(dz).

We assume the non-singularity of matrix I.

Assumption 4.15. The S × S matrix I is positive definite.

Using the estimator T̂n, we construct the new estimator θ̂
(2)
n by the solution to

the following equation:
ψn(θ)T̂n

= 0, θT̂ c
n
= 0. (4.4)

Moreover, define the parameter space Ξn by

Ξn := {θ ∈ Rpn : θT c
0
= 0, ∥θ∥q <∞, ∀q ∈ [1,∞]}.

We present the l2 consistency of the estimator θ̂
(2)
n by the next theorem.

Theorem 4.16. Under Assumptions 4.1, 4.3, 4.13 and 4.15, it holds for every
q ∈ [1,∞] that

∥θ̂(2)n − θ0∥q →p 0, n→ ∞.
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Proof. We have that

∥θ̂(2)n − θ0∥q ≤ ∥θ̂(2)nT0
− θ0T0∥q + ∥θ̂(2)nT c

0
∥q.

It follows from previous lemmas and ergodic property of {ZtT0}t≥0 that

ψn(θ)T0 =
1

n

n∑
k=1

Ztnk−1T0 exp
(
−2θ⊤T0

Ztnk−1T0

)
×
{
exp

(
2θ⊤0T0

Ztnk−1T0

)
− exp

(
2θ⊤T0

Ztnk−1T0

)}
+ op(1)

→p

∫
RS

z exp
(
−2θ⊤T0

z
) {

exp
(
2θ⊤0T0

z − exp
(
2θ⊤T0

z
))}

µ0(dz)

=: ψ(θ)T0

for every θ ∈ Ξ in the sense of lq norm. This pointwisely convergence can be extended
to the uniformly convergence over Ξ since we can easily check the condition that

sup
θ∈Ξn

∣∣∣∣ ∂∂θjψi
n(θ)T0

∣∣∣∣ = Op(1)

for every i, j ∈ T0. In addition, we have that

ψn(θ̂
(2)
n )T0 = ψn(θ̂

(2)
n )T̂n

1{T̂n=T0} + ψn(θ̂
(2)
n )T01{T̂n ̸=T0}

= 0 + op(1)

and
ψ(θ0) = 0.

We therefore obtain that

∥θ̂(2)nT0
− θ0T0∥q →p 0, n→ ∞.

It is obvious that ∥θ̂(2)nT c
0
∥q = op(1) since we have that

∥θ̂(2)nT c
0
∥q = ∥θ̂(2)nT c

n
∥q1{T̂n=T0} + ∥θ̂(2)nT c

0
∥q1{T̂n ̸=T0}.

2

Finally, we can derive the following asymptotic normality.

Theorem 4.17. Under Assumptions 4.1, 4.3, 4.13 and 4.15, it holds that

√
n
(
θ̂
(2)

nT̂n
− θ0T0

)
1{T̂n=T0} →

d N(0, I−1).
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Proof. It follows from Taylor expansion and previous lemmas that

√
nψn(0; θ0)T01{T̂n=T0} = Vn(0; θ̃n)T0,T0

√
n
(
θ̂
(2)

nT̂n
− θ0T0

)
1T̂n=T0

,

where θ̃ is a point between θ̂
(2)
n and θ0. By the similar way to that in the proof of

Theorem 4.16, we have that

Vn(0; θ)T0,T0 =
2

n

n∑
k=1

Ztnk−1T0Z
⊤
tnk−1T0

exp
{
2 (θ0 − θ)⊤T0

Ztnk−1T0

}
+ op(1)

→p

∫
RS
zz⊤ exp

{
2 (θ0 − θ)⊤T0

z
}
µ0(dz)

=: V (0; θ)

for every θ ∈ Ξn as n → ∞ in the sense of l∞ norm and this convergence can be
extended to the uniform convergence over Ξn. Combining this fact with Lemmas
4.9, 4.14, and continuous mapping theorem, we have that

∥Vn(0; θ̃n)T0,T0 − I∥∞ = op(1).

since ∥θ̃n − θ0∥q = op(1) by Theorem 4.16. We therefore have that

√
n
(
θ̂
(2)

nT̂n
− θ0T0

)
1{T̂n=T0} = I−1

√
nψn(0; θ0)T01{T̂n=T0} + op(1).

Since ψn(0; θ0)T0 satisfies that

√
nψn(0; θ0)T0 =

1√
n∆n

n∑
k=1

Ztnk−1T0

{(
Wtnk

−Wtnk−1

)2
−∆n

}
+ op(1)

and the main term of the right-hand side of the equality is the terminal value of
square integrable martingale, we can apply the martingale central limit theorem to
deduce that √

nψn(0; θ0)T0 →d N(0, I), n→ ∞.

Noting that 1{T̂n=T0} →
p 1 as n→ ∞, we obtain the conclusion by Slutsky’s lemma.

2

4.5 Concluding remarks

As in Theorem 4.11 (i) and (ii), we have that the rates of convergence of ∥θ̂n −
θ0∥2 and ∥θ̂n − θ0∥∞ are n−ρ for ρ ∈ (0, 1/4) in Case 1. In a low-dimensional
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setting, it is known that the rate of convergence of the maximum quasi-likelihood
estimator is n−1/2. So we can see the influence of a high-dimensional setting in our
results. Although the l1 norm is greater than l∞ norm, the l1 and lq risk bounds
for finite q which we derived in Theorem 4.11 (iii) and (iv) tell us that the rates of
convergence are n−ρ′ for ρ′ ∈ (0, 1/2), which can be faster than l2 and l∞ bound.
These phenomena are caused by the fact that the sparsity S of the true value is
fixed constant and that the covariate process {Zt}t≥0 is assumed to be uniformly
bounded. When the sparsity S depends on n and the covariate process {Zt}t≥0 is
not bounded, we may not be able take the dimension p of the unknown parameter
in exponential order of n and the rates of convergence of ∥θ̂n − θ0∥1 and ∥θ̂n − θ0∥q
for finite q would become slower than those we derived.
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Chapter 5

A linear model of diffusion
processes

Let us consider the following model given by the linear stochastic differential equa-
tion:

Xt = X0 +

∫ t

0

Θ⊤ϕ(Xs)ds+ σWt, (5.1)

where {Wt}t≥0 := {(W 1
t , . . . ,W

p
t )}t≥0 is a p-dimensional standard Brownian motion,

Θ is a p × p sparse deterministic matrix, σ = diag(σ1, . . . , σp) is a p × p diagonal
matrix and ϕ(x) = (ϕ1(x1), . . . , ϕp(xp))

⊤ for x = (x1, . . . , xp)
⊤ ∈ Rp is a smooth

Rp-valued function. We will propose some estimators for the true values (Θ0, σ0)
of (Θ, σ) based on the observation of {Xt}t≥0 at n + 1 equidistant time points
0 =: tn0 < tn1 < . . . < tnn, under the high-dimensional and sparse setting, i.e., p ≫ n
and the number of nonzero components of the true value Θ0 is relatively small.

The statistical inference for high-dimensional linear diffusion processes was es-
pecially discussed by some researchers. Periera and Ibrahimi (2014) studied vari-
ous models of multi-dimensional diffusion processes observed continuously in high-
dimensional settings including the following p-dimensional linear model:

Xt = X0 +

∫ t

0

Θ⊤Xsds+Wt, t ∈ [0, T ]. (5.2)

This model may be useful for various fields such as statistical physics, chemical re-
actions, finances and network systems. They proposed a Lasso type estimator for
the true value Θ0 of Θ and discussed the support recovery of the estimator when
the dimension of the process p and the time interval T tends to ∞ independently.
Similarly, Gaiffas and Matulewicz (2017) studied the drift estimation based on the
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Lasso-type estimators for the high-dimensional Ornstein-Uhlenbeck processes de-
scribed by the SDE like (5.2). They derived the oracle properties of the estimator
for the sparse drift matrix and showed some applications for financial data. How-
ever, there are few previous researches dealing with the estimation problems for
these linear models based on discrete observations.

In this chapter, we will apply the Dantzig selector to the linear models of stochas-
tic processes (5.1), which is similar to the model (5.2), to estimate the drift matrix
Θ0 and prove the consistency in the sense of lq norm for every q ∈ [1,∞] and the
variable selection consistency under some appropriate conditions. Moreover, using
the variable selection consistency, we will construct a new estimator which has an
asymptotic normality. We can prove the consistency of the Dantzig selector by the
similar way to Bickel et al. (2009). Note that our “high-dimensional setting’ is
different from that in previous researches such as Periera and Ibrahimi (2014) and
Gaiffas and Matulewicz (2017); our estimation procedure is based on discrete obser-
vations and we assume that the dimension p depends on the number n of observed
time points. We thus need to develop a different type of asymptotic theories.

This chapter is organized as follows. In Section 5.1, we will introduce our model
setups and some regularity conditions. The construction of the estimator for the
diffusion matrix and its consistency result are described in Section 5.2. The Dantzig
selector for the drift matrix and the lq consistency of the Dantzig selector are pre-
sented in Section 5.3. We will prove the variable selection consistency of the Dantzig
selector in Section 5.4. Moreover, we will construct a new estimator by using the
variable selection consistency and prove the asymptotic normality of the new estima-
tor in the same section. Finally, some concluding remarks are described in Section
5.5.

5.1 Preliminaries

Let {W 1
t }t≥0, {W 2

t }t≥0, . . . be independent standard Brownian motions on a proba-
bility space (Ω,F , P ). Define the filtration {Ft}t≥0 as follows.

Ft := F0 ∨ σ(W j
s ; j = 1, 2, . . . , s ∈ [0, t]), t ≥ 0,

where F0 is a σ-field independent of {W j
t }t≥0, j = 1, 2, . . .. We consider the following

p-dimensional linear stochastic differential equation (5.1) defined on the stochastic
basis (Ω,F , {Ft}t≥0, P ):

Xt = X0 +

∫ t

0

Θ⊤ϕ(Xs)ds+ σWt, t ≥ 0

65



where {Wt}t≥0 := {(W 1
t , . . . ,W

p
t )}t≥0 is a p-dimensional standard Brownian motion,

Θ is a p × p deterministic matrix, σ = diag(σ1, . . . , σp) is a p × p diagonal matrix,
and ϕ(x) = (ϕ1(x1), . . . , ϕp(xp))

⊤, x = (x1, . . . , xp)
⊤ is a smooth Rp-valued function.

Assume that X0 is F0-measurable. Note that {X i
t}t≥0 for each i = 1, 2, . . . , p satisfies

the following equation.

X i
t = X i

0 +

∫ t

0

Θ⊤
i ϕ(Xs)ds+ σiW

i
t , t ≥ 0,

where Θi is the i-th row of the matrix Θ. In this paper, we consider the estimation
problem of the true value (Θ0, σ0) of (Θ, σ). Suppose that we can observe the process
{Xt}t≥0 at n+ 1 discrete time points:

0 =: tn0 < tn1 < . . . < tnn, tnk =
ktnn
n
, k = 0, 1, . . . , n.

Write T i
0 for the support of the true value Θ0

i for every i ∈ {1, 2, . . . , p}, i.e., T i
0 =

{j : Θ0
ij ̸= 0}. Let Si be the number of elements in the index set T i

0. Hereafter, we
assume the following high-dimensional and sparse setting for the true matrix Θ0.

p = pn ≫ n, sup
1≤i<∞

Si =: S∗ <∞;

note that S∗ > 0 is a constant which does not depend on n. We use the quasi-
likelihood method which is commonly used in this field to estimate the unknown
parameters. The quasi-likelihood function is constructed by discretization of the
processes by Euler-Maruyama scheme, which is based on the fact that diffusion pro-
cesses can be locally approximated by Gaussian random variables. See e.g. Yoshida
(1992), Genon-Catalot and Jacod (1993) and Kessler (1997) for details. In this
model, the quasi-log-likelihood function is given by

n∑
k=1

{
−1

2
log(2πσ2

i∆n)−
|X i

tnk
−X i

tnk−1
−ΘT

i ϕ(Xtnk−1
)∆n|2

2σ2
i∆n

}
,

where ∆n := tnk − tnk−1 = tnn/n. We write ln(Θi, σi) for the normalized quasi-log-
likelihood, i.e.,

ln(Θi, σi) :=
1

n∆n

n∑
k=1

{
−1

2
log(2πσ2

i∆n)−
|X i

tnk
−X i

tnk−1
−ΘT

i ϕ(Xtnk−1
)∆n|2

2σ2
i∆n

}
.

We assume the following conditions.
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Assumption 5.1. (i) The following conditions hold true;

pn → ∞, log pn/
√
n∆n → 0,

and ∆n = ∆n−α, for some α ∈ (1/2, 1) and positive constant ∆. Especially,
the last condition implies that n∆n = tnn → ∞, ∆n → 0 and that n∆2

n → 0 as
n→ ∞.

(ii) The functions ϕi’s are uniformly bounded and satisfy the global Lipschitz con-
dition, i.e., there exist positive constants L and L′ such that

sup
1≤i<∞

sup
x∈R

|ϕi(x)| ≤ L

and that
sup

1≤i<∞
|ϕi(x)− ϕi(y)| ≤ L′|x− y|, ∀x, y ∈ R.

(iii) For every ν ≥ 1, there exists a positive constant C̃ν such that

sup
1≤i<∞

sup
t∈[0,∞)

E
[
|X i

t |ν
]
≤ C̃ν .

Note that this assumption implies that

sup
t∈[0,∞)

E

[
sup

1≤i≤pn

|X i
t |ν
]
≤ pnC̃ν , ∀n ∈ N.

(iv) There exist some positive constants K1, K2 and K3 such that

sup
1≤i,j<∞

|Θ0
ij| < K1,

K2 < inf
1≤i<∞

σ0
i ≤ sup

1≤i<∞
|σ0

i | < K3.

(v) For every i ∈ N, the RSi-valued process {XtT i
0
}t∈[0,Tn] is ergodic for Θ = Θ0 and

σ = σ0 with invariant measure µi
0.

Remark 5.2. Let us discuss on Assumption 5.1-(v). Put T̃ i
0 =

∪
j∈T i

0
T j
0 . It follows

from a direct calculation that

XtT̃ i
0
= X0T̃ i

0
+

∫ t

0

(
Θ0

T̃ i
0,T̃

i
0

)⊤
ϕ(XsT̃ i

0
)T̃ i

0
ds+ σ0

T̃ i
0,T̃

i
0
WtT̃ i

0
, t ≥ 0. (5.3)

If this process is ergodic, then Assumption 5.1-(v) is valid because the process {XtT i
0
}

is a marginal process of {XtT̃ i
0
}t≥0. The conditions for the ergodic property of multi-

dimensional diffusion processes can be checked by, for instance, Assumptions (D)
and (E) in Gobet (2002).
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Remark 5.3. As in Remark 1, if Θ0 and ϕ(·) satisfy Assumptions in Gobet (2002),
then {Xt}t≥0 has a stationary invariant measure in fixed dimensional settings. How-
ever, it is not obvious that Assumption 5.1-(iii) is verified in our high-dimensional
setting since we need the uniformly boundedness in i. Even if high-dimensional ma-
trix Θ0 satisfies Assumptions in Gobet (2002), we can only observe that arbitrary
finite dimensional marginal of {Xt}t≥0 is stationary, which may not imply Assump-
tion 5.1-(iii). Note moreover that for the process {Xt}t≥0 which satisfies (5.1),
Assumption 5.1-(iii) implies that for every ν ≥ 1, there exists a constant Cν > 0
such that for any n, i = 1, 2, . . . , pn and k = 1, 2, . . . , n,

E

[
sup

s∈[tnk−1,t
n
k ]

|X i
s −X i

tnk−1
|ν
]
≤ Cν∆

ν
2
n .

Note moreover that uniformly bounded condition for ϕ′
is in Assumption 5.1-(ii) is

just a technical condition to deal with high-dimensional settings. We may consider
the estimation problems without this condition, however, in such settings, the con-
dition for the dimension p and sample size n in Assumption 5.1-(i) should be more
strong.

5.2 Estimators for diffusion coefficients

It is well-known that we can ignore the influence of drift coefficients when we estimate
the diffusion coefficients (see e.g. Yoshida (1992)). We thus define the estimator for
σ0
i by the solution σ̂n,i to the equation

∂

∂σi
ln(0, σi) = 0, i = 1, 2, . . . , pn,

by letting Θ = 0. Note that σ̂n,i can be written explicitly in the following way:

σ̂2
i := σ̂2

n,i =
1

n∆n

n∑
k=1

|X i
tnk
−X i

tnk−1
|2.

The next theorem asserts the consistency of σ̂i uniformly in i.

Theorem 5.4. Under Assumption 5.1, it holds that

sup
1≤i≤pn

|σ̂2
i − (σ0

i )
2| →p 0, n→ ∞.
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Proof. It is clear that

σ̂2
i =

1

n∆n

n∑
k=1

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds+ σ0
i (Wtnk

−Wtnk−1
)

∣∣∣∣∣
2

=
1

n∆n

n∑
k=1

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

∣∣∣∣∣
2

+
2σ0

i

n∆n

n∑
k=1

(∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

)(
Wtnk

−Wtnk−1

)
+
(σ0

i )
2

n∆n

n∑
k=1

(Wtnk
−Wtnk−1

)2.

Thus we have that
σ̂2
i − (σ0

i )
2 = (I) + (II) + (III),

where

(I) =
1

n∆n

n∑
k=1

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

∣∣∣∣∣
2

,

(II) =
2σ0

i

n∆n

n∑
k=1

(∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

)(
Wtnk

−Wtnk−1

)
and

(III) =
(σ0

i )
2

n∆n

n∑
k=1

{(W i
tnk
−W i

tnk−1
)2 −∆n}.

Using Markov’s and Schwartz’s inequalities, we can evaluate (I) for every δ > 0
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uniformly in i as follows

P

 sup
1≤i≤pn

1

n∆n

n∑
k=1

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

∣∣∣∣∣
2

≥ δ


≤ 1

n∆nδ

n∑
k=1

E

 sup
1≤i≤pn

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

∣∣∣∣∣
2


≤ 1

n∆nδ

n∑
k=1

E

[
sup

1≤i≤pn

∆n

∫ tnk

tnk−1

∣∣(Θ0
i )

⊤ϕ(Xs)
∣∣2 ds]

≤ 1

nδ

n∑
k=1

∫ tnk

tnk−1

E

[
sup

1≤i≤pn

∥Θ0
i ∥21 max

l∈T i
0

|ϕl(X
l
s)|2
]
ds

≤ 1

δ
sup

1≤i≤pn

∥Θ0
i ∥21S∗L∆n.

The right-hand side of this inequality converges to 0 for every δ > 0. This yields
that (I) →p 0 uniformly in i.

To evaluate (II), we use Φ2-Orilicz norm introduced in the end of Introduction.
We have that Φ2-Orlicz norm for a standard normal random variable X is

∥X∥Φ2 =

√
8

3
. (5.4)

From (5.4) and Lemma 2.4 for Φp-Orlicz norm ∥ · ∥Φp , we can evaluate (II) for any
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δ > 0 uniformly in i as follows:

P

(
sup

1≤i≤pn

2σ0
i

n∆n

n∑
k=1

∣∣∣∣∣
(∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

)(
W i

tnk
−W i

tk−1n

)∣∣∣∣∣ ≥ δ

)

≤ 2 supi σ
0
i

n∆nδ

n∑
k=1

E

[
sup

1≤i≤pn

∣∣∣∣∣
(∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

)(
W i

tnk
−W i

tnk−1

)∣∣∣∣∣
]

≤ 2 supi σ
0
i

n∆nδ

n∑
k=1

E
 sup
1≤i≤pn

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤ϕ(Xs)ds

∣∣∣∣∣
2
 1

2

×
∥∥∥∥ sup
1≤i≤pn

∣∣∣W i
tnk
−W i

tnk−1

∣∣∣∥∥∥∥
L2

≤ 2 supi σ
0
i

n∆nδ

n∑
k=1

(S∗L∆2
n)

1
2 sup
1≤i≤pn

∥Θ0
i ∥1K

√
log(1 + pn)

∥∥∥∣∣∣W i
tnk
−W i

tnk−1

∣∣∣∥∥∥
Φ2

≤ 2 supi σ
0
i

n∆nδ

n∑
k=1

(S∗L∆2
n)

1
2 sup
1≤i≤pn

∥Θ0
i ∥1K

√
log(1 + pn)

(
8∆n

3

) 1
2

,

where K is a positive constant which does not depend on n. The right-hand side of
this inequality converges to 0 for every δ > 0. So we have that (II) →p 0 uniformly
in i.

(III) is a terminal value of an {Ftnk
}k≥0-martingale. We will apply Bernstein’s

inequality for martingales (See van de Geer (1995), Lemma 8.9.) to the following
processes:

M i
n :=

n∑
k=1

{(W i
tnk
−W i

tnk−1
)2 −∆n}.

To do this, we shall evaluate the m-th moment for every integer m ≥ 2;

1

n

n∑
k=1

E[|(W i
tnk
−W i

tnk−1
)2 −∆n|m|Ftnk−1

].
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Noting that W i
tnk
−W i

tnk−1
is independent of Ftnk−1

, we have that

1

n

n∑
k=1

E[|(W i
tnk
−W i

tnk−1
)2 −∆n|m|Ftnk−1

]

=
1

n

n∑
k=1

E[|(W i
tnk
−W i

tnk−1
)2 −∆n|m]

≤ 1

n

n∑
k=1

m∑
r=0

(
m

r

)
∆m−r

n E[(W i
tnk
−W i

tnk−1
)2r]

= ∆m
n +

m∑
r=1

(
m

r

)
∆m−r

n (2r − 1)!!∆r
n

= ∆m
n +

m∑
r=1

(2r − 1)!!

r!(m− r)!
m!∆m

n

<
m∑
r=0

2rm!∆m
n

<
m!

2
(2∆n)

m−24∆2
n.

So it follows from Bernstein’s inequality that for every ϵ > 0,

P (|M i
n| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2(2∆nϵ+ 4n∆2
n)

)
.

Apply Lemma 2.5 to deduce that there exist a constant L1 > 0 depending only on
the function Φ1(x) = ex − 1 such that∥∥∥∥ sup

1≤i≤pn

|M i
n|
∥∥∥∥
Φ1

≤ L1{2∆n log(1 + pn) +
√

4n∆2
n log(1 + pn)}.

So we obtain from Markov’s inequality that

P

(
sup

1≤i≤pn

|M i
n| ≥ ϵ

)

≤ Φ1

(
ϵ

L1{2∆n log(1 + pn) +
√

4n∆2
n log(1 + pn)}

)−1

.

For every ϵ > 0, the right-hand side of the above inequality converges to 0. Noting
that

P

(
sup

1≤i≤pn

|(III)| ≥ (σ0
i )

2ϵ

n∆n

)
= P

(
sup

1≤i≤pn

|M i
n| ≥ ϵ

)
,
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we obtain the conclusion. 2

Note that Theorem 5.4 and Assumption 5.1 imply that there exists a constant K̃1

such that

lim
n→∞

P

(
sup

1≤i≤pn

σ̂−2
i ≥ K̃1

)
= 0.

5.3 Estimators for drift coefficients

In this section, we define the estimator for Θi by plugging σ̂i in quasi-log-likelihood
ln. Hereafter, we write ψn(Θi) for the gradient of ln(Θi, σ̂i) with respect to Θi, and
V i
n for Hessian of −ln(Θi, σ̂i), i.e.,

ψn(Θi) :=
1

n∆nσ̂2
i

n∑
k=1

ϕ(Xtnk−1
)(X i

tnk
−X i

tnk−1
−ΘT

i ϕ(Xtnk−1
)∆n),

V i
n :=

1

nσ̂2
i

n∑
k=1

ϕ(Xtnk−1
)ϕ(Xtnk−1

)⊤.

Note that the Hessian matrix does not depend on Θ. Define the Dantzig selector
type estimator Θ̂n,i for Θ

0
i by

Θ̂n,i := Θ̂i := arg min
Θi∈Ci

n

∥Θi∥1, Ci
n := {Θi ∈ Rpn : ∥ψn(Θi)∥∞ ≤ γin},

where γin is a tuning parameter. Hereafter, we assume the following condition about
γin

Assumption 5.5. γin satisfies the following equality for some positive constants ci’s
which are uniformly bounded in i:

γin = ciγ̃n,

where γ̃n := (log pn/n∆n)
1/4.

We define the quantity γn by

γn = sup
1≤i≤pn

γin.

Under Assumption 5.5, it is obvious that there exists a constant c ∈ (0,∞) such
that

γn
γ̃n

= sup
1≤i≤pn

ci ≤ c.

Some remarks about the choice of ci’s are described in Chapter 6. The goal of this
section is to prove the consistency of Θ̂i.
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5.3.1 Some discussions on the gradient

Let us prove that
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≤ γn

with probability tending to 1. To do this, we decompose

ψj
n(Θ

0
i ) = Ai,j

n +Bi,j
n ,

where

Ai,j
n :=

1

n∆nσ̂2
i

n∑
k=1

ϕj(X
j
tnk−1

)

∫ tnk

tnk−1

(Θ0
i )

⊤(ϕ(Xs)− ϕ(Xtnk−1
))ds

and

Bi,j
n :=

σ0
i

n∆nσ̂2
i

n∑
k=1

ϕj(X
j
tnk−1

)(W i
tnk
−W i

tnk−1
).

Lemma 5.6. Under Assumptions 5.1 and 5.5, it holds that

lim
n→∞

P

(
sup

1≤i,j≤pn

|Ai,j
n | ≥ γn and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
= 0.

Proof. We have that

P

(
sup

1≤i,j≤pn

|Ai,j
n | ≥ γn and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
≤ K̃1L

n∆nγn

n∑
k=1

E

[
sup

1≤i≤pn

∣∣∣∣∣
∫ tnk

tnk−1

(Θ0
i )

⊤(ϕ(Xs)− ϕ(Xtnk−1
))ds

∣∣∣∣∣
]

≤ K̃1L

n∆nγn

n∑
k=1

∫ tnk

tnk−1

E

[
sup

1≤i≤pn

∥Θ0
i ∥1 sup

l∈T i
0

|ϕl(X
l
s)− ϕl(X

l
tnk−1

)|

]
ds

≤
K̃1LL

′ sup1≤i≤pn ∥Θ0
i ∥1

n∆nγn

n∑
k=1

∫ tnk

tnk−1

E

[
sup
l∈T i

0

|X l
s −X l

tnk−1
|

]
ds

≤
K̃1LL

′ sup1≤i≤pn ∥Θ0
i ∥1

n∆nγn
· n · S∗∆

3
2
n .

The right-hand side of the above inequality converges to 0 under our assumptions.
So we obtain the conclusion. 2

Lemma 5.7. Under Assumptions 5.1 and 5.5, it holds that

lim
n→∞

P

(
sup

1≤i,j≤pn

|Bi,j
n | ≥ γn and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
= 0.
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Proof. We apply Bernstein’s inequality for martingales to the following terminal
value of martingale :

M̃ i,j
n =

n∑
k=1

ϕj(X
j
tnk−1

)(W i
tnk
−W i

tnk−1
).

For any integer m ≥ 2, it holds that

1

n

n∑
k=1

E
[
|ϕj(X

j
tnk−1

)|m|W i
tnk
−W i

tnk−1
|m|Ftnk−1

]
=

1

n

n∑
k=1

|ϕj(X
j
tnk−1

)|mE[|W i
tnk
−W i

tnk−1
|m]

≤ Lm∆
m
2
n

2
m
2 Γ(m+1

2
)

π
1
2

≤ m!

2
(L
√

2∆n)
m−2L2(2∆n).

Put
K := L

√
2∆n, R2 := L2(2∆n).

It follows from Bernstein’s inequality that for any ϵ > 0

P (|M̃ i,j
n | ≥ ϵ) ≤ 2 exp

(
− ϵ2

2(ϵK + nR2)

)
.

Using Lemma 2.5, we have that there exists a constant L2 > 0 depending only on
Φ1 such that∥∥∥∥ sup

1≤i,j≤pn

|M̃ i,j
n |
∥∥∥∥
Φ1

≤ L2{K log(1 + p2n) +
√
nR2 log(1 + p2n)}.

For ϵ = n∆nγn/(σ
0
i K̃1), we obtain that

P

(
sup

1≤i,j≤pn

|Bi,j
n | ≥ γn and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
≤ P

(
sup

1≤i,j≤pn

|M̃ i,j
n | ≥ ϵ

)

≤ Φ1

(
ϵ

L2{K log(1 + p2n) +
√
nR2 log(1 + p2n)}

)−1

→ 0.

2
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Using the above lemmas, we obtain the following theorem.

Theorem 5.8. Under Assumptions 5.1 and 5.5, it holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn

)
= 0.

Proof. It is obvious that Lemma 5.6 and 5.7 imply that

P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
→ 0.

Noting that

P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn

)
= P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
+P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn and sup

1≤i≤pn

σ̂−2
i ≥ K̃1

)
and that

P

(
sup

1≤i≤pn

∥ψn(Θ
0
i )∥∞ ≥ 2γn and sup

1≤i≤pn

σ̂−2
i ≥ K̃1

)
≤ P

(
sup

1≤i≤pn

σ̂−2
i ≥ K̃1

)
,

we obtain the conclusion. 2

5.3.2 Some discussions on the Hessian

We introduce the following factors for V i
n to deduce the lq consistency of Θ̂i.

Definition 5.9. For every index set T ⊂ {1, 2, · · · , pn} and h ∈ Rpn, hT is
an R|T | dimensional sub-vector of h constructed by extracting the components of h
corresponding to the indices in T . Define the set CT by

CT := {h ∈ Rpn : ∥hT c∥1 ≤ ∥hT∥1}.

(i) Compatibility factor

κ(T i
0, V

i
n) := inf

0̸=h∈C
Ti
0

S
1
2
i (h

TV i
nh)

1
2

∥hT i
0
∥1

.
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(ii) Weak cone invertibility factor

Fq(T
i
0, V

i
n) := inf

0̸=h∈C
Ti
0

S
1
q

i h
TV i

nh

∥hT i
0
∥1∥h∥q

, q ∈ [1,∞).

F∞(T i
0, V

i
n) := inf

0̸=h∈C
Ti
0

(hTV i
nh)

1
2

∥h∥∞
.

(iii) Restricted eigenvalue

RE(T i
0, V

i
n) := inf

0̸=h∈C
Ti
0

(hTV i
nh)

1
2

∥h∥2
.

We assume that κ(T i
0, V

i
n) satisfies the following condition.

Assumption 5.10. For every ϵ > 0, there exist δ > 0 and n0 ∈ N such that for all
n ≥ n0,

P

(
inf

1≤i≤pn
κ(T i

0, V
i
n) > δ

)
≥ 1− ϵ.

Noting that ∥hT i
0
∥q1 ≥ ∥hT i

0
∥qq for all q ≥ 1, we can see that κ(T i

0;V
i
n) ≤ 2

√
SiRE(T i

0;V
i
n),

and that κ(T i
0;V

i
n) ≤ Fq(T

i
0;V

i
n). So under Assumption 5.10, the two factors RE(T i

0;V
i
n)

and Fq(T
i
0;V

i
n) also satisfy the corresponding conditions. See van de Geer and

Bühlmann (2009) for the details of the matrix conditions to deal with the spar-
sity.

5.3.3 The consistency of the drift estimator

The following theorem give the lq consistency of Θ̂i uniformly in i for every q ∈ [1,∞].

Theorem 5.11. Under Assumptions 5.1, 5.5 and 5.10, the following (i)-(iv) hold
true.

(i) It holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥22 ≥

4 sup1≤i≤pn ∥Θ0
i ∥1γn

inf1≤i≤pn RE
2(T i

0, V
i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn ∥Θ̂i −Θ0
i ∥2 →p 0 as n→ ∞.
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(ii) It holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥2∞ ≥

4 sup1≤i≤pn ∥Θ0
i ∥1γn

inf1≤i≤pn F
2
∞(T i

0, V
i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn ∥Θ̂i −Θ0
i ∥∞ →p 0 as n→ ∞.

(iii) It holds that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥1 ≥

8S∗γn
inf1≤i≤pn κ

2(T i
0, V

i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn ∥Θ̂i −Θ0
i ∥2 →p 0 as n→ ∞.

(iv) It holds for every q ∈ (1,∞) that

lim
n→∞

P

(
sup

1≤i≤pn

∥Θ̂i −Θ0
i ∥q ≥

4S∗ 1
q γn

inf1≤i≤pn Fq(T i
0, V

i
n)

)
= 0.

In particular, it holds that sup1≤i≤pn ∥Θ̂i −Θ0
i ∥q →p 0 as n→ ∞.

Proof. (i) and (ii): It is sufficient to show that

sup
1≤i≤n

∥ψn(Θ
0
i )∥∞ ≤ γn

implies that

sup
1≤i≤pn

∥Θ̂i −Θ0
i ∥22 ≤

4 sup1≤i≤pn ∥Θ0
i ∥1γn

inf1≤i≤pn RE
2(T i

0, V
i
n)
.

By the definition of Θ̂i, we have that

sup
1≤i≤pn

∥ψn(Θ̂i)∥∞ ≤ sup
1≤i≤pn

γin = γn.

It follows from the triangle inequality that

sup
1≤i≤pn

∥ψn(Θ̂i)− ψn(Θ
0
i )∥∞ ≤ 2γn.

Put hi := Θ̂i − Θ0
i . Noting that Θ̂i is the minimizer of the l1 norm, we can

easily check that hi ∈ CT i
0
. In fact, it holds that

0 ≥ ∥Θ0
i + hi∥1 − ∥Θ0

i ∥1 =
∑

j∈(T i
0)

c

|hij|+
∑
j∈T0

(|Θ0
ij + hij| − |Θ0

ij|)

≥
∑

j∈(T i
0)

c

|hij| −
∑
j∈T i

0

|hij|

= ∥hi(T i
0)

c∥1 − ∥hiT i
0
∥1.
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By the Taylor expansion, we have that

hTi [ψn(Θ̂i)− ψn(Θ
0
i )] = hTi V

i
nhi.

Noting that ∥hi∥1 ≤ ∥Θ̂i∥1+∥Θ0
i ∥1 ≤ 2∥Θ0

i ∥1 and that sup1≤i≤pn ∥ψn(Θ̂i)∥∞ ≤
γn, we have that

sup
1≤i≤pn

hTi V
i
nhi = sup

1≤i≤pn

hTi [ψn(Θ̂i)− ψn(Θ
0
i )]

≤ sup
1≤i≤pn

∥hi∥1∥ψn(Θ̂i)− ψn(Θ
0
i )∥∞

≤ 2 sup
1≤i≤pn

∥Θ0
i ∥1
{
∥ψn(Θ

0
i )∥∞ + ∥ψn(Θ̂i)∥∞

}
≤ 4 sup

1≤i≤pn

∥Θ0
i ∥1γn.

By the definition of RE(T i
0, V

i
n), we obtain that:

RE2(T i
0, V

i
n)∥hi∥22 ≤ hTi V

i
nh

sup
1≤i≤pn

RE2(T i
0, V

i
n)∥hi∥22 ≤ 4 sup

1≤i≤pn

∥Θ0
i ∥1γn

sup
1≤i≤pn

∥Θ̂i −Θ0
i ∥22 ≤

4 sup1≤i≤pn ∥Θ0
i ∥1γn

inf1≤i≤pn RE
2(T i

0, V
i
n)
.

These facts yield our conclusion in (i). Using the factor F∞(T i
0, V

i
n) in place of

RE(T i
0, V

i
n), we obtain the conclusion in (ii) by the similar way.

(iii) and (iv): It follows from the proof of (i) and (ii) that

sup
1≤i≤pn

hTi V
i
nhi ≤ 2 sup

1≤i≤pn

∥hi∥1γn.

So by the definition of κ(T i
0, V

i
n), we have that

κ2(T i
0, V

i
n) sup

1≤i≤pn

∥hi∥21 ≤ 4S∗ sup
1≤i≤pn

hTi V
i
nhi

≤ 8S∗ sup
1≤i≤pn

∥hi∥1γn.

We therefore obtain that

sup
1≤i≤pn

∥hi∥1 ≤
8S∗γn

inf1≤i≤pn κ
2(T i

0, V
i
n)
.
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This yields our conclusion in (iii).

On the other hand, by the definition of the factor Fq(T
i
0, V

i
n), we have that

Fq(T
i
0, V

i
n) ≤

4S∗ 1
q γn

∥hi∥q
.

This yields our conclusion in (iv). 2

Remark 5.12. The asymptotic rate γ̃n of the tuning parameter γin = ciγ̃n needs to
satisfy the following condition; √

∆n

γ̃n
→ 0, (5.5)

√
∆n log pn
n∆nγ̃n

→ 0 (5.6)

and √
n∆n log pn
n∆nγ̃n

→ 0 (5.7)

as n → ∞, which can be seen in the proof of Lemmas 5.6 and 5.7. Moreover, to
obtain the consistency of the estimators, it is necessary that γ̃n → 0. Since the
left-hand side of (5.7) is larger than those of (5.5) and (5.6), we can choose the γ̃n
by a solution to the following equation

γ̃n =

√
n∆n log pn
n∆nγ̃n

.

We therefore obtain that
γ̃n = (log pn/n∆n)

1/4.

We discuss the choice of the constant ci in Section 6.

Remark 5.13. Theorem 5.11 implies that the estimator Θ̂ converges to the drift
matrix Θ0, i.e.,

∥Θ̂−Θ0∥∞ →p 0

as n→ ∞. For each i ∈ {1, 2, . . . , pn}, we have that

lim
n→∞

P

(
∥Θ̂i −Θ0

i ∥2∞ ≥ 4∥Θ0
i ∥1γin

F 2
∞(T i

0, V
i
n)

)
= 0

or

lim
n→∞

P

(
∥Θ̂i −Θ0

i ∥1 ≥
8Siγ

i
n

κ2(T i
0, V

i
n)

)
= 0.
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We can observe from these facts that the rate of convergence of the l∞ and l1 norm is
γ̃
1/2
n and γ̃n respectively. The similar error bounds holds for other norms. Although

the l1 norm is always greater than l∞ norm, the rate of convergence of l1 norm is γ̃n,
which is faster than that of l∞ norm. This is caused by the fact that the sparsity Si

is fixed. If Si is assumed to be dependent on n, then, the rate of convergence would
become slower than that of l∞ norm.

5.4 Variable selection by the Dantzig selector

5.4.1 Estimator for the support index set of the drift coef-
ficients

In this subsection, we propose the estimator of the support index set T i
0 of the true

value Θ0
i as follows.

T̂ i
n := {j : |Θ̂ij| > γin}.

We shall prove that T̂ i
n = T i

0 for sufficiently large n with probability tending to
1.

Theorem 5.14. Under Assumptions 5.1, 5.5 and 5.10, it holds that

lim
n→∞

P
(
T̂ i
n = T i

0 for all i ∈ {1, 2, . . . , pn}
)
= 1.

Proof. We have that

lim
n→∞

P
(
∥Θ̂i −Θ0

i ∥1 > γin for all i ∈ {1, 2, . . . , pn}
)
= 0

by Theorem 5.11. So it is sufficient to show that for every i, the next inequality

∥Θ̂i −Θ0
i ∥1 ≤ γin, for all i ∈ {1, 2, . . . , pn}

implies that
T̂ i
n = T i

0, for all i ∈ {1, 2, . . . , pn}.

For every j ∈ T i
0, it follows from the triangle inequality that

|Θ0
ij| − |Θ̂ij| ≤ |Θ̂ij −Θ0

ij| ≤ ∥Θ̂i −Θ0
i ∥1 ≤ γin.

Then, we have that
|Θ̂ij| ≥ |Θ0

ij| − γin > γin
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for sufficiently large n, which implies that T i
0 ⊂ T̂ i

n for every i ∈ {1, . . . , pn}. On the
other hand, for every j ∈ (T i

0)
c, we have that

|Θ̂ij −Θ0
ij| = |Θ̂ij| ≤ γin

since it holds that Θ0
ij = 0. Thus, we can see that j ∈ (T̂ i

n)
c which implies that

T̂ i
n ⊂ T i

0 for every i ∈ {1, . . . , pn}. We have obtained the conclusion. 2

5.4.2 New estimator for drift coefficients after variable se-
lection

We construct the new estimator Θ̂
(2)
i by the solution to the next equation

ψn(Θi)T̂ i
n
= 0, Θi(T̂ i

n)
c = 0. (5.8)

We will prove the asymptotic normality of the estimator Θ̂
(2)

iT̂ i
n
for every i ∈ {1, 2, . . . , pn}.

In order to consider the asymptotic distribution, we assume the following condition
concerning with the Fisher information matrix.

Assumption 5.15. Define the Si × Si matrix Qi
T i
0,T

i
0
by

Qi
T i
0,T

i
0
:=

1

(σ0
i )

2

∫
RSi

ϕ(x)T i
0
ϕ(x)⊤T i

0
µi
0(dx).

It holds that Qi
T i
0,T

i
0
is invertible for every i = 1, 2, . . . , pn.

The next lemma states that V i
nT i

0,T
i
0
is approximated by Qi

T i
0,T

i
0
with probability

tending to 1 as n→ ∞.

Lemma 5.16. Define the random sequence ϵin by

ϵin := ∥V i
nT i

0,T
i
0
−Qi

T i
0,T

i
0
∥∞, i ∈ {1, 2, . . . , pn}.

Under Assumption 5.1, it holds that ϵin →p 0 as n→ ∞ for every i.

Proof. Note that

V i
nT i

0,T
i
0
=

1

nσ̂2
i

n∑
k=1

ϕ(Xtnk−1T
i
0
)T i

0
ϕ(Xtnk−1T

i
0
)⊤T i

0
.

It holds that
ϵin ≤ (I) + (II) + (III),
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where

(I) :=

∥∥∥∥V i
nT i

0,T
i
0
− 1

Tnσ̂2
i

∫ Tn

0

ϕ(XtT i
0
)T i

0
ϕ(XtT i

0
)⊤T i

0
dt

∥∥∥∥
∞
,

(II) :=

∥∥∥∥ 1

Tnσ̂2
i

∫ Tn

0

ϕ(XtT i
0
)T i

0
ϕ(XtT i

0
)⊤T i

0
dt− 1

σ̂2
i

∫
RSi

ϕ(x)T i
0
ϕ(x)⊤T i

0
µi
0(dx)

∥∥∥∥
∞

and

(III) :=

∥∥∥∥ 1

σ̂2
i

∫
RSi

ϕ(x)T i
0
ϕ(x)⊤T i

0
µi
0(dx)−Qi

T i
0,T

i
0

∥∥∥∥
∞
.

It is obvious that (II) and (III) are op(1) by Assumption 5.1 and Theorem 5.4. To
complete the proof, it is sufficient to prove that

P

(
(I) ≥ δ and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
→ 0

as n→ ∞ for every δ > 0. Using Markov’s inequality, we can see that

P

(
(I) ≥ δ and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
≤ K̃1

n∆nδ

n∑
k=1

∫ tnk

tnk−1

E

[
sup
j,l∈T i

0

|ϕj(X
j
t )ϕl(X

l
t)− ϕj(X

j
tnk−1

)ϕl(X
l
tnk−1

)|

]
dt.

Moreover, it follows from Schwartz’s inequality that

E

[
sup
j,l∈T i

0

|ϕj(X
j
t )ϕl(X

l
t)− ϕj(X

j
tnk−1

)ϕl(X
l
tnk−1

)|

]

≤ E

[
sup
j,l∈T i

0

|ϕl(X
l
t)(ϕj(X

j
t )− ϕj(X

j
tnk−1

))|

]

+E

[
sup
j,l∈T i

0

|ϕj(X
j
tnk−1

)(ϕl(X
l
t)− ϕl(X

l
tnk−1

))|

]

≤

(
E

[
sup
l∈T i

0

|ϕl(X
l
t)|2
]) 1

2
(
E

[
sup
j∈T i

0

|ϕj(X
j
t )− ϕj(X

j
tnk−1

)|2
]) 1

2

+

(
E

[
sup
j∈T i

0

|ϕj(X
j
tnk−1

)|2
]) 1

2
(
E

[
sup
l∈T i

0

|ϕl(X
l
t)− ϕl(X

l
tnk−1

)|2
]) 1

2

≤ 2S∗LL′∆
1
2
n .
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We thus have that

P

(
(I) ≥ δ and sup

1≤i≤pn

σ̂−2
i ≤ K̃1

)
≤ 2K̃1LL

′S∗

δ
·∆

1
2
n .

The right-hand-side of this inequality converges to 0 for every δ > 0, which means
that (I) = op(1). 2

Remark 5.17. By Assumption 5.15 and Lemma 5.16, the solution to the equation
(5.8) exists with probability tending to 1, i.e., the estimator Θ̂

(2)
i is well-defined with

large probability. In fact, under the condition that Θ̂
(2)

i(T̂ i
n)

c
= 0, we have that

V i
nT̂ i

n,T̂
i
n
Θ̂

(2)

iT̂ i
n
=

1

n∆nσ̂2
i

n∑
k=1

ϕ(Xtnk−1T̂
i
n
)T̂ i

n
(X i

tnk
−X i

tnk−1
).

Therefore, under Assumption 5.15, Θ̂
(2)
i exists with probability tending to 1 since the

matrix V i
nT̂ i

n,T̂
i
n
converges to a nonsingular matrix in probability by Lemma 5.14 and

5.16.

Now, we are ready to prove the asymptotic normality of Θ̂
(2)

iT̂ i
n
in the following sense.

Theorem 5.18. Under Assumptions 5.1, 5.5, 5.10 and 5.15, it holds for every i ∈ N
that √

n∆n(Θ̂
(2)

iT̂ i
n
−Θ0

iT i
0
)1{T̂ i

n=T i
0}

→d N

(
0,
(
Qi

T i
0,T

i
0

)−1
)

as n→ ∞. Note that for every i ∈ N, it holds that i < pn for sufficiently large n.

Proof. Using the Taylor expansion, we have that

ψn(Θ̂i)T̂ i
n
= ψn(Θ

0
i )T̂ i

n
− V i

nT̂ i
nT̂

i
n
(Θ̂

(2)

nT̂ i
n
−Θ0

iT̂ i
n
).

It follows from the definition of the estimator Θ̂
(2)
i that√

n∆nV
i
nT̂ i

nT̂
i
n
(Θ̂

(2)

iT̂ i
n
−Θ0

iT i
0
)1{T̂ i

n=T i
0}

=
√
n∆nψn(Θ

0
i )T i

0
1{T̂ i

n=T i
0}
.

We decompose
√
tnnψn(Θ

0
iT i

0
)T i

0
= (I) + (II) + (III), where

(I) =
σ0
i√

n∆nσ̂2
i

n∑
k=1

ϕ(Xtnk−1T
i
0
)T i

0

∫ tnk

tnk−1

(Θ0
iT i

0
)⊤{ϕ(XsT i

0
)T i

0
− ϕ(Xtnk−1T

i
0
)T i

0
}ds,
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(II) =

(
σ0
i√

n∆nσ̂2
i

− 1√
n∆nσ0

i

) n∑
k=1

ϕ(Xtnk−1T
i
0
)T i

0
(W i

tnk
−W i

tnk−1
)

and

(III) =
1√

n∆nσ0
i

n∑
k=1

ϕ(Xtnk−1T
i
0
)T i

0
(W i

tnk
−W i

tnk−1
)

We can show that (I) = op(1) by the similar way to the proof of Lemma 5.6. Next,
we will apply the martingale central limit theorem for (III). Define the martingale
differences {ξk}k=1,2,...,n by

ξk :=
1√

n∆nσ0
i

ϕ(Xtnk−1T
i
0
)T i

0
(W i

tnk
−W i

tnk−1
).

It holds for every j, l ∈ T i
0 that

n∑
k=1

E

[
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n∆n(σ0
i )
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n∆n(σ0
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2
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ϕj(X
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)ϕl(X
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)2]

=
1

n(σ0
i )

2

n∑
k=1

ϕj(X
j
tnk−1

)ϕl(X
l
tnk−1

).

We can see that right-hand side converges to the (j, l)-component of the matrix
Qi

T i
0T

i
0
in probability by the same way of the proof of Lemma 5.16. Moreover, we can

check Lyapnov’s condition:

n∑
k=1

E
[
∥ξk∥2+δ

2 |Ftnk−1

]
→p 0

for δ = 2, which implies Lindeberg’s condition:

n∑
k=1

E
[
∥ξk∥221{∥ξk∥2>ϵ}|Ftnk−1

]
→p 0,

for every ϵ > 0. Thus, we obtain that

1√
n∆nσ0
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ϕ(Xtnk−1T
i
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)T i
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(W i
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−W i
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0T
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)
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by the martingale central limit theorem. Noting that

(II) =

(
(σ0

i )
2

σ̂2
i

− 1

)
1√

n∆nσ0
i

n∑
k=1

ϕ(Xtnk−1T
i
0
)T i

0
(W i

tnk
−W i

tnk−1
)

and (III) = Op(1), we obtain that (II) = op(1) since σ̂i is a consistent estimator
for σ0

i . Using the above results and Lemma 5.16, we have that√
n∆n(Θ̂

(2)

iT̂ i
n
−Θ0

iT i
0
)1{T̂ i

n=T i
0}

=
(
Qi

T i
0T

i
0

)−1√
n∆nψn(Θ

0
i )T i

0
1{T̂ i

n=T i
0}
+ op(1).

Since it holds that 1{T̂ i
n=T i

0}
→p 1 by Theorem 5.14, we can use Slutsky’s theorem to

derive our conclusion. 2

5.5 Concluding remarks

In summary, we have been able to construct the consistent and asymptotically nor-
mal estimator for the model (5.1) even in high-dimensional settings if the sparsity
of the parameter is fixed or bounded. If the sparsity is not bounded, we may not
reduce the dimension of the parameter. In such cases, the asymptotically normal
estimator can not be constructed by the equation (5.8).

To construct an asymptotically efficient estimators for this model in high-dimensional
settings includes some remaining problems since the theoretical properties of the es-
timators strongly depend on the choice of the tuning parameter which works for
the variable selection. Therefore, to discuss such problems, we have to construct
the “optimal” choice of the tuning parameter which achieve the “optimal” variable
selection.

In this paper, we have assumed that the diffusion coefficients σi’s are constants.
However, it may be possible to consider the case when each σi has more complicated
structures. For example, we can consider the following model:

X i
t = X i

0 +

∫ t

0

ΘT
i ϕ(Xs)ds+

∫ t

0

exp(βT
i φ(Xs))dW

i
s , i = 1, 2, . . . , p,

where βi ∈ Rp and φ(·) is an appropriate smooth function. According to Fujimori
and Nishiyama (2017b), we can construct estimators for βi by the Dantzig selector
and prove the lq consistency of the estimators for every q ∈ [1,∞]. Therefore, we
may prove the same asymptotic properties of Θ even for the above model which has
high-dimensional parameters in diffusion coefficients.

The variable selection consistency of the estimator of drift matrix is important for
applications such as graphical modeling as it can be seen in Ravikumar et al. (2010),
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Periera and Ibrahimi (2014) and Gobet and Matulewicz (2017). In the future, we
would like to consider such applications and present some numerical results.
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Chapter 6

Numerical studies

In this chapter, we demonstrate the finite sample performance of the Dantzig se-
lector for a linear regression model and Cox’s proportional hazards model in high-
dimensional and sparse settings. We have proved that the Dantzig selectors satisfy
the lq consistency when we choose “good” tuning parameter. Moreover, the consis-
tency results enable us to construct the estimators for the support index sets of the
true values by using the thresholding method obtained by “good” tuning parameter.
Therefore, we have to discuss about how to choose “good” tuning parameters to en-
sure the performance of the Dantzig selector. For i.i.d. models in high-dimensional
and sparse settings, the methods to choose the tuning parameters for penalized esti-
mators or the Dantzig selector have been discussed by many authors. For example,
Bayesian information criterion discussed in Wang et al. (2009) is widely used. In
addition, the jointly estimation for the regression parameters and noise level which
is determines the tuning parameter is studied in Sun and Zhang (2012). One of the
most famous method is cross validation which is studied and used in several liter-
atures dealing with estimation problems for high-dimensional and sparse settings.
It may be possible to apply them to models of stochastic processes. However, the
theoretical properties and practical performance of them for our models of stochas-
tic processes have not yet been verified. Instead of these methods, we propose an
intuitive algorithm to choose tuning parameters in Section 6.1. In Sections 6.2 and
6.3, we present the numerical results of the Dantzig selectors for a linear regression
model and Cox’s proportional hazards model respectively. We focus on the l1 con-
sistency result compared with the classical estimators such as least square estimator
(LSE) and maximum partial likelihood estimator (MPLE) and the variable selection
results. Since the estimators after selection are the classical Z-estimators and their
performances have been well-studied, we omit this part.
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6.1 Some discussion on the tuning parameter

In this section, we present some comments of the tuning parameter because our
theoretical results strongly depend on the choice of the tuning parameter. Generally,
the Dantzig selector θ̂n for several regression models with unknown parameter θ is
defined by the following form

θ̂n := argmin
θ∈Cn

∥θ∥1, Cn = {θ ∈ Rpn : ∥Ψn(θ)∥∞ ≤ γn},

where γn ≥ 0 is a tuning parameter and Ψn(·) is the score function for the model. If
we can evaluate the rate of convergence γ̃n of ∥Ψn(θ0)∥∞, where θ0 is the true value
of the unknown parameter θ, we can define the γn as follows:

γn = cγ̃n,

where c ≥ 0 is a constant not depending on n. To ensure the lq consistency and the
variable selection consistency for finite sample, c has to satisfy that

∥Ψn(θ0)∥∞
γ̃n

≤ c ≤ infj∈T0 |θ
j
0|

γ̃n
, (6.1)

where T0 is the support index set of the true value θ0. The problem is how to choose
c which satisfies (6.1). Note that

∥Ψn(θ0)∥∞
γ̃n

= Op(1)

and that
infj∈T i

0
|θj0|

γ̃n
→ ∞

as n → ∞. When we choose the small tuning parameter satisfying the inequality
(6.1), we may have that at least T0 ⊂ T̂ i

n, which means a conservative variable
selection. We thus propose an intuitive method to choose ci by the following recursive
algorithm:

Step 1. Let c[1] be a positive prefixed constant.

Step 2. Calculate the Dantzig selector for j ≥ 1 by using c[j];

θ̂[j] := arg min
θ∈C[j]

n

∥θ∥1, C[j]
n := {θ ∈ Rpn : ∥Ψn(θ)∥∞ ≤ c[j]γ̃n}.
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Step 3. Put

c[j+1] =
∥Ψn(θ̂

[j])∥∞
γ̃n

, j ≥ 1.

Step 4. Repeat Step 2 and 3 until we have that

|c[j+1] − c[j]| ≤ ϵ,

where ϵ > 0 is an arbitrary small constant.

The prefixed constant c0 has to be chosen large enough to ensure that

∥Ψn(θ0)∥∞
γ̃n

≤ c0.

For each j ≥ 1, we may observe that c[j] is close to a random variable C, where

C :=
∥Ψn(θ0)∥∞

γ̃n
,

with probability tending to 1 as n → ∞ since it holds that ∥θ̂[j] − θ0∥1 →p 0. In
addition, for each sufficiently large n ∈ N, we can also verify that the sequence
{c[j]}j∈N is nonincreasing for j and bounded below by 0. Therefore, there exists a
limit c0 ≥ 0 of {c[j]}j∈N which is close to C with probability tending to 1. Note that
if the random variable C is close to 0, then it may be holds that c[j] → 0 as j → ∞,
which means that the Dantzig selector is nearly or exactly equals to the classical
Z-estimator, which is a solution to the following estimating equation:

Ψn(θ) = 0.

Even though we can easily observe that c[j] converges to a positive constant and
works well for variable selection for the usual linear regression model numerically,
we have not proved that performance of this method theoretically and numerically
for our models of stochastic processes.

6.2 Linear regression models

In this section, we demonstrate the finite sample performance of the Dantzig selector
for the following linear regression model:

Yi = Z⊤
i β + ϵi, i = 1, 2, . . . , n,
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where Zi’s are i.i.d. [−2, 2]-valued uniform random variables and ϵi’s are i.i.d. stan-
dard normal random variables. The tuning parameter γn is determined by the
algorithm in Section 6.1 with a sufficiently large initial value γ̃n = n−0.3 log p to
obtain the decreasing sequence of tuning parameter by the algorithm for each case.
We put p = 50 and

β0 = (2, 2, 2,−2,−2, 0, . . . , 0)⊤ ∈ R50

in Case 1, p = 100 and

β0 = (2, 2, 2,−2,−2, 0, . . . , 0)⊤ ∈ R100

in Case 2 and p = 100 and

β0 = (2, 2, 2,−2,−2, 0, . . . , 0)⊤ ∈ R150

in Case 3. We apply the Dantzig selector to this model, which can be calculated by
the algorithm proposed by Candés and Tao (2007) when n = 50 and n = 100 for
1000 times.

For these 1000 estimators, we use the variable selection criterion proposed in
Section 2.4. Tables 6.1 and 6.2 show the proportion of successes of the variable
selection among all 1000 estimators. We can see that the Dantzig selector selects
the support index set T0 correctly. This result enables us to reduce the dimension
correctly even when n = 50.

Tables 6.3 and 6.4 show the l1 errors of estimators LSE, the Dantzig selector β̂n
and the second estimator β̂

(2)
n after dimension reduction by using T̂n. Note that we

cannot construct LSE in when p ≥ n since the rank of the optimization problem
is deficient. We can observe that for all cases, the Dantzig selectors work better
than LSE and even for the higher dimensional case, the l1 errors keep small values.
Moreover, we can verify that the behaviors of the second estimators are the best
since the selections work well as observed in Tables 6.1 and 6.2.
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Case p = 50 p = 100 p = 150

T̂n = T0 93.1 % 92.0 % 90.7 %

Table 6.1: Variable selection results (n = 50).

Case p = 50 p = 100 p = 150

T̂n = T0 99.4 % 99.9 % 99.6 %

Table 6.2: Variable selection results (n = 100).

Case p = 50 p = 100 p = 150

LSE 214.2453 NA NA

β̂n 1.815687 2.261749 2.620261

β̂
(2)
n 0.5189128 0.535665 0.5718938

Table 6.3: l1 errors of estimators (n = 50).

Case p = 50 p = 100 p = 150

LSE 3.789864 173.243 NA

β̂n 0.9972455 1.113642 1.264328

β̂
(2)
n 0.3551882 0.3320217 0.3541766

Table 6.4: l1 errors of estimators (n = 100).
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6.3 Cox’s proportional hazards model

In this section, we will verify the l1 consistency and the variable selection consis-
tency of the Dantzig selector numerically. We omit the asymptotic normalities of
the estimators obtained after variable selection since these are the consequences of
the variable selection consistency and the asymptotic normalities of the maximum
partial likelihood estimator (MPLE) and the Bleslow estimator. We consider the
following deigns for the simulation studies. For all cases, the sample size n = 100,
the covariates Z1, . . . , Z100 are i.i.d. Bernoulli random vectors whose components
are mutually independent, survival time Ti’s are i.i.d. exponentially distributed and
censoring time Ci’s are also i.i.d. exponentially distributed independently of Ti’s.
The data is generated to have roughly 10% censoring. The tuning parameter γn
is determined by the algorithm in Section 6.1 with a sufficiently large initial value
γ̃n = n−0.3 log p to obtain the decreasing sequence of tuning parameter by the algo-
rithm for each case. We put p = 50 and

β0 = (2, 2, 2,−2,−2, 0, . . . , 0)⊤ ∈ R50

in Case 1, p = 100 and

β0 = (2, 2, 2,−2,−2, 0, . . . , 0)⊤ ∈ R100

in Case 2 and p = 100 and

β0 = (2, 2, 2,−2,−2, 0, . . . , 0)⊤ ∈ R150

in Case 3. Note that all of these cases satisfy the regularity conditions and the
matrix condition Assumption 3.3 theoretically (See Section 3.6.). We apply the
Dantzig selector to the proportional hazards model, which can be calculated by the
algorithm proposed by Antoniadis et al. (2010) to these data for 1000 times.

For these 1000 estimators, we use the variable selection criterion proposed by in
Section 3.3 when n = 50 and n = 100. Tables 6.5 and 6.6 show that the proportion
of successes of the variable selection for all 1000 estimators. We can see that the
selection results become better as n becomes larger, which supports our theoretical
results.

Tables 6.7 and 6.8 show the l1 errors of estimators MPLE, the Dantzig selector
β̂n and the second estimator β̂

(2)
n after dimension reduction by using T̂n when n = 50

and n = 100 respectively. Note that we cannot construct MPLE when p ≥ n since
the rank of the optimization problem is deficient as well as the linear regression
case. We can observe that for all cases, the Dantzig selectors work better than
MPLE and the performance keeps better for higher dimensional case. However, the
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l1 errors become worse when n is larger. In such cases, the estimated values for
nonzero coefficients become larger and those for zero coefficients become smaller
which may mean that the estimators work well for the variable selection. This may
be caused by the fact that the optimization problem is more complicated than the
linear regression case since we need some linear approximations to calculate the
Dantzig selector for the proportional hazards model which is a nonlinear model.

Though the error of the Dantzig selector becomes larger, we can obtain the
second estimator who performs better when n is larger, since the selection method
works well when the sample size is larger as we can see in Table 6.6.

Case p = 50 p = 100 p = 150

T̂n = T0 71.8 % 39.3 % 48.5 %

Table 6.5: Variable selection results (n = 50)

Case p = 50 p = 100 p = 150

T̂n = T0 97.3 % 97.9 % 96.0 %

Table 6.6: Variable selection results (n = 100)

Case p = 50 p = 100 p = 150

MPLE 1649.526 NA NA

β̂n 10.12196 9.914827 10.34296

β̂
(2)
n 3.79501 6.414769 6.119591

Table 6.7: l1 error of estimators (n = 50)

Case p = 50 p = 100 p = 150

MPLE 10.45088 7321.964 NA

β̂n 16.34308 16.43016 15.7336

β̂
(2)
n 1.416038 1.462315 1.45552

Table 6.8: l1 error of estimators (n = 100)
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