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Preface 

Coordination compounds are an emerging class of molecular solids that have promising 

properties including selective adsorption and high proton conductivity. Bulk coordination 

crystals have generated enormous insight in the field of molecular and crystal engineering, but 

in recent years scientists have begun to manipulate their mesoscale and nanoscale structures. 

This work is part of an emerging field called 'nanoarchitectonics' which brings together 

chemists, physicists and materials scientists to bridge the gap between molecules and materials 

to create new kinds of coordination compounds with unusual properties. Cyano-bridged 

coordination polymers (CPs) support a rich array of physical/chemical properties that enable a 

multi-functional platform for various applications including sensing, batteries, biomedicine, 

imaging and water purification. Prussian blue (PB) is a classic example of cyano-bridged CPs. 

The general composition of PB is AmMx[M’(CN)6]y·nH2O where M and M′ represent 

different transition metal ions, and the A components are alkali-metal ions.  

This thesis describes the synthesis of various shaped cyano-bridged CPs under strictly 

controlled crystallization conditions. Significant changes in their chemical and physical 

properties is observed by changing the size of the crystals and their nanoscale morphologies. 

These results demonstrate that the properties of coordination compounds can depend on their 

morphology.  

Chapter 1 introduces recent advances on various cyano-bridged CP nanoarchitectures 

and explains different synthetic methods reported previously. In particular, this chapter 

emphasizes the development of several techniques for controlling crystal growth of cyano-

bridged CPs. Thermal conversion of these compounds to metal oxides and other related 

materials is also mentioned.   

Chapter 2 describes the synthesis of cyano-bridged CP single crystals. Creating single 

crystals of CPs were necessary to carefully study the chemical and physical properties of these 



materials. Here crystals of two-dimensional (2D) cyano-bridged CPs containing Ni and Mn 

ions were prepared by a slow diffusion method. Through detailed structural analysis, it was 

found that the as-synthesized crystals of [Mn(H2O)2Ni(CN)4]·3H2O transformed into another 

crystalline phase of [Mn(H2O)2Ni(CN)4]·H2O upon dehydration via a topotactic route. Water 

molecules play a key role in this structural transformation upon dehydration/hydration in the 

2D cyano-bridged CPs because such frameworks respond to changes in humidity. This 

information is highly useful for applications of these cyano-bridged CPs in adsorption 

applications and solid-state ionics.  

Chapter 3 extends the slow diffusion method described in Chapter 2 to generate 

another cyano-bridged CP system consisting of Ni and Co([Co(H2O)2Ni(CN)4]·4H2O). 

However, the obtained sample was made of many aggregated crystals, and its surface was very 

rough. To overcome this issue, a chelating agent called trisodium citrate (TSCD) was added to 

decelerate the crystallization process and generate high-quality single crystals. We 

hypothesized that citrate ions could chelate with Co+2 and modify the kinetics of the 

coordination reaction between Co+2 and [Ni(CN)4]
-2. UV/Vis spectra showed that the addition 

of TSCD caused the maximum absorption peak of Co(NO3)2 to significantly increase. Addition 

of TSCD will be useful in the preparation of other kinds of cyano-bridged CPs.  

Chapter 4 describes the nanoscale crystal growth of cyano-bridged CPs under 

controlled conditions to introduce new nanostructures. Hollow Prussian blue analogue (CoFe 

PBA) nanocubes were successfully synthesized using spherical silica particles as sacrificial 

templates. In the first step, silica cores were coated by CoFe PBA shell and then removed by 

etching using hydrofluoric acid (HF). Interestingly, the cubic shape of CoFe PBA was well-

retained even after the removal of silica cores, resulting in the formation of hollow CoFe PBA 

cubes. The resulting hollow architecture offered a larger interfacial area between the electrolyte 

and the electrode, leading to the improvement of the storage capacity of sodium ions with stable 



cycle performance compared to the solid CoFe PBA nanocubes. This strategy can be applied 

in the future for the developing PBAs with hollow interiors toward a wide range of applications.  

Nanocomposite materials have a wider range of potential applications because they 

cooperatively combine the properties/advantages of two (or more) individual components. 

Chapter 5 describes a simple approach to hybridize NiCo oxide flakes with graphene (G) 

sheets. Positively charged cyano-bridged CoNi CP flakes (CoNi-CP) were mixed with 

negatively charged graphene surfaces. Due to effective electrostatic forces, the materials 

hybridized to form a nanocomposite composed of CoNi-CP/G. The as-prepared CoNi-CP/G 

composite was thermally treated in air to remove the C-N components, which did not affect the 

integrity of the parent graphene sheets. During the thermal treatment, the CoNi-CP flakes 

deposited onto graphene sheets were successfully converted to NiCo oxide, resulting in a new 

composite consisting of NiCo oxide flakes and graphene sheets (NiCo-oxide/G). Cyclic 

voltammetry (CV) measurements using a three electrode setup showed that the NiCo-oxide/G 

nanocomposite had a high specific capacitance (199 F g-1 at 5 mV s-1) and featured good 

capacitance retention of ca. 68 % (135 F g-1 at 100 mV s-1). This strategy will be useful in the 

future for the synthesis of nanocomposites with dual characters for the application in energy-

related systems.  

Chapter 6 demonstrates a novel synthetic strategy to deposit cyano-bridged CuNi CPs 

on the surface of graphene oxide (GO) sheets. This method allows precise control of the 

resulting lamellar nanoarchitectures via in-situ crystallization. The GO sheets serve as 

nucleation sites to promote optimal crystal growth of cyano-bridged CuNi CPs. The self-

assembled GO sheets with cyano-bridged CuNi CPs were stabilized as ordered lamellar 

structures. Thermal treatment in air yielded CuNi-oxide/G composite structures with a similar 

morphology to the starting material. During the formation of CuNi oxide within the graphene 

sheets, the CN units were removed. The CuNi-oxide/G hybrid materials could be calcined at 



an optimal temperature to generate a high surface area (144.5 m2 g-1), which was much higher 

than the individual CuNi oxide (11.1 m2 g-1) and graphene sheet (34.9 m2 g-1) starting materials. 

This synthetic pathway is a very promising approach which can be applied in the synthesis of 

other functional nanocomposites using in-situ crystallization of various PBAs.  

Chapter 7 summarizes this thesis and future prospects. This thesis emphasizes a significant 

role of controlled crystallization of cyano-bridged CPs to prepare various architectures such as 

single crystals, hollow and nanocomposite structures, etc. High quality single crystals can be 

prepared by adding a chelating agent to slow the speed of the crystallization process. With a 

reaction rate much slower, the synthetic conditions become optimal to trigger an oriented 

crystal growth. We have realized various cyano-bridged CP nanostructures with different 

compositions, which can serve as excellent precursors for the synthesis of many nanoporous 

metal oxides and their nanocomposite materials. In the future, this strategy can be extended for 

the synthesis of other tailor-made cyano-bridged CPs with their potential applications for the 

desired nanoporous inorganic materials.  
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1.1. Single-crystal engineering 

In the last few decades, there has been interest in crystal growth processes, particularly 

in the increasing demand for materials with technological applications.[1,2] Although it is more 

difficult to prepare a single crystal than a polycrystalline material, several efforts have been 

made because of the outstanding advantages of single crystals.[3] The high-quality single 

crystal of coordination polymers (CPs) is necessary to study the physics of correlated 

materials,[4] tune the properties of existing materials by growing related analogues, and 

discover new systems that will lead to understanding of the chemistry and physics of materials 

that will impact technology.[5–6] Such polymers are generally insoluble, retaining their 

original framework in solvents. Recrystallization which is the most common crystallization 

method, is not available because many physical properties are obscured or complicated by the 

effects of grain boundaries.   

1.1.1. Three-dimensional (3D) single-crystal system 

As one of the oldest coordination polymers, PB (Fe4[Fe(CN)6]3·14H2O) has attracted 

scientists for many centuries.[7] The first structure was originally proven by Keggin and 

Miles,[8] who proposed the occurrence of interstitial metal ions within the face-centered cubic 

unit cell in order to achieve electroneutrality via X-ray powder patterns.[9–10] This sample 

unit cell, Fm3̅m (𝑂ℎ
5), where alternating Fe(Ⅱ) and Fe(Ⅲ) located on the face centered cubic 

lattice, the Fe(Ⅲ) are surrounded octahedrally by nitrogen atoms, and Fe(Ⅱ) are surrounded 

by carbon atoms, in unit cell dimensions is 10.2 Å.[8–10] However, because of the small 

particle size and the analytical uncertainties, the structure was not conclusively determined. In 

1977, Buser et al. grew single crystals of PB, Fe4[Fe(CN)6]3·xH2O (x = 14–16), by the very 

slow diffusion of water vapor into a solution of Fe3+ and Fe(CN)6
4- in concentrated hydrochloric 

acid solution[11] and presented the prototype structural model as space group symmetry Fm3̅m 

for cubic cyanides. A 12 cm of single crystal grew without potassium contamination after ion 

exchange column with K4Fe(CN)6 to H4Fe(CN)6. Franz et al. prepared 

Mn(II)[Mn(III)(CN)6]2/3·(6H2O)1/3, yH2O using slow diffusion, but with a similar unit cell 

occupancy (Fm3̅m).[12] The Ludi group studied the Fe4[Fe(CN)6] crystal using single-crystal 
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X-ray and neutron diffraction during a hydration/dehydration process. The X-ray study showed 

that PB is a face-centered cubic system.[13] However, Widmann and co-worker preferred a 

unit cell similar to that of Keggin and Miles, suggesting that the Ludi’s structure is an alkali-

free compound.[14]  

Rubidium manganese hexacyanoferrates RbxMn[Fe(CN)6]y·zH2O have received 

attention because they show many functionalities such as a charge transfer phase 

transition,[15–16] a pressure-induced magnetic pole inversion,[17] and a photomagnetic 

effect.[18] Additionally, the dehydrated RbMnFe(CN)6 is a suitable material to investigate the 

electronic structure. Tokoro and co-worker prepared a dark brown single crystal of rubidium 

manganese hexacyanoferrate, Rb0.61Mn[Fe(CN)6]0.87·1.7H2O, using the slow diffusion 

method.[19] The results of X-ray crystallography show that Rb0.61Mn[Fe(CN)6]0.87·1.7H2O 

belongs to the face-centered cubic lattice Fm3̅m with lattice constants of a = b = c = 10.5354(4) 

Å. Vertelman et al.[20] obtained Rb(H2O)FeMn(CN)6 using a modified version of the 

crystallization method developed by Kepert et al.[21] The obtained structural model belongs 

to the cubic space group F4̅3m with lattice constants of a = b = c = 10.521(2) Å. When the 

electron transfer occurs, Rb0.61Mn[Fe(CN)6]0.87·1.7H2O become inactive, possibly because of 

the unbalanced redox potentials of the individual metal sites, which are a consequence of the 

unfavorable stoichiometry involving Fe(CN)6 vacancies and an associated number of water 

molecules.[20,22]  

Dong et al. successfully synthesized and characterized a PB ferrimagnetic 

Na[MnCr(CN)6] PBA with a strictly face-centered cubic system. In this system, each unit cell 

contains four Na[MnCr(CN)6] molecules. The [Cr(CN)6]
3- connects to six Mn atoms through 

CN bridges, and each Mn atom connects to the six nitrogen atoms of the six cyanide bridges. 

A face-centered cubic framework (Fm3̅m, a = b = c = 10.8159(12) Å) of Cr-C≡N-Mn and 

both Mn and Cr atoms are six-coordinated with octahedral geometry.[23] Julie and co-worker 

designed new single-molecule magnets to explore synthetic routes to metal cyanide clusters by 

reactions between [(Me3tacn)Cr(CN)3] (Me3tacn=N,N′,N′′-trimethyl-1,4,7-triazacyclononane) 

and selected manganese(II) salts. The reaction between the perchlorate salt and AClO4 (A=Na, 
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K) forms A[(Me3tacn)6MnCr6(CN)18](ClO4)3, where the center Mn(II) ion is surrounded by 

six[(Me3tacn)Cr(CN)3] units. The Mn coordination geometry is similar to a trigonal prism, with 

triangular faces twisted away from an eclipsed position at an angle of 12.83o and 11.33o for A 

= Na and K, respectively.[24] 

The octahedral compounds with high valence cluster complexes with terminal cyano 

groups, which can be form 2D and 3D of coordination polymer like a mononuclear cyano 

complexes, were found in 1998.[25] In 2001, Bennett and co-worker were the first to form PB 

cyano cluster-based compounds from the general formula M4[Re6X8(CN)6]3·xH2O (M = Ga3+, 

Fe3+, X = Se, Te).[26] They succeeded in “direct expansion of Prussian blue” and kept the PB 

structure unchanged by replacing a small [Fe(CN)6]
4- node with a large [Re6X8(CN)6]

4–, 

benefiting from the long distances between metal and metal.  

Some materials’ dimensions increase with heating, and by using the enhanced negative 

thermal expansion (NTE) or thermal expansivities to develop and design materials for some 

specific applications. It is required to understand and study the chemical composition and 

structure after NTE or thermal expansion. The effects of NTE on cyanide-based molecular 

framework materials including PB have been reported.[21, 27,28] Chapman and co-worker[21] 

reported the growth of a single crystal of PBA via the slow diffusion method and studied the 

effects of systematic variation of the divalent metal ion (MII) site in MIIPtIV(CN)6 (M = Mn, 

Fe, Co, Ni, Cu, Zn, Cd) by NTE. They suggest that the NTE behavior in the sample was 

influenced by the vibrational flexibility of the metal-cyanide binding interaction and that for 

more flexible framework, the NTE behavior should be enhanced. 

The first Ag3[Co(CN)6] structure was studied using X-ray powder in 1967 by Ludi and 

co-workers,[29] but it was validated by Pauling and Pauling when they reevaluated the 

structure in 1968 because of some deflections in the structure, such as the large amount of triple 

bond of C-N in cyanide and the position of H and Ag ions.[30] They studied the structure using 

modern X-ray and neutron diffraction[31,32] and described the structure as a 3D framework 

formed by Co–CN–Ag–NC–Co linkages. Each Co3+ ion in the center position connects to six 

other Co atoms by cyano linkages to form a cubic framework like the PB with an extended 
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covalent framework. The distance between the cube edges (Co–CN–Ag–NC–Co) are long, and 

other two additional identical framework lattices can accommodate within the open cavities of 

the first framework to form trip interpenetrating (Figure 1.1c). The thermal expansion behavior 

of Ag3[Co(CN)6] was studied in 2008, and the results show that thermal expansion in cell 

dimensions takes place with minimal distortion of the Co(CN)6 coordination polyhedra, but 

with involves flexing of the Co–CN–Ag–NC–Co linkages.[33]  

For the first time, Pan et al.[34] successfully prepared a fabrication of micron-size 

single-crystalline PB nanosheets using a simple hydrothermal process (Figure 1.1d). X-ray 

diffraction results show that the nanosheets have a face-centered cubic (fcc) structure of 

Fe4[Fe(CN)6]3 with lattice constant a = 10.26 Å. 

1.1.2. Two-dimensional (2D) single-crystal system 

A 2D structure with square-planar of Hofmann-type clathrate MLxM’(CN)4 (L=H2O, 

NH3, pyridine, etc.) are constructed by the CN bonding between the square-planar (also it is 

called as tetrahedral tetracyanometallate (II), [M’(CN)4]
2-(M’=Ni, Pb, Pt and Au)) units and 

octahedral metal (M) units combined with auxiliary ligands (Lx) (Figure 1.1b).[35–36] In this 

section, I introduce the Hofmann-type structure as it belongs to transition metal cyanide 

compounds. There are a few 2D structures with water coordination, such as 

Ni(H2O)2Ni(CN),[37] Cd(H2O)2Ni(CN)4·4H2O,[38] Fe(H2O)2Ni(CN)4·2C4H8O2,[39] and 

Co(H2O)2Ni(CN)4·4H2O.[40] Recently, Mn(H2O)2[NiCN]4·4H2O and 

T(H2O)2[Ni(CN)4]·xH2O with T = Mn, Co, Ni were reported.[41–43] The [Ni(CN)4]
2- units are 

critical for the formation of a 2D coordination network having a net topology, which connects 

to other metal nodes, extending the network. Murphy et al. reported a new porous coordination 

framework of [Zn-{MnN(CN)4(H2O)}]·2H2O·MeOH using the functional [MnN(CN)4]
2- 

subunits.[44] Recently, 2D cyanide bridges of {[CuIINiII(CN)4(H2O)2]·H2O}n were also 

prepared using the solvothermal conditions method.[45]  

In 1997, Holmes and Girolami[46] have initiated significant studies on some PBAs 

containing Cr(CN)5(NO) units to obtained new crystal structure. The powder XRD analysis 

results show that K0.5Mn[Cr(CN)5(NO)]0.83·4H2O·1.5MeOH has a cubic structure. However, 
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Kou et al.[47] studied the reaction of [Ni(tn)3]
2+ (tn = 1,3-propanediamine) with 

[Cr(CN)5(NO)]3- based on single-crystal X-ray diffraction analysis. It is found that the obtained 

crystal is 2D grid-like assembly of [Ni(tn)2]2[Cr(CN)5(NO)]OH·H2O (space group P1̅). For 

further investigation into the binding modes of [Cr(CN)5(NO)]3- with transition metal 

complexes, they also studied the reaction of [Ni(tn)3]
2+ (tn = 1,3-propanediamine) with 

[Cr(CN)5(NO)]3- and formed 2D of grid-like compound of [Ni(tn)2]2[Co(CN)6]NO3·2H2O with 

space group P1̅. 

 

 

Figure 1.1 (a) Schematic of a single crystal of PBA AmMx[M′(CN)6]y·nH2O, where M and M′ 

= transition metal ions and A = an alkali-metal ion. (b) Hofmann-type T(H2O)2[Ni(CN)4]·xH2O. 

(c) Three interpenetrating cubic nets of extended Co–CN–Ag–NC–Co linkages that form a 3D 

framework.[33] (d) SEM image of micron-size single-crystalline Fe4[Fe(CN)6]3 nanosheets.[34] 

(e) The slow diffusion method. 
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1.1.3. Crystal-growth approaches - Advantages of the vapor diffusion 

method (slow diffusion method) 

Several methods have been reported for growing single crystals under different growth 

conditions and environments. The traditional hydrothermal method is carried out under harsh 

conditions, with high pressure as well as high temperatures.[45, 48-50] However, the most 

common method used to grow a crystal is vapor diffusion (slow diffusion) because of the 

simplicity of the experiments. Recently, many researchers reported growing a single crystal of 

PB and PBAs using the vapor diffusion method, also called the slow diffusion 

method.[11,19,23,24,44,51-53] Dong et al. successfully synthesized a single crystal of 

Na[MnCr(CN)6] using this method, and it was the first strictly face-centered cubic lattice 

structure with PB family AmMx[M
′(CN)6]y·nH2O that has been characterized by single-crystal 

X-ray analysis.[23] The vapor diffusion method has been used to grow organic crystals that are 

highly soluble in a particular organic solvent but have poor solubility in other solvents (Figure 

1.1e). Solvent 1 has a low vapor pressure (beaker 1). This beaker is then placed in a larger 

beaker (beaker 2) containing a volatile solvent that only slightly dissolves the crystal. After 

beaker 2 is sealed, the volatile solvent evaporates, and the gas diffuses into beaker 1 to form an 

oversaturated solution. Then nucleation and crystallization occur in the beaker 1.[54,55] In the 

vapor diffusion method, the crystallization can occur at a low temperature. For example, the 

RbMn[Fe(CN)6]·H2O single crystal[20] was formed even at 45ºC, although one can expect that 

high temperature (higher than the melting points) is required to prepare a single crystal because 

these melting points of MnCl2·4H2O and K3[Fe(CN)6] are 56 and 200°C, respectively. Thus, 

the vapor diffusion method results in a crystal with high purity, good surface morphology, and 

uniform layer thickness.  

1.1.4. Applications 

Yuan et al. investigated the adsorption of a 3D single crystal of Mn2X(CN)8 (X = Mo 

(sample 1), W (sample 2)) with water, nitrogen, and hydrogen.[56] Samples 1 and 2 (Figure 

1.2a) show three steps in the water adsorption isotherms. In the first step, three coordinated 

water molecules per formula unit were adsorbed at P/P0 = 0.01. The second step was carried 
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out at P/P0 = 0.2 to uptake one coordinated water molecule. The abrupt uptake behavior at low 

relative pressure is characteristic of strong H2O-Mn2+. The third step was at a range of P/P0 = 

0.5-0.7, corresponding to the adsorption of an additional three uncoordinated water molecules. 

The slow kinetics of adsorption in this range could be due to the narrow pores and/or slow 

changes in the crystal structure. The in-situ structural studies will be necessary to elucidate the 

nature of the crystal during this adsorption/desorption process. Ray and co-worker dried a 

single crystal of [Mn[Ni(CN)4]·6H2O at 110ºC under a nitrogen atmosphere, then kept it in 

open air for three days. The powder X-ray diffraction (PXRD) pattern shows that the 

dehydrated crystal was rehydrated (Figure 1.2b) and confirms the flexibility of the cyano-

bridged coordination polymer.[41] Recently, the water vapor adsorption/desorption for a single 

crystal of Mn[Ni(CN)4]·6H2O after dehydration at 150oC was studied (Figure 1.2c).[57] The 

first stage showed a water vapor pressure (P/P0) range of 0.4-0.5, in which the three water 

molecules adsorbed per unit could be the coordinated water. The second stage was at a range 

of P/P0 > 0.5, which also showed that the three water molecules adsorbed per unit could be the 

interlayer water. These six water molecules are the fully hydrated form, suggesting a structural 

transformation to other crystal structures under different humidity ratios.  

The nitrogen adsorption isotherm for Mn2X(CN)8 (X=Mo (sample 1), W (sample 2)) at 

77 K showed that the adsorption is a type I isotherm (Figure 1.2d), and the surface area and 

pore volumes were 146 m2 g-1 and 112 m2 g-1 for sample 1 and 0.027 cm3 g-1 and 0.020 cm3 g-

1 for sample 2, respectively. At high pressure, both samples adsorbed a small amount of 

nitrogen, presumably in multilayers on the external surface. Hydrogen adsorption at 1.1 bar 

and 77 K for both samples were 0.60 and 0.49 wt% (Figure 1.2e), respectively. The hydrogen 

adsorption increased with the increasing micropore volumes. The minimum volumetric H2 

storage densities for samples 1 and 2 were 11.36 and 10.98 g L-1, respectively. Figure 1.2e 

shows that the adsorption of H2 started in the initial stage, indicating a strong interaction 

between H2 and the four coordinated Mn ions in both materials.  

 



Chapter1.  

9 

 

 

Figure 1.2 (a) Water adsorption/desorption isotherms for samples 1 and 2.[56] (b) PXRD 

patterns of [Mn[Ni(CN)4] as a prepared and rehydrated complex after dehydration.[41] (c) 

Water adsorption/desorption isotherms for a single crystal of Mn(H2O)2[Ni(CN)4].3(H2O) (d) 

N2 adsorption isotherms for samples 1 and 2.[56] (e) Low-pressure H2 adsorption isotherms for 

samples 1 and 2 at 77 and 87 K and the fit with the Langmuir Freundlich equation (solid 

lines).[56]  

 

1.2. Nanostructured PB and PB analogues 

1.2.1. 0D nanostructured PB and PB analogues (nanoparticles) 

Since the discovery of size effects related to semiconductors and noble metals, such as 

quantum dots and catalytic gold nanoparticles, enormous efforts have been made to downsize 

solids. Owing to the significance of the size effect, 0D nanostructures have been generated as 

an independent factor that can affect the properties of solids. To explore 0D nanostructured PB 

and PB analogues, it is necessary to develop a controlled synthetic strategy. Because PB and 

PB analogues are usually prepared by crystallization, wet-chemical routes have been employed 

in most cases. The strategies developed previously can be mainly categorized as spatially 

controlled synthesis, kinetically controlled crystallization, and the post-fabrication method. 
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Figure 1.3 Scheme for spatially controlled synthesis of 0D PBAs in nanocavities. 

 

Spatially controlled synthesis employs nanocavities as reactors for PBs and PBAs 

(Figure 1.3). The synthesized PB and PBAs gradually occupy the reactors. Once the cavities 

are fully filled, the walls hinder further growth, leading to 0D nanostructures. Depending on 

the stiffness of the walls, the molds can be categorized as hard or soft. For instance, by filling 

the pores in mesoporous silica with reactants, monodispersed PBA nanoparticles can be 

fabricated.[58] Since the pore sizes of mesoporous silica can be controlled well, the sizes of 

the generated PBA nanoparticles are adjustable, offering great feasibility to investigate the size-

dependent properties. To remove the hard templates, a hydrofluoride or alkaline solution is 

used. To avoid using the harsh etchants, soft templates have been used because they can be 

removed by mild treatment. Polymers or surfactants can form nanodroplets or porous scaffolds 

through self-assembly or crystallization.[59–80] The nanodroplets or porous scaffolds can 

provide nanocavities for the crystallization of PB and PBAs. Moreover, the softness gives great 

flexibility to the cavities. Therefore, the size of the soft nanocavities can be adjusted easily, 

leading to nanoparticles with tunable sizes in a wide range. 
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Figure 1.4 (a) Size-control synthesis of PBAs via inhibiting agent. (b) PBAs fabricated by 

decomposition of a single precursor. 

 

Despite the advantages of spatially controlled synthesis, several steps involved in 

removal of the hard/soft templates lengthen the processing time and make the operation rather 

complicated. Kinetically controlled crystallization is another attractive strategy. The principle 

of this strategy is to control both crystal nucleation and growth by manipulating reaction 

rates[81–90] and/or inhibiting unnecessary crystal evolution with capping agents.[91–105] By 

regulating the reaction rates, ultra-small nanoparticles can be easily collected when the reaction 

rate is fast, whereas large nanoparticles are usually obtained by slowing down the reaction rate. 

The reaction rate can be controlled by the addition of an inhibiting agent (Figure 1.4a),[81–

85] decomposition of single precursors (Figure 1.4b),[86–89] sequential growth,[90] or other 
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reaction parameters.[91–105] For instance, trisodium citrate can chelate with transition metal 

salts, then inhibit direct reaction between the transition metal salts and ligands.[81,83] 

Changing the amount of trisodium citrate makes the reaction rates tunable, permitting PB and 

PBA nanoparticle sizes to be controlled between 20 and 500 nm. The reaction rates can also be 

delayed by a single-precursor decomposition method when the common precipitation reaction 

is too fast. For example, dissociation of the K4[Fe(CN)6] complex under the hydrothermal 

condition gradually produces Fe2+ ions, which can further react with the residual [Fe(CN)6]
4- 

anions to generate PB nanoparticles.[86–89] Because the dissociation rate of the K4[Fe(CN)6] 

complex depends on the pH value, temperature, and concentration of the complex, the 

crystallization rate of PB and PBAs is controllable. 

 

 

Figure 1.5 Control of PBA nanoparticles by a capping agent. 

 

Rather than controlling the reaction rates, attaching capping agents to the crystal surface 

can significantly inhibit the growth of the nucleus (Figure 1.5).[91–105] By introducing a 

capping agent that has a strong surface interaction with the PB and PBAs nucleus, the 

extension/growth of the external crystal surface can be well controlled. Compared with the 

nanoparticles obtained by changing the reaction rates, the particles size-controlled by capping 

agents can be limited to a very small range, 2–10 nm. In particular, when the surfaces are 

anchored with the surfactants, monodispersed nanoparticles, which are soluble in organic 

solvents, can be obtained, making further processing easy.[105] 

The above strategies allow the synthesis of monodispersed PBA nanoparticles. Further 

modifications of the nanostructures of PB and PBA nanoparticles are required to explore new 
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properties. For this purpose, chemical etching as a post-treatment is the most widely used [106–

120] because the coordination bonds inside PB and PBAs can be broken either by protons or 

hydroxide ions (Figure 1.6). This strategy gives various dissociation rates at different crystal 

positions. When the facets dissolve faster than the corners and edges, nanoframes can be 

obtained by the direct etching of nanocubes.[108, 110] When the corners and edges dissolve 

more quickly, elongated particles can be obtained.[117] Moreover, the parts with more defects 

can be more easily etched than the perfect parts. On the basis of these facts, macro- or 

mesopores can be further introduced into the particles by controlled etching. Through 

intentional introduction of defects at the desired parts, hollow or porous materials can be 

fabricated.[115] Multiple cavities can even be made through controlled etching.[106] The 

properties of the 0D nanoparticles strongly correlate with their sizes and shapes. For instance, 

the magnetic property of PB nanoparticles depends on their sizes and shapes. A transition from 

ferromagnetism to superparamagnetism happens with the size reduction once the particle size 

is below the critical size.[66, 100] With the reduction in size, the surface anisotropy and 

interparticle dipolar interactions cannot be ignored, because the metal nodes exposed at the 

surface are in a different coordination environment than that inside the crystals. As a result, the 

magnetic anisotropy can be changed.[66] Creating hollow nanoparticles can also change the 

magnetic properties. Magnetizing hollow nanoparticles is easier than magnetizing solid 

particles.[115] 
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Figure 1.6 Post-fabrication of PBA nanoparticles by chemical etching. 

 

The PBA solids are known to be good adsorbents for metal ions, particularly alkali ions. 

Because the size determines the length of the diffusion pathway, small particles are promising 

as adsorbents in water. One important example is Cs-ion removal. The small PB particles (20 

nm) can adsorb Cs+ ions much faster than the medium-sized PB particles (100 nm), which is 

important for fast removal of Cs+ ions from contaminated water.[92] The performance of 

nanoparticles can be further enhanced by hierarchical porous structures. After etching by HCl, 

the hollow PB nanoparticles showed a 10-fold increase in Cs-ion uptake as compared with the 

commercial PB nanoparticles.[114, 119] The ability to store alkali ions eventually leads to the 

application of PB and PBAs as electrodes for alkali ion batteries. These nanoparticles have 

shown stable Na-ion/K-ion storage capability as electrodes for sodium-ion/potassium-ion 

batteries during a long-term cycling test while maintaining high current densities.[121–128] 

Owing to abundant cavities both on the outermost and inner parts, the loading or adsorption 
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capacity of drug molecules in PB and PBAs can be increased, making them useful as 

nanomedicine.[69, 120, 129–130] In addition, their replaceable Gd, Fe, or Mn nodes can boost 

MRI contrast.[69, 130] 

1.2.2. 1D nanostructured PB and PB analogues (nanowires and nanorods) 

Shape anisotropy plays a crucial role in the tuning properties of solids. The 1D structure 

usually shows a large shape anisotropy because of the high length-to-radius ratio. Therefore, 

the shape anisotropy brings interesting properties. The most significant examples have been 

found in carbon nanotubes and semiconductor nanowires. The unique nanostructures of these 

materials allow them to form strong bundles, penetrate cells, be assembled into high-

performance devices, etc. Encouraged by the astonishing achievements in a related field, 1D 

nanostructured PB and PBAs have been investigated before. As with the above-mentioned 0D 

nanostructures, spatially controlled synthesis and kinetically controlled crystallization are two 

main methods (Figure 1.7). 

The spatially controlled synthesis can be divided into half spatial control and full spatial 

control (Figure 1.7a,b).[131–140] For full spatial control, the crystal growth is fully confined 

inside a nanoreactor with a tube-like cavity. Adequate or continuous feeding of reactants 

ensures that the synthesized materials can fill the nanoreactor to replicate the shape of the cavity, 

leading to 1D nanostructures. For half spatial control, nucleation and the early growth stage of 

crystals are confined, forcing further growth in one direction. After growing outside the 

confined space, subsequent elongation follows the previous direction, increasing the length-to-

radius ratio further. Compared to the full-spatial-control strategy, this method has no limitation 

on the final length of the nanowires. Kinetically controlled crystallization can also be realized 

by inducing the preferential growth of specific facets via a capping agent or self-assembly 

(Figure 1.7c).[141–145] For example, hexacyanometallates can be linked to surfactants. The 

synthesized molecules can align into worm-like structures in solution. When metal ion nodes 

are added to coordinate with the modified hexacyanometallates, the surfactant chains linked to 

the ligands automatically anchor on the surface of the generated PBAs, inhibiting isotropic 

growth. As a result, worm-like PBAs can be fabricated.[141] 
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The 1D structures show a significant influence on magnetic properties. Because the 

average number of magnetic interaction neighbors is small, the Curie temperature of the 1D 

solid becomes lower than the bulk one, because this temperature is known to be associated with 

the number of magnetic neighbors.[131–134] The alignment of nanocrystals along one 

direction also enhances the magnetic dipolar interaction. Therefore, the magnetic anisotropy 

can be significantly strengthened.[132] 

 

 

Figure 1.7 (a) Full spatial control of 1D PBA synthesis. (b) Half spatial control of 1D PBA 

synthesis. (c) Kinetically controlled synthesis of 1D PBAs. 

 

1.2.3. 2D nanostructured PB and PB analogues 

Compared to 0D and 1D nanostructures, the fabrication of a 2D structure is rather 

difficult, although it is very attractive. For the metal cyanides with a layer structure rather than 

the common cubic structure, the challenge is the precipitation rate, which is generally too fast, 

leading to poorly crystallized particles. With the addition of a reaction inhibitor in an 

appropriate amount, the kinetics of crystallization can be controlled (Figure 1.8). After slowing 

down the reaction rates, fewer nuclei can be generated, and slower growth occurs subsequently. 
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Therefore, the atoms/ions in the solution can assemble in a precise way, forming 

nanoflakes.[146]  

 

 

Figure 1.8 Scheme for the controlled synthesis of 2D PBAs using an inhibiting agent. 

 

By introducing DMF into the reaction system, the surface of the PBAs can be 

preferentially capped by DMF molecules. The capping effect induces the anisotropic growth 

of the PBA nucleus, leading to PBA nanosheets. The crystallized polymers can also work as a 

template for the generation of 2D PBAs.[147] By linking PBAs and polymers, the PBAs can 

be fabricated between the planar spaces. As a result, the shape of the PBAs is confined to a 2D 

shape (Figure 1.9).[148,149] A more general way is to deposit PBAs on the surface of flat 

substrates. In these cases, the substrates can be wonderful supports for the formation of thin 

films. When the thickness of the deposited thin films is well-controlled, 2D PB and PBAs are 

synthesized naturally.[34,150–158] For instance, Mallah et al. employed the LB technique 

repeatedly in the fabrication of 2D PBAs. The PBA nanoparticles were carefully packed onto 

the surface of the substrates, thereby leading to dense 2D PBA structures.[153,155] 

The 2D shape makes the crystal surface largely exposed, and stacking of the 2D 

nanostructure can happen easily. Evaporating a droplet of the nanoflake suspension enables the 
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nanoflakes to form an ordered stacking structure. This kind of stacking provided unexpected 

adhesive properties.[159] In addition, the 2D CPs showed superior catalytic activity toward the 

Fenton reaction as compared with the bulk ones.[147]  

 

 

Figure 1.9 2D PBAs fabricated via surface capping. 

 

1.2.4. Hybridized nanostructures 

As the requirements for practical applications vary, it would be necessary to hybridize 

different PBAs together or with other solids. The hybridization of different PBAs is usually 

realized by epitaxy. Most of the PBAs have a close lattice structure, so the mismatch between 

them is small. A layer of PBA can easily grow on the top surface of another PBA’s 

particles/films (Figure 1.10).[160–177] The challenge to perfect hybridization is the 

crystallization rate. Fortunately, this problem has been solved. There are several ways to 

control the crystallization rate. By using a peristaltic pump, feeding of the reactants can be kept 

very slow, and thus an outermost layer can grow on a nanoparticle to generate a core–shell 

structure.[173] The deposition speed can also be controlled by adding an inhibition agent.[106, 

178] With the help of sodium citrate, a single-crystalline shell can be deposited on the surface 

of a single-crystalline core. Electrochemical deposition is another powerful strategy for 

controlling the deposition speed. Epitaxy on a PBA film has been achieved using this 

method.[174] 
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Figure 1.10 Epitaxy of PBAs on each other. 

 

To hybridize PBAs with other solids such as metal or metal oxides, sequential growth 

or coordination replication has been carried out. Sequential growth generally relies on chemical 

modification of the substrates. The modified surface of the substrates can favor coordination 

with the metal nodes; therefore, the deposition of PBAs on the substrates is possible (Figure 

1.11).[144] For instance, PBAs can be deposited on gold nanoparticles to generate core–shell 

particles.[179] Coordination replication has been used extensively in the deposition MOFs on 

metal oxides.[180,181] The key point is the simultaneous etching of metal oxides and the 

precipitation of MOFs. By using metal oxides as sacrificial substrates, the released metal ions 

in acid solution can be captured by the hexacyanometallates and form networks immediately. 

They grow on the surface of the sacrificial metal oxides, leading to a PBA/MO composite.  
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Figure 1.11 Sequential growth of PBAs on substrates. 

 

The PBAs can be integrated with polymers (Figure 1.12). When polymeric hydrogel 

was used as the reactor, protons could be released at an elevated temperature in water. The 

released protons prompted the decomposition of hexacyanometallates, leading to the formation 

of PBAs inside the hydrogel.[182] The PBA-based hybrids not only exhibit functions from 

each component as a sum but also benefit from the synergistic effect of the combination. For 

instance, when a BiVO4/PBA film was irradiated by an ultraviolet photon, the generated holes 

and electrons in BiVO4 can be separated by PBAs and then boosted water splitting.[182] Even 

when two PBAs were carefully grown together, the hybrid solid showed a remarkable 

synergistic property. For a core–shell particle, the exchange anisotropy at the interface results 

in a large increase in the coercive field.[161] The Tc of the core–shell particle can be affected 

by the existence of an interface between the ferromagnetic and ferrimagnetic phases.[164] 

Enhancement of the Tc is caused by the proximity effect. When the core–shell particles were 

used for the electrochemical interaction of alkali ions, the imperfect arrangement of the metal 

nodes at the interface led to alternation of the coordination environment. This change alternates 

the redox potential of the nodes, making inert ions active during ion intercalation. 
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Figure 1.12 Hybridization of PBAs inside a hydrogel polymer. 

 

1.3. Materials derived from PB and PBAs 

PB and PBAs containing various kinds of metals (e.g., Fe, Ni, Co, and Mn) can be 

effectively used as templates and precursors to synthesize porous or hollow nanomaterials with 

uniform sizes, varied compositions, and diverse morphologies and architectures. PB and PBAs 

offer a variety of derivatives, including metal oxides (MOs), metal sulfides (MSs), metal 

carbide, metal phosphide, alloy nanoparticles, and their composites with porous carbon or 

graphitic carbon nitride. These derivatives of PB and PBAs have been widely studied as 

electrode materials for batteries and supercapacitors, gas sensors, electrocatalysts, adsorbents, 

etc. 

1.3.1. PB- and PBA-derived metal oxide nanostructures 

The thermal treatment of PB and PBAs in air has been presented as an efficient and 

promising route for large-scale preparation of various highly porous transition metal oxides 

(TMOs), such as iron oxides (Fe2O3),[183-191] cobalt oxide (Co3O4),[192-196] nickel 

oxide,[197] spinel-type mixed oxides (AxB3-xO4),[198-207] and perovskite (ABO3)[208, 209] 

and composite oxides.[210-228] When PB or PBAs are treated in an air atmosphere, the 
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organic linkers are completely decomposed into gases, and the metal ions are oxidized to metal 

oxides. Although there are some templating approaches such as hard-templating and soft-

templating methods,[229-232] PB- and/or PBA-derived materials always exhibit uniform 

particle sizes, a high surface area, interconnected pores, uniform element distribution from 

inside to outside, and diverse morphologies and architectures.  

 

 

Figure 1.13 (a) The relationship between product contents and oxidation−diffusion conditions 

of PB annealed at 350oC. (b) Schematic illustration of the formation of hollow Fe2O3 

microboxes and the evolution of the shell structure with the increasing calcination temperature. 

(c, e, g) FE-SEM and (d, f, h) TEM images of hollow Fe2O3 microboxes obtained at (c, d) 

350oC, (e, f) 550oC, and (g, h) 650oC. (i) Schematic illustration of the relationship between 

product contents and PB particle size and calcination conditions. (j–l) SEM and (m–o) TEM 
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images of (j, m) PB, (k, n) hollow γ-Fe2O3, and (l, o) hollow α-Fe2O3 prepared by the 

calcination of different PB precursors at different temperatures.  

 

Zboril et al. studied the effect of particle sizes and calcination temperatures on the 

decomposition behaviours of PB nanocubes.[183] It was found that amorphous Fe2O3 

nanoparticles with ultra-small particles and a high specific surface area were prepared under a 

relatively low temperature (250°C). Then, an increase in PB particle size resulted in an increase 

in the particle size of amorphous Fe2O3 and a proportional reduction of the specific surface 

area of particles. When the calcination temperature was raised to 350°C, a mixture of cubic 

bixbyite β-Fe2O3 and cubic spinel γ-Fe2O3 was achieved. The molar ratio of β-Fe2O3 to γ-Fe2O3 

decreased with an increase in the PB particle size. It is proposed that a larger particle size 

represents the system with less favorable conditions for the air–oxygen access and liberation 

of gaseous (CN)2 (Figure 1.13a). In another example, Zhang et al. showed that the calcination 

temperature affects the morphological features of iron (III) oxide prepared by the calcination 

of PB (Figure 1.13b–h).[184] Hollow structured Fe2O3 were obtained via the Kirkendall effect, 

which is based on a nonequilibrium interdiffusion process. It was observed that a high 

calcination temperature resulted in a hierarchical shell structure with promising lithium storage 

properties, while at a low calcination temperature, iron (III) oxides with smooth shell structure 

were achieved. The heating rate was also reported to show the same effects on the 

morphological features of obtained Fe2O3 nanocubes.[185] Furthermore, Hu et al. reported the 

fabrication of iron oxide nanostructures with controlled crystalline phases from hollow Prussian blue 

(PB) derived from HCl etching in the presence of PVP (Figure 1.13i–o).[186] The cavity sizes in 

the starting PB nanocubes, as well as the calcination temperatures, were critical factors in achieving 

crystalline phase control of the obtained iron oxide. It was found that pure phase crystallized α-Fe2O3 

and γ-Fe2O3 can be selectively formed by simply tuning the applied calcination temperatures and 

selecting the PB nanoparticles with different cavities. The well-crystallized hollow γ-Fe2O3 particles, 

derived from the thermal decomposition of large PB nanocubes at 250°C, possess a suffcient 

saturation magnetization (Ms) value. 
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Figure 1.14 (a) Schematic illustration of the synthesis of hierarchical and hollow Fe2O3 microboxes from PB 

templates via a two-step strategy. (b, c) FE-SEM and (d, e) TEM images of (b, d) a PB cube before etching 

and (c, e) hierarchically single-shelled Fe2O3 microboxes obtained by the reaction of PB precursors with 0.2 

M NaOH under hydrothermal conditions. 

 

In addition to direct calcination, a two-step strategy has been developed for the 

synthesis of hierarchical and hollow porous Fe2O3 nanoboxes from PB, as shown in Figure 

1.14.[187,189] First, hierarchical Fe(OH)3 microboxes were prepared using the wet-chemical 

method, that is, an ion-exchange reaction between PB microcubes and NaOH solution. Second, 

a shape-retaining calcination process was used to obtain hierarchical and hollow structured 

Fe2O3. The NaOH solution concentration and the reaction temperature are critical to the 

formation kinetics of hierarchical structured Fe(OH)3. Yolk–shelled or multishelled structures 

can also be achieved by control of the reaction kinetics using concentrated alkaline solution at 
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an elevated temperature. Hierarchical and hollow nanostructures possess various advantageous 

features, such as a high specific surface area and well-aligned porous morphology, that have 

received great attention for many applications. As an example, the as-prepared complex hollow 

Fe2O3 microboxes exhibit remarkable electrochemical performance as anode materials for 

lithium ion batteries.[189] When applied in H2S sensors, they can provide effective gas-

diffusion paths without sacrificing the high surface area as a result of their less agglomerated 

configurations.[187] Iron oxides have long been regarded as promising anode materials for 

LIBs because of their high theoretical capacity of about 1,000 mA h g-1. The lithium storage 

mechanism of iron oxides is based on the redox conversion reaction, where the iron oxides are 

reduced to metallic Fe nanocrystals dispersed in a Li2O matrix upon lithiation and then 

reversibly restored to their initial oxidation states upon delithiation. 

Porous Co3O4 nanocages can be fabricated via the thermal decomposition of 

Co3[Co(CN)6]2·nH2O (Co-Co PBA) in air. The porous structure of the prepared Co3O4 

nanocages was contributed by the removal of organic parts in the form of CO2 and NxOy during 

the oxidative decomposition process. Yan et al. reported the synthesis of pure phase crystalline 

Co3O4 nanoparticles with a different morphology and structure by simple thermal 

decomposition of Co–Co PBA nanoparticles at different temperatures (Figure 1.15a–d).[195] 

Based on the TG curve, the thermal decomposition temperature of the PBA precursors should 

be performed at temperatures up 350°C. When calcinated at relatively low temperatures, e.g., 

450 and 550°C, the Co–Co PBA could decompose to form porous hollow structured Co3O4 

while retaining the original shape. With the calcination temperature raising, the crystallinity of 

Co3O4 gradually becomes better, while some of the porous hollow structured Co3O4 collapsed 

into solid dendritic grains due to the intense gas release. The proportion of the nanocage and 

nanoparticle depended on the annealing temperature. In another case, uniform polyhedron-like 

Co–Co PBA particles were prepared via an SDBS modified precipitation reaction (Figure 

1.15e–h).[193] When used as precursors for the synthesis of Co3O4, it was found that the as-

prepared porous Co3O4 displays a concave structure on the surface, which is different from the 

porous structure obtained from other precursors. The Co–Co PBA microcubes can be etched 
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in ammonia solution at room temperature by a complex reaction between Co2+ and NH4
+ 

without the addition of any surfactant (Figure 1.15i–l).[194] It is worth noting that the etching 

behavior in Co–Co PBA is anisotropic, resulting in Co–Co PBA microframes with an open 

pore at each corner of the cube. After annealing under suitable temperature in air, the as-

obtained Co–Co PBA microframes are then transformed to Co3O4 microframes with a porous 

shell. When evaluated as potential electrode materials, the Co3O4 microframes exhibit 

enhanced electrochemical performance, including a large specific capacity, long cycling 

stability, and excellent rate capability for LIBs and a small overpotential and good durability 

for the oxygen evolution reaction. Similarly, in case of the Co-M PBA (M = Co, Fe), an ion 

exchange reaction can occur with NaOH in solution, resulting in the formation of cobalt oxides 

(Figure 1.15m–p).[196] Due to the [M(CN)6]
3– being replaced and redissolved in solution, 

metal “M” will not be present in the final products, and pure cobalt oxides are obtained. 
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Figure 1.15 (a) Schematic illustration of the synthesis of Co3O4 nanocages and nanoparticles 

via thermal decomposition of Co2[Co(CN)6]3. TEM images of (b) the precursor Co3[Co(CN)6]2 

and (c, d) the Co3O4 nanoparticles calcined at 450 and 850oC. (e) Schematic representation of 

the formation of Co3O4 porous polyhedrons. (f, g) SEM and (h) TEM images of (f) 

Co3[Co(CN)6]2 and (g, h) Co3O4 porous polyhedrons. (i) Schematic illustration of the formation 

process of Co3O4 microframes. SEM images of (j) Co–Co PBA microcubes, (k) Co–Co PBA 

microframes, and (l) Co3O4 microframes. (m) Schematic illustrating the preparation process of 

hollow CoOx nanocubes with a porous shell. (n) SEM images of the PBA nanoparticles. (o) 

SEM and (p) TEM images of CoOx nanocubes obtained by chemical etching in 0.02 M NaOH 

for 20 min. 

 

Uniform and porous ZnO microspheres were obtained by annealing 

Zn[Zn(CN)4]·xH2O (Zn-PBA) as templates and precursors.[238] It was found that the 

annealing condition has a significant impact on the composition and morphology of the 

products, as shown schematically in Figure 1.16. When calcined in air, the oxidative 

decomposition of the Zn-PBA microspheres was carried out uniformly within the sphere 
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because of the porous structure, resulting in polycrystalline ZnO microspheres. However, when 

Zn-PBA is first annealed in an Ar atmosphere and then in air, the ZnO of the yolk–shell 

structures is obtained with some amount of carbon residue. Under this calcination condition, 

the formation of the yolk–shell structure can be explained by its heterogeneous construction. 

In detail, the temperature gradient induces the surface nanoparticles first to decompose and 

form a dense ZnO shell. Then the decomposition of inner nanoparticles gradually leads to 

shrinkage of the microspheres and separation of the surface and the inner core. As a result, 

yolk–shell structures are generated. At the same time, decomposition of the organic linkers in 

the microspheres results in the porous structure. The as-prepared porous ZnO yolk–shell 

structures possess various advantageous features, including a large specific surface area, low 

density, a microreactor environment, and reduced transport lengths for both mass and charge 

transport. When applied as electrode materials of lithium ion batteries, these yolk–shell 

structured microspheres show excellent battery performance, such as high rate capacity and 

ultra-long cycle life. 

 

 



Chapter1.  

29 

 

 

Figure 1.16 (a) Schematic illustrating the synthesis of porous ZnO or ZnO@C nanocrystals 

from Zn[Zn(CN)4]·xH2O microspheres. (b, c) SEM and (d) TEM images of ZnO microspheres. 

(e, f) SEM and (g) TEM images of yolk–shell structured YC-ZnO. 

 

In recent years, mixed transition metal oxides (with a formula of AxB3-xO4, where A 

and B represent two different transition metals, such as Fe, Ni, Co, Mn, and Zn) have received 

increasing attention due to their excellent redox reactivity and electronic conductivity 

originating from the coupling of various metallic species and the valence variability of 

transition metals, which is beneficial in many energy-related applications. Additionally, the 

various combinations of the cations and the tunable stoichiometric/nonstoichiometric 

compositions in the MTMOs provide vast opportunities to manipulate the physical/chemical 

properties. Various spinel-type mixed oxides have been fabricated by annealing A3[B(CN)6]2 

in air under controlled conditions. For example, Hu et al. reported a strategy for the synthesis 

of binary Fe1.8Co1.2O4 porous nanostructures, involving conserved morphology and the thermal 

transformation of Fe3[Co(CN)6]2·nH2O nanoparticles (Figure 1.17a).[206] The as-prepared 
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Fe1.8Co1.2O4 product is comprised of many nanoparticles, without serious aggregation, and its 

morphology has undergone negligible change as compared with the precursor. Furthermore, 

the distribution of Fe, Co, and O in the porous nanocage is highly homogeneous at the atom 

scale. However, limited to the Fe/Co ratio in PBA, only the Fe1.8Co1.2O4 spinel could be 

obtained from such a strategy. The constant ratio of transition metals in PBAs significantly 

limited the application of this method. Later, Li et al. improved this strategy using a cationic 

doping method, and FeyCo1-y[Co(CN)6]0.67·nH2O was developed for the synthesis of FexCo3-

xO4 (0˂x˂1) (Figure 1.17b).[199] Despite the change in the proportion of Fe, the resulting 

product still corresponded well with a spinel-type structure, and the distribution of elements 

was still uniform. 
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Figure 1.17 (a) Schematic illustration of the formation of Fe1.8Co1.2O4 nanoporous particles. (b) 

Preparation procedure of FexCo3−xO4 (0˂x˂1) nanocages. (c) Schematic illustration of the synthetic 

process of the Fe-based ternary metal oxide hollow structures. (d, e) FE-SEM images at different 

magnifications of the porous NiFe2O4 hollow cubes. (f) TEM images of the porous NiFe2O4 hollow 

cubes. 

 

In another case, Yan et al. reported the synthesis of porous hollow spinel AFe2O4 (A = 

Ni, Co, Zn) nanoarchitectures via a co-calcining process of PB and the A element containing 

salts (Figure 1.17c–f).[207] The PB precursor was first ground with the corresponding salt, 

and a layer of metal ion (A+) was uniformly adsorbed on the surface of PB. During the heat 
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treatment, the outer surface of PB and A+ reacted with oxygen to form the AFe2O4 shell, and 

simultaneously, a core–shell structured intermediate was formed. Then, through a classic 

unequal interdiffusion process (Kirkendall effect), the PB precursor and A containing salt are 

completely transformed into porous hollow AFe2O4, which is hierarchically assembled and 

made up of numerous tiny nanoparticles. These distinguishing structural features make the 

ternary AFe2O4 viable in a wide range of applications. This versatile strategy successfully 

synthesized uniform NiFe2O4, ZnFe2O4, and CoFe2O4 hollow structures and is promising for 

the preparation of other hollow or unique structural materials to meet a wide range of 

applications. 

 

 

Figure 1.18 (a) Formation process of TPBA cubes and their thermal conversion to nanoporous 

Ti–Fe-based oxides. (b) SEM and (c) dark-field TEM images taken from one cube and the 

corresponding elemental mappings of both Ti and Fe. (d) Schematic illustration of the synthesis 

procedure for porous CeO2/Co3O4 nanojunction. (e) SEM and (f) TEM images of the porous 

CeO2/Co3O4 nanojunctions. (g) Schematic illustration of ZnO/ZnFe2O4 multishelled hollow 

spheres. (h) FE-SEM and (i) TEM images of as-prepared ZnO/ZnFe2O4 multishelled spheres. 
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Transition metal oxide nanocomposites, such as ZnO/Co3O4, NiO/Fe3O4, and 

NiO/Fe3O4/Co3O4, are another kind of attractive functional material that can be synthesized by 

calcining corresponding PBA precursors. For example, Hu et al. demonstrated the synthesis of 

titanium-containing PBA (TPBA) with well-defined cube structures with the assistance of a 

commercial Pluronic-F127 block copolymer (Figure 1.18a–c).[85] Then the as-prepared 

TPBA was successfully converted into nanoporous titanium–iron-based composite oxide cubes 

via thermal decomposition. Recently, Wang et al. developed a novel in situ synthetic strategy 

to fabricate porous CeO2/Co3O4 nanojunctions via thermal decomposition of the as-synthesized 

Ce[Co(CN)6] precursor in air (Figure 1.18d–f).[214] The unique nanojunctions possess 

numerous interfaces due to the CeO2 and Co3O4 nanocrystals uniformly dispersed during the 

annealing process. In addition, the nanojunctions prepared using this strategy possess high 

specific surface areas (42.3 m2 g−1) and a large number of nanopores as gaseous molecules are 

released through MOF pyrolysis. In another case, hierarchical mesoporous bi-component-

active ZnO/ZnFe2O4 submicrocubes have been fabricated by calcination of a single-resource 

PBA of Zn3[Fe(CN)6]2 cubes in air at 500°C.[215] The hybrid ZnO/ZnFe2O4 is homogeneously 

constructed from well-dispersed nanocrystalline ZnO and ZnFe2O4 subunits at the nanoscale. 

Additionally, triple-shelled hollow binary ZnO/ZnFe2O4 metal oxide microspheres were 

synthesized through a morphology-inherited annealing treatment of Zn3[Fe(CN)6]2·xH2O solid 

microspheres (Figure 1.18g–i).[210] The formation of the triple-shelled hollow structure is 

mainly attributed to the nonequilibrium heat-treatment-induced heterogeneous contraction 

mechanism. The porous hybrid ZnO/ZnFe2O4 triple-shelled hollow microspheres are 

composed of crystalline ZnO and ZnFe2O4 nanodomains with homogeneous dispersion at the 

nanoscale and large void spaces between adjacent shells. 
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Figure 1.19 (a) Schematic of the procedure used to fabricate Fe2O3@NiCo2O4 porous 

nanocages. (b) SEM and (c) TEM images of Fe2O3@NiCo2O4 nanocages. (d) Schematic 

diagram of the synthesis process of porous composite metal oxides. SEM images of (e) MOFs 

and (f) porous metal oxides. 

 

Aside from single PBA precursors, core–shell Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 

(CoFe@NiCo PBA) nanocubes have been reported as a source for the fabrication of core–shell 

Fe2O3@NiCo2O4 porous nanocages through the annealing process (Figure 1.19a–c).[216] In 

the designed strategy, the core–shell structured CoFe@NiCo PBA precursors were prepared 

according to a step-by-step strategy, and Ni3[Co(CN)6]2 nanocubes were initially synthesized 

and applied as a core for epitaxial growth of a layer of Co3[Fe(CN)6]2 as a shell. The 

CoFe@NiCo precursor was then converted to a porous Fe2O3@NiCo2O4 hollow nanocage via 

heat treatment in air. The hollow interiors were contributed by volume loss and the release of 

the formed CO2 and NxOy gases. The as-prepared Fe2O3@NiCo2O4 porous nanocages possess 

an average diameter of 213 nm and a shell thickness of 30 nm, with homogeneous distribution 

of NiCo2O4 and Fe2O3 crystallites in the shell. In another case, core–shell structured 

Fe4[Fe(CN)6]3/Mx[Fe(CN)6] (M = Cu, Ni, Co, etc.) were synthesized using a cation-exchange 

strategy for the fabrication of porous composite metal oxides of Fe2O3/MOx.[217] It is 

proposed that the cation-exchange reaction is driven by differences in the solubility product 

constant (Ksp) of monometallic MOFs. 

Furthermore, PB and PBAs can act as templates to form core–shell structured 

composites with various chemicals and then be applied as precursors for the preparation of 
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porous metal oxide composites. For example, the uniform Co3[Co(CN)6]2 nanocubes were 

coated with a layer of porous silica and then pyrolyzed to generate rattle-type Co3O4@SiO2 

nanoparticles.[223] Hierarchical double-shelled Fe2O3/Co3O4 microcubes were fabricated 

based on the annealing of double-shelled Fe4[Fe(CN)6]3/Co(OH)2 microcubes in air (Figure 

1.19d–f).[219] Double-shelled Fe4[Fe(CN)6]3/Co(OH)2 microcubes were prepared by 

dispersing PB in a precipitation reaction system of cobalt hydroxide (Co(AC)2 and ammonium 

hydroxide). Recently, Yang et al. reported the use of PB to react with Zn acetate under 

microwave irradiation, forming hydroxides and carbonate nanosheets on the surface of PB.[211] 

Then porous ZnO/ZnFe2O3 composite nanoparticles were obtained through a calcination 

process.  
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Table 1.1 Summaries of PB/PBA-derived porous metal oxides with compositions and applications. 

Compositions Precursors Thermal conditions Applications Rref. 

Fe2O3 microcubes Fe4[Fe(CN)6]3·xH2O 350ºC for 6 h in air; heating rate: 2ºC·min–1 
Adsorbent for inorganic and 

organic pollution 
[184] 

Fe2O3 nanoboxes Fe4[Fe(CN)6]3 NaOH etching H2S [189] 

Fe2O3 microboxes Fe4[Fe(CN)6]3 
350, 550, and 650ºC for 6 h in air; heating 

rate: 2ºC·min–1 
LIBs [188] 

α-Fe2O3, γ-Fe2O3 Etched Fe4[Fe(CN)6]3 
250 or 400ºC for 4 h in air; heating rate: 

1ºC·min–1 
Magnetic materials [186] 

Amorphous Fe2O3, 

α-Fe2O3, γ-Fe2O3 
Fe4[Fe(CN)6]3 250 or 350°C in air / [193] 

α-Fe2O3 nanocubes Fe4[Fe(CN)6]3 350ºC for 6 h in air; heating rate: 1ºC·min–1 LIBs [191] 

Fe2O3 (Fe4[Fe(CN)6]3·xH2O 
250 or 400ºC for 1 h in air; heating rate: 

1ºC·min–1 
Catalysts: drug delivery [190] 

Co3O4 Co3[Co(CN)6]2·xH2O NH3-H2O etching, 600°C for 1 h in air LIBs [194] 

Co3O4 nanocages Co3[Co(CN)6]2 400ºC for 1 h in air LIBs [192] 

Co3O4 Co3[Co(CN)6]2 430°C for 1 h in air LIBs [193] 

Co3O4 nanocages Co3[Co(CN)6]2 
450, 550, 650, 750, 850ºC for 1 h in air; 

heating rate: 10ºC·min-1 
LIBs [195] 

CoOx Co3[Fe(CN)6]2 NaOH etching Glucose sensors [196] 

NiO nanosheets Ni[Ni(CN)4] 
300, 400, 500ºC for 1 h in air; heating rate: 

5ºC·min–1 
Supercapacitors [197] 

FexCo3-xO4 FeyCo1-y[Co(CN)6]·2H2O 500°C for 1 h in air Catalyst: peroxymonosulfate [199] 

Mn1.8Fe1.2O4 Mn3[Fe(CN)6]2·nH2O 
600°C for 2 h in air; heating rate: 

10°C·min−1 
LIBs [200] 

MnxCo3−xO4 

nanocages 
Mn3[Co(CN)6]2·nH2O 450ºC for 2 h in air; heating rate: 1ºC·min–1 Catalyst: eliminate NOx [201] 
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NiFe2O4 nanocubes Ni3[Fe(CN)6]2·xH2O 350ºC for 2 h in air; heating rate: 3ºC·min–1 Acetone sensor [203] 

Spinel MnxCo3-xO4 Mn3[Co(CN)6]2·nH2O 400ºC for 1 h in air LIBs [202] 

NiFe2O4 nanocages Ni2Fe(CN)6 350ºC for 2 h in air; heating rate: 1ºC·min–1 LIBs [204] 

CoxMn3−xO4 Mn3[Co(CN)6]2·nH2O 430°C for 2 h in air; heating rate: 2°C·min−1 Na−Air/seawater batteries [223] 

MnxCo3−xO4 

nanocages 
MnyCo1-y[Co(CN)6] 0.67·xH2O 400°C for 2 h in air Catalyst: peroxymonosulfate [205] 

SmFe2O3 Sm[Fe(CN)6]·xH2O 400ºC for 2 h in air; heating rate: 2ºC·min–1 NO2 sensor [209] 

BiFeO3 Bi[Fe(CN)6]·4H2O 400ºC for 1 h in air; heating rate: 3ºC·min–1 / [208] 

ZnO/ZnFe2O4 

microspheres 
Zn3[Fe(CN)6]2·xH2O 550ºC for 2 h in air; heating rate: 1ºC·min–1 Acetone sensor [210] 

ZnO/ZnFe2O4 PB@Zn(OH)2 600ºC for 2 h in air LIBs [211] 

MnOx-FeOy 

nanocages 
Mn3[Fe(CN)6]2·nH2O 500ºC for 5 h in air; heating rate: 2ºC·min–1 Catalysts for deNOx [212] 

ZnO/ZnFe2O4 Zn3[Fe(CN)6]2·xH2O 500°C for 1 h in air; heating rate: 1°C·min−1 Gas sensors [213] 

CeO2/Co3O4 

nanojunctions 
Ce[Co(CN)6] 600°C for 3 h in air; heating rate: 5°C·min−1 Catalyst: CO oxidation [214] 

Fe2O3@NiCo2O4 Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 450ºC for 6 h in air; heating rate: 2ºC·min–1 LIBs [216] 

Fe2O3/MOx, M=Cu, 

Ni, Co, etc. 
Fe4[Fe(CN)6]3/Mx[Fe(CN)6] 600°C for 2 h in air; heating rate: 2°C·min−1 LIBs [217] 

Co3O4@SiO2 Co3[Co(CN)6]2@SiO2 550ºC for 1 h in air; heating rate: 10ºC·min–1 Catalyst: CO oxidation [218] 

Fe2O3/Co3O4 hollow 

microcubes 
Fe4[Fe(CN)6]3/Co(OH)2 650ºC for 6 h in air; heating rate: 2ºC·min–1 LIBs [219] 

Iron–manganese 

oxide 
Mn3[Co(CN)6]2·nH2O 450ºC for 2 h in air; heating rate: 2ºC·min–1 Electrocatalyst: HER, ORR [220] 

Mn–Ru oxide Mn2[Ru(CN)6]·xH2O 400ºC for 2 h in air; heating rate: 1ºC·min–1 Electrocatalyst: ORR [221] 

K0.8Ti4.3Fe3.7O16 K0.25Ti[Fe0.875(CN)6]·6H2O 600ºC for 2 h in air; heating rate: 10ºC·min–1 Magnetic materials [222] 
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Mn3O4-Co3O4 Mn3[Co(CN)6]2·nH2O 
450ºC for 0.5h, 1 h, 3 h in air; heating rate: 

1ºC·min–1 
Supercapacitors [225] 

Ag/Co3O4 Ag3[Co(CN)6] 
150ºC for 240 h, 200ºC for 48 h, 250ºC for 8 

h, 300ºC for 2 h, 400ºC for 1 h in air 
Catalyst: CO oxidation [224] 

ZnO/Co3O4 Zn3[Co(CN)6]2 
500°C for 2 h in air; heating rate: 

10°C·min−1 
LIBs [226] 

CoNiFe mixed 

oxides 
KrCosNit[Fe(CN)6]·xH2O 

250, 350, 450°C for 1 h in air; heating rate: 

10°C·min−1 
Ferromagnet [227] 

Ag/ZnFe2O4 
Ag-loaded 

Zn3[Fe(CN)6]2·xH2O 

500°C for 4 h in air; heating rate: 2°C·min−1 

to 200°C, then 1°C·min−1 to 500°C 
Photocatalyst [228] 
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1.3.2. PB-derived metal carbides and alloys 

PB and PBAs, with both designable metal ion centers and organic ligands, are 

promising precursors for the one-step synthesis of metal carbides/alloy@carbon 

composites.[234-264] PB and PBAs are coordination polymers, which are rich in carbon, 

nitrogen, and transition metals and can be used as ideal precursors for the fabrication of 

nitrogen-doped carbon/graphene with metal carbides/alloys. Transition metal carbides/alloys 

generally can be synthesized by the thermal decomposition of PB and PBAs in an inert 

atmosphere. For example, Aparicio et al. studied the thermal decomposition behaviors of PB 

in an argon atmosphere with a wide temperature range, from room temperature to 1000°C.[234] 

At a relatively low temperature (<400°C), the decomposition reaction is based on the 

successive loss of water molecules, the change in the crystal structure of Prussian blue, and the 

evolution of cyanogen (CN2). A continuously rising temperature (400–700°C) will induce the 

formation of various polymorphs of iron carbides (e.g., Fe2C, Fe7C3, and Fe3C). When the 

temperature was higher than 700°C, the iron carbide started to compose and finally caused the 

formation of metallic iron and carbon. Zakaria et al. demonstrated the synthesis of hollow iron 

carbide (Fe2C) spheres by thermal treatment of the triple-shelled PB hollow spheres under 

different temperatures in nitrogen.[235] When the triple-shelled PB hollow spheres were 

annealed at 450°C, the morphology was well inherited, and the as-obtained Fe2C phase was 

mixed with graphite, free carbon, and metallic iron. After annealing at high temperature (550 

and 700°C), the morphology of the product was completely collapsed, and contamination was 

reduced. Such hollow spheres and their derivatives provide a great opportunity for a new solid-

state inorganic chemistry and could be applicable in the future for the synthesis of different 

hybrid metal carbides/alloys with fine structures through thermal treatment of PB analogues 

under nitrogen.  

The combination of metal carbides with other nanomaterials for the fabrication of metal 

carbide–based hybrids is an effective and practical strategy to improve and extend their 

applications. Barman et al. reported an environmentally friendly and simple strategy for the 

synthesis of an Fe/Fe3C nanoparticle encapsulated by N-doped graphene layers by pyrolyzing 
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PB.[263] In this case, PB is used as a single precursor with a cyanide group as the source of 

carbon and nitrogen and Fe2+ and Fe3+ as the sources of Fe/Fe3C nanoparticles. When calcined 

at a high temperature, polymeric carbon nitride generated from the addition/condensation 

reaction of a cyanimide group and then decomposed to generate a large number of cyano 

fragments (e.g., C2N
2+, C3N

2+, and C3N
3+)[238] at above 700°C. Simultaneously, Fe2+/3+ ions 

are reduced to form nanosized Fe crystallites in the reducing environment. Then, the as-formed 

nanosized Fe crystallites can act as catalysts leading to the conversion of cyano fragments into 

N-doped graphene layers. The yield of the resulting encapsulated nanostructured product for 

PB was ~50%. Carbon nitride fragmentation is mainly responsible for doping and for the 

growth of these nanostructures. It is worth noting that carbon nitride decomposes into N2 gas 

at a high temperature (850°C), which will lead to a decrease in N-doping. More recently, Song 

et al. reported the synthesis of Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons by 

simple thermal decomposition of Zn3[Fe(CN)6]2·xH2O in a nitrogen atmosphere (Figure 20a–

d). The as-prepared Fe/Fe3C@N-C polyhedrons inherited well the shape of the precursor and 

are constructed by numerous Fe/Fe3C@N-doped-carbon core–shell structured nanoparticles 

and carbon nanotubes on the surface of the polyhedrons. Additionally, this material exhibits a 

large specific surface area of 182.5 m2 g−1 and an excellent ferromagnetic property. 
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Figure 1.20 (a, b) SEM, (c) TEM, and (d) HR-TEM images of the as-prepared Fe/Fe3C@N-

doped carbon. The (e) SEM and (f) TEM images of N-doped Fe/Fe3C@C/RGO. 

 

Wen et al. demonstrated the fabrication of a novel core–shell structured hybrid of 

nitrogen-doped porous Fe/Fe3C@C nanoboxes supported on graphene sheets (denoted as N-

doped Fe/Fe3C@C/RGO) through the direct pyrolysis of GO-based PB nanocubes (Figure 

1.20e, f).[260] The resulting PB/GO precursors were prepared by dispersing highly uniform 

PB nanocubes in the GO solution under stirring. In the pyrolysis process, the as-prepared PB 

nanocubes were converted to porous N-doped Fe/Fe3C@C nanoboxes with a well-inherited 

morphology except for a small amount of shrinkage. The PB nanocubes also provided the N 

source for the conversion of GO into nitrogen-doped reduced graphene oxide (NRGO) sheets. 

The as-prepared NRGO acts not only as a support for N-doped Fe/Fe3C@C hybrids but also as 

a bridge to connect the neighboring nanoboxes, thereby enhancing the overall electron-transfer 

capability. 
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Figure 1.21 (a) Formation process of NiCNNi–GO hybrids (composites) through layer–by–

layer assembly of graphene oxide sheets held together by coordination polymers, and thermal 

conversion to the Ni3C–GO hybrid (composite). (b) Cross–sectional TEM images of a Ni-PBA-

GO hybrid and (c) a Ni3C–GO hybrid. 

 

In addition to iron carbide, other metal carbide composites and their composites have 

been synthesized. For example, Zakaria et al. reported the synthesis of flake-like nickel carbide 

(Ni3C) through the thermal decomposition of Ni(H2O)2[Ni(CN)4]·4H2O (Ni PBA) nanoflakes 

(Figure 1.21a–c).[261] The Ni PBA nanoflake precursors were first fabricated via a trisodium 

citrate dihydrate–modified reaction between Ni2+ and [Ni(CN)4]
2- ions. When calcined at 

450°C, well-crystallized Ni3C nanoparticles were generated. Upon further heating at 550°C, 

Ni3C decomposed and converted into the cubic nickel metal and porous carbon. Although well-

crystallized Ni3C is obtained at 450°C, the original 2D morphology was completely collapsed 
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and destroyed because of crystallization and fusion of the metal framework. Furthermore, the 

same group demonstrated the synthesis of a layer-by-layer structure of a Ni3C-GO composite 

via thermal treatment of Ni PBA-coated GO sheets.[261] The Ni PBA-coated GO sheets 

assembled with ordered lamellar nanomaterials were prepared by in situ crystallization of Ni 

PBA nanoflakes on the surface of GO sheets. The regulated thermal treatment process in 

nitrogen results in a Ni3C–GO composite with a morphology similar to that of the Ni PBA-GO 

layer-by-layer starting precursor. The stability of the Ni PBA-GO layer-by-layer structure at 

high temperature prevented the collapse and destruction of frameworks during the 

crystallization and fusion process. 

As mentioned above, the PB and PBA powders were directly carbonized into 

metal/alloy carbon composites in an inert atmosphere at high temperature. For example, 

Sivanantham et al. Reported the fabrication of metal-rich, core–shell Co@NC covered with 

thin carbon layer via the thermal decomposition of a Co-Co PBA at 600–900°C in a N2 

atmosphere (Figure 1.22a–c).[244] During the annealing process, Co2+ ions from the precursor 

will be converted to Co nanoparticles by reducing gases under high temperatures, while the 

remaining CN− groups are carbonized and catalyzed into N-rich graphene layers outside the 

metallic particles. The cobalt nanoparticles with average diameter of 25 nm were covered by 

the thin carbon layer with well disperse and uniform. Also, the core–shell nanoparticle was 

interrelated via the carbon shell with nanometer-sized voids. These voids can optimize the 

interface between the active site and the electrolyte. Additionally, transition metal alloy 

nanoparticles, such as FeCo, NiFe, and NiCo, encapsulated in highly nitrogen-doped graphene 

layers can be synthesized by the direct annealing of corresponding PBA nanoparticles at high 

temperature in inert atmospheres. Zheng et al. demonstrated the preparation of podlike N-

doped CNTs with encapsulated FeNi alloy NPs by the direct annealing of [Ni2Fe(CN)6] 

precursors at 600°C in an Ar flow (Figure 1.22d–g).[264] In this case, it is proposed that Ni2+ 

and Fe2+ ions from the precursor were first reduced to NiFe alloys under high temperatures. 

Due to their high catalytic activity, CN– group linkers were subsequently catalyzed into 
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nitrogen-doped nanotubes. The as-prepared composites showed a well-defined podlike 

structure with large metal NiFe alloy particles located at the ends of the nanotubes. 

In another case, polydopamine (PDA) was introduced to form Fe3[Co(CN)6]2@PDA 

nanocubes (NCs). After thermal treatment under a nitrogen flow at 700°C, the precursors could 

be transferred into a new type of core–shell structured FeCo@nitrogen-doped graphitic carbon 

NC.[262] PDA was reported to be an ideal precursor for modifying the surface of all types of 

solid materials, regardless of their chemical nature, and which can be pyrolyzed into highly 

conductive nitrogen-doped porous carbon. When the Fe3[Co(CN)6]2 NCs were immersed in a 

buffer solution of dopamine, dopamine was self-polymerized at the surface of Fe3[Co(CN)6]2 

NCs to form Fe3[Co(CN)6]2@PDA NCs. It was found that both the cyanide ligand and PDA 

acted as carbon and nitrogen sources and were successfully catalyzed into the N-doped 

graphitic carbon instead of amorphous carbon by FeCo nanoparticles. Further, Su et al. 

reported the introduction of ruthenium (Ru) into Co3[Co(CN)6]2 via an ion-exchange reaction 

between Ru3+ and Co3+ for the preparation of RuCo nanoalloys wrapped in N-doped graphene 

layers (RuCo@NC). More recently, a similar strategy was adopted by the same group for using 

Ir-doped Co3[Co(CN)6]2 to synthesize IrCo nanoalloys encapsulated in N-doped graphene 

layers. 
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Figure 1.22 (a) Formation of the core–shell Co@N-doped carbon from Co3[Co(CN)6]2·nH2O. 

Precursor pyrolysis at different temperatures between 600 and 900°C for 3 h in an N2 

atmosphere. Morphology and structural characterization of the core–shell Co@N-doped 

carbon catalyst: (b) FE-SEM and (c) HR-TEM images. (d) SEM, (e) TEM, (f) HR-TEM images 

and (g) elemental mapping of pod (N)-FeNi (FeNi alloy nanoparticle) reveal the homogeneous 

distribution of Ni and Fe elements in the metal nanoparticles. 
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Table 1.2 Summaries of PB/PBA-derived porous metal carbides/nanoparticles and applications. 

Compositions Precursors Preparation Applications Performance Rref. 

FeCo alloy/carbon 

composites 
CoFe-PBA 

750°C for 5 h in 

Ar 

Electrocatalysts 

for solar cell 

Power conversion effciency: 9.20% 

under AM 1.5 G irradiation 
[236] 

Fe/C@mSiO2 PB@SiO2 

400–600°C for 3 

h in H2 

atmosphere 

Adsorbent for 

removal and 

recovery of 

heavy metals 

Kobs ≈ 0.04 [237] 

Fe/Fe3C@/N-doped 

porous carbon hybrid 
Zn3[Fe(CN)6]2.xH2O 

800°C for 1 h in 

N2 
HER 

E10mA/cm
2 = 236 mV; Tafel slope = 59.6 

mV dec–1 
[238] 

CoFe nanoalloy/N-

doped carbon 
Fe3[Co(CN)6]2 

600°C for 1 h in 

N2 
ORR, OER 

ORR: E3mA/cm
2 = 0.68 V vs. RHE; 

OER: E10mA/cm
2 = 1.55 V vs. RHE; over 

potential: 0.38 V at 10 mA/cm2 

[239] 

FeCo alloy/carbon 

composites 
Fe3[Co(CN)6]2/Co3[Fe(CN)6]2 

700°C for 6 h in 

N2 

Microwave 

absorption 

Absorption frequency range: over −10 

dB in 3.2–18.0 GHz 
[240] 

Ir-Co alloy/N-doped 

carbon cages 
Ir-Co3[Co(CN)6]2 

500–800°C for 4 

h in N2 
HER 

E10 mA/cm
2 = 23 mV; Tafel slope = 23 

mV dec−1 
[241] 

Core–shell NiFe 

alloy/N-doped 

graphitic carbon 

NiFe-PBA, urea 

350°C for 2 h in 

air, 80°C for 4 h 

with urea in 

solution, 800°C 

for 2 h in Ar 

OER 

Onset potential: 1.48 V vs. RHE; E10 

mA/cm
2 = 320 mV; Tafel slope = 41 mV 

dec−1 

[242] 

NiCo alloy/graphitic 

carbon 
Ni3[Co(CN)6]2·12H2O 

600–900°C for 3 

h in N2 
ORR 

Half-wave potential: 0.81 V vs. RHE; 

Tafel slope = 52.1 mV dec–1 
[243] 

Co/N-doped carbon Co3[Co(CN)6]2·nH2O 
600–900°C for 3 

h in N2 
OER 

E10 mA/cm
2 = 330 mV; Tafel slope = 41 

mV dec−1; long durability of over 400 h 
[244] 

PdMnCo alloy/N-

doped carbon 
Mn3[Co(CN)6]2, PdCl2 

750°C for 4 h in 

Ar, 
HER Tafel slope = 31 mV dec−1 [245] 
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ultrasonication 

for 90 s in PdCl2 

methanol 

solution 

Ni3C carbon, Ni 

nanoparticles 
Ni-(H2O)2[Ni(CN)4]·xH2O 

420°C (Ni3C), 

550°C (Ni) for 1 

h in N2 

ORR 

Ni3C: E10 mA/cm
2 = -240 mV vs. 

Ag/AgCl; Ni: E10 mA/cm
2 = -129 mV vs. 

Ag/AgCl 

[246] 

FeCoNi alloy@N-

doped graphitic carbon 
Fe3[Co(CN)6]2@Ni3[Co(CN)6]2 

600°C for 4 h in 

N2 
OER E10 mA/cm

2 = 288 mV vs. RHE [247] 

FeCo alloy@N-doped 

graphitic carbon 
FeCo-PBA/carbon nanotubes 

600°C for 2 h in 

N2 
ORR, OER 

ORR: half-wave potential 0.79 V vs. 

RHE; OER: onset potential 1.52 V vs. 

RHE; E10 mA/cm
2 = 1.61 V vs. RHE 

[248] 

Ru-Co nanoalloys/N-

doped graphene 
Ru-doped Co3[Co(CN)6]2 

600°C for 4 h in 

N2 
HER 

E10 mA/cm
2 = 28 mV vs. RHE; Tafel 

slope = 31 mV dec−1; stability: over 

10,000 cycles 

[255] 

Fe2C@amorphous 

carbon 
PB 

600°C for 2 h in 

N2 
LIBs 

Rate capacity: 509.1 mA h g–1 at 6 A g–

1; stability: 100% capacity retained 

after 150 cycles at 1 A g–1 

[250] 

NiFe@N-doped 

graphene 

Fe[Ni(CN)4], Ni3[Fe(CN)6]2, 

Ni2[Fe(CN)6] 

900°C for 2 h in 

N2, leached with 

0.5 M H2SO4 at 

80°C for 3 h 

OER 
E10 mA cm

–2 = 360 mV, highly durable: 

no degradation after 20,000 cycles 
[249] 

Co encapsulated in 

nitrogen-doped 

bamboo-like carbon 

nanotubes 

Co3[Co(CN)6]2 
700°C for 1 h in 

N2 

Catalyst: 

degradation of 

organic 

pollutants 

RhB (10 mg L−1) completely removed 

in 7 min using 0.1 g L−1 Co/N-CNTs 

and 0.2 g L−1 PMS 

[251] 

Pt-CoFe@N-doped 

carbon 
4.60% Pt-doped Co3[Fe(CN)6]2 

800°C for 4 h in 

N2 
HER 

E10 mA cm
–2 = 45 mV vs. RHE; Tafel 

slope: 32 mV dec−1 
[252] 
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CoFe/carbon Co3[Fe(CN)6]2 
550, 650, 750°C 

for 2 h in N2 

Microwave 

absorption 

Minimum reflection loss value of −43.5 

dB at 9.92 GHz, effective absorption 

bandwidth of 4.3 GHz (below −10 dB) 

[253] 

Fe/Fe2C graphene PB 
450, 550, 700°C 

for 1 h in N2 
ORR Onset potential: -200 mV vs. Ag/AgCl [235] 

Fe-C/nitrogen-doped 

3D porous carbons 
PB/GO 10% 

700°C for 1 h in 

Ar 
ORR 

(In 0.1 M KOH) onset potential: 0.940 

V vs. RHE, half-wave potential: 0.793 

V vs. RHE; (in 0.5 M H2SO4) onset 

potential: 0.828 V vs. RHE, half-wave 

potential: 0.597 V vs. RHE 

[254] 

Fe/Fe3C@C matrix PB@PDA 
800°C for 2 h in 

N2 

Absorption of 

uranium (VI) 

Maximum sorption capacity of 203 mg 

g−1 
[256] 

Co3ZnC/Co 

nanojunctions/N-

doped graphene 

Zn3[Co(CN)6]2 
600–900°C for 4 

h in N2 
OER 

E10 mA cm
–2 = 366 mV vs. RHE; Tafel 

slope = 81 mV dec−1 
[257] 

Co@N-doped 

graphene, Co@NG 

acid 

Co3[Co(CN)6]2 
400–900°C for 1 

h in Ar 

Zinc–air 

batteries 

HER: half-wave potential: 0.83 V vs. 

RHE in 1M KOH; onset potential/half 

wave potential: 0.77/0.58 V vs. RHE in 

0.5 M H2SO4 

ORR: onset overpotential: ≈70 mV, E10 

mA/cm
2 = 220 mV 1 M KOH; onset 

overpotential: 50 mV, E10 mA/cm
2 = 183 

mV in 0.5 M H2SO4 

[258] 

Co3ZnC@carbon Zn3[Co(CN)6]2⸱nH2O/ PVP 

300°C for 1 h, 

then 600°C for 2 

h in N2 

LIBs 

Capacity: 608 mA h g−1 after 300 

cycles at 100 mA g−1; stability: 423 mA 

h g−1 after 1,150 consecutive cycles at 1 

A g−1 

[259] 
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Fe/Fe3C@N-doped 

graphene 
Fe4[Fe(CN)6]3 

750–1050°C for 

2 h 
OER 

OER: onset potential: 0.6 V vs. 

AgCl/Ag, E10 mA/cm
2 = 0.77 V vs. 

AgCl/Ag; ORR 

[263] 

FeNi alloy 

encapsulated in 

podlike N-doped 

carbon nanotubes 

Ni2Fe(CN)6 
600°C for 2 h in 

Ar 

Counter 

electrode 

materials for 

solar cells 

Power conversion efficiency of 8.82% [264] 
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1.3.3. PB-derived metal sulfides and selenides 

Generally, PB and PBAs can be converted into metal sulfides/selenides through 

calcination in sulfur/selenium vapor or chemical reaction with sulfur/selenium compounds (e.g., 

sodium sulfide (Na2S), ammonium thiomolybdate ((NH4)2MoS4), and sodium selenite 

(Na2SeO3)) in solution.[265-277] For example, Cao et al. reported an easy and efficient one–

step simultaneous decomposition and sulfidation approach to the synthesis of Co0.37Fe0.26S 

nanocubes by annealing Co3[Fe(CN)6]2 precursors in a sulfur vapor.[266] The experiment was 

conducted by calcinating CoFe-PBA and S powders in a tube furnace at a high temperature 

under an argon gas flow. The sulfur powder was placed on the upstream side of an alumina 

boat, while the as-prepared Co3[Fe(CN)6]2 nanocubes were placed on the downstream side. 

The S powders will vaporize into sulfur vapor and surround the CoFe-PBA at high 

temperatures. The metal ions liberated from the CoFe-PBA upon decomposition will react with 

sulfur steam and lead to the formation of Co0.37Fe0.26S nanoparticles embedded in a carbon 

shell. Lin et al. reported the synthesis of bi-active NiS2@CoS2/N-doped porous carbon 

composites by annealing the mixture of Ni3[Co(CN)6]2@PDA core–shell nanocubes and 

sulfur.[267] The as-prepared yolk–shell NiS2@CoS2/N-doped porous carbon nanocubes 

exhibit a mesoporous structure with plenty of NiS2@CoS2 heteronanocrystals uniformly 

anchored on a porous carbon matrix. The mesoporous nanocubes provided a large specific 

surface area of 286 m2g-1 with a narrow pore-size distribution. 

In another case, Ni[Ni(CN)4]·xH2O nanoplates were transformed into NiS or NiSe2 

through a thermally induced sulfurization or selenization process, respectively (Figure 

1.23).[268] The as-obtained NiS and NiSe2 nanoplates retained well the morphology of the 

precursors with a porous carbon matrix derived from carbonization of the cyano group. More 

recently, Huang et al. demonstrated a CVD strategy for the synthesis of CoS2–CoSe2@NC 

composite nanocubes via simultaneous sulfidation and selenization of a Co3[Co(CN)6]2@PDA. 

The as-prepared CoS2–CoSe2@NC composites preserve the uniform cube-like shape of the 

precursors after the conversion process, with plenty of CoS2 and CoSe2 nanocrystals uniformly 

dispersed in the porous carbon matrix. 
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Figure 1.23 (a) Schematic illustration of the preparation of a Ni-based MOF and the derived 

NiS and NiSe2 nanoplates. (b) SEM and (c) TEM images of as-prepared NiS nanoplates. (d) 

SEM and (e) TEM images of the as-obtained NiSe2 nanoplates. 

 

Yu et al. developed a novel strategy for the synthesis of NiS nanoframes from Ni-Co 

PBA nanocubes via solution-based chemical reaction (Figure 1.24a–e).[276] The as-prepared 

NiS nanoframes were highly uniform and retained the original cubic shape well, with only 12 

edges left. The formation of such unique frame-like topologies was attributed to the Kirkendall 

effect and the chemical-etching/anion-exchange reaction between [Co(CN)6]
3– and S2– 

moieties. In detail, the high curvature of the edge areas of the Ni-Co PBA nanocubes lead to 

its being more defective as compared with the smooth plane surface. In the presence of S2–, the 

edges are etched and then subjected to the exchange reaction with S2– to form a NiS thin shell 

in the edge areas. As the reaction proceeds, the chemical-etch/anion-exchange reaction will 
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occur both along the exposed sides of the less-etched middle plane and in the inward parts of 

the porous NiS shell via the interdiffusion of Ni2+ and S2– ions. The newly formed NiS nuclei 

supply the growth of the preformed NiS skeleton on the edges. Due to their smaller size, the 

outward diffusion of Ni2+ ions is faster than the inward diffusion of S2– ions. According to the 

Kirkendall effect, the unequal diffusion of reacting species (Ni2+ and S2– ions) results in the 

formation of frame-like structures. The size of the NiS nanoframes was also readily adjustable 

by controlling the size of the PBA precursors. In another case, uniform 3D hierarchical NiS2 

microspheres were synthesized via a chemical-etching/ion-exchange reaction between the Ni-

Co-PBA and (NH4)2S.[269] Uniform γ-NiOOH/NiSx hierarchical microspheres were initially 

formed and were then transformed into NiS2 via a controlled annealing treatment. It was found 

that in the alkaline (NH4)2S solution, the Ni-Co-PBA first reacts with the ionized OH– to form 

flake-like γ-NiOOH. As the reaction proceeded, the anion-exchange reaction occurred between 

OH– and S2– on the surface of γ-NiOOH due to the different solubilities of hydroxides and 

sulfides. It is worth noting that the concentration of the reactants and the reaction time have a 

great influence on the morphology of the products. 
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Figure 1.24 (a) Schematic illustration of the formation process of NiS nanoframes. (b–e) FE-

SEM images of the products obtained after reaction for (b) 0 h, (c) 0.5 h, (d) 2 h, and (e) 6 h. 

TEM images of the as–synthesized products obtained at different time intervals: (f) 1 h, (g) 6 

h, (h) 12 h, and (i) 20 h. (j) Schematic illustration of the formation process of Ni–Co–MoS2 

nanoboxes.  

 

A synergistic strategy has been developed for the synthesis of hollow structured MoS2 

nanoboxes with incorporated nickel and cobalt (Ni–Co–MoS2) (Figure 1.24f–j).[270] In this 

case, uniform Ni3[Co(CN)6]2 nanocubes are applied as the sacrificial template and precursor to 

react with (NH4)2MoS4 under a solvothermal condition. In detail, NH3 decomposed from 

ammonium tetrathiomolybdate will dissolve a Ni-Co PBA by complexing with Ni(II). Co(III) 

cations are reduced to the Co(II) species and dissolved into the solution. It is worth mentioning 
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that the dissolution process is anisotropic due to the uneven distribution of defects. At the same 

time, MoS2 nanosheets produced from ammonium tetrathiomolybdate start to grow on the 

surface of Ni–Co PBA nanocubes under solvothermal conditions. What is more, some free 

nickel and cobalt ions can be embedded into MoS2 nanosheets. In another case, Guo et al. 

developed a two-step temperature-raising hydrothermal-reaction strategy for the preparation of 

a core–shell structured Co3S4@MoS2 heterostructure.[276] Uniform Co3[Fe(CN)6]2 nanocubes 

were employed as both morphological templates and precursors to react with Na2S and 

Na2MoO4 under a hydrothermal condition. At a relatively low temperature of 120°C, Co3S4 

nanoboxes were formed first, based on the ionic exchange reaction between Fe(CN)6
3− and S2−, 

and subsequently, an elevated temperature of 200°C induced the in situ growth of MoS2 

nanosheets on the surface of Co3S4 nanoboxes. 

More recently, the solution-based ion-exchange reaction was successfully applied in 

the transformation of PBAs into metal selenides.[275] For example, Feng et al. demonstrated 

the synthesis of ultrathin nanosheet–assembled hierarchical CoSe2 microboxes through an 

anion-exchange reaction between Co3[Co(CN)6]2 and Na2SeO3 at an elevated temperature 

(Figure 1.25). The as-obtained product inherited the cubic shape and dimension of the PBA 

precursor well except for the rough surface. The formation of the hollow structure can be 

explained by the Kirkendall effect. Specifically, under the thermal condition, the released Se2− 

ions replace [Co(CN)6]
3– and combine with Co2+ ions to form a thin shell made of CoSe2 

nanosheets; this acts as a physical barrier to hinder the chemical reaction between outer Se2− 

ions and inner Co2+ ions. Because of the larger size of Se2− ions, their inward diffusion is slower 

than the outward diffusion of Co2+ ions. As a result, a cavity formed in the CoSe2 shell after 

the selenization reactions.  
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Figure 1.25 (a) Schematic illustration of the two–step ion–exchange reactions for the synthesis 

of Cu–CoSe2 microboxes. (b) SEM and (c) TEM images of CoSe2 microboxes. (d) SEM and 

(e) TEM images of Cu-CoSe2 microboxes. 
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Table 1.3 Summaries of PB/PBA-derived porous metal sulfides/selenide, their complexes with carbon, and their applications. 

Compositions Precursors Preparation Applications Performance Rref. 

Co-Fe-MoSx 

hollow 

nanoboxes 

Co-Fe PBA, 

(NH4)2MoS4 

Solvothermal, 200°C for 20 

h; 350°C for 2 h in Ar 

Electrode 

catalysts for 

solar cells 

Power-conversion effciency: 9.63% under 

AM 1.5 G irradiation 
[265] 

NiS2@CoS2/ N-

doped carbon 

nanocubes 

Ni-Co PBA@PDA 
Pyrolysis at 400°C for 3 h 

in Ar 
LIBs/NaIBs 

LIBs: reversible capacity 600 mA h g-1 after 

100 cycles at 1.0 A g−1 

NaIBs: reversible capacity 600 mA h g-1 

after 250 cycles at 1.0 A g−1 

[267] 

NiS2 hierarchical 

microspheres 

NiCo-PBA, 

(NH4)2S 

Hydrothermal, 100°C for 10 

h; 350°C for 2 h in N2 

Electrocatalysts 

for solar cells 

Power-conversion effciency: 8.46% under 

AM 1.5 G irradiation 
[269] 

Co3S4@MoS2 

heterostructure 

CoFe-PBA, 

thioacetamide, 

Na2MoO4·2H2O 

Solvothermal, 120°C for 10 

h and 200°C for 6 h; 350°C 

for 12 h in N2 

HER, OER 

HER: E10mAcm
−2 = 136 mV, Tafel slope = 74 

mV decade−1 

OER: E10mAcm
−2 = 280 mV, Tafel slope = 43 

mV decade−1 

[271] 

MoS-Co 

nanoboxes 

Co3[Co(CN)6]2, 

(NH4)2MoS4 

Solvothermal, 210°C for 12 

h 
HER 

Onset potential: 53 mV vs. RHE, E10mAcm
−2 

= 155 mV, Tafel slope = 55 mV decade−1 
[272] 

Co0.37Fe0.26S 
CoFe-PBA, S 

powder 
350°C for 12 h in Ar OER 

E10mAcm
−2 = 1.5 V vs. RHE, Tafel slope = 

37.2 mV decade−1 
[266] 



Chapter1.  

57 

 

Carbon-coated 

(Fe, Co) 

bimetallic sulfide 

CoFe-PBA, 

thiourea 
500°C for 3 h in Ar flow NaIBs 

Rate capacity: 122.3 mA h g−1 at 5 A g−1; 

reversible capacity: 87 mA h g−1 after150 

times at 500 mA g−1 

[273] 

Co-Fe-Se, Co-Fe-

S 
CoFe-PBA 

Co-Fe-Se: solvothermal 

160°C for 3 h with Se 

powder; Co-Fe-S: Na2S 

ethanol ultrasonication 

Electrocatalysts 

for solar cells 

Power-conversion effciency: 9.58 and 9.06% 

for Co-Fe-Se and Co-Fe-O, respectively 
[275] 

Ni–Co–MoS2 

nanoboxes 

NiCo-PBA, 

(NH4)2MoS4 

Solvothermal, 210°C for 20 

h 
HER 

E10 mA/cm
2 = 155 mV vs. RHE, Tafel slope = 

51 mV decade−1 
[270] 

NiS and NiSe2 

nanoplates 

Ni[Ni(CN)4]·xH2O, 

S/Se powder 
400°C for 3 h in Ar LIBs/NaIBs 

LIBs: (NiS) initial discharge/charge 

capacities: 1311/972 mA h g−1, reversible 

capacity: 468 mA h g−1 after 100 cycles at 1 

Ag–1; (NiSe2) discharge/charge capacities: 

992 mA h g−1 /758 mA h g−1, reversible 

capacity: 286 mA h g−1 after 100 cycles at 1 

A g–1 

NaIBs: (NiS) initial discharge/charge 

capacities: 763/381 mA h g−1, reversible 

capacity: 166 mA h g−1 after 100 cycles at 1 

A g–1; (NiSe2) discharge/charge capacities: 

1008 mA h g−1 /517 mA h g−1, reversible 

capacity: 311 mA h g−1 after 100 cycles at 1 

A g–1 

[268] 
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NiS nanoframe 

(300 nm) 
NiCo-PBA, Na2S  

Pseudocapacitor, 

HER 

Specific capacitance: 2,112 Fg–1 at 1 A g–1, 

stability: 91.8% after 4,000 cycles at 4 A g–1 

HER: E10mA/cm
2

 = 115 mV 

[276] 

Cu-doped CoSe2 

microboxes 

Co3[Co(CN)6]2, 

Na2SeO3, 

N2H4·2H2O, 

Cu(NO3)2 

Hydrothermal, 160°C for 8 

h; 160°C for 4 h 
NaIBs 

Reversible charge capacity: 492 mA h g−1 at 

0.05 A g−1; rate capability: 185 mA h g−1 at 3 

A g−1; capacity retention 94% after 500 

cycles at 1 A g−1 

[277] 

CoS2–CoSe2/ N-

doped carbon 

nanocubes 

CoCo PBA@PDA, 

S powder, Se 

powder 

350°C for 2 h in N2 

Electrodes for 

dye-sensitized 

solar cells 

Power conversion effciency: 8.45% under 

AM 1.5 G irradiation 
[274] 



Chapter1.  

59 

 

1.3.4. PB-derived metal phosphides 

In recent years, PB and PBAs have been shown to be excellent precursors for the 

synthesis of porous or hollow transition metal phosphide (TMP) nanoarchitectures.[278-288] 

For example, Ni(H2O)2[Ni(CN)4] (Ni-Ni PBA) nanoplates are employed as precursors to obtain 

nickel phosphides with similar porous plate-like nanostructures.[278] In a typical procedure, 

the Ni-Ni PBA nanoplates were transferred into porous nickel phosphides by annealing at the 

downstream side of NaH2PO2 powder at 300°C under an Ar flow. When the temperature rises 

to ≥ 250°C, NaH2PO2 power decomposes to release PH3, which could be diffused with the 

airflow to Ni(H2O)2[Ni(CN)4] and directly react with Ni(H2O)2[Ni(CN)4] to form nickel 

phosphides. The as-obtained product is characterized as a mixture of Ni5P4 and Ni2P 

incorporated into a porous amorphous carbon layer, with Ni2P as the major component. During 

the phosphidation reaction, the 2D morphology is well maintained, while the surface of the 

nanoplates becomes rough and porous. Similarly, mesoporous FeP/C composite nanocubes 

have been designed and fabricated through low-temperature phosphorization of the PB 

precursors.[279] In another case, Tian et al. developed a novel two-step strategy for the 

synthesis of cobalt phosphide double-shelled nanocages (CoP-NCs) (Figure 1.26a–c).[280] In 

the first step, porous spinel Co3O4 hollow nanocages were obtained via thermal decomposition 

of Co-PBA NCs at 450°C in air. In the second step, phosphidation of Co3O4-NCs was 

conducted by annealing at 320°C under an Ar flow with NaH2PO2 as the phosphorus source. 

The formation of double-shell CoP nanocages from Co3O4-NCs can be explained by the 

Kirkendall effect. In detail, PH3 released from NaH2PO2 can penetrate the nanoporous Co3O4-

NCs, leading to the simultaneous formation of CoP layers from both exterior and interior sides. 

However, the outward diffusion of cobalt ions is faster than the inward diffusion of phosphorus 

ions. Consequently, the original Co3O4 shell is separated into two thinner CoP shells. 

Apart from single TMP, Hao et al. demonstrated the fabrication of binary transition 

metal phosphide (CoxFe1−xP) nanocubes with different Co and Fe ratios by phosphating a Co-

Fe PBA. Three different Co-Fe PBA precursors were initially fabricated through the co-

precipitation of CoCl2 and K3[Fe(CN)6] at different ratios. After a general low-temperature 
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phosphidation reaction under a N2 flow, the as-prepared Co-Fe PBA precursors were converted 

into Co0.71Fe0.29P, Co0.59Fe0.41P, and Co0.38Fe0.62P in the case of the CoCl2:K3[Fe(CN)6] ratio 

being 3:1, 3:2, and 3:4, respectively. During the phosphidation process, all three products of 

CoxFe1−xP inherit the cubic structure well except when converting to a porous structure. 

Additionally, the difference in Co and Fe ratios has an obvious influence on the pore volume 

and specific surface area of the products. 

Recently, carbon-based materials (e.g., graphene) were introduced to modify PB- and 

PBA-derived TMP nanomaterials for the purpose of improving their electrical conductivity. 

For instance, Venugopal et al. reported the synthesis of iron phosphide (FeP) particles 

incorporated into a 3D porous graphene aerogel via the phosphating of PB-loaded graphene 

aerogel (PB/GA).[286] For the formation of PB/GA, Fe3+ cation first adsorbed on the surface 

of GO by interacting with anionic GO functional groups in a solution. After the addition of 

K3[Fe(CN)6] and L-cysteine to the solution, small PB particles were formed on the surface of 

graphene layers. Finally, PB-loaded graphene hydrogels were obtained due to the cross-linking 

of GO by heating at a moderate temperature using ethylene diamine and L-cysteine. The 

phosphidation reaction was conducted by heating PB/GA with NaH2PO2 as a phosphorus 

source at 400°C in a N2 flow. In another case, a unique architecture of core–shell porous 

FeP@CoP phosphide nanocubes interconnected by reduced graphene oxide (RGO) nanosheets 

was designed and synthesized (Figure 1.26d–g).[282] This strategy involves the synthesis of 

core–shell Co(OH)2@PB, coating with graphene oxide, and a subsequent simple 

phosphorization treatment. In detail, core–shell structured Co(OH)2@PB nanocubes are first 

fabricated by depositing a layer of Co(OH)2 nanocrystals on the surface of PB microcubes 

through the reaction between Co2+ ions and ammonia in solution. Then the Co(OH)2@PB 

microcubes are modified with PDDA (a cationic polyelectrolyte) to carry positive charges. The 

negatively charged GO nanosheets can tightly coat the surface of the Co(OH)2@PB microcubes 

via electrostatic interaction to form a uniform hybrid GO@Co(OH)2@PB. After subsequent 

phosphorization at 300°C in an Ar atmosphere, the as-prepared GO@Co(OH)2@PB was 

converted into porous core–shell structured RGO nanosheets-coated CoP@FeP microcubes. 
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Figure 1.26 (a) Schematic of the synthesis route of double–shelled CoP nanocages. (b) SEM 

and (c) TEM images of CoP nanocages. SEM images of (d) C-FeP microcubes and (e) CoP@C-

FeP phosphide microcube composites. TEM images of (f) a core–shell structured CoP@FeP 

microcube and (g) porous C-FeP microcube. (h) Schematic illustration of the preparation of 

mesoporous Fe-CoP HTPAs. (i) SEM and (j) TEM images of the mesoporous Fe-CoP HTPAs. 

 

In addition to carbon-based supports, PB and PBAs can be grown on various other 

support materials and subsequently converted into various metal phosphide architectures. For 

example, a Ni2P/Fe2P nanoflake array on titanium foil was synthesized from a Ni-Fe PBA 

precursor through a low-temperature phosphidation reaction.[283] Specifically, a layer of nickel 

hydroxide nanoflakes was first grown on the Ti foil as a template and then transformed into 3D 

Ni-Fe PBA arrays by reacting with K3[Fe(CN)6]. Then the as-prepared 3D Ni-Fe PBA arrays 

were phosphidated with NaH2PO2 at 350°C under a N2 flow. In another case, a novel 

architecture of Fe-doped CoP hollow triangle plate arrays with distinct hierarchical porous 

shells was designed and fabricated by Hu and associates (Figure 1.26h–j).[284] In detail, ZIF-

67 triangle plate arrays were first deposited on the surface of nickel foam via a simple reaction 

of Co(NO3)2 with 2-methylimidazole (MIM) in an aqueous solution at room temperature. Then 
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the as-synthesized ZIF-67 triangle plate arrays were converted into hierarchical hollow array 

structured Co2[Fe(CN)6] through a critical post-synthetic ligand exchange reaction between 

MIM and K4[Fe(CN)6], which was subsequently phosphated at 300°C under a N2 gas flow to 

produce Fe-doped CoP that retained the hollow array structure. The as-prepared mesoporous 

Fe-doped CoP hollow triangle plate arrays possess a variety of advantageous features as 

electrocatalysts, such as a synergetic bimetal composition, abundant active sites, short electron 

and ion transport pathways, and high structural strength. 
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Table 1.4 Summaries of PB/PBA-derived porous metal phosphides, their complexes with carbon, and their applications. 

Compositions Precursors Thermal conditions Applications Performance Ref. 

Ni5P4-Ni2P@C 

nanoplates 
Ni(H2O)2[Ni(CN)4] 

300°C for 2 h in Ar with 

NaH2PO2 
OER 

E10 mA/cm
–2 = 1.53 V vs. RHE; Tafel plots = 

64 mV decade–1 
[278] 

FeP/carbon 

nanocubes 
PB 

450°C for 1 h in Ar, 

320°C for 1 h in Ar with 

NaH2PO2 

NaIBs, HER 

NaIBs: Intial discharge/capacity: 740/506 

mA h g−1 

HER: Eonset = 80 mV vs. RHE; Tafel slope 

= 40 mV dec−1 

[279] 

CoP double-shelled 

nanocages 
Co3[Co(CN)6]2·nH2O 

450°C in air; 320°C in 

Ar with NaH2PO2 
  [280] 

FeP/3D graphene 

aerogel 
PB, graphene oxide 

400°C in N2 with 

NaH2PO2 
HER 

E10 mAcm
–2= 150 mV vs. RHE in 0.5 M 

H2SO4; Tafel slope = 65 mV dec–1 
[281] 

C-

FeP@CoP@RGO 

PB@Co(OH)2@graphene 

oxide 

300°C for 2 h in Ar with 

NaH2PO2 
NaIBs 

Initial discharge/charge capacity: 

968.0/551.4 mA h g-1; coulombic 

efficiency: 56.9%; reversible capacity: 

456.2 mA h g-1 after 200 cycles at 0.1 mA 

g-1 

[282] 

Ni2P/Fe2P 

nanoflake array on 

titanium foil 

Ni3[Fe(CN)6]2 
350°C in N2 with 

NaH2PO2·H2O 
HER 

E10 mA cm
−2 = 70 mV vs. RHE in 0.5 m 

H2SO4; Tafel slope = 52 mV dec–1 
[283] 
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Fe-doped CoP 

hollow triangle 

plate arrays on 

nickel foam 

Co2[Fe(CN)6] array 
300°C for 2 h in N2 with 

NaH2PO2·H2O 
HER; OER 

HER: E10 mA cm
−2 = 98 mV vs. RHE in 1 M 

KOH; Tafel plots = 69 mV dec–1 

OER: E10 mA cm
−2 = 230 mV vs. RHE in 1 M 

KOH; Tafel plots = 43 mV dec–1 

[284] 

Co0.71Fe0.29P, 

Co0.59Fe0.41P, 

Co0.38Fe0.62P 

nanocubes 

CoCl2:K3[Fe(CN)6] with 

different ratio 

350, 450, 550°C for 2 h 

under N2 flow with 

NaH2PO2 

HER 

Onset potentials: 54, 31, 57 mV; Tafel 

slope: 53, 52, 60 mV decade−1 (Ar-

saturated 0.5 M H2SO4) 

Onset potentials: 58, 39, 69 mV; Tafel 

slope: 77, 72, 78 mV decade−1 (1.0 M 

KOH) 

[285] 

FeP nanocubes PB 
450°C for 2 h under N2 

flow with NaH2PO2 
Peroxidase H2O2 detection limitation: 0.62 uM [286] 

Ni-Co-P 

(Co2P/CoP/Ni2P） 
Ni3[Co(CN)6]2·12H2O 

300°C for 2 h under N2 

flow with NaH2PO2 
HER 

E10 mA cm
−2 = 150 mV vs. RHE; Tafel slope: 

60.1 mV dec–1 
[287] 

Ni-Fe-P/nickel 

foam 
Ni3[Fe(CN)6]2 

350°C for 2 h under N2 

flow with NaH2PO2 
HER; OER 

HER: E10 mA cm
−2 = 98 mV vs. RHE 

OER: E10 mA cm
−2 = 150 mV vs. RHE (1 M 

KOH) 

[288] 
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1.4. Perspective  

As a witness to the rapid development in nanoarchitectonics with regard to PB and 

PBAs, this chapter introduces versatile paths toward the nanostructures and demonstrates 

strong relationship between nanoarchitectures and properties. Nanoarchitectonics not only 

produce high-quality images but also bring great opportunities for tailoring/adding 

properties/functions of PBAs. Further, nanoarchitectonics are a bridge between PBAs and other 

functional materials. Various high-performance materials could be derived from 

nanostructured PB and PBAs.  
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[178] F. Li, W. Zhang, A. Carné-Sánchez, Y. Tsujimoto, S. Kitagawa, S. Furukawa and M. Hu, 

Inorg. Chem. 2018, 57, 8701-8704. 

[179] G. Maurin‐Pasturel, J. Long, Y. Guari, F. Godiard, M. G. Willinger, C. Guerin and J. 

Larionova, Angew. Chem. 2014, 126, 3953-3957. 

[180] L. Han, P. Tang, A. l. Reyes-Carmona, B. r. Rodríguez-García, M. Torréns, J. R. Morante, 
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Chapter 2  

Two-dimensional cyano-bridged coordination polymer of 

Mn(H2O)2Ni(CN)4]: structural analysis and proton 

conductivity measurements upon dehydration and 

rehydration 
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2.1. Introduction  

Coordination polymers (CPs) including porous coordination polymers (PCPs) have 

attracted great attention because of their potentiality in advanced applications including 

adsorption,[1–3] separation,[4] proton conduction[5,6] and water delivery in remote areas.[7] 

Compared with classical solid-state materials such as oxides, the crystal structures of CPs are 

transformed by a weak stimulus such as a humidity difference,[8,9] adsorption of guest 

molecules[10,11] and pressure,[12] because of their structural flexibility. The structural 

flexibility originates from the flexibility of linker molecules and the existence of voids, though 

the coordination spheres are like those in classical solid-state materials. In addition to the two 

examples found in dense CPs, the structures of PCPs are widely investigated and known to 

respond to other stimuli, such as adsorption/desorption of molecules.[13] Upon water 

adsorption/ desorption, CPs tend to become amorphous, because water molecules can strongly 

coordinate to metal cations and then break the original coordination networks. Such changes 

sometimes lead to the formation of another crystal structure,[8] and the crystal structure 

transformation proceeds with coordination network retention but may proceed with cleavage 

and formation of coordination bonds.[14] 

Two-dimensional (2D) materials including layered metal oxides and their 

nanosheets,[15] and other 2D materials such as graphene and borophane,[16–18] are widely 

investigated because of their unique electronic and catalytic properties.[19,20] The former 

materials are mostly composed of coordination spheres of transition metals and oxygen ions 

and their bonding is considered to be ionic, while the latter materials are composed of main 

group elements and their bonding is covalent. In addition to the properties associated with the 

atomic arrangements in the layers, these 2D materials are used as adsorbents for 

accommodating guest molecules in the interlayer spaces.[21–23] 2D CPs are between those 

categories: they contain coordination spheres of transition metals, which are linked with 

molecules consisting of main group elements. In hydrated 2D CPs, some of the interlayer water 

molecules coordinate to metal ions and others are non-coordinated ones stabilized by hydrogen 

bonds, and thus dehydration/rehydration may induce crystal structure transformations.[24,25] 
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Such properties associated with the interlayer space have been investigated well,[26–28] but 

the structural details of the layers of 2D CPs upon intercalation/deintercalation were less 

investigated.[29,30] Cyano-bridged 2D CPs are known as Hofmann-type polymers, 

MIIX2M
′II(CN)[4,31] where M is a divalent transition metal (M = Mn, Fe, Co, Ni, Cu, Zn and 

Cd) and forms an octahedral coordination with four N atoms of the cyanide-groups and two 

other ligands of X (X = H2O, NH3 etc.), and M′ is another divalent transition metal (M′= Ni, 

Pd and Pt) forming a square planar coordination with cyanide molecules.[24,32-43] 

Coordination bonds of cyano-groups and transition metals are generally strong like covalent 

bonds due to the high Lewis basicity of cyanometallates, which enables the molecule to 

coordinate to other metals.[44] Thus, cyano-bridged 2D CPs are expected to exhibit structural 

transformations upon dehydration/ rehydration without breakage of coordination networks. 

This feature is useful for acquiring a better under- standing of the structure transformation of 

flexible CPs. Here I report detailed structural analysis of a 2D cyano-bridged CP, which is 

composed of Mn and Ni ions, by X-ray diffraction and discuss the capability for proton 

conduction through the water networks formed in the interlayer space on the basis of the results 

obtained by humidity-controlled, single-crystal proton conductivity measurements. The crystal 

structure of the cyano-bridged MNi system itself ([MNi(CN)4 (H2O)2]·3H2O) (M = Mn, Co, 

Ni), and its transformations upon dehydration/rehydration were reported 

previously.[24,38,45,46] Though their phase transformations are known to occur between the 

L0 phase (fully hydrated) and L1 phase (partially dehydrated), there is still no detailed structural 

information on the dehydrated sample prepared from the L0 phase. This lack of detailed 

information after structure transformation often happens due to the low crystallinity of the 

transformed structures (due to stacking faults and turbostratic stacking disorder).[47] Because 

the material consists of interlayer water molecules, and its networks change upon dehydration 

and hydration, the proton conductivity of these structures is worth measuring. 
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2.2. Experimental Sections 

2.2.1. Synthesis 

All chemicals were obtained from commercial sources and were used without further 

purification. Crystals of cyano-bridged CPs with Ni and Mn ions were prepared by a slow 

diffusion method:[48] a 20 mL small vial was placed within a 100 mL large vial. The vials 

were filled with an aqueous solution of 0.5 M RbCl at room temperature. 5 mL of cooled 1 M 

MnCl2 (kept in an ice bath) was injected into the bottom of the small vial and 5 ml of cooled 1 

M K2 [Ni(CN)4] was injected into the bottom of the large vial. The vials were kept at 45°C in 

a water bath for one week. Then, yellow crystals, which were formed on the bottom of the 

small vial, were recovered by filtration and washed several times with water. The chemical 

composition was determined by elemental analysis at the National Institute for Materials 

Science (NIMS) Materials Analysis Station: (found, calc'd in wt%), Mn (19.7, 17.8), Ni (21.1, 

19.0) and Rb (0.00, 0.00). The Mn/Ni molar ratios are 1.00 (found) and 1.00 (calc'd), suggesting 

that the errors originated from the water content. The water content was determined from 

thermogravimetric analysis (TG-DTA) (Figure 2-11a). The phase purity of the sample was 

confirmed by powder X-ray diffraction (PXRD) using a Rigaku Ultima-III Rin 2000 

diffractometer with monochromated Cu Kα radiation (λ = 1.5418 Å) operated at 40 kV and 40 

mA. 

2.2.2. X-ray diffraction  

The crystal structures of the as-synthesized material were determined by single-crystal 

X-ray diffraction (SC-XRD) using a RIGAKU Saturn CCD diffractometer equipped with a 

VariMax confocal optics for MoKα radiation at 293 K and 100 K. Unit cell refinements and 

data reduction were carried out by using the d*trek package in the CrystalClear software 

suite.[49] All structures were solved using a novel dual-space algorithm method (SHELXT)[50] 

and subsequently refined against F2 using SHELXL[51] via the WinGX interface.[52] The 

structure was visualized using the VESTA program.[53] The CIF files of the structure 

described herein are available for the structure at 100 K (CCDC no. 1836007) and at 293 K 
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(CCDC no. 1855079). The structure is identical to the one reported previously (CCDC no. 

278583). The hydrogen atoms in all the structures have been removed for the sake of clarity.  

The crystal structures of the humidity-controlled samples were analysed using the 

synchrotron high-resolution powder X-ray diffraction (HR-PXRD) data collected on a two-

dimensional semiconductor detector (PILATUS 100 K) (λ = 0.999634 Å). These synchrotron 

radiation experiments were performed at the BL5S2 of Aichi Synchrotron Radiation Center 

(AichiSR), Japan (Proposal No. 201706084 under a support of Dr. Satoshi Tominaka (NIMS, 

Japan)). The samples were dried overnight under vacuum at room temperature, and then 

exposed to nitrogen gas containing different amounts of moisture at a controlled relative 

humidity (RH) of 0, 40, 80 and 100% at 25°C for more than half a day. Then, the samples were 

sealed in Lindemann glass capillaries. The structure of the as- synthesized sample (RH=100%) 

and that of the fully rehydrated sample (RH=100%) were refined by the Rietveld method using 

the GSAS-II software [54] and the crystal structure information was obtained by SC-XRD. The 

structure of the sample at RH = 100 and 0% was determined by the real-space method by 

modifying the structure model for the single crystal of the 100% RH sample. The information 

is summarised in Table 2.1. 

 

Table 2.1 Lattice constants obtained by the SC-XRD and PXRD data  

Compound Phase I (293 K) Phase I (113 K) Phase I (298 K) Phase II (298 K) 
Phase I (298 K) 

Rehydrated phase 

Formula MnNiC4N4O6 MnNiC4N4O6 MnNiC4N4O9.259 MnNiC4N4O4.604 Mn0.93NiC4N4O9.373 

Space group Pnma Pnma Pnma Imma Pnma 

a (Å) 12.3058(3) 12.0750(3) 12.30625(17) 14.5229(15) 12.3066(9) 

b (Å) 14.1261(3) 14.0779(3) 14.12662(2) 7.2962(8) 14.1272(12) 

c (Å) 7.3105(2) 7.3144(2) 7.31004(11) 9.0371(10) 7.3101(6) 

(o) 90 90 90 90 90 

β (o) 90 90 90 90 90 

γ (o) 90 90 90 90 90 

V (Å3) 1270.81(5) 1243.38(5) 1270.82(4) 957.59(2) 1270.91(2) 

R1 (%) / Rwp 

(%)* 
3.93 2.73 7.74 11.39 6.78 
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Method SC-XRD SC-XRD 
Synchrotron HR-

PXRD 

Synchrotron HR-

PXRD 

Synchrotron 

HR-PXRD 

 

2.2.3. Water adsorption/desorption isotherms 

Water adsorption-desorption isotherms were collected by using a BELSORP-max-11-

N-SPBI at 25°C. 5 mg of the as-synthesized compound was degassed at 150°C for 16 h before 

adsorption measurements. This condition can remove all the water molecules from the structure. 

The sample after this measurement (RH = 30%, retained for a day) and the one dried at 150°C 

for 12 h under vacuum were analysed by PXRD using a Rigaku RINT 2500X diffractometer 

with Cu Kα radiation. These samples were sealed by Kapton tape to avoid rehydration by air. 

2.2.4. Proton conductivity measurements of single-crystal 

Single-crystal proton conductivities were measured by the AC impedance method using 

a BioLogic MTZ-35 impedance analyser with an AC amplitude of 100 mV from 1 kHz to 1 Hz 

at 21°C.[8,55] The single crystal samples were mounted in a metallic cell, where Au 

microelectrodes[56] were placed. The contact between the crystals and Au electrodes was 

improved by the physical pressure induced by a spring of the metallic cell through the silicone 

layer of Kapton tape as reported previously.[56] The humidity in the cell was controlled by gas 

flow prepared by mixing humid nitrogen and dry nitrogen. The humidity of the gas was 

monitored using a Graphtec B-530 humidity sensor before adding the cell. The samples were 

kept in relative humidity (80%) at 21°C overnight for the measurement of the L0 phase. Then, 

these samples were dried at 21°C, with a relative humidity of 0%, overnight to measure the 

conductivity of phase L1.  

2.2.4. Other measurements  

Fourier-transform infrared spectroscopy (FTIR) was used to investigate the chemical 

groups, especially the condition of CN bonds. The samples were pelletized with KBr windows, 

and then the spectra were collected in the range from 500 to 4000 cm−1 at RT by using a Thermo 

Scientific Nicolet 4700. The spectrum of the as-synthesized sample has a broad absorption 

feature at 2125 cm−1 corresponding to the C≡N stretching. The bands located at 3625–3250 

cm−1 and 1658 cm−1 correspond to the presence of water molecules. Thermogravimetric 
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analysis/differential thermal analysis (TG-DTA) were performed simultaneously from room 

temperature to 600°C, using a Hitachi HT-Seiko Instrument Exter 6300 TG/DTA in air at a 

heating rate of 5°C min−1. 

2.3. Results and Discussion 

View Article Online Paper The prepared samples are clear pale-yellow crystals in the 

size range of submillimeters to millimeters (Figure 2-1). The crystal structure of the 

assynthesized sample, [MnNi(CN)4(H2O)2] ·3H2O, was solved and refined by SC-XRD as an 

orthorhombic unit cell in the Pnma space group with lattice constants of a = 12.3058(3) Å, b = 

14.1261(3) Å and c = 7.3105(2) Å at 293 K (this crystal structure matches the one measured at 

low temperature (100 K), Table 2.1). This structure, phase I, is similar to the one reported 

previously (L0 phase),[24] though my crystal has one less water molecules probably due to 

partial dehydration. The structure is composed of cyano-bridged, layered CPs having 

alternating Mn and Ni sites (Figure 2-2). The Mn ions are coordinated by four N atoms of 

cyano groups and two water molecules to form octahedral coordination spheres. The Ni ions 

are coordinated by only four C atoms to form a square planar coordination environment. The 

cyano-groups and metal cations are in the same plane, forming the cyano-bridged layered 

structure, which is a typical Hofmann-type cyano-bridged coordination polymer.[57,58] The 

selected bond lengths and angles are summarized in Table 2.1 These bond distances are almost 

consistent with those in the reported structure containing more water molecules,[24] meaning 

that the partial dehydration does not affect the atomic structures largely. The number of water 

molecules was determined by TGA (found 29.6 wt%, calc'd 32.7 wt%) and these water 

molecules are classified into three types: (i) two non-coordinated molecules exist in the 

interlayer spaces. These water molecules are stabilized in the interlayer spaces through 

hydrogen bonding as suggested by the broad O–H band in the FTIR spectrum (Figure 2-3b). 

This corresponds to the first weight loss in the TGA data (RT to 60°C, Figure 2-4 found 12.0 

wt%, calc'd 11.7%). (ii) Two water molecules are coordinated to Mn ions. Some of their 

hydrogen atoms do not form hydrogen bonding, namely are isolated, as found by the presence 

of sharp O–H stretching peak at 3626 cm−1 in the FTIR spectrum.[59] This corresponds to the 
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third weight loss in the TGA data (up to 150°C; found 10.6 wt%, calc'd 14.3 wt%). (iii) One 

molecule might form very weak coordination or interaction to the Ni ion as Ni–O, with a 

distance of 2.78(9) Å (though it should be negligibly weak). This corresponds to the second 

weight loss in the TGA data (found 7.0 wt%, calc'd 6.7 wt%). This three-step dehydration was 

also reported in more hydrated crystals.[24] 

 

 

Figure 2-1 Photograph of the [Mn(H2O)2Ni(CN)4]·3H2O single crystal as-synthesis 
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Figure 2-2 Crystal structure of the as-synthesized sample (phase I) obtained by SXRD. (a) The 

cyano-bridged layers seem to stack parallel to the bc plane from the structure model shown 

along the c axis. (b) The tilts of coordinated water molecules are opposite between adjacent 

layers. 
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Figure 2-3 FTIR spectra of (a) K2(Ni(CN)4)·xH2O, (b) [MnNi(CN)4(H2O)2] ·3H2O and (c) the 

dehydrated sample, RH = 0% (phase II). 
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Figure 2-4 Crystal structure of phase I (HR=100%) obtained by PXRD. 

 

From the SC-XRD result at 293 K of the as-synthesized sample, the Mn–O bonds form 

O–Mn–O linear coordination with a Mn–O distance of 2.2357(8) Å and an O–Mn–O angle of 

180.0°. The averaged distances of Ni–C bonds and C–N bonds in the Ni(CN)4
2− complex are 

1.856 Å and 1.153 Å, respectively, which are in good agreement with similar complexes.[43] 

The C≡N–Mn angles are 176.06(6)° and 158.59(9)°, and the N≡C–Ni angles are 175.74(9)° 

and 177.66(10)° as shown in Table 2.2. The frequencies of the C–N stretching vibration in the 

IR spectra are known to imply the states of co-ordination environments such as the 

electronegativity and oxidation states of metal ions as well as coordination numbers.[58,60] As 

shown in Figure 2-3b, the ratio of C≡N to C–N stretching vibration bands in 

[MnNi(CN)4(H2O)2]·3H2O is larger than that in K2[Ni(CN)4] (Figure 2-3a), suggesting that 
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more electrons exist in the π-orbitals of CN molecules in the former and the Ni–N bonds are 

considered ionic. The sample dehydrated at room temperature does not show C–N stretching 

vibration bands and shows only the C≡N stretching, indicating the localization of electrons in 

CN molecules, making it more ionic than the hydrated sample. 

 

Table 2.2 Selected bond lengths (Å) and angles (°) in phase I (determined by SC–XRD) at 293 

K. 

Ni–C1 1.8566(8) Mn–N2 2.1950(8) 

Ni–C2 1.8572(8) N–C 1.1541(11) 

Mn–O 2.2357(8) N–C 1.1529(11) 

Mn–N1 2.1979(8) Ni–O 2.7823(18) 

O4–Mn–O4 180.0 C2–N2–Mn 176.06(6) 

N1–Mn–N2 90.87(4) C1–Ni–C2 173.94(4) 

N2–Mn–N1 89.13(4) C2–Ni–C2 89.04(5) 

O4–Mn–N2 87.78(4) C1–Ni–C1 89.83(5) 

O4–Mn–N1 87.38(3) C1–Ni–C2 90.25(4) 

O4–Mn–N1 92.62(3) N1–C1–Ni 175.74(9) 

C1–N1–Mn 158.59(9) N2–C2–Ni 177.66(10) 

C1–Ni–O 94.96(4)   

 

The sample can be fully dehydrated above 150°C as mentioned above, and thus the 

sample was dried at 150°C for 12 h. The water vapor adsorption isotherm (Figure 2-5a) 

indicates that the fully dehydrated sample adsorbs six water molecules per [MnNi(CN)4] unit 

via two steps: first, an abrupt absorption of three water molecules per unit was observed in the 

water vapor pressure (P/P0) range of 0.4–0.5. These water molecules are the coordinated ones 

and the moderately stable molecules found from the TGA data. Second, a further increase of 

humidity shows another adsorption of water molecules (three per unit) in the range of P/P0 > 

0.5, which are probably the interlayer water molecules. The number of water molecules in the 

fully hydrated sample is in good agreement with the previous report.[24] The desorption 

isotherm exhibits dehydration around P/P0 = 0.3. This hysteresis suggests a structural 
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transformation upon humidity change. I tried to measure the desorption isotherm down to the 

further lower humidity range, but the measurements took a very long time probably due to the 

gradual release of water vapour. 

 

 

Figure 2-5 Analyses of the fully dehydrated sample. (a) Water vapour adsorption/desorption 

isotherm measurements at 25 °C. The vertical axis shows the number of adsorbed water 

molecules per formula of MnNi(CN)4, n. (b) PXRD patterns of (i) the as-synthesized sample, 

(ii) the fully dehydrated one (150 °C), and (iii) the rehydrated one (i.e., the sample after the 

water-vapor adsorption/desorption isotherm measurement shown in panel ‘b’). 

 

The initial full dehydration amorphized the crystalline sample as found from the diffuse 

scattering intensity with tiny and broad Bragg peaks in the PXRD pattern (Figure 2-5b). After 

the water vapour desorption measurement, I recovered the partially rehydrated sample, and 

then measured its PXRD pattern. The diffuse scattering intensity disappeared, and thus I 

consider that the fully-dehydrated structure is amorphous. Note that the PXRD measurements 

shown in Figure 2-5a were not humidity-controlled and thus the Bragg peaks found for the 

dehydrated sample are attributed to partial rehydration. Because the Bragg peaks for the 

rehydrated sample are not assignable to the as-synthesized phase, the structure is considered to 

transform into another crystal structure. For better understanding this structural transformation, 

I performed synchrotron HR-PXRD experiments for the samples prepared at controlled 
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humidity (Figure 2-6). The HR-PXRD patterns are constant up to RH = 80%, then the pattern 

for the sample rehydrated at 100% RH was consistent with that for the as-synthesized sample. 

The crystal structure at RH = 100% (phase I) was refined by the Rietveld method in the 

orthorhombic cell unit (a =12.30625(17), b =14.12662(2), and c =7.31004(11) Å, Pnma; Rwp 

=7.74%, goodness-of-fit (GOF) = 1.61; Figure 2-7a and 2-4, Tables 2.1 and 2.2) with a 

chemical formula of [Mn(H2O)2Ni(CN)4]·3H2O. This agrees well with the one obtained by SC-

XRD (as-synthesized sample), which indicates that the crystal structure of phase I did not 

change with grinding or milling of the crystal when the sample was prepared. One of the non-

coordinated water molecules may have some interaction with Ni ions, because it forms a 

relatively short Ni–O distance of 2.792(11) Å around the tip position of the square pyramid 

coordination (C–Ni–O angle = 107.6(5)°). Because this distance is far longer than the typical 

distance for the coordination to Mn and Ni (cf. Mn–O bond = 2.2357(9) and Ni–C bond = 1.8 

Å, Table 2.3), it may not be coordination bonding.  

 

 

Figure 2-6 Humidity dependence of synchrotron HR-PXRD patterns (λ = 0.999634 Å). 
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Figure 2-7 Rietveld analysis results of the synchrotron HR-PXRD patterns (λ = 0.999634 Å). 

(a) As-synthesized sample, RH = 100% (phase I). (b) Dehydrated sample, RH = 0% (phase II). 
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Table 2.3 Selected bond lengths (Å) and angles (°) in phase I (determined by HR-PXRD). 

Ni–C1 1.8565(9) Mn–N2 2.1950(10) 

Ni–C2 1.8573 (9) N–C 1.307(15) 

Mn–O 2.2357(9) N–C 1.394(14) 

Mn–N1 2.1980(10) Ni–O 2.792(11) 

O4–Mn–O4 180.0 C2–N2–Mn 124.5(8) 

N1–Mn–N2 91.4(5) C1–Ni–C2 177.9(6) 

N1–Mn–N2 88.5(4) C2–Ni–C2 89.1(9) 

O4–Mn–N2 96.0(4) C1–Ni–C1 86.8(7) 

O4–Mn–N1 94.2(4) C2–Ni–C1 91.9(5) 

O4–Mn–N2 84.0(4) N1–C1–Ni 109.9(9) 

O4–Mn–N1 85.8(4) N2–C2–Ni 141.5(10) 

C1–N1–Mn 120.3(8) C2–Ni–O 107.6(5) 

 

Upon dehydration at room temperature, this structure transforms into phase II 

(discussed in the following paragraphs), which returns to phase I upon rehydration at 100% 

humidity, that is, the transformation is reversible (a = 12.3066(9) Å, b = 14.1272(12) Å and c 

= 7.3101(6) Å, Table 2.1, Figure 2-8 and 2-9). The structure of phase II (Figure 2-10), which 

was formed by keeping the as-synthesized sample under vacuum at RT (RH = 0%), was 

determined and refined by the Rietveld method in an orthorhombic unit cell (a =9.0371(10), b 

= 14.5229(15), and c = 7.2962(8) Å, Pmma; Rwp = 11.39%, GOF = 2.30; Figure 2-7b) with a 

chemical formula of [Mn(H2O)2Ni(CN)4]·H2O. The number of water molecules is consistent 

with the TGA result (Figure 2-11b). The FTIR spectrum (Figure 2-3c) shows the presence of 

hydrogen bond networks (broad O–H stretching, >2800 cm−1). This composition and the 

diffraction pattern are consistent with those obtained for the sample obtained by rehydrating 

the fully dehydrated sample shown in Figure 2-5. The modest quality of fitting is probably due 

to the presence of the remaining phase I as suggested by the peak around 12°, assigned to the 

002 diffractions. 
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Figure 2-8 Crystal structure of re-hydrated sample (phase I) obtained by PXRD. 
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Figure 2-9 Rietveld analysis result of the PXRD patterns for rehydrated sample (RH = 100%) 
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Figure 2-10 Crystal structure of the sample dehydrated at room temperature under vacuum 

(phase II) solved by powder diffraction data. (a) The layers do not seem to stack parallel. (b) 

The tilts of coordinated water molecules are apparently different from those in phase I. 
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Figure 2-11 Thermogravimetric–differential thermal analysis (TG-DTA) for (a) crystal 

phase I and (b) crystal phase II. The data were collected in air with a scan rate of 5oC min-

1. The gradual water molecules weight losses observed below the 150oC for both phases. 

 

The obtained structure model for phase II (Figure 2-10) shows that the coordination 

networks are retained, but their curvatures are different (cf. Figure 2-12). The coordination 

environments are constant (cf. bond length and angles in Table 2.4) and the coordination 

networks become slightly more isotropic (Mn···Mn distances in phase I = 7.06331 Å and 

7.31003 Å; those in phase II = 7.26145 Å and 7.29619 Å). However, the tilts of MnO6 octahedra 

are different between these phases. This is probably due to the formation of water channels in 

phase II, where hydrogen bonds between O atoms are formed by the presence of water 

molecules as Mn–O···H2O···O–Mn as shown in Figure 2-12. In phase I, the H2O molecules 

form hydrogen bonding networks (Figure 2-12a). The Ni–O distance between the non-

coordinated water molecules and the Ni ions increased up to 3.06(2) Å, indicating that there is 

no interaction between these atoms. Thus, the non-coordinated water molecules are stabilized 

only by the hydrogen bonds (O···O distance of 3.027(19) Å). Note that the O···O distances be- 

tween H2O and MnO or H2O in phase I are shorter (<2.9 Å, Figure 2-13a), thus hydrogen 

bonding in phase I is stronger than that in phase II. I conclude that the reformation of the 

hydrogen bonds plays a key role in the phase transition even if it is a weak interaction. This 

phase II is consistent with the L1 phase, which was directly prepared and analysed 
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previously,[45] thus I confirmed that dehydration of the L0 phase can form the L1 phase though 

the treatment causes stacking disorder and cracks. 

 

 

Figure 2-12 Comparison of hydrogen bonds and structures of phase I (a) and phase II (b) solved 

using PXRD data. The orange dotted lines illustrate hydrogen bonds of O–O distances within 

3.1 Å. 

 

Table 2.4 Selected bond lengths (Å) and angles (°) in phase II (determined by HR-PXRD). 

Ni–C 1.774(18) Mn–N 2.246(15) 

Mn–O 2.229(14) C–N 1.25(3) 

Ni–O 3.06(2) O–Mn–N 91.9(6) 

O–Mn–O 180.0 C–N–Mn 163.9(14) 

N–Mn–N 180.0 C–Ni–C 171.1(14) 

N1–Mn–N2 84.9(8) C1–Ni–C2 103.4(12) 

N2–Mn–N2 95.1(8) C2–Ni–C1 75.9(12) 

O–Mn–N 88.1(6) N–C–Ni 152.1(16) 
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Figure 2-13 Distance between oxygen bond and Ni–O coordination bond on a) phase I and b) 

phase II. 

 

As discussed above, the interlayer space contains water molecules, which form 

hydrogen bonding networks in particular in the L0 phase (phase I, Figure 2-2). In general, 

hydrogen bonding networks composed of O–O distances in the range of 2.70–2.95 Å are 

favorable for proton conduction.[61,62] Because the L0 phase has such paths of O–O distances 

of 2.8–2.86 Å along both the b axis (e.g.,O1–O4–O3–O2–O1) and the c axis (e.g.,O1–O2–O3–

O4–O1) (Figure 2-14), I investigated the capability for proton conduction through the 2D 

networks. Note that the hydrogen bonds in the L1 phase are segregated, and thus no proton 

conduction is expected. A yellow crystal with a 1 mm width, a 2.5 mm length and a 0.5 mm 

thickness was mounted on two Au microelectrodes having an 80 μm gap (Figure 2-15). The 



Chapter 2. 

105 

 

impedance data (Figure 2-16) show phase shifts of ca. –90° in the frequency range from 100 

kHz to 1 Hz at both relative humidities of 80% and 1.4%, meaning that both L0 and L1 phases 

are insulating. In particular, the spectra are consistent with that for the microelectrode cell 

without samples, and thus I consider that their dielectric constants are too small to be measured 

by the system. Thus, the water molecules in the interlayer spaces, even though some of them 

coordinate to the Mn ions, do not dissociate into protons. This fact in turn suggests that the 

interlayer spaces of 2D cyano-bridged coordination polymers are non-ionic. 

 

 

Figure 2-14 Hydrogen bonding network and O–O distances in phase I. 
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Figure 2-15 Photograph of the microelectrodes for the single-crystal impedance 

measurement. A crystal (1 mm wide x 0.5 mm thick) was contacted with microelectrodes 

having a 80 mm gap using a Kapton tape. 
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Figure 2-16 Bode plots of impedance data for a Mn(H2O)2[Ni(CN)4] single crystal measured 

at (a) RH= 80% and (b) 1.4%. 

 

2.4. Conclusion 

Through detailed structural analysis, I found that the as-synthesized crystals of 

[Mn(H2O)2Ni(CN)4]·3H2O transformed into another crystalline phase 

[Mn(H2O)2Ni(CN)4]·H2O upon dehydration via a topotactic route. The structure of the 

framework itself changes as the tilt of MnO6 octahedra changes in response to the change in 

hydrogen bonds between these water molecules though the two-dimensional cyano-bridged 

networks are retained. The water molecules, in particular the hydrogen bonds, play a key role 

in the structure transformation upon dehydration/hydration in the 2D cyano-bridged CPs, that 
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is, such frameworks are flexible enough to respond to humidity. I investigated the capability 

for proton conduction through the hydrogen bonding networks using single crystals, but they 

were found to be insulating. This information may be useful for the applications of these cyano-

bridged CPs in adsorption and solid- state ionics. 
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2.5. Appendix 

The proton conductivity of single crystal [Mn(H2O)2Ni(CN)4].4H2O was measured by 

two ways. The first method was by keeping the single crystal phase Ⅰ at the desired relative 

humidity (RH) (80 and 1.4%) for overnight at 21oC before measurement. The results of the 

impedance date showed that the resistance values of both samples were almost the same as the 

blank cell value. The proton conductivity values at RH 80% and RH1.4% were 1.89x10-11 

S.cm-1 and 1.58x10-11 S.cm-1, respectively, which indicated that the samples are insulators.[1] 

The other method was by measuring the crystal under different humidity ratio starting from 

phase Ⅰ (RH 100 to 40%). Figure 2-17 shows that the conductivity value was 2.08x10-7 S.cm-

1 at RH 95%, and this value started to decrease with decreasing the humidity (1.28x10-13 S.cm-

1 for RH 40%), which was typical of dehydrated samples,[2,3] indicating the humidity played 

key roles in the proton transport.[4] Compared to other cyano-bridged coordination polymers 

(CPs) (Table 2.5), my sample showed lower conductivity, but comparable conductivity to 

classic solid-state conductors (10-3 to 10-8 S.cm−1).[5] It is very interesting to note that the 

conductivity at RH 80% in both ways was judged to be insulator. This indicates that the 

structure at RH 80% was not fully dehydrated. As the humidity ratio is increased, water started 

to be expelled from the structure and the conductivity rapidly decreased due to the decrease in 

the water hydrogen-bonding network. The high-resolution powder X-ray diffraction (HR-

PXRD) (Figure 2-18) of the sample obtained at RH 80% showed a different phase to that 

obtained at RH 100%, but almost similar to that achieved at low RH (e.g., 0%), in which the 

phase transformation could be clearly identified. 
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Figure 2-17 Plot of σ vs relative humidity for single crystal [Mn(H2O)2 Ni(CN)4].xH2O 

 

Figure 2-18 HR-XRD patterns of single crystal [Mn(H2O)2Ni(CN)4].xH2O at different 

humidity ratio 
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Table 2.5 The comparing to other cyano-bridged coordination polymer materials. 

Sample Method Condition 

Proton 

conductive 

(S.cm-1) 

Reference 

[Mn(H2O)2Ni(CN)4]·3H2O 
Changing in 

humidity ratio 

RH 95% 2.1x10-7 
Present 

work RH 80% 
1.9x10-11 

5.6x10-11 

Li3Fe(CN)6 - Anhydrous <10-11 [3] 

Li3Fe(CN)6 High pressure ~5 GPa Above 10-3 [6] 

MnII
3[NbIV(CN)8]2(4-

NH2py)10(4-

NH2pyH+)2·12H2O 

Changing in 

temperature and 

humidity ratio 

At 295 K 

RH 100% 
1.0x10-4 

[4] 
At 322 K 

RH 100% 
4.6x10-4 

At 300 K 

RH 45% 
3.2x10-8 

Co[Cr(CN)6]2/3·zH2O 

Changing in 

temperature and 

humidity ratio 

At 293 K 

RH 100% 
1.2x10-3 

[7] 

At 308 K 

RH 100% 
1.7x10-3 

At 293 K 

RH 8% 
3.2x10-8 

VII[CrIII(CN)6]2/3·zH2O 

At 293 K 

RH 100% 
1.6x10-3 

At 323 K 

RH 100% 
2.6x10-3 

Fe4[Fe(CN)6]3·14H2O 

- At 300 K 

5.57x10-5 

[8] Fe4[Ru(CN)6]3·18H2O 5.05x10-6 

K1.2Ru3.6[Ru(CN)6]3·16H2O 5.69x10-3 
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Chapter 3 

Single Crystal Growth of Two-Dimensional Cyano-Bridged 

Coordination Polymer of [Co(H2O)2Ni(CN)4]·4H2O Using 

Trisodium Citrate Dihydrate 
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3.1. Introduction 

Recently, coordination polymers (CPs) including porous coordination polymers (PCPs), 

metal-organic frameworks (MOFs) and Prussian blue (PB) have received much attention due 

to their high adsorption capacities and molecular recognition abilities by tuning the pore size 

and structure.[1,2] Furthermore, these materials have found applications in gas storage and 

separation, adsorption, sensors, catalysis, magnetism, proton conduction, drug delivery 

systems, have been extensively studied.[1,2] Two-dimensional (2D) structures are very 

interesting because they exhibit many unique physical and chemical properties that are not 

observable in bulk materials.[3-5] The interlayer spaces of 2D structures permit guest 

molecules to effectively enter the micropores in the CPs. It is known that 2D cyano-bridged 

CPs have a Hoffman type complexes with general formula [M′L2M(CN)4], where M′II and MII 

are transition metals. This structure is made up of square planar transition metal centers 

surrounded by C-bound cyanide ligands, which are assembled by MII atoms linked at the N end 

of the CN ligands.[6]  

   Since single crystals of CPs are necessary to carefully study their inherent chemical 

and physical properties, many researchers have studied the single crystal structure of 2D CPs 

of the tetra-cyanometallates (II) anions, [Ni(CN)4]
2-, [Pd(CN)4]

2- and [Pt(CN)4]
2- with Mn, Fe, 

Ni, Co, Cd, Zn, Cu, and most of these CPs have been obtained by the slow diffusion method.[6-

11] On the other hand, the solid crystals were obtained by vigorous mixing solution method[12], 

but some impurities are sometimes included due to the rapid precipitation process. To the best 

of my knowledge, the slow diffusion method is a very powerful tool for growing single crystals 

of cyano-bridged CPs, but it is not for all the cases. 

   In this chapter, I report the first preparation of single crystal of 

Co(H2O)2Ni(CN)4·4H2O via a sophisticated combination method of the above traditional slow 

diffusion method with use of trisodium citrate dihydrate (TSCD). The TSCD can serve as a 

chelating agent to control the nucleation rate and the crystal growth.  
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3.2. Experimental Sections 

3.2.1. Single-crystal X-ray diffraction (SC-XRD) 

Crystal structures of the obtained single crystals were determined by single-crystal X-

ray diffractometry (SC-XRD) using a RIGAKU Saturn CCD diffractometer equipped with a 

VariMax confocal optical for MoKα radiation at 113 K. Unit cell refinements and data 

reduction were carried out by using the d* trek package in CrystalClear software suite.[13] The 

structures were solved using a novel dual–space algorithm method (SHELXT)[14] and 

subsequently refined against F2 using SHELXL[15] via the WinGX interface.[16] The structure 

were visualized using the VESTA program.[17] This measurement was conducted at National 

Institute for Materials Science (NIMS) Materials Analysis Station. The CIF files of the 

structure described herein are available for the crystal structure with TSCD at 113 K (CCDC 

no. 1853369) and without TSCD at 113 K (CCDC no.1856704). 

3.2.2. Characterization and other measurements. 

The phase purity and composition of the sample were checked using powder X-ray 

diffraction (PXRD) using a Rigaku Ultima-III Rin 2000 diffractometer with monochromated 

CuKα radiation (λ= 1.5418 Å) operated at 40 kV and 40 mA. Scanning electron microscopy 

(SEM) images were taken by Hitachi SU8000 scanning microscope at an accelerating voltage 

of 10 kV. The transmission electron microscopy (TEM) observation was performed using a 

JEM-2100F TEM system operated at 200 kV and equipped with energy-dispersive 

spectrometer. The UV-vis spectra were collected using a JASCO V-570 UV/Vis/NIR 

spectrophotometer. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the 

chemical composition, especially the condition of CN bonds. The samples were palletized with 

KBr windows, and then, the spectra were collected in the range of 500 to 4000 cm–1 at room 

temperature by using Thermoscientific Nicolet 4700. The spectrum has a sharp band at 2160 

cm–1 corresponding to the C≡N stretching. The bands located 3753–2748 cm–1 and 1631 cm–1 

correspond to the presence of water molecules. Thermogravimetric analysis/differential 

thermal analysis (TG–DTA) was performed simultaneously from room temperature to 400oC, 
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using a Hitachi HT-Seiko Instrument Exter 6300 TG/DTA in air with a heating rate of 5oC 

min–1. 

3.2.3. Water adsorption/desorption isotherms. 

Water adsorption/desorption isotherms were collected by using BELSORP-max-11-N-

SPBI at 25oC. In a typical procedure, 5 mg of the single crystal was degassed at 150oC for 

overnight before adsorption measurements. During TG-DTA, all water molecules were 

removed from the structure upon heat treatment at 150oC. The sample obtained after this 

measurement and the crystal dried at 150oC for 1 h in an electric furnace at a rate of 1oC min-1 

were analyzed by PXRD using Rigaku RINT 2500X diffractometer with CuKα radiation. 

3.3. Results and Discussion 

For the preparation of the single crystal, I utilized the traditional slow diffusion method 

using RbCl solution.[18] First, a small 20 mL vial was placed within a large 100 mL vial. The 

vials were filled with an aqueous solution of 0.5 M RbCl at room temperature. 1 M CoCl2 and 

300 g trisodium citrate dihydrate (TSCD) were dissolved in 5 mL of water to form a clear 

solution under magnetic stirring, which was then cooled for several hours (kept in an ice bath). 

This solution was injected into the bottom of the small vial and 5 mL of cooled 1 M K2[Ni(CN)4] 

solution was injected into the bottom of the large vial. The vials were kept at 45oC in a water 

bath for several weeks. Pink crystals (Figure 3-1) were formed at the bottom of the small vial 

and recovered by filtration and washed several times with water. For comparison, the same 

experiment was carried out without TSCD.  
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Figure 3-1 Preparation method of the single crystal Co(H2O)2Ni(CN)4·4H2O by the slow 

deposition method. 

 

The morphology and surface of the obtained crystals were investigated by SEM and 

TEM, as shown in Figure 3-2. It is clear that the obtained single crystal exhibits a 2D shape. 

The surface of the sample prepared without TSCD is composed of several aggregated crystals 

(Figure 3-2d). On the other hand, the surface becomes extremely smooth with the use of TSCD 

(Figure 3-2b-c). Powder XRD patterns of the two samples (obtained with and without TSCD) 

show similar diffraction peaks, indicating both crystal structures are the same (Figure 3-3). 

The chemical composition of the obtained crystal was determined by the inductively coupled 

plasma mass spectrometry (ICP-MS) analysis. The Co/Ni molar ratio is 1.00, and no presence 

of potassium (K) is detected.  
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Figure 3-2 (a) Low-magnified SEM image, (b) SEM image of the surface morphology, (c) 

TEM image of the single crystal obtained with TSCD, and (d) SEM image of the surface 

morphology of the single crystal obtained without TSCD.  

 

 

Figure 3-3 PXRD patterns of the obtained crystals (i) with TSCD and (ii) without TSCD, 

respectively. 
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It is well known that the balance between nucleation and crystal growth determines the 

final products. Actually, the reaction with TSCD was quite slow. It took more than 3 weeks 

until the precipitation of crystals was visually confirmed. To understand the interaction 

between citrate ions and Co ions, UV-Vis analysis was performed (Figure 3-4). The pure 

CoCl2 solution without TSCD shows a broad peak from 400 to 550 nm. After the addition of 

TSCD to CoCl2 solution, the absorption drastically increases indicating a significant 

coordination effect of citrate ions with Co2+ ions.[19] As the citrate ions can easily combine 

with dissolved metal ions, the coordination reaction rate between Co2+ and [Ni(CN)4]
2- 

becomes very slow. This is the best condition for achieving the formation of a perfect single 

crystal with a very smooth crystal surface (Figure 3-2b-c).  

 

 

Figure 3-4 UV/Vis data of CoCl2 solution (i) without TSCD and (ii) with TSCD, respectively.  

 

The unit cell for the single crystal of Co(H2O)2Ni(CN)4·4H2O (prepared with TSCD) 

was obtained from single crystal XRD at 113 K, as shown in Figure 3-5. The structure is 

composed of metal cyanide sheets determined as an orthorhombic unit cell in the Pnma space 

group with lattice constants of a=11.9855(5) Å, b=13.8820(6) Å and c= 7.1557(3) Å; 

V=1190.58(9) Å3, Z=4 (Table 3.1). The obtained structure matches well with a previous 

report,[7] which is similar to the Hofmann type with formula of (Co(H2O)2[Ni(CN)4])·4H2O.  
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Figure 3-5 The obtained single crystal prepared with TSCD, as characterized by SC-XRD at 

113 K. 

 

Table 3.1 Crystal structure data measured at 113 K. 

Space group Pnma 

a (Å) 11.9855(5) 

b (Å) 13.8820(6) 

c (Å) 7.1557(3) 

𝛼 (°) 90 

𝛽 (°) 90 

𝛾 (°) 90 

V(Å3) 1190.58(9) 

R1 3.64 

 

The FTIR spectrum shows a sharp and intense peak at 2160 cm-1 which can be assigned 

to the cyanide groups in Ni-CN-Co (Figure 3-6).[20] This band is shifted to a higher 

wavenumber compared to υ(CN) in K2[Ni(CN)4]·H2O (2122 cm-1), suggesting a lowered 

symmetry of the [Ni(CN)4]
2- entity. This result therefore indicates the existence of bridging 

cyanide groups.[21] The OH stretching vibration and the bending vibration of water molecules 
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are evidenced by the broad peaks in the range of 3753-2860 cm-1 and the peak at 1631 cm-1, 

respectively.[9] In general, the strong and broad peak observed around 3600-3200 cm-1 

corresponds to the O-H stretching vibration of surface and interlayer water molecules.[22]  

 

 

Figure 3-6 FT-IR data of the obtained single crystal prepared with TSCD.  

 

Figure 3-7 shows the thermogravimetry (TG) and differential thermal analysis (DTA) 

of the single crystal of Co(H2O)2Ni(CN)4·4H2O (prepared with TSCD). The TG-DTA curve 

shows three stages of removal of water molecules (29.5 % from the total compound weight) 

from room temperature to 150oC. This is in good agreement with previous 2D Hoffman type 

CPs.[10] The first stage of weight loss (12.0 %) from room temperature to 70oC corresponds 

to the removal of two water molecules which exist as non-coordinated water molecules 

between the interlayer space connected by hydrogen bonding. The second stage shows a weight 

loss of about 6.0 % at 90oC, corresponding to the loss of one water molecule (calculated 6.6%). 

This water molecule could weakly interact with Ni ion (O–Ni 2.6638(14) Å, Figure 3-5). The 

third stage of weight loss at 108oC (11.5%) is due to the loss of two water molecules, most 

likely the water coordinated to Co ion (Mn–O 2.1370(8) Å, Figure 3-5). These results suggest 
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the possible interaction between crystal metal and water molecules, as indicated by the 

presence of coordinated water and non-coordinated water.[9] The above results further imply 

that there are five water molecules in the crystal, which do not match with the single crystal 

XRD result.  

 

 

Figure 3-7 TG-DTA curve of the single crystal of Co(H2O)2Ni(CN)4·4H2O prepared with 

TSCD. 

 

A similar situation has been observed in a previous literature. Ray et al. reported a 

single crystal of Mn(H2O)2Ni(CN)4·4H2O which was confirmed by single crystal XRD 

analysis. Based on this chemical formula, this crystal should have 6 water molecules, but the 

obtained TG curve showed only 5 water molecules containing 3 lattice and 2 coordination 

water molecules.[10] I suppose that one water molecule can be lost when I prepared the sample 

for the TG-DTA. This one water molecule which can be easily evaporated is thought to be the 

non-coordinated water, because it can evaporate even at room temperature. In order to 

investigate the hydrophilicity, vapor adsorption property and flexibility of the single crystal 2D 

Co(H2O)2Ni(CN)4·4H2O, water vapor adsorption experiment was performed at room 

temperature (Figure 3-8a). The sample was fully dehydrated under vacuum to remove all water 
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molecules. The PXRD pattern of the sample shows that the fully dehydrated sample displays a 

new crystal structure (Figure 3-8b). The majority of CPs has the ability to transform into other 

crystal structure after dehydration, as transformation.[23] The crystal color also changes from 

pink to violet after the dehydration, which can be attributed to the water molecules play an 

important role in the phase change in the degree of aquation of interstitial Co(II) (Figure 3-

10).[24]  

 

 

Figure 3-8 (a) Water adsorption/desorption isotherms at 25°C for fully dehydrated sample 

(heat-treated at 150°C for 1 hours). The vertical axis (right side) shows the number of adsorbed 

water molecules per the formula of CoNi(CN)4. (b) PXRD patterns of (i) as-synthesized single 

crystal sample, (ii) fully dehydrated sample (This sample was sealed by Kapton tape to avoid 

the adsorption of water from air.), and (iii) rehydrated sample after immersion in water.  
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Figure 3-9 SEM images of (a) the original single crystal of Co(H2O)2Ni(CN)4·4H2O prepared 

with TSCD, (b) the fully dehydrated sample, and the (c) the fully rehydrated sample after 

immersion in water. 

 

 

Figure 3-10 Colors of (a) the original single crystal of Co(H2O)2Ni(CN)4·4H2O prepared with 

TSCD and (b) the fully dehydrated sample. 

 

In the water adsorption/desorption isotherm, the maximum water adsorption value is 

about 188 cm3 g-1 at P/P0 = 0.91 (Figure 3-8a), indicating that the sample absorbs about two 

water molecules per [CoNi(CN)4] unit. The PXRD pattern of the sample after water vapor 

adsorption/desorption shows the existence of an amorphous phase without any clear diffraction 

peaks. Even after immersion in water, the sample does not show any obvious peaks (Figure 3-

8b). The obtained crystal transforms to another crystal phase by dehydration (at 150°C for 1 
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hour) which cannot be fully hydrated anymore (i.e., the crystal structure is not flexible enough 

to absorb six water molecules).  

3.4. Conclusion 

In conclusion, I have successfully prepared single crystal of Co(H2O)2Ni(CN)4·4H2O 

with a very smooth surface through a controlled crystallization process with the assistance of 

TSCD. I strongly believe that my approach will be useful for preparation of other types of 

single crystals with new chemical and physical properties.  
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Chapter 4 

Graphene-Wrapped Nanoporous Nickel-Cobalt Oxide 

Flakes for Electrochemical Supercapacitors 
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4.1. Introduction 

Although carbon materials have been widely utilized for a myriad of applications, their 

use as electrode materials for supercapacitor applications is of particular interest due to the 

looming energy concerns. A variety of carbons materials, including, activated carbon, 

mesoporous carbon, carbon nanotubes, and graphene sheets have been proved to be of 

tremendous use in electrochemical energy storage, particularly supercapacitors.[1] Among the 

various nanocarbons, two-dimensional (2D) graphene based structures have garnered much 

attention and shows better performance toward supercapacitors applications because they 

possess highly active surface sites for the electrochemical reaction pathway.[2,3] However, due 

to the limitations of single materials, researchers are focusing on design and use of composite 

hybrid materials with dual functional properties to improve the energy and power density of 

the electrochemical device. The hybridization of graphene and other components have been 

widely studied for the preparation of highly efficient nanoarchitectures. Especially, graphene-

based hybrid materials including doped graphene sheets,[4,5] graphene-CNTs,[6,7] graphene- 

conducting polymers [8–10] have been extensively investigated in the recent past. 

Transition metal oxides are one of the promising class of electrode materials for 

supercapacitors because of their high pseudocapacitive property.[11–13] However, their poor 

electronic conductivity limits their electrochemical performance, usually leading to rapid decay 

in capacity. Methods to enhance electrical conductivity are required for future high-

performance supercapacitors and to improve their electrochemical storage capability. One 

effective strategy is to prepare three dimensional (3D) architectures consisting of different 2D 

materials, particularly, graphene (G).[14] Such a structure can provide high interfacial surface 

area and many active centers. 

In this chapter, I report a novel approach for hybridizing NiCo oxide flakes with 

graphene sheets (G) (Scheme 4-1). Positively charged cyano-bridged CoNi CP flakes (CoNi-

CP) were mixed with negatively charged G surface containing suspension. Due to effective 

electrostatic force, both the materials are hybridized to form CoNi-CP/G composite. The as- 

prepared CoNi-CP/G composite was thermally treated in air to remove organic components 
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without affecting the integrity of the parent G sheets. During the thermal treatment, the CoNi-

CP flakes wrapped into G sheets were concomitantly converted to NiCo oxide, resulting in a 

new composite consisting of NiCo oxide flakes and G sheets (NiCo-oxide/G). The as-prepared 

NiCo-oxide/G composite shows high specific capaciatance (~199 F g-1) at a scan rate of 5 mV 

s-1 and features the good capacitance retention. 

 

 

Scheme 4-1. Schematic illustration of the synthetic pathway of CoNi-CP/G composite and its 

thermal decomposition to NiCo-oxide/G composite. 

 

4.2. Experimental Sections 

4.2.1. Chemicals 

Natural graphite flakes (10 mesh) was purchased from Alfa Aesar, USA. Anhydrous 

N-methyl-2-pyrrolidinone (NMP) and potassium tetracyanonickelate (II) hydrate were 

purchased from Sigma-Aldrich. Trisodium citrate dihydrate and cobalt (II) chloride anhydrous 

were purchased Nacalai Tesque, Inc., Japan. All reagents were used without further 

purifications.  

4.2.2. Preparation of cyano-bridged CoNi-CP flakes. 

Following to Zakaria et al. work,[15] 59.6 mg of cobalt chloride anhydrous and 100 mg 

of trisodium citrate dihydrate were mixed together in 20 mL water to form a clear solution. 

Meanwhile, 130 mg of K2[Ni(CN)4] was prepared in 20 mL water to form another clear solution. 
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Then, the two solutions were mixed together under magnetic stirring until the mixture became 

clear. The obtained solution was aged for 24 hours, followed by the formation of a green 

precipitate which was collected by centrifugation. After washing with water and ethanol 

extensively, the precipitate (CoNi-CP) was well-dispersed in water again to form a colloidal 

solution of CoNi-CP flakes.  

4.2.3. Preparation of graphene sheets. 

The graphite was dispersed in NMP by sonicating in a low power sonic bath (UT-606H) 

for 1 hour. The resulting dispersion was aged for approximately 24 hours to allow any unstable 

aggregates to form. Again, the dispersions were undergone sonication for 1 hour more and aged 

for 24 hours. The resultant dispersion was then centrifuged using a Sigma 3-30K centrifuge for 

90 minutes at 500 rpm. After centrifugation, decantation was carried out by pipetting off the 

top half of the dispersion. The exfoliated graphene dispersion in NMP was obtained.  

4.2.4. Preparation of NiCo-oxide/G composite. 

To prepare the hybrid structure, the graphene nanosheets suspension was mixed with 

CoNi CP flakes colloidal solution under mild stirring overnight. The precipitate was obtained 

by centrifugation and the sample was dried under vacuum at 80°C to get the CoNi-CP/G 

composite. The powders (50 mg) were placed in a melting pot. The melting pot was then heated 

inside a furnace from room temperature to 350 °C at a heating rate of 5°C min-1. Subsequently, 

the sample was annealed for 1 hour and allowed to cool inside the furnace naturally. Finally, 

the obtained powder (NiCo-oxide/G composite) was collected for characterization. All 

calcination process was carried out in the air.  

4.2.5. Characterization. 

Wide-angle XRD patterns of the samples were collected using a Rigaku RINT 2500X 

diffractometer with monochromated Cu-Kα radiation (40 kV, 40 mA) and the data was 

collected in the 2θ range of 10-70°. The lattice parameters were refined by the Pawley method 

using the GSAS-II software [16] and the zero shifts of the patterns were corrected and 

background subtraction. Fourier-transform infrared spectroscopy (FT-IR) was used to 
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investigate the chemical groups, especially condition of CN bonds. The samples were 

pelletized with KBr, and then the spectra were collected in the range from 500 to 4000 cm-1 at 

room temperature using Thermoscientific Nicolet 4700. The morphological characterization of 

the samples was performed using a Hitachi SU8000 scanning electron microscope (SEM). 

Transmission electron microscopy (TEM) observation was performed using a JEM-2100F 

TEM system that was operated at 200 kV and equipped with energy-dispersive spectrometer 

(EDS). Atomic force microscope (AFM) images were obtained using multi-mode scanning 

probe microscope (SPM), Bruker MM- SPM. The. Raman spectra were Implemented by 

Horiba-Jovin Yvon T64000 with the excitation Laser 364 nm. Thermogravimetric analysis 

(TGA) was measured hy using Hitachi HT-Seiko instrument Exter 6300 TG/DTA, RT-1100 °C 

in the air.  

4.2.6. Electrode preparation and electrochemical measurements. 

Graphite substrates coated with the active materials were used as working electrodes. 

Firstly, graphite substrates were polished using a fine polisher and rinsed with deionized water. 

Subsequently, the substrates were etched in a 0.1 M HCl solution at room temperature for 10 

min, rinsed with deionized water in an ultrasonic bath for 30 minutes and dried. The working 

electrodes were manufactured by mixing the active material (NiCo oxide and NiCo-oxide/G 

composites) with polyvinylidene fluoride (PVDF, 20%) binder in a small amount of N-Methyl-

2- pyrrolidone (NMP) solvent. The as-prepared slurry was coated on the graphite substrate and 

dried at 80 °C in a vacuum oven for 2 hours. The masses of the electrodes were measured using 

an ultra-microbalance (Mettler-Toledo).  

The electrochemical measurements were performed using a CHI660E electrochemical 

workstation (CH Instruments Inc., USA). A conventional three-electrode cell consisted a Pt-

wire as a counter electrode, Ag/AgCl as the reference electrode and the modified graphite 

electrode as the working electrode. A 3 M aqueous KOH solution was used as the electrolyte. 

Cyclic voltammetry (CV) measurements were conducted at various scan rates. The average 

specific capacitance (Csp) values were calculated from the CV curves using the equation;  

Csp=
1

𝑚𝑠(𝑉𝑓−𝑉𝑖)
∫ 𝐼(𝑉)𝑑

𝑉𝑓

𝑉𝑖
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where Csp is the capacitance (F g-1), m is the mass of the active electrode material (g), s is the 

potential scan rate (mV s-1), Vf and Vi are the integration limits of the voltammetric curve (V), 

and I(V) denotes the response current density (A cm-2). For every experiment, the typical area 

under consideration was 1 cm2.  

4.3. Results and Discussion 

Cyano-bridged CoNi-CP flakes were prepared according to previous report.[17] Briefly, 

cobalt chloride solution and trisodium citrate dihydrate solution were mixed together to form a 

clear solution. Meanwhile, K2[Ni(CN)4] solution was prepared in water to form another clear 

solution. Then, the two solutions were mixed together under magnetic stirring until the mixture 

becomes clear. The obtained solution was aged for 24 hours, followed by the formation of a 

green precipitate which was collected by centrifugation. After washing with water and ethanol 

extensively, the precipitate was dispersed in water again. The detailed experimental procedure 

is given in the experimental section (in the supporting information). The obtained CoNi CP 

flakes were well dispersed in water to form a homogeneous colloidal (Figure 4-1 a-1). The 

zeta potential of the obtained CoNi- CP flakes dispersed in water was positive (+5.31 mV).[18] 

In general, the surface charge of cyano-bridged CPs is controlled under synthetic conditions 

using polymer or capping agents. For example, poly (allylamine hydrochloride) was used to 

coat bare Prussian blue-based cubes, switching the surface charges of nanoparticles from 

negative to positive zeta potential (from -23.5 mV to +17.9 mV).[19] 
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Figure 4-1 (a-1) Photograph of suspension and (a-2) SEM image of CoNi-CP flakes. (b) SEM 

image of CoNi-CP/G composite. 

 

SEM image of the typical CoNi-CP flakes with an average lateral size of around 300 

nm is shown in Figure 4-1 a-2. The thickness of the obtained CoNi CP flakes was determined 

to be around 20–30 nm by AFM (Figure 4-2a). The powder X-ray diffraction (XRD) patterns 

of the obtained CoNi-CP is shown in Figure 4-3. The Pawley fitting of this XRD pattern results 

reveal that the structure is orthorhombic in the Pnma space group. The structure is identical to 

the crystal structure of [(Co(H2O)2)(Ni(CN)4)]⋅4H2O (CCDC 59366). The result of the 

structure determination and crystallographic details are presented in Table 4.1. The FT-IR 

spectra is depicted in Figure 4-4. The typical sharp and strong peak at 2160 cm-1 corresponding 

to the CN stretching vibration and weak C-N is observed at 1378 cm-1 The CN signal is 
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shifted to high frequency in comparison to K2Ni(CN)4 due to its connection to metal atoms and 

removal of electrons from weak orbital.[20,21] Several peaks at 3600, 3500– 3000 and 1630 

cm-1 indicate that water molecules exist in the compound. Especially, the stretching frequency 

at 3600 cm-1 corresponds to the free -OH bond. This free water molecule could be in the 

interlayer space. 

 

 

Figure 4-2 (a) AFM image and (b) thermogravimetric (TG) curve of CoNi-CP flakes in air. 

Note: In the first stage, adsorbed solvents such as water molecules are removed from room 

temperature until around 150°C. From this stage, the number of water molecules was calculated 

to be about six water molecules (per one unit) including the coordinate and non-coordinated 

water molecules. The same water number was also reported in other Hofmann-type 2D 

CPs.[22,23]  
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Figure 4-3 Analysis of the obtained PXRD patterns of CoNi-CP using the Pawley fitting 

method (Inset: [Co(H2O)2Ni(CN)4]·4H2O crystal structure.)  

 

Table 4.1 Lattice constants refined by the Pawley fitting method.  

Formula [Co(H2O)2Ni(CN)4]·4H2O 

Space group Pnma 

a (Å) 12.2278(8) 

b (Å) 13.9497(16) 

c (Å) 7.1725(7) 

α (°) 90 

β (°) 90 

γ (°) 90 

V (Å3) 1223.45(2) 

wR (%) 9.444 

GOF 1.53 
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Figure 4-4 FT-IR spectra of (a) K2 [Ni(CN)4]

 

salt and (b) CoNi-CP flakes.  

 

Graphene suspension was prepared by a sonication of graphite flakes in N-methyl-2-

pyrrolidinone (NMP) solvent for few hours followed by ageing overnight.[24] The zeta 

potential of the exfoliated graphene suspension was measured thrice and the calculated average 

value was found to be -8.02 mV. Thin graphene sheets with large lateral size around 2 μm were 

obtained as shown in the scanning electron microscope (SEM) and transmission electron 

microscope (TEM) images (Figure 4-5). The selected area electron diffraction (SAED) 

patterns depict a hexagonal arrangement which is characteristic of graphene sheets. In most 

parts, the thickness of the obtained graphene nanosheets is around 1 nm, as determined by AFM 

(Figure 4-5e). Bilayers and multilayers nanosheets are also observed (Figure 4-5f). The 

obtained graphene sheets were further characterized by Raman spectroscopy (Figure 4-6). In 

addition to the typical D and G bands at around 1350 cm-1 and 1579.4 cm-1 respectively a broad 

2D band at 2710 cm-1 is also observed, indicating the two-dimensional morphology of graphene 

sheets. The G band is usually assigned to the E2g phonon of C sp2 atoms, while the D band is 

due to the conversion of sp2 hybridized carbon to sp3 hybridized carbon atoms which relates to 
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the amount of disorder.[24] In previous study, the graphene oxide (GO) nanosheets was used 

for preparation of NiO/GO composite.[18] The Raman spectrum of the GO nanosheets shows 

similar peak intensities of the G and D bands. However, in the present study, it is revealed that 

the intensity of G band is obviously higher compared to that of the D band, indicating the large 

lateral size of the in-plane sp2 domains and fewer defects. 

 

 

Figure 4-5 (a, b) SEM images (inset: photograph of graphene suspension), (c) TEM image, 

(d) ED patterns, and (e, f) AFM images of graphene sheets. 
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Figure 4-6 Raman spectra for (a) graphene, (b) CoNi-CP and (c) CoNi-CP/G composite. 

 

To prepare the hybrid structure, the graphene nanosheets suspension was mixed with 

CoNi CP flakes colloidal solution under mild stirring overnight (Figure 4-1 b). To remove the 

solvents, the samples were dried under vacuum at 80°C to get the CoNi-CP/G composite 

(Scheme 4-1). The powders were heated inside a furnace from room temperature to the 

designed temperature (350°C) in air. Finally, the obtained powder (NiCo-oxide/G composite) 

was collected for characterization. The detailed experimental procedure is given in the 

experimental section.  

SEM images of the typical CoNi-CP/G samples before thermal treatment are shown in 

Figure 4-1 b. The CoNi CP flakes can be observed with the large-sized graphene nanosheets. 

Raman spectra for the CoNi-CP/G sample shows a peak at 2184 cm-1 that is characteristic of 

CN-stretching (Figure 4-6), which remains even after hybridization with graphene nanosheets. 

The CoNi-CP/G composite also shows similar wide-angle XRD patterns as CoNi-CP, 

indicating that the original crystal structure does not collapse. 
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The thermal degradation of CoNi-CP was analyzed using thermogravimetric (TG) 

analysis in air (Figure 4-2b). Similar to the thermal degradation of cyano-bridged coordination 

polymers in air, two major weight losses are noticed. In the first stage, adsorbed solvents such 

as water molecules are removed from room temperature until around 150°C. No further weight 

loss is observed until around 260°C. After this, the second weight loss is observed and 

continued until ~ 350°C. This weight loss corresponds to the loss of CN groups, resulting in 

NiCo oxide. The crystal structure of the finally obtained NiCo oxide and NiCo-oxide/G 

composite was investigated using wide-angle XRD (Figure 4-7). From the inductively coupled 

plasma (ICP) analysis, the compositional ratio of Co:Ni in the NiCo-oxide/G composite after 

the calcination was measured to be around 1:1. Compared to the standard PDF No. 20–0781, 

the major peaks are ascribed to spinel Nix Co3-xO4. Two additional peaks corresponding to NiO 

as well as one weak peak corresponding to Ni are also observed. Even though the sample was 

calcined in air, un-oxidized Ni phase was formed. Similar phenomenon has been observed in 

previous study.[25] This is probably because of different diffusion rate of Ni species during 

thermal treatment. Thus, some Ni species are out of the major spinel Nix Co3-xO4 crystal 

structure.  
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Figure 4-7 Wide-angle XRD patterns for (a) NiCo oxide, (b) NiCo-oxide/G composite. 

 

Figure 4-8 shows the SEM and TEM images of NiCo oxide and NiCo-oxide/G 

composite obtained after thermal treatment. SEM images show that the obtained NiCo oxide 

retains the original sheet like morphology, and it features porous structure because the removal 

of CN-groups by heating. From the TEM image of NiCo-oxide/G composite, it is observed that 

the nanoporous flakes are wrapped between the graphene sheets. The ED patterns show ring-

like patterns which can be assigned to the spinel crystal phase.  
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Figure 4-8 (a) SEM image of NiCo-oxide and (b) SEM image, (c) TEM image and (d) ED 

patterns for NiCo-oxide/G composite. 

 

The NiCo-oxide/G hybrid composites find a number of applications. In particular, these 

composites can offer richer charge storage contributions from the electrochemically active 

nickel and cobalt ions. In order to probe the capacitive behaviour of these hybrid composites, 

the NiCo-oxide/G electro- des along with the control electrodes; NiCo oxide and graphene 

sheets were investigated by cyclic voltammetry (CV) in an aqueous electrolyte of 3 M KOH at 

various scan rates as shown in Figure 4-9. To study the contribution of the current obtained 

from commercial graphite, a bare graphite was run as a standard electrode as shown in Figure 

4-9a. In the case of NiCo oxide (Figure 4-9b) and NiCo-oxide/G composite (Figure 4-9d), the 

CV curves exhibit broad and pronounced oxidation and reduction peaks clearly, indicating the 

capacitive behaviour of these composite electrodes. Typically, the redox peaks indicate that the 
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capacitive response originates from the faradaic redox reactions.[26] The presence of broad 

peaks could possibly be due to the contribution of various NiCo oxides.[27] Similar redox 

peaks were observed for NiCo-oxides as well as for nickel cobaltite-based materials.[28,29] 

Notably, the NiCo-oxide/G electrode presents a considerably larger current density than the 

counterpart, the NiCo oxide electrode. Thus, an enhancement of electrochemical activity by 

hybridization of two components can be easily recognized from the representative CV curves.  

 

 

Figure 4-9 Cyclic voltammograms (CVs) of (a) commercial graphite, (b) NiCo-oxide, (c) 

graphene sheets, (d) NiCo-oxide/G composite, at different scan rates.  

 

Further, the CV curves of these electrodes were recorded at different scan rates ranging 

from 5 to 100 mV s-1 to evaluate the high-rate discharge performance. As the scan rate increases, 

the anodic peak shifts to a higher potential whereas, the cathodic peak shifts to a lower potential. 

In both the electrodes (NiCo oxide and NiCo-oxide/G), the CV loops show typical redox 

couples, illustrating the high redox reversibility and typical pseudocapacitive behavior of the 
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electrodes compared with that of bare graphite or even graphene, electrodes (Figure 4-9). Even 

at a higher scan rate of 100 mV s-1 the CV curves of the hybrid electrode shows a pair of redox 

peaks, indicating fast redox reactions. The specific capacitance was determined from the CV 

curves by integrating over the full CV curve are given in Table 4.2. The calculated specific 

capacitance was found to be 199 F g-1 for the NiCo-oxide/G composites at a scan rate of 5 mV 

s-1. 

 

Table 4.2 The calculated specific capacitance values of different samples at different scan rates. 

Scan rate 

(mV) 

Graphite 

(F/g) 

Graphene nanosheets 

(F/g) 

NiCo oxide 

(F/ g) 

NiCo-oxide/G composite 

(F/g) 

5 13.8 126 148 199 

20 9.98 70.5 135 172 

40 8.67 54.2 126 158 

60 7.99 47.2 119 149 

80 7.48 43.9 113 142 

100 7.08 41.1 109 135 

 

4.4. Conclusion 

I have demonstrated a facile approach to hybridize nanoporous NiCo oxide flakes with 

graphene sheets. Electrostatic attraction plays a definitive role in compositing the positively 

charged cyano-bridged CoNi coordination polymer flakes (CoNi-CP) with the negatively 

charged graphene surfaces. Further, simple thermal treatment converts the graphene wrapped 

CoNi-CP flakes to Ni-Co oxide/graphene composites without affecting the integrity of the 

parent graphene sheets. This class of nanoporous graphene based composite architecture shows 

a high specific capacitance (~199 F g-1) with good capacitance retention. I expect my strategy 

will be useful in the future for the synthesis of hybrid structures with dual characters for the 

application in energy-related systems.  
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Chapter 5 

Synthesis of Hollow Co–Fe Prussian Blue Analogue Cubes 

by using Silica Spheres as a Sacrificial Template  
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5.1. Introduction 

Coordination polymers, including porous coordination polymers (PCPs) and metal-

organic frameworks (MOFs), have undergone extensive research in recent times. Such studies 

attract interest in industrial chemistry, materials science, and engineering. The functionality 

and the regularity of the shapes and sizes of PCPs and MOFs make them useful in separation, 

storage, catalysis, and so forth.[1–4] Their compositions can be generalized as 

AxM
’
y[M

’’
z(CN)6], where A is an alkali metal cation, M’ and M’’ are transition metal cations, 

and the sub- scripts (x, y and z) express non-stoichiometry (or lattice defects), depending also 

on the valence of the transition metal(s). Their properties can be tuned by selecting the 

transition-metal cations. When M’=M’’=Fe, the final composition will be Fe4 [Fe(CN)6]3·xH2O, 

which is generally known as Prussian Blue (PB). PB and PB analogues (PBAs) represent a 

well-known group of coordination polymers (CPs), where cyanide groups act as bridges 

between the transition metal ions (M2+–CN–M3+).[5, 6] Moreover, various PBA nanocubes 

were synthesized recently in solutions through a controlled crystal growth process.[7] Roy et 

al. demonstrated the formation of mesostructured PB framework using a ligand-assisted 

templating approach in formamide.[8] Other PBAs with various morphologies (e.g. nanowires, 

nanocubes, nanospheres, and nanotubes) have been reported through different methods such as 

sonochemical, hydrothermal, electrodeposition, and microwave-assisted methods.[9] Dual-

textured PB cubes with nanoporous shells are also reliable electrode materials for sodium-ion 

storage.[10] Taking advantage of their hybrid nanostructures composed of porous and non-

porous domains, dual-textured PB cubes exhibit high reversible capacities, good rate 

capabilities, stable cyclic performances, and excellent dimensional stabilities even after several 

charge–discharge cycles, offering new opportunities for the development of robust and high-

performance rechargeable sodium-ion batteries. 

Although several PB and PBA nanostructures have been re- ported, hollow PBAs have 

attracted great interests because of their enhanced physical and chemical properties. For 

example, Maurin-Pasturel et al. reported the synthesis of hollow NiFe–PBA nanoparticles 

using gold nanoparticles as a sacrificial template.[11] By simply dispersing the core–shell 
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Au@NiFe–PBA in KCN solution, hollow NiFe–PBA could be obtained, because of the 

intrinsic porosity of the PBA network. In addition, Risset et al. demonstrated a facile surfactant-

free route to synthesize uniform Rb0.4M4[Fe(CN)6]2.8·7.2H2O (M=Co, Ni) hollow 

nanoparticles.[12] To the best of my knowledge, to date, only one effective method for the 

preparation of crystalline hollow PBA nanoparticles by etching with HCl under hydrothermal 

conditions has been demonstrated.[13] The previous study reported the preparation of hollow 

PBA cubes by using another PBA sacrificial core followed by removal through a chemical 

treatment.[14] By investigating the electrochemical performance of solid and hollow CoCo–

PBA cubes, it was demonstrated that hollow CoCo–PBA cubes exhibited a higher surface area, 

which is the significant advantage of a hollow structure for providing more oxidation and 

reduction reaction sites for better performance in energy storage applications. 

For the above nanostructures, a hollow structure is ideal for electrode materials in 

lithium- and sodium-ion batteries, because the unique nature of a hollow nanostructure can 

offer a more favorable path for the electrolyte and enlarge the electrochemically active surface 

area of the electrode materials, thereby improving the electrochemical kinetics. In this chapter, 

I demonstrate the facile synthesis of hollow CoFe–PBA cubes, using spherical silica cores as 

sacrificial templates. Recently, silica nanoparticles were used as hard templates, because they 

possess silanol groups on their surface, which induce the formation reaction of many shells on 

the surface of silica.[15] Also, it is possible to control the size and the shape of the hollow 

interiors without consideration of complicated reactions. This method can be applicable to PB 

and PBA systems for hollow inorganic nanostructures, as shown in this work.  

5.2. Experimental Sections 

5.2.1. Chemicals 

Tetraethyl orthosilicate (TEOS, 99 wt%) and potassium hexacyanoferrate (III) hydrate 

were purchased from Sigma–Aldrich, USA. Ammonium hydroxide solution (NH4OH, 25 wt%), 

hydrofluoric acid (HF,10wt%), trisodium citrate dihydrate (TSCD), and cobalt (II) chloride 

anhydrous (CoCl2) were purchased from Nacalai Tesque, Inc.,Japan. All reagents were used 

without further purification. The spherical silica particles were prepared according to Stçber’s 
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method. In these procedures, 21 mL of tetraethyl orthosilicate (TEOS, 99 wt%), 9 mL of 

deionized water, and 245 mL of NH4OH solution (25 wt%) were added to 225 mL of ethanol 

and stirred at room temperature for 4h. A white colloidal solution of silica particles was 

obtained. The silica particles were separated by centrifugation, washed by ethanol for four 

times, and dried under ambient conditions at room temperature.  

5.2.2. Synthesis of Hollow CoFe–PBA 

Tetraethyl orthosilicate (TEOS, 99 wt%) and potassium hexacyanoferrate (III) hydrate 

were purchased from Sigma–Aldrich, USA. Ammonium hydroxide solution (NH4OH, 25 wt%), 

hydrofluoric acid (HF,10wt%), trisodium citrate dihydrate (TSCD), and cobalt (II) chloride 

anhydrous (CoCl2) were purchased from Nacalai Tesque, Inc., Japan. All reagents were used 

without further purification. The spherical silica particles were prepared according to Stçber’s 

method. In these procedures, 21 mL of tetraethyl orthosilicate (TEOS, 99 wt%), 9 mL of 

deionized water, and 245 mL of NH4OH solution (25 wt%) were added to 225 mL of ethanol 

and stirred at room temperature for 4h. A white colloidal solution of silica particles was 

obtained. The silica particles were separated by centrifugation, washed by ethanol for four 

times, and dried under ambient conditions at room temperature.  

5.2.3. Synthesis of Hollow CoFe–PBA 

The previously prepared spherical silica particles (20 mg) were dispersed in a mixture 

consisting of cobalt chloride anhydrous (77.9 mg) and TSCD (397.1 mg) dissolved in distilled 

water (20 mL) to form solution A. At this stage, the surface of the silica particles was decorated 

with Co ions after interaction with the silanol groups. Meanwhile, potassium hexacyanoferrate 

(III) hydrate (133 mg) was dissolved in pure water (20 mL) to form clear solution B. Then, 

solutions A and B were mixed together whilst stirring followed by aging for 4 days. The 

SiO2@CoFe–PBA precipitate was collected by centrifugation and washing with water and 

ethanol several times. After drying at room temperature overnight, the SiO2 cores were 

removed by etching with HF.SiO2@CoFe–PBA (40 mg) was suspended in 10% HF solution 

(25 mL) by stirring for 12 h to complete the silica removal. The hollow CoFe–PBA precipitate 
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was collected by centrifugation and washing with water and ethanol several times, which was 

dried at room temperature for 24 h.  

5.2.4. Structural Characterization Afield-emission 

A field-emission scanning electron microscope (FESEM; JEOL JSM- 7000F) and high-

resolution transmission electron microscope (HRTEM; JEOL ARM-200F) were employed to 

characterize the morphology and the nanostructure. X-ray diffraction (XRD; Rigaku RINT 

2500X diffractometer) patterns were obtained by using monochromated CuKα radiation (40 

kV,40mA) at a scanning rate of 18 min-1. The XRD data were collected in the 2θ range of 10–

70° under ambient conditions. The lattice parameters were refined by the Pawley method, using 

the GSAS-II software,[16] and the zero shifts of the patterns were corrected with background 

subtraction. The result of the fitting method was identical to the crystal structure of 

K2Co[Fe(CN)6] (CCDC 28669). Fourier transform infrared spectroscopy (FTIR) of a KBr 

pressed pellet sample was carried out by using a Thermoscientific Nicolet 4700 instrument, 

and the data were collected in the range of 500 to 4000 cm-1 at room temperature.  

5.2.5. Electrochemical Measurements 

The slurries were prepared by mixing the active materials (80 wt%) and poly (acrylic 

acid) and Super-P (10 wt%). The Super-P was used as a conducting agent. The mixer was 

dissolved in deionized water as a binder (10 wt%) with deionized water. To prepare the working 

electrodes, the obtained slurries were coated onto Al foil as a current collector. The electrodes 

were dried at 80°C for 30 min in a convection oven to evaporate the water, and were then heat-

treated at 120°C overnight under vacuum. The cells were collected by using CR2032 coin-type 

half cells with sodium metal used as a counter electrode, glass fiber (GF/F; Whatman) used as 

a separator, and 0.7m NaClO4 dissolved in a mixed solvent of ethylene carbonate (EC) and 

diethyl carbonate (DEC) (1:1, v/v; Panax Etec Co. Ltd.) used as the electrolyte in an Ar-filled 

glove box. The cells were galvanostatically charged and discharged at a constant current (CC) 

within the voltage window of 2.0–4.0 V versus Na/Na+ at 10 mAg-1 at room temperature.  
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5.3. Results and Discussion 

The synthetic scheme for the hollow CoFe–PBA nanocubes is shown in Figure 5-1. 

First, the CoFe–PBA grew on the spherical silica particle. After the reaction was complete, the 

SiO2@CoFe precipitate was collected by centrifugation and washing with water and ethanol. 

Finally, the SiO2 cores were removed by etching, using HF solution to prepare the hollow 

CoFe–PBA cubes. The morphology and size of the silica spheres, core–shell SiO2@CoFe–

PBA cubes, and hollow CoFe–PBA cubes were investigated by using scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) (Figure 5-2). Spherical silica 

particles of around 150 nm in diameter were used as the template (Figure 5-2a). After coating 

with the CoFe–PBA shell, the average particle size became around 200 nm (Figure 5-2b), 

indicating that the shell thickness is around 50 nm. After removal of the silica template, hollow 

CoFe–PBA cubes were obtained (Figure 5-2c). The hollow interior was more than 150 nm in 

diameter, which was larger than the size of the starting silica particles. This is because the 

etching agent still works even after the removal of silica particles, resulting in the formation of 

a larger cavity than expected. Figure 5-3 shows wide-angle XRD patterns for silica spheres, 

solid CoFe PBA, core–shell SiO2@CoFe–PBA cubes, and hollow CoFe–PBA cubes. Abroad 

diffraction peak was noticed from 15 to 30°, which was assigned to silica. The XRD patterns 

of the core–shell SiO2@CoFe–PBA cubes and the hollow CoFe–PBA cubes showed the same 

diffraction patterns of the solid CoFe–PBA, which could be attributed to the face-centered-

cubic crystal structure with the Fm3m unit cell. The XRD diffraction peaks of the hollow 

CoFe–PBA become a little broad, owing to a decrease in the original crystallinity of CoFe–

PBAs. However, the crystal structure is preserved even after the removal of the silica cores.  
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Figure 5-1. Schematic illustration of the formation of hollow CoFe–PBA using silica spheres 

as sacrificial templates. 

 

 

Figure 5-2. SEM (1) and TEM (2) images of a) silica spheres, b) SiO2@CoFe–PBA, and c) 

hollow CoFe–PBA cubes. 
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Figure 5-3. Wide-angle XRD diffraction patterns for silica spheres, solid CoFe– PBA, 

SiO2@CoFe–PBA, and hollow CoFe–PBA cubes. 

 

The FTIR spectrum of as-prepared core–shell SiO2@CoFe– PBA is shown in Figure 

5-4.The band at 2114 cm-1 could be indexed to the CN stretching (CoIII–NC–FeII),[17] whereas 

the band at 1110cm-1 could be assigned to the Si–O–Si vibration.[18] Figures 5-5 and 5-6 show 

the XRD patterns of as-prepared CoFe–PBA and core–shell SiO2@CoFe–PBA. The Pawley 

fitting of these XRD patterns shows that the structure of each sample is in the same space group. 

The structural and crystallographic details are provided in Table 5.1. These data indicate the 

successful coating of CoFe–PBA on the silica spheres.  
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Figure 5-4 FTIR spectrum of SiO2@CoFe-PBA.  

 

 

Figure 5-5 XRD patterns of (a) CoFe-PBA and (b) SiO2@CoFe-PBA. The unite cell of 

K2Co[Fe(CN)6] (CCDC 28669) is also shown (The Co:Fe ratio in the model structure is 1:1.). 
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Figure 5-6 XRD patterns and the patterns calculated by the Pawley fitting analysis of (a) 

CoFe-PBA and (b) SiO2@CoFe-PBA.   

 

Table 5.1 Lattice constants obtained by the Pawley fitting of XRD data.  

 CoFe-PBA SiO2@CoFe-PBA 

Space group F4̅5m F4̅5m 

a (Å) 10.0154(4) 10.0363(4) 

b (Å) 10.0154(4) 10.0363(4) 

c (Å) 10.0154(4) 10.0363(4) 

α(°) 90 90 

β(°) 90 90 

γ(°) 90 90 

V (Å3) 1004.64(12) 1010.91(13) 

wR (%) 11.528 10.746 

GOF 1.41 1.39 

 

Recently, lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) with PB and 

PBAs as electrode materials have been widely explored.[19,20] Owing to the high abundance 

and suitable redox potential, SIBs are considered possible replacements for LIBs, especially 

for applications in large energy storage devices.[21] It is widely accepted that the nanostructure 

of materials holds the key to their electrochemical reactivity.[22, 23] In this context, PB and 

PBAs offer a solution, because they possess a three-dimensional open framework with large 

interstitial sites for a high rate of mass transfer to ward alkali cations that can improve their 

cycle performance at high currents.[19,20] In particular, the hollow structure is known to 
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improve the electrochemical properties of electrode materials in LIBs and SIBs, as the unique 

nature of hollow microstructures can offer more favorable pathway for the electrolyte and 

enlarge the electro-chemically active surface area of electrode materials. Thus, to understand 

the effect of the nanostructure modification of CoFe–PBA on the electrochemical sodium-ion 

storage characteristics, solid and hollow CoFe–PBA materials were investigated as cathode 

materials for SIBs. Figure 5-7a shows the voltage profiles of solid and hollow CoFe–PBA 

cathodes for SIBs. Even though their capacities were relatively low compared to that of other 

PBA cathodes in previous reports,[24, 25] I clearly found that the hollow nanostructure could 

significantly improve the sodium-ion storage characteristics of CoFe–PBA cathode materials. 

Although the solid CoFe–PBA electrode showed just 12.5 mAhg-1 in the first cycle, the hollow 

structured CoFe–PBA electrode showed reversible capacities that were approximately two 

times higher than the non-treated solid homologue in the same cycle. The inset of Figure 5-7a 

shows the differential capacity plots (DCPs) of solid and hollow CoFe–PBA electrodes for the 

first cycle. Upon the charging process, the DCP peak of the hollow CoFe–PBA electrode was 

observed at a lower potential (3.30 Vvs. Na/Na+) than that of solid CoFe–PBA (3.38 Vvs. 

Na/Na+). This result combined with the much-improved capacity of hollow CoFe–PBA clearly 

reveals that nanostructure modification can reduce the over potential of the CoFe–PBA 

electrode during cycling. Such an improvement in the hollow CoFe–PBA cathode can be 

explained by the aforementioned nanostructure, which is highly favorable for electrochemical 

sodium-ion insertion and removal in CoFe–PBA. As shown in Figure 5-7b, hollow CoFe–

PBA electrode shows fairly stable cycle performance during cycling without significant 

decrease in the capacity, which is almost double that of the untreated solid CoFe–PBA 

electrode. This result suggests that the hollow structuring of CoFe–PBA does not have a 

negative influence on the reliability of repeated sodium-ion insertion and removal process over 

100 cycles. 
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Figure 5-7 (a) Voltage profiles during the initial two cycles and (b) cycle performance of solid 

and hollow Co-Fe cube. 
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5.4. Conclusion  

I demonstrated the formation of hollow CoFe–PBA nanocubes by using silica spheres 

as hard templates and examined their feasibility as cathode materials for SIBs. The silanol 

groups on the surface of the silica spheres reacted with cobalt cations in the first step. 

Nucleation of CoFe–PBA started simultaneously upon addition of iron cyanide ligands in the 

second step. After aging overnight, a thin shell of CoFe–PBA was successfully formed on the 

surface of the silica spheres. Silica cores were then removed by chemical etching, yielding 

hollow CoFe–PBA nanocubes. The hollow nanostructure of CoFe–PBA nanocubes helps to 

improve the storage capacity of sodium ions with stable cycle performance compared to the 

solid CoFe–PBA nanocubes. I strongly believe that my synthetic approach will be useful in the 

future for the formation of various PB and PBAs with open frame works, high specific surface 

area, improved storage capacity, and stable cycle performance at high currents for SIBs.  
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Chapter 6-1 

Cyano-Bridged Cu-Ni Coordination Polymer Nanoflakes 

and Their Thermal Conversion to Mixed Cu-Ni Oxides 
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6-1.1. Introduction 

Coordination polymers (CPs) have drawn significant attention because of their recent 

potential for energy and environmental applications.[1,2] Nanoarchitectures constructed from 

various molecular building blocks can bring out new chemical and physical properties through 

the creation of porous frameworks. Recently, one-dimensional (1D) (e.g., nanorods, 

nanowires),[3] two-dimensional (2D) (e.g., nanosheets, nanoflakes),[4] three-dimensional (3D) 

nanostructures (e.g., nanocubes)[5] and bulk material[6] have been synthesized under various 

controlled synthetic conditions. Among these, 2D nanomaterials have attracted the most 

interest because of their novel physical or chemical properties which are distinct from their 

bulk counterparts.[7–10] 2D nanostructures possess highly accessible surface area which can 

enable guest molecules to effectively access the pore surface. Moreover, they exhibit numerous 

active sites which can boost the catalytic and electrochemical performance and more 

importantly, assembled 2D nanostructures are highly useful as membrane filters. Previously, 

ultrasonication-induced exfoliation methods have been used to prepare MOF (metal-organic 

framework) nanosheets.[7,8] Although exfoliation methods possess some important 

advantages, they are somewhat inconvenient due to the complicated synthetic procedures and 

the need for special equipment. Therefore, the development of a facile and convenient method 

for the large-scale preparation of 2D CPs is highly desired. 

Among various CPs, cyano-bridged CPs have attracted increasing scientific interests in 

various fields, such as gas storage, batteries, catalysis, gas capture and separation, charge 

transfer, drug delivery, sensing and environmental clean-up.[11–14] Cyanide groups can act as 

a bridge between metals ions. The controlled thermal treatment of cyano-bridged CPs can lead 

to the creation of nanoporous hybrid metal oxides. During the thermal treatment of CPs in air, 

the metallic constituents remain in the frameworks and become oxidized to metal oxides, while 

the removed -CN- components can generate nanoporosity.[4,5] This method therefore can 

overcome the limitations of conventional methods (e.g., soft- and hard-templating methods) 

for the synthesis of nanoporous metals oxides.[15] 
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In this chapter, I demonstrate the fabrication of a series of 2D cyano-bridged Cu-Ni CP 

nanoflakes through a controlled crystallization process with the assistance of trisodium citrate 

dihydrate (TSCD). Following thermal treatment in air, the -CN- constituents present within the 

Cu-Ni CP nanoflakes are removed and the metals Cu and Ni become oxidized to generate Cu-

Ni mixed oxide nanoflakes with nanoporous structures. The effects of pertinent parameters, 

such as the concentration of TSCD and calcination temperature on the phase composition and 

morphology of the Cu-Ni CPs and the corresponding Cu-Ni mixed oxide nanoflakes were 

investigated. 

Metal oxides and metal hydroxides have been studied and used for energy storage and 

conversion.[16–20] Especially, mixed metal oxides are very attractive due to the enhanced 

capacitance for supercapacitors.[21–25] Here, the electrochemical performance of the Cu-Ni 

mixed oxide nanoflakes calcined at different temperatures (300–500oC) for supercapacitors 

was investigated using a three-electrode system and the important parameters were evaluated.  

6-1.2. Experimental Sections 

6-1.2.1. Chemicals 

Potassium tetracyanonickelate hydrate (K2[Ni(CN)4].xH2O) was purchased from 

FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Copper nitrate trihydrate 

(Cu(NO3)2.3H2O) and trisodium citrate dehydrate (Na3C6H5O7.2H2O) were obtained from 

Nacalai Tesque (Japan). All chemical reagents were used as received without additional 

purification steps.  

6-1.2.2. Synthesis of 2D Cu-Ni CP flakes. 

Cu(NO3)2.3H2O and trisodium citrate dehydrate (TSCD) were mixed together in 50 mL 

of water at room temperature to form a clear solution. In a separate bottle, K2[Ni(CN)4] was 

dissolved in 50 mL water to form another clear solution. Then, the two solutions were mixed 

under magnetic stirring until the solution became clear and the resulting mixture was aged at 

room temperature for 24 h. After completion of the reaction, the precipitate was collected by 

centrifugation. Then, the product was thoroughly washed with water and ethanol for several 

times. Following drying at ambient temperature, 2D Cu-Ni CP nanoflakes were obtained. The 
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amount of trisodium citrate dehydrate (TSCD) was varied to prepare Cu-Ni nanoflakes with 

different size. The sample names are abbreviated as Cu-Nix where x is the amount of TSCD 

(g). The detailed quantity of chemicals used for the synthesis is summarized in Table 6-1.1. 

 

Table 6-1.1 Synthetic conditions of the various 2D Cu-Ni CPs. Sample 

Sample Cu(NO3)2·3H2O (g) K2[Ni(CN)4] (g) TSCD (g) Surface Area (m2 g-1) 

Cu-Ni_0.00 0.120 0.120 0.00 31.54 

Cu-Ni_0.15 0.120 0.120 0.15 48.97 

Cu-Ni_0.20 0.120 0.120 0.20 47.69 

Cu-Ni_0.25 0.120 0.120 0.25 34.43 

 

6-1.2.3. Thermal conversion from 2D Cu-Ni nanoflakes to mixed metal 

oxides. 

The obtained Cu-Ni_0.20 nanoflakes were used as the precursor and heated from room 

temperature to the desired temperature with a heating rate of 5oC min−1 in air. After reaching 

the targeted temperature (300, 400 and 500oC), the samples were annealed for 1 h to complete 

the thermal decomposition of the Cu-Ni CP nanoflakes and then, they were cooled naturally to 

room temperature. The samples are labeled as Cu-Ni_x_y where x is the amount of TSCD (g) 

and y is the applied calcination temperature. 

6-1.2.4. Characterization. 

Wide-angle XRD patterns of the samples were collected using a Rigaku RINT 2500X 

diffractometer with monochromated Cu-Kα radiation (40 kV, 40 mA) at a scanning rate of 1◦ 

min−1. The parallel beam optics was used, which is the general way to analyse the powder 

sample. The morphological characterization of the samples was performed using a Hitachi 

SU8000 scanning electron microscope (SEM) operated at an accelerating voltage of 5 kV. 

Transmission electron microscopy (TEM) observation was performed using a JEM-2100F 

TEM system that was operated at 200 kV and equipped with energy-dispersive spectrometer 

(EDS). The crystal structure of the compound after calcination at 500oC was obtained by the 
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Pawley method using two starting structure model of CuO and NiO, with the GSAS II program 

and plotted with zero-shift correction and background subtraction.[26] Thermogravimetric-

differential thermal analysis (TG-DTA) of the samples was performed using a Hitachi HT–

Seiko Exter 6300 TG/DTA from room temperature to 1000oC under air at a fixed heating rate 

of 5oC min–1. N2 adsorption-desorption isotherms of the samples were achieved by employing 

a Quantachrome Autosorb gas sorption system at 77 K. Fourier transform infrared spectroscopy 

(FTIR) was used to identify the chemical constituents present on the samples. The samples 

were mixed with potassium bromide (KBr) and pressed into pellets. The FTIR spectra were 

collected at room temperature by using the Thermoscientific Nicolet 4700 instrument. UV-vis 

spectra were collected with the use of V-570 UV-Vis-NIR spectrophotometer made by JASCO. 

6-1.2.5. Electrochemical measurements. 

The electrochemical measurements were performed by using an electrochemical 

workstation (CHI 660e, CH Instruments). For the three-electrode measurements, Ag/AgCl and 

platinum wire were utilized as the reference electrode and counter electrode, respectively. The 

glassy carbon substrate (1 cm2) was used as the current collector. The working electrode was 

prepared by coating a slurry containing the active material (1 mg, 85 wt.%), super P (10 wt.%), 

polyvinylidene fluoride binder (PVDF) (5 wt.%), and N-methyl-2-pyrrolidone on carbon paper 

as the current collector. The proper amount of slurry was carefully dropped on the glassy carbon 

electrode (GCE). The coated electrode was dried in a vacuum oven at 80oC for 12 h. All the 

electrochemical measurements were conducted using 6 MKOH (aq) as the electrolyte. The 

gravimetric capacitances were calculated from the CV curves by using the following equation: 

Cg=
1

𝑚𝑠(𝑉𝑓−𝑉𝑖)
∫ 𝐼(𝑉)𝑑

𝑉𝑓

𝑉𝑖
𝑉 

where ‘Cg’ is gravimetric capacitance (F g−1), ‘s’ is the potential scan rate, ‘V’ is potential 

window, ‘I’ is current (A), ‘t’ is discharge time (s) and ‘m’ is the mass of active material in 

gram. 

The galvanostatic charge-discharge (GCD) measurements were carried out at varying 

current densities of 1, 2, 4, 6 and 10 A g−1. The gravimetric capacitances were calculated from 

the GCD curves via the following equation: 
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Cg=
1×∫ 𝑉 𝑑𝑡

𝑀×∆𝑉2
 

where ‘Cg’ represents the gravimetric capacitance (F g−1), ‘∆V’ represents the potential 

window, ‘I’ represents the current (A), ‘t’ represents the discharge time (s), and ‘M’ represents 

the total mass of active material (g). 

6-1.3. Results and Discussion 

The morphology of the as-prepared Cu-Ni CP particles was characterized using SEM, 

as presented in Figure 6-1.1. It is clear from this Figure that the concentration of TSCD is 

critical for controlling the structure and size of the formed 2D CP nanoflakes. Without TSCD, 

only irregularly-shaped nanoparticles with severe aggregation are obtained. (Figure 6-1.1a). 

In contrast, with increasing amount of the chelating agent, the nanoflake morphology becomes 

more obvious. It is well known that the particle size of nanoparticles is strongly influenced by 

the balance between nucleation and crystal growth. Based on the UV-vis spectra (Figure 6-

1.2), it can be observed that following the addition of TSCD, the intensity of the maxima 

absorption peak of the Cu(NO3)2 solution is greatly enhanced and the position of the peak is 

slightly shifted. These changes are largely caused by the coordination reaction between citrate 

ions and Cu2+ ions [27,28]. The addition of TSCD creates a chelating effect which decelerates 

the coordination reaction between Cu2+ and K2[Ni(CN)4], thus leading to the reduction in 

crystallization speed of the CP particles. Yamauchi group has previously discovered that in the 

absence of citrate ions, very rapid formation of CP was achieved, and the reaction was 

terminated within a relatively short time. Thus, by implementing TSCD into the reaction 

system, the crystallization process of CP was delayed.[29,30] The previous 1H NMR study 

demonstrated that that citrate anions can stabilize the metal ions (e.g., Ni2+) in the solution and 

the free metal ions released from the citrate complex can slowly react with K2[Ni(CN)]4 to 

form the cyano-bridged Ni-Ni CP.[4] In the current reaction system, Cu2+ ions are freed in a 

controlled manner from the Cu-citrate complex and react with [Ni(CN)4]
2− at the beginning of 

the reaction. This reaction leads to the generation of nuclei which undergo further growth by 

interacting with the free Cu2+ ions and [Ni(CN)4]
2− to form the final Cu-Ni CP. Therefore, with 

increasing concentration of TSCD, the amount of nuclei generated at the beginning of the 
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reaction is reduced (Figure 6-1.1c,d). As a result, fewer nuclei undergo crystal growth by 

interacting with [Ni(CN)4]
2− and Cu-Ni CP nanoflakes with larger sizes are obtained. In 

contrast, at lower concentrations of TSCD (Figure 6-1.1a,b), more free Cu2+ ions are available 

to react with [Ni(CN)4]
2− immediately. Consequently, there is a greater amount of nuclei which 

undergo rapid growth at the initial stage of the reaction, leading to smaller-sized nanoflakes, as 

shown in Figure 6-1.1a. TEM images of the Cu-Ni CP synthesized under the typical conditions 

(Cu-Ni_0.20) are shown in Figure 6-1.3. The flake-like morphology is clearly observed over 

the entire area.  

 

 

Figure 6-1.1 SEM images of 2D Cu-Ni CPs prepared with different amount of TSCD: (a) Cu-

Ni_0.00; (b) Cu-Ni_0.15; (c) Cu-Ni_0.20 and (d) Cu-Ni_0.25). 
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Figure 6-1.2 UV-vis spectra of Cu(NO3)2 solution with and without TSCD. 

 

 

Figure 6-1.3 TEM image of Cu-Ni_0.2. 
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Figure 6-1.4 shows the FTIR spectrum of Cu-Ni_0.20, in which the presence of cyano-

bridged complexes is identified by the existence of a sharp stretching band (CN) at 2000-2200 

cm−1.[31–33] The FTIR spectrum of the K2[Ni(CN)4]·xH2O shows a sharp stretching vibration 

(CN) at 2123 cm–1.[34] In the FTIR spectrum of Cu-Ni_0.20, there is a shift of the stretching 

vibration (CN) band to a higher wavenumber of 2170 cm−1.[35,36] This shift is caused by the 

stringing of the CN bond with other metal ions (Cu-CN-Ni) due to the kinematic effect [36,37]. 

In addition, the two peaks at 3450 cm−1 and 1616 cm−1 correspond to the O-H stretching 

vibration and the H-O-H bending vibration of water existing in the Cu-Ni_0.20 sample. 

[31,32,38,39] 

 

 

Figure 6-1.4 FTIR spectra of (a) K2Ni(CN)4·H2O and (b) Cu-Ni_0.20.  

 

In order to investigate the porosity, nitrogen (N2) adsorption-desorption measurements 

were performed for all the CPs prepared with different amount of TSCD. Prior to the 

measurements, all the samples were degassed at 150°C for 24 h. This degassing condition is 

sufficient for achieving complete removal of water molecules from the Cu-Ni CPs, as will be 

explained in the later section. The BET surface areas of the Cu-Ni_0.15 and Cu-Ni_0.20 
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samples are 49.0 and 47.7 m2 g−1, respectively, while the surface area of the Cu-Ni sample 

prepared without TSCD (Cu-Ni_0.00) is the lowest at 31.5 m2 g−1. In the case of irregularly 

shaped particles (Cu-Ni_0.00), N2 gas cannot easily access the undeveloped pores, thereby 

leading to a low surface area. By further increasing the amount of TSCD, the surface area of 

Cu-Ni_0.25 is decreased to 34.4 m2 g−1. Thus, the accessibility of N2 gas to the particle interior 

varies depending on particle sizes. 

The TG-DTA analysis of the typical sample Cu-Ni_0.2 under air atmosphere is shown 

in Figure 6-1.5. A small weight loss at temperatures below 200°C is attributed to the release 

of water molecules existing in the Cu-Ni CPs. Following this, a clear endothermic reaction 

occurs at around 350°C and a large weight loss is observed at this stage as -CN- constituents 

are removed, and the metallic constituents are oxidized in air. In this work, I calcined the CPs 

at 300°C (minimal), however after reaching the designated temperature, the samples were 

annealed for 1 h to complete the thermal decomposition of Cu-Ni flakes. This thermal treatment 

is sufficient to completely remove the -CN- groups present within the CP nanoflakes and no 

carbon is present in the final product.  

 

 

Figure 6-1.5 TG-DTA data of Cu–Ni_0.2. The measurement was carried out in air. 
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The SEM images of the various nanoporous metal oxide samples derived from the 

calcination of Cu-Ni_0.2 CP nanoflakes at different temperatures (300 and 500°C) are shown 

in Figure 6-1.6. The sample calcined at 300°C almost entirely retains the original morphology 

of the Cu-Ni CP before calcination. However, when the applied calcination temperature is 

increased, a large structural change occurs through the fusion of several pores/voids via further 

crystallization of the framework. Wide-angle XRD patterns for the various calcined samples 

are shown in Figure 6-1.7 a–c. The XRD patterns of the samples calcined at 300, 400 and 

500°C show no peaks originating from impurities or unoxidized Cu or Ni phase. All the peaks 

are in agreement with the standard JCPDS cards for CuO (No. 48-1548) and NiO (No. 47-

1049). With the increase of applied calcination temperature, the full width at half maximums 

(FWHMs) are decreased, suggesting that the average crystallite sizes increase. Elemental 

analysis for the sample calcined at 300°C (Cu-Ni_0.20_300) shows that the resulting metal 

oxide product has similar content of Cu (37.90 at.%) and Ni (37.20 at.%). This ratio is almost 

similar to the starting composition before calcination, indicating the absence of evaporation of 

the metallic constituents. 

 

 

Figure 6-1.6 SEM images of (a) Cu-Ni_0.00_300; (b) Cu-Ni_0.15_300; (c) Cu-Ni_0.20_300; 

(d) Cu-Ni_0.25_300; (e) Cu-Ni_0.00_500; (f) Cu-Ni_0.15_500; (g) Cu-Ni_0.20_500 and (h) 

Cu-Ni_0.25_500. 
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Figure 6-1.7 Wide-angle XRD patterns of the calcined samples at various temperatures ((a) 

300°C; (b) 400°C and (c) 500°C) of (i) Cu-Ni_0.00, (ii) Cu-Ni_0.15, (iii) Cu-Ni_0.20 and (iv) 

Cu-Ni_0.25; (d) Powder XRD pattern of Cu-Ni_0.20_500 and refinement by the Pawley 

method. 

 

After thermal treatment at 300 ◦C, the sample (Cu-Ni_0.20_300) was characterized by 

TEM (Figure 6-1.8). Small crystals with sizes between 5–10 nm aggregate together to form 

the nanoporous architecture. From the HRTEM image of this sample, clear lattice fringes with 

respective d-spacing of 0.21 nm and 0.24 nm are observed, which can be indexed to the (111) 

and (200) planes of NiO crystal, while the d-spacing of 0.25 nm is well matched with the d-

spacing of (111) plane of CuO [40,41]. High angle annular dark field scanning transmission 

electron microscope (HAADF-STEM) images and the corresponding elemental mapping data 

confirm the flake-like structure and reveal the uniform distribution of the composing elements, 
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Ni, Cu and O throughout the entire area (Figure 6-1.9). These results therefore confirm the 

successful conversion of the Cu-Ni CPs into nanoporous oxides after calcination. 

 

 

Figure 6-1.8 TEM image of Cu-Ni_0.2_300. 
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Figure 6-1.9 (a) HAADF-STEM image and (b–d) the corresponding elemental mapping ((b) 

oxygen, (c) copper, and (d) nickel) images of Cu-Ni_0.20_300. 

 

The surface area of the sample calcined at 300oC (Cu-Ni_0.20_300) is higher than the 

other samples calcined at higher temperatures (Cu-Ni_0.20_400 and Cu-Ni_0.20_500). As the 

applied thermal temperature is increased, the surface area is greatly decreased from 43.1 m2 

g−1 (Cu-Ni_0.20_300) to 11.1 m2 g−1 (Cu-Ni_0.20_400) and 6.2 m2 g−1 (Cu-Ni_0.20_500) due 

to the fusion of pores during the crystallization of the framework. Furthermore, with increasing 

calcination temperature, larger crystals are observed on the surface of the samples (Figure 6-

1.6g,h). Figure 6-1.7d shows the XRD pattern of Cu-Ni_0.20_500 and refinement by the 

Pawley method. Clearly, the presence of two phases (CuO and NiO) are confirmed. The space 

group of Fm3̅m of NiO structure with lattice constants, a = 4.178(1) Å, b = 4.178(1) Å and c = 

4.178(1) Å as well as CuO structure with C2/c space group with lattice parameters, a = 4.683(7) 

Å, b = 3.422(6) Å and c = 5.128(8) Å, respectively. Finally, the reliability factors are identified 

as Rwp=29.25% and RB=12.32% and GOF = 1.04. The results of the structural and 

crystallographic analyses of the sample Cu-Ni_0.20_500 are summarized in Table 6.1-2.  
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Table 6.1-2 Crystallographic data for the compound Cu–Ni_0.20_500, obtained by refinement 

by the Pawley method. 

Compound 1 2 

Formula CuO NiO 

Space 

group 
C2/c Fm3m 

a/Å 4.683(7) 4.178(1) 

b/Å 3.422(6) 4.178(1) 

c/Å 5.128(8) 4.178(1) 

𝛼(°) 90.00 90.00 

𝛽(°) 99.54 90.00 

𝛾(°) 90.00 90.00 

V/Å3 81.0798 72.9298 

wR(%)* 3.2 1.6 

 

It is well-known that transition metal oxides are highly useful for supercapacitor 

applications due to their redox activity and high specific capacitance.[41,42] To evaluate the 

electrochemical storage performance of all the Cu-Ni oxide samples, a three-electrode system 

was used with 6 MKOH as the electrolyte. Cyclic voltammetry (CV) measurements of Cu-

Ni_0.20_300, Cu-Ni_0.20_400 and Cu-Ni_0.20_500 were conducted in the potential window 

of 0–0.5 V which is the well-known potential window of Cu-Ni oxide for supercapacitor 

application (Figure 6-1.10a–c).[41] Based on the CV curves, the specific capacitance values 

of Cu-Ni_0.20_300, Cu-Ni_0.20_400 and Cu-Ni_0.20_500 at a scan rate of 50 mV s−1 are 

determined to be 222.6, 149.6, and 134.5 F g−1, respectively (Figure 6-1.10d). Among all the 

samples, Cu-Ni_0.20_300 shows the highest specific capacitance at all scan rates because of 

its high surface area, although it shows lower capacitance retention at higher scan rates. The 

sample Cu-Ni_0.20_500 exhibits good capacitance retention of 71%, while the sample Cu-

Ni_0.20_300 has poor capacitance retention of 46%. This may be attributed to the higher 

stability of Cu-Ni oxide composite calcined at higher temperatures. In addition, galvanostatic 

charge-discharge (GCD) measurements were also carried out for Cu-Ni_0.20_300 at different 
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current densities. This sample exhibits a specific capacitance of 158 F g−1 at a current density 

of 1 A g−1 and displays good stability up to 10 A g−1 (Figure 6-1.10e, f). 

 

 

Figure 6-1.10 CV curves of Cu-Ni oxides calcined at (a) 300 ◦C, (b) 400 ◦C, and (c) 500 ◦C at 

various scan rates ((a) Cu-Ni_0.20_300, (b) Cu-Ni_0.20_400, and (c) Cu-Ni_0.20_500). (d) 

Specific capacitance versus scan rate plots for all the samples. (e) GCD curves and (f) specific 

capacitance of Cu-Ni_0.20_300 at different current densities. 

 

6-1.4. Conclusion 

I have demonstrated the successful fabrication of 2D Cu-Ni CP nanoflakes via a 

controlled crystallization process with the assistance of TSCD. It is found that the concentration 

of TSCD strongly influenced the size and morphology of the resulting Cu-Ni CPs, with higher 

concentration of TSCD leading to more well-defined and larger-sized nanoflakes due to the 

reduction in crystallization speed of Cu-Ni CPs. These Cu-Ni CPs were subsequently converted 

into nanoporous Cu-Ni mixed oxides via thermal treatment in air at 300–500oC and they 
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showed respectable electrochemical performance for supercapacitors with a maximum specific 

capacitance 158 F g−1 at 1 A g−1 and good capacitance retention of 71%. It is expected that the 

proposed method will be useful for the preparation of other types of 2D and 3D CPs as 

precursors for the synthesis of various nanoporous metal oxides for energy and environmental 

applications. 
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In-Situ Formation of Cu-Ni Cyano-Bridged Coordination 

Polymer on Graphene Oxide Nanosheets and Their 

Thermal Conversion  
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6-2.1. Introduction 

In the past decade, hybrid nanomaterials have attracted significant interest for various 

applications, such as catalysts, adsorbents, energy storage devices, and sensors, because of their 

outstanding properties which combine the advantages of two or more constituents.[1] The 

layer-by-layer (LbL) approach which relies on the chemical or physical interactions between 

two materials is a promising method for preparing hybrid materials, as it is simple, versatile, 

and cost-effective.[2-4] Two-dimensional (2D) graphene oxide (GO) nanosheets have been 

widely utilized as important host materials for hybridization with other inorganic and organic 

materials, because they possess several attractive intrinsic properties, including high electrical 

conductivity and strong mechanical properties.[5-7] 

The coordination polymers (CPs) including metal-organic frameworks (MOFs) and 

porous coordination polymers (PCPs) have gained significant attention for their high surface 

area, large pore volume, and tunable shape (from 1D to 3D) and composition.[8-11] As a result 

of these excellent characteristics, they have been investigated for a wide variety of applications, 

such as energy storage, adsorption, catalysis, sensing and drug delivery.[12,13] Among them, 

cyano-bridged CPs can serve as highly versatile precursors for the preparation of various 

nanoporous metal oxides through simple post-synthesis annealing in air.[14-17] In particular, 

2D cyano-bridged CPs are interesting because they show many outstanding properties that are 

not observable in their bulk counterpart.[18-19] Correspondingly, the 2D nanoporous metal 

oxides derived from these 2D cyano-bridged CPs typically exhibit large accessible surface area 

to permit guest molecules to effectively access the nanopores or to provide numerous active 

sites for the adsorption of ions or molecules. 

In this chapter, I report the synthesis of a novel hybrid CuCNNi/GO hybrid material 

consisting of Cu-Ni cyano-bridged CP and GO nanosheets which can be converted into Cu-Ni 

oxide/graphene composites by simple thermal treatment in air at temperatures between 300-

600oC. During the heat treatment, the cyanide group in the original CuCNNi/GO precursor was 

removed and such removal resulted in the generation of porous Cu-Ni oxide. The Cu-Ni 

oxide/GO composite calcined at the optimum temperature of 500°C displays a high surface 
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area of 145 m2 g-1 which is much higher than those of individual Cu-Ni oxide (11.1 m2 g-1) and 

GO nanosheets (34.9 m2 g-1).[6]  

6-2.2. Experimental Sections 

6-2.2.1. Chemicals 

Potassium tetracyanonickelate (II) hydrate (K2[Ni(CN)4]·H2O) was purchased from 

FUJIFILM Wako Pure Chemical Corp., Japan. Copper (II) nitrate trihydrate (Cu(NO3)2·3H2O) 

and trisodium citrate dihydrate (TSCD) were purchased from Nacalai Tesque, Japan. 

Nanographite platelets (N008-100-N) with 100 nm thickness was used to prepare graphene 

oxide (GO) nanosheets (Angestron materials Inc.). Potassium permanganate (KMnO4), 30% 

hydrogen peroxide (H2O2) solution and sodium nitrate (NaNO3) were purchased from Kanto 

Chemicals Co., Inc. All chemical reagents were used without further purification. 

6-2.2.2. Synthesis of GO nanosheets. 

GO nanosheets were synthesized using a modified Hummer’s method.[20] In a typical 

process, nanographite platelets (0.3 g) and sodium nitrate (0.16 g) were first mixed together, 

followed by the addition of concentrated sulfuric acid solution (7.67 mL) and the resulting 

mixture solution was stirred continuously for 1 h. Next, at a temperature lower than 20oC, 

KMnO4 (1.0 g) was added gradually into the mixture solution. Then, this solution was heated 

at 35oC for 2 h followed by the addition of pure water (83 mL) under vigorous stirring. The 

obtained suspension was subsequently treated with an aqueous 30% H2O2 solution (1.67 mL) 

and the resulting colloidal solution was stored for further synthesis. 

6-2.2.3. Synthesis of Cu-Ni cyano-bridged CP. 

Cu(NO3)2·3H2O (0.120 g) and TSCD (0.200 g) were mixed together with 50 mL of 

water at room temperature to form a clear solution. In a separate bottle, K2[Ni(CN)4] (0.120 g) 

was dissolved in 50 mL of water to form another clear solution. Then, the two solutions were 

mixed under magnetic stirring until the solution became clear. The mixture was then aged at 

room temperature for 24 h. After the reaction was terminated, the solid precipitates were 

collected by centrifugation and washed for several times with water and ethanol. 
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6-2.2.3. In situ formation of Cu-Ni cyano-bridged CP on GO nanosheets.  

In a typical procedure, Cu(NO3)2·3H2O (0.120 g) and TSCD (0.200 g) were dissolved 

in water (20 mL) to generate a clear solution. This solution was added dropwisely into the GO 

solution (20 mL, 2 mg mL-1) followed by stirring for 30 min. The obtained mixture was gently 

mixed with an aqueous solution of K2[Ni(CN)4] (0.120 g in 20 mL H2O). The resulting 

suspension was aged for two days until reaction was completed. The precipitate was isolated 

by centrifugation. After washing with water and ethanol, the resulting CuCNNi/GO hybrid was 

dried at room temperature. For the preparation of Cu-Ni oxide/GO composites, the obtained 

CuCNNi/GO powder was calcined at different temperatures (300, 400, 500 and 600oC) with a 

heating rate of 1oC min-1 for 1 h in the air. The samples were labeled as Cu-Ni oxide/GO_x, 

where x is the applied calcination temperature. 

6-2.2.3. Characterization.  

The morphological characterization of the samples was performed using a Hitachi 

SU8000 scanning electron microscope (SEM) operated at an accelerating voltage of 5 kV and 

a JEOL JEM-2100F transmission electron microscope (TEM) operated at an accelerating 

voltage of 200 kV. Wide-angle powder X-ray diffraction (XRD) patterns of the samples were 

obtained with a Rigaku RINT 2500X diffractometer using monochromated Cu Kα radiation 

(40 kV, 40 mA). Nitrogen adsorption-desorption measurements were carried out using a 

Belsorp-mini II Sorption System at 77 K. The specific surface area and pore size distribution 

were calculated by the multipoint Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda 

(BJH) methods, respectively. The Fourier transform infrared spectroscopy (FTIR) 

measurements were performed in the range of 500 to 4000 cm–1 at room temperature (RT) by 

using a Thermoscientific Nicolet 4700. Thermogravimetric and differential thermal analysis 

(TG–DTA) were performed simultaneously from RT to 600oC, using a Hitachi HT-Seiko 

Instrument Exter 6300 TG/DTA in air at a heating rate of 5oC min–1. 
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6-1.3. Results and Discussion 

 

Figure 6-2.1 (a)SEM images of (a) the starting GO nanosheets, (b,c) the as-prepared 

CuCNNi/GO hybrid. (d) TEM image of as-prepared CuCNNi/GO sample. 

 

The as-prepared GO nanosheets show a typical 2D sheet-like structure, as seen in 

Figure 6-2.1a. The surface of the GO nanosheets is negatively charged, due to the presence of 

functional groups, such as carboxylic acid and hydroxyl groups.[21,22] These functional 

groups can serve as bridging sites for interacting with metal cations, such as Cu2+. Following 

the addition of Cu2+ ions to GO nanosheets, the GO surface charge becomes positive. Next, the 

addition of [Ni(CN)4]
2- into the above mixture solution initializes the formation and growth of 

CuCNNi flakes on the GO surface. Finally, the GO nanosheets are wrapped around the 

CuCNNi flakes (Figure 6-2.1b-d).  

The cross-sectional TEM image shown in Figure 6-2.2a reveals that the CuCNNi flakes 

uniformly grow on the GO surface and they are encapsulated between the GO nanosheets. 

Furthermore, the cross-sectional HAADF-STEM image and the corresponding elemental 

mapping images of C, Ni, and Cu indicate the formation of a well-defined layered architecture 
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(Figure 6-2.2). For comparison, pristine CuCNNi nanoflakes were also prepared without GO 

nanosheets. The resulting CuCNNi product shows an almost identical flake-like shape as the 

CuCNNi flakes grown on the GO nanosheets with sizes of around 100-200 nm (Figure 6-2.3). 

FTIR spectra of the resulting CuCNNi/GO sample is show in Figure 6-2.4. The C≡N bond 

from Cu-CN-Ni can be observed at 2186 cm-1. The functional group of C=O in carboxylic acid 

and carbonyl moieties, C=C, C-OH, and C-O-C of GO sheets can be observed in the hybrid 

materials, respectively.[23,24] 

 

  

Figure 6-2.2 Cross-sectional HAADF-STEM and the corresponding elemental mapping 

images (C, Cu, and Ni) of the as-prepared CuCNNi/GO hybrid. 
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Figure 6-2.3 SEM image of CuCNNi nanoflakes prepared without GO nanosheets. 

 

Figure 6-2.4 FTIR spectra of CuCNNi/GO hybrid.  

 

The thermal stability of the GO nanosheets and CuCNNi nanoflakes were studied by 

TG-DTA under air atmosphere (Figure 6-2.5). In the case of GO nanosheets, a sharp peak of 

DTA curve is confirmed, indicating that a large amount of labile oxygen-containing functional 

groups (e.g., -COOH and -OH) are removed from the GO surface. While, for the CuCNNi case, 

a small weight loss is observed until 300oC, which can be attributed to the removal of adsorbed 

water molecules. At around 350oC, a large weight loss is observable, in which the -CN- group 

starts to decompose and form the corresponding metal oxide. Until 500oC, the weight losses of 

the GO and CuCNNi samples are about 50 and 30 %, respectively. 
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Figure 6-2.5 TG-DTA curves of (a) GO nanosheets and (b) CuCNNi flakes in air. 

 

The thermal conversion of the CuCNNi/GO hybrid into porous Cu-Ni oxide/GO 

composites was performed in air at various temperatures (300, 400, 500 and 600oC). The 

samples were labeled as Cu-Ni oxide/GO_x, where x is the applied calcination temperature. 

The morphology of the calcined samples was checked by SEM. As shown in Figure 6-2.6, the 

GO nanosheets are preserved after the high-temperature treatment and the 2D Cu-Ni oxide 

nanoflakes are well-encapsulated within the GO nanosheets.   
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Figure 6-2.6 SEM images of (a) Cu-Ni oxide/GO_300, (b) Cu-Ni oxide/GO_400, (c) Cu-Ni 

oxide/GO_500, and (d) Cu-Ni oxide/GO_600. 

 

The HAADF-STEM images and the corresponding elemental mapping data of the Cu-

Ni oxide/GO composites are shown in Figure 6-2.7. The carbon distribution throughout the 

entire area appears to decrease with the increase of calcination temperature from 300 to 500 °C. 

However, the elements Cu, Ni, and O are uniformly distributed throughout the entire area. From 

the ICP elemental analysis, the compositional ratio of Cu:Ni of CuCNNi/GO before the thermal 

treatment is 1:1 and this ratio is maintained in the Cu-Ni oxide/GO_500 sample. Thus, the 

compositional ratio of Cu:Ni is not affected by the thermal treatment process. The PXRD 

patterns of the hybrid materials after calcination at different temperatures are given in Figure 

6-2.8. The peaks at 35.6, 38.6, 48.8, 53.4 and 58.2 o are assigned to (002/111̅), (111/200), (2̅02), 

(020) and (202) peaks of the CuO, and the other peaks at 37.0, 43.3 and 62.7o are assigned to 

(111), (200) and (220) of the NiO.[25,26] The peak at 26.5o belonging to GO nanosheets 

becomes weaker and slowly disappears with increasing calcination temperature. The intensities 

of CuO and NiO diffraction peaks gradually increase at higher temperatures (e.g., 500 and 
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600oC) due to the increase in their crystallinity. 

 

Figure 6-2.7 HAADF-STEM images and the corresponding elemental mapping data (C, Cu, 

Ni and O) of (a) Cu-Ni oxide/GO_300 and (b) Cu-Ni oxide/GO_500. 
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Figure 6-2.8 Wide-angle XRD patterns of (a) Cu-Ni oxide/GO_300, (b) Cu-Ni oxide/GO_400, 

(c) Cu-Ni oxide/GO_500, and (d) Cu-Ni oxide/GO_600. 

 

The nitrogen (N2) adsorption-desorption measurements were performed to investigate 

the porosity of the Cu-Ni oxide/GO composites obtained after thermal treatment (Figure 6-

2.9). The BET surface area of the Cu-Ni oxide/GO composites initially increases with 

increasing calcination temperature, reaching an optimum value of 145 m2 g-1 at 500 oC (Cu-Ni 

oxide/GO_500). The FTIR spectrum of Cu-Ni oxide/GO_500 still shows several peaks 

belonging to the functional groups of GO nanosheets (Figure 6-2.10), however the intensity of 

these peaks becomes weak and the peak assignable to CN units totally disappears. However, 

the BET specific surface area of the composite rapidly decreases to 20 m2 g-1 when the 

calcination temperature was raised to 600 oC, owing to the fusion and crystallization of oxides. 

In comparison, the pristine Cu-Ni oxide (Figure 6-2.11) and GO nanosheets exhibit BET 

specific surface areas of 11.1 and 34.9 m2 g-1, respectively, indicating the superiority of the Cu-

Ni oxide/GO composites. Furthermore, compared to Cu-Ni oxide nanoflakes in Chapter 6-1, 

the addition of GO nanosheets greatly enhances the specific surface area as the GO nanosheets 
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wrapped around the CuCNNi flakes can prevent the sintering of metal oxides during the 

thermal treatment. 

 

 

Figure 6-2.9 Nitrogen adsorption-desorption isotherms for Cu-Ni oxide/GO hybrids calcined 

at (a) 300°C, (b) 400°C, (c) 500°C, and (d) 600°C. 
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Figure 6-2.10 FTIR spectra of Cu-Ni oxide/GO hybrids calcined at (a) 400°C, (b) 500°C and 

(c) 600°C. 

 

 

Figure 6-2.11 Nitrogen adsorption-desorption isotherms for Cu-Ni oxide calcined at 300°C. 
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6-2.4. Conclusion 

I have successfully synthesized Cu-Ni cyano-bridged coordination polymer (CuCNNi) 

nanoflakes on GO nanosheets via a facile approach. In my proposed method, the presence of 

the postively charged Cu2+ ions can promote electrostatic interaction with the GO nanosheets 

and enable the subsequent formation and growth of the CuCNNi nanoflakes on the GO 

nanosheets. The thermal treatment of the CuCNNi/GO hybrid at 300-600°C resulted in their 

conversion to porous Cu-Ni oxide/GO composites. Since the GO nanosheets can prevent the 

rapid crystallization and fusion of metal oxides during the thermal treatment, I can realize Cu-

Ni oxide/GO composite with a high surface area of 150 m2 g1. This layer-by-layer approach 

can be extended for the preparation of other CP-derived metal oxide/GO hybrids for a wide 

variety of functional applications. 
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8.1. Overview of the Achievements 

Porous materials based on coordination compounds, including metal-organic 

frameworks (MOFs) and porous coordination polymers (PCPs), have well-defined pore 

structures and promising properties. They can efficiently be prepared by conventional and 

facile coordination methods. Among coordination compounds, Prussian blue (PB) and its 

analogue (PBA) show high physical/chemical properties and potential as multifunctional 

platforms for various applications such as information recording, sensing, batteries, 

biomedicine, imaging, and water purification. The strong relationship between 

nanoarchitectures and functional properties of PB and PBAs was demonstrated in Chapter 1. 

In this thesis, I synthesized a various shaped cyano-bridged CPs under strictly controlled 

crystallization conditions. The tuning of the chemical and physical properties of the PB or 

PBA-derived materials can be done by controlling the size and morphology of the PB or PBA 

precursors. In my work, I synthesize various shapes of cyano-bridged CPs from the single 

crystal to nano- and mesoporous structures. In addition, the structural transformation under 

humidity control was investigated. Due to the presence of water networks in the two-

dimensional (2D) materials the proton conductivity of these materials could be measured. Also, 

to obtain good quality single crystal, I used a chelating agent to slow down the growth process. 

In my work, hollow CoFe-PBA nanocubes were also synthesized by using silica spheres as 

hard templates. Here I used the silica spheres due to the presence of functional silanol group 

on their surface, which made it is possible to achieve the hollow structure without much 

complexity. The large interface of this material can be applied for sodium ion-batteries. Also, I 

prepared NiCo flakes wrapped with graphene (NiCo-CP/G) by electrostatic interaction and 

successfully converted it to NiCo oxide/G hybrid. The NiCo oxide-graphene hybrid displayed 

good performance for supercapacitors applications because they possess a high number of 

active surface sites for the electrochemical reactions. The shape and size change of CuNi CPs 

were investigated by using trisodium citrate dihydrate (TSCD) as a chelating agent with 

different amounts. Following thermal treatment in air, the organic cyano group was removed 

and CuNi oxide was formed. The CuNi oxide products obtained at different thermal treatment 
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(300, 400 and 500oC) showed respectable electrochemical performance for supercapacitors. 

The hybrid cyano-bridge CuNi CPs on the surface of graphene oxide (GO) sheets were 

prepared via in situ deposition method and following thermal treatment at high temperatures, 

CuNi oxide/GO hybrids with high surface areas were obtained, as described in Figure 7-1.    

   

 

Figure.7-1 Overall projects described in this thesis 

 

(I) Two-dimensional cyano-bridged coordination polymer of Mn(H2O)2[Ni(CN)4]: 

structural analysis and proton conductivity measurements upon dehydration and 

rehydration (Chapter 2) 

Mn(H2O)2[Ni(CN)4] single crystal was grown by a slow diffusion method at low 

temperatures. Through detailed structural analysis, the as-synthesized crystals of 

[Mn(H2O)2Ni(CN)4]·3H2O were transformed into another crystalline phase 

[Mn(H2O)2Ni(CN)4]·H2O upon dehydration via a topotactic route. The structure of the 

framework itself changed as the tilt of MnO6 octahedra changes in response to the change in 

hydrogen bonds between these water molecules, though the 2D cyano-bridged networks were 

retained. The water molecules, in particular the hydrogen bonds, played a key role in the 

structural transformation upon dehydration/hydration in the 2D cyano-bridged CPs, that is, 

such frameworks are flexible enough to respond to humidity. I investigated the capability for 
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proton conduction through the hydrogen bonding networks using single crystals at high 

humidity ratio (100%) which showed low proton conductivity.  

(II) Single Crystal Growth of Two-Dimensional Cyano-Bridged Coordination 

Polymer of [Co(H2O)2Ni(CN)4]·4H2O Using Trisodium Citrate Dihydrate (Chapter 3) 

In this chapter, a single crystal of Co(H2O)2Ni(CN)4·4H2O with a very smooth surface 

was grown by the same method used in Chapter 2 through a controlled crystallization process 

with the assistance of TSCD to increase the speed of growth process. The hydrophilicity 

measurement was investigated by water adsorption/desorption isotherms at room temperature. 

The pressure at P/P0 = 0.91, the crystal adsorbed absorbs about two water molecules per 

[CoNi(CN)4] unit. This was not in good agreement with the single crystal X-ray diffraction 

pattern and thermogravimetric analysis/differential thermal analysis (TG-DTA) results which 

showed a fully hydrated sample containing 5-6 water molecules.  

(III) Synthesis of Hollow Co-Fe Prussian Blue Analogue Cubes by using Silica Spheres 

as a Sacrificial Template (Chapter 4) 

This chapter demonstrates the formation of hollow CoFe–PBA nanocubes by using 

silica spheres as hard templates and examined their feasibility as cathode materials for sodium-

ion batteries (SIBs). The silanol groups on the surface of the silica spheres reacted with cobalt 

cations in the first step. Nucleation of CoFe–PBA started simultaneously upon addition of iron 

cyanide ligands in the second step. After aging overnight, a thin shell of CoFe–PBA was 

successfully formed on the surface of the silica spheres. Silica cores were then removed by 

chemical etching with hydrofluoric acid (HF), yielding hollow CoFe–PBA nanocubes. The 

hollow nanostructure of CoFe–PBA nanocubes helped to improve the storage capacity of 

sodium ions with stable cycle performance compared to the solid CoFe–PBA nanocubes.  

(Ⅳ) Graphene-Wrapped Nanoporous Nickel-Cobalt Oxide Flakes for 

Electrochemical Supercapacitors (Chapter 5) 

This chapter demonstrates a facile approach to hybridize nanoporous NiCo oxide flakes 

with graphene sheets. Electrostatic attraction played a definitive role in compositing the 

positively charged cyano-bridged CoNi coordination polymer flakes (CoNi-CP) with the 
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negatively charged graphene surfaces. Further, simple thermal treatment converted the 

graphene wrapped CoNi-CP flakes to Ni-Co oxide/graphene composites without affecting the 

integrity of the parent graphene sheets. This composite showed a high specific capacitance 

(⁓199 F g-1) and a good capacitance retention. 

(Ⅴ) Cyano-Bridged Cu-Ni Coordination Polymer Nanoflakes and Their Thermal 

Conversion to Mixed Cu-Ni Oxides (Chapter 6) 

In first part of this chapter, the successful fabrication of 2D Cu-Ni CPs nanoflakes via 

a controlled crystallization process with the assistance of TSCD is demonstrated. It is found 

that the concentration of TSCD strongly influenced the size and morphology of the resulting 

Cu-Ni CPs, with higher concentration of TSCD leading to more well-defined and larger-sized 

nanoflakes due to the reduction in crystallization speed of Cu-Ni CPs. These Cu-Ni CPs were 

subsequently converted into nanoporous Cu-Ni mixed oxides via thermal treatment in air at 

300–500◦C and they showed respectable electrochemical performance for supercapacitors with 

a maximum specific capacitance 158 F g-1 at 1 A g-1 and good capacitance retention of 71%. It 

is expected that the proposed method will be useful for the preparation of other types of 2D 

and 3D CPs as precursors for the synthesis of various nanoporous metal oxides for energy and 

environmental applications.  

In the second part of this chapter, Cu-Ni CPs flakes were successfully hybridized with 

GO nanosheets. The GO nanosheets served as nucleation sites for the growth of Cu-Ni CPs 

flakes. After thermal treatment the cyano group in the Cu-Ni CPs was removed and porous 

CuNi oxide/GO composite was achieved. Since the GO nanosheets could prevent rapid 

crystallization and fusion of metal oxides during thermal treatment, the surface area of CuNi 

oxide/GO composite incredible increased from 49 m2 g-1 for the hybrid treated at 300oC to 145 

m2 g-1 for the hybrid treated at 500oC.  
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